Радиологические паспорта испытательных площадок на территории Семипалатинского испытательного полигона

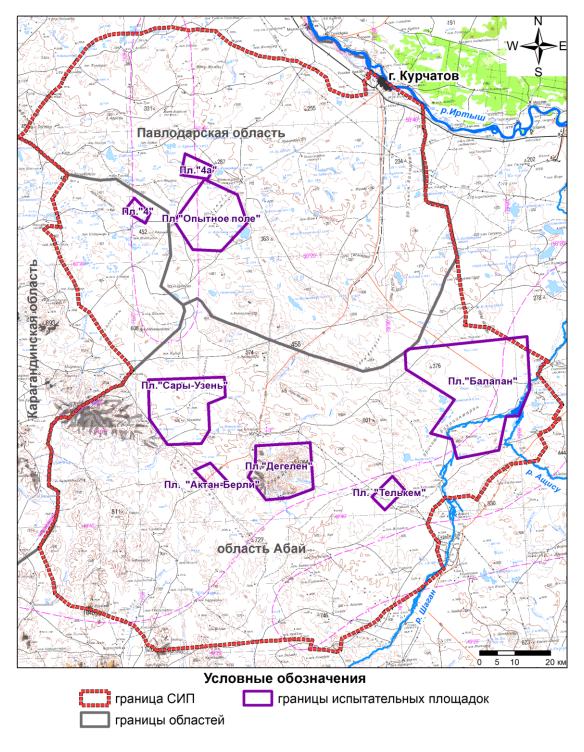


Рисунок 1. Схема расположения испытательных площадок на территории СИП

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «САРЫ-УЗЕНЬ»

1. Общая характеристика испытательной площадки

Название: «Сары-Узень» (Рисунок 1, Рисунок 2).

Предназначение: проведение подземных ядерных взрывов в вертикальных выработках – скважинах.

Административное месторасположение расположение: область Абай.

Географические координаты: 49°57′39′′ с. ш. 77°40′09′′ в. д.

Площадь: ~325 км². **Периметр:** 73,7 км.

Условия проведения испытаний ядерного оружия: подземные ядерные взрывы (средняя глубина закладки боезаряда 350 м) и модельные эксперименты.

Период проведения испытаний ядерного оружия: с 1965 по 1980 гг. [1, 2, 3, 4, 5].

Количество подземных ядерных взрывов: 24 испытаний в 25 скважинах [3].

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

- испытания на выброс грунта;
- внештатные аварийные ситуации во время проведения испытаний;
- привнесение загрязнение от наземных ядерных испытаний;
- антропогенная деятельность (добыча металлолома, вскрытие штолен).

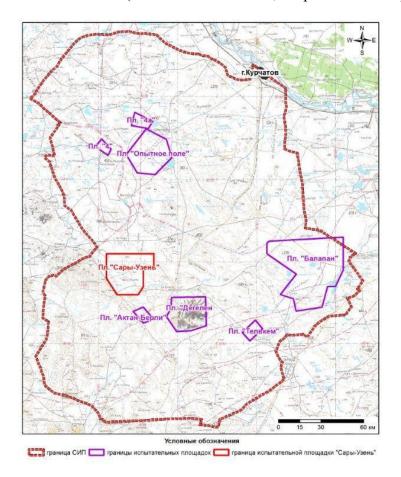


Рисунок 1. Карта-схема расположения испытательных площадок на территории СИП

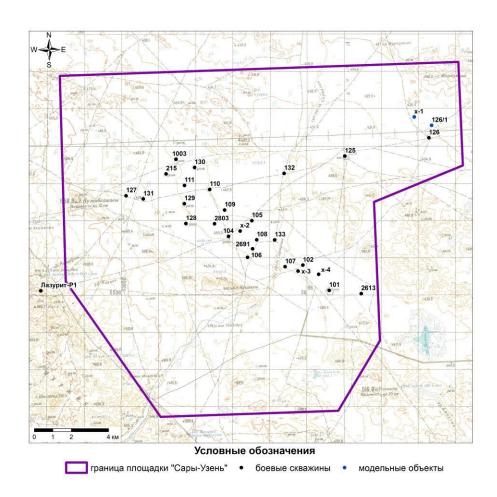


Рисунок 2. Карта-схема расположения боевых скважин на территории испытательной площадки «Сары-Узень»

Историческая информация о подземных ядерных взрывах на территории испытательной площадки «Сары-Узень» представлена в приложении (Приложение 1, Таблица 1), [1, 2, 3, 4].

2. Текущая радиоэкологическая ситуация окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «Сары-Узень» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории «население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной площадки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения на поверхности почвы: 0,1-65 мкЗв/ч (предел измерения используемой аппаратуры -10 мЗв/ч);
- диапазон значений плотности потока бета-частиц: $<10-8,0\times10^2$ част/(см²·мин) (предел измерения используемой аппаратуры -10 част/(см²·мин);
 - диапазон значений плотности потока альфа-частиц: нет измерений.

Основные техногенные радионуклиды: ²⁴¹Am, ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu.

- диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:
 - 241 Am: $<0,3-1,2\times10^5$;
 - $^{-137}$ Cs: $<0.1-4.8\times10^4$;
 - 90 Sr: $<0,2-2,4\times10^4$;
 - $^{239+240}$ Pu: $< 0.1 1.9 \times 10^6$.

Количество радиационно-опасных объектов: 30 объектов (испытательные скважины, объекты с модельными экспериментами) (Рисунок 2

). Обследование внутри скважин не проводилось.

Количество радиационно-загрязненных участков: 7 участков (схема расположения — Рисунок 3, радиационные характеристики — Таблица 1).

Диапазон значений площадной активности основных техногенных радионуклидов, $\kappa \mathbf{F} \kappa / \mathbf{m}^2$:

- \bullet ²⁴¹Am $< 4.9 \times 10^2 7.8 \times 10^3$;
- 137 Cs $< 75 3.1 \times 10^3$;
- \bullet 90Sr <1,2×10²-1,6×10³;
- \bullet ²³⁹⁺²⁴⁰Pu <4,1×10²– 1,2×10⁵.

Площадь радиоактивного загрязнения, M^2 : 9,4×10⁵.

Средняя глубина залегания радионуклидов, м: 0,1.

Плотность почвы, г/см³: 1,3.

Объем радиоактивного грунта, м³: $1,5 \times 10^6$.

Запас радионуклидов (по максимальным значениям удельных активностей радионуклидов в почве), Бк: 241 Am $-8.8\times10^{11};$ 137 Cs $-1.8\times10^{13};$ 90 Sr $-2.3\times10^{13};$ $^{239+240}$ Pu -1.2×10^{14}

Дополнительная информация о радиоактивном загрязнении почвы радиационнозагрязненных участков испытательной площадки «Сары-Узень» представлена в приложении (ПРИЛОЖЕНИЕ 2).

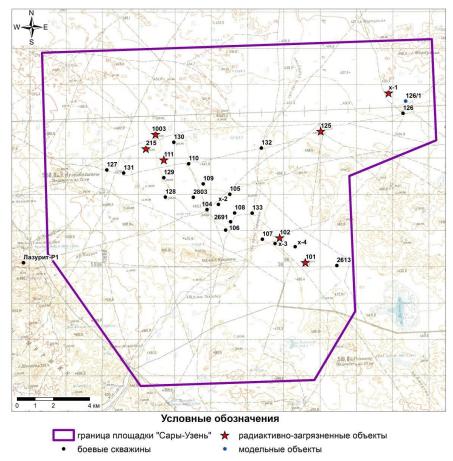


Рисунок 3. Карта-схема расположения радиационно-опасных объектов на площадке «Сары-Узень»

Таблица 1. Информация о радиоактивном загрязнении в поверхностном слое почвы радиационно-опасных объектов площадки «Сары-Узень»

No.	Та		⁹⁰ Sr		¹³⁷ Cs				²³⁹⁺²⁴⁰ Pu			²⁴¹ Am	
Л/п	№ oбъекта	Аs, кБк/м²	V, м ³	А, Бк	As, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк
1	101	9,1×10 ²	1,1×10 ⁶	2,0×10 ¹³	6,5×10 ²	1,1×10 ⁶	1,4×10 ¹³	7,5×10 ²	1,1×10 ⁶	1,6×10 ¹³	<4,9×10 ²	-	-
2	102	2,6×10 ²	1,2×10 ²	6,2×10 ⁸	$3,1\times10^{3}$	2,2×10 ²	1,4×10 ¹⁰	<4,1×10 ²	-	-	<4,9×10 ²	-	-
3	111	<1,2×10 ²	-	-	7,9×10 ²	5,8×10 ²	9,2×10 ⁹	<4,1×10 ²	-	-	<4,9×10 ²	-	-
4	125	<1,2×10 ²	-	-	<75	-	-	6,3×10 ²	3,4×10 ⁵	4,3×10 ¹²	<4,9×10 ²	-	-
5	215	7,2×10 ²	$3,2\times10^{3}$	4,6×10 ¹⁰	$2,1\times10^{3}$	4,9×10 ³	2,0×10 ¹¹	1,2×10 ⁵	3,0×10 ⁴	7,4×10 ¹³	7,8×10 ³	5,6×10 ³	8,7×10 ¹¹
6	1003	1,6×10 ³	9,1×10 ⁴	2,8×10 ¹²	1,8×10 ³	9,6×10 ⁴	3,4×10 ¹²	9,8×10 ³	1,0×10 ⁵	2,0×10 ¹³	<4,9×10 ²	-	-
7	x-1	<1,2×10 ²	-	-	<75	-	-	4,8×10 ⁴	8,8×10 ²	6,9×10 ¹¹	5,4×10 ³	81	7,2×10 ⁹

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: <1.0;
- 137 Cs: $<1.0\times10^{-2}-2.2$:
- 90 Sr: $<0,1-5,3\times10^2$;
- ²³⁹⁺²⁴⁰Pu: <3.7×10⁻⁴– 12:
- ${}^{3}\text{H}$: <6.0–8.5×10 4 .

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: <3,0;
- 137 Cs: <0,4 9,5;
- \bullet 90Sr: <0,1 22;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,5×10⁻⁴;
- \bullet ³H: <6,0 3,0×10⁴.

2.4 Радиоактивное загрязнение атмосферного воздуха

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: $<6.0\times10^{-8}-2.6\times10^{2}$;
- 137 Cs: $<5.0\times10^{-7} 3.6\times10^{3}$:
- 90 Sr: $<1.9\times10^{-7}-1.9\times10^{-2}$:
- \bullet ²³⁹⁺²⁴⁰Pu: <4.9×10⁻⁶ 5.1×10⁻².

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <0,1 6,0×10²;
- 137 Cs: $<0,1-1,2\times10^3$:
- \bullet 90Sr: $<0.9-4.5\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <0.1 7.3×10⁴.

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <4,0×10⁻² 3.7:
- 137 Cs: $<1.3-3.6\times10^2$:
- \bullet 90Sr: <1,2 6,6×10³;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,0×10⁻²-3,6.

приложение 1

Хронология испытаний ядерного оружия на территории испытательной площадки «Сары-Узень»

Таблица 1. Хронология испытаний ядерного оружия на территории площадки «Сары-Узень»

№ п/ п	№ скв.	Дата испытания	Цель испыт ания	Мощность испытания	Радиаци онный эффект	№ п/п	№ скв.	Дата испытания	Цель испыт ания	Мощность испытания	Радиаци онный эффект
1	101	18.12.1966	ОПЗ	20-150	BHK- HPC	16	129	19.06.1971	ОЯО	0,001-20	ВНК
2	102	16.09.1967	ОЯО	0,001-20	ВНК	17	130	29.03.1977	ОЯО	20-150	ВНК
3	104	21.07.1970	ОЯО	0,001-20	ВКП	18	131	19.04.1973	СЯО	0,001-20	ВНК
4	105	22.09.1967	ОЯО	10	ВКП	19	132	26.08.1972	СЯО	0,001-20	ВНК
5	106	22.11.1967	ОЯО	0,001-20	ВКП	20	133	04.08.1976	СЯО	0,001-20	ВНК
6	107	28.12.1969	ОЯО	46	ВКП	21	215	28.11.1974	СЯО	0,001-20	BHK- HPC
7	108	31.05.1969	ОЯО	0,001-20	ВНК	22	1003	14.10.1965	ПВ	1,1	ВВГ
8	109	16.02.1979	ОЯО	0,001-20	ВНК	23	2613	18.07.1979	ОЯО	0,001-20	ВКП
9	110	06.06.1971	ОЯО	16	ВНК	24	2691	19.03.1978	ОЯО	0,001-20	ВКП
10	111	09.10.1971	ОЯО	12	BHK- HPC	25	2803	16.02.1979	СЯО	0,001-20	ВНК
11	125	04.11.1970	ОПЗ	0,001-20	ВНК	26	Р-1, Лазурит	07.12.1974	ПВ	1,7	ВНК
12	126	04.04.1980	ОЯО	0,001-20	ВКП	27	X-1	-	-	-	-
13	126/1	-	-	-	-	28	X-2	-	-	-	-
14	127	21.10.1971	ОЯО	23	ВНК	29	X-3	-	-	-	-
15	128	02.09.1972	ОЯО	2	ВНК	30	X-4	-	-	-	-

Сокращения: ВВГ — взрыв с выбросом грунта

ВКП — взрыв камуфлета полного

ВНК — взрыв неполного камуфлета

ВНК-НРС — взрыв неполного камуфлета с нештатной радиационной ситуацией

ОПЗ — отработка промышленных зарядов (для производства ядерных взрывов в мирных целях);

ПВ — промышленные ядерные взрывы (проведение в мирных целях, отработка технологии);

СЯО — совершенствование ядерного оружия

Перечень радиационно-опасных объектов испытательной площадки «Сары-Узень»

На основании данных по лабораторным анализам и анализу карт площадного распределения техногенных радионуклидов приустьевых площадок скважин установлен перечень радиационно-опасных объектов (Рисунок 4).

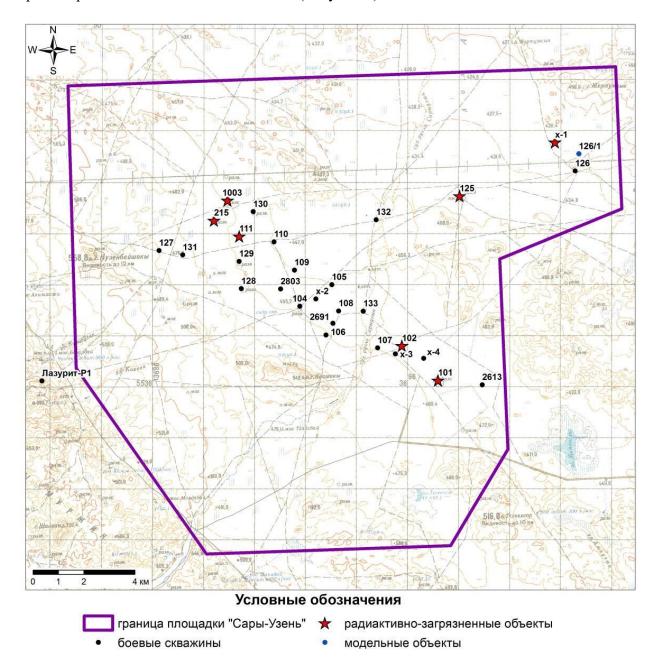


Рисунок 4. Карта-схема площадки «Сары-Узень» с обозначением радиационно-опасных объектов

Место расположения

Территория приустьевой площадки скважины расположена в юго-восточной части площадки «Сары-Узень» на расстоянии 3 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 2).

Таблица 2. Географические координаты скважины №101

No over	Географические координаты						
№ скв		Широта		Долгота			
101	49	55	30	77	44	47	

Характеристика источника радиационного загрязнения

18.12.1966 г. проведен подземный экскавационный ядерный взрыв. Цель проведения испытания — ОПЗ (отработка промышленных зарядов для производства ядерных взрывов в мирных целях). Мощность взрыва — 20-150 кт; радиационный эффект — ВНК (НРС) — нештатная радиационная ситуация.

Поствзрывные изменения дневной поверхности наблюдаются в виде воронки диаметром 350-400 м, высотой навала 10-15 м. Дно воронки заполнено водой.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 5). Загрязнение имеет масштабный характер и в большей степени сконцентрировано вокруг приустьевой территории скважины.

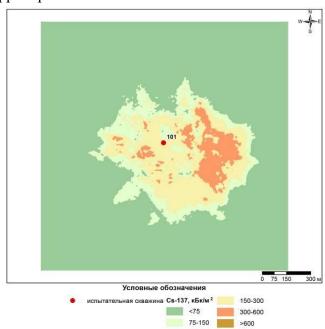


Рисунок 5. Карта площадного распределения ¹³⁷Cs на территории скважины № 101

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $<75 6.5 \times 10^2$;
- \bullet 90 Sr: <1,2×10² 9,1×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 7.5×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 0.5 км². В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка 1.1×10^6 м³.

Место расположения

Территория приустьевой площадки скважины расположена в юго-восточной части площадки «Сары-Узень» на расстоянии 4 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 3).

Таблица 3. Географические координаты скважины №102

No oven			Географически	ие координаты		
№ скв			Долгота			
102	49	56	15,9	77	43	39,4

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 16.09.1967 г. в результате проведения подземного ядерного взрыва. Целью проведения испытания было создание и совершенствование ядерного оружия (СЯО), мощность взрыва составила от 0,001 до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания — взрыв сопровождался незначительным истечением в атмосферу инертных газов (ВНК).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 6). Загрязнение имеет локальный характер и сконцентрировано у устья скважины.

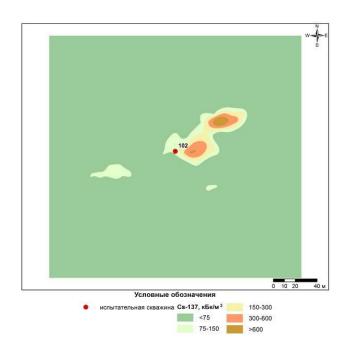


Рисунок 6. Карта площадного распределения ¹³⁷Сs на территории скважины № 102

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$;
- 137 Cs: $< 75 3.1 \times 10^3$;
- 90 Sr: <1,2×10² -2,6×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.0×10^{-3} км². В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка 2.2×10^2 м³.

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Сары-Узень» на расстоянии 7 км в восточном направлении от ее границы. Географические координаты представлены в таблице (Таблица 4).

Таблица 4. Географические координаты скважины №111

No over	№ скв						
№ СКВ		Широта		Долгота			
111	49	58	42,3	77	38	27,1	

Характеристика источника радиационного загрязнения

Радиоактивное загрязнение образовано в результате проведения в 09.10.1971 г. подземного ядерного взрыва. Целью проведения испытания было создание и совершенствование ядерного оружия, мощность взрыва составила 12 кт в тротиловом эквиваленте.

Радиационный эффект испытания – ВНК (НРС) (нештатная радиационная ситуация).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 7). Загрязнение имеет локальный характер и сконцентрировано у устья скважины.

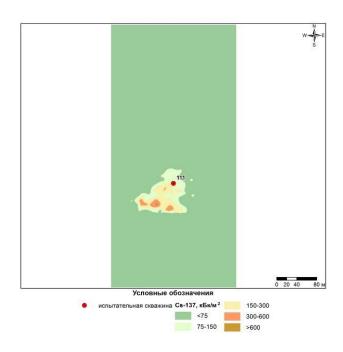


Рисунок 7. Карта площадного распределения ¹³⁷Сs на территории скважины № 111

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$;
- 137 Cs: $<75 7.9 \times 10^2$;
- 90 Sr: <1.2×10²:
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.0×10^{-3} км². В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка 5.8×10^2 м³.

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Сары-Узень» на расстоянии 6 км в южном направлении от ее границы. Географические координаты представлены в таблице (Таблица 5).

Таблица 5. Географические координаты скважины №125

No over			Географически	рические координаты				
№ скв		Широта		Долгота				
125	49	59	25,2	77	45	36,6		

Характеристика источника радиационного загрязнения

04.11.1970 г. проведен подземный экскавационный (с выбросом грунта) ядерный взрыв. Цель проведения испытания — ОПЗ (отработка промышленных зарядов для производства ядерных взрывов в мирных целях). Мощность взрыва — до 20 кт; радиационный эффект — ВНК (взрыв сопровождался незначительным истечением в атмосферу инертных газов).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 8). Загрязнение имеет масштабный характер и в большей степени сконцентрировано в северной части приустьевой территории скважины.

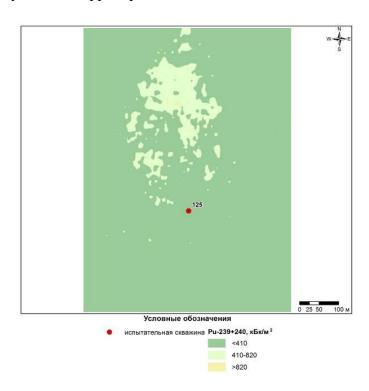


Рисунок 8. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на территории скважины № 125

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$:
- ¹³⁷Cs: <75;
- 90 Sr: $<1.2\times10^2$:
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 6.3×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.0×10^{-2} км². В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка 3.4×10^{5} м³.

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Сары-Узень» на расстоянии 6 км в восточном направлении от ее границы. Географические координаты представлены в таблице (Таблица 6).

Таблица 6. Географические координаты скважины №215

No over	Географические координаты						
№ скв		Широта		Долгота			
215	49	59	3	77	37	38	

Характеристика источника радиационного загрязнения

Радиоактивное загрязнение образовано в результате проведенного 28.11.1974 г. подземного ядерного взрыва. Целью проведения испытания было создание и совершенствование ядерного оружия, мощность взрыва — до $20~\rm kT$ в тротиловом эквиваленте.

Радиационный эффект испытания – ВНК (НРС) (нештатная радиационная ситуация).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 9). Он имеет масштабный характер и в большей степени распространяется в северовосточном направлении.

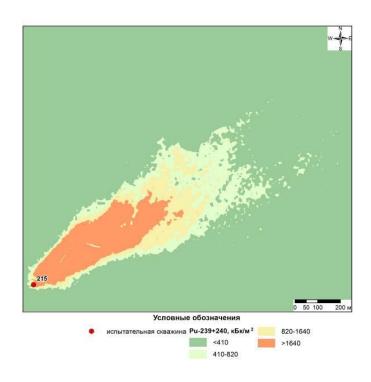


Рисунок 9. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на территории скважины № 215

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-7.8\times10^3$;
- 137 Cs: $<75 2.1 \times 10^3$:
- 90 Sr: $<1,2\times10^2-7,2\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 1.2×10⁵.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 0.3 км². В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка 3.0×10^4 м³.

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Сары-Узень» на расстоянии 5 км в южном направлении от ее границы. Географические координаты представлены в таблице (таблица 7).

Таблица 7. Географические координаты скважины №1003

ĺ	№ скв			Географически	рафические координаты				
	M2 CKB		Широта		Долгота				
	1003	49	59	25,9	77	38	08,2		

Характеристика источника радиационного загрязнения

14.10.1965 г. проведен подземный экскавационный (с выбросом грунта) ядерный взрыв. Цель проведения испытания – промышленные ядерные взрывы в мирных целях и отработка технологий проведения МЯВ (ПВ). Мощность взрыва – 1,1 кт; радиационный эффект – ВВГ (воронка на выброс).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 10). Загрязнение имеет масштабный характер и в большей степени сконцентрировано вокруг приустьевой территории скважины.

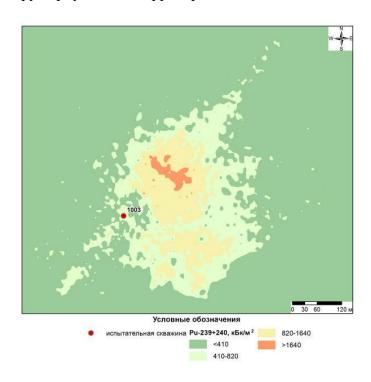


Рисунок 10. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на территории скважины № 1003

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $<75 1.8 \times 10^3$;
- 90 Sr: $<1,2\times10^2-1,6\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 9,8×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $0.1~{\rm km}^2$. В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка $1.0 \times 10^5 {\rm m}^3$.

Участок радиоактивного загрязнения модельного объекта Х-1

Место расположения

Территория модельного объекта расположена в восточной части площадки «Сары-Узень» на расстоянии 2 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 8).

Таблица 8. Географические координаты модельного объекта Х-1

№ объекта	Географические координаты						
лу ооъекта		Широта		Долгота			
X-1	50	0	26,8	77	48	54,9	

Характеристика источника радиационного загрязнения

Информация об испытании отсутствует.

Экологические характеристики объекта

На объекте наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 11). Основное загрязнение сконцентрировано на территории самого объекта, однако также имеются локальные участи на различном удалении.

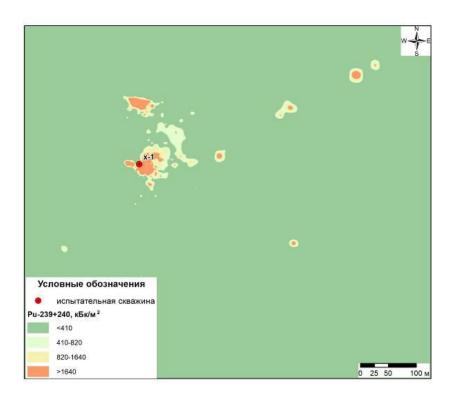


Рисунок 11. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на территории модельного объекта X-1

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-5.4\times10^3$:
- ¹³⁷Cs: <75;
- 90 Sr: $<1,2\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 4,8×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $0.1~{\rm km}^2$. В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка $1.1 \times 10^3~{\rm m}^3$.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Логачев В.А. и др. Ядерные испытания СССР. Семипалатинский полигон. Под ред. Логачева В.А.-Москва: ИздАТ, 1997 г.
- 2 Михайлов В.Н. и др. Испытание ядерного оружия и ядерные взрывы в мирных целях СССР. 1949—1990 гг. / Под ред. В.Н. Михайлова. Саров: РФЯЦ-ВНИИЭФ, 1996. 66 с.
- 3 Андрюшин И.А., Илькаев Р.И., Чернышев А.К. Общие характеристики и некоторые вопросы экологических последствий ядерных испытаний СССР. Труды РФЯЦ-ВНИИЭФ Том 1, Научно-исследовательское издание, Саров, 2001-637 с.
- 4 Сайбеков Т.С., Абылаев Ж.А. Атлас. Радиационная обстановка на территории Республики Казахстан с 1954 по 1994 годы. Алматы: Министерство экологии и биоресурсов РК, 1997- Т.16, Семипалатинская область. 400 с.
- 5 Бюллетень центра общественной информации по атомной энергии. -Москва. №12 (стр56). 1998 г.

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «АКТАН-БЕРЛИ»

1. Общая характеристика испытательной площадки

Название: «Актан-Берли» («Муржик») (Рисунок 1, Рисунок 2).

Предназначение: проведение гидроядерных экспериментов различных типов в скважинах глубиной 5-30 м [1, 2, 3].

Административное месторасположение: область Абай.

Географические координаты: 49° 46′ 58′′ с. ш. 77° 46′ 57′′ в. д.

Площадь, км²: 34. Периметр, км: 24,44.

Условия проведения испытаний: гидроядерные эксперименты различных типов.

Период проведения испытаний: с 1958 г. по 1989 г. [1, 2, 3].

Количество ядерных взрывов: достоверно не известно.

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

• радиоактивное загрязнение объектов окружающей среды, превышающее минимально значимую удельную активность и Критерии оценки экологической обстановки территорий отсутствует [4, 5].

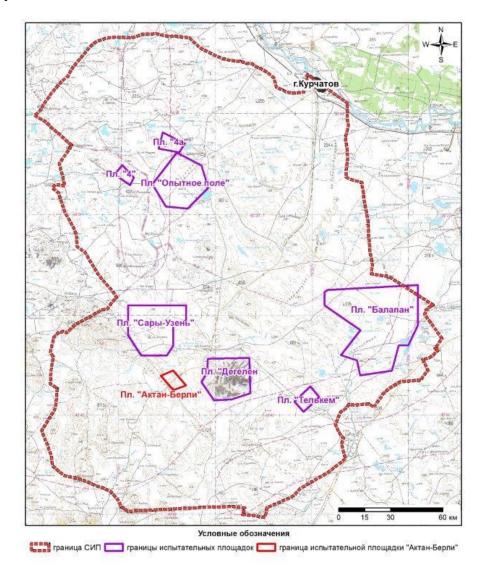


Рисунок 1. Карта-схема расположения испытательных площадок на территории СИП

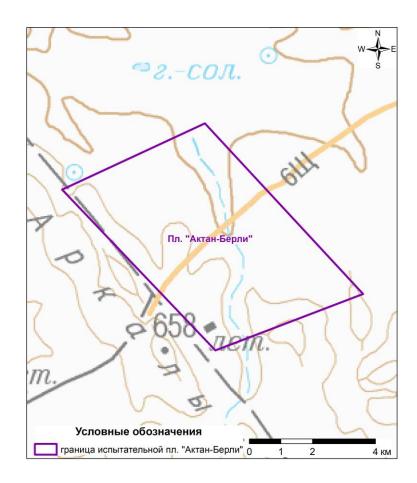


Рисунок 2. Карта-схема расположения на территории испытательной площадки «Актан-Берли»

Историческая информация об испытаниях на территории площадки «Актан-Берли» в открытых литературных источниках отсутствует.

2. Текущая радиоэкологическая ситуация окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «Актан-Берли» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории «население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от

2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной площадки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения на поверхности почвы: 0.10 0.19 мкЗв/ч (предел измерения используемой аппаратуры -10 мкЗв/ч);
- диапазон значений плотности потока бета-частиц: <10 част/(см²·мин) (предел измерения используемой аппаратуры 10 част/(см²·мин);
 - диапазон значений плотности потока альфа-частиц: нет измерений.

Основные техногенные радионуклиды: ²⁴¹Am, ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu.

- диапазон удельных активностей основных техногенных радионуклидов в почве, Бк/кг:
 - 241 Am: < 0.3 85;
 - 137 Cs: $<0,1-6,0\times10^2$;
 - 90 Sr: $<0.2 3.3 \times 10^2$:
 - 239+240Pu: 0,5 89.

Количество радиационно-опасных объектов: информация отсутствует.

Количество радиационно-загрязненных участков: нет (

). ...

Диапазон значений площадной активности основных техногенных радионуклидов, $\kappa \mathbf{F} \kappa / \mathbf{m}^2$:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs < 75:
- 90 Sr: <1,2×10²;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, м²: нет.

Средняя глубина залегания радионуклидов, м: 0,05.

Плотность почвы, $\Gamma/\text{см}^3$: 1,3.

Объем радиоактивного грунта, м³: нет.

Запас радионуклидов (по максимальным значениям удельных активностей радионуклидов в почве), Бк: нет.

Рисунок 3. Карта-схема распределение радиоактивности на площадке «Актан-Берли»

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: <2,0;
- 137 Cs: <1,0;
- 90Sr: <2,0;
- ²³⁹⁺²⁴⁰Pu: <0,1;
- 3 H: <6,0.

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet ²⁴¹Am: <1,0;
- ¹³⁷Cs: <1.0:
- 90 Sr: <4.0×10⁻²;
- \bullet ²³⁹⁺²⁴⁰Pu: <3,0×10⁻⁴;
- 3 H: <6.0–30.

2.4 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <0,5;
- 137 Cs: <0.1;
- 90 Sr: <2,0×10⁻⁴;
- \bullet ²³⁹⁺²⁴⁰Pu: <6,2×10⁻⁸ 1,9×10⁻³.

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- ²⁴¹Am: <0,1;
- 137 Cs: <0.4-1.1;
- ⁹⁰Sr: <0,7–6,6;
- $^{239+240}$ Pu: $<5.0\times10^{-2}-0.2$;

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- ²⁴¹Am: <1,0;
- 137 Cs: <0,9-1,0;
- ⁹⁰Sr: <2,0;
- ²³⁹⁺²⁴⁰Pu: <0,1;

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Семипалатинский испытательный полигон: программа СТК. Курчатов, 2004. 142 с.
- 2 Семипалатинский полигон. Создание, Деятельность, Конверсия / Под ред. В.С. Школьника. Алматы, 2004. 285 с.
- 3 Ядерные испытания СССР. Современное радиоэкологическое состояние полигонов / Кол. авторов под рук. проф. В.А. Логачева. М.: Изд.АТ, 2002. 639 с.
- 4 Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан «Об утверждении критериев оценки экологической обстановки территорий» от 13 августа 2021 года № 327 (зарегистрирован в Государственном реестре нормативных правовых актов Республики Казахстан № 157905).
- 5 Приказ Министра здравоохранения Республики Казахстан «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности» от 2 августа 2022 года № ҚР ДСМ-71 (зарегистрирован в Государственном реестре нормативных правовых актов Республики Казахстан № 170343).

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «ДЕГЕЛЕН»

1. Общая характеристика испытательной площадки

Название: «Дегелен» (Рисунок 1, Рисунок 2).

Предназначение: проведение подземных ядерных взрывов в горизонтальных горных выработках – штольнях.

Административное месторасположение: область Абай.

Географические координаты: 49° 47′ 17′′ с. ш. 78° 04′ 03′′ в. д.

Площадь, км²: 240. **Периметр, км**: 59,8.

Условия проведения ядерных испытаний: подземные ядерные взрывы.

Период проведения подземных ядерных взрывов: с 1961 г. по 1989 г. [1, 2, 3, 4].

Количество подземных ядерных взрывов: 209 испытаний в 181 штольне [3].

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

- внештатные аварийные ситуации во время проведения испытаний;
- вынос радионуклидов водотоками из испытательных штолен;
- антропогенная деятельность (добыча металлолома, вскрытие штолен).

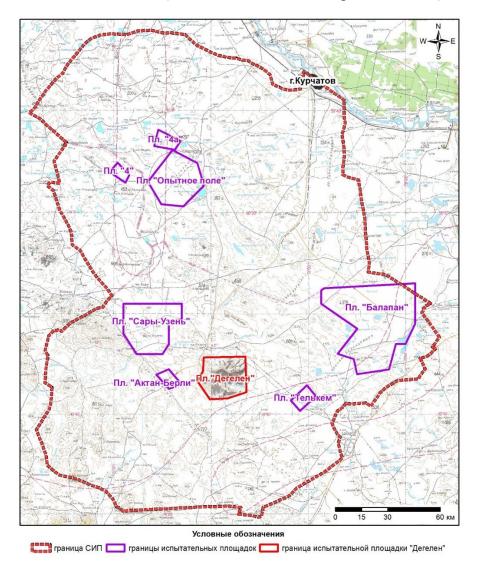


Рисунок 1. Карта-схема расположения испытательной площадки «Дегелен» на территории СИП

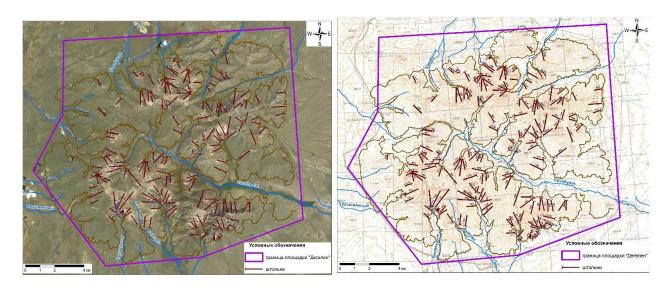


Рисунок 2. Карта-схема территории испытательной площадки «Дегелен», расположение испытательных штолен

Историческая информация о подземных ядерных взрывах на территории испытательной площадки «Дегелен» представлена в приложении (Приложение 1, Таблица 1), [1, 2, 3, 4].

2. Текущая радиоэкологическая ситуация окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «Дегелен» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории «население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной плошалки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения: $0,10-2,3\times10^2$ мкЗв/ч (предел измерения используемой аппаратуры -10 мкЗв/ч);
- диапазон значений плотности потока бета-частиц: $<10-2,4\times10^4$ част/(см $^2\cdot$ мин) (предел измерения используемой аппаратуры -10 част/(см $^2\cdot$ мин);
- диапазон удельных активностей основных техногенных радионуклидов в почве, Бк/кг:
 - 241 Am: $<0,1-5,4\times10^5$;
 - $^{-137}$ Cs: $<0,2-6,5\times10^6$;
 - 90 Sr: $<0,6-3,7\times10^6$;
 - = 239+240Pu: <0,1 4,8×10⁵.

Количество радиационно-опасных объектов: 181 объект (испытательные штольни) (). Обследование внутри штолен не проводилось.

Количество радиационно-загрязненных участков: 16 участков. (схема расположения – Рисунок 3, радиационные характеристики – Таблица 1).

Основные техногенные радионуклиды: ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am.

Площадная активность, кБк/м²:

- \bullet ²⁴¹Am $<4.9 \times 10^2 3.5 \times 10^3$;
- 137 Cs $< 75 4.2 \times 10^5$;
- \bullet 90 Sr <1,2×10² 2,4×10⁵;
- \bullet ²³⁹⁺²⁴⁰Pu $< 4.1 \times 10^2 3.1 \times 10^4$.

Площадь радиоактивного загрязнения, M^2 : 7,6×10⁵.

Средняя глубина залегания радионуклидов, м: 0,2.

Плотность почвы, г/см³: 1,3

Объем радиоактивного грунта, м³: $1,5 \times 10^5$.

Запас радионуклидов (по максимальным значениям удельных активностей радионуклидов в почве), Бк: 241 Am $-8.7\times10^{10};$ 137 Cs $-6.2\times10^{13};$ 90 Sr $-6.2\times10^{12};$ $^{239+240}$ Pu $-4.7\times10^{13}.$

Дополнительная информация об радиоактивном загрязнении почвы радиационнозагрязненных участков испытательной площадки «Дегелен» представлена в приложении (ПРИЛОЖЕНИЕ 2).

Рисунок 3. Карта-схема расположения радиационно-опасных объектов на площадке «Дегелен»

Таблица 1. Активность радионуклидов в поверхностном слое почвы радиационно-опасных объектов площадки «Дегелен»

	THUR T. TERTING	137Cs	nykingob b i	оверхностном	90Sr	аднационно-		²³⁹⁺²⁴⁰ Pu	ки удетелен		²⁴¹ Am	
№ участка	Аs, кБк/м²	V, m ³	А, Бк	As, κ Б κ/м²	V, м ³	А, Бк	As, кБк/м²	V, m ³	А, Бк	As, кБк/м ²	V, m ³	А, Бк
1	4,5×10 ⁴	1,0×10 ³	9,0×10 ¹¹	1,2×10 ³	5,7×10 ²	1,4×10 ¹⁰	6,1×10 ³	5,2×10 ³	6,3×10 ¹¹	3,5×10 ³	4,3	3,0×10 ⁸
2	6,5×10 ⁴	1,5×10 ³	2,0×10 ¹²	2,3×10 ³	8,7×10 ²	4,0×10 ¹⁰	3,1×10 ⁴	2,0×10 ⁴	1,2×10 ¹³	3,5×10 ³	1,6×10 ²	1,1×10 ¹⁰
3	1,2×10 ⁵	5,1×10 ³	1,2×10 ¹³	6,2×10 ³	$3,2\times10^{3}$	4,0×10 ¹¹	1,4×10 ⁴	2,5×10 ⁴	7,0×10 ¹²	1,6×10 ³	4,3×10 ²	1,4×10 ¹⁰
4	$3,8\times10^{3}$	9,0×10 ²	6,8×10 ¹⁰	1,4×10 ⁴	$4,7 \times 10^{2}$	1,3×10 ¹¹	1,8×10 ³	$7,4\times10^3$	2,7×10 ¹¹	<4,9×10 ²	-	-
5	2,1×10 ³	1,5×10 ²	6,3×10 ⁹	3,6×10 ²	64	4,6×10 ⁸	8,8×10 ²	3,1×10 ²	5,5×10 ¹⁹	<4,9×10 ²	-	-
6	3,6×10 ⁴	1,5×10 ²	1,1×10 ¹¹	1,3×10 ²	98	2,5×10 ⁸	2,9×10 ³	6,1×10 ²	3,5×10 ¹⁰	<4,9×10 ²	-	-
7	2,9×10 ⁴	1,0×10 ³	5,8×10 ¹¹	6,2×10 ³	$3,5 \times 10^{2}$	4,3×10 ¹⁰	3,9×10 ³	5,0×10 ²	3,9×10 ¹⁰	<4,9×10 ²	-	-
8	$3,0\times10^{2}$	1,5×10 ²	9,0×10 ⁸	5,1×10 ²	47	4,8×10 ⁸	2,6×10 ³	1,1×10 ³	5,7×10 ¹⁰	<4,9×10 ²	-	-
9	3,3×10 ⁴	9,0×10 ²	5,9×10 ¹¹	6,5×10 ³	$5,1\times10^{2}$	6,6×10 ¹⁰	2,4×10 ³	1,1×10 ³	5,3×10 ¹⁰	<4,9×10 ²	-	-
10	3,3×10 ⁴	2,2×10 ²	1,5×10 ¹¹	5,9×10 ³	95	1,1×10 ¹⁰	9,0×10 ²	4,8×10 ²	8,6×10 ⁹	<4,9×10 ²	-	-
11	1,5×10 ⁵	1,2×10 ⁴	3,6×10 ¹³	1,6×10 ⁴	$8,6 \times 10^3$	2,8×10 ¹²	1,8×10 ⁴	5,2×10 ⁴	1,9×10 ¹³	$2,1\times10^3$	$1,4 \times 10^3$	5,9×10 ¹⁰
12	4,2×10 ⁵	8,4×10 ²	7,1×10 ¹²	2,4×10 ⁵	$4,8\times10^{2}$	2,3×10 ¹²	1,0×10 ⁴	1,2×10 ⁴	$2,4\times10^{12}$	1,1×10 ³	49	1,1×10 ⁹
13	<75	-	-	7,2×10 ²	3,3×10 ²	4,8×10 ⁹	7,3×10 ³	2,5×10 ³	3,7×10 ¹¹	8,1×10 ²	1,8	2,9×10 ⁷
14	2,0×10 ⁴	3,6×10 ³	1,4×10 ¹²	6,2×10 ³	2,2×10 ³	2,7×10 ¹¹	1,4×10 ⁴	1,3×10 ⁴	3,6×10 ¹²	1,6×10 ³	53	1,7×10 ⁹
15	3,9×10 ⁴	9,4×10 ²	7,3×10 ¹¹	1,6×10 ⁴	$4,0\times10^{2}$	1,3×10 ¹¹	$7,4\times10^3$	1,0×10 ⁴	1,5×10 ¹²	8,2×10 ²	29	4,8×10 ⁸
16	1,0×10 ³	2,7×10 ²	5,4×10 ⁹	5,5×10 ²	$1,5 \times 10^2$	1,7×10 ⁹	1,8×10 ³	5,2×10 ²	1,9×10 ¹⁰	<4,9×10 ²	-	-

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet ²⁴¹Am: <1,2×10⁻³ 30;
- 137 Cs: $<1,0\times10^{-3}-3,8\times10^{3}$;
- 90 Sr: $<4,0\times10^{-3}-4,3\times10^{3}$;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,1×10⁻⁵ 1,2×10³;
- ${}^{3}\text{H}$: <6.0 2.6×10⁵.

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet ²⁴¹Am: <2,0×10⁻²–2;
- 137 Cs: <9.0×10⁻³–60;
- 90 Sr: $<5,0\times10^{-3}-31$;
- $^{239+240}$ Pu: $< 7,5 \times 10^{-5} 6,3$;
- ${}^{3}\text{H}$: $<6.0 5.0 \times 10^{4}$.

2.4 Радиоактивное загрязнение атмосферного воздуха

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- 241 Am: $<2,9\times10^{-7}-0,5;$
- 137 Cs: $<2.0\times10^{-7}-3.2$:
- \bullet 90Sr: <1,1×10⁻⁶ 4,5×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <1.1×10⁻⁷ 40.

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- 241 Am: $<0,2-3,3\times10^4$;
- 137 Cs: $<0,3-1,6\times10^6$;
- \bullet 90Sr: <0,8 2,5×10⁶;
- $^{239+240}$ Pu: $<0,1-4,2\times10^4$;

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <3,0×10⁻² 1,4×10²;
- 137 Cs: $<6.0\times10^{-2} 5.4\times10^{4}$:
- 90 Sr: $<4,0\times10^{-2}-6,8\times10^{5}$;
- \bullet ²³⁹⁺²⁴⁰Pu: <3.0×10⁻³ 76.

приложение 3

Хронология подземных ядерных испытаний на территории испытательной площадки «Дегелен»

Таблица 2. Хронология подземных испытаний ядерного оружия на территории испытательной площадки «Дегелен»

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
1.	Нет информации	011	Нет информации	Нет информации	Подземный	Нет информации	
2.	Нет информации	022	Нет информации	Нет информации	Подземный	Нет информации	
3.	17.09.1965	1	СЯО	0,001-20	Подземный	Нет информации	
4.	06.09.1970	8	ОПЗ	0,001-20	Подземный	Нет информации	
5.	20.03.1966	11	СЯО	100	Подземный	ВКП	
6.	19.10.1966	13	СЯО	20-150	Подземный	Нет информации	
7.	03.12.1966	14 14	СЯО ОПЗ	0,001-20 0,001-20	Подземный	Нет информации	Первый групповой ЯВ в одной штольне
8.	05.08.1966	17	СЯО	0,001-20	Подземный	ВНК	
9.	04.08.1967	18 18	ОЯО СЯО	0,001-20 0,001-20	Подземный	ВНК	
10.	25.03.1967	19 19	СЯО ИПФ	0,001-20 0,001-20	Подземный	Нет информации	
11.	26.02.1967	21	ФМИ	20-150	Подземный	ВНК	
12.	21.07.1966	24	СЯО	20-150	Подземный	ВНК	
13.	07.05.1966	25	ОПЗ	4	Подземный	Нет информации	
14.	19.10.1988	034	ИПΦ	0,001-20	Подземный	Нет информации	
15.	11.03.1975	101	СЯО	0,001-20	Подземный	Нет информации	
16.	20.11.1981	103	СЯО	0,001-20	Подземный	Нет информации	2 идентичных ЯВ
17.	28.07.1978	104 104 104 104 104	СЯО СЯО ОЯО ОЯО ОЯО	20-150 0,001-20 0,001-20 0,001-20 0,001-20	Подземные	Нет информации	Групповой ЯВ с максимальным числом взрывов на СИП
18.	22.09.1967	105	СЯО	10	Подземный	ВКП	

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
	29.11.1971	105	СЯО	0,001-20			
19.	22.11.1967 17.07.1981	106 106	ОЯО ОЯО	0,001-20 0,001-20	Подземный Подземный	ВНК	
20.	29.08.1978	107 107 107	СЯО СЯО ИАР	0,001-20 0,001-20 <0,001	Подземный	ВКП	
21.	31.05.1969	108	СЯО	0,001-20	Подземный	Нет информации	
22.	16.02.1979	109	СЯО	0,001-20	Подземный	Нет информации	
23.	07.06.1972	110	СЯО	0,001-20	Подземный	Нет информации	
24.	17.08.1977	111	СЯО	0,001-20	Подземный	Нет информации	
25.	16.02.1973	113	СЯО	20-150	Подземный	Нет информации	
26.	29.01.1971	114	ИПФ	0,001-20	Подземный	Нет информации	
27.	15.01.1976	115	СЯО	0,001-20	Подземный	Нет информации	
28.	25.05.1971	119	СЯО	0,001-20	Подземный	Нет информации	
29.	24.07.1970	120	СЯО	0,001-20	Подземный	Нет информации	
30.	07.08.1975	122	СЯО	0,001-20	Подземный	Нет информации	
31.	07.08.1975	123	СЯО	0,001-20	Подземный	Нет информации	
32.	04.04.1980	126	СЯО	0,001-20	Подземный	Нет информации	
33.	25.06.1980	127	СЯО	0,001-20	Подземный	ВКП	
34.	18.10.1979	128	СЯО	0,001-20	Подземный	ВНК	2 идентичных ЯВ
35.	26.12.1983	129	ФМИ	0,001-20	Подземный	ВКП	
36.	26.02.1987	130	ФМИ	0,001-20	Подземный	Нет информации	
37.	09.09.1984	132	ИПФ	0,001-20	Подземный	ВКП	4 идентичных ЯВ
38.	15.07.1975	133	СЯО	0,001-20	Подземный	ВКП	2 идентичных ЯВ
39.	Нет информации	134	Нет информации	Нет информации	Подземный	Нет информации	
40.	22.12.1981	135	СЯО	0,001-20	Подземный	Нет информации	3 идентичных ЯВ
41.	29.10.1977	136 136	СЯО ФМИ	0,001-20 0,001-20	Подземные	ВКП	
42.	06.06.1987	138	ФМИ	0,001-20	Подземный	ВКП	
43.	17.02.1989	139	СЯО	0,001-20	Подземный	ВКП	

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
44.	10.12.1972	140	ОКО	20-150	Подземный	Нет информации	Первый групповой ЧВ (3- 2 и 140) в штольнях на СИП
45.	31.05.1979	141	СЯО	0,001-20	Подземный	Нет информации	3 идентичных ЯВ
46.	30.10.1976	143	ИПФ	0,001-20	Подземный	Нет информации	
47.	Нет информации	147	Нет информации	Нет информации	Подземный	Нет информации	
48.	09.04.1971 09.04.1971	148/1 148/1	ПВ ПВ	0,23 0,23	Подземный Подземный	Нет информации	
49.	Нет информации	148/2	Нет информации	Нет информации	Подземный	Нет информации	
50.	16.12.1974 16.12.1974	148/5 148/5	ПВ ПВ	3,8 3,8	Подземный Подземный	Нет информации	
51.	Нет информации	149	Нет информации	Нет информации	Подземный	Нет информации	
52.	19.02.1982	150	ОЯО	0,001-20	Подземный	Нет информации	2 идентичных взрыва
53.	Нет информации	151	Нет информации	Нет информации	Подземный	Нет информации	
54.	25.07.1985	152 152 152 152	СЯО СЯО ЧАИ ЧАИ	0,001-20 0,001-20 0,001-20 0,001-20	Подземные	Нет информации	
55.	20.02.1975	156	ИПФ	0,001-20	Подземный	Нет информации	
56.		156 T	Нет информации	Нет информации	Подземный	Нет информации	
57.	15.12.1971	157	ИПФ	0,001-20	Подземный	Нет информации	
58.	Нет информации	158	Нет информации	Нет информации	Подземный	Нет информации	
59.	Нет информации	160	Нет информации	Нет информации	Подземный	Нет информации	
60.	29.11.1978	162	СЯО	0,001-20	Подземные	Нет информации	
61.	20.02.1975	163	ИПФ	0,001-20	Подземные	Нет информации	3 идентичных ЯВ
62.	06.05.1987	164	ФМИ	0,001-20	Подземные	ВНК	
63.	08.06.1975	165	ОП3	0,001-20	Подземные	Нет информации	
64.	17.07.1987	168	ФМИ	20-150	Подземные	ВКП	
65.	Нет информации	169	Нет информации		Подземные	Нет информации	
66.	23.11.1988	169/1 169/1	СЯО	0,001-20 0,001-20	Подземные	Нет информации	

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
		169/1	ФМИ	<0,001			
			ИАР				
67.	04.10.1989	169/2-1	ОЯО	0,001-20	Подземные	ВНК	
68.	Нет информации	169/2-2	Нет информации	Нет информации	Подземные	Нет информации	
69.	Нет информации	169/2-TP	Нет информации	Нет информации	Подземные	Нет информации	
70.	Нет информации	170	Нет информации	Нет информации	Подземные	Нет информации	
71.	25.12.1982	172	СЯО	0,001-20	Подземные	ВНК	2 идентичных взрыва
72.	22.05.1980	173	СЯО	0,001-20	Подземные	ВКП	3 идентичных взрыва
73.	Нет информации	174	Нет информации	Нет информации	Подземные	Нет информации	
74.	30.07.1977	175	СЯО	0,001-20	Подземные	ВКП	2 идентичных взрыва
75.	16.05.1974	176	СЯО	0,001-20	Подземные	ВКП	
76.	30.03.1983	177	СЯО	0,001-20	Подземные	Нет информации	
77.	Нет информации	178	Нет информации	Нет информации	Подземные	Нет информации	
78.	13.09.1974	179	ИПФ	0,001-20	Подземные	ВКП	
79.	29.11.1983	180	СЯО	0,001-20	Подземные	ВНК	2 идентичных взрыва
80.	10.04.1980	181	СЯО	0,001-20	Подземные	Нет информации	2 идентичных взрыва
81.	14.08.1981	184	СЯО	0,001-20	Подземные	Нет информации	3 идентичных взрыва
82.	23.07.1976	185	СЯО	0,001-20	Подземные	Нет информации	
83.	12.04.1983	186	ИПΦ	0,001-20	Подземные	ВНК	
84.	30.06.1981	187	СЯО	0,001-20	Подземные	Нет информации	2 идентичных взрыва
0.5	15.04.1004	190	СЯО	20-150	П	Нет информации	
85.	15.04.1984	190	СЯО	0,001-20	Подземные		
		191	СЯО	0,001-20		Нет информации	
86.	28.03.1972	191	ОП3	0,001-20	Подземные		
		191	ИАР	<0,001			
87.	05.10.1975	192	СЯО	0,001-20	Подземные	ВНК	
88.	17.12.1970	193	СЯО	20-150	Подземные	Нет информации	
89.	31.10.1978	194	ФМИ	0,001-20	Подземные	Нет информации	
90.	10.07.1974	195	СЯО	0,001-20	Подземные	Нет информации	
91.	25.06.1982	196 196	ИПФ ОЯО	0,001-20 0,001-20	Подземные	Нет информации	

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
92.	Нет информации	198	Нет информации	Нет информации	Подземные	Нет информации	
93.	15.10.1978	200АСМ л	ИПФ	0,001-20	Подземные	Нет информации	
94.	Нет информации	200АСМ п	Нет информации	Нет информации	Подземные	Нет информации	
95.	Нет информации	200 M-A	Нет информации	Нет информации	Подземные	Нет информации	
96.	18.10.1984	200 М бис	ИПФ	0,001-20	Подземные	ВНК	
97.	10.03.1972	201	СЯО	0,001-20	Подземные	Нет информации	2 идентичных ЯВ
98.	21.09.1982	203	СЯО	0,001-20	Подземные	Нет информации	2 идентичных ЯВ
99.	22.04.1978	204	СЯО	0,001-20	Подземные	Нет информации	3 идентичных ЯВ
100.	26.10.1973	205	ИПФ	0,001-20	Подземные	ВНК	
101.	Нет информации	207	Нет информации	Нет информации	Подземные	Нет информации	
102.	03.04.1987	208	ОЯО	0,001-20	Подземные	ВКП	3 идентичных ЯВ
103.	Нет информации	210	Нет информации	Нет информации	Подземные	Нет информации	
104.	Нет информации	212	Нет информации	Нет информации	Подземные	Нет информации	
105.	Нет информации	214	Нет информации	Нет информации	Подземные	Нет информации	
106.	30.05.1983	215 215	РИМФ СЯО	0,001-20 0,001-20	Подземные	ВКП	
107.	29.11.1983	216	СЯО	0,001-20	Подземные	Нет информации	
108.	Нет информации	420	Нет информации	Нет информации	Подземные	Нет информации	
109.	Нет информации	430	Нет информации	Нет информации	Подземные	Нет информации	
110.	30.10.1967	501	СЯО	0.001-20	Полземные	Нет информации	
111.	06.09.1970	502	СЯО	0,001-20	Подземные	Нет информации	
112.	11.09.1969	503 503	ОП3 ОП3	0,001-20 0,001-20	Подземные	Нет информации	
113.	23.05.1968	504	СЯО	< 0,001	Подземные	ВНК	
114.	24.04.1968	505	ОЯО	0,001-20	Подземные	Нет информации	
115.	15.07.1967	506	ОП3	0,001-20	Подземные	Нет информации	
116.	08.12.1967	507	СЯО	0,001-20	Подземные	ВНК	
117.	18.12.1968	508	ОП3	0,001-20	Подземные	ВКП	
118.	05.09.1968	509	ИПФ	0,001-20	Подземные	ВКП	
119.	28.06.1970	510	СЯО	20-150	Подземные	Нет информации	
120.	27.11.1969	511	ОП3	0,001-20	Подземные	Нет информации	

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
121.	07.06.1972	601	ИПФ	0,001-20	Подземные	Нет информации	
122.	30.01.1974	603	ИПФ	0,001-20	Подземные	Нет информации	Произведено 3 идентичных взрыва. Испытание отнесено к групповому ЯИ по его специфике, хотя разновременность взрыва была более 0,1 сек
123.	13.12.1975	604	СЯО	0,001-20	Подземные	ВКП	
124.	11.06.1968	605	СЯО	0,001-20	Подземные		
125.	09.11.1968	606	ОП3	0,001-20	Подземные	ВКП	
126.	01.10.1969	607 607	СЯО СЯО	0,001-20 0,001-20	Подземные	Нет информации	
127.	12.07.1968	608 608	ОЯО СЯО	0,001-20 0,001-20	Подземные	ВНК	
128.	30.12.1971	609	СЯО	20-150	Подземные	Нет информации	
129.	27.03.1970	610	ОП3	0,001-20	Подземные	Нет информации	
130.	30.01.1967	611 611	СЯО СЯО	0,001-20 0,001-20	Подземные	ВКП	
131.	26.03.1978	701	СЯО	0,001-20	Подземные	Нет информации	2 идентичных ЯВ
132.	29.06.1967	703	СЯО	0,001-20	Подземные	ВКП	
133.	22.04.1988	704	ИПФ	0,001-20	Подземные	ВКП	
134.	28.06.1970	705 705	ОПЗ СЯО	0,001-20 0,001-20	Подземные	Нет информации	
135.	25.04.1971	706	СЯО	90	Подземные	Нет информации	
136.	29.03.1977	707 707 707	СЯО СЯО ИАР	0,001-20 0,001-20 <0,001	Подземные	ВКП	
137.	16.08.1972	708	ИПФ	8	Подземные	Нет информации	
138.	16.05.1969	709	СЯО	0,001-20	Подземные	ВКП	
139.	04.07.1969	710	ОП3	0,001-20	Подземные	Нет информации	

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
		710	СЯО	0,001-20			
140.	23.07.1969	801	СЯО	16	Подземные	ВКП	
141.	29.01.1970	802	ИПФ	0,001-20	Подземные	Нет информации	Было произведено 3 идентичных ЯВ
142.	26.12.1977	803	СЯО	0,001-20	Подземные	ВКП	
143.	23.11.1984	803 бис	СЯО	0,001-20	Подземные	Нет информации	3 идентичных ЯВ
144.	10.07.1973	806 806 806	СЯО СЯО ИАР	0,001-20 0,001-20 <0,001	Подземные	Нет информации	
145.	22.03.1971	807	СЯО	0,001-20	Подземные	Нет информации	
146.	30.12.1971	809	СЯО	0,001-20	Подземные	Нет информации	
147.	07.01.1968	810	ОП3	0,001-20	Подземные	Нет информации	
148.	19.07.1985	901	СЯО	0,001-20	Подземные	ВКП	
149.	31.07.1980	902	СЯО	0,001-20	Подземные	Нет информации	2 идентичных ЯВ
150.	04.02.1965	A	ФМИ	0,001-20	Подземные	ВКП	
151.	02.02.1962 27.10.1966	A-1	ИПФ СЯО	0,001-20 150-1500	Подземные	ВКП	Первое подземное испытание СССР в целях ИПФ
152.	16.05.1964 21.10.1967	A-4 A-4	ОЯО ОЯО	20-150 150-1500	Подземные	Нет информации	Первый групповой ЯВ в 2 штольнях
153.	19.07.1964	A-5 A-5	ФМИ СЯО	20-150 20-150	Подземные	Нет информации	Первый групповой ЯВ в 2 штольнях
154.	15.03.1964 14.10.1970	A-6 A-6	ИПФ СЯО	20-150 150-1500	Подземные	Нет информации	3 идентичных ЯВ
155.	20.08.1968	A-7 A-7	СЯО ИАР	0,001-20 <0,001	Подземные	Нет информации	
156.	27.09.1971	A-8	СЯО	150-1500	Подземные	Нет информации	4 идентичных ЯВ
157.	25.10.1964 17.10.1967	Б Б	ОП3 ОП3	0,001-20 0,001-20	Подземные	Нет информации	
158.	Нет информации	Б –2/80-1	Нет информации	Нет информации	Подземные	Нет информации	
159.	Нет информации	Б-2/80-2	Нет информации	Нет информации	Подземные	Нет информации	

№ п/п	Дата испытания	Шифр штольни	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Радиационная ситуация	Примечание
160.	11.10.1961 12.09.1973	B-1 B-1	ФМИ СЯО	1 150-1500-10000	Подземные	ВНК	Первое подземное испытание СССР, на СИП и в штольне Самое мощное подземное испытание СССР
161.	06.06.1964	B-2	ФМИ	0,001-20	Подземные	ВНК	
162.	18.09.1964 29.10.1966	Γ	ФМИ СЯО	0,001-20 0,001-20	Подземные	Нет информации	Первое подземное ЯИ на СИПНЗ в штольне
163.	13.02.1966	E-1	ОПЗ	125	Подземные	ВКП	Самый мощный ЯВ на СИП в штольне
164.	29.09.1968	E-2	ИПФ	60	Подземные	Нет информации	
165.	17.06.1965	Ж-1	ОП3	0,001-20	Подземные	ВНК	
166.	22.11.1965	Ж-2	СЯО	29	Подземные	ВКП	
167.	03.03.1965	Ж-3	СЯО	0,001-20	Подземные	ВНК	
168.	Нет информации	Ж-4	Нет информации	Нет информации	Подземные	Нет информации	
169.	08.10.1965	3-1	СЯО	0,001-20	Подземные	Нет информации	
170.	10.12.1972	3-2	ОКО	0,001-20	Подземные	Нет информации	Первый групповой ЯВ в двух штольнях (3-2 и 140) на территории СИП
171.	24.12.1965	3-3	ОП3	0,001-20	Подземные	ВНК	
172.	16.11.1964	3-5	ОП3	20-150	Подземные	ВКП	
173.	29.06.1966	3-6	ОП3	20-150	Подземные	Нет информации	
174.	16.10.1987	К-85	ИПФ	0,001-20	Подземные	Нет информации	
175.	Нет информации	K-2/1	Нет информации	Нет информации	Подземные	Нет информации	
176.	Нет информации	K-2/2	Нет информации	Нет информации	Подземные	Нет информации	
177.	06.07.1972	Метро	Нет информации	Нет информации	Подземные	Нет информации	
178.	Нет информации	Метро-Х	Нет информации	Нет информации	Подземные	Нет информации	
179.	Нет информации	НЦР-1	Нет информации	Нет информации	Подземные	Нет информации	
180.	Нет информации	НЦР-2	Нет информации	Нет информации	Подземные	Нет информации	
181.	Нет информации	НЦР-3	Нет информации	Нет информации	Подземные	Нет информации	

Сокращения:

СЯО - создание или совершенствование ядерного оружия;
ФМИ - фундаментальные и методические исследования;
ИАР - исследования аварийных режимов и аварийных ситуаций;
ИПФ - исследования поражающих факторов ЯВ и их воздействие на военные и гражданские объекты;
ВКП - взрыв полного камуфлета,

ВНК - взрыв неполного камуфлета

Перечень радиационно-опасных объектов испытательной площадки «Дегелен»

На основании данных по лабораторным анализам и анализу карт площадного распределения техногенных радионуклидов установлен перечень радиационно-опасных объектов (Рисунок 4).

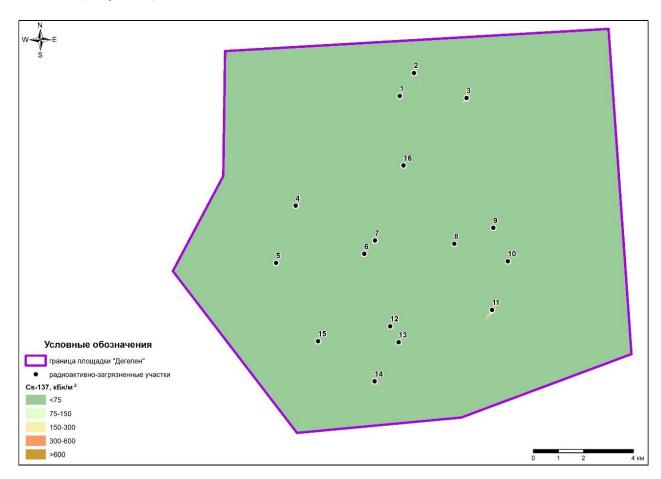


Рисунок 4. Карта-схема расположения радиационно-опасных объектов на площадке «Дегелен»

Место расположения

Участок расположен в северной части площадки «Дегелен», район штолен 138 и 511. Долина р. Карабулак. Географические координаты представлены в таблице (Таблица 2).

Таблица 2.Географические координаты участка №1

No vino otivo	Географические координаты					
№ участка		Широта			Долгота	
1	49	50	14	78	03	33

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 138 и 511.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 5). Он имеет локальный характер и распространяется в пределах припортальной территории штолен и водотока из штольни 511.

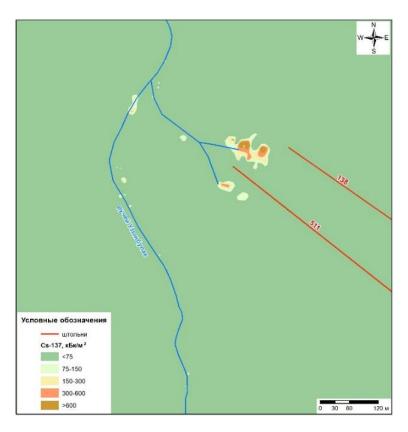


Рисунок 5. Карта площадного распределения ¹³⁷Сs на участке №1

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-3.5\times10^2$;
- 137 Cs: $< 75 4.5 \times 10^4$;
- 90 Sr: $<1,2\times10^2-1,2\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 6,1×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,6\times10^4$ м². В тоже время объем радиоактивного материала составляет порядка $5,2\times10^3$ м³.

Место расположения

Участок расположен в северной части площадки «Дегелен», район штольни 3-6, Б-2/80-1, Б-2/80-2. Долина р. Карабулак. Географические координаты представлены в таблице (Таблица 3).

Таблица 3. Географические координаты участка №2

Ŋ	Ма хима атма	Географические координаты						
	№ участка		Широта			Долгота		
	2	49	50	41	78	04	04	

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 3-6, Б-2/80-1, Б-2/80-2.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (

). Он имеет локальный характер и распространяется в пределах припортальной территории штолен и водотоков из них.

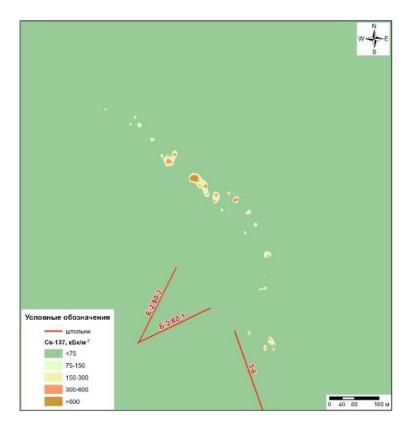


Рисунок 6. Карта площадного распределения ¹³⁷Сs на участке №2

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-3.5\times10^3$;
- 137 Cs: $< 75 6.5 \times 10^4$:
- 90 Sr: $<1,2\times10^2-2,3\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 3.1×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 9.9×10^4 м². В тоже время объем радиоактивного материала составляет порядка 2.0×10^4 м³.

Место расположения

Участок расположен в северной части площадки «Дегелен», в правом притоке р. Карабулак. Район штольни 504. Географические координаты представлены в таблице (Таблица 4).

Таблица 4. Географические координаты участка №3

J	Мо туго отгаз	Географические координаты					
	№ участка		Широта			Долгота	
	3	49	50	02	78	05	46

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 504 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 7). Он имеет локальный характер и распространяется в пределах припортальной территории штольни и водотока из него.

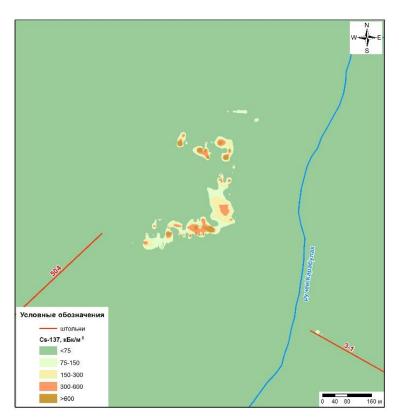


Рисунок 7. Карта площадного распределения ¹³⁷Сs на участке №3

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4,9\times10^2-1,6\times10^3$;
- 137 Cs: $< 75 1.2 \times 10^5$;
- 90 Sr: $<1,2\times10^2-6,2\times10^3$:
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 1.4×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,3\times10^5$ м². В тоже время объем радиоактивного материала составляет порядка $2,5\times10^4$ м³.

Место расположения

Участок расположен в северной части площадки «Дегелен» в районе штолен 156 и 156-Т. Географические координаты представлены в таблице (Таблица 5).

Таблица 5. Географические координаты участка №4

№ участка	Географические координаты					
	Широта			Долгота		
4	49	47	56	77	59	59

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 156 и 156-Т.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 8). Он имеет локальный характер и распространяется в пределах припортальной территории штолен и водотоков из них.

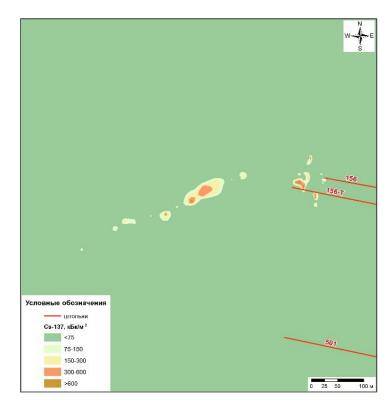


Рисунок 8. Карта площадного распределения ¹³⁷Сs на участке №4

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$;
- 137 Cs: $< 75 3.8 \times 10^3$:
- 90 Sr: $<1,2\times10^2-1,4\times10^4$;
- $^{239+240}$ Pu: $<4.1\times10^2-1.8\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.7×10^4 м². В тоже время объем радиоактивного материала составляет порядка 7.4×10^3 м³.

Место расположения

Участок расположен в западной части площадки «Дегелен» в долине ручья Безымянный. Район штольни 503. Географические координаты представлены в таблице (Таблица 6).

Таблица 6. Географические координаты участка №5

No vivo omico	Географические координаты						
№ участка	Широта			Долгота			
5	49	46	42	77	59	11	

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 503 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 9). Он имеет локальный характер и распространяется в пределах припортальной территории штольни и водотока из него.

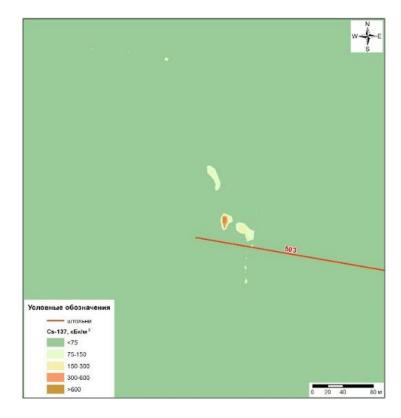


Рисунок 9. Карта площадного распределения ¹³⁷Сs на участке №5

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 2.1 \times 10^3$:
- 90 Sr: $<1,2\times10^2-3,6\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 8,8×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,5 \times 10^3$ м². В тоже время объем радиоактивного материала составляет порядка $3,1 \times 10^2$ м³.

Место расположения

Участок расположен в центральной части площадки «Дегелен». Второй правый приток ручья Узынбулак. Район штолен 173, 172, D. Географические координаты представлены в таблице (Таблица 7).

Таблица 2 Географические координаты участка №6

	No vyvo omvo	Географические координаты					
JN⊇	№ участка		Широта			Долгота	
	6	49	46	50	78	02	07

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 172.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 10). Он имеет локальный характер и распространяется в пределах припортальной территории штольни.

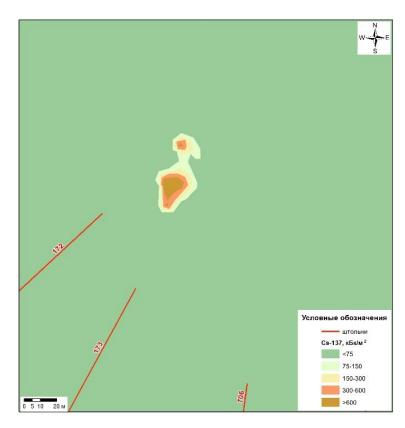


Рисунок 10. Карта площадного ¹³⁷Сs распределения на участке №6

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 3.6 \times 10^4$;
- 90 Sr: $<1,2\times10^2-1,3\times10^2$;
- $^{239+240}$ Pu: $<4.1\times10^2-2.9\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.0×10^3 м². В тоже время объем радиоактивного материала составляет порядка 6.1×10^2 м³.

Место расположения

Участок расположен в центральной части площадки «Дегелен». Второй правый приток ручья Узынбулак. Водоток из штольни 177. Географические координаты представлены в таблице (Таблица 8).

Таблица 8. Географические координаты участка №7

MG		Географические координаты						
JN2 y 43	№ участка		Широта			Долгота		
7	7	49	47	08	78	02	32	

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 177 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 11). Он имеет локальный характер и распространяется в пределах припортальной территории штольни и водотока из него.

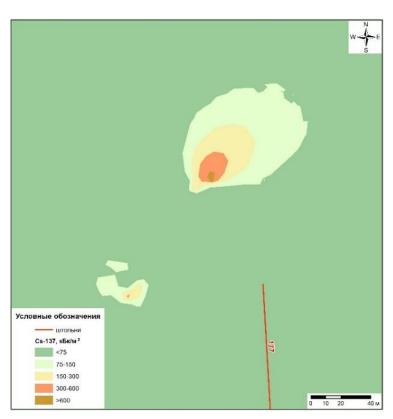


Рисунок 11. Карта площадного распределения ¹³⁷Сs на участке №7

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 2.9 \times 10^4$;
- 90 Sr: $<1,2\times10^2-6,2\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 3.9×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 4.8×10^3 м². В тоже время объем радиоактивного материала составляет порядка 1.0×10^3 м³.

Место расположения

Участок расположен в центральной части площадки «Дегелен». Третий левый приток ручья Узынбулак. Район штолен 192, 212, K-2/2. Географические координаты представлены в таблице (Таблица 9).

Таблица 9. Географические координаты участка №8

	No vivo omico			Географически	ие координаты		
	№ участка		Широта			Долгота	
	8	49	46	58	78	05	09

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 212, K-2/2 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 12). Он имеет локальный характер и распространяется в пределах припортальной территории штолен и водотоков из них.

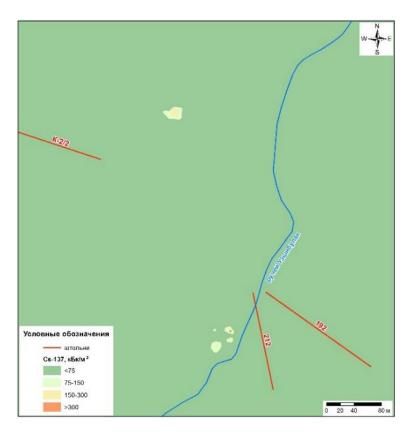


Рисунок 12. Карта площадного распределения ¹³⁷Сs на участке №8

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 3.0 \times 10^2$;
- 90 Sr: $< 1,2 \times 10^2 5,1 \times 10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4,1\times10^2 2,6\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.5×10^3 м². В тоже время объем радиоактивного материала составляет порядка 1.1×10^3 м³.

Место расположения

Участок расположен в центральной части площадки «Дегелен». Четвертый левый приток ручья Узынбулак. Район штолен 129, 704, 194, 607. Географические координаты представлены в таблице (Таблица 10).

Таблица 10. Географические координаты участка №9

Ma .			Географические координаты						
745	№ участка		Широта			Долгота			
	9	49	47	12	78	06	29		

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 704, 194, 607 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 13). Он имеет локальный характер и распространяется в пределах припортальной территории штолен и водотоков из них.

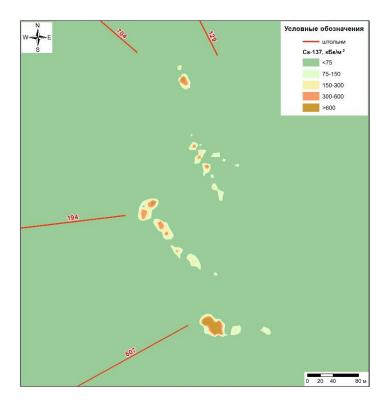


Рисунок 13. Карта площадного ¹³⁷Сs распределения на участке №9

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 3,3 \times 10^4$;
- 90 Sr: $< 1,2 \times 10^2 6,5 \times 10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4,1\times10^2 2,4\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.6×10^3 м². В тоже время объем радиоактивного материала составляет порядка 1.1×10^3 м³.

Место расположения

Участок расположен в центральной части площадки «Дегелен». Четвертый левый приток ручья Узынбулак. Район штольни 195. Географические координаты представлены в таблице (Таблица 11).

Таблица 11. Географические координаты участка №10

No vivo omvo			Географически	ие координаты			
№ участка		Широта			Долгота		
10	49	46	37	78	06	44	

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 195 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 14). Он имеет локальный характер и распространяется в пределах припортальной территории штольни и водотока из него.

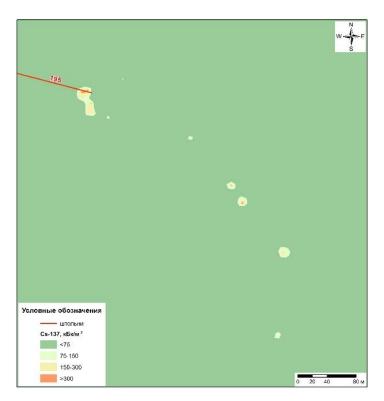


Рисунок 14. Карта площадного распределения ¹³⁷Сs на участке №10

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 3.3 \times 10^4$:
- \bullet 90Sr: $< 1,2 \times 10^2 5,9 \times 10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4.1 \times 10^2 9.0 \times 10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 4.8×10^3 м². В тоже время объем радиоактивного материала составляет порядка 4.8×10^2 м³.

Место расположения

Участок расположен в центральной части площадки «Дегелен». Четвертый правый приток ручья Узынбулак. Район штолен 104, 608. Географические координаты представлены в таблице (Таблица 12).

Таблица 12. Географические координаты участка №11

No vivo omvo			Географически	ие координаты			
№ участка		Широта			Долгота		
11	49	45	30	78	06	20	

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 104, 608 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 15). Он имеет масштабный характер, уходя в северо- восточном направлении от припортальной территории штолен по водотокам.

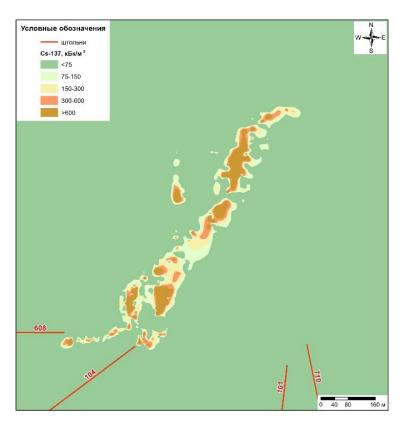


Рисунок 15. Карта площадного распределения ¹³⁷Сs на участке №11

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $< 4.9 \times 10^2 2.1 \times 10^3$;
- 137 Cs: $< 75 1,5 \times 10^5$;
- 90 Sr: $< 1.2 \times 10^2 1.6 \times 10^4$:
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4.1 \times 10^2 1.8 \times 10^4$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,6\times10^5$ м². В тоже время объем радиоактивного материала составляет порядка $5,2\times10^4$ м³.

Место расположения

Участок расположен в южной части площадки «Дегелен». Долина р. Байтлес. Район штолен 609, 810. Географические координаты представлены в таблице (Таблица 13).

Таблица 13. Географические координаты участка №12

No vivo omiso			Географически	ие координаты		
№ участка		Широта			Долгота	
12	49	45	17	78	02	52

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 609 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 16). Он имеет локальный характер и распространяется в пределах припортальной территории штольни и водотока из нее.

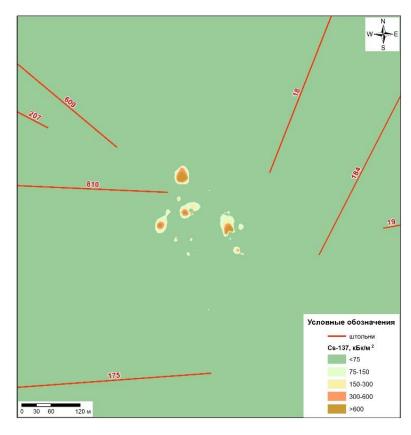


Рисунок 16. Карта площадного распределения ¹³⁷Сs на участке №12

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4.9\times10^2-1.1\times10^3$;
- 137 Cs: $< 75 4.2 \times 10^5$:
- 90 Sr: $< 1,2 \times 10^2 2,4 \times 10^5$;
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4.1 \times 10^2 1.0 \times 10^4$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.1×10^4 м². В тоже время объем радиоактивного материала составляет порядка 1.2×10^4 м³.

Место расположения

Участок расположен в южной части площадки «Дегелен». Долина р. Байтлес. Район штольни 210. Географические координаты представлены в таблице (Таблица 14).

Таблица 14. Географические координаты участка №13

No vivo amino			Географически	ие координаты		
№ участка		Широта			Долгота	
13	49	44	53	78	03	10

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 210 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 17). Он имеет локальный характер и распространяется в пределах припортальной территории штольни и водотока из него.

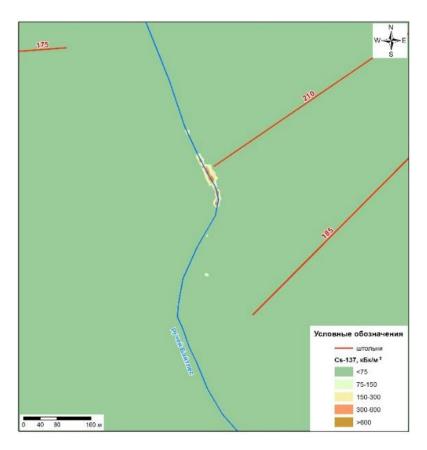


Рисунок 17. Карта площадного распределения ¹³⁷Сs на участке №13

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-8,1\times10^2$;
- 137 Cs: < 75;
- 90 Sr: $<1,2\times10^2-7,2\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4.1 \times 10^2 7.3 \times 10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,2\times10^4$ м². В тоже время объем радиоактивного материала составляет порядка $2,5\times10^3$ м³.

Место расположения

Участок расположен в южной части площадки «Дегелен». Долина р. Байтлес. Район штольни 176. Географические координаты представлены в таблице (Таблица 15).

Таблица 15. Географические координаты участка №14

No vivo omiso			Географически	ие координаты			
№ участка		Широта			Долгота		
14	49	44	02	78	02	19	

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземного ядерного испытаний в штольне 176 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 18). Он имеет масштабный характер, уходя в юго- восточном направлении от припортальной территории штольни по водотоку.

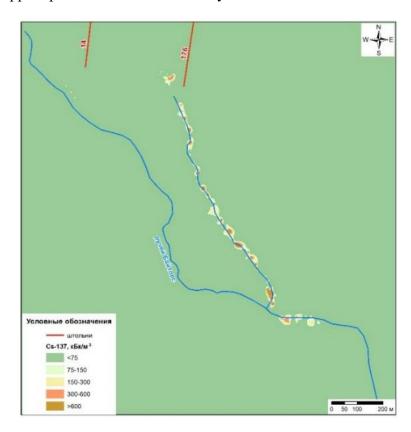


Рисунок 18. Карта площадного распределения ¹³⁷Сs на участке №14

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $< 4.9 \times 10^2 1.6 \times 10^3$:
- 137 Cs: $< 75 2.0 \times 10^4$:
- \bullet 90 Sr: $< 1.2 \times 10^2 6.2 \times 10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4.1 \times 10^2 1.4 \times 10^4$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.4×10^4 м². В тоже время объем радиоактивного материала составляет порядка 1.3×10^4 м³.

Место расположения

Участок расположен в южной части площадки «Дегелен». Долина р. Байтлес. Район штолен 165, 11, 809. Географические координаты представлены в таблице (Таблица 16).

Таблица 16. Географические координаты участка №15

Молический			Географически	ие координаты		
№ участка		Широта			Долгота	
15	49	45	03	78	00	27

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 165, 11 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 19). Он имеет локальный характер и распространяется в пределах припортальной территории штолен и водотоков из них.

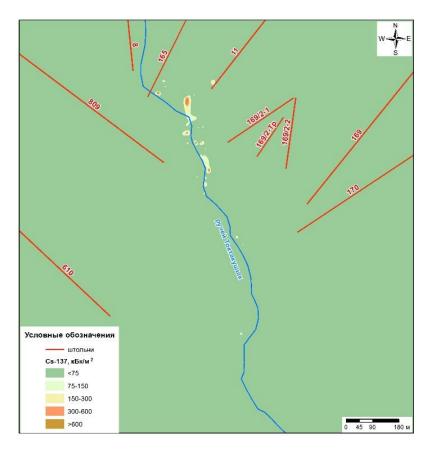


Рисунок 19. Карта площадного распределения ¹³⁷Сs на участке №15

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $< 4.9 \times 10^2 8.2 \times 10^2$;
- 137 Cs: $< 75 3.9 \times 10^4$;
- 90 Sr: $< 1,2 \times 10^2 1,6 \times 10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: $< 4.1 \times 10^2 7.4 \times 10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.1×10^4 м². В тоже время объем радиоактивного материала составляет порядка 1.0×10^4 м³.

Место расположения

Участок расположен в центральной части площадки «Дегелен». Район штолен 803 бис, 141. Географические координаты представлены в таблице (Таблица 17).

Таблица 17. Географические координаты участка №16

No vivo omico			Географически	ие координаты		
№ участка		Широта			Долгота	
16	49	48	42	78	03	32

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано в результате проведения подземных ядерных испытаний в штольнях 803 бис, 141 и выноса его водотоком.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 20). Он имеет локальный характер и распространяется в пределах припортальной территории штолен и водотоков из них.

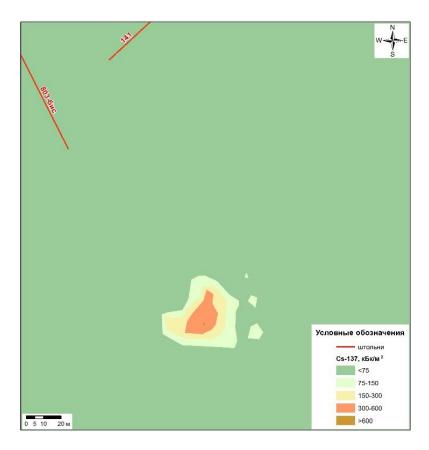


Рисунок 20. Карта площадного распределения ¹³⁷Сs на участке №16

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$;
- 137 Cs: $< 75 1.3 \times 10^3$:
- 90 Sr: $<1,2\times10^2-5,5\times10^2$;
- $^{239+240}$ Pu: $< 4.1 \times 10^2 1.8 \times 10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,6\times10^3$ м². В тоже время объем радиоактивного материала составляет порядка $5,2\times10^2$ м³.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Логачев В.А. и др. Ядерные испытания СССР. Семипалатинский полигон. Под ред. Логачева В.А.-Москва: ИздАТ, 1997 г.
- 2 Андрюшин И.А. и др. Испытание ядерного оружия и ядерные взрывы в мирных целях СССР. 1949—1990 гг. / И.А.Андрюшин, В.В.Богдан, С.А.Ващинкин, С.А.Зеленцов, Г.Е.Золотухин, В.М.Каримов, В.В.Кириченко, А.М.Матущенко, Ю.А.Силкин, В.Г.Струков, К.В.Харитонов, А.К.Чернышев, Г.А.Цырков, М.П.Шумаев. Саров: РФЯЦ-ВНИИЭФ, 1996—66 с.
- 3 Адушкин И.А., Андрюшин И.А. и др. Ядерные испытания СССР [Технологии ядерных испытаний СССР. Воздействие на окружающую среду. Меры по обеспечению безопасности. Ядерные полигоны и площадки] / Рук. В.Н. Михайлов, В.В. Адушкин, И.А. Андрюшин [и др.]. –Т.2. М.: МСФАЭ, 1997. 302 с.: ил. ISBN 56700-125-4. Инв. 30805.
- 4 Сайбеков Т.С., Абылаев Ж.А. Атлас. Радиационная обстановка на территории Республики Казахстан с 1954 по 1994 годы. Алматы: Министерство экологии и биоресурсов РК, 1997- Т.16, Семипалатинская область. 400 с.

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «ТЕЛЬКЕМ»

1. Общая характеристика испытательной площадки

Название: «Телькем» (Рисунок 1, Рисунок 2).

Предназначение: проведение подземных ядерных взрывов в мирных целях с выбросом грунта.

Административное месторасположение: область Абай.

Географические координаты: 49° 43′ 10′′ с. ш. 78° 28′ 30′′ в. д.

Площадь, км²: 42. **Периметр, км**: 26,6

Условия проведения ядерных испытаний: подземные с выбросом грунта.

Период проведения подземных ядерных взрывов: 21.10.1968 г. - 12.11.1968 г. [1, 2, 3, 4].

Количество подземных ядерных взрывов: 4.

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

- отвалы воронок;
- радиоактивные следы.

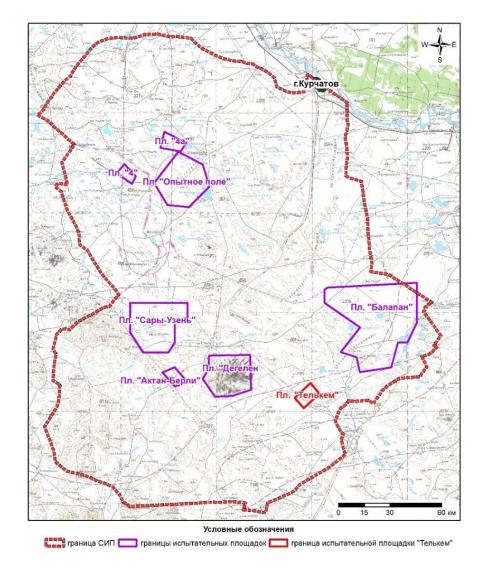


Рисунок 1. Карта-схема расположения испытательной площадки «Телькем» на территории СИП

Рисунок 2. Карта-схема территории испытательной площадки «Телькем»

Историческая информация о подземных ядерных взрывах на территории испытательной площадки «Телькем» представлена в приложении (ПРИЛОЖЕНИЕ 1, Таблица 1), [1, 2, 3, 4].

2. Текущая радиоэкологическая ситуация окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «Телькем» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории «население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной площадки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения на поверхности почвы: 0.1 3.5 мкЗв/ч (предел измерения используемой аппаратуры 10 мкЗв/ч);
- диапазон значений плотности потока бета-частиц: <10-60 част/(см²·мин) (предел измерения используемой аппаратуры 10 част/(см²·мин);
 - диапазон значений плотности потока альфа-частиц: нет измерений.

Основные техногенные радионуклиды: ²⁴¹Am, ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu.

- диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:
 - 241 Am: $<0,3-2,7\times10^4$;
 - 137 Cs: $<0,1-1,3\times10^4$;
 - 90 Sr: $<0,2-5,7\times10^3$;
 - 239+240Pu: $<0,1-1,2\times10^5$.

Количество радиационно-опасных объектов: 2 объекта (воронки от экскавационных испытаний) (Рисунок 2).

Количество радиационно-загрязненных участков: 2 участка (схема расположения – Рисунок 3, радиационные характеристики – Таблица 1).

Диапазон значений площадной активности основных техногенных радионуклидов, $\kappa \mathsf{F} \kappa / \mathsf{M}^2$:

- \bullet ²⁴¹Am: $<4,9\times10^2-1,8\times10^3$;
- 137 Cs: $< 75 8.5 \times 10^2$;
- \bullet 90Sr: $<1,2\times10^2-3,8\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: $<4.1\times10^2-7.8\times10^3$.

Площадь радиоактивного загрязнения, M^2 : 1,6×10⁵.

Средняя глубина залегания радионуклидов, м: 0,1 (за исключением отвалов).

Объем радиоактивного грунта, M^3 : 6.8×10^5 .

Запас радионуклидов, Бк: 241 Am $-1,9\times10^{13};$ 137 Cs $-7,9\times10^{12};$ 90 Sr $-4,2\times10^{12};$ $^{239+240}$ Pu $-6,8\times10^{13}.$

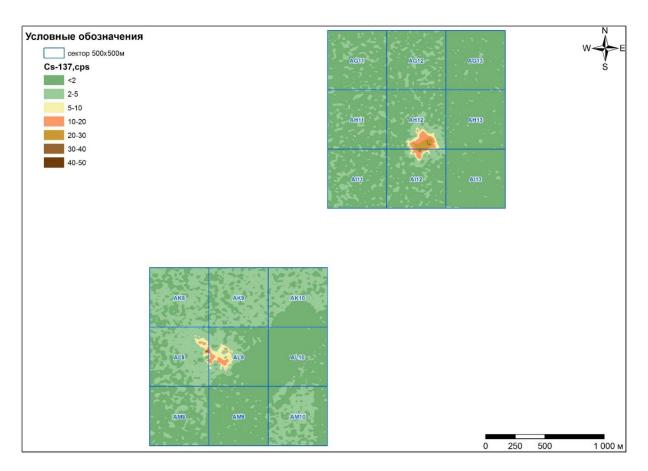


Рисунок 3. Карта-схема радиационно-опасных объектов на площадке «Телькем»

Дополнительная информация об радиоактивном загрязнении почвы радиационнозагрязненных участков испытательной площадки «Телькем» представлена в приложении (ПРИЛОЖЕНИЕ 2). Таблица 3. Активность радионуклидов в поверхностном слое почвы радиационно-опасных объектов

площадки «Телькем»

тка		¹³⁷ Cs			90Sr			²³⁹⁺²⁴⁰ Pu			²⁴¹ Am	
№участ	Аs, кБк/м ²	V, м ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м ²	V, м ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк
Телькем 1	8,5×10 ²	3,0×10 ⁵	5,1×10 ¹²	$3,8\times10^{2}$	3,0×10 ⁵	2,3×10 ¹²	1,6×10 ³	3,1×10 ⁵	9,9×10 ¹²	1,8×10 ³	3,0×10 ⁵	1,1×10 ¹³
Телькем 2	3,9×10 ²	3,6×10 ⁵	2,8×10 ¹²	$2,7 \times 10^{2}$	3,6×10 ⁵	1,9×10 ¹²	7,8×10 ³	3,7×10 ⁵	5,8×10 ¹³	$1,1\times10^{3}$	3,6×10 ⁵	7,9×10 ¹²

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: <3,0;
- 137 Cs: <3,0;
- \bullet 90Sr: <0,1 7,0×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,0×10⁻² 59;
- \bullet ³H: <6.0 30.

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet ²⁴¹Am: <3,0;
- 137 Cs: $<4,0\times10^{-2}$;
- \bullet 90Sr: <1,0×10⁻² 76;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,0×10⁻² 0,3;
- \bullet ³H: -<6.0-50.

2.4 Радиоактивное загрязнение атмосферного воздуха

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <2.0×10⁻³:
- 137 Cs: <2.0×10⁻³:
- \bullet 90Sr: <4,0×10⁻³;
- $^{239+240}$ Pu: $6.3 \times 10^{-4} 1.2 \times 10^{-3}$.

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- 241 Am: $<0,2-1,3\times10^3$;
- 137 Cs: $<0.3-1.6\times10^3$:
- \bullet 90Sr: $< 0.6 5.4 \times 10^3$:
- \bullet ²³⁹⁺²⁴⁰Pu: <0,1 1,6×10⁴.

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <6,0×10⁻²-0,6;
- \bullet ¹³⁷Cs: <0.4 13;
- \bullet 90Sr: <0,6 21;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.0×10⁻²–4.3.

Хронология подземных ядерных взрывов в мирных целях с выбросом грунта на территории испытательной площадки «Телькем»

Таблица 2. Хронология подземных ядерных взрывов в мирных целях с выбросом грунта на территории

испытательной площадки «Телькем» [1, 2, 3, 4].

испы	гательной площа	дки «Телькем»	[1, 2, 3, 4].		r	
№ п/п	Дата испытания	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Глубина взрыва, м	Примечание
1	21.10.1968 г.	ВВГ [4], ПВ [2, 3]	0,24 [2, 3], 0,2 [4]	«Телькем-1» скв. 2308 [2, 3] скв. Т-1 [1, 4]	31	Третий ядерный взрыв на выброс
2	12.11.1968 г.	ВВГ [4], ПВ [2, 3]	0,2[4], 0,24 [2, 3], 0,24 [2, 3], 0,24 [2, 3]	«Телькем-2» скв. 2305 [Ошибка! Закладка не определена., Ошибка! Закладка не определена.] скв. 2306 [Ошибка! Закладка не определена., Ошибка! Закладка не определена., Ошибка! Закладка не определена.] скв. 2307 [Ошибка! Закладка не определена., Стемба! Закладка не определена., Ошибка! Закладка не определена., Ошибка! Закладка не определена., Ошибка! Закладка не определена., Ошибка! Закладка не	31	Четвертый ядерный взрыв на выброс, групповой взрыв

Сокращения:

 ΠB — подземные ядерные взрывы в мирных целях и взрывы в целях отработки технологий их проведения, $BB\Gamma$ — взрыв с выбросом грунта.

В ходе проведения экспериментов отрабатывались технологии сооружения каналов, которые можно было бы использовать для планирования работ по созданию каналов Печора-Кама с целью отвода воды из арктических районов страны в бассейны реки Волга и Каспийское море.

ПРИЛОЖЕНИЕ 6

Перечень радиационно-опасных объектов испытательной площадки «Телькем»

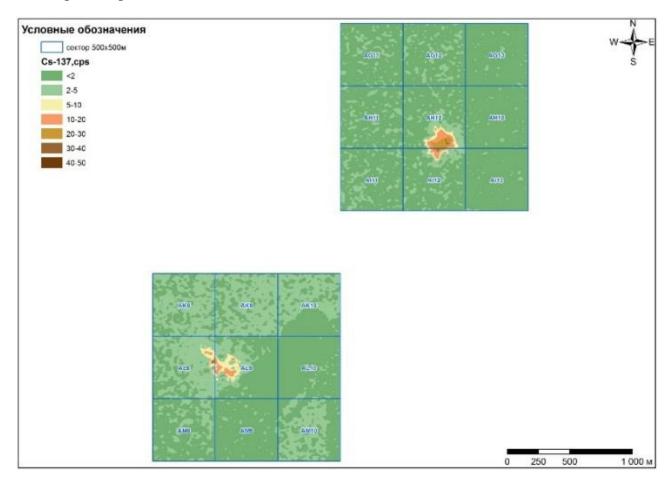


Рисунок 4. Карта-схема расположения радиационно-опасных объектов на площадке «Телькем»

Участок радиоактивного загрязнения приустьевой площадки скважины Телькем-1

Место расположения

Территория приустьевой площадки скважины юго-восточной части СИП. Географические координаты представлены в таблице (Таблица 3).

Таблица 3. Географические координаты скважины Телькем-1

№ скв	Географические координаты					
M2 CKB		Широта		Долгота		
Телькем-1	49	43	38	78	29	09

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 21.10.1968 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: промышленные ядерные взрывы в мирных целях и отработка технологий проведения МЯВ (ПВ), мощность взрыва составила 0,2 кт в тротиловом эквиваленте. Радиационный эффект испытания — воронка на выброс (ВВГ). Третий ядерный взрыв на выброс.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 5). Он имеет масштабный характер.

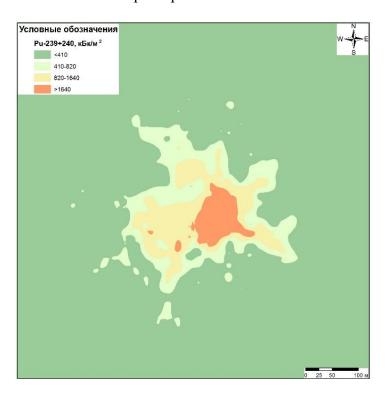


Рисунок 5. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на территории скважины Телькем-1

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4,9\times10^2-1,8\times10^3$;
- 137 Cs: $< 75 8,5 \times 10^2$;
- 90 Sr: $<1.2\times10^2-3.8\times10^2$;
- $\bullet^{239+240}$ Pu: $<4,1\times10^2-1.6\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.8×10^{-2} км². В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка 3.1×10^5 м³.

Участок радиоактивного загрязнения приустьевой площадки скважины Телькем-2

Место расположения

Территория приустьевой площадки скважины юго-восточной части СИП. Географические координаты представлены в таблице (Таблица 4).

Таблица 4. Географические координаты скважины Телькем-2

№ скв	Географические координаты					
	Широта			Долгота		
Телькем-1	49	42	48	78	27	29

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 12.11.1968 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: промышленные ядерные взрывы в мирных целях и отработка технологий проведения МЯВ (ПВ), мощность взрыва составила 0,2 кт в тротиловом эквиваленте. Радиационный эффект испытания — воронка на выброс (ВВГ). Четвертый ядерный взрыв на выброс.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 6). Он имеет масштабный характер.

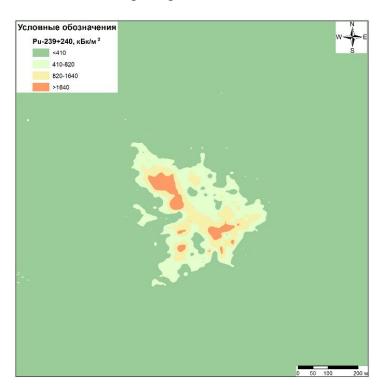


Рисунок 6. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на территории скважины Телькем-2

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²–1,1×10³:
- 137 Cs: $< 75 3.9 \times 10^2$;
- 90 Sr: $<1.2\times10^2-2.7\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 7,8×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 9.8×10^{-2} км². В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка 3.7×10^{5} м³.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Логачев В.А. и др. Ядерные испытания СССР. Семипалатинский полигон. Под ред. Логачева В.А.-Москва: ИздАТ, 1997 г.
- 2 Андрюшин И.А. и др. Испытание ядерного оружия и ядерные взрывы в мирных целях СССР. 1949—1990 гг. / И.А.Андрюшин, В.В.Богдан, С.А.Ващинкин, С.А.Зеленцов, Г.Е.Золотухин, В.М.Каримов, В.В.Кириченко, А.М.Матущенко, Ю.А.Силкин, В.Г.Струков, К.В.Харитонов, А.К.Чернышев, Г.А.Цырков, М.П.Шумаев. Саров: РФЯЦ-ВНИИЭФ, 1996. 66 с.
- 3 Андрюшин И.А., Илькаев Р.И., Чернышев А.К. Общие характеристики и некоторые вопросы экологических последствий ядерных испытаний СССР. Труды РФЯЦ-ВНИИЭФ Том 1, Научно-исследовательское издание. / Под ред. В.Н. Михайлова. Саров, 2001-637 с.
- 4 Сайбеков Т.С., Абылаев Ж.А. Атлас. Радиационная обстановка на территории Республики Казахстан с 1954 по 1994 годы. Алматы: Министерство экологии и биоресурсов РК, 1997- Т.16, Семипалатинская область. 400 с.

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «БАЛАПАН»

1. Общая информация об испытательной площадке

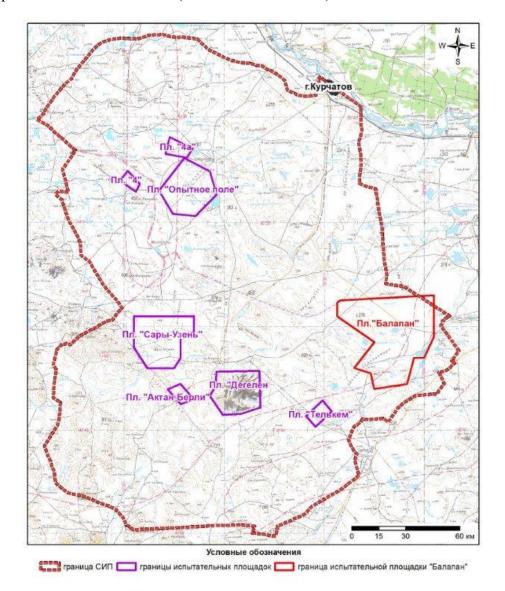
Название: «Балапан» (Рисунок 1, Рисунок 2).

Предназначение: проведение подземных ядерных взрывов в вертикальных выработках – скважинах.

Административное месторасположение расположение: область Абай.

Географические координаты: 49°58′23′′ с. ш. 78°51′48′′ в. д.

Площадь: ~771,5 км². Периметр: 128 км.


Условия проведения испытаний ядерного оружия: подземные ядерные взрывы (средняя глубина закладки боезаряда 600 м).

Период проведения испытаний ядерного оружия: с 1965 по 1989 гг. [1, 2, 3, 4, 5].

Количество подземных ядерных взрывов: 105 испытаний в 106 скважинах [3].

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

- испытания на выброс грунта;
- внештатные аварийные ситуации во время проведения испытаний;
- привнесение радиоактивного загрязнения от наземных ядерных испытаний;
- антропогенная деятельность (добыча металлолома).

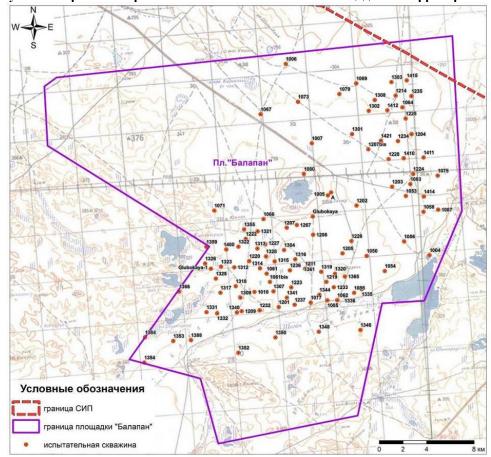


Рисунок 1. Карта-схема расположения испытательных площадок на территории СИП

Рисунок 2. Карта-схема расположения боевых скважин на территории испытательной площадки «Балапан»

Историческая информация о подземных ядерных взрывах на территории испытательной площадки «Балапан» представлена в приложении (ПРИЛОЖЕНИЕ 1, Таблица 1), [1, 2, 3, 4].

2. Текущая радиоэкологическая ситуация окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «Балапан» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории

«население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной площадки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения на поверхности почвы: $0.1 1.1 \times 10^2$ мкЗв/ч (предел измерения используемой аппаратуры -10 мЗв/ч);
- диапазон значений плотности потока бета-частиц: $<10-7,5\times10^3$ част/(см²·мин) (предел измерения используемой аппаратуры -10 част/(см²·мин);
 - диапазон значений плотности потока альфа-частиц: нет измерений.

Основные техногенные радионуклиды: ²⁴¹Am, ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu.

- диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:
 - 241 Am: $<0,3-2,5\times10^5$;
 - $^{-137}$ Cs: $<0.1-5.9\times10^5$:
 - 90 Sr: $<0,2-2,4\times10^5$;
 - -239+240Pu: $<0,1-6,9\times10^6$.

Количество радиационно-опасных объектов: 106 объект (испытательные скважины) (Рисунок 2). Обследование внутри скважин не проводилось.

Количество радиационно-загрязненных участков: 13 участков. (схема расположения – Рисунок 3, радиационные характеристики – Таблица 1).

Диапазон значений площадной активности основных техногенных радионуклидов, $\kappa E \kappa / m^2$:

- \bullet ²⁴¹Am: $<4.9\times10^2-1.6\times10^4$:
- 137 Cs: $< 75 3.8 \times 10^4$;
- \bullet 90Sr: <1,2×10² 1,6×10⁴;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 4,5×10⁵.

Площадь радиоактивного загрязнения, м²: 8.0×10^6 .

Средняя глубина залегания радионуклидов, м: 0,1.

Плотность почвы, $\Gamma/\text{см}^3$: 1,3.

Объем радиоактивного грунта, м 3 : $4,6 \times 10^6$.

Запас радионуклидов (по максимальным значениям удельных активностей радионуклидов в почве), Бк: 241 Am -6.6×10^{11} ; 137 Cs -4.1×10^{14} ; 90 Sr -1.9×10^{14} ; $^{239+240}$ Pu -1.7×10^{14} .

Дополнительная информация о радиоактивном загрязнении почвы радиационнозагрязненных участков испытательной площадки «Балапан» представлена в приложении (ПРИЛОЖЕНИЕ 2).

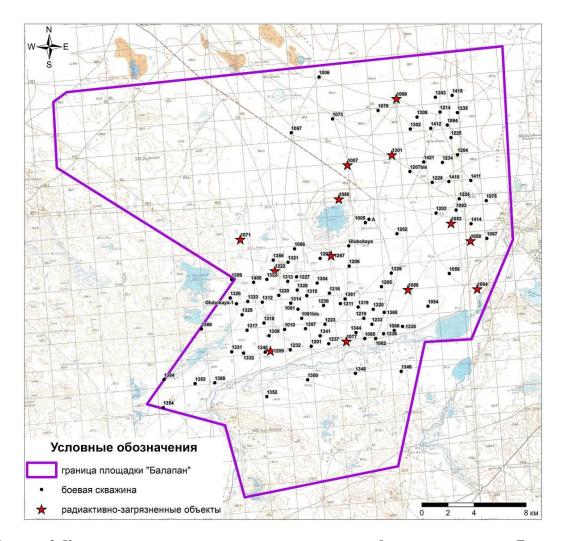


Рисунок 3. Карта-схема расположения радиационно-опасных объектов на площадке «Балапан»

Таблица 1. Информация о радиоактивном загрязнении в поверхностном слое почвы радиационно-опасных объектов площадки «Балапан»

п	e e		⁹⁰ Sr		•	¹³⁷ Cs	•		²³⁹⁺²⁴⁰ Pu			²⁴¹ Am	
№ п/п	Nè ckb.	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м ²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк
1	1004	2,1×10 ³	4,4×10 ⁶	1,9×10 ¹⁴	4,4×10 ³	4,7×10 ⁶	4,1×10 ¹⁴	1,5×10 ³	4,3×10 ⁶	1,3×10 ¹⁴	6,2×10 ²	9,5×10 ²	1,2×10 ¹⁰
2	1007	1,4×10 ³	2,6×10 ²	7,1×10 ⁹	2,3×10 ³	4,6×10 ²	2,1×10 ¹⁰	<4,1×10 ²	-	-	<4,9×10 ²	-	-
3	1050	2,6×10 ²	31	1,6×10 ⁹	2,9×10 ²	62	3,6×10 ⁸	<4,1×10 ²	-	-	<4,9×10 ²	-	-
4	1053	6,5×10 ²	49	6,4×10 ⁸	6,5×10 ²	1,9×10 ²	2,4×10 ⁹	<4,1×10 ²	-	-	<4,9×10 ²	-	-
5	1058	2,1×10 ²	9	3,8×10 ⁷	9,1×10 ²	75	1,4×10 ⁹	<4,1×10 ²	-	-	<4,9×10 ²	-	-
6	1069	6,4×10 ³	1,7×10 ³	2,2×10 ¹¹	1,1×10 ⁴	$2,1\times10^{3}$	4,6×10 ¹¹	4,5×10 ⁵	4,3×10 ³	3,9×10 ¹³	1,6×10 ⁴	2,0×10 ³	6,5×10 ¹¹
7	1071	3,2×10 ²	1,3×10 ²	8,4×10 ⁸	5,9×10 ³	2,5×10 ²	3,0×10 ¹⁰	<4,1×10 ²	-	-	<4,9×10 ²	-	-
8	1077	<1,2×10 ²	-	-	1,0×10 ³	45	9,1×10 ⁸	<4,1×10 ²	-	-	<4,9×10 ²	-	-
9	1080	1,2×10 ⁴	7,8×10 ²	1,9×10 ¹¹	3,8×10 ⁴	1,2×10 ³	9,3×10 ¹¹	2,3×10 ³	4,4×10 ²	2,0×10 ¹⁰	<4,9×10 ²	-	-
10	1209	1,6×10 ⁴	2,1×10 ²	6,6×10 ¹⁰	2,8×10 ⁴	2,7×10 ²	1,5×10 ¹¹	1,1×10 ³	90	1,9×10 ⁹	<4,9×10 ²	-	-
11	1222	6,3×10 ²	2,5×10 ²	3,1×10 ⁹	1,8×10 ³	1,8×10 ³	2,4×10 ¹⁰	<4,1×10 ²	-	-	<4,9×10 ²	-	-
12	1267	4,6×10 ²	2	1,5×10 ⁷	7,8×10 ²	12	1,8×10 ⁸	2,8×10 ³	20	1,1×10 ⁹	<4,9×10 ²	-	-
13	1301	$3,7\times10^{3}$	7,9×10 ³	5,9×10 ¹¹	6,2×10 ³	1,3×10 ⁴	1,6×10 ¹²	2,4×10 ³	5,9×10 ³	2,8×10 ¹¹	<4,9×10 ²	-	-

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet ²⁴¹Am: <1,0×10⁻³ 2,5×10²;
- 137 Cs: $<2,0\times10^{-3}-26$;
- 90 Sr: $<4,0\times10^{-3}-1,5\times10^{2}$;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,4×10⁻⁵ 40;
- \bullet ³H: $<6-4,3\cdot10^5$.

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet^{241} Am: <1,0×10⁻² 0,9;
- \bullet ¹³⁷Cs: <2,0×10⁻³ 2,6;
- \bullet 90Sr: <4.0×10⁻³ 1.6×10³;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,4×10⁻⁵ 3;
- \bullet ³H: $<6-5.0\cdot10^5$.

2.4 Радиоактивное загрязнение атмосферного воздуха

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <2,0×10⁻⁸ 3,2×10⁻²;
- 137 Cs: $<5.1\times10^{-8} 5.5\times10^{-2}$:
- \bullet 90Sr: $<8.0\times10^{-8}-3.0\times10^{-2}$;
- \bullet ²³⁹⁺²⁴⁰Pu: <1,9×10⁻⁸ 0,2.

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: $<0,2-9,4\times10^4$;
- 137 Cs: $<0,3-2,9\times10^5$;
- \bullet 90Sr: <1,0 4,2×10⁴;
- \bullet ²³⁹⁺²⁴⁰Pu: <0,1 3,9×10⁴;

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <3,0×10⁻² 27;
- 137 Cs: $< 7.0 \times 10^{-2} 2.5 \times 10^{2}$:
- \bullet 90Sr: <0.1 3.5×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <3.6×10⁻³ 63.

приложение 7

Хронология испытаний ядерного оружия на территории испытательной площадки «Балапан»

Таблица 4. Хронология испытаний ядерного оружия на территории испытательной площадки «Балапан»

таоли	ца 4. л	ронология и	спытании	ядерного о	ружия на	терри	гории	испытателі	ьнои площа	адки « д ала	пан»
№ п/п	№ скв.	Дата испытания	Цель испытания	Мощность испытания	Радиацио нный эффект	№ п/п	№ скв.	Дата испытания	Цель испытания	Мощность испытания	Радиацио нный эффект
1	1004	15.01.1965	ПВ	140	ВВГ	54	1302	04.11.1978	ОЯО ОЯО	20-150 0,001-20	ВКП
2	1005	16.10.1974	ИПФ	0,001-20	вкп	55	1303	27.12.1980	ОКО ОКО	20-150 0,001-20	ВКП
3	1006	01.02.1979	ОЯО	0,001-20	ВНК	56	1304	07.12.1976	ОЯО	20-150 0,001-20	ВНК
4	1007	10.02.1972	СЯО	16	ВНК	57	1307	26.10.1983	СЯО	20-150	ВНК
5	1010	11.06.1978	СЯО	20-150	ВНК	58	1308	07.03.1984	СЯО	20-150	ВКП
6	1050	29.07.1974	ОКО	0,001-20	ВНК	59	1309	02.12.1979	СЯО ФМИ	20-150 0,001-20	ВНК
7	1053	19.06.1968	ФМИ	0,001-20	ВКП	60	1312	27.12.1981	СЯО	20-150	ВКП
8	1054	30.11.1969	ОКО	125	ВНК	61	1313	16.12.1984	ORO ORO	20-150 0,001-20	ВНК
9	1056	30.06.1971	ОКО	0,001-20	вкп	62	1314	05.12.1982	ОЯО ОЯО	20-150 0,001-20	ВКП
10	1058	27.12.1974	ОЯО	20-150	вкп	63	1315	12.03.1987	ОЯО ОЯО	0,001-20 0,001-20	ВНК
11	1061	02.11.1972	ОЯО	165	вкп	64	1316	25.04.1984	ОЯО ОЯО	20-150 0,001-20	ВКП
12	1062	04.07.1976	ОЯО	20-150	вкп	65	1317	31.08.1982	ОЯО ОЯО	0,001-20 0,001-20	ВКП
13	1064	14.12.1973	СЯО	20-150	ВНК	66	1318	03.04.1987	СЯО	20-150	ВНК
14	1066	23.07.1973	ОПЗ	150-1500	вкп	67	1319	15.06.1985	ОЯО ОЯО	20-150 20-150	ВКП
15	1067	25.12.1975	ОЯО	20-150	вкп	68	1320	12.06.1983	ОЯО ОЯО	20-150 0,001-20	ВКП
16	1069	04.11.1973	ОЯО	0,001-20	BHK- HPC	69	1321	04.07.1982	ORO ORO ORO	0,001-20 20-150 0,001-20	ВНК
17	1071	25.04.1980	ORO ORO	20-150 0,001-20	внк	70	1322	20.07.1985	ОЯО	20-150	внк
18	1073	12.11.1977	СЯО	0,001-20	ВКП	71	1323	27.10.1984	СЯО	20-150	ВНК
19	1075	09.06.1976	ОКО	0,001-20	ВКП	72	1325	06.10.1983	ОЯО ОЯО	20-150 0,001-20	ВНК
20	1077	05.07.1978	ОКО	20-150	ВНК	73	1326	20.06.1987	ОЯО ОЯО	20-150 0,001-20	ВНК
21	1079	05.09.1977	СЯО ФМИ	20-150 0,001-20	ВНК	74	1328	22.01.1989	ОЯО ОЯО	0,001-20 20-150	ВНК
22	1080	29.06.1977	СЯО	0,001-20	ВНК	75	1331	19.02.1984	СЯО	20-150	ВКП
23	1083	12.06.1980	ОКО	20-150	ВНК	76	1332	15.11.1987	ОКО ОКО	20-150 0,001-20	ВНК
24	1085	04.08.1979	ОЯО ОЯО	20-150 0,001-20	ВНК	77	1335	29.03.1984	ОКО	20-150	ВКП
25	1086	14.12.1980	ORO ORO ORO	0,001-20 0,001-20 20-150	ВНК	78	1336	03.04.1988	ОЯО	20-150	ВНК
26	1087	12.10.1980	ORO ORO	20-150 20-150	ВКП	79	1340	10.02.1985	ORO ORO ORO	0,001-20 0,001-20 20-150	внк
27	1201	21.04.1976	ОЯО	0,001-20	вкп	80	1341	15.06.1985	ОЯО ОЯО	20-150 0,001-20	внк
28	1202	28.08.1976	ОЯО	20-150	ВКП	81	1344	14.07.1984	ORO ORO	20-150 0,001-20	ВНК
29	1203	27.05.1981	ОЯЭ	0,001-20	ВНК	82	1346	17.12.2018	ORO ORO	20-150 0,001-20	ВНК
30	1204	10.12.1972	ОПЗ	140	BHK- HPC	83	1348	02.08.1987	ORO ORO ORO	0,001-20 20-150 20-150	вкп
31	1205	27.04.1975	ОЯО	20-150	ВКП	84	1350	14.09.1988	ФМИ	20-150	ВКП
32	1206	29.10.1975	СЯО	20-150	ВНК	85	1352	08.07.1989	ОЯО	20-150	ВКП
33	1207	31.05.1974	ОЯО	0,001-20	ВНК	86	1353	28.12.1984	ОПЗ СПО	20-150 0,001-20	ВНК
34	1209	07.12.1976	ОКО	0,001-20	ВНК	87	1354	30.06.1985	ОЯО ОЯО	0,001-20 20-150	ВКП

35	1211	15.09.1978	ORO	20-150	ВНК	88	1355	13.12.1987	ORO ORO	0,001-20 20-150	ВНК
36	1214	29.10.1977	СЯО	20-150	ВКП	89	1359	04.05.1988	ФМИ	20-150	-
37	1219	25.04.1982	ОКО ОКО ОКО	20-150 20-150 20-150	-	90	1361	13.02.1988	ORO ORO	20-150 0,001-20	внк
38	1220	14.09.1980	ОЯО	20-150	вкп	91	1365	19.10.1989	ОЯО ОКО ОКО	20-150 0,001-20 0,001-20	ВКП
39	1222	29.11.1978	ОЯО ОЯО	20-150 0,001-20	ВНК	92	1366	12.02.1989	ОЯО	20-150	ВНК
40	1223	23.06.1979	ОЯО	20-150	ВНК	93	1384	17.04.1987	ОЯО ОЯО ОКО	20-150 0,001-20 0,001-20	ВКП
41	1224	28.10.1979	ОЯО ОЯО	20-150 0,001-20	ВКП	94	1388	27.12.1987	ОЯО ОЯО	20-150 0,001-20	ВКП
42	1225	07.07.1979	ОЯО ОЯО	20-150 0,001-20	вкп	95	1400	29.05.1977	ОЯО	20-150	ВНК
43	1226	18.08.1979	ОЯО ОЯО	20-150 0,001-20	вкп	96	1410	02.09.1989	ОКО ОКО	0,001-20 0,001-20	ВКП
44	1227	29.06.1980	ОЯО ОЯО ОКО	0,001-20 0,001-20 20-150	ВНК	97	1411	02.12.1984	СЯО ФМИ	20-150 0,001-20	ВНК
45	1228	29.08.1978	СЯО	20-150	ВНК	98	1412	12.11.1988	СЯО	0,001-20	ВКП
46	1232	22.04.1981	ORO ORO ORO	20-150 0,001-20 0,001-20	вкп	99	1414	26.05.1984	ОКО ОКО	20-150 0,001-20	ВНК
47	1233	13.09.1981	СЯО	20-150	ВНК	100	1415	26.12.1982	ИМФ ОЯО	20-150 20-150	ВКП
48	1234	29.03.1981	ORO ORO ORO	0,001-20 0,001-20 0,001-20	вкп	101	1421	14.06.1988	ОЯО	0,001-20	внк
49	1235	20.11.1983	ORO ORO	0,001-20 0,001-20	ВКП	102	1061 -бис	15.06.1985	ОЯО	0,001-20	ВНК
50	1236	18.10.1981	ОКО ОКО	20-150 0,001-20	ВКП	103	1207 -бис	23.11.1976	ОЯЭ	20-150	ВКП
51	1237	29.11.1981	ORO ORO ORO	0,001-20 0,001-20 0,001-20	внк	104	A	30.06.1975	ОЯО	0,001-20	внк
52	1267	20.09.1973	ОЯО	<0,001	ВКП	105	Глуб окая	30.11.1977	ORO ORO	20-150 0,001-20	ВНК
53	1301	16.04.1974	ОЯО	0,001-20	BHK- HPC	106	Глуб окая -1	23.12.1979	ORO ORO	20-150 0,001-20	ВКП

Сокращения:

ВВГ — взрыв с выбросом грунта

ВКП — взрыв камуфлета полного

ВНК — взрыв неполного камуфлета

ВНК-НРС — взрыв неполного камуфлета с нештатной радиационной ситуацией

ИПФ— исследование поражающих факторов ЯВ; ОПЗ — отработка промышленных зарядов (для производства ядерных взрывов в мирных целях);

ПВ — промышленные ядерные взрывы (проведение в мирных целях, отработка технологии);

СЯО — совершенствование ядерного оружия ФМИ— фундаментальные и методические исследования.

Перечень радиационно-опасных объектов испытательной площадки «Балапан»

На основании данных по лабораторным анализам и анализу карт площадного распределения техногенных радионуклидов приустьевых площадок скважин установлен перечень радиационно-опасных объектов (Рисунок 4).

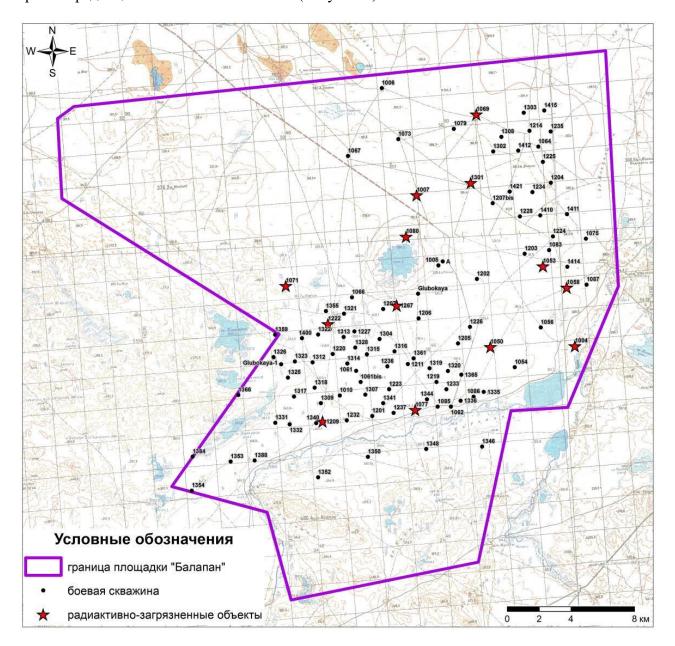


Рисунок 4. Карта-схема площадки «Балапан» с обозначением радиационно-опасных объектов

Место расположения

Территория приустьевой площадки скважины расположена в восточной части площадки «Балапан» на расстоянии 1 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 2).

Таблица 2. Географические координаты скважины №1004

No over	Географические координаты							
№ скв		Широта		Долгота				
1004	49 56 12 79 00					28		

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 15.01.1965 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: промышленные ядерные взрывы в мирных целях и отработка технологий проведения МЯВ (ПВ), мощность взрыва составила 140 кт в тротиловом эквиваленте. Радиационный эффект испытания — воронка на выброс (ВВГ). Первый промышленный взрыв; первое ЯИ на СИП в скважине; взрыв на выброс.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 5). Он имеет масштабный характер и в большей степени распространяется в северном направлении.

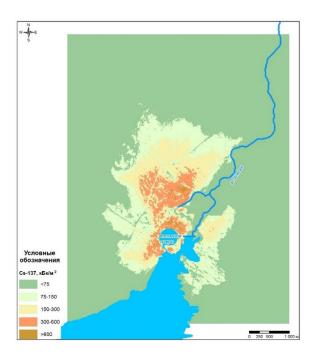


Рисунок 5. Карта площадного распределения ¹³⁷Сs на территории скважины № 1004

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-6.2\times10^2$:
- 137 Cs: $< 75 4.4 \times 10^3$;
- 90 Sr: $<1.2\times10^2-2.1\times10^3$:
- $^{239+240}$ Pu: $<4.1\times10^2-1.5\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 7.7 кm^2 . В тоже время объем радиоактивного материала, с учетом навалов воронки, составляет порядка $4.7 \times 10^6 \text{ m}^3$.

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Балапан» на расстоянии 8 км в южном направлении от ее границы. Географические координаты представлены в таблице (Таблица 3).

Таблица 3. Географические координаты скважины №1007

No over	Географические координаты							
№ скв		Широта		Долгота				
1007	50 01 27 78 52					41		

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 10.02.1972 г. в результате проведения подземного ядерного взрыва. Целью проведения испытания было создание и совершенствование ядерного оружия, мощность взрыва составила 16 кт в тротиловом эквиваленте. Радиационный эффект испытания — быстрое и динамическое истечение по боевой скважине газообразных и парообразных радиоактивных продуктов с последующим возгоранием смеси.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 6). Он имеет локальный характер и в большей степени распространяется в пределах приустьевой территории испытательной скважины.

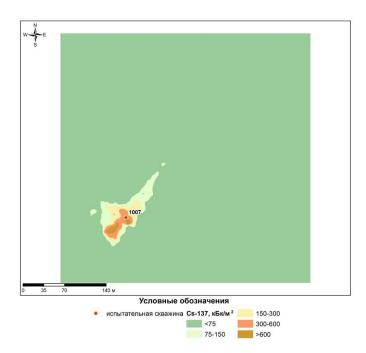


Рисунок 6. Карта площадного распределения ¹³⁷Сs на территории скважины № 1007

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 2.3 \times 10^3$;
- 90 Sr: $<1,2\times10^2-1,4\times10^3$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 4.0×10^{-3} км². В тоже время объем радиоактивного материала составляет порядка 4.6×10^{3} м³.

Место расположения

Территория приустьевой площадки скважины расположена в восточной части площадки «Балапан» на расстоянии 7 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 4).

Таблица 4.Географические координаты скважины №1050

No over	Географические координаты							
№ скв		Широта		Долгота				
1050	49 56 31 78 56 07							

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 29.07.1974 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: создание или совершенствование ядерного оружия (СЯО), мощность взрыва составила до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания – взрыв сопровождался незначительным истечением в атмосферу инертных газов (ВНК).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 7). Он имеет локальный характер и распространяется в пределах приустьевой территории испытательной скважины.

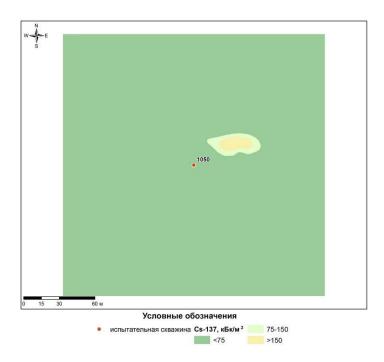


Рисунок 7. Карта площадного распределения ¹³⁷Сs на территории скважины № 1050

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 2.9 \times 10^2$;
- 90 Sr: $<1,2\times10^2-2,6\times10^2$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.0×10^{-4} км². В тоже время объем радиоактивного материала составляет порядка 62 м³.

Место расположения

Территория приустьевой площадки скважины расположена в восточной части площадки «Балапан» на расстоянии 5 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 5).

Таблица 5. Географические координаты скважины №1053

No over	Географические координаты						
№ скв		Широта		Долгота			
1053	49	58	49	78	59	08	

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 19.06.1968 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: фундаментальные и методические исследования (ФМИ), мощность взрыва составила до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания — взрыв не сопровождался истечением в атмосферу инертных газов (ВКП).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 8). Он имеет локальный характер и в большей степени распространяется в пределах приустьевой территории испытательной скважины.

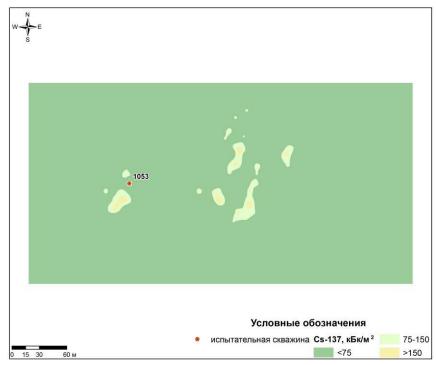


Рисунок 8. Карта площадного распределения ¹³⁷Сs на территории скважины № 1053

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 6.5 \times 10^2$;
- 90 Sr: $<1,2\times10^2-6,5\times10^2$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.8×10^{-3} км². В тоже время объем радиоактивного материала составляет порядка 1.9×10^2 м³.

Место расположения

Территория приустьевой площадки скважины расположена в восточной части площадки «Балапан» на расстоянии 2 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 6).

Таблица 6.Географические координаты скважины №1058

No over	Географические координаты							
№ скв		Широта		Долгота				
1058	49 58 06 78 00 00							

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 20.12.1974 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: создание или совершенствование ядерного оружия (СЯО), мощность взрыва составила 20-150 кт в тротиловом эквиваленте. Радиационный эффект испытания – взрыв не сопровождался истечением в атмосферу инертных газов (ВКП).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 9). Он имеет локальный характер и распространяется в пределах приустьевой территории испытательной скважины.

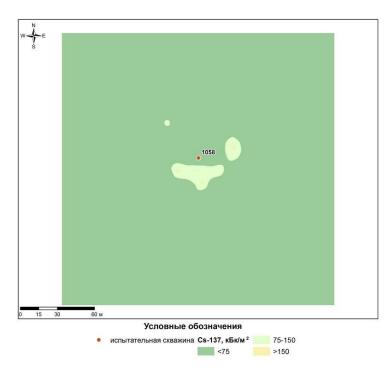


Рисунок 9. Карта площадного распределения ¹³⁷Сs на территории скважины № 1058

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 9,1 \times 10^2$;
- \bullet 90Sr: <1,2×10² 2,1×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 7.0×10^{-4} км². В тоже время объем радиоактивного материала составляет порядка 7.5 м^3 .

Место расположения

Территория приустьевой площадки скважины расположена в северо-восточной части площадки «Балапан» на расстоянии 2 км в южном направлении от ее границы. Географические координаты представлены в таблице (Таблица 7).

Таблица 7.Географические координаты скважины №1069

No over	Географические координаты							
№ скв		Широта		Долгота				
1069	50 03 47 78 55					59		

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 04.11.1973 г. в результате проведения подземного ядерного взрыва. Целью проведения испытания было создание и совершенствование ядерного оружия, мощность взрыва составила до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания — быстрое и динамическое истечение по боевой скважине газообразных и парообразных радиоактивных продуктов с последующим возгоранием смеси (ВНК-НРС).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 10). Он имеет масштабный характер и в большей степени распространяется в северном направлении.

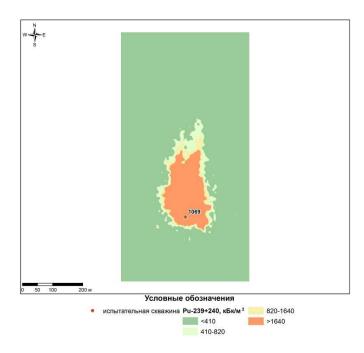


Рисунок 10. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на территории скважины № 1069

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²–1,6×10⁴;
- 137 Cs: $< 75 1.1 \times 10^4$;
- 90 Sr: $<1.2\times10^2-6.4\times10^3$:
- $^{239+240}$ Pu: $<4.1\times10^2-4.5\times10^5$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 4.3×10^{-2} км 2 . В тоже время объем радиоактивного материала составляет порядка 4.3×10^3 м 3 .

Место расположения

Территория приустьевой площадки скважины расположена в западной части площадки «Балапан» на расстоянии 2 км в северо-восточном направлении от ее границы. Географические координаты представлены в таблице (Таблица 8).

Таблица 8. Географические координаты скважины №1071

No over	Географические координаты							
№ скв		Широта		Долгота				
1071	49 58 39 78 45					32		

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 04.12.1973 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: создание или совершенствование ядерного оружия (СЯО), мощность взрыва составила 20-150 кт в тротиловом эквиваленте. Радиационный эффект испытания – взрыв сопровождался незначительным истечением в атмосферу инертных газов (ВНК).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 11). Он имеет локальный характер и распространяется в пределах приустьевой территории испытательной скважины.

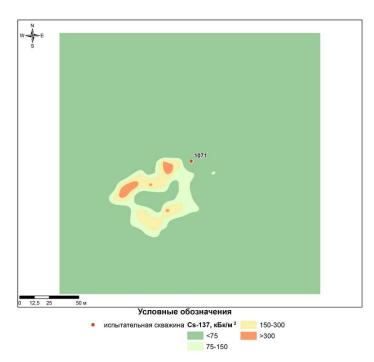


Рисунок 11. Карта площадного распределения ¹³⁷Сs на территории скважины № 1071

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 5.9 \times 10^3$:
- 90 Sr: $<1.2\times10^2-3.2\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.9×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.0×10^{-3} км². В тоже время объем радиоактивного материала составляет порядка 2.5×10^2 м³.

Место расположения

Территория приустьевой площадки скважины расположена в юго-восточной части площадки «Балапан» на расстоянии 6 км в западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 9).

Таблица 9. Географические координаты скважины №1077

No over	Географические координаты							
№ скв		Широта		Долгота				
1071	49 54 13 78 52					00		

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 25.07.1978 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: создание или совершенствование ядерного оружия (СЯО), мощность взрыва — 20-150 кт в тротиловом эквиваленте. Радиационный эффект испытания — взрыв сопровождался истечением в атмосферу инертных газов (ВНК).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 12). Он имеет локальный характер и распространяется в пределах приустьевой территории испытательной скважины.

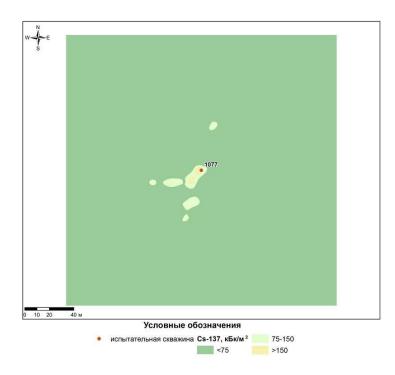


Рисунок 12. Карта площадного распределения ¹³⁷Сs на территории скважины № 1077

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$:
- 137 Cs: $< 75 1,0 \times 10^3$;
- 90 Sr: <1,2×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.9×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 4.0×10^{-4} км². В тоже время объем радиоактивного материала составляет порядка 45 м^3 .

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Балапан» на расстоянии 10 км в южном направлении от ее границы. Географические координаты представлены в таблице (Таблица 10).

Таблица 10. Географические координаты скважины №1080

No over	Географические координаты							
№ скв		Широта		Долгота				
1080	50 00 07 78 51 59							

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 29.06.1977 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: создание или совершенствование ядерного оружия (СЯО), мощность взрыва составила 0,001 до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания — ВНК (взрыв сопровождался незначительным истечением в атмосферу инертных газов).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 13). Он имеет масштабный характер и в большей степени распространяется в северовосточном направлении.

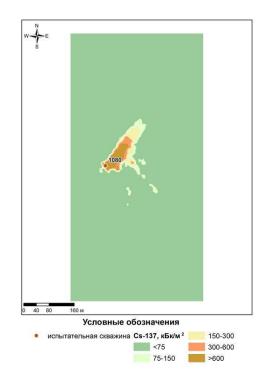


Рисунок 13. Карта площадного распределения ¹³⁷Cs на территории скважины № 1080 Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $<75 3.8 \times 10^4$:
- \bullet 90Sr: <1,2×10² 1,2×10⁴;
- $^{239+240}$ Pu: $<4.1\times10^2-2.3\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,2\times10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $1,2\times10^3$ м³.

Место расположения

Территория приустьевой площадки скважины расположена в юго-западной части площадки «Балапан» на расстоянии 6 км в восточном направлении от ее границы. Географические координаты представлены в таблице (Таблица 11).

Таблица 11. Географические координаты скважины №1209

No over	Географические координаты									
№ скв		Широта			Долгота					
1209	49	53	59	78	47	06				

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 07.12.1976 г. в результате проведения подземного ядерного взрыва. Цель проведения испытания: создание или совершенствование ядерного оружия (СЯО), мощность взрыва до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания – взрыв сопровождался истечением в атмосферу инертных газов (ВНК).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 14). Он имеет локальный характер и распространяется в пределах приустьевой территории испытательной скважины.

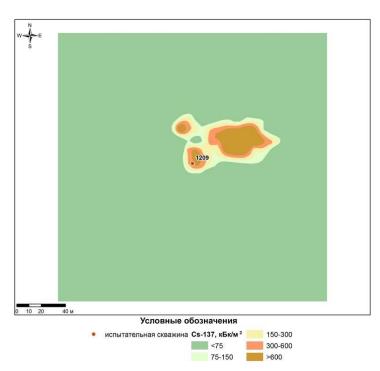


Рисунок 14. Карта площадного распределения ¹³⁷Сs на территории скважины № 1209

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 2.8 \times 10^4$:
- \bullet 90Sr: <1,2×10² 1,6×10⁴;
- $^{239+240}$ Pu: $<4.1\times10^2-1.1\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2.0 \times 10^{-3}~{\rm km}^2$. В тоже время объем радиоактивного материала составляет порядка $2.7 \times 10^2~{\rm m}^3$.

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Балапан» на расстоянии 5 км в восточном направлении от ее границы. Географические координаты представлены в таблице (Таблица 12).

Таблица 12. Географические координаты скважины №1222

No over	Географические координаты								
№ скв		Широта			Долгота				
1222	49	57	17	78	47	39			

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 29.11.1978 г. в результате проведения 2-х подземных ядерных взрывов. Цель проведения испытания: создание или совершенствование ядерного оружия (СЯО). Мощность 1-го взрыва составила 20-150 кт, 2-го взрыва — до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания — взрыв сопровождался истечением в атмосферу инертных газов (ВНК).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 15). Он имеет локальный характер и распространяется в пределах приустьевой территории испытательной скважины.

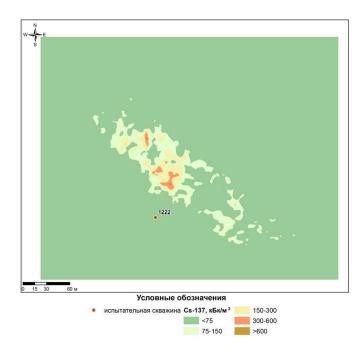


Рисунок 15. Карта площадного распределения ¹³⁷Сs на территории скважины №1222

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 1.8 \times 10^3$:
- \bullet 90Sr: $<1,2\times10^2-6,3\times10^2$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.0×10^{-3} км². В тоже время объем радиоактивного материала составляет порядка 6.8×10^2 м³.

Место расположения

Территория приустьевой площадки скважины расположена в центральной части площадки «Балапан» на расстоянии 8 км в восточном направлении от ее границы. Географические координаты представлены в таблице (Таблица 13).

Таблица 13. Географические координаты скважины №1267

No over	Географические координаты								
№ скв		Широта			Долгота				
1267	49	57	48	78	51	18			

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 20.09.1973 г. в результате проведения подземного ядерного взрыва. Цель проведения взрыва: создание или совершенствование ядерного оружия (СЯО); мощность взрыва — до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания — взрыв не сопровождался истечением в атмосферу инертных газов (ВКП).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 16). Он имеет локальный характер и распространяется в пределах приустьевой территории испытательной скважины.

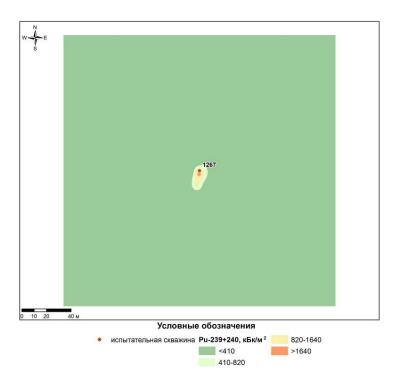


Рисунок 16. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на территории скважины № 1267

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 7.8 \times 10^2$;
- \bullet 90Sr: $<1.2\times10^2-4.6\times10^2$:
- $^{239+240}$ Pu: $<4,1\times10^2-2.8\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1.0 \times 10^{-4}~{\rm km}^2$. В тоже время объем радиоактивного материала составляет порядка $12~{\rm m}^3$.

Место расположения

Территория приустьевой площадки скважины расположена в северо-восточной части площадки «Балапан» на расстоянии 5 км в южном направлении от ее границы. Географические координаты представлены в таблице (Таблица 14).

Таблица 14. Географические координаты скважины №1301

No over	Географические координаты									
№ скв		Широта			Долгота					
1301	50	01	28	78	55	35				

Характеристика источника радиационного загрязнения

Радиационное загрязнение образовано 16.04.1974 г. в результате проведения подземного ядерного взрыва. Целью проведения испытания было создание и совершенствование ядерного оружия, мощность взрыва составила до 20 кт в тротиловом эквиваленте. Радиационный эффект испытания — быстрое и динамическое истечение по боевой скважине газообразных и парообразных радиоактивных продуктов с последующим возгоранием смеси (ВНК-НРС).

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 17). Он имеет масштабный характер и в большей степени распространяется в южном направлении.

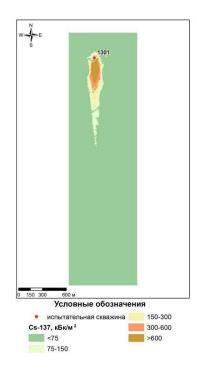


Рисунок 17. Карта площадного распределения ¹³⁷Сs на территории скважины № 1301

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 6.2 \times 10^3$:
- 90 Sr: $<1.2\times10^2-3.7\times10^3$:
- $^{239+240}$ Pu: $<4,1\times10^2-2,4\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $0,127 \text{ км}^2$. В тоже время объем радиоактивного материала составляет порядка $1,3 \times 10^4 \text{ м}^3$.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Логачев В.А. и др. Ядерные испытания СССР. Семипалатинский полигон. Под ред. Логачева В.А.-Москва: ИздАТ, 1997 г.
- 2 Михайлов В.Н. и др. Испытание ядерного оружия и ядерные взрывы в мирных целях СССР. 1949—1990 гг. / Под ред. В.Н. Михайлова. Саров: РФЯЦ-ВНИИЭФ, 1996. 66 с.
- 3 Андрюшин И.А., Илькаев Р.И., Чернышев А.К. Общие характеристики и некоторые вопросы экологических последствий ядерных испытаний СССР. Труды РФЯЦ-ВНИИЭФ Том 1, Научно-исследовательское издание, Саров, 2001-637 с.
- 4 Сайбеков Т.С., Абылаев Ж.А. Атлас. Радиационная обстановка на территории Республики Казахстан с 1954 по 1994 годы. Алматы: Министерство экологии и биоресурсов РК, 1997- Т.16, Семипалатинская область. 400 с.
- 5 Бюллетень центра общественной информации по атомной энергии. -Москва. №12 (стр56). 1998 г.

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «ОПЫТНОЕ ПОЛЕ»

1. Общая характеристика испытательной площадке

Название: «Опытное поле» (Рисунок 1, Рисунок 2).

Предназначение: проведение наземных и воздушных испытаний ядерного оружия.

Административное местоположение: Павлодарская область.

Географические координаты: 50°26′18,648′′ с. ш. 77°49′21,980′′ в. д.

Площадь, км²: 270. Периметр, км: 61,68.

Условия проведения испытаний ядерного оружия: наземные, воздушные, гидроядерные, гидродинамические.

Период проведения наземных и воздушных испытаний ядерного оружия: с 1949 по 1962 гг. [1, 2, 3, 4, 5].

Количество воздушных испытаний ядерного оружия: 86.

Количество наземных испытаний ядерного оружия: 30.

Место проведения испытаний ядерного оружия: технические площадки Π -1, Π -2, Π -3, Π -5, Π -7.

Период проведения гидроядерных и гидродинамических экспериментов (модельные взрывные эксперименты с ядерными зарядами): с 1958 г. по 1963 г. [6].

Количество гидроядерных экспериментов: 40.

Количество гидродинамических экспериментов: 5.

Место проведения гидроядерных и гидродинамических экспериментов: технические площадки Π -7, Π -2 Γ [7].

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

- ядерные воздушные и наземные испытания (эпицентральные зоны и следы радиоактивных выпадений);
- гидроядерные и гидродинамические эксперименты (эпицентральные зоны и следы радиоактивных выпадений).

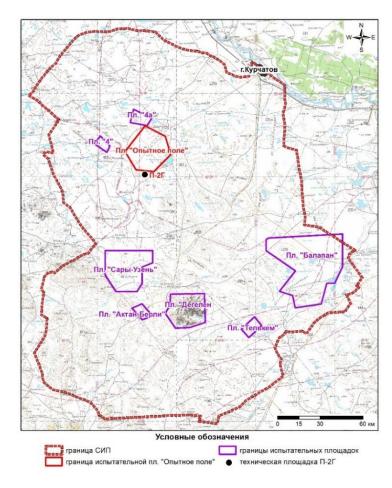


Рисунок 1. Карта-схема расположения испытательных площадок на территории СИП

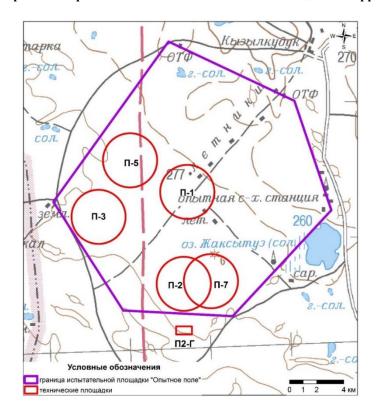


Рисунок 2. Карта-схема расположения технических площадок на территории площадки «Опытное поле»

Техническая площадка Π -2 Γ располагается за границей испытательной площадки «Опытное поле», на части территории, прилегающей с юга. Однако, согласно литературным

данным [7] и схожести формата проведения испытаний, П-2Г рассматривается совместно с испытательной площадкой «Опытное поле».

Историческая информация об испытаниях ядерного оружия на территории испытательной площадки «Опытном поле» представлена в приложении (Приложение 1, Таблица 2), [1, 2, 3, 4, 5].

Историческая информация о гидроядерных экспериментах на территории испытательной площадки «Опытном поле» представлена в приложении (Приложение 1, Таблица 3), [6].

2. Текущая радиоэкологическая обстановка окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «Опытное поле» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории «население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной площадки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения на поверхности почвы: $0.1 4.7 \times 10^2$ мкЗв/ч (предел измерения используемой аппаратуры -10 мкЗв/ч);
- диапазон значений плотности потока бета-частиц: $<10-2,9\times10^4$ част/(см²×мин) (предел измерения используемой аппаратуры -10 част/(см²×мин);
 - диапазон значений плотности потока альфа-частиц: нет измерений.

Основные техногенные радионуклиды: ²⁴¹Am, ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu.

- диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:
- 241 Am: $<1,1-9,4\times10^6$;
- 137 Cs: $< 0.9 3.4 \times 10^5$:
- 90 Sr: $<1,1-2,8\times10^5$;
- $^{239+240}$ Pu: $<1,1\times10^{-7}-9,3\times10^{6}$.

Количество радиационно-опасных объектов: 57 объектов (эпицентральные зоны, следы радиоактивных выпадений; схема расположения — Рисунок 3).

Количество радиационно-загрязненных участков: 25 участков (радиационные характеристики – Таблица 1).

Диапазон значений площадной активности основных техногенных радионуклидов, $\kappa E \kappa / m^2$:

- \bullet ²⁴¹Am: $<4,9\times10^2-6,1\times10^5$;
- 137 Cs: $< 75 2.2 \times 10^4$;
- \bullet 90Sr: <1,2×10² 1,8×10⁴;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 6,0×10⁵.

Площадь радиоактивного загрязнения, M^2 : 4.2×10^7 .

Средняя глубина залегания радионуклидов, м: 0,2.

Плотность почвы, $\Gamma/\text{см}^3$: 1,3.

Объем радиоактивного грунта, M^3 : 6,1×10⁶.

Запас радионуклидов (по максимальным значениям удельных активностей радионуклидов в почве), Бк: 241 Am $-6.8\times10^{14};$ 137 Cs $-7.4\times10^{13};$ 90 Sr $-4.9\times10^{13};$ $^{239+240}$ Pu $-7.7\times10^{14}.$

Дополнительная информация о радиоактивном загрязнении почвы радиационнозагрязненных участков испытательной площадки «Опытное поле» представлена в приложении (ПРИЛОЖЕНИЕ 2). Таблица 5. Информация о радиоактивном загрязнении в поверхностном слое почвы радиационно-опасных объектов испытательной площадки «Опытное поле»

Š		т.		90Sr	•		¹³⁷ Cs			²³⁹⁺²⁴⁰ Pu			²⁴¹ Am	
Л/п	№ объекта	Техническая площадка	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк
1.	1	П-1	1,0×10 ⁴	1,3×10 ⁵	2,8×10 ¹³	1,1×10 ⁴	2,1×10 ⁵	3,0×10 ¹³	1,6×10 ⁴	4,5×10 ⁵	1,1×10 ¹⁴	1,9×10 ³	4,5×10 ⁵	1,7×10 ¹³
2.	2	П-1	<1,2×10 ²	-	-	4,6×10 ²	5,4×10 ³	4,9×10 ¹⁰	2,0×10 ⁵	5,6×10 ³	2,3×10 ¹³	5,1×10 ³	5,4×10 ³	5,6×10 ¹¹
3.	3	П-3	4,0×10 ²	1,5×10 ³	1,2×10 ¹⁰	5,7×10 ²	6,6×10 ³	75°	8,5×10 ⁴	4,1×10 ⁴	7,0×10 ¹³	6,6×10 ³	3,7×10 ⁴	4,8×10 ¹²
4.	4	П-3	<1,2×10 ²	-	-	1,1×10 ²	8,5×10 ¹	1,9×10 ⁸	4,3×10 ⁴	5,9×10 ³	5,1×10 ¹²	5,1×10 ²	5,8×10 ³	5,3×10 ¹⁰
5.	5	П-3	1,5×10 ²	1,1×10 ³	2,2×10 ⁹	2,5×10 ²	1,4×10 ³	7,3×10 ⁹	2,3×10 ⁵	1,3×10 ⁴	5,9×10 ¹³	2,2×10 ⁴	1,3×10 ⁴	5,7×10 ¹²
6.	6	П-3	<1,2×10 ²	-	-	<75	-	-	$9,1\times10^{3}$	1,3×10 ⁴	2,4×10 ¹²	<4,9×10 ²	1,3×10 ⁴	9,4×10 ¹⁰
7.	7	П-5	$3,1\times10^3$	1,2×10 ⁴	5,5×10 ¹¹	4,0×10 ³	1,7×10 ⁴	1,3×10 ¹²	1,4×10 ⁴	4,1×10 ⁴	1,1×10 ¹³	7,5×10 ²	4,0×10 ⁴	6,1×10 ¹¹
8.	8	П-5	1,8×10 ⁴	2,1×10 ⁴	7,6×10 ¹²	2,2×10 ⁴	4,5×10 ⁴	2,0×10 ¹³	5,5×10 ⁴	1,7×10 ⁴	1,8×10 ¹³	7,2×10 ³	3,3×10 ⁴	4,7×10 ¹²
9.	9	П-5	6,2×10 ²	2,1×10 ⁴	2,5×10 ¹¹	6,9×10 ²	8,2×10 ⁴	9,6×10 ¹¹	5,2×10 ³	1,5×10 ⁵	8,0×10 ¹²	1,2×10 ³	1,5×10 ⁵	3,6×10 ¹²
10.	10	П-5	6,0×10 ³	2,4×10 ⁴	1,0×10 ¹²	6,7×10 ³	3,8×10 ⁴	2,7×10 ¹²	4,1×10 ⁴	7,6×10 ⁴	6,2×10 ¹³	2,6×10 ³	7,5×10 ⁴	3,8×10 ¹²
11.	11	П-5	1,9×10 ²	1,7×10 ²	5,9×10 ⁸	7,8×10 ²	1,4×10 ³	2,1×10 ¹⁰	$3,8\times10^{3}$	6,6×10 ⁴	2,2×10 ¹²	<4,9×10 ²	6,4×10 ⁴	3,6×10 ¹¹
12.	12	П-5	<1,2×10 ²	-	-	<75	-	-	2,4×10 ⁴	1,5×10 ⁴	7,4×10 ¹²	$3,8\times10^{3}$	1,4×10 ⁴	1,1×10 ¹²
13.	13	П-5	$8,8\times10^{2}$	4,0×10 ⁴	1,9×10 ¹¹	9,8×10 ²	1,5×10 ⁵	5,3×10 ¹¹	5,6×10 ³	3,9×10 ⁵	1,5×10 ¹³	5,6×10 ²	3,8×10 ⁵	1,5×10 ¹²
14.	14	П-5	$2,9 \times 10^{2}$	5,6×10 ²	2,2×10 ⁹	$3,3\times10^{2}$	2,9×10 ³	1,3×10 ¹⁰	$2,4\times10^{3}$	5,5×10 ³	2,7×10 ¹⁰	<4,9×10 ²	5,5×10 ³	2,3×10 ¹⁰
15.	15	П-5	2,3×10 ²	1,3×10 ²	4,9×10 ⁸	2,6×10 ²	6,9×10 ³	1,9×10 ¹⁰	1,5×10 ³	5,7×10 ⁴	3,0×10 ¹¹	<4,9×10 ²	5,6×10 ⁴	8,9×10 ¹⁰
16.	16	П-2	$8,5 \times 10^2$	$3,7 \times 10^3$	6,3×10 ¹⁰	7,7×10 ²	5,0×10 ³	5,0×10 ¹⁰	3,5×10 ⁴	5,4×10 ³	3,8×10 ¹²	1,3×10 ³	5,4×10 ³	1,4×10 ¹¹
17.	17	П-2	<1,2×10 ²	-	1	<75	-	1	6,0×10 ⁵	3,6×10 ³	4,4×10 ¹³	1,1×10 ⁵	3,8×10 ³	8,5×10 ¹²
18.	18	П-2	$1,7 \times 10^3$	2,9×10 ³	9,3×10 ⁹	1,9×10 ³	2,9×10 ³	9,1×10 ⁹	5,2×10 ⁵	5,9×10 ³	1,3×10 ¹³	5,2×10 ⁴	5,9×10 ³	1,6×10 ¹²
19.	19	П-2	1,2×10 ⁴	3,4×10 ⁴	8,0×10 ¹²	1,4×10 ⁴	4,1×10 ⁴	1,1×10 ¹³	7,2×10 ⁴	5,2×10 ⁴	7,4×10 ¹³	$2,1\times10^{3}$	5,2×10 ⁴	12,2×10 ¹²
20.	20	П2-П7	$7,8\times10^{2}$	$2,6\times10^3$	4,1×10 ¹⁰	$9,1\times10^{2}$	3,9×10 ³	7,0×10 ¹⁰	1,0×10 ⁴	$7,6 \times 10^3$	1,6×10 ¹²	$6,2\times10^2$	7,6×10 ³	9,3×10 ¹⁰
21.	21	П2-П7	1,0×10 ³	4,2×10 ²	3,6×10 ⁹	1,3×10 ³	1,1×10 ³	3,0×10 ¹⁰	9,8×10 ³	3,2×10 ³	6,2×10 ¹¹	2,8×10 ³	3,2×10 ³	1,8×10 ¹¹
22.	22	П2-П7	$<1,2\times10^{2}$	-	-	81	9,2	$9,1\times10^{6}$	2,1×10 ⁴	2,2×10 ³	9,9×10 ¹⁰	$2,1\times10^{3}$	2,2×10 ³	8,4×10 ¹⁰

0	та			90Sr			¹³⁷ Cs			²³⁹⁺²⁴⁰ Pu			²⁴¹ Am	
п/п №	№ объекта	Техническая площадка	Аs, кБк/м²	V, m ³	А, Бк	As, κ Γ κ/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк
23.	23	П2-П7	1,6×10 ²	11	3,3×10 ⁷	2,9×10 ²	3,7×10 ²	2,1×10 ⁹	3,1×10 ⁴	1,4×10 ³	1,8×10 ¹¹	9,3×10 ³	1,4×10 ³	2,7×10 ¹¹
24.	24	П-7	$9,1\times10^{2}$	2,3×10 ³	4,1×10 ¹⁰	1,3×10 ³	$3,1\times10^{3}$	8,1×10 ¹⁰	6,0×10 ⁴	9,1×10 ³	1,1×10 ¹³	7,5×10 ³	9,1×10 ³	1,4×10 ¹²
25.	25	П2-П7	5,2×10 ²	2,5×10 ³	1,8×10 ¹⁰	3,1×10 ³	3,0×10 ³	1,8×10 ¹¹	8,8×10 ⁴	1,2×10 ⁴	2,2×10 ¹³	3,4×10 ⁴	1,2×10 ⁴	8,4×10 ¹²
26.	26	П2-П7	<1,2×10 ²	4,2×10 ²	5,5×10 ⁷	<75	-	-	2,0×10 ³	4,5×10 ²	9,7×10 ⁹	<4,9×10 ²	4,5×10 ²	1,8×10 ⁹
27.	27	П-2	1,2×10 ³	2,1×10 ³	4,1×10 ⁹	1,4×10 ³	4,1×10 ³	8,7×10 ⁹	1,7×10 ⁴	4,5×10 ⁴	1,5×10 ¹³	1,4×10 ³	4,4×10 ⁴	8,6×10 ¹¹
28.	28	П2-П7	<1,2×10 ²	-	-	<75	-	-	3,4×10 ⁴	7,0×10 ⁴	4,7×10 ¹³	$7,4\times10^{3}$	7,0×10 ⁴	1,0×10 ¹³
29.	29	П-2	8,5×10 ²	6,2×10 ³	1,4×10 ¹⁰	9,5×10 ²	1,5×10 ⁴	2,7×10 ¹⁰	3,3×10 ³	1,8×10 ⁴	1,3×10 ¹¹	<4,9×10 ²	1,8×10 ⁴	9,0×10 ¹⁰
30.	30	П2-П7	<1,2×10 ²	-	-	1,3×10 ²	4,6×10 ²	9,3×10 ⁸	$3,1\times10^{3}$	9,8×10 ³	4,5×10 ¹⁰	5,3×10 ²	9,6×10 ³	1,0×10 ¹¹
31.	31	П2-П7	1,9×10 ²	2,8	4,0×10 ⁶	$2,1\times10^{2}$	1,3×10 ³	5,1×10 ⁹	4,8×10 ³	3,2×10 ⁴	3,0×10 ¹²	5,6×10 ⁵	3,1×10 ⁴	3,4×10 ¹⁴
32.	32	П2-П7	1,7×10 ²	5,2	1,2×10 ⁷	1,2×10 ³	2,0×10 ²	4,6×10 ⁹	2,0×10 ⁴	2,1×10 ⁴	1,0×10 ¹²	6,4×10 ³	2,1×10 ⁴	2,7×10 ¹²
33.	33	П2-П7	<1,2×10 ²	-	-	76	2,1×10 ¹	2,5×10 ⁷	1,7×10 ⁴	2,2×10 ⁴	9,1×10 ¹¹	$3,8\times10^{3}$	2,2×10 ⁴	1,7×10 ¹²
34.	34	П2-П7	$1,7 \times 10^3$	2,1×10 ⁴	7,1×10 ¹¹	$1,1\times10^{3}$	2,1×10 ⁴	4,7×10 ¹¹	6,0×10 ⁵	2,1×10 ⁴	2,4×10 ¹³	4,6×10 ⁵	2,1×10 ⁴	1,9×10 ¹⁴
35.	35	Π-7	<1,2×10 ²	-	-	<75	-	-	1,1×10 ⁴	8,0×10 ⁴	1,8×10 ¹³	2,4×10 ³	7,9×10 ⁴	3,7×10 ¹²
36.	36	Π-7	<1,2×10 ²	-	-	82	7,4	6,0×10 ⁶	7,2×10 ³	1,2×10 ⁵	1,4×10 ¹³	7,2×10 ²	1,2×10 ⁵	1,3×10 ¹²
37.	37	Π-7	<1,2×10 ²	-	-	<75	-	-	1,8×10 ⁴	5,7×10 ⁴	3,0×10 ¹²	1,8×10 ³	5,3×10 ⁴	7,6×10 ¹¹
38.	38	Π-7	<1,2×10 ²	-	-	<75	-	-	8,3×10 ³	8,9×10 ⁴	3,0×10 ¹²	8,3×10 ²	8,7×10 ⁴	9,0×10 ¹¹
39.	39	П-2Г	<1,2×10 ²	-	-	<75	-	-	3,0×10 ⁴	8,0×10 ⁴	4,8×10 ¹³	1,6×10 ³	7,8×10 ⁴	2,4×10 ¹²
40.	40	П-2Г	<1,2×10 ²	-	-	<75	-	-	3,2×10 ³	$3,9 \times 10^3$	1,2×10 ¹¹	6,1×10 ⁵	3,8×10 ³	4,7×10 ¹³
41.	41	П-2Г	<1,2×10 ²	-	-	<75	-	-	8,6×10 ³	3,9×10 ⁴	3,1×10 ¹²	1,2×10 ³	3,8×10 ⁴	9,4×10 ¹¹
42.	42	П-2Г	<1,2×10 ²	-	-	<75	-	-	2,0×10 ³	3,1×10 ³	1,2×10 ¹¹	<4,9×10 ²	3,0×10 ³	1,0×10 ¹⁰
43.	43	П-2Г	<1,2×10 ²	-	-	<75	-	-	3,7×10 ³	6,4×10 ³	4,8×10 ¹¹	<4,9×10 ²	6,3×10 ³	4,9×10 ¹⁰
44.	44	П-2Г	$<1,2\times10^{2}$	-	-	<75	-	-	2,5×10 ³	$9,5 \times 10^{3}$	2,0×10 ¹¹	<4,9×10 ²	9,2×10 ³	5,2×10 ¹⁰

9	Та	_		90Sr			¹³⁷ Cs			²³⁹⁺²⁴⁰ Pu			²⁴¹ Am	
п/п №	№ объекта	Техническая площадка	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк
45.	45	П-2Г	<1,2×10 ²	-	-	<75	-	-	3,4×10 ³	7,3×10 ³	3,1×10 ¹¹	<4,9×10 ²	7,0×10 ³	3,4×10 ¹⁰
46.	46	П-2Г	<1,2×10 ²	-	-	<75	-	-	7,8×10 ³	6,0×10 ³	9,3×10 ¹¹	8,1×10 ²	5,8×10 ³	9,4×10 ¹⁰
47.	47	П-2Г	<1,2×10 ²	-	-	<75	-	-	2,6×10 ³	1,4×10 ³	7,1×10 ¹⁰	7,8×10 ²	1,3×10 ³	2,0×10 ¹⁰
48.	48	П-2Г	<1,2×10 ²	-	-	<75	-	-	1,8×10 ⁴	7,3×10 ³	2,7×10 ¹²	1,4×10 ³	$7,0\times10^3$	2,0×10 ¹¹
49.	49	П-2Г	<1,2×10 ²	-	-	<75	-	-	3,2×10 ⁴	1,9×10 ³	1,2×10 ¹²	8,8×10 ²	1,8×10 ³	2,1×10 ¹⁰
50.	50	П-2Г	<1,2×10 ²	-	-	<75	-	-	5,9×10 ³	2,8×10 ³	3,3×10 ¹¹	<4,9×10 ²	$2,7 \times 10^3$	2,6×10 ¹⁰
51.	51	П-2Г	<1,2×10 ²	-	-	<75	-	-	4,4×10 ⁴	3,7×10 ³	3,3×10 ¹²	$3,1\times10^{3}$	$3,7 \times 10^3$	2,3×10 ¹¹
52.	52	П-2Г	<1,2×10 ²	-	-	<75	-	-	$7,0\times10^3$	$2,1\times10^{3}$	2,9×10 ¹¹	6,5×10 ²	1,9×10 ³	2,5×10 ¹⁰
53.	53	П-2Г	<1,2×10 ²	-	-	<75	-	-	8,6×10 ²	1,6×10 ²	2,7×10 ⁹	<4,9×10 ²	1,5×10 ²	2,4×10 ⁸
54.	54	вне площадок	8,0×10 ³	1,6×10 ⁴	2,4×10 ¹²	1,4×10 ³	2,2×10 ⁴	6,3×10 ¹²	1,2×10 ⁴	2,5×10 ⁴	6,0×10 ¹²	2,0×10 ³	2,4×10 ⁴	9,7×10 ¹¹
55.	55	вне площадок	$4,0\times10^{2}$	$8,3\times10^{3}$	6,7×10 ¹⁰	$2,8\times10^{2}$	3,9×10 ⁴	2,2×10 ¹¹	1,6×10 ³	4,4×10 ⁴	1,2×10 ¹¹	<4,9×10 ²	4,0×10 ⁴	2,3×10 ¹¹
56.	56	вне площадок	<1,2×10 ²	-	-	<75	-	-	1,3×10 ³	9,0×10³	7,5×10 ⁸	3,8×10 ³	8,7×10 ³	6,6×10 ¹¹
57.	57	вне площадок	1,7×10 ²	-	-	1,9×10 ²	1,8×10 ³	4,2×10 ⁸	2,0×10 ⁴	2,6×10 ⁵	1,6×10 ¹³	2,0×10 ³	2,6×10 ⁵	3,1×10 ¹²

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet ²⁴¹Am: <3,0×10⁻² 0,9;
- 137 Cs: <1,0×10⁻² 22,2;
- 90 Sr: $<1,0\times10^{-2}-4,0\times10^{2};$
- \bullet ²³⁹⁺²⁴⁰Pu: <1,0×10⁻⁴ 5,5;
- ${}^{3}\text{H}$: <6,0 5,0×10².

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: $<3.0\times10^{-2}$;
- 137 Cs: <2,0×10⁻²;
- \bullet 90Sr: <7.0×10⁻² 2.0;
- $^{239+240}$ Pu: $<1,8\times10^{-4}-2,3\times10^{-2}$;
- ${}^{3}\text{H}$: <6.0 1.6×10 2 .

2.4 Радиоактивное загрязнение атмосферного воздуха

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- 241 Am: $<1,5\times10^{-7}-1,3\times10^{4}$;
- 137 Cs: $<1.5\times10^{-7}-68$;
- 90 Sr: $<2,0\times10^{-7}-21$;
- \bullet ²³⁹⁺²⁴⁰Pu: <1.1×10⁻⁶ 4.5×10⁴.

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <2,0×10⁻² 3,8×10³;
- 137 Cs: $<5.0\times10^{-2}-1.1\times10^{3}$:
- \bullet 90Sr: $<5,1-2,7\times10^4$;
- $^{239+240}$ Pu: $<2.0\times10^{-2}-7.4\times10^{3}$.

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: $<4.0\times10^{-2}-4.8\times10^{2}$:
- 137 Cs: $<0,1-3,9\times10^4$;
- \bullet 90Sr: $<0.2 8.6 \times 10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <2,0×10⁻² 24.

Хронология испытаний ядерного оружия и гидроядерных экспериментов на территории испытательной площадки «Опытном поле»

Таблица 2. Хронология наземных и воздушных испытаний ядерного оружия на территории испытательной площадки «Опытном поле»

№ п/п	Дата испытания	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Высота взрыва, м	№ п/п	Дата испытания	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Высота взрыва, м
1.	29.08.1949 г.	СЯО	22	наземный	башня 30	59.	17.09.1961 г.	СЯО	20-150	воздушный	
2.	24.09.1951 г.	СЯО	38	наземный	башня 30	60.	18.09.1961 г.	ИАР	0,004	наземный	1
3.	18.10.1951 г.	СЯО	42	воздушный		61.	18.09.1961 г.	СЯО	0,75	воздушный	
4.	12.08.1953 г.	СЯО	400	наземный	башня 30	62.	19.09.1961 г.	ИАР	0,03	наземный	0
5.	23.08.1953 г.	СЯО	28	воздушный	600	63.	20.09.1961 г.	СЯО	4,8	воздушный	
6.	03.09.1953 г.	СЯО	5,8	воздушный		64.	21.09.1961 г.	СЯО	0,8	воздушный	110
7.	08.09.1953 г.	СЯО	1,6	воздушный		65.	26.09.1961 г.	СЯО	1,2	воздушный	
8.	10.09.1953 г.	СЯО	4,9	воздушный	220	66.	01.10.1961 г.	СЯО	3	воздушный	
9.	29.09.1954 г.	СЯО	0,2	воздушный		67.	04.10.1961 г.	СЯО	13	воздушный	
10.	01.10.1954 г.	СЯО	0,03	воздушный		68.	12.10.1961 г.	СЯО	15	воздушный	570
11.	05.10.1954 г.	СЯО	4	наземный	0	69.	17.10.1961 г.	СЯО	6,6	воздушный	
12.	03.10.1954 г.	СЯО	2	воздушный		70.	19.10.1961 г.	СЯО	0,001-20	воздушный	710
13.	08.10.1954 г.	СЯО	0,8	воздушный		71.	25.10.1961 г.	ФМИ	0,5	воздушный	
14.	23.10.1954 г.	СЯО	62	воздушный	410	72.	30.10.1961 г.	СЯО	0,09	воздушный	470
15.	26.10.1954 г.	СЯО	2,8	воздушный		73.	01.11.1961 г.	СЯО	2,7	воздушный	
16.	19.10.1954 г. (не сработало)	ОЯО	0	наземный	башня 15	74.	02.11.1961 г.	СЯО	0,6	воздушный	
17.	30.10.1954 г.	ORO	10	наземный	сброс с самолёта с подрывом на высоте 50	75.	03.11.1961 г. (не сработало)	ИАР	0	наземный	0
18.	29.07.1955 г.	СЯО	1,3	наземный	2,5	76.	03.11.1961 г.	СЯО	0,9	воздушный	635
19.	02.08.1955 г.	СЯО	12	наземный	2,5	77.	04.11.1961 г.	ОЯО	0,2	наземный	0
20.	05.08.1955 г.	СЯО	1,5	наземный	1,5	78.	01.08.1962 г.	СЯО	2,4	воздушный	
21.	06.11.1955 г.	СЯО	250	воздушный		79.	03.08.1962 г.	СЯО	1,6	воздушный	
22.	22.11.1955 г.	СЯО	1600	воздушный		80.	04.08.1962 г.	ОЯО	3,8	воздушный	390
23.	16.03.1956 г.	СЯО	14	наземный	0,4	81.	07.08.1962 г.	СЯО	9,9	наземный	0
24.	25.03.1956 г.	СЯО	5,5	наземный	1	82.	18.08.1962 г.	СЯО	7,4	воздушный	710
25.	24.08.1956 г.	СЯО	27	наземный	Башня 100	83.	18.08.1962 г.	СЯО	5,8	воздушный	310
26.	30.08.1956 г.	СЯО	900	воздушный		84.	21.08.1962 г.	СЯО	20-150	воздушный	

№ п/п	Дата испытания	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Высота взрыва, м	№ п/п	Дата испытания	Цель испытания	Мощность испытания, кт тротилового эквивалента	Условия проведения	Высота взрыва, м
27.	02.09.1956 г.	СЯО	51	воздушный		85.	22.08.1962 г.	СЯО	3	воздушный	
28.	10.09.1956 г.	СЯО	38	воздушный	270	86.	23.08.1962 г.	СЯО	2,5	воздушный	
29.	17.11.1956 г.	СЯО	900	воздушный		87.	25.08.1962 г.	СЯО	0,001-20	воздушный	
30.	14.12.1956 г.	СЯО	40	воздушный		88.	27.08.1962 г.	СЯО	11	воздушный	
31.	08.03.1957 г.	СЯО	19	воздушный		89.	31.08.1962 г.	ФМИ	2,7	воздушный	700
32.	03.04.1957 г.	СЯО	42	воздушный	1100	90.	22.09.1962 г.	ИАР	0,21	наземный	0
33.	06.04.1957 г.	СЯО	57	воздушный	1145	91.	24.09.1962 г.	СЯО	1,2	воздушный	630
34.	10.04.1957 г.	СЯО	680	воздушный	2000	92.	25.09.1962 г.	СЯО	7	наземный	0
35.	12.08.1957 г.	СЯО	22	воздушный		93.	28.09.1962 г.	ФМИ	1,3	воздушный	
36.	16.04.1957 г.	СЯО	320	воздушный		94.	09.10.1962 г.	СЯО	8	воздушный	
37.	22.08.1957 г.	СЯО	520	воздушный		95.	10.10.1962 г.	СЯО	9,2	воздушный	665
38.	26.08.1957 г.	ИАР	0,1	воздушный		96.	13.10.1962 г.	СЯО	4,9	воздушный	720
39.	13.09.1957 г.	СЯО	5,9	воздушный		97.	14.10.1962 г.	СЯО	0,001-20	воздушный	
40.	26.09.1957 г.	СЯО	13	воздушный		98.	20.10.1962 г.	СЯО	6,7	воздушный	
41.	28.12.1957 г.	СЯО	12	воздушный	615	99.	28.10.1962 г.	СЯО	7,8	воздушный	
42.	04.01.1958 г.	СЯО	1,3	воздушный	400	100.	28.10.1962 г.	СЯО	7,8	воздушный	
43.	17.01.1958 г.	СЯО	0,5	воздушный	500	101.	30.10.1962 г.	СЯО	1,2	наземный	0
44.	13.03.1958 г.	СЯО	1,2	воздушный		102.	31.10.1962 г.	СЯО	10	воздушный	
45.	14.03.1958 г.	СЯО	35	воздушный		103.	01.11.1962 г.	СЯО	3	воздушный	
46.	15.03.1958 г.	СЯО	14	воздушный	965	104.	03.11.1962 г.	СЯО	4,7	воздушный	
47.	18.03.1958 г.	ФМИ	0,16	воздушный	290	105.	04.11.1962 г.	СЯО	8,4	воздушный	
48.	20.03.1958 г.	СЯО	12	воздушный	1015	106.	05.11.1962 г.	ИПΦ	0,4	наземный	Башня 15
49.	22.03.1958 г.	СЯО	18	воздушный	1415	107.	11.11.1962 г.	СЯО	0,1	наземный	Башня 8
50.	01.09.1961 г.	ОЯО	16	воздушный	75	108.	13.11.1962 г. (не сработало)	ОЯО	0	наземный	0
51.	04.09.1961 г.	СЯО	9	воздушный	93	109.	14.11.1962 г.	СЯО	12	воздушный	
52.	05.09.1961 г.	СЯО	16	воздушный	100	110.	17.11.1962 г.	СЯО	18	воздушный	
53.	06.09.1961 г.	ОЯО	1,1	воздушный		111.	24.11.1962 г. (не сработало)	ИАР	0	наземный	0
54.	09.09.1961 г.	ИАР	0,38	наземный	0	112.	26.11.1962 г.	ИАР	0,03	наземный	0
55.	10.09.1961 г.	СЯО	0,88	воздушный		113.	01.12.1962 г.	СЯО	2,4	воздушный	680
56.	11.09.1961 г.	СЯО	0,3	воздушный		114.	23.12.1962 г. (не сработало)	ИАР	0	наземный	0
57.	13.09.1961 г.	СЯО	0,001-20	воздушный	65	115.	24.12.1962 г.	ИАР	0,007	наземный	0
58.	14.09.1961 г.	СЯО	0,4	наземный	0	116.	24.12.1962 г.	ИАР	0,028	наземный	0

Сокращения:

СЯО – совершенствование ядерного оружия;

ИАР – исследования аварийных режимов и аварийных ситуаций;

ФМИ— фундаментальные и методические исследования.

В ряде случаев проведение ядерных испытаний преследовало несколько целей, однако для их идентификации использовалась одна цель, являющаяся для данного эксперимента приоритетной [2]. В 25 из 30 наземных ядерных испытаний произошел подрыв ядерного устройства, в 5 случаях – отказ ядерного заряда.

Таблица 6. Хронология гидроядерных экспериментов на территории испытательной площадки «Опытном поле»

№ п/п	Дата проведения	Условия проведения	№ п/п	Дата проведения	Условия проведения
1	13.03.1958 г.	воздушный	21	13.07.1961 г.	наземный
2	15.03.1958 г.	воздушный	22	15.07.1961 г.	наземный
3	20.05.1960 г.	наземный	23	20.07.1961 г.	наземный
4	22.05.1960 г.	наземный	24	21.07.1961 г.	наземный
5	24.05.1960 г.	наземный	25	22.07.1961 г.	наземный
6	26.05.1960 г.	наземный	26	22.07.1961 г.	наземный
7	31.05.1960 г.	наземный	27	24.07.1961 г.	наземный
8	03.06.1960 г.	наземный	28	19.09.1963 г.	наземный
9	06.06.1960 г.	наземный	29	20.09.1963 г.	наземный
10	08.06.1960 г.	наземный	30	24.09.1963 г.	наземный
11	10.06.1960 г.	наземный	31	25.09.1963 г.	наземный
12	11.06.1960 г.	наземный	32	26.09.1963 г.	наземный
13	13.06.1960 г.	наземный	33	30.09.1963 г.	наземный
14	16.06.1960 г.	наземный	34	01.10.1963 г.	наземный
15	27.06.1961 г.	наземный	35	02.10.1963 г.	наземный
16	29.06.1961 г.	наземный	36	10.10.1963 г.	наземный
17	01.07.1961 г.	наземный	37	11.10.1963 г.	наземный
18	04.07.1961 г.	наземный	38	12.10.1963 г.	наземный
19	06.07.1961 г.	наземный	39	12.10.1963 г.	наземный
20	08.07.1961 г.	наземный	40	15.10.1963 г.	наземный

При проведении гидроядерных экспериментов значимое ядерное энерговыделение практически отсутствовало, что способствовало образованию малого количества «осколков деления». Вследствие этого, радиационное воздействие на окружающую среду происходило за счет диспергирования ядерных материалов, входящих в состав ядерного заряда. При проведении одних экспериментов диспергированию подвергался уран, при других – плутоний [6].

Перечень радиационно-опасных объектов испытательной площадки «Опытное поле»

На основании данных по лабораторным анализам и анализу карт площадного распределения техногенных радионуклидов приустьевых площадок скважин установлен перечень радиационно-опасных объектов (Рисунок 3).

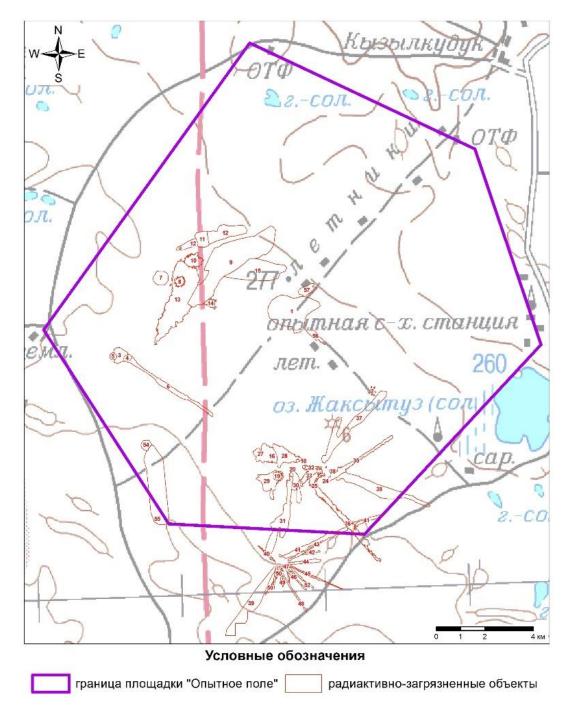


Рисунок 3. Карта-схема площадки «Опытное-поле» с обозначением радиационно-опасных объектов

Место расположения

Участок радиоактивного загрязнения расположен в центральная часть площадки П-1. Географические координаты представлены в таблице (Таблица 4).

Таблица 4. Географические координаты участка №1

Географические координаты							
№ участка		Широта Долгота					
1	50 26 14,9 77 49 11				11		

Характеристика источника радиационного загрязнения

Эпицентр наземного ядерного испытания со значительным энерговыделением, не приведший к значительным нарушениям рельефа, с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 4).

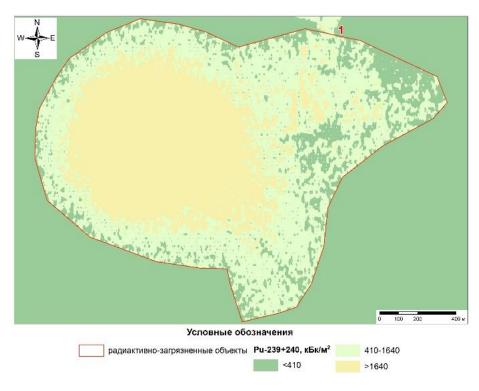


Рисунок 4. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №1

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-1,9\times10^3$;
- 137 Cs: $<75-1,1\times10^4$;
- 90 Sr: $<1,2\times10^2-1,0\times10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 1.6×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.8×10^6 м². В тоже время объем радиоактивного материала, составляет порядка 4.5×10^5 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северо-восточная часть площадки П-1. Географические координаты представлены в таблице (Таблица 5).

Таблица 5. Географические координаты участка №2

No vivo omvo	Географические координаты							
№ участка		Широта Долгота						
2	50 26 42,4 77 49 45,2							

Характеристика источника радиационного загрязнения

Техногенный объект, территория которого подверглась интенсивному техногенному преобразованию и радиоактивному загрязнению.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 5).

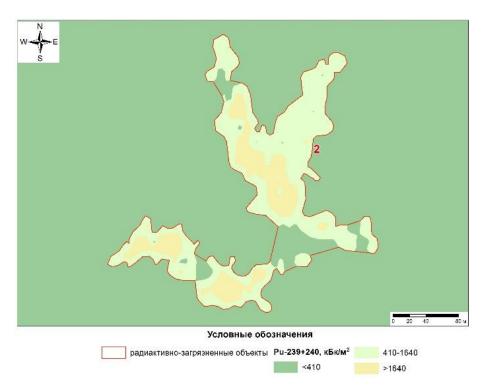


Рисунок 5. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №2

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-5,1\times10^3$;
- 137 Cs: $<75-4,6\times10^2$;
- 90 Sr: $<1,2\times10^2-5,1\times10^2$;
- $^{239+240}$ Pu: $<4.1\times10^2-2.0\times10^5$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.8×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 5.6×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральная часть площадки П-3. Географические координаты представлены в таблице (Таблица 6).

Таблица 6. Географические координаты участка №3

No vivo omico	Географические координаты					
№ участка		Широта Долгота				
3	50	25	25,8	77	43	8,5

Характеристика источника радиационного загрязнения

Эпицентр наземного ядерного испытания со значительным энерговыделением, не приведший к значительным нарушениям рельефа.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 6).

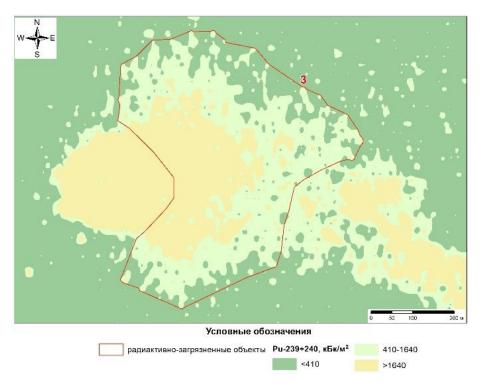


Рисунок 6. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №3

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-6,6\times10^3$;
- 137 Cs: $< 75 5,7 \times 10^2$;
- 90 Sr: $<1,2\times10^2-4,0\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 8.5×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,1\times10^5$ м². В тоже время объем радиоактивного материала, составляет порядка $4,1\times10^4$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральная часть площадки П-3. Географические координаты представлены в таблице (Таблица 7).

Таблица 7. Географические координаты участка №4

No vivo omico	Географические координаты					
№ участка		Широта Долгота				
4	50	25	20,7	77	43	24,5

Характеристика источника радиационного загрязнения

Эпицентр наземного ядерного испытания с низким коэффициентом реализации ядерной реакции, не приведший к значительным нарушениям рельефа.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 7).

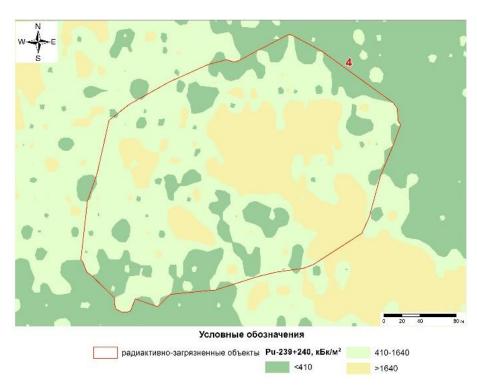


Рисунок 7. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №4

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-5,1\times10^2$;
- 137 Cs: $< 75 1,1 \times 10^2$;
- 90 Sr: <1,2×10²;
- $^{239+240}$ Pu: $<4.1\times10^2-4.3\times10^4$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.9×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 5.9×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральная часть площадки П-3. Географические координаты представлены в таблице (Таблица 8).

Таблица 8. Географические координаты участка №5

No vivo omico	Географические координаты					
№ участка		Широта Долгота				
5	50	25	23,4	77	42	55

Характеристика источника радиационного загрязнения

Эпицентр наземного ядерного испытания с отсутствием ярко выраженной эпицентральной зоны ядерного взрыва.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 8).

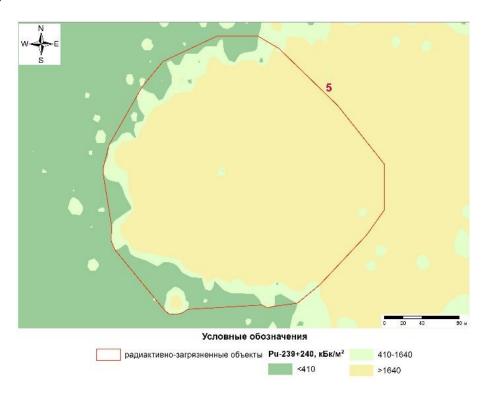


Рисунок 8. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №5

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-2,2\times10^4$;
- 137 Cs: $<75 2,5 \times 10^2$;
- 90 Sr: $<1,2\times10^2-1,5\times10^2$;
- $^{239+240}$ Pu: $<4.1\times10^2 2.3\times10^5$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.9×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 1.3×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в юго-восточная часть площадки П-3. Географические координаты представлены в таблице (Таблица 9).

Таблица 9. Географические координаты участка №6

No vivo ozvio		ие координаты				
№ участка		Широта Долгота				
6	50	24	40,8	77	44	50

Характеристика источника радиационного загрязнения

След радиоактивных выпадений от наземного ядерного испытания с низким коэффициентом реализации ядерной реакции.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 9).

Рисунок 9. Карта площадного ²³⁹⁺²⁴⁰Ри распределения на участке №6

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- ¹³⁷Cs: <75;
- 90 Sr: <1,2×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 9.1×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.6×10^5 м². В тоже время объем радиоактивного материала, составляет порядка 1.3×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в юго-западная часть площадки П-5. Географические координаты представлены в таблице (Таблица 10).

Таблица 10. Географические координаты участка №7

Мо туто одуго	Географические координаты							
№ участка	Широта Долгота							
7	50	27	05,7	77	44	40.7		

Характеристика источника радиационного загрязнения

Эпицентр наземного ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 10).

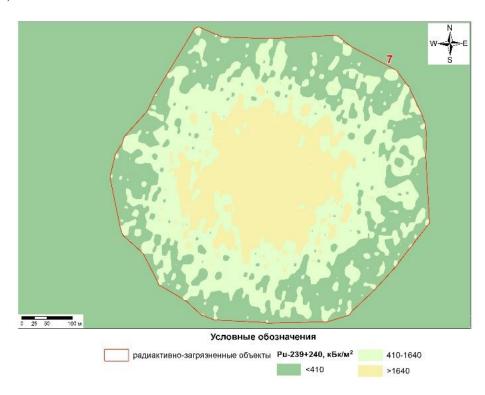


Рисунок 10. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №7

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-7,5\times10^2$:
- 137 Cs: $< 75 4.0 \times 10^3$;
- 90 Sr: $<1,2\times10^2-3,1\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,4×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.9×10^5 м². В тоже время объем радиоактивного материала, составляет порядка 4.1×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в южная часть площадки П-5. Географические координаты представлены в таблице (Таблица 11).

Таблица 11. Географические координаты участка №8

Мо туто одуго	Географические координаты							
№ участка	Широта Долгота							
8					20,5			

Характеристика источника радиационного загрязнения

Эпицентр назменого ядерного испытания с образованием воронки.

Экологические характеристики объекта

На объекте наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 11).

Рисунок 11. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №8

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-7,2\times10^3$;
- 137 Cs: $< 75 2.2 \times 10^4$:
- $\bullet {}^{90}\mathrm{Sr:} < 1,2 \times 10^2 1,8 \times 10^4; \\ \bullet {}^{239 + 240}\mathrm{Pu:} < 4,1 \times 10^2 5,5 \times 10^4.$

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5,9×10⁴ м². В тоже время объем радиоактивного материала, составляет порядка 1.7×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в юго-восточная часть площадки П-5. Географические координаты представлены в таблице (Таблица 12).

Таблица 12. Географические координаты участка №9

No vivo omvo	Географические координаты						
№ участка		Широта Долгота					
9	50 27 24,1 77 47 09,3					09,3	

Характеристика источника радиационного загрязнения

Следы радиоактивных выпадений от воздушных ядерных взрывов.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 12).

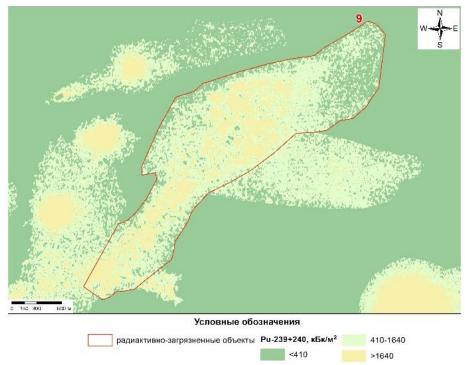


Рисунок 12. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №9

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-1,2\times10^3$;
- 137 Cs: $< 75 6.9 \times 10^2$:
- \bullet 90Sr: $<1,2\times10^2-6,2\times10^2$;
- $^{239+240}$ Pu: $<4,1\times10^2-5,2\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.1×10^6 м². В тоже время объем радиоактивного материала, составляет порядка 1.5×10^5 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральная часть площадки П-5. Географические координаты представлены в таблице (Таблица 13).

Таблица 13. Географические координаты участка №10

No vivo omvo	Географические координаты							
№ участка		Широта Долгота						
10	50 27 29,0 77 45 51					51		

Характеристика источника радиационного загрязнения

Эпицентр наземного ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 13).

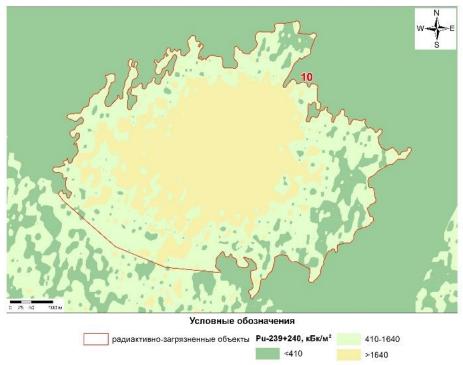


Рисунок 13. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №10

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-2,6\times10^3$;
- 137 Cs: $< 75 6,7 \times 10^3$;
- 90 Sr: $<1,2\times10^2-6,0\times10^3$;
- $^{239+240}$ Pu: $<4,1\times10^2-4,1\times10^4$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.8×10^5 м². В тоже время объем радиоактивного материала, составляет порядка 7.6×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северо-восточная часть площадки П-5. Географические координаты представлены в таблице (Таблица 14).

Таблица 14. Географические координаты участка №11

No vivo omvo	Географические координаты						
№ участка		Широта Долгота					
11	50 27 55,6 77 46 10				10		

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания со значительным энерговыделением, не приведший к значительным нарушениям рельефа.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 14).

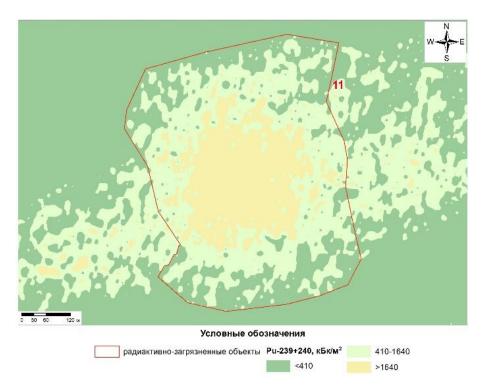


Рисунок 14. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №11

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 7.8 \times 10^2$;
- 90 Sr: $<1,2\times10^2-1,9\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 3.8×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.2×10^5 м². В тоже время объем радиоактивного материала, составляет порядка 6.6×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северо-восточная часть площадки П-5. Географические координаты представлены в таблице (Таблица 15).

Таблица 15. Географические координаты участка №12

No vivo omvo		Географические координаты						
№ участка	Широта Долгота							
12	50 27 59,4 77 46 46,0				46,0			

Характеристика источника радиационного загрязнения

След радиоактивных выпадений от эксперимента с ядерным зарядом.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 15).

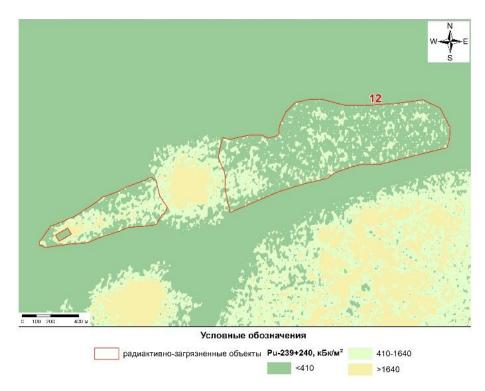


Рисунок 15. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №12

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-3,8\times10^3$;
- ¹³⁷Cs: <75;
- 90 Sr: <1,2×10²;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 2,4×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.1×10^5 м². В тоже время объем радиоактивного материала, составляет порядка 1.5×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в юго-западная часть площадки П-5. Географические координаты представлены в таблице (Таблица 16).

Таблица 16. Географические координаты участка №13

No vivo omvo			Географические координаты				
№ участка	а Широта Долгота						
13	50	26	31,4	77	45	15,3	

Характеристика источника радиационного загрязнения

След радиоактивных выпадений от воздушных ядерных взрывов.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 16).

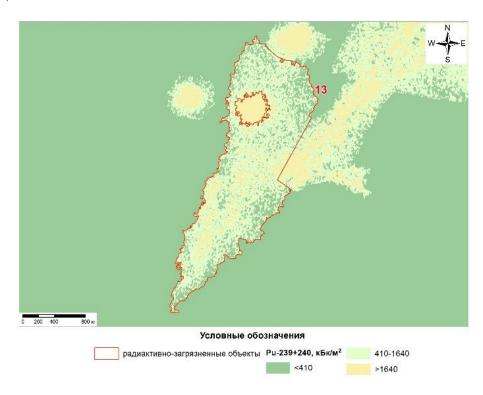


Рисунок 16. Карта площадного ²³⁹⁺²⁴⁰Ри распределения на участке №13

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- $^{239+240}$ Pu: $<4,1\times10^2-5,6\times10^3$;
- 137 Cs: $< 75 9.8 \times 10^2$;
- \bullet 90Sr: $<1,2\times10^2-8,8\times10^2$;
- \bullet ²⁴¹Am: $<4,9\times10^2-5,6\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.0×10^6 м². В тоже время объем радиоактивного материала, составляет порядка 3.9×10^5 м³.

Место расположения

Участок радиоактивного загрязнения расположен в южной части площадки П-5. Географические координаты представлены в таблице (Таблица 17).

Таблица 17. Географические координаты участка №14

No упастио		Географические координаты					
№ участка		Широта			Долгота		
14	50	26	28,1	77	46	24,9	

Характеристика источника радиационного загрязнения

Воздушные ядерные испытания.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 17).

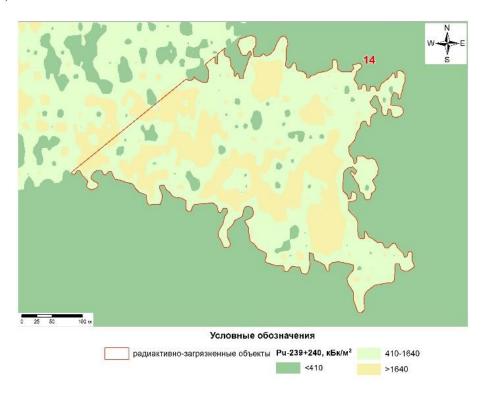


Рисунок 17. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №14

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4,9\times10^2$;
- 137 Cs: $< 75 3.3 \times 10^2$;
- 90 Sr: $<1,2\times10^2-2,9\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 2,4×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,1\times10^5$ м². В тоже время объем радиоактивного материала, составляет порядка $5,5\times10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки П-5. Географические координаты представлены в таблице (Таблица 18).

Таблица 18. Географические координаты участка №15

No vivo america	Географические координаты					
№ участка		Широта			Долгота	
15	50	27	10,4	77	48	3,6

Характеристика источника радиационного загрязнения

След радиоактивных выпадений от воздушных ядерных взрывов.

Экологические характеристики объекта

На объекте наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 18).

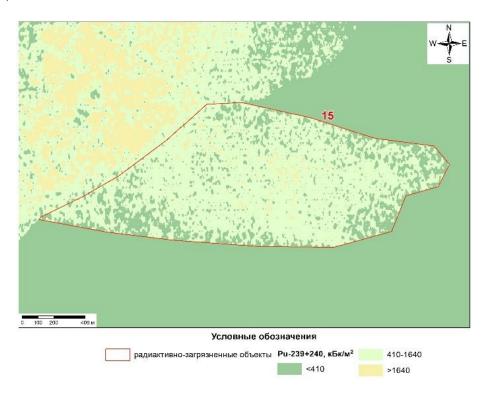


Рисунок 18. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №15

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4,9\times10^2$;
- 137 Cs: $< 75 2.6 \times 10^2$;
- 90 Sr: $<1,2\times10^2-2,3\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,5×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.1×10^6 м². В тоже время объем радиоактивного материала, составляет порядка 5.7×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части площадки П-2. Географические координаты представлены в таблице (Таблица 19).

Таблица 19. Географические координаты участка №16

Ī	No vinoceico	Географические координаты						
	№ участка	широта				Долгота		
Ī	16	50	23	02,6	77	48	18,6	

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 19).

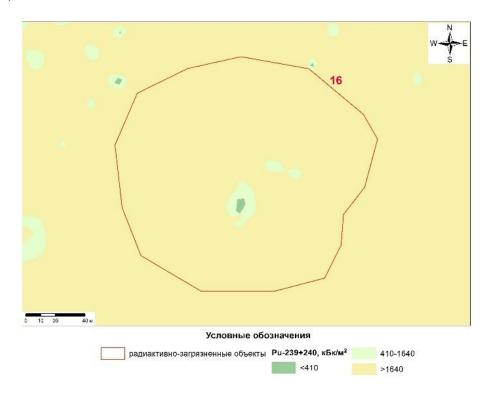


Рисунок 19. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №16

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4.9\times10^2-1.3\times10^3$:
- 137 Cs: $< 75 7.7 \times 10^2$;
- 90 Sr: $<1,2\times10^2-8,5\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 3,5×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.2×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 5.4×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части зоны пересечения площадок П-2 и П-7. Географические координаты представлены в таблице (Таблица 20).

Таблица 20. Географические координаты участка №17

No vivo ozvio	Географические координаты					
№ участка	Широта			Долгота		
17	50	22	55,0	77	49	11,8

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с низким коэффициентом реализации ядерной реакции, не приведший к значительным нарушениям рельефа.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 20).

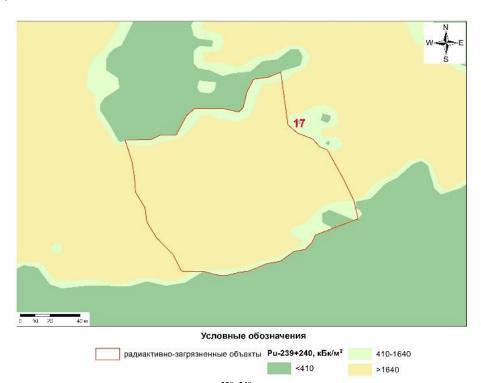


Рисунок 20. Карта площадного ²³⁹⁺²⁴⁰Ри распределения на участке №17

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-1,1\times10^5$;
- ¹³⁷Cs: <75;
- 90 Sr: <1,2×10²;
- $^{239+240}$ Pu: $<4,1\times10^2-6,0\times10^5$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,2\times10^4$ м². В тоже время объем радиоактивного материала, составляет порядка $3,6\times10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части зоны пересечения площадок П-2 и П-7. Географические координаты представлены в таблице (Таблица 21).

Таблица 7. Географические координаты участка №18

No vingerica	Географические координаты					
№ участка		Широта			Долгота	
18	50	22	54,4	77	49	24,6

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с низким коэффициентом реализации ядерной реакции, не приведший к значительным нарушениям рельефа.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 21).

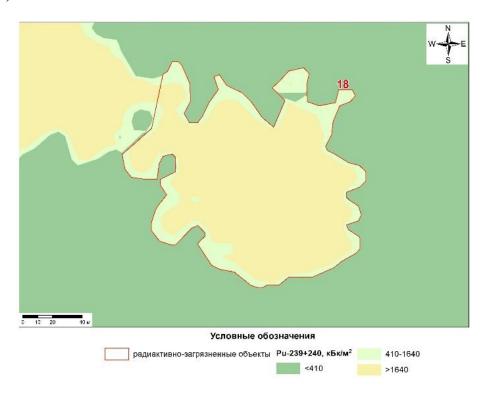


Рисунок 21. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №18

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-5,2\times10^4$;
- 137 Cs: $< 75 1,9 \times 10^3$;
- 90 Sr: $<1,2\times10^2-1,7\times10^3$;
- $^{239+240}$ Pu: $<4.1\times10^2-5.2\times10^5$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.5×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 5.9×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки П-2. Географические координаты представлены в таблице (Таблица 22).

Таблица 22. Географические координаты участка №19

No vivo omvo		Географические координаты				
№ участка	широта Долгота					
19	50	22	35,3	77	48	28,1

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 22).

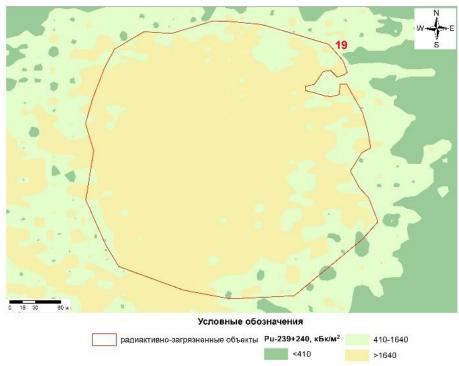


Рисунок 22. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №19

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4.9\times10^2-2.1\times10^3$;
- 137 Cs: $< 75 1.4 \times 10^4$:
- 90 Sr: $<1,2\times10^2-1,2\times10^4;$
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 7,2×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 8.9×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 5.2×10^4 м³.

Место расположения

Участок радиоактивного загрязнения расположен в западной части зоны пересечения площадок П-2 и П-7. Географические координаты представлены в таблице (Таблица 23).

Таблица 23. Географические координаты участка №20

No vivo omvo			Географические координаты				
№ участка	Широта Долгота						
20	50	22	43,6	77	49	01,3	

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 23).

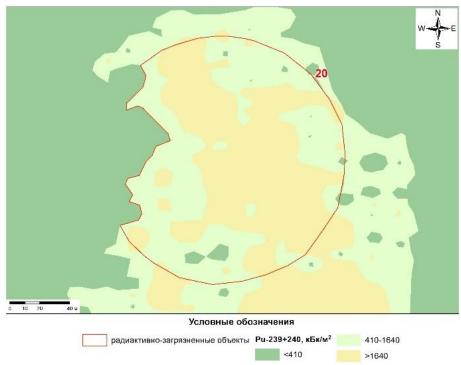


Рисунок 23. Карта площадного ²³⁹⁺²⁴⁰Ри распределения на участке №20

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-6,2\times10^2$;
- 137 Cs: $< 75 9.1 \times 10^2$:
- 90 Sr: $<1,2\times10^2-7,8\times10^2;$
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,0×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.9×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 7.6×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в западной части зоны пересечения площадок П-2 и П-7. Географические координаты представлены в таблице (Таблица 24).

Таблица 24. Географические координаты участка №21

No vivo america	Географические координаты					
№ участка		Широта	Долгота			
21	50	22	36,4	77	48	57,4

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 24).

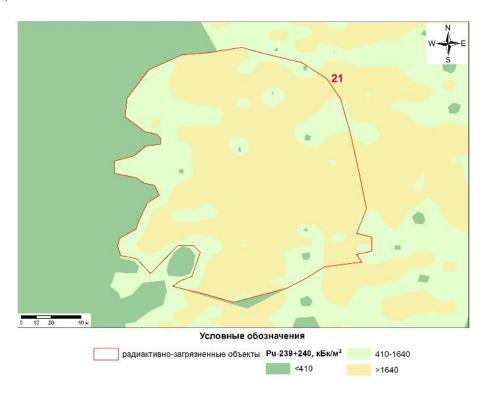


Рисунок 24. Карта площадного распределения ²³⁹⁺²⁴⁰Ри на участке №21

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4.9\times10^2-2.8\times10^3$:
- 137 Cs: $< 75 1.3 \times 10^3$;
- 90 Sr: $<1,2\times10^2-1,0\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 9,8×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.1×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 4.5×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части зоны пересечения площадок П-2 и П-7. Географические координаты представлены в таблице (Таблица 25).

Таблица 25. Географические координаты участка №22

№ участка		Географические координаты					
	№ участка	Широта			Долгота		
	22	50	22	46,2	77	49	50,4

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с низким коэффициентом реализации ядерной реакции, не приведший к значительным нарушениям рельефа.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 25).

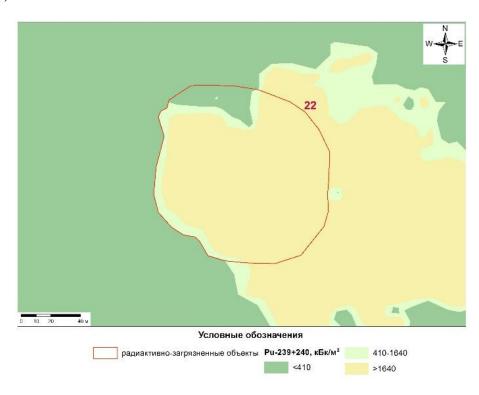


Рисунок 25. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №22

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10² 2,8×10³;
- 137 Cs: $< 75 1,3 \times 10^3$;
- 90 Sr: $<1,2\times10^2-1,0\times10^3$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 9.8×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.1×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 2.2×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части зоны пересечения площадок П-2 и П-7. Географические координаты представлены в таблице (Таблица 26).

Таблица 26. Географические координаты участка №23

No vivo amino			Географические координаты					
№ участка		Широта			Долгота			
23	50	22	26,2	77	49	17,4		

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с низким коэффициентом реализации ядерной реакции, не приведший к значительным нарушениям рельефа.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ²³⁹⁺²⁴⁰Pu (Рисунок 26).

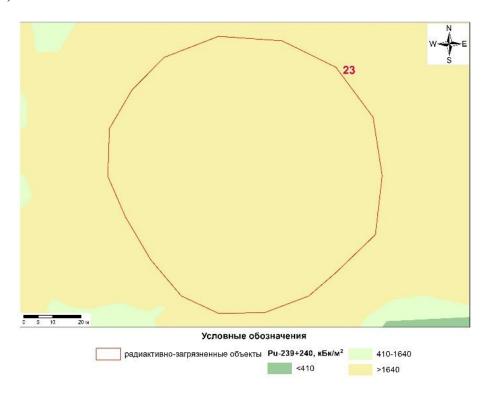


Рисунок 26. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №23

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-9.3\times10^3$:
- 137 Cs: $< 75 2,9 \times 10^2$;
- 90 Sr: $<1,2\times10^2-1,6\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 3.1×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 7.1×10^3 м². В тоже время объем радиоактивного материала, составляет порядка 1.4×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной часть площадки П-7. Географические координаты представлены в таблице (Таблица 27).

Таблица 27. Географические координаты участка №24

No vivo omico			Географически	ие координаты		
№ участка		Широта			Долгота	
24	50	22	26,5	77	50	8,9

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 27).

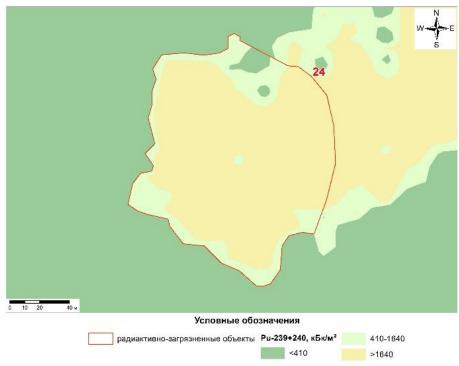


Рисунок 27. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №24

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-7,5\times10^3$;
- 137 Cs: $< 75 1.3 \times 10^3$:
- 90 Sr: $<1,2\times10^2-9,1\times10^2$;
- $^{239+240}$ Pu: $<4,1\times10^2-6,0\times10^4$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,5 \times 10^4$ м². В тоже время объем радиоактивного материала, составляет порядка $9,1 \times 10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в юго-восточной части зоны пересечения площадок Π -2 и Π -7. Географические координаты представлены в таблице (Таблица 28).

Таблица 28. Географические координаты участка №25

№ участка	Географические координаты								
		Широта		Долгота					
25	50	22	20,5	77	49	45,2			

Характеристика источника радиационного загрязнения

Эпицентр ядерного испытания с образованием воронки.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является $^{239+240}$ Pu (Рисунок 28).

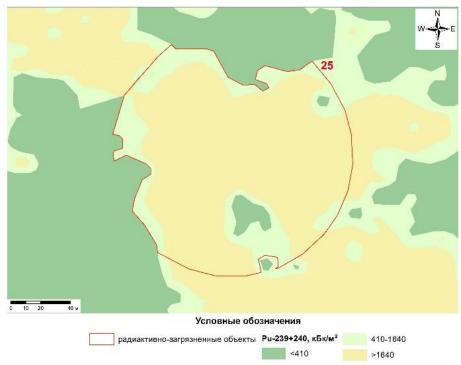


Рисунок 28. Карта площадного распределения ²³⁹⁺²⁴⁰Pu на участке №25

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-3.4\times10^4$;
- 137 Cs: $< 75 3, 1 \times 10^3$;
- 90 Sr: $<1,2\times10^2-5,2\times10^2$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 8,8×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.8×10^4 м². В тоже время объем радиоактивного материала, составляет порядка 1.2×10^4 м³.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Логачев В.А. и др. Ядерные испытания СССР. Семипалатинский полигон. Под ред. Логачева В.А.-Москва: ИздАТ, 1997 г.
- 2 Михайлов В.Н. и др. Испытание ядерного оружия и ядерные взрывы в мирных целях СССР. 1949—1990 гг. / Под ред. В.Н. Михайлова. Саров: РФЯЦ-ВНИИЭФ, 1996. 66 с.
- 3 Андрюшин И.А., Илькаев Р.И., Чернышев А.К. Общие характеристики и некоторые вопросы экологических последствий ядерных испытаний СССР. Труды РФЯЦ-ВНИИЭФ Том 1, Научно-исследовательское издание, Саров, 2001-637 с.
- 4 Сайбеков Т.С., Абылаев Ж.А. Атлас. Радиационная обстановка на территории Республики Казахстан с 1954 по 1994 годы. Алматы: Министерство экологии и биоресурсов РК, 1997- Т.16, Семипалатинская область. 400 с.
- 5 Бюллетень центра общественной информации по атомной энергии. -Москва. №12 (стр56). 1998 г.
- 6 Михайлов В.Н. и др. Ядерные испытания СССР. Гидроядерные эксперименты. Инвентаризация затрат плутония. Под ред. В.Н. Михайлова. Саров: РФЯЦ-ВНИИЭФ, ФТЦ, Саров, 1998, 21 с.
- 7 Логачев В.А. и др. Ядерные испытания СССР. Современное радиоэкологическое состояние полигонов. Под рук. В.А. Логачева. Москва: ИздАТ, 2002 г.-639 с.

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «4A»

1. Общая информация об испытательной площадке

Название: «4а» (Рисунок 1).

Предназначение: проведение испытаний боевых радиоактивных веществ.

Административное месторасположение расположение: Павлодарская область.

Географические координаты: 50°33′57′′ с. ш. 77°46′14′′ в. д.

Площадь: ~40 км². Периметр: 26,6 км.

Условия проведения испытаний: испытаний боевых радиоактивных веществ.

Период проведения ядерных взрывов в мирных целях: с 1953 г. по 1957 г. [1, 2, 3, 4].

Количество испытаний боевых радиоактивных веществ: не установлено.

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

• распыление жидких или порошкообразных радиоактивных рецептур.

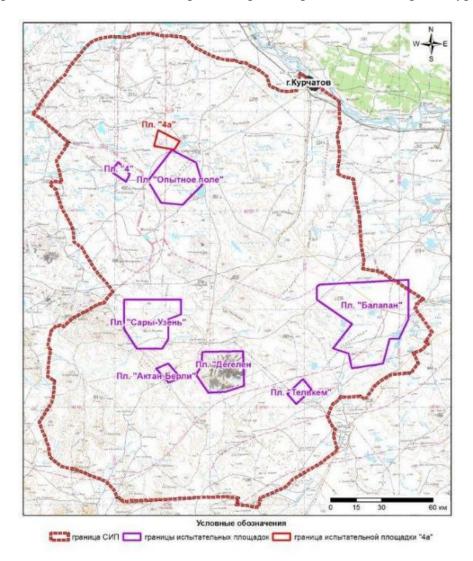


Рисунок 1. Карта-схема расположения испытательной площадки «4a» на территории СИП

Историческая информация о хронологии испытаний боевых радиоактивных веществ на территории испытательной площадки «4а» в открытых литературных источниках отсутствует.

2. Текущая радиоэкологическая ситуация окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «4а» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения удельной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 23 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории «население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной площадки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения на поверхности почвы: 0,1-10 мЗв/ч (предел измерения используемой аппаратуры -10 мЗв/ч);
- диапазон значений плотности потока бета-частиц: $<10 >1,0 \times 10^4$ част/(см²×мин) (предел измерения используемой аппаратуры 10 част/(см²×мин);
 - диапазон значений плотности потока альфа-частиц: нет измерений.

Основные техногенные радионуклиды: ²⁴¹Am, ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu.

- диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:
 - 241 Am: $< 0.4 4.0 \times 10^4$:
 - 137 Cs: $<0.2-4.5\times10^5$;
 - 90 Sr: $<0.2-7.9\times10^8$;
 - $^{239+240}$ Pu: $<1,0-3,0\times10^5$.

Количество радиационно-загрязненных участков: 40 участков (схема расположения – Рисунок 2).

Количество радиационно-опасных объектов: 40 объектов (схема расположения – Рисунок 3, радиационные характеристики – Таблица 1).

Диапазон значений площадной активности основных техногенных радионуклидов, $\kappa E \kappa / m^2$:

- \bullet ²⁴¹Am <4,9×10² 4,3×10³;
- 137 Cs $< 75 1.3 \times 10^5$:
- \bullet 90Sr <1,2×10²- 9,0×10⁶:
- \bullet ²³⁹⁺²⁴⁰Pu $< 4,1 \times 10^2 4,7 \times 10^4$.

Площадь радиоактивного загрязнения, M^2 : 1,1×10⁶.

Средняя глубина залегания радионуклидов, м: 0,1 м (для участков с уровнем загрязнения низкоактивных PAO); 0,3 (для участков с уровнем загрязнения среднеактивных PAO).

Плотность почвы, $\Gamma/\text{см}^3$: 1,3.

Объем радиоактивного грунта, м³: $1,3\times10^5$.

Запас радионуклидов (по максимальным значениям удельных активностей радионуклидов в почве), Бк: 241 Am $-5.2\times10^4; ^{137}$ Cs $-5.9\times10^5; ^{90}$ Sr $-1.2\times10^9; ^{239+240}$ Pu $-3.9\times10^5.$

По результатам пешеходной гамма-спектрометрической съемки на территории испытательной площадки «4» выявлены 15 радиационно-загрязненных участков.

Рисунок 2. Карта-схема расположения радиационно-загрязненных участков на площадке «4a»

Анализ результатов лабораторных данных показал, что радиоактивное загрязнение на всех 40 участках соответствует уровню низкоактивных и среднеактивных радиоактивных отходов. Дополнительная информация об радиоактивном загрязнении почвы радиационно-загрязненных участков испытательной площадки «4» представлена в приложении Дополнительная информация о радиоактивном загрязнении почвы радиационно-загрязненных участков испытательной площадки «4а» представлена в приложении (ПРИЛОЖЕНИЕ 1).

Рисунок 3. Карта-схема расположения радиационно-опасных объектов на площадке «4a»

Таблица 8. Информация о радиоактивном загрязнении в поверхностном слое почвы радиационно-опасных объектов площадки «4a»

Таблица 8. Информация о радиоактивном загрязнении в пот						поверхностном слое почвы радиат			иционно-опасных ооъектов площадк 239+240 Pu					
№	№ участка	As		As		As			As 241Am					
п/п	лу участка	кБк/м ²	V, m ³	А, Бк	А5, кБк/м²	V, m ³	А, Бк	А s , кБк/м ²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	
1	Участок 1	$2,3 \times 10^{6}$	$6,7 \times 10^3$	$1,4 \times 10^7$	$4,3 \times 10^{2}$	$6,7 \times 10^3$	$1,4 \times 10^3$	$3,3\times10^{3}$	$6,7 \times 10^3$	$1,1 \times 10^4$	<4,9×10 ²	-	-	
2	Участок 2	$1,4 \times 10^6$	$2,2\times10^{3}$	$4,8 \times 10^6$	$1,6 \times 10^3$	$2,2\times10^{3}$	$5,2 \times 10^3$	$5,1\times10^{2}$	$2,2\times10^{3}$	$1,7 \times 10^3$	<4,9×10 ²	-	-	
3	Участок 3	$4,1\times10^{6}$	$7,3 \times 10^3$	$2,3\times10^{7}$	$7,1\times10^{2}$	$7,3 \times 10^3$	$2,4 \times 10^3$	6,8×10 ³	$7,3\times10^3$	$2,3 \times 10^{4}$	8,7×10 ²	-	$2,9 \times 10^3$	
4	Участок 4	$9,5 \times 10^{5}$	$2,2\times10^{3}$	$4,2 \times 10^6$	$1,4 \times 10^{2}$	$2,2\times10^{3}$	$4,7 \times 10^{2}$	<4,1×10 ²	-	=	<4,9×10 ²	-	-	
5	Участок 5	2,3×10 ⁶	8,6×10 ³	2,1×10 ⁷	7,6×10 ²	8,6×10 ³	2,5×10 ³	1,4×10 ³	8,6×10 ³	4,7×10 ³	<4,9×10 ²	-	-	
6	Участок 6	2,5×10 ⁴	1,3×10 ¹	2,5×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-	
7	Участок 7	4,1×10 ⁴	1,2×10 ²	4,1×10 ⁵	$2,2\times10^{2}$	1,2×10 ²	$2,2\times10^{3}$	<4,1×10 ²	-	-	<4,9×10 ²	-	-	
8	Участок 8	1,0×10 ⁶	8,4×10 ³	9,9×10 ⁶	1,0×10 ³	8,4×10 ³	$3,5 \times 10^3$	4,7×10 ²	8,4×10 ³	1,6×10 ³	<4,9×10 ²	-	-	
9	Участок 9	6,6×10 ⁵	1,5×10 ³	2,4×10 ⁶	3,3×10 ²	1,5×10 ³	1,1×10 ³	<4,1×10 ²	-	-	<4,9×10 ²	-	-	
10	Участок 10	1,3×10 ⁶	$3,9 \times 10^3$	7,7×10 ⁶	1,7×10 ²	3,9×10 ³	5,8×10 ²	1,6×10 ³	3,9×10 ³	5,3×10 ³	<4,9×10 ²	-	-	
11	Участок 11	1,6×10 ⁶	1,9×10 ³	5,4×10 ⁶	4,5×10 ³	1,9×10 ³	1,5×10 ⁴	1,7×10 ³	1,9×10 ³	5,6×10 ³	<4,9×10 ²	-	-	
12	Участок 12	$2,8 \times 10^6$	8,4×10 ³	1,1×10 ⁷	$1,0\times10^{3}$	$8,4\times10^{3}$	$3,4\times10^{3}$	9,6×10 ²	8,4×10 ³	$3,2\times10^{3}$	<4,9×10 ²	-	-	
13	Участок 13	4,1×10 ⁶	$2,8\times10^{3}$	1,4×10 ⁷	$9,0\times10^{2}$	2,8×10 ³	$3,0\times10^{3}$	$9,1\times10^{2}$	2,8×10 ³	$3,0\times10^{3}$	<4,9×10 ²	-	-	
14	Участок 14	1,6×10 ⁶	$3,2\times10^3$	5,4×10 ⁶	$5,9 \times 10^{2}$	$3,2\times10^{3}$	$2,0\times10^{3}$	1,1×10 ³	$3,2\times10^3$	$3,6\times10^{3}$	<4,9×10 ²	-	-	
15	Участок 15	$2,7 \times 10^6$	$6,7 \times 10^3$	$9,5 \times 10^{6}$	1,9×10 ²	$6,7 \times 10^3$	$6,2 \times 10^2$	<4,1×10 ²	-	-	6,2×10 ²	$6,7 \times 10^3$	$2,1\times10^{3}$	
16	Участок 16	5,1×10 ⁶	$6,5 \times 10^3$	$2,1\times10^{7}$	$2,0\times10^{2}$	$6,5 \times 10^3$	$6,6 \times 10^2$	$1,7 \times 10^3$	6,5×10 ³	$5,6 \times 10^3$	$7,8\times10^{2}$	$6,5 \times 10^3$	$2,6\times10^{3}$	
17	Участок 17	7,3×10 ⁶	$3,2\times10^3$	7,6×10 ⁸	$8,0\times10^{2}$	$3,2\times10^{3}$	$2,7 \times 10^3$	6,4×10 ³	$3,2\times10^3$	2,1×10 ⁴	2,3×10 ³	$3,2\times10^{3}$	$7,6 \times 10^3$	
18	Участок 18	4,1×10 ⁶	$6,5 \times 10^3$	1,7×10 ⁷	$9,0\times10^{2}$	$6,5 \times 10^3$	$3,0\times10^{3}$	<4,1×10 ²	-	-	4,3×10 ³	$6,5 \times 10^3$	1,4×10 ⁴	
19	Участок 19	1,6×10 ⁶	2,9×10 ³	1,1×10 ⁷	2,3×10 ²	2,9×10 ³	$7,6 \times 10^{2}$	1,1×10 ³	2,9×10 ³	$3,5 \times 10^3$	<4,9×10 ²	-	-	
20	Участок 20	4,1×10 ⁶	7,5×10 ³	2,2×10 ⁷	$7,5 \times 10^3$	7,5×10 ³	2,3×10 ³	2,9×10 ⁴	7,5×10 ³	9,6×10 ⁴	1,8×10 ³	7,5×10 ³	6,1×10 ³	
21	Участок 21	7,6×10 ⁶	9,3×10 ³	3,0×10 ⁷	1,2×10 ⁵	9,3×10 ³	4,2×10 ⁵	4,7×10 ⁴	9,3×10 ³	1,6×10 ⁵	9,3×10 ³	9,3×10 ³	5,5×10 ³	
22	Участок 22	2,1×10 ⁴	5,6×10 ²	1,1×10 ⁶	4,3×10 ³	5,6×10 ²	4,3×10 ⁴	1,2×10 ³	5,6×10 ²	1,2×10 ⁴	<4,9×10 ²	-	-	
23	Участок 23	1,3×10 ⁵	1,1×10 ³	1,3×10 ⁶	1,6×10 ³	1,1×10 ³	1,6×10 ⁴	<4,1×10 ²	-	-	<4,9×10 ²	-	-	

№ п/п № участка		⁹⁰ Sr			¹³⁷ Cs			²³⁹⁺²⁴⁰ Pu			²⁴¹ Am		
	№ участка	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк	Аs, кБк/м ²	V, m ³	А, Бк	Аs, кБк/м²	V, m ³	А, Бк
24	Участок 24	$9,7 \times 10^{5}$	$8,1\times10^{3}$	8,1×10 ⁷	1,6×10 ⁴	$8,1\times10^{3}$	5,3×10 ⁴	$6,4\times10^3$	8,1×10 ³	$2,1\times10^{4}$	<4,9×10 ²	-	-
25	Участок 25	5,5×10 ⁶	2,4×10 ²	1,8×10 ⁷	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
26	Участок 26	5,7×10 ⁴	3,4×10 ¹	5,7×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
27	Участок 27	1,8×10 ⁴	$3,0\times10^{0}$	1,8×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
28	Участок 28	1,7×10 ⁴	1,0×10 ⁰	1,7×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
29	Участок 29	2,6×10 ⁴	$1,1\times10^{3}$	2,6×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
30	Участок 30	2,3×10 ⁶	2,7×10 ¹	3,0×10 ⁷	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
31	Участок 31	3,7×10 ⁴	3,4×10 ¹	3,7×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
32	Участок 32	7,0×10 ⁴	1,1×10 ²	7,0×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
33	Участок 33	6,8×10 ⁴	9,8×10 ¹	6,8×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
34	Участок 34	2,4×10 ⁶	2,2×10 ³	7,9×10 ⁶	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
35	Участок 35	3,9×10 ⁶	1,9×10 ³	1,3×10 ⁷	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
36	Участок 36	4,3×10 ⁶	2,9×10 ³	1,4×10 ⁷	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
37	Участок 37	3,6×10 ⁶	$2,0\times10^{3}$	1,2×10 ⁷	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
38	Участок 38	2,6×10 ⁶	1,5×10 ³	8,7×10 ⁶	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
39	Участок 39	2,2×10 ⁶	1,3×10 ³	7,4×10 ⁶	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
40	Участок 40	1,3×10 ⁶	2,5×10 ³	4,3×10 ⁶	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²		-

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: <2,0;
- 137 Cs: <1,0;
- 90 Sr: <0.4-2.9;
- $^{239+240}$ Pu: $<1,1\times10^{-4}-3.1\times10^{-4}$:
- ${}^{3}\text{H}$: <6.0.

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- \bullet ²⁴¹Am: <4,0×10⁻²;
- 137 Cs: <2,0×10⁻²;
- \bullet 90Sr: <1,0;
- $^{239+240}$ Pu: $<1,8\times10^{-4}-7,8\times10^{-4}$;
- 3 H: <6,0.

2.4 Радиоактивное загрязнение атмосферного воздуха

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- 241 Am: $<6,0\times10^{-5}-4,4\times10^{-2};$
- 137 Cs: <2,0×10⁻⁵ 1,5×10⁻²;
- 90 Sr: $<1,6\times10^{-5}-1,2\times10^{3}$;
- $^{239+240}$ Pu: $1.4\times10^{-6} 52$.

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <0,2 9,2×10²;
- 137 Cs: $<0,3-4,2\times10^4$;
- 90 Sr: $14 8,3 \times 10^8$;
- $^{239+240}$ Pu: $<0,1-1,5\times10^4$.

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet ²⁴¹Am: <4,0×10⁻² 39;
- 137 Cs: $<3.6-1.9\times10^2$:
- 90 Sr: $8,3\times10^2 7,8\times10^5$;
- \bullet ²³⁹⁺²⁴⁰Pu: <0.1 21.

ПРИЛОЖЕНИЕ 11

Перечень радиационно-опасных объектов испытательной площадки «4a»

На основании данных по лабораторным анализам и анализу карт площадного распределения техногенных радионуклидов установлен перечень радиационно-опасных объектов (Рисунок 4).

Рисунок 4. Карта-схема площадки «4а» с обозначением радиационно-опасных объектов

Место расположения

Участок радиоактивного загрязнения расположен в северной части площадки «4а». Географические координаты представлены в таблице (Таблица 2).

Таблица 2. Географические координаты участка №1

NG	Географические координаты									
№ участка		Широта		Долгота						
1	77	44	56,47	50	35	29,49				

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 5). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северном направлении участка.

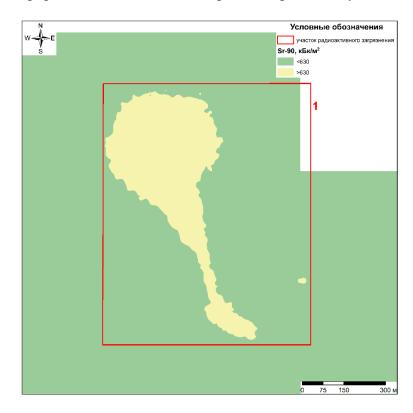


Рисунок 5. Карта площадного распределения ⁹⁰Sr на территории участка №1

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 3.9 \times 10^2$;
- 90 Sr: $<1,2\times10^2-2,3\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2-3.3\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.8×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 6.7×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части площадки «4а». Географические координаты представлены в таблице (Таблица 3).

Таблица 3. Географические координаты участка №2

No vivo omizo			Географически	ие координаты		
№ участка		Широта			Долгота	
2	77	45	56,60	50	35	11,39

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 6). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

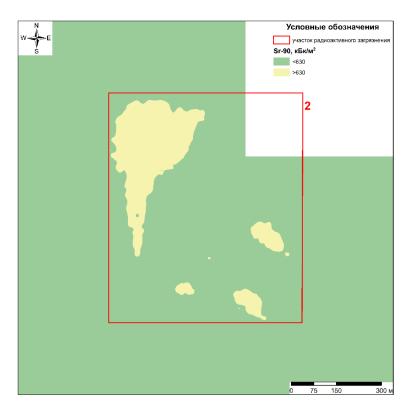


Рисунок 6. Карта площадного распределения ⁹⁰Sr на территории участка №2

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$:
- 137 Cs: $< 75 1,6 \times 10^3$;
- 90 Sr: $<1.2\times10^2-1.4\times10^6$:
- $^{239+240}$ Pu: $<4.1\times10^2-5.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.9×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 2.2×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части площадки «4а». Географические координаты представлены в таблице (Таблица 4).

Таблица 4. Географические координаты участка №3

No vivo amino			Географически	е координаты		
№ участка		Широта			Долгота	
3	77 43 59,32			50	34	24,67

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 7). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

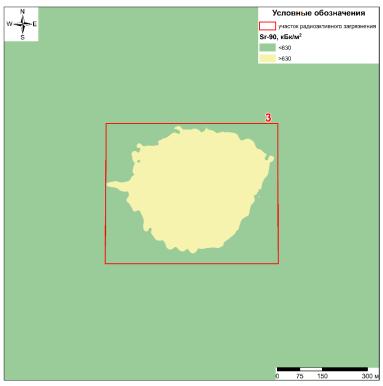


Рисунок 7. Карта площадного распределения ⁹⁰Sr на территории участка №3

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-8.7\times10^2$;
- 137 Cs: $< 75 7.1 \times 10^2$;
- \bullet 90Sr: $<1,2\times10^2-4,1\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 6.8×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.2×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 7.3×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северо-западной части площадки «4а». Географические координаты представлены в таблице (Таблица 5).

Таблица 5. Географические координаты участка №4

№ участка	Географические координаты					
№ участка		Широта			Долгота	
4	77	45	35,12	50	34	29,58

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 8). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

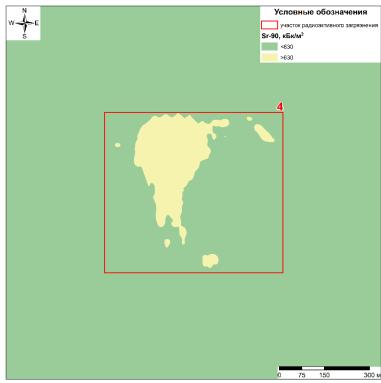


Рисунок 8. Карта площадного распределения ⁹⁰Sr на территории участка №4

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 1,4 \times 10^2$;
- 90 Sr: $<1,2\times10^2-9,5\times10^5$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.9×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 2.2×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части площадки «4а». Географические координаты представлены в таблице (Таблица 6).

Таблица 6. Географические координаты участка №5

No vivo amino						
№ участка		Широта			Долгота	
5	77	46	37,26	50	34	30,08

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 9). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в южной части радиационно-загрязненного участка.

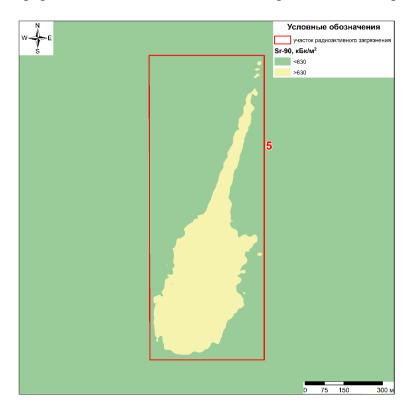


Рисунок 9. Карта площадного распределения ⁹⁰Sr на территории участка №5

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 7,6 \times 10^2$;
- 90 Sr: $<1,2\times10^2-2,3\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,4×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 7.7×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 8.6×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части площадки «4а». Географические координаты представлены в таблице (Таблица 7).

Таблица 7. Географические координаты участка №6

No vivo amino	Географические координаты						
№ участка		Широта			Долгота		
6	77	47	19,43	50	34	28,64	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 10). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

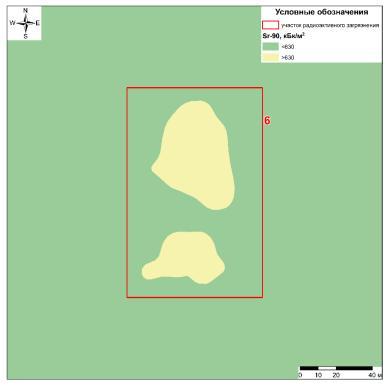


Рисунок 10. Карта площадного распределения ⁹⁰Sr на территории участка №6

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- ¹³⁷Cs: <75;
- 90 Sr: $<1,2\times10^2-2,5\times10^4$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,3\times10^{-4}$ км². В тоже время объем радиоактивного материала составляет порядка $1,3\times10^1$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в северной части площадки «4а» на расстоянии 2 км в северном направлении от ее границы. Географические координаты представлены в таблице (Таблица 8).

Таблица 8. Географические координаты участка №7

	No surro amuso			ие координаты	координаты		
	№ участка		Широта			Долгота	
	7	77	47	8,40	50	34	5,74

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 11). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

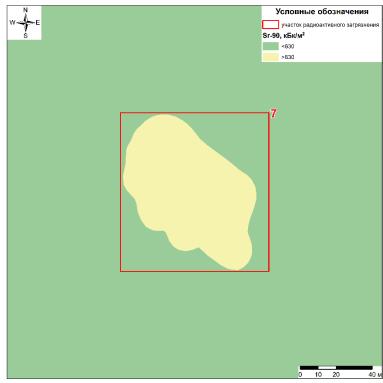


Рисунок 11. Карта площадного распределения ⁹⁰Sr на территории участка №7

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4.9\times10^2$;
- 137 Cs: $< 75 2,2 \times 10^2$;
- 90 Sr: <1,2×10² 4,1×10⁴;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,2\times10^{-3}$ км². В тоже время объем радиоактивного материала составляет порядка $1,2\times10^2$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 9).

Таблица 9. Географические координаты участка №8

No vivo amino			Географически	ие координаты		
№ участка		Широта			Долгота	
8	77	47	50,90	50	34	26,40

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 12). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

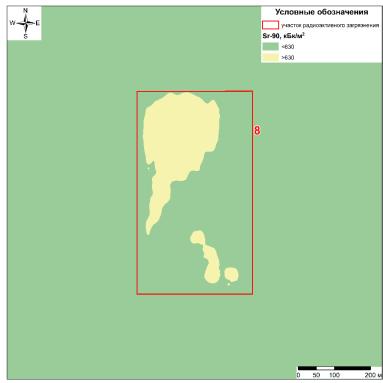


Рисунок 12. Карта площадного распределения ⁹⁰Sr на территории участка №8

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^{2}$;
- 137 Cs: $< 75 1,0 \times 10^3$;
- 90 Sr: $<1,2\times10^2-1,0\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 4,7×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $8,1\times10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $8,4\times10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 10).

Таблица 10. Географические координаты участка №9

Мо тута отгаз	Географич			сие координаты		
№ участка		Широта			Долгота	
9	77	47	42,94	50	34	7,65

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является ¹³⁷Cs (Рисунок 13). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северо-западной части радиационно-загрязненного участка.

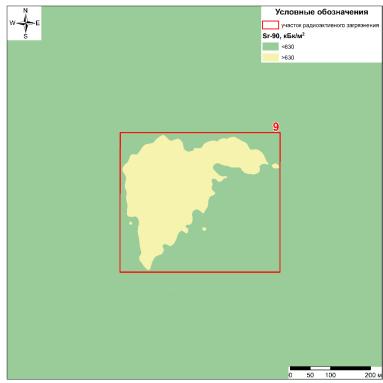


Рисунок 13. Карта площадного распределения ⁹⁰Sr на территории участка №9

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $<75 3,3 \times 10^2$;
- 90 Sr: $<1,2\times10^2-6,6\times10^5$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.5×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 1.5×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 11).

Таблица 11. Географические координаты участка №10

No vivo omizo			Географическі	ие координаты		
№ участка		Широта			Долгота	
10	77	48	24,96	50	34	22,18

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 14). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

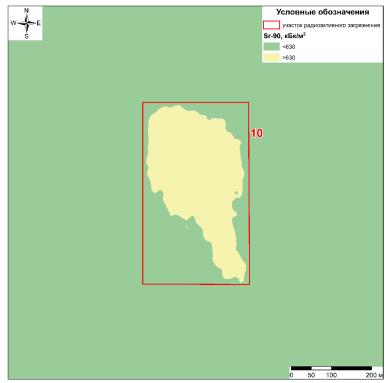


Рисунок 14. Карта площадного распределения ⁹⁰Sr на территории участка № 10

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4.9×10²;
- 137 Cs: $< 75 1,7 \times 10^2$;
- 90 Sr: $<1,2\times10^2-1,3\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,6×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.2×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 3.6×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 12).

Таблица 12. Географические координаты участка №11

No vivo omico	Географические координаты					
№ участка		Широта			Долгота	
11	77	48	22,17	50	33	52,62

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 15). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

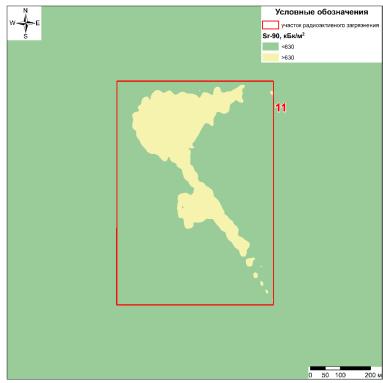


Рисунок 15. Карта площадного распределения ⁹⁰Sr на территории участка № 11

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 4,5 \times 10^3$;
- 90 Sr: $<1,2\times10^2-1,6\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,7×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.8×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 1.9×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 13).

Таблица 13. Географические координаты участка №12

No vivo amuso			Географически	кие координаты			
№ участка	Широта			Долгота			
12	77	49	9,24	50	34	19,72	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 16). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

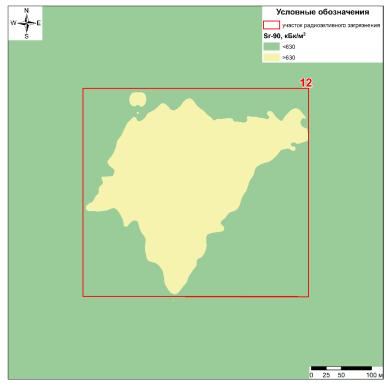


Рисунок 16. Карта площадного распределения ⁹⁰Sr на территории участка №12

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$:
- 137 Cs: $< 75 1.0 \times 10^3$:
- 90 Sr: $<1,2\times10^2-2,8\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 9.6×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 7.9×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 8.4×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 14).

Таблица 9. Географические координаты участка №13

No vivo omvo	Географич			ие координаты		
№ участка		Широта			Долгота	
13	77	49	1,05	50	33	52,27

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 17). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

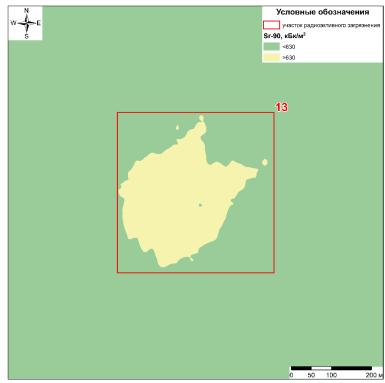


Рисунок 17. Карта площадного распределения ⁹⁰Sr на территории участка №13

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$:
- 137 Cs: $< 75 9.0 \times 10^2$:
- 90 Sr: $<1,2\times10^2-4,1\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 9.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.3×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 2.8×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 15).

Таблица 15. Географические координаты участка №14

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
14	77	49	44,78	50	34	3,61

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 18). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

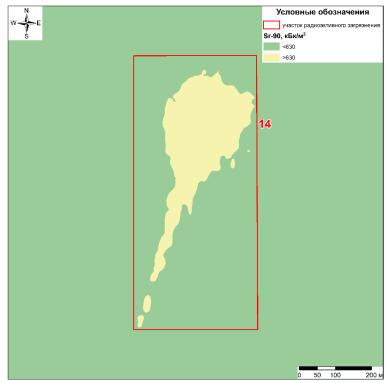


Рисунок 18. Карта площадного распределения ⁹⁰Sr на территории участка №14

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^{2}$;
- 137 Cs: $< 75 5,2 \times 10^2$;
- 90 Sr: $<1,2\times10^2-1,6\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,1×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.7×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 3.2×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 16).

Таблица 10. Географические координаты участка №15

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
15	77 49 34,83			50	33	35,86

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 19). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

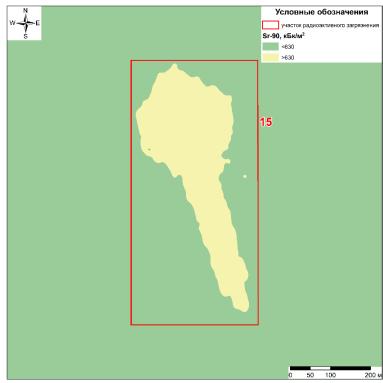


Рисунок 19. Карта площадного распределения ⁹⁰Sr на территории участка №15

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-6.2\times10^2$;
- 137 Cs: $< 75 1,9 \times 10^2$;
- 90 Sr: $<1,2\times10^2-2,7\times10^6$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.1×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 6.7×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 17).

Таблица 17. Географические координаты участка №16

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
16	77	50	17,21	50	33	59,70

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 20). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

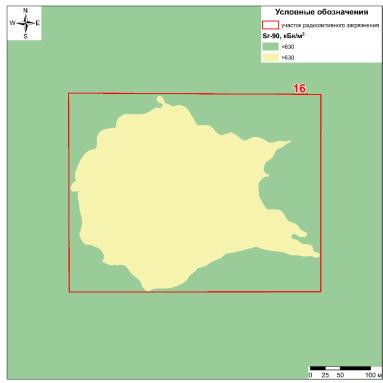


Рисунок 20. Карта площадного распределения ⁹⁰Sr на территории участка №16

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4,9\times10^2-7,8\times10^2$;
- 137 Cs: $< 75 2,0 \times 10^2$;
- 90 Sr: $<1,2\times10^2-5,1\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,7×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.9×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 6.5×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 18).

Таблица 18. Географические координаты участка №17

No vivo amuso			Географические координаты				
№ участка	Широта			Долгота			
17	77	50	12,04	50	33	43,23	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 20). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в западной части радиационно-загрязненного участка.

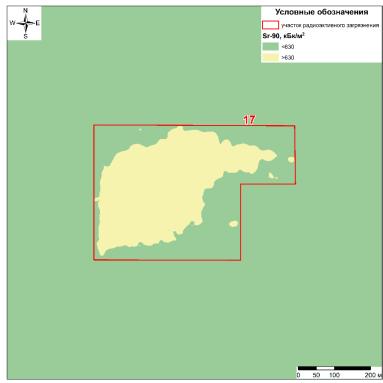


Рисунок 21. Карта площадного распределения ⁹⁰Sr на территории участка №17

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-2.3\times10^3$;
- 137 Cs: $< 75 8,0 \times 10^2$;
- 90 Sr: $<1,2\times10^2-7,3\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 6,4×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.8×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 3.2×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4a» (Таблица 19).

Таблица 19. Географические координаты участка №18

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
18	77	50	2,97	50	33	29,46

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 21). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

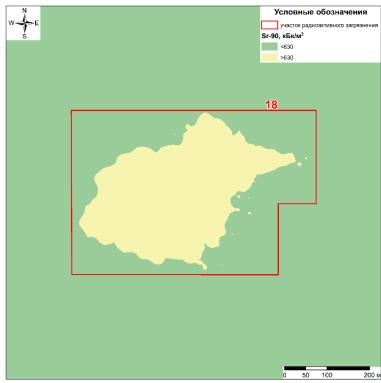


Рисунок 22. Карта площадного распределения ⁹⁰Sr на территории участка №18

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4,9\times10^2-4,3\times10^3$;
- 137 Cs: $< 75 9.0 \times 10^2$;
- 90 Sr: $<1,2\times10^2-4,1\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.1×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 6.5×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в юго-западной части площадки «4a». Географические координаты представлены в таблице (Таблица 20).

Таблица 20. Географические координаты участка №19

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
19	77	45	11,12	50	33	42,05

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 23). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

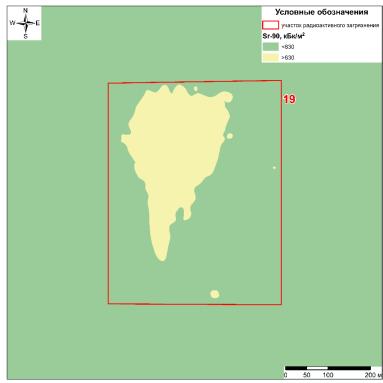


Рисунок 23. Карта площадного распределения ⁹⁰Sr на территории участка №19

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $< 75 2,3 \times 10^2$;
- 90 Sr: $<1,2\times10^2-1,6\times10^6$;
- $^{239+240}$ Pu: $<4,1\times10^2-1,1\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,6 \times 10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $2,9 \times 10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в юго-западной части площадки «4a». Географические координаты представлены в таблице (Таблица 21).

Таблица 21. Географические координаты участка №20

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
20	77	45	24,77	50	33	13,00

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 24). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

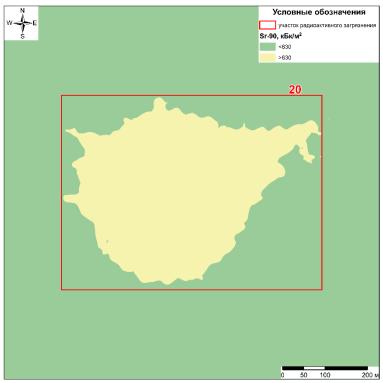


Рисунок 24. Карта площадного распределения ⁹⁰Sr на территории участка №20

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10² 1,8×10³;
- 137 Cs: $< 75 7,0 \times 10^2$;
- 90 Sr: $<1,2\times10^2-4,1\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 2,9×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.3×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 7.5×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4а». Географические координаты представлены в таблице (Таблица 22).

Таблица 22. Географические координаты участка №21

No vivo omizo	Географические координаты						
№ участка	Широта			Долгота			
21	77	46	41,57	50	33	40,40	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 25). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

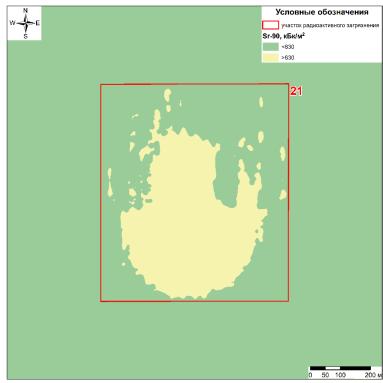


Рисунок 25. Карта площадного распределения ⁹⁰Sr на территории участка №21

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4,9\times10^2-1,6\times10^3$;
- 137 Cs: $< 75 1.2 \times 10^5$;
- 90 Sr: $<1,2\times10^2-7,6\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2-4.7\times10^4$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $8.3 \times 10^{-2} \, \mathrm{km}^2$. В тоже время объем радиоактивного материала составляет порядка $9.3 \times 10^3 \, \mathrm{m}^3$.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4а». Географические координаты представлены в таблице (Таблица 23).

Таблица 23. Географические координаты участка №22

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
22	77 47 24,40			50	33	37,37

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 26). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном южной части радиационно-загрязненного участка.

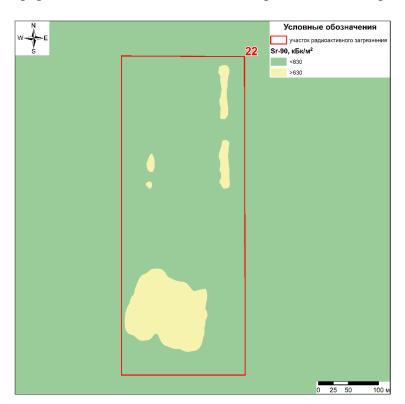


Рисунок 26. Карта площадного распределения ⁹⁰Sr на территории участка №22

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4.9×10²:
- 137 Cs: $<75-4,3\times10^3$;
- \bullet 90Sr: $<1,2\times10^2-2,1\times10^4$;
- $^{239+240}$ Pu: $<4.1\times10^2-1.2\times10^3$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 5.6×10^{-3} км². В тоже время объем радиоактивного материала составляет порядка 5.6×10^2 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4а». Географические координаты представлены в таблице (Таблица 24).

Таблица 24. Географические координаты участка №23

No vivo amino	Географические координаты					
№ участка		Широта			Долгота	
23	77	47	12,63	50	33	22,79

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 27). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

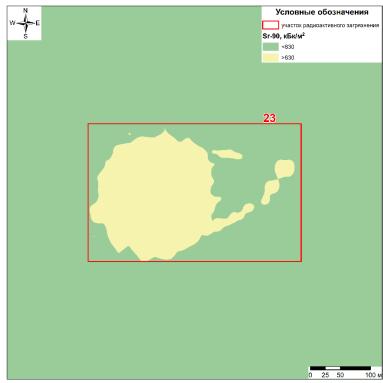


Рисунок 27. Карта площадного распределения ⁹⁰Sr на территории участка №23

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: $<75-1,6\times10^3$;
- 90 Sr: $<1,2\times10^2-1,3\times10^5$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,2\times10^{-3}$ км². В тоже время объем радиоактивного материала составляет порядка $1,1\times10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4а». Географические координаты представлены в таблице (Таблица 25).

Таблица 25. Географические координаты участка №24

Мо тито от то	Географич			ие координаты			
№ участка	Широта			Долгота			
24	77	47	51,25	50	33	31,92	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 28). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

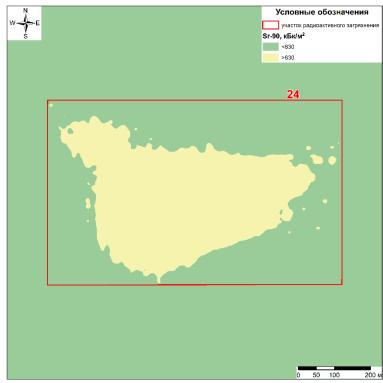


Рисунок 28. Карта площадного распределения ⁹⁰Sr на территории участка №24

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs: $< 75 1,6 \times 10^4$;
- 90 Sr: $<1,2\times10^2-9,7\times10^5$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 6,4×10³.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.4×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 8.1×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен в южной части площадки «4а». Географические координаты представлены в таблице (Таблица 26).

Таблица 26. Географические координаты участка №25

No vivo omvo	No vivo etivo			Географические координаты			
№ участка	Широта			Долгота			
25	77	48	6,13	50	33	21,16	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 29). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

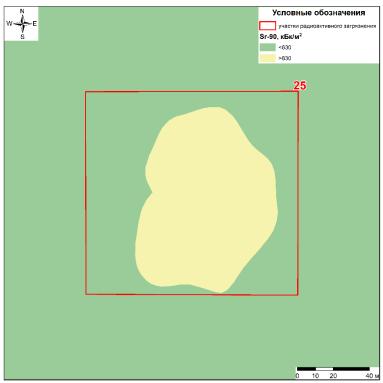


Рисунок 29. Карта площадного распределения ⁹⁰Sr на территории участка №25

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: <75;
- 90 Sr: $<1,2\times10^2-5,5\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.3×10^{-3} км². В тоже время объем радиоактивного материала составляет порядка 2.4×10^2 м³.

Место расположения

Участок радиоактивного загрязнения расположен в южной части площадки «4а». Географические координаты представлены в таблице (Таблица 27).

Таблица 27. Географические координаты участка №26

No vivo amino	Географические координаты					
№ участка		Широта		Долгота		
26	77	44	4,08	50	34	12,00

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 30). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в северной части радиационно-загрязненного участка.

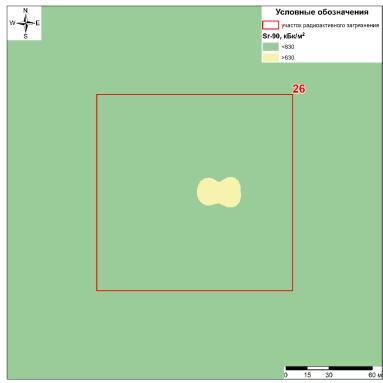


Рисунок 30. Карта площадного распределения ⁹⁰Sr на территории участка №26

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: <75;
- 90 Sr: $<1,2\times10^2-5,7\times10^4$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.4×10^{-4} км². В тоже время объем радиоактивного материала составляет порядка 3.4×10^{1} м³.

Место расположения

Участок радиоактивного загрязнения расположен в южной части площадки «4а». Географические координаты представлены в таблице (Таблица 28).

Таблица 28. Географические координаты участка №27

No vivo amino	Географические координаты					
№ участка		Широта		Долгота		
27	77	44	36,44	50	34	12,99

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 31). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

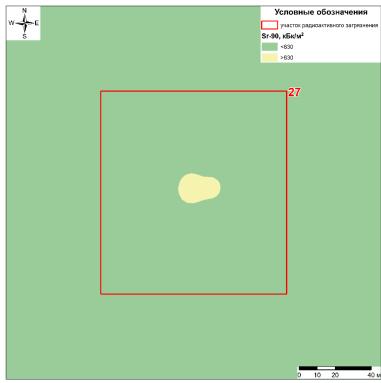


Рисунок 31. Карта площадного распределения ⁹⁰Sr на территории участка №27

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: <75;
- \bullet 90Sr: $<1,2\times10^2-1,8\times10^4$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.5×10^{-5} км². В тоже время объем радиоактивного материала составляет порядка 3.0 м³.

Место расположения

Участок радиоактивного загрязнения расположен в западной части площадки «4а». Географические координаты представлены в таблице (Таблица 29).

Таблица 29. Географические координаты участка №28

Мо тута отта	Географические координаты						
№ участка		Широ	га	Долгота			
28	77	44	54,62	50	34	11,95	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 32). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в северо-восточной части радиационно-загрязненного участка.

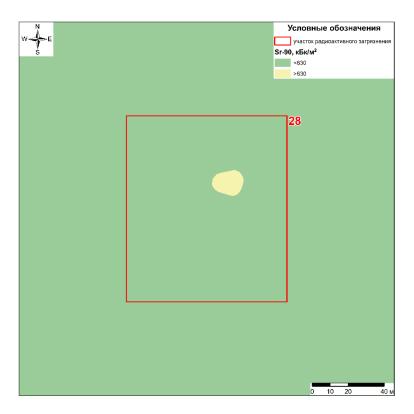


Рисунок 32. Карта площадного распределения ⁹⁰Sr на территории участка №28

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- ¹³⁷Cs: <75:
- 90 Sr: $<1,2\times10^2-1,7\times10^4$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,1\times10^{-5}$ км². В тоже время объем радиоактивного материала составляет порядка 1,0 м³

Место расположения

Участок радиоактивного загрязнения расположен в юго-западной части площадки «4а». Географические координаты представлены в таблице (Таблица 30).

Таблица 30. Географические координаты участка №29

Ma vyva amysa	Географические координаты					
№ участка		Широ	га	Долгота		
29	77	43	44,54	50	33	33,65

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 33). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в северо-восточной части радиационно-загрязненного участка.

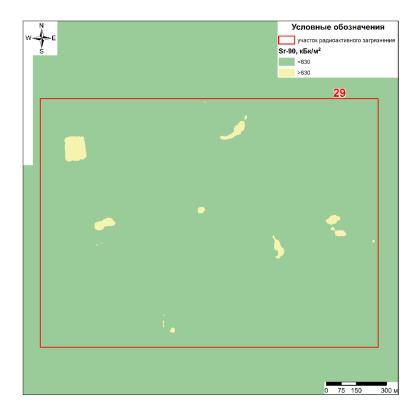


Рисунок 33. Карта площадного распределения ⁹⁰Sr на территории участка №29

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4.9×10²;
- \bullet ¹³⁷Cs: <75 4.8×10²:
- 90 Sr: $<1,2\times10^2-2,6\times10^4$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,1\times10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $1,1\times10^3$ м³

Место расположения

Участок радиоактивного загрязнения расположен в южной части площадки «4а». Географические координаты представлены в таблице (Таблица 31).

Таблица 31. Географические координаты участка №30

Ma viva amvaa	Географические координаты						
	№ участка		Широ	га	Долгота		
	30	77	46	11,50	50	32	38,95

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 34). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в северо-восточной части радиационно-загрязненного участка.

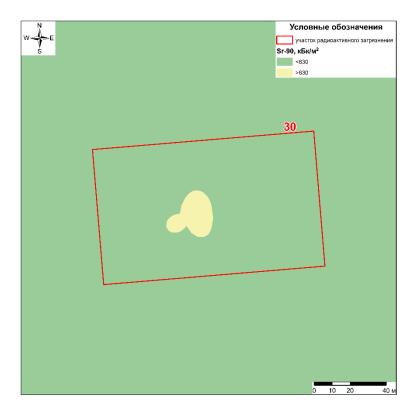


Рисунок 34. Карта площадного распределения ⁹⁰Sr на территории участка №30

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- ¹³⁷Cs: <75:
- \bullet 90Sr: $<1,2\times10^2-9,0\times10^6$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 2.2×10^{-4} км². В тоже время объем радиоактивного материала составляет порядка 2.7×10^{1} м³

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 32).

Таблица 32. Географические координаты участка №31

No verso orreso	Географические координаты					
№ участка		Широ	га	Долгота		
31	77	47	58,33	50	33	9,94

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 35). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в северо-восточной части радиационно-загрязненного участка.

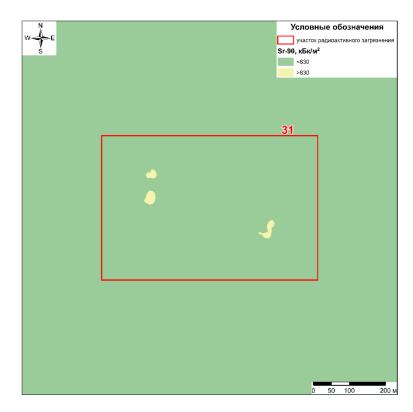


Рисунок 35. Карта площадного распределения ⁹⁰Sr на территории участка №31

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4.9×10²;
- ¹³⁷Cs: <75:
- 90 Sr: $<1,2\times10^2-3,7\times10^4$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $3,4\times10^{-4}$ км². В тоже время объем радиоактивного материала составляет порядка $3,4\times10^{1}$ м³

Место расположения

Участок радиоактивного загрязнения расположен в восточной части площадки «4а». Географические координаты представлены в таблице (Таблица 33).

Таблица 33. Географические координаты участка №32

No vivo orvino	Географические координаты						
	№ участка		Широ	га	Долгота		
Γ	32	77	48	56,54	50	33	9,59

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 36). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в северо-восточной части радиационно-загрязненного участка.

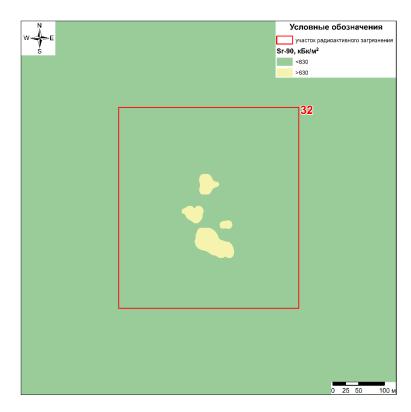


Рисунок 36. Карта площадного распределения ⁹⁰Sr на территории участка №32

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- ¹³⁷Cs: <75:
- 90 Sr: $<1,2\times10^2-7,0\times10^4$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,1\times10^{-3}$ км². В тоже время объем радиоактивного материала составляет порядка $1,1\times10^2$ м³

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 34).

Таблица 34. Географические координаты участка №33

Vo	Географические координаты					
№ участка		Широ	га	Долгота		
33	77	49	43,56	50	33	6,01

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 37). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в западной части радиационно-загрязненного участка.

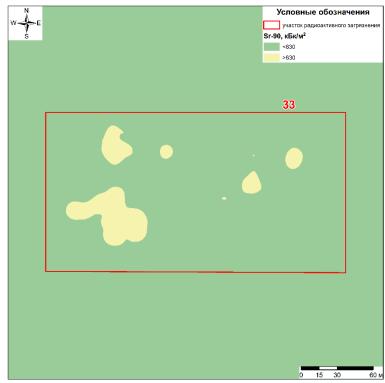


Рисунок 37. Карта площадного распределения ⁹⁰Sr на территории участка №33

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- ¹³⁷Cs: <75;
- \bullet 90Sr: $<1,2\times10^2-6,8\times10^4$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 9.8×10^{-4} км². В тоже время объем радиоактивного материала составляет порядка 9.8×10^{1} м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 35).

Таблица 35. Географические координаты участка №34

No vivo amino	Географические координаты					
№ участка		Широта		Долгота		
34	77	50	39,65	50	33	54,67

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 38). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

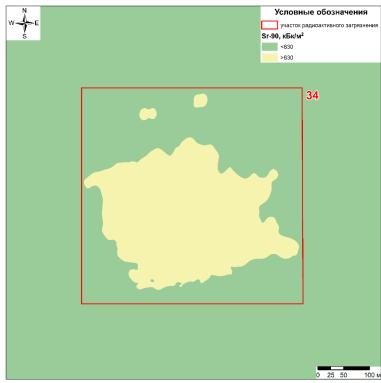


Рисунок 38. Карта площадного распределения ⁹⁰Sr на территории участка №34

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- ¹³⁷Cs: <75;
- 90 Sr: $<1,2\times10^2-2,4\times10^6$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.8×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 2.2×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 36).

Таблица 36. Географические координаты участка №35

No vivo amino	Географические координаты					
№ участка		Широта		Долгота		
35	77	50	31,72	50	33	37,32

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 39). Радиоактивное загрязнение имеет локальный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

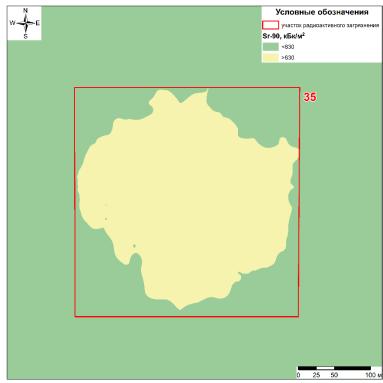


Рисунок 39. Карта площадного распределения ⁹⁰Sr на территории участка №35

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: <75;
- 90 Sr: $<1,2\times10^2-3,9\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,6\times10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $1,9\times10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 37).

Таблица 37. Географические координаты участка №36

No vivo amino	Географические координаты					
№ участка		Широта		Долгота		
36	77	50	23,18	50	33	22,21

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 40). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

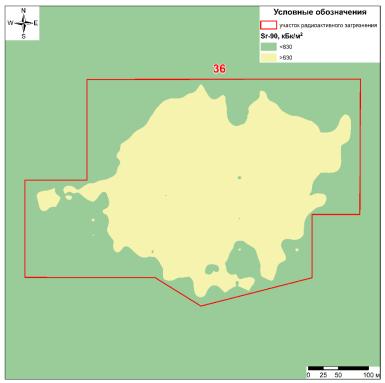


Рисунок 40. Карта площадного распределения ⁹⁰Sr на территории участка №36

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- ¹³⁷Cs: <75;
- \bullet 90Sr: $<1,2\times10^2-4,3\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,4\times10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $2,9\times10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 40).

Таблица 38. Географические координаты участка №37

No vers among	Географические координаты					
№ участка		Широта		Долгота		
37	77	51	4,07	50	33	48,18

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 41). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

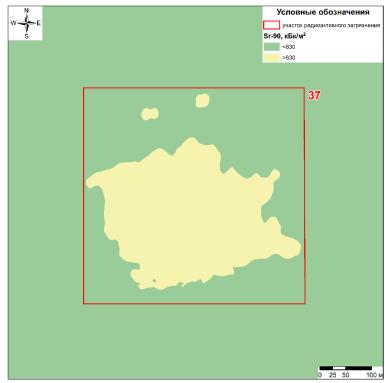


Рисунок 41. Карта площадного распределения ⁹⁰Sr на территории участка №37

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: <75;
- 90 Sr: $<1,2\times10^2-3,6\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.7×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 2.0×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 39).

Таблица 39. Географические координаты участка №38

No vivo amino			Географически	ие координаты		
№ участка	Широта Долгота					
38	77	50	54,70	50	33	32,46

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 42). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

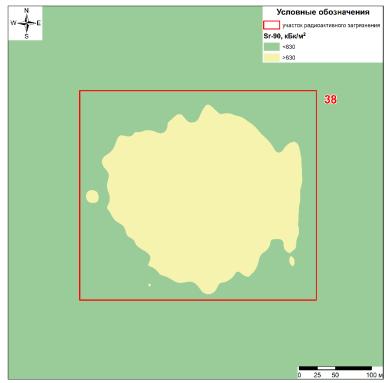


Рисунок 42. Карта площадного распределения ⁹⁰Sr на территории участка №38

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs: <75;
- 90 Sr: $<1,2\times10^2-2,6\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 1.3×10^{-2} км². В тоже время объем радиоактивного материала составляет порядка 1.5×10^3 м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 40).

Таблица 40. Географические координаты участка №39

	No vivo omvo			Географически	ие координаты			
№ участка Широта					Долгота			
	39	77	50	34,47	50	33	15,97	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 43). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в западной части радиационно-загрязненного участка.

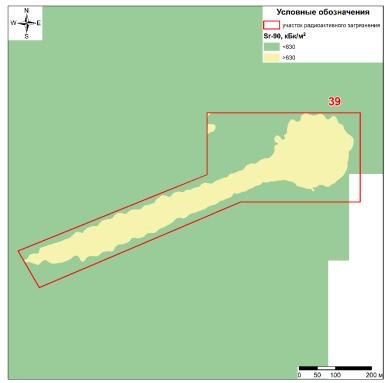


Рисунок 43. Карта площадного распределения ⁹⁰Sr на территории участка №39

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- ¹³⁷Cs: <75;
- 90 Sr: $<1,2\times10^2-2,2\times10^6$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,1\times10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $1,3\times10^3$ м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами восточной границы площадки «4а». Географические координаты представлены в таблице (Таблица 41).

Таблица 41. Географические координаты участка №40

No vivo amino			Географически	ие координаты		
№ участка	Широта Долгота					
40	77	50	13,21	50	33	0,42

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке радиоактивного загрязнения наиболее показательным техногенным радионуклидом является 90 Sr (Рисунок 44). Радиоактивное загрязнение имеет масштабный характер и сконцентрировано в основном в центральной части радиационно-загрязненного участка.

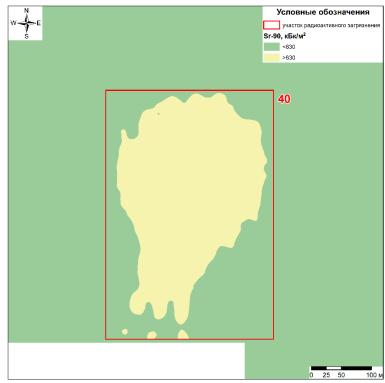


Рисунок 44. Карта площадного распределения ⁹⁰Sr на территории участка №40

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- ¹³⁷Cs: <75;
- 90 Sr: $<1,2\times10^2-1,3\times10^6$;
- $^{239+240}$ Pu: $<4,1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,1\times10^{-2}$ км². В тоже время объем радиоактивного материала составляет порядка $2,5\times10^3$ м³.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Сайбеков Т.С., Абылаев Ж.А. Атлас. Радиационная обстановка на территории Республики Казахстан с 1954 по 1994 годы. Алматы: Министерство экологии и биоресурсов РК, 1997- Т.16, Семипалатинская область. 400 с.
- 2 Логачев В. Радиоэкологические последствия испытаний БРВ на Семипалатинском полигоне / В. Логачев; под рук. Н.Я. Левченко // Бюллетень по атомной энергии. Центральный научно-исследовательский институт управления, экономики и информации. 2002. -№ 12. 94 с.
- 3 Радиоэкологические последствия испытаний БРВ на Семипалатинском полигоне // Бюллетень по атомной энергии, №12, 2002 г.
- 4 Логачев В. Радиоэкологические последствия испытаний БРВ на Семипалатинском полигоне // Бюллетень по атомной энергии, №12, 2002 г.

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт радиационной безопасности и экологии»

РАДИОЛОГИЧЕСКИЙ ПАСПОРТ ИСПЫТАТЕЛЬНОЙ ПЛОЩАДКИ «4»

1. Общая информация об испытательной площадке

Название: «4» (Рисунок 1).

Предназначение: проведение испытаний боевых радиоактивных веществ.

Административное месторасположение расположение: Карагандинская область.

Географические координаты: 50°27′46′′ с. ш. 77°31′57′′ в. д.

Площадь, км²: 24. **Периметр, км**: 20,67.

Условия проведения испытаний: испытаний боевых радиоактивных веществ.

Период проведения ядерных взрывов в мирных целях: с 1953 г. по 1957 г. [1, 2, 3, 4].

Количество испытаний боевых радиоактивных веществ: не установлено.

Характеристика источника радиоактивного загрязнения объектов окружающей среды:

• распыление жидких или порошкообразных радиоактивных рецептур.

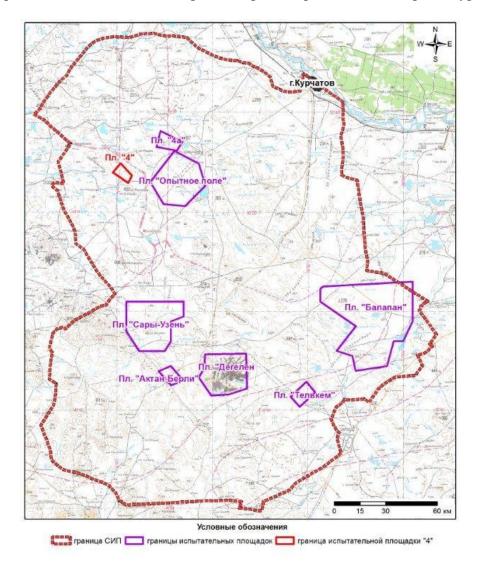


Рисунок 1. Карта-схема расположения испытательной площадки «4» на территории СИП

Историческая информация о хронологии испытаний боевых радиоактивных веществ на территории испытательной площадки «4» в открытых литературных источниках отсутствует.

2. Текущая радиоэкологическая ситуация окружающей среды

Актуальная информация о радиоэкологической обстановке окружающей среды испытательной площадки «4» получена в результате проведения комплексного экологического обследования земель Семипалатинского испытательного полигона в рамках выполнения работ по бюджетной программе 036 «Развитие атомных и энергетических проектов».

Значения удельной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 23 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения площадной активности радионуклидов в почвенном покрове сравнивались со значениями, установленными в приложении 13 Критериев оценки экологической обстановки территорий, утвержденных приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 августа 2021 года № 327 «Об утверждении Критериев оценки экологической обстановки территорий».

Значения удельной активности радионуклидов в воде сравнивались со значениями уровней вмешательства, установленными в приложении 19 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения объемной активности радионуклидов в воздухе сравнивались со значениями допустимой среднегодовой объемной активности, установленными для категории «население» в приложении 4 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № КР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

Значения удельной активности радионуклидов в объектах животного мира сравнивались со значениями допустимых уровней, установленными в приложении 5 Гигиенических нормативов к обеспечению радиационной безопасности, утвержденных приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-71 «Об утверждении гигиенических нормативов к обеспечению радиационной безопасности».

2.1 Радиоактивное загрязнение почвы

Радиационные параметры на поверхности почвенного покрова на территории испытательной площадки:

- \bullet диапазон значений мощности эквивалентной дозы гамма-излучения на поверхности почвы: 0.10-10 мЗв/ч (предел измерения используемой аппаратуры -10 мЗв/ч);
- диапазон значений плотности потока бета-частиц: $<10 >1,0 \times 10^4$ част/(см²×мин) (предел измерения используемой аппаратуры 10 част/(см²×мин);
 - диапазон значений плотности потока альфа-частиц: нет измерений.

Основные техногенные радионуклиды: 241 Am, 137 Cs, 90 Sr, $^{239+240}$ Pu.

- диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:
 - 241 Am: $<0,4-4,3\times10^3$;
 - 137 Cs: $<0,1-1,5\times10^3$:
 - 90 Sr: $< 2.0 1.9 \times 10^7$;
 - -239+240Pu: $<0.7-4.7\times10^4$.

Количество радиационно-загрязненных участков: 15 участков (схема расположения – Рисунок 2).

Количество радиационно-опасных объектов: 11 объектов (схема расположения – Рисунок 3, радиационные характеристики – (Таблица 1)).

Основные техногенные радионуклиды: 90Sr, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am.

Площадная активность 90 Sr, кБк/м²: $120 - 2,4 \times 10^6$.

Площадь радиоактивного загрязнения, M^2 : 4.1×10^4 .

Средняя глубина залегания радионуклидов: 0,1 м (для участков с уровнем загрязнения низкоактивных PAO); 0,3 (для участков с уровнем загрязнения среднеактивных PAO).

Плотность почвы, кг/м³: 1300.

Объем радиоактивного грунта, M^3 : 4.8×10^3 .

Запас радионуклидов (по максимальным значениям удельных активностей радионуклидов в почве), Бк: 90 Sr $-5,80\times10^7;$ $^{239+240}$ Pu $-6,99\times10^4;$ 241 Am $-9,34\times10^3$.

По результатам пешеходной гамма-спектрометрической съемки на территории испытательной площадки «4» выявлены 15 радиационно-загрязненных участков.

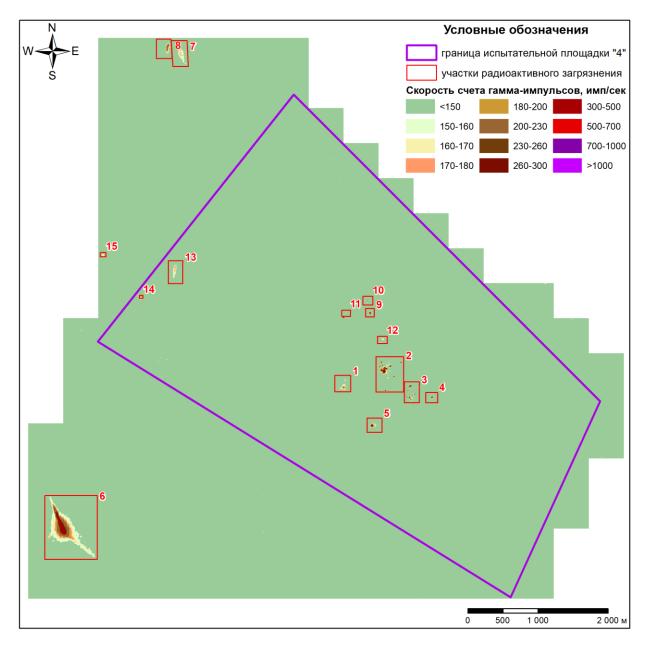


Рисунок 2. Карта-схема расположения радиационно-загрязненных участков на площадке «4»

Анализ результатов лабораторных данных показал, что радиоактивное загрязнение на 11 из 15 участков соответствует уровню низкоактивных и среднеактивных радиоактивных

отходов. Дополнительная информация об радиоактивном загрязнении почвы радиационнозагрязненных участков испытательной площадки «4» представлена в приложении (Приложение 1).

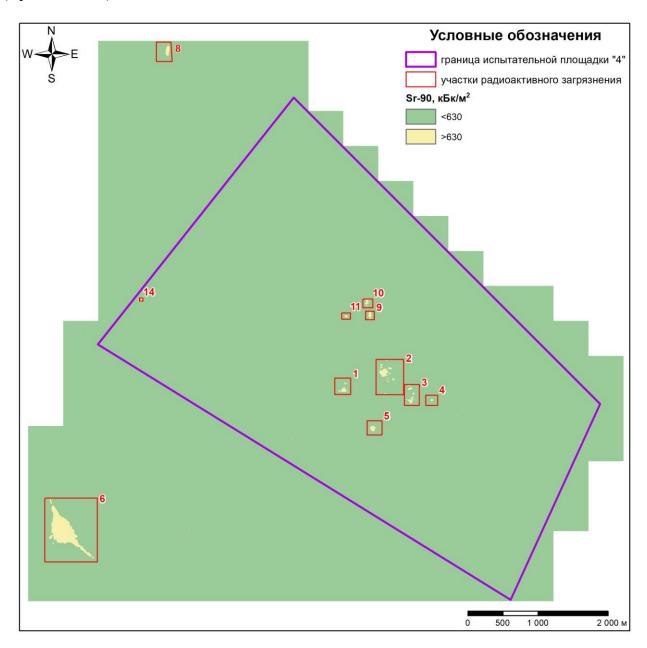


Рисунок 2. Карта-схема расположения радиационно-опасных объектов на площадке «4»

Таблица 1. Удельная активность радионуклидов в поверхностном слое почвы радиационно-опасных объектов площадки «4»

№ п/п	№ участка	⁹⁰ Sr				¹³⁷ Cs ²³⁹⁺²⁴⁰ Pu				²⁴¹ Am			
S.	№ уч	As, кБк/м ²	V, м ³	А, Бк	As, кБк/м ²	V, m ³	А, Бк	As, кБк/м ²	V, м ³	А, Бк	As, кБк/м ²	V, m ³	А, Бк
1	1	5,6×10 ⁴	0,008	2,8×10 ⁵	<75	_	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
2	2	5,3×10 ⁴	610	2,5×10 ⁷	2,0×10 ²	610	$2,0\times10^{3}$	<4,1×10 ²	-	-	<4,9×10 ²	-	-
3	3	6,6×10 ⁴	195	7,9×10 ⁶	<75	-	-	5,1×10 ²	195	5,1×10 ³	<4,9×10 ²	-	-
4	4	2,8×10 ⁴	39	4,8×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
5	5	2,4×10 ⁴	39	1,1×10 ⁷	$1,1\times10^{2}$	39	$1,1\times10^{3}$	$<4,1\times10^{2}$	-	-	<4,9×10 ²	-	-
6	6	2,4×10 ⁶	3510	8,1×10 ⁶	5,6×10 ²	3510	1,9×10 ³	1,8×10 ⁴	3510	6,1×10 ⁴	1,7×10 ³	3510	5,6×10 ³
7	8	1,5×10 ⁴	155	8,9×10 ⁴	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
8	9	5,9×10 ⁵	95	2,0×10 ⁶	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
9	10	8,5×10 ⁵	113	2,8×10 ⁶	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
10	11	5,4×10 ⁴	22	5,4×10 ⁵	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-
11	14	1,5×10 ⁴	7	7,4×10 ⁴	<75	-	-	<4,1×10 ²	-	-	<4,9×10 ²	-	-

2.2 Радиоактивное загрязнение поверхностных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: <2,0;
- 137 Cs: <1,0;
- 90 Sr: <2,0;
- $^{239+240}$ Pu: <0,1;
- ${}^{3}H: <6.0.$

2.3 Радиоактивное загрязнение подземных вод площадки

Диапазон удельных активностей основных техногенных радионуклидов, Бк/м³:

- 241 Am: <0,5;
- 137 Cs: $<3,0\times10^{-2}-12$;
- 90 Sr: <1,8×10⁻² 4;
- ²³⁹⁺²⁴⁰Pu: <1.0:
- 3 H: <6,0.

2.4 Радиоактивное загрязнение атмосферного воздуха

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- 241 Am: $<3,0\times10^{-6}-1,0\times10^{-4}$;
- 137 Cs: $<2.4\times10^{-6}-1.4\times10^{-4}$:
- 90 Sr: $<4.2\times10^{-6} 2.0\times10^{-4}$;
- $^{239+240}$ Pu: $<4.7\times10^{-7}-3.4$.

2.5 Радиоактивное загрязнение растительного покрова

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- \bullet^{241} Am: $<0,2-1,4\times10^2$;
- \bullet ¹³⁷Cs: <0.7 16;
- \bullet 90Sr: <1.0 2.8×10⁴:
- $^{239+240}$ Pu: $< 0.1 1.2 \times 10^3$.

2.6 Радиоактивное загрязнение объектов животного мира

Диапазон удельных активностей основных техногенных радионуклидов, Бк/кг:

- 241 Am: <0,6;
- 137 Cs: <0.2 2.7:
- \bullet 90Sr: <0.7 74;
- \bullet ²³⁹⁺²⁴⁰Pu: <0.8.

Перечень радиационно-опасных объектов испытательной площадки «4»

На основании данных по лабораторным анализам и анализу карт площадного распределения техногенных радионуклидов установлен перечень радиационно-опасных объектов (Рисунок 3).

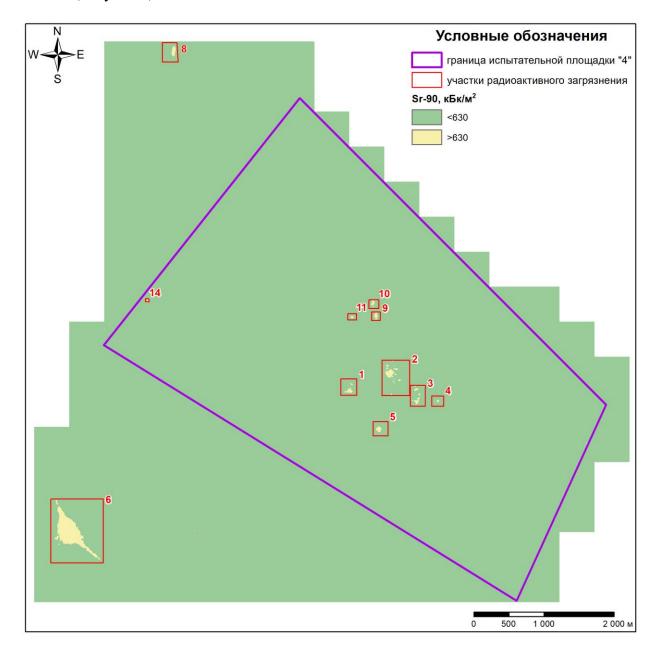


Рисунок 3. Карта площадки «4» с обозначением радиационно-опасных объектов

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4». Географические координаты представлены в таблице (Таблица 2).

Таблица 2. Географические координаты участка №1

No vivo amino			Географически	ие координаты		
№ участка	Широта Долгота					
1	50	27	33,1	77	31	39,3

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На участке наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 4). Он имеет локальный характер и сконцентрирован, в основном, в южной части радиационно-загрязненного участка.

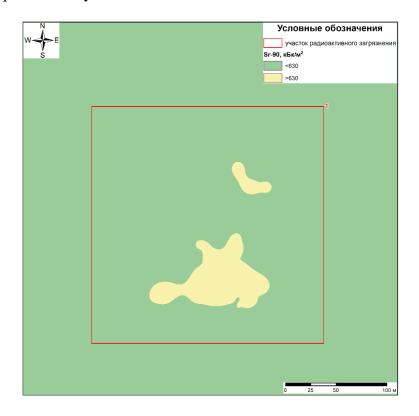


Рисунок 4. Карта площадного распределения ⁹⁰Sr на территории участка №1

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs <75;
- 90 Sr: $<1,2\times10^2-5,6\times10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 8×10^{-8} км². В тоже время объем радиоактивного материала составляет порядка 0,008 м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4». Географические координаты представлены в таблице (Таблица 3).

Таблица 3. Географические координаты участка №2

No vivo amino			Географически	ие координаты		
№ участка	Широта Долгота					
2	50	27	36,64	77	32	13,63

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 5). Он имеет локальный характер и сконцентрирован, в основном, в северовосточной части радиационно-загрязненного участка.

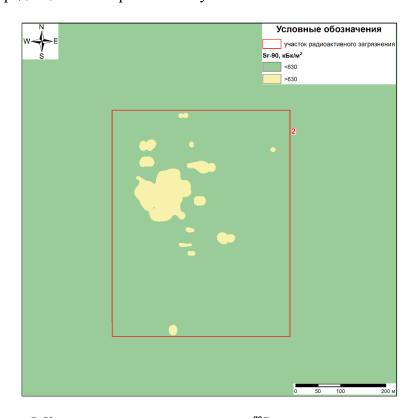


Рисунок 5. Карта площадного распределения ⁹⁰Sr на территории участка №2

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs $< 75 2.0 \times 10^2$:
- 90 Sr: $<1,2\times10^2-5,3\times10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 6.1×10^{-3} км². В тоже время объем радиоактивного материала составляет порядка 6.10×10^{2} м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4». Географические координаты представлены в таблице (Таблица 4).

Таблица 4. Географические координаты участка №3

№ участка			Географически	ие координаты		
л₂ участка	Широта Долгота					
3	50	27	28,01	77	32	29,10

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 6). Он имеет локальный характер и сконцентрирован, в основном в северной и южной частях радиационно-загрязненного участка.

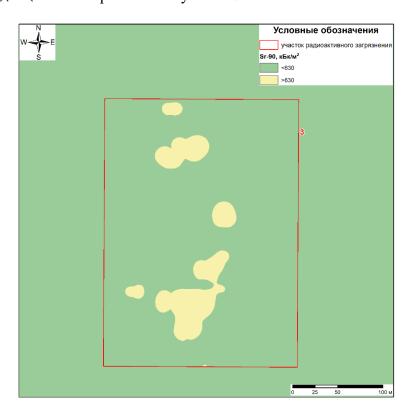


Рисунок 6. Карта площадного распределения ⁹⁰Sr на территории участка №3

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs <75;
- \bullet 90Sr: $<1,2\times10^2-6,6\times10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10² 5.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,95 \times 10^{-3}$ км². В тоже время объем радиоактивного материала составляет порядка $1,95 \times 10^2$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4». Географические координаты представлены в таблице (Таблица 5).

Таблица 5. Географические координаты участка №4

No vivo amino			Географически	ие координаты		
№ участка	Широта Долгота					
4	50	27	25,27	77	32	43,24

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 7). Он имеет локальный характер и сконцентрирован, в основном, в центральной части радиационно-загрязненного участка.

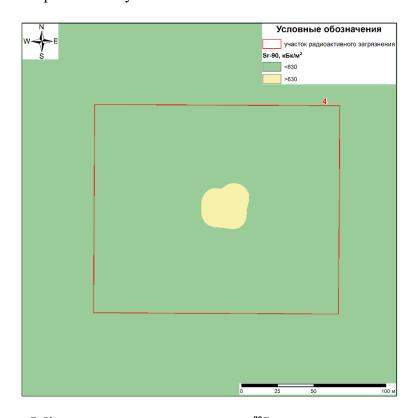


Рисунок 7. Карта площадного распределения ⁹⁰Sr на территории участка №4

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^2$;
- 137 Cs <75;
- 90 Sr: $<1,2\times10^2-2,8\times10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $3,89\times10^{-4}$ км². В тоже время объем радиоактивного материала составляет порядка $3,9\times10^{1}$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4» на расстоянии 2 км в северо-восточном направлении от ее границы. Географические координаты представлены в таблице (Таблица 6).

Таблица 6. Географические координаты участка №5

Ī	Мо химо отмо	Географические координаты							
	№ участка		Широта		Долгота				
	5	50	27	13,43	77	32	1,33		

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 8). Он имеет локальный характер и сконцентрирован, в основном, в центральной части радиационно-загрязненного участка.

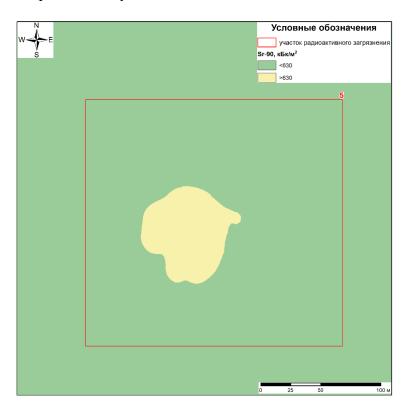


Рисунок 8. Карта площадного распределения ⁹⁰Sr на территории участка №5

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$:
- \bullet ¹³⁷Cs <75 1,1×10²;
- 90 Sr: $<1,2\times10^2-2,4\times10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка 3.88×10^{-4} км². В тоже время объем радиоактивного материала составляет порядка 3.9×10^{1} м³.

Место расположения

Участок радиоактивного загрязнения расположен за пределами испытательной площадки «4» на расстоянии \sim 2 км в юго-западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 7).

Таблица 7. Географические координаты участка №6

No revo ameno	Географические координаты						
№ участка	Широта			Долгота			
6	50	26	30,99	77	28	19,56	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 9). Он имеет масштабный характер и сконцентрирован, в основном, в западной части радиационно-загрязненного участка.

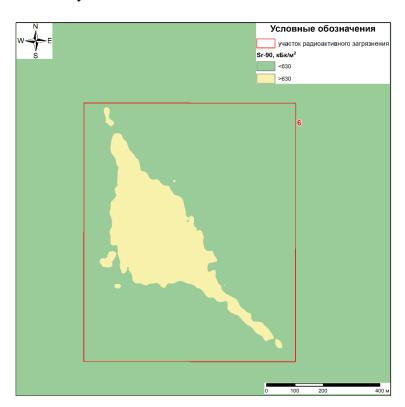


Рисунок 9. Карта площадного распределения ⁹⁰Sr на территории участка №6

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: $<4.9\times10^2-1.7\times10^3$;
- 137 Cs $< 75 5.6 \times 10^2$:
- 90 Sr: $<1,2\times10^2-2,4\times10^6$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4,1×10² 1,8×10⁴.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,84\times10^{-2}$ км 2 . В тоже время объем радиоактивного материала составляет порядка $3,51\times10^3$ м 3 .

Место расположения

Участок радиоактивного загрязнения расположен за пределами границ испытательной площадки «4» на расстоянии 2 км в северо-западном направлении от ее границы. Географические координаты представлены в таблице (Таблица 8).

Таблица 8. Географические координаты участка №8

ĺ	Ма хима атма	Географические координаты						
	№ участка	Широта			Долгота			
	8	50	30	10,24	77	29	38,19	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 10). Он имеет локальный характер и сконцентрирован, в основном, в восточной части радиационно-загрязненного участка.

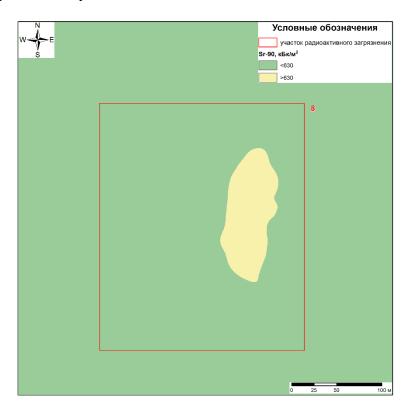


Рисунок 10. Карта площадного распределения ⁹⁰Sr на территории участка №8

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4,9\times10^{2}$;
- 137 Cs <75;
- 90 Sr: $<1,2\times10^2-1,5\times10^4$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,55 \times 10^{-3}$ км². В тоже время объем радиоактивного материала составляет порядка $1,55 \times 10^2$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4». Географические координаты представлены в таблице (Таблица 9).

Таблица 9. Географические координаты участка №9

No vivo amino	Географические координаты						
№ участка	Широта Долгота						
9	50	28	5,40	77	32	0,76	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 11). Он имеет локальный характер и сконцентрирован, в основном, в центральной части радиационно-загрязненного участка.

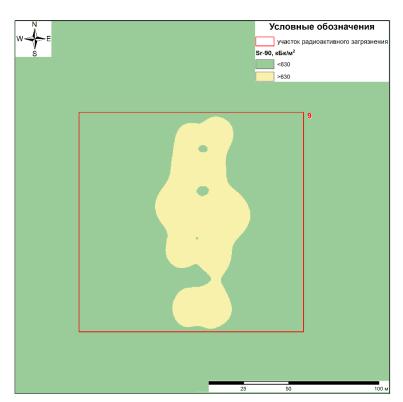


Рисунок 11. Карта площадного распределения ⁹⁰Sr на территории участка №9

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet^{241} Am: $<4,9\times10^2$;
- 137 Cs <75;
- 90 Sr: $<1,2\times10^2-5,9\times10^5$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $9,43\times10^{-4}$ км². В тоже время объем радиоактивного материала составляет порядка $9,50\times10^{1}$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4». Географические координаты представлены в таблице (Таблица 10).

Таблица 10. Географические координаты участка №10

№ участка	Географические координаты						
	Широта			Долгота			
10	50	28	11,03	77	31	59,55	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 12). Он имеет локальный характер и сконцентрирован, в основном, в центральной части радиационно-загрязненного участка.

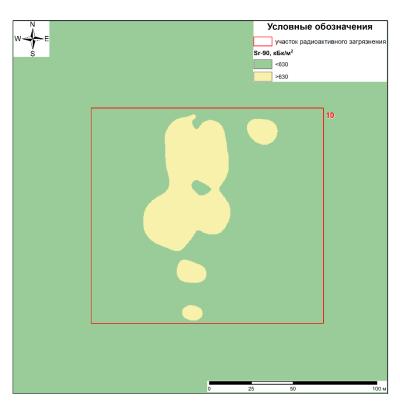


Рисунок 12. Карта площадного распределения ⁹⁰Sr на территории участка №10

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- 137 Cs <75;
- \bullet 90Sr: $<1,2\times10^2-8,5\times10^5$;
- $^{239+240}$ Pu: $<4.1\times10^2$.

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $1,10\times10^{-3}$ км². В тоже время объем радиоактивного материала составляет порядка $1,13\times10^2$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в центральной части площадки «4». Географические координаты представлены в таблице (Таблица 11).

Таблица 11. Географические координаты участка №11

№ участка	Географические координаты						
	Широта			Долгота			
11	50	28	5,52	77	31	43,58	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 13). Он имеет локальный характер и сконцентрирован, в основном, в центральной части радиационно-загрязненного участка.

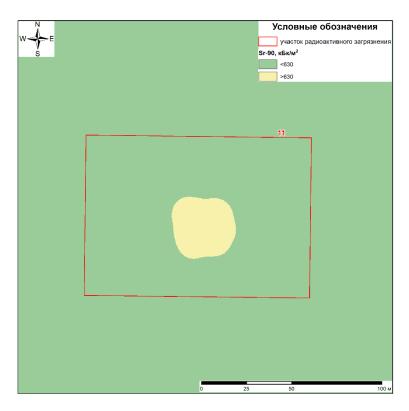


Рисунок 13. Карта площадного распределения ⁹⁰Sr на территории участка №11

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- \bullet ²⁴¹Am: <4,9×10²;
- \bullet ¹³⁷Cs <75 93;
- 90 Sr: $<1,2\times10^2-5,4\times10^4;$
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $2,21\times10^{-4}$ км². В тоже время объем радиоактивного материала составляет порядка $2,20\times10^{1}$ м³.

Место расположения

Участок радиоактивного загрязнения расположен в близи северо-восточной границы площадки «4» на расстоянии 50 м. Географические координаты представлены в таблице (Таблица 12).

Таблица 12. Географические координаты участка №14

№ участка	Географические координаты						
	Широта			Долгота			
14	50	28	16,31	77	29	15,75	

Характеристика источника радиационного загрязнения

Место испытания боевых радиоактивных веществ (БРВ) в период 1953-1957 гг. БРВ представляли собой жидкие или порошкообразные радиоактивные рецептуры.

Экологические характеристики объекта

На скважине наиболее показательным техногенным радионуклидом является ⁹⁰Sr (Рисунок 14). Он имеет локальный характер и сконцентрирован, в основном, в центральной части радиационно-загрязненного участка.

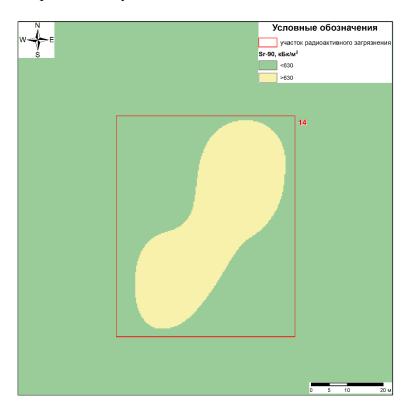


Рисунок 14. Карта площадного распределения ⁹⁰Sr на территории участка №14

Диапазон площадных активностей основных техногенных радионуклидов, кБк/м²:

- 241 Am: $<4.9\times10^2$:
- 137 Cs < 75;
- 90 Sr: $<1,2\times10^2-1,5\times10^4$;
- \bullet ²³⁹⁺²⁴⁰Pu: <4.1×10².

Площадь радиоактивного загрязнения, превышающая значения, указанные в Критериях оценки экологической обстановки территорий, составляет порядка $6,60\times10^{-5}$ км². В тоже время объем радиоактивного материала составляет порядка $7,0\times10^0$ м³.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Сайбеков Т.С., Абылаев Ж.А. Атлас. Радиационная обстановка на территории Республики Казахстан с 1954 по 1994 годы. Алматы: Министерство экологии и биоресурсов РК, 1997- Т.16, Семипалатинская область. 400 с.
- 2 Логачев В. Радиоэкологические последствия испытаний БРВ на Семипалатинском полигоне / В. Логачев; под рук. Н.Я. Левченко // Бюллетень по атомной энергии. Центральный научно-исследовательский институт управления, экономики и информации. 2002. -№ 12. 94 с.
- 3 Радиоэкологические последствия испытаний БРВ на Семипалатинском полигоне // Бюллетень по атомной энергии, №12, 2002 г.
- 4 Логачев В. Радиоэкологические последствия испытаний БРВ на Семипалатинском полигоне // Бюллетень по атомной энергии, №12, 2002 г.