

Раздел «Охрана окружающей среды»

К РАБОЧЕМУ ПРОЕКТУ

«Многоквартирный жилой комплекс с паркингом район Алматы, район пересечения улиц Ж. Нажимеденова и A426; Блок-секции Д, Е, Ж

(Без наружных инженерных сетей и сметной документации)»

Аннотация

В настоящем проекте Охрана окружающей среды содержится оценка уровня загрязнения атмосферного воздуха вредными выбросами при строительстве многоквартирного жилого комплекса с паркингом район Алматы, район пересечения улиц Ж. Нажимеденова и А426; Блок-секции Д, Е, Ж (Без наружных инженерных сетей и сметной документации).

Согласно Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду, приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246 (в редакции приказа Министра экологии и природных ресурсов РК от 13.11.2023 № 317) п.12 пп.7 объект относится к III категории;

Раздел «Охраны окружающей среды» к рабочему проекту «Многоквартирный жилой комплекс с паркингом район Алматы, район пересечения улиц Ж. Нажимеденова и А426; Блок-секции Д, Е, Ж (Без наружных инженерных сетей и сметной документации)» разработан только на период строительства.

В период строительства на строительной площадке установлено, что будут выбросы загрязняющих веществ осуществляться от 9 неорганизованных источников выбросов.

На период строительства: 1,850667100000 г/с, 6,740979857600 т/год.

Проведенные расчёты приземных концентраций показали, что по всем ингредиентам загрязняющие вещества на жилой зоне не превышают ПДК.

В целях определения возможности загрязнения почв проведены расчеты образования отходов, их накопления и размещения.

В настоящем разделе содержатся:

- характеристика существующих источников загрязняющих веществ в атмосферу;
- расчет величин приземных концентраций, проведённый на программе "Эра", v 2.5;
- оценка уровня загрязнения атмосферы выбросами предприятия;
- предложения по нормативам ПДВ на период строительства;
- мероприятия по снижению выбросов для достижения нормативного уровня в периоды НМУ;
- оценка воздействия выбросов вредных веществ на атмосферный воздух;
- расчёт образования отходов и возможность их утилизации;
- охрана поверхностных и подземных вод, почвенно-растительного покрова;
- озеленение и благоустройство;
- влияние предприятия на окружающую среду.

Заказчик: TOO «Expert Consulting Agency Kazakhstan»

Продолжительность строительства: 21 месяц (22 раб. дн./мес, итого 462 дня)

Содержание

Наименование	Номер
	страницы
Аннотация	2
1.Оценка воздействий на состояние атмосферного воздуха	4
1.1 Характеристика природно-климатических условий района расположения	4
предприятия	
1.2. Краткая характеристика основных технических решений	5
1.3. Источники и масштабы расчетного химического загрязнения	17
1.4. Проведение расчетов и определение предложений нормативов эмиссий	20
1.4.1 Обоснование полноты и достоверности исходных данных, принятых для расчётов нормативов ПДВ	20
1.4.2 Перечень загрязняющих веществ, выбрасываемых в атмосферу	20
1.4.3 Параметры источников выбросов, качественный и количественный состав	20
выбрасываемых вредных веществ	20
1.5 Обоснование принятого размера санитарно-защитной зоны	25
1.6 Проведение расчетов и анализ загрязнения атмосферы	25
1.7 Мероприятия по снижению выбросов в атмосферу для достижения	27
нормативов ПДВ	
1.8 Мероприятия по регулированию выбросов при НМУ	28
1.9 Обоснование программы производственного экологического контроля (ПЭК)	29
2.Оценка воздействий на состояние вод	32
2.1 Потребность в водных ресурсах для намечаемой деятельности на период	32
строительства, требования к качеству используемой воды	
2.2 Поверхностные воды	32
2.3 Оценка воздействия намечаемого объекта на водную среду в процессе его строительства и эксплуатации	33
3. Оценка воздействий на недра	33
4. Оценка воздействия на окружающую среду отходов производства и потребления	33
4.1 Виды и объемы образования отходов	34
5. Оценка физических воздействий на окружающую среду	36
6. Оценка воздействий на земельные ресурсы и почвы	38
7. Оценка воздействия на растительность	38
8. Оценка воздействий на животный мир	39
9. Оценка воздействий на ландшафты и меры по предотвращению, минимизации,	39
смягчению негативных воздействий, восстановлению ландшафтов в случаях их	
нарушения	
10. Оценка воздействий на социально-экономическую среду	39
11. Оценка экологического риска реализации намечаемой деятельности в регионе	39
11.1.Комплексная оценка воздействие предприятия на окружающую среду	40
Список нормативно-методических документов	43
Приложение 1 – Ситуационная карта с указанием источников выбросов на период	44
строительства	4.5
Приложение 2 – Расчет выбросов вредных веществ в атмосферу	45
Приложение 3 – Исходные данные, представленные для разработки проектной	62
документации Заказчиком (инициатором проектируемой деятельности)	62
Приложение 4 – Материалы расчетов максимальных приземных концентраций	63
вредных веществ Приложение 5 – Справка о фоновых концентрациях	127
приложение э справка о фоновых концептрациих	14/

1. Оценка воздействий на состояние атмосферного воздуха

1.1.Характеристика природно-климатических условий района расположения предприятия

Климат района резко-континентальный. По отношению к стройматериалам суровый. Информация по климатическим характеристикам взята из СП РК 2.04-01-2017 Строительная климатология и приведена в таблице 1.1.

Таблица 1.1 – Климатические характеристики

· 1 1	
Наименование характеристик	Величина
1	2
	200
Коэффициент, зависящий от стратификации атмосферы, А	
Коэффициент рельефа местности в городе	1
Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, град.С	26,8
Средняя температура наружного воздуха наиболее холодного месяца (для котельных, работающих по	
отопительному графику), град С	-14
Среднегодовая роза ветров, %	
С	7
СВ	14
В	8
ЮВ	11
Ю	20
ЮЗ	21
3	13
C3	6
Среднегодовая скорость ветра, м/с	3,8
Скорость ветра (по средним многолетним данным),	
повторяемость превышения которой составляет 5 %, м/с	8

1.2. Краткая характеристика основных технических решений

Выделенный под жилой комплекс участок находится по адресу район Алматы, район пересечения улиц Ж. Нажимеденова и А 426; и имеет площадь — 1,2389 га и 0,2948га для благоустройства.

Расстояние до ближайшей жилой зоны -39,2 м.

Наружные инженерные сети и благоустройство, согласно заданию на проектирование заказчика будут разработаны отдельным проектом, подключение предусмотрено от существующих инженерных сетей согласно техническим условиям, выданных эксплуатирующими организациями.

Основные объемно-планировочные решения

Строительство многоквартирный жилой комплекс с паркингом район Алматы, район пересечения улиц Ж. Нажимеденова и А 426;(Без наружных инженерных сетей и сметной документации). Состоит из 10 жилых секций, по парно сблокированных между собой.

Секции имеют прямую форму и Γ -образную в плане с размерами Секция-А в осях 15,6х38,02 м., Секция-Б в осях 15,49х27,90м, Секция-В в осях 20,0х25,02 м., Секция- Γ в осях 14,7х24,9м

Секция-Д в осях 14,75х 24.9м Секция-Е в осях 20,0х 25,0м Секция-Ж в осях 15,45х 27.9м Секция-И в осях 15,45х27.9м Секция-К в осях 23,6х 24,7м Секция-Л в осях 15,49х 31,8м

Этажность - 9 надземных этажа. За относительную отметку 0.00 принята отметка 1-го этажа, что соответствует абсолютной отметке по генплану. На первом этаже секций расположены встроенные помещения. Высота 1-го этажа принята 4,2м. Высота типовых этажей со 2-го по 9-й этаж принята 3,150 м. 2,850м (в чистоте).

Выход на кровлю осуществляется с лестничной клетки.

Вход в здание предусмотрен с отм. -0.450, с дворовой территории.

В каждой квартире предусмотрены лоджии. Санитарные узлы запроектированы совмещенными в 1-2-3-4-х комнатных квартирах. Объемно-планировочное решение квартир обеспечивает условия для отдыха, сна, гигиенических процедур, приготовления и приема пищи, а также для иной деятельности в быту. Состав помещений квартир и их площади выполнены в соответствии с требованиями СП РК 3.02-101-2012 "Здания жилые многоквартирные" (с изм. от 12.08.2021 г.).

Горизонтальная взаимосвязь квартир осуществляется через поэтажные общие коридоры, а вертикальная поэтажная взаимосвязь - через лестничную клетку и лифта. Проектом, согласно требованиям, предусмотрен 1 лифт грузоподъемностью - 1000кг.

Проектное решение входных групп первого этажа предусматривает наличие утепленных тамбуров входа, крылец со ступенями и пандусов - для обеспечения условий подъема маломобильных групп населения.

Конструктивные решения

Здание решено со связевым каркасом, где основные несущие конструкции образуются системой пилонов, горизонтальных дисков-перекрытий, вертикальных диафрагм жесткости.

Фундаменты - свайные по СТ РК 939-92*.

Ростверк - монолитный железобетонный.

Каркас - монолитный железобетонный.

Пилоны - монолитные железобетонный.

Диафрагмы жесткости - монолитные железобетонные толщиной 250мм, 300 мм. С утеплением снаружи

мин плитой «IZOTERM П-120" толщиной 120мм.

Лифтовая шахта - монолитная железобетонная толщиной 250мм.

Внутренняя отделка кабины выполнить из декорированной нержавеющей стали, дверные полотна по всем этажам выполнить из декорированной нержавеющей стали, двери с пределом огнестойкости EI-30.

Лестницы - из монолитных маршей с межэтажными монолитными плитами.

Стены наружные (заполнение каркаса) - из газобетонных блоков толщиной 250мм, класса B2,5-B3,5 плотностью D600 по ГОСТ 21520-89, размером 600x250x300мм, марка

бетона по морозостойкости не менее F25. Кладку усилить армированием сеткой 5Вр1 100х100 по ГОСТ 23279-2012 через 3 ряда.

Перегородки а) межквартирные - Двойной слой автоклавного газоблока толщ. по 100 мм класса B2,5 плотностью D500 по ГОСТ21520-89, на клеевом растворе, минераловатной плиты толщ. 50 мм между газоблоками.

- б) внутриквартирные из газобетонных блоков толщиной 100мм, класса B2,5 плотностью D500 по ГОСТ 21520-89, на клеевом растворе.
- в) перегородки санузлов керамический кирпич толщиной 120мм, марки КоРПо $1H\Phi/75/2.0/50/\Gamma$ 530-2012 на цементно- песчаном растворе M50, с армированием сеткой 5Bp1 50x50 по Γ OCT 23279-2012 через 5 рядов.
- г) перегородки тамбуров на путях эвакуации остекленные витражи из алюминиевых профилей, с заполнением однокамерным стеклопакетом из закаленного стекла.
- д) перегородки вентшахты- керамический кирпич марки КоРПо $1H\Phi/75/2.0/50/\Gamma$ ОСТ 530-2012 на цементно- песчаном растворе M50, с армированием сеткой 5Вр1 50х50 по Γ ОСТ 23279-2012 через 5 рядов.

Покрытие и перекрытие - монолитное железобетонное толщиной 200мм.

Наружная отделка

Наружная отделка - применена система навесного вентилируемого фасада фибр цементных панелями.

Кровля - рулонная, без чердачная.

Гидроизоляция: вертикальная - наплавляемая гидроизоляция Teranap 431 TP.

горизонтальная - наплавляемая гидроизоляция Teranap 431 TP.

Утеплитель покрытия - плиты из каменной ваты. Утеплитель "TEXHO РУФ В70" 175-205 кг/м3-150мм.

Окна жилых этажей - металлопластиковые с тройным остеклением, цвет импоста - согласно эскизному проекту.

В соответствии с требованиями ГОСТ 23166-99 предусмотреть установку тросового ограничителя открывания окна с ключом или фиксатора с ключом для блокировки створки изнутри и снаружи, для недопущения случайного выпадения людей из открывающихся элементов оконных конструкций.

Водосток - организованный, внутренний.

При утепление наружных стен

а) Предусматривать трехслойное утепление для наружных конструкций из монолитного железобетона:

Нижний слой утеплителя принимать плотностью 50-55 кг/м3;

Средний слой утеплителя принимать плотностью 50-55 кг/м3;

Верхний слой утеплителя принимать плотность 80кг/м3.

Внутренняя отделка

1. Внутреннюю отделку и экспликацию полов см. на листах АР.

Двери внутренние - деревянные по ГОСТ 6629-88, металлические утепленные.

Подоконные доски - ПВХ.

2. Двери эвакуационных выходов из поэтажных коридоров в лестничные клетки не должны иметь запоров,

препятствующих их свободному открыванию изнутри без ключа. Двери эвакуационных выходов должны быть оборудованы доводчиками для само закрывания и выполнены с уплотнением в притворах.

Противопожарные мероприятия

- 1. Проект разработан в соответствии со СП РК 2.02-101-2014, СП РК 2.02-102-2012.
- 2. Проектируемое здание относится ко 2 степени огнестойкости. По функциональной пожарной опасности здание относится к классу Ф1.3 Многоквартирные жилые дома; (Приказ Министра внутренних дел РК от 23 июня 2017 года №439 «Об утверждении технического регламента «Общие требования к пожарной безопасности»).
- 3. Принятое в проекте объемно-планировочное решение обеспечивает, в случае возникновения пожара, безопасную эвакуацию людей из всех помещений.

- 4. В наружной отделке фасадов применены несгораемые и трудно сгораемые отделочные материалы: фасады с фасадными панелями из алюминия и фиброцементные плит по металлическим направляющим. В теплоизоляции применены минераловатные плиты "Техновент".
- 5. В данном здании, проектом водоснабжения, предусмотрена установка пожарных кранов в доступных местах. Для обеспечения необходимого напора в системе противопожарного водопровода устанавливается комплексная повысительная установка с центральным прибором управления, датчиками давления и кабельной разводкой.
- 6. Двери шахт лифтов принять противопожарными.

Технические требования к металлическим изделиям

- 1. Сварные швы выполнять в соответствии с ГОСТ 5264-95.
- 2. Сварочные работы выполнять с применением следующих материалов:
- а) при автоматической и полуавтоматической сварке электродную проволоку СВ-08ГА по ГОСТ 2246-70* и флюсы ОСЦ-45 по ГОСТ 9087-81.
- б) при ручной сварке обычных углеродистых сталей электроды типа Э-42 по ГОСТ 9467-75*. Все видимые сварные швы зачистить.
- 3. Высоту шва принять не менее минимальной высоты свариваемых элементов.
- 4. Сварку производить электродами Э-42 по ГОСТ 9467-75*.

Антикоррозийная защита

- 1. Все металлические детали должны быть защищены от коррозии. Закладные детали и сварные соединения защищаются антикоррозийным покрытием в соответствии с СНиП 2.01-19-2004
- 2. Стальные части, входящие в состав сварных соединений (соединительные накладки, анкерные стержни) должны иметь защитное антикоррозийное покрытие: эмаль $\Pi\Phi$ -115 наносится по грунтовке $\Gamma\Phi$ -021 Γ OCT 2129-82*. Лакокрасочные покрытия наносятся двумя слоями, общая толщина покрытия 55 мкм.
- 3. Нарушенное в процессе электросварочных работ лакокрасочное покрытие должно быть восстановлено покраской за 2 раза. Перед выполнением работ по восстановлению антикоррозийного покрытия поврежденная поверхность должна быть зачищена щетками и произведено обеспыливание.

Доступ маломобильных групп населения

Проект разработан в соответствии с СП РК 3.06-15-2005. МСН 3.02-05-2003 Доступ маломобильных групп населения в жилую часть обеспечивается посредством пандусов.

ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

№	Наименован	Ед.	Секция	Секция	Сек	Пар	Итог							
	ие	ИЗМ	A	Б	ция	кинг	о на							
П	показателя				В	Γ	Д	Е	Ж	И	К	Л		ком
/														плек
П														С
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Этажность	эта	9	9	9	9	9	9	9	9	9	9	1	
	здания	ж												
2	Площадь	м2	491,2	462,43	489,	407,	415,	500,	462,	462,	547,	519,	386	8620
	застройки				88	74	5	25	43	43	00	35	2,59	,8
3	Площадь	м2	2875,8	2795,21	288	235	235	289	283	278	323	316	513	3333
	жилого		7		9,35	9,36	8,51	8,3	3,94	7,82	9,92	4,59	6,52	9,39
	здания, в													
	том числе:													
	площадь	м2	568,78	586,58	525,	413,	413,	534,	625,	579,	569,	535,		5351
	общего				16	94	09	11	31	19	66	51		,33
	пользования													
	площадь	м2	311,46	242,94	294,	241,	222,	295,	252,	280,	350,	358,		2850
	помещений				61	31	81	27	16	73	12	8		,21
	для офисов													

	Общая	м2	2307,0	2208,63	238	196	196	238	220	220	260	269		2293
	площадь		9		4,75	5,5	4,86	6,48	8,63	8,63	3,61	5,73		3,91
	квартир													
4	Жилая	м2	1180,7	1055,79	133	103	103	134	105	105	132	131		1174
	площадь		5		0,29	9,33	5,01	7,06	5,79	5,79	5,41	4,91		0,13
	квартир, в													
	том числе:													
5		м3	14646,	14135,77	146	120	121	147	141	141	169	160	140	1577
	Строительн		06		30,8	60,5	18,3	71,7	35,7	35,7	57,0	99,8	98,4	90,1
	ый обьем, в				4	1	1	5	7	7	0	5	5	
	том числе:													
	Строительн	м3	14646,	14135,77	146	120	121	147	141	141	169	160	251	1462
	ый объем		06		30,8	60,5	18,3	71,7	35,7	35,7	57,0	99,8	0,68	02,3
	выше				4	1	1	5	7	7	0	5		
	отметки													
	нуля													
	Строительн	м3											115	1158
	ый объем												87,7	7,77
	ниже												7	
	отметки													
	нуля													
6	Количество	шт.	47	47	39	31	31	39	47	47	55	47		430
	квартир, в													
	том числе:													
	1-комнатных	шт.	23	31	8	7	7	8	31	31	31	24		201
	2-комнатных	шт.	24	16	22	16	16	22	16	16	24	8		180
	3-комнатных	шт.			9	8	8	9				15		49
	4-комнатных	шт.												
	5-комнатных	шт.												
7	Количество	ШТ.											125	125
	машино-													
	мест, в том													
	числе:													
	машино-	шт.											117	117
	места													
														8

w2 | 2207 0 | 2208 63 | 228 | 106 | 106 | 228 | 220 | 220 | 260 | 260 |

2202

КОНСТРУКТИВНЫЕ РЕШЕНИЯ.

Основные конструктивные элементы секции.

Фундамент – свайный с монолитным ростверком. Сопряжение свай с ростверком - жесткое.

Сваи — забивные железобетонные, сечением 300x300 мм, длиной — 6,0 м и пробные сваи длиной — 7,0м по серии1.011.1-10 (с дальнейшим уточнением длины по результатам испытаний пробных свай ГОСТ 5686-2012) из бетона класса по прочности C16/20, марки по водонепроницаемости W6, марки по морозостойкости F75 на сульфатостойком портландцементе.

Монолитные железобетонные ростверки запроектированы толщиной 800 мм из тяжелого бетона класса по прочности на сжатие C20/25, марки по водонепроницаемости W6. Армирование ростверка предусматривается арматурными каркасами и отдельными стержнями класса A400 (продольная арматура) и A240 (поперечная арматура).

По результатам расчетов (с учетом основного и особого сочетания нагрузок - по огибающей максимальных усилий, а также с учетом расчета по ограничению раскрытия трещин) принято основное армирование ростверка стержнями диаметром 18мм с шагом 200

Свайные ростверки выполняется по подготовке из тощего бетона класса по прочности на сжатие C8/10 толщиной 100 мм, выполненной по щебеночной подготовке толщиной 100

Засыпка пазух котлована предусматривается местным грунтом послойно слоями по 0,2-0,3м с уплотнением до коэффициента 0,9.

Работы по выполнению конструкций фундамента и подземной части здания выполняются в котловане с необходимыми конструкциями ограждения котлована.

Каркас - монолитный железобетонный из бетона кл. С20/25:

Пилоны размерами 250х1200, 300х1200.

Плиты перекрытия -200мм. Диафрагма жесткости -250мм

НАРУЖНАЯ ОТДЕЛКА

Наружная отделка - применена система навесного вентилируемого фасада фибр цементных панелями.

Кровля - рулонная, без чердачная.

Основные конструктивные элементы паркинга.

Фундамент – свайный с монолитным столбчатым ростверком. Сопряжение свай с ростверком - жесткое.

Сваи — забивные железобетонные, сечением 300×300 мм, длиной — 8.0 м и пробные сваи длиной — 9.0м по серии1.011.1-10 (с дальнейшим уточнением длины по результатам испытаний пробных свай ГОСТ 5686-2012) из бетона класса по прочности C16/20, марки по водонепроницаемости W6, марки по морозостойкости F75 на сульфатостойком портландцементе.

Деформационные характеристики свайного основания рассчитаны программным комплексом LIRA SAPR2014 (разработчик - "ЛИРА Софт). При этом нагрузки приняты по результатам статических расчетов здания.

Монолитные железобетонные ростверки запроектированы толщиной 700 мм из тяжелого бетона класса по прочности на сжатие C20/25, марки по водонепроницаемости W6, марки по морозостойкости F75 на сульфатостойком портландцементе. Армирование ростверка предусматривается арматурными каркасами и отдельными стержнями класса A400 (продольная арматура) и A240 (поперечная арматура).

По результатам расчетов (с учетом основного и особого сочетания нагрузок - по огибающей максимальных усилий, а также с учетом расчета по ограничению раскрытия трещин) принято основное армирование ростверка стержнями диаметром 18мм с шагом 200.

Свайные ростверки выполняется по подготовке из тощего бетона класса по прочности на сжатие C8/10 толщиной 100 мм, выполненной по щебеночной подготовке толщиной 100 мм.

Засыпка пазух котлована предусматривается местным грунтом послойно слоями по 0,2-0,3м с уплотнением до коэффициента 0,9.

Работы по выполнению конструкций фундамента и подземной части здания выполняются в котловане с необходимыми конструкциями ограждения котлована.

Несущие конструкции: Несущие конструкции здания (колонны и стены) установлены по сетке с максимальным шагом. Несущие конструкции лестнично-лифтовых блоков надземной частей здания соосны между собой. Монолитные железобетонные стены лестнично-лифтовых блоков доводятся до фундаментной плиты.

- Наружные стены монолитные толщиной 250 мм
- Перекрытия монолитные толщиной 300 мм.
- Колонны 500х500 мм

Лестничные марши и площадки: монолитные железобетонные из тяжелого литого (с осадкой конуса 18-22 см) бетона класса по прочности на сжатие C20/25.

ОСНОВНЫЕ РЕШЕНИЯ ПО ВНУТРЕННИМ ИНЖЕНЕРНЫМ СИСТЕМАМ.

В рамках разработки рабочего проекта предусмотрено строительство жилого дома с внутренними инженерными сетями.

Внешние и внутриплощадочные инженерные сети предусмотрены отдельными проектом.

ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ.

Данный раздел проекта разработан на основании задание на проектирование, архитектурно-строительной части проекта, технических условий №3246-11 от 02.06.2021г., АО "Астана-Теплотранзит" и в соответствии с нормативными документами. СП РК 2.04-01-2017 «Строительная климатология»; СП РК 4.02-101-2012 «Отопление, РК 4.02-01-2011 кондиционирование воздуха»; CH «Отопление, вентиляция, кондиционирование воздуха»; СН РК 4.02-04-2013 «Тепловые сети»; СН РК 4.02-02-2011 «Тепловая изоляция оборудования и трубопроводов»; СН РК 2.04-21-2004 (с изменениями от 06.11.2006 г.) «Энергопотребление и тепловая защита зданий»; СН РК 2.04-02-2011 «Защита от шума»; СН РК 2.02-01-2014 «Пожарная безопасность зданий и сооружений»; СП РК 2.02-101-2014 «Пожарная безопасность зданий и сооружений»: СН РК 2.04-03-2011 «Тепловая защита зданий»; СП РК 3.02-101-2012 «Здания жилые многоквартирные»; СН РК 3.02-01-2018 «Здания жилые многоквартирные»; СП РК 4.02-108-2014 «Проектирование тепловых пунктов».

КЛИМАТОЛОГИЧЕСКИЕ ДАННЫЕ.

Для проектирования систем отопления и вентиляции приняты следующие параметры наружного воздуха:

-наружная температура воздуха в зимний период -31,2°C;

-средняя температура отопительного периода минус 6,3°C; -продолжительность отопительного периода 209сут.

Расчетные температуры внутреннего воздуха в помещениях приняты в соответствии с требованиями ГОСТ 30494-96, СН РК 4.02-01-2011, СП РК 4.02-101-2012 и соответствии с действующими нормативными документами.

Класс энергетической эффективности - В(высокий) Теплоснабжение здания - централизованное, от тепловых сетей "ТЭЦ-3(после ввода в эксплуатации)" с параметрами теплоносителя 130-70С.

Отопление.

Присоединение системы отопление к тепловым сетям выполнено по независимой схеме, через пластинчатые теплообменники, установленные в тепловом пункте. На ответвлениях поэтажных гребенок установлены запорно-регулирующая арматуры, дренажный кран и прибор учета тепла. Для учёты тепла жилых помещений поквартирной система отопление установлен прибор учета тепла M-Cal Compact модели 440.

Для отопления запроектировано 2 системы отопления:

- 1 система отопления (жилая часть) двухтрубная, горизонтальная, с поквартирной разводкой. Температура теплоносителя в системе отопления 90-65 С.
- 2 система отопления (для лестничных клеток, лифтовых холлах однотрубная) стояковая, с нижней разводкой. Температура теплоносителя в системе отопления 90-65 С.
- 3 система отопления (офисная часть) двухтрубная, горизонтальная, с нижней разводкой. Температура теплоносителя в системе отопления 90-65 С.

Трубопроводы систем отопления - стальные водогазопроводные по ГОСТ 3262-75* и металлопластиковые многослойные тип PEXAL от фирмы Hydrosta. Металлопластиковые многослойные трубопроводы предусмотрены на этажах в поквартирной системе отопления. Стальные трубопроводы предусмотрены в вертикальных стояках поквартирной системы отопления, лестничных клетках. Горизонтальные разводки систем отопления офисной и жилой части, лестничной клетки проходят через каналы с фрамугами для ремонта трубопроводов. В качестве отопительных приборов приняты биметаллические секционные радиаторы ADAMANT 300, 500. Для регулирования и отключения отдельных колец устанавливается запорно-регулирующая арматура CNT, APT 5-25 фирмы DANFOSS. Удаление воздуха осуществляется через автоматические воздухоспускники, установленные в точках системы. Регулирование теплоотдачи радиаторов термостатическими клапанами RTR-N-UK фирмы DANFOSS. автоматическими трубопроводы, проходящие в конструкции пола, и в холодных подвалах, изолируются изоляционными трубками K-Flex EC толщиной 9мм, перед изоляцией стальных труб покрыть краской БТ-177 в 2 слоя по грунтовке ГФ-021 в 1 слой. В электрощитовой предусмотрен электроконвекторы от фирмы АО "Келет".

Вентиляция.

На жилых этажах принята естественная вентиляция. В технических помещениях (насосная, тепловой пункт, электрощитовая) и комната охраны, санузел предусмотрен отдельная естественная вентиляция. Приток воздуха неорганизованный за счет инфильтрации через регулируемые оконные створки, форточки и приточные клапаны. Вытяжка из жилых комнат осуществляется через вытяжные каналы кухонь и ванн. Воздуховоды приняты из оцинкованной стали ГОСТ 14918-80*. Решетки приняты регулируемые тип RAR (Алматинский вентиляционный завод). Монтаж систем отопления и вентиляции вести согласно СН РК 4.01-02-2013, СП РК 4.01-102-2013 "Внутренние санитарно-технические системы". Для удаления воздуха помещении кухня ниша предусмотрены бытовые вентиляторы ERA 6C.

МЕРОПРИЯТИЯ ПО ЗАЩИТЕ ОТ ШУМА

Для снижения шума от вент установок проектом предусмотрены следующие мероприятия:

- скорость воздуха в воздуховодах не превышают предельно-допустимых значений;
- вентиляторы подобраны малошумные, бытовой серии, снабжены регулятором мощности.
- соединение вентиляторов с сетью воздуховодов через гибкие вставки. Для всех систем м предусматривается установка глушителей шума.
- перегородки и перекрытия теплового пункта хорошо звукоизолированы минеральной ватой

МЕРОПРИЯТИЯ ПО ЭНЕРГОСБЕРЕЖЕНИЮ

В целях энергосбережение расхода тепла в системе отопления на радиаторах установлен автоматические терморегуляторы, которые обеспечивают автоматическое регулирование теплоотдачи отопительных приборов, поддерживают заданную температуру в помещениях. Так же регулирование теплоотдачи предусмотрен в индивидуальных тепловых пунктах.

ГВС.

Для блока секции предусмотрены приготовление горячей воды. Схема горячего водоснабжения - закрытая. Присоединение водонагревателей выполнено по двухступенчатой смешанной схеме. В качестве водонагревателей приняты пластинчатые подогреватели. Для обеспечения циркуляции в системе горячего водоснабжения на циркуляционном трубопроводе устанавливается циркуляционный насос.

Теплоснабжения.

Монтаж. Монтаж внутренних систем отопления и вентиляции вести в соответствии со CH РК 4.01-02-2013, СП РК 4.01-102-2013 "Внутренние санитарно-технические системы".

ВОДОСНАБЖЕНИЕ И КАНАЛИЗАЦИЯ.

Чертежи марки "ВК" выполнены на основании:

- -технических условий на водоснабжение и хозбытовую канализацию №3-6/116 от 31.01.2022г. выданных ГКП "Астана Су Арнасы";
- -технических условий на ливневую канализацию №ПО.2022.0004400 от 10.02.2022г. выданных Государственное коммунальное предприятие на праве хозяйственного ведения "Elorda Eco System" акимата города Астаны;
- -задания на проектирование;

Рабочий проектвыполнен в соответствии с действующими на территории Республики Казахстан нормативными документами:

СН РК 4.01-01-2011 Внутренний водопровод и канализация зданий и сооружений;

СП РК 3.02-101-2012 Здания жилые многоквартирные (по состоянию на 28.09.2022)

СН РК 3.02.01-2018 Здания жилые многоквартирные

СП РК 4.01.101-2012 "Внутренний водопровод и канализация зданий и сооружений";

СН РК 4.01-02-2013 Внутренние санитарно-технические системы;

СП РК 4.01-102-2013 «Внутренние санитарно-технические системы»;

СН РК 4.01.05-2002 «Инструкция по проектированию и монтажу сетей водоснабжения и канализации из пластмассовых труб»;

ГОСТ 32415-2013 Трубы напорные из термопластов и соединительные детали к ним для систем водоснабжения и отопления.

Технический регламент «Общие требования к пожарной безопасности» Утвержденный правительством РК от 18.07.2017 №439.

«Санитарно-эпидемиологические требования к административным и жилым зданиям», утвержденных приказом МЗ РК № ҚР ДСМ-29от 26.10.2018г

«Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов», утвержденных приказом МНЭ РК № 209от 16.03.2015 г.

Водоснабжение

Водоснабжение жилого дома предусматривается от наружных сетей водопровода вводом ПЭ-100 SDR17 Ф110х6.6 мм. в паркинге в помещение насосной НС-2 через секцию Ж в осях А/Б. Для учета расхода воды на вводе в здание в помещение насосной станции запроектирован счетчик холодной воды с радиомодемом Ф65. На вводе в здание в подвале устраивается водомерный узел с запорной арматурой. Перед счетчиком предусмотреть прямой участок длиной, не меньшей чем 3 DN, после счетчика - длиной, не меньшей чем 2 DN. На вводах в здание установить стальные гильзы по ГОСТ 10704-91.

Давление в сети наружного хозяйственно-питьевого трубопровода согласно ТУ - 0.10 мПа.

Водопровод хозяйственно-питьевой.

Снабжение водой на хозпитьевые нужды секции A, Б, B, Γ , Д предусматривается от Насосной станции хоз. питьевого назначения, тип GWFK30/V-22-10-0718.1.1, производство ТОО "Vector 7" (Казахстан). В комплекте с насосами Xylem Lowara (Италия), рамой, шкафом управления, напорным и всасывающим коллекторами, расширительным баком и запорной арматурой. Q=12 m3/h, H=16 m, 2 paб. +1 pes. 3 x 400, P=3 x 1,50 kW Частотное регулирование.

Расширительный бак для системы ГВС и холодного водоснабжения, тип ERCE 500, Elbi (Италия) $V=500\pi$, Pmax=10 bar, T=+99 *C, цвет-синий, мембрана - EPDM, высота-1400 мм, диаметр-775 мм, присоед. 1 1/4".

Снабжение водой на хозпитьевые нужды секции Е, Ж, Д, К, Л предусматривается от Насосной станции хоз. питьевого назначения, тип GWFK30/V-22-10-0718.1.2, производство ТОО "Vector 7" (Казахстан). В комплекте с насосами Xylem Lowara (Италия), рамой, шкафом управления, напорным и всасывающим коллекторами, расширительным баком и запорной арматурой. Q=12,8 m3/h, H=16,40 m, 2 paб. +1 pes. \sim 3 x 400, P=3 x 2,20 kW Частотное регулирование.

Расширительный бак для системы ГВС и холодного водоснабжения, тип ERCE 500, Elbi (Италия) $V=500\pi$, Pmax=10 bar, T=+99 *C, цвет-синий, мембрана - EPDM, высота-1400 мм, диаметр-775 мм, присоед. 1 1/4".

Гидростатический напор в системе хозяйственно-питьевого водопровода на отметке наиболее низко расположенного санитарно-технического прибора не превышает 0,6м Па согласно СП РК 4.01-101-2012. Предусматриваются поквартирные счетчики учета расхода холодной воды Waviot Ø15 с радиомодулем, с возможностью дистанционного съема показаний. Перед счетчиками воды устанавливаются сетчатые фильтры. Счетчики холодной воды, устанавливаемые в жилых и во встроенно-пристроенных помещениях общественного назначения должны иметь в своем комплекте встроенное специализированное устройство с унифицированным выходным сигналом. Счетчик с таким устройством должен обеспечивать возможность дистанционного снятия показаний предусматриваемой автоматизированной системой. Квартирные счетчики воды должны иметь обратный клапан и защиту от манипулирования показаниями счетчиков с помощью внешних постоянных магнитов (250 N). Обратный клапан устанавливается до счетчика по движению воды.

Трубопроводы магистральной сети холодного водоснабжения монтируются из стальных оцинкованных водогазопроводных труб по ГОСТ 3262-75. Магистральные сети монтируются под потолком тех подполья. На сети устанавливается запорная и дренажная арматура. Стояки и подводка к приборам в квартирах монтируются из напорных труб из

термопластов труба полипропиленовая водопроводная PP-R SDR 7.4 \mid S 3.2 класс XB/1,6 МПа по ГОСТ 32415-2013.

Водоснабжение встроенных помещений (система B1.1) предусмотрено раздельное, не зависимое от водопровода жилой части, с врезкой в сеть B1 до водомерного узла. Сети хозяйственно-питьевого водопровода встроенных помещении монтируются: разводки в офисных помещениях и стояки - полипропиленовые трубы PP-R SDR 7.4|S 3.2 класс XB/1,6 МПа по ГОСТ 32415-2013.

Предусмотреть скрытую прокладку из несгораемых материалов всех полипропиленовых труб (кроме располагаемых в с/у). Все трубы, кроме подводок к санитарным приборам, изолируются гибкой трубчатой изоляцией на основе из вспененного каучука по СТ РК 3364-2019, толщиной 9мм. На стояках из полипропиленовых труб предусматриваются противопожарные муфты, препятствующие распространению огня. Отверстия для пропуска труб через стены или фундаменты заполнить эластичным водогазонепроницаемым материалом.

Горячее водоснабжение

В паркинге предусмотрены ИТП и магистральные трубы системы горячего водоснабжения и санузел в помещении охранника. Система горячего водоснабжения принята централизованное приготовлением горячей воды в теплообменниках, с циркуляцией по стоякам и магистрали. Система горячей воды запроектирована для подачи воды к санитарнотехническим приборам. Система горячего водоснабжения для жилой части (Т3, Т4) и встроенных помещений (система Т3вс, Т4вс) предусматривается отдельно. Для системы горячего и холодного водоснабжения предусмотрен расширительный бак объёмом V=500 л. Циркуляционные насосы установлены на трубопроводе Т4 и Т4вс перед теплообменником паркинге на отм. 0,000 в тепловом пункте, расположенном в паркинге в осях Лп/Пп-3п/6п для секции А,Б,В,Г,Д и от ИТП в паркинге в осях Лп/Пп-17п/22п для секции Е,Ж,Д,К,Л. Система горячего водоснабжения жилой части отделена от системы горячего водоснабжения офисной части. Каждая система ГВС имеет свои приборы учета и циркуляционные насосы для поддержания циркуляции в системе горячего водоснабжения. Циркуляция предусмотрена по магистрали и стоякам. Для поддержания циркуляции в системе, запроектирована циркуляционные насосы (см. альбом ОВ).

Трубопроводы в пределах теплового пункта, магистральные сети горячего водоснабжения и трубы, проложенные по чердаку, монтируются из стальных оцинкованных труб (обыкн.) по ГОСТ 3262-75. Магистральные сети монтируются под потолком тех подполья. Стояки и подводки к приборам горячего водоснабжения выполняются из армированных напорных труб из термопластов труба полипропиленовая PP-R SDR 6|S 2.5 класс 2/2МПа по ГОСТ 32415-2013. Трубопроводы системы горячего водоснабжения за исключением подводок сантех приборам, изолируются гибкой трубчатой изоляцией на основе из вспененного каучука по СТ РК 3364-2019 толщиной 9 мм. В верхних точках стояков ГВС установлены спускной воздуха. Поквартирные счетчики учета расхода горячей воды Waviot Ø15 с радиомодулем, с возможностью дистанционного съема показаний. Перед счетчиками воды устанавливаются сетчатые фильтры. В помещениях ванных комнат предусмотрены электрические полотенцесущители (см. раздел ЭС). Система горячего водоснабжения для жилой части и встроенных помещений предусматривается отдельно.

Горячее водоснабжение встроенных помещений предусмотрено раздельное, не зависимое от водопровода жилой части. Сети водопровода встроенных помещении монтируются: подводки к приборам горячего водоснабжения выполняются из напорных труб из термопластов труба полипропиленовая PP-R SDR 6|S 2.5 класс 2/2МПа по ГОСТ 32415-2013. Магистральные трубопроводы и в теплообменник - стальные водогазопроводные оцинкованные трубы ГОСТ 3262-75. В санузлах, встроенных помещении установлен счетчик воды класса "В" Waviot Ø15 с радиомодулем. Все трубопроводы встроенных помещении, за исключением подводок сантех приборам, изолируются гибкой трубчатой изоляцией на основе из вспененного каучука по СТ РК 3364-2019 толщиной 9мм. На стояках из полипропиленовых труб предусматриваются противопожарные муфты, препятствующие распространению огня.

Магистральные трубопроводы из стальных водогазопроводных оцинкованных труб ГОСТ 3262-75. Магистральные трубопроводы прокладываются под потолком паркинга совместно с трубопроводами холодного водоснабжения. Трубопроводы системы горячего водоснабжения изолируются гибкой трубчатой изоляцией на основе из вспененного каучука Misot flex по СТ РК 3364-2019 толщиной 32 мм.

Горячее водоснабжение встроенных помещений предусмотрено раздельное, не зависимое от водопровода жилой части. Магистральные трубопроводы и в теплообменник - стальные водогазопроводные оцинкованные трубы ГОСТ 3262-75. Все магистральные трубопроводы изолируются гибкой трубчатой изоляцией на основе из вспененного каучука Misot flex по СТ РК 3364-2019 толщиной 32 мм. В местах прохода труб через стену предусмотреть противопожарные муфты, препятствующие распространению огня.

Хозяйственно-бытовая канализация

Система бытовой канализации предусмотрена для отвода сточных вод от санитарных приборов. Сброс сточных вод осуществляется самотеком в наружные канализационные сети. Сети канализации для жилой части и встроенных помещений предусматривается отдельно. Магистральные сети канализации прокладываются под потолком подвала. Внутренние сети канализации монтируются из канализационных полиэтиленовых труб по ГОСТ 32412-2013, выпуска и магистральные сети по подвалу из чугунных труб по ГОСТ 6942-98. Трубопроводы вент, части изолируются гибкой трубчатой изоляцией на основе из вспененного каучука по СТ РК 3364-2019 толщиной 9 мм. Вытяжную часть системы К1 вывести на 0.5м выше покрытия кровли или 0.1 м. выше обреза вентиляционной шахты (при ближайшем расположении). Для температурных удлинений пластмассовых на предусматриваются компенсационные патрубки. Для устранения засоров устраиваются ревизия и прочистки. Присоединение стояков горизонтальным трубопроводам выполнены плавно из трех отводов по 30°. На стояках из полипропиленовых труб предусматриваются противопожарные муфты, препятствующие распространению огня.

Водостоки

Для сбора и отвода атмосферных осадков с кровли предусматривается система внутренних водостоков. Водосточная система монтируется из стальных труб по ГОСТ 3262-75. Для стальных труб выполнить гидроизоляцию антикоррозийным покрытием, наружной и внутренней поверхности по ГОСТ 9.602.2016. Трубопроводы внутреннего водостока, проложенные в конструкции кровли изолируются гибкой трубчатой изоляцией на основе синтетического каучука, толщиной 9мм. Проектом предусмотрен электрообогрев воронок и трубопроводов, проложенных в конструкции кровли (см. раздел ЭЛ). Выпуск дождевых вод из системы внутренних водостоков предусматривается в проектируемые наружные сети ливневой канализации. Присоединение водосточных воронок к стоякам следует предусматривать при помощи компенсационных раструбов с эластичной заделкой. Присоединение стояков горизонтальным трубопроводам выполнены плавно из трех отводов по 30°.

Дренажная канализация

Для отвода случайных стоков и стоков от срабатывания системы АПТ с пола паркинга предусмотрены приямки 1200x1200x1200(h). Стоки из приямков дренажными насосами ГНОМ 6-10 Q=10.0м3/час, H=6м, PH=0,55кВт поступают в сети системы K2. Резервный насос хранится на складе.

ЭЛЕКТРООСВЕЩЕНИЕ И СИЛОВОЕ ЭЛЕКТРООБОРУДОВАНИЕ.

Общие указания

Проект выполнен на основании архитектурно-строительной и сантехнической частей проекта, ПУЭ-РК, СП РК 4.04-106-2013 «Электрооборудование жилых и общественных зданий".

По степени надежности электроснабжения, согласно классификации ПУЭ РК, и в соответствии с

СП РК 4.04-106-2013 электроприемники проектируемого здания относятся к следующим категориям:

- электроприемники противопожарных устройств, пожарной сигнализации и лифтов 1 категория
 - комплекс остальных электроприемников 2 категория.

Жилье

Силовое электрооборудование

Электроснабжение жилья выполняется от вводно-распределительных устройств типа BPУ1-13-20 УХЛ4 и BРУ1-50-00 УХЛ4, установленных в электрощитовой (РЩж,ВЩж), питание которым подводится от внешней питающей сети двумя взаиморезервируемыми кабельными линиями на напряжение $\sim 380/220$ B.

Питание потребителей 1 категории надежности электроснабжения жилья предусматривается от вводного устройства ША8333-250-74 УХЛ4 с ABP и распределительного щита индивидуального изготовления. (ЩСП).

Расчетная нагрузка на вводе, а также нагрузки, передаваемые по основным звеньям питающей и групповой электросети приняты в соответствии с СП РК 4.04-106-2013, с учетом установки электроплит 8,5кВт.

Для электроснабжения квартир предусмотрена установка этажных щитков. Размещение этажных щитков предусмотрено в холлах жилых этажей. В этажных щитах размещаются автоматические выключатели с номинальным током на 50 A, выключатели нагрузки 63A и однофазные счетчики квартирного учета электроэнергии на ток 60 A.

В квартирных щитках устанавливаются на отходящих линиях однополюсные автоматические выключатели на токи расцепителей 16A, дифференциальные автоматические выключатели на номинальный ток 40A, 16A и ток утечки 30мA.

Высота установки квартирного щитка 1,5 м (низ щитка) от уровня пола.

Согласно СП РК 4.04-106-2013, питание общего освещения квартир и штепсельных розеток выполнено раздельно. В каждой квартире устанавливается электрический звонок с кнопкой на ~ 220 B.

Высота установки штепсельных розеток в кухнях в районе фартука - 1.2м, в ванной -0,9м в остальных помещениях-0.4м от уровня чистого пола.

Питающие сети выполнены кабелем марки $BB\Gamma$ нг(A)-LS, проводом $\Pi B1$ и для противопожарных эл. приемников $BB\Gamma$ нг(A)-FRLS, прокладываемым в стояках жилых этажей в ΠBX трубах. Для квартирной разводки применяется кабель типа $BB\Gamma$ - Π нг(A)-LS скрыто в штрабе или скрыто в теле плиты.

Групповая сеть в квартирах выполнена трех- и четырехпроводным (фазные, нулевой рабочий и нулевой защитный проводники). В подвале открыто по стенам, под потолком, в пределах шахты лифта скрыто. В квартирах, лестничных клетках и холлах жилых этажей - скрыто по стенам в штробах, под слоем штукатурки, в подготовке пола или в теле плиты.

Проектом предусматривается обогрев водосточных воронок на кровле саморегулирующимся нагревательным кабелем марки 31 HLM2-ST. Монтажные и пуско-наладочные работы, по монтажу антиобледенительной системы, производятся специализированной организацией.

Сечение кабелей выбрано в соответствии с ПУЭ РК по условию нагрева длительным расчетным током и проверено по потере напряжения сети.

Внутреннее электрооборудование выбрано с учетом среды помещения, в котором оно установлено, и требований техники безопасности.

Электроосвещение

Для освещения общедомовых помещений проектом предусматривается система рабочего, аварийного (эвакуационного) и ремонтного освещения. Нормы освещенности и коэффициенты запаса приняты в соответствии со СП РК 2.04-104-2012

Аварийное освещение должно устраиваться в помещение электрощитовой, тепловом пункте, насосной и машинном помещении.

Управление общедомовым освещением осуществляется с помощью выключателей установленными по месту (тех. помещения), а также датчиками движения (коридоры, лестницы, тамбуры). Высота установки выключателей принята 1м от уровня чистого пола. Высота установки настенных светильников - не менее 2,5м от уровня чистого пола.

Рабочие чертежи разработаны в соответствии с действующими нормами, правилами и стандартами. Электромонтажные работы выполнить в соответствии с ПУЭ РК и СП РК 2.04-104-2012

Защитные мероприятия

Система заземления применена TN-C-S.

Все металлические нетоковедущие части электрооборудования (каркасы щитов, эл. аппаратов, корпуса светильников и т.д.) подлежат занулению путем металлического соединения с нулевым защитным проводом сети.

На вводе в здание выполняется система уравнивания потенциалов. Для этого металлические части системы центрального отопления, защитные проводники питающей электросети, заземляющее устройство молниезащиты, металлические части строительных конструкций присоединяются к главной заземляющей шине внутри вводно-распределительных устройств в электрощитовой. Защитные проводники кабелей присоединяются к заземляющей шине болтовым соединением.

Контуру заземления здания выполняется из вертикальных электродов диаметром 16 мм, длиной 3 м, и горизонтальной стальной полосы размером 40х4 мм. Заземляющее устройство устанавливается в грунт на глубину 0,8 м и на расстоянии не менее 1 метра от фундамента здания. Вначале в траншею глубиной 0,8м устанавливаются вертикальные заземлители длиной 3м, затем соединяются стальной горизонтальной полосой 40х4 мм. Расстояние между вертикальными заземлителями равно их длине 3 м.

Внутри здания функцию повторного заземления выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.

В квартирах для ванных комнат, проектом предусматривается дополнительная система уравнивания потенциалов, путем присоединения металлического корпуса ванны к нулевой шине квартирного щитка проводом ПВ1-1х2,5, прокладываемому скрыто в штрабе.

Все пустоты между трубами и меж. этажными перекрытиями, между кабелем и трубой должны быть заполнены легкоудаляемой массой с пределом огнестойкости не менее чем огнестойкость строительных конструкций.

Молниезащита.

Согласно СП РК 2.04-103-2013 "Инструкции по устройству молниезащиты зданий и сооружений" объект подлежит молниезащите по требованиям III категории.

В качестве молниеприемника используется молниеприемная сетка с шагом ячеек 6х6 м. из стальной проволоки диаметром 8 мм. Токоотводы выполняются из стальной проволоки диаметром 10 мм. и прокладываются от молнии приемной сетки к заземлителю по наружным стенам здания.

Заземляющее устройство выполняется из вертикальных электродов диаметром 16 мм, длиной 3 м, и горизонтальной стальной полосы размером 40х4 мм.

СИСТЕМА СВЯЗИ.

Общие данные.

Городская телефонная связь и телевидение

Телефонная связь объекта: «Многоквартирный жилой комплекс с паркингом район "Алматы», район пересечения улиц Ж. Нәжімединова и А426(Без наружных сетей и сметной документации)» выполнена согласно задания на проектирование и ТУ АО "Транстелеком"

Разводка телефонного оптического кабеля осуществляется от ОРШ, типа а ШРПО 05, расположенной в помещении связи.

Магистральная телефонная сеть от ОРШ до слаботочных ниш этажного щита прокладывается оптическим многомодовым кабелем марки КС-FTTH-П-2-G.657.A2-FF-0,08 LSZH в ПВХ трубах диаметром 32 мм. (+1 труба для альтернативных провайдеров)

Ответвление от магистрали выполняется через оптические распределительные коробки (OPK) типа OPK-16-1SC/APC, расположенных на каждом этаже в слаботочной нише этажного щита. В каждой OPK находится пассивный оптический сплиттер 1:16.

Абонентская разводка: от этажных щитов до квартир прокладываются КС-FTTH-П-1 в ПВХ трубе диаметром 20 мм. (+1 труба для альтернативных провайдеров) Активное оборудование (ONT) предоставляется местной телекоммуникационной компанией.

В квартирах и встроенных помещениях предусматриваются слаботочные ниши размером ($Bx IIIx \Gamma$) 500x350x120мм. В нишах устанавливаются электрическая розетка 220B, с заземляющим контактом. Розетки учтены в разделе ЭОМ.

Система охраны входа (домофония)

Настоящим проектом предусматривается система контроля и управления доступом, выполненная на базе оборудования марки "ВИЗИТ". Система предназначена для ограничения несанкционированного доступа посторонних лиц в жилую часть комплекса. На входных подъездных дверях ведущих в лифтовой холл и лестничную площадку устанавливаются вызывные панели типа БВД-342RF с встроенными считывателями ключей Touch Memory. Данное устройство предназначено для подачи сигнала в квартиру, двусторонней связи "жилец-посетитель" и дистанционного или местного (при помощи кодового устройства) открывания входной двери подъезда. Для входа в подъезд жильцов дома, предлагается на каждую квартиру комплект из пяти ключей Touch Memory.

Блоки управления размещаются в шкафу на первом этаже, а блоки коммутации на каждом этаже в щите этажном. Питание блока управления и осуществляется от сети переменного тока напряжением ~220B, 50Гц.

Входные подъездные двери оборудуются электромагнитными замками и механическими доводчиками, для автоматического закрытия дверей. Для выхода из подъезда, с внутренней стороны устанавливаются кнопки типа EXIT 300M.

В прихожих квартир, рядом с входной дверью, устанавливаются абонентские переговорные устройства типа УКП-12М, с кнопкой дистанционного открывания замка входных подъездных дверей. Высота установки УКП-12М равна 1,5 м от уровня чистого пола.

Для соединения блока управления с блоком коммутации БК-10 используется кабель марки КПСВ 6x0,5мм.

Для подключение переговорных устройств от блока коммутации в щите этажном используется кабель марки КПСВ 2x0,5мм.

Кабели прокладываются в ПВХ трубах.

Система видеонаблюдения

Настоящим проектом предусматривается система контроля и управления доступом, выполненная на базе оборудования марки "ВИЗИТ". Система предназначена для ограничения несанкционированного доступа посторонних лиц в жилую часть комплекса. На входных подъездных дверях ведущих в лифтовой холл и лестничную площадку устанавливаются вызывные панели типа БВД-342RF с встроенными считывателями ключей Touch Memory. Данное устройство предназначено для подачи сигнала в квартиру, двусторонней связи "жилец-посетитель" и дистанционного или местного (при помощи кодового устройства) открывания входной двери подъезда. Для входа в подъезд жильцов дома, предлагается на каждую квартиру комплект из пяти ключей Touch Memory.

Блоки управления размещаются в шкафу на втором этаже, а блоки коммутации на каждом этаже в щите этажном. Питание блока управления и осуществляется от сети переменного тока напряжением ~220B, 50Гц.

Входные подъездные двери оборудуются электромагнитными замками и механическими доводчиками, для автоматического закрытия дверей. Для выхода из подъезда, с внутренней стороны устанавливаются кнопки типа EXIT 300M.

В прихожих квартир, рядом с входной дверью, устанавливаются абонентские переговорные устройства типа УКП-12М, с кнопкой дистанционного открывания замка входных подъездных дверей. Высота установки УКП-12М равна 1,5 м от уровня чистого пола.

Для соединения блока управления с блоком коммутации БК-10 используется кабель марки КПСВ 6х0,5мм. Для подключение переговорных устройств от блока коммутации в щите этажном используется кабель марки КПСВ 2х0,5мм. Кабели прокладываются в ПВХ трубах.

1.3 Источники и масштабы расчетного химического загрязнения

В период проведения строительных работ негативное воздействие на атмосферный воздух возможно при разработке и перемещении грунта спецтехникой, ссыпке инертных материалов, выполнении сварочных и окрасочных работ, при работе ДВС автотранспорта. На

период строительства все источники выбросов загрязняющих веществ являются неорганизованными и временными.

Источник 6001– Пылевыделение при разработке грунта. Количество отгружаемого (перегружаемого) материала 10 174,27 м3. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)

Источник 6002— Пылевыделение при обратной засыпке грунта. Количество отгружаемого (перегружаемого) материала 10 174,27 м3. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)

Источник 6003/001 – Сварочные работы, расход электродов марки АНО-6 – 2 807,22 кг/период. Неорганизованно выделяются следующие загрязняющие вещества: 0123 диЖелезо триоксид (Железа оксид) /в пересчете на железо/, 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид.

Источник 6003/002 Газорезка. Вид резки: Газовая. Разрезаемый материал: Сталь углеродистая. Толщина материала 5 мм. Способ расчета выбросов: по времени работы оборудования. Время работы одной единицы оборудования 200 час. Неорганизованно выделяются следующие загрязняющие вещества: Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274), Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327), Азота (IV) диоксид (Азота диоксид) (4), Азот (II) оксид (Азота оксид) (6), Углерод оксид (Окись углерода, Угарный газ) (584)

Источник 6003/003 Сварка ацетилен-кислородным пламенем. Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем. Расход сварочных материалов 885,7758386 кг/год. Неорганизованно выделяются следующие загрязняющие вещества: Азота (IV) диоксид (Азота диоксид) (4), Азот (II) оксид (Азота оксид) (6)

Источник 6003/004 Сварка пропан бутаном. Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем. Газовая сварка стали с использованием пропан-бутановой смеси. Расход сварочных материалов 3 679,8041897 кг/год. Неорганизованно выделяются следующие загрязняющие вещества: Алюминий оксид (диАлюминий триоксид) /в пересчете на алюминий/ (20), Азота (IV) диоксид (Азота диоксид) (4), Азот (II) оксид (Азота оксид) (6)

Источник 6004 - Склад щебня (разгрузочные работы), расход щебня 1 266,95 м³. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Источник 6005 - Пересыпка асфальтобетонных смесей. Масса материала 2 049,95 т/период. Выделяется неорганизованно загрязняющее вещество: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Источник 6006/001 - Покрасочные работы. Марка ЛКМ: Р-4. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0283839 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Метилбензол (349), Бутилацетат (Уксусной кислоты бутиловый эфир) (110), Пропан-2-он (Ацетон) (470)

Источник 6006/002 - Покрасочные работы. Марка ЛКМ: Эмаль ПФ-115. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,5771035 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Диметилбензол (смесь о-, м-, п- изомеров) (203), Уайт-спирит (1294*)

Источник 6006/003 - Покрасочные работы. Марка ЛКМ: Маслянная краска. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 7,5094062 тонны. Неорганизованно выделяются следующие загрязняющее вещество: Диметилбензол (смесь о-, м-, п- изомеров) (203).

Источник 6006/004 - Покрасочные работы. Марка ЛКМ: Лаки. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,01151448 тонны.

Неорганизованно выделяются следующие загрязняющее вещество: Диметилбензол (смесь о-, м-, п- изомеров) (203), Уайт-спирит (1294*)

Источник 6006/005 - Покрасочные работы. Марка ЛКМ: $\Gamma\Phi$ -021. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,3637737 тонны. Неорганизованно выделяются следующие загрязняющее вещество: Диметилбензол (смесь о-, м-, п- изомеров) (203)

Источник 6006/006 - Покрасочные работы. Марка ЛКМ: Уайт-спирит. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 1,1688779 тонны. Неорганизованно выделяются следующие загрязняющие вещества: Уайт-спирит (1294*)

Источник 6006/007 - Покрасочные работы. Марка ЛКМ: XB-124. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,000281 тонны. Неорганизованно выделяются следующие загрязняющее вещество: Метилбензол (349), Бутилацетат (Уксусной кислоты бутиловый эфир) (110), Пропан-2-он (Ацетон) (470)

Источник 6006/008 - Покрасочные работы. Марка ЛКМ: ХС-720. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0033 тонны. Неорганизованно выделяются следующие загрязняющее вещество: Метилбензол (349), Бутилацетат (Уксусной кислоты бутиловый эфир) (110), Пропан-2-он (Ацетон) (470)

Источник 6007 — Гидроизоляция битумом. Масса материала 70,92 т/период. Выделяется неорганизованно загрязняющее вещество: 2754 Алканы C12-19.

Источник 6008 – Пайка припоями. Расход припоя – 0,298 кг. Выделяется неорганизованно загрязняющие вещества: Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446), Свинец и его неорганические соединения /в пересчете на свинец/ (513)

Источник 6009 — Автотранспорт. Тип топлива: Дизельное топливо. Количество рабочих дней в году 365 дней. Наибольшее количество автомобилей, выезжающих со стоянки в течении часа 2 Общ. количество автомобилей данной группы за расчетный период, 12 шт.

Тип машины: Грузовые автомобили карбюраторные свыше 2 т до 5 т (СНГ). Выделяются ЗВ неорганизованно: Азота (IV) диоксид (Азота диоксид) (4), Азот (II) оксид (Азота оксид) (6), Углерод (Сажа, Углерод черный) (583), Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516), Углерод оксид (Окись углерода, Угарный газ) (584), Керосин (654*)

1.4Проведение расчетов и определение предложений нормативов эмиссий 1.4.1Обоснование полноты и достоверности исходных данных, принятых для расчётов нормативов ПДВ

Количество выделяющихся вредных веществ рассчитывалось по утвержденным Министерством ООС РК методикам; для процесса рассеивания загрязняющих веществ применялись наибольшие максимально-разовые величины, определённые теоретическим методом. Расчёты по источникам выбросов загрязняющих веществ представлены в приложении 2.

1.4.2 Перечень загрязняющих веществ, выбрасываемых в атмосферу

Характеристики источников выделения 3B и источников загрязнения атмосферы представлены в таблице 1.2. В таблице приведены: перечень 3B, содержащихся в выбросах, их ПДК и классы опасности 3B.

1.4.3 Параметры источников выбросов, качественный и количественный состав выбрасываемых вредных веществ

Параметры источников выбросов загрязняющих веществ в атмосферу представлены в таблице 1.3.

Секундные выбросы вредных веществ (г/сек) определены для каждого загрязняющего вещества, исходя из режима работы оборудования при максимальной нагрузке. При расчете валовых выбросов (т/год) принято среднее время работы технологического оборудования.

Таблица 1.2 – Перечень загрязняющих веществ на период строительства

Код 3В	Наименование загрязняющего вещества	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)
1	2	3	4	5	6	7	8
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)		0,04		3	0,028150000000	0,014609940000
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0,01	0,001		2	0,001218600000	0,000223460000
0168	Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446)		0,02		3	0,000003300000	0,000000237600
0184	Свинец и его неорганические соединения /в пересчете на свинец/ (513)	0,001	0,0003		1	0,000007500000	0,000000540000
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,2	0,04		2	0,024844000000	0,043276000000
0304	Азот (II) оксид (Азота оксид) (6)	0,4	0,06		3	0,004038000000	0,007027850000
0328	Углерод (Сажа, Углерод черный) (583)	0,15	0,05		3	0,000379400000	0,003144000000
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,5	0,05		3	0,000378000000	0,003410000000
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	0,028550000000	0,139200000000
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2			3	1,251993000000	4,579690000000
0621	Метилбензол (349)	0,6			3	0,005079000000	0,019037000000
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,1			4	0,000987600000	0,003689100000
1401	Пропан-2-он (Ацетон) (470)	0,35			4	0,002142000000	0,007996730000
2732	Керосин (654*)			1,2		0,002603000000	0,022100000000
2752	Уайт-спирит (1294*)			1		0,358062200000	1,300058000000
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1			4	0,019700000000	0,070920000000
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	0,122531500000	0,526597000000
	ВСЕГО:					1,850667100000	6,740979857600

Таблица 1.3 – Параметры источников выбросов, качественный и количественный состав выбрасываемых вредных веществ на период

строительства

Строи	10011	CIBG		1		1	1	1	1						
Произ- водство	Цех			Число часов работы в источника выброса вредных в		Номер источника выбросов на карте- схеме	источника выбросов на карте-	Высота Диаметр источника устья выбросов, трубы,	Параметры газовоздушной смеси на выходе из трубы при максимально разовой нагрузке			Координаты и точ.ист, /1-го конца линейн источника /це площадного источника	ого	ака на карте-схе 2-го конца линейного источника / д ширина площадного источника	
		Наименование	Количество, шт.						Скорость, м/с	Объем смеси, м3/с	Темпе- ратура смеси, оС	X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001	_	Пылевыделение при разработке грунта	1	1848	неорганизованный источник	6001	2					516	280	2	_
001		Пылевыделение при обратной засыпке грунта	1	1848	неорганизованный источник	6002	2					514	278	2	2
001		Сварочные работы Газорезка Сварка ацетилен- кислородным пламенем Сварка пропан бутаном	1 1 1 1	1500 200 1200 1200	неорганизованный источник	6003	2					518	282	2	2
001		Склад щебня (разгрузочные работы)	1	1500	неорганизованный источник	6004	2					520	284	2	2
001		Пересыпка асфальтобетонных смесей	1	1200	неорганизованный источник	6005	2					522	286	2	2
001		Покрасочные работы. Марка ЛКМ: Р-4 Покрасочные работы. Марка ЛКМ: Эмаль ПФ-115 Покрасочные работы. Марка ЛКМ: Маслянная краска Покрасочные работы. Марка ЛКМ: Лаки Покрасочные работы. Марка ЛКМ: ГФ-021 Покрасочные работы. Марка ЛКМ: Уайт-спирит Покрасочные работы. Марка ЛКМ: XB-124 Покрасочные работы. Марка ЛКМ: XB-124 Покрасочные работы. Марка ЛКМ: XB-124	1 1 1 1 1 1 1	1200 1500 1000 1000 1200 1000 1000	неорганизованный источник	6006	2					524	288	2	
001		Гидроизоляция битумом	1	1000	неорганизованный источник	6007	2					526	290	2	2
001		Пайка припоями	1	20	неорганизованный источник	6008	2					528	292	2	
001		Автотранспорт	1	3696	неорганизованный источник	6009	2					530	294	2	2

продолжение таблицы 1.3

, ,	ние таолицы 1.3		Коэффи-	Среднеэксплуа-			Выбросы загря:	зняющего	вещества	
Номер источника выбросов на карте- схеме	Наименование газоочистных установок, тип и мероприятия по сокращению выбросов	Вещество, по которому производится газоочистка	циент обеспечен- ности газо- очисткой,	тационная степень очистки/ максимальная степень	Код вещества	Наименование вешества				Год дости- жения ПДВ
			, ,	очистки, %			г/с	мг/нм3	т/год	
7	17	18	19	20	21	22	23	24	25	26
6001					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,02533		0,119	2025
6002					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,02533		0,119	2025
6003					0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0,02815		0,01460994	2025
					0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0,0012186		0,00022346	2025
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0,02242		0,021876	2025
					0304	Азот (II) оксид (Азота оксид) (6)	0,003644		0,00355285	2025
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,01375		0,0099	2025
6004					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0434		0,1656	2025
6005					2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0284715		0,122997	2025
6006					0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	1,251993		4,57969	2025
					0621	Метилбензол (349)	0,005079		0,019037	2025
					1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,0009876		0,0036891	2025
					1401	Пропан-2-он (Ацетон) (470)	0,002142		0,00799673	2025
					2752	Уайт-спирит (1294*)	0,3580622		1,300058	2025
6007					2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,0197		0,07092	2025
6008					0168	Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446)	0,0000033		2,376E-07	2025
					0184	Свинец и его неорганические соединения /в пересчете на свинец/ (513)	0,0000075		0,00000054	2025
6009					0301	Азота (IV) диоксид (Азота диоксид) (4)	0,002424		0,0214	2025
					0304	Азот (II) оксид (Азота оксид) (6)	0,000394		0,003475	2025
					0328	Углерод (Сажа, Углерод черный) (583)	0,0003794		0,003144	2025
					0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,000378		0,00341	2025
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0148		0,1293	2025
					2732	Керосин (654*)	0,002603		0,0221	2025

Таблица 1.4 Декларируемое количество выбросов загрязняющих веществ в атмосферный воздух по (г/сек, т/год) на 2025-2026 гг.

	Декларируемый год — 2025-2026 гг.										
Номер источника загрязнения	Наименование загрязняющего вещества	г/сек	т/год								
6001	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,02533	0,119								
6002	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,02533	0,119								
6003	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0,02815	0,01460994								
6003	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0,0012186	0,00022346								
6003	Азота (IV) диоксид (Азота диоксид) (4)	0,02242	0,021876								
6003	Азот (II) оксид (Азота оксид) (6)	0,003644	0,00355285								
6003	Углерод оксид (Окись углерода, Угарный газ) (584)	0,01375	0,0099								
6004	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0434	0,1656								
6005	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,0284715	0,122997								
6006	Диметилбензол (смесь о-, м-, п- изомеров) (203)	1,251993	4,57969								
6006	Метилбензол (349)	0,005079	0,019037								
6006	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,0009876	0,0036891								
6006	Пропан-2-он (Ацетон) (470)	0,002142	0,00799673								
6006	Уайт-спирит (1294*)	0,3580622	4,57969								
6007	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,0197	0,07092								
6008	Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446)	0,0000033	0,0000002376								
6008	Свинец и его неорганические соединения /в пересчете на свинец/ (513)	0,0000075	0,00000054								
6009	Азота (IV) диоксид (Азота диоксид) (4)	0,002424	0,0214								
6009	Азот (II) оксид (Азота оксид) (6)	0,000394	0,003475								
6009	Углерод (Сажа, Углерод черный) (583)	0,0003794	0,003144								
6009	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,000378	0,00341								
6009	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0148	0,1293								
6009	Керосин (654*)	0,002603	0,0221								

1.5 Обоснование принятого размера санитарно-защитной зоны

Согласно санитарной классификации производственных объектов Санитарных правил "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека" Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2. Зарегистрирован в Министерстве юстиции Республики Казахстан 11 января 2022 года № 26447, строительные работы не классифицируются, санитарно-защитная зона не устанавливается. Производство строительно-монтажных работ кратковременное, не классифицируется, размер СЗЗ не устанавливается.

Рассчет рассеивания и карты изолиний приложены в приложении 4.

1.6 Проведение расчетов и анализ загрязнения атмосферы

Для оценки влияния выбросов загрязняющих веществ на качество атмосферного воздуха, в соответствии с действующими нормами проектирования в республике Казахстан используется метод математического моделирования. Моделирование рассеивания загрязняющих веществ в приземном слое атмосферы проведено на программном комплексе ЭРА версия 2.5, реализующей основные требования и положения Методики расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий, Астана 2008г.

Загрязнение приземного слоя воздуха, создаваемого выбросами промышленных объектов, зависит от объемов и условий выбросов загрязняющих веществ в атмосферу, природно-климатических условий и особенностей циркуляции атмосферы.

Проведенные расчеты по программе позволили получить следующие данные:

Уровни концентрации загрязняющих веществ, в приземном слое атмосферы по всем источникам, полученные в узловых точках контролируемой зоны с использованием средних метеорологических данных по 8-ми румбовой розе ветров и при штиле;

Максимальные концентрации в узлах прямоугольной сетки;

Степень опасности источников загрязнения;

Поле расчетной площадки с изображением источников выбросов загрязняющих веществ и изолиний концентраций по всем загрязняющим веществам.

Значения коэффициента А, зависящего от стратификации атмосферы и соответствующего неблагоприятным метеорологическим условиям, принято в расчетах равным 200.

Расчет максимальных концентраций загрязняющих веществ в приземном слое атмосферы производился в локальной системе координат. Область моделирования представлена расчетным прямоугольником с размерами сторон 534×165 м, покрытым равномерной сеткой с шагом 20 м. Размеры расчетного прямоугольника и шаг расчетной сетки выбраны с учетом взаимного расположения площадки.

Коэффициент рельефа местности, $\eta=1,2$. Безразмерный коэффициент F, учитывающий скорость оседания вредных веществ, для газообразных веществ и мелкодисперсной пыли равен 1.

Для оценки и возможности достижения ПДВ (предельно-допустимых выбросов) выполнены расчёты рассеивания вредных веществ в атмосфере на существующее положение.

Расчетами рассеивания загрязняющих веществ в атмосфере определены максимальные концентрации всех загрязняющих веществ, выбрасываемых всеми источниками, и расстояния достижения максимальных концентраций загрязняющих веществ.

Таблица 1.5 — Перечень источников дающих наибольшие вклады в уровень загрязнения атмосферы на период строительства

Модентира максимайдия призодная протоктира (морения и бесу учета и домощье доможной домож	armocq	реры на период	ц строительства							
Rotation Rotation			D		Коорди	наты	Ис	точник	си,	
Наименование непестиа непетити непе	IC				точе	кс	Į	цающие	e	
Hamstenoamic British British				оез учета	максима	льной	наи	ибольш	ий	
Намоспование решества Патрации Вамине повети Вамине по производето, пест уметов Вамине пест в производето, пест уметов Вамине по производето, пест уметов Вамине пест в производето Вамине пест в производето Вамине пест в производето Вамине пест в производето Вамине пест в пресчете на маргания (174) Вамине пест в гот пеорганические соединення / Вамине (1513) Вамине пест в гот пеорганические соединення / Вамине пест пеорганические соединення / Вамине пест в гот пеорганические соединення / Вамине пест пеорганические соединення / Вамине пест в гот пеорганические соединення / Вамине пест пест пеорганические соединення / Вамине пест пеорганические соединення / Вамине пест пеорганические соединення / Вамине пест пеорганический станический (Станический (Станический (Станический (Станический (Станический (Станический (Станический (Станический (С				2	призем	иной	вкл	ад в ма	кс.	Принадлежность
1 2 3 4 5 6 7 8 9 10		Наименование	доля пдк / мг/л	M3	конц.		концентрацию			-
Сумма- щии в жилой зопе сащизрио- занитной занитной зании XY тра- коге сада (дижелем (II, III) оксида (дижеле оксид) / то пересчете на желем (224) 4 5 6 7 8 9 10 123 Жележо (II, III) оксида (дижеле от триоксид, желе оксид) 0,18439-0,07376 574/280 6003 100 Строительния площадка 0143 Мартанен и его соедиения 76 пересчете на мартания (V) оксид (327) 0,85241-0,00852 574/280 6003 100 Строительная площадка 0301 Аэта (V) диоксид (4247) 0,11035-0,00011 574/286 6008 100 Строительная площадка 0330 Сара диоксид (Антирри сернистый, Сернистый, (Ожив. Ословена) (53) 0,23711(0,17685)/ диоксид (4мита) 574/286 6009 100 Строительная площадка 0331 Сара диоксид (Антирри сернистый, Сернистый, (Ожив. Ословена) (53) 0,23217(0,043187)/ д. (291087(0,215965)) 574/286 6009 100 Строительная площадка 0332 Интельбенного (Сомоско, VI) (Ожив. Ословена) (53) 0,52217(0,043187)/ д. (291087(0,215965)) 574/286 6009 100 Строительная площадка 0401 Интельбенного (Сомоско, VI) (Ожив. Ословена) (54	группы	вещества			на			% вк	слада	(производство,
1 2 3 4 5 6 7 8 9 10				•		гра-	N			цех, участок)
1 2 3 4 5 6 7 8 9 10 Существующее положение 1223 Желего (II, III) окенда (дижелего триоксид, Желего оксид) 0.184399,0,07376 574/280 6003 100 Строительная площадка 10123 Желего (II, III) окенда (дижелего триоксид, Желего оксид) 574/280 6003 100 Строительная площадка 10140 Мартанен и его соединения /в пересчете на мартанна (V) окенд/ (327) 0.85241/0,00852 574/280 6003 100 Строительная площадка 10141 Строительная пресчете на соединения /в пересчете на соединения /в пересчете на пересчете на пересчете на пересчете на соединения /в пересчете на переспрат до	-		в жилой зоне	_		нице		NICO.	CDD	
1 2 3 4 5 6 7 8 9 10	ции					C33	ист.	жэ	C33	
10123 Железо (II, III) 0,18439/0,07376 574/280 574/280 6003 100 Строительная площадка 100 Строительная пл				зоны	Λ/ Ι	X/Y				
10123 Железо (П, III) 0,18439/0,07376 574/280 6003 100 Строительным площадка 101 10	1	2	3	4	5	6	7	8	9	10
Оказара (Произведа (дабра предпр. В 14/280 Оказара (дабра предпр. В 1			Суще	ствующее по	ложение					
Оксиды (дижского триоксия, желеко (274)				яющие в	еществ	a:				
(диЖелего триокеда Желего пажество (274) Вирогечете на железо (274) Вирогечете на мартанец и его соедителня / В пересчете на мартанец (V) оксии / (277) Оксии / (27	0123	Железо (II, III)	0,18439/0,07376		574/280		6003	100		Строительная
Триокенд Железо оксид Железо оксид Железо (274) Железо оксид Железо (274) Железо		оксиды								площадка
Железа оксил)		(диЖелезо								
В переситете на желеси (274)										
железо/ (274) мартанец и его од.85241/0,00852 574/280 6003 100 Строительная площадка 10184 Свинец и его неортанические соединения /в пересчете на евинец/ (513) 0,57111(0,17685)/ дножеда (Азота дножид) (43 ота дножид) (44 ота дножид) (44 ота дножид) (45 ота дножид) (4										
Она										
сослинения / в персечете на мартаниа (IV) оксилу (327)										
пересчете на мартанца (IV)	0143		0,85241/0,00852		574/280		6003	100		_
Мартанца (IV) оксил/ (327)										площадка
Окенд/ (327) Окен Свинец и его О,11035/0,00011 574/286 6008 100 Строительная площадка Площа										
Операцические соединения /в пересчете на свинец / (13)										
Неорганические соединения / В пересчете на свинец/ (513) О301 Аэота (IV) О.57111(0.17685)/	610:					ļ		4.0.		
Сосдинения / В пересчете на свинец/ (513)	0184	· ·	0,11035/0,00011		574/286		6008	100		-
пересчете на свинец/ (513) 10301 Азота (IV) диоксид (Азота диоксид) (4) 10422(0,0353694) 1054/286 100		*								площадка
Свинец/ (513) Азота (IV) 0,57111(0,17685)/ диоксид (Азота диоксид) (4) Вклад предпр.= 31% Сера диоксид (4) Вклад предпр.= 31% Сера диоксид (Ангидрид 0,102(<0,0005) Вклад предпр.= 31% Сера диоксид (Ангидрид 0,102(<0,0005) Вклад предпр.= 0.0% Серинстый газ, Сера (IV) оксид) (516) Серинстый газ) (Сера (IV) оксид) (516) Серинстый газ) (584)										
Озота (IV)										
диоксид (Азота диоксид) (4) вклад предпр.= 31% площадка площадка	0201		0.55111(0.15(0.5))				6000	100		
Диоксид) (4) Вклад предпр.= 31%	0301				574/286		6009	100		-
Оззо Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Олутерод оксид (516) Олутерод оксид (78кос утдерода, Угарный газ) (584) Олутерода, Угарный газ) (584) Олутерода, Олутер		· ·								площадка
(Ангидрид сернистый, Сернистый газ, Сера (IV) окоил) (516) 0337 Углерод оксид (Окись утлерода, Утлерода, Утлерода, Утлерода, Окись (684) 0616 Диметилбензол (0584) 0621 Метилбензол (203) 0621 Метилбензол (349) 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110) 1401 Пропан-2-ов (Анстон) (470) 1401 Пропан-2-ов (Анстон) (470) 2754 Алканы С12-19 (В пересчете на С); Растворитель	0220				574/200		6000	100		G
Сернистый, Сернистый газ, Сера (IV) оксид) (516) Сера (IV) оксид) (516) Олительная площадка углерода, угарный газ) (584) Олительная площадка изомеров) (203) Олительная площадка изомеров (203) Олительная	0330				5/4/280		6009	100		_
Сернистый газ, Сера (IV)										площадка
Сера (IV) оксид) (516) Оксид) (516) Оксид) (516) Оксид) (516) Оксид) (516) Оксид) (Окись углерода, углерода, угарный газ) (584) Обы (смесь о-, м., п. изомеров) (203) Обы (смесь о-, м., п. и			вклад предпр.=0.0%							
оксид) (516) 0337 Углерод оксид (Окись (Окись Углерода, Угарный газ) (584) 0616 Диметилбензол (смесь о-, м-, пизомеров) (203) 0621 Метилбензоп (З49) 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110) 1401 Пропан-2-он (Апетон) (470) 2754 Алканы С12-19 (Алканы С12-19 (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель										
0337 Углерод оксид (Окись (Окись Углерода, Угарный газ) (584) 2,91087(0,2159365)вклад предпр.= 7.4% 574/286 6009 100 Строительная площадка										
Окись углерода, Угарный газ (584) Обла Одоча	0337		0.58217(0.043187)/		574/286		6009	100		Строителная
углерода, Угарный газ) (584) 0616 Диметилбензол (смесь о-, м., п- изомеров) (203) 0621 Метилбензол (349) 1210 Бугилацетат (Уксусной кислоты бугиловый эфир) (110) 1401 Пропан-2-он (Ацетон) (470) 2754 Алканы С12-19 /в пересчете на С/; Растворитель (С); Растворитель	0337	*			374/200		0007	100		_
Угарный газ) (584) (584) 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203) 0,0946/0,01892 574/286 6006 100 Строительная площадка 1210 Метилбензол (349) 0,12516/0,01252 574/286 6006 100 Строительная площадка 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110) 0,12516/0,01252 574/286 6006 100 Строительная площадка 1401 Пропан-2-он (Ацетон) (470) 0,07756/0,02714 574/286 6006 100 Строительная площадка 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель 0,26241/0,26241 574/286 6007 100 Строительная площадка		`								площидки
(584) (584) (7)		Угарный газ)	предпр. 7.170							
Об16 Диметилбензол (смесь о-, м-, п- изомеров) (203) Ол (20										
Ссмесь о-, м-, п- изомеров) (203) Площадка Площадка	0616		0.0946/0.01892		574/286		6006	100		Строительная
Изомеров) (203)	3010	, ,	0,00,10/0,01002		2, 1, 200			100		*
Метилбензол (349)										
1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110) 1401 Пропан-2-он (Ацетон) (470) 2754 Aлканы С12-19 /В пересчете на С); Растворитель	0621		0,10727/0.06436		574/286		6006	100		Строительная
1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110) 1401 Пропан-2-он (Ацетон) (470) 0,07756/0,02714 574/286 6006 100 Строительная площадка 170			1,-1//0,00.00							_
(Уксусной кислоты бутиловый эфир) (110) 0,07756/0,02714 574/286 6006 100 Строительная площадка 2754 Алканы C12-19 (Углеводороды предельные С12-C19 (В пересчете на С); Растворитель 0,26241/0,26241 574/286 6007 100 Строительная площадка	1210		0,12516/0.01252		574/286	1	6006	100		
кислоты бутиловый эфир) (110) 1401 Пропан-2-он (Ацетон) (470) 2754 Алканы С12-19 (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель			,							_
бутиловый эфир) (110) 1401 Пропан-2-он (Ацетон) (470) 2754 Алканы С12-19 (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель		` •								
эфир) (110) 1401 Пропан-2-он (Ацетон) (470) 2754 Алканы С12-19 (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель										
1401 Пропан-2-он (Ацетон) (470) 0,07756/0,02714 574/286 6006 100 Строительная площадка 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель 574/286 6007 100 Строительная площадка										
(Ацетон) (470) 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель	1401		0,07756/0,02714		574/286		6006	100		Строительная
2754 Алканы С12-19						<u> </u>	<u> </u>			*
/в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель	2754		0,26241/0,26241		574/286		6007	100		
С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель		/в пересчете на								
предельные C12-C19 (в пересчете на C); Растворитель										
С12-С19 (в пересчете на С); Растворитель										
пересчете на С); Растворитель										
С); Растворитель										
Растворитель										
PIIK-265II) (10)										
	<u> </u>	РПК-265П) (10)				<u> </u>				

2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,70438/0,21131		574/280		6001	100		Строительная площадка
	Групп	ы веществ, обладающих э	ффектом ком(бинирова	нного в	редног	о дейст	вия	
27 0184	Свинец и его неорганические соединения /в пересчете на свинец/ (513)	0,22868(0,121132) вклад предпр.= 53%		574/286		6008	91,1		Строительная площадка
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)					6009	8,9		Строительная площадка
31 0301	Азота (IV) диоксид (Азота диоксид) (4)	0,7407(<0,001) вклад предпр.=0.0%		574/280		6009	100		Строительная площадка
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)								

Примечание: В таблице представлены вещества (группы веществ), максимальная расчетная концентрация которых $>=0.05~\Pi \rm{JK}$

Максимальные значения наблюдаются по следующим веществам:

- 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274) 0,18439 ПДК;
- 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) 0,85241 ПДК;
- 0184 Свинец и его неорганические соединения /в пересчете на свинец/ (513) 0,11035 ПДК;
- 0301 Азота (IV) диоксид (Азота диоксид) (4) 0.57111(0.17685)/0.11422(0.0353694) вклад предпр.= 31%;
- 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) 0.204(<0.001)/0.102(<0.0005) вклад предпр.=0.0%;
- 0337 Углерод оксид (Окись углерода, Угарный газ) (584) 0,58217(0,043187)/ 2,91087(0,2159365)вклад предпр.= 7.4%;
- 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203) 0,0946 ПДК;
- 0621 Метилбензол (349) 0,10727 ПДК;
- 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110) 0,12516 ПДК;
- 1401 Пропан-2-он (Ацетон) (470) 0,07756 ПДК;
- 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10) 0,26241 ПДК;
- 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 0,70438 ПДК;
- 27 0184 Свинец и его неорганические соединения /в пересчете на свинец/ (513) + 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) 0.22868(0.121132) вклад предпр.= 53%;
- 31 0301 Азота (IV) диоксид (Азота диоксид) (4) + 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) 0,7407(<0,001) вклад предпр.=0.0%.

1.7 Оценка последствий загрязнения и мероприятия по снижению отрицательного воздействия

Согласно результатам расчетов приземных концентраций от всех источников выброса вредных веществ превышения предельных норм не наблюдается.

Поскольку концентрация загрязняющих веществ в приземном слое атмосферы невелика, следовательно, мероприятия по снижению выбросов их для достижения нормативов ПДВ не требуются и не разрабатывались.

1.8 Разработка мероприятий по регулированию выбросов в период особо неблагоприятных метеорологических условия

В периоды неблагоприятных метеорологических условий (НМУ) предприятие обязано осуществлять временные мероприятия по дополнительному снижению выбросов вредных веществ в атмосферу. Мероприятия осуществляются после заблаговременного получения предупреждения от органов гидрометеослужбы, в котором указываются продолжительность НМУ, ожидаемое увеличение приземных концентраций вредных вешеств.

Настоящие мероприятия разработаны для предприятия при двух режимах работы.

При первом режиме работ мероприятия должны обеспечить уменьшение концентраций веществ в приземном слое атмосферы примерно на 15-20%.

Эти мероприятия носят организационно-технический характер:

- ужесточение контроля за точным соблюдением технологического регламента производства;
- прекращение работы оборудования в форсированном режиме;
- усиление контроля за выбросами автотранспорта путём проверки состояния и работы двигателей;
- обеспечение бесперебойной работы всех действующих пылегазоочистных установок;
- запрещение продувки и очистки оборудования, вентиляционных систем и емкостей;
- ограничение погрузочно-разгрузочных работ, связанных со значительным выделением в атмосферу загрязняющих веществ;
- влажная уборка производственных помещений;
- прекращение испытаний оборудования, приводящих к увеличению выбросов вредных веществ.

При втором режиме работ предприятия мероприятия должны обеспечить сокращение концентрации загрязняющих веществ в приземном слое атмосферы примерно на 20-40%.

Эти мероприятия включают в себя мероприятия первого режима, а также мероприятия на технологические процессы, сопровождающиеся незначительным снижением производительности предприятия.

Мероприятия общего характера:

- снизить производительность отдельных агрегатов и технологических линий, работа которых связана со значительным выделением в атмосферу вредных веществ;
- в случае, если сроки начала планово-предупредительных работ по ремонту оборудования и наступления НМУ достаточно близки, следует произвести остановку оборудования;
- ограничить использование автотранспорта и других передвижных источников выброса;
- запретить сжигание отходов производства и мусора, если оно осуществляется без использования специальных установок, оснащенных пылегазоулавливающими аппаратами.

При третьем режиме работы предприятия мероприятия должны обеспечить сокращение концентраций загрязняющих веществ в приземном слое атмосферы примерно

на 40 - 60 % и в некоторых особо опасных условиях предприятию следует полностью прекратить выбросы.

Мероприятия третьего режим полностью включают в себя условия первого и второго режимов, а также мероприятия, осуществление которых позволяет снизить выбросы загрязняющих веществ за счёт временного сокращения производительности предприятия,

Мероприятия общего характера:

- снизить нагрузку или остановить производства, сопровождающиеся значительным выделением загрязняющих веществ;
- снизить нагрузку или остановить производства, не имеющие газоочистных сооружений.

Определение эффективности каждого мероприятия (%) осуществляется по формуле:

$$n = \frac{M_i^t}{M_i} \times 100\%,$$

где: Mi' - выбросы загрязняющего вещества для каждого разработанного мероприятия (г/с);

Мі - размер сокращения выбросов за счёт мероприятий.

1.9 Предложения по организации мониторинга и контроля за состоянием атмосферного воздуха

Мониторинг атмосферного воздуха необходимо проводить после окончания строительства, по каждому источнику сделать расчеты выбросов по фактическому расходу и времени строительства.

 Π л а н - г р а ф и к контроля на предприятии за соблюдением нормативов Π ДВ на источниках выбросов и на контрольных точках (постах) на существующее положение на период строительства

N исто				Периодич	Норма выбросоі			
чника, N конт роль- ной точки	Производство, цех, участок. /Координаты контрольной точки	Контролируемое вещество	Периоди чность контроля	ность контроля в перио- ды НМУ раз/сутки	г/с	мг/м3	Кем осуществляет ся контроль	Методика проведения контроля
1	2	3	4	5	6	7	8	9
6001	Строительная площадка	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	в конце каждого квартала	раз/сутки	0,02533		Инженер по ОТ ТБ и ООС	Расчетно- балансовый
6002	Строительная площадка	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	в конце каждого квартала	раз/сутки	0,02533		Инженер по ОТ ТБ и ООС	Расчетно- балансовый
6003	Строительная площадка	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	в конце каждого квартала	раз/сутки	0,02815		Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	в конце каждого квартала	раз/сутки	0,001219		Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Азота (IV) диоксид (Азота диоксид) (4)	в конце каждого квартала	раз/сутки	0,02242		Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Азот (II) оксид (Азота оксид) (6)	в конце каждого квартала	раз/сутки	0,003644		Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Углерод оксид (Окись углерода, Угарный газ) (584)	в конце каждого квартала	раз/сутки	0,01375		Инженер по ОТ ТБ и ООС	Расчетно- балансовый
6004	Строительная площадка	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	в конце каждого квартала	раз/сутки	0,0434		Инженер по ОТ ТБ и ООС	Расчетно- балансовый

6005	Строительная площадка	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	в конце каждого квартала	раз/сутки	0,028472	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
6006	Строительная площадка	Диметилбензол (смесь о-, м-, п- изомеров) (203)	в конце каждого квартала	раз/сутки	1,251993	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Метилбензол (349)	в конце каждого квартала	раз/сутки	0,005079	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	в конце каждого квартала	раз/сутки	0,000988	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Пропан-2-он (Ацетон) (470)	в конце каждого квартала	раз/сутки	0,002142	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Уайт-спирит (1294*)	в конце каждого квартала	раз/сутки	0,358062	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
6007	Строительная площадка	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	в конце каждого квартала	раз/сутки	0,0197	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
6008	Строительная площадка	Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446)	в конце каждого квартала	раз/сутки	3,3E-06	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Свинец и его неорганические соединения /в пересчете на свинец/ (513)	в конце каждого квартала	раз/сутки	7,5E-06	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
6009	Строительная площадка	Азота (IV) диоксид (Азота диоксид) (4)	в конце каждого квартала	раз/сутки	0,002424	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Азот (II) оксид (Азота оксид) (6)	в конце каждого квартала	раз/сутки	0,000394	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Углерод (Сажа, Углерод черный) (583)	в конце каждого квартала	раз/сутки	0,000379	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	в конце каждого квартала	раз/сутки	0,000378	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Углерод оксид (Окись углерода, Угарный газ) (584)	в конце каждого квартала	раз/сутки	0,0148	Инженер по ОТ ТБ и ООС	Расчетно- балансовый
		Керосин (654*)	в конце каждого квартала	раз/сутки	0,002603	Инженер по ОТ ТБ и ООС	Расчетно- балансовый

Мониторинг управления отходами

Мониторинг управления отходами производства и потребления предполагает разработку организационной системы отслеживания образования отходов, контроль за их сбором, хранением, утилизацией, вывозом и размещением.

Необходимо контролировать:

- -объемы образования отходов;
- -за транспортировкой отходов;
- -за временным хранением и отправкой на спецпредприятия отдельных видов отходов.

Внутренние проверки и процедура устранения нарушения требований природоохранного законодательства РК В ходе внутренних проверок контролируется:

- 1.выполнение мероприятий, предусмотренных программой производственного экологического контроля;
- 2. следование производственным инструкциям и правилам, относящимся к охране окружающей среды и технологическим регламентам;
- 3.выполнение условий экологических и иных разрешений;
- 4. правильность ведения учета и отчетности по результатам производственного экологического контроля;
- 5.иные сведения, отражающие вопросы организации и проведения производственного экологического контроля.

План-график проведения внутренних проверок.

План-график проведения внутренних проверок.						
№ п./п.	Вид контроля	Периодичность	Ответственное лицо			
1. Контроль технологического процесса						
1.1.	Соблюдение правил	Перед началом работы	Руководитель			
	техники безопасности		Инженер по ОТ и ТБ			
1.2.	Соблюдение правил	Постоянно	Главный инженер			
	пожарной безопасности		Инженер по ОТ и ТБ			
1.3	Контроль за состоянием	Ежеквартально	Менеджер по			
	и эксплуатацией		производству			
	оборудования,		Рабочие			
	механизмов и					
	инструментов					
1.4	Контроль за	Постоянно	Руководитель			
	соблюдением		специалист отдела ОТ, ТБ			
	технологического		и ООС			
	процесса производства					
	2. Контроль выполнения	плана природоохранных	мероприятий			
2.1.	Контроль за	Ежеквартально	Руководитель			
	проведением					
	производственного		специалист отдела ОТ, ТБ			
	мониторинга		и ООС			
2.2.	Контроль	Постоянно	Руководитель			
	складирования и вывоза		специалист отдела ОТ, ТБ			
	отходов		и ООС			
	3. Контроль веден	ия экологической докумен	тации			
3.1.	Контроль ведения	Ежеквартально	Руководитель			
	экологической	_	специалист отдела ОТ, ТБ			
	отчетности		и ООС			
3.2.	Осуществление	Ежеквартально	Руководитель			
	регулярных платежей за	-	Бухгалтер			
	эмиссии в окружающую					
	среду					

При выявлении нарушений в ходе внутренних проверок ответственным лицом за предпринимаются следующие шаги:

- Составляются Акты-предписания по итогам проверок;
- При необходимости, остановка работ, осуществляемых с нарушением действующего экологического законодательства Республики Казахстан.

2.Оценка воздействий на состояние вод

2.1 Потребность в водных ресурсах для намечаемой деятельности на период строительства, требования к качеству используемой воды

В период проведения строительных работ вода на питьевые нужды используется привозная, бутилированная, соответствует по всем показателям СанПиН 2.1.4.553-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

На период строительства хозбытовые сточные воды будут отводиться в биотуалет, который по завершении работ удаляется с площадки. Необходимо обеспечить вывоз хозбытовых сточных вод в период строительства согласно договору со специализированной организацией.

Расчет водопотребления (и водоотведения) на период строительных работ проведен согласно штатного расписания в соответствии с выражением:

$$M_{o\delta p}^{H} = R_{\partial H} \times n \times N$$

Гле.

 $R_{\partial u}$ – количество рабочих дней;

n — среднесуточные нормы потребления воды, м³/сут;

N — количество работающих человек.

• в период строительства объекта в хозяйственно-бытовых целях:

 $M = 462 \times 0.025 \times 75 = 866.25$

462 – количество рабочих дней строительства;

0.025 – нормы потребления воды;

75 – количество работающих строителей (согласно штатного расписания и сметного расчета)

 Таблица 2.1


 Баланс волопотребления и волоотвеления

ваните водопотреонения и водоотведения											
	Водопотребление, м ³				Водоотведение, м ³						
		На про	изводствен	ные нужді	Ы			ıe			
			Гехническая	Я	Я	ды ()		HHP	ые		
IBO		Всего	Питьево		используемая	вые нужды качества)		сточные	бытовые	сточные ы	
ДС			ГО	_	ьзу					[Ю]	ပ
13BC	Всего		качестка	жая	тот	OBE O Kä	Всего	воды	іно	_	Другие
Производство	ğ			Нес		бытовые вого кач	В	CTB(rber	eBbl	Д.
				Гехническая	рно	а хоз. быто (питьевого		30Д(яйствені	Ливневые _{вот}	
				Te	Повторно	На х (пи		Производственные воды	Хозяйственно сточные вс	II.	
					Поп	H		Прс	~		
1	2			-	-	7	0	0	10	11	10
1	2	3	4	5	6	7	8	9	10	11	12
площадка строительства	10 167,38	9 301,13	1 056,54	8 244,59		866,25	866,25	-	866,25	-	-

2.2 Поверхностные воды

Объект не расположен в водоохранных зонах и полосах, забора воды в период строи-тельно-монтажных работ и эксплуатации из поверхностных и подземных вод не осуществляется.

Расстояние до ближайшего водного объекта (р.Ишим) 811 м.

2.3 Оценка воздействия намечаемого объекта на водную среду в процессе его строительства и эксплуатации

В связи с тем, что от выбранного участка строительных работ поблизости отсутствуют открытые поверхностные водоемы, то, соответственно, исключается возможность их загрязнения в процессе осуществления строительных работ.

Запрещается допускать пролив хозяйственно — бытовых и производственных вод в почвогрунты при строительстве.

3. Оценка воздействий на недра

При строительстве проектируемого объекта воздействия на недра не ожидается, так как строительство объекта планируется проводить в грунте.

4. Оценка воздействия на окружающую среду отходов производства и потребления

Согласно требованиям Экологического кодекса Республики Казахстан», других законодательных и нормативно-правовых актов в области охраны окружающей среды и санитарно-эпидемиологического благополучия населения, принятых в республике, отходы производства и потребления должны собираться, храниться, обезвреживаться, транспортироваться в места их утилизации или захоронения.

Для рационального управления отходами необходимо вести строгий учет и контроль всех видов отходов, образующихся в процессе деятельности предприятия.

Система управления отходами включает в себя организационные меры отслеживания образования отходов, контроль за их сбором и хранением, утилизацией и обезвреживанием.

В соответствии с решениями Базельской конвенции о контроле за трансграничной перевозкой опасных отходов и их удалением, а также в соответствии с Резолюцией ОЭСР (Организация экономического сотрудничества и развития) от 30.03.1992г. «О

трансграничных перемещениях опасных отходов, предназначенных для операций по регенерации» и согласно «Классификатора отходов» Приложение к приказу и.о. министра экологии, геологии и природных ресурсов РК от 6 августа 2021 года № 314).

Отходы складируются в контейнеры; бытовые отходы вывозятся на полигон согласно Договора.

4.1Виды и объемы образования отходов производства и потребления

1. Смешанные коммунальные отходы (Коммунальные отходы) (Количество работающих – 75 человек). Код отхода 200301.

Норма образования бытовых отходов (m_1 , τ /год) определяется с учетом удельных санитарных норм образования бытовых отходов на промышленных предприятиях – $0.3~{\rm M}^3$ /год на человека, списочной численности работающих и средней плотности отходов, которая составляет $0.25~{\rm T/M}^3$.

Расчет объема твердых бытовых (коммунальных) отходов определяется по формуле:

$$M_{\mathit{TBO}} = \frac{T \times n \times N}{365}$$
, т/год (6.2. 16)

Т –462 дня работы строительного участка;

n — среднегодовые нормы образования ТБО, т/год/1 работника;

N — количество работающих человек (75 человек строителей)

$$M_{\text{обр.}} = 0.3 \times 0.25 \times 75/365 * 462 = 7,120 \text{ т/год}$$

Временное хранение в контейнерах – не более 6 месяцев

2. Отходы красок и лаков, содержащие органические растворители или другие опасные вещества (Тара из-под лакокрасочных материалов). Код отхода 08 01 11*

Методика разработки проектов нормативов предельного размещения отходов производства и потребления Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» апреля 2008г. № 100-п

$$N=Mi*n+M\kappa*\alpha i$$
, т/год

Мі-масса вида тары, т/год

п- число видов тары

Мк-масса краски в і- ой таре=0,005 т

Аі- содержание остатка краски в таре в долях от $M\kappa (0,01-0,05)=0,05$

Р-4 - 0,0283839 т

ПФ-115 - 0,5771035 т

Маслянная краска - 7,5094062 т

Лаки - 0,21151448 т

ГФ-021 - 0.3637737 т

Уайт-спирит - 1,1688779 т

ХВ-124 - 0,000281 т

ХС-720 - 0,0033 т

ИТОГО: 9.86264068 т = 9862.64068 кг = 197 банок по 50 кг

N=0,0002*197+9,86264068 *0,05=0,0394+0,493132034=0,53253 T

Временное хранение – не более 6 месяцев, в контейнерах

3. Отходы сварки (огарки электродов и негорючие части электродов, количество которых составляет 15%). Код отхода 12 01 13

Отходы складируются в металлические контейнеры и по мере накопления передаются сторонним организациям.

Норма образования отхода составляет:

$$N = Moct * \alpha, \tau/год$$

где: Мост – фактический расход электродов, т/год;

 α – остаток электрода, α = 0,015 от массы электрода.

N = 0.015*6.80722 = 0.10211 T/год

Временное хранение – не более 6 месяцев

4. Смешанные отходы строительства и сноса, за исключением упомянутых в 17 09 01, 17 09 02, 17 09 03 (Строительные отходы)

Расчетное количество образования строительного мусора 15 тонн. Строительный мусор складируются в металлический контейнер и по мере накопления вывозятся и сдаются на полигон ТБО.

Объем образования отходов и их классификация представлены в таблице 4.1.

5. Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами (ветошь промасленная). Код отхода 15//15 02//15 02 02*

Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра охраны окружающей среды РК от 18.04.2008г. №100-п

Нормативное количество отхода определяется исходя из поступающего количества ветоши (Мо, τ /год), норматива содержания в ветоши масел (М) и влаги (W)

$$N = Mo + M + W = 0,4788 \text{ T}$$

Мо - количество поступающей ветоши, т/год Мо= 0.3770 т М - норматив содержания в ветоши масел; М= 0.12* Мо = 0.0452

W - содержание влаги в ветоши; W = 0.15* Mo = 0.0566

Хранение отходов предусматривается в специально отведенном контейнере, вывоз 1 раз в неделю спец организации по договору.

Таблица 4.1 – Лимиты накопления отходов на период строительства

№ п/п	Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
	1	2	3
	Всего:	•	23,23344
	В т.ч. отходы производства:	-	16,11344
	отходы потребления:	-	7,120
	Опасные отход	Ы	
1	Абсорбенты, фильтровальные материалы (включая масляные фильтры иначе не определенные), ткани для вытирания, защитная одежда, загрязненные опасными материалами (ветошь промасленная)	-	0,4788
2	Отходы красок и лаков, содержащие органические растворители или другие	-	0,53253

№ п/п	Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год			
	опасные вещества (Тара из-под лакокрасочных материалов)					
	Неопасные отходы					
3	Отходы сварки (огарки сварочных электродов)	-	0,10211			
4	Смешанные отходы строительства и сноса, за исключением упомянутых в 17 09 01, 17 09 02, 17 09 03 (Строительные отходы)	-	15			
5	Смешанные коммунальные отходы (Коммунальные отходы)	-	7,120			

Таблица 4.2. Декларируемое количество опасных отходов на 2025-2026 гг.

Декларируемый год — 2025-2026 гг.						
Наименование отхода	Количество образования, т/год	Количество накопления, т/год				
Ветошь промасленная	0,4788	0,4788				
Код отхода 15 02 02*						
Тара из-под лакокрасочных	0,53253	0,53253				
материалов						
Код отхода 08 01 11*						

Таблица 4.3. Декларируемое количество неопасных отходов на 2025-2026 гг.

Декларируемый год – 2025-2026 гг.					
Наименование отхода	Количество образования, т/год	Количество накопления, т/год			
Коммунальные отходы Код отхода 20 03 01	7,120	7,120			
Отходы сварки (огарки сварочных электродов) Код отхода 12 01 13	0,10211	0,10211			
Смешанные отходы строительства и сноса, за исключением упомянутых в 17 09 01, 17 09 02, 17 09 03 (Строительные отходы)	15	15			

5. Оценка физических воздействий на окружающую среду

Современное состояние по оценке физического воздействия в пределах физического воздействия в пределах рассматриваемой территории приводится по шуму, вибрации, электромагнитному излучению.

Шум. К источникам шума техногенного происхождения относятся все применяемые в современной технике механизмы, оборудование и транспорт, которые создают значительное шумовое загрязнение окружающей среды.

Нормативные документы устанавливают определенные требования к методам измерений и расчетов интенсивности шума в местах нахождения людей, допустимую интенсивность фактора и зависимость интенсивности от продолжительности воздействия шума.

Уровень шума на открытых рабочих площадках зависит от расстояния до работающего агрегата, а также от того, где находится само работающее оборудование – в

помещении или вне его, от наличия ограждения, положения места измерения относительно направленного источника шума, метеорологических условий и др.

На исследуемых производственных объектах технологические процессы эксплуатации не являются источниками шумового воздействия на здоровье человека, непосредственно принимающих участие в технологических процессах, а также на флору и фауну.

Допустимый уровень звука на постоянных рабочих местах на территории предприятия определен в размере 80дБа.

Измерение шума на рабочих местах выполняются в соответствии с утвержденными Минздравом «Методическими указаниями по проведению измерений и гигиенической оценки шумов на рабочих местах». Для контроля уровня шума используют шумомеры Ш-70, ИВШ-1.

Снижение звукового давления на производственном участке может быть достигнуто при разработке следующих специальных мероприятий:

- оптимизация и регулирование транспортных потоков;
- уменьшение, по мере возможности, движения грузовых автомобилей большой грузоподъемности;
- уменьшение шума в его источнике (замена шумных технологических процессов и механизмов бесшумными или менее шумными);
 - применение смазки соударяющихся деталей вязкими жидкостями;
- агрегаты, создающие чрезмерный шум вследствие выхлопа или газов снабжать специальными глушителями;
- уменьшение шума на пути его распространения (устройство звукоизолирующих ограждений, экранов);
- применение для защиты органов слуха средств индивидуальной защиты (беруши, наушники, шлемы).

Вибрация. Основными источниками вибраций являются различные технологические установки (компрессоры, двигатели), строительная техника (молоты, пневмовибрационная техника), насосные станции и т.д.

Особенность действия вибраций заключается в том, что эти механические упругие колебания распространяются по грунту и оказывают своё воздействие на фундаменты различных сооружений, вызывая затем звуковые колебания в виде структурного шума.

Нормируемыми параметрами вибрации являются средние квадратичные величины и уровни колебательной скорости или амплитуды перемещений горизонтальной и вертикальной вибрации в октавах полосах частот от 2 до 63Гц, возбуждаемые работой оборудования и передаваемые на рабочие места в производственных помещениях.

Общая вибрация подразделяется на 3 категории:

- транспортная;
- транспортно-технологическая;
- технологическая.

Электромагнитное излучение. Производственные объекты, связанные электромагнитным излучением промысле это: линия электропередач, на трансформаторные станции, электродвигатели, персональные компьютеры, радиотелефоны. Воздействие электромагнитного излучения происходит от различного электрооборудования и линейных источников., специальные меры электромагнитных излучений применяются в случае использования на предприятии электроустановок промышленной частоты напряжением выше 330. Защита от воздействия электрического поля напряжением 220В и ниже не требуется.

Применение современного оборудования для всех технологических процессов и предпринимаемые меры по минимизации воздействия шума и практическое отсутствие источников электромагнитного излучения, позволяют говорить о том, что на рабочих местах не будут превышаться установленные нормы. В связи с этим, сверхнормативное

воздействие данных физических факторов на людей и другие живые организмы за пределами СЗЗ предприятия не ожидается. Интенсивность воздействия оценивается как незначительная.

Радиационное воздействие. Природная радиационная обстановка соответствует относительно низкому уровню радиоактивности, характерному для селитебных территорий равнинных ландшафтов. Предприятие на балансе не имеет источников радиационного воздействия, следственно на радиационную обстановку не воздействует.

6. Оценка воздействий на земельные ресурсы и почвы

В геологическом строении участка на исследованную глубину 5,0-13,0 м принимают аллювиальные аллювиально-пролювиальные И отложения верхнечетвертичного возраста (apQII-III, aQII-III) представленные суглинками, суглинками заиленными, а также песками различной крупности, которые залегают на кровле мезозойских элювиальных образований (еМz) дресвяно-щебенистым грунтом. В основании разреза залегают образования ордовика, представленные песчаниками, которые переслаиваются. Современные образования представлены насыпным грунтом и растительным слоем почвы.

7. Оценка воздействия на растительность

Местность представляет собой однообразную, лишенную крупной растительности равнину. Растительность характеризуется обедненным видовым составом и низкой высотой травостоя. Растительность характеризуется обедненным видовым составом и низкой высотой травостоя (ковыль волосатик (Stipa capillata), типчак (Festuca sulcata), келерия стройная (Koeleria gracilis); разнотравье: грудницы - шерстистая и татарская (Linosyris villosa, Linosyris tatarica), зопник клубненосный (Phlomis tuberosa) и др., а также - полынь австрийская (Artemisia austriaca).

Рассматриваемая территория не относится к заповедной, древние культурные и исторические памятники, подлежащие охране, отсутствуют. Редкие растения, занесенные в Красную Книгу, так же отсутствуют. Необратимых негативных воздействий на растительный покров в результате производственной деятельности не ожидается.

При правильно организованном техническом уходе и обслуживании оборудования, строительной техники и автотранспорта (заправка в специально отведенных местах, использование поддонов, выполнение запланированных требований в управлении отходами и т.п.) воздействие загрязнения углеводородами и другими химическими веществами на растительный покров будет незначительным. Учитывая непродолжительный период работы техники, воздействие на растительность выбросов токсичных веществ с выхлопными газами будет также незначительным и временным.

Соблюдение существующих требований по проведению очистки территории после строительных работ, проведение рекультивационных работ позволит ускорить процесс восстановления растительности на нарушенных участках.

После проведения строительных работ произвести озеленение следующими видами:

Ведомость элементов озеленения в границе участка

Nº	Наименование породы и вида насаждения	Возраст лет	Кол., шт.	Примечание
	В границах участка			
	Кустарники			
2	Дерен белый	3-5	30	Ком d=0,5x0,4м, яма d=1,0x0,65м.
3	Рябина обыкновенная	3-5	23	Ком d=0,5x0,4м, яма d=1,0x0,65м.
4	Черемуха виргинская	3-5	15	Ком d=0,5x0,4м, яма d=1,0x0,65м.
	Итого, шт.		68	
	Газон, (м²)		1429,31	смесь трав
	Приствольные круги, (м²)		9,0	

8. Оценка воздействий на животный мир

Редкие животные, занесенные в Красную Книгу, так же отсутствуют. Необратимых негативных воздействий на животный мир в результате производственной деятельности не ожидается.

9. Оценка воздействий на ландшафты и меры по предотвращению, минимизации, смягчению негативных воздействий, восстановлению ландшафтов в случаях их нарушения.

Воздействие на ландшафты на период строительства и эксплуатации не ожидается.

10. Оценка воздействий на социально-экономическую среду

Изменения состояния компонентов окружающей среды, вызванные воздействием объекта строительства, оцениваются как незначительные. Отрицательное воздействие на здоровье населения не прогнозируется. Целью разработки данного рабочего проекта является строительство многоквартирного жилого комплекса с паркингом.

11. Оценка экологического риска реализации намечаемой деятельности в регионе

Термин риск используется в разных сферах человеческой деятельности, в основном характеризуя негативные проявления в окружении человека. Например, слово «риск» означает: пускаться наудачу, отважиться, отдать себя на волю случая. С другой стороны рисковать – значит подвергаться опасности, ожидать неудачу.

Понятие риска очень близко к понятию «вероятность». Исходя из теории вероятности, можно определить риск как количественный показатель опасности, вероятного ущерба, наступившего в результате проявления неблагоприятного события. При этом само событие тоже возникает с определенной вероятностью. Поэтому в целом к количественным показателям риска относятся:

- вероятность возникновения опасного фактора;
- возможность возникновения ущерба от проявления этого опасного фактора;
- неопределенность в оценке величины вероятности и ущерба.

Таким образом, в основе количественной оценки риска лежит статистический подход, который рассматривает риск как вероятность наступления неблагоприятного события и количественной меры проявления такого события в виде ущерба.

В современной экологи и гигиенической науке риск рассматривается как вероятность наступления события с неблагоприятными последствиями для окружающей среды или здоровья людей, обусловленными прогнозируемым негативным воздействием природных катаклизмов, хозяйственной деятельности, которое может привести к возникновению угроз экологической безопасности или здоровью населения.

Так как период строительства относится неклассифицируемым объектам, то оценку экологического риска нет необходимости проводить.

11.1.Комплексная оценка воздействие предприятия на окружающую среду

Экологические системы основаны на сложных взаимодействиях связанных индивидуальных компонентов и подсистем. Поэтому воздействие на один компонент может иметь эффект и на другие, которые могут быть в пространственном и временном отношении удалены от компонентов, которые подвергаются непосредственному воздействию.

Согласно Методическим указаниям по проведению оценки воздействия хозяйственной деятельности на окружающую среду утвержденном МООС (2009 год) наиболее приемлемым для решения комплексной оценки воздействия представляется использование трех основных показателей: пространственного и временного масштабов, и интенсивность.

Пространственные масштабы воздействия на окружающую среду определяются с использованием 4 категорий по следующим градациям и баллам:

- локальное воздействие (1) воздействия, оказывающие влияние на компоненты природной среды, ограниченные рамками территории (акватории) непосредственного размещения объекта или незначительно превышающими его по площади. Воздействия, оказывающие влияние на площади до 1 км². Воздействия, оказывающие влияние на элементарные природно-территориальные комплексы на суше на уровне фаций или урочищ;
- *ограниченное воздействие (2)* воздействия, оказывающие влияние на компоненты природной среды на территории (акватории) площадью до 10 км². Воздействия, оказывающие влияние на природно-территориальные комплексы на суше на уровне групп урочищ или местности;
- *местное воздействие (3)* воздействия, оказывающие влияние на компоненты природной среды на территории (акватории) до 100 км², оказывающие влияние на природно-территориальные комплексы на суше на уровне ландшафта;
- *региональное воздействие* (4) воздействия, оказывающие влияние на компоненты природной среды в региональном масштабе на территории (акватории) более 100 км², оказывающие влияние на природно-территориальные комплексы на суше на уровне ландшафтных округов или провинции.

Разделение пространственных масштабов опирается на характерные размеры географических образований, используемых для ландшафтной дифференциации территорий суши, площади наиболее крупных административных образований и т.п.

Временные масштабы воздействия определяются по следующим градациям и баллам:

Кратковременное воздействие (1) - длительность воздействия не превышает 6 месяцев;

Воздействие средней продолжительность (2) - от 6 месяцев до 1 года;

Продолжительное воздействие (3) - воздействие, наблюдаемое продолжительный период времени (более 1 года, но менее 3 лет) и обычно охватывает период строительства запроектированного объекта;

Многолетнее (постоянное) воздействие (4) - воздействия, наблюдаемые от 3 лет и более (например, шум от эксплуатации), и которые могут быть периодическими или часто

повторяющимися. Например, воздействие от регулярных залповых выбросов ЗВ в атмосферу. В основном относится к периоду, когда начинается эксплуатация объекта.

При сезонных видах работ (которые проводятся, например, только в теплый период года в течение нескольких лет) учитывается суммарное фактическое время воздействия.

Величина (интенсивность) воздействия оценивается в баллах по таким градациям:

незначительная (1) — изменения в природной среде не превышают существующие пределы природной изменчивости;

слабая (2) — изменения в природной среде превышают пределы природной изменчивости, Природная среда полностью самовосстанавливается;

умеренная (3) – изменения в природной среде, превышающие пределы природной изменчивости, приводят к нарушению отдельных компонентов природной среды. Природная среда сохраняет способность к самовосстановлению;

сильная (4) — изменения в природной среде приводят к значительным нарушениям компонентов природной среды и/или экосистемы. Отдельные компоненты природной среды теряют способность к самовосстановлению (это утверждение не относится к атмосферному воздуху).

Значимость воздействия является по сути комплексной (интегральной) оценкой.

Категории значимости являются единообразными для различных компонентов природной среды и могут быть уже сопоставимыми для определения компонента природной среды, который будет испытывать наиболее сильные воздействия. Значимость воздействия определяется по трем градациям и представлена в таблице 11.1.

Ка	гегории воздействия, бал	Л	Категор	ии значимости
Пространственный	Временной масштаб	Интенсивность	баллы	Значимость
масштаб		воздействия		
Локальное 1	Кратковременное 1	Незначительное 1		
			1-8	Воздействие
Ограниченное 2	Средней	Слабое 2		низкой
	продолжительности 2			значимости
	•		9- 27	Воздействие
Местное 3	Продолжительное 3	Умеренное 3]	средней
	1	•		значимости
			28 - 64	Воздействие
Региональное 4	Многолетнее 4	Сильное 4		высокой
				значимости

Таблица 11.1 Категории значимости воздействий

Для определения интегральной оценки воздействия результаты оценок воздействия на компоненты окружающей среды сведены в табличный материал.

Интегральная оценка воздействия по компонентам окружающей среды, в зависимости от показателей воздействия, представлена в таблице 11.2.

Таблица 11.2

Компонент		Показатели воздейс	ствия	Интегральная
окружающей	интенсивность	пространственный	временный масштаб	оценка
среды		масштаб		воздействия
Атмосферный воздух	Незначительное	Локальный (1)	Воздействие средней	Воздействие
	(1)		продолжительность (2)	низкой
				значимости (2)
Подземные воды	Незначительное	Локальный (0)	Кратковременное	Воздействие
	(0)		воздействие (0)	низкой
				значимости (0)
Почва	-	-	-	Воздействие
				низкой
				значимости (0)

Отходы	Слабая (2)	Локальный (1)	Кратковременное	Воздействие
			воздействие (1)	низкой
				значимости (2)
Растительность	-	-	-	Воздействие
				низкой
				значимости (0)
Животный мир	-	-	-	Воздействие
				низкой
				значимости (0)
Недра	Слабая (0)	Ограниченное (0)	Кратковременное	Воздействие
			воздействие (0)	низкой
				значимости (0)

Анализируя вышеперечисленные категории воздействия проектируемых работ на окружающую среду, можно сделать общий вывод, что значимость ожидаемого экологического воздействия при строительства принять как воздействие низкой значимости.

Список нормативно-методических документов

- 1. Экологический кодекс РК от 2 января 2021 года № 400-VI 3РК.
- 2. Инструкция по организации и проведению экологической оценки, приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.
- 3. Инструкция по определению категории объекта, оказывающего негативное воздействие на окружающую среду Приложение к приказу И.о. министра экологии, геологии и природных ресурсов Республики Казахстан от 19 октября 2021 года № 408.
- 4. Классификатор отходов. Приложение к приказу И.о. министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.
- 6. Санитарные правила "Санитарно-эпидемиологические требования к санитарнозащитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека" Утверждены приказом Исполняющий обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2
- 7. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005
- 8. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 9. Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005.
- 10. Земельный кодекс РК от 20 июня 2003 года № 442.

Приложение 1 — Ситуационная карта с указанием источников выбросов на период строительства

6001-6009 - неорганизованные источники

Приложение 2 – Расчет выбросов вредных веществ в атмосферу

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6001,

Источник выделения N 6001 01, Пылевыделение при разработке грунта

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение № к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Глина

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 3.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 7.2

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Доля пылевой фракции в материале(табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 14.9

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала(табл.7), B=0.6

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600$ $= 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 14.9 \cdot 10^{6} \cdot 0.6 / 3600 = 0.02533$

Время работы узла переработки в год, часов, RT2 = 1848

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.05 \cdot$ $0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 14.9 \cdot 0.6 \cdot 1848 = 0.119$

Максимальный разовый выброс , г/сек, G = 0.02533

Валовый выброс, т/год, M = 0.119

Итого выбросы от источника выделения: 001 Пылевыделение при разработке грунта

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0253300	0.1190000
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6002,

Источник выделения N 6002 01, Пылевыделение при обратной засыпке грунта

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-г
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 10

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.01

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 3.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 7.2

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.6

Доля пылевой фракции в материале(табл.1), KI = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 14.9

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала(табл.7), B=0.6

Макс. разовый выброс пыли при переработке, г/с (1), $GC = KI \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.05 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 14.9 \cdot 10^6 \cdot 0.6 / 3600 = 0.02533$

Время работы узла переработки в год, часов, RT2 = 1848

 $0.02 \cdot 1.2 \cdot 1 \cdot 0.01 \cdot 0.6 \cdot 14.9 \cdot 0.6 \cdot 1848 = 0.119$

Максимальный разовый выброс, г/сек, G = 0.02533

Валовый выброс, т/год, M = 0.119

Итого выбросы от источника выделения: 001 Пылевыделение при обратной засыпке грунта

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0253300	0.1190000
	в %: 70-20 (шамот, цемент, пыль цементного		
	производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей		
	казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6003, неорганизованный источник Источник выделения N 6003 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

46

Электрод (сварочный материал): АНО-6 Расход сварочных материалов, кг/год, B=2 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=1.9

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), GIS = 16.7 в том числе:

Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS=14.97 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B \ / \ 10^6 = 14.97 \cdot 2 \ / \ 10^6 = 0.00002994$ Максимальный из разовых выброс, г/с (5.2), $G=GIS \cdot BMAX \ / \ 3600 = 14.97 \cdot 1.9 \ / \ 3600 = 0.0079$

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS=1.73 Валовый выброс, т/год (5.1), $_M_=GIS\cdot B/10^6=1.73\cdot 2/10^6=0.00000346$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS\cdot BMAX/3600=1.73\cdot 1.9/3600=0.000913$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа	0.0079000	0.00002994
	оксид) /в пересчете на железо/ (274)		
0143	Марганец и его соединения /в пересчете на марганца	0.0009130	0.00000346
	(IV) оксид/ (327)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6003, Источник выделения N 6003 02, Газорезка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от резки металлов

Вид резки: Газовая

Разрезаемый материал: Сталь углеродистая Толщина материала, мм (табл. 4), L=5

Способ расчета выбросов: по времени работы оборудования Время работы одной единицы оборудования, час/год, T = 200

Удельное выделение сварочного аэрозоля, г/ч (табл. 4), GT = 74 в том числе:

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение, г/ч (табл. 4), GT = 1.1

Валовый выброс 3В, т/год (6.1), $_M_=GT\cdot_T_/10^6=1.1\cdot200/10^6=0.00022$ Максимальный разовый выброс 3В, г/с (6.2), $_G_=GT/3600=1.1/3600=0.0003056$

Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)

Удельное выделение, г/ч (табл. 4), GT = 72.9

Валовый выброс 3В, т/год (6.1), $\underline{M} = GT \cdot \underline{T} / 10^6 = 72.9 \cdot 200 / 10^6 = 0.01458$ Максимальный разовый выброс 3В, г/с (6.2), G = GT / 3600 = 72.9 / 3600 = 0.02025

Газы:

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение, г/ч (табл. 4), GT = 49.5

Валовый выброс 3В, т/год (6.1), $\underline{M} = GT \cdot \underline{T} / 10^6 = 49.5 \cdot 200 / 10^6 = 0.0099$ Максимальный разовый выброс 3В, г/с (6.2), $\underline{G} = GT / 3600 = 49.5 / 3600 = 0.01375$

Расчет выбросов оксидов азота:

Удельное выделение, г/ч (табл. 4), GT = 39

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс 3В, т/год (6.1), $_M_=KNO2\cdot GT\cdot _T_/10^6=0.8\cdot 39\cdot 200/10^6=0.00624$ Максимальный разовый выброс 3В, г/с (6.2), $G=KNO2\cdot GT/3600=0.8\cdot 39/3600=0.00867$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс 3В, т/год (6.1), $_M_=KNO\cdot GT\cdot _T_/10^6=0.13\cdot 39\cdot 200/10^6=0.001014$ Максимальный разовый выброс 3В, г/с (6.2), $_G_=KNO\cdot GT/3600=0.13\cdot 39/3600=0.001408$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.0202500	0.0145800
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.0003056	0.0002200
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0086700	0.0062400
0304	Азот (II) оксид (Азота оксид) (6)	0.0014080	0.0010140
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0137500	0.0099000

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6003,

Источник выделения N 6003 03, Сварка ацетилен-кислородным пламенем

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем

Расход сварочных материалов, кг/год, B = 885.7758386

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 0.7

------Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS=22

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B \ / \ 10^6 = 0.8 \cdot 22 \cdot 885.7758386 \ / \ 10^6 = 0.0156$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX \ / \ 3600 = 0.8 \cdot 22 \cdot 0.7 \ / \ 3600 = 0.00342$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO\cdot GIS\cdot B\ /\ 10^6=0.13\cdot 22\cdot 885.7758386\ /\ 10^6=0.002533$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO\cdot GIS\cdot BMAX\ /\ 3600=0.13\cdot 22\cdot 0.7\ /\ 3600=0.000556$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0034200	0.0156000
0304	Азот (II) оксид (Азота оксид) (6)	0.0005560	0.0025330

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6003, Источник выделения N 6003 04, Сварка пропан бутаном

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Расход сварочных материалов, $\kappa \Gamma / \Gamma \text{од}$, B = 3

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 3.1

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $r/\kappa \Gamma$ расходуемого материала (табл. 1, 3), GIS = 15

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), $_M_=KNO2 \cdot GIS \cdot B \ / \ 10^6 = 0.8 \cdot 15 \cdot 3 \ / \ 10^6 = 0.000036$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO2 \cdot GIS \cdot BMAX \ / \ 3600 = 0.8 \cdot 15 \cdot 3.1 \ / \ 3600 = 0.01033$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), $_M_=KNO\cdot GIS\cdot B\ /\ 10^6=0.13\cdot 15\cdot 3\ /\ 10^6=0.00000585$ Максимальный из разовых выброс, г/с (5.2), $_G_=KNO\cdot GIS\cdot BMAX\ /\ 3600=0.13\cdot 15\cdot 3.1\ /\ 3600=0.00168$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0103300	0.0000360
0304	Азот (II) оксид (Азота оксид) (6)	0.0016800	0.00000585

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6004,

Источник выделения N 6004 01, Склад щебня (разгрузочные работы)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение № к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

Материал: Щебенка

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.2

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 3.8

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 7.2

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.7

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм. G7 = 20

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.5

Доля пылевой фракции в материале(табл.1), KI = 0.04

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 2.3

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала(табл.7), B=0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6 \cdot B / 3600 = 0.04 \cdot 0.02 \cdot 1.7 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 2.3 \cdot 10^6 \cdot 0.5 / 3600 = 0.04344$

Время работы узла переработки в год, часов, RT2 = 1500

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B \cdot RT2 = 0.04 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.2 \cdot 0.5 \cdot 2.3 \cdot 0.5 \cdot 1500 = 0.1656$

Максимальный разовый выброс, г/сек, G = 0.0434

Валовый выброс, т/год, M = 0.1656

Итого выбросы от источника выделения: 001 Склад щебня (разгрузочные работы)

111010	perspectation manual perspectation out sixual interior (pur	programme purcers,	
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния	0.0434000	0.1656000

в %: 70-20 (шамот, цемент, пыль цементного
производства - глина, глинистый сланец, доменный
шлак, песок, клинкер, зола, кремнезем, зола углей
казахстанских месторождений) (494)

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6005, неорганизованный источник Источник выделения N 001, Пересыпка асфальтобенных смесей Список литературы:

- 1. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.б. Методика расчета выбросов вредных веществ при работе асфальтобетонных заводов

Тип источника выделения: Место разгрузки и складирования минерального материала Время работы оборудования, ч/год, $_T_=1200$

Материал: Холодный асфальт

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Вид хранения: Открытый склад (в штабелях или под навесом)

Операция: Разгрузка

Убыль материала, %(табл.3.1), P = 0.25 Масса материала, т/год, Q = 2049,95

Местные условия: Склад, хранилище открытый с 4-х сторон

Коэффициент, зависящий от местных условий (табл. 3.3), K2X = 1

Коэффициент, учитывающий убыль материалов в виде пыли, долях единицы, B = 0.12

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала (табл. 3.2), K1W = 0.2

Валовый выброс, т/г (ф-ла 3.5), $MC0 = B \cdot P \cdot Q \cdot K1W \cdot K2X \cdot 10^{-2} = 0.12 \cdot 0.25 \cdot 2 \cdot 0.49.95 \cdot 0.2 \cdot 1 \cdot 10^{-2} = 0.122997$

Макс. разовый выброс , г/с, $\underline{G} = MC0 \cdot 10^6 / (3600 \cdot \underline{T}) = 0,122997 \cdot 10^6 / (3600 \cdot 1200) = 0,0284715$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0,0284715	0,122997
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый сланец,		
	доменный шлак, песок, клинкер, зола, кремнезем,		
	зола углей казахстанских месторождений) (494)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006,

Источник выделения N 6006 01, Покрасочные работы. Марка ЛКМ: Р-4

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0283839

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.02

Марка ЛКМ: Растворитель Р-4

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 1401 Пропан-2-он (Ацетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0283839 \cdot 100 \cdot 26 \cdot 100 \cdot 10^{-6} = 0.00738$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.02 \cdot 100 \cdot 26 \cdot 100 / (3.6 \cdot 10^6) = 0.001444$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0283839 \cdot 100 \cdot 12 \cdot 100 \cdot 10^{-6} = 0.003406$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.02 \cdot 100 \cdot 12 \cdot 100 / (3.6 \cdot 10^6) = 0.000667$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0283839 \cdot 100 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.0176$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.02 \cdot 100 \cdot 62 \cdot 100 / (3.6 \cdot 10^6) = 0.003444$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0621	Метилбензол (349)	0.0034440	0.0176000
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.0006670	0.0034060
1401	Пропан-2-он (Ацетон) (470)	0.0014440	0.0073800

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006,

Источник выделения N 6006 02, Покрасочные работы. Марка ЛКМ: Эмаль ПФ-115

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.5771035

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.4

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.5771035 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1298$ Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.4 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.025$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.5771035 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1298$ Максимальный из разовых выброс ЗВ (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.4 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.025$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0250000	0.1298000
2752	Уайт-спирит (1294*)	0.0250000	0.1298000

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006,

Источник выделения N 6006 03, Покрасочные работы. Марка ЛКМ: Маслянная краска

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 7.5094062

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, *MS1* = 7.5

Марка ЛКМ: Эмаль МС-17

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 57

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 7.5094062 \cdot 57 \cdot 100 \cdot 100 \cdot 10^{-6} = 4.28$ Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 7.5 \cdot 57 \cdot 100 \cdot 10^{-6}$

 $100 / (3.6 \cdot 10^6) = 1.188$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	1.1880000	4.2800000

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006, неорганизованный источник

Источник выделения N 6006 04, Покрасочные работы. Марка ЛКМ: Лаки

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.01151448

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.01

Марка ЛКМ: Лак БТ-99

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 56

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 96

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS\cdot F2\cdot FPI\cdot DP\cdot 10^{-6}=0.01151448\cdot 56\cdot 96\cdot 100\cdot 10^{-6}=0.00619$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 56 \cdot 96 \cdot 100 / (3.6 \cdot 10^6) = 0.001493$

<u>Примесь: 2752 Уайт-спирит (1294*)</u>

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $M_{-} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.01151448 \cdot 56 \cdot 4 \cdot 100 \cdot 10^{-6} = 0.000258$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 56 \cdot 4 \cdot 100 / (3.6 \cdot 10^6) = 0.0000622$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0014930	0.0061900
2752	Уайт-спирит (1294*)	0.0000622	0.0002580

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006,

Источник выделения N 6006 05, Покрасочные работы. Марка ЛКМ: ГФ-021

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.3637737

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.3

Марка ЛКМ: Грунтовка ГФ-021

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.3637737 \cdot 100 \cdot$

0.1637

Максимальный из разовых выброс ЗВ (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.3 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.0375$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0375000	0.1637000

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006,

Источник выделения N 6006 06, Покрасочные работы. Марка ЛКМ: Уайт-спирит

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, *MS* = 1.1688779

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 1.2

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, *FPI* = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 1.1688779 \cdot 100 \cdot 100 \cdot 100 \cdot 10^{-6} = 1.17$

Максимальный из разовых выброс 3B (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1.2 \cdot 100 \cdot 100$

 $100 / (3.6 \cdot 10^6) = 0.333$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2752	Уайт-спирит (1294*)	0.3330000	1.1700000

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006,

Источник выделения N 6006 07, Покрасочные работы. Марка ЛКМ: XB-124

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.000281

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.01

Марка ЛКМ: Эмаль ХВ-124

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 27

<u> Примесь: 1401 Пропан-2-он (Ацетон) (470)</u>

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 26 \cdot 100 \cdot 10^{-6} = 0.00001973$

Максимальный из разовых выброс ЗВ (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 27 \cdot 26 \cdot 100 / (3.6 \cdot 10^6) = 0.000195$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 12 \cdot 100 \cdot 10^{-6} = 0.0000091$

Максимальный из разовых выброс ЗВ (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 27 \cdot 12 \cdot 100 / (3.6 \cdot 10^6) = 0.00009$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 62 \cdot 100 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 10^{-6} = 0.000281 \cdot 27 \cdot 10^{-6} = 0.000281 \cdot 10^$

0.000047

Максимальный из разовых выброс ЗВ (5-6), г/с, _ G_- = $MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 27 \cdot 62 \cdot 100 / (3.6 \cdot 10^6) = 0.000465$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0621	Метилбензол (349)	0.0004650	0.0000470
1210	Бутилацетат (Уксусной кислоты бутиловый эфир)	0.0000900	0.0000091
	(110)		
1401	Пропан-2-он (Ацетон) (470)	0.0001950	0.00001973

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6006,

Источник выделения N 6006 08, Покрасочные работы. Марка ЛКМ: ХС-720

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0033

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.01

Марка ЛКМ: Эмаль ХС-75У

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 68.5

Примесь: 1401 Пропан-2-он (Ацетон) (470)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26.43

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0033 \cdot 68.5 \cdot 26.43 \cdot 100 \cdot 10^{-6} = 0.000597$

Максимальный из разовых выброс 3B (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 68.5 \cdot 26.43 \cdot 100 / (3.6 \cdot 10^6) = 0.000503$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12.12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0033 \cdot 68.5 \cdot 12.12 \cdot 100 \cdot 10^{-6} = 0.000274$

Максимальный из разовых выброс 3B (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 68.5 \cdot 12.12 \cdot 100 / (3.6 \cdot 10^6) = 0.0002306$

Примесь: 0621 Метилбензол (349)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 61.45

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0033 \cdot 68.5 \cdot 61.45 \cdot 100 \cdot 10^{-6} = 0.00139$

Максимальный из разовых выброс 3B (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 68.5 \cdot 61.45 \cdot 100 / (3.6 \cdot 10^6) = 0.00117$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0621	Метилбензол (349)	0.0011700	0.0013900
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.0002306	0.0002740
1401	Пропан-2-он (Ацетон) (470)	0.0005030	0.0005970

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6007,

Источник выделения N 001, Гидроизоляция битумом

Список литературы:

- 1. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.б. Методика расчета выбросов вредных веществ при работе асфальтобетонных заводов

Тип источника выделения: Битумоплавильная установка

Время работы оборудования, ч/год, $_{_}T_{_}=1000$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Объем производства битума, т/год, MY = 70,92

Валовый выброс, т/год (ф-ла 6.7[1]), $M_{-} = (1 \cdot MY) / 1000 = (1 \cdot 70.92) / 1000 = 0.07092$

Максимальный разовый выброс, г/с, $_G_ = _M_ \cdot 10^6 / (_T_ \cdot 3600) = 0,07092 \cdot 10^6 / (1000 \cdot 3600) = 0,0197$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,0197	0,07092
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6008, Источник выделения N 001, Пайка припоями

Список литературы:

1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 4.10. Медницкие работы) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗВ ПРИ ПРОВЕДЕНИИ МЕДНИЦКИХ РАБОТ

Вид выполняемых работ: Пайка электропаяльниками мощностью 20-60 кВт

Марка применяемого материала: ПОС-30

"Чистое" время работы оборудования, час/год, T = 20

Количество израсходованного припоя за год, кг, M = 0.298

Примесь: 0184 Свинец и его неорганические соединения /в пересчете на свинец/ (513)

Удельное выделение 3В, г/с(табл.4.8), Q = 0.0000075

Валовый выброс, т/год (4.29), $_M_ = Q \cdot T \cdot 3600 \cdot 10^{-6} = 0.0000075 \cdot 20 \cdot 3600 \cdot 10^{-6} = 0.00000054$ Максимальный разовый выброс 3B, г/с (4.31), $_G_ = (_M_ \cdot 10^6) / (T \cdot 3600) = (0.00000054 \cdot 10^6) / (20 \cdot 3600) = 0.0000075$

Примесь: 0168 Олово оксид /в пересчете на олово/ (Олово (ІІ) оксид) (446)

Удельное выделение 3В, г/с(табл.4.8), Q = 0.0000033

Валовый выброс, т/год (4.29), $_M_ = Q \cdot T \cdot 3600 \cdot 10^{-6} = 0.0000033 \cdot 20 \cdot 3600 \cdot 10^{-6} = 0.0000002376$ Максимальный разовый выброс 3B, г/с (4.31), $_G_ = (_M_ \cdot 10^6) / (T \cdot 3600) = (0.0000002376 \cdot 10^6) / (20 \cdot 3600) = 0.0000033$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0168	Олово оксид /в пересчете на олово/ (Олово (II)	0.0000033	0.0000002376
	оксид) (446)		
0184	Свинец и его неорганические соединения /в	0.0000075	0.00000054
	пересчете на свинец/ (513)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 6009, Неорганизованный источник Источник выделения N 001, Автотранспорт

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

Расчетный период: Переходный период (t>-5 и t<5)

Температура воздуха за расчетный период, град. С, T = 0

Тип машины: Грузовые автомобили дизельные свыше 5 до 8 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 365

Наибольшее количество автомобилей, выезжающих со стоянки в течении часа, NK1=2

Общ. количество автомобилей данной группы за расчетный период, шт., NK = 12

Коэффициент выпуска (выезда), A = 1

Экологический контроль не проводится

Время прогрева двигателя, мин (табл. 3.20), TPR = 6

Время работы двигателя на холостом ходу, мин, TX = 1

Пробег автомобиля от ближайшего к выезду места стоянки до выезда со стоянки, км, LBI = 0.01

Пробег автомобиля от наиболее удаленного к выезду места стоянки до выезда со стоянки, км, LD1 = 0.02

Пробег автомобиля от ближайшего к въезду места стоянки до въезда на стоянку, км, LB2 = 0.01

Пробег автомобиля от наиболее удаленного от въезда места стоянки до въезда на стоянку, км, LD2 = 0.02

Суммарный пробег по территории или помещению стоянки (выезд), км (3.5), L1 = (LB1 + LD1)/2 = (0.01 + 0.02)/2 = 0.015

Суммарный пробег по территории или помещению стоянки (въезд), км (3.6), L2 = (LB2 + LD2) / 2 = (0.01 + 0.02) / 2 = 0.015

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс 3B при прогреве двигателя, г/мин, (табл.3.7), MPR = 3.96

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 5.58

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 2.8

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 3.96 \cdot 6 + 5.58 \cdot 0.015 + 2.8 \cdot 1 = 26.64$

Выброс ЗВ при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 5.58 \cdot 0.015 + 2.8 \cdot 1 = 2.884$ Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (26.64 + 2.884) \cdot 12 \cdot 365 \cdot 10^{-6} = 0.1293$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 26.64 \cdot 2 / 3600 = 0.0148$

Примесь: 2732 Керосин (654*)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.72

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.99

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.35

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.72 \cdot 6 + 0.99 \cdot 0.015 + 0.35 \cdot 1 = 4.685$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.99 \cdot 0.015 + 0.35 \cdot 1 = 0.365$

Валовый выброс 3В, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (4.685 + 0.365) \cdot 12 \cdot 365 \cdot 10^{-6} = 0.0221$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 4.685 \cdot 2 / 3600 = 0.002603$

РАСЧЕТ выбросов оксидов азота:

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.8

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 3.5

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.6

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.8 \cdot 6 + 3.5 \cdot 0.015 + 0.6 \cdot 1 = 5.45$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 3.5 \cdot 0.015 + 0.6 \cdot 1 = 0.653$ Валовый выброс 3В, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (5.45 + 0.653) \cdot 12 \cdot 365 \cdot 10^{-6} = 0.02673$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 5.45 \cdot 2 / 3600 = 0.00303$

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=0.8 \cdot M=0.8 \cdot 0.02673=0.0214$ Максимальный разовый выброс,г/с, $GS=0.8 \cdot G=0.8 \cdot 0.00303=0.002424$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $\underline{M} = 0.13 \cdot M = 0.13 \cdot 0.02673 = 0.003475$ Максимальный разовый выброс,г/с, $GS = 0.13 \cdot G = 0.13 \cdot 0.00303 = 0.000394$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.108

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.315

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.03

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.108 \cdot 6 + 0.315 \cdot 0.015 + 0.03 \cdot 1 = 0.683$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.315 \cdot 0.015 + 0.03 \cdot 1 = 0.0347$

Валовый выброс 3В, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.683 + 0.0347) \cdot 12 \cdot 365 \cdot 10^{-6} = 0.003144$

Максимальный разовый выброс 3B, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.683 \cdot 2 / 3600 = 0.0003794$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Удельный выброс 3В при прогреве двигателя, г/мин, (табл.3.7), MPR = 0.0972

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.504

Удельные выбросы ЗВ при работе на холостом ходу, г/мин,

(табл.3.9), MXX = 0.09

Выброс 3В при выезде 1-го автомобиля, грамм, $M1 = MPR \cdot TPR + ML \cdot L1 + MXX \cdot TX = 0.0972 \cdot 6 + 0.504 \cdot 0.015 + 0.09 \cdot 1 = 0.681$

Выброс 3В при въезде 1-го автомобиля, грамм, $M2 = ML \cdot L2 + MXX \cdot TX = 0.504 \cdot 0.015 + 0.09 \cdot 1 = 0.0976$

Валовый выброс ЗВ, т/год (3.7), $M = A \cdot (M1 + M2) \cdot NK \cdot DN \cdot 10^{-6} = 1 \cdot (0.681 + 0.0976) \cdot 12 \cdot 365 \cdot 10^{-6} = 0.00341$

Максимальный разовый выброс 3В, г/с (3.10), $G = MAX(M1,M2) \cdot NK1 / 3600 = 0.681 \cdot 2 / 3600 = 0.000378$

ИТОГО выбросы по периоду: Переходный период (t>-5 и t<5)

Тип ма	Тип машины: Грузовые автомобили дизельные свыше 5 до 8 т (СНГ)						
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,		
cym	шm		шm.	км	км		
365	12	1.00	2	0.015	0.015		
3 B	Tpr	Mpr	Tx	Mxx	, <i>Ml</i> ,	z/c	т/год
	мин	г/ми		г/ми	н г/км		
0337	6	3.96	1	2.8	5.58	0.0148	0.1293
2732	6	0.72	1	0.35	0.99	0.002603	0.0221
0301	6	0.8	1	0.6	3.5	0.002424	0.0214
0304	6	0.8	1	0.6	3.5	0.000394	0.003475

0328	6	0.108	1	0.03	0.315	0.0003794	0.003144
0330	6	0.097	1	0.09	0.504	0.000378	0.00341

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0024240	0.0214000
0304	Азот (II) оксид (Азота оксид) (6)	0.0003940	0.0034750
0328	Углерод (Сажа, Углерод черный) (583)	0.0003794	0.0031440
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0003780	0.0034100
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0148000	0.1293000
2732	Керосин (654*)	0.0026030	0.0221000

Приложение 3 – Исходные данные, представленные для разработки проектной документации Заказчиком (инициатором проектируемой деятельности)

- 1. Пылевыделение при разработке грунта. Количество отгружаемого (перегружаемого) материала 10 174,27 м3.
- 2. Пылевыделение при обратной засыпке грунта. Количество отгружаемого (перегружаемого) материала 10 174,27 м3.
- 3. Сварочные работы, расход электродов марки АНО-6 2 807,22 кг/период.
- 4. Газорезка. Вид резки: Газовая. Разрезаемый материал: Сталь углеродистая. Толщина материала 5 мм. Способ расчета выбросов: по времени работы оборудования. Время работы одной единицы оборудования 200 час.
- 5. Сварка ацетилен-кислородным пламенем. Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем. Расход сварочных материалов 885,7758386 кг/год.
- 6. Сварка пропан бутаном. Вид сварки: Газовая сварка стали ацетиленкислородным пламенем. Газовая сварка стали с использованием пропанбутановой смеси. Расход сварочных материалов 3 679,8041897 кг/год.
- 7. Склад щебня (разгрузочные работы), расход щебня 1 266,95 м³.
- 8. Пересыпка асфальтобетонных смесей. Масса материала 2 049,95 т/период.
- 9. Покрасочные работы. Марка ЛКМ: Р-4. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0283839 тонны.
- 10. Покрасочные работы. Марка ЛКМ: Эмаль ПФ-115. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,5771035 тонны.
- 11. Покрасочные работы. Марка ЛКМ: Маслянная краска. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 7,5094062 тонны.
- 12. Покрасочные работы. Марка ЛКМ: Лаки. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,01151448 тонны.
- 13. Покрасочные работы. Марка ЛКМ: ГФ-021. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,3637737 тонны.
- 14. Покрасочные работы. Марка ЛКМ: Уайт-спирит. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 1,1688779 тонны.
- 15. Покрасочные работы. Марка ЛКМ: ХВ-124. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,000281 тонны.
- 16. Покрасочные работы. Марка ЛКМ: ХС-720. Технологический процесс: окраска и сушка. Фактический годовой расход ЛКМ 0,0033 тонны.
- 17. Гидроизоляция битумом. Масса материала 70,92 т/период.
- 18. Пайка припоями. Расход припоя 0,298 кг.
- 19. Автотранспорт. Тип топлива: Дизельное топливо. Количество рабочих дней в году 365 дней. Наибольшее количество автомобилей, выезжающих со стоянки в течении часа 2 Общ. количество автомобилей данной группы за расчетный период, 12 шт. Тип машины: Грузовые автомобили карбюраторные свыше 2 т до 5 т (СНГ).
- 20. Строительные отходы 15 т

Приложение 4 – Материалы расчетов максимальных приземных концентраций вредных веществ

```
2. Параметры города
УПРЗА ЭРА v2.5. Модель: ОНД-86
Название Астана
        Коэффициент А = 200
        козфициент н = 200
Скорость ветра Ump = 12.0 м/с
Средняя скорость ветра= 3.8 м/с
Температура летняя = 26.8 град.С
Температура зимняя = -14.0 град.С
        Коэффициент рельефа = 1.00
Площадь города = 0.0 кв.км
        Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
        Фоновая концентрация на постах (в мг/м3 / долях ПДК)
                   Штиль | Северное | Восточное |
<=2м/с | направление | направление |
|Код загр|
               U<=2m/c
                               |направление |направление |направление |направление
I вешества I
|Пост N 009: X=0, Y=0
    0301
                  0.09300001
                                     0.06070001
                                                       0.1141000|
                                                                          0.05650001
                                                                                             0.0509000
                  0.4650000|
                                                       0.5705000|
                                     0.3035000|
                                                                          0.2825000|
                                                                                             0.2545000
                                 | 0.0596000| 0.0851000| 0.1020000| 0.1020000| 0.1192000| 0.1702000| 0.2040000| 0.8880000| 2.5181000| 1.4301000| 0.1776000| 0.5036200| 0.2860200|
    0330
                  0.07800001
                                                                                             0.0606000
    0337 I
                  2.78130001
                                                                                             1.1573000
                                                                                          0.2314600|
               0.5562600|
3. Исходные параметры источников. 
УПРЗА ЭРА v2.5. Модель: ОНД-86
                   Город
        Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/
           Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
4. Расчетные параметры См, Им, Хм
    УПРЗА ЭРА v2.5. Модель: ОНД-86
                      :004 Астана.
:0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
        Город
        Объект
        ообект :0031 мак р-н пересечения улиц ж. нажимеденова и A426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/
                       ПДКр для примеси 0123 = 0.4 мг/м3 (=10ПДКс.с.)
     Для линейных и площадных источников выброс является суммарным по
     всей площади, а Cm` есть концентрация одиночного источника с
 Суммарный Мq =
                               0.007900 r/c
       Сумма См по всем источникам =
                                                        2.116204 долей ПДК
           Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    Управляющие параметры расчета
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 80х 40 с шагом 10 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей UCB
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы.
    УПРЗА ЭРА V2.5. МОДель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
        Бар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/
           Расчет проводился на прямоугольнике 1
           с параметрами: координаты центра X= размеры: Длина (по X) =
                                                                      544 Y=
                                                                    80, Ширина (по Y) =
                               шаг сетки =
                                                    10.0
                    Расшифровка обозначений

Qc - суммарная концентрация [доли ПДК]

Cc - суммарная концентрация [мг/м.куб]
```

```
| Фоп- опасное направл. ветра [ угл. град.] | Иоп- опасная скорость ветра [ M/c ]
      -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Bи, Ки не печатаются |
       302 : Y-строка 1 Cmax= 0.958 долей ПДК (x= 514.0; напр.ветра=169)
ν=
       504: 514: 524: 534: 544: 554: 564: 574: 584:
     0.774: 0.958: 0.933: 0.727: 0.511: 0.356: 0.253: 0.152: 0.119
Cc: 0.310: 0.383: 0.373: 0.291: 0.205: 0.142: 0.101: 0.061: 0.048:
Фоп: 145 : 169 : 197 : 219 : 233 : 241 : 247 : 250 : 253 :
Uoп: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 12.00 :
       504: 514: 524: 534: 544: 554: 564: 574: 584:
Cc: 0.455: 0.646: 0.614: 0.415: 0.260: 0.167: 0.113: 0.070: 0.048:
Фол: 125 : 159 : 211 : 237 : 249 : 255 : 257 : 260 : 261 : 

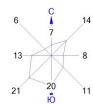
Uon: 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 12.00 :
      282 : У-строка 3 Стах= 1.994 долей ПДК (х= 524.0; напр.ветра=270)
              514:
                      524 •
                              534: 544:
                                               554: 564:
                                                                574:
Uon: 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 12.00 :
       272 : Y-строка 4 Cmax= 1.615 долей ПДК (x= 514.0; напр.ветра= 21)
                               534:
                                               554:
                                                                 574:
                        524:
                                        544:
                                                         564:
Qc: 1.137: 1.615: 1.535: 1.038: 0.649: 0.417: 0.283: 0.176: 0.121: Cc: 0.455: 0.646: 0.614: 0.415: 0.260: 0.167: 0.113: 0.070: 0.048: Фол: 55: 21: 329: 303: 291: 285: 283: 280: 279: Uon: 0.75: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 12.00:
      y=
     504: 514:
                               534: 544:
                                              554:
                        524:
                                                        564:
Qc: 0.774: 0.958: 0.933: 0.727: 0.511: 0.356: 0.253: 0.152: 0.119:
Сс: 0.310: 0.383: 0.373: 0.291: 0.205: 0.142: 0.101: 0.061: 0.048: Фоп: 35: 11: 343: 321: 307: 299: 293: 290: 287: Uon: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 12.00:
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
           Координаты точки : X= 524.0 м Y= 282.0 м
 Максимальная суммарная концентрация \overline{\ | \ Cs=\ 1.99372} доли ПДК
Достигается при опасном направлении 270 град. и скорости ветра 0.50~\text{m/c} Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
  7. Суммарные концентрации в узлах расчетной сетки.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на
                           железо/
        (Символ ^ означает наличие источника вблизи расчетного узла)
 *-|----|----|----|
1-| 0.774 0.958 0.933 0.727 0.511 0.356 0.253 0.152 0.119 |- 1
 2-1 1.137 1.615 1.535 1.038 0.649 0.417 0.283 0.176 0.121 1- 2
 3-C 1.347 1.911 1.994 1.213 0.713 0.443 0.295 0.185 0.122 C- 3
 4-| 1.137 1.615 1.535 1.038 0.649 0.417 0.283 0.176 0.121 |- 4
 5-| 0.774 0.958 0.933 0.727 0.511 0.356 0.253 0.152 0.119 |- 5
```

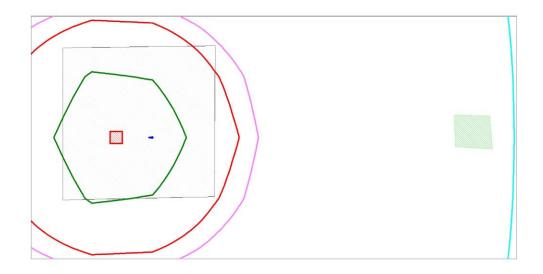
```
В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См =1.99372 долей ПДК
Достигается в точке с координатами: XM = 524.0M (X-столбец 3, Y-строка 3) YM = 282.0 м При опасном направлении ветра : 270 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.


Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
         Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/
         Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
         Всего просчитано точек: 4
                                    _Расшифровка_обозначений_
                  | Ос - суммарная концентрация [доли ПДК]
| Сс - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Иоп- опасная скорость ветра [ м/с ]
         -Если в расчете один источник, то его вклад и код не печатаются |
-Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
           280:
                      286:
                                280:
                                           286:
         574: 574: 580:
Qc: 0.184: 0.183: 0.134: 0.134: Cc: 0.074: 0.073: 0.054: 0.053:
Фоп: 273 : 265 : 271 : 267 :


Uoп: 0.75 : 0.75 : 0.75 : 0.75 :
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
               Координаты точки : X= 574.0 м Y= 280.0 м
 Максимальная суммарная концентрация | Cs= 0.18439 доли 1 0.07376 мг/м3
                                                                     0.18439 доли ПДК
Достигается при опасном направлении 273 град. и скорости ветра 0.75~\text{m/c} Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
____ВКЛАДЫ_ИСТОЧНИКОВ__
```

Город: 004 Астана

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426 Вар.№ 2 УПРЗА ЭРА v2.5 Модель:

0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/

Макс концентрация 1.9937191 ПДК достигается в точке x= 524 y= 282 При опасном направлении 270° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТЬЫ ИСТОЧНИКОВ.
УПРЭМ ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н перессчения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) )
             Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.05~П>~
4. Расчетные параметры См, Uм, Xм
    Расчетные параметры См, Ом, Xм
УПРЗА ЭРА v2.5. Модель: ОНд-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) )
ПДКр для примеси 0143 = 0.01 мг/м3
   - Для линейных и площадных источников выброс является суммарным по
      всей площади, а Cm` есть концентрация одиночного источника с
 0.000913 г/с
------ 9.782756 долей ПДК
        Суммарный Мq =
        Сумма См по всем источникам =
          Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    Управляющие параметры расчета
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) )
 Фоновая концентрация не задана
  Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucb
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.
         Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) )
Расчет проводился на прямоугольнике 1
с параметрами: координаты центра X= 544 Y= 282
            с параметрами: координаты центра X= размеры: Длина(по X)=
                                                                       80, Ширина (по Y)=
                                  шаг сетки =
                                                          10.0
                   Расшифровка_обозначений

| Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
         -Если в расчете один источник, то его вклад и код не печатаются
         -Если в строке Cmax=< 0.05 ПДК, то Фол, Uon, Ви, Ки не печатаются |
         302 : Y-строка 1 Cmax= 4.428 долей ПДК (x= 514.0; напр.ветра=169)
         ----:
504: 514: 524: 534: 544: 554: 564: 574:
----:
Oc : 3.579: 4.428: 4.315: 3.363: 2.364: 1.645: 1.172: 0.704: 0.552:

      Φοπ:
      145:
      169:
      197:
      219:
      233:
      241:
      247:
      250:
      253:

      Uon:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      12.00:

          ____
         504 : 514:
                              524: 534: 544:
                                                                554: 564: 574:
Qc: 5.257: 7.464: 7.095: 4.799: 3.002: 1.928: 1.309: 0.811: 0.558: Cc: 0.053: 0.075: 0.071: 0.048: 0.030: 0.019: 0.013: 0.008: 0.006:
Фоп: 125: 159: 211: 237: 249: 255: 257: 260: 261: 

Uon: 0.75: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75: 0.75: 12.00:
         y=
                  514: 524: 534: 544: 554: 564: 574:
Qc: 6.227: 8.836: 9.217: 5.609: 3.297: 2.047: 1.363: 0.856: 0.562: Cc: 0.062: 0.088: 0.092: 0.056: 0.033: 0.020: 0.014: 0.009: 0.006:
```

```
x= 504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc : 5.257: 7.464: 7.095: 4.799: 3.002: 1.928: 1.309: 0.811: 0.558:
Cc : 0.053: 0.075: 0.071: 0.048: 0.030: 0.019: 0.013: 0.008: 0.006:
Фоп: 55 : 21 : 329 : 303 : 291 : 285 : 283 : 280 : 279
Uоп: 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 12.00
       262 : Y-строка 5 Cmax= 4.428 долей ПДК (x= 514.0; напр.ветра= 11)
 ν=
       504: 514: 524: 534: 544: 554: 564: 574: 584:
Cc: 0.036: 0.044: 0.043: 0.034: 0.024: 0.016: 0.012: 0.007: 0.006:
Фоп: 35: 11: 343: 321: 307: 299: 293: 290: 287: 

Uoп: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 12.00:
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
            Координаты точки : X= 524.0 м Y= 282.0 м
 Максимальная суммарная концентрация | Сs=
                                                       9.21654 доли ПДК
                                                       0.09217 мг/м3
7. Суммарные концентрации в узлах расчетной сетки. 
упрза эра v2.5. Модель: ОНД-86
       Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426
                                                    Расчет проводился 09.10.2025 18:03
       Вар.расч. :2
                           Расч.гол: 2025
       Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) )
        (Символ ^ означает наличие источника вблизи расчетного узла)
 2-| 5.257 7.464 7.095 4.799 3.002 1.928 1.309 0.811 0.558 |- 2
 3-C 6.227 8.836 9.217 5.609 3.297 2.047 1.363 0.856 0.562 C- 3
 4-| 5.257 7.464 7.095 4.799 3.002 1.928 1.309 0.811 0.558 |- 4
 5-| 3.579 4.428 4.315 3.363 2.364 1.645 1.172 0.704 0.552 | - 5
    .
|--|----|----|----|----|
 В целом по расчетному прямоугольнику: Максимальная концентрация -------> См =9.21654 долей ПДК =0.09217 мг/м3 Достигается в точке с координатами: XM = 524.0M ( XM = 524.0M ) YM = 282.0M При опасном направлении ветра : 270 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке. 
УПРЗА ЭРА v2.5. Модель: ОНД-86

        Город
        :004
        Астана.

        Объект
        :0031
        МЖК р-н пересечения улиц Ж. Нажимеденова и А426

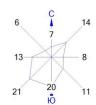
       ООБЕКТ :0031 МЖК р-н перессчения улиц ж. нажимеденова и A426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) )
Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
       Всего просчитано точек: 4
                             Расшифровка обозначений
               | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
     | -Если в расчете один источник, то его вклад и код не печатаются
| -Если в строке Стах=< 0.05 ПДК, то Фоп, Uon, Bu, Ku не печатаются |
                286:
                         280:
                                  286:
        574: 574: 580:
                                  580:
Qc: 0.852: 0.847: 0.620: 0.618:
Сс: 0.009: 0.008: 0.006: 0.006:
Фол: 273: 265: 271: 267:
```

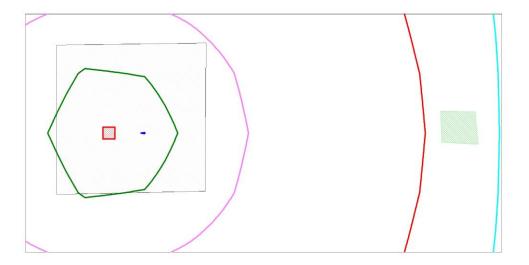
Uoπ: 0.75 : 0.75 : 0.75 : 0.75 :

Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86

Координаты точки : X= 574.0 м Y= 280.0 м

Максимальная суммарная концентрация | Cs= 0.85241 доли ПДК | 0.00852 мг/м3


Достигается при опасном направлении 273 град.
и скорости ветра 0.75 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
ВКЛАДЫ ИСТОЧНИКОВ


				.ды_ясто min			
Hom.	Код	Тип	Выброс	Вклад	Вклад в%	Сум. %	Коэф.влияния
<0	б-П>-<Ис	>	M- (Mq) -	-С[доли ПДК]	-	-	b=C/M
1 00	3101 600	3 П1 (0.00091300	0.852414	100.0	100.0	933.6404419
1			В сумме =	0.852414	100.0		1
~~~~~~~	~~~~~~	~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Город: 004 Астана

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426 Вар.№ 2 УПРЗА ЭРА v2.5 Модель:

0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327))







Макс концентрация 9.2165356 ПДК достигается в точке x=524 y=282При опасном направлении 270° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
     ИСХОДНЫЕ ПАРАМЕТЬИ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0168 - Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) )
Коэффициент рельефа (КР): индивидуальный с источников
            Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.05~П>~
4. Расчетные параметры См, Uм, Xм
    Расчетные параметры См, Ом, Хм
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздука 26.8 град.С)
Примесь :0168 - Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) )
ПДКр для примеси 0168 = 0.2 мг/м3 (=10ПДКс.с.)
    - Для линейных и площадных источников выброс является суммарным по
       всей площади, а Cm` есть концентрация одиночного источника с
 Суммарный Мq = 0.00000330 г/с
                                                             0.001768 долей ПДК
        Сумма См по всем источникам =
               Средневзвешенная опасная скорость ветра = 0.50 м/с
      Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
5. Управляющие параметры расчета
     УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
          Тород 1004 АСТАНА.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.

Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03

Сезон :ЛЕТО (температура воздуха 26.8 град.С)

Примесь :0168 - Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) )
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucв Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
     УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
          Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :0168 - Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) )
Расчет не проводился: См < 0.05 долей ПДК
7. Суммарные концентрации в узлах расчетной сетки.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.

Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03

Примесь :0168 - Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) )
Расчет не проводился: См < 0.05 долей ПДК
8. Результаты расчета по жилой застройке.
     УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч. год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0168 - Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) )
Расчет не проводился: См < 0.05 долей ПДК
3. Исходные параметры источников
     УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пере
                           :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
                           10031 ммк р в пересчения умиц м. положения и п. 100

12 Расч. год: 2025 Расчет проводился 09.10.2025 18:03

10184 - Свинец и его неорганические соединения /в пересчете на свинец/ (513)
             Коэффициент рельефа (КР): индивидуальный с источников
Коэффициент оседания (F): индивидуальный с источников
4. Расчетные параметры См, Им, Хм
     УПРЗА ЭРА V2.5. МОДель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
                           :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
:ЛЕТО (температура воздуха 26.8 град.С)
```

```
:0184 - Свинец и его неорганические соединения /в пересчете на свинец/ (513) ) ПДКр для примеси 0184 = 0.001 мг/м3
                    Примесь
            Для линейных и площадных источников выброс является суммарным по всей площади, а Cm` есть концентрация одиночного источника с
              суммарным М
   1 |003101 6008| 0.00000750| Π1 |
                                                                                                                              0.803622 |
                                                                                                                                                                        0.50 L
                Суммарный Mq = 0.00000750 г/с
- пооб могочникам = 0.803622 долей ПДК
                 Сумма См по всем источникам =
                             Средневзвешенная опасная скорость ветра = 0.50 м/с
  5. Управляющие параметры расчета
          УПРЗА ЭРА v2.5. Модель: ОНД-86
                    Город :004 Астана.
                    Город :004 астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03

Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0184 - Свинец и его неорганические соединения /в пересчете на свинец/ (513) )
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 80х 40 с шагом 10 Расчет по территории жилой застройки. Покрытие РП
    Направление ветра: перебор от 0 до 360 с шагом 10 град.
Перебор скоростей ветра: 0.5 12.0 м/с
0.5 1.0 1.5 долей Исв
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
  6. Результаты расчета в виде таблицы.
          УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
                                                    :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
                    Объект
                    Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0184 - Свинец и его неорганические соединения /в пересчете на свинец/ (513))
                   544 Y= 282
                                                                                                                                               80, Ширина (по Y)=
                                                                      шаг сетки =
                                                                                                                       10.0
                                                                             Расшифровка_обозначений
                                            Расшифровка обозначении

Qc - суммарная концентрация [доли ПДК]

Cc - суммарная концентрация [мг/м.куб]
                                        | Фоп- опасное направл. ветра [ угл. град.]
| Иоп- опасная скорость ветра [ м/с ]
                    -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                    302 : Y-строка 1 Cmax= 0.613 долей ПДК (x= 524.0; напр.ветра=159)
                                                                                        534:
                                                                                                                                     554:
                                                                    524:
                                                                                                              544:
                                                                                                                                                             564:
 Qc: 0.271: 0.432: 0.613: 0.583: 0.394: 0.247: 0.158: 0.108: 0.067:
Cc: 0.000: 0.000: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
  у=
                    554:
                                           514: 524: 534: 544:
                                                                                                                                                           564: 574:
                    504 :
----:
504: 514: 524: 534: 544: 554: 564: 574:
----:
 Oc: 0.271: 0.432: 0.613: 0.583: 0.394: 0.247: 0.158: 0.108: 0.067:

      Φοπ:
      67:
      55:
      21:
      329:
      303:
      291:
      285:
      283:
      280:

      Uoπ:
      0.75:
      0.75:
      0.50:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:

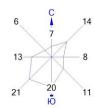
                    272 : Y-строка 4 Cmax= 0.364 долей ПДК (x= 524.0; напр.ветра= 11)
  ____
                                                              524: 534: 544:
                    504 : 514:
                                                                                                                                    554: 564: 574:
Qc: 0.209: 0.294: 0.364: 0.354: 0.276: 0.194: 0.135: 0.096: 0.058: Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Φοπ: 50 : 35 : 11 : 343 : 321 : 307 : 299 : 293 : 290 : Uoπ: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 :
                    y=
                    504: 514: 524: 534: 544: 554: 564: 574:
Cc: 0.151: 0.192: 0.219: 0.216: 0.184: 0.144: 0.108: 0.075: 0.048: Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0
```

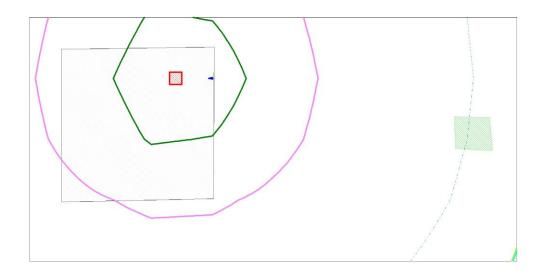
```
Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Молель: ОНЛ-86
                    Координаты точки : X= 534.0 м Y= 292.0 м
                                                                                                      0.75711 доли ПДК
  Максимальная суммарная концентрация | Cs=
                                                                                                     0.00076 мг/м3
      Достигается при опасном направлении 270 гра, и скорости ветра 0.50 м/с
                                                                                              270 град.
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
| Вклады | 
                                                                                     _источников
Вклад |Вклад в%| Сум. %| Коэф.влияния |
7. Суммарные концентрации в узлах расчетной сетки.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.


Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03


Примесь :0184 - Свинец и его неорганические соединения /в пересчете на свинец/ (513) )
                         Координаты центра : X= 544 м; Y= 282
Длина и ширина : L= 80 м; B= 40 м
Шаг сетки (dX=dY) : D= 10 м
       (Символ ^ означает наличие источника вблизи расчетного узла)
       1 2 3 4 5 6 7 8 9
  1-| 0.271 0.432 0.613 0.583 0.394 0.247 0.158 0.108 0.067 |- 1
  2-| 0.300 0.512 0.726 0.757 0.461 0.271 0.168 0.112 0.070 |- 2
  3-C 0.271 0.432 0.613 0.583 0.394 0.247 0.158 0.108 0.067 C- 3
  4-| 0.209 0.294 0.364 0.354 0.276 0.194 0.135 0.096 0.058 |- 4
  5-| 0.151 0.192 0.219 0.216 0.184 0.144 0.108 0.075 0.048 |- 5
  В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См =0.75711 долей ПДК
=0.00076 мг/м3
  Достигается в точке с координатами: Xм = 534.0м ( X-столбец 4, Y-строка 2) Yм = 292.0 м При опасном направлении ветра : 270 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.
      УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0184 - Свинец и его неорганические соединения /в пересчете на свинец/ (513) )
              Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
             Всего просчитано точек: 4
                                                     Расшифровка обозначений
                              Qc - суммарная концентрация [доли ПДК]
Сс - суммарная концентрация [мг/м.куб]
                            | Фоп- опасное направл. ветра [ угл. град.]
| Иоп- опасная скорость ветра [ м/с ]
             -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                               286:
                280:
                                               280:
                                                               286:
             ----:
Qc : 0.106: 0.110: 0.084: 0.089:
Cc: 0.000: 0.000: 0.000: 0.000:
Фол: 285 : 277 : 283 : 277 :
Uoл: 0.75 : 0.75 : 0.75 : 0.75 :
  Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                      Координаты точки : X= 574.0 м Y= 286.0 м
  Максимальная суммарная концентрация | Сs=
                                                                                                      0.11035 доли ПДК
      Достигается при опасном направлении 277 град и скорости ветра 0.75 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада вклады источников
```

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

0184 Свинец и его неорганические соединения /в пересчете на свинец/ (513) )









Макс концентрация 0.7571086 ПДК достигается в точке x= 534 y= 292 При опасном направлении  $270^\circ$  и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
        ИСХОДНЫЕ ПАРАМЕТРЫ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0301 - Авота (IV) диоксид (Авота диоксид) (4)
Коэффициент рельефа (КР): индивидуальный с источников
                     Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.05~П>~
4. Расчетные параметры См, Uм, Xм
        УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
                Город :004 астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                                          ПДКр для примеси 0301 = 0.2 мг/м3
      - Для линейных и площадных источников выброс является суммарным по
            всей площади, а Cm` есть концентрация одиночного источника с
  0.002424 г/с
------ 0.432884 долей ПДК
              Суммарный Mq =
              Сумма См по всем источникам =
                    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
        Управляющие параметры расчета
Упрам ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
   Запрошен учет дифференцированного фона с постов для действующих источников
   Расчет по прямоугольнику 001 : 80х 40 с шагом 10
  Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucb
   Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.
                Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.202
Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
Расчет проводился на прямоугольнике 1
с параметрами: координаты центра X= 544 Y= 282
                                                                                                                    Расчет проводился 09.10.2025 18:03
                     с параметрами: координаты центра X= 544 Y= 282 размеры: Длина (по X) = 80, Ширина (по Y) =
                                                            шаг сетки =
                                                                                                     10.0
                                     Расшифровка обозначений 
Qc - суммарная концентрация [доли ПДК]
                                     СС - суммарная концентрация [мг/м.куб]
Сф - фоновая концентрация [доли ПДК]
Сф - фон без реконструируемых [доли ПДК
                                  | Сди- вклад действующих (для Сf') [доли ПДК]|
| Фоп- опасное направл. ветра [ угл. град.] |
| Uon- опасная скорость ветра [ м/с ] |
            | -Если в расчете один источник, то его вклад и код не печатаются| -Если в строке Стах=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                302 : Y-строка 1 Cmax= 0.722 долей ПДК (x= 524.0; напр.ветра=143)
                                                                             534:
                                                                                                                   554:
             0.635: 0.686: 0.722: 0.720: 0.697: 0.644: 0.603: 0.571: 0.571: 0.127: 0.137: 0.144: 0.144: 0.139: 0.129: 0.121: 0.114: 0.114:
\begin{array}{l} C \Phi \text{ : } 0.465\text{: } 0.571\text{: } \\ C \Phi \text{`: } 0.352\text{: } 0.317\text{: } 0.294\text{: } 0.295\text{: } 0.310\text{: } 0.346\text{: } 0.373\text{: } 0.394\text{: } 0.571\text{: } \\ \end{array}
Спи: 0.283: 0.369: 0.428: 0.425: 0.386: 0.298: 0.231: 0.177: 0.000:
Фоп: 107: 117: 143: 207: 240: 251: 257: 260: BOC
Uon: 0.75: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: > 2
                292 : Y-строка 2 Cmax= 0.715 долей ПДК (x= 524.0; напр.ветра= 71)
                ----:
504: 514: 524: 534: 544: 554: 564: 574:
Qc: 0.640: 0.697: 0.715: 0.705: 0.708: 0.650: 0.607: 0.573: 0.571:
             0.128: 0.139: 0.143: 0.141: 0.142: 0.130: 0.121: 0.115: 0.114: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.
\begin{array}{l} C\tilde{\varphi} \, \hat{} : \; 0.348 \colon \; 0.310 \colon \; 0.298 \colon \; 0.305 \colon \; 0.303 \colon \; 0.341 \colon \; 0.371 \colon \; 0.393 \colon \; 0.571 \colon \\ C\text{Ди:} \; \; 0.291 \colon \; 0.386 \colon \; 0.417 \colon \; 0.401 \colon \; 0.405 \colon \; 0.309 \colon \; 0.236 \colon \; 0.180 \colon \; 0.000 \colon \\ \end{array}
Фоп: 85: 83: 71: 297: 279: 275: 273: 273: ВО

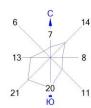
Uon: 0.75: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: > 2
                                                                                                                                                                         BOC
```

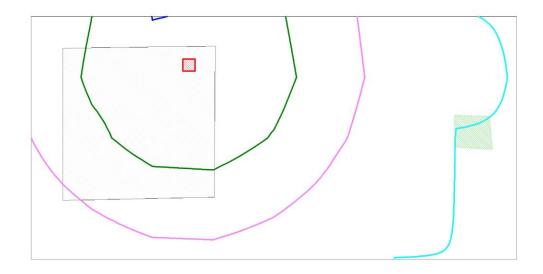
```
504: 514: 524: 534: 544: 554: 564: 574:
  v=
Qc: 0.629: 0.674: 0.712: 0.716: 0.683: 0.637: 0.599: 0.571: 0.571:
Cc : 0.126: 0.135: 0.142: 0.143: 0.137: 0.127: 0.120: 0.114: 0.114:
Сф: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.571: 0.571:
\overset{\mathbf{x}}{\mathbf{x}}: 0.356: 0.326: 0.300: 0.298: 0.320: 0.351: 0.376: 0.571: 0.571: Cmm: 0.273: 0.348: 0.412: 0.418: 0.364: 0.286: 0.223: 0.000: 0.000:
                                                                                                                BOC : :
Фоп: 65: 53: 27: 341: 311: 297: 289: ВО

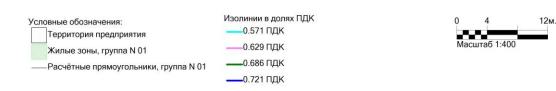
Uon: 0.75: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: > 2
____
           272 : Y-строка 4 Cmax= 0.660 долей ПДК (x= 534.0; напр.ветра=350)
                                                       534: 544:
                                                                                      554:
                                          524:
Qc: 0.607: 0.635: 0.658: 0.660: 0.640: 0.612: 0.584: 0.571: 0.571: Cc: 0.121: 0.127: 0.132: 0.132: 0.128: 0.122: 0.117: 0.114: 0.114:
Сф: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.571: 0.571:
          0.371: 0.352: 0.337:
                                                      0.335: 0.348: 0.367: 0.386: 0.571: 0.571:
Сди: 0.236: 0.283: 0.321: 0.325: 0.291: 0.246: 0.198: 0.000: 0.000:
Φοπ: 50 : 37 : 15 : 350 : 327 : 313 : 303 : BOC : BOC Uon: 0.75 : 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : > 2 : > 2
            262 : Y-строка 5 Cmax= 0.614 долей ПДК (x= 534.0; напр.ветра=353)
                         514:
                                        524 •
                                                      534: 544:
                                                                                   554 •
                                                                                                   564:
            504 .
Qc: 0.582: 0.600: 0.612: 0.614: 0.603: 0.586: 0.571: 0.571: 0.571:
Cc : 0.116: 0.120: 0.122: 0.123: 0.121: 0.117: 0.114: 0.114: 0.114: Cф : 0.465: 0.465: 0.465: 0.465: 0.465: 0.465: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571:
\hat{C}_{\Phi}^{\bullet}: 0.387: 0.375: 0.367: 0.366: 0.373: 0.385: 0.571: 0.571: 0.571: Сди: 0.194: 0.225: 0.246: 0.248: 0.230: 0.201: 0.000: 0.000: 0.000:
Φοπ: 39: 27: 11: 353: 337: 323: BOC : BOC : BOC Uon: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75:
  Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                    Координаты точки : X= 524.0 м Y= 302.0 м
 Максимальная суммарная концентрация | Cs= 0.72151 доли ПДК | 0.14430 мг/м3
     Достигается при опасном направлении 143 гра,
и скорости ветра 0.50 м/с
                                                                                      143 град.
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
   вклады источников
 |Ном.| Код
7. Суммарные концентрации в узлах расчетной сетки. УПРЗА ЭРА v2.5. Модель: ОНД-86
            Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.202
Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
                                                                                         Расчет проводился 09.10.2025 18:03
                 Параметры расчетного прямоугольника No 1
Координаты центра : X= 544 м; Y= 282
Длина и ширина : L= 80 м; B= 40 м
Шаг сетки (dX=dY) : D= 10 м
       (Символ ^ означает наличие источника вблизи расчетного узла)
      *--|----|----|
  1-| 0.635 0.686 0.722 0.720 0.697 0.644 0.603 0.571 0.571 |- 1
  2-| 0.640 0.697 0.715 0.705 0.708 0.650 0.607 0.573 0.571 |- 2
  3-C 0.629 0.674 0.712 0.716 0.683 0.637 0.599 0.571 0.571 C- 3
  4-| 0.607 0.635 0.658 0.660 0.640 0.612 0.584 0.571 0.571 |- 4
  5-| 0.582 0.600 0.612 0.614 0.603 0.586 0.571 0.571 0.571 |- 5
                                             4 5 6
  В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См =0.72151 долей ПДК
=0.14430 мг/м3
  _{\rm M}=0.14430~{\rm Mr}, достигается в точке с координатами: _{\rm XM}=524.0{\rm M} ( X-столбец 3, Y-строка 1) _{\rm YM}=302.0~{\rm M} При опасном направлении ветра : _{\rm M}=302.0~{\rm M} и "опасной" скорости ветра : _{\rm M}=0.000
8. Результаты расчета по жилой застройке.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426
            Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4) Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
```

Всего просчитано точек: 4


```
Расшифровка обозначений


Qc — суммарная концентрация [доли ПДК] |
Cc — суммарная концентрация [мг/м.куб] |
Cф — фоновая концентрация [доли ПДК ] |
Cф `— фон без реконструируемых [доли ПДК ] |
Cди— вклад действующих (для Cf `) [доли ПДК] |
Фоп— опасное направл. ветра [ угл. град.] |
Uon— опасная скорость ветра [ м/с ] |
                             -Если в расчете один источник, то его вклад и код не печатаются |
-Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                                    280:
                                                                     286:
                                                                                                        280:
                                                                                                                                           286:
                                 574: 574: 580:
                                                                                                                                         580:
      x =
Qc: 0.571: 0.571: 0.571: 0.571: 0.571: Cb: 0.114: 0.114: 0.114: 0.114: 0.1571: 0.571: 0.571: Cb: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.571: 0.5
  Сди: 0.000: 0.177: 0.000: 0.000:
 Фол: BOC : 280 : BOC : BOC Uon: > 2 : 0.75 : > 2 : > 2
                                                                                                                                               BOC
       Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                                                 Координаты точки : X= 574.0 м Y= 286.0 м
     Максимальная суммарная концентрация | Cs= 0.57111 доли ПДК | 0.11422 мг/м3
 Достигается при опасном направлении 280 град.


и скорости ветра 0.75 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
```

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426 Вар.№ 2 УПРЗА ЭРА v2.5 Модель:

0301 Азота (IV) диоксид (Азота диоксид) (4)







Макс концентрация 0.721514 ПДК достигается в точке x= 524 y= 302 макс концентрация 0.721514 ГЦК достигается в точке x = 524 y= При опасном направлении 143° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТЬИ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
Коэффициент рельефа (КР): индивидуальный с источников
            Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.5~П>~
4. Расчетные параметры См, Uм, Xм
    Расчетные параметры См, Ом, Xм
УПРЗА ЭРА v2.5. Модель: ОНд-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
ПДКр для примеси 0304 = 0.4 мг/м3
    - Для линейных и площадных источников выброс является суммарным по
      всей площади, а Cm` есть концентрация одиночного источника с
 Суммарный Mq =
                                     0.000394 r/c
                                                           0.035181 долей ПДК
        Сумма См по всем источникам =
              Средневзвешенная опасная скорость ветра = 0.50 м/с
     Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
5. Управляющие параметры расчета
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
 объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
  Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucв Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
          Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
Расчет не проводился: См < 0.05 долей ПДК
7. Суммарные концентрации в узлах расчетной сетки. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана. 
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426. 
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 
Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
Расчет не проводился: См < 0.05 долей ПДК
8. Результаты расчета по жилой застройке.
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
          Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
Расчет не проводился: См < 0.05 долей ПДК
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТРЫ ИСТОЧИИСЬ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
            овект :0031 ммк р-н пересечения улид ж. нажимеденова
ар.расч.:2 Расч.год: 2025 Расчет проводился (
римесь :0328 - Углерод (Сажа, Углерод черный) (583)
Коэффициент рельефа (КР): индивидуальный с источников
Коэффициент оседания (F): индивидуальный с источников
                                                                       Расчет проводился 09.10.2025 18:03
4. Расчетные параметры См, Им, Хм
    УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
                          :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
:ЛЕТО (температура воздуха 26.8 град.С)
```

```
Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
ПДКр для примеси 0328 = 0.15 мг/м3
     Для линейных и площадных источников выброс является суммарным по всей площади, а Cm \dot{}есть концентрация одиночного источника с
     суммарным М
 1 |003101 6009| 0.000379| N1 |
                                                  0.271017 |
                                                                   0.50 L
                            Суммарный Mq =
      Сумма См по всем источникам =
           Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    УПРЗА ЭРА v2.5. Модель: ОНД-86
       Город :004 Астана.
       Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03

Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 80х 40 с шагом 10 Расчет по территории жилой застройки. Покрытие РП
 Направление ветра: перебор от 0 до 360 с шагом 10 град.
Перебор скоростей ветра: 0.5 12.0 м/с
0.5 1.0 1.5 долей Исв
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы.
   УПРЗА ЭРА v2.5. Модель: ОНД-86 Город :004 Астана.
                    :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
        Объект
        Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
       544 Y=
                                                          80, Ширина (по Y) =
                            шаг сетки =
                                               10.0
                              Расшифровка_обозначений
                 Расшифровка обозначении

Qc - суммарная концентрация [доли ПДК]

Cc - суммарная концентрация [мг/м.куб]
                | Фоп- опасное направл. ветра [ угл. град.] | Иоп- опасная скорость ветра [ M/C ]
       -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
        302 : Y-строка 1 Cmax= 0.228 долей ПДК (x= 534.0; напр.ветра=207)
                                   534:
                                                      554:
                           524:
                                            544:
                                                               564:
      0.086: 0.140: 0.216: 0.228: 0.154: 0.095: 0.059: 0.040: 0.026:
Cc : 0.013: 0.021: 0.032: 0.034: 0.023: 0.014: 0.009: 0.006: 0.004: Фол: 107 : 117 : 143 : 207 : 240 : 251 : 257 : 260 : 261 : Uon: 0.75 : 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 :
у=
       282 : У-строка 3 Стах= 0.185 долей ПДК (х= 534.0; напр.ветра=341)
       ----:
504: 514: 524: 534: 544: 554: 564: 574:
----:
Oc: 0.080: 0.125: 0.178: 0.185: 0.136: 0.088: 0.057: 0.038: 0.025:

      Cc: 0.012: 0.019: 0.027: 0.028: 0.020: 0.013: 0.008: 0.006: 0.004:

      Фол: 65: 53: 27: 341: 311: 297: 289: 285: 283:

      Uол: 0.75: 0.75: 0.75: 0.75: 0.50: 0.75: 0.75: 0.75: 0.75: 0.75:

        272 : Y-строка 4 Cmax= 0.110 долей ПДК (x= 534.0; напр.ветра=350)
____
                         524: 534: 544:
       504 : 514:
                                                     554: 564: 574:
Qc: 0.062; 0.086; 0.108; 0.110; 0.091; 0.066; 0.047; 0.034; 0.021; Cc: 0.009; 0.013; 0.016; 0.017; 0.014; 0.010; 0.007; 0.005; 0.003;
Φοπ: 50 : 37 : 15 : 350 : 327 : 313 : 303 : 297 : 293 : 

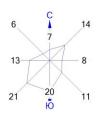
Uοπ: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 :
       y=
                         524: 534: 544:
                                                   554: 564: 574:
Qc: 0.045: 0.057: 0.066: 0.067: 0.059: 0.048: 0.037: 0.026: 0.017: Cc: 0.007: 0.009: 0.010: 0.010: 0.009: 0.007: 0.006: 0.004: 0.002:
Von: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
```

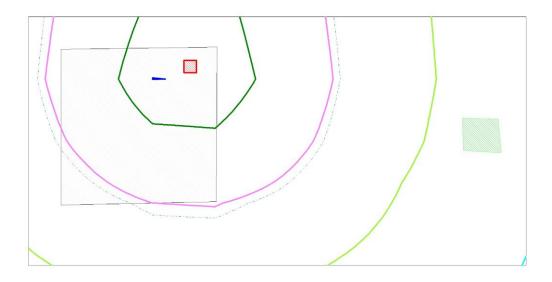
```
Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Молель: ОНЛ-86
                      Координаты точки : X= 524.0 м Y= 292.0 м
                                                                                                             0.25385 доли ПДК
  Максимальная суммарная концентрация | Cs=
                                                                                                          0.03808 мг/м3
      Достигается при опасном направлении 71 град. и скорости ветра 0.50 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
| Выброс | Вилады | Источников | 1. в таолице заказано вкладчиков не более чем с 95% вклада вклады | Источников | Вклады | Источников | Вклады | В
                                                                                           _источников
Вклад |Вклад в%| Сум. %| Коэф.влияния |
7. Суммарные концентрации в узлах расчетной сетки.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.


Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03


Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
                           Координаты центра : X= 544 м; Y= 282
Длина и ширина : L= 80 м; B= 40 м
Шаг сетки (dX=dY) : D= 10 м
        (Символ ^ означает наличие источника вблизи расчетного узла)
        1 2 3 4 5 6 7 8 9
   1-| 0.086 0.140 0.216 0.228 0.154 0.095 0.059 0.040 0.026 |- 1
   2-| 0.091 0.154 0.254 0.251 0.171 0.101 0.062 0.041 0.027 |- 2
   3-C 0.080 0.125 0.178 0.185 0.136 0.088 0.057 0.038 0.025 C- 3
   4-| 0.062 0.086 0.108 0.110 0.091 0.066 0.047 0.034 0.021 |- 4
   5-| 0.045 0.057 0.066 0.067 0.059 0.048 0.037 0.026 0.017 |- 5
  В целом по расчетному прямоугольнику: 
 Максимальная концентрация -----> См =0.25385 долей ПДК =0.03808 мг/м3
  Достигается в точке с координатами: Xм = 524.0м ( X-столбец 3, Y-строка 2) Yм = 292.0 м При опасном направлении ветра : 71 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.
       УПРЗА ЭРА V2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0328 - Уплерод (Сажа, Углерод черный) (583)
Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
              Всего просчитано точек: 4
                                                        Расшифровка обозначений
                                Qc - суммарная концентрация [доли ПДК]
Сс - суммарная концентрация [мг/м.куб]
                              | Фоп- опасное направл. ветра [ угл. град.] | Иоп- опасная скорость ветра [ _{\rm M}/{\rm c} ]
              -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                                 286:
                 280:
                                                  280:
                                                                   286:
            574:
              ----:
Qc: 0.037: 0.040: 0.031: 0.032:
Cc: 0.006: 0.006: 0.005: 0.005:
   Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                        Координаты точки : X= 574.0 м Y= 286.0 м
  Максимальная суммарная концентрация | Сs= 0.03964 доли ПДК | 0.00595 мг/м3
Достигается при опасном направлении 280 град.
и скорости ветра 0.75 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
вклады источников
```

Объект: 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

0328 Углерод (Сажа, Углерод черный) (583)







Макс концентрация 0.2538467 ПДК достигается в точке x=524 y=292 При опасном направлении  $71^\circ$  и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек  $9^*5$  Расчёт на существующее положение.

```
3. Исходные параметры источников
           Исходные параметры источников.
УПРЗА ЭРА V2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч. год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
Коэффициент рельефа (КР): индивидуальный с источников
                              Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.05~П>~
4. Расчетные параметры См, Uм, Xм
          Расчетные параметры См, Ом, Xм
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
ПДКр для примеси 0330 = 0.5 мг/м3
          - Для линейных и площадных источников выброс является суммарным по
                 всей площади, а Cm` есть концентрация одиночного источника с
    Суммарный Mq =
                                                                                         0.000378 r/c
                                                                                                                                               0.027002 долей ПДК
                    Сумма См по всем источникам =
                                   Средневзвешенная опасная скорость ветра = 0.50 м/с
              Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
5. Управляющие параметры расчета
           УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
                        Сбъект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
     Запрошен учет дифференцированного фона с постов для действующих источников
     Расчет по прямоугольнику 001 : 80х 40 с шагом 10
   Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей UCB
     Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
 6. Результаты расчета в виде таблицы.
           Результаты расчета в виде таблицы.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
Расчет проводился на прямоугольнике 1
с параметрами: координаты центра X= 544 Y= 282
                                                                                        размеры: Длина(по X)=
                                                                                                                                                                                            80, Ширина(по Y)=
                                                                                                                                                                                                                                                                                        40
                                                                                        шаг сетки =
                                                                                                                                                   10.0
                                                       Расшифровка обозначений

Qc - суммарная концентрация [доли ПДК]

Cc - суммарная концентрация [мг/м.куб]
                                                       Сф — фоновая концентрация [ доли ПДК ]
Сф`— фон без реконструируемых [доли ПДК
                                                 | Сди- вклад действующих (для Сf) [доли ПДК] | Фоп- опасное направл. ветра [ угл. град.] | Uon- опасная скорость ветра [ м/с ] |
                         -Если в расчете один источник, то его вклад и код не печатаются
                        -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются
                         302 : Y-строка 1 Cmax= 0.205 долей ПДК (x= 524.0; напр.ветра=143)
                                                                              524: 534: 544: 554: 564: 574:
Qc : 0.204: 0.204: 0.205: 0.205: 0.204: 0.204: 0.204: 0.204: 0.204: Cc : 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102:
Сф: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
Сф: 0.204: 0.204: 0.204: 0.203: 0.203: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.20
                                                                                                                                                                                                                                          ЮГ : Ю
2 :>2
                        292 : Y-строка 2 Cmax= 0.204 долей ПДК (x= 504.0; напр.ветра=140)
                                                                                 524:
                                                                                                            534:
                                                                                                                                         544:
                                                                                                                                                                      554:
                                                                                                                                                                                                  564:
    x =
                        504 :
                    0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
Cc: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: Cthick of control of the control of t
Coh: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
```

```
Uon: > 2 : > 2 : > 2 : > 2 : > 2 : > 2 : > 2
                         282 : Y-строка 3 Cmax= 0.204 долей ПДК (x= 504.0; напр.ветра=140)
                                                 514: 524: 534: 544: 554: 564: 574:
Oc : 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
Cc: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204

      Сф: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:

      Сди: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.00
                                                                                                                                                                                                                                 ЮГ : ЮГ : ЮГ
> 2 : > 2 : > 2
                         y=
----
                                                                                 524: 534: 544: 554: 564: 574:
 Qc: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
Cc: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: Cp: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0
Сф: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.20
                         262 : Y-строка 5 Cmax= 0.204 долей ПДК (x= 504.0; напр.ветра=140)
     x=
                         504 :
                                                      514: 524: 534: 544: 554: 564:
                                                                                                                                                                                                                                      574 •
Qc: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
Cc: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102: 0.102:
 C$\times 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
Con : 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204: 0.204:
 Сди: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
                                                                                                                                                                                                                                 ЮГ : Ю1
> 2 : > 2
                                                                                                                                                                                                                                                                    ЮГ : Ю
2 :>2
                          ЮГ : Ю
2 :>2
                                                            Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                                       Координаты точки : X= 524.0 м Y= 302.0 м
    Максимальная суммарная концентрация | Cs=
                                                                                                                                                                                          0.20489 доли ПДК
                                                                                                                                                                                          0.10245 мг/м3
            Постигается при опасном направлении
                                                                                                                                                                              143 град.
                                                                                             и скорости ветра 12.00 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
 7. Суммарные концентрации в узлах расчетной сетки.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.

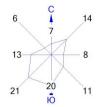
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.

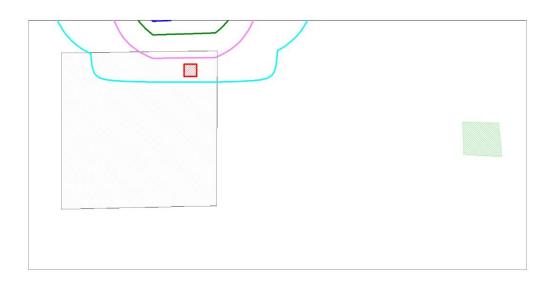
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
                                                                 :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
:0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
                                   Параметры расчетного прямоугольника No 1
Координаты центра : X= 544 м; Y= 282
Длина и ширина : L= 80 м; B= 40 м
Шаг сетки (dX=dY) : D= 10 м
              (Символ ^ означает наличие источника вблизи расчетного узла)
     1-| 0.204 0.204 0.205 0.205 0.204 0.204 0.204 0.204 0.204 |- 1
     2-| 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 | - 2
     3-C 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 C- 3
     4-| 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 |- 4
     5-| 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 |- 5
              |
|--|----|----|----|----|----|
                           В целом по расчетному прямоугольнику:
     Максимальная концентрация -----> См =0.20489 долей ПДК
                                                                                                                                                                       =0.10245 мг/м3
   Достигается в точке с координатами: Xm = 524.0м ( X-столбец 3, Y-строка 1) Ym = 302.0 м При опасном направлении ветра : 143 град. и "опасной" скорости ветра : 12.00 м/с
8. Результаты расчета по жилой застройке.

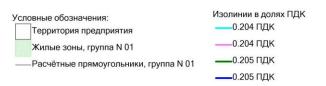
УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.


Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
```


```
Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) ) Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001 Всего просчитано точек: 4
                 Сс - суммарная концентрация [мг/м.куб]
                   СС — суммарная концентрация [мг/м.куо] | Сф — фоновая концентрация [доли ПДК ] | Сф'— фон без реконструируемых [доли ПДК ] | Сди— вклад действующих (для Сf') [доли ПДК ] | Фоп— опасное направл. ветра [ угл. град.] | Uon— опасная скорость ветра [ м/с ] |
        -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                    286:
          280:
                              280:
                                         286:
          574:
                                         580:
                              580:
Qc: 0.204: 0.204: 0.204: 0.204: Cc: 0.102: 0.102: 0.102: 0.102:
Сф: 0.204: 0.204: 0.204: 0.204:
Сф: 0.204: 0.204: 0.204: 0.204:
Сди: 0.000: 0.000: 0.000: 0.000:
: Ю
:>2
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
              Координаты точки : X= 574.0 м Y= 280.0 м
 Максимальная суммарная концентрация | Cs=
                                                                 0.20400 доли ПДК
                                                                0.10200 мг/м3
Достигается при опасном направлении \mathfrak{W}\Gamma и скорости ветра > 2 м/с Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
```


Объект: 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516))









Макс концентрация 0.2048924 ПДК достигается в точке x= 524 y= 302 При опасном направлении 143° и опасной скорости ветра 12 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
       Исходные параметы источников.
УПРЗА ЭРА V2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч.: 2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
Коэффициент рельефа (КР): индивидуальный с источников
                   Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.05~П>~
4. Расчетные параметры См, Uм, Xм
       УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
               Город :004 астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.с)
Примесь :0337 - Утлерод оксид (Окись углерода, Угарный газ) (584)
ПДКр для примеси 0337 = 5.0 мг/м3
      - Для линейных и площадных источников выброс является суммарным по
           всей площади, а Cm` есть концентрация одиночного источника с
  | Источники | Их расчетные параметры | Номер | Код | М | Тип | Сm (Сm`) | Um | Xm | -п/п-|<06-п>-<uc> | -п/п-|<06-п>-<uc> | -п/п-|<06-п>-<uc> | -1 | (00-п) | (00-п
                                                       0.014800 г/с
------ 0.105721 долей ПДК
             Суммарный Mq =
             Сумма См по всем источникам =
                  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
       Управляющие параметры расчета
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0337 - Уплерод оксид (Окись уплерода, Угарный газ) (584)
   Запрошен учет дифференцированного фона с постов для действующих источников
   Расчет по прямоугольнику 001 : 80х 40 с шагом 10
   Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с
                                                                 0.5 1.0 1.5 долей Uсв
   Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана.
               Город :004 астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.

Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 1

Примесь :0337 - Утперод оксид (Окись углерода, Угарный газ) (584)

Расчет проводился на прямоугольнике 1

с параметрами: координаты центра X= 544 Y= 282
                                                                                                            Расчет проводился 09.10.2025 18:03
                    с параметрами: координаты центра X= 544 Y= 282 размеры: Длина (по X) = 80, Ширина (по Y) =
                                                       шаг сетки =
                                                                                             10.0
                                  Расшифровка обозначений

Qc - суммарная концентрация [доли ПДК]

Cc - суммарная концентрация [мг/м.куб]

Cф - фоновая концентрация [доли ПДК]

Cф - фон без реконструируемых [доли ПДК
                               | Сди- вклад действующих (для Сf') [доли ПДК]|
| Фоп- опасное направл. ветра [ угл. град.] |
| Uon- опасная скорость ветра [ м/с ] |
           | -Если в расчете один источник, то его вклад и код не печатаются| -Если в строке Стах=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
               302 : Y-строка 1 Cmax= 0.619 долей ПДК (x= 524.0; напр.ветра=143)
                                                                  534:
                                                                                                          554:
            0.598: 0.610: 0.619: 0.619: 0.613: 0.600: 0.590: 0.582: 0.576: 2.989: 3.052: 3.095: 3.093: 3.064: 2.999: 2.950: 2.911: 2.881:
 Сф : 0.556: 0.556: 0.556:
                                                                 0.556: 0.556: 0.556: 0.556: 0.556: 0.556:
Спи: 0.069: 0.090: 0.104: 0.104: 0.094: 0.073: 0.056: 0.043: 0.033:
Фоп: 107: 117: 143: 207: 240: 251: 257: 260: 261: 

Uon: 0.75: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75:
               292 : Y-строка 2 Cmax= 0.617 долей ПДК (x= 524.0; напр.ветра= 71)
               ----:
504: 514: 524: 534: 544: 554: 564: 574:
Qc: 0.599: 0.613: 0.617: 0.615: 0.616: 0.602: 0.591: 0.583: 0.577:
            2.995: 3.064: 3.087: 3.075: 3.078: 3.008: 2.954: 2.913: 2.883: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556:
 Cah': 0.528: 0.519: 0.516: 0.517: 0.517: 0.526: 0.533: 0.539: 0.543:
 Сди: 0.071: 0.094: 0.102: 0.098: 0.099: 0.075: 0.058: 0.044: 0.034:
```

```
504: 514: 524: 534: 544: 554: 564: 574:
   v=
Oc: 0.596: 0.607: 0.617: 0.618: 0.610: 0.598: 0.589: 0.582: 0.576:
 Cc : 2.981: 3.036: 3.083: 3.088: 3.048: 2.991: 2.945: 2.908: 2.880:
Сф: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556:
\overset{\sim}{\mathbf{L}}: 0.530: 0.522: 0.516: 0.515: 0.521: 0.528: 0.534: 0.539: 0.543: Cmm: 0.067: 0.085: 0.100: 0.102: 0.089: 0.070: 0.055: 0.042: 0.033:
Фоп: 65: 53: 27: 341: 311: 297: 289: 285: 283

Uon: 0.75: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75
 ____
                    272 : Y-строка 4 Cmax= 0.604 долей ПДК (x= 534.0; напр.ветра=350)
                                                                                                  534: 544:
                                                                           524:
                                                                                                                                                         554:
Qc: 0.591: 0.598: 0.603: 0.604: 0.599: 0.592: 0.585: 0.579: 0.575: Cc: 2.954: 2.988: 3.016: 3.020: 2.995: 2.961: 2.926: 2.896: 2.873:
C$\tilde{Q}: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.5
Сди: 0.058: 0.069: 0.078: 0.079: 0.071: 0.060: 0.048: 0.038: 0.030:
Фоп: 50: 37: 15: 350: 327: 313: 303: 297: 293: 

Uoп: 0.75: 0.75: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75: 0.75:
                      262 : Y-строка 5 Cmax= 0.593 долей ПДК (x= 534.0; напр.ветра=353)
                                             514:
                                                                       524 •
                                                                                                 534:
                                                                                                                          544:
                                                                                                                                                     554 •
                                                                                                                                                                                 564:
                     504 .
Qc: 0.585: 0.589: 0.592: 0.593: 0.590: 0.586: 0.581: 0.576: 0.573:
Cc: 2.924: 2.946: 2.961: 2.963: 2.950: 2.928: 2.904: 2.882: 2.863: Cc : 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 0.556: 
\hat{C_\Phi}`: 0.537: 0.534: 0.532: 0.532: 0.534: 0.537: 0.540: 0.543: 0.545: Сди: 0.047: 0.055: 0.060: 0.061: 0.056: 0.049: 0.041: 0.034: 0.027:
Фоп: 39: 27: 11: 353: 337: 323: 313: 307: 301
Uon: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75
                                                                                                                                                                                                                                    301:
    Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                                    Координаты точки : X= 524.0 м Y= 302.0 м
   Максимальная суммарная концентрация | Cs= 0.61891 доли ПДК | 3.09453 мг/м3
         Достигается при опасном направлении 143 гра,
и скорости ветра 0.50 м/с
                                                                                                                                                          143 град.
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
     ВКЛАДЫ ИСТОЧНИКОВ

НОМ. | КОП | ТИП | ВЫБРОС | ВКЛАД В ВЕЛАД В В СУМ. % | КОЭФ.ВЛИЯНИЯ |
----|<06-П>-
    ФОНОВАЯ КОНЦЕНТРАЦИЯ СБ | 0.514495 | 83.1 (ВКЛАД ИСТОЧНИКОВ 16.9%) |
1 |003101 6009 | П1 | 0.0148 | 0.104412 | 100.0 | 100.0 | 7.0548401 |
В СУММЕ = 0.618907 100.0 | 100.0 | 100.0 | 100.0 |

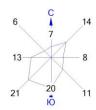
                                                                                                          вклады источников
  |Ном.| Код
7. Суммарные концентрации в узлах расчетной сетки. УПРЗА ЭРА v2.5. Модель: ОНД-86
                     Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
                               Параметры расчетного прямоугольника No 1
Координаты центра : X= 544 м; Y= 282
Длина и ширина : L= 80 м; B= 40 м
Шаг сетки (dX=dY) : D= 10 м
             (Символ ^ означает наличие источника вблизи расчетного узла)
    1 2 3 4 5 6 / 8 9

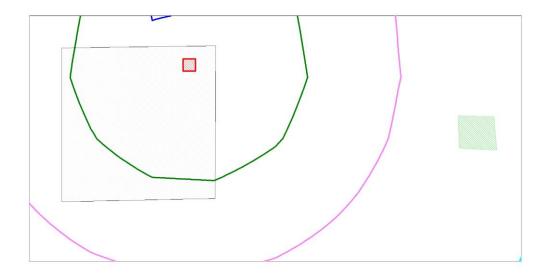
*-|---|----|----|----|----|----|

1-| 0.598 0.610 0.619 0.619 0.613 0.600 0.590 0.582 0.576 |- 1
    2-| 0.599 0.613 0.617 0.615 0.616 0.602 0.591 0.583 0.577 |- 2
    3-C 0.596 0.607 0.617 0.618 0.610 0.598 0.589 0.582 0.576 C- 3
    4-| 0.591 0.598 0.603 0.604 0.599 0.592 0.585 0.579 0.575 |- 4
    5-| 0.585 0.589 0.592 0.593 0.590 0.586 0.581 0.576 0.573 |- 5
                                                                                4 5
   В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См =0.61891 долей ПДК
=3.09453 мг/м3
   =3.09453 мг, =3.09433 мг, =3.
8. Результаты расчета по жилой застройке.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
                       Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:
Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
                                                                                                                                                              Расчет проводился 09.10.2025 18:03
```

Всего просчитано точек: 4

```
Расшифровка обозначений


Qc — суммарная концентрация [доли ПДК] |
Cc — суммарная концентрация [мг/м.куб] |
Cф — фоновая концентрация [доли ПДК ] |
Cф `— фон без реконструируемых [доли ПДК ] |
Cди— вклад действующих (для Cf `) [доли ПДК] |
Фоп— опасное направл. ветра [ угл. град.] |
Uon— опасная скорость ветра [ м/с ] |
          -Если в расчете один источник, то его вклад и код не печатаются |
-Если в строке Стах=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
            280:
                        286:
                                     280:
                                                 286:
           574: 574: 580:
                                                 580:
  x =
Qc: 0.581: 0.582: 0.578: 0.578: Cc: 2.906: 2.911: 2.889: 2.892: Cd: 0.556: 0.556: 0.556: 0.556: Cd: 0.540: 0.541: 0.541:
Сф: 0.540: 0.559: 0.542. 0.542.
Сди: 0.042: 0.043: 0.036: 0.037:
Фол: 287: 280: 285: 279:
Фол: 287 : 280 : 285 : 279 :
Uon: 0.75 : 0.75 : 0.75 : 0.75 :
  Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                 Координаты точки : X= 574.0 м Y= 286.0 м
 Максимальная суммарная концентрация \overline{\ | \ \text{Cs=} \ \ 0.58217} доли ПДК
                            | 2.91087 MT/M3
Достигается при опасном направлении 280 град.


и скорости ветра 0.75 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
```

Объект: 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

0337 Углерод оксид (Окись углерода, Угарный газ) (584)









Макс концентрация 0.618907 ПДК достигается в точке x=524 y=302 При опасном направлении  $143^\circ$  и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТЬИ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
Коэффициент рельефа (КР): индивидуальный с источников
            Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.05~П>~
4. Расчетные параметры См, Uм, Xм
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
          Город :004 астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03

Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
                          ПДКр для примеси 0616 = 0.2 мг/м3
    - Для линейных и площадных источников выброс является суммарным по
       всей площади, а Cm` есть концентрация одиночного источника с
 0.001493 г/с
------ 0.266624 долей ПДК
        Суммарный Mq =
        Сумма См по всем источникам =
           Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
     Управляющие параметры расчета
Упрам ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucb
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана.
          Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.

Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025

Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)

Расчет проводился на прямоугольнике 1

с параметрами: координаты центра X= 544 Y= 282
                                                                       Расчет проводился 09.10.2025 18:03
             с параметрами: координаты центра X= 544 Y= 282 размеры: Длина (по X) = 80, Ширина (по Y) =
                                    шаг сетки =
                                                             10.0
                    Расшифровка_обозначений

| Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
          -Если в расчете один источник, то его вклад и код не печатаются
          -Если в строке Cmax=< 0.05 ПДК, то Фол, Uon, Ви, Ки не печатаются |
          302 : Y-строка 1 Cmax= 0.250 долей ПДК (x= 524.0; напр.ветра=180)
         504: 514: 524: 534: 544: 554: 564: 574:
Oc : 0.188: 0.231: 0.250: 0.231: 0.188: 0.149: 0.116: 0.090: 0.071:

      Qc: 0.1038: 0.046: 0.050: 0.046: 0.038: 0.030: 0.023: 0.018: 0.014:

      Фол: 125: 145: 180: 215: 235: 245: 251: 255: 257:

      Uon: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75:

          292 : Y-строка 2 Cmax= 0.263 долей ПДК (x= 514.0; напр.ветра=111)
____
          504 : 514:
                                524: 534: 544:
                                                                   554: 564: 574:
Qc: 0.212; 0.263; 0.241; 0.263; 0.212; 0.161; 0.123; 0.094; 0.073; Cc: 0.042; 0.053; 0.048; 0.053; 0.042; 0.032; 0.025; 0.019; 0.015;
Фоп: 101: 111: 180: 249: 259: 263: 265: 265: 267: 
Uon: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75:
          282 : У-строка 3 Стах= 0.262 долей ПДК (х= 514.0; напр.ветра= 59)
 y=
                               524: 534: 544:
                                                                  554:
Qc: 0.209: 0.262: 0.256: 0.262: 0.209: 0.160: 0.122: 0.094: 0.073: Cc: 0.042: 0.052: 0.051: 0.052: 0.042: 0.032: 0.024: 0.019: 0.015:
Φοπ: 0.50 : 0.50 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75
```

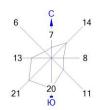
```
x= 504: 514: 524: 534: 544: 554: 564: 574:
Qc: 0.182: 0.221: 0.239: 0.221: 0.182: 0.145: 0.114: 0.089: 0.070:
Cc : 0.036: 0.044: 0.048: 0.044: 0.036: 0.029: 0.023: 0.018: 0.014:
Фоп: 51 : 33 : 0 : 327 : 309 : 299 : 291 : 287 : 285
Uоп: 0.75 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
       262 : Y-строка 5 Cmax= 0.180 долей ПДК (x= 524.0; напр.ветра= 0)
 ν=
       504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.150: 0.172: 0.180: 0.172: 0.150: 0.125: 0.101: 0.081: 0.065:
Cc: 0.030: 0.034: 0.036: 0.034: 0.030: 0.025: 0.020: 0.016: 0.013:
Фоп: 37: 21: 0: 339: 323: 311: 303: 297: 293: 

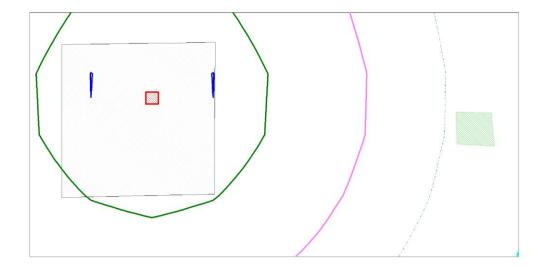
Uoп: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75:
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
            Координаты точки : X= 514.0 м Y= 292.0 м
 Максимальная суммарная концентрация | Сs=
                                                         0.26349 доли ПДК
                                                         0.05270 мг/м3
7. Суммарные концентрации в узлах расчетной сетки. 
упрза эра v2.5. Модель: ОНД-86
       Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
       Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025
Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
                                                      Расчет проводился 09.10.2025 18:03
        (Символ ^ означает наличие источника вблизи расчетного узла)
   1 2 3 4 5 6 7 8 9 *--|----|----|----|----|
 1-| 0.188 0.231 0.250 0.231 0.188 0.149 0.116 0.090 0.071 |- 1
 2-| 0.212 0.263 0.241 0.263 0.212 0.161 0.123 0.094 0.073 |- 2
 3-C 0.209 0.262 0.256 0.262 0.209 0.160 0.122 0.094 0.073 C- 3
 4-| 0.182 0.221 0.239 0.221 0.182 0.145 0.114 0.089 0.070 |- 4
 5-| 0.150 0.172 0.180 0.172 0.150 0.125 0.101 0.081 0.065 |- 5
    .
|--|----|----|----|----|
 В целом по расчетному прямоугольнику: Максимальная концентрация -------> См =0.26349 долей ПДК =0.05270 мг/м3 Достигается в точке с координатами: XM = 514.0M ( XM = 514.0M ) XM = 292.0M При опасном направлении ветра : 111 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке. 
УПРЗА ЭРА v2.5. Модель: ОНД-86

        Город
        :004
        Астана.

        Объект
        :0031
        МЖК р-н пересечения улиц Ж. Нажимеденова и А426

       Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203) Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
        Всего просчитано точек: 4
                              Расшифровка обозначений
               | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
       -Если в расчете один источник, то его вклад и код не печатаются |
-Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Bи, Ки не печатаются |
                 286:
                          280:
                                   286:
         574: 574: 580:
                                   580:
Cc: 0.019: 0.019: 0.016: 0.016: Фоп: 279: 273: 279: 273:
```


Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86


Координаты точки : X= 574.0 м Y= 286.0 м

Divinua noto innico									
Hom.	Код	Тип	Выброс	Вклад	Вклад в	%  Сум.	용	Коэф.влияния	:
<0	б-п>-<и	>	(pM) -M-	-C[доли ПДК]			-	b=C/M	-
1  00	3101 600	06  П1	0.0015	0.094601	100.0	100.	O	63.3632660	
			В сумме =	- 0.094601	100.0				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426 Вар.№ 2 УПРЗА ЭРА v2.5 Модель:

0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Макс концентрация 0.2634899 ПДК достигается в точке x= 514 y= 292 При опасном направлении 111° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТЫ ИСТОЧНИКОВ.
УПРЭА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :0621 - Метилбензол (349)
            Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
4. Расчетные параметры См, Uм, Xм
    УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
                      ПДКр для примеси 0621 = 0.6 мг/м3
   - Для линейных и площадных источников выброс является суммарным по
      всей площади, а Cm` есть концентрация одиночного источника с
 0.005079 г/с
----- 0.302340 долей ПДК
       Суммарный Мq =
       Сумма См по всем источникам =
          Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    Управляющие параметры расчета
Упрам ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :0621 - Метилбензол (349)
 Фоновая концентрация не задана
  Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucb
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана.
        Тород :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.

Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03

Примесь :0621 - Метилбензол (349)

Расчет проводился на прямоугольнике 1
           с параметрами: координаты центра X =  размеры: Длина (по X) =
                                                                       544 Y=
                                                                  80, Ширина (по Y) =
                               шаг сетки =
                                                     10.0
                 Расшифровка_обозначений

| Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
         -Если в расчете один источник, то его вклад и код не печатаются
        -Если в строке Cmax=< 0.05 ПДК, то Фол, Uon, Ви, Ки не печатаются |
        302 : Y-строка 1 Cmax= 0.284 долей ПДК (x= 524.0; напр.ветра=180)
        ----:
504: 514: 524: 534: 544: 554: 564: 574:
----:
Oc: 0.214: 0.262: 0.284: 0.262: 0.214: 0.169: 0.132: 0.102: 0.080:

      Qc: 0.128: 0.157: 0.170: 0.157: 0.128: 0.101: 0.079: 0.061: 0.048:

      Φon: 125: 145: 180: 215: 235: 245: 251: 255: 257:

      Uon: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75:

         ____
        504 : 514:
                            524: 534: 544:
                                                           554: 564: 574:
Qc: 0.241: 0.299: 0.273: 0.299: 0.241: 0.182: 0.139: 0.107: 0.083: Cc: 0.144: 0.179: 0.164: 0.179: 0.144: 0.109: 0.084: 0.064: 0.050:
Фоп: 101 : 111 : 180 : 249 : 259 : 263 : 265 : 265 : 267 : 
Uoп: 0.50 : 0.50 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 :
        y=
                           524: 534: 544: 554: 564: 574:
Qc: 0.237: 0.297: 0.290: 0.297: 0.237: 0.181: 0.139: 0.106: 0.083: Cc: 0.142: 0.178: 0.174: 0.178: 0.142: 0.109: 0.083: 0.064: 0.050:
Φοπ: 0.50 : 0.50 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 :
```

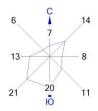
```
x= 504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.206: 0.251: 0.271: 0.251: 0.206: 0.165: 0.129: 0.101: 0.079:
Cc : 0.124: 0.150: 0.162: 0.150: 0.124: 0.099: 0.077: 0.060: 0.048:
Фоп: 51 : 33 : 0 : 327 : 309 : 299 : 291 : 287 : 285
Uоп: 0.75 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
        262 : Y-строка 5 Cmax= 0.204 долей ПДК (x= 524.0; напр.ветра= 0)
 ν=
        504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.170: 0.195: 0.204: 0.195: 0.170: 0.141: 0.114: 0.091: 0.074:
Cc : 0.102: 0.117: 0.122: 0.117: 0.102: 0.085: 0.068: 0.055: 0.044:
Фоп: 37 : 21 : 0 : 339 : 323 : 311 : 303 : 297 : 293 : 

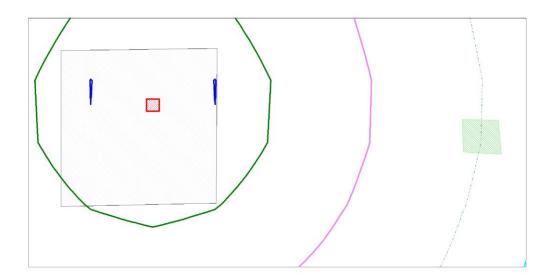
Uoп: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 :
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
            Координаты точки : X= 514.0 м Y= 292.0 м
 Максимальная суммарная концентрация | Сs=
                                                          0.29879 доли ПДК
                                                          0.17927 мг/м3
7. Суммарные концентрации в узлах расчетной сетки. УПРЗА ЭРА v2.5. Модель: ОНД-86 Город :004 Астана. Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
        Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 примесь :0621 - Метилбензол (349)
        (Символ ^ означает наличие источника вблизи расчетного узла)
 1 2 3 4 5 6 7 8 9
*--|----|----|----|
1-| 0.214 0.262 0.284 0.262 0.214 0.169 0.132 0.102 0.080 | 1
 2-| 0.241 0.299 0.273 0.299 0.241 0.182 0.139 0.107 0.083 |- 2
 3-C 0.237 0.297 0.290 0.297 0.237 0.181 0.139 0.106 0.083 C- 3
 4-| 0.206 0.251 0.271 0.251 0.206 0.165 0.129 0.101 0.079 |- 4
 5-| 0.170 0.195 0.204 0.195 0.170 0.141 0.114 0.091 0.074 |- 5
    .
|--|----|----|----|----|----|
 В целом по расчетному прямоугольнику: Максимальная концентрация -------> См =0.29879 долей ПДК =0.17927 мг/м3 Достигается в точке с координатами: XM = 514.0M ( XM = 514.0M ) XM = 292.0M При опасном направлении ветра : 111 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке. 
УПРЗА ЭРА v2.5. Модель: ОНД-86

        Город
        :004
        Астана.

        Объект
        :0031
        МЖК р-н пересечения улиц Ж. Нажимеденова и А426

        Бар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :0621 - Метилбензол (349)
Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
        Всего просчитано точек: 4
                               Расшифровка обозначений
                | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
     | -Если в расчете один источник, то его вклад и код не печатаются|
| -Если в строке Стах=< 0.05 ПДК, то Фоп, Ооп, Ви, Ки не печатаются |
                  286:
                           280:
                                    286:
         574: 574: 580:
                                    580:
Qc: 0.106: 0.107: 0.091: 0.092:
      0.063: 0.064: 0.054: 0.055: 279: 273: 279: 273:
```


Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86


Координаты точки : X= 574.0 м Y= 286.0 м

Hom.	Код	Тип	Выброс	_ Вклад	Вклад в% Сум	и. % Коэф.влияния	ī
<c< td=""><td>б-П>-<Ис</td><td>> </td><td>-M- (Mq) </td><td>-С[доли ПДК</td><td> </td><td> b=C/M</td><td>1</td></c<>	б-П>-<Ис	>	-M- (Mq)	-С[доли ПДК		b=C/M	1
1 00	3101 600	6 П1	0.0051	0.107274	100.0 100	0.0 21.1210899	
1			В сумме =	0.107274	100.0		
~~~~~~	~~~~~~	~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~

Объект: 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель: 0621 Метилбензол (349)







Макс концентрация 0.2987866 ПДК достигается в точке x=514 y=292 При опасном направлении  $111^\circ$  и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТЬИ ИСТОЧНИКОВ.
УПРЭА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч.: 2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :1210 - Бутильцетат (Уксусной кислоты бутиловый эфир) (110)
             Коэффициент рельефа (КР): индивидуальный с источников
            Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.5~П>~
4. Расчетные параметры См, Uм, Xм
    Расчетные параметры См, Им, Xм
УПРЗА ЭРА V2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч. год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :1210 — Вутилацетат (Уксусной кислоты бутиловый эфир) (110)
плит пля плимеси 1710 = 0.1 мг/м3
                          ПДКр для примеси 1210 = 0.1 мг/м3
    - Для линейных и площадных источников выброс является суммарным по
       всей площади, а Cm` есть концентрация одиночного источника с
 0.000988 г/с
------ 0.352736 долей ПДК
        Суммарный Mq =
        Сумма См по всем источникам =
           Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
     Управляющие параметры расчета
Упрам ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :1210 - Бутилацетат (Уксусной кислоты бутиловый эфир) (110)
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucb
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана.
          Город :004 астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.

Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:

Примесь :1210 - Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Расчет проводился на прямоугольнике 1

с параметрами: координаты центра X= 544 Y= 282
                                                                        Расчет проводился 09.10.2025 18:03
             с параметрами: координаты центра X =  размеры: Длина (по X) =
                                                                           80, Ширина (по Y)=
                                    шаг сетки =
                                                             10.0
                    Расшифровка_обозначений

| Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
          -Если в расчете один источник, то его вклад и код не печатаются
          -Если в строке Cmax=< 0.05 ПДК, то Фол, Uon, Ви, Ки не печатаются |
          302 : Y-строка 1 Cmax= 0.331 долей ПДК (x= 524.0; напр.ветра=180)
         ----:
504: 514: 524: 534: 544: 554: 564: 574:
----:
Oc: 0.249: 0.306: 0.331: 0.306: 0.249: 0.197: 0.153: 0.119: 0.094:

      Φοπ:
      125:
      145:
      180:
      215:
      235:
      245:
      251:
      255:
      257:

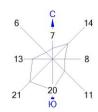
      Uoπ:
      0.50:
      0.50:
      0.50:
      0.50:
      0.50:
      0.75:
      0.75:
      0.75:
      0.75:
      0.75:

          292 : Y-строка 2 Cmax= 0.349 долей ПДК (x= 534.0; напр.ветра=249)
____
          504 : 514:
                                524: 534: 544:
                                                                    554: 564: 574:
Qc: 0.281: 0.349: 0.319: 0.349: 0.281: 0.213: 0.163: 0.125: 0.097: Cc: 0.028: 0.035: 0.032: 0.035: 0.028: 0.021: 0.016: 0.012: 0.010:
Фоп: 101: 111: 180: 249: 259: 263: 265: 265: 267: 
Uon: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75:
          y=
                      514: 524: 534: 544: 554:
Qc: 0.277: 0.347: 0.338: 0.347: 0.277: 0.211: 0.162: 0.124: 0.097: Cc: 0.028: 0.035: 0.034: 0.035: 0.028: 0.021: 0.016: 0.012: 0.010:
Φοπ: 73 : 59 : 0 : 301 : 287 : 281 : 279 : 277 : 275 : Uoπ: 0.50 : 0.50 : 0.50 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 :
```

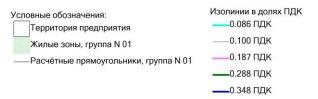
```
x= 504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.240: 0.292: 0.316: 0.292: 0.240: 0.192: 0.150: 0.117: 0.093:
Cc : 0.024: 0.029: 0.032: 0.029: 0.024: 0.019: 0.015: 0.012: 0.009:
Фоп: 51 : 33 : 0 : 327 : 309 : 299 : 291 : 287 : 285
Uon: 0.75 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
       262 : Y-строка 5 Cmax= 0.238 долей ПДК (x= 524.0; напр.ветра= 0)
 ν=
       504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.199: 0.227: 0.238: 0.227: 0.199: 0.165: 0.133: 0.107: 0.086:
Cc: 0.020: 0.023: 0.024: 0.023: 0.020: 0.017: 0.013: 0.011: 0.009:
Фоп: 37 : 21 : 0 : 339 : 323 : 311 : 303 : 297 : 293 : 

Uoп: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 :
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
            Координаты точки : X= 534.0 м Y= 292.0 м
 Максимальная суммарная концентрация | Сs=
                                                      0.34859 доли ПДК
                                                      0.03486 мг/м3
7. Суммарные концентрации в узлах расчетной сетки. 
упрза эра v2.5. Модель: ОНД-86
       Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
                           Расч.год: 2025
                                                   Расчет проводился 09.10.2025 18:03
       Вар.расч. :2
       Примесь :1210 - Вутилацетат (Уксусной кислоты бутиловый эфир) (110)
        (Символ ^ означает наличие источника вблизи расчетного узла)
   1 2 3 4 5 6 7 8 9
*--|----|-----|-----|
 1-| 0.249 0.306 0.331 0.306 0.249 0.197 0.153 0.119 0.094 |- 1
 2-| 0.281 0.349 0.319 0.349 0.281 0.213 0.163 0.125 0.097 |- 2
 3-C 0.277 0.347 0.338 0.347 0.277 0.211 0.162 0.124 0.097 C- 3
 4-| 0.240 0.292 0.316 0.292 0.240 0.192 0.150 0.117 0.093 |- 4
 5-| 0.199 0.227 0.238 0.227 0.199 0.165 0.133 0.107 0.086 |- 5
    .
|--|----|----|----|----|----|
 В целом по расчетному прямоугольнику: Максимальная концентрация ------> См =0.34859 долей ПДК =0.03486 мг/м3 Достигается в точке с координатами: XM = 534.0M ( X = 534.0M ) YM = 292.0 м При опасном направлении ветра : 249 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке. 
УПРЗА ЭРА v2.5. Модель: ОНД-86
       Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426
       Вар.расч. :2 Расч.год. 2025 Расчет проводился 09.10.2025 18:03 Примесь :1210 - Бутилацетат (Уксусной кислоты бутиловый эфир) (110) Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
       Всего просчитано точек: 4
                            Расшифровка обозначений
               | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
       -Если в расчете один источник, то его вклад и код не печатаются|
-Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                 286:
                         280:
        574: 574: 580:
                                 580:
Qc: 0.123: 0.125: 0.106: 0.107:
Сс: 0.012: 0.013: 0.011: 0.011:
Фол: 279: 273: 279: 273:
```

Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86


Координаты точки : X= 574.0 м Y= 286.0 м


Hom.	Код   Ти	ип  Выброс	Вклад	Вклад в%  Сум. %	Коэф.влияния		
<06	5-U>- <nc> </nc>	M-(Mq) -C	[доли ПДК]		b=C/M		
1   003	3101 6006  I	11  0.00098760	0.125155	100.0   100.0	126.7265549		
1		В сумме =	0.125155	100.0	1		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							


Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Макс концентрация 0.3485903 ПДК достигается в точке x=534 y=292 При опасном направлении 249° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТЫ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :1401 - Пропан-2-он (Ацетон) (470)
             Коэффициент рельефа (KP): индивидуальный с источников
            Коэффициент оседания (F): индивидуальный с источников
4. Расчетные параметры См, Uм, Xм
    Расчетные параметры См, Им, XM
УПРЗА ЭРА V2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч. год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :1401 — Пропан-2-он (Ацетон) (470)
ППКС ппя примесч 1401 = 0.35 мг/м3
                          ПДКр для примеси 1401 = 0.35 мг/м3
    - Для линейных и площадных источников выброс является суммарным по
       всей площади, а Cm` есть концентрация одиночного источника с
 0.002142 г/с
------ 0.218585 долей ПДК
        Суммарный Мq =
        Сумма См по всем источникам =
           Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
     управляющие параметры расчета
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :1401 - Пропан-2-он (Ацетон) (470)
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucb
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана.
         Тород 1004 Астана.

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.202
Примесь :1401 - Пропан-2-он (Ацетон) (470)
Расчет проводился на прямоугольнике 1
                                                                      Расчет проводился 09.10.2025 18:03
                                                                            544 Y=
            с параметрами: координаты центра X= 544 Y= 282 размеры: Длина (по X) = 80, Ширина (по Y) =
                                   шаг сетки =
                                                            10.0
                    Расшифровка_обозначений

| Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
          -Если в расчете один источник, то его вклад и код не печатаются
         -Если в строке Cmax=< 0.05 ПДК, то Фол, Uon, Ви, Ки не печатаются |
         302 : Y-строка 1 Cmax= 0.205 долей ПДК (x= 524.0; напр.ветра=180)
         ----:
504: 514: 524: 534: 544: 554: 564: 574:
----:
Oc: 0.154: 0.190: 0.205: 0.190: 0.154: 0.122: 0.095: 0.074: 0.058:

      QC:
      0.054:
      0.066:
      0.072:
      0.066:
      0.054:
      0.043:
      0.033:
      0.026:
      0.020:

      Фол:
      125:
      145:
      180:
      215:
      235:
      245:
      251:
      255:
      257:

      Uon:
      0.50:
      0.50:
      0.50:
      0.50:
      0.75:
      0.75:
      0.75:
      0.75:

          292 : Y-строка 2 Cmax= 0.216 долей ПДК (x= 514.0; напр.ветра=111)
____
         504 : 514:
                               524: 534: 544:
                                                                  554: 564: 574:
Qc: 0.174: 0.216: 0.197: 0.216: 0.174: 0.132: 0.101: 0.077: 0.060: Cc: 0.061: 0.076: 0.069: 0.076: 0.061: 0.046: 0.035: 0.027: 0.021:
Фоп: 101: 111: 180: 249: 259: 263: 265: 265: 267: 
Uon: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75:
         282 : У-строка 3 Стах= 0.215 долей ПДК (х= 514.0; напр.ветра= 59)
 y=
                              524: 534: 544: 554: 564: 574:
Qc: 0.171: 0.215: 0.210: 0.215: 0.171: 0.131: 0.100: 0.077: 0.060: Cc: 0.060: 0.075: 0.073: 0.075: 0.060: 0.046: 0.035: 0.027: 0.021:
Φοπ: 73: 59: 0: 301: 287: 281: 279: 277: 275: 

Uoπ: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75:
```

```
x= 504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.149: 0.181: 0.196: 0.181: 0.149: 0.119: 0.093: 0.073: 0.057:
Cc: 0.052: 0.063: 0.068: 0.063: 0.052: 0.042: 0.033: 0.025: 0.020:
Фоп: 51 : 33 : 0 : 327 : 309 : 299 : 291 : 287 : 285
Uоп: 0.75 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
        262 : Y-строка 5 Cmax= 0.148 долей ПДК (x= 524.0; напр.ветра= 0)
 ν=
        504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.123: 0.141: 0.148: 0.141: 0.123: 0.102: 0.083: 0.066: 0.053:
Cc: 0.043: 0.049: 0.052: 0.049: 0.043: 0.036: 0.029: 0.023: 0.019:
Фоп: 37 : 21 : 0 : 339 : 323 : 311 : 303 : 297 : 293 : 

Uoп: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 :
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
            Координаты точки : X= 514.0 м Y= 292.0 м
 Максимальная суммарная концентрация | Сs=
                                                          0.21602 доли ПДК
                                                          0.07561 мг/м3
7. Суммарные концентрации в узлах расчетной сетки. 
упрза эра v2.5. Модель: ОНД-86
        Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
                                                       Расчет проводился 09.10.2025 18:03
        Вар.расч. :2 Расч.год: 2025 Расчет
Примесь :1401 - Пропан-2-он (Ацетон) (470)
        (Символ ^ означает наличие источника вблизи расчетного узла)
    1 2 3 4 5 6 7 8 9
*--|----|-----|-----|
 1-| 0.154 0.190 0.205 0.190 0.154 0.122 0.095 0.074 0.058 |- 1
 2-| 0.174 0.216 0.197 0.216 0.174 0.132 0.101 0.077 0.060 |- 2
 3-C 0.171 0.215 0.210 0.215 0.171 0.131 0.100 0.077 0.060 C- 3
 4-| 0.149 0.181 0.196 0.181 0.149 0.119 0.093 0.073 0.057 |- 4
 5-| 0.123 0.141 0.148 0.141 0.123 0.102 0.083 0.066 0.053 |- 5
    .
|--|----|----|----|----|
 В целом по расчетному прямоугольнику: Максимальная концентрация -------> См =0.21602 долей ПДК =0.07561 мг/м3 Достигается в точке с координатами: XM = 514.0M ( XM = 514.0M ) XM = 292.0M При опасном направлении ветра : 111 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке. 
УПРЗА ЭРА v2.5. Модель: ОНД-86

        Город
        :004
        Астана.

        Объект
        :0031
        МЖК р-н пересечения улиц Ж. Нажимеденова и А426

        Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18: Примесь :1401 - Пропан-2-он (Ацетон) (470) Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
                                                       Расчет проводился 09.10.2025 18:03
        Всего просчитано точек: 4
                              Расшифровка обозначений
                | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
       -Если в расчете один источник, то его вклад и код не печатаются |
-Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Bи, Ки не печатаются |
                  286:
                           280:
         574: 574: 580:
                                    580:
x= 5/4: 5/4: 580: 580:

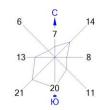
-----:---:----:----:

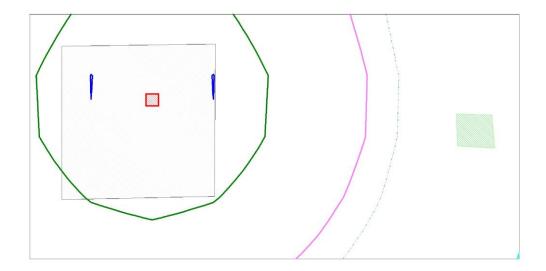
Qc: 0.076: 0.078: 0.066: 0.067:

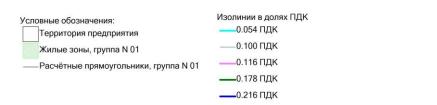
Cc: 0.027: 0.027: 0.023: 0.023:

Φοπ: 279: 273: 279: 273:
```

Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86


Координаты точки : X= 574.0 м Y= 286.0 м


Достигается при опасном направлении 273 град.
и скорости ветра 0.75 м/с
Всего источников: 1. В таблище заказано вкладчиков не более чем с 95% вклада
ВКЛАДЫ ИСТОЧНИКОВ


BIGHIAM NOTO HINKOD							
Hom.	Код	Тип	Выброс	Вклад	Вклад в% Су	/M. % K	кинкила.фео3
<0	б-П>-<Ис	>	-M-(Mq) -C	[доли ПДК]			b=C/M
1 100	3101 600	6 П1	0.0021	0.077557	100.0 10	0.00	36.2075844
1			В сумме =	0.077557	100.0		1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426 Вар.№ 2 УПРЗА ЭРА v2.5 Модель:

1401 Пропан-2-он (Ацетон) (470)







12м. Масштаб 1:400

Макс концентрация 0.2160158 ПДК достигается в точке x=514~y=292 При опасном направлении  $111^\circ$  и опасной скорости ветра 0.5~м/c Расчетный прямоугольник № 1, ширина 80~м, высота 40~м, шаг расчетной сетки 10~м, количество расчетных точек  $9^*5$ Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТЬИ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2732 - Керосин (654*)
Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.05~П>~
4. Расчетные параметры См, Uм, Xм
    УПРЗА ЭРА V2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.202
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2732 - Керосин (654*)
                                                                 Расчет проводился 09.10.2025 18:03
                       ПДКр для примеси 2732 = 1.2 мг/м3 (ОБУВ)
   - Для линейных и площадных источников выброс является суммарным по
      всей площади, а Cm` есть концентрация одиночного источника с
 0.002603 г/с
------ 0.077475 долей ПДК
       Суммарный Mq =
       Сумма См по всем источникам =
          Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    управляющие параметры расчета
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2732 - Керосин (654*)
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Ucb
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана.
         Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.202
         Вар.расч. :2 Расч.год. 2025 Расчет проводился 09.10.2025 18:03 Примесь :2732 - Керосин (654*) Расчет проводился на прямоугольнике 1
           с параметрами: координаты центра X =  размеры: Длина (по X) =
                                                                          544 Y=
                                                                    80, Ширина (по Y) =
                                 шаг сетки =
                                                        10.0
                  Расшифровка_обозначений

| Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
         -Если в расчете один источник, то его вклад и код не печатаются
         -Если в строке Cmax=< 0.05 ПДК, то Фол, Uon, Ви, Ки не печатаются |
         302 : Y-строка 1 Cmax= 0.077 долей ПДК (x= 524.0; напр.ветра=143)
        ----:
504: 514: 524: 534: 544: 554: 564: 574:
----:
Oc: 0.051: 0.066: 0.077: 0.076: 0.069: 0.053: 0.041: 0.032: 0.024:

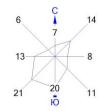
      Cc: 0.061: 0.079: 0.092: 0.091: 0.083: 0.064: 0.050: 0.038: 0.029:

      Фол: 107: 117: 143: 207: 240: 251: 257: 260: 261:

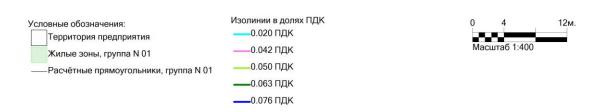
      Uoл: 0.75: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75:

         292 : Y-строка 2 Cmax= 0.075 долей ПДК (x= 524.0; напр.ветра= 71)
____
         504 : 514:
                             524: 534: 544: 554: 564: 574:
Qc: 0.052; 0.069; 0.075; 0.072; 0.072; 0.055; 0.042; 0.032; 0.025; Cc: 0.063; 0.083; 0.090; 0.086; 0.087; 0.066; 0.051; 0.039; 0.030;
Фоп: 85: 83: 71: 297: 279: 275: 273: 273: 273: Uon: 0.75: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75:
         y=
                 514: 524: 534: 544: 554: 564: 574:
Qc: 0.049: 0.062: 0.074: 0.075: 0.065: 0.051: 0.040: 0.031: 0.024: Cc: 0.059: 0.075: 0.088: 0.090: 0.078: 0.061: 0.048: 0.037: 0.029:
Von: 0.75 : 0.50 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75
```

```
x= 504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.042: 0.051: 0.057: 0.058: 0.052: 0.044: 0.035: 0.028: 0.022:
Cc : 0.051: 0.061: 0.069: 0.070: 0.063: 0.053: 0.043: 0.034: 0.027:
Фоп: 50 : 37 : 15 : 350 : 327 : 313 : 303 : 297 : 293
Uоп: 0.75 : 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
                  262 : Y-строка 5 Cmax= 0.044 долей ПДК (x= 534.0; напр.ветра=353)
  ν=
                  ----:
504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.035: 0.040: 0.044: 0.041: 0.036: 0.030: 0.025: 0.020:
Cc: 0.042: 0.048: 0.053: 0.053: 0.049: 0.043: 0.036: 0.029: 0.024:
   Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                             Координаты точки : X= 524.0 м Y= 302.0 м
   - Максимальная суммарная концентрация | Cs= 0.07652 доли г | 0.09182 мг/м3
Достигается при опасном направлении 143 град.
и скорости ветра 0.50 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
| BKHARA | SANAGARKO BKHARA | BKHARA |
7. Суммарные концентрации в узлах расчетной сетки. 
УПРЗА ЭРА v2.5. Модель: ОНД-86 
Город :004 Астана. 
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
                  Вар.расч. :2 Расч.год: 2025
Примесь :2732 - Керосин (654*)
                                                                                                                               Расчет проводился 09.10.2025 18:03
                         (Символ ^ означает наличие источника вблизи расчетного узла)
                                                                                                   6 7
                                                                                    5
   1-| 0.051 0.066 0.077 0.076 0.069 0.053 0.041 0.032 0.024 |- 1
   2-| 0.052 0.069 0.075 0.072 0.072 0.055 0.042 0.032 0.025 |- 2
   3-C 0.049 0.062 0.074 0.075 0.065 0.051 0.040 0.031 0.024 C- 3
   4-| 0.042 0.051 0.057 0.058 0.052 0.044 0.035 0.028 0.022 |- 4
   5-| 0.035 0.040 0.044 0.044 0.041 0.036 0.030 0.025 0.020 |- 5
          .
|--|----|----|----|----|
                1 2 3 4 5 6 7 8 9
                    В целом по расчетному прямоугольнику:
   Б целом по расчетному приморголенику.
Максимальная концентрация -----> См =0.07652 долей ПДК =0.09182 мг/м3
  =0.09182\ \mathrm{Mr}, =0.09182\ 
8. Результаты расчета по жилой застройке.
УПРЗА ЭРА v2.5. Модель: ОНД-86
                  Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
                                                :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
:2732 - Керосин (654*)
                  Вар.расч. :2
                  Примесь
                   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
                  Всего просчитано точек: 4
                                                                        _Расшифровка_обозначений
                                    гасшифровка осозначении


| Qc - суммарная концентрация [доли ПДК]
| Сс - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
                  -Если в расчете один источник, то его вклад и код не печатаются
                 -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                     280:
                                          286:
                                                               280:
                                                                 ---:-
   x= 574: 574: 580:
                                                                                   580:
Qc: 0.030: 0.032: 0.026: 0.027: Cc: 0.037: 0.038: 0.031: 0.033:
```

Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86


Координаты точки : X= 574.0 м Y= 286.0 м

Объект: 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель: 2732 Керосин (654*)







Макс концентрация 0.0765156 ПДК достигается в точке x= 524 y= 302 При опасном направлении  $143^\circ$  и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек  $9^*5$  Расчёт на существующее положение.

```
3. Исходные параметры источников
     ИСХОДНЫЕ ПАРАМЕТЬИ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2752 - Уайт-спирит (1294*)
Коэффициент рельефа (КР): индивидуальный с источников
              Коэффициент оседания (F): индивидуальный с источников
Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс < 0.5~П>~
4. Расчетные параметры См, Uм, Xм
     Расчетные параметры См, Uм, Xм
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2752 - Уайт-спирит (1294*)
ПДКр для примеси 2752 = 1.0 мг/м3 (ОБУВ)
     - Для линейных и площадных источников выброс является суммарным по
        всей площади, а Cm` есть концентрация одиночного источника с
  | Источники | Их расчетные параметры | Номер | Код | М | Тип | Сm (Сm`) | Um | Xm | -п/п-|<06-п>-<uc>| -п/п-|<060-п>-<uc>| -п/п-|<03101 (8006) | 0.000062 | П | 0.002222 | 0.50 | 11.4
          Суммарный Mq =
                                          0.000062 r/c
                                                                   0.002222 долей ПДК
          Сумма См по всем источникам =
                 Средневзвешенная опасная скорость ветра = 0.50 м/с
       Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
 5. Управляющие параметры расчета
     УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
  10род 1004 нАтана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч.:2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2752 - Уайт-спирит (1294*)
Фоновая концентрация не задана
   Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по перитории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей Исв Средневзвешенная опасная скорость ветра Исв= 0.5 м/с
 6. Результаты расчета в виде таблицы.
     УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
           Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :2752 - Уайт-спирит (1294*)
Расчет не проводился: См < 0.05 долей ПДК
7. Суммарные концентрации в узлах расчетной сетки.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.

Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03

Примесь :2752 - Уайт-спирит (1294*)
Расчет не проводился: См < 0.05 долей ПДК
 8. Результаты расчета по жилой застройке.
     УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2752 - Уайт-спирит (1294*)
Расчет не проводился: См < 0.05 долей ПДК
3. Исходные параметры источников
     исходные параметры источников.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в
              люравь С12 13 / В пересчете на С) (Уги
пересчете на
Коэффициент рельефа (КР): индивидуальный с источников
Коэффициент оседания (F): индивидуальный с источников
4. Расчетные параметры См, Им, Хм
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
```

```
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на
                    ПДКр для примеси 2754 = 1.0 мг/м3
    Пля линейных и плошалных источников выброс является суммарным по
     всей площади, а Cm` есть концентрация одиночного источника с
     суммарным М
    Номер| Код |
-п/п-|<об-п>-<ис>|
                                                                               11.4
      Суммарный Мq =
                           0.019700 r/c
      Сумма См по всем источникам =
                                                0.703615 долей ПДК
          Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
   УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
       Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на вая концентрация
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей UCB
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы.
   Результаты расчета в виде таолицы.
УПРЗА ЭРА V2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в
                             пересчете на
          Расчет проводился на прямоугольнике 1
          с параметрами: координаты центра X =  размеры: Длина (по X) =
                                                             544 Y=
                                                          80, Ширина(по Y)=
                           шаг сетки =
                                             10.0
                             Расшифровка обозначений
                 Qc - суммарная концентрация [доли ПДК]
Сс - суммарная концентрация [мг/м.куб]
               | Фоп- опасное направл. ветра [ угл. град.]
| Иоп- опасная скорость ветра [ м/с ]
     | -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Стах=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
       302 : У-строка 1 Стах= 0.686 долей ПДК (х= 524.0; напр.ветра=171)
              514:
                       524:
                                534:
                                         544:
                                                    554:
                                                             564:
Qc : 0.487: 0.615: 0.686: 0.654: 0.540: 0.423: 0.328: 0.253: 0.198:
Cc : 0.487: 0.615: 0.686: 0.654: 0.540: 0.423: 0.328: 0.253: 0.198:
       119 :
               135 :
                        171:
                                 213 :
                                          237 :
                                                  247 :
                                                            253:
Uon: 0.50 : 0.50 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 :
       292 : Y-строка 2 Cmax= 0.687 долей ПДК (x= 534.0; напр.ветра=255)
 V=
                 514:
                          524:
                                  534:
                                           544:
                                                    554:
Qc: 0.533: 0.686: 0.583: 0.687: 0.596: 0.449: 0.344: 0.263: 0.204:
Cc: 0.533: 0.686: 0.583: 0.687: 0.596: 0.449: 0.344: 0.263: 0.204:
Фоп: 95: 99: 135: 255: 263: 265: 267: 267: 269: 

Uoп: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75:
 y=
       514:
                          524:
                                  534:
                                           544:
                                                    554:
                                                             564:
                                                                              584:
       504 :
Qc: 0.512: 0.654: 0.687: 0.695: 0.570: 0.437: 0.336: 0.259: 0.201:

      Cc: 0.512: 0.654: 0.687: 0.695: 0.570: 0.437: 0.336: 0.259: 0.201:

      Фол: 70: 57: 15: 315: 293: 285: 281: 279: 277:

      Uол: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75:

       ----:
504: 514: 524: 534: 544: 554: 564: 574:
                                                                            584:
 x=
Qc: 0.446: 0.540: 0.596: 0.570: 0.482: 0.392: 0.309: 0.242: 0.191:
Cc : 0.446: 0.540: 0.596: 0.570: 0.482: 0.392: 0.309: 0.242: 0.191: \phion: 51 : 33 : 7 : 337 : 315 : 303 : 295 : 291 : 287 :
Uon: 0.75 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
       y=
                 514: 524: 534: 544: 554: 564: 574:
       504 :
              514:
                                                                              584:
```

```
Oc: 0.367: 0.423: 0.449: 0.437: 0.392: 0.330: 0.269: 0.217: 0.175:

      Cc: 0.367: 0.423: 0.449: 0.437: 0.392: 0.330: 0.269: 0.217: 0.175:

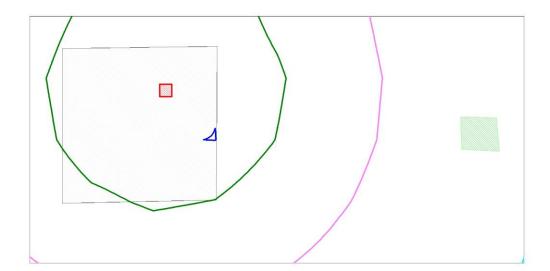
      Фол: 39: 23: 5: 345: 327: 315: 307: 300: 295: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.
   Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                         Координаты точки : X= 534.0 м Y= 282.0 м
   Максимальная суммарная концентрация | Cs=
                                                                                                                      0.69458 мг/м3
Достигается при опасном направлении 315 град. и скорости ветра 0.50 \text{ м/c} Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
 ВСЕГО ИСТОЧНИКОВ: 1. В ТАГОИМИЕ ЗАКАЗАНО ВКЛАДЫ ИСТОЧНИКОВ

ВКЛАДЫ ИСТОЧНИКОВ

| НОМ. | КОД | ТИП | ВЫБРОС | ВКЛАД | ВКЛАД В% | Сум. % | КОЭФ.ВЛИЯНИЯ
|---|<06-П>-<ИС>|------ | (МД) --|-С | ДОЛИ ПДК | | ------| ----- | ----- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | |
| 1 | 003101 6007 | П1 | 0.0197 | 0.694575 | 100.0 | 100.0 | 35.2576370
| | В сумме = 0.694575 | 100.0
7. Суммарные концентрации в узлах расчетной сетки.

УПРЗА ЭРА v2.5. Модель: ОНД-86

Город :004 Астана.


Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
               ООБЕКТ .0031 ммл р-н перессечения улиц м. наклижденова и мчго.
Вар.расч. :2 Расчетод: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в
                                                              пересчете на
                      Параметры расчетного прямоугольника No 1
Координаты центра : X= 544 м; Y= 282 |
Длина и ширина : L= 80 м; B= 40 м |
Шаг сетки (dX=dY) : D= 10 м
         (Символ ^ означает наличие источника вблизи расчетного узла)
                       2 3 4
                                                                        5
                                                                                        6
   *--|----|----|----|
1-| 0.487 0.615 0.686 0.654 0.540 0.423 0.328 0.253 0.198 |- 1
   2-| 0.533 0.686 0.583 0.687 0.596 0.449 0.344 0.263 0.204 |- 2
   3-C 0.512 0.654 0.687 0.695 0.570 0.437 0.336 0.259 0.201 C- 3
   4-| 0.446 0.540 0.596 0.570 0.482 0.392 0.309 0.242 0.191 |- 4
   5-| 0.367 0.423 0.449 0.437 0.392 0.330 0.269 0.217 0.175 |- 5
  В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См =0.69458 долей ПДК
                                                                                                          =0.69458 мг/м3
  Достигается в точке с координатами: Xм = 534.0м ( X-столбец 4, Y-строка 3) Yм = 282.0 м При опасном направлении ветра : 315 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке. 
УПРЗА ЭРА v2.5. Модель: ОНД-86
               Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2754 - Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в
                                                              пересчете на
               Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
                Всего просчитано точек: 4
                                                              _Расшифровка_обозначений_
                               | Ос - суммарная концентрация [поли ПДК]
| Сс - суммарная концентрация [мг/м.куб]
| Фоп- опасное направл. ветра [ угл. град.]
| Иоп- опасная скорость ветра [ м/с ]
           | -Если в расчете один источник, то его вклад и код не печатаются
| -Если в строке Стах=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются |
                  280: 286: 280:
Qc: 0.256: 0.262: 0.220: 0.225: Cc: 0.256: 0.262: 0.220: 0.225: Фол: 281: 275: 280: 275: Uon: 0.75: 0.75: 0.75:
   Результаты расчета в точке максимума
                                                                                                       УПРЗА ЭРА v2.5. Модель: ОНД-86
                         Координаты точки : X= 574.0 м Y= 286.0 м
                                                                                                                       0.26241 доли ПДК
  Максимальная суммарная концентрация | Cs=
                                                                                                                      0.26241 мг/м3
Достигается при опасном направлении 275 град. и скорости ветра 0.75~\text{м/c} Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
```

Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на









Макс концентрация 0.6945755 ПДК достигается в точке x=  $534\,$  y=  $282\,$  При опасном направлении  $315^\circ$  и опасной скорости ветра  $0.5\,$  м/с Расчетный прямоугольник №  $1,\,$  ширина  $80\,$  м, высота  $40\,$  м, шаг расчетной сетки  $10\,$  м, количество расчетных точек  $9*5\,$  Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТРЫ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
        Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                пыль
           Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
|Alf| F | KP |Ди| Выброс
4. Расчетные параметры См, Uм, Xм УПРЗА ЭРА v2.5. Модель: ОНД-86 Город :004 Астана.
        Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль
                    ПДКр для примеси 2908 = 0.3 мг/м3
     Для линейных и площадных источников выброс является суммарным по
      всей площади, а Cm` есть концентрация одиночного источника с
                  0.025330 г/с
9.046994 долей ПДК
    Суммарный Mq = 0.025330 г/с
Сумма См по всем источникам = 9.046994
          Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
                     :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
:2 Расч.год: 2025 Расчет проводился 09.10.202
        Объект
        Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                пыль
 Фоновая концентрация не задана
 Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по прямоугольнику UU1: 80х 40 с шагом 10
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: перебор от 0 до 360 с шагом 10 град.
Перебор скоростей ветра: 0.5 12.0 м/с
0.5 1.0 1.5 долей UCB
 Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы. 
УПРЗА ЭРА v2.5. Модель: ОНД-86
        Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
        оовел .003 млл р-я пересечения улиц м. нажимеденова и я426.
Вар.расч. :2 Расч-год.; 2025 Расчет проводился 09.10.2025 18:03
Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                пыль
          Расчет проводился на прямоугольнике 1
                                                                   544 Y=
          с параметрами: координаты центра X =  размеры: Длина (по X) =
                                                             80, Ширина (по Y) =
                                                                                                40
                              шаг сетки =
                                                  10.0
                                Расшифровка обозначений
                  Ос - суммарная концентрация [доли ПДК]
Сс - суммарная концентрация [мг/м.куб]
                  Фоп- опасное направл. ветра [ угл. град.]

Uon- опасная скорость ветра [ м/с ]
        -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то \phioп, Uon, Ви, Ки не печатаются |
        302 : Y-строка 1 Cmax= 3.741 долей ПДК (x= 514.0; напр.ветра=175)
                   514:
                            524:
                                      534:
                                               544:
                                                         554:
                                                                   564:
                                                                                      584:
        504 :
      3.200: 3.741: 3.489: 2.698: 1.924: 1.366: 0.976: 0.574: 0.496:

      Cc: 0.960: 1.122: 1.047: 0.810: 0.577: 0.410: 0.293: 0.172: 0.149:

      Фол: 151: 175: 200: 219: 231: 240: 245: 249: 253:

      Uол: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 12.00:

        504: 514: 524: 534: 544: 554: 564: 574: 584:
Oc: 4.926: 6.367: 5.630: 3.829: 2.443: 1.606: 1.109: 0.659: 0.510:

      Cc: 1,478: 1,910: 1,689: 1,149: 0,733: 0,482: 0,333: 0,189: 0,153:

      Фол: 135: 171: 213: 237: 247: 253: 255: 259: 260:

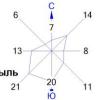
      Uoл: 0.75: 0.50: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 12.00:

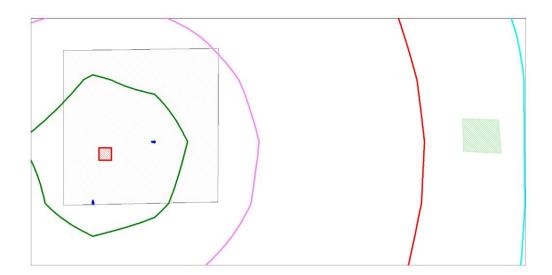
        584:
        504: 514:
                   514: 524: 534: 544: 554: 564: 574:
```

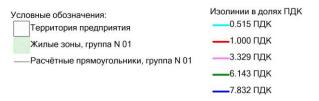
```
Qc : 6.367: 7.490: 7.851: 4.629: 2.742: 1.732: 1.169: 0.702: 0.510: Cc : 1.910: 2.247: 2.355: 1.389: 0.823: 0.520: 0.351: 0.211: 0.153: 0\pi: 99: 135: 255: 263: 265: 267: 267: 267: 269: 269: 269: 20\pi: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 
                 514:
                                                      524: 534: 544: 554: 564: 574:
Q: 5.630: 7.851: 6.697: 4.245: 2.603: 1.673: 1.143: 0.683: 0.512: Cc: 1.689: 2.355: 2.009: 1.273: 0.781: 0.502: 0.343: 0.205: 0.153: Φοπ: 57: 15: 315: 293: 285: 281: 279: 277: 277:
Uoп: 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 12.00 :
                 524: 534: 544: 554: 564: 574:
Qc : 3.829: 4.629: 4.245: 3.136: 2.139: 1.469: 1.043: 0.611: 0.506:
Сс: 1.149: 1.389: 1.273: 0.941: 0.642: 0.441: 0.313: 0.183: 0.152: Фол: 33: 7: 337: 315: 303: 295: 291: 287: 285: Uoл: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 12.00:
   Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
                            Координаты точки : X= 514.0 м Y= 272.0 м
  Максимальная суммарная концентрация  |  Cs=  7.85058  доли ПДК  |  2.35517 мг/м3
       Достигается при опасном направлении 15 гра, и скорости ветра 0.50 м/с
                                                                                                                         15 град.
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
      от источников: 1. в таолице заказано вкладчиков не более чем с 95% вклада вкладичиков не более чем с 95% вкладичиков не более чем с 95% вклада вкладичиков не более чем с 95% вклада вкладичиков не более чем с 95% вклада вкладичиков не более чем с 95% вкладичиков не 
7. Суммарные концентрации в узлах расчетной сетки.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                                                   пыль
                        Параметры расчетного прямоугольника No 1
Координаты центра : X= 544 м; Y= 282
Длина и ширина : L= 80 м; B= 40 м
Шаг сетки (dX=dY) : D= 10 м
          (Символ ^ означает наличие источника вблизи расчетного узла)
        1 2 3 4 5 6 7 8 9
*--|----|-----|-----|-----|
   1-| 3.200 3.741 3.489 2.698 1.924 1.366 0.976 0.574 0.496 |- 1
   2-| 4.926 6.367 5.630 3.829 2.443 1.606 1.109 0.659 0.510 |- 2
   3-C 6.367 7.490 7.851 4.629 2.742 1.732 1.169 0.702 0.510 C- 3
   4-| 5.630 7.851 6.697 4.245 2.603 1.673 1.143 0.683 0.512 |- 4
   5-| 3.829 4.629 4.245 3.136 2.139 1.469 1.043 0.611 0.506 |- 5
          |--|----|----|-----|-----|-----|-----|
1 2 3 4 5 6 7 8 9
  . – В целом по расчетному прямоугольнику:
Максимальная концентрация -----> См =7.85058 долей ПДК =2.35517 мг/м3 ... – 514 Лм
  =2.35517 мг,
Достигается в точке с координатами: Xм = 514.0м
( X-столбец 2, Y-строка 4) Yм = 272.0 м
При опасном направлении ветра : 15 град.
и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке. 
 УПРЗА ЭРА v2.5. Модель: ОНД-86
                 Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426
                                                                                                                         Расчет проводился 09.10.2025 18:03
                 Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
                                                                   пыль
                 Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
                 Всего просчитано точек: 4
                                                                    _Расшифровка_обозначений_
                                   | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
                                  | Фоп- опасное направл. ветра [ угл. град.]
| Иоп- опасная скорость ветра [ м/с ]
                -Если в расчете один источник, то его вклад и код не печатаются -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Ви, Ки не печатаются \mid
             y= 280: 286: 280: 286:
```

x= 574: 574: 580: 580: Cc: 0.704: 0.691: 0.526: 0.524: Cc: 0.211: 0.207: 0.158: 0.157: Фол: 270: 265: 270: 265: Uon: 0.75: 0.75: 0.75: 12.00:

Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86


Координаты точки : X= 574.0 м Y= 280.0 м


Максимальная суммарная концентрация | Cs= 0.70438 доли ПДК 0.21131 мг/м3


Объект : 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль









Макс концентрация 7.8505764 ПДК достигается в точке x= 514 y= 272 При опасном направлении 15° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9°5 Расчёт на существующее положение.

```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТРЫ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Группа суммации : ____ 27=0184 Свинец и его неорганические соединения /в пересчете на свинец/
                                                   (513) )
                                           0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
            (516) )
Коэффициент рельефа (КР): индивидуальный с источников
            Коэффициент оседания (F): индивидуальный с источников
Х2
                                                                                                                          Y2
                                                                                                                                 |Alf| F | KP |Ди| Выброс
                                                                                              Y1
                                                                                                                             ----|Fp.|---|-
                                                                             528
003101 6008 П1 2.0
------ Примесь 0330------
003101 6009 П1 2.0
                                                                   0.0
                                                                                               292
                                                                                                               2
                                                                                                                              2 0 3.0 1.000 1 0.0000075
                                                                   0.0 530
                                                                                                               2
                                                                                           294
                                                                                                                             2 0 1.0 1.000 1 0.0003780
4. Расчетные параметры См, Им, Хм
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
         Объект
                         :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
         Осъект :0031 мм р-н пересечения улиц ж. нажимеденова и я4.6.
Вар.расч. :2 Расчетод: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Группа суммации :_27=0184 Свинец и его неорганические соединения /в пересчете на свинец/
(513))
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                   (516))
   - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная концентрация См = Cм1/ПДК1 +...+ Смn/ПДКn

    Для групп суммаций, включающих примеси с различными коэфф.
оседания, нормированный выброс указывается для каждой примеси
отдельно вместе с коэффициентом оседания

      Для линейных и площадных источников выброс является суммарным по
      всей площади, а Cm \dot{} есть концентрация одиночного источника с
 0.008256 (сумма Мq/ПДК по всем примесям)
        Суммарный Мq =
        Сумма См по всем источникам = 0
                                                             0.830623 долей ПДК
           Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчет
    УПРВАНИКЩИЕ ПАРАЖЕТРИ РАСТОК

УПРВА ЭРА V2.5. МОДЕЛЬ: ОНД-86

Город :004 Астана.

Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и A426.
         Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
Группа суммации :__27=0184 Свинец и его неорганические соединения /в пересчете на свинец/
                                            (513))
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                   (516) )
 Запрошен учет дифференцированного фона с постов для действующих источников
 Расчет по прямоугольнику 001 : 80х 40 с шагом 10
 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей UCB
 Средневзвешенная опасная скорость ветра Ucb=0.5~{\rm M/c}
6. Результаты расчета в виде таблицы.
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
         Объект :0031 МЖК p-н пересечения улиц Ж. Нажимеденова и A426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Группа суммации :__27=0184 Свинец и его неорганические соединения /в пересчете на свинец/
                                            (513))
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                  (516) )
             Расчет проводился на прямоугольнике 1
            с параметрами: координаты центра X=
размеры: Длина (по X)=
шаг сетки = 10.0
                                                                             544 Y=
                                                                      80, Ширина (по Y)=
                                                                                                             40
                                     Расшифровка обозначений
                    Расшифровка обозначений

| Qc - суммарная концентрация [доли ПДК] |

| Сф - фоновая концентрация [доли ПДК] |

| Сф'- фон без реконструируемых [доли ПДК] |

| Сди- вклад действующих (для Сf') [доли ПДК] |

| Фоп- опасное направл. ветра [ угл. град.] |

| Uon- опасная скорость ветра [ м/с ] |

| Ви - вклад ИСТОЧНИКА в Qc [доли ПДК] |

| Ки - код источника для верхней строки Ви
         -Если расчет для суммации, то концентр. в мг/м3 не печатается | -Если в строке Cmax=< 0.05 ПДК, то Фоп, Uon, Bи, Ки не печатаются |
         302 : Y-строка 1 Cmax= 0.663 долей ПДК (x= 524.0; напр.ветра=157)
 ν=
         504: 514: 524: 534: 544: 554: 564: 574: 584:
```

```
Qc : 0.328: 0.482: 0.663: 0.640: 0.448: 0.315: 0.260: 0.227: 0.204:
Сф: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.204:
ch`. 0 041. 0 031. 0 031. 0 031. 0 031. 0 050. 0 087. 0 109. 0 204.
Сди: 0.287: 0.451: 0.632: 0.609: 0.417: 0.265: 0.173: 0.118: 0.000:
Фоп:
                   125 :
                                        211 :
                                                  239 :
                                                             249 :
Uon: 0.75 : 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
__y=
         292 : У-строка 2 Стах= 0.797 долей ПДК (х= 534.0; напр.ветра=270)
                                        534:
                                                   544:
                                                              554:
       0.349: 0.563: 0.772: 0.797: 0.512: 0.329: 0.266: 0.230: 0.204:
       0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.204:
Сф:
Cop : 0.031: 0.031: 0.031: 0.031: 0.031: 0.040: 0.083: 0.107: 0.204:
Сди: 0.318: 0.532: 0.741: 0.766: 0.481: 0.289: 0.183: 0.123: 0.000: Фол: 90: 90: 90: 270: 270: 270: 270: 270: ЮГ
Фоп:
Uoп: 0.75 : 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 0.75 : > 2
Ви : 0.300: 0.512: 0.726: 0.757: 0.461: 0.271: 0.168: 0.112:
       6008 : 6008 : 6008 : 6008 : 6008 : 6008 : 6008 : 6008 : 
0.017: 0.020: 0.015: 0.009: 0.020: 0.018: 0.014: 0.011: 
6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 :
Ки:
 y=
         504: 514: 524: 534: 544: 554: 564: 574: 584:
 X=
       0.329: 0.484: 0.669: 0.635: 0.445: 0.314: 0.259: 0.227: 0.204:
Сф: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.204:
                                       0.031: 0.031: 0.051: 0.087: 0.109: 0.204:
Сди: 0.288: 0.453: 0.638: 0.603: 0.413: 0.263: 0.172: 0.118: 0.000:
Фоп: 67: 55: 21: 330: 303: 291: 285: 283: 10

Uon: 0.75: 0.75: 0.50: 0.50: 0.75: 0.75: 0.75: 0.75: > 2
       0.271: 0.432: 0.613: 0.582: 0.394: 0.247: 0.158: 0.108:
       6008: 6008: 6008: 6008: 6008: 6008: 6008:
       0.017 \colon \ 0.021 \colon \ 0.025 \colon \ 0.021 \colon \ 0.019 \colon \ 0.017 \colon \ 0.013 \colon
Ки: 6009: 6009: 6009: 6009: 6009: 6009: 6009:
        504: 514: 524: 534: 544: 554: 564: 574: 584
                                                                                              584 •
 x=
Qc: 0.290: 0.343: 0.414: 0.404: 0.332: 0.281: 0.244: 0.219: 0.204:
       0.156: 0.156: 0.156:
                                      0.156: 0.156: 0.156: 0.156: 0.156: 0.204: 0.031: 0.039: 0.073: 0.097: 0.114: 0.204:
                                                                                0.114: 0.204:
       0.066: 0.031: 0.031:
Сф`:
^{\times} Сли: 0.224: 0.312: 0.383: 0.372: 0.293: 0.209: 0.147: 0.106: 0.000: Фол: 50: 35: 11: 343: 321: 307: 299: 293: ЮГ Uол: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 2
       0.209: 0.294: 0.364: 0.354: 0.276: 0.194: 0.135: 0.096:
       6008: 6008: 6008: 6008: 6008: 6008: 6008: 6008: 0.015: 0.018: 0.019: 0.018: 0.017: 0.014: 0.012: 0.010:
ки: 6009: 6009: 6009: 6009: 6009: 6009: 6009: 6009:
         514: 524: 534: 544: 554: 564: 574:
 x=
        504:
Oc :
       0.254: 0.279: 0.296: 0.294: 0.275: 0.249: 0.227: 0.206: 0.204:
       0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.156: 0.204:
Сф`:
       0.091: 0.074: 0.062:
                                      0.064: 0.077: 0.094: 0.109:
                                                                                0.123: 0.204:
Uon: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 2
Ви : 0.151: 0.192: 0.219: 0.216: 0.184: 0.144: 0.108: 0.075:
Ки: 6008: 6008: 6008: 6008: 6008: 6008: 6008: 6008: 8
Ви: 0.012: 0.014: 0.015: 0.015: 0.014: 0.012: 0.010: 0.008:
Ки : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 : 6009 :
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
              Координаты точки : X= 534.0 м Y= 292.0 м
 Максимальная суммарная концентрация С= 0.79699 доли ПДК
    Достигается при опасном направлении 270 град. и скорости ветра 0.50 м/с
7. Суммарные концентрации в узлах расчетной сетки. 
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
```

¹²⁰ 

```
Объект
                      :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426
        Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Группа суммации : __27=0184 Свинец и его неорганические соединения /в пересчете на свинец/
                                       (513) )
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                              (516))
             Параметры расчетного прямоугольника No 1
Координаты центра : X= 544 м; Y= 282
Длина и ширина : L= 80 м; B= 40 м
Шаг сетки (dX=dY) : D= 10 м
            Длина и ширина
            Шаг сетки (dX=dY) : D= \,
     (Символ ^ означает наличие источника вблизи расчетного узла)
                                      5 6 7 8 9
            2 3
                             4
     *--|----|----|----|----|----|----|
  1-| 0.328 0.482 0.663 0.640 0.448 0.315 0.260 0.227 0.204 |- 1
       0.349 0.563 0.772 0.797 0.512 0.329 0.266 0.230 0.204 |- 2
  3-C 0.329 0.484 0.669 0.635 0.445 0.314 0.259 0.227 0.204 C- 3
  4-| 0.290 0.343 0.414 0.404 0.332 0.281 0.244 0.219 0.204 |- 4
  5-| 0.254 0.279 0.296 0.294 0.275 0.249 0.227 0.206 0.204 |- 5
    |------|-----|-----|-----|-----|
1 2 3 4 5 6 7 8 9
 В целом по расчетному прямоугольнику: Везразмерная макс. концентрация ---> См =0.79699 Достигается в точке с координатами: XM = 534.0M ( X-столбец 4, Y-строка 2) YM = 292.0 м При опасном направлении ветра : 270 град. и "опасной" скорости ветра : 0.50 м/с
8. Результаты расчета по жилой застройке.
    УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
        Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03 Группа суммации : _27=0184 Свинец и его неорганические соединения /в пересчете на свинец/
                                              (513))
                                      0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                              (516))
        Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
        Всего просчитано точек: 4
                  Расшифровка_обозначений

Qc — суммарная концентрация [доли ПДК]

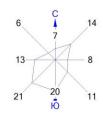
Cф — фоновая концентрация [доли ПДК]

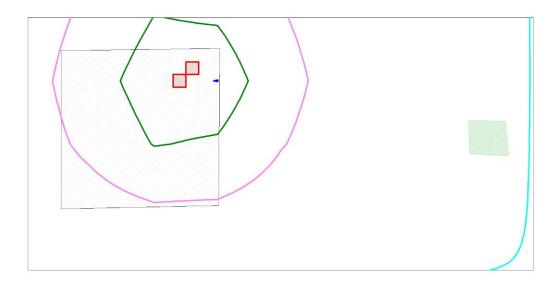
Cф — фон без реконструируемых [доли ПДК]

Сди— вклад действующих (для Сf') [доли ПДК]

Фоп— опасное направл. ветра [ угл. град.]

Ви — вклад источника в Qc [доли ПДК]


Ки — код источника для верхней строки Ви
                                 _Расшифровка_обозначений_
        -Если расчет для суммации, то концентр. в мг/м3 не печатается|
-Если в строке Сmax=< 0.05 ПДК, то Фоп, Uon, Bи, Ки не печатаются |
          280:
 x=
        574: 574: 580: 580:
Oc : 0.226: 0.229: 0.212: 0.215:
Сф: 0.156: 0.156: 0.156: 0.156:
Ca): 0.110: 0.108: 0.119: 0.117:
Сди: 0.116: 0.121: 0.093: 0.098:
Φοπ: 285 : 277 : 283 : 277


Uoπ: 0.75 : 0.75 : 0.75
Ви: 0.106: 0.110: 0.084: 0.089:
Ки: 6008: 6008: 6008: 6008:
Ви: 0.010: 0.011: 0.009: 0.009:
  Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
             Координаты точки : X= 574.0 м Y= 286.0 м
 Максимальная суммарная концентрация | Cs= 0.22868 доли ПДК |
```

Объект: 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

__27 0184+0330







Макс концентрация 0.7969912 ПДК достигается в точке x= 534 y= 292 При опасном направлении  $270^\circ$  и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

12м.

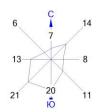
```
3. Исходные параметры источников
    ИСХОДНЫЕ ПАРАМЕТРЫ ИСТОЧНИКОВ.
УПРЗА ЭРА V2.5. МОДЕЛЬ: ОНД-86
ГОРОД :004 АСТАНА.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Группа суммации :____31=0301 Азота (IV) диоксид (Азота диоксид) (4)
0330 Сера диоксид (Ангилоил серинстый, Серинстый;
                                             0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
             Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников
----- Примесь 0301-----
П1 2.0
                                                                                 530
003101 6009 П1
                                                                                                                                       2 0 1.0 1.000 1 0.0024240
                     ----- Примесь 0330-----
003101 6009 П1 2.0
                                                                                                                        2
                                                                                                                                        2 0 1.0 1.000 1 0.0003780
4. Расчетные параметры См. Им. Хм
    (516)
      Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная
      концентрация См = См1/ПДК1 +...+ Смп/ПДКп Для линейных и площадных источников выброс является суммарным по всей площади, а Сm` есть концентрация одиночного источника с
      суммарным М
 1 |003101 6009| 0.012876| Π1
        Суммарный Mq = 0.012876 (сумма Mq/ПДК по всем примесям)
Сумма См по всем источникам = 0.459886 долей ПДК
              Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    УПРЗА ЭРА V2.5. Модель: ОНД-86 Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
          Группа суммации :__31=0301 Азота (IV) диоксид (Азота диоксид) (4)
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                      (516) )
  Запрошен учет дифференцированного фона с постов для действующих источников
 Расчет по прямоугольнику 001 : 80х 40 с шагом 10 Расчет по территории жилой застройки. Покрытие РП 001 Направление ветра: перебор от 0 до 360 с шагом 10 град. Перебор скоростей ветра: 0.5 12.0 м/с 0.5 1.0 1.5 долей UCB
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
6. Результаты расчета в виде таблицы.
    Результаты расчета в виде таолицы.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Группа суммации :___31=0301 Азота (IV) диоксид (Азота диоксид) (4)
0330 Сера диоксид (Ангидрид сернистый, Сернистый г
                                             0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
             Расчет проводился на прямоугольнике 1 с параметрами: координаты центра X= размеры: Длина(по X)=
                                                                                544 Y=
                                                                          80, Ширина (по Y) =
                                                                                                                    40
                                    шаг сетки =
                                        Расшифровка_обозначений_
                    Расшифровка обозначений

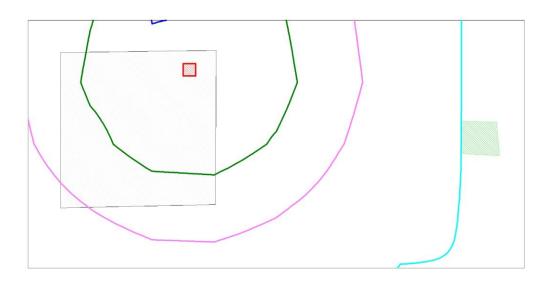
| Qc - суммарная концентрация [доли ПДК] |
| Сф - фоновая концентрация [доли ПДК] |
| Сф' - фон без реконструируемых [доли ПДК] |
| Сди- вклад действующих (для Сf') [доли ПДК] |
| Фоп- опасное направл. ветра [ угл. град.] |
| Uon- опасная скорость ветра [ м/с ]
          -Если расчет для суммации, то концентр. в мг/м3 не печатается | -Если в расчете один источник, то его вклад и код не печатаются | -Если в строке Cmax=< 0.05 ПДК, то \phion, Uon, Ви, Ки не печатаются |
          302 : Y-строка 1 Cmax= 0.894 долей ПДК (x= 524.0; напр.ветра=143)
                                 524: 534: 544: 554: 564: 574:
Qc: 0.802: 0.856: 0.894: 0.892: 0.867: 0.811: 0.768: 0.741: 0.741:
       0.621: 0.621: 0.621: 0.621: 0.621: 0.621: 0.621: 0.741: 0.741: 0.501: 0.464: 0.439: 0.440: 0.457: 0.495: 0.523: 0.741: 0.741:
^{\times} Сли: 0.301: 0.392: 0.454: 0.451: 0.410: 0.316: 0.245: 0.000: 0.000: Фол: 107: 117: 143: 207: 240: 251: 257: BOC: BOC Uon: 0.75: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: > 2: > 2
```

```
292 : У-строка 2 Стах= 0.887 долей ПДК (х= 524.0; напр.ветра= 71)
                514:
                          524:
                                  534:
                                           544:
                                                    554:
                                                             564:
Qc: 0.807: 0.867: 0.887: 0.876: 0.879: 0.818: 0.771: 0.741: 0.741:
Cd: 0.621: 0.621: 0.621: 0.621: 0.621: 0.621: 0.621: 0.741: 0.741:
Co`: 0.497: 0.457: 0.444: 0.451: 0.449: 0.490: 0.521: 0.741: 0.741:
Сди: 0.310: 0.410: 0.443: 0.426: 0.430: 0.328: 0.251: 0.000: 0.000:
Фоп: 85 : 83 : 71 : 297 : 279 : 275 : 273 : ВОС : ВОС 

Uon: 0.75 : 0.50 : 0.50 : 0.50 : 0.50 : 0.50 : 0.75 : > 2 : > 2
       ν=
       504: 514: 524: 534: 544: 554: 564: 574: 584:
Qc: 0.795: 0.843: 0.883: 0.888: 0.853: 0.803: 0.763: 0.741: 0.741:
Сф: 0.621: 0.621: 0.621: 0.621: 0.621: 0.621: 0.621: 0.741: 0.741:
Сф: 0.505: 0.473: 0.446: 0.443: 0.466: 0.500: 0.526: 0.741: 0.741: Сди: 0.290: 0.370: 0.437: 0.444: 0.386: 0.304: 0.237: 0.000: 0.000:
                                 341 :
                                                   297 :
                                                            289 : BOC :
                                          311 :
Uoп: 0.75 : 0.50 : 0.50 : 0.50 : 0.75 : 0.75 : > 2
       272 : Y-строка 4 Cmax= 0.828 долей ПДК (x= 534.0; напр.ветра=350)
 ν=
       504:
                514:
                      : 524: 534: 544:
                                                    554: 564: 574:
 x=
Qc: 0.771: 0.801: 0.826: 0.828: 0.807: 0.778: 0.747: 0.741: 0.741:
\begin{array}{l} C \varphi \ : \ 0.621; \ 0.621; \ 0.621; \ 0.621; \ 0.621; \ 0.621; \ 0.621; \ 0.741; \ 0.741; \\ C \varphi `: \ 0.521; \ 0.501; \ 0.485; \ 0.483; \ 0.497; \ 0.517; \ 0.537; \ 0.741; \ 0.741; \end{array}
Сди: 0.251: 0.300: 0.341: 0.346: 0.310: 0.261: 0.211: 0.000: 0.000:
Фоп: 50 : 37 : 15 : 350 : 327 : 313 : 303 : ВОС : ВОС 

Uoп: 0.75 : 0.75 : 0.50 : 0.50 : 0.75 : 0.75 : 0.75 : 2 : > 2
 y=
       262 : Y-строка 5 Cmax= 0.779 долей ПДК (x= 534.0; напр.ветра=353)
              514: 524: 534: 544: 554: 564: 574:
Qc: 0.751: 0.765: 0.778: 0.779: 0.768: 0.749: 0.741: 0.741: 0.741:
 \begin{array}{c} C_{\Phi}: \ 0.741: \ 0.621: \ 0.621: \ 0.621: \ 0.621: \ 0.621: \ 0.741: \ 0.741: \ 0.741: \\ C_{\Phi}`: \ 0.734: \ 0.525: \ 0.517: \ 0.516: \ 0.523: \ 0.536: \ 0.741: \ 0.741: \ 0.741: \\ \end{array} 
Сди: 0.017: 0.239: 0.261: 0.263: 0.245: 0.213: 0.000: 0.000: 0.000:
Фоп: 45 : 27 : 11 : 353 : 337 : 323 : ВОС


Uon:12.00 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : > 2
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
            Координаты точки : X= 524.0 м Y= 302.0 м
 Максимальная суммарная концентрация | Cs= 0.89351 доли ПДК
   Достигается при опасном направлении 143 град. и скорости ветра 0.50 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
7. Суммарные концентрации в узлах расчетной сетки.
   Суммарные концентрации в узлах расчетнои сетки.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
Вар.расч. :2 Расч.год: 2025 Расчет проводился 09.10.2025 18:03
Группа суммации :__31=0301 Азота (IV) диоксид (Азота диоксид) (4)
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                        (516))
           Параметры расчетного прямоугольника No 1 282 | Координаты центра : X= 544 м; Y= 282 | Длина и ширина : L= 80 м; B= 40 м |
           Шаг сетки (dX=dY) : D=
                                              10 м
    (Символ ^ означает наличие источника вблизи расчетного узла)
        7 8 9
 1-| 0.802 0.856 0.894 0.892 0.867 0.811 0.768 0.741 0.741 |- 1
 2-| 0.807 0.867 0.887 0.876 0.879 0.818 0.771 0.741 0.741 |- 2
 3-C 0.795 0.843 0.883 0.888 0.853 0.803 0.763 0.741 0.741 C- 3
 4-| 0.771 0.801 0.826 0.828 0.807 0.778 0.747 0.741 0.741 |- 4
 5-| 0.751 0.765 0.778 0.779 0.768 0.749 0.741 0.741 0.741 |- 5
    |--|----|----|----|----|----|----|
 В целом по расчетному прямоутольнику: Безразмерная макс. концентрация ---> См =0.89351
 Достигается в точке с координатами: X_M = 524.0 \text{м} ( X-столбец 3, Y-строка 1) Y_M = 302.0 \text{ м} При опасном направлении ветра : 143 град. и "опасной" скорости ветра : 0.50 м/с
```


```
8. Результаты расчета по жилой застройке.
УПРЗА ЭРА v2.5. Модель: ОНД-86
Город :004 Астана.
Объект :0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426.
       Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
       Всего просчитано точек: 4
                             Расшифровка обозначений
                 Qc — суммарная концентрация [доли ПДК]
Сф — фоновая концентрация [ доли ПДК ]
                | Сф - фоновам концентрация | доли пдк | |
| Сф - фон без реконструируемых [доли ПДК ] |
| Сди- вклад действующих (для Сf ) [доли ПДК] |
| Фоп- опасное направл. ветра [ угл. град.] |
| Uon- опасная скорость ветра [ м/с ] |
       -Если расчет для суммации, то концентр. в мг/м3 не печатается
       -Если в расчете один источник, то его вклад и код не печатаются |
-Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются |
         280:
                 286:
                          280:
                                  286:
        574: 574: 580:
                                 580:
Qc : 0.741: 0.741: 0.741: 0.741: 
Cφ : 0.741: 0.741: 0.741: 0.741:
Сф`: 0.741: 0.741: 0.741: 0.741:
Сди: 0.000: 0.000: 0.000: 0.000:
Φοπ: BOC : BOC : BOC : BOC 
Uon: > 2 : > 2 : > 2 : > 2
 Результаты расчета в точке максимума УПРЗА ЭРА v2.5. Модель: ОНД-86
            Координаты точки : X= 574.0 м Y= 280.0 м
 Максимальная суммарная концентрация | Сs= 0.74070 доли ПДК |
   Достигается при опасном направлении ВОС
                            и скорости ветра > 2 м/с
```

Объект: 0031 МЖК р-н пересечения улиц Ж. Нажимеденова и А426 Вар.№ 2

УПРЗА ЭРА v2.5 Модель:

_31 0301+0330









Макс концентрация 0.8935144 ПДК достигается в точке x=524 y=302 При опасном направлении  $143^\circ$  и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 80 м, высота 40 м, шаг расчетной сетки 10 м, количество расчетных точек 9*5 Расчёт на существующее положение.

## Приложение 5 - Фоновая справка

## «ҚАЗГИДРОМЕТ» РМК

## РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ

МИНИСТЕРСТВО ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН

08.10.2025

- 1. Город Астана
- 2. Адрес Астана, улица Жумекена Нажимеденова, 52
- 4. Организация, запрашивающая фон **ИП \"Темиргалиева Д.Р.\"** Объект, для которого устанавливается фон **«Многоквартирный жилой**
- 5. Комплекс с паркингом район Алматы, район пересечения улиц Ж. Нажимеденова и A426; Блок-секции Д, Е, Ж (Без наружных инженерных сетей и сметной документации)»
- 6. Разрабатываемый проект РООС
- 7. Перечень вредных веществ, по которым устанавливается фон: **Азота диоксид**, **Взвеш.в-ва, Диоксид серы, Углерода оксид**,

## Значения существующих фоновых концентраций

Номер поста	Примесь	Концентрация Сф - мг/м³				
		Штиль 0-2 м/сек	Скорость ветра (3 - U*) м/сек			
			север	восток	юг	запад
№9	Азота диоксид	0.093	0.0607	0.1141	0.0565	0.0509
	Диоксид серы	0.078	0.0596	0.0851	0.102	0.0606
	Углерода оксид	2.7813	0.888	2.5181	1.4301	1.1573

Вышеуказанные фоновые концентрации рассчитаны на основании данных наблюдений за 2022-2024 годы.