ИП «ZEBO»

Раздел «Охрана окружающей среды»

К РАБОЧЕМУ ПРОЕКТУ

«Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц Е22, Е51, Е102 (проектное наименование) и Хусейн бен Талал. Пятна 46-50». (без наружных инженерных сетей)

ИП «ZEBO»

Тойенбекова Л.С.

ОГЛАВЛЕНИЕ:

1.	0	ХРАНА АТМОСФЕРНОГО ВОЗДУХА	6
	1.1. 1.2.	ОБЩИЕ СВЕДЕНИЯ О ПРЕДПРИЯТИИ, ОЧЕРЕДНОСТЬ СТРОИТЕЛЬСТВА И ПУСКОВЫЕ КОМПЛЕКСЫ КРАТКАЯ ХАРАКТЕРИСТИКА ФИЗИКО-ГЕОГРАФИЧЕСКИХ И КЛИМАТИЧЕСКИХ УСЛОВИЙ РАЙОНА ПЛОЩАДКИ	6
	CTPOI	ИТЕЛЬСТВА	9
	1.3.	Характеристика района расположения предприятия по уровню загрязнения атмосферного	
		YAA AMARTIN MATANA MATANAMA DA WADOGOD DA FRANKIJOWAN DEWINGTED DA TA GOCA ENV	
	1.4. 1.5.	ХАРАКТЕРИСТИКА ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ	
	1.6.	ХАРАКТЕРИСТИКА МЕРОПРИЯТИЙ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ В ПЕРИОДЫ ОСОБО НЕБЛАГОПРИЯТНЫХ	
		ОРОЛОГИЧЕСКИХ УСЛОВИЙ (НМУ)	
	1.7. 1.8.	РАСЧЕТ И АНАЛИЗ ВЕЛИЧИН ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВПРЕДЛОЖЕНИЯ ПО УСТАНОВЛЕНИЮ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ (НДВ) ДЛЯ ОБЪЕКТА	
	1.9.	МЕТОДЫ И СРЕДСТВА КОНТРОЛЯ ЗА СОСТОЯНИЕМ ВОЗДУШНОГО БАССЕЙНА	
	1.10.	Обоснование принятия размера санитарно-защитной зоны	
2.	0	ХРАНА ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХВОД ОТ ЗАГРЯЗНЕНИЯ И ИСТОЩЕНИЯ	66
	2.1.	Краткая характеристика проектируемого предприятия	
	2.2.	Водопотребление и водоотведение предприятия.	
	2.3. N	ЛЕРОПРИЯТИЯ ПО ОХРАНЕ ПОДЗЕМНЫХ И ПОВЕРХНОСТНЫХ ВОД	
3.	B	ОССТАНОВЛЕНИЕ (РЕКУЛЬТИВАЦИЯ) ЗЕМЕЛЬНОГО УЧАСТКА, ИСПОЛЬЗОВАНИЕ	
Π.	лодо	РОДНОГО СЛОЯ ПОЧВЫ, ОХРАНА НЕДР И ЖИВОТНОГО МИРА	75
	3.1.	Рекультивация нарушенных земель, использование плодородного слоя почвы	
	3.2.	МЕРОПРИЯТИЯ ПО ОХРАНЕ ПОЧВ ОТ ОТХОДОВ ПРОИЗВОДСТВА	
4.	Bo	ОЗДЕЙСТВИЕ НА НЕДРА	83
5.	Φ	ИЗИЧЕСКОЕ ВОЗДЕЙСТВИЕ	84
6.	В	ОЗДЕЙСТВИЕ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ УСЛОВИЯ	89
7.	0	ЦЕНКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ И РАСТИТЕЛЬНЫЙ МИР	90
8.	0	ЦЕНКА ЭКОЛОГИЧЕСКИХ РИСКОВ	.91
9.	К	ОМПЛЕКСНАЯ ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ ПРИРОДНУЮ СРЕДУ	93
10	. C]	ПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	95
П	РИЛО	жение 1. карта района расположения проектируемого объекта	97
		ЖЕНИЕ 2. КАРТА-СХЕМА ПРОЕКТИРУЕМОГО ОБЪЕКТА С УКАЗАНИЕМ ИСТОЧНИКОВ СА 3В	.98
П	РИЛО	жение 4 лицензия ип « Z ево»	99
П	РИЛО	жение 5. исходные данные1	01
П	РИЛО	ЖЕНИЕ 6. РАСЧЕТ ПОЛЕЙ ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ1	03
3 <i>A</i>	АГРЯЗ	вняющих веществ1	03

Аннотация

В настоящем проекте «РООС» содержится оценка воздействия на окружающую природную среду выбросов от проектируемого объекта: «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц Е22, Е51, Е102 (проектное наименование) и Хусейн бен Талал. Пятна 46-50» (без наружных инженерных сетей).

Рассматриваемый объект на период строительства представлен двумя организованными и 19-ю неорганизованными источниками выбросов загрязняющих веществ, период эксплуатации – 3 неорганизованных источника выбросов загрязняющих веществ.

Выбросы в атмосферу на период строительства содержат 20 загрязняющих веществ: железа оксиды, марганец и его соединения, пыль неорганическая 70-20% двуокиси кремния, уайтспирит, ксилол, пыль древесная, пропан-2-он, бутилацетат, толуол, бенз/а/пирен, керосин, углерода оксид, серы диоксид, сажа, азота диоксид, азота оксид, взвешенные частицы, пыль древесная, сольвент нафта, бутан-1-ол, 2-этоксиэтанол (без учета автотранспорта) и 2 группы суммации: 31 (0301+0330) и ПЛ (2908+2936). Валовый выброс вредных веществ в атмосферу от источников на период строительства составляет 19,0079 тонн (без учета валового выброса от автотранспорта).

Выбросы в атмосферу на период эксплуатации от автотранспорта содержат 4 загрязняющих вещества: азота диоксид, углерода оксид, серы диоксид, бензин нефтяной малосернистый и 1 группа суммации: 31 (0301+0330). Валовый выброс от автотранспорта не учитывается, выбросы оплачиваются по фактическому объёму сожженного топлива, максимально-разовый выброс же включён в расчёт рассевания, чтобы оценить воздействие объекта в целом на ОС.

Расчет максимальных приземных концентраций загрязняющих веществ произведен на программе "ЭРА" v. 3.0 фирмы "Логос-Плюс" г. Новосибирск.

В разделе также приведены данные по водопотреблению и водоотведению проектируемого объекта, качественному и количественному составу отходов, образующихся в процессе деятельности проектируемого объекта.

В соответствии с Санитарными правилами «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 для строительства санитарно-защитная зона не устанавливается. Согласно санитарной классификации объект не классифицируется.

На период проведения работ в соответствии с п/п 2, п.12 «Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов РК» от 13.07.2021 года №

246 (с изменениями, внесенными приказом и.о. Министра экологии, геологии и природных ресурсов РК от 27.11.2023 года № 317) проектируемый объект относится к объектам **Ш категории** - оказывающим минимальное негативное воздействие на окружающую среду:

- отсутствие вида деятельности в Приложении 2 ЭК РК;
- наличие выбросов загрязняющих веществ в окружающую среду объемом более 10 тонн/год;
- накопление на объекте более 10 тонн неопасных отходов и (или) 1 тонны опасных отходов.

ВВЕДЕНИЕ

Проект РООС к рабочему проекту «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал. Пятна 46-50» (без наружных инженерных сетей) разработан на основании Законов Республики Казахстан.

В проекте содержится оценка уровня загрязнения атмосферного воздуха вредными выбросами от источников на период строительства и в процессе эксплуатации, определены предложения по охране природной среды, приведены основные характеристики проведения работ, рассмотрены вопросы водоснабжения и водоотведения, воздействие отходов предприятия на окружающую среду. Кроме того, в разделе проведен предварительный расчет платежей за загрязнение окружающей среды.

Проект РООС к рабочему проекту «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал. Пятна 46-50» (без наружных инженерных сетей) разработан на основании:

- Экологического кодекса Республики Казахстан от 2 января 2021 года;
- ➤ AΠ3 № 197-1456 or 02.09.14;
- Эскизного проекта;
- ➤ Задания на проектирование от 20.05.2024 года;
- ➤ Топографической съемки участка строительства М 1:500, выполненная ТОО "НИПИ" Астанагенплан" от 22.02.2024 г.;
- > Технических условий на водоснабжение и канализацию и электрификацию.

При разработке раздела использованы основные директивные и нормативные документы, инструкции и методические рекомендации по нормированию качества атмосферного воздуха, указанные в списке использованной литературы.

Заказчик объекта: ТОО «Ак Дидар-2»

г. Астана, р-н Сарайшык,

ул. Касыма Аманжолова, 26

БИН 170 840 012 312

Разработчик РООС: ИП «ZEBO»

г. Астана, р-н Алматы,

ул. Петрова, 32/2

тел. 8 777 474 22 28

1. ОХРАНА АТМОСФЕРНОГО ВОЗДУХА

1.1. Общие сведения о предприятии, очередность строительства и пусковые комплексы

Участок под строительство Многоквартирных жилых комплексов со встроенными помещениями и паркингом расположен в г. Астана в районе пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал. Участок свободен от застройки и инженерных коммуникаций. Рельеф участка ровный. Перепад высот с севера на юг 0.5м. От отведенного участка в радиусе 150 метров не располагаются объекты производственных и пищевых отраслей и т.п., на расстоянии более 800 метров находится старое кладбище.

Ближайшее расстояние до жилой зоны (в метрах) представлено в таблице 1-1.

таблица 1-1.

Румбы направлений	С	СВ	В	ЮВ	Ю	ЮЗ	3	СЗ
расстояние до жилого массива, м	67	205	154		920			

Пятна 46-50 находится в восточной части 2-го квартала объекта «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположен в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал».

Основные показатели по генплану

9 9		
Наименование	Площадь м2	%
Площадь участка	15442	100
Площадь застройки	2619,80	16,97
Площадь твердого покрытия проездов и площадок	9392,1	60,82
Площадь озеленения	3430,1	22,21

Технико-экономические показатели паркинга.

Наименование помещений	Ед.изм	Количество
Число этажей	этаж	1
Общая площадь этажа	м2	2185,39
Строительный объем, м3:	м3	9787,90
Площадь застройки, м2	м2	2180,40
Количество машиномест	шт.	55

Жилой комплекс состоит из пяти девятиэтажных блоков П-образной компоновкой, подземным паркингом с внутренним дворовым пространством.

На первом этаже расположены офисные помещения, лифтовой холл и вестибюль жилья. Высота (от пола до пола) первого этажа 4,35м., типового этажа 3,3м. Входа в офисные помещения, расположены на первом этаже со стороны главного фасада на отм. 0.000. Входа в жилые блоки расположены на отм. +1.050 с дворовой стороны, также с данной отметки имеется

возможность непосредственно подняться как посредством лифта, так и через лестницы. Имеются обособленные выхода из паркинга и подземных частей блоков.

Во внутреннем дворовом пространстве расположены детские площадки, площадки для отдыха взрослых, элементы озеленения и ландшафта.

Покрытие проездов предусмотрено из щебеночно-мастичного асфальтобетона, покрытие тротуаров из тротуарной плитки, покрытие детских и спортивной площадок - резинобитумное. Площадки для игр и отдыха, спортивная площадка оборудованы малыми архитектурными формами и детскими комплексами, возле жилых входов в здания установлены скамейки и урны. Свободная от застройки и покрытий территория максимально озеленяется и засаживается деревьями и кустарниками местных пород. Газоны засеваются травой. Для сбора мусора предусмотрена площадка с навесом для металлических контейнеров. Благоустройство выполняется в пределах условной границы участка.

Для обеспечения нормальных санитарно-гигиенических условий, предусматриваются мероприятия по озеленению и благоустройству территории:

- устройство тротуаров;
- посадка деревьев, кустарников и посев газонной травы,
- установка урн, скамеек и игровых комплексов;
- площадка для мусорных контейнеров ограждённая с трёх сторон с СЗЗ 25 метров.

Благоустройство территории предусматривает выполнение вертикальной планировки площадки и решения исходя из сложившихся высотных отметок.

Полив зеленых насаждений обеспечивается поливочными автомашинами.

Принятые настоящим проектом решения соответствуют требованиям экологических, санитарных, противопожарных и других норм, действующих на территории Республики Казахстан, обеспечивают безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных рабочими чертежами мероприятий.

Водоснабжение проектируемого объекта предусматривается согласно технических условий КГП "Астана Су Арнасы". Сброс стоков осуществляется в городскую сеть канализации.

Мероприятия по шумоизоляции и защите от др. воздействий в жилом доме выполнены в соответствии с нормативными требованиями и не превышает нормативный уровень. Так все внутриквартирные перегородки выполнены с учетом индекса изоляции воздушного шума от 41-52 Дб в соответствии с рекомендациями серии СП РК 5.06-11-2004 «Ограждающие конструкции с применением гипсокартонных листов».

Ситуационная карта-схема района размещения проектируемого объекта приведена в приложении 1. Карта-схема проектируемого жилого дома приведена в приложении 2.

Площадка предприятия расположена на местности, имеющей равнинный рельеф. Перепад высот на местности не превышает 50 м на 1 км.

Приложение топографической карты не требуется.

Водоснабжение строительной площадки будет предусмотрено привозной водой. Хозяйственно-бытовые сточные воды жизнедеятельности работников будут отводиться в биотуалеты. По мере заполнения биотуалетов их содержимое будет откачиваться ассенизационными машинами и вывозиться согласно договора разовой услуги на очистные сооружения специализированных предприятий.

1.2. Краткая характеристика физико-географических и климатических условий района площадки строительства

Проектируемый объект по климатическому районированию территории относится к 1 климатическому району, подрайон I-B (СП РК 2.04.01 – 2017 г.).

Климат района резко-континентальный с суровой малоснежной зимой и сухим жарким летом. Самый холодный месяц - январь, самый теплый - июль. Для климата района характерна интенсивная ветровая деятельность. Среднегодовая скорость ветров составляет 3,8 м/с. В холодный период года преобладают ветра южных направлений (Ю, ЮЗ, ЮВ), в теплое время возрастает интенсивность ветров северных румбов. Климатическая характеристика района по данным многолетних наблюдений метеостанции приведена ниже.

Рельеф местности равнинный, перепад высот в радиусе 2 км не превышает 50 м на 1 км, коэффициент, учитывающий влияние рельефа местности равен 1.

Расчет рассеивания загрязняющих веществ произведен с учетом фоновых концентраций в атмосферном воздухе в целом по городу Астана. Основные метеорологические характеристики района и данные на повторяемость направлений ветров приведены в таблицах 1.2-1, 1.2-2.

таблица 1.2-1. Ветры

Наименование	Месяц	Ед.	Ед. Показатели по румбам							
показателей	риссяц	изм.	С	CB	В	ЮВ	Ю	ЮЗ	3	C3
1	2	3	4	5	6	7	8	9	10	11
Повторяемость ветров	январь	%	11	9	7	5	11	25	23	9
Средняя скорость	январь	м/с	4,8	5,9	4,4	4,2	5,6	7,7	6,4	4,5
Повторяемость ветров	июль	%	12	19	10	10	8	11	14	16
Средняя скорость	июль	м/с	5,1	5,0	5,1	4,4	4,4	5,0	5,4	5,1
Объем снегопереноса		м ³ /пм	7	101	24	24	12	560	109	22

таблица 1.2-2. Характерные периоды по температуре воздуха

Сродияя	Данные о периоде						
Средняя температура периода	Начало, дата	Конец, дата	Продолжитель ность, дней				
1	2	3	4				
выше 0 °С	10.IV	24.X	196				
выше 5 °С	22.IV	07.X	165				
выше 10 °С	05.V	20.IX	137				
ниже 8 °C	24.IV	05.X	215				

Природно-климатические условия площадки строительства следующие:

Климат (метеостанция Астана)

Дорожно-климатическая зона - IV

Средние температуры воздуха:

• годовая - 1,4 °C

• наиболее жаркий месяц (июль) - 26,8 °C

Наиболее холодные:

• месяц (январь) - -18,5 °C

• пятидневка обеспечен. 0,98 - 37,0 °C

обеспечен. 0,92 - 37,0 °C

• сутки обеспечен. 0,98 - 41,0 °C

обеспечен. 0,92 - 39,0 °C

Среднегодовое количество осадков - 335 мм, в том числе в зимний период - 91 мм. Количество дней с градом - 2, с гололедом - 6, с туманом - 10, с ветрами свыше 15 м/с - 40.

За условную отметку 0.000 принят уровень пола 1-го этажа, что соответствует абсолютной отметке 356.40

Растительный и животный мир

В состав зеленых насаждений входят городские парки и сады, внутриквартальные насаждения, озелененные магистрали и улицы.

Площадь городского зеленого фонда составляет 3321,2 га. Под парками, скверами, бульварами занято 316,2 га. Основной набор видов, находящихся в городских посадках в хорошем состоянии, следующий: вязы обыкновенный и мелколистный, тополя бальзамический, белый и черный, яблоня сибирская, клен ясенелистный, лох узколистный, жимолость татарская, смородина золотистая и др. В оформлении центральной части города и территории ряда предприятий используется ель сибирская, сосная обыкновенная, лиственница сибирская, сирень обыкновенная, миндаль степной, ива ломкая. Кроме того, в посадках встречается сирень, жимолость татарская, вишня кустарниковая, акация желтая.

В условиях хорошего ухода в частных домах растут яблоня, абрикос, груша, слива, вишня. Разнообразные зеленые насаждения увеличивают влажность воздуха, газообмен и выполняют определенную роль в борьбе с загрязнением атмосферы.

Известно, что запыленность на озелененных кварталах ниже, на 40%, чем на открытых площадках. Несомненно, что кроме парков и садов основную роль в системе озеленения играют сады жилых кварталов. Велико значение и придорожных посадок. Большая часть, существующей в настоящее время растительности окрестностей города Астана, особенно в северной, северо-западной и северовосточной частях, представлена средней и сильной стадиями трансформации первичного естественного растительного покрова.

Характеристика животного мира Ишим-Нуринского междуречья Фауна Ишим - Нуринского междуречья типично степная, характеризующаяся определенным своеобразием. Наличие обширных пойменных рек (Ишим, Нуры) и степных озер значительно обогащает территорию дендрофильными, водоплавающими и околоводными видами животных.

Рыбы. На обследованных степных реках (Ишим, Нура) установлено обитание лишь 11 видов рыб: щука, уклея, плотва, красноперка, язь, линь, лещ, карась, окунь, сазан, сом. Наиболее многочисленными являются плотва - серушка и окунь, составляющие от 65 до 90% уловов. Наиболее благополучное состояние ихтиофауны можно констатировать для р. Ишим, на остальных речках численность и видовое разнообразие рыб низкое.

Земноводные и пресмыкающиеся. Из земноводных в междуречье встречается 5 видов: зеленая жаба, озерная и остромордая лягушки, краснобрюхая жерлянка, обыкновенная чесночница. Из 8 видов пресмыкающихся повсеместно встречается прыткая ящерица, численность которой составляла от 5,8 до 37,8 особей/га. Живет она, главным образом, по открытым степным участкам, в лесополосах, по обочинам дорог и по сухим берегам водоемов. По всей территории междуречья изредка встречается степная гадюка. Отмечали ее в лесополосах, на территории свалок, изредка в степи.

Анализ особенностей территориального размещения и численности земноводных и пресмыкающихся показал, что в степной части междуречья они сохранились преимущественно в пойме р. Ишим и некоторых ее притоков.

На остальной территории, сильно освоенной в хозяйственном отношении они более редки.

Птицы. Для Ишим-Нуринского междуречья известно пребывание 180 видов птиц. В настоящее время в междуречье гнездится 120 видов птиц, из них 8 видов являются оседлыми (сизый голубь, кольчатая горлица, тетерев, серая куропатка, большой пестрый дятел, сорока, домовый и полевой воробьи). Остальные виды являются пролетными и редко залетными.

В населенных пунктах основу населения птиц составляют синантропные виды: воробей (543) и сизый голубь (222).

Фоновыми птицами являются грач (35), галка (32,3), полевой воробей (20,7), скворец (18,7), сорока (10) и деревенская ласточка (9).

Млекопитающие. На территории междуречья отмечен 31 вид. Наиболее важной в промысловом отношении группой являются копытные, особенно кабан и косуля, основные местообитания которых сосредоточены в пойменных лесах Ишима и Нуры. Из хищных зверей по всей территории распространена лисица. Остальные виды (волк, корсак, енотовидная собака) сравнительно редки. Из куньих встречаются горностай, ласка, но наиболее обычен повсеместно степной хорь, встречающийся в степных лесополосах как на месторождении, так и по всей прилегающей местности. Нередок барсук.

Из зайцеобразных наиболее обычен заяц-русак, населяющий главным образом лесополосы и кустарниковые заросли в степи.

Повсеместно наиболее многочисленными оказались мышевидные грызуны - лесная и домовая мыши. Для увлажненных и высокотравных припойменных участков характерен большой суслик, а по сухим полынно-злаковым участкам всюду встречается малый суслик, численность которого достигает 55-60 особей/га. Колонии слепушонок встречали как на месторождении, так и в других местах междуречья, главным образом по берегам рек. Отмечены также в междуречье серый хомячок, обыкновенный хомяк, водяная и обыкновенная полевки, большой тушканчик, серая крыса.

1.3. Характеристика района расположения предприятия по уровню загрязнения атмосферного воздуха

Метеорологические (климатические) условия оказывают существенное влияние на перенос и рассеивание вредных примесей, поступающих в атмосферу. К основным факторам, определяющим рассеивание примесей в атмосфере, относятся ветра и температурная стратификация атмосферы. На формирование уровня загрязнения воздуха оказывают также влияние туманы, осадки и т.д.

Расчет максимальных приземных концентраций вредных веществ позволяет выделить зоны с нормативным качеством воздуха и повышенным содержанием отдельных ингредиентов по отношению к ПДК.

Состояние воздушного бассейна на территории предприятия и прилегающей территории в границах расчетного прямоугольника характеризуется максимальными приземными концентрациями вредных веществ. Представлены машинные распечатки карт рассеивания максимальных приземных концентраций загрязняющих веществ в приложении 6.

Расчет рассеивания загрязняющих веществ, произведен с учетом фоновых концентраций, предоставленных РГП «Казгидромет». Фоновые концентрации установлены с учетом данных наблюдений по г. Астана за период 2022 - 2024 годы (приложение 3).

Перечень контролируемых веществ и значения фонового загрязнения атмосферного воздуха в целом по г. Астана приведены в таблице 1.3-1.

Значения существующих фоновых концентраций

таблица 1.3-1

Примесь		Концентрация С _ф -мг/м ³						
	Штиль	Скорость ветра (3U) м/с						
	(0-2M/c)	север	восток	ЮГ	запад			
Диоксид азота	0,138	0,138	0,137	0,124	0,194			
Взвешенные вещества	0,682	0,572	0,611	0,622	0,677			
Диоксид серы	0,113	0,086	0,012	0,141	0,11			
Оксид углерода	1,897	0,972	1,307	1,293	0,999			

В связи с развитием г. Астана, ростом автотранспортного парка, в целом по городу наблюдается тенденция к увеличению валового выброса таких ингредиентов как: сажа, оксиды азота, серы, углерода и др.

1.4. Характеристика источников выбросов загрязняющих веществ в атмосферу

Период строительства

Перед началом работ должны быть выполнены следующие мероприятия по безопасной организации стройплощадки, выполнение которых позволит обеспечить соблюдение требований охраны труда и техники безопасности:

- устройство ограждений строительной площадки и выявленных опасных зон;
- выбор монтажного крана с установлением границ действия потенциально опасных факторов;
- размещение административно-бытовых помещений согласно норм СН РК 1.03-02-2007 «Инструкция по проектированию бытовых зданий и помещений строительно-монтажных организаций»;
 - размещение площадок складирования, навесов, закрытых складов;
 - размещение временных дорог и проходов;
 - выбор освещения строительной площадки;
 - защита окружающей территории от воздействия опасных факторов;
- определение границы действия потенциально опасных факторов от строящегося здания, опасных и вредных производственных факторов.

Дорожные машины и оборудование находятся на объекте только в том составе, которое необходимо для выполнения технологических операций определенного вида работ. По окончании смены машины перемещаются на площадки с твердым покрытием.

Стройплощадка укомплектована следующими механизмами и оборудованием:

Машины и механизмы:

- 1. Бульдозеры 59 кВт (80 л.с.)
- 2. Экскаватор обратная лопата
- 3. Компрессоры передвижные
- 4. Краны на автомобильном ходу
- 5. Автогрейдеры среднего типа, 99 кВт (135 л.с.)
- 6. Автогудронатор
- 7. Катки прицепные
- 8. Каток самоходный
- 9. Автобетоноукладчик
- 10. Машины поливомоечные
- 11. Автобетоносмеситель
- 12. Автосамосвал

- 13. Вибратор глубинный
- 14. Вибратор поверхностный
- 15. Кран трубоукладчик
- 16. Сваебойка

Станки и агрегаты:

Шлифовальный станок – 709,8 час/год; Дрель электрическая – 6809,6 час/год; Деревообрабатывающие станки – 55,9 час/год; Пила электрическая (резка металла) – 18,66 час/год; Сварочный аппарат – расход электродов Э-42 111,45 т/год;

Земляные работы

Снятие плодородного слоя грунта бульдозером, $M^3 - 1860$; Вертикальная планировка, $M^3 - 8300$; Разработка грунта экскаватором в а/самосвалы, $M^3 - 18600$; Разработка грунта вручную, $M^3 - 1600$; Обратная засыпка, бульдозером, $M^3 - 6400$; Засыпка грунта вручную, $M^3 - 840$.

Инертные материалы:

Щебень из природного камня	$M^3 - 2120 M^3$
Сухие смеси	T - 202
Гравий	M3 - 2120
ПГС	M3 - 4580
Песок	M3 - 3650

Малярные работы:

Уайт-спирит	- 0,214 т.
Растворитель Р-4	- 0,04667 т.
Эмаль МА-015	- 4,325 т.
Краска ПФ-115	- 5,416 т.
Лак КФ-965	- 0,0015 т.
Лак АС-9115	- 0,00138 т.
Лак БТ-123	- 0,03044 т.

Сваи сечения (300х300, длиной 12 м) забиваются сваебойкой, работающей на дизельном топливе (1 ед.). При этом в атмосферу выбрасываются следующие загрязняющие вещества: сажа, углерода оксид, серы диоксид, азота диоксид, азота оксид, углеводороды, бенз(а)пирен, которые выбрасываются в атмосферу через выхлопную трубу ($ucm.\ 0001$) $H = 5.0\ M$; $Д = 0.01\ M$.

При работе автотракторной техники на дизтопливе в атмосферу выбрасываются следующие загрязняющие вещества: сажа, углерода оксид, серы диоксид, азота диоксид, азота оксид, бенз(а)пирен, керосин; на бензине: оксид углерода, диоксид азота, оксид азота, углероды (в пересчете на бензин), сажа, диоксид серы, бенз(а)пирен. Выброс происходит неорганизованно (ист. 6001-6007).

При сварке используется сварочный аппарат *(ист. 6008)* – в атмосферу поступают: железа оксид, марганец и его соединения.

В процессе выемки и насыпе грунта (земляные работы) происходит выделение пыли неорганической с содержанием двуокиси кремния 70-20% (ист. 6009).

Инертные материалы на площадке не хранятся, подвозятся на площадку по мере необходимости, работы ведутся с машины, материалы подвозятся по мере необходимости. Загрязнение воздушного бассейна происходит при разгрузочных работах (*ист.* 6010-6014), при этом выделяется пыль неорганическая с содержанием двуокиси кремния 70-20%.

Так же в процессе строительства (малярные работы) используются краски и лаки. В атмосферу неорганизованно поступают: ксилол, уайт-спирит, бутан-1-ол, сольвента нафта, 2-этоксиэтанол, бензин, пропан-2-он, бутилацетат, толуол (ист. 6015).

В процессе строительства используются станки для обработки материалов, при этом в атмосферу неорганизованно поступают: взвешенные частицы, пыль абразивная, пыль древесная *(ист. 6016-6019)*.

Строительные работы ведутся последовательно.

Дорожные машины и оборудование находятся на объекте только в том составе, которое необходимо для выполнения технологических операций определенного вида работ. По окончании смены машины перемещаются на площадки с твердым покрытием.

Воздействие на окружающую среду на период строительства сводится к минимуму. Расчёт рассеивания загрязняющих веществ от источников выбросов проведен, чтобы в целом рассмотреть воздействие данного объекта на окружающую среду в период строительных работ.

Также на строительной площадке хранится инвентарь, опоры и т.п. на открытой площадке. При этом выброс загрязняющих веществ не происходит.

Период эксплуатации

Основными источниками загрязнения воздушного бассейна будет являться автотранспорт.

Автопаркинг

На территории жилого комплекса предусмотрен автопаркинг на 16 м/м. При въездевыезде с автопаркинга в атмосферу неорганизованно поступают азота диоксид, углерода оксид, серы диоксид, бензин *(ист. 6001)*.

Автостоянки

На территории жилого комплекса расположено 2 автостоянки:

- гостевая автостоянка на 36 м/м *(ист. 6002)*;
- автостоянка на 6 м/м *(ист. 6003)*.

Выброс в атмосферу вредных веществ происходит при движении автотранспорта по территории. При этом в атмосферу выделяются такие загрязняющие вещества как: азота диоксид, углерода оксид, серы диоксид, бензин.

Перечень вредных веществ, выбрасываемых в атмосферу источниками загрязнения, их комбинации с суммирующим вредным действием и классы опасности приведены в таблицах 1.4-1 и 1.4-2. Параметры выбросов загрязняющих веществ в атмосферу на период строительства и период эксплуатации приведены в таблицах 1,4-3 и 1.4-4.

таблица 1.4-1

Перечень загрязняющих веществ на период строительства

Код	Наименование	ЭНК,	ПДК	ПДК			Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	М/ЭНК
			ная разо-	точная,	$M\Gamma/M3$	ности	очистки, г/с	очистки,т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0123	Железа оксид (274)			0.04		3	0.0832	1.66875	41.71875
0143	Марганец и его соединения (327)		0.01	0.001		2	0.00961	0.19275	192.75
0301	Азота диоксид (4)		0.2	0.04		2	0.68056	1.74785	43.69625
0328	Сажа		0.15	0.05		3	0.00263	0.114922	2.29844
0330	Сера диоксид (516)		0.5	0.05		3	0.34028	0.873926	17.47852
0337	Углерод оксид (584)		5	3		4	1.7014	4.369626	1.456542
0616	Диметилбензол (203)		0.2			3	1.5487	1.237092	6.18546
0621	Метилбензол (349)		0.6			3	0.1722	0.02894	0.04823333
0703	Бенз/а/пирен (54)			0.000001		1	0.0000054	0.000014	14
1042	Бутан-1-ол (Бутиловый спирт) (102)		0.1			3	0.3383	0.44526	4.4526
1119	2-Этоксиэтанол (1497*)				0.7		0.01925	0.03	0.04285714
1210	Бутилацетат (110)		0.1			4	0.2338	0.006596	0.06596
1401	Пропан-2-он (Ацетон) (470)		0.35			4	0.0722	0.01213	0.03465714
2704	Бензин (60)		5	1.5		4	0.51042	1.310888	0.87392533
2750	Сольвент нафта (1149*)				0.2		0.793	1.235	6.175
2752	Уайт-спирит (1294*)				1		2.3382	1.866943	1.866943
2902	Взвешенные частицы (116)		0.5	0.15		3	0.0864	1.01103	6.7402
2908	Пыль неорганическая, содержащая		0.3	0.1		3	2.09332	2.84748	28.4748
	двуокись кремния в %: 70-20								
2930	Пыль абразивная (1027*)				0.04		0.0032	0.00818	0.2045
2936	Пыль древесная (1039*)				0.1		0.0026	0.000523	0.00523
	ВСЕГО:						11.0292754	19.0079	368.568868

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

Без учета автотранспорта

Таблица групп суммации (период строительства)

Tuotinga i pyini ey wwaqiin (nephog ei ponietibei bu)									
Номер	Код								
группы	загряз-	Наименование							
сумма-	няющего	загрязняющего вещества							
ЦИИ	вещества								
1	2	-3							
31		Азот (IV) оксид (Азота диоксид) Сера диоксид (Ангидрид сернистый)							
Пыли	2930	Взвешенные частицы Пыль неорганическая: 70-20% двуокиси кремния Пыль абразивная Пыль древесная							

таблица 1.4-2

Перечень загрязняющих веществ на период эксплуатации

Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	М/ЭНК
			ная разо-	точная,	$M\Gamma/M3$	ности	очистки, г/с	очистки,т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0301	Азота диоксид (4)		0.2	0.04		2	0.0006986		
0330	Сера диоксид (516)		0.5	0.05		3	0.000161		
0337	Углерод оксид (584)		5	3		4	0.08574		
2704	Бензин (нефтяной, малосернистый)		5	1.5		4	0.009411		
	/в пересчете на углерод/ (60)								
	ВСЕГО:						0.0960106		

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

	Табл	ица групп суммации(период эксплуатации)
Номер	Код	Наименование
группы	загряз-	загрязняющего вещества
сумма-	няющего	
ции	вещества	
1	2	-3
31	0301	Азот (IV) оксид (Азота диоксид)
	0330	Сера диоксид (Ангидрид сернистый)

таблица 1.4-3

Параметры выбросов загрязняющих веществ в атмосферу (период строительства)

		•			тры выоросов загрз				1	1 1 0 \ 1		· /		1
		Источник выдел	іения	Число	Наименование	Номер	Высо	Диа-	Параме	тры газовозд.см	иеси	Коорд	цинаты ис	точника
Про		загрязняющих вец	цеств	часов	источника выброса	источ	та	метр	на выхо	оде из трубы пр	И	на	карте-схе	еме, м
изв	Цех			рабо-	вредных веществ	ника	источ	устья	ман	ксимальной раз	овой			
одс		Наименование	Коли-	ТЫ		выбро	ника	трубы		нагрузке		точечного	источ.	2-го кон
тво			чест-	В		сов	выбро					/1-го конца	лин.	/длина, ш
			во,	году			сов,	M	ско-	объем на 1	тем-	/центра пло		площадн
			шт.	, ,			M			трубу, м3/с	пер.	ного источ		источни
									м/с		оĈ			
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Сваебойка	1		Выхлопная труба	0001	5	_	5	0.03927	170		1222	10
001	01	Свасоонка	1		Быхлоппал груба	0001	3	0.1	3	0.03727	170	1000	1222	
001	01	Битумный котел	1		Дымовая труба	0002	2.5	0.1	5	0.03927	150	941	1159	
001	0 1		_		Asimosum ipjeu	0002		0.11		0.00527	100		110)	
001	01	Бульдозеры 59	1		Неорганизованный	6001	5				20.3	1033	1125	13
		кВт			выброс									
001	01	Кран	1		Неорганизованный	6002	5				20.3	007	1193	8
001	O I		1			0002)				20.3	98/	1193	
		трубоукладчик			выброс									
												l		

	Наименование газоочистных	Вещество по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выброс	загрязняющего	вещества	
ца лин. ирина ого ка	установок, тип и мероприятия по сокращению выбросов	рому произво- дится газо- очистка	газо- очист кой, %	степень очистки/ max.степ очистки%	ще- ства	вещества	г/с	мг/нм3	т/год	Год дос- тиже ния НДВ
Y2										
16	17	18	19	20	21	22	23	24	25	26
					0328 0330 0337 0703 2704 0301 0304 0328 0330 0337 2754	Азота диоксид (4) Сажа Сера диоксид (516) Углерод оксид (584) Бенз/а/пирен (54) Бензин (60) Азота диоксид (4) Азота оксид (6) Сажа Сера диоксид (516) Углерод оксид (584) Углеводороды предельные С12-19	0.68056 0.00263 0.34028 1.7014 0.0000054 0.51042 0.00093 0.000151 0.00017 0.003998 0.009302 0.5125	28122.026 108.677 14061.013 70305.064 0.223 21091.519 36.694 5.958 6.708 157.746 367.023 20221.375	1.74785 0.114922 0.873926 4.369626 0.000014 1.310888	
7					0304 0328 0330 0337 0703 2732 0301 0304	Азота диоксид (4) Азота оксид (6) Сажа Сера диоксид (516) Углерод оксид (584) Бенз/а/пирен (54) Керосин (654*) Азота диоксид (4) Азота оксид (6)	0.044 0.00715 0.000861 0.11111 0.55556 0.00000178 0.166667 0.006 0.00975 0.001163			

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001	01	Вибратор глубинный	1		Неорганизованный выброс	6003	5				20.3	962	1133	15
001	01	Краны на автомобильном ходу	1		Неорганизованный выброс	6004	5				20.3	1000	1093	7
001	01	Автогрейдеры	1		Неорганизованный выброс	6005	5				20.3	1074	1176	9
001	01	Катки прицепные	1		Неорганизованный выброс	6006	5				20.3	1048	1172	13
001	01	Автобетоносмес итель	1		Неорганизованный выброс	6007	5				20.3	1059	1147	14

16	17	18	19	20	21	22	23	24	25	26
					0330	Сера диоксид (516)	0.15			
						Углерод оксид (584)	0.75			
						Бенз/а/пирен (54)	0.0000024			
					2732	Керосин (654*)	0.225			
13						Азота диоксид (4)	0.072			
						Азота оксид (6)	0.012			
					0328	Сажа	0.001399			
					0330	Сера диоксид (516)	0.180556			
						Углерод оксид (584)	0.902778			
						Бенз/а/пирен (54)	0.0000028			
						Керосин (654*)	0.270833			
6					0301	Азота диоксид (4)	0.0422			
						Азота оксид (6)	0.0528			
					0328	Сажа	0.000818			
					0330	Сера диоксид (516)	0.10556			
						Углерод оксид (584)	0.527778			2025
						Бенз/а/пирен (54)	0.00000169			
						Керосин (654*)	0.15833			
3					0301	Азота диоксид (4)	0.075			
						Азота оксид (6)	0.0122			
					0328	Сажа	0.001453			
					0330	Сера диоксид (516)	0.1875			
					0337	Углерод оксид (584)	0.9375			
						Бенз/а/пирен (54)	0.000003			
					2732	Керосин (654*)	0.28125			
13					0301	Азота диоксид (4)	0.0422			
						Азота оксид (6)	0.0528			
						Сажа	0.000818			
					0330	Сера диоксид (516)	0.105556			
						Углерод оксид (584)	0.527778			
						Бенз/а/пирен (54)	0.00000169			
						Керосин (654*)	0.15833			

11		301 Азота диоксид (4)	0.124	
		804 Азота оксид (6)	0.02	
		328 Сажа	0.002256	
		330 Сера диоксид (516)	0.007778	
		337 Углерод оксид (584)	2.333	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Сварочный аппарат	1		Неорганизованный выброс	6008	2				20.3	1004	1122	14
001		Земляные работы. Вертикальная планировка	1		Неорганизованный выброс	6009	2				20.3	1018	1192	11
		Земляные работы. Разработка	1											
		грунта экскаваторами Земляные работы.	1											
		расоты. Разработка грунта вручную Земляные	1											
		работы. Обратная засыпка												
		бульдозером Земляные работы.	1											
		Засыпка грунта вручную Земляные работы. Снятие	1											
001	01	ПРС Пересыпка щебня	1		Неорганизованный выброс	6010	2				20.3	964	1087	7
001	01	Пересыпка	1		Неорганизованный	6011	2				20.3	1012	1147	9

			0702	T // /==		-		
			2704	Бенз/а/пирен (54) Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.0000009 0.388889			
4			0123 0143	Железа оксид (274) Марганец и его соединения (327)	0.0832 0.00961		1.66875 0.19275	
7			2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	1.008		2.1209	
								2025
13				Пыль неорганическая, содержащая двуокись кремния в %: 70-20 Пыль неорганическая,	0.345 0.192		0.1711 0.32788	

песка Сухие смеси									12	13	14	15
Сухие смеси			выброс									
	1		Неорганизованный выброс	6012	2				20.3	941	1125	11
Пересыпка гравия	1		Неорганизованный выброс	6013	2				20.3	986	1114	7
Пересыпка ПГС	1		Неорганизованный выброс	6014	2				20.3	1045	1205	13
Малярные работы. Уайт-	1		Неорганизованный выброс	6015	2				20.3	1023	1170	7
Малярные работы.	1											
	1											
работы. Эмаль												
Малярные работы. Краска	1											
Малярные работы. Лак	1											
Малярные работы. Лак	1											
Малярные работы. Лак	1											
БТ-123 Шлифовальный станок	1		Неорганизованный выброс	6016	2				20.3	1020	1101	7
	Гравия Пересыпка ПГС Малярные работы. Уайтспирит Малярные работы. растворитель Р-4 Малярные работы. Эмаль МА-015 Малярные работы. Краска ПФ-115 Малярные работы. Лак КФ-965 Малярные работы. Лак АС-9115 Малярные работы. Лак БТ-123 Шлифовальный	гравия 1 Малярные работы. Уайт-спирит Малярные работы. растворитель Р-4 Малярные работы. Эмаль МА-015 Малярные работы. Краска ПФ-115 Малярные работы. Лак КФ-965 Малярные работы. Лак АС-9115 Малярные работы. Лак AC-915 Малярные работы. Лак AC-915 Малярные работы. Лак AC-915 Малярные работы. Лак AC-915 Малярные работы. Лак AC-913 Малярные работы. Пак AC-913 Малярные работы.	гравия 1 Малярные работы. Уайт-спирит Малярные работы. растворитель Р-4 Малярные работы. Эмаль МА-015 Малярные работы. Краска ПФ-115 Малярные работы. Лак КФ-965 Малярные работы. Лак КФ-965 Малярные работы. Лак АС-9115 Малярные работы. Лак АС-9123 Шлифовальный 1	гравия выброс Пересыпка ПГС 1 Неорганизованный выброс Малярные работы. Уайт-спирит Малярные работы. растворитель Р-4 Малярные работы. Эмаль МА-015 Малярные работы. Краска ПФ-115 Малярные работы. Лак КФ-965 Малярные работы. Лак КФ-965 Малярные работы. Лак АС-9115 Малярные работы. Лак АС-9115 Малярные работы. Лак БТ-123 Шлифовальный 1 Неорганизованный	гравия выброс Пересыпка ПГС 1 Неорганизованный выброс Малярные работы. Уайт-спирит Малярные работы. растворитель Р-4 1 Малярные работы. Эмаль МА-015 1 Малярные работы. Краска ПФ-115 1 Малярные работы. Лак КФ-965 1 Малярные работы. Лак КФ-965 1 Малярные работы. Лак БТ-123 1 Шлифовальный 1 Неорганизованный 6016	Гравия Выброс Выброс Пересыпка ПГС 1 Неорганизованный 6014 2 2 2 2 3 3 3 4 4 4 4 4 4 4	Гравия Выброс Неорганизованный 6014 2	Пересыпка ПГС 1				

16	17	18	19	20	21	22	23	24	25	26
						содержащая двуокись				
						кремния в %: 70-20				
7					2908	Пыль неорганическая,	0.48		0.035	
						содержащая двуокись	0.10		0.033	
						кремния в %: 70-20				
9					2908	Пыль неорганическая,	0.00112		0.1766	
						содержащая двуокись	0.00112		0,1,00	
						кремния в %: 70-20				
12					2908	Пыль неорганическая,	0.0672		0.016	
						содержащая двуокись				2025
						кремния в %: 70-20				
11					0616	Диметилбензол (203)	1.5487		1.237092	
					0621	Метилбензол (349)	0.1722		0.02894	
						Бутан-1-ол (Бутиловый	0.3383		0.44526	
						спирт) (102)				
						2-Этоксиэтанол (1497*)	0.01925		0.03	1
						Бутилацетат (110)	0.2338		0.006596	1
						Пропан-2-он (470)	0.0722		0.01213	1
						Сольвент нафта (1149*)	0.793		1.235	1
					2752	Уайт-спирит (1294*)	2.3382		1.866943	
5					2902	Взвешенные частицы (116)	0.0052		0.0133	
					2930	Пыль абразивная (1027*)	0.0032		0.00818	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001 0	, u		1		Неорганизованный выброс	6017	2				20.3	980	1206	9
001 0	1 Дер	стрическая евообрабаты щий станок	1		Неорганизованный выброс	6018	2				20.3	978	1078	5
001 0	элеі	стрическая	1		Неорганизованный выброс	6019	2				20.3	960	1109	11
	(рез	ка алла)												

	16	17	18	19	20	21	22	23	24	25	26
12						2902	Взвешенные частицы (116)	0.0406		0.995	
9						2936	Пыль древесная (1039*)	0.0026		0.000523	2025
8						2902	Взвешенные частицы (116)	0.0406		0.00273	

таблица 1.4-4

Параметры выбросов загрязняющих веществ в атмосферу (период эксплуатации)

-		 			ры выоросов загрязня			1	<u> </u>	` •		i		
		Источник выдел	іения	Число	Наименование	Номер	Высо	Диа-		стры газовозд.см		Коорд	цинаты ист	гочника
Про		загрязняющих веш	цеств		источника выброса	источ	та	метр		оде из трубы пр		на	карте-схег	ме, м
ИЗВ	Цех			рабо-	вредных веществ	ника	источ	устья		ксимальной раз	овой			
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го кон
ТВО			чест-	В		сов	выбро					/1-го конца	лин.	/длина, ш
			во,	году			сов,	M	ско-	объем на 1	тем-	/центра пло	ощад-	площадн
			шт.				M		рость	трубу, м3/с	пер.	ного источ	ника	источни
									м/с		oC			
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001	01	Въезд-выезд с	1		Неорганизованный	6001	5				20.3	37	55	3
		автопаркинга			выброс									
001		Автостоянка на	1		Неорганизованный	6002	5				20.3	49	58	3
		36 м/м			выброс									
001	01	Автостоянка на	1		Неорганизованный	6003	5				20.3	47	44	13
		6 м/м			выброс									

	Наименование газоочистных	Вещество по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выброс	загрязняющего	вещества	
	установок,	рому	газо-	•	ще-	вещества				
ца лин.	тип и	произво-	очист	очистки/	ства		г/с	мг/нм3	т/год	Год
ирина	мероприятия	дится	кой,	тах.степ						дос-
ого	по сокращению	газо-	%	очистки%						тиже
ка	выбросов	очистка								ния НДВ
Y2	_									ПДБ
16	17	18	19	20	21	22	23	24	25	26
45					0330 0337 2704 0301 0330 0337 2704 0301 0330 0337	Азота диоксид (4) Сера диоксид (516) Углерод оксид (584) Бензин (60) Азота диоксид (4) Сера диоксид (516) Углерод оксид (584) Бензин (60) Азота диоксид (4) Сера диоксид (516) Углерод оксид (584) Бензин (60)	0.0000806 0.0000194 0.00714 0.000811 0.000309 0.0000708 0.0393 0.0043 0.000309 0.0000708 0.0393 0.0043			2025

32

1.5. Обоснование данных о выбросах вредных веществ

Период строительства

Количество вредных выбросов при проектировании определено в соответствии с отраслевыми нормами технологического проектирования и отраслевыми методическими указаниями и рекомендациями по определению выбросов вредных веществ в атмосферу с учетом требований РНД 211.2.01.0-97.

Исходные данные

Машины и механизмы:

- 1. Бульдозеры 59 кВт (80 л.с.)
- 2. Экскаватор обратная лопата
- 3. Компрессоры передвижные
- 4. Краны на автомобильном ходу
- 5. Автогрейдеры среднего типа, 99 кВт (135 л.с.)
- 6. Автогудронатор
- 7. Катки прицепные
- 8. Каток самоходный
- 9. Автобетоноукладчик
- 10. Машины поливомоечные
- 11. Автобетоносмеситель
- 12. Автосамосвал
- 13. Вибратор глубинный
- 14. Вибратор поверхностный
- 15. Кран трубоукладчик
- 16. Сваебойка

Станки и агрегаты:

Шлифовальный станок – 709,8 час/год;

Дрель электрическая – 6809,6 час/год;

Деревообрабатывающие станки – 55,9 час/год;

Пила электрическая (резка металла) – 18,66 час/год;

Сварочный аппарат – расход электродов Э-42 111,45 т/год;

Земляные работы

Снятие плодородного слоя грунта бульдозером, м³ – 1860;

Вертикальная планировка, м³ – 8300;

Разработка грунта экскаватором в а/самосвалы, $M^3 - 18600$;

Разработка грунта вручную, $M^3 - 1600$;

Обратная засыпка, бульдозером, $M^3 - 6400$;

Засыпка грунта вручную, $M^3 - 840$.

Инертные материалы:

Щебень из природного камня	$M^3 - 2120 M^3$
Сухие смеси	$_{\rm T} - 202$
Гравий	M3 - 2120
ПГС	M3 - 4580
Песок	M3 - 3650

Малярные работы:

Уайт-спирит	- 0,214 т.
Растворитель Р-4	- 0,04667 т.
Эмаль МА-015	- 4,325 т.

Краска ПФ-115	- 5,416 т.
Лак КФ-965	- 0,0015 т.
Лак АС-9115	- 0,00138 т.
Лак БТ-123	- 0,03044 т.

Расчет выбросов ЗВ

Ист. 0001 Сваебойка

Установки на гусеничном ходу для погружения свай

маш.-ч

713,42

длиной до 22 метров, с гидромолотом 6,4 т

Расход дизтоплива:

 $0,25\ \text{кг/л.c.}$ ч *245 л.c = 61,25 кг/ч (17,014 г/с)

61,25*713,42 = 43697 кг/пер/строит = 43,697 т/ период строительства

Результаты расчета сведены в таблицу

Вредный компонент	Выбросы вредных веществ		
	Уд. Показатель т/т	г/с	т/период строительства
Окись углерода	0.1	1,7014	4,369626
Углероды	0.03	0,51042	1,310888
Двуокись азота	0.04	0,68056	1,74785
Сажа	0.000155	0,00263	0,114922
Сернистый газ	0.02	0,34028	0,873926
Бенз(а)пирен	0.32*10 ⁻⁶	0,000 0054	0,000014

Работа автотракторной техники на территории стройплощадки

Приложение №13 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008г. №100 –п. «Методика расчета нормативов выбросов от неорганизованных источников».

Расход топлива в кг/ч на одну л.с. мощности составляет ориентировочно для карбюраторных двигателей 0.4 кг/л.с.ч и для дизельных двигателей -0.25 кг/л.с.ч.

Выбросы вредных веществ при сгорании топлива

Вредный компонент	Выбросы вред	дных веществ		
	двигателями.т/т			
	карбюраторными	дизельными		
Окись углерода	0.6	0.1		
Углероды	0.1	0.03		
Двуокись азота	0.04	0.01		
Сажа	0.00058	0.000155		
Сернистый газ	0.002	0.02		
Свинец	0.0003	-		
Бенз(а)пирен	0.23*10 ⁻⁶	$0.32*10^{-6}$		

Расход топлива различными транспортными средствами

Марка автомашины	Вид топлива	Расход топлива.т/ч
KAMA3-511	дизельное	0.013

КРАЗ-256б-1	дизельное	0.019
ЗИЛ ММЗ-555	бензин	0.014

Количество вредных веществ, поступающих в атмосферу, определяют путем умножения величины расхода топлива в тоннах на соответствующие коэффициенты.

Ист. 6001. Бульдозеры 59 кВт (80 л.с.)

Экскаватор обратная лопата (80 л.с.)

Расход дизтоплива: 0.25 кг/л.c. + 80 л.c = 20 кг/ч (0.02 т/ч)

Результаты расчета сведены в таблицу

Вредный компо-	Выбросы вредных веществ			
нент	Уд.показатель	г/с		
	T/T			
Окись углерода	0,1	0,55555		
Керосин	0,03	0,166667		
Азота диоксид	0,01	0,044		
Азота оксид	0,01	0,00715		
Сажа	0,000155	0,000861		
Сернистый газ	0,02	0,11111		
Бенз(а)пирен	0.32*10 ⁻⁶	0,0000178		

Ист. 6002. Кран трубоукладчик

Расход дизтоплива: 0.25 кг/л.с. + 108 л.c = 27 кг/ч (0.027 т/ч)

Результаты расчета сведены в таблицу

Вредный компо-	Выбросы вредных веществ			
нент	Уд.показатель	г/с		
	T/T			
Окись углерода	0,1	0,75		
Керосин	0,03	0,225		
Азота диоксид	0,01	0,06		
Азота оксид	0,01	0,00975		
Сажа	0,000155	0,001163		
Сернистый газ	0,02	0,15		
Бенз(а)пирен	0.32*10 ⁻⁶	2,4E-06		

Ист. 6003. Вибратор глубинный

Вибратор поверхностный Комрессоры передвижные

Расход дизтоплива: 0.25 кг/л.с.ч *130 л.c = 32.5 кг/ч (0.0325 т/ч)

Результаты расчета сведены в таблицу

Вредный компо-	Выбросы вредных веществ			
нент	Уд.показатель	г/с		
	$_{ m T/T}$			
Окись углерода	0,1	0,902778		
Керосин	0,03	0,270833		
Азота диоксид	0,01	0,072		
Азота оксид	0,01	0,012		
Сажа	0,000155	0,001399		
Сернистый газ	0,02	0,180556		
Бенз(а)пирен	0.32*10 ⁻⁶	0,0000028		

Ист. 6004 Краны на автомобильном ходу Автобетоноукладчик

Расход дизтоплива: 0,019 т/ч

Результаты расчета сведены в таблицу:

Вредный компо-	Выбросы вредных веществ	
нент	Уд.показатель	г/с
	T/T	
Окись углерода	0,1	0,527778
Керосин	0,03	0,15833
Азота диоксид	0,01	0,0422
Азота оксид	0,01	0,0528
Сажа	0,000155	0,000818
Сернистый газ	0,02	0,10556
Бенз(а)пирен	0.32*10 ⁻⁶	1,69E-06

Ист.6005. Автогрейдеры среднего типа, 99 кВт (135 л.с.) **Автогудронаторы**

Машины поливомоечные

Расход дизтоплива: 0.25 кг/л.с.ч *135 л.c = 33,75 кг/ч (0.03375 т/ч)

Результаты расчета сведены в таблицу:

Вредный компо-	Выбросы вредных веществ	
нент	Уд.показатель	г/с
	T/T	
Окись углерода	0,1	0,9375
Керосин	0,03	0,28125
Азота диоксид	0,01	0,075
Азота оксид	0,01	0,0122
Сажа	0,000155	0,001453
Сернистый газ	0,02	0,1875
Бенз(а)пирен	0.32*10 ⁻⁶	0,000003

Ист. 6006. Каток прицепной Каток самоходный

Расход дизтоплива: 0,019 т/ч

Результаты расчета сведены в таблицу

Вредный компо-	Выбросы вредных веществ	
нент	Уд.показатель	г/с
	$_{ m T}/_{ m T}$	
Окись углерода	0,1	0,527778
Керосин	0,03	0,15833
Азота диоксид	0,01	0,0422
Азота оксид	0,01	0,0528
Сажа	0,000155	0,000818
Сернистый газ	0,02	0,105556
Бенз(а)пирен	0.32*10 ⁻⁶	1,69E-06

Ист. 6007 Автобетоносмеситель

Автосамосвал

Расход бензина: 0,014 т/ч

Результаты расчета сведены в таблицу

Вредный компо-	Выбросы вредных веществ
----------------	-------------------------

нент	Уд. показатель	г/с
	T/T	
Окись углерода	0,6	2,3333
Углероды	0,1	0,388889
Азота диоксид	0,04	0,124
Азота оксид	0,04	0,02
Сажа	0,00058	0,002256
Сернистый газ	0,002	0,007778
Бенз(а)пирен	0.32*10 ⁻⁶	0,0000009

Ист. 6008 Сварочные работы

Источник выделения N 001 Сварочный аппарат

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при сварочных работах (по величинам удельных

выбросов). РНД 211.2.02.03-2004. Астана, 2004

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): АНО-6

Расход сварочных материалов, $\kappa \Gamma / \Gamma \text{од}$, B = 111450

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час , BMAX = 20

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 16.7

в том числе:

Примесь:0123 диЖелезо триоксид (Железа оксид) /в пересчете на железо/

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 14.97

Валовый выброс, т/год (5.1) , M_{-} = GIS * B / 10 ^ 6 = 14.97 * 111450 / 10 ^ 6 = 1.66875

Максимальный из разовых выброс, г/с (5.2) , $_{\bf G}$ = GIS * BMAX / 3600 = 14.97 * 20 / 3600 = 0.0832

Примесь:0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 1.73

Валовый выброс, т/год (5.1), $M = GIS * B / 10 ^ 6 = 1.73 * 111450 / 10 ^ 6 = 0.19275$

Максимальный из разовых выброс, г/с (5.2) , $_{\bf G}$ = GIS * BMAX / 3600 = 1.73 * 20 / 3600 = 0.00961

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
0123	диЖелезо триоксид (Железа оксид)	0.0832	1.66875
0143	Марганец и его соединения	0.00961	0.19275

Инертные материалы

Расчет выбросов от неорганизованных источников при пересыпке материала производится по Методике расчета выбросов от предприятий по производству строительных материалов, МООС, приказ 100-п от 18.04.2008 г. (приложение 11).

Объемы пылевыделений рассчитаны по формулам:

Максимальный разовый объем пылевыделений, z/c,:

$$M^{cek} = \frac{k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G^{uac} \times 10^6}{3600} \times (1 - \eta) ;$$

Валовой выброс, *т/год*:

$$M cod = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G^{cod} \times (1 - \eta)$$
, (3.1.2)

где:

k₁ – весовая доля пылевой фракции в материале (таблица 3.1.1);

k₂ – доля пыли, переходящая в аэрозоль (таблица 3.1.1);

k₃ – коэффициент, учитывающий местные метеоусловия (таблица 3.1.2);

k4 – коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1.3);

k₅ – коэффициент, учитывающий влажность материала (таблица 3.1.4);

k7 – коэффициент, учитывающий крупность материала (таблица 3.1.5);

k₈ – поправочный коэффициент для различных материалов (таблица 3.1.6);

k9 – поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала;

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1.7);

 $q^{\text{час}}$ – производительность узла пересыпки или количество перерабатываемого материала, т/ч; $G^{\text{год}}$ – суммарное количество перерабатываемого материала в течение года, т/год;

n - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8).

В соответствии с п. 2.1 Методики расчета выбросов от предприятий по производству строительных материалов, МООС, приказ 100-п от 18.04.2008 г., при определении параметров источников загрязнения атмосферы (ИЗА) следует учитывать длительность выброса загрязняющих веществ.

Ист. 6009 Земляные работы

Ист. выделения 001 Снятие плодородного слоя грунта бульдозером, $M^3 - 1860$ (2604 m)

Выбросы при пересыпке

K ₁	K ₂	К3	K4	K5	K ₇	K ₈	К9	B'	g, т/час	G, т/за период строитель- ства	η	М, г/с	M ₂ _T /Γ
0,05	0,02	1,2	1	0,4	0,7	1,0	0,2	0,6	20	2604	0	0,224	0,1049

Ист. выделения 002 Вертикальная планировка 8300 м³ (11620 т)

K ₁	K ₂	К3	K4	K5	K 7	K ₈	K 9	B'	g, т/час	G, т/за период строитель- ства	η	M, Γ/c	M <u>.</u> τ/Γ
0,05	0,02	1,2	1	0,4	0,7	1,0	0,2	0,6	10	11620	0	0,112	0,4683

Ист. выделения 003 Разработка грунта экскаватором в а/самосвалы, $m^3 - 18600$ (26040 m)

Выбросы при пересыпке

K ₁	K ₂	К3	K4	K ₅	K ₇	K ₈	К9	B'	g, т/час	G, т/за период строитель- ства	η	М, г/с	M <u>.</u> τ/Γ
0,05	0,02	1,2	1	0,4	0,7	1,0	0,2	0,6	20	26040	0	0,224	1,049

(3.1.1)

Ист. выделения 004 Разработка грунта вручную, $M^3 - 1600$ (2240 m)

K1	K ₂	К3	K4	K5	K 7	K8	K 9	B'	g, т/час	G, т/за период строитель- ства	η	М, г/с	Μ <u>,</u> _T /Γ
0,0	5 0,02	1,2	1	0,4	0,7	1,0	0,2	0,6	10	2240	0	0,112	0,0903

Ист. выделения 005 Обратная засыпка, бульдозером, $M^3 - 6400$ (8960 m)

Выбросы при пересыпке

K ₁	K ₂	K ₃	K4	K ₅	K ₇	K ₈	К9	B′	g, T/час	G, т/за период строитель- ства	η	M, Γ/c	M <u>.</u> τ/Γ
0,05	0,02	1,2	1	0,4	0,7	1,0	0,2	0,6	20	8960	0	0,224	0,361

Ист. выделения 006 Засыпка грунта вручную, $M^3 - 840M^3$ (1176 m)

-K ₁	K ₂	К3	K4	K5	K 7	K ₈	K 9	B'	g, т/час	G, т/за период строитель- ства	η	M, Γ/c	M <u>.</u> Τ/Γ
0,05	0,02	1,2	1	0,4	0,7	1,0	0,2	0,6	10	1176	0	0,112	0,0474

Ист. 6010 Пересыпка щебня

Щебень $-2120 \,\mathrm{M}^3 \,(2756 \,\mathrm{m})$

Выбросы при пересыпке

K ₁	K ₂	К3	K4	K5	K 7	K ₈	K9	B'	g, т/час	G, т/за период строи- тель- ства	η	M, Γ/c	M , τ/Γ
0,06	0,03	1,2	1	0,4	0,6	1,0	0,2	0,6	20	2756	0	0,345	0,1711

Ист. 6011 Пересыпка песка

 $\Pi e co\kappa - 3650 \, \text{м}^3 \, (4745 \, \text{m})$

Выбросы при пересыпке

K ₁	K ₂	К3	K4	K5	K 7	K ₈	K 9	B'	g, т/час	G, т/за период строитель- ства	η	М, г/с	Μ <u>,</u> _{T/Γ}
0,05	0,03	1,2	1	0,4	0,8	1,0	0,2	0,6	10	4745	0	0,192	0,32788

Ист. 6012 Пересыпка сухих смесей

Сухие смеси – 202 т

Выбросы при пересыпке

K ₁	K ₂	К3	K4	K ₅	K7,	K ₈	К9	B'	g, T/час	G, т/за период строитель- ства	η	М, г/с	Μ <u>.</u> _T /Γ
0,04	0,03	1,2	1,0	1,0	1,0	1,0	0,2	0,6	10	202	0	0,48	0,035

Ист. 6013 Пересыпка гравия

 Γ равий — 2120 м³ 3180 m)

Выбросы при пересыпке

K ₁	K ₂	К3	K4	K5	K ₇	K ₈	K9	B'	g, т/час	G, т/за период строи- тель- ства	η	M, r/c	Μ <u>.</u> τ/Γ
0,01	0,001	1,2	1	0,7	0,4	1,0	0,2	0,6	20	3180	0	0,00112	0,00095

Ист. 6014 Пересыпка ПГС

 $\Pi\Gamma C - 4580 \text{ m}^3 (7328 \text{ m})$

Выбросы при пересыпке

К	1 K2	I	К3	К4	K5	K ₇	K ₈	K9	B'	g, т/час	G, т/за период строи- тель- ства	η	M, Γ/c	M ₂ Τ/Γ
0,0	0,0	4 1	1,2	1	0,7	0,2	1,0	0,2	0,6	10	7328	0	0,0672	0,1766

Ист. 6015 Малярные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Источник выделения 01, Малярные работы. Уайт-спирит

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.214

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.214 \cdot 100 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.214$

Максимальный из разовых выброс 3В (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 2 \cdot 100 \cdot$

 $100 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.556$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
2752	Уайт-спирит (1294*)	0.556	0.214

Источник выделения 02, Малярные работы. растворитель Р-4

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2004

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 0.04667

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1 = 1

Марка ЛКМ: Растворитель Р-4

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), % , F2 = 100

Примесь:1401 Пропан-2-он (Ацетон)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , $_M_=MS*F2*FPI*DP*10^--6=0.04667*100*26*100*10^--6=0.01213$

Максимальный из разовых выброс 3B (5-6), г/с , _*G*_ = *MS1* * *F2* * *FPI* * *DP* / (3.6 * 10 ^ 6) = 1 * 100 * 26 * 100 / (3.6 * 10 ^ 6) = 0.0722

Примесь:1210 Бутилацетат

Доля вещества в летучей части ЛКМ (табл. 2), % , FPI = 12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 0.04667 * 100 * 12 * 100 * 10 ^ -6 = 0.0056

Максимальный из разовых выброс 3B (5-6), г/с , $\underline{G} = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 1 * 100 * 12 * 100 / (3.6 * 10 ^ 6) = 0.0333$

Примесь:0621 Метилбензол (Толуол)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 0.04667 * 100 * 62 * 100 * 10 ^ -6 = 0.02894

Максимальный из разовых выброс 3B (5-6), г/с , _*G*_ = *MS1* * *F2* * *FPI* * *DP* / (3.6 * 10 ^ 6) = 1 * 100 * 62 * 100 / (3.6 * 10 ^ 6) = 0.1722

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0621	Метилбензол (Толуол)	0.1722	0.02894
1210	Бутилацетат	0.0333	0.0056
1401	Пропан-2-он (Ацетон)	0.0722	0.01213

Источник выделения 03, Малярные работы. Эмаль МА-015

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 4.325

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1 = 10

Марка ЛКМ: Эмаль МА-015

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 49.5

Примесь: 1042 Бутан-1-ол (Спирт н-бутиловый)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 20.78

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 4.325 * 49.5 * 20.78 * 100 * 10 ^ -6 = 0.445

Максимальный из разовых выброс 3B (5-6), г/с , $_G_$ = $MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 10 * 49.5 * 20.78 * 100 / (3.6 * 10 ^ 6) = 0.286$

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 20.14

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 4.325 * 49.5 * 20.14 * 100 * 10 ^ -6 = 0.431

Максимальный из разовых выброс 3B (5-6), г/с , _*G*_ = *MS1* * *F2* * *FPI* * *DP* / (3.6 * 10 ^ 6) = 10 * 49.5 * 20.14 * 100 / (3.6 * 10 ^ 6) = 0.277

Примесь:1119 2-Этоксиэтанол (Этилцеллозольв; Этиловый эфир этиленгликоля)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 1.4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 4.325 * 49.5 * 1.4 * 100 * 10 ^ -6 = 0.03

Максимальный из разовых выброс 3B (5-6), г/с , $_G_$ = $MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 10 * 49.5 * 1.4 * 100 / (3.6 * 10 ^ 6) = 0.01925$

Примесь: 2750 Сольвент нафта

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 57.68

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 4.325 * 49.5 * 57.68 * 100 * 10 ^ -6 = 1.235

Максимальный из разовых выброс 3B (5-6), г/с , _ *G*_ = *MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6)* = $10 * 49.5 * 57.68 * 100 / (3.6 * 10 ^ 6) = 0.793$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
1042	Бутан-1-ол (Спирт н-бутиловый)	0.286	0.445
1119	2-Этоксиэтанол (Этилцеллозольв; Этило-	0.01925	0.03
	вый эфир этиленгликоля)		
2750	Сольвент нафта	0.793	1.235
2752	Уайт-спирит	0.277	0.431

Источник выделения 04, Малярные работы. Краска ПФ-115

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 5.416

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1 = 20

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Ксилол (смесь изомеров о-, м-, n-)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 5.416 * 45 * 50 * 100 * 10 ^ -6 = 1.219

Максимальный из разовых выброс 3B (5-6), г/с , $_G_=MS1*F2*FPI*DP/(3.6*10^6)=20*45*50*100/(3.6*10^6)=1.25$

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 5.416 * 45 * 50 * 100 * 10 ^ -6 = 1.219

Максимальный из разовых выброс 3B (5-6), г/с , $_G_=MS1*F2*FPI*DP/(3.6*10^6)=20*45*50*100/(3.6*10^6)=1.25$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь изомеров о-, м-, п-)	1.25	1.219
2752	Уайт-спирит	1.25	1.219

Источник выделения 05, Малярные работы. Лак КФ-965

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0015

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 1

Марка ЛКМ: Лак КФ-965

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 65

<u>Примесь: 2752 Уайт-спирит (1294*)</u>

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.0015 \cdot 65 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.000975$

Максимальный из разовых выброс 3В (5-6), г/с, $\underline{G} = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 65 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.1806$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
2752	Уайт-спирит (1294*)	0.1806	0.000975

Источник выделения 06, Малярные работы. Лак АС-9115

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.00138

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, *MS1* = 1

Марка ЛКМ: Лак АС-9115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 91

Примесь: 1042 Бутан-1-ол (Бутиловый спирт) (102)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 20.7

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00138 \cdot 91 \cdot 20.7 \cdot 100 \cdot 10^{-6} = 0.00026$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 91 \cdot 20.7 \cdot 100 / (3.6 \cdot 10^6) = 0.0523$

Примесь: 1210 Бутилацетат (Уксусной кислоты бутиловый эфир) (110)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 79.3

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.00138 \cdot 91 \cdot 79.3 \cdot 100 \cdot 10^{-6}$

 $10^{-6} = 0.000996$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 91 \cdot 79.3 \cdot 100 / (3.6 \cdot 10^6) = 0.2005$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
1042	Бутан-1-ол (Бутиловый спирт) (102)	0.0523	0.00026
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.2005	0.000996

Источник выделения 07, Малярные работы. Лак БТ-123

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2004

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.03044

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2

Марка ЛКМ: Лак БТ-123

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 56

Примесь: 0616 Ксилол (смесь изомеров о-, м-, n-)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 96

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 0.03044 * 56 * 96 * 100 * 10 ^ -6 = 0.018092

Максимальный из разовых выброс 3B (5-6), г/с , $_G_=MS1*F2*FPI*DP/(3.6*10^6)=2*56*96*100/(3.6*10^6)=0.2987$

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ (табл. 2), % , FPI = 4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _*M*_ = *MS* * *F2* * *FPI* * *DP* * 10 ^ -6 = 0.03044 * 56 * 4 * 100 * 10 ^ -6 = 0.001968

Максимальный из разовых выброс 3B (5-6), г/с , _*G*_ = *MS1* * *F2* * *FPI* * *DP* / (3.6 * 10 ^ 6) = 2 * 56 * 4 * 100 / (3.6 * 10 ^ 6) = 0.0746

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь изомеров о-, м-, п-)	0.2987	0.018092
2752	Уайт-спирит	0.0746	0.001968

Ист. 6016 Шлифовальный станок

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработ-ке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2004 г.

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Плоскошлифовальные станки, с диаметром шлифовального круга - 250 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , $_{\rm T} = 709.8$

Число станков данного типа, шт., KOLIV = 1

Число станков данного типа, работающих одновременно, шт., NS1 = 1

Примесь:2930 Пыль абразивная (Корунд белый; Монокорунд)

Удельный выброс, г/с (табл. 1), GV = 0.016

Коэффициент гравитационного оседания (п. 5.3.2), KN = KNAB = 0.2

Валовый выброс, т/год (1), _M_ = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 0.2 * 0.016 * 709.8 * 1 / 10 ^ 6 = 0.00818

Максимальный из разовых выброс, Γ/c (2), $_G_=KN*GV*NS1=0.2*0.016*1=0.0032$

Примесь: 2902 Взвешенные частицы

Удельный выброс, Γ/c (табл. 1), GV = 0.026

Коэффициент гравитационного оседания (п. 5.3.2), KN = KNAB = 0.2

Валовый выброс, т/год (1) , _M_ = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 0.2 * 0.026 * 709.8 * 1 / 10 ^ 6 = 0.0133

Максимальный из разовых выброс, г/с (2) , _G_ = KN * GV * NS1 = 0.2 * 0.026 * 1 = 0.0052 ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0.0052	0.0133
2930	Пыль абразивная (Корунд белый; Монокорунд)	0.0032	0.00818

Ист. 6017 Дрель электрическая

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработ-ке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2004

Модель, марка станка: Перфоратор

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из стали

Фактический годовой фонд времени работы одной единицы оборудования, ч/год ,_ $T_{-} = 6809.6$

Число станков данного типа, шт., KOLIV = 1

Число станков данного типа, работающих одновременно, шт. NSI = 1

Примесь: 2902 Взвешенные частицы

Удельный выброс, г/с (табл. 1), $\overline{GV} = 0.203$

Коэффициент гравитационного оседания (п. 5.3.2) KN = KNAB = 0.2

Валовый выброс, т/год (1) , $M_{-} = 3600 * KN * GV *_{-}T_{-} *_{-}KOLIV_{-} / 10 ^ 6 = 3600 * 0.2 * 0.203 * 6809.6 * 1 / 10 ^ 6 = 0.995$

Максимальный из разовых выброс, г/с (2) ,_G_ = KN * GV * NS1 = 0.2 * 0.203 * 1 = 0.0406 ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0.0406	0.995

Ист. 6018 Деревообрабатывающий станок

РАСЧЕТ выбросов ЗВ от деревообрабатывающего участка

Модель, марка станка: Станок фрезерный ФЛ

Местный отсос пыли не проводится

Примесь: 2936 Пыль древесная

Удельное выделение пыли при работе оборудования, г/с(табл.5.4.1.), GP = 1.3

Время работы станка в день, час, T = 1

Количество станков данного типа, N = 1

Количество одновременно работающих станков данного типа, NI = 1

Число дней работы участка в году, K = 55.9

Влажность древесины, %, VL = 30

Коэфф., учитывающий влажность материала(табл.4 из[3]) , K5 = 0.01

Коэффициент, учитывающий оседание твердых частиц([2],c.14), KN = 0.2

Удельное выделение пыли с учетом поправочных коэффициентов, г/с , $\textbf{\textit{GP}} = \textbf{\textit{GP}} * \textbf{\textit{KN}} * \textbf{\textit{K5}} =$

1.3 * 0.2 * 0.01 = 0.0026

Максимально-разовый выброс пыли, г/с , G = GP * N1 = 0.0026 * 1 = 0.0026

Валовый выброс пыли, т/год , $M = GP * T * N * 3600 * 10 ^ -6 * K = 0.0026 * 1 * 1 * 3600 *$

 $10 ^ -6 * 55.9 = 0.000523$

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2936	Пыль древесная	0.0026	0.000523

Ист. 6019 Пила электрическая (резка металла)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из стали: Отрезные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, $_{T}$ = 18.66

Число станков данного типа, шт., KOLIV = 1

Число станков данного типа, работающих одновременно, шт., NS1 = 1

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1), GV = 0.203

Коэффициент гравитационного оседания (п. 5.3.2), KN = 0.2

Валовый выброс, т/год (1), $_M_=3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 10^6 = 3600 \cdot 0.2 \cdot 0.203 \cdot$

 $18.66 \cdot 1 / 10^6 = 0.00273$

Максимальный из разовых выброс, г/с (2), $_G_=KN \cdot GV \cdot NSI=0.2 \cdot 0.203 \cdot 1=0.0406$ ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2902	Взвешенные частицы (116)	0.0406	0.00273

В качестве мероприятий, направленных на сокращение загрязнения на окружающую среду, предусматривается:

- 1. Организация технического обслуживания и ремонта дорожно-строительной техники и автотранспорта на территории производственной базы подрядной организации.
- 2. Проведение большинства строительных работ, за счет электрифицированного оборудования, работа которого не будет связана с загрязнением атмосферного воздуха.
- 3. Осуществление строительных работ с применением процесса увлажнения инертных материалов, что исключит возможность пыления.
 - 4. Не одновременность работы транспортной и строительной техники.
- 5. Организация внутрипостроечного движения транспортной техники по существующим дорогам и проездам с твердым покрытием, что снизит воздействие осуществляемых работ на состав атмосферного воздуха.
- 6. Сокращение или прекращение работ при неблагоприятных метеорологических условиях.

Учитывая временный характер негативного воздействия на окружающую среду, дорожные машины и оборудование находятся на объекте только в том составе, которым необходимо для выполнения технологических операций определенного вида работ. По окончании смены машины перемещаются на площадки с твердым покрытием.

Период эксплуатации

Ист. 6001 Въезд-выезд с автопаркинга

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Обособленная, имеющая непосредственный выезд на дорогу общего пользования (расчетная схема 1)

Условия хранения: Теплая закрытая стоянка

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период хранения (t>-5 и t<5)

Tun ма 3.5 л (с		Легковь	1е авто л	иобили с	впрыском	топлива рабочил	и объемом свыше 1.8 до
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,		
cym	шm		шт.	км	км		
150	16	0.10	2	0.05	0.05		
			•	•			
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	1.5	5	1	4.5	17	0.00714	
0337	1.5	J	1	7.5	1 /	0.00/14	
2704	1.5	0.65		0.4	1.7	0.000714	
			1				

Выбросы по периоду: Теплый период хранения (t>5)

Tun м 3.5 л (і: Легков	вые авт	юмобили	с впрыска	ом топлива рабочим объемом свыше 1.8 до
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,	

cym	шт		шт.	КМ	км		
100	16	0.10	2	0.05	0.05		
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	2/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	1.5	5	1	4.5	17	0.00714	
2704	1.5	0.65	1	0.4	1.7	0.000811	
0301	1.5	0.05	1	0.05	0.4	0.0000806	
0330	1.5	0.013	1	0.012	0.07	0.00001944	

Выбросы по периоду: Холодный период хранения (t<-5)

Температура воздуха за расчетный период, град. С , T = -20

Тип м 3.5 л (-	•	впрыском		м объемом свыше 1.8 до
Dn,	Nk,	A	Nk1	<i>L1</i> ,	<i>L2</i> ,		
cym	шm		шт.	КМ	км		
115	16	0.10	2	0.05	0.05		·
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	1.5	5	5 1	4.5	17	0.00714	
2704	1.5	0.65	5 1	0.4	1.7	0.000811	
0301	1.5	0.05	5 1	0.05	0.4	0.0000806	

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота диоксид	0.0000806	-
0330	Сера диоксид	0.0000194	
0337	Углерод оксид	0.00714	
2704	Бензин	0.000811	

Максимально-разовые выбросы достигнуты в переходный период

Ист. 6002 Автостоянка на 36 м/м

Стоянка: Обособленная, имеющая непосредственный выезд на дорогу общего пользования (расчетная схема 1)

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период хранения (t>-5 и t<5)

		1				ия (t>-5 и t<5) т моплива рабочи л	и объемом свыше 1.8 до
3.5 л (с	do 92)						
Dn,	Nk,	A	Nk1	<i>L1</i> ,	<i>L2</i> ,		
cym	шm		шm.	км	км		
150	36	0.10	1	0.01	0.01		
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	3	0.10	1	4.5	19.17	0.00813	
0331	5	8.19	1	4.3	17.1/	0.00813	
2704	3	0.9	+	0.4	2.25	0.00813	
			+			0.000	

Выбросы по периоду: Теплый период хранения (t>5)

Тип м	ашины	: Легкос	вые авт	омобили	с впрыско	м топлива рабочим объемом свыше 1.8 до
3.5 л ((do 92)					
Dn,	Nk,	A	Nk1	<i>L1</i> ,	<i>L</i> 2,	

cym	шт		шт.	КМ	км		
100	36	0.10	1	0.01	0.01		
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	<i>₂/c</i>	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	3	5	1	4.5	17	0.00546	
2704	3	0.65	1	0.4	1.7	0.000658	
0301	3	0.05	1	0.05	0.4	0.0000567	
0330	3	0.013	1	0.012	0.07	0.00001436	

Выбросы по периоду: Холодный период хранения (t<-5)

Температура воздуха за расчетный период, град. С , T = -20

Тип м 3.5 л (Легковь	іе автол	мобили с	впрыском	топлива рабочи.	м объемом свыше 1.8 до
Dn,	Nk,	A	Nk1	<i>L1</i> ,	<i>L2</i> ,		
cym	шm		шт.	км	км		
115	36	0.10	1	0.01	0.01		
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	15	9.1	1	4.5	21.3	0.0392	
2704	15	1	1	0.4	2.5	0.00429	
Z/0 4	13	1		0.1		0.00.	
0301	15	0.07	1	0.05	0.4		

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азот (IV) оксид (Азота диоксид)	0.000309	
0330	Сера диоксид (Ангидрид сернистый)	0.0000708	
0337	Углерод оксид	0.0393	
2704	Бензин (нефтяной, малосернистый) /в пересчете	0.0043	
	на углерод/		

Максимально-разовые выбросы достигнуты в холодный период при температуре -20 градусов С

Ист. 6003 Автостоянка на 6 м/м

Стоянка: Обособленная, имеющая непосредственный выезд на дорогу общего пользования (расчетная схема 1)

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период хранения (t>-5 и t<5)

Быоро	сы по п	ериоду: 1	тереход	ныи перис	од хранен	ия (เ∕-э и เ<э)	
Тип ма	ишины:	Легковы	е автол	лобили с (впрыском	топлива рабочим о	бъемом свыше 1.8 до
3.5 л (д	0 92)				_	_	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,		
cym	шm		шm.	км	км		
150	6	0.10	1	0.01	0.01		
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	3	8.19	1	4.5	19.17	0.00813	
2704	3	0.9	1	0.4	2.25	0.000867	
0301	3	0.07	1	0.05	0.4	0.0000733	

Выбросы по периоду: Теплый период хранения (t>5)

0.014

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до

0.081 | 0.00001556

0.012

3.5 л (с	o 92)						
Dn,	Nk,	A	Nk1	<i>L1</i> ,	<i>L2</i> ,		
cym	шm		шm.	км	км		
100	6	0.10	1	0.01	0.01		
<i>3B</i>	Tnu	1/	T	1.7	3.71	,	/ \
JD	Tpr	Mpr,	Tx,	Mxx,	Ml,	<i>г/c</i>	т/год
ЭВ	мин	мрг, г/мин	Тх, мин	Мхх, г/мин	MI, г/км	<i></i> ε/c	m/200
0337	_	_	-	-	_	0.00546	m/200
	мин	г/мин	мин 1	г/мин	г/км		
0337	мин 3	<i>г/</i> мин 5	мин 1 1	<i>г/мин</i> 4.5	г/км 17	0.00546	

Выбросы по периоду: Холодный период хранения (t<-5)

Температура воздуха за расчетный период, град. С , T = -20

Тип м	ашины	: Легкові	ле автол	мобили с	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до											
3.5 л (с	3.5 n (do 92)															
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,											
cym	шm		шт.	км	км											
115	6	0.10	1	0.01	0.01		·									
<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	ız/c	т/год									
	мин	г/мин	мин	г/мин	г/км											
0337	15	<i>г/мин</i> 9.1		<i>г/мин</i> 4.5	г/км 21.3	0.0392										
0337 2704						0.0392 0.00429										
	15	9.1 1	1 1	4.5	21.3											

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азот (IV) оксид (Азота диоксид)	0.000309	
0330	Сера диоксид (Ангидрид сернистый)	0.0000708	
0337	Углерод оксид	0.0393	
2704	Бензин (нефтяной, малосернистый) /в пересчете	0.0043	
	на углерод/		

Максимально-разовые выбросы достигнуты в холодный период при температуре -20 градусов С

1.6. Характеристика мероприятий по регулированию выбросов в периоды особо неблагоприятных метеорологических условий (НМУ)

Раздел «Мероприятия по регулированию выбросов при неблагоприятных метеоусловиях» разрабатывается, т.к. г. Астана входит в «Перечень городов Казахстана, в которых прогнозируются НМУ».

Предотвращению опасного загрязнения воздуха в периоды неблагоприятных условий способствует регулирование выбросов или их кратковременное снижение. В периоды неблагоприятных метеорологических условий максимальная приземная концентрация примеси может увеличиться до 1.5-2 раз.

Разработаны 3 режима работы предприятия при НМУ.

Меры по уменьшению выбросов в период НМУ могут проводиться без сокращения производства и без существенных изменений технологического режима — это 1 и 2 режимы работы предприятия. При этом сокращение концентрации 3В в приземном слое атмосферы обеспечивается примерно на 20-40% для 1 и 2 режимов соответственно. При третьем режиме работы мероприятия должны обеспечить сокращение концентрации 3В примерно на 40-60%, а в некоторых особо опасных условиях необходимо предусматривать полное сокращение выбросов. Третий режим работы предприятия предусматривается в наиболее опасных случаях, когда создается серьезная угроза здоровью населения. При этом снижение загрязненности до 50% может быть достигнуто за счет смещения во времени технологических процессов, связанных с выделением оксидов азота и углерода.

Мероприятия по первому режиму носят организационно-технический характер, их можно провести без существенных затрат и снижения производительности предприятия. К ним относятся:

- усиление контроля точного соблюдения технологического регламента производства;
- > запрещение работы на форсированном режиме оборудования;
- **р** рассредоточение во времени выбросов 3В от технологического оборудования;
- ▶ обеспечение инструментального контроля выбросов вредных веществ в атмосферу непосредственно на источниках и на границе СЗЗ, если таковая имеется.

1.7. Расчет и анализ величин приземных концентраций загрязняющих веществ

Расчет загрязнения воздушного бассейна вредными веществами произведен на программе «Эра v 3.0.», которая предназначена для расчета полей концентраций и рассеивания вредных примесей в приземном слое атмосферы, содержащихся в выбросах предприятий, с целью установления предельно-допустимых выбросов (ПДВ).

Размер основного расчетного прямоугольника на период строительства установлен с учетом влияния загрязнения со сторонами $3000 \times 1800 \text{ м}$ и шагом сетки 100 м, на период эксплуатации со сторонами $100 \times 100 \text{ м}$ и шагом сетки 10 м.

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере приведены в виде таблицы 1.7-1.

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере

таблица 1.7-1.

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
* * *	1.00
Коэффициент рельефа местности в городе	1.00
Средняя максимальная температура наружного	26.8
воздуха наиболее жаркого месяца года, °С	
Средняя температура наружного воздуха наибо-	-18.5
лее холодного месяца, °С	
Среднегодовая роза ветров, %	
С	8.0
СВ	16.0
В	6.0
ЮВ	6.0
Ю	27.0
ЮЗ	19.0
3	11.0
C3	7.0
Среднегодовая скорость ветра, м/с	3.8
Скорость ветра (по средним многолетним	8.0
данным), повторяемость превышения 5 %, м/с	

Ситуационная карта-схема размещения предприятия представлена в приложении 1.

Расчет полей приземных концентраций проводился с учетом фоновых концентраций и проводился для максимального режима работы источников загрязнения.

Расчет рассеивания загрязняющих веществ на период *строительства* показал, что в жилой зоне имеются превышения максимальных приземных концентраций по следующим ингредиентам:

- группа суммации 31 (0301+0330)
 - в жилой зоне –1,230265 ПДК (вклад предприятия 3,3 %, вклад фона 96,7%);

На период эксплуатации расчет рассеивания проводился от двух открытых автостоянок (одновременность заезда автомобилей на территорию автостоянки). Расчет показал, что в жилой зоне и на санитарных разрывах от автостоянок имеются превышения максимальных приземных концентраций по следующим ингредиентам:

- группа суммации 31 (0301+0330)
 - в жилой зоне 1,195155 ПДК (вклад предприятия 0,4 %, вклад фона 99,6%);
 - на санитарном разрыве 1,192257 ПДК (вклад предприятия 0,2%, вклад фона 99,8%);

Анализ результатов расчета показал, что максимальные приземные концентрации по всем веществам и суммациям не оказывают существенного влияния на загрязнение атмосферы, превышения обусловлены высокими существующими фоновыми концентрациями в связи с развивающимся строительством столицы и увеличением числа единиц автотранспорта и, следовательно, величина выбросов этих веществ может быть принята в качестве НДВ.

Расчетные максимальные концентрации на расчетном прямоугольнике и в жилой зоне, создаваемые выбросами источников предприятия, приведены в результатах расчета рассеивания загрязняющих веществ (приложение 6).

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы приведены в таблицах 1.7-2 и 1.7-3. Сводные таблица результатов расчета рассеивания приведен ниже.

таблица 1.7-2

Перечень источников, дающих наибольшие вклады в уровень загрязнения (период строительства)

I –	Перетенвието	чников, дающих наиос			\ <u> </u>				П
Код	***		альная приземная	1	наты точек		ники, д		Принадлежность
вещества	Наименование	_ ·	ая и без учета фона)	с макс		льший		источника	
/	вещества	доля ПД	К / мг/м3	приземной конц.			концен	трацию	(производство,
группы									цех, участок)
суммации		в жилой	В пределах	в жилой	В пределах	N	% E	вклада	
		зоне	зоны	зоне	зоны воз-	ист.			
			воздействия	X/Y	действия		ЖЗ	Область	
			, ,		X/Y			воздей-	
								ствия	
1	2	3	4	5	6	7	8	9	10
		Заг	рязняющие вещ	ества:					-
0301	Азота диоксид (4)	0.990127(0.020127)/	, ,	1293/789		6004	100		
		0.198025(0.004025)							
		вклад п/п= 2%							
0304	Азота оксид (6)	0.0926159/0.0370463		766/869		6004	100		
0301	113014 ОКСИД (О)	0.0720137/0.0370103		700/009		0001	100		
0330	Сера диоксид (516)	0.374029(0.148029)/		766/869		6004	100		
		0.187014(0.074014)							
		вклад п/п=39.6%							Строительная
0337	Углерод оксид (584)	0.453411(0.074011)/		766/869		6004	100		площадка
0557	t mepod onend (co.)	2.267056(0.370056)		7 007 009			100		шощидки
		вклад п/п=16.3%							
		БКЛАД П/П 10.570							
2908	Пыль неорганическая,	0.1131022/0.0339306		766/869		6012	98.6		
2,00	содержащая двуокись	0.1131022/0.0337300		700/009		0012	70.0		
	кремния в %: 70-20								
2930	Пыль абразивная (0.5144678/0.0205787		766/869		6012	100		
2930	•	0.51770/6/0.0205/6/		700/009		0012	100		
	Корунд белый,								
	Монокорунд) (1027*)		 Ганни амми		1	1		I	I
07(21) 0201	A nome www (4)		Группы суммац		İ	6004	100	ĺ	Cma axxma == == ==
07(31) 0301	Азота диоксид (4)	1.230265(0.040265)		1293/789		6004	100		Строительная
0330	Сера диоксид (516)	вклад п/п= 3.3%							площадка

таблица 1.7-3

Перечень источников, дающих наибольшие вклады в уровень загрязнения (период эксплуатации)

Код		Расчетная максим	иальная приземная	Коорди	ния (пери наты точек				е Принадлежность		
вещества	Наименование		дая и без учета фона)	-	мальной		льший і		источника		
,	вещества	1	[К / мг/м3	приземной конц. макс. концент				, ,	(производство,		
группы	,		`	1	,		,	1 '	цех, участок)		
суммации		в жилой	на границе	в жилой на грани		N % вклада					
		зоне	санитарно -	зоне	це С33	ист.					
			защитной зоны	X/Y	X/Y		ЖЗ	C33			
1	2	3	4	5	6	7	8	9	10		
		Загря	зняющие вещес	тва:	•						
0301	Азота диоксид (4)	$0.974719(0.004719)^{1}$	0.972203(0.002203)/	58/24	34/68	6003	44.8	70			
		0.194944(0.000944)	0.194441(0.000441)								
		вклад $\pi/\pi = 0.5\%$	вклад $\pi/\pi = 0.2\%$			6002	42.4	29			
						6001	12.8				
0330	Сера диоксид (516)	0.282/	0.282239(0.000239)/	36/32	0/76	6003		63.1	Территория ЖК		
		0.141	0.141119(0.000119)								
		вклад п/п=0.0%	вклад п/п=0.0%			6002		28			
						6001	100	8.9			
0227	XX (50 A)	0.44070(0.06232)/	0.440050(0.050050)/	27/20	0/76	6002	47.4	40.2			
0337	Углерод оксид (584)	0.44272(0.06332)/	0.440258(0.060858)/	37/30	0/76	6003	47.4	48.3			
		2.213601(0.316601)	2.201292(0.304292)			6002	44.0	447			
		вклад п/п=14.3%	вклад п/п=13.8%			6002	44.8	44.7			
						6001	7.8	7			
						0001	7.8	/			
	I	Γ.,			1	l		I			
07(31) 0301	Азота диоксид (4)	1.195155(0.005155)	уппы суммации 1.192257(0.002257)	58/24	34/68	6003	44.8	70.2	I		
0330	Сера диоксид (516)	вклад п/п= 0.4%	вклад п/п= 0.2%	36/24	34/00	0003	44.0	70.2			
0330	Сера диокенд (310)	оклад п/п− 0.4/0	БКЛАД II/II— V.2/0			6002	42.4	28.9	Территория ЖК		
						0002	⊣∠. न	20.7	торритория лек		
						6001	12.8				
						0001	12.0				

таблица 1.7-4

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ (период строительства)

ПК ЭРА v3.0. Модель: MPK-2014

(сформирована 04.10.2025 12:32)

Город :005 Астана.

Объект :0048 Пятна 46-50 строит..

Вар.расч. :2 существующее положение (2025 год)

Код ЗВ Наименование загрязняющих вещест	в 	Cm	РП 	C33 	 ЖЗ 	 ФТ 	Граница области возд.		ПДК (ОБУВ) мг/м3	Класо опась	
· · · · · · · · · · · · · · · · · · ·			' 	' 	' 	' 	, возд. 				
0301 Азота диоксид (4)	1	0.1763	1.032143	нет расч.	0.990127	нет расч.	нет расч.	1	0.2000000	2	
0304 Азота оксид (6)		0.1103	0.108322	нет расч.	0.092616	нет расч.	нет расч.	1	0.4000000	3	
0328 Сажа		0.0137	Cm < 0.05	нет расч.	Cm < 0.05	нет расч.	нет расч.	1	0.1500000	3	
0330 Сера диоксид (516)		0.1764	0.399250	нет расч.	0.374029	нет расч.	нет расч.	1	0.5000000	3	
0337 Углерод оксид (584)		0.0882	0.466021	нет расч.	0.453411	нет расч.	нет расч.	1	5.0000000	4	
0703 Бенз/а/пирен (54)		0.4236	0.377750	нет расч.	0.209019	нет расч.	нет расч.	1	0.0000100*	' 1	
2732 Керосин (654*)		0.1102	0.108274	нет расч.	0.092575	нет расч.	нет расч.	1	1.2000000	-	
2908 Пыль неорганическая, содержащая		2.2573	0.300538	нет расч.	0.113102	нет расч.	нет расч.	2	0.3000000	3	
двуокись кремния в %: 70-20				1			1	1			
2930 Пыль абразивная (Корунд белый,		8.5720	1.108355	нет расч.	0.514468	нет расч.	нет расч.	1	0.0400000	-	
Монокорунд) (1027*)						1	1				
07 0301 + 0330		0.3527	1.314322	нет расч.	1.230265	нет расч.	нет расч.	1			
ПЛ 2908 + 2930		2.0401	0.257206	нет расч.	0.109028	нет расч.	нет расч.	2			

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК-2014
- 3. "Звездочка" (*) в графе "ПДКмр (ОБУВ)" означает, что соответствующее значение взято как 10ПДКсс.
- 4. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек), на границе области воздействия приведены в долях ПДКмр.

таблица 1.7-5

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ (период эксплуатации)

ПК ЭРА v3.0. Модель: MPK-2014

(сформирована 06.10.2025 16:58)

Город :005 Астана.

Объект :0048 Пятна 46-50 экспл..

Вар.расч. :3 существующее положение (2025 год)

Код ЗВ Наименование загрязняющих веществ и состав групп суммаций 	в 	Cm	I 	РП 	C33	 	ЖЗ	ФТ 	 	Граница области возд.	Колич AEN 	ПДК (ОБУВ) мг/м3		асс асн
0301 Азота диоксид (4) 0330 Сера диоксид (516) 0337 Углерод оксид (584) 2704 Бензин (нефтяной, малосернистый) 	 	0.0014 0.0722 0.0079	0.28 0.44 Cm<	32367 13660 <0.05	0.282238 0.440258 Cm<0.05	(0.282000 0.442720 Cm<0.05	Her pacy. Her pacy. Her pacy. Her pacy. Her pacy.	H 6	er pacu. er pacu. er pacu.	3 3 3 1 3	0.2000000 0.5000000 5.0000000 5.0000000	i I	2 3 4 4

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК-2014
- 3. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек), на границе области воздействия приведены в долях ПДКмр.

1.8. Предложения по установлению нормативов допустимых выбросов (НДВ) для объекта

Расчет полей приземных концентраций загрязняющих веществ позволяет выделить зоны с нормативным качеством атмосферного воздуха и повышенным содержанием некоторых ингредиентов по отношению к предельно-допустимой концентрации (ПДК).

Согласно ст. 39, п. 11 Экологического Кодекса РК от 2 января 2021 года № 400-VI: 11. Нормативы эмиссий для объектов III и IV категорий не устанавливаются.

Декларируемое количество выбросов загрязняющих веществ в атмосферный воздух по (г/сек, т/год) представлено ниже в таблице.

Таблица 1.8.1 Декларируемое количество выбросов загрязняющих веществ в атмосферный воздух по (г/сек, т/год) 2025 год

Номер источни-	Наименование загрязняющего вещества	г/сек	т/год
ка загрязнения			
0001	Азота диоксид	0.68056	1.74785
0001	Сажа	0.00263	0.114922
0001	Сера диоксид	0.34028	0.873926
0001	Углерод оксид	1.7014	4.369626
0001	Бенз/а/пирен	0.0000054	0.000014
0001	Бензин	0.51042	1.310888
6008	Железа оксид	0.0832	1.66875
6008	Марганец и его соединения	0.00961	0.19275
6009	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	1.008	2.1209
6010	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.345	0.1711
6011	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.192	0.32788
6012	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.48	0.035
6013	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.00112	0.1766
6014	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.0672	0.016
6015	Диметилбензол	1.5487	1.237092
6015	Метилбензол	0.1722	0.02894
6015	Бутан-1-ол	0.3383	0.44526
6015	2-Этоксиэтанол	0.01925	0.03
6015	Бутилацетат	0.2338	0.006596
6015	Пропан-2-он	0.0722	0.01213
6015	Сольвент нафта	0.793	1.235
6015	Уайт-спирит	2.3382	1.866943
6016	Взвешенные частицы (116)	0.0052	0.0133
6016	Пыль абразивная (1027*)	0.0032	0.00818
6017	Взвешенные частицы	0.0406	0.995
6018	Пыль древесная	0.0026	0.000523
6019	Взвешенные частицы	0.0406	0.00273
Итого:		11.0292754	19.0079

2026 год

Номер источни-	Наименование загрязняющего вещества	г/сек	т/год
ка загрязнения			
0001	Азота диоксид	0.68056	1.74785
0001	Сажа	0.00263	0.114922
0001	Сера диоксид	0.34028	0.873926
0001	Углерод оксид	1.7014	4.369626
0001	Бенз/а/пирен	0.0000054	0.000014
0001	Бензин	0.51042	1.310888
6008	Железа оксид	0.0832	1.66875
6008	Марганец и его соединения	0.00961	0.19275
6009	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	1.008	2.1209
6010	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.345	0.1711
6011	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.192	0.32788
6012	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.48	0.035
6013	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.00112	0.1766
6014	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.0672	0.016
6015	Диметилбензол	1.5487	1.237092
6015	Метилбензол	0.1722	0.02894
6015	Бутан-1-ол	0.3383	0.44526
6015	2-Этоксиэтанол	0.01925	0.03
6015	Бутилацетат	0.2338	0.006596
6015	Пропан-2-он	0.0722	0.01213
6015	Сольвент нафта	0.793	1.235
6015	Уайт-спирит	2.3382	1.866943
6016	Взвешенные частицы (116)	0.0052	0.0133
6016	Пыль абразивная (1027*)	0.0032	0.00818
6017	Взвешенные частицы	0.0406	0.995
6018	Пыль древесная	0.0026	0.000523
6019	Взвешенные частицы	0.0406	0.00273
Итого:		11.0292754	19.0079

Раздел охрана окружающей среды 60

2027 год

Номер источни-	Наименование загрязняющего вещества	г/сек	т/год
ка загрязнения			
0001	Азота диоксид	0.68056	1.74785
0001	Сажа	0.00263	0.114922
0001	Сера диоксид	0.34028	0.873926
0001	Углерод оксид	1.7014	4.369626
0001	Бенз/а/пирен	0.0000054	0.000014
0001	Бензин	0.51042	1.310888
6008	Железа оксид	0.0832	1.66875
6008	Марганец и его соединения	0.00961	0.19275
6009	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	1.008	2.1209
6010	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.345	0.1711
6011	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.192	0.32788
6012	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.48	0.035
6013	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.00112	0.1766
6014	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0.0672	0.016
6015	Диметилбензол	1.5487	1.237092
6015	Метилбензол	0.1722	0.02894
6015	Бутан-1-ол	0.3383	0.44526
6015	2-Этоксиэтанол	0.01925	0.03
6015	Бутилацетат	0.2338	0.006596
6015	Пропан-2-он	0.0722	0.01213
6015	Сольвент нафта	0.793	1.235
6015	Уайт-спирит	2.3382	1.866943
6016	Взвешенные частицы (116)	0.0052	0.0133
6016	Пыль абразивная (1027*)	0.0032	0.00818
6017	Взвешенные частицы	0.0406	0.995
6018	Пыль древесная	0.0026	0.000523
6019	Взвешенные частицы	0.0406	0.00273
Итого:		11.0292754	19.0079

Раздел охрана окружающей среды

61

1.9. Методы и средства контроля за состоянием воздушного бассейна

Контроль за соблюдением нормативов ПДВ на рассматриваемом предприятии должен осуществляться на источниках выбросов, которые вносят наибольший вклад в загрязнение атмосферы.

Контроль должен осуществляться силами сторонней лаборатории по договору с предприятием.

Выбросы вредных веществ в атмосферу от данного предприятия не должны превышать установленных нормативов НДВ.

При контроле выбросов вредных веществ в атмосферу проводят следующие работы:

- аэродинамические испытания вентиляционных систем;
- отбор и анализ проб воздуха на содержание вредных веществ в воздуховодах, шахтах и т.д.;
- определение количества вредных веществ, выбрасываемых в атмосферу.

Примерное количество проб, необходимое для отбора газов и паров -7, пыли и аэрозолей -10.

План-график контроля на период строительства не предусматривается.

Учитывая, что работы по строительству объекта имеют временный характер, воздействие на атмосферный воздух будет минимальным, мониторинг эмиссий на источниках предлагается проводить расчетным методом. Расчетный метод основан на определении массовых выбросов ЗВ по данным о составе исходного сырья и топлива, технологическом режиме и т.п. Контроль выбросов следует проводить по той методике, согласно которой эти выбросы были определены, а при использовании расчетных методов контролируются основные параметры, входящие в расчетные формулы.

Выбросы от строительных работ относятся к локальным, характеризующиеся повышенным содержанием загрязняющих веществ лишь в производственной зоне предприятия. Продолжительность воздействия выбросов предприятия - непостоянная. Интенсивность воздействия слабая, так как изменения природной среды не выходят за существующие пределы естественной природной изменчивости, следовательно, объект не окажет никакого влияния на качество атмосферного воздуха.

1.10. Обоснование принятия размера санитарно-защитной зоны

Устройство санитарно-защитной зоны между предприятием и жилой застройкой является одним из основных воздухоохранных мероприятий, обеспечивающих требуемое качество воздуха в населенных пунктах.

В соответствии с Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»:

- источниками воздействия на среду обитания и здоровье человека являются объекты, для которых уровни создаваемого загрязнения за пределами промышленной площадки превышают 1,0 ПДК.

Проектируемый объект не является промышленным предприятием. Территория многоквартирного жилого комплекса не располагается в границах СЗЗ и СР объектов, являющихся источниками воздействия на среду обитания и здоровье человека Производственные объекты в проектируемом районе, отсутствуют.

Ширину санитарно-защитных зон устанавливают в зависимости от класса производства, степени вредности и количества выделенных в атмосферу веществ.

Для группы производственных объектов, расположенных на общей производственной площадке, устанавливается единая СЗЗ с учетом суммарных выбросов и физического воздействия всех источников.

Санитарно-защитная зона устанавливается непосредственно от источников загрязнения атмосферы.

В соответствии с Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»:

- источниками воздействия на среду обитания и здоровье человека являются объекты, для которых уровни создаваемого загрязнения за пределами промышленной площадки превышают 1,0 ПДК.

Согласно Приказу и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», строительные работы не классифицируются.

В данном проекте основным источником загрязнений на период эксплуатации является автотранспорт. В соответствии с Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»:

Приложение 2:

п. 5 для подземных, полуподземных гаражей-стоянок, паркинга и гаражей-стоянок, паркинга, размещенных под жилым домом или встроенных (встроенно-пристроенных) в надземные этажи жилого дома, регламентируется лишь расстояние от въезда - выезда и от вентиляционных шахт до территории общеобразовательных, профессиональных образовательных и дошкольных образовательных организаций, а также организаций, осуществляющих медицинскую деятельность, жилых домов, жилых помещений, площадок отдыха и других, которое принимается по результатам расчетов рассеивания загрязнений в атмосферном воздухе и уровней физического воздействия.

Т.к. в данном проекте вентиляционная шахта автопаркинга выведена на кровлю жилых зданий, расстояние устанавливается от въезда-выезда с автопаркинга. Согласно проведенному расчету рассеивания, от въезда выезда с автопаркинга видно, что воздействие на окружающую среду носит предельно-допустимый уровень воздействия, превышений приземных концентраций от источников выброса не наблюдаются. Анализ результатов расчета показал, что максимальные приземные концентрации по всем веществам и суммациям не оказывают существенного влияния на загрязнение атмосферы. Выбросы от источников на расстоянии 5 м составляют 2,8 % без учета фоновых концентраций, величина выбросов этих веществ принята в качестве НДВ. Согласно расчету рассеивания, расчетное расстояние от въезда-выезда с автопаркинга принимается 5 м.

Въезд-выезд с подземного автопаркинга на 16 м/м – ист. 6001.

Согласно Приказу и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»:

Приложение 2, п. 6) расстояния от гостевых автостоянок жилых домов, предназначенных для размещения легкового автотранспорта и не принадлежащих юридическому лицу (либо индивидуальному предпринимателю), территорий подземных гаражей-стоянок не устанавливаются.

Гостевая автостоянка на 36 м/м *(ист. 6002)* принадлежит жильцам и гостям проектируемого комплекса – расстояние не устанавливается.

Автостоянка ист. 6003 предусмотрены для арендных помещений (юридических лиц).

Таблица Приложения 2:

- Минимальный санитарный разрыв от открытых стоянок до жилой застройки при количестве 10 и менее автомобилей составляет 10 м. Проектируемая автостоянка располагается на расстоянии 18 м (ист. 6003) от жилой застройки, и на расстоянии не менее 15 м до детской площадки (поз. 109). Санитарный разрыв соблюдается.

Согласно проведенному расчету рассеивания от автостоянок видно, что воздействие на окружающую среду носит предельно-допустимый уровень воздействия. Анализ результатов расчета показал, что максимальные приземные концентрации по всем веществам и суммациям не оказывают существенного влияния на загрязнение атмосферы.

•

2. ОХРАНА ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХВОД ОТ ЗАГРЯЗНЕНИЯ И ИСТОЩЕНИЯ

2.1. Краткая характеристика проектируемого предприятия

Участок строительства расположен в в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал (приложение 1). Участок не освоен и свободен от застройки.

До ближайшего водного объекта оз. Малый Талдыколь – 270 м.

Малый Талдыколь или Киши Талдыколь (каз. Кіші Талдыкөл) — осушенное и застроенное в 2010-е годы озеро в столице Казахстана, городе Астана. Высота над уровнем моря — 343,3 м.

Озеро Малый Талдыколь находится на левом берегу реки Ишим, в непосредственной близости с современным проспектом Туран, недалеко от торгового комплекса Хан Шатыр на севере до перекрёстка с проспектом Улы Дала на юге. Сток озера формируется в основном за счет талых вод и атмосферных осадков, доля грунтового потока составляет незначительный процент.

Климат района резко континентальный, со значительными колебаниями дневных и ночных температур воздуха. Лето сравнительно короткое. Для района характерны устойчивые сильные морозы в зимний период и интенсивное нарастание тепла в короткий весенний период, а также сезоны жары в летний период.

Исходными данными для разработки проектных решений по предупреждению загрязнений поверхностных и подземных вод и рациональному использованию водных ресурсов при проектировании, строительстве и эксплуатации послужили следующие материалы:

- задание на проектирование;
- рабочий проект «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал. Пятна 46-50» (без наружных инженерных сетей).

Водоохранная зона и водоохранные полосы

Водоохранная зона должна включать в себя территорию, прилегающую к акватории реки (озера), на которой устанавливаются особые условия пользования, в целях предупреждения загрязнения, засорения и истощения вод, поддержания их экологической устойчивости и надлежащего санитарного состояния.

Согласно постановлению Акимата города Астаны от 20 октября 2023 года № 205-2263 "Об установлении водоохранных зон, полос на водных объектах города Астаны и режима их хозяйственного использования», с внесением дополнений от 22 декабря 2023 года № 205-2794, водоохранная зона озера Малый Талдыколь устанавливается согласно приложения 1.

Проектируемый объект попадает в водоохранную зону. Было получено заключение БВИ № KZ96VRC00020064 от 26.07.2024 г. о согласовании размещения объекта в водоохранной зоне оз. Малый Талдыколь

Возможными источниками загрязнения поверхностных и подземных вод являются:

- поверхностные сточные воды (дождевые и талые воды);
- аварийные сбросы или переливы сточных вод;
- фильтрационные утечки вредных веществ из емкостей, трубопроводов и других сооружений.

Принятые проектные решения включают в себя меры, направленные на исключение загрязнения подземных вод, такие как использование бетонных фундаментов, покрытий дорог и ливневой канализации.

2.2. Водопотребление и водоотведение предприятия.

Источником водоснабжения для жилого комплекса служит: проектируемые сети водопровода согласно ПДП данного района, разработанного ГКП «НИПИ генплан г. Астана». Подключения хоз-питьевого водопровода выполняется двумя вводами с установкой между ними разделительной задвижкой, от построенного водопровода.

Водоснабжение

Проектом предусмотрена две системы водоснабжения:

- 1) Водопровод хозяйственно-питьевой. Снабжение водой пятна 34 (20эт.) предусматривается по двум вводам водопровода. В связи с большой этажностью здания, предусмотрено разделение системы хозяйственно-питьевого водопровода жилой части на две зоны:
 - 1- я зона 1-12 этажи (1-й этаж- встроенные помещения);
 - 2-я зона 13-20 этаж.

Для нужд водоснабжения предусмотрены общие группы насосных станций (для 1 и 2 зон). Насосы установлены в помещении насосной, расположенной в паркинге.

Для повышения давления в сети приняты установки повышения давления.

На этажных коридорах предусматриваются поквартирные счетчики учета расхода холодной воды.

Снабжение водой пятна 37 предусматривается от пятна 34.

Внутреннее пожаротушение.

Расход воды на внутреннее пожаротушение принят согласно СП РК 4.01-101-2012 - 3 струи расходом 2.9 л/с каждая. К установке приняты пожарные краны Ø50 с длиной пожар-

ных рукавов -20 м, которые устанавливаются на высоте 1.35 м над полом и размещаются в шкафах, имеющих отверстия для проветривания, приспособленных для опломбирования и визуального осмотра без вскрытия. В каждом пожарном шкафу предусмотрено размещение двух ручных огнетушителей объемом 10 л каждый.

Горячее водоснабжение

Горячее водоснабжение запроектировано от теплообменников, расположенных в помещении теплового пункта. Предусмотрена отдельная группа теплообменников для 1 зоны и отдельная группа теплообменников для 2 зоны. Приготовление горячей воды для офисных помещений предусмотрено отдельной системой с установкой циркуляционных насосов и отдельной группой теплообменников. В связи с большой этажностью здания, предусмотрено разделение системы горячего водопровода на зоны:

1-я зона - 2-12 этажи

2-я зона - 13-20 этаж.

На этажных коридорах предусматриваются поквартирные счетчики учета расхода горячей воды с радиомодулем, с возможностью дистанционного съема показаний. Перед счетчиками воды устанавливаются сетчатые фильтры.

Внутренний водосток.

Для сбора и отвода атмосферных осадков с кровли предусматривается система внутренних водостоков. Водосточная система монтируется из стальных электросварных труб.

Проектом предусмотрен электрообогрев воронок и трубопроводов, проложенных по неотапливаемому чердаку.

Канализация

Проектом предусматривается две системы канализации:

- 1) Хозяйственно-бытовая запроектирована для отвода стоков от санитарных приборов в проектируемую наружную сеть канализации.
- 2) Дренажная- запроектирована для отвода воды при аварии оборудования и после слива систем в тепловом пункте и венткамере, и отводятся в проектируемые наружные сети ливневой канализации.

Для прочистки сети установлены ревизии и прочистки.

Период строительства

Водоснабжение строительной площадки будет предусмотрено привозной водой (бутилированной).

Расчет воды на хозяйственно-питьевые нужды осуществляется в порядке, установленном законодательством РК. Обеспечение безопасности и качества воды должно обеспечиваться в соответствии с «Инструкцией о качестве и безопасности продовольственного сырья и пищевых продуктов», утвержденной постановлением Правительства Республики Казахстан от

29 ноября 2000 г. № 1783. Для расчета объема хозяйственно-питьевого водопотребления для нужд строительного персонала принята норма 25 л/сут. на 1 человека (СНиП РК 4.01-41-2006).

Максимальное количество работников на строительной площадке 510 чел.

210 чел. х
$$25\pi/\text{сут} / 1000 = 5,25 \text{ м}^3/\text{сут}.$$

Хозяйственно-бытовые сточные воды жизнедеятельности работников будут отводиться в биотуалеты. По мере заполнения биотуалетов их содержимое будет откачиваться ассенизационными машинами, и вывозиться согласно договора разовой услуги на очистные сооружения специализированных предприятий. Сброс производственных и хоз-бытовых стоков отсутствует.

При проведении строительных работ и в период эксплуатации воздействие на геологическую среду и подземные воды будет локальным, кратковременным и незначительным, при соблюдении всех требований ТБ и ООС, с учетом предложенных мероприятий.

На период строительства на строительных площадках предусмотрены эстакады мытья колёс машин и механизмов открытого типа, рассчитанные на две единицы техники.

В сточные воды, образующиеся в результате функционирования станции очистки попадают грубо дисперсные взвешенные вещества, нефтепродукты.

Сбор и очистку сточных вод от взвешенных веществ и нефтепродуктов следует производить на комплексах очистных сооружений, состоящих из:

- площадки для мойки колес машин;
- сборного колодца диаметром 1000мм;
- сооружения очистки производительностью 0,45 л/сек;
- водозаборной камеры с погружным насосом.

Сооружения очистки участка мытья предназначены для рационального использования воды с повторным использованием очищенных сточных вод от мойки колес машин.

Схема повторного использования сточных вод с предварительной очисткой от взвешенных веществ и маслосодержащих стоков принята следующая.

Загрязненные сточные воды от мойки колес машин собираются в приямок размером 300x300x250 (h), перекрытый решеткой для задержания механических примесей. Затем стоки направляются в горизонтальный отстойник, где происходит оседание крупных взвешенных частиц. Объем осадочной камеры рассчитан согласно таблицы 31 СНиП 2.04.03-85 на 2-х часовое осаждение взвешенных веществ со скоростью от 5-10 мм/сек и принимается размером 2x1,5x1,50(h), где h – высота слоя воды в сооружении очистки.

Очищенные сточные воды поступают в водозаборную камеру диаметром 1000мм, откуда погружным насосом марки TS50H 111/1, имеющим производительность 1,72 м³/час, напор 16,83 м, мощность 1,1 кВт подаются на повторное использование. По мере накопления взвешенных частиц в осадочном отделении, осадок периодически удалять из очистных сооружений с помощью переносной насосной установки.

Удаленный осадок со взвешенными веществами собирается и вывозится ассенизационной машиной за пределы стройплощадки согласно договора со специализированной организанией.

Сбор нефтепродуктов (след нефтепродуктов) производится поворотным маслосборным устройством с отводом их в резервуар для сбора масла. По мере накопления нефтепродукты удаляются вручную и вывозятся за пределы стройплощадки согласно договора со специализированной организацией.

Сточные воды от мойки автомобилей, поступающие на очистку, будут содержать взвешенные вещества (песок, глина) и нефтепродукты в количестве, представленном в таблице 2.2-2.

таблина 2.2-2.

Наименование параметра	Величина, мг/л, тах
Содержание взвешенных веществ в исходной воде	700
Содержание нефтепродуктов в исходной воде	100
Содержание взвешенных веществ в очищенной воде	10
Содержание нефтепродуктов в очищенной воде	0,3

Характеристика водооборотных систем и очистных сооружений приведена в табл.2.2-3, 2.2-4. Баланс водопотребления и баланс водоотведения представлен в таблице 2.2-5.

Характеристика водооборотных систем

таблица 2.2-3

№ BOC,	Наименование про-	Водооборотные системы				Повторные системы						
повторной системы	изводства, цеха	Объем сис- стемы	Расход подпитки		Тип ВОС	Использов	ание воды	Расход м ³ /сут	Расход подпитки			
			м ³ /сут	%		Первичное	вторичное		м ³ /сут	%		
1	2	3	4		5	6	7	8	9	10		
1	Стройплощадка - мойка колес автомо- билей	10	2	20	замкнутый							

Характеристика очистных сооружений

таблица 2.2-4

Год	Наименование очистного сооруже-		я способность ³ /сут	Эффективность очистки						
	ния и метод очистки	Проектная	Фактичкская	Ингредиент		Средняя концентра- ция (по проекту)		Средняя концентра- ция (фактическая)		
				Наименование	код	Поступило	Сброшено	Поступило	Сброшено	
						мг/л	мг/л	мг/л	мг/л	
1	2	3	4	5	6	7	8	9	10	
2025	Тонкослойный от-									
	стойник	2	2							
	механический			Взвешенные		700	10			
				вещества						
				След нефтепро-		100	0,3			
				дуктов						

таблица 2.2-5. Баланс водопотребления и водоотведения (период строительства)

	Водопотребление, м ³ /смена							Водоотведение, м ³ /смена			
	Всего	На производственные нужды			4				Ie		
		Свежая вода		ца		BbIe	оп е		Объем	HHIB	
Производство		Всего	Питьевого качества	Оборотная вода	Повторно исп. вода	На хоз-бытовые нужды	Безвозвратное требление	Всего	сточной воды по- вторно ис- пользуе- мой	Производственные сточные воды	Хозяйственно- бытовые сточ- ные воды
Хозбытовые нужды	5,25	-	-	-	1	5,25	5,25	5,25	-	1	5,25
Всего	5,25	-	-	-	-	5,25	5,25	5,25	-	-	5,25

Раздел охрана окружающей среды 72

2.3. Мероприятия по охране подземных и поверхностных вод

<u>По предупреждению загрязнения поверхностных и подземных вод на период строительства и эксплуатации объекта предусмотрены следующие водоохранные мероприятия:</u>

- устройство системы вертикальной планировки с отводом поверхностных вод по лоткам в отстойники с выпуском через фильтрующие грунтовые валы;
- локализация стоянок и мест заправки машин и транспортных средств с автономным сбором и очисткой стока;
- соблюдение режима и хозяйственного использования водоохранных зон и полос озера на указанном участке, предусмотренным постановлением, исключающий засорение и загрязнение водного объекта;
- при выполнении земляных работ, в том числе с использованием средств гидромеханизации, не допускаются не предусмотренные проектом засыпки или обводнение водоемов и водотоков, устройство плотин, запруд, перемычек, отводов, расчистки, изменение берегового контура;
- во избежание непредвиденного сброса загрязненных вод, не допускается выполнение земляных работ, вызывающих понижение отметок поверхности (устройство выемок, резервов, дренажей, отводных канав и т.п.), в пределах защитных зон, имеющихся промышленных и бытовых отстойников, накопителей, каналов. Ширина защитных зон водных объектов, содержащих загрязненные стоки, должна быть указана в проектной документации и обозначена на генеральных строительных планах;
- ливневые и талые воды, выносящие грунтовые частицы, не должны попадать непосредственно в водные объекты. Образующиеся стихийно во время осадков или таяния снега быстротоки необходимо гасить временными запрудами, выпусками на горизонтальные участки. Появляющиеся размывы следует заполнять грунтом с уплотнением либо закреплять геотекстилем, каменной отсыпкой, габионами и тому подобными методами;
- исключение розлива нефтепродуктов (необорудованная заправка, слив отработанных масел и т.п.);
- запрещение открытого хранения сыпучих, растворимых и размываемых материалов;
- организация регулярной уборки территории;
- оснащение строительных площадок, где работают машины и механизмы, адсорбентом на случай утечек ГСМ;
- в случае аварийной ситуации своевременно принять меры по их ликвидации;

- соблюдение природоохранных требований законодательных и нормативных актов Республики Казахстан (Водный Кодекс, 2003; РНД 1.01.03-94, 1994), внутренних документов и стандартов компании.
- организация технического обслуживания и ремонта дорожно-строительной техники и автотранспорта на территории производственной базы подрядной организации.
- заправка ГСМ автотранспорта на специализированных автозаправочных станциях.
- применение современных технологий ведения работ.
- использование экологически безопасной техники.
- установка контейнеров для мусора.
- антикоррозийную защиту конструкций из стали.

Сброс в поверхностные воды объектом не предполагается. Проектными решениями приняты меры, исключающие загрязнение подземных вод (бетонные фундаменты, покрытия дорог, ливневая канализация).

В пределах участков строительства рекомендуется запрещать:

- ввод в эксплуатацию реконструируемых объектов, необеспеченных устройствами и сооружениями, предотвращающими загрязнение, засорение реки и ее водоохранной зоны и полос;
- размещение и строительство складов нефтепродуктов, пунктов технического обслуживания и мойки автомашин и строительной техники, мехмастерских, устройств свалок мусора и других объектов, отрицательно влияющих на ближайшие водоемы.

Эксплуатация проектируемого объекта в штатном режиме не предвидит вредного воздействия на поверхностные и подземные воды, что исключает необходимость в специальных мерах для снижения негативного воздействия.

В результате строительства и эксплуатации объекта значительного воздействия на подземные и поверхностные воды не прогнозируется.

3. ВОССТАНОВЛЕНИЕ (РЕКУЛЬТИВАЦИЯ) ЗЕМЕЛЬНОГО УЧАСТКА, ИСПОЛЬЗОВАНИЕ ПЛОДОРОДНОГО СЛОЯ ПОЧВЫ, ОХРАНА НЕДР И ЖИВОТНОГО МИРА

3.1. Рекультивация нарушенных земель, использование плодородного слоя почвы

Участок строительства расположен в в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и ул. Хусейн бен Талал (приложение 1). Участок не освоен и свободен от застройки.

До ближайшего водного объекта оз. Малый Талдыколь -270 м. Участок строительства свободен от зеленых насаждений.

Пятна 46-50 находится в восточной части 2-го квартала объекта «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположен в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал».

Жилой комплекс состоит из пяти девятиэтажных блоков П-образной компоновкой, подземным паркингом с внутренним дворовым пространством.

На первом этаже расположены офисные помещения, лифтовой холл и вестибюль жилья. Высота (от пола до пола) первого этажа 4,35м., типового этажа 3,3м. Входа в офисные помещения, расположены на первом этаже со стороны главного фасада на отм. 0.000. Входа в жилые блоки расположены на отм. +1.050 с дворовой стороны, также с данной отметки имеется возможность непосредственно подняться как посредством лифта, так и через лестницы. Имеются обособленные выхода из паркинга и подземных частей блоков.

Во внутреннем дворовом пространстве расположены детские площадки, площадки для отдыха взрослых, элементы озеленения и ландшафта.

Свободная от застройки и покрытий территория максимально озеленяется и засаживается деревьями и кустарниками местных пород. Газоны засеваются травой. Устраиваются цветники. Для сбора мусора предусмотрена площадка с металлическими контейнерами.

Благоустройство территории предусматривает выполнение вертикальной планировки площадки и решения исходя из сложившихся высотных отметок.

Полив зеленых насаждений обеспечивается поливочными автомашинами.

Принятые настоящим проектом решения соответствуют требованиям экологических, санитарных, противопожарных и других норм, действующих на территории Республики

Казахстан, обеспечивают безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных рабочими чертежами мероприятий.

При производстве строительно-монтажных работ будет осуществляться воздействие на земельные ресурсы. Перед началом работ верхний плодородный слой земли срезается и складируется на специально отведенной территории для дальнейшего использования при благоустройстве после завершения работ. Излишний грунт вывозится в места, указанные заказчиком и используется при благоустройстве после завершения строительных работ.

Проектом предусматриваются мероприятия по восстановлению естественных природных комплексов, исключающих или сводящих к минимуму воздействия на земельные ресурсы за счет оптимальной организации строительства и применения природосберегающих технологий, проведения рекультивации.

Рекультивации подлежат:

- все территории вокруг строительной площадки и внеплощадочных объектов;
- трассы внеплощадочных инженерных сетей по всей протяженности на ширину в обе стороны в 3 м и ширине отвода;
 - нарушенные участки временных дорог, проездов, внедорожных проездов;
- территории в районе строительства, нарушенные в результате прохода транспортных средств, загрязненные производственными и бытовыми отходами, нефтепродуктами и др.

Техническая рекультивация включает в себя следующие виды работ:

- уборку всех загрязнений территории, оставшихся при демонтаже временных сооружений;
 - восстановление системы естественного или организованного водоотвода;
 - срезку грунтов на участках, повреждённых горюче-смазочными материалами;

Все этапы строительно-монтажных работ будут сопровождаться образованием отходов производства и потребления. Основные виды отходов, образующиеся в период строительства, следующие:

- производственные строительные отходы;
- отходы от жизнедеятельности персонала;

Строительные отходы подлежат складированию на площадках временного хранения с последующим вывозом на утилизацию и переработку, а также использоваться повторно для нужд строительства.

Твердые бытовые отходы, образующиеся в результате жизнедеятельности работающих, задействованных в строительных работах и состоящие из бумажных отходов, упаковочных материалов, пластика (одноразовая посуда, упаковка из-под продуктов и минводы), консервных банок, пищевых отходов и т.д. необходимо складировать в контейнеры, разме-

щенные на специально отведенных площадках с твердым покрытием, с последующим вывозом на полигон твердых бытовых отходов.

При строительстве и эксплуатации проектируемого объекта значительного воздействия на почвы, растительность и животный мир в районе их расположения не прогнозируется.

3.2. Мероприятия по охране почв от отходов производства

Согласно экологическому кодексу, законодательных и нормативных правовых актов, принятых в РК, отходы производства и потребления должны собираться, храниться, обезвреживаться, транспортироваться в места утилизации или захоронения.

Проектируемый объект не является промышленным предприятием и не занимается производством и выпуском продукции.

Для удовлетворения требований по недопущению загрязнения окружающей среды должна проводиться политика управления отходами, которая позволит минимизировать риск для здоровья и безопасности работников и природной среды. Система управления отходами контролирует размещение различных типов отходов.

Производство строительных работ сопровождается образованием и накоплением различного вида отходов, являющихся потенциальными загрязнителями окружающей среды, а именно:

- бытовые отходы (ТБО);
- строительные отходы (мусор);
- огарки сварочных электродов;
- жестяные банки из-под краски;

Бытовые отходы (ТБО) - зеленый список отходов (20 03 01)

Образуются от деятельности рабочих при строительстве.

По агрегатному состоянию отходы твердые, по физическим свойствам, в большинстве случаев, нерастворимые в воде, пожароопасные, невзрывоопасные, некоррозионноопасные. По химическим свойствам — не обладают реакционной способностью, содержат в своем составе оксиды кремния, углеводороды, органические вещества.

Твердые бытовые отходы хранятся в специальных, металлических контейнерах, установленных на площадке с твердым покрытием, желательно огражденной с трех сторон сплошным ограждением, имеющей бортики, обеспеченной удобными подъездными путями. Нельзя допускать переполнения контейнеров, своевременный вывоз их должен быть обеспечен согласно Договору со специализированной организацией по вывозу отходов.

Не допускается поступление в контейнеры для ТБО отходов, не разрешенных к приему на полигоны ТБО, использование ТБО на подсыпку дорог, стройплощадок и т.д., хранение ТБО в открытых контейнерах более недели (для отходов, в которых содержится большой процент отходов, подверженных разложению (гниению), летнее время этот срок сокращается до двух дней.

Строительные отходы (мусор) - зеленый список отходов (17 01 07)

Образуются в процессе строительных работ. Этот вид отходов состоит из строительного мусора, стеклобоя, бетонолома, битого кирпича, песка, древесины, облицовочной плитки, ненужного грунта и т.д.

Агрегатное состояние строительных отходов – твердые. По физическим свойствам отходы нерастворимые в воде, непожароопасны, невзрывоопасны, по химическим – не обладают реакционной способностью, не содержат чрезвычайно опасных, высоко опасных и умеренно опасных веществ. Как правило, в их составе имеются оксиды кремния, примеси цемента, извести, относящиеся к малоопасным веществам.

Строительный мусор хранится в специальных металлических контейнерах, установленных на площадке с твердым покрытием, желательно огражденной с трех сторон сплошным ограждением, имеющей бортики, обеспеченной подъездными путями. Нельзя допускать переполнения контейнеров, своевременный вывоз их должен быть обеспечен согласно Договору со специализированной организацией по вывозу отходов.

Огарки сварочных электродов - зеленый список (12 01 13)

Отход представляет собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования. Состав (%): железо - 96-97; обмазка (типа Ti (CO₃)₂) - 2-3; прочие - 1.

Для временного хранения данных отходов на территории объекта предусматривается специальная емкость (отдельная от других отходов) в обустроенных для этих целей местах. Перевозка к месту переработки данных видов отходов производится с необходимыми условиями, исключающими загрязнение окружающей среды отходами. Огарки сварочных электродов, ввиду наличия в их составе значительного количества железа, передаются специализированным предприятиям по сбору металлолома.

Жестяные банки из-под краски - янтарный список отходов (08 01 11*)

Образуются при выполнении малярных работ.

Не пожароопасны, химически неактивны.

Тара из-под лакокрасочных материалов хранится на специально отведенных площадках вне помещений на безопасном от них расстоянии.

Нельзя допускать переполнения контейнеров, своевременный вывоз их должен быть обеспечен согласно Договору со специализированной организацией по вывозу отходов.

В рабочем проекте предусмотрены мероприятия по снижению негативного воздействия на почвы отходов, образующихся в процессе строительства:

- передвижение строительной техники и автотранспорта (доставка материалов и конструкций) предусмотреть по дорогам общего пользования и внутриплощадочным дорогам с твердым покрытием;
- по окончании строительных работ на землях постоянного отвода предусмотреть вывоз строительного и бытового мусора в специально отведенные места по согласованию с органами Госсанэпиднадзора г. Астана;
 - провести благоустройство и озеленение территории.

Отходы производства и потребления на площадке не хранятся, по мере накопления ежедневно вывозятся специализированной организацией согласно договора.

Расчет образования твердых бытовых отходов (период строительства)

Нормы образования твердых бытовых отходов определены согласно методики разработки проектов нормативов предельного размещения отходов производства и потребления (приложение № 16 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04. 2008 г.. № 100-п).

Норма образования отходов составляет $0,3\,\mathrm{m}^3$ /год на человека и средней плотности отходов, которая составляет $0,25\,\mathrm{t}/\mathrm{m}^3\,$ и рассчитывается по формуле:

$$Q = P * M * p_{T60}$$

где: P - норма накопления отходов на одного человека в год, $P = 0.3 \text{ м}^3/\text{год}$;

М – численность людей: 210 чел.;

 p_{T60} – удельный вес твердо-бытовых отходов, $p_{T60} = 0.25 \text{ т/м}^3$.

Период строительства – 20 мес. Предварительное расчетное годовое количество, образующихся твердых бытовых отходов составит:

$$Q = 0.3*210*0.25 = 38.25/12*20 = 63.75$$
 т/год.

Расчет образования огарков электродов

Расчетный объем образования огарков электродов определен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления", приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008г. № 100-п.

Норма образования отхода составляет:

$$N = M_{oct} \cdot \alpha_{T/\Gamma O J}$$

где: $M_{\text{ост}}$ - фактический расход электродов 111,45 т/год;

 α - остаток электрода, $\alpha = 0.015$ от массы электрода.

$$N = 111,45 * 0,015 = 1,677175 T$$

Отход представляет собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования.

По мере накопления вывозятся совместно с ломом черных металлов.

Жестяные банки из-под краски.

Расчетный объем образования отходов от ЛКМ определен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления", приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04.2008г. № 100-п.

Норма образования отхода определяется по формуле:

$$N = \sum M_i \cdot n + \sum M_{\kappa i} \cdot \alpha_{i, T/\Gamma O J,}$$

где: M_i - масса i -го вида тары, т/год;

n - число видов тары;

 $\mathbf{M}_{\kappa i}$ - масса краски в i -ой таре, т/год;

 $lpha_i$ - содержание остатков краски в i -той таре в долях от $M_{\kappa i}$ (0.01-0.05).

Общая масса лакокрасочных материалов составляет 10,03499 т (10034,99 кг). Тара 5-ти килограммовая. Количество банок с краской – 2006,998 шт., вес одной пустой банки 0,5 кг. Общая масса тары составит 1003,499 кг (1,03499 т).

$$N = 1,03499 + 10,03499*0,03 = 1,336 \text{ T}$$

Прочий строительный мусор.

Количество прочих строительных отходов принимается согласно данных заказчика и составляет 5000 т.

Образовавшиеся отходы складируются в металлические контейнера, находящиеся на бетонированной площадке и вывозятся по мере накопления специализированной организацией согласно договору.

Количество образования отходов представлены в табл.3.2-1.

Декларируемое количество отходов на период строительства

Таблица 3.2.1

на 2025 год

Наименование отхода	Количество образова- ния, т/год	Количество накопления, т/год					
1	2						
Всего:	5066,7577	5066,7577					
В т.ч. отходов производства	5003,0077	5003,0077					
Отходов потребления	63,75	63,75					
	Опасные отходы						
Тара из-под краски 08 01 11*	<u>1,336</u>	1,336					
Не опасные отходы							
Коммунальные отходы 20 03 01	63,75	63,75					
Огарки электродов 12 01 13	1,67175	1,67175					
Строительный мусор 17 01 07	5000	5000					
Зеркальные отходы							
-	-	-					

на 2026 год

Наименование отхода	Количество образова- ния, т/год	Количество накоп- ления, т/год			
1	2	3			
Всего:	5066,7577	5066,7577			
В т.ч. отходов производства	5003,0077	5003,0077			
Отходов потребления	63,75	63,75			
Опасные отходы					
Тара из-под краски	1,336	1,336			
08 01 11*	1,330				
Не опасные отходы					

Коммунальные отходы 20 03 01	63,75	63,75		
Огарки электродов	1,67175	1,67175		
12 01 13				
Строительный мусор	5000	5000		
17 01 07				
Зеркальные отходы				
-	-	-		

на 2027 год

Наименование отхода	Количество образова- ния, т/год	Количество накоп- ления, т/год	
1	2	3	
Всего:	5066,7577	5066,7577	
В т.ч. отходов производства	5003,0077	5003,0077	
Отходов потребления	63,75	63,75	
	Опасные отходы		
Тара из-под краски 08 01 11*	<u>1,336</u>	1,336	
	Не опасные отходы		
Коммунальные отходы 20 03 01	63,75	63,75	
Огарки электродов 12 01 13	1,67175	1,67175	
Строительный мусор 17 01 07	5000	5000	
	Зеркальные отходы		
-	-	-	

Уровень воздействия отходов производства на компоненты окружающей среды невысок, исходя из соблюдения нормативов образования отходов.

Раздел охрана окружающей среды 82

4. ВОЗДЕЙСТВИЕ НА НЕДРА

Наличие минеральных и сырьевых ресурсов в зоне проведения строительных работ не прогнозируются. Потребность объекта в минеральных и сырьевых ресурсах в период строительства и эксплуатации (виды, объемы, источники получения) — по договору со специализированной строительной организацией. Все необходимые строительный материалы подвозятся на строительную площадку в готовом для использования виде. Разгрузка транспортных средств с эстакад, не имеющих отбойных брусьев, не допускается. Большинство строительных машин в зимнее время находятся на открытых площадках. Сыпучие инертные материалы на строительную площадку подвозятся с близлежащих карьеров.

В рамках РООС установлено, что воздействие на недра носит допустимый характер. Воздействие носит локальный, точечный характер. По продолжительности воздействия – временный.

<u>В целом, оценка воздействия на окружающую среду показала, что последствия</u> <u>данной планируемой деятельности незначительны и несущественны в эксплуатацион-</u> ный период при условии соблюдения рекомендуемых природоохранных мероприятий.

5. ФИЗИЧЕСКОЕ ВОЗДЕЙСТВИЕ

Проектными решениями предусмотрено использование оборудования, технические характеристики которых соответствуют СанПиНам, СНиПам и требованиям международных документов.

Для предотвращения распространения шума по воздуховодам предусматривается установка шумоглушителей, подсоединение вентиляторов к системам воздуховодов выполняется посредством гибких вставок, вентиляторы устанавливаются на виброизоляторы.

Уровни вибрации при проведении работ принятыми проектными решениями по выбору оборудования не будут превышать допустимых значений.

Мероприятия по шумоизоляции и защите от других воздействий на данном объекте выполнены в соответствии с нормативными требованиями и не превышает нормативный уровень. При проведении строительных работ на окружающую среду будут оказываться следующие физические воздействия — шум, свет и слабое электромагнитное и вибрационное воздействие.

Источниками физического воздействия будут являться автотранспорт, используемое оборудование, системы связи, осветительные установки и.т.д.

Шум является неизбежным видом воздействия на окружающую среду при выполнении строительных работ.

Физическое воздействие

При проведении строительных работ на окружающую среду будут оказываться следующие физические воздействия — шум, свет, и возможно слабое электромагнитное, и вибрационное воздействие.

Источниками физического воздействия будут являться автотранспорт, используемое оборудование, системы связи, осветительные установки и.т.д.

Проектными решениями предусмотрено использование оборудования, технические характеристики которых соответствуют СанПиНам, СниПам и требованиям международных документов.

Шумовое воздействие

Шумовое воздействие относится к числу вредных для человека загрязнений атмосферы. Шум представляет собой комплекс звуков, вызывающий неприятные ощущения, в крайних случаях - разрушение органов слуха. Небольшие воздействия (около 35 дБ) - могут вызвать нарушение сна. Раздражающее действ вегетативную нервную систему наблюдается уже при уровне шума 55-75 дБ. более 90 дБ вызывает постепенное ослабление слуха, сильное угнетение, наоборот, возбуждение нервной системы, гипертонию, язвенную болезнь и т.п.

Свыше 110 дБ приводит к так называемому шумовому опьянению, выражающемуся в возбуждении и аналогичному по субъективным ощущениям алкогольному опьянению. Длительное действие шума вызывает изменение физиологических реакций, нарушение сна, психи-

ческого и соматического здоровья, работоспособности и слухового восприятия. У школьников, занимающихся в классах с суммарным уровнем проникающего шума выше 45 дБ, повышается утомляемость, отмечаются головные боли, снижается слуховая чувствительность, а также умственная работоспособность.

В промышленности источниками шума служат мощные двигатели внутреннего сгорания, поршневые компрессоры, виброплощадки, передвижные дизель-генераторные установки, вентиляторы, компрессоры, периодический выпуск в атмосферу отработанного пара и т.д.

Беспорядочная смесь звуков различной частоты создаёт шум. Уровень шума измеряют в децибелах (дБА). Воздействие транспортного шума на окружающую среду, в первую очередь на среду обитания человека, стало проблемой. Систематическое воздействие шума вызывает состояние раздражения, усталости, повышает состояние стресса, нарушение сна. Предельно-допустимый уровень шума составляет 70 дБА.

Мероприятия по шумоизоляции, виброизоляции и защите от других воздействий на данном объекте выполнены в соответствии с нормативными требованиями и не превышает нормативный уровень.

Шум является неизбежным видом воздействия на окружающую среду при выполнении строительных работ. При проведении <u>строительных работ</u> на окружающую среду будут оказываться следующие физические воздействия — шум, свет и слабое электромагнитное и вибрационное воздействие.

Источниками физического воздействия будут являться автотранспорт, используемое оборудование, системы связи, осветительные установки и т.д.

Уровни шума при проведении работ будут изменяться в зависимости от вида и количества используемых видов оборудования и техники, работающих одновременно.

Согласно справочным данным, уровень шума от различного строительного оборудования в среднем составляет 70 дБа.

Расчет уровня шума (дб)

Эквивалентный октавный уровень звукового давления $L_{II}(DW)$ на приемнике рассчитывают для каждого точечного источника и мнимого источника для октавных полос со среднегеометрической частотой от 63 до 8000 Γ ц по формуле:

$$L_{H}(DH) = L_{H} + D_{C} - A$$

Для ненаправленного точечного источника шума, излучающего в свободное пространство, $D_{\rm C}=0$;

A - затухание в октавной полосе частот при распространении звука от точечного источника шума к приемнику, дБ.

Затухание A в формуле рассчитывают по формуле

$$A_{ab} = \left[20 \cdot \lg \left(\frac{d}{d_0}\right) + 11\right]$$

$$A_{--} = cel / 1000$$

$$A_{g}4.8 - {2A_{g} \choose d} (17 + 300 / d) \ge 0$$

 $L_{
m W}$ - октавный уровень звуковой мощности точечного источника шума относительно опорного значения звуковой мощности, дБ;

A - затухание в октавной полосе частот при распространении звука от точечного источника шума к приемнику, дБ.

Примечание - Если известны только корректированные по частотной характеристике А (далее - корректированные по А) уровни звуковой мощности октавных полос, то в качестве общей оценки затухания можно принять затухание в октавной полосе со среднегеометрической частотой 500 Γ ц. (α , = 2,8 дБ/км)

 $A_{\rm diy}$ - затухание из-за геометрической дивергенции (из-за расхождения энергии при излучении в свободное пространство);

 $A_{\rm atm}$ - затухание из-за звукопоглощения атмосферой

 $A_{\rm gr}$ - затухание из-за влияния земли

 $A_{\rm bar}$ - затухание из-за экранирования;

 A_{misc} - затухание из-за влияния прочих эффектов

Расчет:

Расчет проводился на расстоянии 50 м от источника шума

$$A_{\text{div}} = 50*1,301+11 = 76,05 \, дб$$

$$A_{-}$$
 - $ad/1000 = 2.8*50/1000 = 0.14$

Частота 500 ГЦ - L=
$$91 + 0 - 76,19 = 14,81$$
 дБ

Частота 500 ГЦ-A=
$$76.05 + 0.14 + 0 + 0 + 0 = 76.19$$

$$A_{gr} = 4.8 - (2*2/20)(17+300/20) = 4.8 - (0.2)(32) = 4.8-6.4 = -1.6$$

Таблица 5.1

Уровень шума в расчетных точках с учетом «гашения» звука с удалением от источника

N	Наименование источников шумо-	Уровень звука	Расстояние
пп	вого загрязнения	на расстоянии 1 м от оборудования, дБА	50 м
1	2	3	4
1	Строительно-дорожная техника	91	14,81

На территории, непосредственно прилегающей к жилым домам, допустимым уровнем звука и звукового давления является 70 дБА (Приказ Министра национальной экономики Республики Казахстан от 28 февраля 2015 года № 169 Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека).

В качестве мероприятий по снижению шума предусматривается:

- не одновременность работы оборудования на строительной площадке;
- рациональная планировка применения вида и количества используемых видов оборудования и техники;
- сокращение времени непрерывной работы техники, производящей высокий уровень шума, до 10-15 минут в час;
 - -исключение производства работ в ночное время суток;
- -проведение работ с применением шумных строительных механизмов на максимальном удалении от жилой застройки;
 - применение, по возможности, механизмы бесшумного действия (с электроприводом);
 - исключение громкоговорящей связи;
- исключение работы оборудования, имеющего уровни шума, ощутимо превышающие допустимые нормы;
 - ограничение скорости движения грузового автотранспорта на стройплощадке.

Уровень шума от строительного оборудования на расстояние 50 м ниже допустимого. Таким образом, шум в период строительства не окажет сильного влияния на здоровье проживающих в ближайшей жилой зоне.

<u>Вибрация.</u> Максимальные уровни вибрации от всего виброгенерирующего оборудования при строительстве и эксплуатации объекта на территории жилой застройки не будут превышать предельно допустимых уровней. Мероприятия по снижению воздействия физических факторов:

Для того, чтобы снизить воздействие шума на окружающую среду будет принят ряд стандартных смягчающих мер:

- насосы, генераторы и другое мобильное оборудование в период ремонтнопрофилактических работ будет устанавливаться, при возможности, как можно дальше от жилой зоны;
- во время отсутствия работы оборудование, если это, возможно, будет отключаться;
- все транспортные средства и силовые блоки будут проходить соответствующее техобслуживание;
- автотранспорт должен оборудоваться стандартными устройствами для глушения шума;
- приобретаемые новые транспортные средства и техника должны соответствовать Европей ским стандартам по уровню шума.

Таким образом, предусмотренные в Проекте техника и оборудование, а также выполнение мероприятий по защите от воздействия физических факторов будут, способствовать поддержанию уровня допустимого воздействия на окружающую среду.

Внешние источники ЭМИ

Трансформаторная подстанция должна находиться на расстоянии, превышающем 10 м от ближайшего жилого здания. Требуемое расстояние на стадии рабочего проектирования соблюдено.

Источники электромагнитного излучения при строительстве и эксплуатации объекта будут устанавливаться в соответствии с требованиями санитарных норм и не окажут негативного влияния на здоровье населения.

Установлено, что физическое воздействие в районе планируемых работ находится в пределах допустимой нормы.

Из вышеприведенного следует, что предусмотренные защитные мероприятия практически не повлияют на близлежащую территорию. Осуществление проекта практически не вызывает негативных последствий для окружающей среды. Существенного изменения в состоянии окружающей среды не ожидается.

6. ВОЗДЕЙСТВИЕ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ УСЛОВИЯ

Анализ воздействия эксплуатации жилого комплекса на социальную сферу региона показывает, что увеличения негативной нагрузки на существующую инфраструктуру не произойдет. Работы, связанные с эксплуатацией предприятия приведут к созданию ряда рабочих мест. Проведение планируемых работ не вызовет нежелательной нагрузки на социально-бытовую инфраструктуру города. В то же время, определенное возрастание спроса на рабочую силу положительно скажутся на увеличении занятости местного населения.

Вышеперечисленные факторы будут способствовать увеличению бюджетных поступлений.

Планируемые работы, связанные с постройкой жилого комплекса, не приведут к значительному загрязнению окружающей природной среды, что не скажется негативно на здоровье населения.

С учетом санитарно-эпидемиологической ситуации предусмотрены необходимые меры для обеспечения нормальных санитарно-гигиенических условий работы и отдыха персонала, его медицинского обслуживания.

<u>Учитывая все вышесказанное, а также небольшое количество занятых людей в про</u> цессе строительства и эксплуатации, вероятность ухудшения санитарноэпидемиологической ситуации очень низка.

7. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ И РАСТИТЕЛЬНЫЙ МИР

В рамках РООС установлено, что воздействие на почвенно-растительный покров носит допустимый характер. Воздействие носит локальный, точечный характер. По продолжительности воздействия – временный.

Строительная площадка изначально антропогенно изменена. Исчезающие животные, занесенные в красную книгу на данной территории, не обитают. Работы, при соблюдении предусмотренных проектом технологических решений, не имеют необратимого характера.

<u>В целом, оценка воздействия на окружающую среду показала, что последствия дан-</u> ной планируемой деятельности незначительны и несущественны в эксплуатационный период при условии соблюдения рекомендуемых природоохранных мероприятий.

8. ОЦЕНКА ЭКОЛОГИЧЕСКИХ РИСКОВ

Оценка экологического риска последствий решений, принимаемых в сфере действующих промышленных объектов, приобретает все большее значение в связи с повышением требований экологического законодательства. Оценку экологического риска следует считать составной частью процесса управления природопользованием. «Экологический риск» это понятие достаточно новое для казахстанского законодательства и общества в целом. Под риском понимается ситуация, когда, зная вероятность каждого возможного исхода, все же нельзя точно предсказать конечный результат.

Оценка риска включает в себя анализ вероятности или частоты, анализ последствий и их сочетания. При проведении намечаемой деятельности могут возникнуть различные осложнения и аварии. Борьба с ними требует затрат материальных и трудовых ресурсов, ведет к потере времени, что снижает производительность, повышает стоимость работ, вызывает увеличение продолжительности простоев и ремонтных работ. Поэтому значение причин аварий, мероприятий по их предупреждению, быстрая ликвидация возникших осложнений приобретают большое практическое значение.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении о риске, связанном с природными факторами.

К природным факторам относятся:

Неблагоприятные метеоусловия. В результате неблагоприятных метеоусловий, таких как сильные ураганные ветры, повышенные атмосферные осадки, могут произойти частичные повреждения оборудования, кабельных линий силовых приводов на территории промышленной площадки.

Аварийные ситуации могут возникнуть при неосторожном обращении персонала с огнем и нарушение правил техники безопасности. Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Под антропогенными факторами понимаются быстрые разрушительные изменения окружающей среды, обусловленные деятельностью человека или созданных им технических устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации.

К антропогенным факторам относятся факторы производственной среды и трудового процесса. Возможные техногенные аварии при нарушении регламента:

Воздействие электрического тока - поражения током в результате прикосновения к проводникам, находящемся под напряжением, неправильного обращения с электроинструмен-

тами, при работе во время грозы. Характер воздействия: кратковременный. Вероятность возникновения данных чрезвычайных ситуаций незначительная.

Человеческий фактор. Основными причинами большинства несчастных случаев является несоответствие текущего планирования развития работ утвержденным проектным решениям, а также низкая эффективность деятельности служб ведомственного надзора. Основные причины возникновения аварийных ситуаций обусловлены недостаточной обученностью обслуживающего персонала, их эмоциональной неустойчивостью, недостаточным уровнем оперативного мышления, дефектами оперативной памяти, проявлением растерянности в чрезвычайной ситуации, а также прямым нарушением должностных инструкций вследствие безответственности и халатного отношения к своим должностным обязанностям. В силу принятых решений по охране труда и техники безопасности, вероятность возникновения вышеприведенной ситуации пренебрежимо мала.

Вероятность возникновения аварийных ситуаций незначительна. Предусмотрены меры по предупреждению и устранению их с целью минимизации природных опасностей при осуществлении деятельности. Экологически безопасное ведение работ возможно при обеспечении программно-технической совместимости и информационной интеграции систем производственного экологического мониторинга, технической диагностики и автоматизированной системы управления технологическими процессами. Анализ мер по предупреждению и ликвидации аварий, позволяет говорить о том, что при их реализации вероятность возникновения аварий будет сведена к минимуму, т.е. воздействие может соответствовать низкому экологическому риску.

9. КОМПЛЕКСНАЯ ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ ПРИРОДНУЮ СРЕДУ

При разработке РООС были соблюдены основные принципы проведения РООС, а именно:

- учет экологической ситуации на территории, оказывающейся в зоне влияния деятельности предприятия;
- информативность при проведении РООС;
- понимание целостного характера проводимых процедур, выполнение их с учетом взаимосвязи возникающих экологических последствий с социальными, экологическими и экономическими факторами.

Объем, полнота содержания представленных в проекте материалов отвечают требованиям инструкции РООС, действующей в настоящее время в Республике Казахстан. В процессе разработки была проведена детальная оценка современного состояния окружающей среды района проведения работ с привлечением имеющегося информационного материала последних лет по данному региону.

При рассмотрении данной хозяйственной деятельности были выявлены источники воздействия на ОС, проведена покомпонентная оценка их воздействия на природные среды и объекты, выявлены основные направления этого процесса, которые проявляются непосредственно при работе технологического оборудования.

Результаты оценки показывают:

Атмосферный воздух. По масштабам распространения загрязнения атмосферного воздуха выбросы относятся к локальному типу загрязнения, который характеризуется повышенным содержанием загрязняющих веществ лишь в зоне проведения работ. Продолжительность воздействия выбросов предприятия - непостоянная. Интенсивность воздействия слабая, так как изменения природной среды не выходят за существующие пределы естественной природной изменчивости, следовательно, предприятие не окажет никакого влияния на качество атмосферного воздуха.

Поверхностные и подземные воды. Сброса сточных вод в поверхностные водные источники производиться не будет. Ближайшим водным объектом является озеро Талдыколь на расстоянии 270 м. Интенсивность воздействия слабая, так как изменения природной среды не выходят за существующие пределы естественной природной изменчивости.

Почвенно-растительный покров. В рамках РООС установлено, что воздействие на почвенно-растительный покров носит допустимый характер. Воздействие носит локальный, точечный характер. По продолжительности воздействия – временный.

Животный мир. Работы, при соблюдении предусмотренных проектом технологических решений, не имеют необратимого характера и не отразятся на генофонде животных в рассматриваемом районе.

Охраняемые природные территории и объекты. В районе проведения работ отсутствуют природные зоны, памятники истории и культуры, входящие в список охраняемых государством объектов.

Население и здоровье населения. Ввиду характера планируемой деятельности и незначительности вклада в общее состояние окружающей природной среды, существенного воздействия на здоровье населения не ожидается.

Аварийные ситуации. Во избежание возникновения аварийных ситуаций и обеспечения безопасности на всех этапах работ необходимо соблюдение проектных норм. Для снижения степени риска при организации работ следует предусмотреть меры по предотвращению (снижению) аварийных ситуаций, которые включают организационные меры, перечень ответственности лиц, план передачи сообщений, подробные данные об аварийной службе и др.

Экологическая безопасность так же обеспечивается за счет соблюдения соответствующих организационных мероприятий, основными из которых являются:

- постоянный контроль за всеми видами воздействия, который осуществляет персонал предприятия, ответственный за ТБ и ООС;
- регламентированное движение автотранспорта;
- пропаганда охраны природы;
- ❖ соблюдение правил пожарной безопасности;
- ❖ соблюдение правил безопасности и охраны здоровья и окружающей среды;
- подготовка обслуживающего персонала к организованным действиям при аварийных ситуациях.

<u>В целом, оценка воздействия на окружающую среду показала, что последствия дан-</u> ной планируемой деятельности незначительны и несущественны в эксплуатационный период при условии соблюдения рекомендуемых природоохранных мероприятий.

10. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- 2. РНД 211.2.01.01-97 МПРООС. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросе предприятий, Кокчетав, 1997г.
- 3. Приложение №11к Приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года №100 -п. «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов».
- 4. «Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы, 1996 год.
- 5. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004, Астана, 2004.
- 6. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов) РНД 211.2.02.03-2004, Астана, 2004.
- 7. Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест. ГН 2.1.6.695-98, Минздрав России, 1998 г., постановление № 7от 02.06.99 г. Минздрав РК.
- 8. Унифицированная программа расчета величин концентраций загрязняющих веществ в атмосферном воздухе, УПРЗА «ЭРА», версия 3.0.
- 9. Приложение №13 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008г. №100 –п «Методика расчета нормативов выбросов от неорганизованных источников».
- 10. Временные рекомендации по определению загрязняющих веществ, поступающих в окружающую среду на предприятиях автомобильного транспорта, М., 1991 г.
- 11. Об утверждении Инструкции по организации и проведению экологической оценки. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.
- 12. Об утверждении Методики определения нормативов эмиссий в окружающую среду. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.

и прі	и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314.					

Раздел охрана окружающей среды

Раздел охрана окружающей среды

Приложение 4 Лицензия ИП «ZEBO»

20018136

ЛИЦЕНЗИЯ

<u>03.12.2020 года</u> <u>02502P</u>

Выдана ТОЙЕНБЕКОВА ЛИЛИЯ САЛАВАТОВНА

ИИН: 780731400557

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица— в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае напичия), индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

ср еды

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

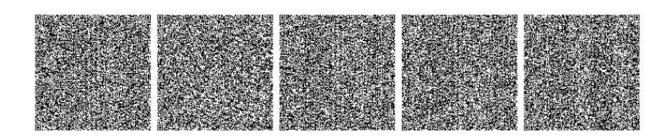
Лицензиар Республиканское государственное учреждение «Комитет

экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов

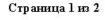
Республики Казахстан.

(полное наименование лицензиара)

Руководитель Умаров Ермек Касымгалиевич


(фамилия, имя, отчество (в случае наличия)

Дата первичной выдачи


(уполномоченное лицо)

Срок действия лицензии

Место выдачи г. Нур-Султан

20018136

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 02502Р

Дата выдачи лицензии 03.12.2020 год

Подвид(ы) лицензируемого вида деятельности

- Экологический аудит для 1 категории хозяйственной и иной деятельности
- Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казах стан «О разрешениях и увеломпениях»)

Лицензиат ТОЙЕНБЕКОВА ЛИЛИЯ САЛАВАТОВНА

ИИН: 780731400557

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиапа или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамклия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Производственная база г. Нур-Султан, ул. Петрова 32/2, кв. 28

(местонахождение)

Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

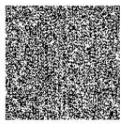
Лищензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство

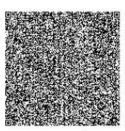
экологии, геологии и природных ресурсов Республики Казахстан.

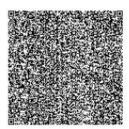
(полное наименование органа, выдавшего приложение к лицензии)

Руководитель Умаров Ермек Касымгалиевич

(уполномоченное лицо)


(фамилия, имя, отчество (в случае наличия)


Номер приложения 001


Срок действия

Дата выдачи 03.12.2020 приложения

Место выдачи г. Нур-Султан

Осы жуулыг «Фиметр онды жуулыг жаны э имер ондындар ишкумулган бы түр ашын Кышкун ке Ростубияна санын 2003 жышты. 7 жуулу дагы Занда 7 байынын 1 торм ашын сайчас жуулы тасынын ишки жүүлөттөг жуулыш бүрдөг. Даным кумулган самасы түрнөгү 1 стагын 7 БРК от 7 кышкун 2003 тода "Обо иметрикан жукуман асын жуулу жынын бүрөөтүү бүй ашынын керектерия бүй айын жайган.

Приложение 5. Исходные данные

Исходные данные для разработки проекта РООС «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал. Пятна 46-50» (без наружных инженерных сетей.

Период строительства: 20 мес. Численность рабочих 210 чел.

Строительные материалы на строительной площадке не хранятся, подвозятся по мере необходимости. Земляной грунт так же на строительной площадке не хранится, вывозится с территории строительной площадки.

Период строительства

Машины и механизмы:

- 1. Бульдозеры 59 кВт (80 л.с.)
- 2. Экскаватор обратная лопата
- 3. Компрессоры передвижные
- 4. Краны на автомобильном ходу
- 5. Автогрейдеры среднего типа, 99 кВт (135 л.с.)
- 6. Автогудронатор
- 7. Катки прицепные
- 8. Каток самоходный
- 9. Автобетоноукладчик
- 10. Машины поливомоечные
- 11. Автобетоносмеситель
- 12. Автосамосвал
- 13. Вибратор глубинный
- 14. Вибратор поверхностный
- 15. Кран трубоукладчик
- 16. Сваебойка

Станки и агрегаты:

Шлифовальный станок – 709,8 час/год;

Дрель электрическая – 6809,6 час/год;

Деревообрабатывающие станки – 55,9 час/год;

Пила электрическая (резка металла) – 18,66 час/год;

Сварочный аппарат – расход электродов Э-42 111,45 т/год;

Земляные работы

Снятие плодородного слоя грунта бульдозером, м³ – 1860;

Вертикальная планировка, $M^3 - 8300$;

Разработка грунта экскаватором в а/самосвалы, $M^3 - 18600$;

Разработка грунта вручную, $M^3 - 1600$;

Обратная засыпка, бульдозером, $M^3 - 6400$;

Засыпка грунта вручную, $M^3 - 840$.

Инертные материалы:

rineprible marephanbi.	
Щебень из природного камня	$M^3 - 2120 M^3$
Сухие смеси	T - 202
Гравий	M3 - 2120
ПГС	M3 - 4580
Песок	M3 - 3650

Малярные работы:

Уайт-спирит	- 0,214 т.
Растворитель Р-4	- 0,04667 т.
Эмаль МА-015	- 4,325 т.
Краска ПФ-115	- 5,416 т.
Лак КФ-965	- 0,0015 т.
Лак АС-9115	- 0,00138 т.
Лак БТ-123	- 0,03044 т.

Период эксплуатации

На территории ЖК расположено 2 открытые автостоянки и подземный автопаркинг.

Приложение 6. Расчет полей приземных концентраций загрязняющих веществ

-

Период строительства

```
1. Общие сведения.
  Расчет проведен на ПК "ЭРА" v3.0 фирмы НПП "Логос-Плюс", Новосибирск
  Расчет выполнен Тойенбекова Л С
 Заключение экспертизы Министерства природных ресурсов и Росгидромета
 на программу: письмо № 140-09213/20и от 30.11.2020
2. Параметры города
 ПК ЭРА v3.0. Модель: MPK-2014
  Название: Астана
  Коэффициент А = 200
  Скорость ветра Uмр = 8.0 \text{ м/c} (для лета 8.0, для зимы 3.8)
  Средняя скорость ветра = 3.8 м/с
  Температура летняя = 26.8 град.С
  Температура зимняя = -18.5 град.С
  Коэффициент рельефа = 1.00
  Площадь города = 0.0 кв.км
  Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :0301 - Азота диоксид (4)
        ПДКм.р для примеси 0301 = 0.2 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<06~П>~
~|~~~<sub>\Gamma</sub>/c~~
004401 6004 П1 5.0
                             20.3
                                    791
                                                      8 83 1.0 1.000 0 0.0422000
                                          960
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0301 - Азота диоксид (4)
        ПДКм.р для примеси 0301 = 0.2 \text{ мг/м3}
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                          Их расчетные параметры
             Источники
Номер Код | М |Тип | Ст |
                                    Um | Xm |
 ·п/п-|<об-п>-<ис>|-----[м/с]---[м/с]----[м/с]----[м]---|
  1 |004401 6004| | 0.042200| \Pi1 | 0.176288 | 0.50 | 57.0 |
  Суммарный Mq = 0.042200 \, \Gamma/c
  Сумма См по всем источникам =
                                  0.176288 долей ПДК
         _____
    Средневзвешенная опасная скорость ветра = 0.50 м/с
```

```
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                      Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0301 - Азота диоксид (4)
        ПДКм.р для примеси 0301 = 0.2 \text{ мг/м3}
   Фоновая концентрация на постах (в мг/м3 / долях ПДК)
|Код загр| Штиль | Северное | Восточное | Южное | Западное |
|вещества| U<=2м/с |направление |направление |направление |
|Пост N 001: X=0, Y=0
 0301 | 0.1380000| 0.1380000| 0.1370000| 0.1240000| 0.1940000|
    | 0.6900000| 0.6900000| 0.6850000| 0.6200000| 0.9700000|
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
                                      Расчет проводился 05.10.2025 11:02
  Вар.расч. :2 Расч.год: 2025 (СП)
  Примесь :0301 - Азота диоксид (4)
        ПДКм.р для примеси 0301 = 0.2 \text{ мг/м3}
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 196
   Запрошен учет дифференцированного фона с постов для новых источников
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 1293.0 \text{ м}, Y = 789.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.9901268 доли ПДКмр|
                        0.1980254 мг/м3
 Достигается при опасном направлении 289 град. и скорости ветра 2.36 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                 ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|<Oб-П>-<Ис>|---|--М-(Мq)--|-С[доли ПДК]|------|----- b=C/M ---|
  Фоновая концентрация Cf \mid 0.970000 \mid 98.0 (Вклад источников | 2.0\% ) \mid
 1 |004401 6004| \Pi1 | 0.0422 | 0.020127 | 100.0 | 100.0 | 0.476939350 |
             B \text{ cymme} = 0.990127 \quad 100.0
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                      Расчет проводился 05.10.2025 11:02
  Примесь :0304 - Азота оксид (6)
```

```
ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<0б~П>~
~|~~r/c~~
004401\ 6004\ \Pi 1 5.0
                             20.3
                                    791
                                          960
                                                 7
                                                      8 83 1.0 1.000 0 0.0528000
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0304 - Азота оксид (6)
        ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
             Источники
                                          Их расчетные параметры
             | M |Тип | Cm |
                                    Um | Xm |
Номер Код
-п/п-|<oб-п>-<ис>|----[м]---|
  1\ |004401\ 6004|\ 0.052800|\ \Pi1\ |\ 0.110284\ |\ 0.50\ |\ 57.0\ |
  Суммарный Mq = 0.052800 \, \text{г/c}
  Сумма См по всем источникам =
                                  0.110284 долей ПДК
     -----|
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0304 - Азота оксид (6)
        ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :0304 - Азота оксид (6)
        ПДКм.р для примеси 0304 = 0.4 \text{ мг/м3}
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
```

```
Всего просчитано точек: 196
  Фоновая концентрация не задана
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 766.0 \text{ м}, Y = 869.0 \text{ м}
Максимальная суммарная концентрация | Cs = 0.0926159 доли ПДКмр|
                       0.0370463 \text{ мг/м3}
 Достигается при опасном направлении 15 град. и скорости ветра 0.57 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 ----|<Oб-П>-<Ис>|---|---М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/М ---|
 1\ |004401\ 6004|\ \Pi1| \quad 0.0528|\ 0.092616\ |\ 100.0\ |\ 100.0\ |\ 1.7540885\ |
             B \text{ суммe} = 0.092616 100.0
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :0328 - Сажа
        ПДКм.р для примеси 0328 = 0.15 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди | Выброс
<06~П>~
~|~~<sub>\Gamma</sub>/c~~
004401\ 6004\ \Pi 1 5.0
                              20.3
                                     791
                                           960
                                                        8 83 3.0 1.000 0 0.0008180
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП) Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0328 - Сажа
        ПДКм.р для примеси 0328 = 0.15 \text{ мг/м3}
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Cm - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                           Их расчетные параметры
              Источники
|Номер| Код | М |Тип| Cm | Um | Xm |
 ·п/п-|<об-п>-<ис>|-----[м/с]---[м/с]----[м/с]----[м]---|
  1 \mid 004401 \mid 6004 \mid 0.000818 \mid \Pi1 \mid 0.013669 \mid 0.50 \mid 28.5 \mid
  Суммарный Mq = 0.000818 \text{ г/c}
  Сумма См по всем источникам =
                                   0.013669 долей ПДК
    Средневзвешенная опасная скорость ветра = 0.50 м/с
    Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
```

```
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город
         :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                  Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0328 - Сажа
        ПДКм.р для примеси 0328 = 0.15 \text{ мг/м3}
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП) Расчет проводился 05.10.2025 11:02
  Примесь :0328 - Сажа
        ПДКм.р для примеси 0328 = 0.15 \text{ мг/м3}
Расчет не проводился: См < 0.05 долей ПДК
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
                                  Расчет проводился 05.10.2025 11:02
  Вар.расч. :2 Расч.год: 2025 (СП)
  Примесь :0330 - Сера диоксид (516)
        ПДКм.р для примеси 0330 = 0.5 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  <0б~П>~
~|~~~r/c~~
004401 6004 П1 5.0
                             20.3
                                   791
                                                     8 83 1.0 1.000 0 0.1055600
                                         960
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                  Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0330 - Сера диоксид (516)
        ПДКм.р для примеси 0330 = 0.5 \text{ мг/м3}
 - Для линейных и площадных источников выброс является суммарным по |
  всей площади, а Cm - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                         Их расчетные параметры_
             Источники
```

```
|Номер| Код | М |Тип| Ст | Um | Xm |
|-п/п-|<об-п>-<ис>|------[м]---|
 1 |004401 6004| | 0.105560| \Pi1 | 0.176388 | 0.50 | 57.0 |
  Суммарный Mq = 0.105560 \, \text{г/c}
  Сумма См по всем источникам =
                                  0.176388 долей ПДК
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0330 - Сера диоксид (516)
        ПДКм.р для примеси 0330 = 0.5 \text{ мг/м3}
   Фоновая концентрация на постах (в мг/м3 / долях ПДК)
|Код загр| Штиль | Северное | Восточное | Южное | Западное |
|вещества| U<=2м/с |направление |направление |направление |
|Пост N 001: X=0, Y=0
 0330 | 0.1130000| 0.0860000| 0.0120000| 0.1410000| 0.1100000|
    \mid 0.2260000 \mid 0.1720000 \mid 0.0240000 \mid 0.2820000 \mid 0.2200000 \mid 
     ______
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :0330 - Сера диоксид (516)
        ПДКм.р для примеси 0330 = 0.5 \text{ мг/м3}
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 196
  Запрошен учет дифференцированного фона с постов для новых источников
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 766.0 м, Y = 869.0 м
Максимальная суммарная концентрация | Cs= 0.3740286 доли ПДКмр|
                      0.1870143 мг/м3
 Достигается при опасном направлении 15 град. и скорости ветра 0.55 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                               ВКЛАДЫ ИСТОЧНИКОВ
---|<Oб-П>-<Иc>|---|---М-(Мq)--|-С[доли ПДК]|------|-----|----- b=C/М ---|
  Фоновая концентрация Сf \mid 0.226000 \mid 60.4 (Вклад источников 39.6%)
 1 |004401 6004| Π1| | 0.1056| | 0.148029 | 100.0 | 100.0 | 1.4023173 |
            B cymme = 0.374029 100.0
```

```
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :0337 - Углерод оксид (584)
        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<06~П>~
~|~~~<sub>\Gamma</sub>/c~~
004401 6004 П1 5.0
                             20.3
                                    791
                                          960
                                                 7
                                                      8 83 1.0 1.000 0 0.5277780
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0337 - Углерод оксид (584)
        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м3}
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
             Источники
                                         Их расчетные параметры
Номер Код
                М |Тип |
                           Cm
                                    Um | Xm |
 -п/п-|<об-п>-<ис>|-----[м]---|
  1 \mid 004401 \mid 6004 \mid 0.527778 \mid \Pi1 \mid 0.088190 \mid 0.50 \mid 57.0 \mid
  Суммарный Mq = 0.527778 \, \Gamma/c
  Сумма См по всем источникам =
                                 0.088190 долей ПДК
   ------
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0337 - Углерод оксид (584)
        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м3}
   Фоновая концентрация на постах (в мг/м3 / долях ПДК)
|Код загр| Штиль | Северное | Восточное | Южное | Западное |
|вещества| U<=2м/с |направление |направление |направление |
|Пост N 001: X=0, Y=0
 0337 | 1.8970000| 0.9720000| 1.3070000| 1.2930000| 0.9990000|
    | 0.3794000 | 0.1944000 | 0.2614000 | 0.2586000 | 0.1998000 |
```

```
Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Примесь :0337 - Углерод оксид (584)
        ПДКм.р для примеси 0337 = 5.0 \text{ мг/м3}
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 196
  Запрошен учет дифференцированного фона с постов для новых источников
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 766.0 \text{ м}, Y = 869.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.4534112 доли ПДКмр|
                       2.2670561 мг/м3
 Достигается при опасном направлении 15 град. и скорости ветра 0.55 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
Фоновая концентрация Cf | 0.379400 | 83.7 (Вклад источников 16.3%)| 1 |004401 6004| П1 | 0.5278 | 0.074011 | 100.0 | 100.0 | 0.140231729 |
             B \text{ cymme} = 0.453411 100.0
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Примесь :0703 - Бенз/а/пирен (54)
        ПДКм.р для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<06~П>~
~|~~~<sub>\Gamma</sub>/c~~
004401 6004 Π1 5.0
                              20.3
                                     791
                                           960
                                                        8 83 3.0 1.000 0 0.0000017
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2
               Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0703 - Бенз/а/пирен (54)
        ПДКм.р для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)
```

```
- Для линейных и площадных источников выброс является суммарным по
 всей площади, а Cm - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
              Источники
                                              Их расчетные параметры
Номер
        Код
                               Cm
                                        Um
              | М |Тип |
                                             | Xm |
 -п/п-|<об-п>-<ис>|-----[м/с]----[м/с]----[м/с]-----[м]---|
  1 \mid 004401 \mid 6004 \mid 0.00000169 \mid \Pi1 \mid 0.423591 \mid 0.50 \mid 28.5 \mid
  Суммарный Mq = 0.00000169 \ r/c
                                     0.423591 долей ПДК
  Сумма См по всем источникам =
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
                                       Расчет проводился 05.10.2025 11:02
  Вар.расч. :2 Расч.год: 2025 (СП)
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0703 - Бенз/а/пирен (54)
        ПДКм.р для примеси 0703 = 0.00001 \text{ мг/м3} (=10 \Pi \text{ДКс.c.})
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                       Расчет проводился 05.10.2025 11:02
  Примесь :0703 - Бенз/а/пирен (54)
        ПДКм.р для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 196
  Фоновая концентрация не задана
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 766.0 \text{ м}, Y = 869.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.2090193 доли ПДКмр|
                        0.0000021 \text{ M}\text{F/M}3
 Достигается при опасном направлении 15 град. и скорости ветра 0.69 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                  ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. % Коэф.влияния |
 ---|<Об-П>-<Ис>|---|---М-(Mq)--|-С[доли ПДК]|------|-----b=C/M ---|
 1 \mid 004401 \mid 6004 \mid \Pi1 \mid 0.00000169 \mid 0.209019 \mid 100.0 \mid 100.0 \mid
                                                         123680
             B \text{ cymme} = 0.209019 100.0
```

```
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :2732 - Керосин (654*)
        ПДКм.р для примеси 2732 = 1.2 \text{ мг/м3} (ОБУВ)
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<06~П>~
~|~~<sub>\Gamma</sub>/c~~
004401 6004 П1 5.0
                                    791
                             20.3
                                          960
                                                      8 83 1.0 1.000 0 0.1583300
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :2732 - Керосин (654*)
        ПДКм.р для примеси 2732 = 1.2 \text{ мг/м3} (ОБУВ)
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                          Их расчетные параметры
             Источники
Номер Код
                М |Тип |
                           Cm
                                    Um | Xm |
 -п/п-|<об-п>-<ис>|-----[м]---|
  1 \mid 004401 \mid 6004 \mid 0.158330 \mid \Pi1 \mid 0.110235 \mid 0.50 \mid 57.0 \mid
  Суммарный Mq = 0.158330 \, \Gamma/c
  Сумма См по всем источникам =
                                 0.110235 долей ПДК
    _____
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :2732 - Керосин (654*)
        ПДКм.р для примеси 2732 = 1.2 \text{ мг/м3 (ОБУВ)}
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
```

ПК ЭРА v3.0. Модель: MPК-2014

```
:005 Астана.
  Город
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Примесь :2732 - Керосин (654*)
        ПДКм.р для примеси 2732 = 1.2 \text{ мг/м3} (ОБУВ)
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 196
  Фоновая концентрация не задана
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 766.0 \text{ м}, Y = 869.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.0925749 доли ПДКмр|
                       0.1110899 \text{ мг/м3}
 Достигается при опасном направлении 15 град. и скорости ветра 0.57 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 1 |004401 6004| Π1|      0.1583|    0.092575 | 100.0 | 100.0 | 0.584696174 |
             B \text{ cymme} = 0.092575 \quad 100.0
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20
        ПДКм.р для примеси 2908 = 0.3 \text{ мг/м3}
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди Выброс
<06~П>~
~|~~~<sub>\Gamma</sub>/c~~
004401\ 6010\ \Pi1 2.0
                              20.3
                                                        2\quad 0\ 3.0\ 1.000\ 0\ 0.0011200
                                     783
                                           944
                                                   4
004401 6012 П1 2.0
                                           944
                              20.3
                                     803
                                                        8 73 3.0 1.000 0 0.0052000
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2
               Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20
        ПДКм.р для примеси 2908 = 0.3 \text{ мг/м3}
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Cm - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
              Источники
                                           Их расчетные параметры_
                                      Um
Номер Код
                M
                      Тип |
                              Cm
                                          | Xm |
|-п/п-|<об-п>-<ис>|-----[доли ПДК]-|--[м/c]--|---[м]---|
 1 \mid 004401 \mid 6010 \mid 0.001120 \mid \Pi1 \mid 0.400025 \mid 0.50 \mid 5.7 \mid
```

```
2 |004401 6012| | 0.005200| Π1 | 1.857259 | 0.50 | 5.7 |
  Суммарный Mq = 0.006320 \text{ г/c}
  Сумма См по всем источникам =
                                   2.257284 долей ПДК
    ._____
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
                                    Расчет проводился 05.10.2025 11:02
  Вар.расч. :2 Расч.год: 2025 (СП)
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20
        ПДКм.р для примеси 2908 = 0.3 \text{ мг/м3}
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с
  Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20
        ПДКм.р для примеси 2908 = 0.3 \text{ мг/м}3
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 196
  Фоновая концентрация не задана
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 766.0 \text{ м}, Y = 869.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.1131022 доли ПДКмр|
                       0.0339306 мг/м3
 Достигается при опасном направлении 26 град. и скорости ветра 5.48 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                                ВКЛАДЫ ИСТОЧНИКОВ
Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
1 |004401 6012| 111 | 0.005200 | 0.111492 | 98.6 | 98.6 | 21.4408283 |
             B \text{ cymme} = 0.111492 98.6
   Суммарный вклад остальных = 0.001610 1.4
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Примесь :2930 - Пыль абразивная (Корунд белый, Монокорунд) (1027*)
```

```
ПДКм.р для примеси 2930 = 0.04 \text{ мг/м3} (ОБУВ)
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<0б~П>~
~|~~r/c~~
004401\ 6016\ \Pi 1 2.0
                             20.3
                                    803
                                          944
                                                      8 73 3.0 1.000 0 0.0032000
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :2930 - Пыль абразивная (Корунд белый, Монокорунд) (1027*)
        ПДКм.р для примеси 2930 = 0.04 \text{ мг/м3} (ОБУВ)
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
             Источники
                                         Их расчетные параметры
                                    Um | Xm |
Номер Код
             | М |Тип |
                           Cm |
 1 \mid 004401 \mid 6012 \mid 0.003200 \mid \Pi1 \mid 8.571966 \mid 0.50 \mid 5.7 \mid
  Суммарный Mq = 0.003200 \text{ г/c}
  Сумма См по всем источникам =
                                 8.571966 долей ПДК
     -----|
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :2930 - Пыль абразивная (Корунд белый, Монокорунд) (1027*)
        ПДКм.р для примеси 2930 = 0.04 \text{ мг/м3} (ОБУВ)
  Фоновая концентрация не задана
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Примесь :2930 - Пыль абразивная (Корунд белый, Монокорунд) (1027*)
        ПДКм.р для примеси 2930 = 0.04 \text{ мг/м3} (ОБУВ)
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
```

```
Всего просчитано точек: 196
  Фоновая концентрация не задана
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 766.0 \text{ м}, Y = 869.0 \text{ м}
Максимальная суммарная концентрация | Cs= 0.5144678 доли ПДКмр|
                       0.0205787 \text{ MG/M}3
 Достигается при опасном направлении 26 град. и скорости ветра 5.32 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                                ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 ----|<Oб-П>-<Ис>|---|---М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/М ---|
 1\ |004401\ 6012|\ \Pi1|\ \ 0.003200|\ \ 0.514468\ |\ 100.0\ \ |\ 100.0\ |\ 160.7712097\ \ |
             B \text{ cymme} = 0.514468 \quad 100.0
3. Исходные параметры источников.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                     Расчет проводился 05.10.2025 11:02
  Группа суммации :6007=0301 Азота диоксид (4)
              0330 Сера диоксид (516)
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код | Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди | Выброс
<06~П>~
~|~~~<sub>\Gamma</sub>/c~~
     ----- Примесь 0301-----
004401 6004 П1 5.0
                              20.3
                                            960
                                                         8 83 1.0 1.000 0 0.0422000
     ----- Примесь 0330-----
004401 6004 П1 5.0
                                                   7
                              20.3
                                     791
                                            960
                                                        8 83 1.0 1.000 0 0.1055600
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
                                     Расчет проводился 05.10.2025 11:02
  Вар.расч. :2
               Расч.год: 2025 (СП)
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Группа суммации :6007=0301 Азота диоксид (4)
              0330 Сера диоксид (516)
 - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная
  концентрация См = См1/ПДК1 +...+ Смп/ПДКп
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                            Их расчетные параметры
              Источники
Номер
        Код
                 Мq |Тип |
                               Cm
                                      Um | Xm |
-п/п-|<об-п>-<ис>|-----
                      ----|----|-[доли ПДК]-|--[м/с]--|----[м]---|
  1 |004401 6004| | 0.422120| Π1 | 0.352675 | 0.50 | 57.0 |
  Суммарный Мq = 0.422120 (сумма Мq/ПДК по всем примесям)
```

```
Сумма См по всем источникам = 0.352675 долей ПДК
   Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Группа суммации :6007=0301 Азота диоксид (4)
             0330 Сера диоксид (516)
  Фоновая концентрация на постах (в мг/м3 / долях ПДК)
   .....
|Код загр | Штиль | Северное | Восточное | Южное | Западное |
|вещества| U<=2м/с |направление |направление |направление |направление |
Пост N 001: X=0, Y=0
 0301 | 0.1380000| 0.1380000| 0.1370000| 0.1240000| 0.1940000|
    | 0.6900000| 0.6900000| 0.6850000| 0.6200000| 0.9700000|
 0330 | 0.1130000| 0.0860000| 0.0120000| 0.1410000| 0.1100000|
    \mid 0.2260000 \mid 0.1720000 \mid 0.0240000 \mid 0.2820000 \mid 0.2200000 \mid
        .-----
  Расчет по прямоугольнику 001: 3000х1800 с шагом 100
  Расчет по территории жилой застройки. Покрытие РП 001
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
  Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Группа суммации :6007=0301 Азота диоксид (4)
             0330 Сера диоксид (516)
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 196
  Запрошен учет дифференцированного фона с постов для новых источников
  Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
  Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
     Координаты точки : X = 1293.0 \text{ м}, Y = 789.0 \text{ м}
Максимальная суммарная концентрация | Cs= 1.2302651 доли ПДКмр|
 Достигается при опасном направлении 289 град. и скорости ветра 2.36 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                               _ВКЛАДЫ_ИСТОЧНИКОВ
----|<Об-П>-<Ис>|---|---М-(Mq)--|-С[доли ПДК]|------|-----|----- b=C/M ---|
  Фоновая концентрация Cf | 1.190000 | 96.7 (Вклад источников 3.3%)|
 1 |004401 6004| 111 | 0.4221 | 0.040265 | 100.0 | 100.0 | 0.095387869 |
            B \text{ cymme} = 1.230265 100.0
3. Исходные параметры источников.
```

118

ПК ЭРА v3.0. Модель: MPK-2014

Город

:005 Астана.

```
Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Группа суммации :__ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20
              2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)
  Коэффициент рельефа (КР): индивидуальный с источников
  Коэффициент оседания (F): индивидуальный с источников
  Код |Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 |Alf|F | KP |Ди| Выброс
<06~П>~<Ис>|~~|~~м~~|~м~|~м/с~|~м3/с~~|градС|~~м~~~|~~м~~~|~~~м~~~|~~м~~~|гр.|~~
~|~~r/c~~
     ----- Примесь 2908-----
004401 6010 П1 2.0
                              20.3
                                     783
                                           944
                                                       2 0 3.0 1.000 0 0.0011200
                                                       8 73 3.0 1.000 0 0.0052000
004401\ 6016\ \Pi1 2.0
                              20.3
                                     803
                                           944
     ----- Примесь 2930-----
004401\ 6016\ \Pi 1 2.0
                                     803
                                           944
                                                       8 73 3.0 1.000 0 0.0032000
4. Расчетные параметры См, Им, Хм
 ПК ЭРА v3.0. Модель: MPK-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                   Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Группа суммации: ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20
              2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)
 - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная
  концентрация См = См1/ПДК1 +...+ Смп/ПДКп
 - Для линейных и площадных источников выброс является суммарным по
  всей площади, а Ст - концентрация одиночного источника,
  расположенного в центре симметрии, с суммарным М
                                          Их расчетные параметры
             Источники
|	ext{Номер}| Код | Mq |Tип| Cm | Um | 	ext{Xm} |
 ·п/п-|<об-п>-<ис>|-----[м/с]----[м/с]----[м/с]-----[м]---|
  1 \mid 004401 \mid 6010 \mid 0.002240 \mid \Pi1 \mid 0.240015 \mid 0.50 \mid 5.7 \mid
  2 |004401 6012| | 0.016800| Π1 | 1.800113 | 0.50 | 5.7 |
  Суммарный Мq = 0.019040 (сумма Мq/ПДК по всем примесям)
  Сумма См по всем источникам = 2.040128 долей ПДК
   .------
    Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 ПК ЭРА v3.0. Модель: MPК-2014
  Город :005 Астана.
  Объект :0048 Пятна 46-50 строит..
  Вар.расч. :2 Расч.год: 2025 (СП)
                                    Расчет проводился 05.10.2025 11:02
  Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Группа суммации: ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20
              2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)
  Фоновая концентрация не задана
```

Расчет по прямоугольнику 001 : 3000x1800 с шагом 100 Расчет по территории жилой застройки. Покрытие РП 001

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с Средневзвешенная опасная скорость ветра Ucb=0.5 м/с

8. Результаты расчета по жилой застройке.

ПК ЭРА v3.0. Модель: MPK-2014

Город :005 Астана.

Объект :0048 Пятна 46-50 строит..

Вар.расч. :2 Расч.год: 2025 (СП) Расчет проводился 05.10.2025 11:03

Группа суммации: __ПЛ=2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20

2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001

Всего просчитано точек: 196

Фоновая концентрация не задана

Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмр) м/с

Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014

Координаты точки : X = 766.0 м, Y = 869.0 м

Максимальная суммарная концентрация | Cs= 0.1090277 доли ПДКмр|

Достигается при опасном направлении 26 град. и скорости ветра 5.48 м/с Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада ВКЛАДЫ ИСТОЧНИКОВ