Раздел «Охрана окружающей среды»

К РАБОЧЕМУ ПРОЕКТУ

Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)

Генеральный

директор ТОО «Экопроект»

Аманжолов Г. М.

ТОО Экопроект"

2

ТОО Экопроект" ГСЛ №01094Р от 17 августа 2007 г. 000010, г. Астана, ул. М. Габдуллина, 12, тел. 8 (717 2) 94 59 91

	Исполнители:	
Руководитель проекта	All	_ Михайлова М.А.

ОГЛАВЛЕНИЕ:

1.	O	ХРАНА АТМОСФЕРНОГО ВОЗДУХА	7
	1.1.	Общие сведения об объекте, очередность строительства и пусковые комплексы	7
	1.2.	КРАТКАЯ ХАРАКТЕРИСТИКА ФИЗИКО-ГЕОГРАФИЧЕСКИХ И КЛИМАТИЧЕСКИХ УСЛОВИЙ РАЙОНА ПЛОЩАДКИ	
	CTPO1 1.3.	ИТЕЛЬСТВА ХАРАКТЕРИСТИКА РАЙОНА РАСПОЛОЖЕНИЯ ПРЕДПРИЯТИЯ ПО УРОВНЮ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО	10
		YXAYXA	20
	1.4.	ХАРАКТЕРИСТИКА ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ	21
	1.5.	ОБОСНОВАНИЕ ДАННЫХ О ВЫБРОСАХ ВРЕДНЫХ ВЕЩЕСТВ	
		НОВАНИЕ ДАННЫХ О ВЫБРОСАХ ВРЕДНЫХ ВЕЩЕСТВ НА ПЕРИОД ЭКСПЛУАТАЦИИ ОБЪЕКТА	
	1.6.	НОВАНИЕ ДАННЫХ О ВЫБРОСАХ ВРЕДНЫХ ВЕЩЕСТВ НА ПЕРИОД СТРОИТЕЛЬСТВА ОБЪЕКТА Характеристика мероприятий по регулированию выбросов в периоды особо неблагоприятных	81
		ОРОЛОГИЧЕСКИХ УСЛОВИЙ (НМУ)	104
	1.7.	РАСЧЕТ И АНАЛИЗ ВЕЛИЧИН ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ	
	1.8.	ПРЕДЛОЖЕНИЯ ПО УСТАНОВЛЕНИЮ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ (НДВ) ДЛЯ ОБЪЕКТА	
	1.9.	МЕТОДЫ И СРЕДСТВА КОНТРОЛЯ ЗА СОСТОЯНИЕМ ВОЗДУШНОГО БАССЕЙНА	
		ОБОСНОВАНИЕ ПРИНЯТИЯ РАЗМЕРА САНИТАРНО-ЗАЩИТНОЙ ЗОНЫРЕКОМЕНДУЕМЫЕ МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ И СНИЖЕНИЮ ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ	.119
		текомендуемые мегоприятия по предотвращению и онинению воздеиствия на атмосченыи 	121
•	, ,		
2.		ХРАНА ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХВОД ОТ ЗАГРЯЗНЕНИЯ И ИСТОЩЕНИЯ	
	2.1.	КРАТКАЯ ХАРАКТЕРИСТИКА ПРОЕКТИРУЕМОГО ПРЕДПРИЯТИЯ	
	2.2. 2.3.	Водопотребление и водоотведение объекта	
	2.3.	РЕКОМЕНДАЦИИ ПО ЭКСПЛУАТАЦИИ ЗЕМЕЛЬ В ВОДООХРАННЫХ ЗОНАХ И ПОЛОСАХ	
•			.12)
3. П.		ОССТАНОВЛЕНИЕ (РЕКУЛЬТИВАЦИЯ) ЗЕМЕЛЬНОГО УЧАСТКА, ИСПОЛЬЗОВАНИЕ РОДНОГО СЛОЯ ПОЧВЫ, ОХРАНА НЕДР И ЖИВОТНОГО МИРА	.130
	3.1.	РЕКУЛЬТИВАЦИЯ НАРУШЕННЫХ ЗЕМЕЛЬ, ИСПОЛЬЗОВАНИЕ ПЛОДОРОДНОГО СЛОЯ ПОЧВЫ	.130
	3.2.	Воздействие отходов предприятия на окружающую среду	.132
	3.3.	МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ НЕГАТИВНОГО ВОЗДЕЙСТВИЯ НА ПОЧВЫ	
	3.4.	Воздействия объекта на недра	
	3.5. 3.6.	Воздействие на растительность	
4.		ОЗДЕЙСТВИЕ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКУЮ СФЕРУ РЕГИОНА	
		ИЗИЧЕСКОЕ ВОЗДЕЙСТВИЕ	
5.			
	5.1.	МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ВОЗДЕЙСТВИЯ ФИЗИЧЕСКИХ ФАКТОРОВ	
	5.2.	Оценка экологических рисков	
6.	PA	АЗДЕЛ «ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ»	.145
Ш	РИЛО	ЖЕНИЕ 1. КАРТА РАЙОНА РАСПОЛОЖЕНИЯ ПРОЕКТИРУЕМОГО ОБЪЕКТА	.148
П	РИ.ЛО	ЖЕНИЕ 2. КАРТА-СХЕМА ТЕРРИТОРИИ ПРОЕКТИРУЕМОГО ОБЪЕКТА С УКАЗАНИЕМ	
		НИКОВ ВЫБРОСОВ В АТМОСФЕРУ	.150
Ш	РИЛО	ЖЕНИЕ 3. СПРАВКА О ФОНОВЫХ КОНЦЕНТРАЦИЯХ	.152
П	РИЛО	ЖЕНИЕ 4. ЛИЦЕНЗИЯ ТОО «ЭКОПРОЕКТ»	.154
ПІ	РИЛО	ЖЕНИЕ 6. РАСЧЕТ ПОЛЕЙ ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ	.157
3 <i>A</i>	гряз	НЯЮЩИХ ВЕЩЕСТВ НА ПЕРИОД ЭКСПЛУАТАЦИИ	.157
П	РИЛО	ЖЕНИЕ 7. РАСЧЕТ ПОЛЕЙ ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ	.164
		НЯЮЩИХ ВЕЩЕСТВ НА ПЕРИОД СТРОИТЕЛЬСТВА	
		ЖЕНИЕ 8. ИСХОДНЫЕ ДАННЫЕ ОБЪЕКТА	
		ЖЕНИЕ 9. ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ И РАЗРЕШЕНИЯ	

Аннотация

В настоящем проекте Раздел «Охрана окружающей среды» содержится оценка воздействия на окружающую природную среду выбросов от проектируемого объекта «Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)».

На период эксплуатации объекта источниками загрязнения выступают паркинг и открытые автостоянки, общее количество источников загрязнения составит 14 ед., в том числе 2 – организованных и 12 – неорганизованных источников выбросов 3В в атмосферу.

В выбросах паркинга и открытых автостоянок содержится 5 индивидуальных компонентов загрязняющих веществ и 1 группа веществ, обладающая эффектом суммации вредного действия.

Валовый выброс от автотранспорта не нормируется, максимально-разовый выброс включен в расчет рассевания загрязняющих веществ, чтобы оценить воздействие объекта в целом на окружающую среду.

В проекте также приведены данные по водопотреблению и водоотведению объекта, качественному и количественному составу отходов, образующихся в процессе эксплуатации объекта.

Плата по отходам будет производиться согласно заключенным договорам с обслуживающими компаниями.

На период строительства общее количество источников загрязнения атмосферы объекта составит -42 ед., в том числе 2 – организованных источника выбросов и 40 - неорганизованных.

В выбросах временных источников (без учета работы спецавтотехники) содержится 24 индивидуальных компонента загрязняющих веществ и 5 групп веществ, обладающих эффектом суммации вредного действия. Валовый выброс 3В - 36,155* т/год (без учета валового выброса от автотранспорта).

Валовый выброс от автотранспорта не нормируется, максимально-разовый выброс же включен в расчет рассевания, чтобы оценить воздействие объекта в целом на окружающую среду.

Плата по отходам будет производиться согласно заключенным договорам с обслуживающими компаниями.

В проекте также приведены данные по водопотреблению и водоотведению объекта, качественному и количественному составу отходов, образующихся в процессе строительства объекта.

Расчет максимальных приземных концентраций загрязняющих атмосферу веществ произведен на программе "ЭРА" v.2.0 фирмы "Логос-Плюс" г. Новосибирск.

На период проведения работ в соответствии с п/п 2, п.12 «Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду, утвержденной приказом Министра экологии, геологии и природных ресурсов РК» от 13.07.2021 года №246 (с изменениями, внесенными приказом и.о. Министра экологии, геологии и природных ресурсов РК от 27.11.2023 года № 317) проектируемый объект относится к объектам III категории - оказывающим минимальное негативное воздействие на окружающую среду:

- отсутствие вида деятельности в Приложении 2 ЭК РК;

ТОО Экопроект"

5

- наличие выбросов загрязняющих веществ в окружающую среду объемом более 10 тонн/год;
- накопление на объекте более 10 тонн неопасных отходов и (или) 1 тонны опасных отходов.

Экологическая оценка проектируемого объекта проведена по упрощенному порядку руководствуясь п. 3 ст. 49 Экологического Кодекса и Инструкцией по организации и проведению экологической оценки, утвержденной Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.

ВВЕДЕНИЕ

Раздел «Охрана окружающей среды» (далее POOC) — является одним из механизмов управления в природопользовании и охране окружающей среды, выявляет соответствие законодательству, инструкциям и правилам природоохранной деятельности предприятия с учетом специфики основного вида его деятельности.

РООС является управленческим инструментом проверки предприятия изнутри и за его пределами с точки зрения соблюдения природоохранного законодательства и технических требований по защите окружающей среды и уделяет большое внимание проблемам окружающей среды.

При разработке проекта использованы основные директивные и нормативные документы, инструкции и методические рекомендации по нормированию качества атмосферного воздуха, указанные в списке использованной литературы.

Рабочий проект также выполнен на основании следующих документов:

- задания на проектирование от 14.05.2025 г., выданного заказчиком ТОО «Алтын Дала Астана»;
 - архитектурно-планировочного задания №107358 от 18.08.2025 г.;
 - постановления акимата города Астаны №510-3561 от 20.11.2024 г.,
 - постановления акимата города Астаны №510-2341 от 15.07.2025 г.,
- выкопировки из проекта детальной планировки, утвержденной постановление Акимата города Астаны №000 7263 от 18.09.2025 г.;
- технического отчета об инженерно-геологических изысканиях, выполненной ТОО «САПА Гео» (ГСЛ №14004492) по заданию ТОО «Алтын Дала Астана», согласно договора №АDA/ПР/Сер/98970 от 16.06.2025г. (архив:31-25);
 - топографической съемки, выполненной ТОО «Гео Терр» от 31.01.2025 г.;
- ТУ №3-6/1281 от 20.06.2025 г. на забор воды из городского водопровода и сброс стоков в городскую канализацию, выданных ГКП "Астана су арнасы";
- ТУ № 15-14/1662 от 24.06.2025г., на подключение к системе ливневой канализации, выданных ГКП НА ПХВ "ELORDA ECO SYSTEM" АКИМАТА ГОРОДА АСТА-НЫ";
- ТУ № 19-С-48/2-5387 от 22.09.2025г. на подключение к сетям электроснабжения, выданных АО "Астана Региональная Электросетевая Компания";
- ТУ №48 от 10.06.2025 г. на подключение по телефонизации, выданных ТОО «АТ Telecom»:
- ТУ База 0052-21 (ЖК) на вх. № 1797-ТУ от 28.07.2025г. на исх. № ПО.2025.0405772 от 28.07.2025г. на присоединение к тепловым сетям, выданные АО «Астана-Теплотранзит».

Разработчик РООС: ТОО "Экопроект" (ГСЛ № 01094Р от 17.08.2007 г.)

РК, 010000, г. Астана, р-н Алматы, ул. М.Габдулина, 12.

Тел.: 8 (717 2) 94 59 91

Ген. проектировщик РП: ТОО "Экопроект"

ГСЛ 17020567 от 05.12.2017 года

БИН 000140004441

Заказчик объекта: ТОО «Алтын Дала Астана»

БИН 161140008508

Г. Астана, Улица Сығанақ. 17М Руководитель: Арпабаев А.К.

ТОО Экопроект"

1. ОХРАНА АТМОСФЕРНОГО ВОЗДУХА

1.1. Общие сведения об объекте, очередность строительства и пусковые комплексы

Данным проектом рассматривается объект: "Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)".

Проектируемый жилой комплекс имеет выгодное градостроительное положение, размещаясь на правом берегу реки Есиль в г.Астана, район «Сарыарка», ул. Ермека Серкебаева, уч. 29/1. Поверхность участка не ровная, абсолютная отметка поверхности изменяется 345,17...346,29 м.

В северо-западном направлении в 32 метрах от проектируемого объекта протекает река Сарыбулак, в южном направлении в 140 метрах - протекает река Есиль.

Расстояние до ближайшей жилой застройки от границ проектируемого объекта представлено в таблице 1.1.1.

Таблица 1.1.1

Румбы направлений	C	СВ	В	ЮВ	Ю	ЮЗ	3	<i>C</i> 3
Расстояние до жилого массива, м	86	10	230	218	34	530	84	90

Общая площадь выделенного участка составляет 4,7315 га, согласно постановлению Акимата города Астаны №510-3561 от 20.11.2024 г.

Из общей площади участка часть площади запроектировали под рассматриваемый 1 в анном проектке объект - 2,346 га.

Проектируемый объект условно разделен на 2 пусковые очереди для целей эффективного проведения строительных работ:

- Стандарт 1 1-ая очередь (1,0726 га);
- Стандарт 2 2-ая очередь (1,2734 га).

Строительство обеих очередей начнется в феврале 2026 года.

В Стандарт 1 (первую очередь) входит одна 9 этажная блок секция и три 12этажных блок секции. В Стандарт 2 (вторую очередь) входит две 9-ти этажные секции, пять 12-ти этажных блок секций и пристроенный 4-х этажный наземный паркинг на 158 м/ м.

Проектируемые квартиры соответствуют малогабаритному жилью.

Возводимые здания имеют нежилые первые этажи – в них размещаются встроенные офисные помещения. Технические помещения: тепловые пункты, насосные размещены в подвале, венткамеры и электрощитовые на отм.0,000 в паркинге.

Также, предусмотрено размещение площадок различного назначения: детская игровая площадка младшего возраста, оснащенная детскими игровыми элементами, предназначенные для игр детей, спортивная площадка, оснащенная спортивными снарядами, и площадка для детей дошкольного возраста.

Благоустройство включает также озеленение в виде цветников и газонов, посадки деревьев и кустарников и установки малых архитектурных форм, скамеек и урн.

Въезды на территорию предусмотрены с северной и южной стороны участка. Ширина проезда принята 6,0 метров, покрытие принято из асфальтобетона по щебеночному основанию с песчаной прослойкой.

Вертикальная планировка выполнена с учетом разработки минимального объема земляных работ, обеспечения водоотвода исходя из условий рельефа участка. Проект выполнен методом проектных горизонталей в увязке с прилегающей территорией.

Проект благоустройства территории выполнен с учетом обеспечения подъезда средств пожаротушения к зданиям.

Сток поверхностных вод от здания с проездов и площадок осуществляется по верху покрытий и по ним в ливневую канализацию.

Наружное освещение решено при помощи фонарей и светильников для подсветки фасадов.

Площадки для сбора мусора будут расположена на территории проектируемого участка. Расстояние от площадки для мусорных контейнеров до проектируемого жилого дома не менее 25,00м, площадка с навесом имеет ограждение с трех сторон.

Проектом предусмотрены решения по обеспечению беспрепятственного доступа к объектам социальной инфраструктуры инвалидов всех категорий и маломобильных групп населения при передвижении как пешком, так и с помощью транспортных средств.

Водоснабжение и канализация объекта предусматривается согласно техническим условиям, выданным ГКП «Астана Су Арнасы» №3-6/1281 от 20.06.2025.

Ливневая канализация объекта предусматривается согласно техническим условиям № 15-14/1662 от 24.06.2025г., выданных ГКП на ПХВ «ELORDA ECO SYSTEM» Акимата г. Астана.

Отопление объекта предусматрвиается согласно техническим условиям База 0052-21 (ЖК) на вх. № 1797-ТУ от 28.07.2025г. на исх. № ПО.2025.0405772 от 28.07.2025г. на присоединение к тепловым сетям, выданные АО «Астана-Теплотранзит».

Показатели ТЭП по Генплану:

Таблина 1 1 2

No	Наименование	Ед. изме-		по зонам (по 1ле)	Показа- тели ВСЕГО	
п/п		рения	Стандарт 1	Стандарт 2		
1	Площадь земельного участка, в том числе	га	-	-	4,7315	
	- площадь проектируемого участка	га	1,0726	1,2734	2,3460	
	- площадь участка под благоустройство	га	0,0000	0,0000	0,0000	
2	Количество квартир	ШТ.	284	473	757	
3	Этажность	этаж	9,12	4,9,12	4,9,12	
4	Общая площадь застройки зданий и сооружений, всего:	м ²	2186,71	4636,87	6 823,58	
	- секции 1-4 (жилые дома, включая офисы)	м ²	2 077,30	_	5 607,08	
	- секция 1-7 (жилые дома, включая офисы)	M ²	-	3529,78		
	- паркинг	M ²	-	1096,85	1 096,85	
	- ТП и операторская	м ²	109,41	-		
	- операторская	м ²	-	10,24	119,65	
5	Площадь покрытия проездов, тротуаров, отмостки	M ²	5498,00	5561,00	11 059,0	
6	Площадь озеленения	м ²	3041,29	2536,13	5 572,42	

ТОО Экопроект"

Ведомость элементов озеленения Стандарт-1

Таблина 1 1 3

					Таолица 1.1.3
Ŋoౖ	Наименование породы и вида насаждения	Высо- та, м	Возраст, лет	Кол-во шт.	Примечание, размер кома
			Деревья	по грунту	
1	Сосна обыкновенная	4,0	7	26	0.5
2	Ель обыкновенная	4,0	7	13	Обхват ствола 14см. Размер кома-
3	Ясень обыкновенный	4,0	7	59	1,3*1,3*0,6м. Размер ямы- 2,2*2,2*0,85м, ДЭС=0,20м
4	Черемуха татарская	4,0	7	34	2,2 2,2 0,03M, A3C=0,20M
	Итого: 132				
			Куста	рники	
5	Можжевельник вингир- ский (4 кустарника на 1п.м.)	1,0	3	82 п.м. / 328 шт.	_
6	Можжевельник казацкий(4 кустарника на 1 п.м.)	1,0	3	61 п.м. / 244 шт.	Размер кома-0,5*0,4*0,5м Размер ямы-1,0*0,65м, ДЭС=0,20м
7	Спирея Вантута (4 кустарника на 1п.м.)	1,0-1,2		197 п.м. / 788 шт.	ДЭС-0,20М
	Итого: 1360 шт.				
			Многолетн	ики и газон	
8	Шалфей дубравый	0,2-0,4	2	13 m ²	8-10 шт / м ²
9	Тысячелистник обыкно- венный	0,2-0,4	2	11 m ²	6-9 шт / м ²
10	Ирис Сибирский	0,2-0,4	2	17 м ²	20 шт/м ²
11	Газон			1677,29 м ²	смесь трав
	Итого: 1718,29				

Ведомость элементов озеленения Стандарт-2

Таблина 1 1 4

					Таолица 1.1.4
№	Наименование породы и вида насаждения	Высо- та, м	Возраст, лет	Кол-во шт.	Примечание, размер кома
			Деревья	по грунту	
1	Сосна обыкновенная	4,0	7	7	0.5
2	Ель обыкновенная	4,0	7	10	Обхват ствола 14см. Размер кома-
3	Ясень обыкновенный	4,0	7	22	1,3*1,3*0,6м. Размер ямы- 2,2*2,2*0,85м, ДЭС=0,20м
4	Черемуха татарская	4,0	7	17	2,2 2,2 0,03NI, AGC 0,20NI
	Итого: 56 шт				
			Куста	рники	
5	Можжевельник вингир-	1,0	3	127 п.м. / 508шт.	
	ский (4 кустарника на 1п.м.)				D
6	Можжевельник казацкий(4	1,0	3	123 п.м. / 492	Размер кома-0,5*0,4*0,5м Размер ямы-1,0*0,65м,
	кустарника на 1п.м.)			ШТ.	ДЭС=0,20м
7	Спирея Вантута (4 кустар-	1,0-1,5		260 п.м. / 1040	дос 0,20м
	ника на 1п.м.)			ШТ.	
	Итого: 2040 шт.				
			Многолетн	ики и газон	
8	Шалфей дубравый	0,2-0,4	2	17m^2	8-10 шт / м ²
9	Тысячелистник обыкно-	0,2-0,4	2	22M^2	6-9 шт / м ²
	венный				
10	Ирис Сибирский	0,2-0,4	2	24m ²	20 IIIT / M ²
11	Газон			1875,13 м ²	смесь трав
	Итого: 1938,13				

Ситуационная карта приведена в приложении 1. Карта-схема территории объекта с укзанием истоников выбросов ЗВ в атмосферу приведена в приложении 2.

1.2. Краткая характеристика физико-географических и климатических условий района площадки строительства

Физико-географические условия

Технический отчет об инженерно - геологических изысканиях на Объекте ТОО «САПА-Гео» (Государственная лицензия №14004492) по заданию ТОО «Алтын Дала Астана», согласно договора №АDA/ПР/Сер/98970 от 16.06.2025г.

Участок изысканий расположен по адресу: г.Астана, район «Сарыарка», район ул. Е.Серкебаева, на правом берегу реки Есиль. Поверхность территории изысканий характеризуется колебанием абсолютных отметок на момент производства работ (по устьям пробуренных скважин) в пределах 345,17-346,29м

В геоморфологическом отношении территория приурочена к левобережной пойменной террасе р. Ишим. Поверхность земли характеризуется абсолютными отметками по устьям скважин 345,17-346,29м. В геоморфологическом отношении территория изыскания расположена на водораздельной равнине. На период инженерно-геологических изысканий рельеф площадки спокойный.

Климат района резко континентальный и засушливый. Зима холодная и продолжительная с устойчивым снежным покровом. Лето сравнительно короткое, но жаркое. Территория г. Астана по климатическому районированию для строительства относится к зоне 1В.

Район относится к зоне недостаточного и неустойчивого увлажнения. Зона влажности 3 (сухая). Данная глава содержит краткие общие сведения.

Характеристика составлена по —Нячно-прикладному справочнику по климату СССР. Серия 3, вып.18. 1989г.", СП РК 2.04-01-2017 —Строжельная климатология" СН РК 2.04-03-2011 Тепловая защита гражданских зданий", СП РК ЕN 1991-1-3.2004/2011 —Волействие на несущие конструкции, Часть 1-3. Снеговые нагрузки и СП РК EN 1991-1-4.2005/2011, Часть 1-4. Ветровые воздействие, СП РК 5.01.-102-2013 Основания зданий и сооружений.

АТМОСФЕРНЫЕ ОСАДКИ

Среднее количество атмосферных осадков, выпадающих за год по г.Астана равно 319мм. По сезонам года осадки распределяются неравномерно, наибольшее их количество выпадает в теплый период года (апрель-октябрь) - 220мм, наименьшее в холодный период (ноябрь-март) - 99мм.

ТЕМПЕРАТУРА ВОЗДУХА

Годовой ход температур воздуха характеризуется устойчивыми сильными морозами в зимний период, интенсивным нарастанием тепла в короткий весенний сезон и жарой в течение короткого лета.

Среднемесячная и годовая температура воздуха

Таблица 1.2.1

_													
	1	II .	111	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
	-15,1	-14,8	-7,7	5,4	13,8	19,3	20,7	18,3	12,4	4,1	-5,5	-12,1	3,2

Как видно из таблицы, средняя месячная температура самого холодного месяца года января составляет –15,1 градусов, а самого теплого - июля +20,7 градусов тепла. В от-

дельные очень суровые зимы температура может понижаться до -51,6 градусов (абсолютный минимум), но вероятность такой температуры не более 5%.

В жаркие дни температура может повышаться до 41,6 градусов тепла, однако такие температуры наблюдаются не чаще 1 раза в 10 лет.

Расчетная температура воздуха самой холодной пятидневки по г. Астана обеспеченностью 0.98 (-37.7) градусов; обеспеченностью 0.92 (-31.2) градуса, средняя температура отопительного периода -6.3 градусов, расчетная продолжительность отопительного периода от 29.09 до 26.04 (209 суток) (см. таблицу 3.1 СП РК 2.04-01-2017).

ВЛАЖНОСТЬ ВОЗДУХА

Средняя за месяц и год относительная влажность, %.

Таблица 1.2.2

1	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
78	77	79	64	54	53	59	57	58	68	80	79	67

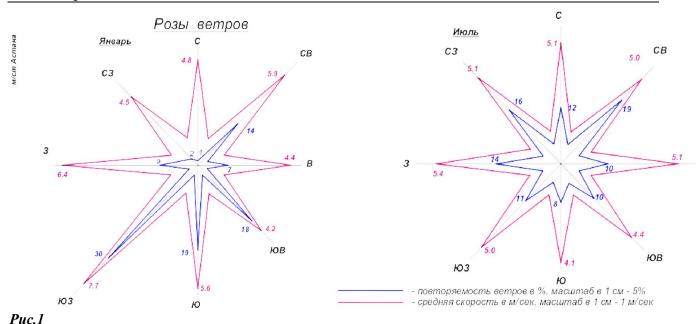
СНЕГ

Среднегодовая высота снежного покрова средняя из наибольших декадных за зиму 27,2см, максимальная из наибольших декадных 42,0см, согласно СН РК 2.04-01-2017 «Строительная климатология».

Продолжительность залегания устойчивого снежного покрова 147 дней (таблица 3.9, графа 4 СП РК. 2.04-01-2017 г.).

Согласно СП РК EN 1991-1-3-2004-2011 «Воздействия на несущие конструкции. Общие воздействия. Часть 1-3. Снеговые нагрузки»:

- номер района по снеговым нагрузкам на грунт и чрезвычайным снеговым нагрузкам- III;
- номер района по снеговым нагрузкам на покрытия вызванными чрезвычайными снеговыми наносами- IV;
- характеристическое значение снеговой нагрузки на грунт, определенное с вероятностью превышения 0.02 1.5к Π а;
- чрезвычайная снеговая нагрузка на грунт в результате снегопада исключительно низкой вероятности $3.0 \ \kappa\Pi a$.


ГЛУБИНА ПРОМЕРЗАНИЯ ГРУНТОВ

Нормативная глубина промерзания для Астаны 171 см (для суглинков и глин) и 223 см (для песчаных грунтов), 253 см (для крупно-обломочных грунтов).

Максимальная глубина проникновения нулевой изотермы - 219 см, при максимальной обеспеченности 0,98 (таблица 3.7, СП РК 2.04-01-2017).

ОПАСНЫЕ АТМОСФЕРНЫЕ ЯВЛЕНИЯ

Среднее число дней с туманом составляет 23 дня, среднее число дней с метелью - 26, среднее число дней с грозой -24, среднее число дней с пыльной бурей-4,8.

BETEP

Для исследуемого района характерны частые ветры, дующие преимущественно в юго-западном и северо-восточном направлениях (см. рис. 1).

Средняя скорость за отопительным периода 5,0м/сек, максимальная из средних скоростей по румбам в январе-7,2м/сек; минимальная из средних скоростей ветра по румбам в июле 2,2 м/сек, среднее число дней со скоростью ≥ 10 м/сек при отрицательной температуре воздуха 4.

Наиболее сильные ветры дуют в зимние месяцы. В летние месяцы ветры имеют характер суховеев. Количество дней с ветром в году составляет 280-300.

Согласно СП РК EN 1991-1-4-2005-2011 «Воздействия на несущие конструкции. Общие воздействия. Часть 1-4. Ветровые воздействия»:

- ветровой район IV;
- ветровой района по скорости ветра в зимний период –IV;
- средняя скорость ветра за зимний период 5,0м/сек;
- давление ветра 0.77 кПа;
- основное значение базовой скорости ветра на высоте 10м над поверхностью земли соответствующие 10 минутному интервалу осреднения с вероятностью превышения 0.02 35м/сек.

Река Есиль является основной водной артерией г. Астаны, берет начало в горах Нияз Карагандинской области и впадает в р. Иртыш на территории России. Длина реки от истока до северной границы Республики Казахстан 1607км. Длина реки от истока до г. Астаны 209км, площадь водосбора 7400км2, средний уклон водной поверхности 0,001. Абсолютные отметки уреза воды в реке изменяются от 505м до 340м. Имея большую площадь водосбора, река Есил сохраняет небольшой сток до самых осенних дождей.

Речной сток р. Есиль формируется в основном за счет талых вод и атмосферных осадков, доля грунтового потока составляет незначительный процент. Средний годовой расход воды при естественном режиме равен 6,28 м3/с. С 1970 года река зарегулирована Вячеславским водохранилищем, и режим реки определяется преимущественно за счет пропусков из него.

Пик половодья на реке Есиль отмечается обычно во второй декаде апреля. Максимальный зафиксированный расход воды (1200 м 3 /с) проходил у пос. Тельмана 16-17 апреля 1948 года. Расчетный максимум половодья 0,1%-ной обеспеченности — 2330 м 3 /с.

Во время высоких половодий, при аварийном сбросе из Вячеславского водохранилища происходит затопление значительных территорий, в основном левобережной поймы

Геолого-литологическое строение

В геологическом строении участка по данным буровых работ, принимают участие элювиальные образования коры выветривания поотложениям мезозойских отложении, представленные глинистыми грунтами, (суглинки, глины), дресвяно-щебенистыми грунтами, перекрытые сверху аллювиальными отложениями четвертичного возраста — заторфованными глинистыми грунтами и суглинками. Все перечисленные отложения сверху перекрыты насыпными грунтами, мощностью 0,60-2,60м., и почвенно-растительным слоем, мощностью 0,20м.

Верхняя часть разреза аллювиальных отложений сложена заторфованными глинистыми грунтами, черного цвета, полутвердой консистенции, которые вскрыты (только в скважинах: A02-25 и A03-25), на глубине 2,40-2,60, мощностью 0,60-0,70м.

Нижнюю часть разреза комплекса аллювиальных отложений слагают суглинки коричневого цвета, с прослойками песка, от твердой до тугопластичной консистенции, которые вскрыты, (кроме скважин: A02-25 и A03-25), на глубине 0,80-1,80м., мощностью 0,50-1,30м.

Элювиальные глинистые грунты по породам мезозойских отложении, залегают непосредственно под аллювиальными отложениями, которые вскрыты на глубине 2,0-3,20м., вскрытой мощностью 6,50-9,40м.

Дресвяно-щебенистые грунты по известнякам вскрыты на глубине 9,0-12,20м., вскрытой мощностью 7,80-11,0м. Дресвянощебенистые грунты по известнякам, бежевого цвета, слабой.

Физико-механические свойства грунтов

На основании полевого визуального описания грунтов, подтвержденного результатами лабораторных испытаний, проведено разделение грунтов, слагающих участок изысканий на инженерногеологические элементы в стратиграфической последовательности их залегания:

ИГЭ - 1. Насыпные грунты tQIV;

ИГЭ - 2. Заторфованные глинистые грунты aQII-IV;

ИГЭ – 3. Суглинки aOII-IV:

ИГЭ - 4. Глинистые грунты e(MZ);

ИГЭ - 5. Дресвяно-щебенистые грунты e(MZ).

Для каждого выделенного инженерно-геологического элемента приводятся частные значения физико-механических свойств, данные сдвиговых и компрессионных испытаний лабораторными методами, вычисление нормативных значений характеристик грунтов.

Инженерно-геологический элемент – 1.

Насыпные грунты tQIV характеризуется на данном участке как слежавшийся, состоявшие из суглинка и дресвы.

Насыпные грунты, учитывая их неоднородность, в качестве естественного основания служить не могут, для них рекомендуется плотность равной 1,85 г/см3 (по опыту работ на аналогичных грунтах).

 $\it Инженерно$ -геологический элемент -2. Заторфованные глинистые грунты aQ II-IV характеризуются следующими показателями физических свойств в таблице 1.2.3.

Таблица 1.2.3

№	Наименование	Единица	Количе- ство	Предел значе		Средние (норма-	
П.П.	показателей	измерения	определе- ний	миним.	максим.	тивные) значения	
1.	Природная влажность	%	3	42,4	50,6	46,7	
2.	Влажность на пределе текучести	%	3	53,4	60,8	57,6	
3.	Влажность на пределе раскатывания	%	3	40,5	48,3	44,7	
4.	Число пластичности	%	3	12,5	13,1	12,8	
5.	Консистенция		3	0,14	0,18		
6.	Плотность грунта	г/см3	3	1,18	1,26	1,21	
7.	Плотность частиц грунта	//	3	2,74	2,75	2,75	
8.	Коэффициент пори- стости	доли ед.	3	2,29	2,37	2,32	
9.	Степень влажности	//	3	0,50	0,61	0,55	

Относительное содержание органических веществ составляет 0,19 д.е., что характеризует грунты как средне заторфованные.

Нормативные значения характеристик для илов рекомендуем принять по материалам изученности:

Удельное сцепление, с - 10 кПа;

Угол внутреннего трения, ф - 12 градусов;

Модуль деформации, Евод – 2,0 МПа;

Плотность грунта, р - 1,56 г/см3.

За расчетные значения характеристик по деформациям рекомендуется принять их нормативные значения с коэффициентом надежности по грунту равном 1.

Удельное сцепление, с - 10 кПа;

Угол внутреннего трения, ф - 12 градусов;

Плотность грунта, р - 1,56 г/см3.

За расчетные значения характеристик по несущей способности рекомендуется принять их нормативные значения с коэффициентом

надежности по грунту равном 1,5 для удельного сцепления и 1,1 для угла внутреннего трения: Удельное сцепление, с - 7 кПа;

Угол внутреннего трения, ф - 11 градусов;

Плотность грунта, р - 1,56 г/см3.

Инженерно-геологический элемент – 3.

Суглинки aQ II-IV характеризуются следующими показателями физических свойств, приведенными в таблице 1.2.4

ТОО Экопроект"

Таблица 1.2.4

№	Наименование показателей	Единица	Количе- ство	Предел значе		Средние (норма-	
	показателеи	измерения	определе- ний	миним.	мак- сим.	тивные) значения	
1.	Природная влажность	%	6	11,2	24,4	18,8	
2.	Влажность на пределе текучести	%	6	18,9	33,5	29,0	
3.	Влажность на пределе раскатывания	%	6	11,4	21,5	17,2	
4.	Число пластичности	%	6	7,5	14,6	11,8	
5.	Консистенция		6	<0	0,29		
6.	Плотность грунта	г/см3	6	1,93	2,05	1,97	
7.	Плотность частиц грунта	//	6	2,69	2,74	2,72	
8.	Коэффициент пори- стости	доли ед.	6	0,46	0,76	0,64	
9.	Степень влажности	//	6	0,66	0,88	0,78	

Инженерно-геологический элемент – 4.

Глинистые грунты e(MZ) характеризуются следующими показателями физических свойств, приведенными в таблице 1.2.5.

Таблица 1.2.5

№	Наименование показателей	Единица измерения	Количе- ство определе- ний	Предел значе миним.		Средние (норма- тивные) значения
1.	Природная влажность	%	13	9,7	25,8	17,1
2.	Влажность на пределе текучести	%	13	19,5	63,3	39,3
3.	Влажность на пределе раскатывания	%	13	11,3	28,6	17,7
4.	Число пластичности	%	13	8,2	36,4	21,6
5.	Консистенция		13	<0	0,23	
6.	Плотность грунта	г/см3	13	1,94	2,21	2,10
7.	Плотность частиц грунта	//	13	2,71	2,75	2,73
8.	Коэффициент пори- стости	доли ед.	13	0,39	0,70	0,53
9.	Степень влажности	//	13	0,68	1,03	0,87

Инженерно-геологический элемент – 5.

Дресвяно-щебенистые грунты e(MZ) характеризуются содержанием определяющей фракции (частиц крупнее 2,0 мм) в пределах 76,0 -85,0%, со средним значением 81,1%, содержание суглинистого заполнителя составляет 15,0-24,0%.

По данным лабораторных исследований дресвяно-щебенистые грунты характеризуются как невыветрлые, слабо и сильновыветрелые, в основном слабовыветрелые (зна-

чения коэффициентов выветрелости находятся в пределах 0,42 - 0,89, со средним значением 0,63).

По прочности обломки осадочных пород изменяется от очень прочных до пониженной прочности, в основном грунты средней прочности, (значения коэффициентов истираемости изменяются от 0,09 до 0,53, со средним значением 0,21).

Нормативные характеристики для дресвяно-щебенистых грунтов рекомендуется принять по материалам изученности с учетом требований нормативных документов, действующих на территории РК:

Условное расчетное сопротивление - 400 кПа;

Плотность грунта - 2,20 г/см3.

Модуль деформации для дресвяных грунтов по результатам штампоопытов, из материалов изученности, составляет 29,0 МПа.

Засоленность и агрессивность грунтов

По суммарному содержанию воднорастворимых солей, согласно требованиям ГО-СТа 25100-2020, грунты слагающие участок изысканий относятся, к незасоленным.

Степень агрессивности грунтов (таблица Б.1.2. СП РК 2.01-101-2013)по отношению к бетонам марки W4 по водонепроницаемости, на портландцементе — среднеагрессивные, реже сильноагрессивные, к железобетонным конструкциям грунты слабоагрессивные

Гидрогеологические условия.

На участке изысканий по данным бурения грунтовые воды вскрыты на глубине 1,0-1,60м (абсолютные отметки установившегося уровня составили 344,13-345,09м). Единовременный замер установившегося уровня грунтовых вод на участке изысканий производился 29.06.2025г. В условиях естественного режима уровень грунтовых вод подвержен сезонным колебаниям: минимальное стояние отмечается в марте, максимальное приходится на начало мая. Амплитуда колебания уровня в изученном районе составила 1,20-1,50м.

При весеннем максимуме необходимо ожидать подъем уровня грунтовых вод на 1,0м, выше на дату единовременного замера уровня грунтовых вод на 29.06.2025г.

Площадка изысканий относится к подтопленной подземными водами.

По лабораторным исследованиям грунтовые воды характеризуются как хлориднонатриевые, очень жесткие, слабощелочные и солоноватые.

Агрессивность грунтовых вод по отношению к свинцовой оболочке кабеля – средняя, к алюминиевой оболочке кабеля – высокая, по отношению к стальным конструкциям грунтовые воды корродирующие.

По отношению к бетонам марки W4 грунтовые воды на портландцементе неагрессивные, по отношению к железобетонным конструкциям – воды среднеагрессивные.

Выводы и рекомендации

8.1 Участок изысканий расположен по адресу: г.Астана, район «Сарыарка», район ул. Е.Серкебаева, на правом берегу реки Есиль.

Поверхность территории изысканий характеризуется колебанием абсолютных отметок на момент производства работ (по устьям пробуренных скважин) в пределах 345,17-346,29м.

8.2 Территория г. Астаны расположена на Казахском щите, на котором не проявляются тектонические явления и поэтому ее территория не является сейсмоактивной в соответствии с Картой сейсмического районирования территории Казахстана.

8.3 Климат района резко континентальный и характеризуется продолжительной и холодной зимой, коротким, но жарким летом. Район относится к зоне недостаточного и неустойчивого увлажнения. Средняя месячная температура в январе составляет –15,1 градусов, в июле - +20,7 градусов. Среднегодовая скорость ветра равна 4,8 м/сек. Количество дней с ветром в году составляет 280-300. Нормативная глубина промерзания для Астаны 171 см (для суглинков и глин) и 223 см (для Песчаных грунтов), 253 см (для крупнообломочных грунтов). Среднегодовая высота снежного покрова средняя из наибольших декадных за зиму 27,2см, максимальная из наибольших декадных 42,0см, согласно СН РК 2.04-01-2017 «Строительная климатология».19 Максимальная глубина проникновения нулевой изотермы - 219 см, при максимальной обеспеченности 0,98 (таблица 3.7, СП РК 2.04-01- 2017). Абсолютный максимум зафиксирован в апреле - 350 см. Среднегодовая величина относительной влажности составляет 69%.

- 8.4 В геологическом строении участка по данным буровых работ, принимают участие элювиальные образования коры выветривания по отложениям мезозойских отложении, представленные глинистыми грунтами, (суглинки, глины), дресвяно-щебенистыми грунтами, перекрытые сверху аллювиальными отложениями четвертичного возраста заторфованными глинистыми грунтами и суглинками. Все перечисленные отложения сверху перекрыты насыпными грунтами, мощностью 0,60-2,60м., и почвенно-растительным слоем, мощностью 0,20м.
- 8.5 На участке изысканий по данным бурения грунтовые воды вскрыты на глубине 1,0-1,60м (абсолютные отметки установившегося уровня составили 344,13-345,09м). Единовременный замер установившегося уровня грунтовых вод на участке изысканий производился 29.06.2025г. В условиях естественного режима уровень грунтовых вод подвержен сезонным колебаниям: минимальное стояние отмечается в марте, максимальное приходится на начало мая. Амплитуда колебания уровня в изученном районе составила 1,20-1,50м.

При весеннем максимуме необходимо ожидать подъем уровня грунтовых вод на 1,0м, выше на дату единовременного замера уровня грунтовых вод на 29.06.2025г. Участок изысканий подтоплен.

Величины коэффициентов фильтрации для водовмещающих грунтов приняты по материалам изученности:

- для насыпных грунтов tQIV 0,002 0,30 м/сут;
- для заторфованных глинистых грунтов aQ II-IV -0,002 0,003 м/сут;
- для суглинков aQ II-IV 0,0001 0,090 м/сут;
- для глинистых грунтов e(MZ) 0,00008 0,14 м/сут;
- для дресвяно-щебенистых грунтов e(MZ) 1,2 2,35 м/сут.
- 8.6 По лабораторным исследованиям грунтовые воды характеризуются как хлоридно-натриевые, очень жесткие, слабощелочные и солоноватые.

Агрессивность грунтовых вод по отношению к свинцовой оболочке кабеля — средняя, к алюминиевой оболочке кабеля — высокая, по отношению к стальным конструкциям грунтовые воды корродирующие. По отношению к бетонам марки W4 грунтовые воды на портландцементе неагрессивные, по отношению к железобетонным конструкциям — воды среднеагрессивные.

8.7 По суммарному содержанию воднорастворимых солей, согласно требованиям ГОСТа 25100-2020, грунты слагающие участок изысканий относятся, к незасоленным. Степень агрессивности грунтов (таблица Б.1.2. СП РК 2.01-101-2013) по отношению к бетонам марки W4 по водонепроницаемости, на портландцементе — среднеагрессивные, реже сильноагрессивные, к железобетонным конструкциям грунты слабоагрессивные.

ТОО 9копроект"

8.8 Степень коррозионной агрессивности грунтов (ГОСТ 9.602-2016, таблицы1,2,4) по отношению к свинцовой оболочке кабеля — средняя и высокая, к алюминиевой оболочке кабеля — высокая, к стальным конструкциям — высокая.

8.9 При проектировании рекомендуем использовать следующие прочностные и деформационные характеристики (таблица 1.2.6).

Таблица 1.2.6

№	Наименование	Единица изме-	Значения ха	рактеристик
п.п	характеристик	рения	Нормативные	Расчетные по деформациям
	ИГЭ 2. Заторфованны	е глинистые гру	ты аQ _{ІІ-ІV}	
1	Удельное сцепление, с	кПа	10	10
2	Угол внутреннего трения, ф	Градус	12	12
3	Модуль деформации, Е	МПа	2,0	-
4	Плотность грунта, р	г/см ³	1,56	1,56
5	Относительное содержание органических веществ	д.е.	0,19	-
	ИГЭ 3.	Суглинки аQ _{п-1}	IV	•
1	Удельное сцепление	кПа	21	17
2	Угол внутреннего трения	Градус	21	20
3	Модуль деформации	МПа	7,0	-
4	Плотность грунта	г/см ³	1,97	1,95
	ИГЭ 4. Глини	стые грунты е(1	MZ)	
1	Удельное сцепление	кПа	30	22
2	Угол внутреннего трения	Градус	27	25
3	Модуль деформации	МПа	13,0	-
4	Плотность грунта	МПа	2,10	2,07
	ИГЭ 5. Дресвяно-що	ебенистые грунт	ы е(МZ)	
1	Условное расчетное сопро- тивление	кПа	400	-
2	Плотность грунта	градус	2,20	-
3	Модуль деформации по данным штампоопытов из материалом изученности	МПа	29,0	-

8.10 Несущая способность свай приведена без учета коэффициента надежности по грунту, который равен 1,25.

При проектировании свайных фундаментов несущую способность свай по грунту необходимо уточнить по результатам полевых испытаний свай.

- 8.11 Опыта статического зондирования выполнялись с поверхности земли. При забивке свай со дна котлована данные несущей способности свай по результатам статического зондирования необходимо пересчитать без учета снимаемой толщи грунта.
 - 8.12 При проектировании фундаментов предусмотреть следующие мероприятия:
- защиту бетонных и железобетонных конструкций от агрессивного воздействия грунтов и грунтовых вод;
- антикоррозионную защиту подземных конструкций из стали, свинцовых и алюминиевых оболочек кабеля от агрессивного воздействия грунтов и грунтовых вод;
- мероприятия, исключающие подтопление поверхностными и грунтовыми водами подземной части зданий и сооружений при строительстве и эксплуатации.

8.13 При заглубленной зданий и сооружений ниже уровня грунтовых вод предусмотреть строительной водопонижении при закладке фун-

даментов и мероприятия исключающие подтопление грунтовыми водами подземной части зданий и сооружений при эксплуатации.

- $8.14~ {\rm При}$ проектировании фундаментов зданий и сооружений необходимо учитывать глубину промерзания грунтов, а при проектировании подземных водонесущих коммуникаций величину проникновения $-\theta$ ", максимальная величина которого зафиксирована в апреле $-304~{\rm cm}$.
- 8.15 Группы грунтов по условиям разработки рекомендуется принять согласно СН РК 8.02-05-2002:

Таблица 1.2.7

Наименование грунтов и краткая ха-	CH PK 8.02-05-2002
рактеристика	сборник 1. Земляные работы, таблица 1-1
Насыпные грунты	26 A
Заторфованные глинистые грунты	5 A
Суглинки твердые	35 Г
Суглинки полутвердые	35 B
Суглинки тугопластичные	35 Б
Глины	8 Д
Дресвяно-щебенистые грунты	14

8.16 По сложности инженерно – геологических условий согласно СН РК 1.02-18-2007 участок изысканий относится к II категории.

1.3. Характеристика района расположения предприятия по уровню загрязнения атмосферного воздуха

Метеорологические (климатические) условия оказывают существенное влияние на перенос и рассеивание вредных примесей, поступающих в атмосферу. К основным факторам, определяющим рассеивание примесей в атмосфере, относятся ветра и температурная стратификация атмосферы. На формирование уровня загрязнения воздуха оказывают также влияние туманы, осадки и т.д.

Фоновые концентрации установлены с учетом данных наблюдений, по постам г. Астана: №5, 2, 1, 3, 4.

Расчет рассеивания загрязняющих веществ, произведен с учетом фоновых концентраций, предоставленных РГП «Казгидромет» Дочернее государственное предприятие «Центр гидрометеорологического мониторинга г. Астана».

Фоновые концентрации установлены с учетом данных наблюдений по г. Астана за период 2022 - 2024 годы (приложение 3).

В связи с развитием г. Астана, ростом автотранспортного парка, в целом по городу наблюдается тенденция к увеличению валового выброса таких ингредиентов как: сажа, оксиды азота, серы, углерода и др.

Значения существующих фоновых концентраций

Таблица 1.3.1

		Концентрация Сф - мг/м ³									
Номер поста	Примесь	Штиль	Скоро	ость ветра	a (3 - U*)	м/сек					
		0-2 м/сек	север	восток	юг	запад					
	Взвешанные частицы РМ2.5	0.0639	0.0409	0.0283	0.0243	0.0176					
	Взвешанные частицы РМ10	0.0701	0.0454	0.0267	0.0207	0.0162					
N 5 0 4 0 4	Азота диоксид	0.0885	0.1126	0.091	0.0881	0.0846					
№5,2,1,3,4	Взвеш.в-ва	0.4919	0.4723	0.4829	0.4694	0.5021					
	Диоксид серы	0.0343	0.0215	0.027	0.0289	0.0166					
	Углерода оксид	1.2916	1.0709	1.2807	1.3691	1.2134					
	Азота оксид	0.3869	0.3056	0.4015	0.3158	0.2977					

1.4. Характеристика источников выбросов загрязняющих веществ в атмосферу

Характеристика источников выбросов загрязняющих веществ в атмосферу на период эксплуатации объекта

Источниками загрязнения атмосферы на период эксплуатации являются:

- автопаркинг;
- открытые автостоянки.

Автопаркинг на 158 автомест

Проектом предусматривается наземный автопаркинг, вписанный в юго-западной части участка на 158 а/м. В паркинге предусмотрено автоматическое пожаротушение, приточно-вытяжная вентиляция, дымоудаление, сигнализация.

Вентиляционные выбросы от автопаркинга предусмотрены выше кровли здания на 1,5 м выше конька крыши самой высокой части здания на высоте 39 м - *ucm. 0001*.

Выброс в атмосферу вредных веществ происходит при движении автотранспорта по территории паркинга. В паркинге проектом предусмотрен въезд-выезд (*ucm. 6001*).

Параметры выбросов указаны в табл. 1.4.2.

При работе автотранспорта (максимальный выброс загрязняющих веществ происходит при въезде-выезде автотранспорта) в атмосферу выделяются следующие загрязняющие вещества: оксид углерода, пары бензин, азота оксиды, серы диоксид.

Валовый выброс от передвижных источников не учитывается, максимальноразовый выброс учтен в расчете рассеивания ЗВ в атмосфере для оценки вклада загрязнения атмосферы от данных источников.

Открытые автостоянки

Источником загрязнения воздушного бассейна от проектируемого объекта также являются открытые автостоянки по перимеру участка:

```
- ист. 6002 - на 10 а/м,

- ист. 6003 - на 11 а/м,

- ист. 6009 - на 7 а/м,

- ист. 6005 - на 9 а/м,

- ист. 6006 - на 5 а/м,

- ист. 6010 - на 11 а/м,

- ист. 6011 - на 10 а/м,

- ист. 6012 - на 3 а/м.

- ист. 6017 - на 3 а/м.
```

Источники выбросов носят неорганизованный характер - ист. 6002 -6012.

При работе автотранспорта (максимальный выброс загрязняющих веществ происходит при въезде-выезде автотранспорта со стоянки) в атмосферу выделяются следующие загрязняющие вещества: оксид углерода, бензин, азота диоксид, азота оксид, серы диоксид.

Валовый выброс от передвижных источников не учитывается, максимальноразовый выброс учтен в расчете рассеивания ЗВ в атмосфере для оценки вклада загрязнения атмосферы от данных источников.

Дизельгенератор аварийный в ТП

В ТП для нужд паркинга для аварийного электроснабжения, пожарного огнетушения и дымоудаления проектом предусмотрен дизельгенератор мощностью 1250 кВА (1000 кВт).

При работе дизельгенератора в атмосферу выделяются такие загрязняющие вещества как: углерода оксид, азота оксид, азота диоксид, сажа, углеводороды, серы диоксид, формальдегид, бенз(а)пирен.

Выбросов от дизельгенератора (ист. 0002) приведены в таблице 1.4.1.1.

Валовый выброс от дизельгенератора не нормируется, выброс оплачивается пофактическому объему соженного топлива.

Аварийные выбросы, связанные с возможными аварийными ситуациями, не нормируются. На объекте организуется учет фактических аварийных выбросов за истекший год для расчета экологических платежей.

Источники выбросов при эксплуатации:

Источник 0001, 0002 – организованные источники выброса.

Источники 6001-6012 – неорганизованные источники выброса.

Перечень проектируемым источником загрязнения, его комбинации с суммирующим вредным действием, классы опасности приведены в табл. 1.4.1., 1.4.1.1, 1.4.1.2. Параметры вредных веществ, выбрасываемых в атмосферу представлены в таблице 1.4.2.

Ввод в строй новых источников выбросов загрязняющих веществ в атмосферу на период разработки проекта не предусматривается.

Характеристика источников выбросов загрязняющих веществ в атмосферу на период строительства объекта

На период строительства проектируемого объекта происходит временное загрязнение окружающей среды выбросами машин и механизмов, работающих на стройплощадке, также при земляных работах и прочих процессах строительства.

Перед началом работ должны быть выполнены следующие мероприятия по безопасной организации стройплощадки, выполнение которых позволит обеспечить соблюдение требований охраны труда и техники безопасности:

- устройство ограждений строительной площадки и выявленных опасных зон;
- выбор монтажного крана с установлением границ действия потенциально опасных факторов;
- размещение административно-бытовых помещений согласно норм СН РК 1.03-02-2007 «Инструкция по проектированию бытовых зданий и помещений строительно-монтажных организаций»;
 - размещение площадок складирования, навесов, закрытых складов;
 - размещение временных дорог и проходов;
 - выбор освещения строительной площадки;
 - защита окружающей территории от воздействия опасных факторов;
- определение границы действия потенциально опасных факторов от строящегося здания, опасных и вредных производственных факторов.

Дорожные машины и оборудование находятся на объекте только в том составе, которое необходимо для выполнения технологических операций определенного вида работ. По окончании смены машины перемещаются на площадки с твердым покрытием.

Основными источниками загрязнения при этом являются следующие процессы, механизмы и материалы:

- В период строительных работ используется битумный котел (*ист. 0001*). Топливом является диз.топливо. При сжигании топлива в атмосферу через дымовую трубу выделяются: азота оксид, азота диоксид, серы диоксид, оксид углерода, сажа. Также выделяются пары углеводородов предельных C_{12} - C_{19} при нагреве битума.
- Сваебойка с ДВС на диз.топливе (*ист. 0002*). При этом в атмосферу выбрасываются следующие загрязняющие вещества: сажа, углерода оксид, серы диоксид, азота диоксид, азота оксид, углеводороды, бенз(а)пирен, которые выбрасываются в атмосферу через выхлопную трубу H = 5.0 м; Д = 0.01 м.
- Автотранспортные работы (*ист.* 6001-6008). На площадке проведения строительных работ работают виды автотехники, перечень которых представлен в п.1.5. При их работе в атмосферу выделяется азота диоксид, углерод оксид, углероды (керосин), сажа (углерод черный), диоксид серы, бенз(а)пирен при работе механизмов на дизтопливе.
- Предусматривается машины сверлильные (*ucm. 6009*), шлифовальные электрические (*ucm. 6010*). При их работе в атмосферу неорганизованно выделяются пыль абразивная, взвешенные вещества.
- Предусмотрен большой объем земляных работ (uc.~6010). При этом происходит выделение пыли неорганической в пересчете на пыль неорганическую с содержанием SiO₂ 70-20%.
- При строительстве используются инертные материалы, перечень которых представлен в п. 1.5. Инертные материалы на площадке продолжительно не хранятся, подвозятся к месту проведения работ по мере необходимости. Загрязнение воздушного бассейна происходит при погрузочно-разгрузочных работах. При этом происходит выделение пыли неорганической в пересчете на пыль неорганическую с содержанием SiO₂ 70-20% (*ист.6011-6022*).

• На строит.площадке используются лакокрасочные материалы (*ист.6023-6035*), перечень которых представлен в п. 1.5. При проведении окрасочных работ выделяются следующие загрязняющие вещества: ксилол,толуол, уайт-спирит, ацетон, спирт бутиловый, спирт этиловый, этилцеллозольв.

- Также используются электросварочные работы, сварка с применением пропан-бутановой смеси, газовая сварка и резка (*ист.6036-6039*). При этом в атмосферу неорганизованно выделяются такие загрязняющие вещества, как марганец и его соединения (в пересчèте на марганца оксид), железа оксиды (в пересчèте на железо), азота оксиды, углерода оксид, винил хлористый.
- Пункт Мойки колес (*ист.* 6040). Для обеспечения экологической чистоты города и строительной площадки, как правило у выезда из территории стройплощадки, устраивается Пункт мойки колес автотехники. Его рекомендуется выполнить на бетонном основании с устройством приямка (справа) для стока воды и грязи, оборудованные: 2-3 моечными пистолетами, дренажной системой, резервуаром для воды (с утеплением в осенне-зимний период). При въезде-выезде автотехники в атмосферу выделяется азота диоксид, азота оксид, углерод оксид, керосин, сажа (углерод черный), диоксид серы.

Источники выбросов при строительстве:

Источник 0001, 0002 – организованные источники выброса.

Источники 6001 - 6040 – неорганизованные источники выброса.

Также на строительной площадке временно может хранится инвентарь, опоры и т.п. на открытой площадке. При этом выброс загрязняющих веществ не происходит.

Перечень вредных веществ, выбрасываемых в атмосферу временными источниками загрязнения, их комбинации с суммирующим вредным действием и классы опасности приведены в таблице 1.4.3.

Параметры выбросов загрязняющих веществ приведены в табл. 1.4.4 на период строительства.

Таблица 1.4.1 Перечень загрязняющих веществ, выбрасываемых в атмосферу на период эксплуатации объекта

Астана 2025, МЖК по ул.Серкебаева

Код		ПДК	ПДК	ОБУВ	Класс	Выброс	Выброс
загр.	Наименование	максим.	средне-	ориентир.	опас-	вещества	вещества,
веще-	вещества	разовая,	суточная,	безопасн.	ности	Γ/c	т/год
ства		мг/м3	мг/м3	УВ,мг/м3			
1	2	3	4	5	6	7	8
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2	0.04		2	0.0065542	*
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.00106447	*
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		3	0.002662	*
	Сернистый газ, Сера (IV) оксид) (516)						
0337	Углерод оксид (Окись углерода,	5	3		4	1.12309	*
	Угарный газ) (584)						
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		4	0.054936	*
	пересчете на углерод/ (60)						
	ВСЕГО:					1.18830667	*

^{*} Валовый выброс от автотранспорта не нормируется, максимально-разовый выброс включен в расчет рассевания загрязняющих веществ, чтобы оценить воздействие объекта в целом на окружающую среду.

Таблица 1.4.1.3

Перечень источников аварийных выбросов (дизельгенератор)

Наименование про-изводств (цехов) и	Наименование веще-	Выбро	сы веществ	Периодич-	Продолжи- тельность	Годовая величина
изводств (цехов) и источников выбросов	ства	Код вещества	Максимальный выброс, г/сек	ность раз/год	выброса, час / сут	выбросов, т
1	2	3	4	5	6	7
Дизельгенератор	Углерода оксид	0337	1,7222			*
мощностью	Азота диоксид	0301	2,1333			*
1250кВА / 1000кВт	Азота оксид	0304	0,3467			*
(ист.0002)	Углеводороды	2754	0,8056	*	*	*
	Сажа	0328	0,1389		•	*
	Ангидрид сернистый	0330	0,3333			*
	Формальдегид	1325	0,0333			*
	Бенз(а)пирен	0703	0,000 0003			*

Примечание: * Аварийные выбросы от дизельгенератора (связанные с отключением электроэнергии) не нормируются, организуется учет фактических аварийных выбросов за истекший год. Оплата производится по факту сожженного топлива.

Таблица групп суммаций на период эксплуатации

Номер	Код	
группы	загряз-	Наименование
сумма-	няющего	загрязняющего вещества
ции	вещества	
1	2	3
31	0301	Азота (IV) диоксид (4)
	0330	Сера диоксид (526)

Астана 2025, МЖК по ул. Серкебаева

Actai		5, МЖК по ул.Серкео:		1		T	1_	1_	1			1		
		Источники выделения		Число	Наименование	Номер	Высо	Диа-		тры газовозд.смес			динаты ист	
Про		загрязняющих вещест	ГВ	часов	источника выброса	источ	та	метр	на выхс	де из ист.выброса	a	H	а карте-схем	ие, м
изв	Цех			рабо-	вредных веществ	ника	источ	устья						
одс		Наименование	Коли	ТЫ		выбро	ника	трубы	ско-	объем на 1	тем-	точечного и	істоч.	2-го кон
тво			чест	В		ca	выбро		рость	трубу, м3/с	пер.	/1-го конца	лин.	/длина, ш
			во	год			са,м	M	м/с		oC	/центра пло	щад-	площадн
			ист.									ного источн		источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Паркинг на 158	1		Вентиляционный	0001	34.8	1	18.74	14.718396	20	2	90	
		а/м (ВД)			выброс									
001		Въезд-выезд	1		Неорганизованный	6001	5	:			20	21	13	9
001		Паркинга	1		выброс	0001		1			20	, 21		
		Паркинга			выорос									
						1								
						1								
	1	l	1					1	1					

	Наименование газоочистных	Вещества по кото-	Коэфф обесп	Средняя эксплуат		Наименование	Выброс	ы загрязняющих	веществ	
ца лин. ирина ого ка	установок и мероприятий по сокращению выбросов	рым произво- дится газо- очистка	газо- очист кой, %	степень очистки/ max.степ очистки%		вещества	г/с	мг/нм3	т/год	Год дос- тиже ния ПДВ
Y2 16	17	1.0	10	20	21	22	22	24	25	26
16	17	18	19	20	21	22	23 0.002715	24 0.198	25	26 2025
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002/13	0.198	•	2023
					0304	Азот (II) оксид (Азота оксид) (6)	0.000441	0.032	k	2025
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.001103	0.080	*	2025
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.464	33.835	k	2025
						Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.0228	1.663	k	2025
4					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002704		×	2025
					0304	Азот (II) оксид (Азота оксид) (6)	0.000439		k	2025
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.001098		*	* 2025
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.464		k	2025
					2704	Бензин (нефтяной,	0.02264		k	2025

Астана 2025, МЖК по ул. Серкебаева

1	2	25, МЖК по ул.Серкеба 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Открытая автостоянка на 10 а/м	1		Неорганизованный выброс	6002	5				20	-19	-21	7
001		Открытая автостоянка на 11 а/м	1		Неорганизованный выброс	6003	5				20	-36	17	9
001		Открытая автостоянка на 10 а/м	1		Неорганизованный выброс	6004	5				20	-23	100	60

16	17	18	19	20	21	22	23	24	25	26
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
15					0301	Азота (IV) диоксид (0.0001414		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.00002297		*	2025
						Азота оксид) (6)				
					0330	Сера диоксид (0.0000574		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.02436		*	2025
						углерода, Угарный				
						газ) (584)				
					2704	Бензин (нефтяной,	0.00118		*	2025
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
62					0301	Азота (IV) диоксид (0.000285		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0000463		*	2025
						Азота оксид) (6)				
					0330	Сера диоксид (0.0001156		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.0488		*	2025
						углерода, Угарный				
						газ) (584)				
					2704	Бензин (нефтяной,	0.002386		*	2025
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
4					0301	Азота (IV) диоксид (0.0002824		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0000459		*	2025
					1	Азота оксид) (6)				

Астана 2025, МЖК по ул.Серкебаева

ACTAIL	<u>a 202</u>	5, МЖК по ул.Серкеба 3	исьа		T		_	0	1.0		1.0	1.2	1.4	1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Открытая автостоянка на 9 а/м	1		Неорганизованный выброс	6005	5				20	93	72	3
001		Открытая автостоянка на 5 а/м	1		Неорганизованный выброс	6006	5				20	48	50	5

на период эксплуатации

Астана 2025, МЖК по ул. Серкебаева

1	202	5, МЖК по ул.Серкеба 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Открытая автостоянка на 5 а/м	1		Неорганизованный выброс	6002	5		10			-19	-21	7
001		Открытая автостоянка на 16 а/м	1		Неорганизованный выброс	6003	5				20	-36	17	9
001		Открытая автостоянка на 7 а/м	1		Неорганизованный выброс	6004	5				20	-23	100	60

16	17	18	19	20	21	22	23	24	25	26
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
15					0301	Азота (IV) диоксид (0.0001414		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.00002297		*	2025
						Азота оксид) (6)				
					0330	Сера диоксид (0.0000574		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.02436		*	2025
						углерода, Угарный				
						газ) (584)				
					2704	Бензин (нефтяной,	0.00118		*	2025
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
62					0301	Азота (IV) диоксид (0.000285		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0000463		*	2025
						Азота оксид) (6)				
					0330	Сера диоксид (0.0001156		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.0488		*	2025
						углерода, Угарный				
						газ) (584)				
					2704	Бензин (нефтяной,	0.002386		*	2025
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
4					0301	Азота (IV) диоксид (0.0002824		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0000459		*	2025
					1	Азота оксид) (6)				

1	2	5, МЖК по ул.Серкеба 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Открытая автостоянка на 10 а/м	1		Неорганизованный выброс	6005	5				20	93	72	3
001		Открытая автостоянка на 8 а/м	1		Неорганизованный выброс	6006	5				20	48	50	5

16	17	18	19	20	21	22	23	24	25	26
					0330	Сера диоксид (0.0001148		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.0487		*	2025
						углерода, Угарный				
						газ) (584)				
					2704	Бензин (нефтяной,	0.00236		*	2025
						малосернистый) /в				
						пересчете на углерод/				
75						(60) Азота (IV) диоксид (0.0002824		*	2025
/3					0301	Азота (1 у) диоксид (0.0002824			2023
					0304	Азота диоксид) (4) Азот (II) оксид (0.0000459		*	2025
					0304	Азота оксид) (6)	0.0000439			2023
					0330	Сера диоксид (0.0001148		*	2025
					0330	Ангидрид сернистый,	0.0001110			2023
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.0487		*	2025
						углерода, Угарный				
						газ) (584)				
					2704	Бензин (нефтяной,	0.00236		*	2025
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
12						Азота (IV) диоксид (0.000144		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0000234		*	2025
						Азота оксид) (6)				
					0330	Сера диоксид (0.0000584		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)	0.02452		sk	2025
					033/	Углерод оксид (Окись	0.02453		*	2025
						углерода, Угарный газ) (584)				
						1 43) (304)				

Астана 2025, МЖК по ул. Серкебаева

	110 tulia 2020, 1 mart no jinooproonosa													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
<u> </u>														

Окончание таблицы 1.4.2

Параметры выбросов загрязняющих веществ в атмосферу на период эксплуатации

16	17	18	19	20	21	22	23	24	25	26
					2704	Бензин (нефтяной,	0.00121		*	2025
						малосернистый) /в				
						пересчете на углерод/				
						(60)				

Перечень загрязняющих веществ, выбрасываемых в атмосферу на период строительства

	на перио	д строительс					
Код загр.	Наименование	ПДК максим.	ПДК средне-	ОБУВ ориентир.	Класс опас-	Выброс	Выброс
веще-	вещества	разовая,	суточная,	безопасн.	ности	вещества	вещества,
ства	244441200	мг/м3	мг/м3	УВ,мг/м3	110 0 111	г/с	т/год
1	2	3	4	5	6	7	8
0008	Взвешенные частицы РМ10 (117)	0.3	0.06			0.270493	0.168798
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)		0.04		3	0.02402	0.07793
0143	Марганец и его соединения /в пересчете на марганца (IV)оксид/(327)	0.01	0.001		2	0.000867	0.00695
0203	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)		0.0015		1	0.000722	0.00828
	Азота (IV) диоксид (Азота диоксид) (4)	0.2	0.04		2	0.909402	3.544187
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		3	0.000172	0.000147
	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		3	0.00275	0.013403
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)(516)	0.5	0.05		3	0.3431	1.717423
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		4	1.72172	8.60419
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.02	0.005		2	0.0000006	0.000006
	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0.2	0.03		2	0.000833	0.00955
	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.2			3	0.525844	1.4086
	Метилбензол (349)	0.6			3	0.088267	0.02384
	Бенз/а/пирен (3,4-Бензпирен) (54)	0.0	0.000001		1	0.0000054	0.000027
	Бутан-1-ол (Бутиловый спирт) (102)	0.1	0.000001		3	0.0967	0.0909
1119	2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)			0.7		0.0128	0.00032
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.1			4	0.01667	0.0046
	Пропан-2-он (Ацетон) (470)	0.35			4	0.065014	0.01377
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	5	1.5		4	0.139	0.67505
2732	Керосин (654*)			1.2		0.54098	3.1525
2752	Уайт-спирит (1294*)			1		0.506011	0.97004
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); растворитель РПК-265П) (10)	1	0.1		4	0.056	0.034
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3			3	8.008748	15.6255724
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)			0.04		0.012	0.00492
	ВСЕГО:					13.342119	36.1550034

Таблица 1.4.3-2

Таблица групп суммации на период строительных работ

Номер	Код	
группы	загряз-	Наименование
сумма-	няющего	загрязняющего вещества
ции	вещества	
1	2	3
31	0301	A (IV) (A
31	0330	Азот (IV) оксид (Азота диоксид)
	0330	Сера диоксид
35	0330	Сера диоксид
	0342	Фтористые газообразные соединения (Гидрофторид,
		Кремний тетрафторид) /в пересчете на фтор/
41	0337	Углерод оксид
	2908	Пыль неорганическая: 70-20% двуокиси кремния
		(шамот, цемент, пыль цементного производства -
		глина, глинистый сланец, доменный шлак, песок,
		клинкер, зола, кремнезем и др.)
71	0342	Фтористые газообразные соединения (Гидрофторид,
7 1	03 12	Кремний тетрафторид) /в пересчете на фтор/
	0344	Фториды неорганические плохо растворимые -
		(алюминия фторид, кальция фторид, натрия
		гексафторалюминат) /в пересчете на фтор/
П	2002	Dec. 000 000 000 000 000 000 000 000 000 0
Пыли	2902	Взвешенные частицы
	2908	Пыль неорганическая: 70-20% двуокиси кремния
		(шамот, цемент, пыль цементного производства -
		глина, глинистый сланец, доменный шлак, песок,
	2020	клинкер, зола, кремнезем и др.)
	2930	Пыль абразивная

Астана 2025, МЖК по ул. Серкебаева (строит.)

Астан														
_		Источники выделения			Наименование		Высо	Диа-		гры газовозд.сме			динаты ист	
Про		загрязняющих вещест	ТВ	часов	источника выброса	источ	та	метр	на выхо	де из ист.выброс	a	на	карте-схем	ие, м
ИЗВ	Цех	TT	T.C	рабо-	вредных веществ	ника	источ	устья			<u> </u>			
одс		Наименование	Коли	ТЫ		_	ника	трубы		объем на 1	тем-	точечного и		2-го кон
ТВО			чест	В		ca	выбро		рость	трубу, м3/с	пер.	/1-го конца		/длина, ш
			ВО	год			са,м	M	м/с		oC	/центра пло		площадн
			ист.									ного источн	ика	источни
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Битумный котел	1		Дымовая труба	0001	10	0.1	6	0.047124	150	4	32	
		·												
001		Сваебойка	1		Выхлопная труба	0002	5	1	5.4	4.24116	160	32	50	
					ry									

	Наименование газоочистных	Вещества по кото-	Коэфф обесп	Средняя эксплуат		Наименование	Выброс	ы загрязняющих	веществ	
ца лин. ирина ого ка	установок и мероприятий по сокращению выбросов	рым произво- дится газо- очистка	газо- очист кой, %	степень очистки/ max.степ очистки%		вещества	г/с	мг/нм3	т/год	Год дос- тиже ния ПДВ
Y2	1.7	1.0	1.0	20	2.1		22		2.5	26
16	17	18	19	20	21	22	23	24	25	26
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.001057	34.754	0.000907	2025
						Азот (II) оксид (Азота оксид) (6)	0.000172	5.655	0.000147	2025
						Углерод (Сажа, Углерод черный) (583)	0.00012	3.946	0.000103	2025
					0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00282	92.722	0.002423	2025
					0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00657	216.023	0.00564	2025
					2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	0.056	1841.296	0.034	2025
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.65056	243.292	3.43	2025
					0328	Углерод (Сажа, Углерод черный) (583)	0.00263	0.984	0.0133	2025
					0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.34028	127.256	1.715	2025

1	2	25, МЖК по ул.Серкеб 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Бульдозеры, экскаваторы 0, 5м3, 0,25м3, асфальтоукладчи ки	1		Неорганизованный выброс	6001	5				20)-6	78	24
001		Бульдозеры 79кВт, трактор 79кВт, экскаваторы 0, 65м3,	1		Неорганизованный выброс	6002	5				20	47	64	17
001		Бульдозеры 96кВтавтопогруз	1		Неорганизованный выброс	6003	5				20	-12	37	12

16	17	18	19	20	21	22	23	24	25	26
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	1.7014	636.278	8.575	2025
						углерода, Угарный				
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.0000054	0.002	0.000027	2025
						Бензпирен) (54)				
					2732	Керосин (654*)	0.51042	190.883	2.5725	2025
34					0301	Азота (IV) диоксид (0.22222		*	2025
						Азота диоксид) (4)				
					0328	Углерод (Сажа,	0.000861		*	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.11111		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.55556		*	2025
						углерода, Угарный				
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.0000017		*	2025
						Бензпирен) (54)				
						Керосин (654*)	0.16667		*	2025
47						Азота (IV) диоксид (0.3		*	2025
						Азота диоксид) (4)				
					0328	Углерод (Сажа,	0.00116		*	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.15		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.75		*	2025
						углерода, Угарный				
						газ) (584)				
						Бенз/а/пирен (3,4-	0.0000024		*	2025
						Бензпирен) (54)				
						Керосин (654*)	0.225		*	2025
30					0301	Азота (IV) диоксид (0.35556		*	2025
						Азота диоксид) (4)				

Астана 2025, МЖК по ул. Серкебаева (строит.)

1	2	25, МЖК по ул.Серкеб 3	4	5	6	7	8	9	10	11	12	13	14	15
		чик,катки,краны												
001		Автогрейдер99кВ т,Поливомойки, Трубоукладчики6,3т	1		Неорганизованный выброс	6004	5				20	16	5	22
001		Автогудронатор, катки 16, 30т, самосвал, автокран	1		Неорганизованный выброс	6005	5				20	15	46	11

16	17	18	19	20	21	22	23	24	25	26
					0328	Углерод (Сажа,	0.001378		*	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.17778		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.88889		*	2025
						углерода, Угарный				
					. =	газ) (584)				• • • •
					0703	Бенз/а/пирен (3,4-	0.0000028		*	2025
					2722	Бензпирен) (54)	0.26667		36	2025
0.1						Керосин (654*)	0.26667		*	2025
21					0301	Азота (IV) диоксид (0.3744		Ψ.	2025
					0220	Азота диоксид) (4)	0.00145		4	2025
					0328	Углерод (Сажа,	0.00145		T	2025
					0220	Углерод черный) (583) Сера диоксид (0.18722		*	2025
					0330	Сера диоксид (Ангидрид сернистый,	0.18/22		*	2023
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.9361		*	2025
					0337	углерода, Угарный	0.9301			2023
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.000009		*	2025
					0,05	Бензпирен (54)	0.00000			2023
					2732	Керосин (654*)	0.28083		*	2025
26						Азота (IV) диоксид (0.68056		*	2025
						Азота диоксид) (4)				
					0328	Углерод (Сажа,	0.00263		*	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.34028		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	1.7014		*	2025
						углерода, Угарный				
						газ) (584)				

1	2	25, МЖК по ул.Серкеба 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Гудронаторы ручные 1,7 л/ч	1		Неорганизованный выброс	6006	5				20	45	25	20
001		Компрессоры с ДВС 2,2, 5м3/ мин, агрегат свар.передвиж с диз.ДВС	1		Неорганизованный выброс	6007	5				20	15	37	19
001		Электростанции передвижные	1		Неорганизованный выброс	6008	5				20	26	83	12

16	17	18	19	20	21	22	23	24	25	26
					0703	Бенз/а/пирен (3,4-	0.0000054		*	2025
						Бензпирен) (54)				
						Керосин (654*)	0.51042		*	2025
13						Азота (IV) диоксид (0.000014		*	2025
						Азота диоксид) (4)				
					0328	Углерод (Сажа,	0.0000002		*	2025
					0220	Углерод черный) (583)	0.000000			2025
					0330	Сера диоксид (0.0000007		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0227	IV) оксид) (516)	0.00021		36	2025
					0337	Углерод оксид (Окись	0.00021		*	2025
						углерода, Угарный				
					0702	газ) (584)	0 F 11		4	2025
					0/03	Бенз/а/пирен (3,4-	8.E-11		T	2025
					2722	Бензпирен) (54) Керосин (654*)	0.000035		*	2025
17						Азота (IV) диоксид (0.00033		*	2025
1 /					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.133		·	2023
					0328	Углерод (Сажа,	0.000523		*	2025
					0328	Углерод (Сажа, Углерод черный) (583)	0.000323			2023
					0330	Сера диоксид (0.0675		*	2025
					0330	Ангидрид сернистый,	0.0073			2023
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.3375		*	2025
						углерода, Угарный				
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.000001		*	2025
						Бензпирен) (54)				
						Керосин (654*)	0.10125		*	2025
11						Азота (IV) диоксид (0.01511		*	2025
						Азота диоксид) (4)				
					0328	Углерод (Сажа,	0.000058		*	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.00756		*	2025
						Ангидрид сернистый,				

1	2	25, МЖК по ул.Серкеб. 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Машины сверлильные	1		Неорганизованный выброс	6009	5				20	23	67	14
001		Машины шлифовальные	1		Неорганизованный выброс	6010	5				20	-20	55	9
001		Земляные работы	1		Неорганизованный выброс	6011	5				20	-19	70	43
001		Щебень фракция	1		Неорганизованный	6012	5				20	29	84	21
		5-10мм			выброс									

16	17	18	19	20	21	22	23	24	25	26
						Сернистый газ, Сера (IV) оксид) (516)				
					0227	Углерод оксид (Окись	0.03778		*	2025
					0337	углерод оксид (Окись углерода, Угарный	0.03778			2023
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.00000012		*	2025
					0703	Бензпирен) (54)	0.0000012			2023
					2732	Керосин (654*)	0.011333		*	2025
11					0008	Взвешенные частицы	0.00036		0.000008	2025
						PM10 (117)				
12					0008	Взвешенные частицы	0.18		0.07387	2025
						PM10 (117)				
					2930	Пыль абразивная (0.012		0.00492	2025
						Корунд белый,				
						Монокорунд) (1027*)				
15					2908	Пыль неорганическая,	0.008		1.096013	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
1.0					2000	месторождений) (494)	0.576		0.1525	2025
18					2908	Пыль неорганическая,	0.576		0.1735	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец, доменный шлак, песок,				
						клинкер, зола,				
					1	кремнезем, зола углей				

1	2	25, МЖК по ул.Серкеба 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Щебень фракция 10-20 мм	1		Неорганизованный выброс	6013	5				20	-23	34	10
001		Щебень фракция 20-40мм	1		Неорганизованный выброс	6014	5				20	51	51	24
001		Щебень фракция	1		Неорганизованный	6015	5				200	56	63	22
001		40-70 мм	1		выброс	0013	3				20	36	03	22

16	17	18	19	20	21	22	23	24	25	26
						казахстанских				
						месторождений) (494)				
24					2908	Пыль неорганическая,	0.48		0.21124	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
16					2908	Пыль неорганическая,	0.48		0.12	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
21					2908	Пыль неорганическая,	0.48		0.14011	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				

Астана 2025, МЖК по ул.Серкебаева (строит.)

1	2	3, МЖК по ул. Серкеба 3	4	5	6	7	8	9	10	11	12	13	14	15
001		Гравий фракция 10-20мм	1		Неорганизованный выброс	6016	5				20	-33	66	22
001		Песок природный, кварцевый	1		Неорганизованный выброс	6017	5				20	-10	6	11
001		Смеси песчано-гравийные	1		Неорганизованный выброс	6018	5				20	69	32	20

16	17	18	19	20	21	22	23	24	25	26
						месторождений) (494)				
22					2908	Пыль неорганическая,	1.92		1.81053	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
19					2908	Пыль неорганическая,	1.92		10.0296	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
17					2908	Пыль неорганическая,	1.92		2.027403	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				ļ

Астана 2025, МЖК по ул.Серкебаева (строит.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Пордландцемент	1		Неорганизованный выброс	6019	5				20	24	96	29
001		Известь	1		Неорганизованный выброс	6020	5				20	0	46	8
001		Сухие смеси гипсовые	1		Неорганизованный выброс	6021	5				20	39	19	20
001		Сухие смеси	1		Неорганизованный	6022	5				20	11	33	27

16	17	18	19	20	21	22	23	24	25	26
10					2908	Пыль неорганическая,	0.00048		0.0006004	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
12					2908	Пыль неорганическая,	0.224		0.006513	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
20					2908	Пыль неорганическая,	0.000256		0.0096	2025
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
11					2908	Пыль неорганическая,	0.000012		0.000463	2025

1 2	2 3	4	5 6	7	8	9	10	11	12	13	14	15
	цементные		выброс									
001	ГФ-021 Ксилол нефтяной	1	Неорганизованный выброс Неорганизованный		5				20	41	90	6
001	Кеилол нефтяной Керосин	1	выброс Неорганизованный		5					41	36	9
001	Битумная мастика	1	выброс Неорганизованный выброс	6026	5				20	40	53	20
001	Лак БТ-123	1	Неорганизованный выброс	6027	5				20	41	71	11
001	Краска МА-015	1	Неорганизованный выброс	6028	5				20	14	75	12

16	17	18	19	20	21	22	23	24	25	26
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола, кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
12					0616	Диметилбензол (смесь	0.025		0.135	2025
12					0010	о-, м-, п- изомеров)	0.023		0.133	2023
						(203)				
16					0616	Диметилбензол (смесь	0.03056		0.04	2025
						о-, м-, п- изомеров)				
						(203)				
16						Керосин (654*)	0.03056		0.58	2025
17					0616	Диметилбензол (смесь	0.1005		0.9406	2025
1 /					0010	о-, м-, п- изомеров)	0.1003		0.5400	2023
						(203)				
					2752	Уайт-спирит (1294*)	0.075		0.698	2025
9						Взвешенные частицы	0.001833		0.01192	
					0000	PM10 (117)	0.001022		0.01132	2020
					0616	Диметилбензол (смесь	0.00747		0.04856	2025
						о-, м-, п- изомеров)				
						(203)				
					2752	Уайт-спирит (1294*)	0.000311		0.00202	2025
14					0008	Взвешенные частицы	0.0883		0.083	2025
						PM10 (117)				
					0616	Диметилбензол (смесь	0.0842		0.08	2025
						о-, м-, п- изомеров)				
						(203)				
					1042	Бутан-1-ол (Бутиловый	0.0967		0.0909	2025
						спирт) (102)				
					2752	Уайт-спирит (1294*)	0.0802		0.076	2025

Астана 2025, МЖК по ул.Серкебаева (строит.)

	2 3	4	5 6	7	8	9	10	11	12	13	14	15
001	Растворитель Р- 4	1	Неорганизованный выброс	6029	5				20	30	50	10
001	Эмаль ПФ-115	1	Неорганизованный выброс	6030	5				20	31	41	9
001	Растворитель бензин	1	Неорганизованный выброс	6031	5				20	36	73	18
001	Уайт-спирит	1	Неорганизованный выброс	6032	5				20	0	58	4
001	Лак БТ-577	1	Неорганизованный выброс	6033	5				20	-20	45	16
001	Эмаль ЭП-140	1	Неорганизованный выброс	6034	5				20	17	46	1
001	Ацетон технич.	1	Неорганизованный выброс	6035	5				20	-13	63	3
001	Сварка с применением пропан- бутановой смеси	1	Неорганизованный выброс	6036	5				20	51	86	6

16	17	18	19		21	22	23	24	25	26
17					1210	Метилбензол (349) Бутилацетат (Уксусной кислоты бутиловый	0.0861 0.01667		0.02379 0.0046	
				1	1401	эфир) (110) Пропан-2-он (Ацетон) (470)	0.0361		0.00997	2025
14)616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0625		0.07677	2025
11					2752 2704	Уайт-спирит (1294*) Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.0625 0.139		0.07677 0.67505	
28				2		(00) Уайт-спирит (1294*)	0.139		0.05245	2025
18						Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.201		0.0873	2025
16					2752 0616	Уайт-спирит (1294*) Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.149 0.014614		0.0648 0.00037	2025 2025
)621 1119	(2007) Метилбензол (349) 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)	0.002167 0.0128		0.00005 0.00032	2025 2025
				1	1401	Пропан-2-он (Ацетон) (470)	0.015024		0.00038	2025
15				1	1401	(470) Пропан-2-он (Ацетон) (470)	0.01389		0.00342	2025
18					0301	(470) Азота (IV) диоксид (Азота диоксид) (4)	0.002083		0.0856	2025

Астана 2025, МЖК по ул.Серкебаева (строит.)

	2 3	4	5 6	7	8	9	10	11	12	13	14	15
001	Сварка в ацетилен- кислородном	1	Неорганизованный выброс	6037	5				20	29	59	13
001	пламени Электросвар. работы с электродами	1	Неорганизованный выброс	6038	5				20	-7	34	16
001	Газовая резка	1	Неорганизованный	6039	5				20	-4	16	26

16	17	18	19	20	21	22	23	24	25	26
15					0301	Азота (IV) диоксид (0.2444		0.00371	2025
						Азота диоксид) (4)				
13					0123	Железо (II, III)	0.00377		0.04324	2025
						оксиды (диЖелезо				
						триоксид, Железа				
						оксид) /в пересчете				
						на железо/ (274)				
					0143	Марганец и его	0.000561		0.00643	2025
						соединения /в				
						пересчете на марганца				
						(IV) оксид/ (327)				
					0203	Хром /в пересчете на	0.000722		0.00828	2025
						хром (VI) оксид/ (
						Хром шестивалентный)				
						(647)				
					0301	Азота (IV) диоксид (0.000472		0.00541	2025
						Азота диоксид) (4)			0.00555	
					0342	Фтористые	0.0000006		0.000006	2025
						газообразные				
						соединения /в				
						пересчете на фтор/ (
						617)	0.0000		0 000 = =	
					0344	Фториды	0.000833		0.00955	2025
						неорганические плохо				
						растворимые - (
						алюминия фторид,				
						кальция фторид,				
						натрия				
						гексафторалюминат) (
						Фториды				
						неорганические плохо				
						растворимые /в				
						пересчете на фтор/) (
					615	615)			0.001.55	
14					0123	Железо (II, III)	0.02025		0.03469	2025

Астана 2025, МЖК по ул. Серкебаева (строит.)

Астана 2025, МЖК по ул.Серкебаева (строит.)	T T	
	3 14 15	15
001 Мойка колес 1 Неорганизованный 6040 5 20 4 выброс	-13 13	

16	17	18	19	20	21	22	23	24	25	26
						оксиды (диЖелезо				
						триоксид, Железа				
						оксид) /в пересчете				
						на железо/ (274)				
					0143	Марганец и его	0.000306		0.00052	2025
						соединения /в				
						пересчете на марганца				
						(IV) оксид/ (327)				
					0301	Азота (IV) диоксид (0.01083		0.01856	2025
						Азота диоксид) (4)				
					0337	Углерод оксид (Окись	0.01375		0.02355	2025
						углерода, Угарный				
						газ) (584)				
12					0301	Азота (IV) диоксид (0.00889		*	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.001444		*	2025
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.000553		*	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.00175		*	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.02856		*	2025
						углерода, Угарный				
						газ) (584)				
					2732	Керосин (654*)	0.01013		*	2025

^{*} Валовый выброс от автотехники не учитывается.

1.5. Обоснование данных о выбросах вредных веществ

Обоснование данных о выбросах вредных веществ на период эксплуатации объекта

Автопаркинг на 158 а/м Ист. 0001

Город N 005, Астана 2025

Объект N 0003, Вариант 1 МЖК по ул. Серкебаева

Источник загрязнения N 0001, Вентиляционный выброс Источник выделения N 0001 01, Паркинг на 158 а/м (вент.выброс)

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t > -5 и t < 5)

Tun м 3.5 л	ип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 5 л									
Dn,	Nk,	A	Nk1	L1,	<i>L2</i> ,					
cym	шт		шт.	КМ	км					
30	158	0.10	19	0.055	0.055					
	•			•						
<i>3B</i>	Tpr	Mpr	Tx	Mxx	Ml,	z/c	т/год			
	мин	г/ми	н ми	н г/мин	г/км					
0337	4	5.13	1	1.9	10.53	0.1214	*			
2704	4	0.243	1	0.15	1.89	0.00647	*			
0301	4	0.04	1	0.03	0.24	0.000857	*			
0304	4	0.04	1	0.03	0.24	0.0001392	*			
0330	4	0.012	1	0.01	0.064	0.000318	*			

Выбросы по периолу: Теплый периол (t>5)

Выоро	осы по	период	(у: Гепль	ий период	ι (t>5)					
Tun A	лашини	ы: Легі	ковые ав	томобил	и с впры	ском топлива р	абочим объемом свыше 1.8 до			
	3.5 л									
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,					
cym	шm		шm.	км	км					
120	1558	0.10	19	0.055	0.055					
<i>3B</i>	Tpr	Mpr	Tx	Mxx,	Ml,	z/c	т/год			
	мин	г/ми	н мин	г/мин	г/км					
0337	3	2.9	1	1.9	9.3	0.0586	*			
2704	3	0.18	1	0.15	1.4	0.00405	*			
0301	3	0.03	1	0.03	0.24	0.000562	*			

0304	3	0.03	1	0.03	0.24	0.0000914	*
0330	3	0.011	1	0.01	0.057	0.0002433	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Tun A	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до									
	3.5 л									
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,					
cym	шm		шm.	км	км					
215	158	0.10	19	0.055	0.055					

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	<i>2/c</i>	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	15	5.7	1	1.9	11.7	0.464	*
2704	15	0.27	1	0.15	2.1	0.0228	*
0301	15	0.04	1	0.03	0.24	0.002715	*
0304	15	0.04	1	0.03	0.24	0.000441	*
0330	15	0.013	1	0.01	0.071	0.001103	*

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002715	*
0304	Азот (II) оксид (Азота оксид) (6)	0.000441	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.001103	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.464	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.0228	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов C.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Ист. 0002

Дизельгенератор

Мощность дизельгенератора составляет 1250 кВА = 1000 кВт

Максимальный выброс i –ого вещества стационарной дизельной установкой определяется по формуле:

$$M_{cek} = e_i * P_9 / 3600 r/c,$$

 Γ де: $\mathbf{e_i}$ – выброс i – ого вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, г/кВтч, определяемый по табл. 1 (РНД 211.2.02.04-2004)

 $P_{\scriptscriptstyle 3}$ — эксплуатационная мощность стационарной дизельной установки, кВт. Значение берется из технической документации завода изготовителя. Если в технической документации не указывается значение эксплуатационной мощности, то в качестве $P_{\scriptscriptstyle 3}$ принимается значение номинальной мощности стационарной дизельной установки ($N_{\rm e}$).

Примесь: 0337 Углерода оксид

 $\overline{M_{cek}} = e_i * P_a / 3600 = 6.2 \times 1000 / 3600 = 1.7222 \text{ r/c}$

Примесь: 0301 Азота диоксид

 $M_{cek} = 0.8 * e_i \times P_2 / 3600 = 0.8 \times 9.6 \times 1000 / 3600 = 2.1333 \text{ r/c}$

Примесь: 0304 Азота оксид

 $\overline{M_{cek}} = 0.13 * e_i \times P_3 / 3600 = 0.13 \times 9.6 \times 1000 / 3600 = 0.3467 \text{ r/c}$

Примесь: 2754 Углеводороды

 $M_{cek} = e_i * P_3 / 3600 = 2.9 \times 1000 / 3600 = 0.8056 \text{ r/c}$

Примесь:0328 Сажа

 $M_{cek} = e_i \overline{x P_9 / 3600} = 0.5 x 1000 / 3600 = 0.1389 r/c$

Примесь:0330 Серы диоксид

 $M_{cek} = e_i * P_3 / 3600 = 1,2 \times 1000 / 3600 = 0,3333 \text{ r/c}$

Примесь:1325 Формальдегид

 $\overline{M_{cek}} = e_i * P_9 / 3600 = 0,12 \times 1000 / 3600 = 0,0333 \Gamma/c$

Примесь:0703 Бенз(а)пирен

 $\overline{M_{cek}} = \overline{e_i \times P_3 / 3600} = 1.2 \times 10^{-5} \times 1000 / 3600 = 0.000 003 \text{ r/c}$

Валовый выброс не рассчитывается, оплата производится по фактическому объему сожженного топлива.

Въезд-выезд в/ из паркинга

Ист. 6001

Город N 005, Астана 2025

Объект N 0003, Вариант 1 МЖК по ул. Серкебаева

Источник загрязнения N 6001, Неорганизованный выброс

Источник выделения N 6001 01, Паркинг на 158 а/м (въезд-выезд)

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t > -5 и t < 5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л Dn, Nk, \boldsymbol{A} Nk1 *L1*, *L2*, cvm шт шm. км КМ 0.10 0.043 0.043 30 158 19 *3B* Tx, Mxx, Ml, **Tpr** Mpr. z/c т/год мин мин г/мин г/мин г/км 0337 5.13 1.9 10.53 0.1207 * 2704 4 0.243 0.15 1.89 0.00635 0301 4 0.04 0.03 0.24 0.000846 * 0304 4 0.24 0.0001374 0.04 0.03 * 0330 4 0.012 0.000314 0.01 0.064

Выбросы по периоду: Теплый период (t>5)

Tun A	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до										
	3.5 л										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,						
cym	шm		шт.	км	км						
120	158	0.10	19	0.043	0.043						

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	ı/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	3	2.9	1	1.9	9.3	0.058	*
2704	3	0.18	1	0.15	1.4	0.00396	*
0301	3	0.03	1	0.03	0.24	0.00055	*
0304	3	0.03	1	0.03	0.24	0.0000894	*
0330	3	0.011	1	0.01	0.057	0.00024	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Tun A	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до										
						3	.5 л				
Dn,	Nk,	\boldsymbol{A}	Nk1	i	L1,	<i>L2</i> ,					
cym	шm		шm.	i	км	км					
215	158	0.10	19		0.043	0.043					
<i>3B</i>	Tpr	Mpr	T	x,	Mxx,	Ml,	z/c		т/год		
	мин	г/ми		ин	г/мин	г/км					
0337	15	5.7	1		1.9	11.7	0.464		*		
2704	15	0.27	1		0.15	2.1	0.02264		*		
0301	15	0.04	1		0.03	0.24	0.002704		*		
0304	15	0.04	1		0.03	0.24	0.000439		*		
0330	15	0.013	1		0.01	0.071	0.001098		*		

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002704	*
0304	Азот (II) оксид (Азота оксид) (6)	0.000439	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.001098	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.464	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.02264	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов С.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Ист. 6002

Открытая автостоянка на 10 а/м

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, \text{№} 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

	Гип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до												
3.5 л													
Dn,	Nk,	\boldsymbol{A}	Nk1	L1	,	<i>L2</i> ,							
cym	шm		ит.	КМ	!	км							
30	10	0.10	1	0.	023	0.023							
3 B	Tpr	Mpr	; T	r, I	Mxx,	Ml,	г/с	т/год					
	мин	г/ми	н мі	ін г	/мин	г/км							
0337	4	5.13	1	1.9)	10.53	0.0063	*					
2704	4	0.243	1	0.1	15	1.89	0.0003236	*					
0301	4	0.04	1	0.0)3	0.24	0.0000434	*					
0304	4	0.04	1	0.0)3	0.24	0.00000706	*					
0330	4	0.012	1	0.0)1	0.064	0.0000162	*					

Выбросы по периоду: Теплый период (t>5)

Tun s	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до												
	3.5 л												
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,								
cym	шm		шm.	км	км								
120	10	0.10	1	0.023	0.023								
<i>3B</i>	Tpr	Mpr	Tx	Mxx	Ml,	z/c	т/год						
	мин	г/ми	н ми	н г/мин	г/км								
0337	3	2.9	1	1.9	9.3	0.003	*						
2704	3	0.18	1	0.15	1.4	0.0002006	*						
0301	3	0.03	1	0.03	0.24	0.0000279	*						
0304	3	0.03	1	0.03	0.24	0.00000453	*						

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Тип л	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше $1.8~{ m do}$ $3.5~{ m n}$											
Dn,	Nk,	\boldsymbol{A}	Nk1		<i>L1</i> ,	<i>L2</i> ,						
cym	шm		шт.		км	км						
215	10	0.10	1		0.023	0.023						
<i>3B</i>	Tpr	Mpr	; T.	x,	Mxx,	Ml,	г/c	т/год				
	мин	г/ми	н мі	ин	г/мин	г/км						
0337	15	5.7	1		1.9	11.7	0.02436	*				
2704	15	0.27	1		0.15	2.1	0.00118	*				
0301	15	0.04	1		0.03	0.24	0.0001414	*				
0304	15	0.04	1		0.03	0.24	0.00002297	*				
0330	15	0.013	1		0.01	0.071	0.0000574	*				

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0001414	*
0304	Азот (II) оксид (Азота оксид) (6)	0.00002297	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0000574	*

	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.02436	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00118	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов С.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Ист. 6003

30

0330 4

11

0.10

Открытая автостоянка на 11 а/м

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t > -5 и t < 5)

0.023

Tun M	ашин	ы: Лег	ковые а	івтомобі	или с впр	ыском топлива рабочим объемом свыше 1.8 до				
3.5π										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,					
cym	шт		ит.	км	км					

0.023

0.064

3 B	Трг мин	Mpr, г/мин	Тх, мин	Мхх, г/мин	Ml, г/км	z/c	т/год
0337	4	5.13	1	1.9	10.53	0.0063	*
2704	4	0.243	1	0.15	1.89	0.0003236	*
0301	4	0.04	1	0.03	0.24	0.0000434	*
0304	4	0.04	1	0.03	0.24	0.00000706	*

Выбросы по периоду: Теплый период (t>5)

0.012 | 1 | 0.01

Тип машины: Легковые автомобили с впр	ском топлива рабочим объемом свыше 1.8 до
	5 n

0.0000162

Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,
cym	шт		шm.	КМ	КМ
120	11	0.10	1	0.023	0.023

<i>3B</i>	Tpr мин	Mpr, г/мин	<i>Тх</i> , <i>мин</i>	Мхх, г/мин	Ml, г/км	<i>z/c</i>	т/год
0337	3	2.9	1	1.9	9.3	0.003	*
2704	3	0.18	1	0.15	1.4	0.0002006	*
0301	3	0.03	1	0.03	0.24	0.0000279	*
0304	3	0.03	1	0.03	0.24	0.00000453	*

0330	3	0.011	1	0.01	0.057	0.0000123	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Tun A	лашин	ы: Легі	ковые	авн	помобил	-	-	очим объемом свыше 1.8 до				
3.5 л												
Dn,	Nk,	\boldsymbol{A}	<i>Nk1</i>		<i>L1</i> ,	<i>L2</i> ,						
cym	шт		шm.		км	км						
215	11	0.10	1		0.023	0.023						
<i>3B</i>	Tpr	Mpr	T	x,	Mxx,	Ml,	z/c	т/год				
	мин	г/ми		ин	г/мин	г/км						
0337	15	5.7	1		1.9	11.7	0.02436	*				
2704	15	0.27	1		0.15	2.1	0.00118	*				
0301	15	0.04	1		0.03	0.24	0.0001414	*				
0304	15	0.04	1		0.03	0.24	0.00002297	*				
0330	15	0.013	1		0.01	0.071	0.0000574	*				

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0001414	*
0304	Азот (II) оксид (Азота оксид) (6)	0.00002297	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0000574	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.02436	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00118	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов С.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 10 автомест Ист. 6004

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Tun M	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до										
3.5 л	3.5π										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,						
cym	cym um um. km km										

30	10	0.10	2	0.045	0.045		
2.0		1.5		1.7	1.61	,	
<i>3B</i>	Tpr мин	Mpr, г/мин	<i>Тх</i> , <i>мин</i>	Мхх, г/мин	Ml, г/км	z/c	т/год
0337	4	5.13	1	1.9	10.53	0.01272	*
2704	4	0.243	1	0.15	1.89	0.00067	*
0301	4	0.04	1	0.03	0.24	0.0000894	*
0304	4	0.04	1	0.03	0.24	0.00001452	*
0330	4	0.012	1	0.01	0.064	0.0000332	*

Выбросы по периоду: Теплый период (t>5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л

Dn,	Nk,	A	Nk1	<i>L1</i> ,	L2,
cym	шт		шm.	КМ	км
120	10	0.10	2	0.045	0.045

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	<i>≀/c</i>	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	3	2.9	1	1.9	9.3	0.00612	*
2704	3	0.18	1	0.15	1.4	0.000418	*
0301	3	0.03	1	0.03	0.24	0.0000582	*
0304	3	0.03	1	0.03	0.24	0.00000945	*
0330	3	0.011	1	0.01	0.057	0.00002533	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до
3 5 n

Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,
cym	шm		шm.	км	км
215	10	0.10	2	0.045	0.045

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	г/с	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	15	5.7	1	1.9	11.7	0.0488	*
2704	15	0.27	1	0.15	2.1	0.002386	*
0301	15	0.04	1	0.03	0.24	0.000285	*
0304	15	0.04	1	0.03	0.24	0.0000463	*
0330	15	0.013	1	0.01	0.071	0.0001156	*

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000285	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0000463	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001156	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0488	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.002386	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов C

^{*} Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 9 автомест Ист. 6005

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу обшего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

			<u>'</u>	, ,	1 ' ' \							
Tun м 3.5 л	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л											
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,							
cym	um		шт.	км	км							
30	9	0.10	2	0.022	0.022							
<i>3B</i>	Tpr	Mpr	Tx	Mxx,	Ml,	z/c		т/год				
	мин	г/ми		г/мин	г/км							
0337	7 4	5.13	1	1.9	10.53	0.01258	*					
2704	1 4	0.242	1	0.15	1 00	0.000647	*					

0.000647 2704 4 0.243 0.151.89 0.24 0.0000868 0301 4 0.04 0.03 0.0000141 0304 4 0.04 0.03 0.24 * 0330 4 0.012 0.0000323 0.01 0.064

Выбросы по периоду: Теплый период (t>5)

Tun 1	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до												
	3.5 л												
Dn,	Dn, Nk, A Nk1 L1, L2,												
cym	cym um um. km km												
120	120 9 0.10 2 0.022 0.022												

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	3	2.9	1	1.9	9.3	0.006	*
2704	3	0.18	1	0.15	1.4	0.000401	*
0301	3	0.03	1	0.03	0.24	0.0000557	*
0304	3	0.03	1	0.03	0.24	0.00000905	*
0330	3	0.011	1	0.01	0.057	0.0000246	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период град C, T = -18.5

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до									
3.5 л									
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L2,				
cym	шm		шm.	км	км				
215	9	0.10	2	0.022	0.022				
<i>3B</i>	Tpr	Mpr	Tx	Mxx	<i>Ml</i> ,	г/с	т/год		

ТОО 9копроект" 72

	мин	г/мин	мин	г/мин	г/км		
0337	15	5.7	1	1.9	11.7	0.0487	*
2704	15	0.27	1	0.15	2.1	0.00236	*
0301	15	0.04	1	0.03	0.24	0.0002824	*
0304	15	0.04	1	0.03	0.24	0.0000459	*
0330	15	0.013	1	0.01	0.071	0.0001148	*

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002824	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0000459	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001148	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0487	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00236	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов C.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 5 автомест Ист. 6006

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л								
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,		<i>L2</i> ,		
cym	шт		шm.	КМ		км		
30	5	0.10	2	0.02	22	0.022		
3 B	Tpr	Mpr	; <i>T</i> :	x, M	xx,	Ml,	z/c	т/год
	мин	г/ми	н мі	ін г/л	иин	г/км		
0337	4	5.13	1	1.9		10.53	0.01258	*
2704	4	0.243	1	0.15	,	1.89	0.000647	*
0301	4	0.04	1	0.03		0.24	0.0000868	*
0304	4	0.04	1	0.03		0.24	0.0000141	*
0330	4	0.012	1	0.01		0.064	0.0000323	*

Выбросы по периоду: Теплый период (t>5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до

3.5 л											
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,						
cym	шm		шm.	км	км						
120	5	0.10	2	0.022	0.022						
<i>3B</i>	Tpr	Mpr	Tx	Mxx	Ml,	г/c	т/год				
	мин	г/ми	н ми	н г/мин	г/км						
0337	3	2.9	1	1.9	9.3	0.006	*				
2704	3	0.18	1	0.15	1.4	0.000401	*				
0301	3	0.03	1	0.03	0.24	0.0000557	*				
0304	3	0.03	1	0.03	0.24	0.00000905	*				
0330	3	0.011	1	0.01	0.057	0.0000246	*				

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л											
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,						
cym	шm		шm.	км	км						
215	5	0.10	2	0.022	0.022						
<i>3B</i>	Tpr	Mpr	; <i>T</i> .	x, Mxx	, <i>Ml</i> ,	z/c	т/год				
	мин	г/ми	н мі	ин г/ми	н г/км						
0337	15	5.7	1	1.9	11.7	0.0487	*				
2704	15	0.27	1	0.15	2.1	0.00236	*				
0301	15	0.04	1	0.03	0.24	0.0002824	*				
0304	15	0.04	1	0.03	0.24	0.0000459	*				
0330	15	0.013	1	0.01	0.071	0.0001148	*				

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002824	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0000459	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001148	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0487	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00236	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов С.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 5 автомест Ист. 6007 расчёт идентичен ист. 6006.

Открытая автостоянка на 16 автомест Ист. 6008

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, №100$ -п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип м	ашинь	ı: Легк	овые с	ายท	омобил	и с впрыс	ском топлива рабо	очим объемом свыше 1.8 до
3.5 л								
Dn,	Nk,	\boldsymbol{A}	Nk1		<i>L1</i> ,	<i>L2</i> ,		
cym	шm		шm.		км	км		
30	16	0.10	2		0.022	0.022		
<i>3B</i>	Tpr	Mpr	; <i>T</i> .	x,	Mxx,	Ml,	z/c	т/год
	мин	г/ми	н мі	ин	г/мин	г/км		
0337	4	5.13	1		1.9	10.53	0.01258	*
2704	4	0.243	1		0.15	1.89	0.000647	*
0301	4	0.04	1		0.03	0.24	0.0000868	*
0304	4	0.04	1		0.03	0.24	0.0000141	*
0330	4	0.012	1		0.01	0.064	0.0000323	*

Выбросы по периоду: Теплый период (t>5)

Tun A	лашин	ы: Легк	ковые	автомоби	ли с впры	ском топлива раб	очим объемом свыше 1.8 до					
3.5 л												
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,							
cym	шт		шт.	км	км							
120	16	0.10	2	0.022	0.022							
<i>3B</i>	Tpr	Mpr	T	x, Mxx,	Ml,	z/c	т/год					
	мин	г/ми	н мі	ін г/мин	г/км							
0337	3	2.9	1	1.9	9.3	0.006	*					
2704	3	0.18	1	0.15	1.4	0.000401	*					
0301	3	0.03	1	0.03	0.24	0.0000557	*					
0304	3	0.03	1	0.03	0.24	0.00000905	*					
0330	3	0.011	1	0.01	0.057	0.0000246	*					

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

T вмпература воздуха за расчетный период, град. C , $T = -18.5$												
Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до												
3.5 л												
Dn,	Nk,	\boldsymbol{A}	<i>Nk1</i>	<i>L1</i> ,	<i>L2</i> ,							
cym	иm		шm.	км	км							
215	16	0.10	2	0.02	0.022							
<i>3B</i>	Tpr	Mpr	; <i>T</i> .	x, M	xx, Ml	, z/c	т/год					
	мин	г/ми	н м	ин г/л	иин г/кл	М						
0337	15	5.7	1	1.9	11.7	0.0487	*					
2704	15	0.27	1	0.15	2.1	0.00236	*					
0301	15	0.04	1	0.03	0.24	0.0002824	*					
0304	15	0.04	1	0.03	0.24	0.0000459	*					
0330	15	0.013	1	0.01	0.071	0.0001148	*					
0220												

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕ

|--|

0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002824	*
	Азот (II) оксид (Азота оксид) (6)	0.0000459	
	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001148	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0487	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00236	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов С.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 7 автомест Ист. 6009

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18 04 2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип м	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до											
3.5 л						_	_					
Dn,	Nk,	\boldsymbol{A}	Nk1		<i>L1</i> ,	<i>L2</i> ,						
cym	шm		шm.		км	км						
30	7	0.10	2		0.022	0.022						
<i>3B</i>	Tpr	Mpr	; <i>T</i> .	x,	Mxx,	Ml,	z/c	т/год				
	мин	г/ми		ин	г/мин	г/км						
0337	4	5.13	1		1.9	10.53	0.01258	*				
2704	4	0.243	1		0.15	1.89	0.000647	*				
0301	4	0.04	1		0.03	0.24	0.0000868	*				
0304	4	0.04	1		0.03	0.24	0.0000141	*				
0330	4	0.012	1		0.01	0.064	0.0000323	*				

Выбросы по периоду: Теплый период (t>5)

Tun M	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л											
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,							
cym	шm		um.	км	км							
120	7	0.10	2	0.022	0.022							
<i>3B</i>	Tpr	Mpr	Tx	Mxx,	Ml,		г/ c	т/год				
	мин	г/ми		г/мин	г/км							
0337	3	2.9	1	1.9	9.3	0.006		*				

2704	3	0.18	1	0.15	1.4	0.000401	*
0301	3	0.03	1	0.03	0.24	0.0000557	*
0304	3	0.03	1	0.03	0.24	0.00000905	*
0330	3	0.011	1	0.01	0.057	0.0000246	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л												
Dn,	Nk,	A	Nk1	<i>L1</i> ,	<i>L2</i> ,	9.3 n						
cym	шm		ит.	км	км							
215	7	0.10	2	0.022	0.022							
<i>3B</i>	Tpr	Mpr	; <i>T</i> .	x, Mxx	:, <i>Ml</i> ,	z/c	т/год					
	мин	,		ин г/ми	н г/км							
0337	15	5.7	1	1.9	11.7	0.0487	*					
2704	15	0.27	1	0.15	2.1	0.00236	*					
0301	15	0.04	1	0.03	0.24	0.0002824	*					
0304	15	0.04	1	0.03	0.24	0.0000459	*					
0330	15	0.013	1	0.01	0.071	0.0001148	*					

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002824	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0000459	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001148	*
	Cepa (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0487	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00236	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов С.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 11 автомест Ист. 6010

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше $1.8~{\rm do}$ $3.5~{\rm n}$

Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,		
cym	шm		шт.	км	км		
30	11	0.10	2	0.022	0.022		
<i>3B</i>	Tpr	Mpr	Tx	Mxx,	Ml,	z/c	т/год
	мин	г/ми	н ми	г/мин	г/км		
0337	4	5.13	1	1.9	10.53	0.01258	*
2704	4	0.243	1	0.15	1.89	0.000647	*
0301	4	0.04	1	0.03	0.24	0.0000868	*
0304	4	0.04	1	0.03	0.24	0.0000141	*
0330	4	0.012	1	0.01	0.064	0.0000323	*

Выбросы по периоду: Теплый период (t>5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8	do
3.5 л	

Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L2,
cym	шт		шm.	км	км
120	11	0.10	2	0.022	0.022

<i>3B</i>	Трг мин	Mpr, г/мин	<i>Тх</i> , мин	Мхх, г/мин	Ml, г/км	z/c	т/год
0337	3	2.9	1	1.9	9.3	0.006	*
2704	3	0.18	1	0.15	1.4	0.000401	*
0301	3	0.03	1	0.03	0.24	0.0000557	*
0304	3	0.03	1	0.03	0.24	0.00000905	*
0330	3	0.011	1	0.01	0.057	0.0000246	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до
3.5 л

					3.3 A	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,	
cym	шт		шm.	км	км	
215	11	0.10	2	0.022	0.022	

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	г/с	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	15	5.7	1	1.9	11.7	0.0487	*
2704	15	0.27	1	0.15	2.1	0.00236	*
0301	15	0.04	1	0.03	0.24	0.0002824	*
0304	15	0.04	1	0.03	0.24	0.0000459	*
0330	15	0.013	1	0.01	0.071	0.0001148	*

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002824	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0000459	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001148	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0487	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00236	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов C.

^{*} Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 10 автомест Ист. 6011

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л													
$\frac{3.3 n}{Dn}$	Nk,	A	Nk1	L1.	1.2								
cym	um	71	um.	<i>Е</i> П,	<i>Е</i> 2, <i>КМ</i>								
30	10	0.10	2	0.022	0.022								

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	4	5.13	1	1.9	10.53	0.01258	*
2704	4	0.243	1	0.15	1.89	0.000647	*
0301	4	0.04	1	0.03	0.24	0.0000868	*
0304	4	0.04	1	0.03	0.24	0.0000141	*
0330	4	0.012	1	0.01	0.064	0.0000323	*

Выбросы по периоду: Теплый период (t>5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л

						٥.
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,	
cym	шm		шm.	км	км	
120	10	0.10	2	0.022	0.022	22

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	г/с	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	3	2.9	1	1.9	9.3	0.006	*
2704	3	0.18	1	0.15	1.4	0.000401	*
0301	3	0.03	1	0.03	0.24	0.0000557	*
0304	3	0.03	1	0.03	0.24	0.00000905	*
0330	3	0.011	1	0.01	0.057	0.0000246	*

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

1 CMITT	температура воздуха за растетный период, град. С, т = -10.5										
Tun 3	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до										
	3.5 л										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,						
cym	шт		ит.	км	км						
215	10	0.10	2	0.022	0.022						

<i>3B</i>	Tpr	Mpr,	Tx,	Mxx,	Ml,	z/c	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	15	5.7	1	1.9	11.7	0.0487	*
2704	15	0.27	1	0.15	2.1	0.00236	*
0301	15	0.04	1	0.03	0.24	0.0002824	*
0304	15	0.04	1	0.03	0.24	0.0000459	*
0330	15	0.013	1	0.01	0.071	0.0001148	*

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002824	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0000459	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001148	*
	Cepa (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0487	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00236	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов C.

* Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

Открытая автостоянка на 3 автомест Ист. 6012

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, N 100$ -п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

рыорс	CDI IIU .	период	y. Thepen	одный п	ериод (г∕	-5 n t \ 5)	
Тип м	ашинь	ı: Легк	овые авн	помобил	и с впрыс	ском топлива рабо	очим объемом свыше 1.8 до
3.5 л					-	-	
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,		
cym	um		um.	км	км		
30	3	0.10	2	0.022	0.022		
•	•		•	•	'		
<i>3B</i>	Tpr	Mpr	Tx	Mxx,	Ml,	z/c	т/год
	мин	г/ми	· · · · · ·	г/мин	г/км		
0337	4	5.13	1	1.9	10.53	0.01258	*
2704	4	0.243	1	0.15	1.89	0.000647	*
0301	4	0.04	1	0.03	0.24	0.0000868	*
0304	4	0.04	1	0.03	0.24	0.0000141	*
0330	1	0.012	1	0.01	0.064	0.0000323	*

Выбросы по периоду: Теплый период (t>5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до

3.5 л											
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,						
cym	шm		шm.	км	км						
120	3	0.10	2	0.022	0.022						
<i>3B</i>	Tpr	Mpr	Tx	Mxx	Ml,	z/c	т/год				
	мин	г/ми	н ми	н г/мин	г/км						
0337	3	2.9	1	1.9	9.3	0.006	*				
2704	3	0.18	1	0.15	1.4	0.000401	*				
0301	3	0.03	1	0.03	0.24	0.0000557	*				
0304	3	0.03	1	0.03	0.24	0.00000905	*				
0330	3	0.011	1	0.01	0.057	0.0000246	*				

Выбросы по периоду: Холодный период (t<-5)

Температура воздуха за расчетный период, град. С, T = -18.5

Тип л	Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л											
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	<i>L2</i> ,							
cym	иm		шm.	км	км							
215	3	0.10	2	0.022	0.022							
<i>3B</i>	Tpr	Mpr	, <i>T</i> .	x, Mxx	, <i>Ml</i> ,	z/c	т/год					
	мин	г/ми	н мі	ин г/ми	н г/км							
0337	15	5.7	1	1.9	11.7	0.0487	*					
2704	15	0.27	1	0.15	2.1	0.00236	*					
0301	15	0.04	1	0.03	0.24	0.0002824	*					
0304	15	0.04	1	0.03	0.24	0.0000459	*					
0330	15	0.013	1	0.01	0.071	0.0001148	*					

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0002824	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0000459	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001148	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0487	*
2704	Бензин (нефтяной, малосернистый) /в пересчете на	0.00236	*
	углерод/ (60)		

Максимальные разовые выбросы достигнуты в холодный период при температуре -19 градусов С.

^{*} Валовый выброс от передвижных источников не учитывается, максимально-разовый выброс учтен в расчете рассеивания ЗВ в атмосфере.

ТОО 9копроект"

Обоснование данных о выбросах вредных веществ на период строительства объекта

Исходные данные:

Автотехника

Бульдозеры, 79 кВт (108 л.с.)

Бульдозеры 96 кВт (130 л.с.)

Бульдозеры, 59 кВт (80 л.с.)

Бульдозеры при сооружении магистральных трубопроводов, 96 кВт (130 л.с.)

Трубоукладчики для труб диаметром до 400 мм, 6,3 т

Автомобили бортовые, до 5 т

Экскаваторы одноковшовые дизельные на гусеничном ходу, 0,5 м3

Экскаваторы одноковшовые дизельные на пневмоколесном ходу, 0,25 м3

Экскаваторы одноковшовые дизельные на гусеничном ходу при сооружении магистральных трубопроводов, 0,65

Агрегаты сварочные передвижные с номинальным сварочным током 250-400 A, с дизельным двигателем (37 кВт)

Погрузчики одноковшовые универсальные фронтальные пневмоколесные, 3 т

Краны на автомобильном ходу, 10 т

Краны на автомобильном ходу, 5 т

Краны на автомобильном ходу, 25 т

Краны на гусеничном ходу, до 16 т

Краны на автомобильном ходу при работе на монтаже технологического оборудования, 63т

Автопогрузчики, 5 т

Автогрейдеры среднего типа, 99 кВт (135 л.с.)

Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 5 ${\rm m}^3/{\rm muh}$

Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 2,2 м3/ми

Агрегаты сварочные двухпостовые для ручной сварки на тракторе 79 кВт (108 л.с.)

Автомобили-самосвалы, 7 т

Комплексная монтажная машина для выполнения работ при прокладке и монтаже кабеля на базе автомобиля

Автогудронаторы, 3500 л

Гудронаторы ручные

Машины поливомоечные, 6000 л

Тракторы на гусеничном ходу, 79 кВт (108 л.с.)

Катки дорожные самоходные гладкие, 8 т

Катки дорожные самоходные гладкие, 13 т

Катки дорожные самоходные на пневмоколесном ходу, 16 т

Катки дорожные самоходные на пневмоколесном ходу, 30 т

Котлы битумные передвижные, 400 л

Аппарат для газовой сварки и резки (475,8617486 ч)

Машины шлифовальные электрические и угловые

Электростанции передвижные, до 4 кВт

Катки дорожные самоходные гладкие, 8 т

Оборудование без своего ДВС / прицепное:

Агрегаты электронасосные с регулированием подачи вручную для строительных растворов, подача 2 м3/ч, напор 150 м

Установка для гидравлических испытаний трубопроводов, давление нагнетания от 0,1 МПа (1 кгс/см2) до 10 МПа (100 кгс/см2) – электр.одорудование

Машины для очистки и грунтовки труб диаметром 350-500 мм

Электрические печи для сушки сварочных материалов с регулированием температуры в пределах $80-500~^{\circ}\mathrm{C}$

Трамбовки электрические

Домкраты гидравлические, до 25 т, до 100 т

Лебедки электрические тяговым усилием до 31,39 кН (3,2 т)

Выпрямители сварочные однопостовые с номинальным сварочным током 315-500 А

Вибраторы поверхностные – навесное оборудование

Растворомешалки для приготовления водоцементных и других растворов, до $350 \, \mathrm{л} - \mathrm{электр.ofopygobahue}$

Подъемники мачтовые, высота подъема 50 м

Пресс гидравлический с электроприводом

Краны башенные, 5 т,8 т – электрич.привод

Краны башенные при работе на монтаже технологического оборудования, 25 т

Пила с электр. Двигателем, Станок резки арматуры электрич.

Материалы и механизмы:

Marchaid i McAannombi.		
Щебень из плотных горных пород для строительных работ M600, фракция 5-10 мм СТ РК 1284-2004	м3	325,467
Щебень известняковый для строительных работ М600, фракция 5-10 мм СТ РК 1284-2004	м3	272,217
Щебень из плотных горных пород для строительных работ M600, фракция 10-20 мм CT PK 1284-2004	м3	125,502
Щебень из плотных горных пород для строительных работ M1000 CT PK 1284-2004 фракция 15-20 мм	м3	747,6870666
Щебень из плотных горных пород для строительных работ М600, фракция 20-40 мм СТ РК 1284-2004	м3	495,8
Щебень из плотных горных пород для строительных работ M600, фракция 40-70 мм СТ РК 1284-2004	м3	1657,86
Гравий для строительных работ М1000 СТ РК 1284-2004 фракция 20-40 мм	м3	854,0672
Гравий для строительных работ М400 СТ РК 1284-2004 фракция 5-10 мм	м3	20,2014
Гравий для строительных работ М400 СТ РК 1284-2004 фракция 40-80 (70) мм	м3	557,9766
Гравий керамзитовый М400 ГОСТ 32496-2013 фракция 10-20 мм	м3	438,885586
Песок природный ГОСТ 8736-2014	м3	2982,82
Песок кварцевый	T	0,0061875
Пемза шлаковая (щебень пористый из металлургического шлака), марка 600, фракция от 5 до 10 мм	м3	0,0571357
Смеси песчано-гравийные природные ГОСТ 23735-2014	м3	1128,14
Мастика морозостойкая битумно-масляная МБ-50 ГОСТ 30693-2000	КГ	2601
Портландцемент бездобавочный ПЦ 400-Д0 ГОСТ 10178-85	Т	0,6134172
Портландцемент бездобавочный ПЦ 500-Д0 ГОСТ 10178-85	Т	0,0025866
Цемент гипсоглиноземистый расширяющийся ГОСТ 11052-74	Т	0,07893
Известь строительная негашеная комовая, сорт 1, ГОСТ 9179-77	Т	4,0275375
Известь хлорная, марки А, ГОСТ Р 54562-2011	Т	0,0108306
Гипсовые вяжущие ГОСТ 125-79 марки Г-3	Т	2,84
Битумы, мастики нефтяные для грячего применения (разогрев в битумном котле)	Т	34
Ацетилен технический растворенный марки Б ГОСТ 5457-75	Т	0,0033741
Ацетилен технический газообразный ГОСТ 5457-75	м3	7,1629
Кислород технический газообразный ГОСТ 5583-78	м3	10,8656975
Пропан-бутан, смесь техническая ГОСТ Р 52087-2003	КГ	5707
Керосин для технических целей марок КТ-1, КТ-2	Т	0,57
Контакт Петрова керосиновый	Т	0,01
Ксилол нефтяной марки А ГОСТ 9410-78	T	0,04
Электроды Э42, Э-46 ГОСТ 9466-75	T	6,3680116
Грунтовка глифталевая, ГФ-021 СТ РК ГОСТ Р 51693-2003	T	0,3
Ацетон технический ГОСТ 2768-84	T	0,0034192
Бензин-растворитель ГОСТ 26377-84	T	0,495131
Уайт-спирит ГОСТ 3134-78	T	0,05245
Растворители для лакокрасочных материалов Р-4 ГОСТ 7827-74		0,03243
гастворители для лакокрасочных материалов Р-4 гОС г 7627-74	T	U,U383044

		<u> </u>
Эмаль эпоксидная ЭП-140 защитная ГОСТ 24709-81	T	0,0021
Эмаль пентафталевая ПФ-115 серая ГОСТ 6465-76	T	0,3412062
Смесь сухая шпатлевочная на гипсовой основе М25 СТ РК 1168-2006	КГ	439317,6867
Смесь сухая - гипсовая штукатурка СТ РК 1168-2006 стандартная	ΚΓ	388448,9129
Смесь сухая для затирки швов плиток СТ РК 1168-2006 белая	ΚΓ	76,9396
Смесь сухая для затирки швов гипсокартонных листов СТ РК 1168-2006	ΚΓ	2455,41375
Смесь сухая - цементная, наливной пол для первоначального выравнивания СТ РК 1168-2006 M150	КΓ	362,483
Смесь сухая - цементная, наливной пол для окончательного выравнивания СТ РК 1168-2006 M150	КΓ	34,016
Смесь сухая - минеральная штукатурка СТ РК 1168-2006 для декоративной отделки "Шубка"	КГ	54417,415
Смесь сухая для затирки швов плиток СТ РК 1168-2006 серая	ΚΓ	3392,3574
Смесь сухая клеевая СТ РК 1168-2006 базовая для плитки	ΚΓ	4733,8298
Смесь сухая клеевая СТ РК 1168-2006 усиленная для плитки	ΚΓ	29218,5586
Смесь сухая клеевая СТ РК 1168-2006 для системы скрепленной теплоизоляции	ΚΓ	14984,1842
Бензин АИ-92	КΓ	4,3664
Бензин авиационный Б-70 ГОСТ 1012-72	Т	0,17555
Краска масляная алкидные земляные, готовые к применению: сурик железный MA-15, ПФ-14 ГОСТ 10503-71	T	0,0832
Краска масляная густотертая цветная МА-015, сурик железный ГОСТ 10503-71	КГ	230,456
Краска масляная МА-15 ГОСТ 10503-71	ΚΓ	209,508305
Краска перхлорвиниловая фасадная ХВ-161, марка А,Б	ΚΓ	285,21
Лак битумный БТ-577 ГОСТ Р 52165-2003	ΚΓ	241,3
Лак битумный БТ-123 ГОСТ Р 52165-2003	КГ	90,3294

Ветошь	КГ	116,3
Вода техническая	м3	7070,361567
Мусор строительный	T	15

Земляные работы

Semilinible publibi		
Разработка грунта экскаваторами в выемках, котлованах, траншеях в от-	м3	16014,05
вал или насыпь		
Разработка грунта экскаваторами с погрузкой на железнодорожный или	м3	13289,51
автомобильный транспорт и вывозкой		
Разработка и перемещение грунта бульдозерами	м3	54651,13
Разработка и перемещение грунта вручную	м3	1276,2
Обратная засыпка грунта вручную с уплотнением электро- или пневмот-	м3	18182,32
рамбовками		
ИТОГО:		103413,21

РАСЧЁТ ВЫБРОСОВ ЗВ В АТМОСФЕРУ ПРИ СТРОИТЕЛЬСТВЕ

Ист. 0001

Битумный котел 400 л

Объем котла битумного БД - 400 л

Режим работы битумного котла 170 ч/год

Кол-во разогреваемого битума – 34 т

Расход диз.топлива на период строительства - 0,412 т

Максимально-разовый расход диз.топлива - 2 л/час = 0,48 г/сек

Мощность котла — 30к \hat{B} т

Дымовая труба — H=2.0 м, Д=0.3 м.

Температура уходящих газов 150°C.

Список литературы:

1. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час.

2. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.б. Методика расчета выбросов вредных веществ при работе асфальтобетонных заводов.

Источник загрязнения N 0001, Дымовая труба Источник выделения N 0001 01, Битумный котел 0,4л

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, т/год, BT = 0.412

Расход топлива, г/с, BG = 0.48

Марка топлива, M = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более(прил. 2.1), A1R = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 30

Фактическая мощность котлоагрегата, кВт, QF = 30

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0644

Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0644 \cdot (30/30)^{0.25} = 0.0644$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.412 \cdot 42.75 \cdot 0.0644 \cdot (1-0) = 0.001134$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 0.48 \cdot 42.75 \cdot 0.0644 \cdot (1-0) = 0.001321$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.001134 = 0.000907$ Выброс азота диоксида (0301), г/с, $_G_ = 0.8 \cdot MNOG = 0.8 \cdot 0.001321 = 0.001057$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $\underline{M} = 0.13 \cdot \overline{M} NOT = 0.13 \cdot 0.001134 = 0.0001474$ Выброс азота оксида (0304), г/с, $\underline{G} = 0.13 \cdot MNOG = 0.13 \cdot 0.001321 = 0.0001717$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, %(прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $\underline{M} = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 0.412 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 0.412 = 0.002423$

Выбросы окислов серы, г/с (ф-ла 2.2), $_{G}$ = $0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$ = $0.02 \cdot 0.48 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 0.48 = 0.00282$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Кол-во окиси углерода на единицу тепла, кг/Гдж(табл. 2.1), KCO = 0.32

Тип топки: Камерная топка

Выход окиси углерода в кг/тонн или кг/тыс.м3', $CCO = QR \cdot KCO = 42.75 \cdot 0.32 = 13.68$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_{_}M_{_} = 0.001 \cdot BT \cdot CCO \cdot (1-Q4 / 100) = 0.001 \cdot BT \cdot CCO$

 $0.412 \cdot 13.68 \cdot (1-0 / 100) = 0.00564$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_{-}G_{-}=0.001 \cdot BG \cdot CCO \cdot (1-Q4 / 100) = 0.001 \cdot 0.48 \cdot 13.68 \cdot (1-0 / 100) = 0.00657$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=0.412\cdot 0.025\cdot 0.01=0.000103$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=0.48\cdot 0.025\cdot 0.01=0.00012$

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на С/ (592)

Объем производства битума, т/год , MY = 34

Валовый выброс, т/год (ф-ла 6.7) , _M_ = (1 * MY) / 1000 = (1 * 34) / 1000 = 0,034 Максимальный разовый выброс, г/с, $G = M * 10 ^6 / (_T_ * 3600) = 0.034 * 10 ^6 / (170 * 3600) = 0.056$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.001057	0.000907
0304	Азот (II) оксид (Азота оксид) (6)	0.0001717	0.000 147
0328	Углерод (Сажа, Углерод черный) (583)	0.00012	0.000103
0330	Сера диоксид (IV) оксид (516)	0.00282	0.002423
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00657	0.00564
2754	Углеводороды предельные С12-19 /в пересчете на С/	0.056	0.034
	(592)		

Работа автотракторной техники на территории стройплощадки

Приложение №13 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008г. №100 –п. «Методика расчета нормативов выбросов от неорганизованных источников». Расход топлива в кг/ч на одну л.с. мощности составляет ориентировочно для карбюраторных двигателей 0,4 кг/л.с.ч и для дизельных двигателей – 0,25 кг/л.с.ч.

Выбросы вредных веществ при сгорании топлива

Вредный компонент	Выбросы вредных веществ		
	двигателями. т/т		
	карбюраторными дизельными		
Окись углерода	0.6	0.1	
Углероды	0.1	0.03	
Двуокись азота	0.04	0.04	
Сажа	0.00058	0.000155	
Сернистый газ	0.002	0.02	
Бенз(а)пирен	$0.23*10^{-6}$	0.32*10 ⁻⁶	

Расход топлива различными транспортными средствами

Марка автомашины	Вид топлива	Расход топлива. т/ч
KAMA3-511	дизельное	0.013
КРАЗ-256б-1	дизельное	0.019
ЗИЛ ММЗ-555	бензин	0.014

Количество вредных веществ, поступающих в атмосферу, определяют путем умножения величины расхода топлива в тоннах на соответствующие коэффициенты.

Ист. 0002 Сваебойка

Установки на гусеничном ходу для погружения свай длиной до 22 метров, с гидромолотом 6,4 т

Расход дизтоплива:

0,25 кг/л.с.ч *245 л.с = 61,25 кг/ч (17,014 г/с)

Время работы сваебойки – 1400 ч/период строительства

61,25*1400 ч = 85750 кг = 85,75 т/ период строительства

Результаты расчета сведены в таблицу

	Выбросы вредных веществ		
Вредный компонент	Уд. показатель т/т	г/с	т/пер.строит.
Окись углерода	0,1	1,7014	8,575
Углероды (керосин)	0,03	0,51042	2,5725
Двуокись азота	0,04	0,68056	3,43
Сажа	0,000155	0,00263	0,0133
Сернистый газ	0,02	0,34028	1,715
Бенз(а)пирен	0,000 000 32	0,0000054	0,000 027

Ист.6001

Бульдозеры, 59 кВт (80 л.с.)

Экскаваторы одноковшовые дизельные на гусеничном ходу, 0,5 м3

Экскаваторы одноковшовые дизельные на пневмоколесном ходу, 0,25 м3

Укладчики асфальтобетона

Расход дизтоплива:

0,25 кг/л.с.ч *80 л.с = 20 кг/ч (0,02т/ч)

Результаты расчета сведены в таблицу

	Выбросы вредных веществ	
Вредный компонент	Уд. показатель	г/с
	T/T	1/0
Окись углерода	0,1	0,55556
Углероды (керосин)	0,03	0,166667
Двуокись азота	0,04	0,222222
Сажа	0,000155	0,000861
Сернистый газ	0,02	0,111111
Бенз(а)пирен	0,000 000 32	0,000 0017

Ист.6002

Бульдозеры, 79 кВт (108 л.с.)

Агрегаты сварочные двухпостовые для ручной сварки на тракторе 79 кВт (108 л.с.)

Тракторы на гусеничном ходу, 79 кВт (108 л.с.)

Экскаваторы одноковшовые дизельные на пневмоколесном ходу, 0,65 м3

Краны на автомобильном ходу, 5 т

Катки дорожные самоходные гладкие, 8 т

Катки дорожные самоходные гладкие, 13 т

Расход дизтоплива: 0,25 кг/л.с. + 108 л.c = 27 кг/ч (0,027 т/ч)

Результаты расчета сведены в таблицу

	Выбросы вр	едных веществ
Вредный компонент	Уд. показатель $_{\mathrm{T/T}}$	г/с
Окись углерода	0,1	0,75
Углероды (керосин)	0,03	0,225
Двуокись азота	0,04	0,3
Сажа	0,000155	0,00116

ТОО Экопроект"

Сернистый газ	0,02	0,15
Бенз(а)пирен	0,00000032	0,0000024

Ист.6003

Бульдозеры при сооружении магистральных трубопроводов, 96 кВт (130 л.с.)

Автопогрузчики, 5 т

Катки дорожные самоходные гладкие, 8 т

Погрузчики одноковшовые универсальные фронтальные пневмоколесные, 3 т

Краны на автомобильном ходу, 10 т

Краны на гусеничном ходу, до 16 т

Краны на автомоб. ходу, до 25 т

Расход дизтоплива:

 $0,25\ {
m kf}/{
m л.c.}$ ч *130 ${
m л.c}$ = 32,5 ${
m kf}/{
m ч}$ ($0,032{
m T/ч}$)

Результаты расчета сведены в таблицу

	Выбросы вредных веществ		
Вредный компонент	Уд. показатель т/т	г/с	
Окись углерода	0,1	0,88889	
Углероды (керосин)	0,03	0,26667	
Двуокись азота	0,04	0,35556	
Сажа	0,000155	0,001378	
Сернистый газ	0,02	0,17778	
Бенз(а)пирен	0,00000032	0,0000028	

Ист.6004

Автогрейдер среднего типа 99 кВт (135 л.с.),

Машины поливомоечные, 6000 л

Трубоукладчики для труб диаметром до 700 мм, 6,3 т

Расход дизтоплива:

0,25 кг/л.с.ч *135 л.с = 27 кг/ч (0,027 т/ч)

Результаты расчета сведены в таблицу

	Выбросы вредных веществ		
Вредный компонент	Уд. показатель т/т	г/с	
Окись углерода	0,1	0,9361	
Углероды (керосин)	0,03	0,28083	
Двуокись азота	0,04	0,3744	
Сажа	0,000155	0,00145	
Сернистый газ	0,02	0,18722	
Бенз(а)пирен	0,00000032	0,000009	

Ист. 6005

Автогудронаторы, 3500 л,

Катки дорожные самоходные на пневмоколесном ходу, 16 т, 30 т.

Автомобили-самосвалы, 7 т

Комплексная монтажная машина для выполнения работ при прокладке и монтаже кабеля на базе автомобиля

Краны на автомобильном ходу при работе на монтаже технологического оборудования, 63 Расход дизтоплива:

0.25 kg/h.c.y *245 h.c = 61.25 kg/y (17.014 g/c)

Результаты расчета сведены в таблицу

	Выбросы вр	едных веществ
Вредный компонент	Уд. показатель т/т	г/с

Окись углерода	0,1	1,7014
Углероды (керосин)	0,03	0,51042
Двуокись азота	0,04	0,68056
Сажа	0,000155	0,00263
Сернистый газ	0,02	0,34028
Бенз(а)пирен	0,00000032	0,0000054

Ист.6006

Гудронаторы ручные

Расход бензина 1,7 л/ч (0,0003547 л/с)

Выбросы вредных веществ при сгорании топлива

	Выбросы вредных веществ						
Вредный компонент	Уд. показатель т/т	г/с					
Окись углерода	0,1	0,00021					
Углероды (керосин)	0,03	0,000035					
Двуокись азота	0,04	0,000014					
Сажа	0,000155	0,0000002					
Сернистый газ	0,02	0,0000007					
Бенз(а)пирен	0,00000032	0,00000000008					

Ист. 6007

Компрессоры передвижные с двигателем внутреннего сгорания давлением до $686\ \mathrm{k\Pi a}\ (7\ \mathrm{arm}),\ 2,2\ \mathrm{m3/muh},$

Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), $5\ \mathrm{m}^{3}/\mathrm{m}^{2}$

Агрегаты сварочные передвижные с номинальным сварочным током 250-400 A, с дизельным двигателем

Расход дизтоплива:

Мощность - 36кВт (48,6 л.с.)

0,25 кг/л.с.ч *48,6л.с = 12,15 кг/ч (0,01215т/ч)

Результаты расчета сведены в таблицу

Вредный компо-	Выбросы вредн	ых веществ
нент	Уд. показатель т/т	г/с
Окись углерода	0.1	0,3375
Углероды	0.03	0,10125
Двуокись азота	0.04	0,135
Сажа	0.000155	0,000523
Сернистый газ	0.02	0,0675
Бенз(а)пирен	0.32*10 ⁻⁶	0,000 001

Ист. 6008

Электростанции передвижные, до 4 кВт (5,44 л.с.)

0,25 кг/л.с.ч *5,44 л.с = 1,36 кг/ч (0,00136т/ч)

Результаты расчета сведены в таблицу

Вредный компо-	Выбросы вред	ых веществ		
нент	Уд. показатель т/т	г/с		
Окись углерода	0.1	0,03778		
Углероды	0.03	0,011333		
Двуокись азота	0.04	0,01511		
Сажа	0.000155	0,000058		
Сернистый газ	0.02	0,00756		
Бенз(а)пирен	$0.32*10^{-6}$	0,000 00012		

Ист.6009

Машины сверлильные электрические

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2004 г.

Технология обработки: Механическая обработка

Тип расчета: без охлаждения Вид станков: Сверлильные

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, Т = 67,11456

Число станков данного типа, шт., KOLIV = 1

Число станков данного типа, работающих одновременно, шт., NS1 = 1

Примесь: 2902 Взвешенные вещества

Удельный выброс, $r/c * 10 ^ -3 (табл. 5)$, GV = 0.4

Удельный выброс, Γ/c , $GV = GV / 10^3 = 0.4 / 10^3 = 0.0004$

Коэффициент эффективности местных отсосов, KN = 0.9

Валовый выброс $\overline{3}$ В, τ /год (1) , \underline{M} = $3600 * KN * GV * \underline{T}$ * \underline{KOLIV} / $10 ^ 6$ = $3600 * 0.9 * 0.0004 * 67.11456 * 1 / <math>10 ^ 6$ = 0.00008

Максимальный из разовых выброс 3B, г/с (2) , _G_ = KN * GV * NS1 = 0.9 * 0.0004 * 1 = 0.00036 ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2902	Взвешенные вещества	0.00036	0.00008

Ист.6010

Машины шлифовальные угловые	машч	43
Машины шлифовальные электриче-	машч	71
ские		
Итого:		114

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2004 г.

Технология обработки: Механическая обработка металлов

Местный отсос пыли проводится

Тип расчета: без охлаждения

Вид оборудования: Внутришлифовальные станки, с диаметром шлифовального круга - 151-200 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, Т = 114

Число станков данного типа, шт., KOLIV = 1

Число станков данного типа, работающих одновременно, шт., NS1 = 1

Примесь: 2930 Пыль абразивная (Корунд белый; Монокорунд)

Удельный выброс, Γ/c (табл. 1), GV = 0.012

Коэффициент эффективности местных отсосов, KN = 1

Валовый выброс, т/год (1), _M_ = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 1 * 0.012 * 114 * 1/10 ^ 6 = 0.00492

Максимальный из разовых выброс, Γ/C (2), G = KN * GV * NS1 = 1*0.012 * 1 = 0.012

Примесь: 0008 Взвешенные частицы

Удельный выброс, Γ/c (табл. 1), GV = 0.18

Коэффициент эффективности местных отсосов, KN = 1

Валовый выброс, т/год (1), _M_ = 3600 * KN * GV * _T_ * _KOLIV_ / 10 ^ 6 = 3600 * 1 * 0.18 * 114 * 1 / 10 ^ 6 = 0,07387

Максимальный из разовых выброс, г/с (2), _G_ = KN * GV * NS1 = 1 * 0.18 * 1 = 0.18

ИТОГО:

ем:

Код	Примесь	Выброс г/с	Выброс т/год
0008	Взвешенные частицы	0.18	0.07387
2930	Пыль абразивная (Корунд белый; Монокорунд)	0.012	0.00492

Инертные материалы

Расчет по земляным работам проводим согласно Методике расчета нормативов выбросов от неорганизованных источников. Приложению № 8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221- Θ .

Общий объем выбросов для данных объектов можно охарактеризовать следующим уравнени-

$q=(k1*k2*k3*k4*k5*k7*G*10^6*B)/3600, r/c (1)$

 k_1 — весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0—200 мкм соответствии с таблицой 1 согласно приложению к настоящей Методике;.

- k_2 доля пыли (от всей массы пыли), переходящая в аэрозоль соответствии с <u>таблицой 1</u> согласно приложению к настоящей Методике;
- k_3 коэффициент, учитывающий местные метеоусловия и принимаемый в соответствии с <u>табли</u>цой 2 согласно приложению к настоящей Методике.
- k_4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования. Данные приведены в <u>таблице 3</u> согласно приложению к настоящей Методике.
- k_5 коэффициент, учитывающий влажность материала и принимаемый в соответствии с данными таблицы 4 согласно приложению к настоящей Методике.
- k_7 коэффициент, учитывающий крупность материала и принимаемый в соответствии с <u>таблицой</u> <u>5</u> согласно приложению к настоящей Методике.
 - G суммарное количество перерабатываемого материала, т/ч;
- В' коэффициент, учитывающий высоту пересыпки и принимаемый в соответствии с таблицей 7 согласно приложению к настоящей Методике. Склады и хвостохранилища рассматриваются как равномерно распределенные источники пылевыделения.

Ист. 6011

Земляные работы – 103413,21 м³

Плотность грунта взята из инженерно-гелогического отчета — суглинок, бурого цвета, от твердой до мягкопластичной консистенции, с плотностью— 1,84 г/см³ (согласно отчету по инженерно-геологическим работам на объекте ТОО «ПГКК «ASSE» в 2025 г. (арх.№257-02/25)).

Влажность грунтов – 18-20% согласно геол.отчету.

Количество грунта составит: 103413,21 * 1,84 = 190280 т.

Выбросы при пересыпке

K_1	К ₂	К ₃	К ₄	K ₅	K ₇	B′	g, т/час	G, т/за пе- риод строи- тельства	η	М, г/с	Μ <u>.</u> τ/Γ
0,05	0,02	1,2	1	0,01	0,8	0,6	5	190280	0	0,008	1,096013

Ист. 6012

11011 0012		
Щебень из плотных горных пород для строительных работ M600, фракция 5-10 мм СТ РК 1284-2004	м3	325,467
Щебень известняковый для строительных работ М600, фракция 5-10 мм СТ РК 1284-2004	м3	272,217
		597,684

Количество материала составит: **597,684*** 1,4 = 836,7576 т (1,4 т/м3 – это насыпная плотность, именно ее используют для определения пыления при пересыпки)

Выбросы при пересыпке

К ₁	К ₂	К ₃	К ₄	К ₅	К ₇	B'	g, т/час	G, т/за период строительства	η	М, г/с	Μ <u>.</u> τ/Γ
0,04	0,02	1,2	1	0,6	0,6	0,6	10	836,7576	0	0,576	0,1735

Ист. 6013

Щебень из плотных горных пород для строительных работ М600, фракция 10-	м3	125,502
20 мм СТ РК 1284-2004		
Щебень из плотных горных пород для строительных работ М1000 СТ РК 1284-2004	м3	747,6870666
фракция 15-20 мм		
Итого:		873,189

Количество материала составит: 873,789* 1,4 = 1222,465 т.

Выбросы при пересыпке

K_1	К ₂	К ₃	К4	K ₅	К ₇	B'	g, т/час	G, т/за период строительства	η	М, г/с	M <u>.</u> τ/Γ
0,04	0,02	1,2	1	0,6	0,5	0,6	10	1222,465	0	0,48	0,21124

Ист. 6014

Щебень из плотных горных пород для строительных работ М600, фракция	м3	495,8
20-40 мм СТ РК 1284-2004		

Количество материала составит: 495,8* 1,4 = 694,12 т.

Выбросы при пересыпке

K_1	К ₂	К ₃	K ₄	К ₅	К ₇	B'	д, т/час	G, т/за пе- риод строи- тельства	η	M, Γ/c	M ₂ T/Γ
0,04	0,0	1,2	1	0,6	0,5	0,6	10	694,12	0	0,48	0,12

Ист. 6015

Щебень из плотных горных пород для строительных работ М600, фракция	м3	1657,86
40-70 мм СТ РК 1284-2004		

Количество материала составит: 1657,86 * 1,4 = 2321,004 т.

Выбросы при пересыпке

K ₁	К ₂	К ₃	К ₄	K ₅	K ₇	B'	g, т/час	G, т/за пе- риод строи- тельства	η	M, Γ/c	M <u>.</u> τ/Γ
0,04	0,02	1,2	1	0,6	0,5	0,6	10	2321,004	0	0,48	0,14011

Ист. 6016

Гравий керамзитовый М400, фракция 10-20 мм СТ РК 948-92	м3	1871

Количество материала составит: 1871* 1,4=2619,4 т.

Выбросы при пересыпке

K_1	К ₂	К ₃	К ₄	K ₅	K ₇	В′	g, T/час	G, т/за пе- риод строи- тельства	η	M, Γ/c	M <u>.</u> τ/Γ
0,05	0,03	1,2	1	0,8	0,8	0,6	10	2619,4	0	1,92	1,81053

Ист. 6017

Песок природный ГОСТ 8736-2014	м3	5580,928902
Песок кварцевый	Т	0,0061875

Количество материала составит: (5580,928902102* 2,6) + 0,0061875=14510,42 т.

Выбросы при пересыпке

К1	К2	К3	К4	K ₅	K ₇	B'	g, т/час	G, т/за период строительства	η	M, Γ/c	M <u>.</u> τ/Γ
0,05	0,03	1,2	1	0,8	0,8	0,6	10	14510,42	0	1,92	10,0296

Ист. 6018

Смеси песчано-гравийные природные ГОСТ 23735-2014	м3	1128,14
---	----	---------

Количество материала составит: (1128,14*2,6=2933,164 т.)

Выбросы при пересыпке

К1	K ₂	К ₃	К ₄	K ₅	К ₇	B'	g, т/час	G, т/за период строительства	η	M, Γ/c	M <u>.</u> τ/Γ
0,05	0,03	1,2	1	0,8	0,8	0,6	10	2933,164	0	1,92	2,027403

Ист. 6019

Портландцемент бездобавочный ПЦ 400-Д0 ГОСТ 10178-85	Т	0,6134172
Портландцемент бездобавочный ПЦ 500-Д0 ГОСТ 10178-85	Т	0,0025866
Цемент гипсоглиноземистый расширяющийся ГОСТ 11052-74	Т	0,07893
		0,6949338

Выбросы при пересыпке

K_1	К2	К3	К4	K ₅	К ₇	B'	g, т/час	G, т/за период строительства	η	М, г/с	M ₂ T/Γ
0,04	0,03	1,2	1	1	1	0,6	0,002	0,694933 8	0	0,00048	0,0006004

Ист. 6020

Известь строительная негашеная комовая, сорт 1, ГОСТ 9179-77	T	4,0275375
Известь хлорная, марки А, ГОСТ Р 54562-2011	T	0,0108306
		4,0383681

Выбросы при пересыпке

K ₁	К ₂	K ₃	К4	K ₅	К ₇	B'	g, т/час	G, т/за период строительства	η	М, г/с	M <u>.</u> τ/Γ
0,07	0,05	1,2	1	0,8	0,8	0,6	0,5	4,0383681	0	0,224	0,006513

Ист. 6021

Смесь сухая шпатлевочная на гипсовой основе М25 СТ РК 1168-2006	ΚΓ	439317,6867
Смесь сухая - гипсовая штукатурка СТ РК 1168-2006 стандартная	ΚΓ	388448,9129
Смесь сухая для затирки швов гипсокартонных листов СТ РК 1168-2006	КГ	2455,41375
Гипсовые вяжущие ГОСТ 125-79 марки Г-3	КГ	2840
Итого:	КГ	833062

Выбросы при пересыпке

K ₁	К ₂	К3	K ₄	К ₅	К ₇	B′	g, т/час	G, т/за пе- риод строи- тельства	η	M, Γ/c	M ₂ T/Γ
0,08	0,04	1,2	0,005	1	1	0,6	0,08	833,062	0	0,000 256	0,0096

Ист. 6022

Смесь сухая для затирки швов плиток СТ РК 1168-2006 белая	ΚΓ	76,9396
Смесь сухая - цементная, наливной пол для первоначального выравнивания СТ	КГ	362,483
PK 1168-2006 M150		
Смесь сухая - цементная, наливной пол для окончательного выравнивания СТ РК	КГ	34,016
1168-2006 M150		
Смесь сухая - минеральная штукатурка СТ РК 1168-2006 для декоративной от-	КГ	54417,415
делки "Шубка"		
Смесь сухая для затирки швов плиток СТ РК 1168-2006 серая	КГ	3392,3574
Смесь сухая клеевая СТ РК 1168-2006 базовая для плитки	КГ	4733,8298
Смесь сухая клеевая СТ РК 1168-2006 усиленная для плитки	КГ	29218,5586
Смесь сухая клеевая СТ РК 1168-2006 для системы скрепленной теплоизоляции	КГ	14984,1842
		107219

Выбросы при пересыпке

K ₁	К ₂	К ₃	K ₄	К ₅	К ₇	B'	g, т/час	G, т/за период строи- тельства	η	M, Γ/c	M ₂ T/Γ
0,04	0,03	1,2	0,005	1	1	0,6	0,01	107,219	0	0,000 012	0,000463

Ист.6023

Грунтовка глифталевая, ГФ-021 СТ РК ГОСТ Р 51693-2003	Т	0,3
---	---	-----

Источник выделения, Грунтовка ГФ021

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 0.3

Максимальный час расход ЛКМ,с учетом дискретности работы оборудования, кг, MS1 = 0.2

Марка ЛКМ: Грунтовка ГФ-021 Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ,%, F2 = 45

Примесь: 0616 Ксилол (смесь изомеров о-, м-, n-)

Доля вещества в летучей части ЛКМ, %, FPI = 100

Доля растворителя, при окраске и сушке для данного способа окраски %, DP = 100

Валовый выброс 3В (3-4), т/год , $_M_=MS*F2*FPI*DP*10^-6=0,3*45*100*100*10^-6=0.135$

Максимальный из разовых выброс 3B, г/с , _G_ = $MS1*F2*FPI*DP/(3.6*10^6) = 0.2*45*100$ * $100/(3.6*10^6) = 0.025$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь изомеров о-, м-, п-)	0.025	0,135

Ист.6024

Ксилол нефтяной марки А ГОСТ 9410-78	T	0,04

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS =0,04

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2

Марка ЛКМ: Ксилол

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: ксилол

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 0.04 * 100 * 100 * 100 * 10^-6 = 0.04$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0,11 * $100 * 100 * 100 / (3.6 * 10 ^ 6) = 0.03056$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол	0.03056	0,04

Ист.6025

Керосин

Керосин для технических целей марок КТ-1, КТ-2	T	0,57
Контакт Петрова керосиновый	Т	0,01
		0,58

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS =0,58

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2

Марка ЛКМ: Ксилол

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: Керосин

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 = 0,58* 100 * 100 * 100 * 10 ^ -6 = 0,58

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0,11 * 100 * 100 * 100 / (3.6 * 10 ^ 6) = 0.03056

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
2732	Керосин	0.03056	0,58

ТОО 9копроект" 94

Ист.6026

Битумная мастика МБ-50

Мастика морозостойкая битумно-масляная МБ-50 ГОСТ 30693-2000 кг 2601
--

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 2,601

Максимальный час расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1=1

Марка ЛКМ: МБ-50

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ, %, F2 = 63

Примесь:0616 Ксилол (смесь изомеров о-, м-, n-)

Доля вещества в летучей части ЛКМ, %, FPI = 57.4

Доля растворителя, при окраске и сушке

для данного способа окраски, %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 2,601 * 63 * 57.4 * 100 * 10 ^-6 = 0,9406$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 1 * 63 * 57.4 * 100 / (3.6 * 10 ^ 6) = 0.1005

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ, %, FPI = 42.6

Доля растворителя, при окраске и сушке

для данного способа окраски, %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 2,601 * 63 * 42.6 * 100 * 10 ^-6 = 0.698$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 1 * 63 * 42.6 * 100 / (3.6 * 10 ^ 6) = 0.075

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь изомеров о-, м-, п-)	0.1005	0,9406
2752	Уайт-спирит	0.075	0,698

Ист. 6027 Лак БТ-123

Лак битумный БТ-123 ГОСТ Р 52165-2003	КГ	90,3294
---------------------------------------	----	---------

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 0.09033

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.05

Марка ЛКМ: Лак БТ-123

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 56

Примесь: 0616 Ксилол (смесь изомеров о-, м-, п-)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 96

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 = 0.09033*56*96*100*10 ^ -6 = 0.04856

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0.05 * 56 * 96 * 100 / (3.6 * 10 ^ 6) = 0.00747

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 0.09033*56*4*100*10^-6 = 0.00202$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / $(3.6*10^6) = 0.05*56*4*100 / (3.6*10^6) = 0.000311$

Примесь: 0008 Взвешенные частицы

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

Валовый выброс 3В (1), т/год , _M_ = KOC * MS * (100-F2) * DK * 10 ^ -4 = 1 * 0.09033* (100-56) * $30 * 10 ^ -4 = 0.01192$

Максимальный из разовых выброс 3B (2), г/с , _G_ = KOC * MS1 * (100-F2) * DK / (3.6 * 10 ^ 4) = 1 * 0.05 * (100-56) * 30 / (3.6 * 10 ^ 4) = 0.001833

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь изомеров о-, м-, п-)	0.00747	0,04856
2752	Уайт-спирит	0.000311	0,00202
0008	Взвешенные частицы	0.001833	0,01192

Ист.6028

MA-015

Краска масляная алкидные земляные, готовые к применению: сурик железный MA-15, ПФ-14 ГОСТ 10503-71	Т	0,0832
Краска масляная густотертая цветная МА-015, сурик железный ГОСТ 10503-71	T	0,230
Краска масляная МА-15 ГОСТ 10503-71	T	0,209
		0,5222

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при нанесении лакокрасочных материалов (по величинам удельных

выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 0,5222

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2

Марка ЛКМ: Эмаль МА-015

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 47

Примесь: 1042 Бутан-1-ол (Спирт н-бутиловый)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 37.03

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 0.5222*47*37.03*100*10 ^-6 = 0.0909$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 2 * 47 * 37.03 * 100 / (3.6 * 10 ^ 6) = 0.0967

Примесь: 0616 Ксилол (смесь изомеров о-, м-, п-)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 32.25

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 =0,5222 * 47 * 32.25 * 100 * 10 ^ -6 = 0,08

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 2 * 47 * 32.25 * 100 / (3.6 * 10 ^ 6) = 0.0842

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 30.72

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 = 0,5222* 47 * 30.72 * 100 * 10 ^ -6 = 0,076

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 2 * 47 * $30.72 * 100 / (3.6 * 10 ^ 6) = 0.0802$

Примесь: 0008 Взвешенные частицы

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DK = 30

ТОО 9копроект" 96

Валовый выброс 3В (1), т/год , _M_ = KOC * MS * (100-F2) * DK * $10 ^-4 = 1 * 0,522 * (100-47) * 30 * 10 ^-4 = 0,083$

Максимальный из разовых выброс 3B (2), г/с , _G_ = KOC * MS1 * (100-F2) * DK / (3.6 * 10 ^ 4) = 1 * 2 * (100-47) * 30 / (3.6 * 10 ^ 4) = 0.0883

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь изомеров о-, м-, п-)	0.0842	0,08
1042	Бутан-1-ол (Спирт н-бутиловый)	0.0967	0,0909
2752	Уайт-спирит	0.0802	0,076
0008	Взвешенные частицы	0.0883	0,083

Ист.6029

P-4

Растворители для лакокрасочных материалов Р-4 ГОСТ 7827-74	Т	0,0383644
--	---	-----------

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005 г.

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 0,0383644

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1 = 0.5

Марка ЛКМ: Растворитель Р-4

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 1401 Пропан-2-он (Ацетон)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^{-6} = 0.0383644 * 100 * 26 * 100 * 10 ^{-6} = 0.00997$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * $10 ^6$) = 0.5 * $100 ^6$ * $26 * 100 / (3.6 * <math>10 ^6$) = 0.0361

Примесь: 1210 Бутилацетат

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 = 0,0383644* 100 * 12 * 100 * 10 ^ -6 = 0,00460

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0.5 * 100 * 12 * 100 / (3.6 * 10 ^ 6) = 0.01667

Примесь: 0621 Толуол

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^ -6 = 0.0383644 * 100 * 62 * 100 * 10 ^ -6 = 0.02379$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * $10 ^6$) = 0.5 * $100 ^6$ * $62 * 100 / (3.6 * <math>10 ^6$) = 0.0861

Итого:

Код	Примесь	Примесь Выброс г/с		
0621	Толуол	0.0861	0,02379	
1210	Бутилацетат	0.01667	0,00460	
1401	Пропан-2-он (Ацетон)	0.0361	0.00997	

Ист. 6030

Лакокрасочные материалы: ПФ-115

Эмаль пентафталевая ПФ-115 серая ГОСТ 6465-76	T	0,3412062
---	---	-----------

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005 г.

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS =0,3412062

Максимальный час расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 1

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ, %, F2 = 45

Примесь: 0616 Ксилол (смесь изомеров о-, м-, п-)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке для данного способа окраски, %, DP = 100

Валовый выброс 3B, т/год , _M_ = MS * F2 * FPI * DP * $10 ^{-6} = 0.3412062*45*50*100*10^{-6} = 0.07677$

Максимальный из разовых выброс 3B, г/с , _G_ = MS1 * F2 * FPI * DP / $(3.6 * 10 ^6) = 1 * 45 * 50 * 100 / <math>(3.6 * 10 ^6) = 0.0625$

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ, %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски, %, DP = 100

Валовый выброс 3B, т/год , _M_ = MS * F2 * FPI * DP * $10 ^{-6} = 0.3412062*45*50*100*10^{-6} = 0.07677$

Максимальный из разовых выброс 3B,г/c, _G_ = MS1 * F2 * FPI * DP / $(3.6 * 10 ^ 6) = 1 * 45 * 50 * 100 / <math>(3.6 * 10 ^ 6) = 0.0625$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь изомеров о-, м-, п-)	0.0625	0,07677
2752	Уайт-спирит	0.0625	0.07677

Ист.6031

Растворитель бензин

Бензин-растворитель ГОСТ 26377-84	T	0,495131
Бензин АИ-92	T	0,0043664
Бензин авиационный Б-70 ГОСТ 1012-72	T	0,17555
Итого:		0,67505

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005 г.

Источник выделения - бензин

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS =0,67505

Максимальный час расход ЛКМ, с учетом дискретности работы оборудования,кг,MS1 = 0.5

Марка ЛКМ: Растворитель бензин Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ,%, F2 = 100

Примесь: 2704 бензин нефтяной

Доля вещества в летучей части ЛКМ, %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски, %, DP = 100

Валовый выброс 3B, т/год , _M_ = MS * F2 * FPI * DP * $10 ^{-6} = 0.67505 * 100 * 100 * 100 * 10 ^{-6} = 0.67505$

Максимальный из разовых выброс 3B, г/с , _G_ = MS1 * F2 * FPI * DP / $(3.6*10^6) = 0.5*100*100*100*100 / (3.6*10^6) = 0.139$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
2704	Бензин	0.139	0,67505

Ист.6032

Уайт-спирит

Уайт-спирит ГОСТ 3134-78	Т	0,05245

Источник выделения - Уайт-спирит

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS =0,05245

Максимальный час расход ЛКМ, с учетом дискретности работы оборудования,кг, MS1 = 0.5

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ,%, F2 = 100

Примесь: 2752 Уайт-спирит

Доля вещества в летучей части ЛКМ, %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски, %, DP = 100

Валовый выброс 3B, т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 = 0,05245* 100 * 100 * 100 * 10 ^ -6 = 0,05245

Максимальный из разовых выброс 3B, г/с , _G_ = MS1 * F2 * FPI * DP / $(3.6 * 10 ^ 6) = 0.5 * 100 * 100 * 100 / (3.6 * 10 ^ 6) = 0.139$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
2752	Уайт-спирит	0.139	0,05245

Ист.6033

Лак битумный БТ-577

Лак битумный БТ-577 ГОСТ Р 52165-2003	КГ	241,3
---------------------------------------	----	-------

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005 г.

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 0,2413

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 2

Марка ЛКМ: Лак БТ-577

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 63

Примесь: 0616 Ксилол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 57.4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 0.2413 * 63 * 57.4 * 100 * <math>10 ^-6 = 0.0873$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 2 * 63 * 57.4 * 100 / (3.6 * 10 ^ 6) = 0.201

Примесь: 2752 Уайт-спирит (1316*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 42.6

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 =0,2413* 63 * 42.6 * 100 * 10 ^ -6 = 0.0648

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 2 * 63 * 42.6 * 100 / (3.6 * 10 ^ 6) = 0.149

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0616	Ксилол (смесь о-, м-, п- изомеров) (203)	0.201	0,0873
2752	Уайт-спирит (1316*)	0.149	0,0648

Ист.6034

Эмаль ЭП 140

Эмаль эпоксидная ЭП-140 защитная ГОСТ 24709-81	Т	0,0021
3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		*,**

ТОО **9 Укопроект** "

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005 г.

Источник выделения Эмаль ЭП-140

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS = 0,0021

Максимальный час расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0,0021

Марка ЛКМ: Эмаль ЭП-140

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 53,5

Примесь: 1401 Ацетон (пропанон)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 33,7

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3B (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 = 0,0021* 53,5 * 33,7 * 100 * 10 ^ -6 = 0,00038

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0,3 * 53,5 * 33,7* 100 / (3.6 * 10 ^ 6) = 0,015024

Примесь: 0616 Ксилол (смесь изомеров о-, м-, п-)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 32,78

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * 10 ^ -6 = 0,0021* 53,5 * 32,78 * 100 * 10 ^ -6 = 0,00037

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0,3 * 53,5 * 32,78 * 100 / (3.6 * 10 ^ 6) = 0,014614

Примесь:0621 Толуол

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 4.86

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 0,0021 * 53,5 * 4,86 * 100 * <math>10 ^-6 = 0,00005$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0,3 * 53,5 * 4,86 * 100 / (3.6 * 10 ^ 6) = 0.002167

Примесь:1119 Этилцеллозольв

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 28,66

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год , _M_ = MS * F2 * FPI * DP * $10 ^-6 = 0.0021 * 53.5 * 28.66 * 100 * 10 ^-6 = 0.000322$

Максимальный из разовых выброс 3B (5-6), г/с , _G_ = MS1 * F2 * FPI * DP / (3.6 * 10 ^ 6) = 0,3 * 53,5* 28,66 * 100 / (3.6 * 10 ^ 6) = 0.012778

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
1401	Ацетон (пропанон)	0,015024	0,00038
0616	Ксилол (смесь изомеров о-, м-, п-)	0.014614	0,00037
0621	Толуол	0.002167	0,00005
1119	Этилцелозольв	0,0128	0,00032

Ист.6035

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005 г.

Источник выделения - ацетон

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS =0,00227

Максимальный час расход ЛКМ, с учетом дискретности работы оборудования,кг,MS1 = 0.2

Марка ЛКМ: Растворитель ацетон

ТОО Экопроект"

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ,%, F2 = 100

Примесь: 1401 Пропанон (ацетон)

Доля вещества в летучей части ЛКМ, %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски, %, DP = 100

Валовый выброс 3B, т/год , _M_ = MS * F2 * FPI * DP * $10 ^{-6} = 0.0034192 * 100 * 100 * 100 * 100 * 10 ^{-6} = 0.0034192$

Максимальный из разовых выброс 3B, г/с , _G_ = MS1 * F2 * FPI * DP / $(3.6 * 10 ^6) = 0.05 * 100 * 100 * 100 / (3.6 * 10 ^6) = 0.0138889$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
1401	Пропанон (ацетон)	0.01389	0.00342

Ист.6036

Сварка с прим. пропан-бутановой смеси

Пропан-бута	ан, смес	сь техн	ическая]	ГОСТ Р 52087-2003	КГ	5707

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси

Расход сварочных материалов, кг/год, В = 5707

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 0.5

Примесь: 0301 Азот (IV) оксид (Азота диоксид)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 15

Валовый выброс, τ /год (5.1), $M = GIS * B / 10 ^ 6 = 15 * 5707 / 10 ^ 6 = 0.0856$

Максимальный из разовых выброс, Γ/c (5.2) , $_G_=GIS*BMAX/3600=15*0.5/3600=0.002083$ ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азот (IV) оксид (Азота диоксид)	0.002083	0.0856

Ист.6037

Сварка в ацетилен кислородном пламени

Capita a age invention op opinom minimum		
Ацетилен технический растворенный марки Б ГОСТ	T	0,0033741 (3,3741 кг)
5457-75		
Ацетилен технический газообразный ГОСТ 5457-75	м3	7,1629 (7,88 кг)
Кислород технический газообразный ГОСТ 5583-78	м3	107,8656975 (157,484
		кг)
Итого:	КГ	168,74

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, $2005 \, \Gamma$.

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем

Расход сварочных материалов, кг/год, В = 168,74

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 40

Примесь: 0301 Азот (IV) оксид (Азота диоксид)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 22

Валовый выброс, т/год (5.1), $M = GIS * B / 10 ^ 6 = 22 * 168,74 / 10 ^ 6 = 0.00371$

Максимальный из разовых выброс, Γ/c (5.2), $_G_=GIS*BMAX/3600=22*40/3600=0.2444$ ИТОГО:

	1110101			
Код	П	римесь	Выброс г/с	Выброс т/год

ТОО 9копроект"

0301 Азот (IV) оксид (Азота диоксид)	0.2444	0.00371

Ист.6038

Электросварочные работы с прим.электродов

Электроды Э42 ГОСТ 9466-75 - 6,3680116 т (6368 кг)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, $2005 \, \Gamma$.

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): Э-42

Расход сварочных материалов, кг/год, В = 6368

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 2

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 10.6, в том числе:

Примесь: 0123 Железо (II, III) оксиды /в пересчете на железо/

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 6.79

Валовый выброс, τ /год (5.1), $M = GIS * B / 10 ^ 6 = 6.79 * 6368 / 10 ^ 6 = 0,04324$

Максимальный из разовых выброс, Γ/c (5.2), G = GIS * BMAX / 3600 = 6.79 * 2 / 3600 = 0.00377

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 1.01

Валовый выброс, τ/Γ од (5.1), $M = GIS * B / 10 ^ 6 = 1.01 * 6368 / 10 ^ 6 = 0,00643$

Максимальный из разовых выброс, г/с (5.2) , _G_ = GIS * BMAX / 3600 = 1.01 * 2 / 3600 = 0.000561

Примесь: 0203 Хром (VI) (Хрома (VI) оксид)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 1.3

Валовый выброс, т/год (5.1), $M = GIS * B / 10 ^ 6 = 1.3 * 6368 / 10 ^ 6 = 0,00828$

Максимальный из разовых выброс, Γ /с (5.2), G_{-} = GIS * BMAX / 3600 = 1.3 * 2 / 3600 = 0.000722

<u>Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат)</u> /в пересчете на фтор/

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 1.5

Валовый выброс, т/год (5.1) , $M = GIS * B / 10 ^ 6 = 1.5 * 6368 / 10 ^ 6 = 0,00955$

Максимальный из разовых выброс, Γ/c (5.2), G = GIS * BMAX / 3600 = 1.5 * 2 / 3600 = 0.000833

<u>Примесь: 0342 Фтористые газообразные соединения (Гидрофторид, Кремний тетрафторид)</u> /в пересчете на ϕ тор/

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS = 0.001

Валовый выброс, τ/τ (5.1), $M = GIS * B / 10 ^ 6 = 0.001 * 6368 / 10 ^ 6 = 0,000006$

Максимальный из разовых выброс, г/с (5.2) , _G_ = GIS * BMAX / 3600 = 0.001 * 2 / 3600 = 0.00000556

Примесь: 0301 Азот (IV) оксид (Азота диоксид)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3) , GIS = 0.85

Валовый выброс, τ /год (5.1), $M = GIS * B / 10 ^ 6 = 0.85 * 6368 / 10 ^ 6 = 0,00541$

Максимальный из разовых выброс, г/с (5.2) , _G_ = GIS * BMAX / 3600 = 0.85 * 2 / 3600 = 0.000472 ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды /в пересчете на железо/	0.00377	0,04324
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/	0.000561	0,00643
0203	Хром (VI) (Хрома (VI) оксид)	0.000722	0,00828
0301	Азот (IV) оксид (Азота диоксид)	0.000472	0,00541
	Фтористые газообразные соединения (Гидрофторид, Кремний тетрафторид) /в пересчете на фтор/	0.0000006	0,000006

ТОО 9копроект"

0344	Фториды неорганические плохо растворимые - (алюми-		
	ния фторид, кальция фторид, натрия гексафторалюминат)	0.000833	0,00955
	/в пересчете на фтор/		

Ист.6039

Газовая резка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005 г.

РАСЧЕТ выбросов ЗВ от резки металлов

Вид резки: Газовая

Разрезаемый материал: Сталь углеродистая

Толщина материала, мм (табл. 4), L = 5

Способ расчета выбросов: по времени работы оборудования

Время работы одной единицы оборудования, час/год, _T_ = 475,862

Удельное выделение сварочного аэрозоля, г/ч (табл. 4), GT = 74

в том числе:

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/

Удельное выделение, Γ/Ψ (табл. 4), GT = 1.1

Валовый выброс 3В, т/год (6.1) , _M_ = GT * _T_ / 10 ^ 6 = 1.1 * 475,862 / 10 ^ 6 = 0.00052

Максимальный разовый выброс $\overline{3B}$, Γ/c (6.2), $_G_=GT/3600=1.1/3600=0.0003056$

Примесь: 0123 Железо (II, III) оксиды /в пересчете на железо/

Удельное выделение, Γ/Ψ (табл. 4), GT = 72.9

Валовый выброс 3B, т/год (6.1) , $_{\rm M}$ = GT * $_{\rm T}$ / 10 ^ 6 = 72.9 * 475,862 / 10 ^ 6 = 0.3469

Максимальный разовый выброс 3B, Γ/c (6.2), $G_{-} = GT / 3600 = 72.9 / 3600 = 0.02025$

Примесь: 0337 Углерод оксид

Удельное выделение, Γ/Ψ (табл. 4), GT = 49.5

Валовый выброс 3B, т/год (6.1) , $_{\rm M}$ = GT * $_{\rm T}$ / 10 ^ 6 = 49.5 * 475,862 / 10 ^ 6 = 0.2355

Максимальный разовый выброс 3B, Γ/c (6.2), G = GT / 3600 = 49.5 / 3600 = 0.01375

Примесь: 0301 Азот (IV) оксид (Азота диоксид)

Удельное выделение, г/ч (табл. 4), GT = 39

Валовый выброс 3В, т/год (6.1) , $_{\rm M}$ = GT * $_{\rm T}$ / 10 ^ 6 = 39 * 475,862 / 10 ^ 6 = 0.01856

Максимальный разовый выброс 3B, г/с (6.2) , $_G_ = GT / 3600 = 39 / 3600 = 0.01083$

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды /в пересчете на железо/	0.02025	0,03469
	Марганец и его соединения /в пересчете на марганца (IV) оксид/	0.000306	0,00052
0301	Азот (IV) оксид (Азота диоксид)	0.01083	0,01856
0337	Углерод оксид	0.01375	0,02355

Источник загрязнения N 6040

Мойка колес (въезд-выезд с эстакады)

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования

Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип м	ашины:	Грузов	вые авт	омобили (дизельные	свыше 8 до 16 т (инома	рки)
Dn,	Nk,	\overline{A}	Nk1	L1,	L2,		
cym	шт		шm.	км	км		
30	20	0.10	2	0.09	0.09		
<i>3B</i>	Tpr	Mpr	, Tx	, Mxx,	Ml,	z/c	т/год
	мин	г/ми	н ми	н г/мин	г/км		
0337	6	1.8	1	0.84	5.31	0.00673	*
2732	6	0.639	1	0.42	0.72	0.0024	*
0301	6	0.77	1	0.46	3.4	0.002395	*
0304	6	0.77	1	0.46	3.4	0.000389	*
0328	6	0.034	1	0.019	0.27	0.000138	*
0330	6	0.108	1	0.1	0.531	0.000442	*

Выбросы по периолу: Теплый периол (t>5)

выоро	ы по п	гриоду.	теплыи	период (г	-3)		
·	Tu	іп маші	ины: Гру	зовые авп	помобили	дизельные свыше 8 до	16 т (иномарки)
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,		
cym	шm		um.	км	км		
120	20	0.10	2	0.09	0.09		
<i>3B</i>	Tpr	Mpr	Tx	Mxx,	Ml,	z/c	т/год
	мин	г/ми	н мин	г/мин	г/км		
0337	4	1.34	1	0.84	4.9	0.00369	*
2732	4	0.59	1	0.42	0.7	0.00158	*
0301	4	0.51	1	0.46	3.4	0.001248	*
0304	1	0.51	1	0.46	3./	0.000203	*

0.0000628

0.000302

Выбросы по периоду: Холодный период (t<-5)

0.019

0328

0330

Температура воздуха за расчетный период, град. С, T = -15.6

0.019

0.2

0.475

	Tı	ип маш	ины: Гр	узовые ав	т омобил	и дизельные свыше 8 до	16 т (иномарки)
Dn,	Nk,	\boldsymbol{A}	Nk1	L1,	<i>L2</i> ,		
cym	шm		шm.	км	км		
215	20	0.10	2	0.09	0.09		
3 B	Tpr	Mpr	Tx	Mxx	Ml,	z/c	т/год
	мин	г/ми	н ми	н г/мин	і г/км		
0337	25	2	1	0.84	5.9	0.02856	*
2732	25	0.71	1	0.42	0.8	0.01013	*
0301	25	0.77	1	0.46	3.4	0.00889	*
0304	25	0.77	1	0.46	3.4	0.001444	*
0328	25	0.038	1	0.019	0.3	0.000553	*
0330	25	0.12	1	0.1	0.59	0.00175	*

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0088900	*
0304	Азот (II) оксид (Азота оксид) (6)	0.0014440	*
0328	Углерод (Сажа, Углерод черный) (583)	0.0005530	*
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0017500	*
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0285600	*
2732	Керосин (654*)	0.0101300	*

Максимальные разовые выбросы достигнуты в холодный период при температуре -16 градусов C.

^{*} Валовый выброс от автотранспорта не нормируется, максимально-разовый выброс включен в расчет рассевания загрязняющих веществ, чтобы оценить воздействие объекта в целом на окружающую среду.

1.6. Характеристика мероприятий по регулированию выбросов в периоды особо неблагоприятных метеорологических условий (НМУ)

В период неблагоприятных метеорологических условий, т.е. при поднятой инверсии выше источника, туманах, предприятия должны осуществлять временные мероприятия по дополнительному снижению выбросов в атмосферу.

Согласно письма РГП "Казгидромет" за № 06-09/2339 от 25.07.2018г. город Астана входит в «Перечень городов Казахстана, в которых прогнозируются НМУ.

Мероприятия выполняются после получения от органов Госкомгидромета заблаговременного предупреждения. В состав предупреждения входят:

- ожидаемая длительность особо неблагоприятных метеорологических условий;
- ожидаемая кратность увеличения приземных концентраций по отношению к фактической.

В зависимости от ожидаемой кратности увеличения приземных концентраций вводят в действие мероприятия 1,2 или 3-ей группы.

Мероприятия 1-ой группы - меры организованного характера, не требующие существенных затрат и не приводящие к снижению объемов производства.

Мероприятия 2-ой группы связаны с созданием дополнительных установок и разработкой специальных режимов работ технологического оборудования, дополнительных газоочистных устройств временного действия.

Мероприятия 3-ей группы связаны со снижением объемов производства.

Проектом предлагается в случае неблагоприятных метеусловий прекратить проведение строительных работ.

1.7. Расчет и анализ величин приземных концентраций загрязняющих веществ

Расчет рассеивания на период строительства проводился от источников выделения, работающих на площадке с учетом одновременности.

Размер основного расчетного прямоугольника установлен с учетом влияния загрязнения со сторонами 1200 x 1100 м и шагом сетки 20 м.

Расчет полей приземных концентраций проводился с учетом фоновых концентраций выданных РГП Казгидромет в п.1.3.

Расчет рассеивания на период строительства проводился на расстоянии жилой зоне и в целом по расчетному прямоугольнику, чтобы оценить вклад объекта в общий уровень загрязнения атмосферы.

Источники выбросов представлены паркингом и открытыми автостоянками.

Состояние воздушного бассейна в границах расчетного прямоугольника характеризуемое приземными концентрациями вредных веществ на период эксплуатации и строительства, представленными в табл. 1.7.1, 1.7.2 и картами рассеивания (приложение 6).

На период эксплаутации

В расчет рассеивания включены максимально-разовые выбросы по всем вещества от всех источников с учетом максимальной их работы.

Результаты расчета рассеивания 3B в атмосфере в границах расчетного прямоугольника, а также на точках ближайшей жилой зоны показали отсутствие превышений по всем ингредиентам.

Результаты рассеивания 3B на период строительства представлены в таблице 1.7.1. и 1.7.1.1.

Эксплуатация объекта не окажет отрицательное влияние на атмосферный воздух в районе своего расположения.

На период строительства.

В расчет рассеивания включены максимально-разовые выбросы по всем вещества от источников с учетом их работы по технологии строительства.

Результаты расчета рассеивания ЗВ в атмосфере в границах расчетного прямоугольника, а также на точках ближайшей жилой зоны показали отсутствие превышений по всем ингредиентам.

Результаты рассеивания 3B на период строительства представлены в таблице 1.7.2. и 1.7.2.1.

Строительство объекта не окажет отрицательное влияние на атмосферный воздух в районе своего расположения.

Предложения по установлению нормативов НДВ содержатся в п.1.8.

Перечень источников, дающих наибольшие вклады в уровень загрязнения на период эксплуатации объекта

Астана 2025, МЖК ул. Серкебаева

Код вещества / группы	Наименование вещества	Расчетная максим концентрация (общ доля ПД	Коорд с макси приземн	Источники, дающие наибольший вклад в макс. концентрацию			Принадлежность источника (производство, цех, участок)		
суммации		в жилой	на границе	в жилой	на грани	N	% вн	клада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	ı	Загр	язняющие веществ 	a : 	I	l	1	İ	1
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.58076(0.01026)/ 0.11615(0.00205) вклад предпр.= 1.8%	*	-213/205	*	6001 6002 6003	45.6 44.7 6.7	*	Паркинг на 180 а/м Паркинг на 162 а/м Откр.автостоянки
0304	Азот (II) оксид (Азота оксид) (6)	0.23657(0.00082)/ 0.09463(0.00033) вклад предпр.= 0.3%	*	-213/205	*	6001 6002 6003	45.9 44.7 6.7	*	Паркинг на 180а/м Паркинг на 162 а/м Откр.автостоянки
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.20564(0.00164)/ 0.10282(0.00082) вклад предпр.= 0.8%	*	-172/245	*	6001 6002 6003	45.6 43.5 6	*	Паркинг на 180а/м Паркинг на 162 а/м Откр.автостоянки
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.63319(0.07693)/ 3.16593(0.38465) вклад предпр.= 12%	*	-207/211	*	6001 6002 6003	44.8 40.8 6	*	Паркинг на 180а/м Паркинг на 162 а/м Откр.автостоянки
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.044418/0.22209	*	*/*	*	6002 6001 6003	42.8 42.8 4.5	*	Паркинг на 162 а/м Паркинг на 180а/м Откр.автостоянки

Примечания: X/Y=* * - Расчеты не проводились. Расчетная концентрация принята на уровне максимально возможной (теоретически) В таблице представлены вещества (группы веществ), максимальная расчетная концентрация которых >= 0.01 ПДК

Таблица 1.7.1.1 Сводная таблица результатов расчёта на период эксплуатации

Код ЗВ Наименование загрязняющих веществ и состав групп суммаций	Cm	РП 	C33	3 	ж3	4 	т	Колич ИЗА	ПДК (ОБУВ) мг/м3	Класс опасн
0301 Азота (IV) диоксид (Азота диоксид) (4)	0.1326	0.6085 	нет рас	сч. 	0.5807	нет р	асч.	7 1	0.2000000	2
0304 Азот (II) оксид (Азота оксид) (6)	0.0108	0.2388	нет рас	сч. І	0.2365	нет р	асч.	7 1	0.4000000	; 3 j
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.0215	0.2099	нет рас	сч. 	0.2056	нет р	оасч.	7 1	0.5000000] 3
(IV) оксид) (516))	0.0100	1 1420	i !	i	0 6221	į		i i	E 0000000	i , i
0337 Углерод оксид (Окись углерода, Угарный газ) (584)	0.9100	1.1439	нет рас	[L	0.6331	HeT p	POBC4.	'	5.0000000	4
2704 Бензин (нефтяной, малосернистый) 	0.0444	Cm<0.05	нет рас	сч. 	Cm<0.05	нет р 	асч.	7 	5.0000000	4

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДК).
- 3. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЭЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек приведены в долях ПДК.

ЭРА v2.0 ТОО "Экопроект"

Таблица 1.7.2

Перечень источников, дающих наибольшие вклады в уровень загрязнения на период строительства

Астана 2025, МЖК по ул. Серкебаева (строит.)

Код вещества /	Наименование вещества	Расчетная максимальная приземная концентрация (общая и без учета фона) доля ПДК / мг/м3		Коорд с максин приземн		наибол	ники, даю пьший вкл концентра	Принадлежность источника (производство,	
группы суммации				в жилой зоне	в жилой на грани зоне це СЗЗ			клада	цех, участок)
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
		Загр	язняющие вещест	ва:					
0123	Железо (II, III) оксиды (диЖелезо триоксид,	0.05076/0.02031	*	-121/165	*	6039	82.7	*	
	Железа оксид) /в пересчете на железо/ (274)					6038	17.3		
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.07863/0.00079	*	-121/165	*	6038	68.6	*	
	(3-7)					6039	31.4		Строительство объекта
0203	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0.0468/0.0007	*	-121/165	*	6038	100	*	ООВЕКТИ
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.63787(0.06737)/ 0.12757(0.01347) вклад предпр.= 11%	*	-157/153	*	6039 6040 0001	53.9 37 6.7	*	
0304	Азот (II) оксид (Азота оксид) (6)	0.23813(0.00238)/ 0.09525(0.00095) вклад предпр.= 1%	*	-157/153	*	6040 0001	86.4 13.6	*	

Перечень источников, дающих наибольшие вклады в уровень загрязнения на период строительства

Астана 2025, МЖК по ул. Серкебаева (строит.)

1	2	3	4	5	6	7	8	9	10
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.2165(0.0125)/ 0.10825(0.00625) вклад предпр.= 5.8%	*	-121/165	*	0001 6040	86.6 13.4	*	
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.56491(0.00865)/ 2.82454(0.04325) вклад предпр.= 1.5%	*	-121/165	*	6040 0001 6039	43 30.4 26.4	*	
0616	Диметилбензол (смесь о- , м-, п- изомеров) (203)	0.18663/0.03733	*	-121/165	*	6023 6034 6027	56.9 26.4 16.7	*	Строительство объекта
0621	Метилбензол (349)	0.12187/0.07312	*	-121/165	*	6029	97.5	*	ооъекта
1042	Бутан-1-ол (Бутиловый спирт) (102)	1.01297/0.1013	*	-121/165	*	6028	100	*	
1119	2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)	0.0161/0.01127	*	-121/165	*	6034	100	*	
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.13802/0.0138	*	-121/165	*	6029	100	*	
1401	Пропан-2-он (Ацетон) (470)	0.12234/0.04282	*	-121/165	*	6029 6034	69.7 30.3	*	

ЭРА v2.0 ТОО "Экопроект" Таблица 1.7.2

Перечень источников, дающих наибольшие вклады в уровень загрязнения на период строительства

Астана 2025, МЖК по ул.Серкебаева (строит.)

1	2	3	4	5	6	7	8	9	10
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.02455/0.12273	*	-121/165	*	6031	100	*	
2732	Керосин (654*)	0.035667/0.0428	*	*/*	*	6040 6006	100 0.3	*	
2754	Алканы C12-19 /в пересчете на C/ (0.01351/0.01351	*	-121/165	*	0001	100	*	
	Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)								Строительство
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (0.03393/0.01018	*	-121/165	*	6011	98.2	*	объекта
	шамот, цемент, пыль цементного производства - глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола, кремнезем, зола углей								
	казахстанских								
2930	месторождений) (494) Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.36265/0.01451	*	-121/165	*	6010	100	*	

Примечания: Х/Y=* * - Расчеты не проводились. Расчетная концентрация принята на уровне максимально возможной (теоретически)

В таблице представлены вещества (группы веществ), максимальная расчетная концентрация которых >= 0.01 ПДК

^{*} СЗЗ отсутствует.

Таблица 1.7.2.1 Сводная таблица результатов разсчёта на период строительства

	-						-			
Код ЗВ	Наименование загрязняющих веществ	Cm	РΠ	C33	XX3	I	ΦТ	Колич	ПДК (ОБУВ)	Класс
l /	и состав групп суммаций		l 	l	l 	I		ИЗА	мг/м3	опасн
0008	Вэвешенные частицы РМ10 (117)	0.0923	0.0720	нет расч.	0.0064	нет	расч.	1 2 1	0.3000000	-
0123	Железо (II, III) оксиды	0.7585	0.4363	нет расч.	0.0507	нет	расч.	2	0.4000000*	3
1	(диЖелезо триоксид, Железа		l	L	I	I		1 1		I
I	оксид) /в пересчете на железо/		l	L	L	1		1 1		I
0143	Марганец и его соединения /в	1.0952	0.6716	нет расч.	0.0786	нет	расч.	2	0.0100000	2
1	пересчете на марганца (IV)		l	L	I	I		1 1		I
1	оксид/ (327))	I	l	L	L	I		1 1		I
0203	Хром /в пересчете на хром (VI)	0.6080	0.4366	нет расч.	0.0468	нет	расч.	1	0.0150000*	1
1	оксид/ (Хром шестивалентный)	I	l	I	I	I		1 1		I
1	(647)		l	I	I	I		1 1		I
0301	Азота (IV) диоксид (Азота	0.4544	0.7873	нет расч.	0.6378	нет	расч.	5	0.2000000	2
1	диоксид) (4)	I	l	I	I	I		1 1		I
0304	Азот (II) оксид (Азота оксид)	0.0176	0.2413	нет расч.	0.2381	нет	pacy.	2	0.4000000	3
-	(6)	I	l	L	I	I		1 1		I
	Углерод (Сажа, Углерод черный)	0.0681	0.0428	нет расч.	0.0037	нет	расч.	3	0.1500000	3
	(583)	l	l	I .	I	I		1 1		I
	Сера диоксид (Ангидрид	0.0647	0.2298	нет расч.	0.2165	нет	расч.	3	0.5000000	3
	сернистый, Сернистый газ, Сера	I	l	L	I	I		1 1		I
•	(IV) оксид) (516))	I	l	I	I	I		1 1		I
•	Углерод оксид (Окись углерода,	0.0473	0.5908	нет расч.	0.5649	нет	расч.	4	5.0000000	4
-	Угарный газ) (584)	l	l	I	I	I		1 1		I
	Фтористые газообразные	0.0001	Cm<0.05	нет расч.	Cm<0.05	нет	расч.	1	0.0200000	2
•	соединения /в пересчете на фтор/	I	l	I	I	I		1 1		I
•	(617)	l	l	I	I	I		1 1		I
	Фториды неорганические плохо	0.0526	0.0377	нет расч.	0.0040	нет	расч.	1	0.2000000	2
	растворимые - (алюминия фторид,	I	l	I	I	I		1 1		I
	кальция фторид,	I	l	I	I	I		1 1		I
	Диметилбензол (смесь о-, м-, п-	0.9913	0.7442	нет расч.	0.1866	нет	расч.	3	0.2000000	3
	изомеров) (203)	l	l	I	I	I		1 1		I
-	Метилбензол (349)	0.6194	•	нет расч.			_		0.6000000	•
•	Бенз/а/пирен (3,4-Бензпирен)	0.0001	Cm<0.05	нет расч.	Cm<0.05	нет	расч.	1	0.0000100*	1
	(54)	l	l	I	I	I		1 1		I
	2-Этоксиэтанол (Этиловый эфир	0.0770	0.0745	нет расч.	0.0161	нет	расч.	1	0.7000000	-
-	этиленгликоля, Этилцеллозольв)			I	I	I		1 1		I
•	(1497*)			I	l	I		1 1		I
	Бутилацетат (Уксусной кислоты	0.7019	0.6315	нет расч.	0.1380	нет	расч.	1	0.1000000	4
-	бутиловый эфир) (110)			1	!	1		! !		1
	Пропан-2-он (Ацетон) (470)	0.6150		нет расч.			-		0.3500000	4
	Керосин (654*)	0.0357		нет расч.			_		1.2000000	I -
-	Уайт-спирит (1294*)	0.0013		нет расч.	-		-		1.0000000	! -
	Алканы С12-19 /в пересчете на С/	0.0549	0.0548	нет расч.	0.0135	нет	расч.	1 1	1.0000000	4
	(Углеводороды предельные С12-С19			!	!	!		1 1		I
	(в пересчете на			!	!	!		! !		!
	Пыль неорганическая, содержащая	0.3573	0.1854	нет расч.	0.0339	нет	расч.	3	0.3000000	3
	двускись кремния в %: 70-20			!	!	!		1 1		I .
I	(шамот, цемент, пыль		l	I	I	I		1 1		I

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДК).
- 3. "Звездочка" (*) в графе "ПДК" означает, что соответствующее значение взято по 10ПДКсс.
- Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек приведены в долях ПДК.

1.8. Предложения по установлению нормативов допустимых выбросов (НДВ) для объекта

Расчет полей приземных концентраций загрязняющих веществ позволяет выделить зоны с нормативным качеством атмосферного воздуха и повышенным содержанием некоторых ингредиентов по отношению к предельно-допустимой концентрации (ПДК).

На основании результатов расчета рассеивания в атмосфере максимальных приземных концентраций составлен перечень загрязняющих веществ для каждого источника загрязнения атмосферы, выбросы которых (г/сек, т/год) предложены в качестве нормативов НДВ.

На период эксплуатации источниками загрязнения атмосферы в данном проекте являются паркинги и открытые автостоянки.

Валовый выброс от паркинга и открытой автостоянки не нормируется.

Предложения по декларируемым загрязняющим веществам

В общее количество декларируемых выбросов не входят выбросы от строительных машин и транспортных средств.

Категория объекта согласно ЭК РК на период строительства и на период СМР согласно подпункту 1 и 3 пункта 2 приложения 2 к ЭК РК – III.

В соответствии с пунктом 11 статьи 39 ЭК РК нормативы эмиссий не устанавливаются для объектов III и IV категорий.

Декларируемое количество выбросов загрязняющих веществ в атмосферный воздух по (г/сек, т/год) представлено в таблице 1.8.1.

Таблица 1.8.1

Декларируемое количество вы бросов загрязняющих веществ в атмосферный воздух (период строительства) по (г/сек, т/год)

на 2026 – 2027 годы

	на 2020 — 2027 годы			
Номер источника загрязнения	Наименование загрязняющего вещества	г/сек	т/год	Декларируе- мый год
0001	Азота (IV) диоксид (Азота диоксид) (4)	0.001057	0.000907	2026
0001	Азот (II) оксид (Азота оксид) (6)	0.000172	0.000147	2026
0001	Углерод (Сажа, Углерод черный) (583)	0.00012	0.000103	2026
0001	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00282	0.002423	2026
0001	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00657	0.00564	2026
0001	Алканы C_{12} - C_{19} (Углеводороды предельные C_{12} - C_{19} (в пересчете на C)(10)	0.056	0.034	2026
0002	Азота (IV) диоксид (Азота диоксид) (4)	0.65056	3.43	2026
0002	Углерод (Сажа, Углерод черный) (583)	0.00263	0.0133	2026
0002	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.34028	1.715	2026
0002	Углерод оксид (Окись углерода, Угарный газ) (584)	1.7014	8.575	2026
0002	Бенз/а/пирен (3,4-Бензпирен) (54)	0.0000054	0.000027	2026
0002	Керосин (654*)	0.51042	2.5725	2026
6009	Взвешенные частицы РМ10 (117)	0.00036	0.000008	2026
6010	Взвешенные частицы РМ10 (117)	0.18	0.07387	2026
6010	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.012	0.00492	2026
6011	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.008	1.096013	2026
6012	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.576	0.1735	2026
6013	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.48	0.21124	2026
6014	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.48	0.12	2026
6015	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.48	0.14011	2026
6016	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	1.92	1.81053	2026
6017	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	1.92	10.0296	2026
6018	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	1.92	2.027403	2026
6019	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.00048	0.0006004	2026
6020	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.224	0.006513	2026
6021	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.000256	0.0096	2026
6022	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.000012	0.000463	2026

6023	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.025	0.135	2026
6024	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.03056	0.04	2026
6025	Керосин (654*)	0.03056	0.58	2026
6026	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.1005	0.9406	2026
6026	Уайт-спирит (1294*)	0.075	0.698	2026
6027	Взвешенные частицы РМ10 (117)	0.001833	0.01192	2026
6027	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00747	0.04856	2026
6027	Уайт-спирит (1294*)	0.000311	0.00202	2026
6028	Взвешенные частицы РМ10 (117)	0.0883	0.083	2026
6028	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0842	0.08	2026
6028	Бутан-1-ол (Бутиловый спирт) (102)	0.0967	0.0909	2026
6028	Уайт-спирит (1294*)	0.0802	0.076	2026
6029	Метилбензол (349)	0.0861	0.02379	2026
6029	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.01667	0.0046	2026
6029	Пропан-2-он (Ацетон) (470)	0.0361	0.00997	2026
6030	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0625	0.07677	2026
6030	Уайт-спирит (1294*)	0.0625	0.07677	2026
6031	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.139	0.67505	2026
6032	Уайт-спирит (1294*)	0.139	0.05245	2026
6033	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.201	0.0873	2026
6033	Уайт-спирит (1294*)	0.149	0.0648	2026
6034	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.014614	0.00037	2026
6034	Метилбензол (349)	0.002167	0.00005	2026
6034	2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)	0.0128	0.00032	2026
6034	Пропан-2-он (Ацетон) (470)	0.015024	0.00038	2026
6035	Пропан-2-он (Ацетон) (470)	0.01389	0.00342	2026
6036	Азота (IV) диоксид (Азота диоксид) (4)	0.002083	0.0856	2026
6037	Азота (IV) диоксид (Азота диоксид) (4)	0.2444	0.00371	2026
6038	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00377	0.04324	2026
6038	Марганец и его соединения /в пересчете на марганца (IV)оксид/ (327)	0.000561	0.00643	2026
6038	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0.000722	0.00828	2026
6038	Азота (IV) диоксид (Азота диоксид) (4)	0.000472	0.00541	2026
6038	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.0000006	0.000006	2026
6038	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете	0.000833	0.00955	2026

	на фтор/) (615)			
6039	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на	0.02025	0.03469	2026
0039	железо/ (274)	0.02023	0.03409	2020
6039	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.000306	0.00052	2026
6039	Азота (IV) диоксид (Азота диоксид) (4)	0.01083	0.01856	2026
6039	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01375	0.02355	2026
Всего		13.342119	36.1550034	2026
по предпр	иятию:			
0001	Азота (IV) диоксид (Азота диоксид) (4)	0.001057	0.000907	2027
0001	Азот (II) оксид (Азота оксид) (6)	0.000172	0.000147	2027
0001	Углерод (Сажа, Углерод черный) (583)	0.00012	0.000103	2027
0001	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00282	0.002423	2027
0001	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00657	0.00564	2027
0001	Алканы C_{12} - C_{19} (Углеводороды предельные C_{12} - C_{19} (в пересчете на C)(10)	0.056	0.034	2027
0002	Азота (IV) диоксид (Азота диоксид) (4)	0.65056	3.43	2027
0002	Углерод (Сажа, Углерод черный) (583)	0.00263	0.0133	2027
0002	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.34028	1.715	2027
0002	Углерод оксид (Окись углерода, Угарный газ) (584)	1.7014	8.575	2027
0002	Бенз/а/пирен (3,4-Бензпирен) (54)	0.0000054	0.000027	2027
0002	Керосин (654*)	0.51042	2.5725	2027
6009	Взвешенные частицы РМ10 (117)	0.00036	0.000008	2027
6010	Взвешенные частицы РМ10 (117)	0.18	0.07387	2027
6010	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.012	0.00492	2027
6011	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.008	1.096013	2027
6012	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.576	0.1735	2027
6013	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.48	0.21124	2027
6014	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.48	0.12	2027
6015	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.48	0.14011	2027
6016	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	1.92	1.81053	2027
6017	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	1.92	10.0296	2027
6018	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	1.92	2.027403	2027
6019	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.00048	0.0006004	2027
6020	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.224	0.006513	2027
6021	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.000256	0.0096	2027
6022	Пыль неорганическая, содержащая двуокись кремния 70-20 % (494)	0.000012	0.000463	2027

6023	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.025	0.135	2027
6024	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.03056	0.04	2027
6025	Керосин (654*)	0.03056	0.58	2027
6026	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.1005	0.9406	2027
6026	Уайт-спирит (1294*)	0.075	0.698	2027
6027	Взвешенные частицы РМ10 (117)	0.001833	0.01192	2027
6027	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00747	0.04856	2027
6027	Уайт-спирит (1294*)	0.000311	0.00202	2027
6028	Взвешенные частицы РМ10 (117)	0.0883	0.083	2027
6028	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0842	0.08	2027
6028	Бутан-1-ол (Бутиловый спирт) (102)	0.0967	0.0909	2027
6028	Уайт-спирит (1294*)	0.0802	0.076	2027
6029	Метилбензол (349)	0.0861	0.02379	2027
6029	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.01667	0.0046	2027
6029	Пропан-2-он (Ацетон) (470)	0.0361	0.00997	2027
6030	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0625	0.07677	2027
6030	Уайт-спирит (1294*)	0.0625	0.07677	2027
6031	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.139	0.67505	2027
6032	Уайт-спирит (1294*)	0.139	0.05245	2027
6033	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.201	0.0873	2027
6033	Уайт-спирит (1294*)	0.149	0.0648	2027
6034	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.014614	0.00037	2027
6034	Метилбензол (349)	0.002167	0.00005	2027
6034	2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*)	0.0128	0.00032	2027
6034	Пропан-2-он (Ацетон) (470)	0.015024	0.00038	2027
6035	Пропан-2-он (Ацетон) (470)	0.01389	0.00342	2027
6036	Азота (IV) диоксид (Азота диоксид) (4)	0.002083	0.0856	2027
6037	Азота (IV) диоксид (Азота диоксид) (4)	0.2444	0.00371	2027
6038	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00377	0.04324	2027
6038	Марганец и его соединения /в пересчете на марганца (IV)оксид/ (327)	0.000561	0.00643	2027
6038	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0.000722	0.00828	2027
6038	Азота (IV) диоксид (Азота диоксид) (4)	0.000472	0.00541	2027
6038	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.0000006	0.000006	2027
6038	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете	0.000833	0.00955	2027

	на фтор/) (615)			
6039	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.02025	0.03469	2027
6039	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.000306	0.00052	2027
6039	Азота (IV) диоксид (Азота диоксид) (4)	0.01083	0.01856	2027
6039	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01375	0.02355	2027
Всего по предпр	иятию:	13.342119	36.1550034	2027

ТОО **9**копроект''

1.9. Методы и средства контроля за состоянием воздушного бассейна

Контроль за состоянием воздушного бассейна на период эксплуатации и строительства объекта не проводится.

На период строительства строительная организация, проводящая строительномонтажные работы проектируемого объекта должна обеспечить надлежащее состояние стройплощадки, а также не допустить утечки нефти, масла и т.д., загрязнения мусором и т.д.

ТОО **Э**копроект''

1.10. Обоснование принятия размера санитарно-защитной зоны

Устройство санитарно-защитной зоны между предприятием и жилой застройкой является одним из основных воздухоохранных мероприятий, обеспечивающих требуемое качество воздуха в населенных пунктах.

Для объектов, являющихся источниками загрязнения атмосферного воздуха, должна быть организована санитарно-защитная зона (СЗЗ), ширина которой определяется санитарной классификацией производств. Достаточность ширины СЗЗ должна быть подтверждена расчетами уровней загрязнения в соответствии с действующими указаниями по расчету рассеивания в атмосфере вредных веществ, содержащихся в выбросах предприятий.

Размеры СЗЗ определяются согласно Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно- эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека».

Проектируемый объект не является производственным объектом.

В соответствии с Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно- эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»: источниками воздействия на среду обитания и здоровье человека являются объекты, для которых уровни создаваемого загрязнения за пределами промышленной площадки превышают 1,0 ПДК.

Проектируемый объект в СЗЗ и СР промышленных объектов не попадает.

Касательно открытых автостоянок:

Источником загрязнения воздушного бассейна от проектируемого объекта также являются открытые автостоянки по перимеру участка:

```
- ист. 6002 - на 10 а/м,

- ист. 6003 - на 11 а/м,

- ист. 6004 - на 10 а/м,

- ист. 6005 - на 9 а/м,

- ист. 6006 - на 5 а/м,

- ист. 6007 - на 5 а/м,

- ист. 6007 - на 5 а/м,
```

Согласно вышеуказанных правил Приложению 2, п. 6 «расстояния от гостевых автостоянок жилых домов, предназначенных для размещения легкового автотранспорта и не принадлежащих юридическому лицу (либо индивидуальному предпринимателю), территорий подземных гаражей-стоянок не устанавливаются».

Согласно вышеуказанных правил Таблицы из Приложения 2: минимальный санитарный разрыв от открытых стоянок до жилой застройки при количестве 10 и менее автомобилей *составляет* 10 м, при количестве 11-50 автомобилей – 15 м.

Санитарные разрывы соблюдены на стадии проектирования.

Анализ результатов расчета рассеивания ЗВ показал отсутствие превышений по всем ингредиентам и группам суммаций, все величины менее 1ПДК. Открытые автостоянки не оказывают существенного влияния на загрязнение атмосферы.

Касательно автопаркинга:

Согласно Приказу и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»:

Приложение 2, п. 5: «для подземных, полуподземных гаражей-стоянок, паркинга и гаражей-стоянок, паркинга, размещенных под жилым домом или встроенных (встроенно-пристроенных) в надземные этажи жилого дома, регламентируется лишь расстояние от въезда - выезда и от вентиляционных шахт до территории общеобразовательных, профессиональных образовательных и дошкольных образовательных организаций, а также организаций, осуществляющих медицинскую деятельность, жилых домов, жилых помещений, площадок отдыха и других, которое принимается по результатам расчетов рассеивания загрязнений в атмосферном воздухе и уровней физического воздействия».

Проведенный расчет рассеивания 3В от въезда-выезда автопаркингов и вентиляционных выбросов на высоте 34,87 м показал, что превышений приземных концентраций по всем загрязняющим веществам не наблюдаются. Максимальный выброс составит 14% без учета фоновых концентраций, величина выбросов этих веществ принята в качестве НДВ. Согласно расчету рассеивания, санитарный разрыв принимается 5 м.

Касательно периода строительства:

Согласно Приказу и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» - строительные работы не классифицируются.

Результаты расчета рассеивания ЗВ в атмосфере на период строительства по-казали отсутствие превышений по всем ингредиентам.

1.11. Рекомендуемые мероприятия по предотвращению и снижению воздействия на атмосферный воздух

В период эксплуатации в качестве мероприятий, направленных на снижение или исключение негативного воздействия на атмосферный воздух проектируемого объекта предусматриваются:

- текущий ремонт и соблюдение правил безопасности для поддержания вентиляционного оборудования паркинга в рабочем состоянии.
- <u>В качестве мероприятий, направленных на снижение или исключение негативного воздействия на атмосферный воздух в период строительства проектируемого объекта проектом предусматриваются:</u>
- 1. Изготовление сборных строительных конструкций, товарного бетона и раствора на производственной базе подрядной организации или предприятий стройиндустрии ближайшего пункта с последующей доставкой на строительную площадку спецавтотранспортом.
- 2. Максимальное сокращение сварочных работ при монтаже конструкций на местах их установки путем укрупненной сборки конструкций на стационарных производственных участках строительной организации, оборудованных системами газовоздухоочистки.
- 3. Применение землеройно-транспортной и строительной техники с двигателями внутреннего сгорания, отвечающим требованиям ГОСТ и параметрам заводов-изготовителей по выбросам загрязняющих веществ в атмосферу.
- 4. Организация технического обслуживания и ремонта дорожно-строительной техники и автотранспорта на территории производственной базы подрядной организации.
- 5. Проведение большинства строительных работ, за счет электрифицированного оборудования, работа которого не будет связана с загрязнением атмосферного воздуха.
- 6. Осуществление строительных работ с применением процесса увлажнения инертных материалов, что исключит возможность пыления.
 - 7. Не одновременность работы транспортной и строительной техники.
- 8. Организация внутрипостроечного движения транспортной техники по существующим дорогам и проездам с твердым покрытием, что снизит воздействие осуществляемых работ на состав атмосферного воздуха.
- 9. Заправка ГСМ автотранспорта на специализированных автозаправочных станциях.
- 10. Сокращение или прекращение работ при неблагоприятных метеорологических условиях.

Вывод:

В результате выполнения всех предложенных мероприятий негативного воздействия на атмосферный воздух в период эксплуатации и строительства проектируемого объекта не ожидается.

2. ОХРАНА ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХВОД ОТ ЗАГРЯЗНЕНИЯ И ИСТОЩЕНИЯ

2.1. Краткая характеристика проектируемого предприятия

Данным проектом рассматривается объект: «Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)»".

Проектируемый жилой комплекс имеет выгодное градостроительное положение, размещаясь на правом берегу реки Есиль в г.Астана, район «Сарыарка», ул. Ермек Серкебаев, уч. 29/1. Поверхность участка не ровная, абсолютная отметка поверхности изменяется 345,17...346,29 м.

В северо-западном направлении в 32 метрах от проектируемого объекта протекает река Сарыбулак и в южном направлении в 140 метрах протекает река Есиль.

Проектируемый объект находится в водоохранных зонах рек Сарыбулак и Есиль, согласно постановлению Акимата города Астаны от 20 октября 2023 года № 205-2263 "Об установлении водоохранных зон, полос на водных объектах города Астаны и режима их хозяйственного использования".

Возможными источниками загрязнения поверхностных и подземных вод являются:

- поверхностные сточные воды (дождевые и талые воды);
- аварийные сбросы или переливы сточных вод;
- фильтрационные утечки вредных веществ из емкостей, трубопроводов и других сооружений.

Рабочим проектом предусмотрен комплекс организационно-хозяйственных и природоохранных мероприятий, направленных на сохранение и улучшение экологической ситуации в пределах водоохранной зоны и полосы, недопущение ухудшения качества воды в реках Есиль и Сарыбулак.

Мероприятия по охране подземных и поверхностных вод на период эксплуатации истроителсьтва указаны в п. 2.3.

2.2. Водопотребление и водоотведение объекта

Рабочий проект выполнен согласно техническим условиям на забор воды из городского водопровода и сброс стоков в канализацию, выданныем ГКП на ПХВ «Астана Су Арнасы» N2-6/1281 от 20.06.2025 г.

На проектируемой территории предусматриваются следующие системы:

- хозяйственно-питьевой водопровод;
- противопожарный и технический водопровод;
- поливочный водопровод;
- производственный водопровод;
- хозяйственно-бытовая канализация.

Наружное пожаротушение проектируемого объекта предусмотрено от проектируемых пожарных гидрантов.

Горячее водоснабжение – от теплообменников, установленных в помещениях тепловых узлов проектируемых зданий.

Хозяйственно-бытовые стоки, поступающие от санитарных приборов, отводятся самотеком в проектируемые внутриплощадочные самотечные канализационные сети, с последующим отводом в существующие самотечные городские сети.

Холодная вода питьевого качества подводится к санитарно-техническим приборам (мойке и умывальнику буфета). Холодная вода технического качества подводится к санитарно-техническим приборам (умывальникам, смывным бачкам унитазов, душевым сеткам) и пожарным кранам диаметром 50 мм для обеспечения внутреннего пожаротушения объекта. Прокладка магистральных трубопроводов холодного и горячего водоснабжения предусмотрена скрыто под потолком проектируемых зданий.

Система хозяйственно-бытовой канализации предназначена для сбора бытовых стоков от санитарных приборов, трапов с отводом в наружную сеть хозяйственно-бытовой канализации.

Системы внутренних водостоков предусмотрены для отвода дождевых и талых вод с кровель зданий с последующим сбросом на отмостку здания. В зимний период предусмотрен перепуск сточных вод в сети бытовой канализации. Для ликвидации засоров на сети предусмотрены ревизии и прочистки. Отвод сточных вод из помещений насосных, тепловых пунктов и венткамер в цокольных этажах осуществляется в приямки, далее погружными насосами производительностью 6,0 м3/час, напором 10,0 м.в.ст. по напорным трубопроводам из стальных электросварных труб диаметром 45х2,5 мм (ГОСТ 10704-91) на отмостку.

Ливневая канализация

Ливневая канализация предусматривается согласно техническим условиям для целей проектирования и строительства сетей ливневой канализации объекта №15-14/1662 от 24.06.2025 г., выданным ГКП на ПХВ «ELORDA ECO SYSTEM» Акимата г.Астана.

Водообеспечение на период строительства

Для обеспечения хозяйственно-бытовых нужд работающего персонала и технические нужды, используется вода питьевого качества.

Предусматриваются мероприятия по организации водно-питьевого режима (условиям хранения, мытья и дезинфекции емкостей для хранения питьевой воды) на период строительства.

Расход воды на питьевые нужды составит 3041,7 м³/период строительства.

Объем технической воды на период строительства составляет 7070,36 м³/период строительства согласно сметной ведомости.

Система водоотведения санитарно-бытовых помещений строительных площадок осуществляется устройством отдельных специальных герметичных ѐмкостей, которые регулярно по мере накопления ассенизируются специальным автотранспортом (ассенизаторские машины) с вывозом стоков в места согласованные с СЭС.

При выезде автотранспортных средств со строительной площадки на центральную магистраль оборудуется пункт мойки колес, имеющий твердое покрытие с организацией системы сточной ливневой канализации с септиком и емкостью для забора воды.

Бытовые стоки вывозятся согласно договора на городские очистные сооружения. Сброс производственных стоков в поверхностные водные объекты отсутствует.

При проведении строительных работ и в период эксплуатации воздействие на геологическую среду и подземные воды будет локальным, кратковременным и незначительным, при соблюдении всех требований ТБ и ООС, с учетом предложенных мероприятий.

Пункт Мойки колес

Для обеспечения экологической чистоты города и строительной площадки, как правило у выезда из территории стройплощадки, устраивается Пункт мойки колес автотранспорта

Пункт Мойки колес автомобилей рекомендуется выполнить на бетонном основании с устройством приямка (справа) для стока воды и грязи, оборудованные:

- 2-3 моечными пистолетами,
- дренажной системой
- резервуаром для воды (с утеплением в осенне-зимний период)

На период строительства на строительных площадках предусмотрены эстакады мытья колèс машин и механизмов открытого типа, рассчитанные на две единицы техники.

Сточные воды, образующиеся в результате функционирования станций очистки попадают грубо дисперсные взвешенные вещества, нефтепродукты.

Сбор и очистку сточных вод от взвешенных веществ и нефтепродуктов производить на комплексах очистных сооружений, состоящих из:

- площадки для мойки колес машин;
- сборного колодца диаметром 1000 мм;
- сооружения очистки производительностью 0,45 л/сек;
- водозаборной камеры с погружным насосом.

Сооружения очистки участка мытья предназначены для рационального использования воды с повторным использованием очищенных сточных вод от мойки колес машин.

Схема повторного использования сточных вод с предварительной очисткой от взвешенных веществ и маслосодержащих стоков принята следующая. Загрязненные сточные воды от мойки колес машин собираются в приямок размером 300х300х250(h), перекрытый решеткой для задержания механических примесей. Затем стоки направляются в горизонтальный отстойник, где происходит оседание крупных взвешенных частиц. Объем осадочной камеры рассчитан согласно таблицы 31 СНиП 2.04.03-85 на 2-х часовое осаждение взвешенных веществ со скоростью от 5-10 мм/сек и принимается размером 2х1,5х1,50(h), где h – высота слоя воды в сооружении очистки.

Очищенные сточные воды поступают в водозаборную камеру диаметром 1000мм, откуда погружным насосом марки TS50H 111/1, имеющим производительность 1,72 м3/час, напор 16,83 м, мощность 1,1 кВт подаются на повторное использование.

По мере накопления взвешенных частиц в осадочном отделении, осадок периодически удалять из очистных сооружений с помощью переносной насосной установки.

Удаленный осадок со взвешенными веществами собирается и вывозится ассенизационной машиной за пределы стройплощадки согласно договора со специализированной организацией.

Сбор нефтепродуктов производится поворотным маслосборным устройством с отводом их в резервуар для сбора масла. По мере накопления нефтепродукты удаляются вручную и вывозятся за пределы стройплощадки согласно договора со специализированной организацией.

Сточные воды от мойки автомобилей, поступающие на очистку, будут содержать взвешенные вещества (песок, глина) и нефтепродукты в количестве, представленном в таблице 2.2-1.

таблица 2.2-1

Наименование параметра	Величина, мг/л, тах
Содержание взвешенных веществ в исходной воде	700
Содержание нефтепродуктов в исходной воде	100
Содержание взвешенных веществ в очищенной воде	10
Содержание нефтепродуктов в очищенной воде	0,3

Характеристика водооборотных систем

Табл.2.2-2

№ BOC,	Наименование произ-	Водо	оборотнь	не систе	МЫ	Повторные системы					
повторной системы	водства, цеха	Объем систе- мы, м ³ /сут	Расх подпи		Тип BOC	Использование воды		Расход м ³ /сут	Расх подпи		
			м ³ /сут	%		Первичное вторичное			м ³ /сут	%	
1	2	3	4		5	6	7	8	9	10	
1	Стройплощадка Мойка колес автомобилей	10	2	20	замкнутый						

Характеристика очистных сооружений

Табл.2.2-3

Год	Наименование очист- ного сооружения и	Пропускная способность м ³ /сут		Эффективность очистки					
	метод очистки	Проектная	Фактичкская	Ингредиент		Средняя концентрация (по проекту)		Средняя концентрация (фактическая)	
				Наименование	Наименование код		Сброшено мг/л	Поступило мг/л	Сброшено мг/л
2	2	3	4	5	6	мг/л 7	8	9	10
2019	тонкослойный отстой- ник	10							
	механический			Взвешенные ве- щества		700	10		
				Нефтепродукты		100	0,3		

ТОО **Э**копроект''

2.3. Мероприятия по охране подземных и поверхностных вод

В северо-западном направлении в 32 метрах от проектируемого объекта протекает река Сарыбулак и в южном направлении в 140 метрах протекает река Есиль. Проектируемый объект находится в водоохранных зонах рек Сарыбулак и Есиль, согласно постановлению Акимата города Астаны от 20 октября 2023 года № 205-2263 "Об установлении водоохранных зон, полос на водных объектах города Астаны и режима их хозяйственного использования".

Рабочим проектом предусмотрен комплекс организационно-хозяйственных и природоохранных мероприятий, направленных на сохранение и улучшение экологической ситуации в пределах водоохранной зоны и полосы, недопущение ухудшения качества воды рек Сарыбулак и Есиль.

Мероприятия по охране подземных и поверхностных вод <u>на период эксплуа-</u> тации:

- 1. Централизованное водоснабжение и канализация проектируемого объекта согласно техническим условиям №3-6/1281 от 20.06.2025 г., выданных ГКП "Астана су арнасы". Таким образом, сброс загрязненных сточных вод в реки Акбулак и Есиль отсутствует.
- 2. Устройство централизованной ливневой канализации согласно ТУ№15-14/1662 от 24.06.2025г., выданных ГКП на ПХВ "ELORDA ECO SYSTEM" Акимата города Астаны". Данное меропритяие исключает попадание в реки дождевых и талых вод с участка МЖК.
- 3. Качество сточных вод по химическому и органическому составу будет соответствовать требованиям Правил приема сточных вод, утвержденных Приказом Министра национальной экономики РК от 20.07.2015 г. №546, т.к. производств на объекте не предусмотрено, проектируемый объект предназначен для жилья.
- 4. Предусмотрена установка необходимого количества дождеприемных колодцев с защитными решетками на колодцах и камерах с отстойной частью.
- 5. Установка жироуловителя для кафе-ресторанов и объектов общественного пития.
 - 6. Искусственное повышение планировочных отметок территории.
- 7. Система профилактических мер по предотвращению утечек из водопроводных и канализационных сетей.
 - 8. Профилактический осмотр, текущий и капитальный ремонт.
- 9. Устройство гидроизоляции для подземных трубопроводов с целью исключения коррозионного разрушения.
- 10. Благоустройство территории с устройством водонепроницаемых покрытий по проездам.
- 11. Обустройство площадки для размещения мусорных контейнеров по всем санитарным и строительным нормам на бетонном основании, исключающей загрязнение прилегающих территорий, подземных вод и почвы.

Мероприятия по охране подземных и поверхностных вод <u>на период строи-</u> <u>тельства:</u>

1. На период строительства объекта вода привозная, соответствует документам государственной системы санитарно-эпидемиологического нормирования. Доставка воды производится автотранспортом, соответствующим документам государственной системы санитарно-эпидемиологического нормирования. Привозная вода хранится в

отдельном помещении или под навесом в емкостях, установленных на площадке с твердым покрытием. Исключается забор воды из рек.

- 2. Установка биотуалетов в непосредственной близости от места проведения работ. По мере их заполнения ообразующиеся бытовые сточные воды будут вывозиться спецавтомашинами на очистные сооружения г. Астана.
- 3. Организация пункта мойки колес на выезде с территории строительной площадки, сбор стоков от мойки колес и вывоз в места, согласованные с СЭС.
 - 4. Установка контейнеров для мусора на строит.площадке.
- 5. Установка отдельных специальных герметичных емкостей с регулярной ассенизацией специальным автотранспортом с вывозом стоков в места согласованные с СЭС.
- 6. Организация технического обслуживания и ремонта дорожно-строительной техники и автотранспорта вне территории строит.площадки на территории производственной базы подрядной организации.
- 7. Заправка ГСМ автотранспорта на специализированных автозаправочных станциях. При невозможности заправки техники на АЗС города заправка техники на специально оборудованной площадке (бетонное покрытие).
- 8. Проведение земляных работ в наиболее благоприятные периоды с наименьшим негативным воздействием (зима).
- 9. Исключение проливов ГСМ (в случае такового немедленный сбор и утилизация в соответствии с регламентом).
- 10. Предусмотреть защиту бетонных и железобетонных конструкций от агрессивного воздействия грунтов и воды.
- 11. Применение землеройно-транспортной и строительной техники с двигателями внутреннего сгорания, отвечающим требованиям ГОСТ и параметрам заводовизготовителей по выбросам загрязняющих веществ в атмосферу.
- 12. Проведение большинства строительных работ, за счет электрифицированного оборудования, работа которого не будет связана с загрязнением окружающей среды.
- 13. Оснащение рабочих мест и строительных площадок инвентарными контейнерами для бытовых и строительных отходов с последующим вывозом спец.организациями.
- 14. Запрещается мойка машин и механизмов, а также слив ГСМ вне специально оборудованных мест.

Таким образом, воздействие на поверхностные и подземные воды при строительстве и эксплуатации объекта не предусмотрено.

2.4. Рекомендации по эксплуатации земель в водоохранных зонах и полосах

Принятые проектом строительства водоохранные мероприятия исключают сброс ливневых стоков на прилегающие территории, как во время строительства, так и во время эксплуатации. Во время строительства ливневые стоки собираются в колодцы по дренажным канавам и вывозятся на сливные станции городской ливневой канализации.

По проекту предусмотрен комплекс организационно - хозяйственных и природоохранных мероприятий, направленных на сохранение и улучшение экологической ситуации в пределах водоохранной зоны: недопущение ухудшения качества воды на реке, установки мусорных контейнеров, очистка территории от мусора, повышение отметок, гидроизоляция трубопроводов, жироуловитель.

По объекту выполнение мероприятий по соблюдению режимов водоохранной зоны сводится к соблюдению экологических и санитарно-гигиенических правил при строительстве и эксплуатации объекта.

В целом режим использования водоохранных зон и полос должен проводиться согласно Водного Кодекса РК, Экологического Кодекса РК, Приказу Заместителя Премьер - Министра Республики Казахстан Министра сельского хозяйства Республики Казахстан от 06.09.2017 года № 379 «Об утверждении Правил установления водоохранных зон и полос».

Вывод: Соблюдая нормы и правила проведения строительных работ и в процессе эксплуатации объекта, негативного воздействия на поверхностные и подземные водные объекты не ожидается.

3. ВОССТАНОВЛЕНИЕ (РЕКУЛЬТИВАЦИЯ) ЗЕМЕЛЬНОГО УЧАСТКА, ИСПОЛЬЗОВАНИЕ ПЛОДОРОДНОГО СЛОЯ ПОЧВЫ, ОХРАНА НЕДР И ЖИВОТНОГО МИРА

3.1. Рекультивация нарушенных земель, использование плодородного слоя почвы

Данным проектом рассматривается объект: «Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)».

В объект условно разделен на 2 пусковые очереди для целей эффектирвного проведения строительных работ: «Стандарт 1» - 1-ая очередь; «Стандарт 2» - 2-ая очередь.

Территория строительства составляет 2,346 гектара (Стандарт 1 - 1,0726 га + Стандарт 2 - 1,2734 га).

Вертикальная планировка выполнена с учетом разработки минимального объема земляных работ, обеспечения водоотвода исходя из условий рельефа участка.

Принятые для посадки деревья и кустарники полностью устойчивы в данных климатических условиях, для лучшей приживаемости принята полная замена грунта в ямах на растительный грунт с внесением минеральных и органических удобрений.

На участках свободных от застройки в границах участка производится посадка зеленых насаждений согласно таблицы 3.1.1.

Ведомость элементов озеленения Стандарт-1

Таблина 3.1

					Таблица 3.1.1
№	Наименование породы и вида насаждения	Высо- та, м	Возраст, лет	Кол-во шт.	Примечание, размер кома
			Деревья	по грунту	
1	Сосна обыкновенная	4,0	7	26	0.5
2	Ель обыкновенная	4,0	7	13	Обхват ствола 14см. Размер кома-
3	Ясень обыкновенный	4,0	7	59	1,3*1,3*0,6м. Размер ямы- 2,2*2,2*0,85м, ДЭС=0,20м
4	Черемуха татарская	4,0	7	34	2,2 12,2 10,83м, ДЭС-0,20м
	Итого: 132			•	
			Куста	рники	
5	Можжевельник вингир- ский (4 кустарника на 1п.м.)	1,0	3	82 п.м. / 328 шт.	
6	Можжевельник казацкий(4 кустарника на 1п.м.)	1,0	3	61 п.м. / 244 шт.	Размер кома-0,5*0,4*0,5м Размер ямы-1,0*0,65м,
7	Спирея Вантута (4 кустар-	1,0-1,2		197 п.м. / 788	ДЭС=0,20м
	ника на 1п.м.)	, ,		шт.	
	Итого: 1360 шт.				
			Многолетн	ики и газон	
8	Шалфей дубравый	0,2-0,4	2	13 m ²	8-10 шт / м ²
9	Тысячелистник обыкновенный	0,2-0,4	2	11 m ²	6-9 шт / м ²
10	Ирис Сибирский	0,2-0,4	2	17 м ²	20 шт / м ²
11	Газон			1677,29 м ²	смесь трав
	Итого: 1718,29				-

Ведомость элементов озеленения Стандарт-2

Таблица 3.1.2

№	Наименование породы и вида насаждения	Высо- та, м	Возраст, лет	Кол-во шт.	Примечание, размер кома			
	Деревья по грунту							
1	Сосна обыкновенная	4,0	7	7	Обхват ствола 14см. Размер кома- 1,3*1,3*0,6м. Размер ямы- 2,2*2,2*0,85м, ДЭС=0,20м			
2	Ель обыкновенная	4,0	7	10				
3	Ясень обыкновенный	4,0	7	22				
4	Черемуха татарская	4,0	7	17				
	Итого: 56 шт							
	Кустарники							
5	Можжевельник вингир-	1,0	3	127 п.м. / 508шт.				
	ский (4 кустарника на 1п.м.)				Danier 0.5*0.4*0.5			
6	Можжевельник казацкий(4	1,0	3	123 п.м. / 492	Размер кома-0,5*0,4*0,5м Размер ямы-1,0*0,65м, ДЭС=0,20м			
	кустарника на 1п.м.)			ШТ.				
7	Спирея Вантута (4 кустар-	1,0-1,5		260 п.м. / 1040				
	ника на 1п.м.)			ШТ.				
	Итого: 2040 шт.							
	Многолетники и газон							
8	Шалфей дубравый	0,2-0,4	2	17м ²	8-10 шт / м ²			
9	Тысячелистник обыкно-	0,2-0,4	2	22m ²	6-9 шт / м ²			
	венный							
10	Ирис Сибирский	0,2-0,4	2	24m ²	20 шт/м ²			
11	Газон			1875,13 м ²	смесь трав			
	Итого: 1938,13	<u></u>						

Рекультивация предусматривается в два этапа: технический и биологический. Техническая рекультивация предусматривает выполнение следующих видов работ:

- засыпка и послойная трамбовка или выравнивание рытвин, непредвиденно возникших в процессе производства работ;
- уборка бытового и строительного мусора;
- подсыпка и равномерное распределение плодородного слоя на некультивируемой поверхности, при этом толщина и площадь восстанавливаемого плодородного грунта равна толщине и площади снятого слоя.

Биологическая рекультивация направлена на закрепление поверхностного слоя почвы корневой системой растений, создание сомкнутого травостоя и предотвращение развития водной и ветровой эрозии почвы. С еè помощью восстанавливают продуктивность нарушенных земель. Выше приведены зеленые насаждения предлагаемые к высалке.

Данный этап осуществляется после завершения технического этапа и заключается в подготовке почвы, внесений удобрений, посеве травосмеси, уходе за посевами. Газоны рассматриваются в других проектах OBOC к объекту по очередям строительства.

3.2. Воздействие отходов предприятия на окружающую среду

Для охраны почв от негативного воздействия отходов, образующихся при эксплуатации, предусматривается организованный сбор, временное накопление и утилизация образующихся отходов. Накопление отходов предполагается осуществлять в герметичных металлических контейнерах, исключающих возможное загрязнение почв территории занятой под строительство.

Согласно экологическому кодексу Республики Казахстан, законодательных и нормативных правовых актов, принятых в РК, отходы производства и потребления должны собираться, храниться, обезвреживаться, транспортироваться в места утилизации или захоронения.

Проектируемый объект не является промышленным предприятием и не занимается производством и выпуском продукции.

На период эксплуатации объекта образуются следующие виды отходов:

- Коммунальные отходы, твердые бытовые отходы — включают в себя бытовой мусор, канцелярский и упаковочный мусор. Относятся «неопасным» отходам, обладают следующими свойствами: твердые не токсичные, не растворимы в воде. По мере накопления отходы будут собираться в контейнер, и вывозиться согласно заключенному договору на захоронение ТБО на гороском полигоне.

Расчет образования твердых бытовых отходов

Нормы образования твердых бытовых отходов определены согласно методики разработки проектов нормативов предельного размещения отходов производства и потребления (приложение № 16 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04. 2008 г.. № 100-п)

Норма образования отходов составляет $0,3\,\mathrm{m}^3/\mathrm{год}$ на человека и средней плотности отходов, которая составляет $0,25\,\mathrm{t}/\mathrm{m}^3$ по формуле:

$$Q = P * M * p_{TOO}$$

где: P - норма накопления отходов на одного человека в год, $P = 0.3 \text{ м}^3/\text{год}$;

M – численность людей, M = 1450 чел;

 $p_{тбо}$ – удельный вес твердо-бытовых отходов, $p_{тбо} = 0.25 \text{ т/м}^3$.

Предварительное расчетное годовое количество, образующихся твердых бытовых отходов составит:

$$Q = 0.3*1450*0.25 = 108.75 \text{ T/год}$$

Твердые бытовые отходы предусмотрено вывозить по мере накопления в контейнерах. Для вывозки требуется заключить договор с коммунальными службами, которые удаляют ТБО по договору.

Характеристика отходов, образующихся на период строительства приведена в табл. 3.2.1.

На период строительства образуются следующие виды отходов:

• Коммунальные отходы (ТБО) – включают в себя бытовой мусор, канцелярский и упаковочный мусор. Относятся к «неопасным отходам», обладают следующими свойствами: твердые не токсичные, не растворимы в воде. По мере накопления отходы будут собираться в контейнер, и вывозиться согласно заключенному до-

говору на захоронение ТБО на новом полигоне.

• Огарки электродов. Относятся к «неопасным» отходам. Отход представляет собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования. Состав (%): железо - 96-97; обмазка (типа Ті (СОЗ)2) - 2-3; прочие - 1. По мере накопления вывозятся согласно заключенному договору.

- Жестяные банки из-под краски. Относятся к «опасным» отходам. Образуются при выполнении малярных работ. Состав отхода (%): жесть 94-99, краска 5-1. Не пожароопасны, химически неактивны. По мере накопления вывозятся согласно заключенному договору со спец.организацией.
- Строительные отходы. Относятся к «неопасным» отходам. Количество прочих строительных отходов принимается по факту образования, согласно п. 2.37. Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008г. № 100-п. По мере накопления вывозятся согласно заключенному договору со спец.организацией.

Расчет образования коммунальных отходов

Нормы образования твердых бытовых отходов определены согласно методики разработки проектов нормативов предельного размещения отходов производства и потребления (приложение № 16 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04. 2008 г. № 100-п).

Норма образования отходов составляет $0,3\,\mathrm{m}^3/\mathrm{год}$ на человека и средней плотности отходов, которая составляет $0,25\,\mathrm{t}/\mathrm{m}^3$ по формуле:

$$Q = P * M * p_{TOO}$$

где: P - норма накопления отходов на одного человека в год, $P = 0.3 \text{ м}^3/\text{год}$;

M – численность людей, M = 200 чел.;

 $p_{тбо}$ – удельный вес твердо-бытовых отходов, $p_{тбо} = 0.25 \text{ т/м}^3$.

Предварительное расчетное годовое количество, образующихся твердых бытовых отходов составит:

Q = 0.3*200*0.25*20 мес/12мес = 25 т/период строит.

*период строительства 22мес.

Твердые бытовые отходы предусмотрено вывозить по мере накопления в контейнерах. Для вывозки требуется заключить договор с коммунальными службами, которые удаляют ТБО по требованию.

Расчет образования огарков электродов

Расчетный объем образования огарков электродов определен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления", приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18 » 04 2008г. № 100-п.

Количество электродов – 6,3680116 т.

Норма образования отхода составляет:

$$N = M_{\text{ост}} \cdot \alpha$$
, т/год,

Где: $^{\mathbf{M}_{\mathtt{OCT}}}$ - фактический расход электродов, т/год;

 $^{\alpha}$ - остаток электрода, $^{\alpha}$ =0,015 от массы электрода.

N=6,3680116*0,015=0,0955 T

Отход представляет собой остатки электродов после использования их при сварочных работах в процессе ремонта основного и вспомогательного оборудования.

Состав (%): железо - 96-97; обмазка (типа Ті (СО₃)₂) - 2-3; прочие - 1.

По мере накопления вывозятся совместно с ломом черных металлов.

Жестяные банки из-под краски.

Расчетный объем образования отходов от ЛКМ определен согласно "Методике разработки проектов нормативов предельного размещения отходов производства и потребления", приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18 » 04.2008г. № 100-п.

Норма образования отхода определяется по формуле:

$$N = \sum M_i \cdot n + \sum M_{Ki} \cdot \alpha_i$$
, $T/\Gamma O J$,

где: M_i - масса i -го вида тары, т/год; n - число видов тары; $M_{\kappa i}$ - масса краски в i -ой таре, т/год; α_i - содержание остатков краски в i -той таре в долях от $M_{\kappa i}$ (0.01-0.05).

Стальное коническое ведро вместимость 10л (10 кг), вес пустой тары - 1.1кг

Масса тары из под лакокрасочных материалов составляет- 1,1 кг

Колличество тары - 20 шт.

Общая масса лакокрасочных материалов составляет - 20,33 т (20330 кг)

 $\alpha_{i} = 0.03$

$$N = (1,1*20) + (20330*0,03) = 631,9 \text{ K} \Gamma (0,6319 \text{ T})$$

Прочий строительный мусор.

Количество прочих строительных отходов принимается по факту образования, согласно п. 2.37. Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от «18 » 04 2008г. № 100-п.

Вывозится на на свалку, согласно заключенному договору.

Количество отхода (данные заказчика) - 3000 т

Характеристика отходов, образующихся на период строительства приведена в табл. 3.2.2.

Влияние отходов будет минимальным при условии строгого выполнения проектных решений и соблюдения всех санитарно-эпидемиологических и экологических норм.

Мероприятия по охране почв от отходов производства представлены в п.3.4.

ТОО **9**копроект'' 135

Лимиты накопления отходов на период эксплуатации

Таблица 3.2.1

Наименование отходов	Образование, т/год	Размещение, т/год	Передача сторонним организациям, т/год			
1	2	3	4			
Всего	108,75	-	108,75			
в т.ч. отходов производства	0	-	0			
отходов потребления	108,75	-	108,75			
Опасные отходы						
-	-	-	-			
Неопасные опасности						
ТБО	108,75	-	108,75			
Зеркальные отходы						
-	-	-	-			

Лимиты накопления отходов на период строительства

Таблица 3.2.2

Наименование отходов	Объем накопленных отходов на существующее положение, т/год	Лимит накопления, т/п.с.				
1	2	4				
Всего	6025,7274	6025,7274				
в т.ч. отходов производства	6000,7274	6000,7274				
отходов потребления	25	25				
Опасные отходы						
Тара из-под краски	0,6319	0,6319				
Неопасные опасности						
ТБО	25	25				
Огарки электродов	0,0955	0,0955				
Строительный мусор	6000	6000				
Зеркальные отходы						
-	-	-				

3.3. Мероприятия по снижению негативного воздействия на почвы

Площадка строительства расположена в урбанизированном районе г. Астана, Республики Казахстан.

Предусмотрены меры предотвращающие негативное воздействие на почвы на данном участке как в период эксплуатации, так и в строительный период.

<u>Для снижения возможного негативного воздействия на почвы в период</u> эксплуатации:

- предусмотрено асфальтовое покрытие подъездных дорог и внутренних проездов;
 - проведение благоустройства территории.

<u>Для снижения возможного негативного воздействия на почвы в период</u> проведения строительных работ:

- 1. Применение землеройно-транспортной и строительной техники с двигателями внутреннего сгорания, отвечающим требованиям ГОСТ и параметрам заводов-изготовителей по выбросам загрязняющих веществ в атмосферу.
- 2. Организация технического обслуживания и ремонта дорожно-строительной техники и автотранспорта на территории производственной базы подрядной организации.
- 3. Осуществление строительных работ с применением процесса увлажнения инертных материалов, что исключит возможность пыления.
 - 4. Неодновременность работы транспортной и строительной техники.
- 5. Организация внутрипостроечного движения транспортной техники по существующим дорогам и проездам с твердым покрытием, что снизит воздействие осуществляемых работ на состав атмосферного воздуха.
- 6. Заправка ГСМ автотранспорта на специализированных автозаправочных станциях.
- 7. Сокращение или прекращение работ при неблагоприятных метеорологических условиях.
 - 8. Применение современных технологий ведения работ.
 - 9. Использование экологически безопасной техники.
- 10. При невозможности заправки техники на АЗС города заправка техники на специально оборудованной площадке (бетонное покрытие).
- 11. проведение земляных работ в наиболее благоприятные периоды с наименьшим негативным воздействием на почвы и растительность (зима).
 - 12. Своевременное проведение работ по рекультивации земель.
- 13. Исключение проливов ГСМ (в случае такового немедленный сбор и утилизация его согласно законам Казахстана.
 - 14. Установка контейнеров для мусора.
 - 15. Установка портативных туалетов и утилизация отходов.

Вывод:

При строительстве и эксплуатации проектируемого объекта при соблюдении всех необходимых мероприятияй негативного воздействия на почвы не ожидается.

3.4. Воздействия объекта на недра

Площадка строительства расположена в урбанизированном районе г. Астана, Республики Казахстан. Проектируемый объект раположен на существующей ранее освоенной территории.

Разработка новых территорий РП не предполагается.

Потребность объекта в минеральных и сырьевых ресурсах в период строительства представлена представлена в п.1.5.

Источниками получения являются поставщики согласно тендера.

Добыча минеральных и сырьевых ресурсов на данной территории не предусматривается.

Воздействия на недра при строительстве и эксплуатации объекта не предусмотрено.

3.5. Воздействие на растительность

Площадка строительства расположена в урбанизированном районе г. Астана, Республики Казахстан.

Территория строительства антропогенно изменена.

Растительность представляет собой степные виды трав.

Редких видов растений не произрастает.

Согласно проекту, на участках, свободных от застройки в границах участка, производится посадка зеленых насаждений.

Согласно акту обследования зеленых насаждений от 02.12.24 г. №3Т-2024-05943887, выданного ГУ «Управление охраны окружающей среды и природопользования г.Астана» под пятно застройки под вынужденную рубку попадает 190 деревьев (лох серебристый).

Предусматриваются компенсацинные посадки в 10-кратном размере при вырубке по разрешению уполномоченного органа в прилегающей территории или отведенной на землях общего пользования с привлечением организации, осуществляющей озеленение, уход и содержание зеленых насаждений (п.33 пар.3 Типовые правила содержания и защиты зеленых насаждений о внесении изменения в приказ Министра национальной экономики Республики Казахстан от 20 марта 2015 года № 235).

Вывод: При строительстве и эксплуатации проектируемого объекта негативного воздействия на растительность не ожидается.

3.6. Воздействие на животный мир

Данным проектом рассматривается объект: «Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)».

Участок проектируемого объекта расположен г. Астана, на ул. Е.Серкебаева, р-н Сарыарка.

Территория строительства антропогенно изменена.

В районе проведения работ нет заповедников и редких птиц, животных, занесенных в красную книгу.

Вывод: При строительстве и эксплуатации проектируемого объекта негативного воздействия на животный мир не ожидается.

4. ВОЗДЕЙСТВИЕ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКУЮ СФЕРУ РЕГИОНА

Город Астана имеет важное государственное значение, является столицей Республики Казахстан с 10 декабря 1997 года. Город расположен на севере страны, на берегах реки Есиль.

Астана - современный город, который привлекателен для туристов и комфортен для проживания жителей и гостей столицы Казахстана, с благоприятной окружающей средой. Астана обладает рядом решающих преимуществ:

- обширная городская территория;
- удачное географическое месторасположение близость к главным экономическим центрам страны;
 - значительный демографический потенциал;
 - хорошо развитая транспортная инфраструктура;
 - благоприятная окружающая среда.

Площадь территории города 797,33 км 2 (после присоединения 7 февраля 2017 года к городу 87,19 км 2 территории Акмолинской области без населенных пунктов).

Административно разделен на шесть районов.

- район «Алматы»: 85,18 км²;
- район «Байконыр»: 18 129 га (в том числе чересполосная территория городского кладбища 460 га);
- район «Есиль»: 20 022 га (в том числе чересполосная территория Национального пантеона 959 га);
 - район «Сарыарка»: 6 775 га;
 - район «Нура»: 19 336 га;
 - район Сарайшык: 69,53 км²

Численность населения города на 1 марта 2025 года составила 1 544 142 человек. Согласно переписи населения 2009 года лишь 36 % населения города являлись уроженцами Астаны. Основу населения города составляют мигранты из других регионов Казахстана. Так, 19,4 % таких мигрантов составляли уроженцы Акмолинской области, 7,4 % - Туркестанской области, по 6,3 % - уроженцы Карагандинской и Костанайской областей.

Данные Казстата о численности населения города в трудоспособном возрасте (16-58 лет для женщин, 16-63 года для мужчин) на 1 октября 2016 года составляли 478 432 человека, в том числе 21 тыс. безработных и 92 тыс. «лиц, не входящих в состав рабочей силы».

Основу экономики города составляют: торговля, транспорт И строительство. продукт торгового По вкладу в валовой сектора экономики Казахстана Астана занимает второе место среди областей и городов города Алматы. республиканского значения после Совокупный региональный продукт двух городов Алма-Аты и Астаны составляет более половины всего объема сферы торговли Казахстана. По объему розничного товарооборота Астана также занимает второе место в стране.

Промышленное производство города сконцентрировано преимущественно на выпуске строительных материалов, пищевых продуктов/напитков и машиностроении. Лидирующее положение в Казахстане Астана занимает по производству строительных металлических изделий, бетона, готового для использования, и строительных изделий

из бетона. Также относительно высока доля города в производстве строительных металлических конструкций, радиаторов и котлов центрального отопления и подъемно-транспортного оборудования.

С целью привлечения инвесторов и развития новых конкурентоспособных производств в городе функционирует Специальная экономическая зона «Астанановый город». Преимуществами СЭЗ является наличие особого правового режима, предусматривающего налоговые и таможенные льготы. На территории СЭЗ реализовываются проекты различных направлений.

Указом Президента Республики Казахстан Назарбаева Н. А. от 17 марта 2006 года № 67 утвержден стратегический план устойчивого развития города до 2030 года, определяющий основные направления деятельности по становлению и устойчивому развитию города как столицы государства. Разработку данного плана осуществило АО «Astana Innovations». При поддержке Акимата (муниципалитета) Астаны реализовано 4 пилотных проекта «Smart города»: «Smart поликлиника», «Smart школа», «Smart уличное освещение» и «Smart раументя». Ключевой особенностью реализации является финансирование за счёт инвестиционных средств.

Доходная часть бюджета Астаны в 2024 году составила 945 330 089 тенге, в том числе по налоговым поступлениям - 698 140 892 тенге, неналоговым поступлениям - 770 354 тыс. тенге, поступлениям от продажи основного капитала - 3 000 000 тенге, поступлениям трансфертов - 243 418 843 тенге[78]. Инвестиции в основной капитал Астаны в 2011 году на 1 жителя составили 818 тыс. тенге. Частных инвестиций в жилищное строительство - 89,1 млн тенге на тыс. жит. в 2011 году. На 1 тыс. чел. вкладов в банки — 429 млн тенге, 358,7 млн тенге банки выдали кредитов (2011). По итогам 2015 года, средний доход на душу населения в Астане составил 3,7 млн тенге.

Валовый региональный продукт в 2022 году составил 10 672 480,5 тенге[80]. Доля ВРП Астаны в республиканском - 10,3 %. Размер ВРП на душу населения составил 17 490,2 долларов США. В структуре ВРП за 2022 г. производство товаров составило 15,5 %, производство услуг - 77,9 %. Основную долю в производстве ВРП занимают оптовая и розничная торговля; ремонт автомобилей и мотоциклов - 22,4 %, профессиональная, научная и техническая деятельность - 9,6 %, обрабатывающая промышленность - 8,2 %.

Астана лидирует в республике по темпам строительства. Одна пятая часть всей введенной в эксплуатацию жилой недвижимости в Казахстане в 2009 году приходилась на г. Астану. На протяжении более чем пяти лет город лидирует по объему ввода в эксплуатацию жилых зданий

В связи с этим расчет число новых жилых комплексов, в том числе и социального жилья.

Вывод: Появление данного объекта приведет к появлению новых рабочих мест, социально доступного жилья для населения, что благоприятно скажется на экономики региона.

5. ФИЗИЧЕСКОЕ ВОЗДЕЙСТВИЕ

Мероприятия по шумоизоляции, виброизоляции и защите от др. воздействий на данном объекте выполнены в соответствии с нормативными требованиями и не превышает нормативный уровень.

Источники проектируемого объекта по уровню электромагнитного и ионизирующего воздействия соответствуют нормам СанПин и СНиП РК.

На период эксплуатации истониками шума могут быть вентиляционные шахты внутри здания и дизельгенератор.

Вентиляция проектируемых зданий общеобменная приточно-вытяжная с механическим побуждением. Для защиты помещений от шума вентиляционное оборудование предусматривается в шумоизолированном корпусе.

Дизельгенератор поставляется в шумозащитном кожухе.

При проведении строительных работ на окружающую среду будут оказываться следующие физические воздействия — шум, слабое электромагнитное и вибрационное воздействие.

Источниками физического воздействия будут являться автотранспорт, используемое оборудование, системы связи, осветительные установки и т.д.

Расчет уровня шума (дб)

Шум является неизбежным видом воздействия на окружающую среду при выполнении строительных работ.

Уровни шума при проведении работ и эксплуатации будут изменяться в зависимости от вида и количества используемых видов оборудования и техники, работающих одновременно.

Согласно справочным данным уровень шума от различного строительного оборудования в среднем составляет 90 дБа.

Эквивалентный октавный уровень звукового давления LfT(DW) на приемнике рассчитывают для каждого точечного источника и мнимого источника для октавных полос со среднегеометрической частотой от 63 до 8000 Γ ц по формуле

Для ненаправленного точечного источника шума, излучающего в свободное пространство, DC = 0;

A - затухание в октавной полосе частот при распространении звука от точечного источн шума к приемнику, дБ.

Затухание A в формуле рассчитывают по формуле:

$$LfT(DW) = LW + DC - A$$

Для ненаправленного точечного источника шума, излучающего в свободное пространство, DC = 0;

A - затухание в октавной полосе частот при распространении звука от точечного источн шума к приемнику, дБ.

Затухание A в формуле рассчитывают по формуле:

$A = A \operatorname{diy} + A \operatorname{atm} + A \operatorname{gr} + A \operatorname{bar} + A \operatorname{misc}$

- LW октавный уровень звуковой мощности точечного источника шума относительно опорного значения звуковой мощности, дБ;
- A затухание в октавной полосе частот при распространении звука от точечного источн шума к приемнику, дБ.

Примечание - Если известны только корректированные по частотной характеристике A(далее - корректированные по A) уровни звуковой мощности *октавных полос*, то в *качестве общей* оценки затухания можно принят

затухание в *октавной полосе со среднегеометрической* частотой 500 Гц.(α , = 2,8 дБ/км)

Adiy - затухание из-за геометрической дивергенции (из-за расхождения энергии при излучении в свободное пространство);

Aatm - затухание из-за звукопоглощения атмосферой

Agr- затухание из-за влияния земли

Abar - затухание из-за экранирования;

Amisc - затухание из-за влияния прочих эффектов

Расчет:

Расчет проводился на расстоянии 114 м от источника шума (ближайшее растояния до жилой зоны от проектируемого объекта):

$$A ext{diy} = 114*1,301+11=159,314$$
 $A ext{atm} = 2,8*114/1000 = 0,3192$ Частота 500 ГЦ - L= 90 +0 - 159,6332 = -69,6332 дБ Частота 500 ГЦ-A= 159,314 + 0,3192 +0 +0+0 =159,6332 $A ext{gr} = 4,8$ -($2*2/20$)($17+300/20$) = $4,8$ -($0,2$)(32) = $4,8$ -6,4 = -1,6

Таблица 4.1 Уровень шума в расчетных точках с учетом «гашения» звука с удалением от источника

N	Наименование источников шумового за-	Уровень звука	Уровень звука
	·	на расстоянии 1 м от	на расстоянии 11 м от
ПП	грязнения	оборудования, дБА	оборудования, дБА
1	2	3	4
1	Строительно-дорожная техника	91	Значительно ниже до-
			пустимого

На территории, непосредственно прилегающей к жилым домам, допустимым уровнем звука и звукового давления является 70 дБА (ГН № 841 от 03.12.2004 года «Гигиенические нормативы уровней шума и инфразвука в помещениях жилых, общественных зданий и на территории жилой застройки»).

Уровень шума от строительного оборудования значительно ниже допустимого. Таким образом шум в период строительства не окажет существенного влияния на здоровье проживающих в ближайшей жилой зоне.

Виброгенерирующего и оборудования и источников неионизирующих излучений, оказывающих негативное воздействие на здоровье человека, на площадке строительства нет, технологией производства работ данные виды физического воздействия к установке и использованию не предполагаются, расчет по ним не производился.

Электромагнитное воздействие.

В соответствии с СанПиН РК 3.01.036-97 «Защита населения от воздействия электрического поля, создаваемого высоковольтными линиями электропередачи переменного тока промышленной частоты» санитарно-гигиенические требования к санитарно-защитной зоне ВЛ 220 кВ не предъявляются.

Оборудование подстанции обеспечивается надежным заземляющим устройством, надлежащей изоляцией, защитным ограждением и соблюдением соответствующих габаритов до токоведущих частей в соответствии с «Правила техники безопасности при эксплуатации электроустановок, РД 34 РК.03.202-04, 2004г.».

Следовательно, при соблюдении всех санитарных норм и правил установки трансформаторных подстанций электромагнитного воздействия на окружающую среду не будет производится.

Вывод: При строительстве и эксплуатации проектируемого объекта значительного физического воздействия в районе их расположения не прогнозируется.

5.1. Мероприятия по снижению воздействия физических факторов

Для того чтобы снизить воздействие шума на окружающую среду будет принят ряд стандартных смягчающих мер:

- насосы, генераторы и другое мобильное оборудование в период ремонтно-профилактических работ будет устанавливаться, при возможности, как можно дальше от жилой зоны,
- во время отсутствия работы оборудование, если это, возможно, будет отключаться,
- все транспортные средства и силовые блоки будут проходить соответствующее техобслуживание,
- автотранспорт должен оборудоваться стандартными устройствами для глушения шума,
- приобретаемые новые транспортные средства и техника должны соответствовать Европейским стандартам по уровню шума.,
- поддержание оборудования в рабочем состоянии регулярный осмотр на период эксплуатации.

Таким образом, предусмотренные в Проекте техника и оборудование, а также выполнение мероприятий по защите от воздействия физических факторов будут, способствовать поддержанию уровня допустимого воздействия на окружающую среду.

5.2. Оценка экологических рисков

Оценка экологического риска — это выявление и оценка вероятности наступления событий имеющих неблагоприятные последствия для состояния окружающей среды, здоровья населения, деятельности предприятия и вызванного загрязнением окружающей среды, нарушением экологических требований, чрезвычайными ситуациями природного и техногенного характера.

Основными причинами возникновения аварийных ситуаций могут являться:

- нарушения технологических процессов;
- технические ошибки обслуживающего персонала;
- нарушения противопожарных норм и правил, техники безопасности;
- аварийное отключение систем энергоснабжения, водоснабжения;
- стихийные бедствия;
- террористические акты и т.п.

Анализ сценариев наиболее вероятных аварийных ситуаций констатирует о возможности возникновения локальной по характеру аварии, которая не приведет к катастрофическим или необратимым последствиям. Своевременное применение запроектированных мероприятий по локализации и ликвидации последствий аварийных ситуаций позволит уменьшить их возможные негативные влияния на окружающую среду, снизить уровни экологического риска.

Вывод: Исходя из технологии проведения строительно-монтажных работ, а так же из рода деятельности при эксплуатации намечаемой деятельности, возможность возникновения рисков экологического характера отсутствует.

6. РАЗДЕЛ «ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ»

Понятие охрана окружающей природной среды - включает в себя систему мероприятий, обеспечивающих рациональное природопользование, сохранение и восстановление природных ресурсов, предупреждение прямого и косвенного влияния результатов деятельности общества на природу и здоровье человека.

Вопрос о воздействии человека на атмосферу находится в центре внимания специалистов и экологов всего мира. Охрана атмосферного воздуха является ключевой проблемой оздоровления окружающей природной среды. Атмосферный воздух занимает особое положение среди других компонентов биосферы. Значение его для всего живого на Земле невозможно переоценить. Воздух должен иметь определенную чистоту и любое отклонение от нормы опасно для здоровья.

Данным проектом рассматривается объект: «Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)».

Начало строительства объектов: февраль 2026 г.

Площадь участка 1 и 2 очереди составляет 2.3209 га.

Площадь озеленения 1 и 2 очереди составляет 5384.42/23209.00=23% в границе отведенного участка. (1-оч. 3041.29 + 2-оч.2343.13)

Стандарт -1: секции: 1, 3, 4 (12-ти этажные жилые здания), 2 (9-ти этажные жилые здания).

Стандарт -2: секции: 1,2,3,4,7 (12-ти этажные жилые здания), 5,6 (9-ти этажные жилые здания) и 4-х уровневый паркинг (наземный).

Проектируемые квартиры соответствуют малогабаритному жилью.

Возводимые здания имеют нежилые первые этажи – в них размещаются встроенные офисные помещения. Технические помещения: тепловые пункты, насосные размещены в подвале, венткамеры и электрощитовые на отм.0,000 в паркинге.

Также, предусмотрено размещение площадок различного назначения: детская игровая площадка младшего возраста, оснащенная детскими игровыми элементами, предназначенные для игр детей, спортивная площадка, оснащенная спортивными снарядами, и площадка для детей дошкольного возраста.

Благоустройство включает также озеленение в виде цветников и газонов, посадки деревьев и кустарников и установки малых архитектурных форм, скамеек и урн.

Водоснабжение и канализация, ливневая канализация, электрификация объекта все централизованные, предусматривается согласно техническим условиям.

Вертикальная планировка выполнена с учетом разработки минимального объема земляных работ, обеспечения водоотвода исходя из условий рельефа участка.

Сток поверхностных вод от здания с проездов и площадок осуществляется по верху покрытий и по ним в ливневую канализацию.

Проект благоустройства территории выполнен с учетом обеспечения подъезда средств пожаротушения к зданиям.

ТОО **9**копроект''

Атмосферный воздух

Проектируемый объект в период эксплуатации и строительства окажет незначительное влияние на атмосферный воздух в районе своего расположения.

Поверхностные и подземные воды

Сброс в поверхностные воды объектом не предполагается

Негативного воздействия на поверхностные и подземные водные объекты не ожидается.

Условия землепользования

Территория строительства расположена в городе и является антропогенно измененной. Негативного воздействия на земли не ожидается.

<u>Недра</u>

Водействия на недра в районе расположения объекта не предусмотрено.

Животный и растительный мир

Редких видов растений, животных и птиц в данном районе нет.

Негативного воздействия на животный и растительный мир не ожидается.

Воздействие на социально-экономическую среду

Строительство данного объекта приведет к появлению новых рабочих мест, что благоприятно скажется на экономики региона.

Охраняемые природные памятники и объекты

В районе проведения работ отсутствуют природные зоны, памятники истории и культуры, входящие в список государственных охраняемых объектов и требующие особого режима охраны.

Отходы производства и потребления

В период строительства и эксплуатации образуются отходы, которые сдаются спец.организациям на вывоятсяз согласно заключенного договора.

Воздействие отходов при соблюдении всех экологических и санитарных норм не ожидается.

Аварийные ситуации

Во избежание возникновения аварийных ситуаций и обеспечения безопасности на всех этапах работ необходимо соблюдение проектных и экологических норм.

Заключение:

Из выше приведенного следует, что проектируемый объект будет являться источником загрязнения окружающей природной среды с очень незначительны вкладом, а его эксплуатация не приведет к ухудшению экологической обстановки в этом районе города.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:

- 1. Экологический кодекс РК от 2 января 2021 года № 400-VI.
- 2. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 «Об утверждении Инструкции по организации и проведению экологической оценки».
- 3. Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 Об утверждении Санитарных правил «Санитарно- эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека».
- 4. Приложение к приказу И.о. министра экологии, геологии и природных ресурсов Республики Казахстан от 19 октября 2021 года № 408 «Инструкция по определению категории объекта, оказывающего негативное воздействие на окружающую среду»; РНД 211.2.02.06-2004.
- 5. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан РК от 06.08.2021 г. №314 «Об утверждении Классификатора отходов».
- 6. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов, Астана 2004г.
- 7. РНД 211.2.02.03-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах, Астана, 2004г.
- 8. Расчет выбросов от неорганизованных источников загрязнения согласно приложению №13 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008г. №100 –п. «Методика расчета нормативов выбросов от неорганизованных источников».
- 9. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 10. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4). Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 11. Методика разработки проектов нормативов предельного размещения отходов производства и потребления (приложение № 16 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04. 2008 г. № 100-п).

ОО Экопроект"	148
Приложение 1. Карта района расположения проектируе	мого объекта

ТОО Экопроект"	150
Приложение 2. Карта-схема территории проектируемого объекта указанием источников выбросов в атмосферу	C
указапием источников выоросов в атмосферу	

151

Припожание 2. Справка о фоновних концентрациях
Приложение 3. Справка о фоновых концентрациях

152

ТОО **9**копроект'' 153

«КАЗГИДРОМЕТ» РМК

РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ МИНИСТЕРСТВО ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН

26.09.2025

- 1. Город Астана
- 2. Адрес Астана, Сарыаркинский район
- 4. Организация, запрашивающая фон **TOO \"Экопроект\"**Объект, для которого устанавливается фон **Многоквартирный жилой комплекс**
- 5. со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1
- 6. Разрабатываемый проект РООС
 - Перечень вредных веществ, по которым устанавливается фон: Взвешанные частицы РМ2.5, Взвешанные частицы РМ10, Азота диоксид, Взвеш.в-ва,
- 7. Диоксид серы, Сульфаты, Углерода оксид, Азота оксид, Озон, Сероводород, Фенол, Фтористый водород, Хлор, Водород хлористый, Углеводороды, Свинец, Аммиак, Формальдегид, Хром,

Значения существующих фоновых концентраций

		Концентрация Сф - мг/м³				
Номер поста	Примесь	Штиль 0-2 м/сек	Скорость ветра (3 - U*) м/сек			
			север	восток	юг	запад
	Взвешанные частицы РМ2.5	0.0639	0.0409	0.0283	0.0243	0.0176
	Взвешанные частицы РМ10	0.0701	0.0454	0.0267	0.0207	0.0162
N 5 0 4 0 4	Азота диоксид	0.0885	0.1126	0.091	0.0881	0.0846
№5,2,1,3,4	Взвеш.в-ва	0.4919	0.4723	0.4829	0.4694	0.5021
	Диоксид серы	0.0343	0.0215	0.027	0.0289	0.0166
	Углерода оксид	1.2916	1.0709	1.2807	1.3691	1.2134
	Азота оксид	0.3869	0.3056	0.4015	0.3158	0.2977

Вышеуказанные фоновые концентрации рассчитаны на основании данных наблюдений за 2022-2024 годы.

ТОО Экопроект''		154
Приложение 4.	. Лицензия ТОО «Экопроект»	
P	1	

Раздел «Охрана окружающей среды»

МЕМЛЕКЕТТІК ЛИЦЕНЗИЯҒА ҚОСЫМША

Лицензияның нөмірі	01094P	№	
Лицензияның берілген кү	ні 20 _07 жылғы «	«17.»тамыз	
Лицензияланатын қызмет	түрінің құрамын	на кіретін жұмыст	ар мен қызметтер-
дің лицензияланатын түрл	перінің тізбесі		
табиғат қорғау ісін ж			сараптама саласы
	7000		
	толық а	атауы, орналаскан жері, дерекі	емелері
АСТАНА Қ.	ПОБЕДЫ ДАҢҒЬ	ЫЛЫ 81А-21	Commission of the sale
Өндірістік база	12-6-8-50	THEOR SEL VILLE	
Лицензияға қосымшаны б	орналаск ерген орган	ан жері	
ҚР Қоршаған ортаны қор	ғау министрлігі	лицентинга косым	паны берген
Басшы (уәкілетті адам)	органның толық ат	А.З. Таутеев	housele
дин запише	исизията қосымшаны берген	орган басшысының (уокідетті	адамию) теті төпе аты-жөні
			-day-
V V			
Лицензияға қосымшаның	берілген күні 20_	_07 жылғы «17>	тамыз
Лицензияға қосымшаның	нөмірі	№ 0073	583
Астана К	аласы		

ТОО Экопроект"	157
Приложение 6. Расчет полей приземных концентраций	
загрязняющих веществ на период эксплуатации	

```
1. Общие сведения.
   Расчет проведен на УПРЗА "ЭРА" v2.0 фирмы НПП "Логос-Плюс", Новосибирск
   Расчет выполнен ТОО "Экопроект"
 | Сертифицирована Госстандартом РФ рег.N POCC RU.CП09.H00090 до 05.12.2015
 Согласовывается в ГГО им.А.И.Воейкова начиная с 30.04.1999
 | Последнее продление согласования: письмо ГГО N 2088/25 от 26.11.2015 до выхода ОНД-2016 |
2. Параметры города 
УПРЗА ЭРА v2.0
   Название Астана 2025
   Коэффициент А = 200
   Скорость ветра U* = 8.0 м/с
   Средняя скорость ветра= 5.0 м/с
   Температура летняя = 26.8 град.С
   Температура зимняя = -18.5 град.С
   Коэффициент рельефа = 1.00
   Площадь города = 0.0 кв.км
   Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
   Фоновая концентрация на постах (в мг/м3 / долях ПДК)
|Код загр| Штиль | Северное | Восточное | Южное | Западное |
|вещества| U<=2м/с |направление |направление |направление |
Пост N 001: X=0. Y=0
 0301 \ | \ 0.0930000| \ 0.0607000| \ 0.1141000| \ 0.0565000| \ 0.0509000|
      0.4650000|\ 0.3035000|\ 0.5705000|\ 0.2825000|\ 0.2545000|
 0304 \mid 0.0905000 \mid 0.0343000 \mid 0.0943000 \mid 0.0299000 \mid 0.0340000 \mid
      \mid \ 0.2262500 \mid \ 0.0857500 \mid \ 0.2357500 \mid \ 0.0747500 \mid \ 0.0850000 \mid 
 0330 | 0.0780000| 0.0596000| 0.0851000| 0.1020000| 0.0606000|
    {\mid \ 0.1560000| \ \ 0.1192000| \ \ 0.1702000| \ \ 0.2040000| \ \ 0.1212000|}
 0337 \ | \ 2.7813000| \ 0.8880000| \ 2.5181000| \ 1.4301000| \ 1.1573000|
   | 0.5562600| 0.1776000| 0.5036200| 0.2860200| 0.2314600|
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:13
   Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | | Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | KP | Ди| Выброс
<Об~П>~<Ис>|~
                           -м~~|~м/c~|~~м3/c~|градC|~
000601 0001 T 34.8 1.0 18.74 14.72 20.0 2.0 90.0
                                                               1.0 1.00 0 0.0027150
000601 0002 T 34.8 1.0 18.75 14.73 20.0 212.0 313.0
                                                                 1.0 1.00 0 0.0027150
000601 6001 П1 5.0
                               20.0 21.0 13.0
                                                 9.0 4.0 21 1.0 1.00 0 0.0027040
000601\ 6002\ \Pi1\quad 5.0
                               20.0 -19.0 -21.0
                                                 7.0
                                                      15.0 22 1.0 1.00 0 0.0027040
000601 6003 П1 5.0
                               20.0 -36.0 17.0 9.0 62.0 24 1.0 1.00 0 0.0002850
000601 6004 П1
                               20.0 \ \ \textbf{-23.0} \ \ 100.0 \ \ \ 60.0 \ \ \ \ 4.0 \ \ 25 \ 1.0 \ 1.00 \ 0 \ 0.0002850
000601 6005 П1 5.0
                               20.0 93.0 72.0 3.0 75.0 25 1.0 1.00 0 0.0002850
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025
                                  Расчет проводился 23.09.2025 10:13
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
         ПДКр для примеси 0301 = 0.2 \text{ мг/м3}
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст ссть концентрация одиночного источника
  с суммарным М (стр.33 ОНД-86)
                                          Их расчетные параметры
|Номер| Код | М |Тип | Сm (Сm`) | Um | Xm |
                            --|[доли ПДК]|-[м/с]---|---[м]---|
 1 |000601 0001| 0.00271| T | 0.000386 | 0.70 | 277.7 |
  2 |000601 0002|
                 0.00271| T | 0.000385 | 0.70 | 277.9 |
 3 |000601 6001|
                  0.00270| П | 0.057 | 0.50 |
                                              28.5
                  0.00270 П
  4 |000601 6002|
                               0.057
                                       0.50
                                              28.5
 5 |000601 6003|
                  0.00028 П
                               0.006
                                       0.50
                                              28.5
  6 |000601 6004|
                  0.00028 П
                               0.006
                                       0.50
                                              28.5
  7 |000601 6005|
                 0.00028 П
                               0.006
                                       0.50
                                              28.5
  Суммарный Мq = 0.01169 г/с
  Сумма См по всем источникам =
                                      0.132625 долей ПДК
```

```
Средневзвешенная опасная скорость ветра = 0.50 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:13
   Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 298
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
      Координаты точки: X= -213.0 м Y= 205.0 м
Максимальная суммарная концентрация | Cs= 0.58076 доли ПДК |
                        0.11615 мг/м3
 Достигается при опасном направлении 134 град.
            и скорости ветра 2.12 м/с
Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
                                  _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|<Oб-П>-<Ис>|---|-М-(Mq)--|-С[доли ПДК]|------|------b=C/M ---|
    Фоновая концентрация Cf | 0.570500 | 98.2 (Вклад источников 1.8%)|
 1 \ |000601 \ 6001| \ \Pi \ | \quad 0.0027| \quad 0.004680 \ | \ 45.6 \ | \ 45.6 \ | \ 1.7309228
 2 \hspace{.1cm} | \hspace{.06cm} 000601 \hspace{.1cm} 6002 | \hspace{.08cm} \Pi \hspace{.1cm} | \hspace{.1cm} 0.0027 | \hspace{.1cm} 0.004585 \hspace{.1cm} | \hspace{.1cm} 44.7 \hspace{.1cm} | \hspace{.1cm} 90.3 \hspace{.1cm} | \hspace{.1cm} 1.6955335
 3 \mid \! 000601 \mid \! 6003 \mid \! \Pi \mid \! 0.00028500 \mid \! 0.000684 \mid \! 6.7 \mid \! 97.0 \mid \! 2.4002469 \mid \! 
             B \text{ cymme} = 0.580449 \quad 97.0
    Суммарный вклад остальных = 0.000311 3.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:13
   Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<Об~П>~<Ис>|~~~|~~м~~|~м/с~|~~м3/с~|градС|~~~м~~|~
                                                                                   ~м~~-|гр.|~~-|~~-|~-г/с~
000601 0001 T 34.8 1.0 18.74 14.72 20.0 2.0 90.0
                                                                 1.0 1.00 0 0.0004410
000601 0002 T 34.8 1.0 18.75 14.73 20.0 212.0 313.0
                                                                   1.0 1.00 0 0.0004410
000601 6001 \Pi 1 5.0
                                20.0 21.0 13.0 9.0 4.0 21 1.0 1.00 0 0.0004390
000601 6002 \Pi1 5.0
                                20.0 -19.0 -21.0 7.0 15.0 22 1.0 1.00 0 0.0004390
000601 6003 \Pi 1 5.0
                                20.0 -36.0 17.0
                                                    9.0\quad 62.0\ 24\ 1.0\ 1.00\ 0\ 0.0000463
000601 6004 \Pi1 5.0
                                20.0 -23.0 100.0 60.0 4.0 25 1.0 1.00 0 0.0000463
000601 6005 \Pi1 5.0
                                      93.0 72.0 3.0 75.0 25 1.0 1.00 0 0.0000463
                                20.0
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:13
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
         ПДКр для примеси 0304 = 0.40000001 мг/м3
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст есть концентрация одиночного источника
  с суммарным М (стр.33 ОНД-86)
                                             _Их расчетные параметры_
|Номер| Код | М |Тип | Cm (Cm`) | Um | Xm
|-п/п-|<0б-п>-<ис>|-----
                        ----|----|[доли ПДК]|-[м/с]---|----[м]---|
  1 |000601 0001| | 0.00044| T |0.0000313 | 0.70 | 277.7
 2 |000601 0002| 0.00044| T |0.0000313 | 0.70 | 277.9
                  0.00044| II | 0.005 | 0.50 | 28.5
  3 |000601 6001|
 4 |000601 6002 | 0.00044 | II | 0.005 | 0.50 | 28.5
  5 |000601 6003 | 0.00004630 | H | 0.000487 | 0.50 | 28.5
  6 |000601 6004 | 0.00004630 | H | 0.000487 | 0.50 | 28.5
  7 |000601 6005| 0.00004630| H | 0.000487 | 0.50 | 28.5
  Суммарный Мq = 0.00190 г/с
  Сумма См по всем источникам = 0.010767 долей ПДК
```

```
Средневзвешенная опасная скорость ветра = 0.50 м/с
   Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:14
   Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 298
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -213.0 м Y= 205.0 м
Максимальная суммарная концентрация | Cs= 0.23657 доли ПДК |
                        0.09463 мг/м3
 Достигается при опасном направлении 134 град.
            и скорости ветра 2.35 м/с
Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
                                 _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
Фоновая концентрация Cf | 0.235750 | 99.7 (Вклад источников 0.3%)|
 1\ |000601\ 6001|\ \Pi\ |\ 0.00043900|\ \ 0.000375\ |\ 45.9\ |\ 45.9\ |\ 0.854736328
 2 \mid \! 000601 \mid \! 6002 \mid \! \Pi \mid \! 0.00043900 \mid \! \mid \! 0.000365 \mid \! \mid \! 44.7 \mid \! \mid \! 90.7 \mid \! 0.832240760
 3 \mid \! 000601 \mid \! 6003 \mid \! \Pi \mid \! 0.00004630 \mid \! \mid \! 0.000055 \mid \! \mid \! 6.7 \mid \! \mid \! 97.4 \mid \! \mid \! 1.1855918 \mid \! \mid \! 
             В сумме = 0.236545 97.4
   Суммарный вклад остальных = 0.000021 2.6
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:14
   Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516))
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | Тип| H | D | Wo | V1 \overline{\mid T \mid X1 \mid Y1 \mid X2 \mid Y2 \mid Alf| F \mid KP \mid Ди \mid Выброс}
<Об~П>~<Ис>|~~|~~м~~|~м~~|~м/с~|~~м3/с~|градС|~~~м~~-|~
                                                                                     ~|rp.|~~~|~~~r/c~~
000601 0001 T 34.8 1.0 18.74 14.72 20.0 2.0 90.0
                                                               1.0 1.00 0 0.0011030
000601 0002 T 34.8 1.0 18.75 14.73 20.0 212.0 313.0
                                                                 1.0 1.00 0 0.0011030
000601 6001 \Pi 1 5.0
                               20.0 21.0 13.0 9.0 4.0 21 1.0 1.00 0 0.0010980
000601 6002 \Pi1 5.0
                               20.0 -19.0 -21.0
                                                 7.0 15.0 22 1.0 1.00 0 0.0010980
000601 6003 \Pi 1 5.0
                               20.0 -36.0 17.0
                                                  9.0\quad 62.0\ 24\ 1.0\ 1.00\ 0\ 0.0001156
000601 6004 \Pi1 5.0
                               20.0 -23.0 100.0 60.0 4.0 25 1.0 1.00 0 0.0001156
                                     93.0 72.0 3.0 75.0 25 1.0 1.00 0 0.0001156
000601 6005 \Pi1 5.0
                               20.0
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:14
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516))
         ПДКр для примеси 0330 = 0.5 \text{ мг/м3}
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст есть концентрация одиночного источника
  с суммарным М (стр.33 ОНД-86)
                                           Их расчетные параметры_
| Номер | Код | М | Тип | Сm (Сm`) | Um | Xm
|-п/п-|<об-п>-<ис>|-----
                       ----|----|[доли ПДК]|-[м/с]---|----[м]---|
  1 |000601 0001|
                 0.00110| T |0.0000626 | 0.70 | 277.7
 2 |000601 0002|
                 0.00110| T |0.0000626 | 0.70 | 277.9
  3 |000601 6001|
                  0.00110| П | 0.009 | 0.50 | 28.5
                 0.00110| II | 0.009 | 0.50 | 28.5
 4 |000601 6002|
                 0.00012| П | 0.000973 | 0.50 |
  5 |000601 6003|
                                                28.5
  6 |000601 6004|
                 0.00012 П | 0.000973 | 0.50 |
  7 |000601 6005|
                 0.00012| П | 0.000973 | 0.50 |
                                                28.5
  Суммарный M_0 = 0.00475 \text{ г/с}
  Сумма См по всем источникам = 0.021539 долей ПДК
```

```
Средневзвешенная опасная скорость ветра = 0.50 м/с
  Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:14
   Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516))
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 298
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -172.0 м Y= 245.0 м
Максимальная суммарная концентрация | Cs= 0.20564 доли ПДК |
                       0.10282 мг/м3
 Достигается при опасном направлении 145 град.
            и скорости ветра 2.36 м/с
Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
                                ВКЛАДЫ_ИСТОЧНИКОВ
Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
|----|<06-П>-<Ис>|---|--М-(Мq)--|-С[доли ПДК]|------|---- b=С/М ---|
Фоновая концентрация Сf | 0.204000 | 99.2 (Вклад источников 0.8%)|
 3 \mid \! 000601 \mid \! 6003 \mid \! \Pi \mid \! 0.00011560 \mid \! 0.000099 \mid \! \mid \! 6.0 \mid \! 95.1 \mid \! 0.856363654 \mid \! \mid \! 
             B \text{ cymme} = 0.205559 95.1
   Суммарный вклад остальных = 0.000080 4.9
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:14
   Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | | Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | KP | Ди| Выброс
<Об~П>~<Ис>|~
                          -м~~|~м/c~|~~м3/c~|градC|~
000601 0001 T 34.8 1.0 18.74 14.72 20.0 2.0 90.0
                                                              1.0 1.00 0 0.4640000
000601 0002 T 34.8 1.0 18.75 14.73 20.0 212.0 313.0
                                                                1.0 1.00 0 0.4640000
000601 6001 П1 5.0
                               20.0 21.0 13.0
                                                9.0 4.0 21 1.0 1.00 0 0.4640000
000601\ 6002\ \Pi1\quad 5.0
                               20.0 -19.0 -21.0
                                                 7.0 15.0 22 1.0 1.00 0 0.4640000
000601 6003 П1 5.0
                              20.0 -36.0 17.0 9.0 62.0 24 1.0 1.00 0 0.0488000
000601 6004 П1
                               20.0 \ \ \textbf{-23.0} \ \ 100.0 \ \ \ 60.0 \ \ \ \ 4.0 \ \ 25 \ 1.0 \ 1.00 \ 0 \ 0.0488000
000601 6005 П1 5.0
                              20.0 93.0 72.0 3.0 75.0 25 1.0 1.00 0 0.0488000
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:14
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
         ПДКр для примеси 0337 = 5.0 мг/м3
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст ссть концентрация одиночного источника
  с суммарным М (стр.33 ОНД-86)
                                          _Их расчетные параметры_
|Номер| Код | М |Тип | Сm (Сm`) | Um | Xm |
                            --|[доли ПДК]|-[м/с]---|---[м]---|
 1 |000601 0001| 0.46400| T | 0.003 | 0.70 | 277.7
  2 |000601 0002|
                 0.46400 T
                              0.003 | 0.70 |
                                            277.9
                 0.46400 П
 3 |000601 6001|
                               0.391 | 0.50 |
  4 |000601 6002|
                 0.46400| П |
                               0.391
                                      0.50
                                              28.5
 5 |000601 6003|
                 0.04880 П
                               0.041
                                      0.50
                                             28.5
                 0.04880 П
                               0.041
                                      0.50
  6 |000601 6004|
                                              28.5
  7 |000601 6005|
                 0.04880 П
                                             28.5
                              0.041 | 0.50 |
  Суммарный Мq = 2.00240 г/с
  Сумма См по всем источникам =
                                     0.910039 долей ПДК
```

```
Средневзвешенная опасная скорость ветра = 0.50 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:14
   Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 298
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -207.0 м Y= 211.0 м
Максимальная суммарная концентрация | Cs= 0.63319 доли ПДК |
                      3.16593 мг/м3
 Лостигается при опасном направлении 134 град.
           и скорости ветра 1.01 м/с
Всего источников: 7. В таблице заказано вкладчиков не более чем с 95% вклада
                               _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
Фоновая концентрация Сf | 0.556260 | 87.9 (Вклад источников 12.1%)|
 1 |000601 6001| П |
                    0.4640| 0.034459 | 44.8 | 44.8 | 0.074265808
 2 |000601 6002| П |
                    0.4640| 0.031414 | 40.8 | 85.6 | 0.067701623
 3 |000601 6003| П |
                   0.0488| 0.004644 | 6.0 | 91.7 | 0.095165424
 4 |000601 6004| Π | 0.0488| 0.004179 | 5.4 | 97.1 | 0.085642062
            В сумме = 0.630956 97.1
   Суммарный вклад остальных = 0.002229 2.9
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:15
   Примесь :2704 - Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60) )
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код \ |Тип\ |\ H\ |\ D\ |\ Wo\ |\ V1\ |\ T\ |\ X1\ |\ Y1\ |\ X2\ |\ Y2\ |\ |Аlf\ |\ F\ |\ KP\ |Ди\ |\ Bыброс
<Об~П>~<Ис>|~
                         ~м~~|~м/с~|~~м3/с~|градС|~
000601 0001 T 34.8 1.0 18.74 14.72 20.0 2.0 90.0
                                                           1.0 1.00 0 0.0228000
000601 0002 T 34.8 1.0 18.75 14.73 20.0 212.0 313.0
                                                             1.0 1.00 0 0.0228000
000601 6001 П1 5.0
                             20.0 21.0 13.0
                                             9.0 4.0 21 1.0 1.00 0 0.0226400
000601 6002 \Pi 1 5.0
                             20.0 -19.0 -21.0
                                               7.0 15.0 22 1.0 1.00 0 0.0226400
000601 6003 П1 5.0
                             20.0 -36.0 17.0 9.0 62.0 24 1.0 1.00 0 0.0023860
000601 6004 \Pi1 5.0
                             20.0 \ \ \textbf{-23.0} \ \ 100.0 \ \ \ 60.0 \ \ \ \ 4.0 \ \ 25 \ 1.0 \ 1.00 \ 0 \ 0.0023860
000601 6005 П1 5.0
                             20.0 93.0 72.0 3.0 75.0 25 1.0 1.00 0 0.0023860
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0006 ММЖК по ул.Серкебаева
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:15
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2704 - Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60) )
        ПДКр для примеси 2704 = 5.0 мг/м3
| - Для линейных и площадных источников выброс является суммарным |
 по всей площади, а Ст ссть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
                                        _Их расчетные параметры_
|Номер| Код | М |Тип | Ст (Ст) | Um | Xm |
 -п/п-|<об-п>-<ис>|--
                      ---|--
                          --|[доли ПДК]|-[м/с]---|---[м]---|
 1 |000601 0001| 0.02280| T | 0.000129 | 0.70 | 277.7 |
                0.02280| T | 0.000129 | 0.70 | 277.9 |
 2 |000601 0002|
                0.02264 П | 0.019 | 0.50 | 28.5
 3 |000601 6001|
 4 |000601 6002|
                 0.02264| П |
                             0.019
                                    0.50
                                            28.5
 5 |000601 6003|
                0.00239 П
                             0.002
                                    0.50
                                            28.5
                 0.00239 П
                             0.002
                                     0.50
                                            28.5
  6 |000601 6004|
 7 |000601 6005|
                0.00239 П 0.002 0.50
                                            28.5
  Суммарный Мq = 0.09804 г/с
                                   0.044418 долей ПДК
  Сумма См по всем источникам =
```

Средневзвешенная опасная скорость ветра = 0.50 м/с Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |

8. Результаты расчета по жилой застройке. УПРЗА ЭРА v2.0 Город :005 Астана 2025.

Объект :0006 ММЖК по ул.Серкебаева Вар.расч. :1 Расч.год: 2025 Расчет проводился 23.09.2025 10:15 Примесь :2704 - Бензин (нефтяной, малосернистый)/в пересчете на углерод/ (60))

Расчет не проводился: См < 0.05 долей ПДК

ТОО Экопроект"	164
Приложение 7. Расчет полей приземных концентраций	
загрязняющих веществ на период строительства	

```
1. Общие сведения.
   Расчет проведен на УПРЗА "ЭРА" v2.0 фирмы НПП "Логос-Плюс", Новосибирск
   Расчет выполнен ТОО "Экопроект"
 | Сертифицирована Госстандартом РФ рег.N РОСС RU.СП09.Н00090 до 05.12.2015
 Согласовывается в ГГО им.А.И.Воейкова начиная с 30.04.1999
 | Последнее продление согласования: письмо ГГО N 2088/25 от 26.11.2015 до выхода ОНД-2016 |
2. Параметры города 
УПРЗА ЭРА v2.0
   Название Астана 2025
   Коэффициент А = 200
   Скорость ветра U^* = 8.0 \text{ м/c}
   Средняя скорость ветра= 5.0 м/с
   Температура летняя = 26.8 град.С
   Температура зимняя = -18.5 град.С
   Коэффициент рельефа = 1.00
   Площадь города = 0.0 кв.км
   Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
   Фоновая концентрация на постах (в мг/м3 / долях ПДК)
|Код загр| Штиль | Северное | Восточное | Южное | Западное |
|вещества| U<=2м/с |направление |направление |направление |
|Пост N 001: X=0, Y=0
 0301 \mid 0.0930000 \mid 0.0607000 \mid 0.1141000 \mid 0.0565000 \mid 0.0509000 \mid
     0.4650000|\ 0.3035000|\ 0.5705000|\ 0.2825000|\ 0.2545000|
 0304 \mid 0.0905000 \mid 0.0343000 \mid 0.0943000 \mid 0.0299000 \mid 0.0340000 \mid
      \mid \ 0.2262500 \mid \ 0.0857500 \mid \ 0.2357500 \mid \ 0.0747500 \mid \ 0.0850000 \mid 
 0330 | 0.0780000| 0.0596000| 0.0851000| 0.1020000| 0.0606000|
    {\mid \ 0.1560000| \ 0.1192000| \ 0.1702000| \ 0.2040000| \ 0.1212000|}
 0337 \ | \ 2.7813000| \ 0.8880000| \ 2.5181000| \ 1.4301000| \ 1.1573000|
   | 0.5562600| 0.1776000| 0.5036200| 0.2860200| 0.2314600|
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Примесь :0008 - Взвешенные частицы РМ10 (117)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | | Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | KP | Ди| Выброс
<Об~П>~<Ис>|~~
                --|--м--|--м--|-м/с-|--м3/с-|градС|-
                                                                                     -|гр.|----|---
000501 6009 П1 5.0
                               20.0 23.0 67.0 14.0 11.0 12 3.0 1.00 0 0.0003600
000501 6027 П1 5.0
                              20.0 41.0 71.0 11.0 9.0 23 3.0 1.00 0 0.0018330
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0008 - Взвешенные частицы РМ10 (117)
         ПДКр для примеси 0008 = 0.30000001 мг/м3
|- Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст ссть концентрация одиночного источника
  с суммарным М (стр.33 ОНД-86)
             Источники
                                          _Их расчетные параметры_
| Номер | Код | М | Тип | Ст (Ст) | Uт | Xm
|-п/п-|<0б-п>-<ис>|-----[доли ПДК]|-[м/с]----[м]---|
  1 |000501 6009| 0.00036| H | 0.015 | 0.50 | 14.3 |
 2 |000501 6027| 0.00183| II | 0.077 | 0.50 | 14.3
  Суммарный Мq = 0.00219 г/с
  Сумма См по всем источникам =
                                     0.092338 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
```

```
Примесь :0008 - Взвешенные частицы РМ10 (117)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Примесь :0008 - Взвешенные частицы РМ10 (117)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.00645 доли ПДК |
                       0.00193 мг/м3
 Достигается при опасном направлении 121 град.
            и скорости ветра 4.07 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                                _ВКЛАДЫ_ИСТОЧНИКОВ_
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 ---|<Об-П>-<Ис>|---|---М-(Мq)--|-С[доли ПДК]|------|-----|---- b=С/М ---|
 1 |000501 6027| II | 0.0018| 0.005418 | 84.0 | 84.0 | 2.9558468 |
 2 \mid \! 000501 \mid \! 6009 \mid \! \Pi \mid \! 0.00036000 \mid \! 0.001029 \mid \! 16.0 \mid \! 100.0 \mid \! 2.8575220
             В сумме = 0.006447 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
                                 Расчет проводился 30.05.2025 16:11
   Вар.расч. :1 Расч.год: 2025
   Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на
            железо/
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди| Выброс
<Oб~П>~<Ис>|~~~|~~м~~|~м/с~|~~м3/с~|градС|~~~м~~|~~м-
                                                                                   ~~|гр.|~~~|~~~|~~г/с~~
                               20.0 -7.0 34.0 16.0 13.0 5 3.0 1.00 0 0.0037700
000501 6038 П1 5.0
000501\ 6039\ \Pi 1\quad 5.0
                              20.0 -4.0 16.0 26.0 14.0 20 3.0 1.00 0 0.0202500
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на
             железо/
         ПДКр для примеси 0123 = 0.40000001 мг/м3 (=10ПДКс.с.)
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст ссть концентрация одиночного источника |
 с суммарным М (стр.33 ОНД-86)
                                          Их расчетные параметры_
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm |
 ·п/п-|<0б-п>-<ис>|-----
                       ----|голи ПДК]|-[м/с]----[м]---|
  1 |000501 6038| 0.00377| II | 0.119 | 0.50 | 14.3 |
  2 |000501 6039| 0.02025| II | 0.639 | 0.50 | 14.3 |
  Суммарный Мq = 0.02402 г/с
  Сумма См по всем источникам =
                                     0.758537 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
```

Раздел «Охрана окружающей среды»

ТОО **9**копроект''

```
Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0123 - Железо (ІІ, ІІІ) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на
            железо/
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500x1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводило
                                Расчет проводился 30.05.2025 16:11
   Примесь :0123 - Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на
            железо/
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.05076 доли ПДК |
                      0.02031 мг/м3
 Достигается при опасном направлении 141 град.
           и скорости ветра 3.80 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                                вклады источников
|Ном.| Код |Тип| Выброс | Вклад |Вклад в% | Сум. % | Коэф.влияния |
1 |000501 6039| H | 0.0203| 0.042004 | 82.7 | 82.7 | 2.0742722 |
 2\mid\!|000501\mid\!|6038\mid\!|\Pi\mid\!| \quad 0.0038\mid\!| \quad 0.008760\mid\!| \quad 17.3\mid\!| \quad 100.0\mid\!| \quad 2.3237379\mid\!|
            B \text{ cymme} = 0.050765 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327))
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код \ |Тип\ |\ H\ |\ D\ |\ Wo\ |\ V1\ |\ T\ |\ X1\ |\ Y1\ |\ X2\ |\ Y2\ |\ |Alf\ |\ F\ |\ KP\ |\ Ди|\ Выброс
<Oб~П>~<Ис>|~~~|~~м~~|~м/с~|~~м3/с~|градС|~~м~~|~~м~~|~
                                                                             ~м~~~|гр.|~~~|~~~|~~г/с~~
                              20.0 -7.0 34.0 16.0 13.0 5 3.0 1.00 0 0.0005610
000501 6038 П1 5.0
000501 6039 III 5.0
                              20.0 -4.0 16.0 26.0 14.0 20 3.0 1.00 0 0.0003060
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327))
        ПДКр для примеси 0143 = 0.01 мг/м3
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст есть концентрация одиночного источника |
  с суммарным М (стр.33 ОНД-86)
                                                  Их расчетные параметры_
             Источники
Номер| Код | М |Тип | Ст (Ст) | Um | Xm |
 -п/п-|<об-п>-<ис>|----[доли ПДК]|-[м/с]---[м]---[
 1 |000501 6038| | 0.00056| II | | 0.709 | 0.50 | 14.3 |
  2 |000501 6039| 0.00031| II | 0.387 | 0.50 | 14.3 |
  Суммарный Ма = 0.00087 г/с
                                   1.095173 долей ПДК
  Сумма См по всем источникам =
  Средневзвешенная опасная скорость ветра = 0.50 м/с
```

ТОО **9**копроект''

```
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
  Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327))
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Примесь :0143 - Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327))
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.07863 доли ПДК |
                     0.00079 мг/м3
 Достигается при опасном направлении 140 град.
           и скорости ветра 3.56 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                             _ВКЛАДЫ_ИСТОЧНИКОВ
|----|<Об-П>-<Ис>|---|-М-(Мq)--|-С[доли ПДК]|------|---- b=С/М ---|
 1 |000501 6038| II | 0.00056100| | 0.053957 | 68.6 | 68.6 | 96.1798096 |
 2 |000501 6039| II | 0.00030600| | 0.024669 | 31.4 | 100.0 | 80.6168671 |
           B \text{ cymme} = 0.078626 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Примесь :0203 - Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647))
   Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<Oб~П>~<Ис>|~~~|~~м~~|~м~~|~м/с~|~~м3/с~|градС|~
                                                                     ~|~~~м~~~|гр.|~~~|~~~|~~~г/с~~
000501 6038 П1 5.0
                            20.0 -7.0 34.0 16.0 13.0 5 3.0 1.00 0 0.0007220
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0203 - Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647) )
        ПДКр для примеси 0203 = 0.015 мг/м3 (=10ПДКс.с.)
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст есть концентрация одиночного источника |
 с суммарным М (стр.33 ОНД-86)
                                       Их расчетные параметры
| Номер | Код | М | Тип | Сm (Сm`) |
                                      Um | Xm |
1 |000501 6038| 0.00072| II | 0.608 | 0.50 | 14.3 |
  Суммарный Мq = 0.00072 г/с
                                  0.608009 долей ПДК
  Сумма См по всем источникам =
  Средневзвешенная опасная скорость ветра = 0.50 м/с
```

```
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0203 - Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647))
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Примесь :0203 - Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647))
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки : X = -121.0 \text{ м} Y = 165.0 м
Максимальная суммарная концентрация | Cs= 0.04680 доли ПДК |
                      0.00070 мг/м3
 Достигается при опасном направлении 139 град.
           и скорости ветра 3.67 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                               ВКЛАДЫ ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
|----|<Oб-П>-<Ис>|----|--М-(Мq)--|-С[доли ПДК]|------|---- b=C/М ---|
 1\ |000501\ 6038|\ \Pi\ |\ 0.00072200|\  \  \, 0.046801\ |\ 100.0\  \  |\ 100.0\  \  |\ 64.8209076\  \  |
            B \text{ cymme} = 0.046801 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код \ |Тип\ |\ H\ |\ D\ |\ Wo\ |\ V1\ |\ T\ |\ X1\ |\ Y1\ |\ X2\ |\ Y2\ |\ |Alf\ |\ F\ |\ KP\ |\ Ди|\ Выброс
                --|--м--|--м--|--м/c-|--м3/c-|градС|---м---|---м-
<Об~П>~<Ис>|~
                                                                                 |гр.|~~-|~~-|~~г/с~~
             10.0 0.10 6.00 0.0471 150.0 4.0 32.0
                                                             1.0 1.00 0 0.0023200
000501 6006 П1 5.0
                             20.0 45.0 25.0 20.0 13.0 27 1.0 1.00 0 0.0000140
000501 6038 П1 5.0
                              20.0 -7.0 34.0 16.0 13.0 5 1.0 1.00 0 0.0004720
000501 6039 П1 5.0
                             20.0 -4.0 16.0 26.0 14.0 20 1.0 1.00 0 0.0108300
000501 6040 П1 5.0
                             20.0 4.0 -13.0 13.0 12.0 14 1.0 1.00 0 0.0088900
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
        ПДКр для примеси 0301 = 0.2 мг/м3
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст есть концентрация одиночного источника |
 с суммарным М (стр.33 ОНД-86)
                                                 Источники
                                        Их расчетные параметры
|Номер| Код | М |Тип | Сm (Сm`) | Um | Xm
|-п/п-|<0б-п>-<ис>|-----[м]---|
 1 |000501 0001| | 0.00232| T | | 0.029 | 0.54 | 31.8 |
 2 |000501 6006| 0.00001400| H | 0.000295 | 0.50 | 28.5 |
 5 |000501 6040| 0.00889| Π | 0.187 | 0.50 | 28.5
```

170

```
Суммарный Ма = 0.02253 г/с
                                   0.454367 долей ПДК
  Сумма См по всем источникам =
  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:11
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
Запрошен учет дифференцированного фона с постов для новых источников
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:12
   Примесь :0301 - Азота (IV) диоксид (Азота диоксид) (4)
  Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
  Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -157.0 м Y= 153.0 м
Максимальная суммарная концентрация | Cs= 0.63787 доли ПДК |
                 0.12757 мг/м3
 Лостигается при опасном направлении 133 град.
           и скорости ветра 2.02 м/с
Всего источников: 5. В таблице заказано вкладчиков не более чем с 95% вклада
                              _ВКЛАДЫ_ИСТОЧНИКОВ
Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
3\ |000501\ 0001|\ T\ | \quad 0.0023|\ \ 0.004529\ | \ \ 6.7\ | \ \ 97.7\ | \ \ 1.9519845\ |
            B \text{ cymme} = 0.636292 97.7
   Суммарный вклад остальных = 0.001576 2.3
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
  Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:12
   Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf| F | КР |Ди| Выброс
<Об~П>~<Ис>|~
                ~|~~м~~|~~м~~|~м/с~|~~м3/с~|градС|~~~м~-
000501 0001 T 10.0 0.10 6.00 0.0471 150.0 4.0 32.0
                                                          1 0 1 00 0 0 0003770
000501 6040 \Pi 1 5.0
                            20.0 4.0 -13.0 13.0 12.0 14 1.0 1.00 0 0.0014440
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:12
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
        ПДКр для примеси 0304 = 0.40000001 мг/м3
 · Для линейных и плошадных источников выброс является суммарным
 по всей площади, а Ст ссть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
            Источники
                                       Их расчетные параметры
```

```
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm |
|-IIIIII| | IIII| | IIIII| | IIII| | I
   2 |000501 6040| 0.00144| II | 0.015 | 0.50 | 28.5 |
    Суммарный Mq = 0.00182 г/с
    Сумма См по всем источникам = 0.017554 долей ПДК
     Средневзвешенная опасная скорость ветра = 0.51 м/с
     Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
5. Управляющие параметры расчета
   УПРЗА ЭРА v2.0
     Город :005 Астана 2025.
     Объект :0005 МЖК по ул.Серкебаева (строит.).
     Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:12
     Сезон :ЛЕТО (температура воздуха 26.8 град.С)
     Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
 Запрошен учет дифференцированного фона с постов для новых источников
 Расчет по прямоугольнику 001: 1500х1200 с шагом 20
 Расчет по территории жилой застройки. Покрытие РП 001
 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
 Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
 Средневзвешенная опасная скорость ветра Ucв= 0.51 м/с
8. Результаты расчета по жилой застройке.
   УПРЗА ЭРА v2.0
     Город :005 Астана 2025.
     Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
     Примесь :0304 - Азот (II) оксид (Азота оксид) (6)
     Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
     Всего просчитано точек: 388
 Результаты расчета в точке максимума УПРЗА ЭРА v2.0
         Координаты точки: X= -157.0 м Y= 153.0 м
 Максимальная суммарная концентрация | Cs= 0.23813 доли ПДК |
                                      0.09525 мг/м3
  Достигается при опасном направлении 134 град.
                   и скорости ветра 2.21 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                                                    _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в% | Сум. % | Коэф.влияния |
1 |000501 6040| II | 0.0014| 0.002058 | 86.4 | 86.4 | 1.4249786 |
  2 |000501 0001| T | 0.00037700| 0.000323 | 13.6 | 100.0 | 0.855748117 |
                     B \text{ cymme} = 0.238130 100.0
      Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
   УПРЗА ЭРА v2.0
     Город :005 Астана 2025.
     Объект :0005 МЖК по ул.Серкебаева (строит.).
     Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
     Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
       Коэффициент рельефа (КР): индивидуальный с источников
       Коэффициент оседания (F): индивидуальный с источников
   Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<Об~П>~<Ис>|~~|~~м~~|~~м/с~|~м3/с~|градС|~~м~~|~~м~~|~
                                                                                                                                       ~|гр.|~~~|~~~|~~г/с~~
000501 0001 T 10.0 0.10 6.00 0.0471 150.0 4.0 32.0
                                                                                                      3.0 1.00 0 0.0004300
000501 6006 П1 5.0
                                                 20.0 45.0 25.0 20.0 13.0 27 3.0 1.00 0 0.0000002
000501 6040 П1 5.0
                                                  20.0 4.0 -13.0 13.0 12.0 14 3.0 1.00 0 0.0005530
4. Расчетные параметры См, Им, Хм
   УПРЗА ЭРА v2.0
     Город :005 Астана 2025.
     Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
     Сезон :ЛЕТО (температура воздуха 26.8 град.С)
```

Примесь :0328 - Углерод (Сажа, Углерод черный) (583) ПДКр для примеси 0328 = 0.15000001 мг/м3

```
I - Для линейных и плошалных источников выброс является суммарным |
 по всей площади, а Ст ссть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
                                        _Их расчетные параметры_
            Источники
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm
|-п/п-|<об-п>-<ис>|----
                    -----|----|[доли ПДК]|-[м/с]---|----[м]---|
 1 |000501 0001| 0.00043| T | 0.021 | 0.54 | 15.9 |
 2\;|000501\;6006|\;0.00000020|\;\Pi\;|0.0000168\;|\;\;0.50\;|\;\;14.3\;|
 3 |000501 6040| 0.00055| H | 0.047 | 0.50 | 14.3 |
  Суммарный Мq = 0.00098 г/с
  Сумма См по всем источникам = 0.068065 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.51 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.51 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Примесь :0328 - Углерод (Сажа, Углерод черный) (583)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.00378 доли ПДК |
                      0.00057 \text{ M}\text{F/M}3
 Достигается при опасном направлении 142 град.
           и скорости ветра 2.71 м/с
Всего источников: 3. В таблице заказано вкладчиков не более чем с 95% вклада
                               вклады источников
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
B \text{ cymme} = 0.003779 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код | Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди | Выброс
<Об~П>~<Ис>|
                             -|~м/c~|~~м3/c~|градC|~~~м~~~|~
000501 0001 T 10.0 0.10 6.00 0.0471 150.0 4.0 32.0 1.0 1.00 0.010000 000501 6006 Π1 5.0 20.0 45.0 25.0 20.0 13.0 27 1.0 1.00 0.0000007
000501 6040 П1 5.0
                             20.0 4.0 -13.0 13.0 12.0 14 1.0 1.00 0 0.0017500
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
```

```
Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025
                               Расчет проводился 30.05.2025 16:13
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516))
        ПДКр для примеси 0330 = 0.5 мг/м3
|- Для линейных и площадных источников выброс является суммарным |
 по всей площади, а Ст есть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
            Источники
                                       Их расчетные параметры
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm |
 -п/п-|<об-п>-<ис>|----[м]---|[доли ПДК]|-[м/с]---|----[м]---|
 1 |000501 0001| 0.01000| T | 0.050 | 0.54 | 31.8 |
 2 |000501 6006| 0.00000070| H |5.8948E-6 | 0.50 | 28.5 |
 3 |000501 6040| 0.00175| II | 0.015 | 0.50 | 28.5 |
  Суммарный Мq = 0.01175 г/с
  Сумма См по всем источникам = 0.064693 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.53 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516))
Запрошен учет дифференцированного фона с постов для новых источников
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.53 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Примесь :0330 - Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) )
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.21650 доли ПДК |
                      0.10825 мг/м3
 Достигается при опасном направлении 138 град.
           и скорости ветра 2.02 м/с
Всего источников: 3. В таблице заказано вкладчиков не более чем с 95% вклада
                              вклады источников
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
Фоновая концентрация Сf | 0.204000 | 94.2 (Вклад источников 5.8%)| 1 |000501 0001 | T | 0.0100 | 0.010818 | 86.6 | 86.6 | 1.0818280 |
 B \text{ cymme} = 0.216496 100.0
   Суммарный вклад остальных = 0.000001 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<06~П>~<Ис>|~~|~~м~~|~м/с~|~м3/с~|градС|~~м~~|~~м~~|~
000501 0001 T 10.0 0.10 6.00 0.0471 150.0 4.0 32.0
                                                           1.0 1.00 0 0.0230000
                             20.0 45.0 25.0 20.0 13.0 27 1.0 1.00 0 0.0002100
000501 6006 П1 5.0
                             20.0 \quad \text{-}4.0 \quad 16.0 \quad 26.0 \quad 14.0 \ 20 \ 1.0 \ 1.00 \ 0 \ 0.0137500
000501 6039 П1 5.0
```

000501 6040 П1 5.0

20.0 4.0 -13.0 13.0 12.0 14 1.0 1.00 0 0.0285600

```
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
  Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
        ПДКр для примеси 0337 = 5.0 мг/м3
|- Для линейных и площадных источников выброс является суммарным |
 по всей площади, а Ст' есть концентрация одиночного источника |
 с суммарным М (стр.33 ОНД-86)
            Источники
                                       Их расчетные параметры
Номер| Код | М |Тип | Ст (Ст') | Um | Xm
|-п/п-|<0б-п>-<ис>|-----[м]---|
 1 |000501 0001| | 0.02300| T | 0.011 | 0.54 | 31.8 |
 2 |000501 6006| 0.00021| H | 0.000177 | 0.50 | 28.5 |
               0.01375| П | 0.012 | 0.50 | 28.5
 3 |000501 6039|
 4 |000501 6040| 0.02856| H | 0.024 | 0.50 | 28.5
  Суммарный Mq = 0.06552 г/с
  Сумма См по всем источникам = 0.047295 долей ПДК
   Средневзвешенная опасная скорость ветра = 0.51 м/с
  Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
   Объект :0005 МЖК по ул. Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:13
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
Запрошен учет дифференцированного фона с постов для новых источников
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.51 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
  Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0337 - Углерод оксид (Окись углерода, Угарный газ) (584)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.56491 доли ПДК |
                     2.82454 мг/м3
 Достигается при опасном направлении 142 град.
           и скорости ветра 0.95 м/с
Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада
                              _ВКЛАДЫ_ИСТОЧНИКОВ_
|Ном.| Код |Тип| Выброс | Вклад |Вклад в% | Сум. % | Коэф.влияния |
1\ |000501\ 6040|\ \Pi\ | \quad 0.0286|\ 0.003718\ |\ 43.0\ |\ 43.0\ |\ 0.130193576
 2 |000501 0001| T |
                   0.0230|\ 0.002628\ |\ 30.4\ |\ 73.4\ |\ 0.114270113
 3 |000501 6039| II | 0.0137| 0.002283 | 26.4 | 99.8 | 0.166038752
            B \text{ cymme} = 0.564890 99.8
   Суммарный вклад остальных = 0.000019 0.2
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
```

Объект :0005 МЖК по ул.Серкебаева (строит.).

```
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0342 - Фтористые газообразные соединения /в пересчете на фтор/ (617) )
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код \ |Тип\ | H \ | D \ | Wo \ | V1 \ | T \ | X1 \ | Y1 \ | X2 \ | Y2 \ |Alf\ |F \ | KP \ |Ди\ | Выброс
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0342 - Фтористые газообразные соединения /в пересчете на фтор/ (617) )
        ПДКр для примеси 0342 = 0.02 мг/м3
| - Для линейных и плошадных источников выброс является суммарным |
  по всей площади, а Ст ссть концентрация одиночного источника
  с суммарным М (стр.33 ОНД-86)
            Источники_
                                        _Их расчетные параметры_
1 |000501 6038| 0.00000060| П | 0.000126 | 0.50 | 28.5 |
  Суммарный Mq = 0.00000060 \text{ г/c}
  Сумма См по всем источникам = 0.000126 долей ПДК
   Средневзвешенная опасная скорость ветра = 0.50 м/с
  Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0342 - Фтористые газообразные соединения /в пересчете на фтор/ (617))
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0342 - Фтористые газообразные соединения /в пересчете на фтор/ (617) )
Расчет не проводился: Cm < 0.05 долей ПДК
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0344 - Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид,
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код \ |Тип\ |\ H\ |\ D\ |\ Wo\ |\ V1\ |\ T\ |\ X1\ |\ Y1\ |\ X2\ |\ Y2\ |\ |Alf\ |\ F\ |\ KP\ |\ |\ Ди|\ Bыброс
                5.0 20.0 -7.0 34.0 16.0 13.0 5 3.0 1.00 0 0.0008330
                                                                             ~м~~~|гр.|~~~|~
000501 6038 П1 5.0
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
  Примесь :0344 - Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, ПДКр для примеси 0344 = 0.2 мг/м3
```

176

```
- Для линейных и плошалных источников выброс является суммарным
 по всей площади, а Ст есть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
                                        _Их расчетные параметры_
            Источники
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm |
 -п/п-|<об-п>-<ис>|-----[м]---|[доли ПДК]|-[м/с]----[м]---|
 1 |000501 6038| | 0.00083| II | | 0.053 | 0.50 | 14.3 |
  Суммарный Мq = 0.00083 г/с
  Сумма См по всем источникам =
                                   0.052611 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0344 - Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид,
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0344 - Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид,
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.00405 доли ПДК |
                      0.00081 мг/м3
 Достигается при опасном направлении 139 град.
           и скорости ветра 3.67 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                              ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
 1 |000501 6038 | II | 0.00083300 | 0.004050 | 100.0 | 100.0 | 4.8615675 |
            В сумме = 0.004050 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
<Об~П>~<Ис>|~~|~~м~~|~м/с~|~м3/с~|градС|~~м~~|~~м~~|~~м~~|~
                                                                                ~|rp.|~~~|~~~|~~r/c~~
000501 6023 П1 5.0
                             20.0 41.0 90.0 6.0 12.0 36 1.0 1.00 0 0.0250000
000501 6027 \Pi 1 5.0
                             20.0 41.0 71.0 11.0 9.0 23 1.0 1.00 0 0.0074700
000501 6034 П1 5.0
                             20.0 17.0 46.0 1.0 16.0 19 1.0 1.00 0 0.0146140
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
        ПДКр для примеси 0616 = 0.2 мг/м3
```

```
- Для линейных и плошалных источников выброс является суммарным
 по всей площади, а Ст есть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
                                        Их расчетные параметры_
            Источники
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm
-п/п-|<0б-п>-<ис>|----
                     ----|----|[доли ПДК]|-[м/с]---|----[м]---|
 1 |000501 6023| | 0.02500| H | 0.526 | 0.50 | 28.5
 2 |000501 6027| 0.00747| H | 0.157 | 0.50 | 28.5
 3 |000501 6034| 0.01461| Π | 0.308 | 0.50 | 28.5
  Суммарный Мq = 0.04708 г/с
  Сумма См по всем источникам =
                                   0.991256 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0616 - Диметилбензол (смесь о-, м-, п- изомеров) (203)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.18663 доли ПДК |
                      0.03733 мг/м3
 Достигается при опасном направлении 120 град.
           и скорости ветра 0.80 м/с
Всего источников: 3. В таблице заказано вкладчиков не более чем с 95% вклада
                               _ВКЛАДЫ_ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
2 |000501 6034| П |
                  0.0146 | 0.049181 | 26.4 | 83.3 | 3.3653147
 3 |000501 6027| II | 0.0075| 0.031208 | 16.7 | 100.0 | 4.1777520
            B \text{ cymme} = 0.186626 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0621 - Метилбензол (349)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код |Тип| H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 |Alf|F | KP |Ди| Выброс
<Об~П>~<Ис>|~~
                   -м~~|~~м~~|~м/с~|~~м3/с~|градС|~-
                                                                                ~|rp.|~~~|~~~|~
000501 6029 П1 5.0
                             20.0 30.0 50.0 10.0 17.0 28 1.0 1.00 0 0.0861000
000501 6034 П1 5.0
                             20.0 17.0 46.0 1.0 16.0 19 1.0 1.00 0 0.0021670
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
                               Расчет проводился 30.05.2025 16:16
   Вар.расч. :1 Расч.год: 2025
```

```
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0621 - Метилбензол (349)
         ПДКр для примеси 0621 = 0.60000002 мг/м3
|- Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст есть концентрация одиночного источника |
  с суммарным М (стр.33 ОНД-86)
             Источники
                                         _Их расчетные параметры_
|Номер| Код | М |Тип | Сm (Сm`) | Um | Xm
-п/п-|<об-п>-<uc>|-----[доли ПДК]|-[м/с]----[м]---|
 1 |000501 6029| 0.08610| Π | 0.604 | 0.50 | 28.5 |
2 |000501 6034| 0.00217| Π | 0.015 | 0.50 | 28.5 |
  Суммарный Мq = 0.08827 г/с
  Сумма См по всем источникам = 0.619426 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0621 - Метилбензол (349)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0621 - Метилбензол (349)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.12187 доли ПДК |
                   0.07312 мг/м3
 Достигается при опасном направлении 127 град.
            и скорости ветра 0.99 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                                _ВКЛАДЫ_ИСТОЧНИКОВ
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф. влияния |
  ---|<Oб-П>-<Ис>|---|---М-(Mq)--|-С[доли ПДК]|------|-----b=С/М ---|
 1 |000501 6029| H | 0.0861| 0.118809 | 97.5 | 97.5 | 1.3798912 |
             B \text{ cymme} = 0.118809 97.5
   Суммарный вклад остальных = 0.003059 2.5
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0703 - Бенз/а/пирен (3,4-Бензпирен) (54)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код | Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди | Выброс
                 ~|~~м~~|~м/c~|~~м3/c~|градС|~~м~
                                                                                -м---|гр.|----|---|---г/с--
                              20.0 45.0 25.0 20.0 13.0 27 3.0 1.00 0 8E-11
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
Объект :0005 МЖК по ул.Серкебаева (строит.).
                                 Расчет проводился 30.05.2025 16:16
   Вар.расч. :1 Расч.год: 2025
```

ТОО **9**копроект''

```
Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0703 - Бенз/а/пирен (3,4-Бензпирен) (54)
        ПДКр для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)
- Для линейных и площадных источников выброс является суммарным
  по всей площади, а Ст ссть концентрация одиночного источника
  с суммарным М (стр.33 ОНД-86)
            Источники
                                        _Их расчетные параметры_
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm |
 -п/п-|<об-п>-<ис>|-----[м]---|[доли ПДК]|-[м/с]----[м]---|
 1 |000501 6006| 8Е-11| П | 0.000101 | 0.50 | 14.3 |
  Суммарный Мq = 8Е-11 г/с
  Сумма См по всем источникам = 0.000101 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
  Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :0703 - Бенз/а/пирен (3,4-Бензпирен) (54)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :0703 - Бенз/а/пирен (3,4-Бензпирен) (54)
Расчет не проводился: Cm < 0.05 долей ПДК
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :1119 - 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*))
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код \ |Тип\ | H \ | D \ | Wo \ | V1 \ | T \ | X1 \ | Y1 \ | X2 \ | Y2 \ |Alf\ |F \ | KP \ |Ди\ | Выброс
<Об~П>~<Ис>|~~~|~~м~~|~м/с~|~м3/с~|градС|~
                                                                             ~м~~~|гр.|~~~|~~~|~~|~
                             20.0 17.0 46.0 1.0 16.0 19 1.0 1.00 0 0.0128000
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :1119 - 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*))
        ПДКр для примеси 1119 = 0.69999999 мг/м3 (ОБУВ)
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст ссть концентрация одиночного источника |
  с суммарным М (стр.33 ОНД-86)
            _Источники_
                                         _Их расчетные параметры_
п/п-|<об-п>-<ис>|-----[доли ПДК]|-[м/с]----[м]---|
 1 |000501 6034| 0.01280| II | 0.077 | 0.50 | 28.5 |
  Суммарный Мq = 0.01280 г/с
  Сумма См по всем источникам = 0.076994 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
```

ТОО **9**копроект''

```
5. Управляющие параметры расчета
 УПРЗА ЭРА у2.0
   Город :005 Астана 2025.
  Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :1119 - 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*))
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :1119 - 2-Этоксиэтанол (Этиловый эфир этиленгликоля, Этилцеллозольв) (1497*))
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки : X = -121.0 \text{ м} Y = 165.0 м
Максимальная суммарная концентрация | Cs= 0.01610 доли ПДК |
                      0.01127 мг/м3
 Достигается при опасном направлении 131 град.
           и скорости ветра 0.96 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                               ВКЛАДЫ ИСТОЧНИКОВ
|Ном.| Код |Тип| Выброс | Вклад |Вклад в% | Сум. % | Коэф.влияния |
1 |000501 6034| H | 0.0128| 0.016101 | 100.0 | 100.0 | 1.2579200 |
            B \text{ cymme} = 0.016101 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :1210 - Бутилацетат (Уксусной кислоты бутиловый эфир) (110)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код \ |Тип\ |\ H\ |\ D\ |\ Wo\ |\ V1\ |\ T\ |\ X1\ |\ Y1\ |\ X2\ |\ Y2\ |\ |Alf\ |\ F\ |\ KP\ |\ Ди|\ Выброс
                ~|~~м~~|~м/с~|~м3/с~|градС|~~м~~|~~м~
<Об~П>~<Ис>|~
                                                                            ~м~~~|гр.|~~~|~~~|~~г/с~~
                             20.0 30.0 50.0 10.0 17.0 28 1.0 1.00 0 0.0166700
000501 6029 П1 5.0
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :1210 - Бутилацетат (Уксусной кислоты бутиловый эфир) (110)
        ПДКр для примеси 1210 = 0.1 \text{ мг/м3}
- Для линейных и площадных источников выброс является суммарным
  по всей площади, а Ст' есть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
            Источники
                                        _Их расчетные параметры_
| Номер| Код | М | Тип | Ст (Ст') | Um | Xm |
 -п/п-|<об-п>-<ис>|-----[доли ПДК]|-[м/с]----[м]---|
 1 |000501 6029| 0.01667| II | 0.702 | 0.50 | 28.5 |
  Суммарный Мq = 0.01667 г/с
                                   0.701905 долей ПДК
  Сумма См по всем источникам =
  Средневзвешенная опасная скорость ветра = 0.50 м/с
```

5. Управляющие параметры расчета

```
УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :1210 - Бутилацетат (Уксусной кислоты бутиловый эфир) (110)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :1210 - Бутилацетат (Уксусной кислоты бутиловый эфир) (110)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.13802 доли ПДК |
                      0.01380 мг/м3
 Достигается при опасном направлении 127 град.
           и скорости ветра 0.99 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                               вклады источников
Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния |
 1 |000501 6029| H | 0.0167| 0.138017 | 100.0 | 100.0 | 8.2793465 |
            В сумме = 0.138017 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
  Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Примесь :1401 - Пропан-2-он (Ацетон) (470)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код | Тип| \ H \ | \ D \ | \ Wo \ | \ V1 \ | \ T \ | \ X1 \ | \ Y1 \ | \ X2 \ | \ Y2 \ | \ Alf | \ F \ | \ KP \ | Ди | \ Выброс | \ 
               ~~|~~м~~|~~м~~|~м/с~|~~м3/с~|градС|~~~м~~-|~
                                                                             -м~~-|гр.|~~-|~~-|~-г/с~-
000501 6029 П1 5.0
                              20.0 30.0 50.0 10.0 17.0 28 1.0 1.00 0 0.0361000
000501 6034 П1 5.0
                             20.0 17.0 46.0 1.0 16.0 19 1.0 1.00 0 0.0150240
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :1401 - Пропан-2-он (Ацетон) (470)
        ПДКр для примеси 1401 = 0.34999999 мг/м3
- Для линейных и площадных источников выброс является суммарным
  по всей площади, а Ст ссть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
                                         _Их расчетные параметры_
            Источники
| Номер| Код | М | Тип | Сm (Cm') | Um | Xm
 ·п/п-|<0б-п>-<ис>|-----[доли ПДК]|-[м/с]----[м]---|
 1 |000501 6029| 0.03610| II | 0.434 | 0.50 | 28.5
 2 |000501 6034| 0.01502| II | 0.181 | 0.50 | 28.5 |
  Суммарный Мq = 0.05112 г/с
  Сумма См по всем источникам = 0.615034 долей ПДК
   Средневзвешенная опасная скорость ветра = 0.50 м/с
```

ТОО **9**копроект''

```
5. Управляющие параметры расчета
 УПРЗА ЭРА у2.0
   Город :005 Астана 2025.
  Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:16
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :1401 - Пропан-2-он (Ацетон) (470)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500x1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :1401 - Пропан-2-он (Ацетон) (470)
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки : X = -121.0 \text{ м} Y = 165.0 м
Максимальная суммарная концентрация | Cs= 0.12234 доли ПДК |
                      0.04282 мг/м3
 Достигается при опасном направлении 128 град.
           и скорости ветра 0.96 м/с
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                               вклады источников
Ном. Код Тип Выброс Вклад Вклад в% Сум. % Коэф.влияния
1 |000501 6029| П | 0.0361| 0.085283 | 69.7 | 69.7 | 2.3624008 | 2 |000501 6034| П | 0.0150| 0.037054 | 30.3 |100.0 | 2.4663069 |
            B \text{ cymme} = 0.122336 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :2732 - Керосин (654*)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР |Ди | Выброс
<Об~П>~<Ис>|~~~|~~м~~|~м/с~|~~м3/с~|градС|~~~м~~|~
                                                                                ~|rp.|~~~|~~~r/c~
000501 6006 П1 5.0
                             20.0 45.0 25.0 20.0 13.0 27 1.0 1.00 0 0.0000350
000501 6040 П1 5.0
                             20.0 4.0 -13.0 13.0 12.0 14 1.0 1.00 0 0.0101300
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2732 - Керосин (654*)
        ПДКр для примеси 2732 = 1.20000005 мг/м3 (ОБУВ)
| - Для линейных и площадных источников выброс является суммарным |
  по всей площади, а Ст ссть концентрация одиночного источника |
 с суммарным М (стр.33 ОНД-86)
                                        _Их расчетные параметры_
            Источники
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm |
|-п/п-|<0б-п>-<ис>|-----[м]---|
  1 |000501 6006| 0.00003500| H | 0.000123 | 0.50 | 28.5 |
 2 |000501 6040| 0.01013| H | 0.036 | 0.50 | 28.5 |
  Суммарный Мq = 0.01017 г/с
  Сумма См по всем источникам = 0.035667 долей ПДК
  Средневзвешенная опасная скорость ветра = 0.50 м/с
```

```
Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2732 - Керосин (654*)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :2732 - Керосин (654*)
Расчет не проводился: Cм < 0.05 долей ПДК
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :2752 - Уайт-спирит (1294*)
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
  Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2752 - Уайт-спирит (1294*)
        ПДКр для примеси 2752 = 1.0 мг/м3 (ОБУВ)
- Для линейных и площадных источников выброс является суммарным
  по всей площади, а Ст ссть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
            Источники
                                        Их расчетные параметры_
| Номер| | Код | М | | Тип | Ст (Ст) | Um | Xm |
 -п/п-|<об-п>-<ис>|-----[м]---|
| доли ПДК]|-[м/с]----[м]---|
 1 |000501 6027| | 0.00031| H | | 0.001 | 0.50 | | 28.5 |
  Суммарный Мq = 0.00031 г/с
  Сумма См по всем источникам = 0.001309 долей ПДК
      .....
  Средневзвешенная опасная скорость ветра = 0.50 м/с
  Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК |
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2752 - Уайт-спирит (1294*)
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
```

```
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :2752 - Уайт-спирит (1294*)
Расчет не проводился: Cм < 0.05 долей ПДК
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в
            пересчете на
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
                ~|~~м~~|~м/с~|~~м3/с~|градС|~
                                                                                 ~|rp.|~~~|~~|~~r/c~~
000501 0001 T 10.0 0.10 6.00 0.0471 150.0 4.0 32.0
                                                            1.0 1.00 0 0.0219800
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
  Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в
            пересчете на
         ПДКр для примеси 2754 = 1.0 мг/м3
             Источники
                                         Их расчетные параметры
|| Номер| | Код | M || Тип || Ст (Ст) | Um | Xm |
1 |000501 0001| | 0.02198| T | | 0.055 | 0.54 | 31.8 |
  Суммарный Мq = 0.02198 г/с
                                    0.054896 долей ПДК
  Сумма См по всем источникам =
       _____
  Средневзвешенная опасная скорость ветра = 0.54 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в
            пересчете на
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucв= 0.54 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :2754 - Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
Максимальная суммарная концентрация | Cs= 0.01351 доли ПДК |
                      0.01351 мг/м3
 Достигается при опасном направлении 137 град.
           и скорости ветра 0.98 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
```

```
ВКЛАДЫ ИСТОЧНИКОВ
Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф. влияния |
В сумме = 0.013515 100.0
   Суммарный вклад остальных = 0.000000 0.0
3. Исходные параметры источников.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
              Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Вар.расч. :1
   Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
 Код | Тип | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | Ди | Выброс
               ~|~~m~~|~m~~|~m/c~|~~m3/c~|градС|~~~m~~-|~
<Об~П>~<Ис>|~
                                                                ~~м~~~|~~~м~~~|гр.|~~~|~~|~~~г/с~~
                            20.0 -19.0 70.0 43.0 15.0 21 3.0 1.00 0 0.0080000
000501 6011 П1 5.0
                            20.0 24.0 96.0 29.0 10.0 25 3.0 1.00 0 0.0004800
000501 6019 П1 5.0
000501 6021 П1 5.0
                            20.0 39.0 19.0 20.0 20.0 28 3.0 1.00 0 0.0000064
4. Расчетные параметры См, Им, Хм
 УПРЗА ЭРА v2.0
  Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
        ПДКр для примеси 2908 = 0.30000001 мг/м3
- Для линейных и площадных источников выброс является суммарным
  по всей площади, а Ст ссть концентрация одиночного источника
 с суммарным М (стр.33 ОНД-86)
                                       _Их расчетные параметры_
            Источники
|Номер| Код | М |Тип | Ст (Ст') | Um | Xm |
|-п/п-|<0б-п>-<ис>|-----[доли ПДК]|-[м/с]----[м]---|
 3 \mid \! 000501 \mid \! 6021 \mid \! 0.00000640 \mid \; \Pi \mid \! 0.000269 \mid \; 0.50 \mid \; \; 14.3 \mid \; \;
  Суммарный Mq = 0.00849 г/с
                                  0.357327 долей ПДК
  Сумма См по всем источникам =
  Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Сезон :ЛЕТО (температура воздуха 26.8 град.С)
   Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
           пыль
Фоновая концентрация не задана
Расчет по прямоугольнику 001: 1500х1200 с шагом 20
Расчет по территории жилой застройки. Покрытие РП 001
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(U*) м/с
Средневзвешенная опасная скорость ветра Ucb= 0.5 м/с
8. Результаты расчета по жилой застройке.
 УПРЗА ЭРА v2.0
   Город :005 Астана 2025.
   Объект :0005 МЖК по ул.Серкебаева (строит.).
   Вар.расч. :1 Расч.год: 2025 Расчет проводился 30.05.2025 16:17
   Примесь :2908 - Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,
           пыль
   Расчет проводился по всем жилым зонам внутри расч. прямоугольника 001
   Всего просчитано точек: 388
Результаты расчета в точке максимума УПРЗА ЭРА v2.0
     Координаты точки: X= -121.0 м Y= 165.0 м
```

ТОО Экопроект"	187
Приложение 8. Исходные данные объекта	

Раздел «Охрана окружающей среды»

ТОО **Э**копроект''

Генеральному директору ТОО «Экопроект» г-ну Аманжолову Г.М.

Исходные данные на период строительных работ для разработки проекта РООС к рабочему проекту «Многоквартирный жилой комплекс со встроенными помещениями и паркингом по адресу г. Астана, район Сарыарка, ул. Ермек Серкебаев, уч. 29/1 (Стандарт -1, 2) (без наружных инженерных сетей)»:

Автотехника

Автотехника
Бульдозеры, 79 кВт (108 л.с.)
Бульдозеры 96 кВт (130 л.с.)
Бульдозеры, 59 кВт (80 л.с.)
Бульдозеры при сооружении магистральных трубопроводов, 96 кВт (130 л.с.)
Трубоукладчики для труб диаметром до 400 мм, 6,3 т
Автомобили бортовые, до 5 т
Экскаваторы одноковшовые дизельные на гусеничном ходу, 0,5 м3
Экскаваторы одноковшовые дизельные на пневмоколесном ходу, 0,25 м3
Экскаваторы одноковшовые дизельные на гусеничном ходу при сооружении магистральных трубопроводов, 0,65
Агрегаты сварочные передвижные с номинальным сварочным током 250-400 A, с дизельным двигателем (37 кВт)
Погрузчики одноковшовые универсальные фронтальные пневмоколесные, 3 т
Краны на автомобильном ходу, 10 т
Краны на автомобильном ходу, 5 т
Краны на автомобильном ходу, 25 т
Краны на гусеничном ходу, до 16 т
Краны на автомобильном ходу при работе на монтаже технологического оборудования, 63т
Автопогрузчики, 5 т
Автогрейдеры среднего типа, 99 кВт (135 л.с.)
Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 5
м ³ /мин
Компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 2,2 м3/ми
Агрегаты сварочные двухпостовые для ручной сварки на тракторе 79 кВт (108 л.с.)
Автомобили-самосвалы, 7 т
Комплексная монтажная машина для выполнения работ при прокладке и монтаже кабеля на базе
автомобиля
Автогудронаторы, 3500 л
Гудронаторы ручные
Машины поливомоечные, 6000 л
Тракторы на гусеничном ходу, 79 кВт (108 л.с.)
Катки дорожные самоходные гладкие, 8 т
Катки дорожные самоходные гладкие, 13 т
Катки дорожные самоходные на пневмоколесном ходу, 16 т
Катки дорожные самоходные на пневмоколесном ходу, 30 т
Котлы битумные передвижные, 400 л
Аппарат для газовой сварки и резки (475,8617486 ч)
Машины шлифовальные электрические и угловые

Электростанции передвижные, до 4 кВт

Катки дорожные самоходные гладкие, 8 т

Битумный котел

Объем котла битумного БД - 400 л

Режим работы битумного котла 170 ч/год

Кол-во разогреваемого битума – 34 т

Расход диз.топлива на период строительства – 0,412 т

Максимально-разовый расход диз.топлива - 2 л/час = 0,48 г/сек

Мощность котла – 30кВт

Дымовая труба — H=2.0 м, Д=0.3 м.

Температура уходящих газов 150°C.

Сваебойка

Установки на гусеничном ходу для погружения свай длиной до 22 метров,

с гидромолотом 6,4 т

Расход дизтоплива: 61,25 кг/ч, 85,75 т/ период строительства

Время работы сваебойки – 1400 ч/период строительства

Оборудование без своего ДВС / прицепное:

Агрегаты электронасосные с регулированием подачи вручную для строительных растворов, подача 2 м3/ч, напор 150 м

Установка для гидравлических испытаний трубопроводов, давление нагнетания от $0,1\,\mathrm{M\Pi a}$ (1 кгс/см2) до $10\,\mathrm{M\Pi a}$ ($100\,\mathrm{krc/cm2}$) — электр.одорудование

Машины для очистки и грунтовки труб диаметром 350-500 мм

Электрические печи для сушки сварочных материалов с регулированием температуры в пределах 80-500 °C

Трамбовки электрические

Домкраты гидравлические, до 25 т, до 100 т

Лебедки электрические тяговым усилием до 31,39 кН (3,2 т)

Выпрямители сварочные однопостовые с номинальным сварочным током 315-500 А

Вибраторы поверхностные – навесное оборудование

Растворомешалки для приготовления водоцементных и других растворов, до 350 л – электр.оборудование

Подъемники мачтовые, высота подъема 50 м

Пресс гидравлический с электроприводом

Краны башенные, 5 т,8 т – электрич.привод

Краны башенные при работе на монтаже технологического оборудования, 25 т

Пила с электр. Двигателем, Станок резки арматуры электрич.

Материалы и механизмы:

Щебень из плотных горных пород для строительных работ M600, фракция 5-10 мм CT PK 1284-2004	м3	325,467
Щебень известняковый для строительных работ M600, фракция 5-10 мм СТ РК 1284-2004	м3	272,217
Щебень из плотных горных пород для строительных работ M600, фракция 10-20 мм СТ РК 1284-2004	м3	125,502
Щебень из плотных горных пород для строительных работ M1000 CT PK 1284-2004 фракция 15-20 мм	м3	747,6870666
Щебень из плотных горных пород для строительных работ М600, фракция 20-40 мм СТ РК 1284-2004	м3	495,8
Щебень из плотных горных пород для строительных работ М600, фракция 40-70 мм СТ РК 1284-2004	м3	1657,86

ТОО **Э**копроект''

T		0540650
Гравий для строительных работ M1000 СТ РК 1284-2004 фракция 20-40 мм	м3	854,0672
Гравий для строительных работ M400 CT PK 1284-2004 фракция 5-10 мм Гравий для строительных работ M400 CT PK 1284-2004 фракция 40-80 (70) мм	м3 м3	20,2014 557,9766
Гравий для строительных расот мічос СТРК 1284-2004 фракция 40-80 (70) мм	м3	438,885586
Песок природный ГОСТ 8736-2014	м3	2982,82
Песок природный гост 8/30-2014	<u>МЭ</u> Т	0,0061875
Пемза шлаковая (щебень пористый из металлургического шлака), марка	<u>т</u> м3	0,0001873
11емза шлаковая (щеоень пористый из металлургического шлака), марка 600, фракция от 5 до 10 мм	M3	0,03/133/
***	· · · · · ·	1120 14
Смеси песчано-гравийные природные ГОСТ 23735-2014	м3	1128,14 2601
Мастика морозостойкая битумно-масляная МБ-50 ГОСТ 30693-2000	КГ	_
Портландцемент бездобавочный ПЦ 400-Д0 ГОСТ 10178-85	T	0,6134172
Портландцемент бездобавочный ПЦ 500-Д0 ГОСТ 10178-85	T	0,0025866
Цемент гипсоглиноземистый расширяющийся ГОСТ 11052-74	T	0,07893
Известь строительная негашеная комовая, сорт 1, ГОСТ 9179-77	T	4,0275375
Известь хлорная, марки A, ГОСТ Р 54562-2011	T	0,0108306
Гипсовые вяжущие ГОСТ 125-79 марки Г-3	T	2,84
Битумы, мастики нефтяные для грячего применения (разогрев в битум-	T	34
ном котле)		
Ацетилен технический растворенный марки Б ГОСТ 5457-75	T	0,0033741
Ацетилен технический газообразный ГОСТ 5457-75	м3	7,1629
Кислород технический газообразный ГОСТ 5583-78	м3	10,8656975
Пропан-бутан, смесь техническая ГОСТ Р 52087-2003	ΚГ	5707
Керосин для технических целей марок КТ-1, КТ-2	T	0,57
Контакт Петрова керосиновый	T	0,01
Ксилол нефтяной марки А ГОСТ 9410-78	T	0,04
Электроды Э42, Э-46 ГОСТ 9466-75	T	6,3680116
Грунтовка глифталевая, ГФ-021 СТ РК ГОСТ Р 51693-2003	T	0,3
Ацетон технический ГОСТ 2768-84	T	0,0034192
Бензин-растворитель ГОСТ 26377-84	T	0,495131
Уайт-спирит ГОСТ 3134-78	T	0,05245
Растворители для лакокрасочных материалов Р-4 ГОСТ 7827-74	T	0,0383644
Эмаль эпоксидная ЭП-140 защитная ГОСТ 24709-81	T	0,0021
Эмаль пентафталевая ПФ-115 серая ГОСТ 6465-76	T	0,3412062
Смесь сухая шпатлевочная на гипсовой основе М25 СТ РК 1168-2006	КГ	439317,6867
Смесь сухая - гипсовая штукатурка СТ РК 1168-2006 стандартная	КΓ	388448,9129
Смесь сухая для затирки швов плиток СТ РК 1168-2006 белая	КΓ	76,9396
Смесь сухая для затирки швов гипсокартонных листов СТ РК 1168-2006	КΓ	2455,41375
Смесь сухая - цементная, наливной пол для первоначального выравнивания СТ	ΚΓ	362,483
PK 1168-2006 M150		
Смесь сухая - цементная, наливной пол для окончательного выравнивания СТ	КΓ	34,016
PK 1168-2006 M150		54415 415
Смесь сухая - минеральная штукатурка СТ РК 1168-2006 для декоративной от-	КΓ	54417,415
делки "Шубка" Смесь сухая для затирки швов плиток СТ РК 1168-2006 серая	IAD	3392,3574
Смесь сухая для затирки швов плиток СТ РК 1108-2000 серая Смесь сухая клеевая СТ РК 1168-2006 базовая для плитки	КГ	4733,8298
Смесь сухая клеевая СТ РК 1108-2000 базовая для плитки Смесь сухая клеевая СТ РК 1168-2006 усиленная для плитки	КГ КГ	29218,5586
Смесь сухая клеевая СТ РК 1168-2006 для системы скрепленной теплоизоляции	КГ	14984,1842
Бензин АИ-92	КГ	4,3664
Бензин авиационный Б-70 ГОСТ 1012-72	T	0,17555
Краска масляная алкидные земляные, готовые к применению: сурик железный	T	0,17333
МА-15, ПФ-14 ГОСТ 10503-71	1	0,0052
Краска масляная густотертая цветная МА-015, сурик железный ГОСТ 10503-71	КΓ	230,456
Краска масляная МА-15 ГОСТ 10503-71	КΓ	209,508305

ТОО **Э**копроект''

Краска перхлорвиниловая фасадная ХВ-161, марка А,Б	КГ	285,21
Лак битумный БТ-577 ГОСТ Р 52165-2003	КГ	241,3
Лак битумный БТ-123 ГОСТ Р 52165-2003	КГ	90,3294
Ветошь	КГ	116,3
Вода техническая	м3	7070,361567
Мусор строительный	Т	1500

Земляные работы

Разработка грунта экскаваторами в выемках, котлованах, траншеях в от-	м3	16014,05
вал или насыпь		
Разработка грунта экскаваторами с погрузкой на железнодорожный или	м3	13289,51
автомобильный транспорт и вывозкой		
Разработка и перемещение грунта бульдозерами	м3	54651,13
Разработка и перемещение грунта вручную	м3	1276,2
Обратная засыпка грунта вручную с уплотнением электро- или пневмот-	м3	18182,32
рамбовками		
итого:		103413,21

Приложение 9. Технические документы и разрешения					
приложение э. технические документы и разрешения	Придожение	Q Toyuunoon	40 F010/44011 -1 1	Lu naanawa	
	Приложение	9. Технически	1 е документы	и разреше н	В

192