Заказчик: ТОО «Ак Дидар» Проектировщик: ТОО «ЛидерСтройGroup» ГСЛ № 0001021

РАБОЧИЙ ПРОЕКТ

«Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц № E22, E51, E102 (проектное наименование) и Хусейн бен Талал. Пятна 46-50.» (без наружных инженерных сетей)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Директор Курманов М. А. ЛидерСтройСт DECT Айнанов М. Главный инженер проекта Группа АР Орумбаев А. Группа КЖ Осипович А. Группа ГП Бимжанова Д. Группа ОВ Ерещенко Е. Группа ВК Талипов А. Группа ЭЛ Мукантаев А.

г.Астана 2025г.

Оглавление

1. Введение	
1.1. Обоснование для проектирования	
1.2. Назначение объекта, район строительства 3	
1.3. Климатические условия строительства	
1.4. Геоморфология	
1.4.1. Геологическое строение	
1.4.2. Гидрогеологические условия 4	
1.5. Решения по охране окружающей среды5	
1.6. Состав проекта5	
2. Генеральный план	
2.1. Компоновка генерального плана 5	
2.2. Основные показатели по генплану	
2.3. Проект организации строительства	
3. Основные технико-экономические показатели, архитектурно планировочные и конструктивные решения	D -
3.1. Технико-экономические показатели	
3.2. Архитектурно-планировочные решения	
3.3. Конструкции железобетонные9	
4. Инженерно-технические решения	
4.1. Введение	
4.2. Отопление и вентиляция	
4.3. Водоснабжение и канализация15	
4.4. Электроснабжение	
4.5. Связь и Сигнализация	

1. Введение

1.1. Обоснование для проектирования

Основанием подготовки проектной документации и разработки рабочего проекта: «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал». Пятна 46-50 послужили:

- Постановление №197-380 от 28.02.2018г.
- Дополнение №4 к эскизному проекту №KZ93V0A00540053 от 21.10.2021г. утвержденное и зарегистрированное за №KZ88VUA01160652 от 20.06.2024г.);
- Техническое задание на проектирование от 20.10.2022г.
- Архитектурно-планировочное задание на проектирование № 5171от 18.09.2014г

1.2. Назначение объекта, район строительства.

Основная цель разработки рабочего проекта «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал». Пятна 46-50 создание современного жилого комплекса.

Строительство объекта будет производиться на участке площадью 1,5442га в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал». Пятна 46-50 Проектируемый участок под строительство свободен от построек.

1.3. Климатические условия строительства.

Климатическая зона по СП РК 2.04-01-2017 -Ів

Дорожно-климатическая зона по СП РК 3.03.101-2017 - IV.

Средние температуры воздуха:

- Год +3,2°C;
- Наиболее жаркий месяц (июль) +20.7°С;
- Наиболее холодный месяц (январь) -15.1°С;
- Температура наиболее холодной пятидневки обеспеченностью 0.98-37.7°C, обеспеченностью 0.92 31.2°C;
- суток обеспеченностью 0.98 -40.2°C. обеспеченностью 0.92 -35.8°C.

Характерные периоды по температуре воздуха

Средняя	Данные о периоде				
температура	начало,	конец,	продолжительность,		
периода	дата	дата	дней		
Выше 0°С	10.IV	24.X	161		
Выше 5°С	22.IV	7.X	209		
Выше 10°C	5.V	20.IX	221		
Ниже 8°C	29.IX	26.IV	231		

Нормативная глубина сезонного промерзания грунтов. см (СП РК 5.01-102-2013, СП РК 2.04-01-2017):

- суглинки и глины 171:
- супеси, пески мелкие и пылеватые 208;
- пески средние, крупные и гравелистые -222;
- крупнообломочные грунты 253.

Среднегодовое количество осадков - 319 мм.

в том числе в холодный период - 99 мм.

Толщина снежного покрова с 5% вероятностью превышения - 39 см.

Количество дней: с градом - 2;

- с гололедом 6;
- с туманами -23:
- с метелями -26;
- с ветрами свыше 15 м/сек 40.

1.4. Геоморфология

1.4.1. Геологическое строение

В геологическом строении участка на исследованную глубину 15,0 м принимают участие аллювиально-пролювиальные и аллювиальные отложения средне- верхнечетвертичного возраста (apQII-III, aQII-III) представленные суглинками от твердой до мягкопластичной консистенции, и песками от средней крупности до гравелистых, которые залегают на кровле мезозойских элювиальных образований (eMz), представленных суглинками твердой консистенции, с включениями дресвы (дисперсная зона коры выветривания).

Современные отложения представлены насыпными грунтами.

Насыпной грунт: суглинок коричневого цвета твердой консистенции, перемешанный с дресвой, щебнем до 10% и песком, неслежавшийся (менее 5 лет). Мощность слоя 2,2-3,6 м.

Суглинок коричневого цвета от твердой до мягкопластичной консистенции, с прослоями линзами песка. Мощность слоя 0,8-4,2 м.

Песок средней крупности полимиктового состава, средней плотности насыщенный водой, с прослоями и линзами суглинка. Мощность слоя 1,0-3,0 м.

Песок гравелистый, полимиктового состава, средней плотности, насыщенный водой. Мощность слоя 4,9-8,3 м.

Суглинок буровато-желтого цвета, твердой консистенции, ожелезненный, с включением дресвы алевролитов и аргиллитов различной прочности до 20 %. Полная мощность скважинами глубиной 15,0 м не вскрыта. Вскрытая мощность слоя 1,4-1,8 м.

1.4.2. Гидрогеологические условия района

Подземные воды на площадке изыскания вскрыты во всех скважинах без исключения на глубинах 4,5-5,5 м. Абсолютная отметка установившегося уровня 341,06-341,93 м.

Подземные грунтовые воды подвержены сезонным колебаниям. Прогнозируемый подъем уровня грунтовых вод на 1,5 м от установившегося.

Водовмещающими грунтами являются все грунты, вскрытые на площадке изысканий.

Коэффищиенты фильтрации грунтов следующие: для четвертичных суглинков - 0,24 м/сутки, для песков средней крупности -6,5 м/сутки, для песков гравелистых -15,8 м/сутки, для суглинков элювиальных - 0,16 м/сутки.

Питание грунтовых вод происходит в основном за счет инфильтрации атмосферных осадков. Областью питания служит область распространения водоносного горизонта. По результатам химических анализов подземные воды на площадке характеризуются как натриево-калиевые, хлоридные, сульфатные, магниевые, с минерализацией 3.8-7.6 г/л.

По отношению к бетонам марки W4 подземные воды сильноагрессивные на портландцемент, и среднеагрессивные на арматуру к железобетонным конструкциям.

Коррозионная агрессивность подземных вод по отношению к алюминиевой оболочке кабеля – высокая, к свинцовой – средняя.

По отношению к стальным конструкциям (по Штаблеру) подземные воды корродирующие.

По степени потенциальной подтопляемости территория изыскания относится к подтопленной.

1.5. Решения по охране окружающей среды

Район расположения города Астана характеризуется резко континентальным климатом. Благоустройство и озеленение внутри города позволит смягчить неблагоприятные климатические факторы и снизить отрицательные воздействия пыльных бурь, снежных заносов.

При производстве строительных работ предусмотрено снятие почвенно-растительного слоя и перевозка его на объекты рекультивации или во временные отвалы для хранения и последующего использования при благоустройстве территории.

После завершения планировочных работ предполагается нанесение почвенного слоя мощностью 30 см и проведение озеленения территории.

Согласно СНиП 3.01-01-2002 "Градостроительство. Планировка городских и сельских поселений" благоустроить, высадить деревья, засеять газоны на отведенном участке под строительство данного многоквартирного жилого комплекса согласно раздела рабочего проекта "Генеральный план".

Здания отрицательного воздействия на окружающую среду не оказывает, нет вредных выбросов в атмосферу.

Сточные воды отводятся в проектируемую и существующую канализации. Сброс сточных вод в водоемы отсутствует.

Излишний строительный грунт вывозится в места, специально для этого предусмотренных, а мусор вывозиться на свалку.

Растительный грунт срезается и хранится для использования при последующем озеленении территории.

1.6. Состав проекта:

ОПЗ Общая пояснительная записка

ГП Генеральный план

АР Архитектурные решения

КЖ Конструкции железобетонные

ВК Водопровод и канализация

ОВ Отопление и вентиляция

ЭОМ Силовое электрооборудование и электроосвещение

СС Системы связи

ВН Видеонаблюдение

ПС Пожарная сигнализация

Сметная документация

Энергетический паспорт

ПОС Проект организации строительства

2. Генеральный план

2.1. Компоновка генерального плана

Генеральный план «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал». Пятна 46-50.» разработан на топографической съемке, предоставленной ТОО "Astanageoscan".

Масштаб съемки 1:500, система координат городская местная, система высот Балтийская.

Разбивочные план разработан с учетом существующих границ территорий. Проектируемый жилой комплекс привязан осями к границе участка, оси зданий и сооружений привязаны строительной сеткой. Размеры даны в осях и выражены в метрах.

Вертикальная планировка проектируемого участка выражена разработана с учетом ПДП данного района, которое обеспечивает отвод поверхностных и талых вод от проектируемого участка жилого комплекса в городскую систему ливневой канализации. На участке отсутствуют существующие строения. Дорожные проезды, автопарковки предусматриваются из асфальто-бетона и брусчатые; тротуары, площадки брусчатые. Предусмотрено озеленение территории по проекту с высадкой

деревьев, кустарников и газонов. Ассортимент древесно-кустарниковых пород принят в соответствие с природно-климатической зоной. Деревья и цветущие кустарники высаживаются рядами и группами. Для доступа маломобильных групп населения и инвалидов предусмотрены пандусы к входным узлам блоков.

1. Расчет парковочных мест для жителей

Согласно СП РК 3.02-101-2012 таблица 1, п.4.4.7.5 -на 1кв - 0,5м/м

Количество квартир – 232кв

Количество машиномест 232*0,5=116м/м

Согласно СП РК 3.02-101-2012 - 4.4.7.5 гостевые автостоянки из расчета 40 м/м на 1000 жителей:

Количество жителей 6982,18/15=465чел

Количество машиномест 462:1000 * 40 = 18м/м

Согласно СНиП РК 3.01-01Ас таблица 13.26 автостоянки для офисных помещений 1м\м на 70м2:

Общая площадь офисных помещений – 1523,26м2

Количество машиномест 1523,26/70 = 22м/м

Общее требуемое количество – 156м/м

Количество машино-мест комплекса по проекту 161м/м, в т.ч.:

- a) уличные 106 м/м.
- б) в паркинге -55м/м.

2.2. Основные показатели по генплану

No	Наименование	Площадь м2	%
1	Площадь участка	15 442	100
2	Площадь застройки	2 619,80	16,97
3	Площадь твердого покрытия проездов и площадок	9 392,1	60,82
4	Плошаль озеленения	3 430.1	22.21

2.3. Проект организации строительства

Проект организации строительства Объекта разработан в сокращенном объеме на основании следующих материалов и нормативных документов:

- задания на проектирование;
- проектно-сметной документации;
- СН РК 1.03-00-2011 «Организация строительства предприятий, зданий и сооружений».
- СН РК 1.03-02-2014 «Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений. Часть II»;
- СП РК 1.03-102-2014 «Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений. Часть II»;
- Пособие по разработке проектов организации строительства и проектов производства работ для жилищно-гражданского строительства.
- CH PK 1.03-05-2011, CП PK 1.03-106-2012 «Охрана труда и техника безопасности в строительстве»;
- СН РК 1.03-03-2013 «Геодезические работы в строительстве»;
- СН РК 5.03-07-2013 «Несущие и ограждающие конструкции»;
- СН РК 2.02-01-2014 «Пожарная безопасность зданий и сооружений»;
- CH PK 5.01-01-2013 «Земляные сооружения, основания и фундаменты»;

- СН РК 4.02-01-2014 «Отопление, вентиляция и кондиционирование»;
- CH PK 2.01-01-2013 «Защита строительных конструкций от коррозии»;
- СН РК 4.04-07-2013 «Электротехнические устройства»;
- CH PK 4.02-03-2012 «Системы автоматизации»;
- СП РК 2.04-01-2017 «Строительная климатология»;
- СНиП РК 5.04-18-2002 «Металлические конструкции, правила производства и приемки работ»;
- СН РК 4.01-02-2013 «Внутренние санитарно-технические системы»;
- СП «Санитарно-эпидемиологические требования к условиям труда и бытового обслуживания при строительстве, реконструкции, ремонте и вводе, эксплуатации объектов строительства», утвержденные приказом Министра национальной экономики РК от 28 февраля 2015 года №177;
- СП «Санитарно-эпидемиологические требования к объектам общественного питания», утвержденные приказом Министра здравоохранения РК от 23 апреля 2018 года №186.

Проект организации строительства разработан согласно СН РК 1.03-00-2011 «Строительное производство. Организация строительства предприятий, зданий и сооружений» и состоит из:

- пояснительной записки;
- организационно-технологических схем возведения зданий и сооружений;
- мероприятий по производству работ в зимних условиях;
- требований по охране труда и технике безопасности;
- требований по контролю качества выполненных работ;
- мер пожарной безопасности при строительстве;
- мероприятий по охране окружающей среды;
- стройгенплана в М 1:500;
- указаний о порядке построения геодезической разбивочной основы.

Строительство зданий и сооружений осуществляется в два периода: подготовительный и основной.

Для обеспечения планомерного развития строительства в подготовительный период необходимо выполнять работы в следующей технологической последовательности:

- сдача приемка геодезической разбивочной основы для строительства;
- срезка и складирование растительного слоя;
- прокладка инженерных сетей (постоянных и временных, используемых в период строительства);
- вертикальная планировка территории строительства в объеме необходимом для обеспечения отвода поверхностных вод с территории строительной площадки;
- устройство временных дорог;
- размещение санитарно-бытовых, вспомогательных и складских помещений;
- устройство открытых складских площадок, организация связи;
- обеспечение строительной площадки противопожарным инвентарем, водоснабжением, освещением.

После окончания работ, указанных в подготовительном периоде, следует приступать к выполнению работ основного периода по строительству:

- 1. Первого этапа зданий жилых домов (поз.1-10).
- 2. Второго этапа Благоустройства территории

Уровень ответственности здания – II. Объект технически – сложный. Объект технологически – не сложный.

3. Основные технико-экономические показатели, архитектурно-планировочные и конструктивные решения

3.1. Технико-экономические показатели жилых блоков

Наименование помещений	46	47	48	49	50	Всего
Число этажей	9	9	9	9	9	
Число квартир (в т.ч.):	48	48	40	48	48	232
1 комн.	32	8	16	24	32	112
2 комн.	-	32	8	8	-	48
3 комн.	16	8	16	16	16	72
Площадь жилого здания, м2, в т.ч.:	4002,74	4426,93	3864,65	4432,75	3950,04	20677,11
- общая площадь квартир	2475,45	2743,03	2417,22	2694,59	2475,45	12805,74
- жилая площадь квартир	1292,25	1510,80	1362,72	1541,36	1292,25	6999,38
- площадь МОП	496,02	552,92	507,14	603,54	504,37	2663,99
- площадь встроенных помещений общ. назначения (офисы)	303,48	334,96	259,74	344,36	306,10	1548,64
- площадь подвала	334,34	365,50	238,71	323,89	236,86	1499,30
- площадь тех. помещений	21,31	22,23	78,78	54,69	55,12	232,13
Строительный объем, м3:	16870,60	18243,51	16093,67	18324,96	16522,02	86054,76
-выше 0,000	15433,51	16694,02	14731,33	16770,06	15253,11	78882,03
-ниже 0,000	1437,09	1549,49	1362,34	1554,90	1268,91	7172,74
Площадь застройки, м2	518,04	562,49	476,92	549,13	513,22	2619,80

Технико-экономические показатели паркинга.

Наименование помещений	Ед.изм	Количество
Число этажей	этаж	1
Общая площадь этажа	м2	2185,39
Строительный объем, м3:	м3	9787,90
Площадь застройки, м2	м2	2180,40
Количество машиномест	шт.	55

Общая сметная стоимость строительства в текущих ценах года 6 945 651,359тыс. тенге, в том числе:

- -СМР 5 818 396,79тыс. тенге.
- -оборудование 184 857,574 тыс. тенге.
- -прочие 942 396,996 тыс. тенге.

Продолжительность строительства- 22 месяцев.

3.2. Архитектурные решения

Климатический район строительства -I, подрайон I В в соответствии с СП РК 2.04-01-2017.

Температура воздуха наиболее холодной пятидневки с обеспеченностью 0,92 - минус 31,2 °C.

Нормативное значение ветрового давления - Wo=0,77 кПа (77 кг/м2).

Нормативное значения веса снегового покрова - S=1,5 кПа (150 кгс/м2).

Степень ответственности здания II.

Степень огнестойкости здания II.

Класс жилого здания IV.

Сейсмичность площадки строительства – несейсмичен.

Класс функциональной пожарной опасности паркинга- Ф 5.2.

Класс функциональной пожарной опасности жилых зданий - Ф1.3.

За относительную отм. 0.000 принята отметка чистого пола 1-го этажа жилых блоков, которая соответствуют абсолютной отметке 346,88 по генплану.

Жилой комплекс состоит из пяти девятиэтажных блоков П-образной компоновкой, подземным паркингом с внутренним дворовым пространством.

На первом этаже расположены офисные помещения, лифтовой холл и вестибюль жилья. Высота (от пола до пола) первого этажа 4,35м., типового этажа 3,3м. Входа в офисные помещения, расположены на первом этаже со стороны главного фасада на отм. 0.000. Входа в жилые блоки расположены на отм. +1.050 с дворовой стороны, также с данной отметки имеется возможность непосредственно подняться как посредством лифта, так и через лестницы. Имеются обособленные выхода из паркинга и подземных частей блоков.

Во внутреннем дворовом пространстве расположены детские площадки, площадки для отдыха взрослых, элементы озеленения и ландшафта.

Стены наружные (заполнение каркаса) - из газобетонных блоков толщиной 200мм, класса B2,5-B3,5 плотностью D600 по Γ OCT 21520-89, размером 600x250x200мм, марка бетона по морозостойкости не менее F25. Кладку усилить армированием сеткой 5Bp1 100x100 по Γ OCT 23279-2012 через 3 ряда.

Перегородки:

- а) межквартирные составная стена 250мм: Газобетонный блок толщиной 100 мм, класса B2,5 плотностью D500 по ГОСТ 21520-89, на клеевом растворе; Минплита на основе базальта П-100(НГ) ГОСТ 22950-95, толщиной 50 мм; Газобетонный блок толщиной 100 мм, класса B2,5 плотностью D500 по ГОСТ 21520-89, на клеевом растворе.
- б) внутриквартирные из газобетонных блоков толщиной 100мм, класса В2,5 плотностью D500 по ГОСТ 21520-89, на клеевом растворе.
- в) перегородки санузлов из газобетонных блоков толщиной 100мм, класса В2,5 плотностью D500 по ГОСТ 21520-89, на клеевом растворе с последующей обработкой гидрофобризирующим составом.
- г) перегородки тамбуров на путях эвакуации остекленные витражи из алюминиевых профилей, с заполнением однокамерным стеклопакетом из закаленного стекла.
- д) перегородки вентшахт, находящихся с 1-го до 9-го этажа из ГКЛ на профиле с утеплением в 50мм, выше уровня кровли из перегородочного блока.

Перекрытия - монолитные железобетонные.

Лифты приняты грузоподъемностью 1000кг.

Кровля - с внутренним организованным водостоком.

Внутренняя отделка стен и потолков - шпаклевка в один слой.

Наружная отделка 1-го этажа - система навесного вентилируемого фасада с облицовкой гранитными плитками. Наружная отделка верхних этажей - система навесного вентилируемого фасада с облицовкой фиброцементными панелями 8мм.

Окна - металлопластиковые с двухкамерным стеклопакетом, внутреннее стекло с энергосберегающим покрытием.

Остекление балконов - металлопластиковые переплеты с одинарным стеклопакетом.

Двери наружные ведущие в помещения общего пользования и коммерческие помещения - витражи из алюминиевых профилей, с заполнением двухкамерным стеклопакетом из закаленного стекла.

При строительстве строго соблюдать использование строительных и отделочных материалов, имеющие документы, подтверждающие их качество и безопасность (декларации EAC и др.), а также строительных материалов I класса радиационной безопасности основание и соответствуют требованиям п. 13 СП от 26 октября 2018 года № ҚР ДСМ- 29, п. 32 гигиенических нормативов «Санитарно- эпидемиологические требования к обеспечению радиационной безопасности» утв. Приказ МНЭ РК от 27 февраля 2015 года № 155, п. 86 санитарных правил «Санитарно- эпидемиологические требования к условиям труда и бытового обслуживания при строительстве,

реконструкции, ремонте и вводе, эксплуатации объектов строительства», утвержденные Приказом Министра национальной экономики Республики Казахстан от 28.02.2015 года № 177.

3.3. Конструкции железобетонные

- 1.1. Рабочие чертежи железобетонных конструкций разработаны на основании документации, оговоренной на чертеже общих данных марки "АС" лист 1 настоящего комплекта.
- 1.2. За относительную отметку 0,000 принят уровень чистого пола первого этажа, что соответствует абсолютной отметке 346,88 на генеральном плане. Район строительства объекта «Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г. Астана, район пересечения улиц E22, E51, E102 (проектное наименование) и Хусейн бен Талал». Пятна 46-50 разработан для строительства в 1В климатическом подрайоне:
- климатический район строительства -I, подрайон I В в соответствии с СП РК 2.04-01-2017;
- температура воздуха наиболее холодной пятидневки с обеспеченностью 0,92 минус 31,2 °C;
- нормативное значение ветрового давления Wo=0,77 кПа
- нормативное значения веса снегового покрова S=1,5 кПа
- инженерно-геологические условия смотреть на листе КЖ-3.
- нормативная глубина промерзания 1.71м (для глинистих грунтов), 2,08м (для песчаных), 2,23м (для крупнообломочных грунтов;
- условия эксплуатации здания здание отапливаемое;
- уровень ответственности здания II;
- степень огнестойкостиздания ІІ;
- категория здания по взрывопожарной и пожарной ответственности Г;
- класс конструктивной пожарной опасности СО;
- класс функциональной пожарной опасности Ф1.3;
- класс пожарной опасности строительных конструкций КО.
- 1.3. Расчет несущих элементов каркаса здания выполнен на программном комплексе LIRA SAPR 2024, R2.2 в соответствии со строительными нормами, действующими на территории Республики Казахстан.
 - 2. Конструктивное решение
- 2.1. В конструктивном решении для здания принята каркасно-связевая система, где основные несущие конструкции образуются системой пилон, горизонтальных дисков перекрытий и вертикальных диафрагм жесткости. Роль диафрагм выполняют сборные стены, стены лестничных клеток и лифтовых шахт.
 - 3. Характеристика конструкций жилых блоков:
- 3.1 Фундаменты железобетонные сваи забивные 300х300 по ГОСТ 19804-2012 с монолитным ростверком.
- 3.2 Сваи из бетона класса C20/25 по CT PK EN 206-2017, W6, F150, B/Ц-0,55 на сульфатостойком цементе.
- 3.3 Ростверк ж/б монолитный, бетон тяжёлый класса C20/25 по CT PK EN 206-2017.
- 3.4 Каркас ж/б монолитный:
- Материал монолитных конструкции ниже нуля бетон тяжёлый класса C20/25 по CT PK EN 206-2017
- Колонны монолитные, прямоугольные сечением 1000x250 мм. Материал- бетон тяжёлый класса C20/25 по CT PK EN 206-2017.
- Стены лестниц и лифтовых шахт монолитные толщ. 200 мм;
- Перекрытия монолитные ж/б толщ. 200 мм;
- Парапет ж/б монолитный толщ. 200 мм;
- 3.5 Лестничные марши сборные ж/б индивидуального изготовления, которые опираются на монолитные площадки.
- 3.6 Арматура класса А240, А500 по ГОСТ 34028-2016 применена по ГОСТ 34028-2016 применена в монолитных конструкциях.

- 4. Противопожарные мероприятия
- 4.1. Противопожарные мероприятия выполнить согласно СП РК 2.02-101-2014 "Пожарная безопасность зданий и сооружений".
 - 5. Антикоррозийные и гидроизоляционные мероприятия
- 5.1 Антикоррозийные и гидроизоляционные мероприятия выполнить согласно СП РК 2.01-101-2013 "Защита строительных конструкций от коррозии" и СП РК 2.01-102-2014 "Проектирование гидроизоляции подземных частей зданий и сооружений".
- 5.2 Гидроизоляцию и защиту ж/б монолитных конструкций выполнить согласно листа КЖ-5.
- 5.3 Монолитные ростверк и другие ж/б конструкции, соприкасающиеся с грунтом выполнить на сульфатостойком цементе.
- 5.4 Необетонированные стальные закладные детали и соединительные элементы окрасить эмалью $\Pi\Phi$ -115 ГОСТ 6465-76* за 2 раза по грунтовке $\Gamma\Phi$ 021 ГОСТ 25129-82.
- 5.5 По периметру здания выполнить отмостку согласно раздела АС
- 5.6 При необходимости выполнить дренаж талых и дождевых вод. Дренаж выполнить способом открытого водоотлива. Все мероприятия должны оговариваться в проекте производства работ.
 - 6. Виды работ и конструкций, на которые должны составляться акты скрытых работ:
- 6.1 Приемка смонтированной и приготовленной к бетонированию опалубки.
- 6.2 Соответствие арматуры и закладных деталей рабочим чертежам
- 6.3 Отбор контрольных образцов бетона
- 6.4 Проверка и приемка всех конструкций и их элементов, закрываемых в процессе последующего бетонирования
- 6.5 Приемка законченных бетонных и ж/б конструкций с оценкой их качества.

7. Технические требования к арматурным

- 7.1 Арматурные работы вести в соответствии с чертежами проекта, проектом производства работ и требованиями СН РК 5.03-07-2013 "Несущие и ограждающие конструкции", ГОСТ 10922-2012 "Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций".
- 7.2 Арматурные стали приняты по ГОСТ 34028-2016 A240 (A500C). Марка стали указывается потребителем в заказе.
- 7.3 При поступлении стали без сертификатов, необходимо произвести контрольные испытания арматурной стали по ГОСТ 12004-81.
- 7.4 Бессварочные соединения стержней следует производить:
- -стыковые -внахлестку с обеспечением равнопрочности стыка
- -крестообразные -вязальной стальной проволокой по ГОСТ 2333-80до полной фиксаций. Диаметр вязальной проволоки рекомендуется принять не менее 0.1xD (D-диаметр рабочей арматуры) и не менее 1,2мм. Перевязать все пересечения стержней двух крайнего ряда, а остальные через узел в шахматном порядке.
- 7.5 Стыковые и крестообразные сварные соединения следует выполнять по проекту в соответствии с ГОСТ14098-2014.
- 7.6 При устройстве арматурных конструкций следует соблюдать требования таб. 9 СНиП РК 5.03-37-2005.
- 7.7 Для дуговой сварки стыков стержней применять электроды Э42A по ГОСТ 9467-75с целым неотслаивающимся сухим покрытием.
- 7.8 При производстве сварочных работ необходимо соблюдать требования СН РК 1.03-05-2011 "Охрана труда и техника безопасности в строительстве".
 - 8. Технические требования к бетонным работам
- 8.1 Бетонные работы вести в соответствии с чертежами проекта, проектом производства работ и требованиями СН РК 5.03-07-2013 "Несущие и ограждающие конструкции".
- 8.2 При необходимости устройства рабочих швов их следует располагать в наименее ответственных местах конструкций.

- 8.3 Рабочие швы, устраиваемых при укладке бетонной смеси с перерывами допускается выполнить лпя:
- колонн на отметке верха ростверков, низа балок и плит перекрытия;
- диафрагм, монолитных стен понизу и поверху плиты перекрытия;
- плит перекрытии в 1/3 пролета условного ригеля с установкой по торцу шва мелкой металлической сетки 5x0.5 с заводкой концов в бетон на 200мм. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5МПа.
- 8.4 Распалубку конструкций производить при достижении бетоном 70% проектной прочности.
- 8.5 Величину строительного подъема принимать не менее 4мм на погонный метр пролета.
 - 9. Производство бетонных работ при отрицательных температурах воздуха
- 9.1 Настоящие правила выполняются в период производства бетонных работ при ожидаемой среднесуточной температуре наружного воздуха ниже 5гр.С и минимальной суточной температуре ниже 0° C.
- 9.2 Приготовление бетонной смеси следует производить в обогреваемых бетоносмесительных установках, применяя подогретую воду, оттаянные или подогретые заполнители, обеспечивающие получение бетонной смеси с температурой не ниже требуемой по расчету. Допускается применение неотогретых сухих заполнителей, не содержащих наледи на зернах и смерзшихся комьев. При этом продолжительность перемешивания бетонной смеси должна быть увеличена не менее чем на 25%по сравнению с летними условиями.
- 9.3 Способы и средства транспортирования должны обеспечивать предотвращение снижения температуры бетонной смеси ниже требуемой по расчету.
- 9.4 Состояние основания, на которое укладывается бетонная смесь, а также температура основания и способ укладки должны исключать возможность замерзания смеси в зоне контакта с основанием. При выдерживании бетона в конструкции методом термоса, при предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание или старый бетоне, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания. При температуре воздуха ниже минус 10 С° бетонирование густоармированных конструкций с арматурой диаметром больше 24мм, арматурой из жестких прокатных профилей или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры или местным вибрированием смеси в приарматурной и опалубочной зонах, за исключением случаев укладки предварительно разогретых бетонных смесей (при температуре смеси выше 45 С°). Продолжительность вибрирования бетонной смеси должна быть увеличена не менее чем на 25%по сравнению с летними условиями.
- 9.5 При бетонировании элементов каркасных и рамных конструкций в сооружениях с жестким сопряжением узлов (опор) необходимость устройства разрывов в пролетах в зависимости от температуры тепловой обработки, с учетом возникающих температурных напряжений, следует согласовывать с проектной организацией. Неопалубленные поверхности конструкций следует укрывать паро- и теплоизоляционными материалами непосредственно по окончании бетонирования. Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5м.
- 9.6 Перед укладкой бетонной (растворной) смеси поверхности полостей стыков сборных железобетонных элементов должны быть очищены от снега и наледи.
- 9.7 Выбор способа выдерживания бетона при зимнем бетонировании монолитных конструкций следует производить в соответствии с приложением 5.
- 9.8 Контроль прочности бетона следует осуществлять, как правило, испытанием образцов, изготовленных у места укладки бетонной смеси. Образцы, хранящиеся на морозе, перед испытанием надлежит выдерживать 2-4ч при температуре 15-20 °C. Допускается контроль прочности производить по температуре бетона в процессе его выдерживания.
- 9.9 Требования к производству работ при отрицательных температурах воздуха установлены в табл.6 СН РК 5.03-07-2013 "Несущие и ограждающие конструкции".

- 10.Защита строительных конструкций от коррозии
- 10.1. Защита строительных конструкций от коррозии выполняется в соответствии с требованиями СН РК 2.01-01-2013 «Защита строительных конструкций от коррозии».
- 10.2. Защитные слои бетона для арматуры монолитных железобетонных конструкций приняты согласно указаниям СНиП 2.03.01-84* «Бетонные и железобетонные конструкции».
- 10.3. Все стальные конструкции окрасить эмалью $\Pi\Phi$ 115 за 2 раза по слою грунтовки $\Gamma\Phi$ -21 общая толщина покрытия 60 мкм. Перед окраской металлоконструкции необходимо очистить от ржавчины, окалины и обезжирить.

Все бетонные и железобетонные конструкции, соприкасающиеся с грунтом обмазать горячим битумом за два раза по одному слою грунтовки.

4. Инженерно-технические решения

4.1. Введение

Проектом предусмотрены следующие виды инженерного оборудования: центральное отопление, горячее водоснабжение, водопровод, канализация, электроосвещение, телефонизация, пожарная сигнализация, система аварийного пожаротушения паркинга.

Рабочие чертежи системы отопления и вентиляции соответствуют требованиям:

- СН РК 4-02-01-2011 "Отопление, вентиляция и кондиционирование"
- МСН 2.04-02-2004 "Тепловая защита зданий"
- СНиП РК 2.04-21-2004 "Энергопотребление и тепловая защита гражданских зданий"
- МСП 2.04-101-2001 "Проектирование тепловой защиты здания"
- СП РК 3.02-101-2012 "Жилые здания".

Проект отопления и вентиляции паркинга для легковых автомобилей разработан на основании задания на проектирование, технологического задания, архитектурно-строительных чертежей и в соответствие с требованиями СНиП РК 4.02-42-2006, МСН 2.02-05-2000*.

4.2. Отопление и вентиляция.

Общий расход тепла Вт (ккал/час) На отопление- 1 659 150 (1 426 869) На вентиляцию- 285 930 (245 900) На ГВС – 773 977 (665 620) Общая – 2 719 057 (2 338 389)

ОБШИЕ УКАЗАНИЯ

Проект отопления и вентиляции здания разработан на основании задания на проектирование, архитектурно-строительных чертежей и действующих нормативных документов:

СП РК 4.02-101-2012 "Отопление, вентиляция, кондиционирование воздуха";

СН РК 4.02-01-2011 "Отопление, вентиляция, кондиционирование воздуха";

СП РК 2.04-01-2019 "Строительная климатология";

СН РК 2.04-03-2011 "Тепловая защита зданий";

СП РК 2.04-106-2012 "Проектирование тепловой защиты зданий";

СН РК 2.04-04-2013 "Строительная теплотехника";

СП РК 2.04-107-2013 "Строительная теплотехника";

СН РК 3.02-01-2011 "Здания жилые многоквартирные";

СП 3.02-101-2012 "Здания жилые многоквартирные";

СН РК 3.02-07-2014 "Общественные здания и сооружения";

СП РК 3.02-107-2014 "Общественные здания и сооружения",

СП РК 4.02-108-2014 "Проектирование тепловых пунктов", а также стандартов и требований фирм — изготовителей примененного оборудования и материалов.

Расчетная температура наружного воздуха для проектирования отопления:

- холодный период года th=-31,2°C (для отопления),
- cp.t от.пер.=-6,3°C

Продолжительность отопительного периода - 209 сут.

Расчетная температура наружного воздуха для проектирования вентиляции:

- холодный период года th=-31,2°C,
- теплый период года th=+25,5°C.

Источником теплоснабжения служит ТЭЦ с параметрами теплоносителя 130-70°C.

4.Теплоснабжение.

Источником теплоснабжения служит временная котельная с параметрами теплоносителя 130-70°С. Потребители тепла дома: системы отопления, вентиляции и горячего водоснабжения присоединяются к наружным тепловым сетям по независимой схеме по следующим схемам: система отопления - через теплообменники (100% резерв), установленные в тепловом пункте пятна 48 с установкой современной автоматики "Danfoss", горячее водоснабжение через теплообменники, подключенные по двухступенчатой смешанной схеме, для системы вентиляции предусмотрено ответвление для последующего монтажа оборудования владельцами нежилых помещений.

5. Отопление

Присоединение системы отопления к тепловым сетям выполнено по независимой схеме, через пластинчатые теплообменники фирмы "Danfoss", установленные в тепловом пункте здания. Теплоносителем для системы отопления жилого дома является горячая вода с параметрами 80-60°С.

В пятне здания запроектировано 3 системы отопления:

- 1 система отопления жилой части здания: двухтрубная горизонтальная с попутным движением теплоносителя с нижней разводкой. В качестве отопительных приборов приняты стальные панельные радиаторы РСПО 22-400 (высотой 400мм). Для гидравлического регулирования на подающих контурах устанавливаются ручные балансировочные клапаны "Danfoss" MNT, на отводящих контурах - запорные отсечные шаровые краны. На вводе каждого этажа (перед гербенкой) устанавливаются запорно-балансировочные клапаны "Danfoss" CNT на подающем трубопроводе и автоматические балансировочные клапаны "Danfoss" APT-5-25 на обратном трубопроводе для стабилизации разности давления.

Магистральные трубопроводы системы отопления жилого дома прокладываются горизонтально под потолком подвала. Подводящие и отводящие трубопроводы прокладываются в полу. Удаление воздуха из системы отопления осуществляется кранами Маевского.

- 3 система отопления встроенных помещений: двухтрубная горизонтальная с попутным движением теплоносителя с нижней разводкой. В качестве отопительных приборов приняты стальные панельные радиаторы РСПО 22-400 (высотой 400мм). Для гидравлического регулирования на подающих контурах устанавливаются ручные балансировочные клапаны "Danfoss" MSV-BD, на отводящих контурах - запорные отсечные шаровые краны. На вводе каждого этажа (перед гербенкой) устанавливаются запорно-балансировочные клапаны "Danfoss" CNT на подающем трубопроводе и автоматические балансировочные клапаны "Danfoss" APT-5-25 на обратном трубопроводе для стабилизации разности давления.

Магистральные трубопроводы системы отопления встроенных помещений прокладываются горизонтально под потолком подвала. Подводящие и отводящие трубопроводы прокладываются в полу. Удаление воздуха из системы отопления осуществляется кранами Маевского.

- 2 система отопления лестничных клеток: однотрубная стояковая, с движением теплоносителя снизу вверх. Отопительные приборы - стальные панельные радиаторы РСПО 22-400 (высотой 400мм). Удаление воздуха из системы отопления решено кранами Маевского, установленными в верхних пробках приборов на последних этажах.

Магистральные трубопроводы и стояки систем отопления приняты стальные электросварные по ГОСТ 10704-91 и стальные водогазопроводные по ГОСТ 3262-75*. Трубопроводы внутренней разводки квартир и встроенных помещений - труба металлопластиковая "Valtec".

Для регулирования и отключения отдельных колец систем установлена запорно-регулирующая арматура. Горизонтальные участки трубопроводов прокладываются с уклоном 0,002 в сторону спускных устройств.

6. Вентиляция.

Жилая часть.

В санузлах и в кухнях жилых помещений запроектирована вытяжная вентиляция с естественным побуждением. Приток воздуха организованный, через стеновые приточные клапаны К1 и К2, размещаемыми под подоконниками над радиаторами. Удаление воздуха в санузлах и в кухнях предусмотрено через регулируемые решетки. (2-7 этажи) В санузлах и кухнях 8 и 9 этажа удаление воздуха предусмотрено через вентилятор с обратным клапаном

Воздуховоды приняты из оцинкованной стали по ГОСТ 14918-80, класса Н (нормальные), прямоугольного сечения. Все воздуховоды вытяжных вентиляционных систем жилых помещений выполнены через шахты и подсоединены к ротационным дефлекторам на кровле. На кровле все воздуховоды изолируются базальтовым изоляционным материалом δ =100мм.

Нежилые помещения.

В офисных помещениях предусматриваются отверстия в стенах ,для подключения систем вентиляции, притока и удаления воздуха. для систем В1-В4, П1-П4, В санузлах офисных помещений запроектированы вытяжные каналы для подключения вытяжной вентиляции, с естественным побуждением, санузлов и ПУИ. Внутренняя разводка горизонтальных воздуховодов и монтаж оборудования выполняется собственником самостоятельно.

Воздуховоды приняты из оцинкованной стали по ГОСТ 14918-80, класса Н (нормальные), прямоугольного сечения. Все воздуховоды вытяжных вентиляционных систем встроенных помещений выполнены через шахты и выведены на кровлю.,На кровле все воздуховоды изолируются базальтовым изоляционным материалом δ =100мм.

4.3. Водоснабжение и канализация

Основные показатели по жилому комплексу:

Хоз. Питьевой водопровод В1 в т.ч. ГВС –142,6 м3/сут

Хоз. Бытовая канализация К1 –142,6 м3/сут

Рабочий проект по системе внутреннего водопровода и канализации выполнен на основании: действующих строительных норм и правил проектирования, государственных стандартов,

Регламентирующих требования пожарной безопасности; в соответствии со

СН РК 4.01-01-2011 и СП РК4.01-101-2012 "Внутренний водопровод и канализация";

- чертежей марки АР;
- технического задания на проектирование, технических условий на забор воды и сброс стоков, технические условия на ливневую канализацию.

Степень огнестойкости здания - II.

Объект оборудуется системой внутреннего хозяйственно-питьевого водопровода и запитывается от ввода B1-1. Ввод B1-1 расположен с водомерным узлом и насосным оборудованием в пятне 48.

Холодное водоснабжение (В1)

Объект оборудуется системой внутреннего хозяйственно-питьевого водопровода и запитывается от ввода B1-1. Ввод B1-1 расположен с водомерным узлом и насосным оборудованием в секции 48.

Гарантийный напор в системе хозяйственно-питьевого водопровода равен 10 м, согласно технических условий. Для обеспечения требуемого напора предусматривается насосная установка хоз-питьевого назначения COR-3 Helix v 1006 K CC-01, Q=4,90л/c, H=52,6м, P=3x3,94кВт, состоящая из трех насосов, где два рабочих и один резервных. Насосные установки смонтированы на единой раме, объединенные всасывающим и напорным коллекторами и общей трубной обвязкой. Установка контролируется с помощью шкафа управления, предусматривается частотное регулирование, устройство плавного пуска, реле потока, реле давления, защита от сухого хода. Для

контроля работы используются датчики давления. Частотное регулирование обеспечивает вариативность работы электродвигателя в зависимости от потребления воды. В случае не запуска одного из насосов, автоматически обеспечивается включение резервного агрегата. Система подключена через напорный гидробак V-500 л, который позволяет уменьшить количество включений насосной станции, а так же защищает от гидравлического удара. В случае отсутствия электроэнергии, предусматривается обводная линия, с устройством задвижки и обратного клапана. Насосная установка принята II категории надежности водоснабжения.

Система хозяйственно-питьевого водоснабжения холодной воды запроектирована для подачи к санитарно- техническим приборам, а также для приготовления горячей воды. Магистральная сеть и стояки выполняются из полипропиленовых труб по ГОСТ Р 52134-2010. и покрываются гибкой трубчатой изоляцией "К - FLEX" толщиной 6.0 мм. У основания стояков предусматривается запорная и спускная арматура.

Магистраль и стояки изолируются трубной изоляцией марки "K-FLEX толщиной 13мм.

Горячее водоснабжение (ТЗ и Т4)

Система горячего водоснабжения принята децентрализованная т. е. с приготовлением горячей воды в теплообменнике, с циркуляцией по магистрали и стоякам.

Система горячего водоснабжения запроектирована для подачи воды к санитарно- техническим приборам жилого дома и офиса.

Сети и стояки горячего водоснабжения выполняются из полипропиленовых труб по ГОСТ Р 52134-2010 и покрываются гибкой трубчатой изоляцией "К - FLEX" толщиной 6.0 мм.

Магистраль и стояки изолируются трубной изоляцией марки "K-FLEX толщиной 13мм.

У основания стояков предусматривается запорная и спускная арматура.

Полотенцесушители установленные в ванных комнатах электрические (см. раздел ЭЛ.)

Канализация (К1)

Отвод бытовых сточных вод предусматривается во внутриплощадочные сети.

Трубопроводы выше отметки 0,000 запроектированы из поливинилхлорида (ПВХ) по ГОСТ 32412-2013 Ø110 и Ø50, соединяемых с помощью раструбов с резиновыми уплотнительными кольцами.

Магистральные сети в подвале - из чугунных канализационных труб по ГОСТ 6942.3-98.

Трубопроводы укладываются над полом и под потолком, для доступа внутрь канализационных сетей устанавливаются ревизии и прочистки.

Сети канализации вентилируются через стояки, которые выводятся на крышу на высоту 0.3 м выше уровня кровли.

Канализация (К1.1)

Отвод бытовых сточных вод встроенных помещений предусматривается в проектируемые наружные сети.

Трубопроводы выше отметки 0,000 запроектированы из поливинилхлорида (ПВХ) по ГОСТ 32412-2013 Ø110 и Ø50, соединяемых с помощью раструбов с резиновыми уплотнительными кольцами. Магистральные сети в подвале - из чугунных канализационных труб по ГОСТ 6942.3-98.

Сети канализации вентилируются через стояки, которые выводятся на крышу на высоту 0.3 м выше уровня кровли.

Водостоки (К2)

Отвод ливневых сточных вод с кровли здания предполагается во внутриплощадочную сеть.

Трубопроводы и стояки запроектированы из труб стальных электросварных с внешне и внутрикоррозийной изоляцией Ø108х4.0 ГОСТ 10704-91, соединяемых сваркой. Трубопроводы укладываются под потолком, для доступа внутрь канализационных сетей устанавливаются ревизии и прочистки.

Для соединения водосточных воронок кровли с трубопроводной системой используются компенсационные патрубки.

В холодный период года, водосточные воронки и трубы, в пределах техэтажа, обогреваются греющим кабелем. Подробнее см.альбом ЭЛ.

Воронки применяются с гравие- и листвоуловителями.

Для сбора и удаления воды в ИТП и насосной предусматривается устройство приямков с погружными насосами Drain TMW 32 11-10M, Q=6,0м3/ч, H=6,0м, P=0,75кВт

Общие указания

В системах питьевого и горячего водоснабжения применяются трубы и иное оборудование, контактирующие с водой, выполненные из материалов, разрешенных к применению в Республике Казахстан. Трубопроводы систем водоснабжения крепить к строительным конструкциям с помощью подвесных опор и хомутов так, чтобы трубы не примыкали к поверхности строительных конструкций. Проведение приемочного гидравлического испытания напорного трубопровода на прочность и герметичность. Проведение приемочного гидравлического испытания безнапорного трубопровода на и герметичность. Проведение промывки и дезенфекции трубопроводов (сооружений) хозяйственно- питьевого водоснабжения.

Паркинг

Чертежи марки *BK* разработаны на основании чертежей марки *AP*, задания на проектирование и действующих нормативных документов СП РК 4.01-102-2013, CH PK 4.01-02-2013, MCH 2.02-05-2000*.

В проекте разработаны следующие системы:

- -внутренний водосток (К2)
- -напорная канализация (КЗн)

Водопровод противопожарный

Расход воды на внутреннее пожаротушение паркинга, согласно МСН $2.02-05-2000^*$, при строительном объеме свыше 5тыс.м3, составляет 2 струи по 5,2 л/с.

Согласно гарантийного напора насосная для системы пожаротушения не требуется, Вводы водопровода расположены в подвале пятна 49 в осях $\Gamma \div Д$, $5 \div 8$. Установка пожарных кранов предусмотрена в разделе АПТ.

Напорная канализация

Сеть напорной канализации паркинга предусматривает отвод стоков при срабатывании систем АПТ в приямки 2м3, с устройством дренажных насосов, с дальнейшим подключением в систему К2 паркинга через. Сеть системы К3н выполнена из стальных водогазопроводных труб ГОСТ 3262-75.

Внутренний водосток

Для отвода дождевых вод с кровли паркинга предусмотрен внутренний водосток с последующим отводом во внутриплощадочные сети ливневой канализации.

Во избежание замерзания в зимнее время водосточных воронок и подвесных линий предусмотрен обогрев греющим кабелем (см. часть ЭЛ)

Присоединение водосточных воронок к трубам предусмотрено при помощи компенсационных патрубков. Для прочистки сетей предусмотрены ревизии и прочистки.

Система внутреннего водостока выполняется из водогазопроводных оцинкованных труб по ГОСТ 3262-75.

Трубопроводы крепить к строительным конструкциям с помощью подвесных опор и хомутов так, чтобы трубы не примыкали к поверхности строительных конструкций.

Монтаж систем выполнять в соответствии с требованиями СН РК 4.01-02-2013, СП РК 4.102-2013.

Автоматическое пожаротушение

Рабочие чертежи проекта автоматического пожаротушения паркинга на объекте разработаны на основании следующих документов:

- технического задания на проектирование;

- чертежей архитектурно-строительных;
- действующих норм и правил проектирования;
- Технических условий №3-6/1525 от 15.08.24г, выданных ГКП «Астана Су Арнасы.
- технических данных фирм-изготовителей и применяемое оборудование защиты.

Рабочий проект разработан в соответствии с требованиями СП РК 4.01-101-2012 (с изменениями по состоянию на 18.02.2025 г.), СП РК 2.02-102-2022 (с изменениями от 08.10.2024 г.), СП РК 3.03-105-2014(с изменениями и дополнениями по состоянию на 19.04.2024 г.) и технической документацией заводов-изготовителей применяемого оборудования.

Помещение паркинга выполнено в конструкциях, обеспечивающих II степень огнестойкости, согласно СП РК 2.02-102-2022, рекомендаций технических справочников, а также расчетов.

Водоснабжение решено от проектируемых наружных сетей. Согласно технических условий №3-6/1525 от 15.08.24г, выданных ГКП «Астана Су Арнасы, гарантийный напор на вводе равен 0,1Мпа. Подача воды во внутренние сети водопровода подается по двум вводам Ø219х6,0мм в помещении насосной, расположенное в пятне 89 в осях В÷Г, 9÷10. запроектирована автоматическая установка спринклерного пожаротушения, воздухозаполненная (температура менее +5).

Параметры проектируемой установки автоматического спринклерного пожаротушения приняты Согласно СП РК 2.02-102-2022 таб.4 из расчета защищаемой площади, по второй группе помещении, где интенсивность орошения 0,12 л/с, площадь для расчета расхода воды 240 м2, время работы установки 60 мин (СП РК 2.02-102-2022, таб.1) площадь контролируемая одним оросителем не более 12 м2.

К насосной станции паркинга присоединены пожарные краны (ПК) с расходом - 2 струи по 5,2 л/с (объем паркинга свыше 5000 м3). ПК включаются нажатием кнопки "SB", установленной в каждом шкафу пожарного крана, от которой поступает сигнал на открытие эл.задвижки, установленного на трубопроводе в насосной станции.

Расход воды на внутреннее пожаротушение паркинга согласно гидравлического расчета с учетом спринклеров и пожарных кранов составляет 46,06 л/с или 165,82 м3/ч.

Система автоматического пожаротушения имеет одну секцию с узлом управления. Число оросителей в секции не превышает 800 шт. Число оросителей на одной ветви не превышает 6 шт. Расстояние между оросителями не более 4 м, до стен и перегородок не более 2 м. Перед самым удаленным оросителем установлен кран для манометра, для контроля давления. Спринклерный ороситель "СВВ-12" устанавливаем розеткой вверх и температурой срабатывания 68° С. Расстояние от розетки оросителя до плоскости перекрытия должно быть, от 0.08 до 0.4 м. Секция имеет узел управления спринклерный, воздушный. Узел управления находится в насосной станции в пятне 90 в осях $\Gamma \div Д$, $5 \div 8$. Насосная станция питается от городского водопровода.

Отвод стоков после срабатывания системы производится в приямки с устройством дренажных насосов. (см. Раздел ВК)

Трубную разводку спринклерной установки выполнить из стальных электросварных труб по ГОСТ 10704-91. Трубные соединения выполнить на сварке. Диаметры труб назначены на основании гидравлического расчета.

После монтажа систему промыть и испытать на герметичность.

Крепление труб выполнить согласно требованиям СП РК 2.02-102-2022.

Насосной станции пожаротушения используются насосы с параметрами согласно расчета:

-Hacoc AПТ ТТ-HC-П-2 CM80-200В, Q=46,06 л/c, H=31,4м, P=2x30,0кВтU= $3\sim400V/50$ Hz - один основной, один резервный;

-Насос-жокей CO 1 Helix First V 414/J-ET-R, Q=5,3 м3/ч, H=45,0 м, P=1x1,10кВт, U=3~400V/50Hz.

Контролируемый параметр в системе - давление. Давление в системе поддерживает до узла управления жокей-насос, после узла управления воздушный компрессор. При включении основного насоса, жокей-насос и компрессор отключаются.

Для подключения к станции пожарной техники выведены две головки ГМ-80 с управлением задвижкой снаружи.

Защите от коррозии подлежат трубопроводы установки пожаротушения и вспомогательные металлоконструкции для крепления трубопроводов и оборудования. Защита осуществляется

нанесением защитной окраски $\Pi\Phi$ -115 на два слоя по предварительно очищенной и обезиренной поверхности.

Сигнальную окраску (цвет) стальных трубопроводов систем В2 принять по ГОСТ 12.4.026-2015 красным.

Монтаж внутренних сетей водопровода и канализации вести в соответствии на СП РК 4.01-102-2013 и СН РК 4.01-02-2013., СН РК 4.01-05-2002.

Предусмотреть промывку и дезинфекцию водопроводных сетей, согласно п.158 санитарных правил «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению, местам культурно-бытового водопользования и безопасности водных объектов», утвержденных Приказом Министра национальной экономики РК от 20 февраля 2023 г. № 26

Рабочий проект разработан в соответствии с требованиями

- СН РК 2.02.02-2023 "Пожарная автоматика зданий и сооружений"
- СП РК 2.02-102-2022 Пожарная автоматика зданий и сооружений.
- СП РК 4.04-107-2013 "Электротехнические устройства".

Электроснабжение по первой категории надежности шкафа управления (ШУ) насосной станции предусмотрено в разделе ЭОМ.

Для системы пожаротушения в рабочем проекте автоматический режим управления является основным. Контролируемый параметр - давление в напорной сети за пожарными насосами.

В автоматическом режиме предусмотрен следующий алгоритм:

- при падении давлении в секции срабатывает сигнализатор давления универсальный (СДУ), установленный на узле управления, подается сигнал на открытие эл.клапанов водяных завес секции, включается основной насос. Одновременно подается сигнал на прибор пожарный "Сигнал -10" о срабатывании узла управления секции.
- при нажатии кнопки "SB", установленной в каждом шкафу пожарного крана идет сигнал в ШУ на открытие эл.затвора на трубопроводе ПК, давление в системе падает, включается основной насос.
- при срабатывании системы в прибор пожарный поступает сигнал о включении основного насоса "Пожар"
- при неисправности насосов на прибор пожарный подается сигнал "Авария",
- о работе эл.задвижек.

Вся информация с прибора пожарного "Сигнал-10" по интерфейсу поступает в комнате охраны (учтено в разделе ПС)

Прибор "Сигнал-10" установлен в насосной станции пожаротушения на отм. -2,250.

Питание эл.клапанов (220В) на водяные завесы от шкафа ШУ.

Световое табло "Станция пожаротушения" подключить к питанию без выключателя.

Кабельные линии по паркингу, к приборам, проложить в гофротрубе по потолку и стенам.

Насосную станцию заземлить согласно ПУЭ РК, с помощью стальной полос 4x25. Внутренний контур заземления выполняется разделом ЭОМ.

4.4. Электроснабжение.

Пятна 46-50.

Электрооборудование объекта ""Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г.Астана, район пересечения улиц №E22, E51, E102 (проектное наименование) и Хусейн бен Талал". Пятна 45-50." разработано на основании:

- ПУЭ "Правила устройства электроустановок";
- СП РК 4.04-106-2013 "Электрооборудования жилых и общественных зданий. Правила проектирования";
 - задания на проектирование;

- архитектурно-строительных чертежей;
- технических данных фирм-изготовителей на применяемое оборудование.

По надежности электроснабжения электроприемники дома, согласно классификации ПУЭ, относятся ко II и к I категории.

Основные показатели 87-89

Наименование	Ед.	Кол.			
	изм.	Жи	Офисы		
Категория электроснабжения		I	II	III	
Напряжение сети	В	380/220	380/220	380/220	
Расч. мощность ВРУ-Ж-1	кВт	ı	212,8		
Расч. мощность РУ-Ж-АВР1	кВт	14,34	-	-	
потребители I категории					
Расч. мощность ВРУ-К-1 (офисы)	кВт	-	-	113,65	
Коэффициент мощности	cosφ	0.92	0.93	0.93	
Максимальные потери	%	1,5	2,0	1,9	
напряжения					

Основные показатели 90-91

Наименование	Ед.	Кол.			
	изм.	Жи	Офисы		
Категория электроснабжения		I	II	III	
Напряжение сети	В	380/220	380/220	380/220	
Расч. мощность ВРУ-Ж-2	кВт	1	226,4		
Расч. мощность РУ-Ж-АВР2	кВт	20,76	-	-	
потребители I категории					
Расч. мощность ВРУ-К-2 (офисы)	кВт	1	-	119,49	
Коэффициент мощности	cosφ	0.92	0.93	0.93	
Максимальные потери	%	1,5	2,0	2,0	
напряжения					

Основные показатели паркинга

Наименование	Ед.	Кол-во
Паименование	изм.	
Категория электроснабжения		II
Напряжение сети	В	220/380
Расч. мощность ВРУ-П-1	кВт	90,5
Расч. мощность на вводе 1	кВт	81,8
Расч. мощность на вводе 2	кВт	79,0
Коэффициент мощности		0,94

Пятна 46-50.

Электроснабжение жилого дома, пятен 46,47,48, выполняется от ВРУ-Ж-1, состоящей из вводной панели ВРУ1-13-20 и распределительной панели ВРУ1-50-02 УХЛ4 (IEK), установленной в электрощитовой пятна 47. Питание к ВРУ-Ж-1 подводится от внешней питающей сети двумя взаимозаменяемыми кабельными линиями. Электроснабжение электроприемников 1-ой категории выполняется от АВР-Ж-1 и распределительной панели ВРУ-8503-2Р-115-30, установленных в электрощитовой пятна 49. Питание к АВР-Ж-1 подводится от внешней питающей сети тремя кабельными линиями от ТП. Линии питания устройств АВР от ТП подключены до вводных коммутационных аппаратов ВРУ-Ж-1.

Расчетная нагрузка на вводе в дом, а также нагрузки, передаваемые по основным звеньям питающей и групповой электросети приняты в соответствии с СП РК 4.04-106-2013, с учетом установки в кухнях электроплит и в гостиных - кондиционеров (согласно задания на проектирование).

Для электроснабжения квартир предусмотрена установка этажных щитков. Этажные щиты приняты марки ЩЭ производства "IEK".

В этажных щитках размещаются двухполюсные выключатели нагрузки с номинальным током на 63A, двухполюсные дифференциальные автоматические выключатели на номинальный ток 50A и однофазные счетчики квартирного учета электроэнергии на ток 60A, а также предусмотрены выводы для питания блоков управления домофоном (см. раздел СС). В квартирных щитках устанавливаются: на вводе двухполюсные выключатели нагрузки на номинальный ток 63A, на отходящих линиях однополюсные автоматические выключатели, а также двухполюсные автоматические выключатели дифференциального тока на токи расцепителей 10A, 16A и 32A.

Питающие сети выполнены кабелем марки ВВГнг(A)-LS в ПВХ трубах, прокладываемые открыто по лоткам и в стояках в пределах этажей.

Распределительная сеть от щита этажного до квартирного выполнена кабелем марки AcBBГнг(A)-LS, прокладываемого в ПНД трубе скрыто в слое подготовки пола.

Групповая сеть в квартирах выполнена трехпроводным (фазный, нулевой рабочий и нулевой защитный проводники) кабелем марки AcBBГнг(A)-LS, прокладываемым скрыто в бороздах или по стенам в штробах под слоем штукатурки, в каркасе межкомнатных перегородок. Групповая линия освещения от распределительной коробки до места подключения люстры выполнена кабелем марки AcBBГнг(A)-LS, прокладываемого в ПНД трубе скрыто в слое подготовки пола выше расположенного этажа. Линии освещения мест общего пользования выполнены кабелем марки AcBBГнг(A)-LS сечением 3х4мм2 по стоякам от БАУО. По этажам разводка от стояка выполнена кабелем марки AcBBГнг(A)-LS сечением 3х2,5мм2.

В каждой квартире устанавливается эл. плита 4-х комфорочная.

Согласно СП РК 4.04-106-2013, питание общего освещения квартир и штепсельных розеток выполнено раздельно.

Согласно задания на проектирование, электроустановочные изделия (розетки, выключатели, электроплиты, клеммные колодки) в квартирах и осветительные приборы в спецификации не учитываются.

Пятна 49-50.

Электроснабжение жилого дома, пятен 49,50, выполняется от ВРУ-Ж-2, состоящего из вводной панели ВРУ1-13-20 и распределительной панели ВРУ1-50-02 УХЛ4 (IEK), установленных в электрощитовой пятна 49. Питание к ВРУ-Ж-2 подводится от внешней питающей сети двумя взаимозаменяемыми кабельными линиями. Электроснабжение электроприемников 1-ой категории выполняется от АВР-Ж-2 и распределительной панели ВРУ-8503-2Р-115-30, установленных также в электрощитовой. Питание к АВР-Ж-2 подводится от внешней питающей сети двумя кабельными линиями от ТП. Линии питания устройств АВР подключены от ТП до вводных коммутационных аппаратов ВРУ-Ж-2.

Расчетная нагрузка на вводе в дом, а также нагрузки, передаваемые по основным звеньям питающей и групповой электросети приняты в соответствии с СП РК 4.04-106-2013, с учетом установки в кухнях электроплит и в гостиных - кондиционеров (согласно задания на проектирование).

Для электроснабжения квартир предусмотрена установка этажных щитков. Этажные щиты приняты марки ЩЭ производства "IEK".

В этажных щитках размещаются двухполюсные выключатели нагрузки с номинальным током на 63A, двухполюсные дифференциальные автоматические выключатели на номинальный ток 50A и однофазные счетчики квартирного учета электроэнергии на ток 60A, а также предусмотрены выводы для питания блоков управления домофоном (см. раздел СС). В квартирных щитках устанавливаются: на вводе двухполюсные выключатели нагрузки на номинальный ток 63A, на отходящих линиях однополюсные автоматические выключатели на ток 10A, а также двухполюсные автоматические выключатели дифференциального тока на токи расцепителей 16A и 32A.

Питающие сети выполнены кабелем марки ВВГнг(A)-LS в ПВХ трубах, прокладываемые открыто по лоткам и в стояках в пределах этажей.

Распределительная сеть от щита этажного до квартирного выполнена кабелем марки AcBBГнг(A)-LS, прокладываемого в ПНД трубе скрыто в слое подготовки пола.

Групповая сеть в квартирах выполнена трехпроводным (фазный, нулевой рабочий и нулевой защитный проводники) кабелем марки AcBBГнг(A)-LS, прокладываемым скрыто в бороздах или по стенам в штробах под слоем штукатурки, в каркасе межкомнатных перегородок. Групповая линия освещения от распределительной коробки до места подключения люстры выполнена кабелем марки AcBBГнг(A)-LS, прокладываемого в ПНД трубе скрыто в слое подготовки пола выше расположенного этажа. Линии освещения мест общего пользования выполнены кабелем марки AcBBГнг(A)-LS сечением 3х4мм2 по стоякам от БАУО. По этажам разводка от стояка выполнена кабелем марки AcBBГнг(A)-LS сечением 3х2,5мм2.

В каждой квартире устанавливается эл. плита 4-х комфорочная.

Согласно СП РК 4.04-106-2013, питание общего освещения квартир и штепсельных розеток выполнено раздельно.

Согласно задания на проектирование, электроустановочные изделия (розетки, выключатели, электроплиты, клеммные колодки) в квартирах и осветительные приборы в спецификации не учитываются.

Электрическое освещение.

Высота установки выключателей в квартирах принята 1,0м от уровня верха плиты перекрытия на стене со стороны дверной ручки, с расстоянием по горизонтали от дверного проема до выключателя 150мм. Высота установки штепсельных розеток принята в кухнях 1,1м, в санузлах и ванных комнатах 0,9м от уровня верха плиты перекрытия, в остальных комнатах 0,4 м от уровня верха плиты перекрытия.

В каждой квартире устанавливается эл. звонок с кнопкой на ~220В.

Проектом предусматривается рабочее, аварийное, эвакуационное и ремонтное освещение. Нормы освещенности и коэффициенты запаса приняты в соответствии со СП РК 2.04-104-2012.

В местах общего пользования управление рабочим и аварийным освещением осуществляется датчиками движения. При наличии естественного освещения в местах общего пользования предусмотрена работа датчиков движения только в темное время суток автоматически от БАУО.

Силовое электрооборудование.

Для питания электроприемников сантехнического оборудования (насосы, вентиляция) в проекте предусмотрена установка силовых щитов с автоматическими выключателями. Для потребителей, не имеющих комплектной пусковой аппаратуры, предусмотрена установка магнитных пускателей и ящиков управления.

Коммерческие помещения

Электроснабжение нежилых встроенных помещений выполняется от ВРУ-К-1 и ВРУ-К-2, вводно-распределительных устройств серии ВРУ 8503, установленных в электрощитовых пятнен 47 и 49. Питание к ВРУ-К-1 и ВРУ-К-2 подводится от внешней питающей сети одной кабельной линией.

Нагрузки на вводах силовых щитов коммерческих помещений приняты согласно СП РК 4.04-10-2013 (таблица 18) 0,15 кВт на 1 м2.

Паркинг

Внутреннее электрооборудование проектируемого паркинга жилого дома, выполнено на напряжение 380/220В с глухозаземлённой нейтралью трансформаторов. По степени надежности электроснабжения основные электроприемники относятся ко II категории. Система пожарной автоматики, вентиляция дымоудаления подключаются по I категории с подключением к дизель генераторной установке.

Распределение электроэнергии паркинга предусмотрено от вводно-распределительного устройств ВРУ-П-1, установленного в электрощитовой. Система Jet-вентиляции и групповые кабельные линии к

оборудованию системы Jet-вентиляции поставляется в комплекте. Шкаф управления насосами ШУН учтен в разделе АПТ и поставляется комплектно с насосной станцией АПТ. Монтажные и пусконаладочные работы выполняются поставщиком. Силовые щиты приняты марки ЩРН (ЕКF).

Учет электроэнергии принят на вводе в вводно-распределительное устройство. Расчётная нагрузка питающих сетей и вводов в здание определенна по СП РК 4.04-106-2013.

Обогрев водосточных воронок.

Для обогрева водосточных воронок и трубопровода в зимний период предусмотрена установка электрической антиобледенительной системы "Теплоскат" номинальной мощностью ЩСТ-4 - 0,8 кВт, которая предотвратит образование наледи в трубах, и предохранит их от повреждений. Общее количество обогреваемых воронок - 4 шт., общая длина обогреваемых труб составляет 18 м. Система "Теплоскат" состоит из следующих основных частей:

- система обогрева (нагревательные секции);
- крепёжные и установочные элементы;
- система автоматического управления;
- система электрораспределения.

В качестве тепловыделяющего элемента в системе предполагается использовать:

саморегулирующийся нагревательный кабель марки LineHeat Standard 33 Вт/м, главным преимуществом которого является автоматическая регулировка тепловыделения в ответ на изменение температуры окружающей среды (уменьшает тепловыделение при повышении температуры), что позволяет снизить количество потребляемой электроэнергии. Кабель надёжен, стоек к атмосферным осадкам, перепадам температуры и воздействию солнечной радиации, не перегреется и не перегорит даже при самопересечении, а наличие стальной оплётки обеспечит механическую защиту и улучшит отвод тепла. Срок службы кабеля, при его открытой установке составляет более 12 лет. Кабель разрезается на отрезки необходимой длины, концы которых герметично заделываются специальными высокотемпературными концевыми заделками.

Саморегулирующийся нагревательный кабель марки LineHeat Standard 33 Вт/м разработан предприятием "RSCC" (США) и выпускается целенаправленно для систем обогрева в соответствии с ТУ 3558-012-33006874-99, имеет сертификаты соответствия РОСС GB.AЮ 64.AOO483 и пожарный сертификат ССПБ GB.OПО19.A00005.

Система автоматического управления включает в себя электрические приборы и аппараты, устанавливаемые в шкафу управления и обеспечивающие включение системы обогрева при температуре наружного воздуха в диапазоне от +50/С до -150/С. Основным элементом системы является электронный терморегулятор РТ 330 и, работающий совместно с ним, датчик температуры TST05.

В системе предусмотрены меры основной и дополнительной защиты от возможных коротких замыканий, превышений допустимого тока утечки на землю и от поражений электрическим током при прямом и косвенном прикосновениях.

Монтаж и наладка оборудования обогрева водосточных воронок осуществляется компанией поставщиком оборудования. Подача напряжения на шкафы управления осуществляется кабелем ВВГнг(A)-LS расчетного сечения и производится Заказчиком.

Защитные мероприятия

Молниезащита объекта выполнена в соответствии с СП РК 2.04-103-2013 "Устройство молниезащиты зданий и сооружений".

Согласно СП РК 2.04-103-2013 здание относится к 3 категории молниезащиты.

Защита от прямых ударов молнии зданий, относящихся к 3 категории молниезащиты, выполняется посредством устройства на объекте молниеприемной сетки (клетка Фарадея).

Молниеприемная сетка выполнена из стальной проволоки диаметром не менее 6 мм и уложена на кровлю сверху или под несгораемую или трудносгораемые утеплитель или гидроизоляцию. Шаг ячеек сетки не более 6х6 м. Узлы сетки соединены сваркой. Выступающие над крышей металлические элементы (трубы, шахты, вентиляционные устройства, элементы фасада, ограждение) присоединены

к молниеприемной сетке, а выступающие неметаллические элементы - оборудованы дополнительными молниеприемниками, также присоединенными к молниеприемной сетке.

Для отвода тока молнии в землю на объекте, в совокупности со средствами молниезащиты, разработан контур заземления.

Контур заземления соединить с молниеприемной сеткой стальным прутком диаметром 10 мм. Соединитель проложить по наружным стенам под конструкциями фасада в ППР трубе Ø 20 не распространяющей горение.

Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли на расстоянии не менее 1 м от стен. Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными.

Контур заземления выполнить вертикальными заземлителями (треугольником), которые соединяются между собой горизонтальными заземлителями.

Вертикальные заземлители выполнить из круглой стали диаметром 16 мм, L=2,5м, горизонтальные - из стальной полосы 40х4 мм.

Все металлические нормально нетоковедущие части элекртооборудования, и открытые проводящие части светильников подлежат занулению путем присоединения к нулевому защитному проводнику, прокладываемому от главного заземляющего устройства. Для зануления используются 3 и 5 проводники питающей и распределительной сети. Металлические корпуса ванн подлежат занулению. Для зануления используется провод ПВ1нг-LS сечением 2,5мм2, проложенный скрыто, в подготовке пола от квартирных щитов.

На вводе в здание, выполнена система уравнивания потенциалов, в виде главной заземляющей шины, на которую присоединены все защитные проводники электрической сети и трубы коммуникаций: системы центрального отопления, водопровода, канализации и т.д. Сечение ГЗШ принято не менее сечения нулевого проводника питающей линии. При установке на стене над шиной нанести опознавательный знак.

Электромонтажные работы выполнить в соответствии с ПУЭ и СН РК 4.04-07-2019. Скрытые работы оформить актами.

Фасадное освещение. Пятно 46-50

Проект фасадного освещения ""Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г.Астана, район пересечения улиц №E22, E51, E102 (проектное наименование) и Хусейн бен Талал". Пятна 46-50." выполнен на основании задания заказчика, архитектурно-строительной части и архитектурного решения расстановки светильников.

Для электропитания архитектурной подсветки в электрощитовой Пятна 49 в подвальном этаже устанавливается ящик управления освещением (ЯУО) и шкаф фасадного освещения (ЩФО).

ЯУО имеет возможность управления освещением в двух режимах: автоматическом (от реле времени или фотореле), местном от кнопок, установленных на дверце шкафа. Для выбора режима управления в ящике установлен переключатель режимов.

Группы освещения от ЩФО до светильников выполнены кабелем с жилами из алюминиевого сплава расчетного сечения марки AcBBГнг-LS-0,66кB, прокладываемым в ПВХ трубах под элементами фасада.

Технические решения, принятые в рабочих чертежах, соответствуют требованиям экологических, санитарно-гигиенических, противопожарных и других норм, действующих на территории Республики Казахстан, и обеспечивают безопасную для жизни и здоровья людей эксплуатацию помещений при соблюдении предусмотренных рабочими чертежами.

Для обеспечения безопасности предусматривается зануление всех металлических нетоковедущих частей светильников и щитков путём присоединения к защитному заземляющему проводнику (PE).

Электромонтажные работы выполнить в соответствии с ПУЭ РК 2015 и СП РК 4.04-106-2013. Все скрытые работы оформить актами.

4.5. Связь и Сигнализация.

Системы связи. Пятно 87-91

Проект систем связи объекта ""Многоквартирные жилые комплексы со встроенными помещениями и паркингом, расположенные в г.Астана, район пересечения улиц №E22, E51, E102 (проектное наименование) и Хусейн бен Талал". Пятна 46-50." разработан на основании:

- задания на проектирование;
- действующих строительных норм и правил проектирования, государственных стандартов;
- архитектурно-строительных чертежей;
- технических данных фирм-изготовителей на применяемое оборудование.

Проектом предусматриваются следующие системы связи:

- проводной широкополосной связи;
- домофонная связь.

Проводная широкополосная связь

Проект на развертывание проводной широкополосной связи на объекте разработан на основании технических условий от филиала ТОО "BTcom infocommunications" под №22-1/2 от 22.01.24г.

Ввод оптического кабеля предусматривается от городской телекоммуникационной сети в помещение подвала.

Распределительная телекоммуникационная сеть прокладывается по паркингу в жестких ПНД трубах диаметром 63мм открыто под потолком через протяжные коробки марки КПП-01. Вертикальная разводка также осуществляется в жестких ПНД трубах диаметром 63мм через этажные протяжные коробки марки КПЭ-08.

На этажах устанавливаются оптические распределительные коробки. Распределительные коробки ОРК устанавливаются в этажных щитах ЩЭ в слаботочном отсеке.

От этажных распределительных коробок выполняется абонентская разводка ПНД трубы Ø25мм в слое подготовки пола до слаботочной ниши каждой квартиры. В каждой квартире в слаботочной нише предусматривается установка абонентского устройства ONT. Абонентское устройство ONT предоставляется оператором связи.

Разводка внутри квартиры до места установки абонентского устройства выполнена медным кабелем UTP-4x2x0,5 саt 5e. скрыто под слоем штукатурки в бороздах стен ПВХ трубе Ø 16мм.

В квартире в гостиной предусмотрена установка монтажной коробки под информационные розетки RJ-45 cat 5e.

Примечание. Все оптическое оборудование телефонии, оптоволоконные кабеля предоставляется и устанавливается оператором связи. В спецификации учтены закладные детали и трубы.

Домофонная связь

Домофонная связь и система контроля доступа организована на базе многоабонентского микропроцессорного IP видеодомофона «Dahua Technology».

Система IP видеодомофонии является системой контроля и управления доступом, и предназначена для организации доступа в контролируемое здание и передачи информации дежурному персоналу. Системой контроля и управления доступом оборудуются входы в здание, а также входы в паркинг.

РоЕ коммуттаторы устанавливаются в слаботочном отсеке этажного щита, а также в металлическом шкафу на 1-ом этаже в электрощитовой.

В слаботочном отсеке этажного щита предусматривается установка коммутаторов PoE DH-PFS4226-24GT-230. Данные коммутаторы подключаются к коммутатору DH-PFS3010-8ET-96, установленному в электрощитовой в подвале, кабелем F/UTP-4x2x0,5 cat 5e., прокладываемым в ΠBX трубе $\Pi 20$.

Абонентские переговорные устройства (УКП) подключаются к коммутаторам PoE DH-PFS3010-8ET-96 кабелем UTP-4x2x0,5 cat 5e., проложенным скрыто в ПНД трубе \emptyset 25мм в слое подготовки пола.

Обмен информации между коммутаторами осуществляется по интерфейсу Ethernet. В электрощитовой в блоке предусмотрено место оператора с программным обеспечением. Данные от коммутаторов через коммутаторы РоЕ, учтенные в разделе ВН, поступают на компьютер оператора, где обрабатываются и управляются специализированным ПО. Для обмена используется кабель типа "витая пара" марки F/UTP-4x2x0,5 cat 5e.

Блок вызова видеомофона устанавливается только при входе с улицы в подъезд жилого дома. Входа с улицы в паркинг и с паркинга в подъезд оборудуются считывателями домофонных ключей. Блок вызова домофона и считыватели домофонных ключей устанавливаются на наружный лист неподвижной створки металлической двери подъезда на высоте 1400-1600 мм. Крепление должно препятствовать несанкционированному демонтажу блока.

Электромагнитный замок и доводчик устанавливается на все входа с вызывной панелью. Абонентское (квартирное) переговорное устройство устанавливается внутри квартиры в непосредственной близости от слаботочного ввода на высоте 1200-1500м от пола.

Пожарная сигнализация. Пятно 46-50

Рабочий проект системы автоматической пожарной сигнализации, системы оповещения и управления эвакуацией и системы автоматизации противодымной вентиляции разработан на основе нормативных документов, архитектурно-строительных решений и задания на проектирование.

Проектом предлагается оснащение следующими системами:

- система автоматической пожарной сигнализации;
- система оповещения и управления эвакуацией;

Автоматическая установка пожарной сигнализации организована на базе приборов производства ООО «КБПА», предназначенных для сбора, обработки, передачи, отображения и регистрации извещений о состоянии шлейфов пожарной сигнализации, управления пожарной автоматикой, инженерными системами объекта.

В состав системы входят следующие приборы управления и исполнительные блоки:

- прибор приемно-контрольный и управления охранно-пожарный «Рубеж-2ОП» прот. R3;
- адресные дымовые оптико-электронные пожарные извещатели «ИП 212-64» прот. R3;
- адресные ручные пожарные извещатели «ИПР 513-11» прот. R3;
- адресный комбинированный светозвуковой оповещатель "ОПОП 124Б прот.R3" совместно с дымовым извещателем;
- адресные релейные модули «РМ-1» прот. R3;
- оповещатели звуковые «ОПОП124-R3»;
- оповещатели световые «ОПОП 1-R3»;
- изоляторы шлейфа «ИЗ-1» прот. R3;
- источники вторичного электропитания резервированные «ИВЭПР» прот. R3;
- боксы резервного питания «БР-12»;

Система обеспечивает:

- круглосуточную противопожарную защиту здания;
- ведение протокола событий, фиксирующего действия дежурного.

ППКПУ «Рубеж-2ОП» (далее ППКПУ) циклически опрашивает подключенные пожарные датчики, адресные метки, следит за их состоянием путем оценки полученного ответа.

Основную функцию - сбор информации и выдачу команд на управление эвакуацией людей из здания, осуществляет приемно-контрольный прибор «Рубеж-2ОП», расположенный в электрощитовой жилого блока в подвале. Для информационного обмена между приборами проектом предусмотрено объединение всех ППКУП интерфейсом RS-485.

Проектом предусмотрена передача информации на удаленный пост пожарной охраны при помощи устройства УОО-ТЛ и ретранслятора SR103-2GSM по GSM каналу.

В квартирах в жилых помещениях предусмотрена установка комбинированных светозвуковых оповещателей "ОПОП 124Б прот. R3", работающих совместно с адресными дымовыми пожарными

извещателями «ИП 212-64» прот. R3. Питание комбинированного светозвукового оповещателя "ОПОП 124Б прот.R3" осуществляется отдельной линией 12В от источника бесперебойного питания ИВЭПР, установленного в электрощитовой.

Кабельные линии связи прокладываются с учетом действующих норм и правил.

Шлейф сигнализации проложить в гофрированной ПВХ трубе. Силовые кабели проложить в гофрированной ПВХ трубе. Проходы через стены и перекрытия кабель выполнить в жесткой гладкой трубе из нераспространяющего горение пластика, с последующей заделкой зазоров между трубой и проемом, между трубой и кабелем огнезащитным составом, выходящие кабели с обеих сторон также покрыть огнезащитным составом.

При монтаже технических средств системы должны соблюдаться требования СНиП, ПУЭ действующих государственных и отраслевых стандартов. Рабочая документация разработана в соответствии с действующими нормами, правилами и стандартами.

Система оповещения о пожаре.

В соответствии с требованиями нормативных документов, помещение оборудуется системой оповещения о пожаре 1 типа, что предусматривает установку световых и звуковых оповещателей над входами в помещение.

В качестве светового оповещателя используется адресный оповещатель марки ОПОП 1-R3.

В качестве звукового оповещателя используется адресный оповещатель марки ОПОП124-R3

При монтаже технических средств сигнализации и системы оповещения должны соблюдаться требования СНиП, ПУЭ, СП Системы противопожарной защиты, действующих государственных и отраслевых стандартов.

Рабочие чертежи разработаны в соответствии с действующими нормами, правилами и стандартами.

Все работы по монтажу оборудования пожарной сигнализации выполнять в соответствии с действующими нормативными документами и рекомендациями заводов-изготовителей.

Пожарная сигнализация в коммерческих помещениях. Пятно 46-50

Проект пожарной сигнализации объекта разработан на основании:

- задания на проектирование;
- действующих строительных норм и правил проектирования, государственных стандартов;
- архитектурно-строительных чертежей;
- технических данных фирм-изготовителей на применяемое оборудование.

Проектом предлагается оснащение следующими системами:

- система автоматической пожарной сигнализации;
- система оповещения и управления эвакуацией.

Автоматическая установка пожарной сигнализации организована на базе приборов производства НВП «Болид», предназначенных для сбора, обработки, передачи, отображения и регистрации извещений о состоянии шлейфов пожарной сигнализации.

В состав системы входят следующие приборы управления и исполнительные блоки:

- прибор приемно-контрольный и управления охранно-пожарный «Рубеж-20П»;
- дымовые оптико-электронные пожарные извещатели «ИП 212-64»;
- ручные пожарные извещатели «ИПР 513-11»;
- оповещатели светозвуковые «ОПОП 124Б»;
- световые указатель "Выход" «ОПОП 1-8»;
- резервные источники питания «ИВЭПР»;
- боксы резервного питания «БР-12»;

Система обеспечивает:

- круглосуточную противопожарную защиту здания;
- ведение протокола событий, фиксирующего действия дежурного.

Основную функцию - сбор информации и выдачу команд на управление эвакуацией людей из здания, осуществляет приемно-контрольный прибор «Рубеж-2ОП», расположенный в помещении охраны на уровне паркинга. В паркинге располагается пост охраны с круглосуточным пребыванием дежурного персонала. Пост охраны оснащен приемно-контрольным прибором

«Рубеж-2ОП» в комплекте с персональным компьютером. Для информационного обмена между приборами проектом предусмотрено объединение всех ППКУП интерфейсом RS-485.

В квартирах в жилых помещениях предусмотрена установка комбинированных светозвуковых оповещателей "ОПОП 124Б прот.R3", работающих совместно с адресными дымовыми пожарными извещателями «ИП 212-64» прот. R3. Питание комбинированного светозвукового оповещателя "ОПОП 124Б прот.R3" осуществляется отдельной линией 12В от источника бесперебойного питания ИВЭПР, установленного в электрощитовой.

Для организации контроля за встроенными помещениями предусматривается установка адресных меток АМП-4 прот.R3 во встроенных помещениях. Данные адресные метки подключаются к адресной линии связи. Аналоговые дымовые и ручные пожарные извещатели подключаются к адресной метки аналоговыми линиями связи. При срабатывании пожарной сигнализации во встроенном помещении будет передаваться сигнал от адресной метки АМП-4прот.R3 на прибор приемно-контрольный.

Рабочая документация разработана в соответствии с действующими нормами, правилами и стандартами.

Система оповещения о пожаре.

В соответствии с требованиями нормативных документов, коммерческие помещения оборудуется системой оповещения о пожаре 1 типа, что предусматривает установку световых и звуковых оповещателей над входами.

В качестве светового оповещателя используется оповещатель марки ОПОП 1-R3.

В качестве звукового оповещателя используется оповещатель марки ОПОП124- R3.

Сеть оповещения выполнена кабелем КПСнг 1х2х0,75, прокладываемым в штробе в ПВХ трубе.

При монтаже технических средств сигнализации и системы оповещения должны соблюдаться требования СНиП, ПУЭ, СП Системы противопожарной защиты, действующих государственных и отраслевых стандартов.

Рабочие чертежи разработаны в соответствии с действующими нормами, правилами и стандартами.

Все работы по монтажу оборудования пожарной сигнализации выполнять в соответствии с действующими нормативными документами и рекомендациями заводов-изготовителей.

Видеонаблюдение.

Проект видеонаблюдения объекта разработан на основании:

- задания на проектирование;
- действующих строительных норм и правил проектирования, государственных стандартов;
- архитектурно-строительных чертежей;
- технических данных фирм-изготовителей на применяемое оборудование.

Видеонаблюдение

Система видеонаблюдения предназначена для визуального контроля помещений. Дополнительно к функции визуального контроля, система видеонаблюдения позволяет обеспечивать обнаружение несанкционированного проникновения в защищаемые видеокамерами зоны наблюдения.

Система видеонаблюдения реализована на базе оборудования Dahua Technology. Для обеспечения видеоконтроля за обстановкой видеокамеры устанавливаются на въездах и входах в паркинг и жилые секции, а также на путях движения автомобилей.

Система видеонаблюдения выполнена на базе IP видеокамер, сетевых коммутаторов с поддержкой стандарта PoE.

В помещении охраны предусматривается установка 19-ти дюймового телекоммуникационного шкафа (ВН1.3), в котором устанавливаются сетевые коммутаторы с SFP портами, коммутаторы с РОЕ портами, блок вентиляторов, блоки розеток, источник бесперебойного питания и 32-х канальные IP-видеорегитраторы.

К данному шкафу подключены шкафы ВН 1.1, ВН 1.2 установленные в электрощитовых.

В качестве уличных видеокамер используются камеры с объективом 2.8 - 3,6мм@F2.0 марки IPC-HFW3249E-AS-LED. Данные камеры обладают углами обзора от 107-84°. Уличные камеры устанавливаются на фасаде здания на высоте не менее 3,5 м от уровня земли.

Внутри здания используются купольные камеры с объективом 2,8-3,6мм@F2.0 марки IPC-HDW3249TM-AS-LED, которые крепятся на потолок. Данные камеры обладают углами обзора от 107-84°. Питание всех камер осуществляется по стандарту PoE от сетевого коммутатора с поддержкой стандарта PoE.

Линии передачи видеосигнала выполняются кабелем F/UTP 4x2x0.5 категории 5e.

Горизонтальная разводка выполняется открыто в ПВХ трубе Ø20 мм по конструкциям.

Прокладка кабелей до уличных камер, установленных на фасаде здания, осуществить в ПВХ трубе Ø20 мм под элементами фасадных конструкций.

Прокладка кабеля осуществляется в соответствии с ПУЭ-РК, СП РК 4.04-106-2013 и СНиП РК 3.02-10-2010.

Защитное заземление и зануление выполняется путем присоединения корпусов к общему контуру заземления объекта согласно ПУЭ РК раздел 7.

ГИП Айнанов М.