РЕСПУБЛИКА КАЗАХСТАН

Товарищество с ограниченной ответственностью «ECO LOGISTICS» Лицензия № 01696 Р от 11.09.2014 г.

Раздел охрана окружающей среды

«Модернизация и техническое дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов Республики Казахстан». Пункт пропуска «Тажен» ДГД по Мангистауской области. Корректировка

Директор ТОО «ECO LOGISTICS»

С.И. Якубовский

СОДЕРЖАНИЕ

	СПИСОК ПРИЛОЖЕНИЙ	4
	АННОТАЦИЯ	5
	ВВЕДЕНИЕ	7
1	ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРУЕМОМ ОБЪЕКТЕ	8
1.1	Проектные решения	9
1.2	Расчет продолжительности строительства	30
2	ОЦЕНКА ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ	32
2.1	Краткая характеристика климатических условий, необходимых для оценки воздействия	32
2.2	Характеристика современного состояния воздушной среды	33
2.3	Источники и масштабы расчетного химического загрязнения	35
2.4	Расчет рассеивания загрязняющих веществ в атмосфере на период строительно-монтажных работ	37
2.5	Расчет рассеивания загрязняющих веществ в атмосфере на период эксплуатации	44
2.6	Внедрение малоотходных и безотходных технологий, а также специальные мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух, обеспечивающие соблюдение в области воздействия намечаемой деятельности экологических нормативов качества атмосферного воздуха или целевых показателей его качества	52
2.7	Обоснование размера санитарно-защитной зоны	52
2.8	Количество выбросов загрязняющих веществ в атмосферу для заполнения декларации о воздействии на окружающую среду для объектов III категории	53
2.9	Мероприятия по предотвращению загрязнения атмосферного воздуха	56
2.10	Мероприятия на период неблагоприятных метеорологических условий (НМУ)	56
3	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ВОДНЫЕ РЕСУРСЫ	58
3.1	Потребность в водных ресурсах для намечаемой деятельности на период строительства и эксплуатации, требования к качеству используемой воды	58
3.2	Поверхностные воды	60
3.3	Подземные воды	61
3.4	Мероприятия по снижению воздействий на водные ресурсы	61
4	ОЦЕНКА ВОЗДЕЙСТВИЯ НА НЕДРА	63
5	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЗЕМЕЛЬНЫЕ РЕСУРСЫ И ПОЧВЫ	64
5.1	Характеристика современного состояния почвенного покрова	64
5.2	Состояние и условия землепользования, земельный баланс территории,	67
5.3	Характеристика отходов производства и потребления. Виды и объемы образования отходов	68
5.4	Меры, предусмотренные для предотвращения (снижения) воздействия на земельные ресурсы	68

5.5	Организация экологического мониторинга почв	68
6	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ	69
	ОТХОДАМИ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ	
6.1	Виды и объемы образования отходов. Особенности загрязнения	69
	территории отходами производства и потребления (опасные	
	свойства и физическое состояние отходов)	
6.2	Рекомендации по управлению отходами: накоплению, сбору,	74
	транспортировке, восстановлению (подготовке отходов к	
	повторному использованию, переработке, утилизации отходов) или	
	удалению (захоронению, уничтожению), а также вспомогательным	
	операциям: сортировке, обработке, обезвреживанию); технологии	
	по выполнению указанных операций	
6.3	Виды и количество отходов производства и потребления	75
	(образовываемых, накапливаемых и передаваемых	
	специализированным организациям по управлению отходами),	
	подлежащих включению в декларацию о воздействии на	
—	окружающую среду	7.0
7	ОЦЕНКА ФИЗИЧЕСКОГО ВОЗДЕЙСТВИЯ	76
7.1	Характеристика радиационной обстановки на площадке	76
7.2	проектируемого объекта Мероприятия по снижению физических воздействий на	78
1.2	Мероприятия по снижению физических воздействий на окружающую среду	70
8	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ МИР	80
8.1	Современное состояние растительного в зоне воздействия объекта.	80
0.1	Характеристика факторов среды обитания растений, влияющих на	
	их состояние	
8.2	Мероприятия по предотвращению, минимизации негативных	80
	воздействий на растительный мир	
9	ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНЫЙ МИР	81
9.1	Исходное состояние водной и наземной фауны	81
9.2	Мероприятия по предотвращению, минимизации негативных	83
	воздействий на животный мир	
10	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЛАНДШАФТЫ	83
11	ОЦЕНКА СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СРЕДА	84
12	ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА	84
12.1	Методика оценки экологического риска аварийных ситуаций	84
12.2	Анализ возможных аварийных ситуаций	84
12.3	Оценка риска аварийных ситуаций	87
12.4	Мероприятия по предупреждению аварийных ситуаций и	87
	ликвидации их последствий	
12.5	Расчет платежей за загрязнение окружающей среды	87
13	СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	89
14	ПРИЛОЖЕНИЯ	91

СПИСОК ПРИЛОЖЕНИЙ

- 1. Государственная лицензия «ECO LOGISTICS», лицензия № 01696 Р от 11.09.2014 г. на природоохранное проектирование и нормирование;
 - 2. Ситуационная карта-схема района расположения проектируемого объекта;
- 3. Правоустанавливающие документы на земельный участок по размещению проектируемых объектов;
 - 4. Справка о фоновых концентрациях;
- 5. Расчет выбросов загрязняющих веществ в атмосферу на период строительства объекта;
- 6. Расчет выбросов загрязняющих веществ в атмосферу на период при эксплуатации объекта;
- 7. Расчет рассеивания загрязняющих веществ в атмосфере на период строительно-монтажных работ на территории объекта с картами рассеивания;
- 8. Расчет рассеивания загрязняющих веществ в атмосфере на период эксплуатации объекта с картами рассеивания.

АННОТАЦИЯ

В разделе «Охрана окружающей настоящем среды» содержится экологическая к рабочему проекту: «Модернизация и техническое оценка дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов Республики пропуска «Тажен» ПО Мангистауской Казахстан». Пункт ДГД области. Корректировка.

При производстве работ осуществляются следующие операции, сопровождающиеся выделением загрязняющих веществ в атмосферу: погрузочно-разгрузочные работы, сварочные, газорезательные работы, работа строительной и автотранспортной техники, работа шлифовальной машинки и др.

Источники загрязняющих веществ носят неорганизованный временный характер негативного воздействия на окружающую среду.

В выбросах временных источников содержится 29 индивидуальных компонента загрязняющих веществ: железо (II, III) оксиды, марганец и его соединения, олово оксид (в пересчете на олово), свинец и его неорг. соединения, азота (IV) диоксид, азот (II) оксид, углерод (сажа), сера диоксид, углерод оксид, фтористые газообразные соединения, фториды неорганические плохо растворимые, ксилол (смесь изомеров –о, -м, -п), метилбензол (Толуол), бенз(а)пирен, хлорэтилен, бутан-1-ол (Спирт н-бутиловый), 2-Метилпропан-1-ол (спирт изобутиловый), этанол (Спирт этиловый), 2-Этоксиэтанол, бутилацетат, формальдегид, пропан-2-он (ацетон), керосин, масло минеральное, уайт-спирит, углеводороды предельные С12-С19, взвешенные частицы, пыль неорганическая SiO2 70-20%, пыль абразивная.

Валовый выброс ЗВ при СМР – 3,796573419 т/год.

Валовый выброс от автотранспорта не учитывается, выбросы оплачиваются по фактическому объёму сожженного топлива, максимально-разовый выброс же включён в расчёт рассевания, чтобы оценить воздействие объекта в целом на ОС.

Сумма платежей на период строительно-монтажных работ составит **91 645 тенге** (МРП 2025 года 3 932 тг)

Расчет максимальных приземных концентраций загрязняющих веществ произведен на программе «Эколог» (версия 3), разработанной НПФ «Интеграл» г. Санкт-Петербург.

В период СМР будут образовываться следующие отходы:

- строительные отходы 8,675 т;
- отходы от сварки -0.064 т;
- отходы, загрязненные ЛКМ 1,91 т;
- промасленная ветошь -0.127 т;
- твердые бытовые (коммунальные) отходы 3,836 т.

Общий предельный объем их образования отходов на период строительства составит – 14,612 т/год, из них неопасных – 12,575 т/год, опасных - 2,037 т/год.

Валовый выброс ЗВ при эксплуатации составит 0,8567684 т/год.

На период эксплуатации будут образовываться следующие виды отходов:

- Твердые бытовые (коммунальные) отходы 6 тонн;
- Замазученный грунт − 1,37 т/год.

Общий объем образования накапливаемых отходов на период эксплуатации

7,37 т/год, в том числе неопасных – 6 т/год, опасных – 1,37 т/год.

Ближайшая жилая зона площадки CMP находится на расстоянии более 979 м – аул Тажен.

Численность персонала на период СМР – 127 человек.

Продолжительность строительства 7 мес, начало производства работ ноябрь 2025 года.

Согласно пп.7 п.12 Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду от 13 июля 2021 года № 246, накопление на объекте 10 тонн и более неопасных отходов и (или) 1 тонны и более опасных отходов) объект относится к III категории.

В соответствии с пп.2 п.2 ст.88 ЭК РК, государственная экологическая экспертиза в отношении проектной документации по строительству и (или) эксплуатации объектов III категории при подготовке декларации о воздействии на окружающую среду, организуется и проводится местными исполнительными органами областей, городов республиканского значения, столицы.

В соответствии с пп.2 п.13 гл.2 Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду от 13 июля 2021 года № 246 эксплуатация объекта относиться к объектам IV категории.

ВВЕДЕНИЕ

Настоящий Раздел «Охрана окружающей среды» (РООС) выполнен на основании:

- 1) Экологического кодекса РК от 2 января 2021 года № 400-VI 3РК [1].
- 2) Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 «Об утверждении Инструкции по организации и проведению экологической оценки» [2].
- 3) Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246. Зарегистрирован в Министерстве юстиции Республики Казахстан 15 июля 2021 года № 23538 «Об утверждении инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду» [3].

Основанием для разработки проекта являются:

- материалы рабочего проекта от Генпроектировщика;
- задание на проектирование от заказчика.

Объем изложения достаточен для анализа принятых решений с целью обеспечения охраны окружающей среды от негативного воздействия объекта исследования на компоненты окружающей среды.

Раздел «Охрана окружающей среды» разработан для всестороннего рассмотрения всех предполагаемых преимуществ и потерь экологического, экономического и социального характера, связанных с реализацией проектных решений и разработка эффективных мер по снижению вынужденных неблагоприятных воздействий на окружающую среду до приемлемого уровня.

Заказчик проекта: Комитет государственных доходов Министерства финансов РК.

Генпроектировщик: ТОО «проектная фирма «Архкон».

Разработичик РООС:: TOO «ECO LOGISTICS», лицензия № 01696 Р от 11.09.2014 г., находящееся по адресу: 140000, Павлодарская область, г.Павлодар, ул.Толстого, 68-159, тел. 8-775-107-21-24 (Приложение 1).

Список исполнителей проекта:

Должность	Ф.И.О.
Директор TOO «ECO LOGISTICS»	С.И. Якубовский

1. ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРУЕМОМ ОБЪЕКТЕ

Пункт пропуска «Тажен» ДГД по Мангистауской области предназначен для одновременной работы таможенной и пограничной служб при пересечении Государственной границы Республики Казахстан легковыми - грузовым автотранспортом, приезжающими и отъезжающими людьми. Территория пункта пропуска является режимной.

Целью реализации рабочего проекта является приведение обустройства и оснащенности Казахстанского пункта пропуска в соответствие самым современным требованиям, которые позволят:

- 1) увеличить пропускную способность пункта пропуска и соответственно количество транспортных средств и товарооборот;
- 2) внедрить современные технологии контроля, связи, передачи и обмена данных;
- 3) оснастить пункт пропуска новейшим оборудованием для осуществления контроля физических лиц, багажа, товаров и транспортных средств.

Участок расположен в Мангистауской области, Бейнеуском районе.

Площадь земельного участка:

- 1. Кадастровый №: 13-196-012-532 5,7365 га
- 2. Кадастровый №: 13-196-014-460 2,5262 га

Общая площадь участка, согласно гос актам - 8,2627 га

Рис. 1.1 Ситуационная схема

Координаты участка:

- 1. 44°53'44.21"C; 55°59'38.48"B;
- 2. 44°53'50.84"C; 55°59'46.80"B;
- 3. 44°53'45.52"C; 55°59'55.35"B;

4. 44°53'38.66"C; 55°59'46.99"B.

Ближайшая жилая зона расположена в юго-западном направлении на расстоянии более 979 м – аул Тажен. Селитебная территория представляет собой частные жилые дома.

1.1 Проектные решения

Генеральный план

На территории расположены:

- 1. АБК (Терминал).
- 2/1. ИДК1 FS 6000 МКК + (встроенные весы) с навесом и модулем управления.
- 2/2. ИДК1 FS 6000 МКК + (встроенные весы) с навесом и модулем управления.
- 3. Пункт таможенного оформления грузового транспорта. 3/1. Пункт таможенного оформления грузового транспорта.
 - 4. Пункт углубленного досмотра.
 - 5. Здание углубленного досмотра.
 - Гараж.
 - 7. Вольер для собак.
- 8. КПП (весогабаритное оборудование (система) на автобусной полосе импорта и экспорта, технологическое оборудование.
 - 8/1-8/3. КПП, пост на въезд.
 - 8/4-8/6. КПП, пост на выезд.
 - 9-9/1. Навес для досмотра транспорта.
- 10. Рефрижераторный контейнер 40 футовый ТКП ИП «НТО Group». (не будет поставляться в рамках реализации данного проекта)
 - 11. KTП.
 - 12. Генератор дизельный.
 - 13. Насосная.
 - 14. Котельная. 15.
 - Ёмкость х/п воды на 50 м3.
 - 17. Ёмкости для воды на 50 м3.
 - 18. Ёмкости пожаротушения на 200 м3.
 - 19. KOC.
 - 20. Автостоянки для автобусов на 4 м/м.
- 21. Автостоянки для фур (грузового автотранспорта) на 32 м/м (въезд, выезд).
- 21/1. Автостоянки для фур (грузового автотранспорта) на $20\,$ м/м (въезд, выезд).
 - 22. Карантинная зона на 5 м/м.
 - 23. Весогабаритное оборудование.
 - 24. Мачта ПМОу-25.
 - 25. Площадка для контейнеров ТБО.
 - 26. Дезбарьер перед въездом в ИДК.
 - 27. Серверная.

- 28. Информационное табло 1.
- 29. ACPK. 30 KHC.
- 31. Контейнер для оборудования.
- 32. ЗХБН.
- 33. Опреснитель (павильон).
- 34. Туалет

Показатели по генплану

Наименование	Ед. изм.	Количество
Площадь участка по гос акту	га	8.2627
Площадь участка для проектирования	га	7.1742
Площадь застройки	м2	6563.98
Площадь покрытия	м2	41801.95
Площадь озеленения	м2	23376.72

Проектом благоустройства территорий объекта предусматривается проектирование проездных асфальтобетонных дорог, тротуаров, деревьев, создающих общий рисунок, и регулирующих направления движений.

Благоустройство включает:

- устройство подъездов и тротуаров;
- посадку деревьев и кустарников следующих пород:

осины, березы, установку скамеек. Работы по озеленению производит механическим способом - 70%, вручную - 30%

Поз. 1.АБК (Терминал) - существующее

Реконструируемый объект представляет собой 2-этажное существующее здание прямоугольной формы. Согласно эскизному проекту и заданию на проектирование было решено изменить и дополнить архитектурный облик здания под общую проектируемую концепцию таможенного пункта.

В основной комплекс работ входит - перепланировка 1-го этажа и изменение цветового решения фасадов здания ФЦП панелями. При перепланировке и реконструкции первого этажа здания - существующие несущие конструкции и конструктивные элементы здания незатрагиваются

Проектируемое здание 2-этажное, каркасное (железобетонный каркас) с заполнением из газоблока ГОСТ 21520-89, с общими габаритами в осях 17,4х41,8м.

Высота 1-го этажа 3,80 м., 2-го этажа - 3,00 м.

Конструктивное решение

Конструктивная схема здания - монолитный железобетонный каркас, где основные несущие конструкции образуются системой колонн, горизонтальных дисков-перекрытий и вертикальных диафрагм жесткости.

Фундамент - принят столбчатый, бетон класса C20/25, W6, F100 на сульфатостойком цементе.

Плиты перекрытия - монолитные железобетонные толщиной 200мм из бетона класса C20/25.

Колонны - монолитные железобетонные, прямоугольного сечения 400×400 мм из бетона класса C20/25.

Диафрагмы жесткости - монолитные железобетонные из бетона класса C20/25 толщиной 250мм.

Лестничные марши лестниц запроектированы по стальным косоурам.

Наружные стены выполнить из блоков II/ $600\times300\times250/D500/B2,5/F50$ ГОСТ 31360-2007 на цементно-песчаном растворе M50 с утеплением с наружной стороны утеплителем толщиной 100мм.

Перегородки - керамический кирпич KP-р-по 250х120х65/1НФ/75/2,0/50 по ГОСТ 530-2012 на растворе M75 толщиной 120 мм. Ненесущие стены армировать сеткой 5Вр1-50/5Вр1-50 ГОСТ 8478-81 через пять рядов кладки на всю длину стен. Для кладки кирпичных стен применять однорядную цепную систему перевязки.

Отмостка - бетонная по щебеночной подготовке шириной 1000мм

Полы — напольная керамическая плитка в помещения вспомогательных и кабинетах 1-го этажа, линолеум коммерческий в С/У 1-го этажа, напольный керамогранит в помещения вспомогательных и кабинетах 1-го этажа, линолеум коммерческий в кабинетах 2-го этажа, напольная керамическая плитка в С/У, душевых и комнатах уборочного инвентаря 2-го этажа, напольный керамогранит в коридорах 2-го этажа, ковролин в помещение Сит центр 2-го этажа, фальшпол панель конструктор (ТАRKETT серия Горизонт (РVС) в помещение серверных 2-го этажа, наливной пол в помещение тех. этажа. Окна - алюминиевый профиль двухкамерный стеклопакет с твердым селективным покрытием.

Витражи — витраж фасадный алюминиевый профиль двухкамерный стеклопакет с твердым селективным покрытием.

Внутренняя отделка

Витражи — витраж на 1-го этажа в залах алюминиевый профиль однокамерный стеклопакет с твердым селективным покрытием.

Двери - ламинированная МДФ уплотнение притворов, металлическая. Потлок — подвесной потолок ГКЛ в залах ожидания и с/у 1-го этажа, подвесной потолок "Армстронг" в коридорах и кабинетах 1-го этажа, подвесной потолок ГКЛ в с/у 2-го этажа, подвесной потолок "Армстронг" в коридорах и - 12 - кабинетах 2-го этажа, подвесной потолок "Армстронг" (металлические панели) в помещениях серверных 2-го этажа, подвесной потолок ГКЛ тех. помещение тех. этажа.

Стены и перегородоки - выравнивающая штукатурка Покраска ВА помещения зала ожидания, коридоры и кабинеты 1-го этажа, выравнивающая штукатурка керамическая плитка в помещениях с/у 1-го этажа, выравнивающая штукатурка. Покраска ВА в коридорах и кабинетах 2-го этажа, выравнивающая штукатурка керамическая плитка в помещениях с/у 2-го этажа, металлические панели для серверных 2-го этажа.

Наружная отделка

Стены 1 фибро-цементные панели Jasmin 0654 (бежевый)/RAL1001, Стены 2 фибро-цементные панели Electric 6010 (желтый)/RAL1023, Стены 3 фибро-цементные панели Night Blue 0702 (темно/синий)/RAL5022, Цоколь гранит термообработаный RAL8011

Поз. 2/1 ИДК FS 6000 МКК + (встроенные весы) с навесом и модулем управления

Инспекционно-досмотровый комплекс NUCTECHTM FS6000MKK+ для быстрого сканирования контейнеров/транспортных средств.

Проектируемое сооружение 1-этажное прямоугольной формы с габаритами в осях 28х42м. Навес над проезжей частью с габаритными размерами 8,4х42м.

Конструктивное решение

Конструктивная схема здания - монолитный железобетонный каркас, где основные несущие конструкции образуются системой колонн и вертикальных монолитных стен.

Фундамент - ленточный

Колонны – монолитные железобетонные, прямоугольного сечения 500×500мм

Стены - монолитные железобетонные

Колонны навеса - металлические из двутавра 20 111 Балки - металлические из двутавра 40 51

Прогоны - швеллер 24

Кровля - профлист Н60-845-0,8

Наружная отделка Цоколь - штукатурка

Стены по буквенным осям – фиброцементные панели (ФЦП) по металлическому каркасу

Стены по цифровым осям - штукатурка

Парапет - фиброцементные панели (Φ ЦП) по металлическому каркасу, металлические панели.

Поз. 2/2. ИДК FS 6000 МКК + (встроенные весы) с навесом и модулем управления

Проектируемое сооружение 1-этажное прямоугольной формы с габаритами в осях 14х42м. Навес над проезжей частью с габаритными размерами 8,4х42м.

Конструктивное решение

Конструктивная схема здания - монолитный железобетонный каркас, где основные несущие конструкции образуются системой колонн и вертикальных монолитных стен.

Фундамент - ленточный

Колонны – монолитные железобетонные, прямоугольного сечения 500×500мм.

Стены - монолитные железобетонные

Колонны навеса - металлические из двутавра 20Ш1 Балки - металлические из двутавра 40Б1

Прогоны - швеллер 24

Кровля - профлист Н60-845-0,8

Наружная отделка

Цоколь - штукатурка

Стены по буквенным осям – фиброцементные панели (ФЦП) по металлическому каркасу

Стены по цифровым осям - штукатурка

Парапет - фиброцементные панели (ФЦП) по металлическому каркасу, металлические панели.

Поз. 3. Пункт таможенного оформления грузового транспорта

Проектируемое здание 2-этажное, каркасное (железобетонный каркас) с заполнением из газоблока ГОСТ 21520-89, с общими габаритами в осях 12х15м. Высота 1-го и 2-го этажей - 3,60 м.

Конструктивное решение

Здание решено с полным ж/ б каркасом с заполнением из газоблоков. Фундаменты - монолитные столбчатые

Каркас - монолитный ж/б

Стены наружные - газоблок ГОСТ 21520-89 толщиной 300мм, с последующим утеплением мин.плитой толщиной 100мм λ =0,039Вт/(моС), пароизоляция и облицовка фиброцементными панелями(ФЦП) по алюминиевому каркасу.

Кровля - плоская

Двери - алюминиевые/ металлические/ деревянные.

Окна - алюминиевые/ металлопластиковые с двухкамерным стеклопакетом. Водосток - внутренний организованный.

Поз. 3/1. Пункт таможенного оформления грузового транспорта

Проектируемое здание 2-этажное, каркасное (железобетонный каркас) с заполнением из газоблока ГОСТ 21520-89, с общими габаритами в осях 12х15м. Высота 1-го и 2-го этажей - 3,60 м.

Конструктивное решение

Здание решено с полным ж/ б каркасом с заполнением из газоблоков.

Фундаменты - монолитные столбчатые

Каркас - монолитный ж/б

Стены наружные - газоблок ГОСТ 21520-89 толщиной 300мм, с последующим утеплением мин.плитой толщиной 100мм λ =0,039Вт/(моС), пароизоляция и облицовка фиброцементными панелями(ФЦП) по алюминиевому каркасу.

Кровля - плоская

Двери - алюминиевые/ металлические/ деревянные.

Окна - алюминиевые/ металлопластиковые с двухкамерным стеклопакетом. Водосток - внутренний организованный.

Поз. 4. Пункт углубленного досмотра.

Проектируемое здание 1-этажное прямоугольной формы с общими габаритами в осях 18х24 м с навесом 7,5х24м.

Конструктивное решение

Здание оформления документов решено с полным ж/ б каркасом с заполнением из газоблоков.

Фундаменты - монолитные ленточные Каркас - металлический

Стены наружные - Сэндвич-панель поэлементной сборки толщиной 100мм, влагозащита и с последующей облицовкой из фиброцементных панелей толщиной 10мм по алюминиевому каркасу

Кровля - односкатная из кровельной сэндвич-панели толщиной 200мм. Ворота - подъемно-секционные

Двери - металлические

Окна - алюминиевые с двухкамерным стеклопакетом. Водосток - наружный организованный.

Поз. 5 Здание углубленного досмотра

Проектируемое здание 1-этажное прямоугольной формы с общими габаритами в осях 12,0х9,0м.

Конструктивная схема здания - металлический каркас, где основные несущие конструкции образуются системой колонн, горизонтальных жесткозащимленных балок.

Фундамент - принят столбчатый, бетон класса C20/25, W6, F100 на сульфатостойком цементе. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм с размерами в плане на 100мм превышающими размер подошвы.

Колонны - стальные профили, прямоугольного сечения 300×300мм. Балки, распоры - стальные, из двутавров по СТО АСЧМ 20-93.

Прогоны - швеллеры по ГОСТ 8420-93.

Стены-из трехслойных панелей типа "Сэндвич" поэлементной сборки толщиной 100мм "Металл Профиль", с влагозащитной пленкой и с последующей облицовкой из фиброцементных панелей толщиной 10мм по алюминиевому каркасу.

Кровля - плоская, кровельное покрытие -полимембрана ТехноНИКОЛЬ по жесткому минераловатному утеплителю высотой 200мм.

Водосток - наружный организованный.

Окна - металлопластиковые с двойным стеклопакетом. Ворота - секционные, подъемные с электроподъемником. Двери - металлические, утепленные.

Наружная отделка стен из фиброцементных панелей по направляющим профилям.

Поз. 6. Гараж

Проектируемое здание 1-этажное здание для стоянки автомобилей, прямоугольной формы с общими габаритами в осях 18,0х9,0м.

Конструктивная схема здания - металлический каркас, где основные несущие конструкции образуются системой колонн, горизонтальных жестко-защимленных балок.

Фундамент - принят столбчатый, бетон класса C16/20, W6, F100 на сульфатостойком цементе. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм с размерами в плане на 100мм превышающими размер подошвы.

Колонны - стальные профили, прямоугольного сечения 300×300 мм по ГОСТ 30245-2003.

Балки, распоры - стальные, из двутавров по СТО АСЧМ 20-93. Прогоны - швеллеры по ГОСТ 8420-93.

Стены-из трехслойных панелей типа "Сэндвич" поэлементной сборки толщиной 100мм "Металл Профиль", с влагозащитной пленкой и с последующей облицовкой из фиброцементных панелей толщиной 10мм по алюминиевому каркасу.

Кровельное покрытие из панелей типа "Сэндвич" высотой 200мм. Окна - металлопластиковые, с двухкамерным стеклопакетом.

Ворота - секционные, подъемные с электроподъемником. Двери - металлические.

Поз. 7. Вольер для собак.

Проектируемое здание 1-этажное прямоугольной формы с общими габаритами в осях 4,2х8,1м.

Конструктивная схема здания - металлический каркас, где основные несущие конструкции образуются системой колонн, горизонтальных жесткозащимленных балок.

Фундамент - принят бетонная платформа, бетон класса C20/25, W6, F100 на сульфатостойком цементе.

Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм с размерами в плане на 100мм превышающими размер подошвы.

Каркас - из стального, прямоугольного профиля

Стены-из проф листа

Кровля - односкатная из профлиста.

Водосток - наружный неорганизованный.

Окна - металлопластиковые с двойным стеклопакетом.

Двери - металлические.

Поз. 8. Навес над КПП (весогабаритное оборудование (система) на автобусной полосе импорта и экспорта, технологическое оборудование)

Объемно-планировочные и конструктивные решения

Проектируемое сооружение навеса над КПП, 1-этажное прямоугольной формы с общими габаритами в осях 34,0х14,0м. Согласно генеральному плану, количество навесов над КПП - 2 штуки (с западной и восточной стороны).

Конструктивная схема здания - металлический каркас, где основные несущие конструкции образуются системой колонн, горизонтальных жестко- защимленных балок.

Фундамент - принят столбчатый, бетон класса C20/25, W6, F100 на сульфатостойком цементе. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм с размерами в плане на 100мм превышающими размер подошвы.

Колонны - стальные, прямоугольного сечения 400×400 мм. Балки, распоры - стальные, из двутавров по СТО АСЧМ 20-93. Прогоны - стальные, из двутавров по СТО АСЧМ 20-93.

Кровля - плоская, кровельное покрытие - ТехноНИКОЛЬ по жесткому минераловатному утеплителю высотой 200мм.

Водосток - внутренний с обогревом воронки и водосточной трубы.

Наружная отделка

Парапета из фиброцементных панелей по направляющим профилям.

Наружная отделка колонн из алюминиевых панелей по направляющим профилям.

Поз. 8/1 - 8/3 КПП, пост на въезд

Проектируемое сооружение навеса над КПП, 1-этажное прямоугольной формы с общими габаритами в осях 25,55х14,0м.

Конструктивная схема здания - металлический каркас, где основные несущие конструкции образуются системой колонн, горизонтальных жестко- защимленных балок.

Фундамент - принят столбчатый, бетон класса C16/20, W6, F100 на сульфатостойком цементе. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм с размерами в плане на 100мм превышающими размер подошвы.

Колонны - стальные, прямоугольного сечения 400×400 мм. Балки, распоры - стальные, из двутавров по СТО АСЧМ 20-93.

Прогоны - стальные, из двугавров по СТО АСЧМ 20-93.

Кровля - плоская, кровельное покрытие - ТехноНИКОЛЬ по армированной стяжке и разуклонке из керамзитового гравия.

Водосток - внутренний с обогревом воронки и водосточной трубы. Наружная отделка парапета из фиброцементных панелей по направляющим профилям.

Наружная отделка колонн из алюминиевых панелей по направляющим профилям.

Поз. 8/4 - 8/6 КПП, пост на выезд

Проектируемое сооружение навеса над КПП, 1-этажное прямоугольной формы с общими габаритами в осях 34,0х14,0м.

Конструктивная схема здания - металлический каркас, где основные несущие конструкции образуются системой колонн, горизонтальных жестко- защимленных балок.

Фундамент - принят столбчатый, бетон класса C16/20, W6, F100 на сульфатостойком цементе. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм с размерами в плане на 100мм превышающими размер подошвы.

Колонны - стальные, прямоугольного сечения 400×400 мм. Балки, распоры - стальные, из двутавров по СТО АСЧМ 20-93.

Прогоны - стальные, из двугавров по СТО АСЧМ 20-93.

Кровля - плоская, кровельное покрытие - ТехноНИКОЛЬ по армированной стяжке и разуклонке из керамзитового гравия.

Водосток - внутренний с обогревом воронки и водосточной трубы. Наружная отделка парапета из фиброцементных панелей по направляющим профилям.

Наружная отделка колонн из алюминиевых панелей по направляющим профилям.

Поз. 10 Рефрижераторный контейнер 40 – футовый

Длина -12.19м, ширина-2.43м, высота-2.59 м. Заводское изготовление.

Поз. 11 Комплектная трансформаторная подстанция

КТП – Заводского изготовления

Поз. 12 Дизель генераторная установка ДГУ GREEN POWER GP810A/B – Заводского изготовления

Поз. 13. Насосная

Проектируемое здание 1-этажное здание прямоугольной формы с общими габаритами в осях 7,38х3,38м.

Конструктивная схема здания - металлический каркас, где основные несущие конструкции образуются системой колонн, горизонтальных жесткозащимленных балок.

Фундамент - принят столбчатый, бетон класса C16/20, W6, F100 на сульфатостойком цементе. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм с размерами в плане на 100мм превышающими размер подошвы.

Колонны - стальные, прямоугольного сечения 120×120 мм. Балки, распоры - стальные, из двутавров по СТО АСЧМ 20-93. Прогоны - швеллеры по ГОСТ 842093.

Стены-из трехслойных панелей типа "Сэндвич" поэлементной сборки толщиной 100мм "Металл Профиль", с влагозащитной пленкой и с последующей облицовкой из фиброцементных панелей толщиной 10мм по алюминиевому каркасу.

Кровельное покрытие из панелей типа "Сэндвич" высотой 200мм. Окна - металлопластиковые, с двухкамерным стеклопакетом.

Ворота - секционные, подъемные с электроподъемником. Двери - металлические

Поз. 14 Котельная

Блочно модульная котельная (БМК- 0.8Ж) размеры 2.4x8.0м. - заводского исполнения ТОО "Буран Бойлер"

Поз. 15 Емкости под топливо дизельное на 10м3

Емкости под топливо дизельное на 10м3 – заводского изготовления ТОО "Amiteeh Astana"

Поз. 16 – 17 Емкости х/п воды на 10м3 и 50м3

Емкости для воды на10м3 и 50м3 – заводского изготовления TOO "Amiteeh Astana"

Поз. 18 Емкости пожаротушения на 200м3

Емкости пожаротушения на 200м3 – заводского изготовления TOO "Amiteeh Astana"

Поз. 19. Канализационно-очистная станция

КОС – заводского изготовления ALTA AIR MASTER

Поз. 23 Весогабаритное оборудование.

Поз. 24 Мачта (башня)

Мачта (башня) ПМОу-25 - заводского изготовления ТОО "Энергосистемы ЭЛТО"

Поз. 26 Дезбарьер

Дезинфекционная установка (барьер) «QALQAN II» - инженерное комплексное оборудование, рассчитанное для обеззараживания колесных арок, днища и кузова транспортного средства в зимнее время.

Устанавливается на дорожное покрытие.

Основным конструктивным решением усовершенственного оборудования является обновленный каркас выполненного из легких стальных тонкостенных оцинкованных профилей, устроенным по принципу «лего», что в свою очередь существенно снижает время ремонта и затраты на восстановление.

Поз. 27 Серверная

Фундаменты - монолитные, ж.б. ленточные из бетона класса B25, W6, F50 на естественном основании. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм.

Наружные стены - выполняются из керамического кирпича КР-р-по $250x120x88/1.4~\text{Н}\Phi/100/2.0/25~\text{ГОСТ}~530-2012$ на растворе М75 толщиной 380мм. Дополнительное утепление наружных стен выполнить мин.плитой толщиной 80мм λ =0,039Bt/(моС). Вести кладку при температуре наружного воздуха не ниже -3 °C, при температуре от -3 до -20 °C на цементно-песчаном растворе М 100 с добавлением пластификаторов и противоморозных добавок. Внутренние стены - выполняются из керамического кирпича КР-р-по $250x120x88/1.4~\text{H}\Phi/100/2.0/25~\text{ГОСТ}~530-2012$ на растворе М75 толщиной 380мм., стены армировать сетки $\emptyset4B500-50/\emptyset4B500-50~\text{через}~4~\text{ряда кладки}$.

Перегородки - выполняются из керамического кирпича КР-р-по 250x120x88/1.4~ НФ/100/2.0/25~ ГОСТ 530-2012~ на растворе М75 толщиной 120мм., стены армировать сетки $\emptyset 4B500-50/\emptyset 4B500-50$ через 4 ряда кладки.

Плиты покрытия - ПК 60.12-8IV /Т ,ПК 48.12-8IV /Т Серия 1.141-1 вып. 64 Кровля - мягкая Двери - металлические

Водосток - наружный неорганизованный.

Поз. 32 ЗХБН

Проектируемое здание 1-этажное, кирпичное с общими габаритами в осях 12х34,2м

Высота помещения - 2,70 м

Фундаменты - монолитные, ж.б. ленточные из бетона класса B25, W6, F50 на естественном основании. Под подошвой фундамента выполнить подготовку из бетона класса C8/10 толщиной 100мм.

Стены наружные - кирпич ГОСТ 530-2012 толщиной 380мм, с последующим утеплением мин.плитой толщиной 80мм λ =0,039Bt/(моС), и штукатурка по металлической сетке.

Плиты покрытия - ПК 57.15-8IV Т Серия 1.141-1 вып. 64

Кровля - мягкая

Двери - металлические/ деревянные.

Окна - металлопластиковые с двухкамерным стеклопакетом

Водосток - наружный неорганизованный

1.2 Технологические решения

Пункт пропуска предназначен для таможенного контроля по перемещению товаров и транспортных средств через границу, ведения борьбы с контрабандой, нарушениями таможенных правил и налогового законодательства, а также пресечения незаконного оборота через таможенную границу наркотических средств, оружия, боеприпасов, взрывчатых веществ, предметов художественного, исторического и археологического достояния народа.

Предусмотрены следующие виды таможенного контроля:

- -документарный;
- -радиационный;
- -фитосанитарный;
- -ветеринарный;
- -личный (как исключительная форма таможенного контроля);
- -транспортных средств.

Таможенный контроль производится:

- 1) визуально,
- 2) с помощью технических средств,
- 3) с помощью служебных собак.

Поз 1. АБК (пассажирский терминал). Существующий

АБК (пассажирский терминал) имеет две функциональные части:

- 1) служебную в которой непосредственно осуществляются все виды государственного контроля, расположенную на первом этаже;
- 2) административную которая служит для размещения подразделений органов государственного контроля: пограничного, таможенного, санитарнокарантинного, ветеринарного, транспортного и карантинно-фитосанитарного контроля, расположенные на втором этаже.

Обе части обособлены (разделены) друг от друга и используются самостоятельно.

Первый этаж

Помещения для выездных и въездных пассажиров полностью изолированы (отсутствует пересечение потоков физических лиц).

Последовательность контроля въездной части: накопитель для пассажиров, система радиационного контроля (АСРК), тепловизор, автоматизированная рентгенотелевизионная паспортный контроль, арочный металлоискатель, напольные таможенного декларирования, установка, весы, помещение ДЛЯ накопитель пассажиров.

Последовательность контроля выездной части: накопитель для пассажиров, автоматизированная система радиационного контроля, тепловизор, металлоискатель, рентгенотелевизионная установка, напольные весы, досмотровой

ММ-волновой скан-пассажир, помещение для таможенного декларирования, паспортный контроль, накопитель пассажиров.

В накопителе установлены столы с информационными стендами для заполнения физическими лицами пассажирской таможенной декларации.

Для обнаруживания источников ионизирующего излучения, определения превышение уровня естественного радиационного фона у лиц с багажом, пересекающих государственную границу установлены ACPK. случае срабатывания системы АСРК, физическое лицо будет изолированно в кабинете личного досмотра для повторного проведения радиационного контроля ручным детектором радиоактивноститемпературу тела направляются (санитарно-карантинный пункт). Изолятор запроектирован в непосредственной близости при входе в пассажирский терминал с возможностью отдельного входа работников скорой помощи.

Для визуальной проверки документов, с целью выявления в них признаков материальной подделки - подчистки, химическое травление, подписки, допечатки текстов, замены листов многочисленных документов и фотографий, вклейки элементов и фрагментов других документов, подделка оттисков печатей, штампов, реквизитов, подписей и др. установлены кабины паспортного контроля, оснащенные фотокамерой, сканерами, компьютерами.

Для проверки сопровождаемого багажа и ручной клади в целях недопущения перемещения запрещенных (ограниченных) товаров предусмотрена рентгенотелевизионная установка, полностью соответствующий санитарным нормам РК. Для проверки пассажиров предусмотрена система сканирования человека фирмы Nuctech.

Проектом предусмотрено место ДЛЯ таможенного декларирования физических ЛИЦ (зал таможенного декларирования физических перемещаемых ручную кладь или багаж с превышением норм провоза через таможенную границу ЕАЭС, оснащенный компьютерами, сканерами и т.д. Для ветеринарно-санитарного контроля товаров подлежащих ветеринарному контролю (подконтрольных товаров) и контроля по карантину растений в отношении подкарантинных товаров, перевозимых физическими фитосанитарного предусмотрены рабочие места ветеринарного И лицами контроля.

Внутри терминала предусмотрено отделение банка второго уровня (касса банка). Для проведения личного досмотра предусмотрено специальное помещение. Личный досмотр проводится должностными лицами таможенного органа одного пола с досматриваемым в присутствии двух понятых того же пола. Доступ в это помещение других физических лиц и возможность наблюдения за проведением личного досмотра с их стороны исключены.

Обследование органов тела, досматриваемого проводится только врачом. При необходимости, пассажира отправляют в комнату временного задержания. Соблюдение принципов выборочности и достаточности таможенного контроля не должно нарушать основные права и свободы граждан. Личный досмотр применяется как исключительная форма таможенного контроля. В случае нарушения пересечения границы, предусмотрено комната для задержанных лиц.

Также с торца предусмотрено помещение для паспортного контроля и таможенного оформления транспортных средств для личного пользования водителей легкового автотранспорта и автобусов.

На первом этаже расположены места для установки платежных терминалов, комната матери и ребенка, санузлы (мужской, женский, МГН), помещение уборочного инвентаря.

Второй этаж

На втором этаже расположены административные помещения (кабинет начальника, кабинет зам. начальника, служебные кабинеты для работников, осуществляющих государственные виды контроля в пункте пропуска, зал совещаний, архив, учебные классы), гардеробы, комнаты отдыха персонала, серверная. Все кабинеты оснащены мебелью отечественного производства и оргтехникой.

На втором этаже, предусмотрен зал таможенного декларирования грузового транспорта (ситуационный центр), с крупногабаритным видеоэкраном, в котором предусмотрены следующие рабочие места:

Для работников таможни:

- 1- операторы по приему, регистрации и выпуска транзитной декларации и декларации на товар;
 - 2 операторы анализа снимков ИДК;
- 3 оператор за наблюдением оперативной обстановки пункта пропуска и регулированием движением транспортного потока вручную (при сбое автоматизированной системы управлением движением пункта пропуска),
 - 4 оператор транспортного контроля,
 - 5 оператор санитарно-карантинного контроля.

Для проведения ветеринарно-санитарного контроля товаров подлежащих ветеринарному контролю (подконтрольных товаров) и контроля по карантину растений в отношении подкарантинных товаров и транспортных средств, перевозимых грузовым транспортом предусмотрены рабочие места ветеринарного и фитосанитарного контроля.

Для проведения оперативной обстановкой пункта пропуска предусмотрено рабочее место для сотрудника пограничной службы.

Все решения по пропуску автотранспорта через пункт пропуска будут приниматься в данном ситуационном центре автоматизировано с применением имеющейся у КГД МФ информационной системы АСТАНА-1 и информационной системой «Управление пунктами пропуска», приобретаемого в рамках данного компонент СИК, нем имеется который будет В непосредственно в каждом из пунктов пропуска, расположенных на территории Республики Казахстан таможенной границы Евразийского экономического союза, и позволит автоматизировать бизнес-процессы прохождения автотранспортными средствами (ТС) таможенного досмотра, включающего въезд, сканирование груза, измерение весовых и габаритных параметров, анализ пути следования ТС, выезд с пункта пропуска.

"Тажен" ДГД по Мангистауской области режим работы 8 часов, ежедневная смена работников ОГД-29, смена работников ПС КНБ-20.

Рабочих смен - 1, Рабочая смена - 8 часов, График работы - 7 дней в неделю. Проектируемый объект экологически чистый.

Поз. 2/1. ИДК FS 6000 МКК + (встроенные весы) с навесом и модулем управления.

Поз. 2/2. ИДК FS 6000 МКК + (встроенные весы) с навесом и модулем управления.

Инспекционно-досмотровый комплекс NUCTECHTM FS6000MKK+ для быстрого сканирования контейнеров/транспортных средств.

Обзор системы

Инспекционно-досмотровый комплекс быстрого сканирования транспортных средств NUCTECHTM FS6000MKK+ (в дальнейшем именуемый как NUCTECHTM FS6000MKK+), разработанный и произведенный компанией NUCTECH COMPANY LIMITED (NUCTECH). Данная система является первой в мире перемещаемой системой контроля контейнеров/транспортных средств использованием линейного ускорителя электронов (LINAC) в качестве источника рентгеновского излучения.

NUCTECHTM FS6000MKK+ работает ИДК на технологии синхронизированной двухуровневой энергии (СДЭ), обеспечивающей возможность реализации функции распознавания материалов, и повышающей качество анализа и идентификации изображений. Различные материалы, такие как органические материалы, смешанные материалы и органические материалы, различаются по различному эффективному атомному числу и маркируются различным цветом.

Рисунок 1.2.1. ИДК NUCTECHTM FS6000MKK+ (только в качестве примера)

ИДК NUCTECHTM FS6000МКК+ для досмотра грузов и выявления таких как взрывчатые вещества, вешеств и объектов. наркотические вещества, и прочей контрабанды, которая может быть спрятана в грузовиках, транспортных контейнерах, установленных на грузовиках. Данный комплекс идеально подходит не только для проверки полностью загруженных контейнеров, контейнер, установленных на контейнеровозах, транспортных средств всех видов в морских портах, на пограничных пунктах и в аэропортах, тех местах, где установка стационарных установок также в

непрактична. Высокое качество визуализации и мощные программные инструменты обеспечивают для инспекторов возможность быстрого обнаружения контрабанды, спрятанной в контейнерах без необходимости в том, чтобы открыть контейнер

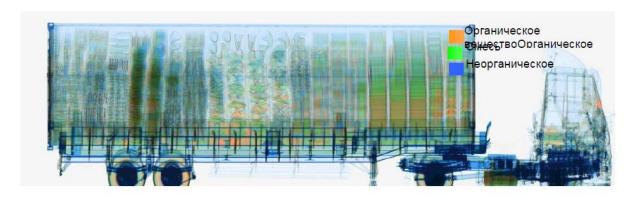


Рисунок 1.2.2. Сканированное изображение контейнера ИДК NUCTECHTM FS6000MKK+(только в качестве примера)

Радиационная безопасность

ИДК NUCTECHTM FS6000MKK+ включает в себя электронный линейный ускоритель в качестве источника рентгеновского излучения. При отсутствии подачи электропитания, система не излучает рентгеновское излучение. Уровень излучения в граничных зонах соответствует стандартному уровню, рекомендованному международными организациями, включая МАГАТЭ, МКРЗ и ВОЗ. Устройство защитного экранирования ИДК NUCTECHTM FS6000MKK+ полностью обеспечивает безопасность водителей, операторов, посторонних людей, окружающей среды, сканируемых объектов.

Данная система включает в себя следующие устройства и использует следующие методы, обеспечивающие защиту от возможных рисков, связанных с радиацией:

Устройство защитного экрана: Рентгеновское излучение, генерируемое электронным линейным ускорителем, узкого выходит очень паза, направленного на детекторы. Все другие части электронного линейного закрыты экранирующим материалом. Co стороны ускорителя детектора установлена дополнительная конструкция экранирования, которая обеспечивает эффективную защиту ОТ утечки радиации при нормальной дозировке рентгеновского излучения

Предупреждение о радиации: Состояние системы обозначается звуковой и визуальной сигнализацией. В то время, когда система излучает рентгеновское излучение, визуальная и звуковая сигнализация предупреждает людей о необходимости держаться вне зоны сканирования.

Инфракрасные устройства сигнализации: В случае если во время сканирования в зону сканирования попадает человек, срабатывают данные устройства.

Блокировка обеспечения радиационной безопасности:

Кнопка экстренной остановки: В случае возникновения нештатной ситуации, подача электропитания на ускоритель может быть прервана нажатием на любую из кнопок экстренной остановки.

Пусковой переключатель: Ускоритель не будет готов к работе, пока пусковой переключатель находится в положении «Выкл.».

Электрический барьер: Ускоритель не будет готов к работе, электрический барьер находится в разомкнутом состоянии.

Контроль микроволновой безопасности: если давление газа в волноводе намного меньше стандартного значения, система контроля выключит подачу питания и остановит микроволны.

Система видеонаблюдения и оповещения. Система видеонаблюдения и оповещения используется для обеспечения безопасности в зоне досмотра Технические спецификации

Пункт	Спецификация
Тип источника рентгеновского излучения	Электронный линейный ускоритель синхронизированной двухуровневой энергии
Энергия рентгеновского излучения	6/3M ₃ B
Функция распознавания материалов	Различные материалы, такие как органические материалы, смешанные материалы и органические материалы, различаются и маркируются различным
Уровень проникновения	320 мм стали (стандартный режим приводов) 0.4м/с 300 мм стали (проходной режим) (15км/ч)
Максимальные габаритные размери сканируемого автомобиля	ы Длина: 20м. Ширина: 2.6м. Высота: 0-4.6м.
Пропускная способность	Стандартный режим: 20 единиц контейнерных транспортных средств на 20м в час Проходной режим: 120 единиц контейнерных транспортных средств на 20м в час
Метод сканирования	Стандартный режим приводов: Отсканированные объекты остаются неподвижными, и система сканирования перемещается по рельсовым направляющим.
	Режим проходной: система сканирования остается
	неподвижной, и проверяемые объекты проходят.
Электропитание	
Потребляемая мощность	≤ 60 κBA
Напряжение	380+10В, переменный ток, 3 фазы, 5 проводников, или конфигурация в соответствии с требованиями клиента.
Частота	50+1Гц или конфигурация в соответствии с требованиями клиента.
Условия окружающей среды	
Диапазон температур:	-30°C ~ +45°C
Температура хранения:	-30°C ~ +55°C
Диапазон влажности:	0%~99%, без формирования конденсата
Радиационная безопасность	•
Зона радиационной защиты:	42м(Д)×14м(Ш) (длина сканирования: 20м, с защитной стеной)
Уровень радиации на границах системы	≤ 1 МкЗв/ч

Доза радиации, поглощаемая грузом за одно сканирование	Режим приводов:≤ 10 МкЗв
одно сканирование	Режим проходной: ≤ 30 МкЗв
Поглощенная доза для водителя за проход	≤ 0.1 МкЗв
Годовая эффективная доза, поглощаемая сотрудниками	≤ 1 M3в
Годовая эффективная доза, поглощаемая посторонними людьми	≤ 0.1 M3 _B
Подсистема работы и проверки	
Монитор компьютера	24-дюймовый ЖК монитор или больше
Принтер	Цветной лазерный принтер HP с печатью в формате A4
Сканнер	Сканнер, формат А4
Анализ полученного изображения	Трансформация черно-белого изображения в цветное (псевдо-цветовая трансформация), улучшение краев изображения, фильтрация, линейное/логарифмическое преобразование, выравнивание гистограммы, маркировка подозрительных объектов и привязка комментариев, сравнение изображений с базой изображений, расчет зон, определяемое пользователем макро-изображение, преобразование формата изображения, итд.
Масштабирование изображения	1/4 X, 1/2 X, 1X, 2X, 4X
Режим получения изображения	В режиме реального времени, синхронизированный

Поз. 3.Пункт таможенного оформления грузового транспорта. Поз. 3/1. Пункт таможенного оформления грузового транспорта.

Технологический проект Пунктов таможенного оформления грузового транспорта разработан на основании задания от заказчика.

Проектируемые объекты - двухэтажные, прямоугольной формы здания, расположены по адресу:

Пункт пропуска "Тажен" ДГД по Мангистауской области. Здания запроектированы со следующим составом помещений:

На 1 этаже зданий размещаются: тамбур, зал, оснащенный скамейками из трех стульев), офисной мебелью, персональным компьютером. принтером; гардероб для персонала, оснащенный вешалками для верхней одежды, санузлы оснащены рук осушителями и настенными зеркалами. На первом этаже размещаются обеденный также помещения кофейни: зал оснащен четырехместными обеденными столами, раздаточная оснащена, микроволновой печью, кассовым аппаратом и информационным табло для посетителей. Сан. узлы для посетителей оснащены рук осушителями и настенными зеркалами. Кладовая оснащена раковиной и стеллажом для сухих продуктов. Кофейня запроектирована работающей на полуфабрикатах с режимом работы - односменный. Количество работающего персонала - 2 человека.

На 2 этаже зданий размещаются зал и кабинеты, оснащённые офисной мебелью, оргтехникой (персональные компьютеры, принтеры). Зал оснащен скамейками (блок из трех стульев). Санузлы для персонала и для посетителей оснащены рук осушителями и настенными зеркалами.

Количество сотрудников в здании: - 1 этаж - 9 сотрудников; - 2 этаж - 11 сотрудников.

Поз. 4. Пункт углубленного досмотра.

Технологический проект пункта углубленного досмотра - склад разработан на основании задания от заказчика.

Проектируемый объект - одноэтажное, прямоугольной формы здание, расположено по адресу:

Пункт пропуска "Тажен" ДГД по Мангистауской области. Здание запроектировано со следующим составом помещений:

- на 1 размещается: Склад с режимом работы - односменный. Количество работающего персонала - 2 человека.

Склад имеет платформу для разгрузкитовара и складирования в помещении, где имеются стеллажи. Платформа имеет уравнительные платформы (доклевеллеры), для удобства разгрузки спецтехникой (автопогрузчик вилочный).

Помещение склада имеет функцию хранение и зону проверки товара на наличие контрафакта.

Поз. 5. Здание углубленного досмотра.

Здание углубленного досмотра предназначено для дополнительного (детального) досмотра транспортных средств. Груз, вызывающий вопросы (подозрение), извлекается из ТС и детально досматривается. Количество сотрудников, досматривающих груз – 2 человека, которые находятся в здании не постоянно.

Поз 6. Гараж

Предназначен для стоянки служебного автотранспорта. Рассчитан на 3 автомашины.

Поз. 7. Вольер для собак.

Технологическая часть рабочего Пункт пропуска "Тажен" ДГД по Мангистауской области, разработан на основании технического задания, утвержденного заказчиком и архитектурно-планировочного задания N_{\odot} KZ67VUA00398610 от 07.04.2021г.

Здание Вольер для собак запроектировано одноэтажным отдельно стоящим. Вольер рассчитан на 12 собак (6 для пограничной службы, 6 для таможенной службы). В здание запроектированы:

- -12 вольеров.
- Кладовая
- Инвентарная

Ветеринарное и кинологическое обслуживание служебных собак производится на договорной основе в ветеринарных и кинологических организациях.

Проектируемый объект экологически чистый.

Поз. 8. КПП (весогабаритное оборудование (система) на автобусной полосе импорта и экспорта, технологическое оборудование.

КПП – модульный блок заводского изготовления, разработан на основании задания, предоставленного заказчиком и требования заводом изготовителем технологического оборудования, а также норм и правил, действующих на территории РК. КПП представляет одноэтажный модульный блок заводского

изготовления, оснащенного мебелью отечественного изготовления с орг. техникой.

Количество работающих-2 чел. Режим работы – 1 смена.

Системы контроля и фиксации предназначены для проверки документов на а/м, грузов и других транспортных средств. Аппаратура позволяет осуществить идентификацию инспектируемого автотранспорта, объекта и его содержимого. Санированные изображения высокого качества и полнофункциональные программные средства могут помочь инспекторам ускорить оформление и выявить запрет на выезд или въезд.

Поз.13. Насосная

Производственная канализация.

Для отвода случайных вод предусмотрен приямок, из которого вода отводится дренажным насосом WILO TSW 32/11A Q=9,0м3/ч, H=5м.в.с., P2=0,8кw в колодец за пределы здания с дальнейшей откачкой

Водопроводная насосная станция запроектирована для создания необходимого напора и подачи расчетного расхода воды потребителю, на случай аварии на магистральном водоводе.

В насосной станции установлены 2 группы насосов:

- 1 .Многонасосная установка для хозяйственно-питьевого водоснабжения. Hydro multi-E 3 C RE 1-4 3x400/50 hz.
- 2 .Многонасосная установка пожаротушения GRUNDFOS Hydro MX D001 2CR 15-3 3х400/50hz, которая обеспечивает пожаротушение при одном внутреннем пожаре 2 струи по 2.5л/сек в здании АБК.

Вода подается от 2-х резервуаров хоз. питьевой воды емкостью 50м3 каждый.

Включение пожарных насосов осуществляется автоматически от кнопок "Пуск", установленных у пожарных кранов и с одновременным открытием эл. задвижки на обводной линии водомерного узла, предусмотренной для пропуска воды при пожаре в здании АБК. Проектом предусматривается ввод водопровода d 110 мм в здание насосной станции.

На вводе предусматривается устройство водомерного узла с фильтром и счетчиком учета воды повышенной точности с расширенным диапазоном измерения (класс С) с радиомодулем фирмы "Actaris". На трубопроводе, подающем воду в резервуары установлена задвижка с электроприводом, которая функционирует от уровня воды в резервуарах. Трубопроводы приняты из стальных труб по ГОСТ 10704-91* на сварке с применением фланцевых соединений. Все стальные трубопроводы окрасить масляной краской за два раза. Отвод дренажных вод решается в дренажный приямок, с дальнейшей их откачкой насосом WILO TSW 32/11A в колодец.

Поз.14. Котельная.

Блочно-модульная котельная БМК-0,800 Ж (далее по тексту - котельная) со сдвоенными водогрейными котлами для теплоснабжения зданий таможенного пункта «Тажен» разработана согласно заданию на проектирование.

Наименование показателя и единицы измерения	Данные

Теплопроизводительность, МВт Общая (установленная)	0,8
системы отопления и вентиляции	0,309
системы горячего водоснабжения (пиковая)	0,032
Температурный график отпуска тепла, \Box С для системы отопления и вентиляции $T1/T2$	90/65
Вид топлива	Газ(Основное) Дизель
Расход топлива (номинальный): дизельного топлива, кг/ч	36,5
Теплоноситель	Вода ГОСТ 2874-82
Максимальное давление теплоносителя, МПа	0,5
Температура уходящих газов, °С, не более не менее	220
20	160
Потребляемое напряжение, В	380/220
Установленная мощность токоприемников, кВт, не более	10
Содержание окиси углерода в продуктах сгорания, мг/м3, не	250
Содержание NOx (окиси азота) в продуктах сгорания, мг/м3, не	300
Габаритные размеры, (L x B x h) м, не более	8,0 x2,4x 3,0 (h)
Масса (без дымовой трубы), т, не более	10
Высота дымовой трубы, м, не менее	12
Срок службы, лет, не менее	10
Количество передислокаций за расчетный срок службы, раз, не менее	3
Категория помещения котельной - Г, по взрывопожарной и пожарной опасности – нормальное, степень от котельной – IIIa,	тнестойкости здания
класс конструктивной пожарной опасности C0, C1. Уровень ответственности котельной – второй – нормальный технич	ooren onoven iŭ
у повень ответственности котельной — второй — нормальный - технич	ески спожный

Уровень ответственности котельной – второй – нормальный, технически сложный

Котельная состоит из одного блока полной заводской готовности и допускает многократный монтаж и демонтаж, что позволяет использовать её на различных объектах.

Несущий каркас, помещения БМК, выполнен из профилированных стальных труб расчетного сечения. Стены и кровля изготовлены из трехслойных сэндвич панелей толщиной 80 мм. В качестве утеплителя, в панелях, используется минеральный негорючий материал - базальтовое волокно. Настил основания (пол) выполнен из металлического профилированного листа толщиной 4 мм с утеплителем 50 мм на базе плиты из базальтового волокна.

Окна - двойные стеклопакеты. Двери стальные утепленные, двойные или одинарные, ширина дверей учитывает габариты основного оборудования.

Настил основания (пол) выполнен из металлического профилированного листа толщиной 4 мм с утеплителем 50 мм на базе плиты из базальтового волокна. Трубопроводы котельной выполнены из стальных электросварных труб по Γ OCT 10704-91, окрашиваются грунтом Γ Ф 021 за 2 раза. Для соблюдения требований техники безопасности все трубопроводы, имеющие температуру на поверхности 45 °C - изолируются. Тип изоляции - URSA фольгированная - 50 мм.

В котельной установлено основное оборудование согласно Экспликации оборудования.

Так как все основные процессы в котельной автоматизированы, за исключением:

- первоначального пуска, пополнения реагентов для автоматической станции натрий- катионирования,
- контрольных функций,
- поддержания чистоты,

В котельной не требуется постоянное присутствие дежурного персонала.

Ежедневное посещение для обслуживания котельной обеспечивается штатом сотрудников организации, имеющим доступ к таким работам и прошедшим обучение и аттестацию в соответствии с «Правилами обеспечения промышленной безопасности при эксплуатации оборудования, работающего под давлением» (утв.30.12.2014 г., приказ №358) и «Правилами безопасности в газовом хозяйстве».

Поз. 19 КОС

Станция глубокой биохимической очистки сточных вод alta air master pro Комплекс глубокой биохимической очистки хозяйственно-бытовых и промышленных сточных вод ALTA AIR MASTER PRO, это модульное очистное сооружение, выполненное из полипропилена, предназначенное для установки под землёй (при необходимости ОС может быть установлено в здании или наземно с обваловкой грунтом).

Конструкция станций и технология очистки, разработанная компанией Alta Group, рассчитана на неравномерное поступление сточных вод в течение суток.

Сочетание биологической и физико-химической очистки позволяет получать гарантированные результаты очистки по большому количеству параметров, а также значительно сократить размеры и стоимость очистных сооружений по сравнению с классической схемой очистки.

Все конструктивные элементы и детали блочно-модульной части комплекса, выполнены из коррозийно-стойкого, высокопрочного материала — полипропилена. Гарантия на корпуса до пяти лет, срок службы более 50-ти лет. ОС комплектуются только самым надежным и проверенным оборудованием от ведущих производителей, сервис которого доступен и стабилен на всей территории Казахстана.

Управляющая автоматика собственного производства, собирается только из промышленных комплектующих, что значительно увеличивает ресурс и надежность оборудования.

OC поставляются блоками заводской готовности, оборудование проходит полную проверку и тестирование на заводе изготовителе.

Станция обеспечивает очистку хозяйственно-бытовых сточных вод до нормативов, соответствующих требованиям СН РК.

Объем сточных вод, поступающих на Станцию, должен соответствовать ее производительности. Очистные сооружения не дают вредных выбросов в атмосферу.

Показатели очистки станции

Показатель	Вход на КОС, мг/л	После биологической очистки, мг/л	После УФ- доочистки (АВС), мг/л
Взвешенные вещества	≤260	10	3
ХПК	≤500	30	15
БПК5	≤300	-	-
БПКполн	≤360	5	3
Аммоний-ион	≤50	0,5	0,5
Нитрит-ион	-	0,08	0,08
Нитрат-ион	-	40	40

Раздел охрана окружающей среды

Фосфаты (по фосфору)	≤ 5	0,2	0,2
Нефтепродукты	≤ 5	0,05	0,05
Железо общее	≤1	0,1	0,1
СПАВ	≤ 5	0,1	0,1
Сульфаты*	≤ 100	100	100
Хлориды*	≤ 300	300	300
Сухой остаток*	≤ 1000	1000	1000

1.2 План организации строительства

Согласно 4.17 СП РК 1.03-101-2013 для объектов, на которые отсутствуют нормы, продолжительность строительства может быть определена по основному или наиболее трудоемкому в возведении объекту (например, главному корпусу).

Для случаев, если такие объекты в своем составе содержат сооружения и здания, а также отдельные производства, у которых продолжительность строительства определяется установленными нормами, то определение общей продолжительности строительства и задела в строительстве для них рекомендуется осуществлять по составным частям с учетом рекомендованной последовательности организации и технологии работ и сдачи их в эксплуатацию. Если строятся несколько крупных объектов, продолжительность строительства каждого из которых установлена СП РК 1.03-102-2014 общая продолжительность строительства определяется ПОС с учетом норм для этих объектов, эффективной организационнотехнологической последовательности возведения и максимально возможного совмещения их строительства.

В данном проекте наиболее трудоемким сооружением является АБК (Пассажирский терминал) общей площадью 1792,2м2, вместимостью 350 пассажиров в час. Все остальные здания и сооружения, предусмотренные настоящим проектом, следует возводить параллельно.

Продолжительность реконструкции АБК определяется как для пассажирского терминала методом линейной интерполяции, исходя из имеющихся в нормах вместимости 300 чел и 500 чел. с нормами продолжительности строительства 23 и 27 месяцев соответственно (СП РК 1.03-102-2014, часть П, табл.Б.1.3.1, стр.63 п.10).

Расчетный метод определения общей продолжительности строительства от объема СМР (строительно-монтажных работ).

Принимаем зависимость вида:

 $T_H=A1 * C$

Тн – продолжительность строительства

С – объем СМР, млн.тенге

А1 и А2 – параметры, определенные по данным статистики табл. 1 п.6

A1 = 1,5766

A2 = 0.3435

 $T_H = 1.5766 \times 115.13 \approx 8.0 \text{ Mec}$

 $T_H = 7.0 * 0.8 = 6.4 \approx 6.0 \text{ Mec}$

0,8 - коэффициент сменности работ.

Расчетная продолжительность Тн=6,0 мес.

Технико-экономические показатели ПОС

Наименование	Единица измерения	Количество
1. Общая продолжительность строительства	мес.	6,0
в том числе: подготовительный период	мес.	0,5
2. Максимальная численность работающих	чел.	127
3.0бщая сметная стоимость,	тыс. тенге	16 566 798,949

2 ОЦЕНКА ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ

2.1 Краткая характеристика климатических условий, необходимых для оценки воздействия

Основные климатические характеристики района строительства по данным мете Климат Мангистауской области формируется под влиянием арктических, иранских и туранских воздушных масс. В холодный период года здесь господствуют массы воздуха сибирского антициклона, в теплый период года они сменятся перегретыми тропическими массами из пустынь Средней Азии и Ирана.

За последние двадцать лет прослеживается тенденция аридизации климата в регионе (повышения температур воздуха и уменьшения количества выпадающих осадков).

Климат района резко континентальный. Лето жаркое, засушливое. Зима холодная ветреная.

Зимы малоснежные снежный покров тонкий неустойчивый.

Фоновые природно-климатические условия, характеризуются активным ветровым режимом, малой повторяемостью и короткой продолжительностью штилей и приземных инверсий температур.

Такие метеорологические условия Прикаспийского региона оказывают существенное влияние на активизацию процессов переноса и рассеивания загрязняющих веществ, поступающих в атмосферу от антропогенных источников. На основании совокупности климатических показателей природный потенциал загрязнения атмосферы (ПЗА) района оценивается как низкий.

Зима (декабрь-февраль) умеренно холодная, с неустойчивой преимущественно пасмурной погодой. Морозы начинаются с середины декабря, когда среднесуточная температура переходит через 00С, и продолжается до 100 дней. Зимой при вторжении холодных масс арктического воздуха температура воздуха днем от минус 4°С до минус 6°С, ночью от минус 70С до минус 15°С (редко минус 36°С). Днем нередко бывают оттепели с температурой воздуха плюс 11°С. Осадки выпадают преимущественно в виде снега. Толщина снежного покрова обычно не превышает 5 см. Глубина промерзания грунта 80 см. Число дней с туманами до 6 в месяц.

Весна (март-апрель) теплая, температура воздуха днем плюс 5°C-15°C, ночью плюс 2 °C - плюс 8°C. В апреле возможны заморозки. Весной выпадают более 25 % годового количества осадков, в виде дождей. Количество дней с туманами до 4 в месяц. Пасмурных дней до 6 в месяц.

Лето (май-сентябрь) - сухое, жаркое. Температура воздуха днем плюс 21°С -плюс 37°С (редко плюс 43°С), ночью плюс 11 °С - плюс 15 °С. Осадки выпадают изредка в мае-июне. Жаркий период, когда среднесуточная температура воздуха выше 30°С, наступает во второй половине июня и

продолжается до середины сентября, в этот период стоит засушливая погода, относительная влажность воздуха 56-75 %.

Осень (октябрь-ноябрь) преимущественно с ясной погодой. Редко идут моросящие дожди. Температура воздуха днем плюс 5°С - плюс 15°С. Ночные заморозки начинаются со второй половины октября. В ноябре ночью температура воздуха плюс 3°С - плюс 8°С. Количество дней с туманами до трех в месяц.

Годовое количество осадков, как правило, не превышает 140 мм, их максимум приходится на теплый период.

Летние осадки непродолжительны и носят преимущественно ливневый характер, вызывая на склонах эрозию почв. В отдельные сухие годы на протяжении всего лета дождей не бывает вообще.

Таким образом, рассматриваемая территория расположена в пустынной зоне, где господствует резко континентальный климат.

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере

Наименование характеристик и коэффициентов	Величина
1. Коэффициент, зависящий от стратификации атмосферы, А	200
2. Коэффициент рельефа местности, л	1
3. Средняя максимальная температура наружного воздуха наиболее жаркого месяца года,	+30,0
4. Средняя минимальная температура наружного воздуха наиболее холодного месяца, °С	-8,0
5. Среднегодовая роза ветров, %:	
С	10,0
СВ	14,0
В	28,0
ЮВ	18,0
Ю	6,0
Ю3	5,0
3	8,0
C3	11,0
6. Скорость ветра, повторяемость которой составляет 5 %, м/с	24,0
7. Среднегодовая скорость ветра, м/с	4,6

Фоновые концентрации загрязняющих веществ в атмосферном воздухе по месту размещения площадки предприятия приняты согласно справке о фоновых концентрациях выданной филиалом РГП «Казгидромет» (Приложение 4).

2.2 Характеристика современного состояния воздушной среды

Результаты мониторинга качества атмосферного воздуха в п. Бейнеу за 3 квартал 2025 года.

По данным сети наблюдений п.Бейнеу, уровень загрязнения атмосферного воздуха оценивался как *низкий*, он определялся значением $\mathbf{C}\mathbf{U}$ =1,4 (низкий уровень) по озону (приземному) и НП=0% (низкий уровень).

Максимально-разовые концентрации составили: озон (приземный) — 1,4 ПДКм.р., сероводород — 1,32 ПДКм.р., аммиак — 1,09 ПДКм.р., концентрации других загрязняющих веществ не превышали ПДК $_{\rm M.p.}$.

Превышения по среднесуточным нормативам наблюдались: озон (приземный) – 1,74 ПДКс.с..

Случаи экстремально высокого и высокого загрязнения (ВЗ и ЭВЗ): ВЗ (более 10 ПДК) и ЭВЗ (более 50 ПДК) не были отмечены.

Фактические значения, а также кратность превышений нормативов качества и количество случаев превышения указаны в Таблице

Характеристика загрязнения атмосферного воздуха

Примесь	_	едняя нтрация	раз	мально- овая ітрация	нп	Число случаев превышения ПДК _{м.р.}							
	мг/м ³	Кратнос ть ПДКс.с.	мг/м ³	Кратнос ть ПДК _{м.р.}	%	>пдк	>5 ПДК в том	>10 ПДК числе					
п.Бейнеу													
Диоксид серы	0,0034	0,07	0,0122	0,02	0								
Оксид углерода	0,6298	0,21	1,2869	0,26	0								
Озон	0,0522	1,74	0,2200	1,4	0	2							
Сероводород	0,0017		0,0105	1,32	0	8							
Аммиак	0,0222	0,56	0,2175	1,09	0	2							

Выводы:

За последние пять лет уровень загрязнения атмосферного воздуха в 3 квартале изменялся следующим образом:

Как видно из графика, уровень загрязнения в 3 квартале в 2021,2022,2023 годы оценивался как повышенный. В последующие 2024-2025 годы уровень загрязнения оценивался как низкий.

Наибольшее количество превышений максимально-разовых ПДК было отмечено по озону (приземному) (2 случаев), по сероводороду (8 случаев) и по аммиаку (2 случаев).

Превышения нормативов среднесуточных концентраций наблюдались по озону (приземному)

2.3 Источники и масштабы расчетного химического загрязнения

Период СМР

Основными источниками загрязнения при этом являются следующие процессы, механизмы и материалы:

При погрузочно-разгрузочных работах инертных материалов, земляных работах происходит выделение пыли неорганической в пересчете на пыль неорганическую с содержанием SiO2 70-20% (ист.6001).

При проведении сварочных работ используются сварочные электроды. При этом в атмосферу неорганизованно выделяются такие загрязняющие вещества железо оксид, марганец и его соединения, фтористые газообразные соединения, пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%, фториды неорганические плохо растворимые, азота (IV) оксид, углерода оксид (ист. 6002).

При газовой резки металлов в атмосферу выделяются следующие загрязняющие вещества: азота (IV) диоксид, марганец и его соединения, оксиды железа и оксид углерода (ист.6003).

При проведении окрасочных работ в атмосферу неорганизованно поступают бутилацетат, диметилбензол, пропан-2-он (ацетон), метилбензол (Толуол), уайтспирит, масло минеральное, бутан-1-ол (Спирт н-бутиловый), 2-Метилпропан-1-ол (спирт изобутиловый) и др. (ист.6004).

При автотранспортных работах в атмосферу выделяются: азота диоксид, углерод оксид, углероды (керосин), сажа (углерод черный), диоксид серы, бенз(а)пирен - при работе механизмов на дизтопливе; на бензине выделяются следующие загрязняющие вещества: азота диоксид, оксид азота, углерод оксид, сажа (углерод черный), диоксид серы, углероды (керосин). (ист. 6005, 6006)

Для получения электричества будет применяются компрессоры передвижные и передвижная электростанция, до 4 кВт, с двигателем внутреннего сгорания. При работе которой будут выделяться: азота (IV) диоксид, азота (II) оксид, бенз(а)пирена, серы диоксид, углерода оксид, углеводородов предельных С12-С19, углерода и формальдегида. (ист. 6007, 6008)

Для обработки материалов на строительной площадке используется шлифовальная машина с кругом Ø 175 мм. При этом в атмосферу неорганизованно поступают: пыль абразивная, взвешенные вещества (ист. 6009).

Для гидроизоляционных работ используют битумы разных марок. Разогрев и нанесение битума (ист. 6010, 6011)

Для восстановления асфальтобетонного покрытия используют смеси асфальтобетонные. При данном виде работ в атмосферу выделяются углеводороды предельные C12-19 (ист. 6012)

Для паяльных работ на площадке используется припой ПОС30,40. При этом в атмосферу поступают: свинец и его неорганические соединения, олово оксид (в пересчете на олово) (ист.6013).

Для стыковки и соединения полиэтиленовых труб используется агрегат для сварки. При этом в атмосферу неорганизованно поступают: хлорэтилен и углерод оксид (ист. 6014).

Также на строительной площадке хранится инвентарь, опоры, арматура и т.п. на открытой площадке. При этом выброс загрязняющих веществ не происходит.

Перечень загрязняющих веществ, выделяемых при производстве строительно-монтажных работ, представлен в таблице 2.3.1

Таблина 2.3.1

	<u> </u>		1	ı	1	Таолица 2.3.1			
Код	Наименование	ПДК м.р. ПДК ср.сут. ОБУВ			Класс	Выброс вещества			
3B	вещества	MΓ/M ³		опасности	г/сек	т/год			
0123	Железо (II, III) оксиды		0,04		3	0,044	0,14		
0143	Марганец и его соединения	0,01	0,001		2	0,00131	0,0085		
0168	Олово оксид (в пересчете на олово)		0,02		3	0,001	0,00002		
0184	Свинец и его неорг. соединения	0,001	0,0003		1	0,001	0,00001		
0301	Азота (IV) диоксид	0,2	0,04		2	0,1033	0,76422		
0304	Азот (II) оксид	0,4	0,06		3	0,0095	0,05227		
0328	Углерод (сажа)	0,15	0,05		3	0,0442	0,65123		
0330	Сера диоксид	0,5	0,05		3	0,0576	0,83798		
0337	Углерод оксид	5	3		4	0,0872073	0,33501389		
0342	Фтористые газообразные соединения	0,02	0,005		2	0,0001	0,0021		
0344	Фториды неорганические плохо растворимые	0,2	0,03		2	0,0006	0,0007		
0616	Диметилбензол (смесь – о, -м, -п изомеров)	0,2			3	0,046	0,9512		
0621	Метилбензол (Толуол)	0,6			3	0,053	0,10512		
0703	Бенз(а)пирен		0,1мкг/100м3		1	0,000001110	0,0000165190		
0827	Хлорэтилен		0,01		1	0,000003	0,0000039		
1042	Бутан-1-ол (Сирт н- бутиловый)	0,1			3	0,007	0,00002		
1048	2-Метилпропан-1-ол (спирт изобутиловый)	0,1			4	0,005	0,0002		
1061	Этанол (Спирт этиловый)	5			4	0,011	0,00004		
1119	2-Этоксиэтанол			0,7		0,005	0,00002		
1210	Бутилацетат	0,1			4	0,010	0,02		
1325	Формальдегид	0,05	0,01		2	0,0012	0,00521		
1401	Пропан-2-он (ацетон)	0,35			4	0,022	0,0440		
2732	Керосин			1,2		0,077	1,19992		
2735	масло минеральное			0,05		0,006	0,038		
2752	Уайт-спирит			1		0,074	0,6039		
2754	Углеводороды предельные C_{12} - C_{19}	1			4	0,06	0,295		
2902	Взвешенные частицы	0,5	0,15		3	0,0304	0,15030		
2908	Пыль неорганическая SiO_2 70-20%	0,3	0,1		3	0,0283	0,6103		
2930	пыль абразивная			0,04		0,003	0,007		

Расчеты выбросов загрязняющих веществ в атмосферный воздух на период СМР по источникам представлены в приложении 5.

Период эксплуатации

Таможенный контроль производится:

- 1) визуально,
- 2) с помощью технических средств,
- 3) с помощью служебных собак.

Рабочих смен - 1, рабочая смена - 8 часов, график работы - 7 дней в неделю, количество персонала 80 человек.

На период эксплуатации источниками загрязнения атмосферного воздуха являются:

- генератор дизельный (№0001);
- котельная (блочно-модульная котельная БМК-0,8Ж)(№0002);
- емкость под топливо (резервуары для дизтоплива) (№0003);
- гараж (№0004);
- автостоянки для автобусов (№6001);
- автостоянки для фур (грузового автотранспорта) (№6002);
- карантинная зона (№6003).

Всего проектом предусмотрено 7 источников выбросов, из них 4 – организованных, 3 - неорганизованные.

Перечень загрязняющих веществ (без ДВС), выделяемых эксплуатации, представлен в таблице 3.1.1.

Код	Наименование	ПДК	ПДК	ОБУ	Класс	Выброс	Выбр
загр.	вещества	максим.	средне-	ориентир	опас-	вещества	веществ
веще-		разовая,	суточная,	безопасн.	ности	г/с	т/год
ства		мг/м3	мг/м3	УВ,мг/м3			
1	2	3	4	5	6	7	8
0301	Азот (IV) оксид (Азота диоксид)	0.2	0.04		2	0.0442422	0.188201
0304	Азот (II) оксид (Азота оксид)	0.4	0.06		3	0.0214034	0.0647074
0328	Углерод черный	0.15	0.05		3	0.004613	0.017545
0330	Сера диоксид (Ангидрид	0.5	0.05		3	0.0631916	0.305415
0333	Сероводород	0.08			2	0.00000242	0.011
0337	Углерод оксид	5	3		4	0.02271	0.1984
1301	Проп-2-ен-1-аль (Акролеин)	0.03	0.01		2	0.0005	0.0012
1325	Формальдегид	0.035	0.003		2	0.0005	0.0012
2704	Бензин (нефтяной, малосернистый)	5	1.5		4	0.001174	0.0177
	пересчете на углерод/						
2754	Углеводороды предельные С12-19	1			4	0.0060444	0.0514
	пересчете на суммарный						
	углерод/						

Расчеты выбросов загрязняющих веществ в атмосферный воздух на период эксплуатции по источникам представлены в приложении б.

2.4 Расчет рассеивания загрязняющих веществ в атмосфере на период строительно-монтажных работ

В соответствии с пунктом 5.21 [Л.14] расчеты рассеивания для загрязняющих веществ проводить нецелесообразно, если выполняется неравенство: $\mathbf{M}/\mathbf{\Pi}\mathbf{J}\mathbf{K} < \mathbf{\Phi}$;

$$\Phi$$
=0,01H' при H' > 10 м Φ =0,1 при H' \leq 10 м

где: M - суммарное значение выброса от всех источников предприятия, г/с; $\Pi \not \perp K$ - максимальная разовая предельно допустимая концентрация, мг/м³;

 ${
m H'}$ — средневзвешенная по предприятию высота источников выбросов, определяется по формуле 7.8 [Л.14].

Результаты расчета целесообразности приведены в таблице 2.4.1.

Таблица 2.4.1

код 3В	Наименование вещества	ПДКм. р	ПДКс.с.	ОБУВ	М, г/сек	Н', м	М/(ПДК*Н) для H>10 М/ПДК для H<10	Φ	вывод
-----------	--------------------------	------------	---------	------	----------	-------	---	---	-------

0123	Железо (II, III) оксиды		0,04		3	2	0,110	0,1	расчет
0143	Марганец и его соединения	0,01	0,001		2	2	0,131	0,1	расчет
0168	Олово оксид (в пересчете на олово)		0,02		3	2	0,005	0,1	-
0184	Свинец и его неорг. соединения	0,001	0,0003		1	2	0,333	0,1	расчет
0301	Азота (IV) диоксид	0,2	0,04		2	2	0,517	0,1	расчет
0304	Азот (II) оксид	0,4	0,06		3	2	0,024	0,1	-
0328	Углерод (сажа)	0,15	0,05		3	2	0,295	0,1	расчет
0330	Сера диоксид	0,5	0,05		3	2	0,115	0,1	расчет
0337	Углерод оксид	5	3		4	2	0,017	0,1	-
0342	Фтористые газообразные	0,02	0,005		2	2	0,005	0,10	-
0344	Фториды неорганические	0,2	0,03		2	2	0,003	0,1	-
0616	Диметилбензол (смесь -o, -м, -п	0,2			3	2	0,230	0,1	расчет
0621	Метилбензол (Толуол)	0,6			3	2	0,088	0,1	-
0703	Бенз(а)пирен		0,1мкг/1		1	2	0,111	0,1	расчет
0827	Хлорэтилен		0,01		1	2	0,00003	0,1	-
1042	Бутан-1-ол (Сирт н- бутиловый)	0,1			3	2	0,070	0,1	-
1048	2-Метилпропан-1-ол (спирт изобутиловый)	0,1			4	2	0,050	0,1	-
1061	Этанол (Спирт этиловый)	5			4	2	0,002	0,1	-
1119	2-Этоксиэтанол			0,7		2	0,007	0,1	-
1210	Бутилацетат	0,1			4	2	0,100	0,1	-
1325	Формальдегид	0,05	0,01		2	2	0,024	0,1	-
1401	Пропан-2-он (ацетон)	0,35			4	2	0,063	0,1	-
2732	Керосин			1,2		2	0,064	0,1	-
2735	масло минеральное			0,05		2	0,120	0,1	расчет
2752	Уайт-спирит			1		2	0,074	0,1	-
2754	Углеводороды	1	0.45		4	2	0,057	0,1	-
2902	Взвешенные частицы	0,5	0,15		3	2	0,061	0,1	-
2908	Пыль неорганическая SiO2 70-20%	0,3	0,1		3	2	0,094	0,1	-
2930	пыль абразивная			0,04	Ī	2	0,075	0,1	_

Примечание. 1. Необходимость расчетов концентраций определяется согласно п.5.21 ОНД-86. Средневзвешенная высота ИЗА по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - $10*\Pi$ ДКс.с.

Согласно проведенной оценке целесообразности расчеты рассеивания необходимо провести по следующим загрязняющим веществам: Железо (II, III) оксиды, марганец и его соединения, азот (IV) оксид, углерод (сажа), сера диоксид, Ксилол (смесь изомеров — о, -м, -п), бенз(а)пирен, мин масло.

В связи с проведенной оценкой расчеты рассеивания по остальным ингредиентам проводить не требуется, так как максимальные приземные концентрации, создаваемые в процессе строительных работ, во всех точках не будут превышать 0,05 ПДК [Л.14].

Расчеты загрязнения воздушного бассейна выбросами на период базовой «Эколог» строительства проведены ПО программе (версия разработанной НПФ «Интеграл» г. Санкт-Петербург, на персональном компьютере Pentium 4CPU. Программа согласована Главной физической обсерваторией им. А.И. Воейкова и разрешена для использования в Республике Казахстан.

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ от проектируемых источников выброса загрязняющих веществ в атмосферу приняты в соответствии с проектными решениями и исходными данными от заказчика.

Координаты источников выбросов загрязняющих веществ при строительстве проектируемого объекта даны в условной системе координат.

Номера источников выбросов загрязняющих веществ в атмосферу на период строительно-монтажных работ приняты условно.

Расчеты рассеивания выполнены без учета фоновых концентраций, в связи с отсутствием наблюдений за состоянием атмосферного воздуха. (Приложение 4).

Параметры источников выбросов загрязняющих веществ в атмосферу на период строительно-монтажных работ проектируемого объекта приведены в таблице 2.4.2.

Расчеты рассеивания загрязняющих веществ в атмосфере при строительномонтажных работах проектируемого объекта приведены в приложении 7.

Таблица 2.4.2 Параметры источников выбросов загрязняющих веществ в атмосферу на период строительно-монтажных работ

40

		Источник выделовагрязняющих веществ	ения						Параметр смеси на при макс	выходе из	трубы	Коорди		точника на еме, м	ı карте-	
Производство	Цех	наименование	кол - во, шт.	Число часов работы в году	Наименование источника выбросов вредных веществ	Номер источника выброса на карте- схеме	Высота источника выброса, м	Диаметр устья трубы, м	Скорость, м/с	Объем смеси, м3/с	Темпе- ратура смеси, оС	Точеч источн одного линей источн /цент площа, источн	ника, конца ного ника гра цного	Второго линейного ширі площад источі	о/длина, ина цного	
												X	У	X	У	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
		Погр-разгр работы	2	2920	Неорганизованный	6001	2	-	-	-	31	1304,0	918,0	1476,0	1122,0	
Модернизаци	Площадк	Сварочные работы	1	428,59	Неорганизованный	6002	2	-	-	-	31	1304,0	918,0	1476,0	1122,0	
яи П	а СМР	Газовая резка металла	1	147,997	Неорганизованный	6003	2	-	-	-	31	1304,0	918,0	1476,0	1122,0	
пунктов пропуска		Окрасочные работы	5	300	Неорганизованный	6004	2	=.	-	-	31	1304,0	918,0	1476,0	1122,0	
		ДВС строительной техники	20	2	Неорганизованный	6005	2	-	-	-	31	1304,0	918,0	1476,0	1122,0	
		ДВС автотранспорта	1	20	Неорганизованный	6006	2	-	-	-	31	1304,0	918,0	1476,0	1122,0	
			Передвижные компрессоры с двигателями внутреннего сгорания	1	141,223	Неорганизованный	6007	2	-	-	-	31	1304,0	918,0	1476,0	1122,0
		Электростанции передвижные, до 4 кВт	1	334,06	Неорганизованный	6008	2	-	-	-	31	1304,0	918,0	1476,0	1122,0	

Раздел охрана окружающей среды «Модернизация и техническое дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов Республики Казахстан». Пункт пропуска «Тажен» ДГД по Мангистауской области. Корректировка.

Шлифовальная машина	1	287,05	Неорганизованный	6009	2	-	-	-	31	1304,0	918,0	1476,0	1122,0
Разогрев битума	1	0,204	Неорганизованный	6010	2	-	-	-	31	1304,0	918,0	1476,0	1122,0
Нанесение битума	1	20	Неорганизованный	6011	2	-	-	-	31	1304,0	918,0	1476,0	1122,0
Сверлильный станок	1	300	Неорганизованный	6012	2	-	-	-	31	1304,0	918,0	1476,0	1122,0
Паяльные работы	1	2	Неорганизованный	6013	2	-	-	-	31	1304,0	918,0	1476,0	1122,0
Сварка полиэтиленовых труб	1	200	Неорганизованный	6014	2	-	-	-	31	1304,0	918,0	1476,0	1122,0

Продолжение таблицы 2.4.2

							тродолже	iine rao	ЛИЦЫ ∠. +.	
11	Наименование	D	ICan b b	Средняя			Выброс	загрязі		Г
Номер источника выброса на карте-	газоочистных установок, тип и	Вещества, по которым	Коэффициент обеспеченности	эксплуатационна я степень	Код	Наименование вещества		вещества	1	Год достижен
схеме	мероприятия по	проводится	газоочисткой	очистки /	вещества		г/с	мг/ _м 3	тонн	ия НДВ
	сокращению выбросов	газоочистка		максимальная степень очистки,						
	17	18	19	20	21	22	23	24	25	26
				Смр						
						Пыль неорганическая,				
						содержащая двуокись				
6001	-	-	-	-	2908	кремния (SiO2)	0,028	-	0,61	
					0123	Железо (III, II) оксид	0,008	-	0,046	
6002						Марганец и его		-		
6002	-	-	-	-	0143	соединения	0,0003		0,0075	
						Пыль неорганическая,		-		
						содержащая двуокись				
					2908	кремния (SiO ₂) 70-20%	0,0001		0,0021	
						Фториды неорганические		-		
					0344	плохо растворимые	0,0003		0,0003	
					55	Фтористые газообразные	0,000	-	0,000	
					0342	соединения	0,0006		0,0007	
					0342	Азота (IV) оксид	0,0003	_	0,0007	-
					0301	Азота (т v) оксид	0,0003		0,0003	

Раздел охрана окружающей среды «Модернизация и техническое дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов Республики Казахстан». Пункт пропуска «Тажен» ДГД по Мангистауской области. Корректировка.

					0337	Углерода оксид	0,003	-	0,003	
					0301	Азота (IV) диоксид	0,018	-	0,047	
					0123	Железо (II, III) оксиды	0,036	-	0,094	1
6003	-	-	-	-	0143	Марганец и его соединения	0,001	-	0,001	
					0337	Углерод оксид	0,018	-	0,046	2025-202
					2902	взвешенные частицы	0,026	_	0,14	
					1210	Бутилацетат	0,010	-	0,02	
	-	-	-	-	0616	Диметилбензол (смесь – о -м -п изомеров)	0,046	-	0,9512	
					1401	Пропан-2-он (ацетон)	0,022		0,0440	
					0621	Метилбензол (Толуол)	0,053		0,10512	1
					2752	Уайт-спирит	0,074		0,6039	
6004					2735	масло минеральное	0,006		0,038	1
					1042	Бутан-1-ол (Сирт н- бутиловый)	0,007		0,000220	
					1061	Этанол (Спирт этиловый)	0,011		0,00004	
					1119	2-Этоксиэтанол	0,005		0,00002	
					1048	2-Метилпропан-1-ол (спирт изобутиловый)	0,005		0,0002	
					2754	Углеводороды предельные С12-С19	0,019	-	0,140	
					0301	Азота (IV) оксид	0,025	-	0,39582	
6005	-	-	-	-	0328	Углерод (сажа)	0,039	-	0,62312	
					0330	Серы диоксид	0,050	-	0,79636	
					0337	Углерода оксид	0,0000003	-	0,00000489	
					0703 2732	Бенз(а)пирен	0,000001		0,000016	-
						Керосин	0,075	-	1,19882	4
					0337	Углерод оксид	0,0162		0,008	_
6006	-	-	-	-	2732	Керосин	0,0021	-	0,0011	_
					0301	Азот (IV) оксид	0,003	-	0,0021 0,00032	4
					0304	Азот (II) оксид Углерод (сажа)	0,0005 0,0002	-	0,00032	-
					0328	Сера диоксид	0,0002	_	0,00011	+
					301	Азота (IV) диоксид	0,000	_	0,0002	1
6007					304	Азот (II) оксид	0,008	_	0,05	1

Раздел охрана окружающей среды

[«]Модернизация и техническое дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов Республики Казахстан». Пункт пропуска «Тажен» ДГД по Мангистауской области. Корректировка.

	-	-	-	-	703	Бенз(а)пирен	0,0000001	-	0,0000005
					330	Сера диоксид	0,006	-	0,040
					337	Углерод оксид	0,042	-	0,268
					2754	Углеводороды предельные C12-C19	0,021	-	0,134
					328	Углерод	0,004	-	0,027
					1325	Формальдегид	0,001	-	0,005
					301	Азота (IV) диоксид	0,009	-	0,012
					304	Азот (II) оксид	0,001	-	0,00195
					703	Бенз(а)пирен	0,00000001	-	0,000000019
					330	Сера диоксид	0,001	-	0,0016
6008	-	-	-	-	337	Углерод оксид	0,008	-	0,01
					2754	Углеводороды предельные С12-С19	0,004	-	0,005
					328	Углерод	0,001	-	0,001
					1325	Формальдегид	0,0002	-	0,00021
6009	-	-	-	-	2902	Взвешенные частицы (пыль металлическая)	0,004	-	0,010
					2930	Пыль абразивная	0,003	-	0,007
6010	-	-	-	-	2754	Углеводороды предельные C12-C19	0,009	-	0,001
6011	-	-	-	-	2754	Углеводороды предельные C12-C19	0,004	-	0,015
6012	-	-	-	-	2902	Взвешенные частицы (пыль металлическая)	0,0004	-	0,0003
5012					0184	Свинец и его неорг. соединения	0,001	-	0,00002
6013	-	-	-	-	0168	Олово оксид (в пересчете на олово)	0,001	-	0,00001
					0337	Углерод оксид	0,000007		0,000009
6014	_	_	_	_	0827	Хлорэтилен	0,000003		0,0000039
0014	-	_	_	_	0027	илорэтилсп	0,000003		0,0000039

Максимальные приземные концентрации и перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы в период эксплуатации, приведены в таблице 2.4.3.

Максимальные приземные концентрации и перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы на период строительно-монтажных работ

Таблица 2.4.3

Наименование вещества	Расчет максима призем концентрац ПДІ	льная іная ция, доли	Источники, д наибольший максимали концентра	вклад в ьную цию	Принадлежность источника (цех, участок)
	в жилой зоне	границе С33	номер ист-ка на карте-схеме	% вклада	
Железо (III, II) оксид	0,12	-	6003	81,82	Площадка СМР
Марганец и его соединения	0,14	-	6003	76,92	Площадка СМР
Свинец и его неорганические соединения (в пересчете на свинец)	1,07	-	6013	100	Площадка СМР
Азота (IV) диоксид	0,55	-	6007	46,47	Площадка СМР
Углерод (сажа)	0,32	ı	6005	88,24	Площадка СМР
Сера диоксид	0,12	ı	6005	86,81	Площадка СМР
Ксилол	0,25	ı	6004	100	Площадка СМР
Бенз(а)пирен	0,13	ı	6007	83,33	Площадка СМР
масло минеральное	0,13	ı	6004	100	Площадка СМР
		уппы сумма	аций		
Азот (IV) оксид, сера диоксид	0,42	ı	6007	39,89	Площадка СМР
Сера диоксид, фтористый водород	0,16	ı	6005	68,87	Площадка СМР
Свинца оксид, серы диоксид	1,19	-	6013	89,67	Площадка СМР
Углерода оксид, пыль неорганическая 70-20%	0,12	-	6001	84	Площадка СМР
Фтористый водород и плохо растворимые соли фтора	0,03	-	6002	100	Площадка СМР
Сера диоксид, углерод оксид	0,42	-	6007	39,89	Площадка СМР

Анализ результатов расчетов рассеивания показал, что максимальные приземные концентрации загрязняющих веществ в расчетных точках (в жилой зоне) создаваемые при строительстве проектируемого объекта, находятся в пределах гигиенических нормативов качества атмосферного воздуха (ПДК).

2.5 Расчет рассеивания загрязняющих веществ в атмосфере на период эксплуатации

выбросами Расчеты загрязнения воздушного бассейна период на «Эколог» проведены базовой программе эксплуатации ПО разработанной НПФ «Интеграл» г. Санкт-Петербург, на персональном компьютере Pentium 4CPU. Программа согласована Главной физической обсерваторией им. А.И. Воейкова и разрешена для использования в Республике Казахстан.

Определены максимальные приземные концентрации загрязняющих веществ в жилой зоне.

Координаты источников выбросов загрязняющих веществ при эксплуатации проектируемого объекта даны в условной системе координат.

Номера источников выбросов загрязняющих веществ в атмосферу на период эксплуатации приняты условно.

Параметры источников выбросов загрязняющих веществ в атмосферу на период эксплуатации проектируемого объекта приведены в таблице 2.5.1.

Расчеты рассеивания загрязняющих веществ в атмосфере при эксплуатации проектируемого объекта приведены в приложении 8.

Таблица 2.5.1

Параметры источников выбросов загрязняющих веществ в атмосферу на период эксплуатации

46

		парамет	ры ис	точни	ков выоросов загр			іх вещ	еств в	armod	сферу на пер	иод экс	шлуатаці	ии	
		Источники выделения		Число	Наименование			Высо			тры газовозд.смес	еи на	Коорди	наты на кар	те-сх
Про		загрязняющих вещест	В	часов	источника выброса		мер	та		выходе	из ист.выброса				
	Цех		1	рабо-	вредных веществ	ист		источ	устья		T		точ.ист,/1кс		второго
одс		Наименование	Ко-	ТЫ		выб	выб-	ника	трубы		объем на 1	тем-	линейного	источ	лин.ист
TBO			лич	В		po-	poca	выбро		рость	трубу, м3/с	пер.	371	X71	37.0
1	2	2	ист	год		ca 7	0	са,м	M	M/C	10	oC	X1	Y1	X2
1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16
			l			l	I Плог	I цадка	l		I		ı		
	I		Ī	Ī		I	11,101	цадка	Ī	Ī	I				
001		Генератор дизельный	1	80	Труба	1	0001	2.5	0.05	0.86	0.0016886	150.0	38	-3	
001		Труба котельной	1	1376	Труба котельной	1	0002	12	0.325	0.86	0.0713438	150.0	45	1	

Продолжение таблицы 2.5.1

еме,м	Наименование газоочистных	Вещества по котор.	Средняя эксплуат	Код ве-	Наименование	Выбросы	загрязняющих	веществ	Год дос-
конца очника	установок и мероприятий по сокращению	производ. г-очистка к-т обесп	степень очистки/ max.cтеп	ще-	вещества	г/с	мг/м3	т/год	тиже ния ПДВ
Y2 17	выбросов 18	газоо-й % 19	очистки% 20	21	22	23	24	25	26
17	16	19	20	21	22	23	24	23	20
				0301	Азот (IV) оксид	0.0125		0.03	2027
				0304	(Азота диоксид) Азот (II) оксид (Азота оксид)	0.01625		0.039	2027
					Углерод черный Сера диоксид	0.002083 0.00417		0.005 0.01	2027 2027
					(Ангидрид сернистый) Углерод оксид Проп-2-ен-1-аль	0.01042 0.0005		0.025 0.0012	2027 2027
				1325 2754	(Акролеин) Формальдегид Углеводороды предельные С12-19/в	0.0005 0.005		0.0012 0.012	2027 2027
					пересчете на суммарный органический углерод/				
				0301	Азот (IV) оксид (Азота диоксид)	0.03166		0.156857	2027
				0304	Азот (II) оксид (Азота оксид)	0.00514		0.025489	2027
					Углерод черный Сера диоксид	0.00253 0.059		0.012545 0.295058	2024 2027
				0337	(Ангидрид сернистый) Углерод оксид	0.0014		0.0069	2027

Продолжение таблицы 2.5.1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001		Резервуар для дизтоплива	1	1376	Труба	1	0003	2	0.1	0.64	0.0050266	24.3	24	2	
001		Вентиляционная установка	1	2112	Труба	1	0004	2	0.05	0.52	0.001025	24.3	20	20	
001		Автостоянки для автобусов	1	2112	Неорганизованный источник	1	6001	2				24.3	29	17	

Продолжение таблицы 2.5.1

17	18	19	20	21	22	23	24	25	26
				0333	Сероводород	0.00000121		0.0055	2027
				2754	Углеводороды	0.0005222		0.0197	2027
					предельные С12-19 /в				
					пересчете на				
					суммарный				
					органический углерод/				
				0301	Азот (IV) оксид	0.0000822		0.001344	2027
					(Азота диоксид)				
				0304	Азот (II) оксид	0.0000134		0.0002184	2027
					(Азота оксид)				
				0330	Сера диоксид	0.0000216		0.000357	2027
					(Ангидрид сернистый)				
				0337	Углерод оксид	0.01089		0.1665	2027
				2704	Бензин (нефтяной,	0.001174		0.0177	2027
					малосернистый)/в				
					пересчете на углерод/				
				0301	Азот (IV) оксид	0.003776		0.0295	2027
					(Азота диоксид)				
				0304	Азот (II) оксид	0.000614		0.0048	2027
					(Азота оксид)				
					Углерод черный	0.0001358		0.001042	
				0330	Сера диоксид	0.000707		0.00546	2027
					(Ангидрид сернистый)				
					Углерод оксид	0.00947		0.0775	2027
				2732	Керосин	0.00418		0.0338	2027

49

Продолжение таблицы 2.5.1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
001		Автостоянки для фур	1		Неорганизованный источник	1	6002	2				24.3	44	3	1
001		Карантинная зона	1		Неорганизованный источник	1	6003	2				24.3	37	26	1

Продолжение таблицы 2.5.1

17	18	19	20	21	22	23	24	25	26
1				0301	. , , , , , , , , , , , , , , , , , , ,	0.000958		0.0001584	2027
					(Азота диоксид)				
				0304	Азот (II) оксид	0.0001556		0.0000258	2027
					(Азота оксид)				
						0.0001079		0.0000172	2027
				0330	Сера диоксид	0.0001998		0.0000328	2027
					(Ангидрид сернистый)				
						0.002241		0.0003613	2027
				2732	Керосин	0.0003374		0.0000539	2027
1					. , , , , , , , , , , , , , , , , , , ,	0.001091		0.003936	2027
					(Азота диоксид)				
					()	0.0001773		0.00064	2027
					(Азота оксид)				
					· · · · · · · · · · · · · · · · · · ·	0.0000842		0.000337	2027
				0330	- · F · · · · · · · · · · · · · · · · ·	0.0003017		0.00108	2027
					(Ангидрид сернистый)				
					Углерод оксид	0.00271		0.00928	2027
				2732	Керосин	0.000964		0.00309	2027

Максимальные приземные концентрации и перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы в период эксплуатации, приведены в таблице 2.5.2.

Максимальные приземные концентрации и перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы на период эксплуатации

Таблица 2.5.2

Наименование вещества	максим приз концен	етная иальная емная трация,	наибольш максим	и, дающие ий вклад в альную трацию	Принадлежность источника	
	в жилой зоне	на границе СЗЗ	номер ист- ка на карте- схеме	% вклада	(цех, участок)	
1	2	3	4	5	6	
	Группы суммаций					
Азот (IV) оксид, сера диоксид	-	- 0,8284		100	Дымовая труба	

Анализ результатов расчетов рассеивания показал, что максимальные приземные концентрации загрязняющих веществ в расчетных точках (на границе СЗЗ), создаваемые при эксплуатации проектируемого объекта, находятся в пределах гигиенических нормативов качества атмосферного воздуха (ПДК).

2.6 Внедрение малоотходных и безотходных технологий, а также специальные мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух, обеспечивающие соблюдение в области воздействия намечаемой деятельности экологических нормативов качества атмосферного воздуха или целевых показателей его качества

Сокращение объемов выбросов и снижение их приземных концентраций обеспечивается комплексом планировочных и технологических мероприятий. Планировочные мероприятия, влияющие на уменьшение воздействия выбросов предприятия на жилые районы, предусматривают благоприятное расположение предприятия по отношению к селитебной территории.

Осуществление регулярного полива водой зоны движения строительных машин и автотранспорта в летний период позволить уменьшить воздействие выбросов на атмосферный воздух.

2.7 Обоснование размера санитарно-защитной зоны

В соответствии с санитарными правилами [Л.4], с целью обеспечения безопасности населения, уменьшения воздействия производственного объекта на атмосферный воздух (химического, биологического, физического) до значений, установленных гигиеническим нормативом, устанавливается санитарно-защитная зона (СЗЗ). По своему функциональному назначению СЗЗ является защитным барьером, обеспечивающим уровень безопасности населения при эксплуатации объекта в штатном режиме.

Размеры СЗЗ для проектируемых объектов устанавливаются на основе классификации и обосновываются расчетами рассеивания загрязнения атмосферы.

СЗЗ устанавливается вокруг объектов, являющихся объектами (источниками) воздействия на среду обитания и здоровье человека. Объектами (источниками) воздействия на среду обитания и здоровье человека являются объекты, для которых уровни создаваемого загрязнения за пределами территории (промышленной площадки) объекта превышают 0,1 предельно-допустимую концентрацию (далее – ПДК) и (или) предельно-допустимый уровень (далее – ПДУ) или вклад в загрязнение жилых зон превышает 0,1 ПДК.

Исходя из расчетов выбросов ЗВ на период эксплуатации объекта и расчетов рассеивания, объект не классифицируется, так как нет в перечне санитарных правил и уровни не превышают 0,1 предельно-допустимую концентрацию (далее – ПДК) и (или) предельно-допустимый уровень (далее – ПДУ) или вклад в загрязнение жилых зон не превышает 0,1 ПДК.

Строительно-монтажные работы по санитарной классификации не классифицируются. На период СМР СЗЗ не устанавливается.

Минимальные размеры СЗЗ объектов устанавливаются в соответствии с Приложением 1 к Санитарным правилам от 11.01.2022 года №КР ДСМ-2.

Пропускной путь «Тажен» не является производственным объектом, его можно отнести к объектам транспортной инфраструктуры.

Так, согласно пп.7 п.48 раздела 11 (Сооружения санитарно-технические, транспортной инфраструктуры, установки и объекты коммунального назначения, торговли и оказания услуг) Приложения 1 к Санитарным правилам «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденным приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2, стоянки (парки) грузового междугородного автотранспорта относятся к IV классу с СЗЗ 100 м.

Ближайшая жилая зона расположена в юго-западном направлении на расстоянии более 979 м – аул Тажен. Селитебная территория представляет собой частные жилые дома.

Так как пункт пропуска является режимным объектом, согласно карте ЕГКН (Публичная кадастровая карта), в юго-восточной части ближайшие земельные участки оформлены под размещение и обслуживание автомобильной дороги. На севере и юге от объекта имеется свободная территория, пустырь. На востоке от территории проходит граница с Узбекистаном, через центр участка проходит автодорога на таможню.

2.8 Количество выбросов загрязняющих веществ в атмосферу для заполнения декларации о воздействии на окружающую среду для объектов III категории

В соответствии с пунктом 11 статьи 39 ЭК РК нормативы эмиссий не устанавливаются для объектов III и IV категорий.

В соответствии с пп.2 п.2 ст.88 ЭК РК, государственная экологическая экспертиза в отношении проектной документации по строительству и (или) эксплуатации объектов III категории при подготовке декларации о воздействии на окружающую среду, организуется и проводится местными исполнительными органами областей, городов республиканского значения, столицы.

На основании результатов расчета рассеивания в приземном слое атмосферы составлен перечень загрязняющих веществ, выбросы которых представлены в

таблице 2.8.1. В общее количество декларируемых выбросов не входят выбросы, от строительных машин и транспортных средств не включены.

При погрузочно-разгрузочных работах инертных материалов, земляных работах происходит выделение пыли неорганической в пересчете на пыль неорганическую с содержанием SiO2 70-20% (ист.6001).

При проведении сварочных работ используются сварочные электроды. При этом в атмосферу неорганизованно выделяются такие загрязняющие вещества железо оксид, марганец и его соединения, фтористые газообразные соединения, пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%, фториды неорганические плохо растворимые, азота (IV) оксид, углерода оксид (ист. 6002).

При газовой резки металлов в атмосферу выделяются следующие загрязняющие вещества: азота (IV) диоксид, марганец и его соединения, оксиды железа и оксид углерода (ист.6003).

При проведении окрасочных работ в атмосферу неорганизованно поступают бутилацетат, диметилбензол, пропан-2-он (ацетон), метилбензол (Толуол), уайтспирит, масло минеральное, бутан-1-ол (Спирт н-бутиловый), 2-Метилпропан-1-ол (спирт изобутиловый) и др. (ист.6004).

Для получения электричества будет применяются компрессоры передвижные и передвижная электростанция, до 4 кВт, с двигателем внутреннего сгорания. При работе которой будут выделяться: азота (IV) диоксид, азота (II) оксид, бенз(а)пирена, серы диоксид, углерода оксид, углеводородов предельных С12-С19, углерода и формальдегида. (ист.6007, 6008)

Для обработки материалов на строительной площадке используется шлифовальная машина с кругом Ø 175 мм. При этом в атмосферу неорганизованно поступают: пыль абразивная, взвешенные вещества (ист.6009).

Для гидроизоляционных работ используют битумы разных марок. Разогрев и нанесение битума (ист. 6010, 6011)

Для обработки металла на строительной площадке используется сверлильный станок. При этом в атмосферу неорганизованно поступают: взвешенные вещества (ист. 6012)

Для паяльных работ на площадке используется припой ПОС30,40. При этом в атмосферу поступают: свинец и его неорганические соединения, олово оксид (в пересчете на олово) (ист.6013).

Для стыковки и соединения полиэтиленовых труб используется агрегат для сварки. При этом в атмосферу неорганизованно поступают: хлорэтилен и углерод оксид (ист. 6014).

Таблица 2.8.1 Декларируемое количество выбросов загрязняющих веществ от проектируемого объекта на период строительно-монтажных работ

Источник	Иомистополица полисотта	Выб	росы						
выбросов	Наименование вещества	г/с	т/год						
	2025-2026 гг								
6001	Пыль неорг. с содержанием SiO2 70-20%	0,028	0,61						
	Железо (III, II) оксид	0,008	0,046						
	Марганец и его соединения	0,0003	0,0075						
6002	Пыль неорганическая, содержащая двуокись кремния (SiO ₂) 70-20%	0,0001	0,0021						
	Фториды неорганические плохо растворимые	0,0003	0,0003						
	Фтористые газообразные соединения	0,0006	0,0007						
	Азота (IV) оксид	0,0003	0,0003						
	Углерода оксид	0,003	0,003						

Раздел охрана окружающей среды «Модернизация и техническое дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов Республики Казахстан». Пункт пропуска «Тажен» ДГД по Мангистауской области. Корректировка.

	Азота (IV) диоксид	0,018	0,047
	Железо (II, III) оксиды	0,036	0,094
6003	Марганец и его соединения	0,001	0,001
	Углерод оксид	0,018	0,046
	взвешенные частицы	0,026	0,14
	Бутилацетат	0,010	0,02
	Диметилбензол (смесь -о, -м, -п изомеров)	0,046	0,9512
	Пропан-2-он (ацетон)	0,022	0,0440
	Метилбензол (Толуол)	0,053	0,10512
5004	Уайт-спирит	0,074	0,6039
6004	масло минеральное	0,006	0,038
	Бутан-1-ол (Сирт н-бутиловый)	0,007	0,000220
	Этанол (Спирт этиловый)	0,011	0,00004
	2-Этоксиэтанол	0,005	0,00002
	2-Метилпропан-1-ол (спирт изобутиловый)	0,005	0,0002
	Углеводороды предельные С12-С19	0,019	0,140
	Азота (IV) диоксид	0,048	0,307
	Азот (II) оксид	0,008	0,05
	Бенз(а)пирен	0,0000001	0,0000005
500 5	Сера диоксид	0,006	0,040
6007	Углерод оксид	0,042	0,268
	Углеводороды предельные С12-С19	0,021	0,134
	Углерод	0,004	0,027
	Формальдегид	0,001	0,005
	Азота (IV) диоксид	0,009	0,012
	Азот (II) оксид	0,001	0,00195
	Бенз(а)пирен	0,00000001	0,0000000190
6000	Сера диоксид	0,001	0,0016
6008	Углерод оксид	0,008	0,01
	Углеводороды предельные С12-С19	0,004	0,005
	Углерод	0,001	0,001
	Формальдегид	0,0002	0,00021
6000	Взвешенные частицы (пыль металлическая)	0,004	0,010
6009	Пыль абразивная	0,003	0,007
6010	Углеводороды предельные С12-С19	0,009	0,001
6011	Углеводороды предельные С12-С19	0,004	0,015
6012	Взвешенные частицы (пыль металлическая)	0,0004	0,0003
6013	Свинец и его неорг. соединения	0,001	0,00002
0013	Олово оксид (в пересчете на олово)	0,001	0,00001
6014	Углерод оксид	0,000007	0,000009
0014	Хлорэтилен	0,000003	0,0000039

Так как эксплуатация проектируемого объекта относится к объектам IV категории (п.13 гл.2 Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду от 13 июля 2021 года № 246) нормативы предельно допустимых выбросов и декларация о воздействии на окружающую среду настоящим проектом не рассматриваются.

2.9 Мероприятия по уменьшению выбросов в атмосферу

Сокращение объемов выбросов и снижение их приземных концентраций обеспечивается комплексом планировочных и технологических мероприятий. Планировочные мероприятия, влияющие на уменьшение воздействия выбросов

предприятия на жилые районы, предусматривают благоприятное расположение предприятия по отношению к селитебной территории.

Охрана атмосферного воздуха в период строительства связана с выполнениемследующих мероприятий:

- регулирование двигателей всех используемых строительных машин, механизмов и автотранспортных средств на минимальный выброс выхлопных газов;
 - не допускается стоянка машин и механизмов с работающими двигателями;
- использование для технических нужд строительства (разогрев материалов, подогрев воды и т. д.) электроэнергии, взамен твёрдого и жидкого топлива;
- применение для хранения, погрузки и транспортировки сыпучих, пылящих и мокрыхматериалов в контейнеры, специальных транспортных средств;
- осуществление регулярного полива водой зоны движения строительных машин и автотранспорта в летний период.

2.10 Мероприятия на период неблагоприятных метеорологических условий (НМУ)

Уровень загрязнения приземных слоев атмосферы во многом зависит от метеорологических условий. В некоторых случаях метеорологические условия способствуют накоплению загрязняющих веществ в районе расположения объекта, т.е. концентрации примесей могут резко возрасти. Для предупреждения возникновения высокого уровня загрязнения осуществляются регулирование и кратковременное сокращение выбросов загрязняющих веществ.

Неблагоприятными метеорологическими условиями при проектируемых работах могут быть:

- штиль,
- температурная инверсия.

Регулирование выбросов осуществляется с учетом прогноза НМУ на основе предупреждений со стороны Казгидромета о возможном опасном росте в воздухе концентраций примесей вредных химических веществ из-за формирования неблагоприятных метеоусловий.

Прогноз наступления НМУ и регулирование выбросов являются составной частью комплекса мероприятий по обеспечению чистоты воздушного бассейна.

Исходя из специфики работ, в период НМУ предусмотрены три режима работы:

Первый – носит организационно-технический характер и не приводит к снижению производительности.

Второй – предусматривает сокращение выбросов ЗВ на 20–40 % за счет сокращения производительности производства:

- усиление контроля за всеми технологическими процессами;
- ограничение движения и использования транспорта на территории предприятия согласно ранее разработанных схем маршрутов;
- проверку автотранспорта на содержание загрязняющих веществ в выхлопных газах.
 - сокращение объемов погрузочно-разгрузочных работ.

Третий – предусматривает сокращение выбросов вредных веществ на 50 % и более:

— ограничение на 50 % работ, связанных с перемещением грунта на площадке, остановка работы автотранспорта и механизмов;

- прекращение погрузочно-разгрузочных работ;
- ограничение строительных работ вплоть до полной остановки.
- запрещение погрузочно-разгрузочных работ, отгрузки сыпучего сырья, являющихся источниками загрязнения;
- остановку пусковых работ на аппаратах и технологических линиях, сопровождающихся выбросами в атмосферу;
- запрещение выезда на линии автотранспортных средств с не отрегулированными двигателями.

3 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ВОДНЫЕ РЕСУРСЫ

3.1 Потребность в водных ресурсах для намечаемой деятельности на период строительства и эксплуатации, требования к качеству используемой воды

Водопотребление и водоотведение объекта на период строительства

Для нужд рабочих-строителей предусматривается использовать временную базу.

Хозяйственно-питьевые нужды.

Водоснабжение бытовых помещений базы осуществляется привозной водой.

Потребление хозяйственно-питьевой воды, исходя из требований СП РК 4.01-101-2012, рассчитывалось по норме 25 л в смену на одного работника.

Источники водопотребления	Норма водопотребления	Исходные данные	Количество рабочих дней	Расход воды, м ³			
Период СМР							
Хозбпитьевые нужды рабочих	3 л/сутки	126 человек	147	55,566			
Всего:				55,566			

Всего потребность на хозбытовые нужды на весь период строительномонтажных работ составит **55,566** \mathbf{m}^3 .

Производственные нужды. Согласно ресурсной ведомости, расход технической воды на производственные нужды в период проведения строительномонтажных работ составит **2 531 м3**. Техническая вода используется привозная по договору.

Расход воды питьевого качества составит **381,86 м3.** Вода используется привозная, для промывки водопрровода и т.д.

Водоотведение. От жизнедеятельности рабочих образуются фекальные сточные воды. Сбор фекальных стоков предусмотрен в водонепроницаемые съемные контейнеры туалетов.

Вывоз стоков предусматривается ассмашинами на очистные сооружения по договору.

Сточные воды в своем составе будут содержать загрязняющие вещества, характерные для стоков этой категории - органические загрязнения (БПК), нитраты, нитриты, азот аммонийный, фосфаты, сульфаты, хлориды, взвешенные вещества.

Расчет общего водопотребления и водоотведения на этапе проведения работ

			Водопотре	бление, в	м3/пер			Водоотведение, м3/пер					
		На производственные нужды			На Гозрозр		Объем	Произв					
Производство		Свеж	вежая вода		Повт	11а хозяйст	Безвозв		воды повторно	одствен ные сточные воды	Хозяйствен но бытовые сточные воды		
Производство	Всего	Всего	В т.ч. питьевого качества	Обор отна я вода	орно испо льзуе мая	венно бытовы	ратное потребл ение Всего	Примечание					
Хозяйственно- питьевые нужды	55,566	-	-	-	-	55,566	-	55,566	-	-	55,566	-	
Технические нужды	2912,86	2 531	381,86	-	-	-	2912,86	-	-	-	-	-	
Итого	2968,426	2 531	381,86	-	-	55,566	2912,86	55,566	-	-	55,566	-	

Водопотребление и водоотведение на период эксплуатации

Проект наружных сетей водопровода и канализации выполнен согласно техническим условиям, выданных ТОО "Темиржолсу-Алматы" N 115 от 12.03.2021г. Проект выполнен в соответствии с CH PK 4.01-03- 2013, СНиП 2.07.01-89, СН PK 4.01-03-2011, CH PK 4.01-05-2002.

Водоснабжение пункта пропуска решается от существующих сетей водопровода Фу100мм. При аварии на магистральном водопроводе или при недостатке напора в сети, водоснабжение решается от 2-х резервуаров хоз. питьевой воды емк. 50 м3. Забор воды из резервуаров осуществляется насосами, установленными в насосной станции.

В насосной станции по истечении 48 часов производить включение одного насоса в установке повышения давления, для замены воды в резервуарах питьевой воды.

Отвод стоков от зданий решается на канализационные очистные сооружения КОС, с последующей очисткой. Сеть бытовой канализации принята из двухслойных гофрированных труб "Корсис" SN 10, Φ 160, 200мм. и укладывается на естественное уплотненное основание с песчаной подготовкой 100 мм. Протяженность сетей самотечной канализации составляет-526м.

Отвод дренажных стоков от транспортных весов решается в дренажные колодцы с последующей откачкой.

Сети ливневой канализации не проектируются. Отвод ливневых вод решается по рельефу за пределы площадки.

Полив зеленых насаждений решается от резервуаров воды переносным центробежным насосом очишенной водой после КОС.

Наименование	Потреб ный		Расчётн	ый расхо	Установленна я мощность	Пр име	
системы	напор на вводе, мвод. ст.	м3/с	м3/ч ас	л/с	При пожа ре л/с	электро- двигателей, кВт	чан ие
Водопровод хозяйственно- питьевой В1	16,9 х. п. 23,8 пож	1,68	1,12	0,61			
в т.ч. Т3			0,57	0,34			
Водопровод В2					2x2,		
Бытовая канализация К1		1,68	1,12	2,21			

3.2 Поверхностные воды

Водный объект – Каспийское море расположено в западном направлении на расстоянии более 179 км.

Площадка строительства расположена вне водоохранной зоны и полос.

Производственные процессы, происходящие на территории предприятия, не приводят к загрязнению поверхностных и подземных вод.

Раздел охрана окружающей среды

Технологические процессы строительства объекта не оказывают влияния на поверхностные и подземные воды территории.

В результате строительства объекта загрязнения подземных, грунтовых вод не предвидится.

Технологические решения, предусмотренные проектом, направлены на обеспечение безопасной эксплуатации объекта.

Предусмотренные технологические операции и меры безопасности значительно снижают риск возникновения аварийных ситуаций и, соответственно, загрязнение подземных вод.

3.3 Подземные воды

Подземные воды научастке проектирования до глубины проведенных изысканий изыскательскими инженерно-геологическими выработками на глубине (H=5,0м) не вскрывались.

Негативные инженерно-геологические процессы и явления: затопление заболачивание, карст, провалы земной поверхности деформации пучения грунтов, способные осложнить условия реконструкции данного объекта, в границах данной площадки - не отмечаются

В результате строительно-монтажных работ объекта загрязнения подземных, грунтовых вод не предвидится.

Подземные воды района подпитываются атмосферными осадками, поверхностные водотоки в питании подземных вод участия не принимают.

Технологические решения, предусмотренные проектом, направлены на обеспечение безопасной эксплуатации объекта.

При строительных работах изъятие воды из подземных источников для технических и хозяйственных нужд не планируется. Воздействие на подземные воды не предполагается.

3.4 Мероприятия по охране и рациональному использованию водных ресурсов

При реконструкции за расчетную продолжительность строительства проектом предусматриваются водоохранные мероприятия по снижению рисков загрязнения водно-земельных ресурсов:

- 1. Обеспечение питьевой и технической привозной водой.
- 2. Отвод хозяйственно-бытовых стоков осуществляется в биотуалеты, обслуживаемые специализированной фирмой.
- 3. Применение исправных механизмов и техники, исключающих утечку топлива и масел.
- 4. Ремонт и техосблуживание строительной техники производится на производственных базах подрядчика или субподрядных организаций.
- 5. Исключить размещение складов ГСМ, мест временного хранения отходов и отстой строительной техники в водоохранной полосе.
- 6. Проезд строительной техники производить по дороге, имеющей твердое покрытие.

7. Ha завершающей стадии строительства переходом cэтап на рекультивации выводить используемую технику за пределы площадок строительства.

К мероприятиям, направленным на предотвращение (снижение) загрязнения водных ресурсов и их рациональное использование при эксплуатации относятся:

- вывоз сточных вод из выгреба специально оборудованным транспортом на очистные сооружения;
- сбор и накопление отходов производства и потребления в специально оборудованных местах;
- сбор отходов в герметичные контейнеры, ящики, установленные на площадках с твердым покрытием;
 - учет расхода воды приборами учета.

Контроль за соблюдением природоохранного законодательства Республики Казахстан на строящемся объекте возлагается на ответственного производителя работ, назначенного руководством подрядной организации.

4 ОЦЕНКА ВОЗДЕЙСТВИЯ НА НЕДРА

Недра — часть земной коры, расположенная ниже почвенного слоя либо с выходами полезных ископаемых на поверхность, а при отсутствии почвенного слоя - ниже земной поверхности и дна морей, озер, рек и других водоемов, простирающаяся до глубин, доступных для проведения операций по недропользованию с учетом научно-технического прогресса.

Наличие минеральных и сырьевых ресурсов в зоне воздействия намечаемого объекта

Минеральные и сырьевые ресурсы в зоне воздействия планируемого объекта отсутствуют.

Потребность объекта в минеральных и сырьевых ресурсах

Сырьевыми ресурсами для обеспечения работы является топливо (дизель и бензин). Объемы топлива определяются на стадии ППР и настоящим проектом не рассматриваются. Приобретение топлива планируется осуществлять на близь лежащих АЗС.

Прогнозирование воздействия добычи минеральных и сырьевых ресурсов на различные компоненты окружающей среды и природные ресурсы

Добыча минеральных и сырьевых ресурсов проектом не предусмотрены.

Обоснование природоохранных мероприятий по регулированию водного режима и использованию нарушенных территорий.

Мероприятий по регулированию водного режима и использованию нарушенных территорий проектом не предусмотрено, в виду отсутствия воздействия на них. Объект не оказывает воздействие и не использует недра в ходе своей производственной деятельности.

5 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЗЕМЕЛЬНЫЕ РЕСУРСЫ И ПОЧВЫ

5.1 Характеристика современного состояния почвенного покрова

Район изысканий – участок территории расположенный приблизительно в 80 км к югу от пос. Бейнеу, Мангистауской области Республики Казахстан.

Территория выполненных работ представляет собой участок размерами 200х200м. Участок выполненных работ – застроенный.

Местность представляет собой слабоволнистую равнину с абсолютными отметками 10—30 м. Постоянные водотоки и водоёмы отсутствуют.

Растительность пустынная, разреженная. Климат резко континентальный, крайне засушливый.

В целом почвы характеризуются низким уровнем естественного плодородия вследствие малого содержания гумуса, слабой обеспеченности элементами питания растений, неблагоприятных водно-физических свойств, засоленности и не могут быть использованы в земледелии.

Инженерно-геологические условия участка

В геолого-литологическом строении участка площадок с поверхности по глубине получили распространение следующие разновидности грунтов:

- техногенные современные отложения (tQ1V);
- делювиально пролювиальные среднечетвертичные-современные отложения (dpQ11-1V);
- аллювиально-пролювиальные средне-верхнечетвертичные отложения (aQ11-111);
 - скальные коренные породы палеозоя (PZ).

По результатам выполненных инженерно-геологических изысканий скважинами с поверхности вскрывались:

— в пределах площадки мелкосопочника: дресвяно-щебенистые заглинизированные отложения мощностью 0,40-0,50м, замещаемые суглинком с включением дресвы и щебня до 30-40% мощностью до 3,8-4,0м. Отложения подстилаются скальными породами палеозоя с развитой в зоне гипергенеза — экзогенного выветривания, корой выветривания. Породы коры выветривания представлены разрушенными до состояния дресвы и щебня исходными материнскими породами, сцементированными суглинком и глиной.

В понижениях рельефа площадки с поверхности получили распространение суглинки тяжелые, тугопластичные с включением обломочного материала в виде дресвы и щебня от 15 до 30-40%, участками с поверхности суглинки гумусированные с корнями растений.

На отдельных участках с поверхности развиты насыпные отложения, представленные смесью навала земли и суглинка.

В разрезе отложений, слагающих площадку, выделяются 2 основных, выдержанных по мощности, инженерно-геологических элемента (ИГЭ), обладающих различными строительными свойствами.

Первый ИГЭ - суглинок делювиально-пролювиальный (dpQ11-111), серовато- коричневого и желтовато-серого цвета с включением щебня и дресвы от $20\ \text{до}\ 40\%$.

В подошвенной части суглинок фациально замещается на дресвянощебнистые отложения, умеренно заглинизированные до 20-30%.

Гранулометрический состав обломочного материала в суглинках приводится в таблице.

Гранулометрический состав обломочного материала в суглинках

Наименование и размер фракций, мм	Содержание фракций, в %
Щебень (10-12)	31,5
Дресва (2,5-3,0)	27,3
Песок мелкий (0,1-0,25)	2,7
Глинистые частицы (<0,1)	38,5
Количество определений	42

Показатели физических свойств суглинков приведены в таблице. Физические свойства суглинков

№ <u>№</u> п/п	Наименова- ние показателей	Ед изм.	максим значения	альные и иальные по пою	Норматив- ные- средние значения по	Коэффи- циент вариации	Кол-во определе- ний (комп-
			ОТ	до	слою		лекс)
1.	Естественная влажность	_	0,19	0,28	0,24	0.05	2
2.	Степень влажности	-	0.233	0.577	0.45	0.03	2
3.	Верхний предел пластичности	_	0.24	0.37	0.33	0.11	2
4.	Нижний предел пластичности	_	0.19	0.30	0.28	0.09	2
5.	Число пластичности	-	0,05	0.07	0.05	0.10	2
6.	Плотность грунта	г/см ³	1.44	1,76	1.52	0.13	2
7.	Плотность сухого грунта	г/см ³	1.29	1.62	1.33	0.08	2
8.	Плотность частиц грунта	г/см ³	2.67	2.72	2.71	0.12	2
9.	Пористость	%	43,1	52,6	50,6	0.05	2
10.	Коэффи- циент пористости	-	0.757	0,891	0,865	0.12	2

Консистенция суглинков тугопластичная, в условиях полного водонасыщения грунты слабопластичные.

Согласно ГОСТ РК 25100-2011 по нормативному значению числа пластичности и консистенции грунты классифицируются как суглинки средние.

Коэффициент фильтрации суглинков, определенный в лабораторных условиях, составляет 0.28-0.42 м/сут (3x10-6-4.9-6 м/с), среднее значение - 0.35 м/сут (4x10-6 м/с).

Механические свойства суглинков

Просадочность суглинков определялась по методу «2-х кривых» под бытовым давлением (Рб) и от дополнительных нагрузок к бытовому в 1; 2 и 3 кг/см2.

Согласно лабораторных определений коэффициента относительной просадочности суглинки от собственного веса (Рб) при замачивании

просадочности суглинки от сооственного всей (го) при зами просадочными свойствами не обладают (Esl=0,0075 < 0,01).

По величине относительной просадочности грунты на площадке также не дали просадку от внешних нагрузок в 1, 2 и 3 кгс/см2 +Рб. (Esl=0,0083-:-0,098 < 0,01). Согласно, ГОСТ 25100-2011 грунты 1 ИГЭ относятся к непросадочным.

Коэффициенты относительной просадочности суглинков приводятся в таблице.

Параметры свойств грунтов	Единица измерения	Средние значения по толще
Коэффициент относительной просадочности (Esl): при нагрузках: Рб (бытовое давление)	-	0.0075
Рб+1 кг/см ² Рб+2 кг/см ² Рб+3 кг/см ²		0.0083 0.0092 0.0098
Коэффициент сжимаемости	см ² /кг	0.016
Модуль деформации по данным компрессий	кг/см ²	42.0
Величина просадки	СМ	-
Полевой модуль деформации по графику Агишева	кг/см ²	132.0
Угол внутреннего трения	град.	220
Удельное сцепление	кгс/см2	0.20
Расчетное сопротивление	кгс/см2	1.8

Согласно СП РК 5.01-102-2013 грунты непросадочные. По величине сжимаемости, в соответствии с классификацией профессора Цытовича Н.И., грунты слабосжимаемые. Модуль деформации грунтов, определенный по данным компрессионных испытаний, составляет 4,2 МПа, при пересчете на полевой модуль деформации по графику Агишева И.А. – 13,2 Мпа.

Расчетное сопротивление суглинков до глубины 5,0м принимается равным Ro= 1,80 кгс/см2.

Тип засоленности суглинков: хлоридно-сульфатный. Реакция среды нейтральная. Согласно СНиП РК 2.01-19-2004, применительно для нормальной зоны влажности, содержанию хлоридов и сульфатов, степень агрессивного воздействия грунтов на бетонные и железобетонные конструкции для бетонов на обычном портландцементе по ГОСТ 10178 (содержание: по сульфатам - SO4-2 менее 500 мг/кг, по хлоридам - СІ — менее 400мг/кг) для бетона нормальной проницаемости марки W4, оценивается как неагрессивная.

По потере массы стального образца - стержня степень коррозионной активности грунта по отношению к углеродистой стали до глубины м оценивается как низкая ($< 2.0 \, \Gamma/\text{сут}$). Потеря массы стального стержня составляет 1,67-1,94 г/сут, средняя - 1,81 г/сут.

Результаты лабораторных определений коррозионной агрессивности грунтов

по отношению к углеродистой и низколегированной стали

	J - 1 - 1		<u> </u>		
№№ выработки	Глубина отбора	Удельное эл.	Средняя	Потеря массы	Оценка степени
	образца, м	сопротивление	плотность	стального	коррозионной
		грунта,	катодного тока,	образца, грамм,	агрессивности
		OM. M	А/м ²	мин- макс/средн.	
Скважины	1,0-5,0	14,5	0,26	1, 67-1,94	низкая
NºNº 1,2,3				1,81	

Коррозийная активность грунтов по отношению к свинцовой и алюминиевой

оболочке кабелей представлена в таблице.

№ сква	Глубин а	Содержание компо-		Коррози- Содержание			Коррозионная		
	отбора, м	нентов			онная				активность к
		1	1	NO - 3 %	Актив- ность к свинцо- вой(Рb)	рН		% %	аллюми- невой (Al) оболочке кабеля
1	0.3-2.0	8,7	0,014	0,002	высокая	8,7	0,032	<0,002	высокая
2	0.3-2.0	8,4	0,014	0,007	высокая	8,4	0,009	<0,002	высокая
3	0.3-2.0	8,3	0,014	0,003	высокая	8,5	0,031	<0,002	высокая

Агрессивность грунтов по отношению к свинцовой оболочке кабеля – высокая. Агрессивность грунтов по отношению к алюминиевой оболочке кабеля – высокая.

Второй ИГЭ - песчаники и аргиллиты палеозоя (PZ) грязно-серого и зеленовато-серого цвета, выветрелые и трещиноватые. В зоне гипергенеза до глубины 1,8 - 3,5м (кора выветривания) исходные материнские породы разрушены до состояния разборной скалы (расщепляются руками на мелкие фракции в виде щебня и дресвы), ниже породы более плотные и умеренно трещиноватые.

Расчетное сопротивление скальных грунтов коры выветривания до глубины 3,5 м оценивается: Ro = 2.0 кгс/cm2, ниже 3.5 м - Ro = 3.5 кгс/cm2.

5.2 Состояние и условия землепользования, земельный баланс территории

Участки производства работ находится в Мангистауской области Казахстана. Площадь земельного участка:

1. Кадастровый №: 13-196-012-532 - 5,7365 га

2. Кадастровый №: 13-196-014-460 - 2,5262 га.

Общая площадь участка, согласно гос актам - 8,2627 га

Показатели по генплану

Наименование	Ед. изм.	Количество
Площадь участка по гос акту	га	8.2627
Площадь участка для проектирования	га	7.1742
Площадь застройки	м2	6563.98
Площадь покрытия	м2	41801.95
Площадь озеленения	м2	23376.72

5.3 Характеристика ожидаемого воздействия на почвенный покров

На период строительно-монтажных работ на земельные ресурсы преимущественно будут оказываться механические воздействия, которые будут ограничены полосой прохождения работ, а также образующиеся отходы производства. Основные нарушения при выполнении работ будут связаны с работой техники и установок, сбором и хранением отходов.

Перед началом земляных работ производятся подготовительные работы, которые включают снятие и складирование плодородного слоя почвы. Снятый плодородный слой рекомендуется хранить во временных отвалах.

5.4 Мероприятия, предусмотренные для предотвращения (снижения) воздействия на земельные ресурсы

Для охраны земель от воздействия объекта необходимы следующие условия:

- соблюдение границ территорий, отводимых для строительства;
- оснащение рабочих мест строительной площадки инвентарными контейнерами для бытовых и строительных отходов.

Для уменьшения вредного воздействия на почву в период строительства предусматриваются следующие мероприятия:

- организация временных производственных баз, стоянок автомобильно-строительной техники и других временных объектов строительства в соответствии с требованиями охраны окружающей среды;
- недопущение захламления зоны строительства мусором, строительными отходами, ГСМ; своевременная уборка и благоустройство территорий после окончания строительства при этом рекомендуется контейнерная подача и хранение складируемых строительных материалов, организация слива отработанных масел и применение механизированной заправки строительных машин;
- запрещение передвижения строительной техники и транспортных средств вне подъездных и внутрипостроечных дорог;
- должны осуществляться также мероприятия по охране почв от ветровой и водной эрозии (засеивание многолетних трав)

Проведение технического этапа рекультивации предусматривается после окончания СМР. Земляные работы по рекультивации земель производятся только в летне-осенний период, снятый плодородный слой возвращается из временного отвала и наносится равномерно на рекультивируемую площадь, которая после уплотнения должна иметь ровную поверхность и благоустраивается.

Воздействие на почвенный покров при проведении основного комплекса проектируемых работ оценивается как допустимое.

5.5 Организация экологического мониторинга почв

Проведение производственного экологического контроля почв заключается в своевременном вывозе отходов, содержанием санитарно-эстетического состояния территории строительной площадки.

6 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ ОТХОДАМИ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

6.1 Виды и объемы образования отходов. Особенности загрязнения территории отходами производства и потребления (опасные свойства и физическое состояние отходов)

Отходами потребления называют остатки веществ, материалов, предметов, изделий, товаров (продукции или изделий), частично или полностью утративших свои потребительские свойства для использования по прямому или косвенному назначению в результате физического или морального износа в процессах общественного или личного потребления (жизнедеятельности), использования или эксплуатации.

Используемые отходы – отходы, которые используют в народном хозяйстве в качестве сырья (полуфабриката) или добавки к ним для выработки вторичной продукции или топлива как на самом предприятии, где образуются отходы, так и за его пределами.

Неиспользуемые отходы – отходы, которые в настоящее время не могут быть использованы, либо их использование экономически, экологически и социально нецелесообразно. Неиспользуемые отходы подлежат складированию, захоронению.

Опасными отходами являются те, которые содержат вредные вещества, обладающие опасными свойствами (токсичностью, взрывоопасностью, пожароопасностью, высокой реакционной способностью и т.д.) или содержащие возбудителей инфекционных болезней.

В результате намечаемой деятельности будут образовываться следующие отходы (период строительства):

- строительные отходы;
- отходы от сварки;
- отходы древесные;
- отходы, загрязненные ЛКМ,
- промасленная ветошь,
- твердые бытовые (коммунальные) отходы.

Общий предельный объем их образования отходов на период строительства составит -14,612 т/год, из них неопасных -12,575 т/год, опасных -2,037 т/год

На период эксплуатации образуются следующие виды отходов:

- твердые бытовые отходы;
- замазученный грунт.

Данные об объемах образования отходов, индексах опасности, токсичности, физическом состоянии, а также рекомендации по утилизации, захоронению приведены ниже. Индексы опасности отходов приняты в соответствии с «Классификатором отходов» [Л.19].

Период СМР

Строительные отходы

Данный вид отходов образуется при проведении демонтажных работ. Состоят из битого бетона, кирпичей, железобетонных конструкций и т.п.

Количество строительных отходов определено ресурсной сметой к рабочему проекту, а также исходя из объема работ по демонтажу согласно дефектному акту.

Объем образования строительных отходов составляет 8,675 тонн

Агрегатное состояние строительных отходов – твердое. По физическим свойствам отходы не растворимы в воде, непожароопасные, невзрывоопасные, некоррозионноопасные.

По химическим свойствам не обладают реакционной способностью. В своем составе имеют оксиды кремния, железа, алюминия, кальция, магния.

Сбор отходов будет предусмотрен в герметичном контейнере на территории стройплощадки. Согласно классификатору отходов, класс опасности – не опасный.

Продолжительность временного хранения отходов (накопления) согласно статье 320 Экологического Кодекса РК не более 6 месяцев.

Вывоз будет осуществляться по мере накопления, организацией, выполняющей строительно-монтажные работы по договору.

Загрязненная упаковочная тара из-под ЛКМ

Данный вид отходов представляет собой тара из-под ЛКМ (эмаль, мастика, грунтовка и т.д.), используемая для окраски и антикорозионного покрытия металлических конструкций, трубопроводов и т.д. при строительстве котельной и прокладке тепловых сетей.

Расход ЛКМ составит 18,4915328 т. ЛКМ поставляется в металлических банках по 1 кг, краска масляная и грунтовка битумная в металлических банках по 5 кг, лаки и эмали в металлических ведрах по 40 кг, мастика битумная и битумы нефтяные в металлических бочках по 200 кг.

Объем образования отходов загрязненной упаковочной тары из-под ЛКМ рассчитывается по формуле [Л.19]:

$$N = \sum M \times n + \sum M \kappa \times \alpha$$
, тонн

где: М – масса тары из-под краски, тонн;

n – количество тары, шт.;

Мк – масса краски в таре, т;

α – содержание остатков краски в таре, принимается равным 0,03 [Л.18].

Наименование отхода	М, тонн	п, шт.	Мк, тонн	α	N, тонн	
Тара объемом 5 кг	0,0005	384	1,9181858	0,03	0,25	
Тара объемом 40 кг	0,0013	42	1,6933116	0,03	0,11	
Тара объемом 200 кг	0,015	74	14,734	0,03	1,55	
Итого:						

По агрегатному состоянию отходы твердые, по физическим свойствам – нерастворимые в воде, непожароопасные, невзрывоопасные, коррозионноопасные.

По химическим свойствам – не обладают реакционной способностью. В своем составе содержат углеводороды (остатки ЛКМ), оксиды железа, кремния, алюминия.

Согласно классификатору отходов, класс опасности - опасный.

Продолжительность временного хранения отходов (накопления) согласно статье 320 Экологического Кодекса РК не более 6 месяцев.

Вывоз будет осуществляться по мере накопления, организацией, выполняющей строительно-монтажные работы по договору.

Отходы от сварки

Отходы образуются при сварочных работах и представляют собой огарки электродов. Расход электродов составил: 4272,703 кг.

Объем образования отходов от сварки определяется по [Л.19] и составляет:

$$N = M x \alpha, m/200$$

где: М – фактический расход электродов, т/год;

α – остаток электрода, принимается равным 0,015 от массы электрода.

Результаты расчетов сведены в таблицу:

Наименование отхода	М, тонн	α	N, тонн	
Отходы от сварки	4,272703	0,015	0,064	
Всего на период СМР:	0,064			

По агрегатному состоянию отходы твердые, по физическим свойствам – нерастворимые в воде, непожароопасные, невзрывоопасные, коррозионноопасные.

По химическим свойствам – не обладают реакционной способностью, основными токсичными компонентами отходов являются оксиды железа и марганца.

Отходы от сварки предусмотрено собирать в герметичный ящик на площадке строительства. Рекомендуется передавать на утилизацию в специализированное предприятие.

Согласно классификатору отходов, класс опасности – не опасный.

Продолжительность временного хранения отходов (накопления) согласно статье 320 Экологического Кодекса РК не более 6 месяцев.

Вывоз будет осуществляться по мере накопления, организацией, выполняющей строительно- монтажные работы по договору.

Промасленная ветошь

Отходы данного вида образуются в процессе обтирания рук рабочих. Расход ветоши составит 100,347 кг.

Объем образования промасленной ветоши рассчитывается по формуле [Л.19]:

$$N = M_0 + M + W$$
, TOHH

где: Мо – используемое количество ветоши, тонн,

M — норматив содержания в ветоши масел, тонн. Рассчитывается по формуле $M = 0.12 \ x \ Mo;$

W — норматив содержания в ветоши влаги, тонн. Рассчитывается по формуле $W = 0.15 \ x$ Mo.

Год СМР	Mo	M	\mathbf{W}	N
2025-2026	0,100347	0,012042	0,015052	0,127
Итого:				0,127

По агрегатному состоянию отходы твердые, по физическим свойствам – нерастворимые в воде, относятся к группе горючих материалов средней воспламеняемости, некоррозионноопасные.

По химическим свойствам – не обладают реакционной способностью. В своем составе отходы содержат углеводороды (целлюлоза, нефтепродукты), оксиды кремния.

Отходы предусмотрено собирать в ящики, установленные на площадке строительства в специально оборудованных местах.

По мере накопления отходы рекомендуется вывозить на специализированный полигон для размещения.

Согласно классификатору отходов, класс опасности - опасный.

Продолжительность временного хранения отходов (накопления) согласно статье 320 Экологического Кодекса РК не более 6 месяцев.

Вывоз будет осуществляться по мере накопления, организацией, выполняющей строительно- монтажные работы по договору.

Твердые бытовые (коммунальные) отходы

Данные отходы образуются от нужд рабочих, сухой уборки территории. Состоят из мелкой бумажной, полиэтиленовой упаковки, пищевых отходов, смета.

Объем образования отходов определен, исходя из норм образования ТБО, принятых по [Л.19], численности рабочих, фонда времени работы. Результаты расчетов приведены в таблице:

Наименование отхода	Норма образования, м ³ /год, тн/м ² год	Кол-во дней	Данные для расчета	Плотность отхода, т/м ³	Количество отходов, тонн
Твердые бытовые отходы	0,3	127	147	0,25	3,836
Итого на период СМР	3,836				

Объем образования твердых бытовых (коммунальных) отходов составит **3,836 тонн.**

По агрегатному состоянию отходы твердые, по физическим свойствам – в большинстве случаев нерастворимые в воде, пожароопасные, невзрывоопасные, некоррозионноопасные.

По химическим свойствам – не обладают реакционной способностью, содержат углеводороды (полимеры, целлюлоза), оксиды кремния, органические вещества.

Сбор отходов предусмотрен в герметичный контейнер, установленный возле бытового вагончика.

Согласно классификатору отходов, класс опасности – не опасный.

Продолжительность временного хранения отходов (накопления) согласно статье 320 Экологического Кодекса РК не более 6 месяцев.

Вывоз будет осуществляться по мере накопления, организацией, выполняющей строительно-монтажные работы по договору.

Период эксплуатации

Твердые бытовые (коммунальные) отходы

Данные отходы образуются от деятельности обслуживающего персонала котельной, сухой уборки складских и производственных помещений, прилегающих твердых покрытий. Состоят из мелкой бумажной, полиэтиленовой упаковки, пищевых отходов, смета.

Объем образования отходов определен, исходя из норм образования ТБО, принятых по [Л.18], численности рабочих, фонда времени работы.

Расчет объема образования отходов сведен в таблицу

Источник	Норма	Данные для	Количеств	Плотность	Количеств		
образования	образован	расчета	О рабочих	отходов,	о отходов, тонн		
отходов	ия отходов		дней	T/M^3			
Деятельность	0,3 м ³ /год	80	365	0,25	6		
персонала							
Итого					6		

По агрегатному состоянию отходы твердые, по физическим свойствам – в большинстве случаев нерастворимые в воде, пожароопасные, невзрывоопасные, некоррозионноопасные.

По химическим свойствам – не обладают реакционной способностью, содержат в своем составе углеводороды (полимеры, целлюлоза), оксиды кремния, органические вещества.

Сбор отходов предусмотрен в металлические контейнеры, установленных на твердом покрытии. Учет образования отходов будет вестись по количеству и объему наполняемых контейнеров.

По мере накопления отходы рекомендуется вывозить на специализированный полигон для размещения.

Согласно классификатору отходов, класс опасности – не опасный.

Расчет отходов замазученного грунта

Замазученный грунт образуется в результате возможного пролива нефтепродуктов при ремонте, заправке транспорта, при строительстве нефтяных скважин. Попадание нефти, ГСМ в почву возможно через неплотности оборудования, при проливе нефтепродуктов во время перекачки в емкости, при заправке дизельных установок. Для расчета использовались Правила разработки проектов нормативов образования и размещения отходов производства, Астана, 2005 г. (ранее РНД 03.1.0.3.01-96) п.2.7. Порядок расчета объемов образования нефтедобычи.

Расчет отходов замазученного грунта:

$$M = G*p$$

где:

G = S*h – объем образования отхода, м3;

S – площадь загрязненной территории, м2, S = 10 h – глубина проникновения нефтепродуктов в почву, м, h = 0,1 p – плотность образующегося отхода, т/м3, p = 1,37

$$M = 10*0,1*1,37 = 1,37$$
 mohh.

По агрегатному состоянию отходы твердые, по физическим свойствам – нерастворимые в воде, относятся к группе горючих материалов средней воспламеняемости, некоррозионноопасные.

По химическим свойствам – не обладают реакционной способностью. В своем составе отходы содержат углеводороды (нефтепродукты), оксиды кремния.

Отходы предусмотрено собирать в ящики, установленные на площадке в специально оборудованных местах.

По мере накопления отходы рекомендуется вывозить на спецпредприятие для размещения.

Согласно классификатору отходов, класс опасности - опасный.

Продолжительность временного хранения отходов (накопления) согласно статье 320 Экологического Кодекса РК не более 6 месяцев.

6.2. Рекомендации по управлению отходами: накоплению, сбору, транспортировке, восстановлению (подготовке отходов к повторному использованию, переработке, утилизации отходов) или удалению (захоронению, уничтожению), а также вспомогательным операциям: сортировке, обработке, обезвреживанию); технологии по выполнению указанных операций

Наименование отходов	код	Количе ство	Образование отходов	Мероприятия по утилизации отходов		
1	2	3	5	6		
			Период СМР			
			Неопасные отходы			
Строительные отходы	17 01 07 17 04 05	8,675	В ходе демонтажа механизма плотины	Временное хранение (не более 6-ти месяцев) на площадке строительства. Далее вывоз в специализированные организации по договору.		
Твердо-бытовые отходы	20 03 01	3,836	Санитарно-бытовое обслуживание рабочих	Временное хранение (не более 6-ти месяцев) в контейнерах, которые будут установлены на площадке, с последующим вывозом на ближайший полигон ТБО		
Огарки сварочных электродов	12 01 13	0,064	При проведении строительных работ	Временное хранение в контейнерах (не более 6 месяцев). Далее отходы будут сданы в специализированные пункты приема металлолома по договору		
	Ип	юго:		12,575		
			Опасные отходы			
Тара металлическая из- под краски	15 01 10*	1,91	При проведении покрасочных работ	Временное хранение (не более 6-ти месяцев) в специальном контейнере, на специально отведенных площадках вне помещений. Вывоз спецорганизациями по договору		
Промасленная ветошь	15 02 02*	0,127	Образуется в процессе использования тряпья для протирки механизмов, деталей, машин и обтирки рук	Сбор и накопление осуществляется в закрытых металлических емкостях, установленных в производственных помещениях с последующим сжиганием в котельной предприятия		
	Ип	юго:		2,037		
	Всего	, в т.ч.		14,612		
	отходы пр	оизводств	a	10,776		
	отходы по	требления	Я	3,836		

6.3 Виды и количество отходов производства и потребления (образовываемых, накапливаемых и передаваемых специализированным организациям по управлению отходами), подлежащих включению в декларацию о воздействии на окружающую среду

Декларируемое количество неопасных отходов производства и потребления на период СМР (III категория)

Наименование отходов	Количество образование,	Количество накопления,
	т/год	т/год
1	2	3
Твердо-бытовые отходы, 20 03 01	3,836	3,836
Строительные отходы, 17 01 01, 17 04 05	8,675	8,675
Отходы от сварки, 12 01 13	0,064	0,064

Декларируемое количество опасных отходов производства и потребления на период СМР (III категория)

Наименование отходов	Количество образование,	Количество накопления,			
	т/год	т/год			
1	2	3			
Загрязненная упаковочная тара изпод ЛКМ, 15 01 10*	1,91	1,91			
Промасленная ветошь, 15 02 02*	0,127	0,127			

Так как эксплуатация проектируемого объекта относится к объектам IV категории (п.13 гл.2 Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду от 13 июля 2021 года № 246) нормативы временного хранения отходов производства и потребления и декларация о воздействии на окружающую среду настоящим проектом не рассматриваются.

7 ОЦЕНКА ФИЗИЧЕСКОГО ВОЗДЕЙСТВИЯ

7.1 Оценка возможного теплового, электромагнитного, шумового, воздействия и других типов воздействия, а также их последствий

Одной из форм вредного физического воздействия на окружающую природную среду является шумовое воздействие. Под шумом понимается беспорядочное сочетание звуков различной частоты и интенсивности. Шумы по характеру спектра делятся на широкополосные с равномерным и непрерывным распределением звуковой энергии по всему спектру и тональный, если в звуковом спектре имеются легко различимые дискретные тона.

По величине частот (f) шумы делятся, %:

- ▶ на низкочастотные, если f<400 Гц;</p>
- ▶ на среднечастотные, если 500<f<1000 Гц;</p>
- ▶ на высокочастотные, если f> 1000 Гц.

От различного рода шума в настоящее время страдают многие жители городов, поселков, в том числе временных, находящихся вблизи промышленных объектов и на осваиваемых территориях. Для многих людей шум является причиной нервных расстройств, нарушения сна, головных болей, повышения кровяного давления, нарушения и потери слуха. Заболевание слухового аппарата может наступить при непрерывном шуме свыше 100 дБ. Поэтому оценка воздействия звукового давления на персонал, работающий на промышленных площадках и в быту, имеют важное экологическое и медико-профилактическое значение.

Источниками шума и вибрации являются дизельные двигатели, электромоторы, печи, насосы.

Производственный шум

Нормативные документы устанавливают определенные требования к методам измерений и расчетов интенсивности шума в местах нахождения людей, допустимую интенсивность фактора и зависимость интенсивности от продолжительности воздействия шума. В соответствии с нормами для рабочих мест в производственных помещениях считается допустимой шумовая нагрузка 80дБ. При производственных работах на открытой территории шумовые нагрузки будут зависеть от ряда факторов, включающих и выше названные.

Уровень шума на открытых рабочих площадках будет зависеть от расстояния до работающего агрегата, а также от того, где находится само работающее оборудование – в помещении или вне его, от наличия ограждения, положения места измерения относительно направленного источника шума, метеорологических и других условий.

Технологическое оборудование, предполагаемое к использованию, включает двигатели внутреннего сгорания, как основной источник производимого шума. Силовой агрегат включает дизельный двигатель по мощности сравнимый с двигателями устанавливаемыми на грузовых дизельных автомобилях $-160~\mathrm{kBt}$ и создающий шум до $90~\mathrm{д} \mathrm{G}(\mathrm{A})$.

Шумовое воздействие автотранспорта

Внешний шум автомобилей принято измерять в соответствии с ГОСТ 19358-85. Допустимые уровни внешнего шума автомобилей, действующие в настоящее

время, применительно к условиям строительных работ, составляют: грузовые автомобили с полезной массой свыше 3,5 т создают уровень звука - 89 дБ(A); грузовые -дизельные автомобили с двигателем мощностью 162 кВт и выше - 91 дБ(A).

Допустимый уровень звука на рабочих местах водителей и обслуживающего персонала тракторов самоходных шасси, прицепных и навесных сельскохозяйственных машин, строительно-дорожных и других аналогичных машин составляет 80 дБ(A).

Борьбу с шумом и вибрацией проводят путем своевременного профилактического ремонта оборудования, подтягивания ослабевших соединений, своевременной смазки вращающихся частей. Общий метод борьбы с вибрацией тяжелых машин — устройство под ними фундаментов, виброизолированных от пола и соседних конструкций.

Для индивидуальной защиты от шума проектом предусмотрено применение противошумных вкладышей, перекрывающих наружный слуховой проход; защитных касок с подшлемниками.

Воздействие электромагнитных полей

Интенсивность ЭМП на рабочих местах и местах возможного пребывания персонала, обслуживающего установки, генерирующие электромагнитную энергию, не должна превышать предельно допустимых уровней:

по электрической составляющей в диапазоне:

- 3 МГц 50 В/м;
- 3-30 МГц 20 В/м;
- 30-50 МГц -10 B/м;
- 50-300 МГп 5 В/м.

по магнитной составляющей в диапазоне частот:

- 60 κΓιμ-1,5 ΜΓιμ 5 A/m;
- 30 МГц-50 МГц -0,3 А/м.

Плотность потока энергии ЭМП в диапазоне частот 300 МГц-300 ГГц (СВЧ) следует устанавливать исходя из допустимого значения энергетической нагрузки на организм человека и времени пребывания в зоне облучения. Во всех случаях она не должна превышать $10~\rm BT/m2~(1000~mkBt/cm2)$, а при наличии рентгеновского излучения или высокой температуры (выше $28~\rm ^{\circ}C) - 1~\rm Bt/m2~(100~mkBt/cm2)$,

Максимально допустимая напряженность электрического поля в диапазоне C Y не должна превышать E Y = E Y диапазоне E Y = E Y д

Наиболее эффективной мерой защиты от воздействия ВЧ электромагнитных полей является использование дистанционного управления радиопередатчиками. При отсутствии дистанционного управления следует рационально размещать передатчики и элементы фидерных линий в специально предназначенных помещениях.

Защита от облучения электромагнитными полями обеспечивается проведением конструктивных и организационных защитных мероприятий, которые разрабатываются на основании расчетов и прогнозирования интенсивности ЭМП. Конструктивная защита обеспечивается рациональным размещением антенн радиопередающих устройств и радиолокационных станций и применением защитных экранов.

Для населения ОТ вредного воздействия защиты возможного электромагнитных полей от линий электропередач (ЛЭП) – использование метода защиты расстоянием, т.е. создание санитарно-защитной зоны, размеры которой обеспечивают предельно допустимый уровень напряженности поля в населенных местах. Наибольшее шумовое воздействие будет отмечаться на рабочих площадках (местах). Применение современного оборудования для всех технологических процессов, применяемые меры по минимизации воздействия шума и практическое отсутствие мощных источников электромагнитного излучения позволяют говорить о том, что на рабочих местах не будут превышаться установленные нормы. В связи с этим, сверхнормативное воздействие данных физических факторов на людей и другие живые организмы вблизи за пределами СЗЗ не ожидается.

7.2 Характеристика радиационной обстановки на площадке проектируемого объекта

Радиационный объект – объект либо структурное подразделение объекта, где осуществляется обращение с источниками ионизирующего излучения (пп.38 пункта 3 главы 1 СП № ҚР ДСМ-275).

Обращение с источниками ионизирующего излучения — деятельность, связанная с изготовлением, поставкой, получением, обладанием, хранением, использованием, передачей, переработкой или захоронением, импортом, экспортом, транспортированием, техническим обслуживанием источников ионизирующего излучения (пп.22 пункта 3 главы 1 СП № ҚР ДСМ-275).

Категория потенциальной радиационной опасности — характеристика объекта использования атомной энергии по степени его радиационной опасности для населения и (или) окружающей среды при обращении с ним или в условиях возможной аварии (пп.36 пункта 3 главы 1 СП № ҚР ДСМ-275).

В соответствии с параграфом 1 СП № ҚР ДСМ-275/2020, потенциальная радиационная опасность радиационных объектов определяется его возможным радиационным воздействием на население и персонала при радиационной аварии и устанавливает четыре категории:

- I категория радиационные объекты, при аварии на которых возможно их радиационное воздействие на население и потребуется ведение мероприятий по его радиационной защите;
- II категория радиационные объекты, радиационное воздействие которых при аварии ограничивается территорией санитарно-защитной зоны;
- III категория радиационные объекты, при аварии на которых радиационное воздействие ограничивается территорией объекта;
- IV категория радиационные объекты, при аварии на которых радиационное воздействие ограничивается помещениями, где проводятся работы с источниками излучения

Согласно РД-MP-026-11 при установлении категории радиационного объекта для определения масштабов возможного аварийного радиационного воздействия на различные категории облучаемых лиц используются следующие уровни (гигиенические нормативы) эффективных доз потенциального облучения:

- для персонала группы А 20 мЗв;
- для персонала группы Б 5 мЗв;
- для населения 1 мЗв.

В случае, когда за пределами санитарно-защитной зоны радиационного объекта при максимальной радиационной аварии возможно получение населением эффективной дозы потенциального облучения более 1,0 мЗв, объекту присваивается I категория.

Если радиационный объект не относится к I категории и в его санитарнозащитной зоне, которая не совпадает с территорией объекта, при максимальной радиационной аварии возможно получение хотя бы одной из категорий облучаемых лиц потенциального облучения, превышающего допустимые уровни эффективной дозы, при условии, что нахождение облучаемых лиц в этой зоне допускается установленным на объекте режимом посещения, то объекту присваивается II категория.

Если радиационный объект не относится к I либо II категории и на его территории вне помещений, где осуществляется непосредственное обращение с источниками ионизирующего излучения, при максимальной радиационной аварии возможно получение хотя бы одной из категорий облучаемых лиц потенциального облучения, превышающего допустимые уровни эффективной дозы, при условии, что, нахождение облучаемых лиц на территории объекта допускается установленным на объекте режимом посещения, то объекту присваивается III категория.

Всем остальным радиационным объектам присваивается IV категория потенциальной радиационной опасности.

Расчет радиационной защиты и категория радиационной опасности

В пункте пропуска установлено рентгеновское досмотровое оборудование Nuctech FS6000MKK+ (источник излучения – линейный ускоритель 6/3 МэВ).

Согласно техническим характеристикам оборудования:

уровень излучения на границах системы – не более 1 мкЗв/ч;

доза, поглощаемая грузом за одно сканирование – 10–30 мкЗв;

доза водителя за один проход – не более 0,1 мкЗв;

годовая эффективная доза персонала – не более 1 м3в;

годовая эффективная доза посторонних лиц – не более 0,1 мЗв.

В соответствии с результатами радиационного расчёта, выполненного в рамках разработки проекта, было определено, что для обеспечения соответствия нормативам требуется увеличение толщины защитной стены на 618 мм. Указанное проектное решение реализовано в конструктивной и архитектурной частях.

Принятое проектное решение (увеличение толщины защитной стены) обеспечивает, что санитарно-защитная зона данного ИДК ограничивается пределами здания и не распространяется за его границы.

Объект с ИДК Nuctech FS6000MKK+ отнесён к III категории потенциальной радиационной опасности. Принятые меры и проектные решения обеспечивают выполнение требований Приказа № ҚР ДСМ-275/2020 и исключают радиационную опасность для населения и окружающей среды.

8 ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНЫЙ МИР

8.1 Современное состояние растительного в зоне воздействия объекта. Характеристика факторов среды обитания растений, влияющих на их состояние

Растительный покров региона отличается рядом особенностей, которые обусловлены своеобразием суровых природных условий — засушливость климата, резкие колебания температуры, большой дефицит влажности и высокая засоленность почв. Характерная черта растительного покрова — однообразие преобладающих по площадям растительных сообществ и относительно небогатый состав сосудистых растений.

Современный растительный покров территории отражает все сложные процессы взаимосвязи растительности с другими компонентами ландшафтов (рельефом, почвами).

Видовой состав сообществ небогат. Наиболее полно видовое разнообразие растительности представлено весной.

На территории проведения работ редких и эндемичных растений внесенных в Красную книгу нет. В период строительства объекта, на рассматриваемым участке не будет проводиться вырубка существующих деревьев и кустарников.

Все мероприятия и работы по строительству данного объекта выполняются только в пределах отведенной территории и поэтому не могут оказывать существенного негативного воздействия на флору.

Строительство и эксплуатация объекта не приведет к нарушению условий развития растительного и животного мира, вырубке лесов, изменению гидрологического режима водных объектов, ухудшению путей миграции животных, уменьшению размеров популяций или вымиранию отдельных видов животных.

Исходя из вышесказанного, можно сделать вывод о том, что строительство объекта не окажет дополнительного воздействия на растительный мир района.

Учитывая срок строительно-монтажных работ объекта, воздействие этих выбросов на растительность будет временным и незначительным. После завершения строительных работ воздействие на растительный покров прекратится.

Таким образом, воздействие на растительный мир определяется как воздействие низкой значимости.

Обоснование объемов использования растительных ресурсов

Использование растительных ресурсов (естественных древесных форм растительности характерных для данного региона) не планируется.

Определение зоны влияния планируемой деятельности на растительность

Основные формы негативного воздействия на растительный мир при планируемых работах будут проявляться, в первую очередь, в <u>виде загрязнения атмосферного</u> воздуха от работы строительной техники, локальных нарушений почвенно-растительного покрова на участках площадки. Воздействие имеет временный, локальный характер.

В целом флора района размещения проектируемого объекта долгое время находится под воздействием антропогенных факторов (наличия промпредприятий, сети автодорог и ж/д дорог, линий электропередач), так как находится в непосредственной близости к населенному пункту.

Ожидаемые изменения в растительном покрове (видовой состав, состояние, продуктивность сообществ, оценка адаптивности генотипов, хозяйственное и функциональное значение, загрязненность, пораженность вредителями), в зоне действия объекта и последствия этих изменений для жизни и здоровья населения

Изменения в растительном покрове в зоне действия объекта и последствия этих изменений для жизни и здоровья населения отсутствуют.

8.2 Мероприятия по предотвращению, минимизации негативных воздействий на растительный мир

В период строительно-монтажных работ предусматриваются следующие мероприятия по уменьшению механического воздействия на растительный покров:

- ведение всех строительных работ и движение транспорта строго в пределах полосы отвода земель, запрещение движения транспорта за пределами автодорог;
- обеспечение мер по максимальному сохранению почвенно-растительного покрова.

Для уменьшения воздействия на растительный покров, связанного с возможностью химического загрязнения почвенного покрова и повреждения растительности, предусматривается:

- исключение проливов и утечек.
- раздельный сбор и складирование отходов в специальные контейнеры на плавкранах с последующим вывозом их на оборудованные полигоны или на переработку;
- техническое обслуживание транспортной и строительной техники на территории подрядчика;
 - обеспечение сохранности зеленых насаждений;
- недопущение незаконных деяний, способных привести к повреждению или уничтожению зеленых насаждений;
- недопущение загрязнения зеленых насаждений производственными отходами, строительным мусором, сточными водами;
- исключение движения, остановки и стоянка автомобилей и иных транспортных средств на участках, занятых зелеными насаждениями;
 - поддержание в чистоте территории площадки и прилегающих площадей.

9 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ МИР

9.1 Исходное состояние водной и наземной фауны

Животный мир рассматриваемой территории характеризуется обедненным видовым составом и сравнительно низкой численностью.

Ведущую роль среди животного населения играют членистоногие, пресмыкающиеся, рептилии, млекопитающие и птицы. Выравненность рельефа, сильная засоленность почв наличие большой сети солончаков с обедненной растительностью, резко континентальный суровый климат, все это является причиной обедненности батрахо- и герпетофауны исследуемого района.

Сильное и действенное влияние на себе техногенных факторов обычно испытывают пресмыкающиеся. Большая часть представителей этой группы животных довольно сильно привязана к участку своего обитания и в период экстремальных ситуаций не способна избежать влияния каких-либо внешних дальнее расстояние. воздействий путем миграций на При техногенном воздействии могут ухудшиться условия существования для ряда видов птиц, особенно в период гнездования. В этом случае негативное значение будет иметь фактор беспокойства. вызванный постоянным или периодическим производственным шумом, в результате которого птицы покидают гнезда и погибают. В меньшей степени шумовой отражается млекопитающих.

Работы при соблюдении предусмотренных проектом технологических решений, не имеют необратимого характера и не отразятся на генофонде животных в рассматриваемом районе.

Таким образом, воздействие на животный мир определяется как воздействие низкой значимости.

Редкие или вымирающие виды животных, занесенных в Красную книгу Казахстана, в районе проведения работ не встречаются.

На рассматриваемой территории сложился комплекс растений и животных, обладающих высоким адаптационным потенциалом, приспособившийся к современным условиям. Таким образом, деятельность рассматриваемого объекта на животный мир существенного влияния не оказывает.

Все мероприятия и работы по строительству данного объекта выполняются только в пределах отведенной территории и поэтому не могут оказывать существенного негативного воздействия на фауну.

При реализации проекта не происходит неблагоприятные воздействия на животный мира рассматриваемого района и прогнозировать сколько-нибудь значительных отклонений в степени воздействия его на животный мир оснований нет.

Следовательно, при соблюдении всех правил эксплуатации, существенного негативного влияния на животный мир и изменения генофонда не произойдет.

Возможные нарушения целостности естественных сообществ, среды обитания, условий размножения, воздействие на пути миграции и места концентрации животных, сокращение их видового многообразия в зоне воздействия объекта, оценка последствий этих изменений и нанесенного ущерба окружающей среде

Основные формы негативного воздействия на животный мир при планируемых работах будут проявляться, в первую очередь, в <u>виде загрязнения атмосферного</u> воздуха от работы строительной техники, локальных нарушений почвенно-растительного покрова на участках площадки.

Интервал негативного влияния совпадает с периодом производства работ, в дальнейшем при прекращении работ происходит достаточно уверенное естественное самовосстановление природной среды.

9.2 Мероприятия по предотвращению, минимизации негативных воздействий на животный мир

Мероприятия по сохранению животного мира предусмотрены следующие:

- контроль за недопущением разрушения и повреждения гнезд, сбор яиц без разрешения уполномоченного органа;
- воспитание (информационная кампания) для персонала и населения в духе гуманного и бережного отношения к животным;
- установка вторичных глушителей выхлопа на спец. технику и автотранспорт;
- регулярное техническое обслуживание производственного оборудования и его эксплуатация в соответствии со стандартами изготовителей;
- сохранение биологического разнообразия и целостности сообществ животного мира в состоянии естественной свободы;
- проводить профилактические инструктажи персонала и соблюдать природоохранные требования и правила.

В целом фауна района размещения проектируемого объекта долгое время находится под воздействием антропогенных факторов (наличия промпредприятий, сети автодорог и ж/д дорог, линий электропередач), так как находится в непосредственной близости к населенному пункту. Поэтому вполне приспособились к обитанию в условиях открытого ландшафта, в результате сложилось определенное сообщество животных и птиц.

Кроме того, уровень загрязнения компонентов окружающей среды под влиянием намечаемой производственной деятельности будет в пределах ПДК.

10 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЛАНДШАФТЫ

Согласно принятым проектным решениям воздействие на ландшафты не предусматривается.

11 ОЦЕНКА ВОЗДЕЙСТВИЯ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СРЕДУ

Бейнеуский район (каз. Бейнеу ауданы) - административно-территориальная единица второго уровня на северо-востоке Мангистауской области Казахстана. село Бейнеу. Административный центр был Административный центр 1960 году, началось строительство железной дороги. когда впоследствии соединившей Макат с Мангышлаком. К югу от поселка находится ветка, ведущая по направлению на Жанаозен. В самом поселке находится железнодорожный узел, а также аэропорт, обслуживающий местные воздушные линии. Недалеко от его окраин проходит газопровод Средняя Азия - Центр. К юго-востоку от поселка, примерно в 75 километрах от него находится аул Тажене, где работают два крестьянских хозяйства и железнодорожная станция. Открыты библиотека, филиал школы и действует погранично-таможенный пункт.

Территорию района занимает восточная окраина <u>Прикаспийской низменности</u> с песками и солончаками (<u>Мёртвый Култук</u> и др.), восточная часть - плато <u>Устюрт</u> с возвышенностью Мынсуалмас. В недрах разведаны запасы нефти и газа, камня-ракушечника, строительных песков.

Основная отрасль хозяйства - нефтедобывающая промышленность. В сельском хозяйстве главное направление - разведение овец (каракулеводство), лошадей, верблюдов. В районе находятся Южное управление магистрального нефтегазопровода, предприятия по обслуживанию железнодорожного транспорта. По территории района проходит железные дороги Макат - Конырат, Бейнеу - Актау, автомобильная дорога Атырау - Актау, газопровод Средняя Азия - Россия, нефтепродуктопровод Озен - Атырау - Самара, магистральные водоводы Кунград - Бейнеу - Макат, Бейнеу - Озен.

Намечаемая производственная деятельность будет иметь важное социально-экономическое значение, с точки зрения устойчивого развития региона, так как обеспечивает материальную базу и создает дополнительные рабочие места для населения.

Проведение работ на проектируемом объекте практически не окажет влияния на экологические условия прилегающих районов и условия жизни населения. Влияние объекта оценивается как незначительное. Оценка уровня воздействия на компоненты окружающей среды осуществлялась на основе сопоставления фактического уровня загрязнения экосистемы вредными веществами с существующими санитарно-гигиеническими нормами ПДК.

Проведенный анализ позволяет сделать заключение, что загрязнение атмосферы и почвенного слоя происхдит в весьма незначительной степени в результате выбросов загрязняющих веществ. Проанализировав и оценив особенности намечаемой деятельности, небольшой объем выбросов, можно заключить, что проведение работ при строгом соблюдении правил эксплуатации и реализации намеченных проектных решений не будет оказывать существенного негативного влияния на здоровье человека, на животный и растительный мир, на почвы и грунты, на поверхностные и подземные воды, на прилегающую территорию и ее ландшафт.

Влияние реализации проекта на социально-экономические аспекты оценено как позитивно-значительное. При строительстве будут задействованы местные жители, будут использованы товаро-материалы (строительные материалы, ГСМ) Казахстанского производства, что окажет благоприятное влияние на

обеспеченность трудовыми ресурсами местное население и на местную экономику. Также стоить отметить благоприятное влияние налоговых поступлений в местный бюджет.

Учитывая вышесказанное, можно сделать вывод, что строительство данного объекта является социально значимым и положительно скажется на качестве жизни населения.

12 ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА

В зоне влияния объекта отсутствуют ценные природные комплексы, месторождения подземных вод.

Расчеты рассеивания в атмосфере загрязняющих веществ, выбрасываемых в период эксплуатации с учетом фоновых концентраций, показали, что концентрации всех ингредиентов и групп их суммации в жилой зоне поселка не превышают предельно допустимых значений, установленных для атмосферного воздуха населенных мест.

При эксплуатации объекта воздействие на почвенный покров, водные ресурсы, атмосферный воздух, на недра, растительный и животный мир, социально-экономическую сферу, влияние физических факторов оценивается как допустимое.

12.1 Методика оценки экологического риска аварийных ситуаций

Проведение проектных работ требует оценки экологического риска данного вида работ. Оценка экологического риска необходима для предотвращения и страхования возможных убытков и ответственности за экологические последствия аварий, которые возможны при проведении, практически, любого вида человеческой производственной деятельности.

Оценка экологического риска намечаемых проектных решений включает в себя рассмотрение следующих аспектов воздействия:

- ▶ комплексную оценку последствий воздействия на окружающую среду при нормальном ходе проектируемых работ;
- ▶ оценку вероятности аварийных ситуаций с учетом технического уровня оборудования;
- ▶ оценку вероятности аварийных ситуаций с учетом наличия опасных природных явлений;
 - > оценку ущерба природной среде и местному населению;
 - мероприятия по предупреждению аварийных ситуаций;
- ▶ мероприятия по ликвидации последствий возможных аварийных ситуаций.

Результирующий уровень экологического риска для каждого сценария аварий определяется следующим образом:

- низкий приемлемый риск/воздействие.
- ▶ средний риск/воздействие приемлем, если соответствующим образом управляем;
 - ▶ высокий риск/воздействие не приемлем.

12.2 Анализ возможных аварийных ситуаций

С учетом вероятности возникновения аварийных ситуаций одним из эффективных методов минимизации ущерба от потенциальных аварий является готовность к ним – разработка вариантов возможного развития событий при аварии и методов реагирования на них.

Для отработанных привычных видов деятельности, отличающихся сравнительно невысокой сложностью и непродолжительностью деятельности, при оценке экологического риска может быть использован количественный подход.

Проведение проектных работ: подвоз материалов, укладка труб, сварочные работы, гидроизоляционные работы, - является хорошо отработанным, с изученной технологией видом деятельности, высококачественным оборудованием и высококвалифицированным персоналом. Исходя из общеотраслевых статистических данных, общая вероятность возникновения аварийных ситуаций составляет 0,02 процента.

12.3 Оценка риска аварийных ситуаций

В процессе эксплуатации существуют природные и техногенные опасности, каждая из которых может стать причиной возникновения аварийной ситуации.

Антропогенные опасности создают более значительный риск возникновения аварийных ситуаций, таких как: нарушение технологии, пожары из-за курения или работы в зимнее время с открытым огнем, технологическая недисциплинированность и др.

Экологические последствия таких ситуаций очень серьезны. Вероятность наступления подобных ситуаций целиком зависит от уровня руководства коллективом и профессионализма персонала.

12.4 Мероприятия по предупреждению аварийных ситуаций и ликвидации их последствий

Меры, снижающие риск возникновения аварийных ситуаций:

- эксплуатация объекта проводятся в строгом соответствии с нормативнотехнической документацией, технологическим регламентом и стандартами проведения работ;
- все решения и рекомендации по производству работ проводятся в соответствии с техническим проектом;
- систематическое наблюдение за состоянием оборудования и соблюдением технологического режима производственного процесса;

При строгом соблюдении вышеуказанных мер, норм и правил безопасной эксплуатации объектов предприятия возникновение аварийных ситуаций сводится к минимуму.

12.5 Расчет платежей за загрязнение окружающей среды

Определенное воздействие на компоненты окружающей среды при эксплуатации будет компенсироваться экологическими платежами за эмиссии в окружающую среду.

Расчет платежей по ставкам платы на период СМР приведен в таблице 12.5.1. Размер МРП взят по состоянию на 2025 год – 3 932 тенге.

Таблица 12.5.1

Наименование загрязняющего вещества	Код ЗВ	Валовый выброс, тонн/год	Ставка платы (ст. 576 Налогового кодекса РК)	Норматив платы (ставка платы*МРП)	Плата по веществу, тенге
Железо (II, III) оксиды	0123	0,14	30	117960	16514
Марганец и его	0143	0,0085			

Раздел охрана окружающей среды

	 	1			
соединения					
Олово оксид (в	04.60	0.0000			
пересчете на олово)	0168	0,00002			
Свинец и его неорг.					
соединения	0184	0,00001	3986	15672952	157
Азота (IV) диоксид	0301	0,3663	20	78640	28806
Азот (II) оксид	0304	0,05195	20	78640	4085
Углерод (сажа)	0328	0,028	20	78640	2202
Сера диоксид	0330	0,0416	10	39320	1636
Углерод оксид	0337	0,327009	0,32	1258,24	411
Фтористые газообразные					
соединения	0342	0,0021			
Фториды		·			
неорганические плохо					
растворимые	0344	0,0007			
Диметилбензол (смесь –		ĺ			
о, -м, -п изомеров)	0616	0,9512	0,32	1258,24	1197
Метилбензол (Толуол)	0621	0,10512	0,32	1258,24	132
Бенз(а)пирен	0703	0,000000519	996600	3918631200	2034
Хлорэтилен	0827	0,0000039	0,32	1258,24	0
Бутан-1-ол (Сирт н-		,	,	,	
бутиловый)	1042	0,00022	332	1305424	287
2-Метилпропан-1-ол		,			
(спирт изобутиловый)	1048	0,0002	166	652712	131
Этанол (Спирт		,			
этиловый)	1061	0,00004	332	1305424	52
2-Этоксиэтанол	1119	0,00002			
Бутилацетат	1210	0,02			
Формальдегид	1325	0,00521	332	1305424	6801
Пропан-2-он (ацетон)	1401	0,04404			
масло минеральное	2735	0,038			
Уайт-спирит	2752	0,6039			
Углеводороды		0,000			
предельные С ₁₂ -С ₁₉	2754	0,295	0,32	1258,24	371
Взвешенные частицы	2902	0,1503	5	19660	2955
Пыль неорганическая		0,1000		1,000	
SiO ₂ 70-20%	2908	0,6103	10	39320	23997
пыль абразивная	2930	0,007	5	19660	138
Итого:		0,007		1,000	91906
111010+					71700

13 СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан от 02.01.2021г.
- 2. Инструкция по организации и проведению экологической оценки, Утверждена приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280
- 3. Инструкция по определению категории объекта, оказывающего негативное воздействие на окружающую среду, приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246.
- 4. Приказ и.о.Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2 Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека»
- 5. Приказ Министра национальной экономики Республики Казахстан от 28 февраля 2015 года № 168 «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах».
- 6. Методика расчета нормативов выбросов от неорганизованных источников приложение 8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.
- 7. РНД 211.2.02.03-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). Астана, 2004.
- 8. РНД 211.2.02.05-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). Астана, 2004.
- 9. Методические рекомендации по расчету выбросов от неорганизованных источников. Приложение № 13 к приказу Министра ООС РК от 18.04.2008 г. № 100-п.
- 10. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приложение №3 к приказу Министра ООС РК от 18.04.2008~г. № 100-п.
- 11. РНД 211.2.02.06-2004. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). Астана, 2004.
- 12. РНД 211.2.02.04-2004 «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок». Астана, 2004 г.
- 13. Методика расчета выбросов вредных веществ в атмосферу при производстве продукции из пластмассы и полимерных материалов. Приложение №7 к приказу Министра ООС РК от 18.04.2008 г. № 100-п.
- 14. Методика расчета концентраций в атмосферном воздухе вредных веществ от выбросов предприятий. Приложение № 18 к приказу Министра ООС РК от 18.04.2008 г. № 100-п.
- 15. Методика расчета выбросов вредных веществ от предприятий дорожностроительной отрасли, в том числе асфальтобетонных заводов. Приложение №12 к приказу Министра ООС РК от 18.04.2008 г. № 100-п.
- 16. СП РК 4.01-101-2012 Внутренний водопровод и канализация зданий и сооружений.

17. Классификатор отходов, утвержденный приказом МООС РК № 314 от 06.08.2021 г.

- 18. СП РК 2.04-01-2017 Строительная климатология
- 19. РД 52.04.186-89. Руководство по контролю загрязнения атмосферы.
- 20. Информационный бюллетень о состоянии окружающей среды Акмолинской области от 2021 года. Министерство экологии, геологии и природных ресурсов. Филиал РГП «Казгидромет» по Акмолинской области
- 21. «Санитарно эпидемиологические требованиям к сбору, использованию, применению, обезвреживанию, транспортировке, хранению отходов производства и потребления», утвержденные и.о Министра здравоохранения РК от 25 декабря 2020 года №КР-ДСМ-331\2020
- 22. «Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека», утвержденные Приказом Министра здравоохранения РК от 16.02.2022 г. №КР ДСМ-15
- 23. Социально-экономическое развитие https://salem.su/news/2020/08/18/itogi-socialno-ekonomicheskogo-razvitiya
- 24. Приказ и.о. Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № КР ДСМ-331/2020

ПРИЛОЖЕНИЯ

Приложение 1

Государственная лицензия

1 - 1 14013359

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

<u>11.09.2014 года</u> <u>01696P</u>

Выдана <u>Товарищество с ограниченной ответственностью "ECO LOGISTICS"</u>

140000, Республика Казахстан, Павлодарская область, Павлодар Г.А., г.Павлодар,

ТОЛСТОГО, дом № 68., 159., БИН: 130240014746

(полное наименование, местонахождение, реквизиты БИН юридического лица / полностью фамилия, имя, отчество, реквизиты ИИН физического лица)

полностью фамилия, имя, отчестьо, рекьизиты или г физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом

Республики Казахстан «О лицензировании»)

Вид лицензии генеральная

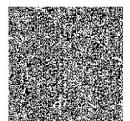
Особые условия действия лицензии

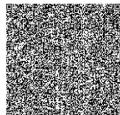
(в соответствии со статьей 9-1 Закона Республики Казахстан «О лицензировании»)

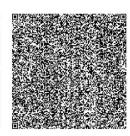
Лицензиар Комитет экологического регулирования и контроля Министерства

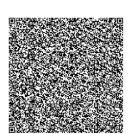
окружающей среды и водных ресурсов Республики Казахстан.
Министерство окружающей среды и водных ресурсов Республики

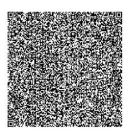
Казахстан.


(полное наименование лицензиара)


Руководитель (уполномоченное лицо)


ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ


(фамилия и инициалы руководителя (уполномоченного лица) лицензиара)


Место выдачи г.Астана

Берілген құжат «Электрондық құжат және электрондық цифрлық қолтаңба тұралы» 2003 жылғы 7 қактардағы Қазақстан Республикасы Заңының 7 бабының 1 тармағына сәйкес қағаз тасығыштағы құжатқа тең

14013359 Страница 1 из 1

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии 01696Р

Дата выдачи лицензии 11.09.2014 год

Подвид(ы) лицензируемого вида деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О лицензировании»)

- Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

Производственная база г.Павлодар, ул.Толстого 68, кв.159

(местонахождение)

Лицензиат <u>Товарищество с ограниченной ответственностью "ECO LOGISTICS"</u>

140000, Республика Казахстан, Павлодарская область, Павлодар Г.А., г.Павлодар,

ТОЛСТОГО, дом № 68., 159., БИН: 130240014746

(полное наименование, местонахождение, реквизиты БИН юридического лица / полностью фамилия,

имя, отчество, реквизиты ИИН физического лица)

Лицензиар <u>Комитет экологического регулирования и контроля Министерства</u>

окружающей среды и водных ресурсов Республики Казахстан. Министерство

окружающей среды и водных ресурсов Республики Казахстан.

(полное наименование лицензиара)

Руководитель

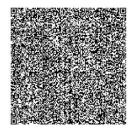
(уполномоченное лицо)

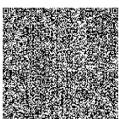
ПРИМКУЛОВ АХМЕТЖАН АБДИЖАМИЛОВИЧ фамилия и инициалы руководителя (уполномоченного лица) лицензиара

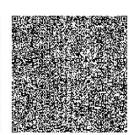
001

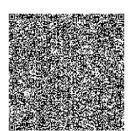
Номер приложения к

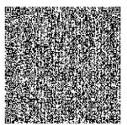
лицензии

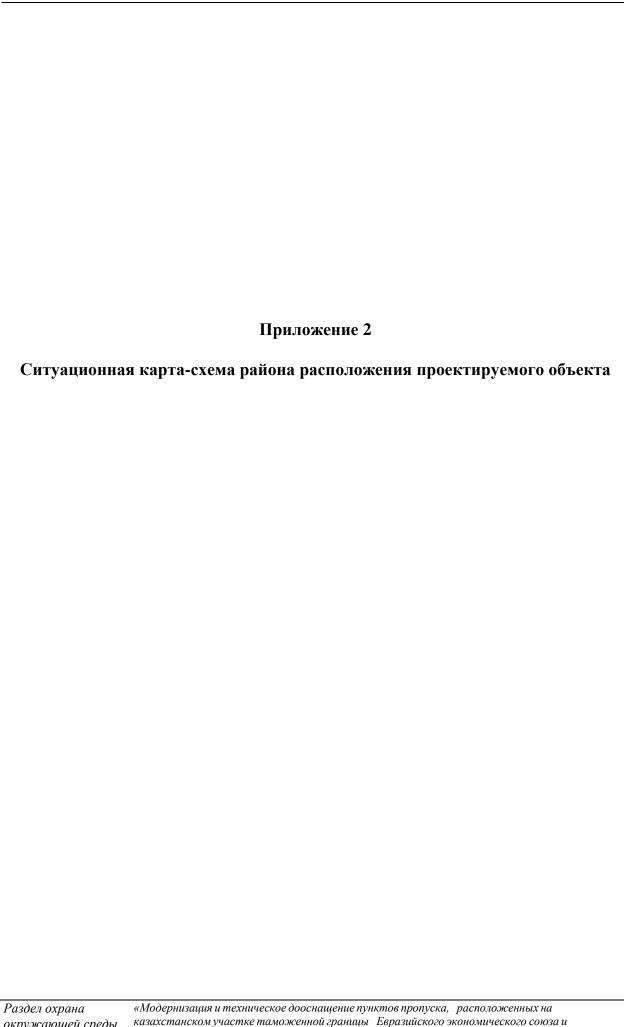

ния 11.09.2014


Дата выдачи приложения


к лицензии


Срок действия лицензии


Место выдачи г.Астана



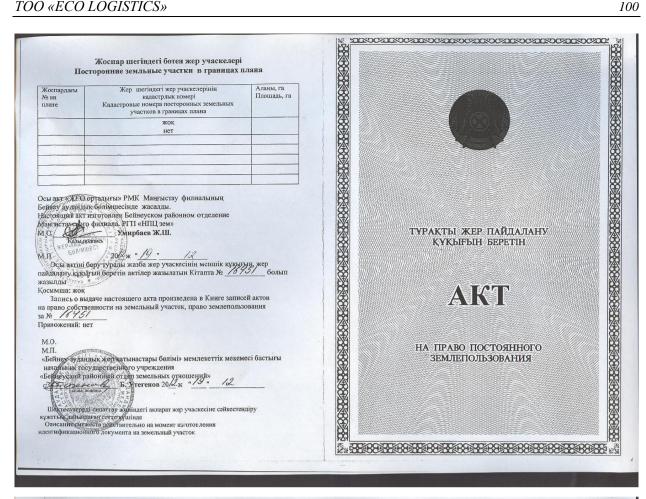
Берілген құжат «Электрондық құжат және электрондық цифрлық қолтаңба туралы» 2003 жылғы 7 қаңтардағы Қазақстан Республикасы Заңының 1 бабының 1 тармағына сәйкес қағаз тасығыштағы құжатқа тең Данный докунент согласно пункту 1 статы 7 ЗРК от 7 января 2003 года «Об электронном докуненте и электронной цифровой подписи» равнозначен докуненту на бунажном носителе

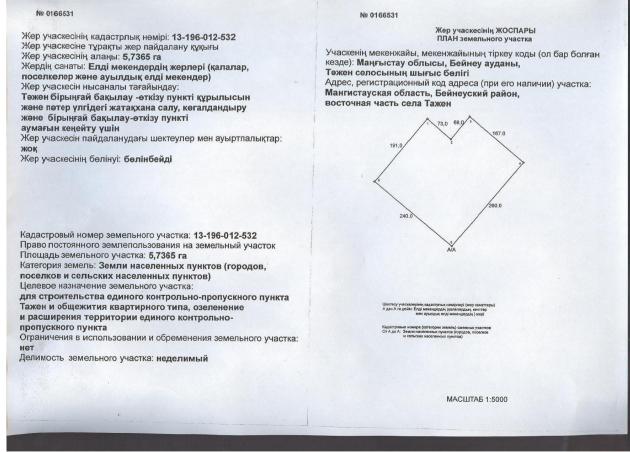
Раздел охрана окружающей среды

Расстояние до жилой зоны – с. Тажен - более 979 м (в юго-западном направлении)

97

Раздел охрана окружающей среды


Расстояние до водных объектов – Каспийское море - более 179 км (в западном направлении)



Раздел охрана окружающей среды

Приложение 3

Правоустанавливающие документы на земельный участок по размещению проектируемых объектов.

Раздел охрана окружающей среды

FROM : TPOBEINEU

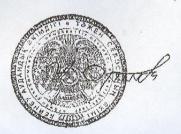
FAX NO. : 87293221380

Apr. 22 2010 07:07AM P:

тәжен селосы әкімінің шешімі

2010 жылғы 22 сәуір

No 6


Тәжен селосы

Жер учаскесінің нысаналы мақсатын өзгерту туралы

Қазақстан Республикасының Қаржы Министрлігі Кедендік бақылау Комитетінің Маңғыстау облысы бойынша Кедендік бақылау департаментінің 20.04.2010 жылғы №13-5-1-24/2229 санды хатына және Қазақстан Республикасының 2003 жылғы 20 маусымдағы № 442-Ш Жер Кодексінің 49-1 бабына сәйкес ШЕШЕМІН:

- 1. Қазақстан Республикасының Қаржы Министрлігі Кедендік бақылау Комитетінің Маңғыстау облысы бойынша Кедендік бақылау департаментіне жер учаскесін беру мәселелерін қарау жөніндегі комиссияның қорытындысына және алдын ала таңдау актісі мен жерге орналастыру жобасына сәйкес Тәжен кеден бекетін орналастыру үшін Бейнеу ауданы әкімінін 23.02.2000 жылғы №1768, Тәжен халықаралық автомобильдік бақылау өткізу пункті құрылысын салу үшін Ақжігіт селолық округі әкімінің 21.01.2008 жылғы №2 және 01.02.2008 жылғы №3 шешімдері негізінде тұрақты жер пайдалану құқығымен Тәжен селосының шығыс бөлігінен берілген жалпы аумағы 3,4948 га жер учаскесінің нысаналы мақсаты «Тәжен бірыңғай бақылау өткізу пункті құрылысын және қызметтік тұрғын үйлер салу үшін» деп өзгертілсін.
- 2. Қазақстан Республикасының Қаржы Министрлігі Кедендік бақылау Комитетінін Маңғыстау облысы бойынша Кедендік бақылау департаментіне (Ә.Шөжеғұлов) аудандық жер қатынастары бөлімі мен Бейнеу аудандық Әділет басқармасынан Халыққа қызмет көрсету орталығы арқылы тіркеуден өту ұсынылсын.

Село әкімінің міндетін атқарушы

разов

102 TOO «ECO LOGISTICS» Приложение 4 Справка о фоновых концентрациях в атмосферном воздухе

«КАЗГИДРОМЕТ» РМК

РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН
РЕСПУБЛИКАСЫ
ЭКОЛОГИЯ,
ЖӘНЕ ТАБИҒИ
РЕСУРСТАР
МИНИСТРЛІГІ

МИНИСТЕРСТВО
ЭКОЛОГИИ И
ПРИРОДНЫХ
РЕСУРСОВ
РЕСПУБЛИКИ
КАЗАХСТАН

13.11.2025

- Город –
- 2. Адрес Мангистауская область, Бейнеуский район, Таженский сельский округ
- Организация, запрашивающая фон TOO «ECO LOGISTICS»
 Объект, для которого устанавливается фон «Модернизация и техническое дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов Республики Казахстан». Пункт пропуска «Тажен» ДГД по Мангистауской области. Корректировка.
- 6. Разрабатываемый проект РООС
- 7. Перечень вредных веществ, по которым устанавливается фон: Азота диоксид, Диоксид серы, Углерода оксид, Азота оксид,

В связи с отсутствием наблюдений за состоянием атмосферного воздуха в Мангистауская область, Бейнеуский район, Таженский сельский округ выдача справки о фоновых концентрациях загрязняющих веществ в атмосферном воздухе не представляется возможным.

TOO «ECO LOGISTICS» 104 Приложение 5 Расчеты выбросов загрязняющих веществ в атмосферу на период СМР Раздел охрана «Модернизация и техническое дооснащение пунктов пропуска, расположенных на казахстанском участке таможенной границы Евразийского экономического союза и окружающей среды

Расчет выбросов загрязняющих веществ в атмосферу на период строительно-монтажных работ

<u>Неорганизованный источник №6001</u> Погрузочно-разгрузочные работы

В период строительства осуществляются погрузочно-разгрузочные работы в объемах, представленных в таблице ниже.

Nº п/п	Наименование работ	Плотность, т/ м³ [Л.26]	Объем, м³	Объем, тонн	
1	Песок	1,55	4539,732	2928,859	
2	Щебеночно-песчаная смесь	1,3	8264,268	6 357,12892	
3	Гравий керамзитовый фракция 10-20 мм	1,75	122,557	70,03272	
4	Щебень фракции 20-40	1,75	479,791	274,166	
5	Щебень фракции 40-70	1,75	11867,682	6781,532	
6	Пересыпка смеси песчано-гравийной	1,75	466,444	266,53924	
7	Разработка грунтов экскаватором	1,95	187160,56	95979,776	
8	Разработка грунтов вручную	1,95	453,038	232,327	
9	Засыпка грунтов экскаватором	1,95	36276,131	18603,144	
10	Засыпка грунтов вручную	1,95	1301,955	667,669	

Интенсивными неорганизованными источниками преобразования являются пересыпки материала, погрузка материала и др. Объемы пылевыделений от всех этих источников могут быть рассчитаны по формуле 2 [Л.32]:

Максимальный разовый объем пылевыделений от всех этих источников рассчитывается по формуле:

$$M = k_1 * k_2 * k_3 * k_4 * k5 * k7 * B'* Вчас*100000/3600$$
 , г/сек

а валовой выброс по формуле:

$$G = k1 * k2 * k3 * k4 * k5 *k7 * B'* Brod, m/rod$$

- где: k1 весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0 200 мкм соответствии с таблицей 1 согласно приложению к настоящей Методике;
- k2 доля пыли (от всей массы пыли), переходящая в аэрозоль соответствии с таблицей 1 согласно приложению к настоящей Методике;
- k3 коэффициент, учитывающий местные метеоусловия и принимаемый в соответствии с таблицей 2 согласно приложению к настоящей Методике.
- k4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования. Данные приведены в таблице 3 согласно приложению к настоящей Методике.
- k5 коэффициент, учитывающий влажность материала и принимаемый в соответствии с данными таблицы 4 согласно приложению к настоящей Методике. k7 коэффициент, учитывающий крупность материала и принимаемый в соответствии с таблицей 5 согласно приложению к настоящей Методике.
- В' коэффициент, учитывающий высоту пересыпки и принимаемый в соответствии с таблицей 7 согласно приложению к настоящей Методике. Склады и хвостохранилища рассматриваются как равномерно распределенные источники пылевыделения.

 B_{rod} – суммарное количество разгружаемого материала, тонн;

 $B_{\text{час}}$ – производительность узла пересыпки или количество разгружаемого материала, т/час Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.1

Таблица 2.4.1

																Ta	аблица 2	.4.1	
Источник выброса (выделения)	k ₁	k ₂	k ₃	k ₄	k ₅	k ₇	k ₈	k ₉	В'	G _{час} , т/час	G _{год} , т∕год	м3	Пл-ть	К	η	Загрязняющее вещество	Код	М, г/с	G, т/год
	Период СМР																		
Пересыпка песка	0,0 5	0,0	1,2	1, 0	0,1	0,7	0,0	0,0	0,	5,00	4539,7 32	2 928,85 9107	1,550	0,0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,028	0,229
Щебеночно- песчаная смесь	0,0 5	0,0	1,2	1,	0,1	0,7	0,0	0,0	0,	5,00	8264,2 68	6 357,12 892	1,30	0,0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,019	0,286
Гравий керамзитовый фракция 10-20 мм	0,0 5	0,0	1,2	1, 0	0,1	0,7	0,0	0,0	0, 1	5,00	122,55 7	70,032 72	1,750	0,0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,012	0,003
Пересыпка щебня фракцией 20-40 мм	0,0 4	0,0 20	1,2 0	1, 0	0,7	0,5 0	0,0	0,0	0, 1	5,00	479,79 1	274,16 6	1,750	0,0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2909	0,005	0,005
Пересыпка щебня, фракцией 40-70 мм	0,0 4	0,0 20	1,2 0	1,	0,7	0,4	0,0	0,0	0,	5,00	11867, 682	6 781,53 25260	1,750	0,0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2909	0,004	0,091
Пересыпка смеси песчано- гравийной	0,0 5	0,0	1,2 0	1, 0	0,0	0,7 0	0,0	0,0	0, 1	5,00	466,44 4	266,53 924	1,750	0,0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,010	0,008
Разработка грунтов экскаваторами	0,0 5	0,0 3	1,2 0	1, 0	0,0 1	0,7 0	0,0 0	0,0 0	0, 5	10,00	187160 ,563	95979 <i>,</i> 776	1,950	0,0 0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,001	0,236
Разработка грунтов вручную	0,0 5	0,0	1,2 0	1, 0	0,0	0,7 0	0,0	0,0	0, 5	10,00	453,03 8	232,32 7	1,950	0,0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,001	0,001
Засыпка траншей бульдозерами	0,0 5	0,0	1,2 0	1, 0	0,0	0,7 0	0,0 0	0,0 0	0, 5	10,00	36276, 131	18603, 144	1,950	0,0 0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,001	0,046

Раздел охрана окружающей среды

Засыпка траншей вручную	0,0 5	0,0	1,2 0	1, 0	0,0 1	0,7 0	0,0 0	0,0	0, 5	10,00	1301,9 55	667,66 9	1,950	0,0 0	0	Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,001	0,002
Итого по источнику	6001															Пыль неорганическая, содержащая двуокись кремния (SiO2) 70-20%	2908	0,028	0,61

Раздел охрана окружающей среды

Неорганизованный источник №6002

Сварочные работы

Сварочные работы выполняются с применением электродов, представленных в таблице

Nº п/п	Тип (марка) электродов	Количество, кг
1	УОНИ 13/55 (Э42А, Э50А)	199,387
2	MP-3 (Э42, Э46, Э50)	3811,653
3	дуговая наплавка с газопламенным напылением CB- 0,8 (2,0)	261,663

Валовые выбросы при работе сварочного аппарата рассчитываются по формуле 5.1 [Л.12]:

$$G = B \times K^{\times} \times 10^{-6}, m/200$$

где:

В – расход применяемого сырья и материалов, кг/год;

 K_m^x – удельный показатель выброса загрязняющего вещества «х» на единицу массы расходуемых материалов, г/кг (табл. 1 [Л.12]);

Максимально разовые выбросы при работе сварочного аппарата рассчитываются по формуле 5.2 [Л.12]:

$$M = B_{4ac} x K^{x} / 3690, z/c$$

где

 $B_{\mbox{\tiny час}}$ – максимальный расход сырья и материалов с учетом дискретности работы оборудования,

кг/час;

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.2

Таблица 2.4.2

Наименование	Tu= (2000000)	Вчас,		K ^x _m ,		V	Выбр	осы ЗВ
оборудования	Тип (марка) электродов	кг/ча с	В, кг	г/кг	Наименование загрязняющего вещества	Код 3В	М, г/с	G <i>,</i> тонн
Ручная дуговая				9,77	Железо (III, II) оксид	0123	0,001	0,037
сварка штучными	MP-3	0,535	3811,653	1,73	Марганец и его соединения	0143	0,0003	0,007
электродами				0,4	Фтористые газообразные соединения	0342	0,0001	0,002
				10,69	Железо (III, II) оксид	0123	0,002	0,002
				0,92	Марганец и его соединения	0143	0,0002	0,0002
		0,689		1,4	Пыль неорганическая, содержащая двуокись кремния (SiO ₂) 70-20%	2908	0,0003	0,0003
	УОНИ 13/55		199,387	3,3	Фториды неорганические плохо растворимые	0344	0,0006	0,0007
				0,75	Фтористые газообразные соединения	0342	0,0001	0,0001
				1,5	Азота (IV) оксид	0301	0,0003	0,0003
				13,3	Углерода оксид	0337	0,003	0,003
Ручная дуговая	дуговая			25	Железо (III, II) оксид	0123	0,008	0,007
сварка сварочной проволокой	наплавка с газопламен ным напыление м СВ-0,8 (2,0)	237,7	261,66,3	1	Марганец и его соединения	0143	0,0003	0,0003
	,				Железо (III, II) оксид	0123	0,008	0,046
					Марганец и его соединения	0143	0,0003	0,0075
					Фтористые газообразные соединения	0342	0,0001	0,0021

	Пыль неорганическая, содержащая двуокись	2908		
	кремния (SiO₂) 70-20%		0,0003	0,0003
	Фториды неорганические	0344		
	плохо растворимые	0344	0,0006	0,0007
	Азота (IV) оксид	0301	0,0003	0,0003
Итого по источнику № 6002	Углерода оксид	0337	0,008	0,046

Неорганизованный источник №6003 Газовая резка металла

При газовой резке разрезают металл толщиной до 10 мм. Газовую резку выполняют аппаратами резки с использованием кислорода. Фонд времени работы аппаратов составляет 729,651 часа.

Валовые выбросы при газовой резке металла рассчитываются по формуле 6.1 [Л.7]:

 $G = K^x \times T \times n \times 10^6$, тонн Максимально разовые выбросы при газовой резке металла рассчитываются по формуле 6.2 [Л.7]: $M = K_m^x / 3600$, z/c где: $K_m^x - y$ дельный показатель выброса загрязняющего вещества «х» на единицу времени работы оборудования при толщине разрезаемого материала σ, г/час;

Т – фонд времени работы оборудования, час;

n – количество постов, одновременно в работе - один пост. Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.3.

Наименование	n, кол-во	Т,	К [×] _m , г/час	Наименование	Код ЗВ	Выбр	осы ЗВ
процесса	постов	час/год		загрязняющего		М, г/с	G,
				вещества			тонн
			64,1	Азота (IV) диоксид	0301	0,018	0,047
Резка металла толщиной 10 мм	5		1,90	Марганец и его	0143		
		729,615	1,50	соединения	0143	0,001	0,001
ТОЛЩИНОЙ 10 ММ			129,1	Железо (II, III) оксиды	0123	0,036	0,094
			63,4	Углерод оксид	0337	0,018	0,046
				Азота (IV) диоксид	0301	0,018	0,047
				Марганец и его	0143		
				соединения	0143	0,001	0,001
				Железо (II, III) оксиды	0123	0,036	0,094
Итого по источнику №	№ 6003			Углерод оксид	0337	0,018	0,046

Неорганизованный источник №6004 Окрасочные работы

Для защиты металлических конструкций от коррозии выполняют их окраску. Окраску масляной краской производят краскопультом, остальные ЛКМ наносят кистью, валиком.

Данные по расходу лакокрасочных материалов представлены в таблице ниже:

Nº п/п	Наименование	Ед. изм.	Расход лакокрасочных материалов
1	Краска масляна МА-015	Т	0,315808
2	ПФ-115	Т	1,6234466
3	ГФ-021	Т	1,0672913
4	Эмаль эпоксидная ЭП-140	Т	0,0003480
5	Лак битумный БТ-123(577)	Т	0,1382848
6	Растворитель Р-4	Т	0,1690683
7	Уайт-спирит	Т	0,1602783
8	грунтовки битумные	Т	0,3102123

Раздел охрана окружающей среды

9	краска XB-124	Т	0,1525454
10	Лак электроизоляционный 318 (МЛ-92)	Т	0,003561
11	олифа	Т	0,1265531

Валовые выбросы нелетучей (сухой) части аэрозоля краски, образующегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле 1 [Л.8]:

$$G_{_{\mathcal{O}\partial}} = rac{m_{\phi} imes \mathcal{S}_a imes (100 - \mathrm{f}_{_{\mathcal{P}}})}{10^4} imes (1 - \eta)$$
 , тонн

Максимально разовые выбросы нелетучей (сухой) части аэрозоля краски, образующегося при нанесении ЛКМ на поверхность изделия (детали), определяется по формуле 2 [Л.8]:

$$M_{coo} = \frac{m_{M} \times \delta_{a} \times (100 - f_{p})}{10^{4}} \times (1 - \eta) e/c$$

Валовый выброс индивидуальных летучих компонентов ЛКМ определяется:

а) при окраске по формуле 3 [Л.8]:

$$G_{o \kappa p}^{x}=rac{m_{\phi} imes f_{p} imes \delta_{p}^{'} imes \delta_{x}^{'}}{10^{6}} imes (1-\eta)$$
 , тонн

б) при сушке по формуле 4 [Л.8]:

$$G_{ ext{cyuu}}^{x}=rac{m_{\phi} imes f_{p} imes \mathcal{S}_{p}^{"} imes \mathcal{S}_{x}}{10^{6}} imes (1-\eta)$$
, тонн

Максимальный разовый выброс индивидуальных летучих компонентов ЛКМ определяется:

а) при окраске по формуле 5 [Л.8]:

$$M_{osp}^{x} = \frac{m_{\scriptscriptstyle M} \times f_{\scriptscriptstyle p} \times \delta_{\scriptscriptstyle p}^{'} \times \delta_{\scriptscriptstyle x}}{10^{6} \times 3.6} \times (1 - \eta)$$
, z/c

б) при сушке по формуле 6 [Л.8]:

$$M_{cyu}^{x} = \frac{m_{\scriptscriptstyle M} \times f_{\scriptscriptstyle p} \times \delta_{\scriptscriptstyle p}^{"} \times \delta_{\scriptscriptstyle x}}{10^{6} \times 3.6} \times (1-\eta)$$
, e/c

где: m_{ϕ} – фактический годовой расход ЛКМ, т/год;

 $m_{_{M}}$ — фактический максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг/час;

 f_p – доля летучей части (растворителя) в ЛКМ, %, масс., табл. 2 [Л.8];

 δ'_p – доля растворителя ЛКМ, выделившегося при нанесении покрытия, %, масс., табл. 3 [Л.8];

 δ''_p – доля растворителя ЛКМ, выделившегося при сушке покрытия, %, масс., табл. 3 [Л.8];

 δ_x – содержание компонента «х» в летучей части ЛКМ, %, масс., табл. 2 [Л.8];

η – степень очистки воздуха газоочистным оборудованием, в долях единицы, равна 0.

Общий валовый и максимально разовый выброс по каждому компоненту летучей части ЛКМ рассчитывается по формулам [Л.8]:

 $G = Gx \ o\kappa p + Gx \ cyw$

M = Mx окр + Mx суш

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.4

Таблица 2.4.4

Таблица 2.4.4												
0.4		m _M	δ _a , %	f _{p.} %	δ' _{p.} %	δ",,%	δ _{x.} %		W 2D	Выбр	осы ЗВ	
Марка ЛКМ	$m_{\phi_{r}}$ тонн	кг/ч	масс.	масс.	macc.	масс.	масс.	Наименование загрязняющего вещества	Код ЗВ	М, г/с	G, тонн	
	1			I		Перио	д СМР	·	l .	1		
V22002 112000 114 015	0,315808	0,259	30	12	25	75		Взвешенные частицы	2902	0,026	0,140	
Краска масляная МА-015	,		30	12	25	75	100	Масло минеральное	2735	0,006	0,038	
ПФ-115	1,623446	0,174		45	28	72	50,00	Ксилол (смесь изомеров о-, м-, п-)	0616	0,029	0,365	
ΠΦ-115			1	45	20	12	50,00	Уайт-спирит	2752	0,029	0,365	
ГФ-021	1,0672913	0,127	ı	45	28	72	100	Ксилол (смесь изомеров о-, м-, п-)	0616	0,045	0,480	
		0,120					13,17	Пропан-2-он (ацетон)	1401	0,010	0,00004	
Эмаль эпоксидная ЭП-							11,07	Бутилацетат	1210	0,008	0,00003	
• •	0,000348			78	28	72	9,10	Бутан-1-ол (Сирт н-бутиловый)	1042	0,007	0,00002	
140			-	76	20	/2	14,10	Этанол (Спирт этиловый)	1061	0,011	0,00004	
							7,10	2-Этоксиэтанол	1119	0,005	0,00002	
							45,46	Метилбензол (Толуол)	0621	0,034	0,00012	
Лак битумный	0,138284	0,288		63	28	72	42,60	Уайт-спирит	2752	0,034	0,04	
БТ-123 <i>(577)</i>			-	03	20	72	57,40	Ксилол (смесь изомеров о-, м-, п-)	0616	0,046	0,050	
		0,188					10,00	Бутан-1-ол (Сирт н-бутиловый)	1042	0,005	0,0002	
Лак							40,00	Ксилол (смесь изомеров о-, м-, п-)	0616	0,019	0,001	
электроизоляционный			-	47,5	28	72	40,00	Уайт-спирит	2752	0,019	0,001	
318 (МЛ-92)	0,003561						10,00	2-Метилпропан-1-ол (спирт		0,005	0,0002	
							10,00	изобутиловый)	1048			
		0,105					26,00	Пропан-2-он (ацетон)	1401	0,022	0,044	
Растворитель Р-4	0,1690683	0,1690683		-	100	28	72	12,00	Бутилацетат	1210	0,010	0,020
							62,00	Метилбензол (Толуол)	6021	0,053	0,105	
Уайт-спирит	0,1602783	0,268	-	100	28	72	100,0	Уайт-спирит	2752	0,074	0,160	
Грунтовки битумные	0,3102123	0,104	ı	100	28	72	100	Углеводороды предельные С ₁₂ -С ₁₉	2754	0,019	0,140	
Лак	0,0054	0,131					40	Бутан-1-ол (Сирт н-бутиловый)	1042	0,005	0,0002	
электроизоляционный	0,0034	0,131	1000	63	63	28	40	ксилол	0616	0,019	0,001	
			1000	03	03	20	10	Этан-1,2-диол (Гликоль, Этиленгликоль)	1078	0,019	0,001	
318 (МЛ-92)							10	2-(2-Этоксиэтокси)этанол (Моноэтиловый	1112	0,005	0,0002	
Олифа	0,1265531	0,226	-	100	28	72	20,0	Масло минеральное	2735	0,044	0,127	
						•		взвешенные частицы	2902	0,026	0,14	
								Бутилацетат	1210	0,010	0,02	
								Диметилбензол (смесь -о, -м, -п	0616	0,046	0,9512	
								Пропан-2-он (ацетон)	1401	0,022	0,0440	
								Метилбензол (Толуол)	0621	0,053	0,10512	
								Уайт-спирит	2752	0,074	0,6039	
								масло минеральное	2735	0,006	0,038	
Итого по источнику 6004								Бутан-1-ол (Сирт н-бутиловый)	1042	0,007	0,000220	
								Этанол (Спирт этиловый)	1061	0,011	0,00004	

111

Раздел охрана окружающей среды

2-Этоксиэтанол	1119	0,005	0,00002	
2-Метилпропан-1-ол (спирт	1048	0,005	0,0002	1
Углеводороды предельные С12-С19	2754	0,019	0,140	ı

Раздел охрана окружающей среды

<u>Неорганизованный источник №6005</u> *ДВС строительной техники*

Работы на площадке проектируемого объекта осуществляются строительной техникой, приведенной в таблице ниже:

Nº п/п	Наименование техники	Кол-во	Расход, л/час.	Время работы <i>,</i> час
1	Автопогрузчик, 5 т	1 ед.	3,6	467,0023396
2	Автогрейдеры среднего типа мощностью от 88,9 до 117,6 кВт	1 ед.	8,1	116,5003903
3	Бульдозеры, 66кВт	1 ед.	7,7	64,6947507
4	Машины поливомоечные 6000 л	1 ед.	7,7	296,9247775
5	Комплексная монтажная машина	1 ед.	5,2	426,7529532
6	Бульдозеры, 96 кВт (108 л.с.)	1 ед.	7,7	647,1308175
7	Катки дорожные, 8 т	1 ед.	1,8	622,5263674
8	Катки дорожные, 13 т	1 ед.	2,5	853,5595617
9	Катки дорожные, 30 т	1 ед.	7,7	114,7366295
10	Краны на гусеничном ходу, 16 т	1 ед.	4	212,8978946
11	Краны башенные, 10 т	1 ед.	8,3	636,4722353
12	Краны башенные,8 т	1 ед.	4,7	625,7401919
13	Краны на автомобильном ходу, 10 т	1 ед.	5,1	1 130,1700258
14	Краны на автомобильном ходу, до 25 т	1 ед.	7,7	149,6944245
15	Краны на гусеничном ходу, до 25 т	1 ед.	7,7	159,1619268
16	Машины поливомоечные 6000 л	1 ед.	20	86,0193
17	Краны на гусеничном ходу, 40 т	1 ед.	7,7	207,6060106
18	Экскаваторы одноковшовые дизельные на гусеничном ходу ковш свыше 1 до 1,25 м3	1 ед.	8,0	949,0717844
19	Экскаваторы одноковшовые дизельные на гусеничном ходу, 0,65 м3	1 ед.	8	348,4245109

Максимальный разовый выброс токсичных веществ газов при работе строительной техники производится по формуле [Л.9]:

$$M = B x k_{3i} / 3600, z/c$$

где: В – расход топлива, т/час;

 k_{ai} – коэффициент эмиссий і – того загрязняющего вещества (табл. 4.3 [Л.9]).

Валовый выброс токсичных веществ газов при работе строительной техники производится по формуле [Л.9]:

$$G = M \times T \times n \times 3600 \times 10^{-6}$$
, тонн

где: Т – время работы строительной техники, час;

n – количество единиц данного типа техники.

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.5.

Таблица 2.4.5

							таолиц		
	расхо		т, час	Наименование			Выбросы ЗВ		
Наименование техники	д, л/ма ш.час	В, т/час		kэi	загрязняющего вещества	Код 3В	г/с	тонн	
Автогрейдеры			116,500390						
среднего типа	8,1	0,003	3	10000	Азот (IV) оксид	0301	0,008	0,00336	
мощностью от									
88,9 до 117,6 кВт				15500	Углерод (сажа)	0328	0,013	0,00545	
				20000	Сера диоксид	0330	0,017	0,00713	
					Углерод оксид				
				0,1		0337	0,0000001	0,00000004	

Раздел охрана окружающей среды

100 «ECO LOGIS	1103%							114
				0,32	Бенз(а)пирен	0703	0,0000003	0,0000001
				30000	Керосин	2732	0,025	0,01049
	3,6	0,003	467,002339 6	10000	Азот (IV) оксид	0301	0,008	0,0134
				15500	Углерод (сажа)	0328	0,013	0,0219
Автопогрузчик, 5				20000	Сера диоксид	0330	0,017	0,0286
т				0,1	Углерод оксид	0337	0,0000001	0,0000002
				0,32	Бенз(а)пирен	0703	0,0000003	0,0000005
				30000	Керосин	2732	0,025	0,0420
	7,7	0,006	64,6947507	10000	Азот (IV) оксид	0301	0,017	0,0040
				15500	Углерод (сажа)	0328	0,026	0,0061
Бульдозеры,				20000	Сера диоксид	0330	0,033	0,0077
66кВт				0,1	Углерод оксид	0337	0,0000002	0,00000005
				0,32	Бенз(а)пирен	0703	0,000001	0,0000002
				30000	Керосин	2732	0,050	0,0116
Бульдозеры, 96кВт	7,7	0,006	647,130817 5	10000	Азот (IV) оксид	0301	0,017	0,03960
				15500	Углерод (сажа)	0328	0,026	0,0606
				20000	Сера диоксид	0330	0,033	0,0769
				0,1	Углерод оксид	0337	0,0000002	0,0000005
				0,32	Бенз(а)пирен	0703	0,000001	0,000002
				30000	Керосин	2732	0,050	0,1165
Машины поливомоечные	7,7	0,006	296,924777 5	10000	Азот (IV) оксид	0301	0,017	0,01817
6000 л				15500	Углерод (сажа)	0328	0,026	0,0278
				20000	Сера диоксид	0330	0,033	0,0353
				0,1	Углерод оксид Бенз(а)пирен	0337	0,0000002	0,0000002
				0,32	- Бенз(а)Пирен	0703	0,000001	0,000001
				30000	Керосин	2732	0,050	0,0534
	5,2	0,004	426,752953 2	10000	Азот (IV) оксид	0301	0,011	0,0169
Комплексная				15500	Углерод (сажа)	0328	0,017	0,0261
монтажная машина				20000	Сера диоксид Углерод оксид	0330	0,022	0,0338
				0,1	Бенз(а)пирен	0337	0,0000001	0,0000002
				0,32	- (2)	0703	0,0000004	0,0000006

Раздел охрана окружающей среды

TOO «ECO LOGIS	1105//							115
				30000	Керосин	2732	0,033	0,0507
Катки дорожные, 30 т	7,7	0,006	114,736629 5	10000	Азот (IV) оксид	0301	0,017	0,00702
				15500	Углерод (сажа)	0328	0,026	0,0107
				20000	Сера диоксид	0330	0,033	0,0136
				0,1	Углерод оксид	0337	0,0000002	0,0000001
				0,32	Бенз(а)пирен	0703	0,000001	0,0000004
				30000	Керосин	2732	0,050	0,0207
Катки дорожные, 8 т	1,8	0,001	622,526367 4	10000	Азот (IV) оксид	0301	0,003	0,00672
				15500	Углерод (сажа)	0328	0,004	0,00896
				20000	Сера диоксид	0330	0,006	0,01345
				0,1	Углерод оксид	0337	0,0000000 3	0,0000001
				0,32	Бенз(а)пирен	0703	0,0000001	0,0000002
				30000	Керосин	2732	0,008	0,01793
Катки дорожные, 13 т	2,5	0,002	853,559561 7	10000	Азот (IV) оксид	0301	0,006	0,01844
				15500	Углерод (сажа)	0328	0,009	0,0277
				20000	Сера диоксид Углерод оксид	0330	0,011	0,0338
				0,1	этлерод оксид	0337	0,0000001	0,0000003
				0,32	Бенз(а)пирен	0703	0,0000002	0,0000006
				30000	Керосин	2732	0,017	0,0522
Краны на гусеничном	4	0,003	212,897894 6	10000	Азот (IV) оксид	0301	0,008	0,0061
ходу, 16 т				15500	Углерод (сажа)	0328	0,013	0,0100
				20000	Сера диоксид Углерод оксид	0330	0,017	0,0130
				0,1		0337	0,0000001	0,0000001
				0,32	Бенз(а)пирен	0703	0,0000003	0,0000002
				30000	Керосин	2732	0,025	0,0192
Краны башенные, 10 т	8,3	0,006	636,472235 3	10000	Азот (IV) оксид	0301	0,017	0,0390
				15500	Углерод (сажа)	0328	0,026	0,0596
				20000	Сера диоксид	0330	0,033	0,0756
				0,1	Углерод оксид	0337	0,0000002	0,0000005
				0,32	Бенз(а)пирен	0703	0,0000005	0,000001
				30000	Керосин	2732	0,050	0,1146

Раздел охрана окружающей среды

OO «ECO LOOIS	1100//							110
Краны башенные,8 т	4,7	0,004	625,740191 9	10000	Азот (IV) оксид	0301	0,011	0,0248
				15500	Углерод (сажа)	0328	0,017	0,0383
				20000	Сера диоксид	0330	0,022	0,0496
				0,1	Углерод оксид	0337	0,0000001	0,0000002
				0,32	Бенз(а)пирен	0703	0,0000004	0,0000009
				30000	Керосин	2732	0,033	0,0743
Краны на автомобильном	5,1	0,006	1 130,17002	10000	Азот (IV) оксид	0301	0,017	0,0692
ходу, 10 т				15500	Углерод (сажа)	0328	0,026	0,1058
				20000	Сера диоксид	0330	0,033	0,1343
				0,1	Углерод оксид	0337	0,0000002	0,0000008
				0,32	Бенз(а)пирен	0703	0,0000005	0,000002
				30000	Керосин	2732	0,050	0,2034
Краны на автомобильном ходу, до 25 т	7,7	0,006	149,694424 5	149,6944 245	Азот (IV) оксид	0301	0,000	0,00000
				15500	Углерод (сажа)	0328	0,026	0,01401
				20000	Сера диоксид	0330	0,033	0,01778
				0,1	Углерод оксид	0337	0,0000002	0,0000001
				0,32	Бенз(а)пирен	0703	0,000001	0,000001
				30000	Керосин	2732	0,050	0,0269
Краны на гусеничном	7,7	0,006	159,161926 8	10000	Азот (IV) оксид	0301	0,017	0,0097
ходу, до 25 т				15500	Углерод (сажа)	0328	0,026	0,0149
				20000	Сера диоксид	0330	0,033	0,0189
				0,1	Углерод оксид	0337	0,0000002	0,0000001
				0,32	Бенз(а)пирен	0703	0,000001	0,0000006
				30000	Керосин	2732	0,050	0,0286
	7,7	0,006	207,606010 6	10000	Азот (IV) оксид	0301	0,017	0,01271
Краны на				15500	Углерод (сажа)	0328	0,026	0,0194
краны на гусеничном ходу, 40 т				20000	Сера диоксид	0330	0,033	0,0247
ходу, 40 і				0,1	Углерод оксид	0337	0,0000002	0,0000001
				0,32	Бенз(а)пирен	0703	0,000001	0,0000007

Раздел охрана окружающей среды

					Керосин			
				30000		2732	0,050	0,0374
Экскаваторы			949,071784					
одноковшовые	12	0,009	4	10000	Азот (IV) оксид	0301	0,025	0,0854
дизельные на								
гусеничном ходу				15500	Углерод (сажа)	0328	0,039	0,1332
ковш свыше 1 до 1,25 м3				20000	Сера диоксид	0330	0,050	0,1708
					Углерод оксид			
				0,1		0337	0,0000003	0,000001
					Бенз(а)пирен			
				0,32		0703	0,0000008	0,000003
				30000	Керосин	2732	0,075	0,2562
Экскаваторы			348,424510					
одноковшовые	8	0,006	9	10000	Азот (IV) оксид	0301	0,017	0,0213
дизельные на								
гусеничном				15500	Углерод (сажа)	0328	0,026	0,0326
ходу, 0,65 м3				20000	Сера диоксид	0330	0,033	0,0414
					Углерод оксид			
				0,1		0337	0,0000002	0,0000003
				0.00	Бенз(а)пирен	0700	0.00004	0.00004
				0,32		0703	0,000001	0,000001
				30000	Керосин	2732	0,050	0,0627
					Азот (IV) оксид	0301	0,025	0,39582
					Углерод (сажа)	0328	0,039	0,62312
					Сера диоксид	0330	0,050	0,79636
					Углерод оксид	0337	0,0000003	0,00000489
					Бенз(а)пирен Керосин	0703	0,000001	0,000016
Итого по источник	Итого по источнику 6005						0,075	1,19882

<u>Неорганизованный источник №6006</u> *ДВС автотранспорта*

Подвоз конструкций и строительных материалов осуществляется автосамосвалами с дизельным двигателем грузоподъемностью 5 и 8 тонн. Фонд времени работы автотранспорта представлен в таблице ниже:

Nº п/п	Наименование	Коли- чество	Грузоподъемность, тонн	Время работы, дней
1	Автомобили бортовые г/п до 5 тонн	1 ед.	5	113
2	Автомобили бортовые г/п до 8 тонн	1 ед.	8	6

Величина выбросов от автомобилей при движении и работе на территории предприятия рассчитывается по формулам 3.17, 3.18 [Л.10]:

$$M_1 = m_1 x L_1 + 1,3 x m_1 x L_{1n} x m_{xx} x T_{xs}$$
, г
 $M_2 = m_1 x L_2 + 1,3 x m_1 x L_{2n} x m_{xx} x T_{xm}$, г/30 мин

где: m_l – пробеговый выброс загрязняющего вещества автомобилем при движении по территории предприятия, определяется по таблице 3.8 [Л.10], г/км.

 L_1 – пробег автомобиля без нагрузки по территории предприятия, км/день;

 L_2 – максимальный пробег автомобиля без нагрузки по территории предприятия за 30 минут, км;

Раздел охрана окружающей среды

f – коэффициент увеличения выбросов при движении с нагрузкой;

 L_{1n} – пробег автомобиля с нагрузкой по территории предприятия, км/день;

 L_{2n} – максимальный пробег автомобиля с нагрузкой по территории предприятия за 30 минут, км;

 m_{xx} – удельный выброс вещества при работе двигателя на холостом ходу, определяется по таблице 3.3 [Л.10], г/мин;

 T_{xs} – суммарное время работы двигателя на холостом ходу, мин;

 T_{xm} – максимальное время работы двигателя на холостом ходу за 30 минут, мин.

Валовый выброс загрязняющих веществ рассчитывается по формуле 3.19 [Л.10]:

 $G = A \times M_1 \times N_k \times D_n \times \alpha_N \times 10^{-6}$, m/rod

где: А – коэффициент выпуска;

N_k – количество автомобилей, шт;

 α_{N} — коэффициенты трансформации окислов азота. Принимаются равными 0,8 — для NO $_{2}$, 0,13 — для NO [Л.10];

 D_n – количество рабочих дней в расчетном периоде.

Максимально разовый выброс загрязняющих веществ рассчитывается по формуле 3.20 [Л.10]: $M = M_2 \times N_{k1}/1800$, г/с

где: N_{k1} — наибольшее количество машин, работающих на территории предприятия в течение получаса.

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.6

Таблица 2.4.6

Наименование														Наименование	W 2D	Вы	бросы ЗВ
техники	m _L	m _{xx}	D _p	L ₁	L _{1n}	L ₂	L _{2n}	t _{xs}	t _{xm}	Α	N _k	N _{k1}	a _{NOx}	загрязняющего вещества	Код ЗВ	г/с	тонн
									тег	ілый п	ериод						
	3,5	1,5	113	0,3	0,3	0,1	0,1	40	10	1	3	1		Углерод оксид	0337	0,009	0,007
	0,7	0,25												Керосин	2732	0,001	0,001
Автомобили бортовые г/п до 5	2,6	0,5											0,8	Азот (IV) оксид	0301	0,002	0,002
т	2,6	0,5											0,13	Азот (II) оксид	0304	0,0004	0,0003
	0,2	0,02												Углерод (сажа)	0328	0,0001	0,0001
	0,39	0,072												Сера диоксид	0330	0,0004	0,000
	5,1	2,8	6	0,3	0,3	0,1	0,1	40	10	1	3	1		Углерод оксид	0337	0,0162	0,001
	0,9	0,35												Керосин	2732	0,0021	0,0001
Автомобили	3,5	0,6											0,8	Азот (IV) оксид	0301	0,003	0,0001
бортовые г/п до 8 т	3,5	0,6											0,13	Азот (II) оксид	0304	0,0005	0,00002
	0,25	0,03												Углерод (сажа)	0328	0,0002	0,00001
	0,45	0,09												Сера диоксид	0330	0,0006	0,00002
														Углерод оксид	0337	0,0162	0,008
														Керосин	2732	0,0021	0,0011
														Азот (IV) оксид	0301	0,003	0,0021
														Азот (II) оксид	0304	0,0005	0,00032
l														Углерод (сажа)	0328	0,0002	0,00011
Итого по источнику	6006:													Сера диоксид	0330	0,0006	0,0008

<u>Неорганизованный источник №6007</u> Передвижные компрессоры с двигателями внутреннего сгорания

На участке строительно-монтажных работ для получения сжатого воздуха будет применяться компрессоры передвижные с двигателем внутреннего сгорания давлением до 686 кПа (7 атм), 5 м^3 /мин.

Согласно локальным ресурсным сметам по проекту общее время работы передвижных компрессоров составляет 1 160,11 час.

Расход топлива принимаем из расчета 10,0 л/час.

Максимальный выброс i-ого вещества от стационарной дизельной установкой определяется по формуле [12]:

Мсек = $(ei \times P)$ / 3600, c/c

где: ei - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки в режиме номинсальной мощности, г/кВт*ч

Рэ - эксплуатационная мощность стационарной дизельной установки, кВт.

Валовый выброс i-ого вещества от стационарной дизельной установкой определяется по формуле [12]:

$Grod = (qi \times Brod) / 1000, m/rod$

где: qi - выброс i-го вредного вещества, г/кг топлива, приходящегося на 1 кг дизельного топлива Вгод - расход топлива стационарной дизельной установкой за год, т/год Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.7.

Таблица 2.4.7

									Таоли	ща 2.4.7
Наименовани е источника выбросов (выделения)	е _і , г/кВт*ч	Т, час	Р _э , кВт	В, т/год	q _i	α_{NOx}	Наименование загрязняющего вещества	Код 3В	М, г/с	G, т/год
Компрессоры	10,3	1 160,11	21,0	1,182	43,0	0,8	Азота (IV) диоксид	0301	0,048	0,307
передвижные	10,3		,	_,	43,0	0,13	Азот (II) оксид	0304	0,008	0,05
с двигателем	0,000013				0,0000		Бенз(а)пирен	0703	0,0000001	0,0000005
внутреннего	1,1				4,50		Сера диоксид	0330	0,006	0,040
сгорания	7,20				30,00		Углерод оксид	0337	0,042	0,268
давлением до	3,60				15,00		Углеводороды		0.021	0.124
686 кПа (7							предельные С12-	2754	0,021	0,134
атм), 5 м3/мин							C19			
a imij, s ms/mini	0,70				3,00		Углерод	0328	0,004	0,027
	0,15				0,60		Формальдегид	1325	0,001	0,005
							Азота (IV) диоксид	0301	0,048	0,307
							Азот (II) оксид	0304	0,008	0,05
							Бенз(а)пирен	0703	0,000001	0,0000005
							Сера диоксид	0330	0,006	0,040
							Углерод оксид	0337	0,042	0,268
							Углеводороды		0,021	0,134
							предельные С12-	2754	0,021	0,134
							C19			
							Углерод	0328	0,004	0,027
Итого по источн	нику 6007						Формальдегид	1325	0,001	0,005

<u>Неорганизованный источник №6008</u> Передвижные электростанции

На участке строительно-монтажных работ для получения электричества будет применяться передвижная электростанция, до 4 кВт, с двигателем внутреннего сгорания.

Согласно локальным ресурсным сметам по проекту общее время работы передвижной электростанции составляет 226,468 часа.

Расход топлива принимаем из расчета 2,0 л/час.

Максимальный выброс i-ого вещества от стационарной дизельной установкой определяется по формуле [12]:

Мсек = $(ei \times P)$ / 3600, z/c

где: ei - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки в режиме номинальной мощности, г/кВт*ч

Раздел охрана окружающей среды

Рэ - эксплуатационная мощность стационарной дизельной установки, кВт.

Валовый выброс i-ого вещества от стационарной дизельной установкой определяется по формуле [12]:

$Grod = (qi \times Brod) / 1000, m/rod$

где: qi - выброс i-го вредного вещества, г/кг топлива, приходящегося на 1 кг дизельного топлива Вгод - расход топлива стационарной дизельной установкой за год, т/год Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.8

Таблица 2.4.8

Наименование	e _i ,	Т, час	P ₃ ,	В,	qi	α_{NO}	Наименован	Код ЗВ	М, г/с	G, т/год
источника	г/кВт	.,	кВт	т/год	91	x	ие	подов	,.,	о, .,.од
выбросов	*ч			,,,,,,,,		, x	загрязняюще			
(выделения)							го вещества			
Электростанции передвижные,	10,3	226,46 8	4	0,994	43,0	0,8	Азота (IV) диоксид	0301	0,009	0,012
до 4 кВт	10,3				43,0	0,1	Азот (II) оксид	0304	0,001	0,00195
	0,000				0,000		Бенз(а)пирен	0703	0,0000001	0,00000001
	1,1				4,50		Сера диоксид	0330	0,001	0,0016
	7,20				30,00		Углерод	0337	0,008	0,010
	3,60				15,00		Углеводород	2754	0,004	0,005
	0,70				3,00		Углерод	0328	0,001	0,0010
	0,15				0,60		Формальдеги	1325	0,0002	0,00021
							Азота (IV) диоксид	0301	0,009	0,012
							Азот (II)	0304	0,001	0,00195
							Бенз(а)пирен	0703	0,0000001	0,0000001
							Сера	0330	0,001	0,0016
							Углерод	0337	0,008	0,010
							Углеводород	2754	0,004	0,005
							Углерод	0328	0,001	0,0010
Итого по источник	ky 6008						Формальдег	1325	0,0002	0,00021

<u>Неорганизованный источник 6009</u> *шлифовальная машина*

Фонд времени работы шлифовальной машины с кругом Ø 175 мм составит 656,303 ч.

Валовые выбросы загрязняющих веществ для источника выделения, не обеспеченного местными отсосами рассчитываются по формуле 1 [Л.11]:

$$M_{rod} = \frac{3600 \times k \times Q \times T}{10^6}$$
 , m/rod

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами рассчитывается по формуле 2 [Л.11]:

$$M = k \times Q$$
, ϵ/c

где: Q – удельный выброс пыли технологическим оборудованием, г/с (табл.1);

k – коэффициент гравитационного оседания, п. 5.3.2 [Л.11];

Т – фактический годовой фонд времени работы одной единицы оборудования, ч/год;

Расчеты выбросов загрязняющих веществ в атмосферу при работе металлообрабатывающих станков сведены в таблицу 2.4.9.

Таблица 2.4.9

Тип и марка	Т, ч/год	Q, г/c	k	Наименование загрязняющего	Код ЗВ	Выбросы ЗВ	
станка				вещества		г/с	т/год
Шлифовальная	656,303	0,022	0,2	Взвешенные частицы	2902	0,004	0,010
машинка с Д=		(пыль металлическая)		2902			

Раздел охрана окружающей среды

175мм		0,014	0,2	Пыль абразивная	2930	0,003	0,007
				Взвешенные частицы (пыль металлическая)	2902	0,004	0,010
Итого по источни	ıку № 6009			Пыль абразивная	2930	0,003	0,007

Неорганизованный источник №6010 Разогрев битума

Общее количество нефтяного битума разных сортов составляет 14,734 т

Единовременная емкость битумного котла 400 м³. Используемый битумный котел автоматизированный электрический.

Валовый выброс углеводородов при разогреве битума рассчитывается по формуле 5.3.2 [Л.15]:

$$G = 0.16 \times (P_{\underline{t}}^{max} \times K_{\underline{B}} + P_{\underline{t}}^{min}) \times m \times K_{\underline{p}}^{cp} \times K_{\underline{O5}} \times B$$
, тонн $10^4 \times \rho_{\mathfrak{M}} \times (546 + t_{\mathfrak{M}}^{max} + t_{\mathfrak{M}}^{min})$

Максимально разовый выброс углеводородов при разогреве битума рассчитывается по формуле 5.3.1 [Л.17]:

$$M = \underbrace{0.445 \times P_{t} \times m \times K_{\underline{0}}^{max} \times V_{\underline{u}}^{max} \times K_{\underline{B}}}_{10^{2} \times (273 + t_{\mathcal{H}}^{max})} \times K_{\underline{B}}, z/c$$

P_t – давление насыщенных паров нефтепродукта, мм.рт.ст.; где:

 P_{t}^{max} , P_{t}^{min} — давление насыщенных паров нефтепродукта при максимальной и минимальной температуре жидкости соответственно, мм.рт.ст. (таблица п 1.1 [Л.15];

 $K_{\rm p}^{\rm cp}, K_{\rm p}^{\rm max}$ — опытные коэффициенты (приложение 8, [Л.15]); $V_{\rm u}^{\rm max}$ — максимальный объем паровоздушной смеси, вытесняемой из резервуара, м 3 /час;

 $t_{\rm max}^{\rm max}$, $t_{\rm m}^{\rm min}$ — максимальная и минимальная температура нефтепродукта в резервуаре соответственно, $^{\hat{0}}$ С;

т – молекулярная масса битума (принимается равной 187 по температуре начала кипения битума [Л.15]);

К_в – опытный коэффициент (приложение 9, [Л.15]);

 $\rho_{\rm w}$ – плотность нефтепродукта, т/м³ (принимается равной 0,95 т/м³ [Л.15]);

 K_{06} – коэффициент оборачиваемости (приложение 10, [Л.15]);

В – количество нефтепродукта, разогреваемое в емкости, т/год.

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.10.

Таблица 2.4.10

Наименование														Наименование		Выбросы ЗВ	
источника выбросов (выделения)	P _t ^{max} , mm.pt.ct.	P _t ^{min} , mm.pt.ct.	K _B	m	K _p ^{cp}	Коб	ρ _ж , τ/м³	t _ж ^{max} , ⁰ C	t _ж ^{min} , ⁰ C	P _t	K _p ^{max}	V _u ^{max} , M ³ /ч	В, тонн	загрязняющего вещества	Код 3В	М, г/с	G, тонн
Разогрев битума	9,57	2,74	1	187	0,7	2,5	0,95	120	90	4,26	1	1	14,734	Углеводороды предельные С ₁₂ - С ₁₉	2754	0,004	0,015
Итого по источни	Итого по источнику №6010											0,004	0,015				

Неорганизованный источник №6011

Обмазка битумом

В процессе строительно-монтажных работ для гидроизоляционных работ используют битумы разных марок. Данные по расходу гидроизоляционных материалов представлены в таблице ниже:

Nº п/п	Наименование материала	Ед. изм.	Расход материалов
1	Битумы нефтяные разных марок	Т	11,912
2	Мастики битумно-полимерные, битумно-	Т	2,813
	латексные и др		

В процессе использования битума и в атмосферу выделяются углеводороды предельные С12-19. Расчет валовых выбросов загрязняющих веществ проводится по формуле [Л.16]:

 $M_{rod}=B \times q$, m/rod

где q- удельный выброс углеводородов принят по [J.16]:1 кг на 1 т готового битума.;

В – масса расходуемого материала, тн

Максимально разовый выброс определяется по формуле [Л.16]:

 $M_{\text{сек}} = M_{\text{год}} x 10^6$, г/сек $t \times 3600$

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.11

Таблица 2.4.11

Наименован ие источника выбросов (выделения)	Марка применямого материала	Т, час	В, т	g, кг/т н	Наименование загрязняющего вещества	Код ЗВ	М, г/с	G, т/год
Нанесение	мастики битумно- полимерные, битумно-латексные и др.	1000	2,813	1,01	Углеводороды предельные C12-C19	2754	0,001	0,002
битума	Битумы нефтяные разных марок	1000	11,912	1,01	Углеводороды предельные C12-C19	2754	0,003	0,012
Итого по источ	нику №6011				Углеводороды предельные C12-C19	2754	0,004	0,015

<u>Неорганизованный источник № 6012</u> *Металлообрабатывающие станки*

Фонд времени работы отрезных станков – 177,479 ч.

Валовые выбросы загрязняющих веществ для источника выделения, не обеспеченного местными отсосами рассчитываются по формуле 1 [Л.11]:

$$M_{\text{rod}} = \frac{3600 \times k \times Q \times T}{10^6}$$
 , m/rod

Максимальный разовый выброс для источников выделения, не обеспеченных местными отсосами рассчитывается по формуле 2 [Л.11]:

$M = k \times Q$, ϵ/c

где: Q – удельный выброс пыли технологическим оборудованием, г/с (табл.1);

k – коэффициент гравитационного оседания, п. 5.3.2 [Л.11];

Т – фактический годовой фонд времени работы одной единицы оборудования, ч/год;

Расчеты выбросов загрязняющих веществ в атмосферу при работе металлообрабатывающих станков сведены в таблицу 2.4.10.

Таблица 2.4.10

Тип и марка				Наименование		Выбро	осы ЗВ
станка	T, ч/год	' '	Код ЗВ	г/с	т/год		
Сверлильный ствнок	177,479	0,203	0,2	Взвешенные частицы (пыль металлическая	2902	0,0004	0,0003

Раздел охрана окружающей среды

	Взвешенные частицы	2902	0,0004	0,0003
Итого по источнику № 6010	(пыль металлическая	2902		

Неорганизованный источник № 6013

Паяльные работы

Пайка предусматривается при помощи ручных паяльников с косвенным нагревом при помощи припоя марки ПОС-30.

Согласно локальным ресурсным сметам по проекту количество припоя ПОС-30 составит 30,377 кг.

Расчет валовых выбросов проводится отдельно по оксиду меди и цинка по формулам 4.28 [Л.10]:

 $M_{200}=qxmx10^{-6}, m/200$

где q- удельные выделения оксидов меди и цинка, г/кг (табл. 4.8);

т – масса израсходованного припоя за год, кг

Максимально разовый выброс определяется по формуле 4.31 [Л.10]:

 $M_{cek} = \frac{M_{cod} \times 10^6}{t \times 3600}$ cek

где t – время «чистой» пайки в год, час/год

Расчеты выбросов загрязняющих веществ сведены в таблицу 2.4.13.

Таблица 2.4.13

Наименование источника выбросов (выделения)	Марка применямого материала	Т, час/год	В, кг/год	g, г/кг	Наименование загрязняющего вещества	Код 3В	М, г/с	G, т/год
Пайка пяльником	Припой ПОС-	2.0	30,377	0,51	Свинец и его неорг. соединения	0184	0,001	0,00002
Паика пяльником	30, ПОС-40	2,0	30,377	0.28	Олово оксид (в пересчете на олово)	0168	0,001	0,00001
					Свинец и его неорг. соединения	0184	0,001	0,00002
Итого по источник	ху выделения №	Олово оксид (в пересчете на олово)	0168	0,001	0,00001			

Неорганизованный источник № 6014

Сварка полиэтиленовых труб

Неразъемные соединения полиэтиленовых труб выполняются при помощи сварки контактным нагревом. Сварка стыков осуществляется при помощи сварочного аппарата. Температура сварки +230...250 $^{\circ}$ С. Крепление деталей полиэтиленовых труб производится за счет сжатия разогретых поверхностей.

Валовой выброс 3В определяется по формуле 3 [Л.13]:

Фонд времени работы агрегата для сварки п/э труб составит 380 ч.

 $Mi = qi * N * 10^{-6}, m/200$

Максимально разовый выброс 3В определяется по формуле 4 [Л.13]:

 $G = Mi* 10^6 / (T* 3600), c/c$

где: qi – удельное выделение загрязняющего вещества на 1 сварку, г/сварку;

N – количество сварок в течение года;

Т- время работы сварочного аппарата, часов.

Расчеты выбросов загрязняющих веществ в атмосферу при сварке полиэтиленовых труб сведены в таблицу 2.4.14.

Таблица 2.4.14

Наименование	Т, час	N,	q _i , г/сварку	Наименование	Код	Выбросы ЗВ	
оборудования		сварок		загрязняющего вещества	3B	М, г/с	G,
							тонн
Агрегат для сварки	380	200	0,009	Углерод оксид	0337	0,000007	0,0000090
полиэтиленовых труб	360	200	0,0039	Хлорэтилен	0827	0,000003	0,0000039
				Углерод оксид	0337	0,000007	0,0000090
Итого по источнику вы	деления	№ 6014		Хлорэтилен	0827	0,000003	0,0000039

Раздел охрана окружающей среды

Выбросы загрязняющих веществ в атмосферу на период строительно-монтажных работ приведены в таблице 2.4.15

Таблица 2.4.15

Код	Наименование загрязняющего вещества	г/с	т/год
0123	Железо (II, III) оксиды	0,044	0,14
0143	Марганец и его соединения	0,00131	0,0085
0168	Олово оксид (в пересчете на олово)	0,001	0,00002
0184	Свинец и его неорг. соединения	0,001	0,00001
0301	Азота (IV) диоксид	0,1033	0,76422
0304	Азот (II) оксид	0,0095	0,05227
0328	Углерод (сажа)	0,0442	0,65123
0330	Сера диоксид	0,0576	0,83798
0337	Углерод оксид	0,0872073	0,33501389
0342	Фтористые газообразные соединения	0,0001	0,0021
0344	Фториды неорганические плохо растворимые	0,0006	0,0007
0616	Диметилбензол (смесь –о, -м, -п изомеров)	0,046	0,9512
0621	Метилбензол (Толуол)	0,053	0,10512
0703	Бенз(а)пирен	0,000001110	0,0000165190
0827	Хлорэтилен	0,000003	0,0000039
1042	Бутан-1-ол (Сирт н-бутиловый)	0,007	0,00022
1048	2-Метилпропан-1-ол (спирт изобутиловый)	0,005	0,0002
1061	Этанол (Спирт этиловый)	0,011	0,00004
1119	2-Этоксиэтанол	0,005	0,00002
1210	Бутилацетат	0,010	0,02
1325	Формальдегид	0,0012	0,00521
1401	Пропан-2-он (ацетон)	0,022	0,0440
2732	Керосин	0,077	1,19992
2735	масло минеральное	0,006	0,038
2752	Уайт-спирит	0,074	0,6039
2754	Углеводороды предельные C ₁₂ -C ₁₉	0,06	0,295
2902	Взвешенные частицы	0,0304	0,15030
2908	Пыль неорганическая SiO₂ 70-20%	0,0283	0,6103
2930	пыль абразивная	0,003	0,007
Всего			6,822564309
из них тве	ердые	1,568076519	
газообраз	вные		5,25448779

OO «ECO LOGIST	ICS»			127
		Приложени	re 6	
		приложени	CU	
Расчеты выбі	посов загрязняю	ших вешеств в	атмосферу на период	эксплуаташ
	p 0 0 0 2 0 m p 11 0 11 11 10		оттосфору по портод	911011017 101101

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ НА ПЕРИОД ЭКСПЛУАТАЦИИ

Источник загрязнения N 0001, Выхлопная труба Источник выделения N 001, Генератор дизельный

Список литературы:

- 1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №14 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Временные рекомендации по расчету выбросов от стационарных дизельных установок. Л., 1988

Максимальный расход диз. топлива установкой, $\kappa \Gamma/4$ ас, BS = 1.5 Годовой расход дизельного топлива, τ/Γ д, BG = 1

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E = 30 Максимальный разовый выброс, г/с, _G_ = BS \cdot E / 3600 = 1.5 \cdot 30 / 3600 = 0.0125 Валовый выброс, т/год, _M_ = BG \cdot E / 10^3 = 1 \cdot 30 / 10^3 = 0.03

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E = 1.2 Максимальный разовый выброс, г/с, $_G_=BS \cdot E / 3600 = 1.5 \cdot 1.2 / 3600 = 0.0005$ Валовый выброс, т/год, $_M_=BG \cdot E / 10^3 = 1 \cdot 1.2 / 10^3 = 0.0012$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E = 39 Максимальный разовый выброс, г/с, $_G_=BS \cdot E / 3600 = 1.5 \cdot 39 / 3600 = 0.01625$ Валовый выброс, т/год, $_M_=BG \cdot E / 10^3 = 1 \cdot 39 / 10^3 = 0.039$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E = 10 Максимальный разовый выброс, г/с, _G_ = BS \cdot E / 3600 = 1.5 \cdot 10 / 3600 = 0.00417 Валовый выброс, т/год, _M_ = BG \cdot E / 10 3 = 1 \cdot 10 / 10^3 = 0.01

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ)

(584) Оценочное значение среднециклового выброса, г/кг

топлива (табл.4), Е = 25

Максимальный разовый выброс, r/c, $_G_ = BS \cdot E / 3600 = 1.5 \cdot 25 / 3600 = 0.01042$

Валовый выброс, т/год, $M = BG \cdot E / 10^3 = 1 \cdot 25 / 10^3 = 0.025$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E = 12 Максимальный разовый выброс, г/с, $_G_=BS \cdot E / 3600 = 1.5 \cdot 12 / 3600 = 0.005$ Валовый выброс, T/TOD, T/TOD,

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E = 1.2\,$ Максимальный разовый выброс, г/с, $G = BS \cdot E / 3600 = 1.5 \cdot 1.2 / 3600 = 0.0005$

Валовый выброс, т/год, $_M_ = BG \cdot E / 10^3 = 1 \cdot 1.2 / 10 = 0.0012$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E = 5 Максимальный разовый выброс, г/с, $_G_=BS \cdot E / 3600 = 1.5 \cdot 5 / 3600 = 0.002083$ Валовый выброс, т/год, $_M_=BG \cdot E / 10^3 = 1 \cdot 5 / 10^3 = 0.005$

Итоговая таблица:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0125000	0.0300000
0304	Азот (II) оксид (Азота оксид) (6)	0.0162500	0.0390000
0328	Углерод (Сажа, Углерод черный) (583)	0.0020830	0.0050000
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0.0041700	0.0100000
	(516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0104200	0.0250000
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0005000	0.0012000
1325	Формальдегид (Метаналь) (609)	0.0005000	0.0012000
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19	0.0050000	0.0120000
	(в пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения N 0002, Труба

Раздел охрана окружающей среды

Источник выделения N 001, Котельная на дизельном топливе

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах паропроизводительностью до 30 т/час

Вид топлива, K3=Жидкое другое (Дизельное топливо и т.п.) Расход топлива, т/год, BT=50.18

Расход топлива, г/с, BG=10.13

Марка топлива, М=Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR=10210 Пересчет в МДж, QR=QR·0.004187=10210·0.004187=42.75

Средняя зольность топлива, %(прил. 2.1), AR=0.025

Предельная зольность топлива, % не более(прил. 2.1), A1R=0.025 Среднее содержание серы в топливе, %(прил. 2.1), SR=0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), S1R=0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN=800 Фактическая мощность котлоагрегата, кВт, QF=800

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO=0.0914 Коэфф. снижения выбросов азота в рез-те техн. решений, B=0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), KNO=KNO·(QF/QN)^0.25=0.0914·(800/800)^0.25=0.0914 Выброс окислов азота, т/год (ф-ла 2.7), MNOT=0.001·BT·QR·KNO·(1-B)=0.001·50.18·42.75·0.0914·(1-0)=0.196071 Выброс окислов азота, г/с (ф-ла 2.7), MNOG=0.001·BG·QR·KNO·(1-B)=0.001·10.13·42.75·0.0914·(1-0)=0.039581

Выброс азота диоксида (0301), т/год, _M_=0.8·MNOT=0.8·0.196071=0.156857 Выброс азота диоксида (0301), г/с, _G_=0.8·MNOG=0.8·0.039581=0.03166

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M$ _=0.13·MNOT=0.13·0.196071=0.025489 Выброс азота оксида (0304), г/с, $_G$ _=0.13·MNOG=0.13·0.039581=0.00514

Раздел охрана окружающей среды

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2=0.02

Содержание сероводорода в топливе, %(прил. 2.1), H2S=0

Выбросы окислов серы, $\tau/\text{год}$ (ϕ -ла 2.2), M=0.02·BT·SR·(1-NSO2)+0.0188·H2S·BT=0.02·50.18·0.3·(1-0.02)+0.0188·0·50.18=0.295058

Выбросы окислов серы, r/c (ϕ -ла 2.2), $_{G}=0.02\cdot BG\cdot S1R\cdot (1-NSO2)+0.0188\cdot H2S\cdot BG=0.02\cdot 10.13\cdot 0.3\cdot (1-0.02)+0.0188\cdot 0\cdot 10.13=0.059$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4=0 Кол-во окиси углерода на единицу тепла, кг/Гдж(табл. 2.1), KCO=0.32

Тип топки: Камерная топка

Выход окиси углерода в кг/тонн или кг/тыс.м3', CCO=QR·KCO=42.75·0.32=13.68

Выбросы окиси углерода, τ /год (ϕ -ла 2.4), $_{\rm M}$ =0.001·BT·CCO·(1-Q4/100)= 0.001·50.18·13.68·(1-0/100)=0.0069 Выбросы окиси углерода, $_{\rm r}$ /с (ϕ -ла 2.4), $_{\rm G}$ =0.001·BG·CCO·(1-Q4/100)=0.001·10.13·13.68·(1-0/100)=0.0014

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F=0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), _M_=BT·AR·F= $50.18\cdot0.025\cdot0.01=0.012545$ Выброс твердых частиц, г/с (ф-ла 2.1), _G_=BG·A1R·F= $10.13\cdot0.025\cdot0.01=0.00253$

Итого:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0316600	0.1568570
0304	Азот (II) оксид (Азота оксид) (6)	0.0051400	0.0254890

Раздел охрана окружающей среды

0328	Углерод (Сажа, Углерод черный) (583)	0.0025300	0.0125450
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV)	0.0590000	0.2950580
	оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0014000	0.0069000

Источник загрязнения N 0003, Дыхательный клапан Источник выделения N 001, Резервуар для дизтоплива V-50м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт:Дизельное топливо Расчет выбросов от резервуаров

Конструкция резервуара:заглубленный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 1.88 Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 378.41 Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 0.99

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 378.41 Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 1.33

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 1

Максимальный из разовых выброс, r/c (9.2.1), GR = (CMAX * VSL) / 3600 = (1.88 * 1) / 3600 = 0.0005222

Выбросы при закачке в резервуары, τ /год (9.2.4) , MZAK = (COZ * QOZ + CVL * QVL) * 10 ^ -6 = (0.99 * 378.41 + 1.33

* 378.41) * 10 ^ -6 = 0.00088

Удельный выброс при проливах, г/м3, Ј = 50

Выбросы паров нефтепродукта при проливах, τ /год (9.2.5), MPRR = 0.5 * J * (QOZ + QVL) * 10 ^ (-6) = 0.5 * 50 * (378.41 + 378.41) * 10 ^ (-6) = 0.019

Валовый выброс, τ /год (9.2.3), MR = MZAK + MPRR = 0.00088 + 0.019 = 0.0197288

Примесь: 2754 Углеводороды предельные C12-19 /в пересчете на C/ (592) Концентрация 3В в парах, % масс(Прил. 14), CI = 99.72

Раздел охрана окружающей среды

Валовый выброс, т/год (5.2.5), _M_ = CI * M / 100 = 99.72 * 0.01972 / 100 = 0.0197

Максимальный из разовых выброс, r/c (5.2.4), G = CI * G / 100 = 99.72 * 0.000431 / 100 = 0.00043

Примесь: 0333 Сероводород (Дигидросульфид) (528) Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, τ /год (5.2.5), $_{\rm M}$ = CI * M / 100 = 0.28 * 0.01972 / 100 = 0.0055

Максимальный из разовых выброс, r/c (5.2.4), $_{G}$ = CI * G / 100 = 0.28 * 0.000431 / 100 = 0.00000121

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (528)	0.00000121	0.0055
2754	Углеводороды предельные С12-19 /в пересчете на С/ (592)	0.0005222	0.0197

Источник загрязнения N 0004, Дыхательный клапан Источник выделения N 001, Резервуар для дизтоплива V-50м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет по п. 9

Нефтепродукт: Дизельное топливо Расчет выбросов от резервуаров

Конструкция резервуара:заглубленный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 1.88 Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 378.41 Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), СОХ = 0.99

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 378.41 Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 1.33

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 1

Максимальный из разовых выброс, г/с (9.2.1), GR = (CMAX * VSL) / 3600 = (1.88 * 1) / 3600 = 0.0005222

Выбросы при закачке в резервуары, τ /год (9.2.4) , MZAK = (COZ * QOZ + CVL * QVL) * 10 ^ -6 = (0.99 * 378.41 + 1.33

* 378.41) * 10 ^ -6 = 0.00088

Удельный выброс при проливах, г/м3, J = 50

Раздел охрана окружающей среды

Выбросы паров нефтепродукта при проливах, τ /год (9.2.5), MPRR = 0.5 * J * (QOZ + QVL) * 10 ^ (-6) = 0.5 * 50 * (378.41 + 378.41) * 10 ^ (-6) = 0.019

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.00088 + 0.019 = 0.0197288

Примесь: 2754 Углеводороды предельные C12-19 /в пересчете на C/ (592) Концентрация 3В в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), _M_ = CI * M / 100 = 99.72 * 0.01972 / 100 = 0.0197

Максимальный из разовых выброс, r/c (5.2.4), $_{G}$ = Cl * G / 100 = 99.72 * 0.000431 / 100 = 0.00043

Примесь: 0333 Сероводород (Дигидросульфид) (528) Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, τ /год (5.2.5), $_{\rm M}$ = Cl * M / 100 = 0.28 * 0.01972 / 100 = 0.0055

Максимальный из разовых выброс, Γ (5.2.4), G = CI * G / 100 = 0.28 * 0.000431 / 100 = 0.00000121

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (528)	0.00000121	0.0055
2754	Углеводороды предельные С12-19 /в пересчете на С/ (592)	0.0005222	0.0197

Источник загрязнения N 0005, Труба гаража

Источник выделения № 001, Вентиляционная установка

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4). Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Имеющая непосредственный въезд и выезд на дороги общего

пользования. Условия хранения: Теплая закрытая стоянка

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Тип машины: Легковые автомобили с впрыском топлива рабочим объемом свыше 1.8 до 3.5 л (до 92)

Раздел охрана окружающей среды

Dn,	Nk,	А	Nk1	L1,	L2,						
сут	ШТ		шт.	KM	KM						
365	10	1.00	1	0.1	0.1						
3B	Tpr	Mpr,	Tx,	Mxx,	MI,	г/с	т/год				
	мин	г/ми	мин	н г/ми	г/к						
0337	4	8.19	1	4.5	19.17	0.0109	0.1665				
2704	4	0.9	1	0.4	2.25	0.001174	0.0177				
0301	4	0.07	1	0.05	0.4	0.0000822	0.001344				
0304	4	0.07	1	0.05	0.4	0.00001336	0.0002184				
0330	4	0.014	1	0.012	0.081	0.0000216	0.000357				

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование 3В	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0000822	0.0013440
0304	Азот (II) оксид (Азота оксид) (6)	0.0000134	0.0002184
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0000216	0.0003570
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0108900	0.1665000
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.0011740	0.0177000

Максимальные разовые выбросы достигнуты в переходный период

Источник загрязнения N 6001, Неорганизованный источник Источник выделения N 001, Автостоянки для автобусов на 20 м/м

Список литературы:

- 1.Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды республики Казахстан от 18.04.2008 №100-п
- 2.Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Имеющая непосредственный въезд и выезд на дороги общего

пользования. Условия хранения: Открытая или закрытая не отапливаемая стоянка без

средств подогрева

Перечень транспортных средств

Марка автомобиля	Марка топлива	Всего	Макс
Автобусы дизельные большие габаритн			
Вольво	Дизельное топливо	20	20
Итого: 20			

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Теплый период

Раздел охрана окружающей среды

Тип машины: Автобусы дизельные средние габаритной длиной от 8 до 10 м (иномарки)													
Dn,	Nk,шт	Α	Nkl,шт		L1,ĸ L2,ͱ		2,к	Lр,к					
сут					M	Ν	1	М					
150	20	1.00	6		0.01	0	.01						
3B	Tpr	Mpr	or Tx						MI		Mlp	г/с	т/год
	Мин	г/мі	1	M	1H		г/ми		г/к		г/к		
0337	4	1.22	2	1		0.76			4.1		4.1	0.00947	0.0775
2732	4	0.53	3	1			0.38		0.6		0.6	0.00418	0.0338
0301	4	0.57	7	1			0.52		3		3	0.003776	0.0295
0304	4	0.57	7	1	1		0.52		3		3	0.000614	0.0048
0328	4	0.01	L 6	1	1		0.01	6	0.15		0.15	0.0001358	0.001042
0330	4	0.08	34	1	•		0.084	4	0.4		0.4	0.000707	0.00546

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид	0.003776	0.0295
0304	Азот(II) оксид	0.000614	0.0048
0328	Углерод	0.0001358	0.001042
0330	Сера диоксид	0.000707	0.00546
0337	Углерод оксид	0.00947	0.0775
2732	Керосин	0.00418	0.0338

Источник загрязнения N 6002, Неорганизованный источник Источник выделения N 001, Автостоянки для фур на 96 м/м

Список литературы:

1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

Период хранения: Переходный период хранения (t>-5 и t<5)

Температура воздуха за расчетный период, град. С, Т = 5

Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 90

Наибольшее количество автомобилей, работающих на территории в течении 30 мин , NK1 = 1 Общ. количество автомобилей данной группы за расчетный период, шт. , NK = 3 Коэффициент выпуска (выезда) , A = 0.1

Экологический контроль не проводится

Раздел охрана окружающей среды

Суммарный пробег с нагрузкой, км/день, L1N = 0.1

Суммарное время работы двигателя на холостом ходу, мин/день , TXS = 0.1 Макс. пробег с нагрузкой за 30 мин, км , L2N = 0.1

Макс. время работы двигателя на холостом ходу в течении 30 мин, мин , ТХМ =

- 0.1 Суммарный пробег 1 автомобиля без нагрузки по территории п/п, км , L1 =
- 0.1 Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км, L2 = 0.1

Примесь:0337 Углерод оксид

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 6.66 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 2.9

Выброс 3В в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 6.66 * 0.1

+ 1.3 * 6.66 * 0.1 + 2.9 * 0.1 = 1.82

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 1.82 * 3 * 90 * 10 ^ (-6) = 0.0000491$ Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 6.66 * 0.1 + 1.3 * 6.66 * 0.1 + 2.9 * 0.1 = 1.82

Максимальный разовый выброс 3B, г/с , G = M2 * NK1 / 30 / 60 = 1.82 * 1 / 30 / 60 = 0.001011

Примесь:2732 Керосин

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 1.08 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.45

Выброс 3В в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 1.08 * 0.1

+ 1.3 * 1.08 * 0.1 + 0.45 * 0.1 = 0.2934

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.2934 * 3 * 90 * 10 ^ (-6) = 0.00000792$ Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 1.08 * 0.1 + 1.3 * 1.08 * 0.1 + 0.45 * 0.1 = 0.2934

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.2934 * 1 / 30 / 60 = 0.000163

РАСЧЕТ выбросов оксидов азота:

Пробеговые выбросы 3В, г/км, (табл.3.8) , ML = 4 Удельные выбросы 3В при работе на холостом ходу, r/мин, (табл.3.9) , MXX = 1

Выброс 3В в день при движении и работе на территории, Γ , M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 4 * 0.1 + 1.3 * 4 * 0.1 + 1 * 0.1 = 1.02

Раздел охрана окружающей среды

Валовый выброс 3B, τ /год , M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 1.02 * 3 * 90 * 10 ^ (-6) = 0.00002754 Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 4 * 0.1 + 1.3 * 4 * 0.1 + 1 * 0.1 = 1.02

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 1.02 * 1 / 30 / 60 = 1.02

0.000567 С учетом трансформации оксидов азота получаем:

Примесь:0301 Азот (IV) оксид (Азота диоксид)

Валовый выброс, т/год , _M_ = 0.8*M=0.8*0.00002754=0.00002203 Максимальный разовый выброс, г/с , GS = 0.8*G=0.8*0.000567=0.000454

Примесь:0304 Азот (II) оксид (Азота оксид)

Валовый выброс, τ /год , $_M_$ = 0.13 * M = 0.13 * 0.00002754 = 0.00000358 Максимальный разовый выброс, r/c , GS = 0.13 * G = 0.13 * 0.000567 = 0.0000737

Примесь:0328 Углерод (Черный)

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.36 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.04

Выброс 3В в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.36 * 0.1

+ 1.3 * 0.36 * 0.1 + 0.04 * 0.1 = 0.0868

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.0868 * 3 * 90 * 10 ^ (-6) = 0.000002344$ Максимальный разовый выброс 3B одним автомобилем, Γ 3a 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.36 * 0.1 + 1.3 * 0.36 * 0.1 + 0.04 * 0.1 = 0.0868

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.0868 * 1 / 30 / 60 = 0.0000482

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.603 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.1

Выброс 3В в день при движении и работе на территории, Γ , M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.603 * 0.1 + 1.3 * 0.603 * 0.1 + 0.1 * 0.1 = 0.1487

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.1487 * 3 * 90 * 10 ^ (-6) = 0.000004015$ Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.603 * 0.1 + 1.3 * 0.603 * 0.1 + 0.1 * 0.1 = 0.1487

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.1487 * 1 / 30 / 60 = 0.0000826

Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 90

Наибольшее количество автомобилей, работающих на территории в течении 30 мин , NK1 = 1 Общ. количество автомобилей данной группы за расчетный период, шт. , NK = 7 Коэффициент выпуска (выезда) , A = 0.1

Экологический контроль не проводится

Суммарный пробег с нагрузкой, км/день, L1N = 0.1

Суммарное время работы двигателя на холостом ходу, мин/день , TXS = $0.1\,$ Макс. пробег с нагрузкой за 30 мин, км , $L2N=0.1\,$

Макс. время работы двигателя на холостом ходу в течении 30 мин, мин, ТХМ = $0.1\,$ Суммарный пробег 1 автомобиля без нагрузки по территории п/п, км , L1 = $0.1\,$ Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км , L2 = $0.1\,$

Примесь:0337 Углерод оксид

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 8.37 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 2.9

Выброс 3B в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 8.37 * 0.1

```
+ 1.3 * 8.37 * 0.1 + 2.9 * 0.1 = 2.215
```

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 2.215 * 7 * 90 * 10 ^ (-6) = 0.0001395$ Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 8.37 * 0.1 + 1.3 * 8.37 * 0.1 + 2.9 * 0.1 = 2.215

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 2.215 * 1 / 30 / 60 = 0.00123

Примесь:2732 Керосин

Раздел охрана окружающей среды

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 1.17 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.45

Выброс 3B в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 1.17 * 0.1

+ 1.3 * 1.17 * 0.1 + 0.45 * 0.1 = 0.314

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.314 * 7 * 90 * 10 ^ (-6) = 0.0000198$ Максимальный разовый выброс 3B одним автомобилем, Γ 3a 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 1.17 * 0.1 + 1.3 * 1.17 * 0.1 + 0.45 * 0.1 = 0.314

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.314 * 1 / 30 / 60 = 0.0001744

РАСЧЕТ выбросов оксидов азота:

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 4.5 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 1

Выброс 3В в день при движении и работе на территории, г, M1 = ML*L1 + 1.3*ML*L1N + MXX*TXS = 4.5*0.1 + 1.3*4.5*0.1 + 1.3*0.1 = 1.135

Валовый выброс 3B, τ /год , M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 1.135 * 7 * 90 * 10 ^ (-6) = 0.0000715 Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 4.5 * 0.1 + 1.3 * 4.5 * 0.1 + 1 * 0.1 = 1.135

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 1.135 * 1 / 30 / 60 =

0.00063 С учетом трансформации оксидов азота получаем:

Примесь:0301 Азот (IV) оксид (Азота диоксид)

Валовый выброс, τ /год , $_M_$ = 0.8 * M = 0.8 * 0.0000715 = 0.0000572 Максимальный разовый выброс, r/c , GS = 0.8 * G = 0.8 * 0.00063 = 0.000504

Примесь:0304 Азот (II) оксид (Азота оксид)

Валовый выброс, τ /год , $_{\rm M}$ = 0.13 * M = 0.13 * 0.0000715 = 0.0000093 Максимальный разовый выброс, $_{\rm F}$ /с , GS = 0.13 * G = 0.13 * 0.00063 = 0.0000819

Примесь:0328 Углерод (Черный)

Раздел охрана окружающей среды

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.45 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.04

Выброс 3В в день при движении и работе на территории, Γ , M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.45 * 0.1

+ 1.3 * 0.45 * 0.1 + 0.04 * 0.1 = 0.1075

Валовый выброс 3B, τ /год , M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.1075 * 7 * 90 * 10 ^ (-6) = 0.00000677 Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.45 * 0.1 + 1.3 * 0.45 * 0.1 + 0.04 * 0.1 = 0.1075

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.1075 * 1 / 30 / 60 = 0.0000597

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Пробеговые выбросы 3В, г/км, (табл.3.8) , ML = 0.873 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9) , MXX = 0.1

Выброс 3В в день при движении и работе на территории,r, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.873 * 0.1 + 1.3 * 0.873 * 0.1 + 0.1 * 0.1 = 0.211

Валовый выброс 3B, τ /год , M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.211 * 7 * 90 * 10 ^ (-6) = 0.0000133 Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.873 * 0.1 + 1.3 * 0.873 * 0.1 + 0.1 * 0.1 = 0.211

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.211 * 1 / 30 / 60 = 0.0001172

Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)									
Dn,	Nk,	Α	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Т
сут	шт		шт.	KM	KM	МИ	KM	KM	х
90	3	0.10	1	0.1	0.1	0.1	0.1	0.1	0.1
3B	Mxx,		MI,	г/с			т/год		
	г/мин г/к								
0337	2.9		6.66	0.00101			0.0000491		
2732	0.45		1.08	0.000163			0.0000792		
0301	1		4	0.000454			0.00002203		
0304	1		4	0.0000737			0.0000358		
0328	0.04		0.36	0.0000482			0.000002344		
0330	0.1 0.603		0.0000826		0.00004015				
Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)									
Dn,	Nk,	Α	Nk1	L1,	L1n,	Txs,	L2,	L2n,	T
сут	ШТ		шт.	км	KM	МИН	км	KM	х
90	7	0.10	1	0.1	0.1	0.1	0.1	0.1	0.1
3B	Mxx,		MI,	r/c		т/год			
	г/ми		г/км						
0337	2.9		8.37	0.00123		0.0001395			
2732	0.45	5	1.17	0.0001744		0.0000198			
0301	1 1		4.5	0.000504			0.0000572		

Раздел охрана окружающей среды

0304	1	4.5	0.0000819	0.0000093
0328	0.04	0.45	0.0000597	0.0000677
0330	0.1	0.873	0.0001172	0.0000133

Период хранения: Теплый период хранения (t>5)

Температура воздуха за расчетный период, град. С , T = 27.8

Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 90

Наибольшее количество автомобилей, работающих на территории в течении 30 мин , NK1 = 1 Общ. количество автомобилей данной группы за расчетный период, шт. , NK = 3 Коэффициент выпуска (выезда) , A = 0.1

Экологический контроль не проводится

Суммарный пробег с нагрузкой, км/день, L1N = 0.1

Суммарное время работы двигателя на холостом ходу, мин/день , TXS = $0.1\,$ Макс. пробег с нагрузкой за 30 мин, км , $L2N=0.1\,$

Макс. время работы двигателя на холостом ходу в течении 30 мин, мин , ТХМ =

- 0.1 Суммарный пробег 1 автомобиля без нагрузки по территории п/п, км, L1 =
- 0.1 Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км , L2 = 0.1

Примесь:0337 Углерод оксид

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 6.1 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 2.9

Выброс 3В в день при движении и работе на территории, Γ , M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 6.1 * 0.1 + 1.3 * 6.1 * 0.1 + 2.9 * 0.1 = 1.693

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 1.693 * 3 * 90 * 10 ^ (-6) = 0.0000457$ Максимальный разовый выброс 3B одним автомобилем, Γ за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 6.1 * 0.1 + 1.3 * 6.1 * 0.1 + 2.9 * 0.1 = 1.693

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 1.693 * 1 / 30 / 60 = 0.00094

Примесь:2732 Керосин

Раздел охрана окружающей среды

Пробеговые выбросы 3В, г/км, (табл.3.8) , ML = 1 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9) , MXX = 0.45

Выброс 3В в день при движении и работе на территории, Γ , M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 1 * 0.1 + 1.3 * 1 * 0.1 + 0.45 * 0.1 = 0.275

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.275 * 3 * 90 * 10 ^ (-6) = 0.00000743$ Максимальный разовый выброс 3B одним автомобилем, Γ 3a 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 1 * 0.1 + 1.3 * 1 * 0.1 + 0.45 * 0.1 = 0.275

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.275 * 1 / 30 / 60 = 0.0001528

РАСЧЕТ выбросов оксидов азота:

Пробеговые выбросы 3В, г/км, (табл.3.8) , ML = 4 Удельные выбросы 3В при работе на холостом ходу, r/мин, (табл.3.9) , MXX = 1

Выброс 3В в день при движении и работе на территории, Γ , M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 4 * 0.1 + 1.3 * 4 * 0.1 + 1 * 0.1 = 1.02

Валовый выброс 3B, τ /год , M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 1.02 * 3 * 90 * 10 ^ (-6) = 0.00002754 Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 4 * 0.1 + 1.3 * 4 * 0.1 + 1 * 0.1 = 1.02

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 1.02 * 1 / 30 / 60 = 1.02

0.000567 С учетом трансформации оксидов азота получаем:

Примесь:0301 Азот (IV) оксид (Азота диоксид)

Валовый выброс, τ /год , $_M_$ = 0.8 * M = 0.8 * 0.00002754 = 0.00002203 Максимальный разовый выброс, τ /с , GS = 0.8 * G = 0.8 * 0.000567 = 0.000454

Примесь:0304 Азот (II) оксид (Азота оксид)

Валовый выброс, τ /год , $_{\rm M}$ = 0.13 * M = 0.13 * 0.00002754 = 0.00000358 Максимальный разовый выброс, τ /с , GS = 0.13 * G = 0.13 * 0.000567 = 0.0000737

Примесь:0328 Углерод (Черный)

Раздел охрана окружающей среды Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.3 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.04

Выброс 3В в день при движении и работе на территории, r, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.3 * 0.1 + 1.3 * 0.3 * 0.1 + 0.04 * 0.1 = 0.073

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.073 * 3 * 90 * 10 ^ (-6) = 0.00000197$ Максимальный разовый выброс 3B одним автомобилем, Γ 3a 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.3 * 0.1 + 1.3 * 0.3 * 0.1 + 0.04 * 0.1 = 0.073

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.073 * 1 / 30 / 60 = 0.00004056

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.54 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.1

Выброс 3В в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.54 * 0.1

+ 1.3 * 0.54 * 0.1 + 0.1 * 0.1 = 0.1342

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.1342 * 3 * 90 * 10 ^ (-6) = 0.00000362$ Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.54 * 0.1 + 1.3 * 0.54 * 0.1 + 0.1 * 0.1 = 0.1342

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.1342 * 1 / 30 / 60 = 0.0000746

Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)

Тип топлива: Дизельное топливо

Количество рабочих дней в году, дн., DN = 90

Наибольшее количество автомобилей, работающих на территории в течении 30 мин , NK1 = 1 Общ. количество автомобилей данной группы за расчетный период, шт. , NK = 7 Коэффициент выпуска (выезда) , A = 0.1

Экологический контроль не проводится

Суммарный пробег с нагрузкой, км/день, L1N = 0.1

Суммарное время работы двигателя на холостом ходу, мин/день , TXS = $0.1\,$ Макс. пробег с нагрузкой за 30 мин, км , $L2N=0.1\,$

Макс. время работы двигателя на холостом ходу в течении 30 мин, мин , TXM =

- 0.1 Суммарный пробег 1 автомобиля без нагрузки по территории п/п, км , L1 =
- 0.1 Максимальный пробег 1 автомобиля без нагрузки за 30 мин, км , L2 = 0.1

Раздел охрана окружающей среды

Примесь:0337 Углерод оксид

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 7.5 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 2.9

Выброс 3В в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 7.5 * 0.1 + 1.3 * 7.5 * 0.1 + 2.9 * 0.1 = 2.015

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 2.015 * 7 * 90 * 10 ^ (-6) = 0.000127$ Максимальный разовый выброс 3B одним автомобилем, Γ 3a 30 мин , M 2 = M L 2 + 1.3 * M L 2N + M XX * T XM = 7.5 * 0.1 + 1.3 * 7.5 * 0.1 + 2.9 * 0.1 = 2.015

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 2.015 * 1 / 30 / 60 = 0.00112

Примесь: 2732 Керосин

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 1.1 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.45

Выброс 3В в день при движении и работе на территории, г, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 1.1 * 0.1 + 1.3 * 1.1 * 0.1 + 0.45 * 0.1 = 0.298

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.298 * 7 * 90 * 10 ^ (-6) = 0.00001877$ Максимальный разовый выброс 3B одним автомобилем, Γ 3a 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 1.1 * 0.1 + 1.3 * 1.1 * 0.1 + 0.45 * 0.1 = 0.298

Максимальный разовый выброс 3B, г/с , G = M2 * NK1 / 30 / 60 = 0.298 * 1 / 30 / 60 = 0.0001656 PACЧЕТ выбросов оксидов азота:

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 4.5 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 1

Выброс 3В в день при движении и работе на территории, r, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 4.5 * 0.1 + 1.3 * 4.5 * 0.1 + 1 * 0.1 = 1.135

Валовый выброс 3B, τ /год , M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 1.135 * 7 * 90 * 10 ^ (-6) = 0.0000715 Максимальный разовый выброс 3B одним автомобилем, τ 3a 30 мин , M = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 4.5 * 0.1 + 1.3 * 4.5 * 0.1 + 1 * 0.1 = 1.135

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 1.135 * 1 / 30 /

60 = 0.00063 С учетом трансформации оксидов азота получаем:

Раздел охрана окружающей среды

Примесь:0301 Азот (IV) оксид (Азота диоксид)

Валовый выброс, т/год , _M_ = 0.8*M=0.8*0.0000715=0.0000572 Максимальный разовый выброс, г/с , GS = 0.8*G=0.8*0.00063=0.000504

Примесь:0304 Азот (II) оксид (Азота оксид)

Валовый выброс, т/год , _M_ = 0.13*M=0.13*0.0000715=0.0000093 Максимальный разовый выброс, г/с , GS = 0.13*G=0.13*0.00063=0.0000819

Примесь:0328 Углерод (Черный)

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.4 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.04

Выброс 3В в день при движении и работе на территории, r, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.4 * 0.1 + 1.3 * 0.4 * 0.1 + 0.04 * 0.1 = 0.096

Валовый выброс 3B, τ /год , $M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.096 * 7 * 90 * 10 ^ (-6) = 0.00000605$ Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.4 * 0.1 + 1.3 * 0.4 * 0.1 + 0.04 * 0.1 = 0.096

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.096 * 1 / 30 / 60 = 0.0000533

Примесь:0330 Сера диоксид (Ангидрид сернистый)

Пробеговые выбросы 3В, г/км, (табл.3.8), ML = 0.78 Удельные выбросы 3В при работе на холостом ходу, г/мин, (табл.3.9), MXX = 0.1

Выброс 3В в день при движении и работе на территории, r, M1 = ML * L1 + 1.3 * ML * L1N + MXX * TXS = 0.78 * 0.1

+ 1.3 * 0.78 * 0.1 + 0.1 * 0.1 = 0.1894

Валовый выброс 3B, τ /год , M = A * M1 * NK * DN * 10 ^ (-6) = 0.1 * 0.1894 * 7 * 90 * 10 ^ (-6) = 0.00001193 Максимальный разовый выброс 3B одним автомобилем, г за 30 мин , M2 = ML * L2 + 1.3 * ML * L2N + MXX * TXM = 0.78 * 0.1 + 1.3 * 0.78 * 0.1 + 0.1 * 0.1 = 0.1894

Раздел охрана окружающей среды

Максимальный разовый выброс 3B, r/c, G = M2 * NK1 / 30 / 60 = 0.1894 * 1 / 30 / 60 = 0.0001052

ИТОГО выбросы по периоду: Теплый период хранения (t>5)

Тип ма	Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)														
Dn,	Nk, A	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Txm,							
сут	шт	шт.	KM	KM	МИН	KM	KM	мин							
90	3 0.3	10 1	0.1	0.1	0.1	0.1	0.1	0.1							
3B	Mxx,	MI,	г/с			т/год									
	г/ми	г/к													
0337	2.9	6.1	0.0009	4		0.00004	57								
2732	0.45	1	0.0001	528		0.00000	743								
0301	1	4	0.0004	54		0.00002	203								
0304	1	4	0.0000	737		0.00000	358								
0328	0.04	0.3	0.0000	406		0.00000	197								
0330	0.1	0.54	0.0000	746		0.00000	362								

	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)														
Dn,	Nk,	Α	Nk1	L1,	L1n,	Txs,	L2,	L2n,	Txm,						
сут	ШТ		шт.	KM	КM	мин	км	KM	мин						
90	7 0.10		1	0.1	0.1	0.1	0.1	0.1	0.1						
3B	Mxx,		MI,	г/с			т/год								
	г/ми		г/к												
0337	2.9		7.5	0.00112			0.000127								
2732	0.45		1.1	0.0001656			0.00001877								
0301	1		4.5	0.000504			0.0000572								
0304	1		4.5	0.0000819			0.0000093								
0328	0.04		0.4	0.0000533	•		0.00000605		·						
0330	0.1		0.78	0.0001052	•		0.00001193								

ВСЕГО по периоду: Теплый период хранения (t>5)											
Код	Примесь	Выброс г/с	Выброс т/год								
0337	Углерод оксид	0.00206	0.0001727								
2732	Керосин	0.0003184	0.0000262								
0301	Азот (IV) оксид (Азота диоксид)	0.000958	0.00007923								
0328	Углерод (Черный)	0.00009386	0.00000802								
0330	Сера диоксид (Ангидрид сернистый)	0.0001798	0.00001555								
0304	Азот (II) оксид (Азота оксид)	0.0001556	0.00001288								

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азот (IV) оксид (Азота диоксид)	0.000958	0.0001584
0304	Азот (II) оксид (Азота оксид)	0.0001556	0.0000258
0328	Углерод (Черный)	0.0001079	0.0000172
0330	Сера диоксид (Ангидрид сернистый)	0.0001998	0.0000328
0337	Углерод оксид	0.002241	0.0003613
2732	Керосин	0.0003374	0.0000539

Раздел охрана окружающей среды

Максимальные разовые выбросы достигнуты в переходный период

Источник загрязнения N 6003, Неорганизованный источник Источник выделения N 001, Карантинная зона на 5 м/м

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная, имеющая непосредственный выезд на дорогу общего пользования Условия хранения: Открытая или закрытая не отапливаемая стоянка без средств подогрева

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период хранения (t>-5 и t<5)

Dn,	Nk,	Α	Nk1	L1,		L2,				
сут	ШТ		шт.	км		км				
90	5	1.00	1	0.5		0.6				
3B	Tpr	Mpr,	Tx,		Mxx,		MI,	г/с	т/год	
	мин	г/ми	ми	Н	г/ми		г/к			
0337	4	0.675	1		0.4		3.33	0.001324		
2732	4	0.261	1		0.17		0.72	0.000437		
0301	4	0.35	1		0.21		2.4	0.000624		
0304	4	0.35	1		0.21		2.4	0.0001014		
0328	4	0.016	1		0.008		0.207	0.000049		
0330	4	0.07	1		0.065		0.433	0.000156		

Выбросы по периоду: Теплый период хранения (t>5)

Dn,	Nk,	Α		Nk1		L1,		L2,			
сут	шт			шт.		км		км			
125	5	1.	.00	1		0.5		0.6			
3B	Tpr		Mpr,		Tx,		Mxx,		MI,	г/с	т/год
	мин		г/ми		мин	I	г/ми		г/к		
0337	3		0.6		1		0.4		3.1	0.001042	
2732	3		0.24		1		0.17		0.7	0.0003444	
0301	3		0.23		1		0.21		2.4	0.000466	
0304	3		0.23		1		0.21		2.4	0.0000758	

Раздел охрана окружающей среды

0328	3	0.009	1	0.008	0.15	0.00003056	
0330	3	0.065	1	0.065	0.35	0.0001208	

Выбросы по периоду: Холодный период хранения (t<-5) Температура воздуха за расчетный период, град. С , T=-10

Dn,	Nk,	Α	Nk1	L1,		L2,			
сут	шт		шт.	км		км			
150	5	1.00	1	0.5		0.6			
3B	Tpr	Mpr,	Tx,		Mxx,		Ml,	г/с	т/год
	мин	г/ми	ми	Н	г/ми		г/к		
0337	10	0.75	1		0.4		3.7	0.00271	0.00928
2732	10	0.29	1		0.17		0.8	0.000964	0.00309
0301	10	0.35	1		0.21		2.4	0.001091	0.003936
0304	10	0.35	1		0.21		2.4	0.0001773	0.00064
0328	10	0.018	1		0.008		0.23	0.0000842	0.000337
0330	10	0.078	1		0.065		0.481	0.000302	0.00108

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азот (IV) оксид (Азота диоксид)	0.001091	0.003936
0304	Азот (II) оксид (Азота оксид)	0.0001773	0.00064
0328	Углерод черный (Сажа)	0.0000842	0.000337
0330	Сера диоксид	0.0003017	0.00108
0337	Углерод оксид	0.00271	0.00928
2732	Керосин	0.000964	0.00309

TOO «ECO LOGISTICS» 150 Приложение 7 Расчет рассеивания загрязняющих веществ в атмосфере на период строительномонтажных работ на территории объекта с картами рассеивания

УПРЗА ЭКОЛОГ, версия 3.1 Copyright © 1990-2010 ФИРМА "ИНТЕГРАЛ"

Предприятие номер 152; Модернизация и техническое дооснащение пункта пропуска "Тажен"

Адрес предприятия: , Мангистауская область, Бенеуский район, пункт пропука "Тажен"

Вариант исходных данных: 1, Новый вариант исходных данных

Вариант расчета: Новый вариант расчета

Расчет проведен на лето

Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0,01, E2=0,01, E3=0,01, S=999999,99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	43.3° C
Средняя температура наружного воздуха самого холодного месяца	-27,7° C
Коэффициент, зависящий от температурной стратификации атмосферы А	200
Максимальная скорость ветра в данной местности (повторяемость	9,4 м/с
превышения в пределах 5%)	,

Параметры источников выбросов

Учет:

"%" - источник учитывается с исключением из фона;

"+" - источник учитывается без исключения из фона;

"-" - источник не учитывается и его вклад исключается из фона.

При отсутствии отметок источник не учитывается.

Типы источников:

- 1 точечный;
- 2 линейный;
- 3 неорганизованный;
- 4 совокупность точечных, объединенных для расчета в один площадной;
- 5 неорганизованный с нестационарной по времени мощностью выброса;
- 6 точечный, с зонтом или горизонтальным направлением выброса;
- 7 совокупность точечных с зонтами или горизонтальным направлением выброса;
- 8 автомагистраль.

Учет	№ пл.	Nº	№ ист.	Наименование источника	Вар.	Тип	Высота	Диаметр	Объем				эф. Н	€оорд. Х1-	Коорд. Ү	′1- Ko	орд. Х2-	Коорд. Ү2-	Ширина
при		цеха					ист. (м)	устья (м)	ГВС	ГВС (м/с)	LBC (°C	;) p	ел.	ос. (м)	ос. (м)	(ос. (м)	ос. (м)	источ.
расч.									(куб.м/с)									(M)
%	0	0	6001	Погрузочно-разгрузные	1	3	2,0	0,00		0		0	1,0	1304,0	918	3,0	1476,0	1122,0	253,00
				работы, землянные работь	ı														
Код	в-ва		Наиме	енование вещества	Выброс,	(r/c)	Выбро	С, (т/г)	F Лето	: Ст/ПДК	Xm	Um	Зима	а: Ст/ПДК	Xm	Um			
29	08	Пы	ль неор	аническая: 70-20% SiO2	0,02800	00	0,610	0000	1	3,334	11,4	0,5		3,334	11,4	0,5			
%	0	0	6002	Сварочные работы	1	3	2,0	0,00		0 0		0	1,0	1304,0	918	3,0	1476,0	1122,0	253,00
Код	в-ва		Наиме	енование вещества	Выброс,	(r/c)	Выбро	С, (т/г)	F Лето	: Ст/ПДК	Xm	Um	Зима	а: Ст/ПДК	Χm	Um			
01	23	диЖел	тезо три	оксид (Железа оксид) (в пе-	0,00800	00	0,046	0000	1	0,714	11,4	0,5		0,714	11,4	0,5			
				счете на железо)															
01	43	Марган		соединения (в пересчете на	0,00030	00	0,007	5000	1	1,071	11,4	0,5		1,071	11,4	0,5			
				ганца (IV) оксид)															
03		F	∖зота ди	оксид (Азот (IV) оксид)	0,00030		0,000	3000	1	0,054	11,4	0,5		0,054	11,4	0,5			
03	37		,	/глерод оксид	0,00300	00	0,003	0000	1	0,021	11,4	0,5		0,021	11,4	0,5			
03	42		Фтор	иды газообразные	0,00060	00	0,000	7000	1	1,071	11,4	0,5		1,071	11,4	0,5			
03	44		Фториды	ы плохо растворимые	0,00030	00	0,000	3000	1	0,054	11,4	0,5		0,054	11,4	0,5			
29	08	Пы	ль неорі	аническая: 70-20% SiO2	0,00010	00	0,002	1000	1	0,012	11,4	0,5		0,012	11,4	0,5			
%	0	0 6003 Газовая резка			1	3	2,0	0,00		0 0		0	1,0	1304,0	918	3,0	1476,0	1122,0	253,00
Код	в-ва		Наиме	енование вещества	Выброс,	(r/c)	Выбро	С, (т/г)	F Лето	: Ст/ПДК	Xm	Um	Зима	а: Ст/ПДК	Xm	Um			
01	23	диЖел	пезо три	оксид (Железа оксид) (в пе-	0,03600	00	0,094	0000	1	3,214	11,4	0,5		3,214	11,4	0,5			

Учет	№ пл.	Nº	№ ист.	Наименование источника	Вар.	Тип	Высота	Диаметр	Об	ъем (Скорость	Темп.	Ко	эф. К	(оорд. Х1-	Коорд. Ү	1- Ko	орд. Х2-	Коорд. Ү2-	Ширина
при		цеха					ист. (м)	устья (м)	Г	BC I	ГВС (м/с)	ΓBC (°C) pe	эл.	ос. (м)	ос. (м)		ос. (м)	ос. (м)	источ.
расч.							, ,		(куб	б.м/с)	, ,	•	` ·		` '	, ,		, ,	. ,	(M)
			ре	счете на железо)																<u> </u>
01	0143 Марганец и его соединения (в пересчете на		соединения (в пересчете на	0,00100	00	0,001	0000	1		3,572	11,4	0,5		3,572	11,4	0,5				
		марганца (IV) оксид)																		
03	301	P	Азота ди	юксид (Азот (IV) оксид)	0,01800	00	0,047	0000	1		3,214	11,4	0,5		3,214	11,4	0,5			
03	337			Углерод оксид	0,01800	00	0,046	0000	1		0,129	11,4	0,5		0,129	11,4	0,5			
%	0	0	6004	Окрасочные работы	1	3	2,0	0,00)	0	0		0	1,0	1304,0	918	3,0	1476,0	1122,0	253,00
Код	в-ва		Наим	енование вещества	Выброс,	(r/c)	Выбро	С, (Т/Г)	F.	Лето:	Cm/ПДК	Xm	Um	Зима	: Ст/ПДК	Xm	Um			
06	616	Димет	илбензо	ол (Ксилол) (смесь изомеров	0,04600	00	0,951	2000	1		8,215	11,4	0,5		8,215	11,4	0,5			
				О-, М-, П-)																
06	521		Мет	илбензол (Толуол)	0,05300	00	0,105	1200	1		3,155	11,4	0,5		3,155	11,4	0,5			
10)42			ол (Спирт н-бутиловый)	0,00700	00	0,000	2200	1		2,500	11,4	0,5		2,500	11,4	0,5			
10	048	2-мети	ілпропа	н-1-ол (спирт изобутиловый)	0,00500	00	0,000	2000	1		1,786	11,4	0,5		1,786	11,4	0,5			
10	061		Этан	ол (Спирт этиловый)	0,01100	00	0,000	0400	1		0,079	11,4	0,5		0,079	11,4	0,5			
11	119	2-	Этоксиз	танол (этилцеллозольв)	0,00500	00	0,000	0200	1		776,446	11,4	0,5		776,446	11,4	0,5			
12	210			Бутилацетат	0,01000	00	0,020	0000	1		3,572	11,4	0,5		3,572	11,4	0,5			
14	101		Про	лан-2-он (Ацетон)	0,02200	00	0,044	0000	1		2,245	11,4	0,5		2,245	11,4	0,5			
27	735		ма	сло минеральное	0,00600	00	0,038	0000	1		4,286	11,4	0,5		4,286	11,4	0,5			
	752			Уайт-спирит	0,07400	00	0,603	9000	1		2,643	11,4	0,5		2,643	11,4	0,5			
	754	Угл	еводор	оды предельные С12-С19	0,01900	00	0,140	0000	1		0,679	11,4	0,5		0,679	11,4	0,5			
	902		Взве	ешенные вещества	0,02600	00	0,140	0000	1		1,857	11,4	0,5		1,857	11,4	0,5			
%	0	0	6005	ДВС строительной техники	1	3	2,0	0,00)	0	0		0	1,0	1304,0	918	3,0	1476,0	1122,0	253,00
Код	в-ва		Наим	енование вещества	Выброс,	(r/c)	Выбро	С, (т/г)	F.	Лето:	Cm/ПДК	Xm	Um	Зима	: Ст/ПДК	Xm	Um			
03	301	P	∖ зота ди	юксид (Азот (IV) оксид)	0,02500	00	0,395	8200	1		4,465	11,4	0,5		4,465	11,4	0,5			
03	328	Углерод (Сажа)		0,03900	00	0,623	1200	1		9,286	11,4	0,5		9,286	11,4	0,5				
03	330	Сера диоксид (Ангидрид сернистый)		0,05000	00	0,796	3600	1		3,572	11,4	0,5		3,572	11,4	0,5				
03	337	Углерод оксид		Углерод оксид	0,00000	03	0,000	0049	1		0,000	11,4	0,5		0,000	11,4	0,5			
07	703	Бенз/а/пирен (3,4-Бензпирен)			0,00000	10	0,000	0160	1		3,572	11,4	0,5		3,572	11,4	0,5			

Учет	№ пл.	Nº	№ ист.	Наименование источника	1 E	Зар.	Тип	Высота	Диамет	р	Объем	Скорость	Темг	1. K	оэф.	Коорд. Х1-	Коорд.	Y1- K	оорд. Х2-	Коорд. Ү2-	Ширина
при		цеха				•			устья (м		ГВС	ГВС (м/с)	LBC (рел.	ос. (м)	ос. (м	1)	ос. (м)	ос. (м)	источ.
расч.								, ,	,	Ĺ (ı	куб.м/с)		,		-	` ,	`		` ,	` ,	(M)
27	32			Керосин	0,0	7500	00	1,198	8200	1		2,232	11,4	0,5	;	2,232	11,4	0,5	,		
%	0	0	6006	ДВС автотранспорта		1	3	2,0	0,0	00	0	0		0	1,0	1304,0	91	8,0	1476,0	1122,0	253,00
Код	в-ва			енование вещества	Выб	poc,	(r/c)	Выбро	С, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	п Зим	а: Ст/ПДК	(Xm	Um	1		
03		P	кзота ди	юксид (Азот (IV) оксид)	0,0	0300	00	0,002	1000	1		0,536	11,4	0,5	;	0,536	11,4	0,5	,		
03	04		Азот (І) оксид (Азота оксид)	0,0	0050	00	0,000	3200	1		0,045	11,4	0,5	5	0,045	11,4	0,5	;		
03	28			∕глерод (Сажа)	0,0	0020	00	0,000	1100	1		0,048	11,4	0,5	5	0,048	11,4	0,5	;		
03		Cep	а диок	сид (Ангидрид сернистый)	0,0	0060	00	0,000	0200	1		0,043	11,4	0,5	5	0,043	11,4	0,5			
03	-			Углерод оксид	0,0	1620	00	0,008	0000	1		0,116	11,4	0,5	,	0,116	11,4	0,5			
27	32			Керосин	0,0	0210	00	0,001		1		0,063	11,4	0,5	5	0,063	11,4	0,5	i		
%	0	0	6007	Передвижные компрессорі	ol C	1	3	2,0	0,0	00	0	0		0	1,0	1304,0	91	8,0	1476,0	1122,0	253,00
				двс																	
Код	в-ва		Наим	енование вещества	Выб	poc,	(r/c)	Выбро	С, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	п Зим	а: Ст/ПДК	(Xm	Um)		
03	01	P	кзота ди	юксид (Азот (IV) оксид)	0,0	4800	00	0,307	0000	1		8,572	11,4	0,5	;	8,572	11,4	0,5	,		
03	04		Азот (І) оксид (Азота оксид)	0,0	0800	00	0,050	0000	1		0,714	11,4	0,5	5	0,714	11,4	0,5	;		
03	28			∕глерод (Сажа)	0,0	0400	00	0,027	0000	1		0,952	11,4	0,5	5	0,952	11,4	0,5	;		
03	30	Cep	а диок	сид (Ангидрид сернистый)	0,0	0600	00	0,040	0000	1		0,429	11,4	0,5	5	0,429	11,4	0,5	;		
03	37			Углерод оксид	0,0	4200	00	0,268	0000	1		0,300	11,4	0,5	5	0,300	11,4	0,5	;		
07				пирен (3,4-Бензпирен)	- , -	0000	-	0,000		1		0,357	11,4	0,5		0,357	11,4	0,5			
	25			Формальдегид	0,0	0100	00	0,005	0000	1		1,020	11,4	0,5	,	1,020	11,4	0,5			
27	54	Угл		оды предельные С12-С19	0,0	2100	00	0,134	0000	_1		0,750	11,4	0,5		0,750	11,4	0,5			
%	0	0	6008	Электростанции		1	3	2,0	0,0	00	0	0		0	1,0	1304,0	91	8,0	1476,0	1122,0	253,00
				передвижные																	
Код	в-ва		Наим	енование вещества	Выб	poc,	(r/c)	Выбро	С, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	п Зим	а: Ст/ПДК	(Xm	Um)		
03	01	A	кзота ди	юксид (Азот (IV) оксид)	0,0	0900	00	0,012	0000	1		1,607	11,4	0,5	<u>, </u>	1,607	11,4	0,5	;		
03	04		Азот (І) оксид (Азота оксид)	0,0	0100	00	0,001	9500	1		0,089	11,4	0,5	;	0,089	11,4	0,5	,		
03	28		``	/глерод (Сажа)	0,0	0100	00	0,001	0000	1		0,238	11,4	0,5	;	0,238	11,4	0,5	,		
03	30	Cep	а диок	сид (Ангидрид сернистый)	0,0	0100	00	0,001	6000	1		0,071	11,4	0,5	,	0,071	11,4	0,5	; i		

	2 пл.		№ ист	. Наименование источника	ı [Зар.	Тип	Высота		•	Объем	Скорость	Темп		-	оорд. Х1-	-		-		Ширина
при		цеха						ист. (м)	устья (ГВС куб.м/с)	ГВС (м/с)	LBC (e	C) p	ел.	ос. (м)	ос. (м)	- '	ос. (м)	ос. (м)	источ.
расч. 0337				Углерод оксид	0.0	08000	<u> </u>	0.010	0000	<u></u>	куо.м/с)	0.057	11,4	0.5		0,057	11,4	0,5			(M)
0703			Epus/s/	лирен (3,4-Бензпирен)		00000		0.000		1		0,057	11,4	0,5		0,037	11,4	0,5			
1325				Формальдегид	- , -	00200		0.000		1		0,204	11.4	0.5		0,204	11.4	0,5			
2754		Угп		оды предельные С12-С19	- , -	04000		0,005		1		0,143	11,4	0,5		0,143	11,4	0,5			
%	0	0		ЭШлифовальная машина		1	3			,00	0		, .	0	1,0	1304,0			1476,0	1122,0	253,00
Код в-в		U		енование вещества	Bi i6	<u>'</u> рос, (г		Выбро		,00 <u> </u> F	Лето:	Ст/ПДК	Xm	Um	Зима:	130 4 ,0 _[: Ст/ПДК	Xm	Um	1470,0	1122,0	233,00
2902				енование вещества ешенные вещества		04000		0,010		1	Jie IO.	0,286	11,4	0,5	Зима.	. Спиндк 0,286	11,4	0,5			
2930		Пыпь з		вная (Корунд белый, Моноко-	,	03000		0,010		1		2,679	11,4	0,5		2,679	11,4	0,5			
2000		110010	горази	рунд)	0,0	00000	0	0,007	0000			2,010	, -	0,0		2,070	, -	0,0			
%	0	0	6010	Разогрев битума		1	3	2,0	0,	,00	0	0		0	1,0	1304,0	918	,0	1476,0	1122,0	253,00
Код в-в	за		Наим	енование вещества	Выб	рос, (г	/c)	Выбро	С, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	Зима:	: Ст/ПДК	Xm	Um			
2754		Угл	еводор	оды предельные С12-С19	0,0	09000	0	0,001	0000	1		0,321	11,4	0,5		0,321	11,4	0,5			
%	0	0	6011	Нанесение битума		1	3	2,0	0,	,00	0	0		0	1,0	1304,0	918	,0	1476,0	1122,0	253,00
Код в-в	за		Наим	енование вещества	Выб	рос, (г	/c)	Выбро	С, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	Зима:	: Ст/ПДК	Xm	Um			
2754		Угл		оды предельные С12-С19	0,0	04000	0	0,015	0000	1		0,143	11,4	0,5		0,143	11,4	0,5			
%	0	0	6012	Сверлильный станок		1	3	2,0	0,	,00	0	0		0	1,0	1304,0	918	,0	1476,0	1122,0	253,00
Код в-в	за		Наим	енование вещества	Выб	рос, (г	/c)	Выбро	С, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	Зима:	: Ст/ПДК	Xm	Um			
2902			Взв	ешенные вещества	0,0	00400	0	0,000	3000	1		0,029	11,4	0,5		0,029	11,4	0,5			
%	0	0	6013	ВПаяльные работы		1	3	2,0	0,	,00	0	0		0	1,0	1304,0	918	,0	1476,0	1122,0	253,00
Код в-е	за			енование вещества	Выб	рос, (г	/c)	Выбро	С, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	Зима:	: Ст/ПДК	Xm	Um			
0168				Олово оксид	0,0	01000	0	0,000	0100	1		0,179	11,4	0,5		0,179	11,4	0,5			
0184	(Свинец	и его н	еорганические соединения (в	0,0	01000	0	0,000	0200	1		35,717	11,4	0,5		35,717	11,4	0,5			
			пер	есчете на свинец)																	
%	0	0	6014	1 Сварка полиэтиленовых тр	уб	1	3	2,0	0	,00	0	0		0	1,0	1304,0	918	,0	1476,0	1122,0	253,00
Код в-в	за			енование вещества		рос, (г	/c)	Выбро	с, (т/г)	F	Лето:	Cm/ПДК	Xm	Um	Зима:	: Ст/ПДК	Xm	Um			
0337				Углерод оксид	0,0	00007	0	0,000	0090	1		0,000	11,4	0,5		0,000	11,4	0,5			
0827				Хлорэтилен	0,0	00003	0	0,000	0039	1		0,001	11,4	0,5		0,001	11,4	0,5			

Выбросы источников по веществам

Учет:

"%" - источник учитывается с исключением из фона;

"+" - источник учитывается без исключения из фона;

"-" - источник не учитывается и его вклад исключается из фона.

При отсутствии отметок источник не учитывается.

Источники, помеченные к учету знаком «-» или непомеченные (« »), в общей сумме не учитываются

Типы источников:

- 1 точечный;
- 2 линейный;
- 3 неорганизованный;
- 4 совокупность точечных, объединенных для расчета в один площадной;
- 5 неорганизованный с нестационарной по времени мощностью выброса;
- 6 точечный, с зонтом или горизонтальным направлением выброса;
- 7 совокупность точечных с зонтами или горизонтальным направлением выброса;
- 8 автомагистраль.

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
пл.	цех	ист.			(r/c)		Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	0	6002	3	%	0,0080000	1	0,7143	11,40	0,5000	0,7143	11,40	0,5000
0	0	6003	3	%	0,0360000	1	3,2145	11,40	0,5000	3,2145	11,40	0,5000
Итог	0:				0,0440000		3,9288			3,9288		

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6002	3	%	0,0003000	1	1,0715	11,40	0,5000	1,0715	11,40	0,5000
0	0	6003	3	%	0,0010000	1	3,5717	11,40	0,5000	3,5717	11,40	0,5000
Итог	o:		·		0,0013000		4,6431			4,6431		

Вещество: 0184 Свинец и его неорганические соединения (в пересчете на свинец)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (M/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6013	3	%	0,0010000	1	35,7165	11,40	0,5000	35,7165	11,40	0,5000
Итог	0:				0,0010000		35,7165			35,7165		

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6002	3	%	0,0003000	1	0,0536	11,40	0,5000	0,0536	11,40	0,5000
0	0	6003	3	%	0,0180000	1	3,2145	11,40	0,5000	3,2145	11,40	0,5000
0	0	6005	3	%	0,0250000	1	4,4646	11,40	0,5000	4,4646	11,40	0,5000
0	0	6006	3	%	0,0030000	1	0,5357	11,40	0,5000	0,5357	11,40	0,5000
0	0	6007	3	%	0,0480000	1	8,5720	11,40	0,5000	8,5720	11,40	0,5000
0	0	6008	3	%	0,0090000	1	1,6072	11,40	0,5000	1,6072	11,40	0,5000
Итог	o:				0,1033000		18,4476			18,4476		

Вещество: 0328 Углерод (Сажа)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6005	3	%	0,0390000	1	9,2863	11,40	0,5000	9,2863	11,40	0,5000
0	0	6006	3	%	0,0002000	1	0,0476	11,40	0,5000	0,0476	11,40	0,5000
0	0	6007	3	%	0,0040000	1	0,9524	11,40	0,5000	0,9524	11,40	0,5000

Раздел охрана окружающей среды

Итог	o:	1		ı	0,0442000		10,5245	, ,	,	10,5245	,	,
0	0	6008	3	%	0,0010000	1	0,2381	11,40	0,5000	0,2381	11,40	0,5000

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6005	3	%	0,0500000	1	3,5717	11,40	0,5000	3,5717	11,40	0,5000
0	0	6006	3	%	0,0006000	1	0,0429	11,40	0,5000	0,0429	11,40	0,5000
0	0	6007	3	%	0,0060000	1	0,4286	11,40	0,5000	0,4286	11,40	0,5000
0	0	6008	3	%	0,0010000	1	0,0714	11,40	0,5000	0,0714	11,40	0,5000
Итог	o:		<u> </u>	·	0,0576000		4,1145		·	4,1145		

Вещество: 0616 Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)

№ пл.	Nº цех		Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6004	3	%	0,0460000	1	8,2148	11,40	0,5000	8,2148	11,40	0,5000
Итог	o:				0,0460000		8,2148			8,2148		

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0	0	6005	3	%	0,0000010	1	3,5717	11,40	0,5000	3,5717	11,40	0,5000
0	0	6007	3	%	0,0000001	1	0,3572	11,40	0,5000	0,3572	11,40	0,5000
0	0	6008	3	%	0,0000001	1	0,3572	11,40	0,5000	0,3572	11,40	0,5000
Итог	0:				0,0000012		4,2860			4,2860		

Вещество: 2735 масло минеральное

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	0	6004	3	%	0,0060000	1	4,2860	11,40	0,5000	4,2860	11,40	0,5000
Итог	0:				0,0060000		4,2860			4,2860		

Выбросы источников по группам суммации

"%" - источник учитывается с исключением из фона; "+" - источник учитывается без исключения из фона;

"-" - источник не учитывается и его вклад исключается из фона. При отсутствии отметок источник не учитывается.

Источники, помеченные к учету знаком «-» или непомеченные (« »), в общей сумме не учитываются

Типы источников:

- 1 точечный:
- 2 линейный;
- 3 неорганизованный;
- 4 совокупность точечных, объединенных для расчета в один площадной;
- 5 неорганизованный с нестационарной по времени мощностью выброса;
- 6 точечный, с зонтом или горизонтальным направлением выброса;
- 7 совокупность точечных с зонтами или горизонтальным направлением выброса;
- 8 автомагистраль.

Группа суммации: 6009

№ пл.	Nº цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
								Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)
0	0	6002	3	%	0301	0,0003000	1	0,0536	11,40	0,5000	0,0536	11,40	0,5000
0	0	6003	3	%	0301	0,0180000	1	3,2145	11,40	0,5000	3,2145	11,40	0,5000
0	0	6005	3	%	0301	0,0250000	1	4,4646	11,40	0,5000	4,4646	11,40	0,5000
0	0	6005	3	%	0330	0,0500000	1	3,5717	11,40	0,5000	3,5717	11,40	0,5000

Раздел охрана окружающей среды

Итого	:					0,1609000		22,5621			22,5621		
0	0	6008	3	%	0330	0,0010000	1	0,0714	11,40	0,5000	0,0714	11,40	0,5000
0	0	6008	3	%	0301	0,0090000	1	1,6072	11,40	0,5000	1,6072	11,40	0,5000
0	0	6007	3	%	0330	0,0060000	1	0,4286	11,40	0,5000	0,4286	11,40	0,5000
0	0	6007	3	%	0301	0,0480000	1	8,5720	11,40	0,5000	8,5720	11,40	0,5000
0	0	6006	З	%	0330	0,0006000	1	0,0429	11,40	0,5000	0,0429	11,40	0,5000
0	0	6006	3	%	0301	0,0030000	1	0,5357	11,40	0,5000	0,5357	11,40	0,5000

Группа суммации: 6034

№ пл.	№ цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
						, ,		Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)
0	0	6005	3	%	0330	0,0500000	1	3,5717	11,40	0,5000	3,5717	11,40	0,5000
0	0	6006	3	%	0330	0,0006000	1	0,0429	11,40	0,5000	0,0429	11,40	0,5000
0	0	6007	3	%	0330	0,0060000	1	0,4286	11,40	0,5000	0,4286	11,40	0,5000
0	0	6008	3	%	0330	0,0010000	1	0,0714	11,40	0,5000	0,0714	11,40	0,5000
0	0	6013	3	%	0184	0,0010000	1	35,7165	11,40	0,5000	35,7165	11,40	0,5000
Итого):					0,0586000		39,8311			39,8311		

Группа суммации: 6039

№ пл.	Nº цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
						. ,		Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)
0	0	6002	3	%	0342	0,0006000	1	1,0715	11,40	0,5000	1,0715	11,40	0,5000
0	0	6005	3	%	0330	0,0500000	1	3,5717	11,40	0,5000	3,5717	11,40	0,5000
0	0	6006	3	%	0330	0,0006000	1	0,0429	11,40	0,5000	0,0429	11,40	0,5000
0	0	6007	3	%	0330	0,0060000	1	0,4286	11,40	0,5000	0,4286	11,40	0,5000
0	0	6008	ფ	%	0330	0,0010000	1	0,0714	11,40	0,5000	0,0714	11,40	0,5000
Итого	:		, and the second			0,0582000		5,1860	•		5,1860		

Группа суммации: 6046

№ пл.	№ цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
	цох	VICT.			Б-Би	(170)		Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)
0	0	6001	3	%	2908	0,0280000	1	3,3335	11,40	0,5000	3,3335	11,40	0,5000
0	0	6002	3	%	0337	0,0030000	1	0,0214	11,40	0,5000	0,0214	11,40	0,5000
0	0	6002	3	%	2908	0,0001000	1	0,0119	11,40	0,5000	0,0119	11,40	0,5000
0	0	6003	3	%	0337	0,0180000	1	0,1286	11,40	0,5000	0,1286	11,40	0,5000
0	0	6005	3	%	0337	0,0000003	1	0,0000	11,40	0,5000	0,0000	11,40	0,5000
0	0	6006	3	%	0337	0,0162000	1	0,1157	11,40	0,5000	0,1157	11,40	0,5000
0	0	6007	3	%	0337	0,0420000	1	0,3000	11,40	0,5000	0,3000	11,40	0,5000
0	0	6008	3	%	0337	0,0080000	1	0,0571	11,40	0,5000	0,0571	11,40	0,5000
0	0	6014	3	%	0337	0,0000070	1	0,0001	11,40	0,5000	0,0001	11,40	0,5000
Итого):					0,1153073		3,9684	•		3,9684		

Группа суммации: 6053

№ пл.	Nº цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
								Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)
0	0	6002	3	%	0342	0,0006000	1	1,0715	11,40	0,5000	1,0715	11,40	0,5000
0	0	6002	3	%	0344	0,0003000	1	0,0536	11,40	0,5000	0,0536	11,40	0,5000
Итого	:					0,0009000		1,1251			1,1251		

Группа суммации: 6204

№ пл.	Nº цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
1151.	цех	VICT.			Б-Ба	(170)		Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/c)
0	0	6002	3	%	0301	0,0003000	1	0,0536	11,40	0,5000	0,0536	11,40	0,5000
0	0	6003	3	%	0301	0,0180000	1	3,2145	11,40	0,5000	3,2145	11,40	0,5000
0	0	6005	3	%	0301	0,0250000	1	4,4646	11,40	0,5000	4,4646	11,40	0,5000
0	0	6005	3	%	0330	0,0500000	1	3,5717	11,40	0,5000	3,5717	11,40	0,5000
0	0	6006	3	%	0301	0,0030000	1	0,5357	11,40	0,5000	0,5357	11,40	0,5000
0	0	6006	3	%	0330	0,0006000	1	0,0429	11,40	0,5000	0,0429	11,40	0,5000
0	0	6007	3	%	0301	0,0480000	1	8,5720	11,40	0,5000	8,5720	11,40	0,5000
0	0	6007	3	%	0330	0,0060000	1	0,4286	11,40	0,5000	0,4286	11,40	0,5000
0	0	6008	3	%	0301	0,0090000	1	1,6072	11,40	0,5000	1,6072	11,40	0,5000

Раздел охрана окружающей среды

Итого:		•			•	0.1609000		22,5621			22.5621		
0	0	6008	3	%	0330	0,0010000	1	0,0714	11,40	0,5000	0,0714	11,40	0,5000

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	дельно Допус Концентраці		*Поправ. коэф. к ПДК/ОБУ В		новая центр.
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
0123	диЖелезо триоксид (Железа оксид) (в пересчете на железо)	ПДК с/с	0,0400000	0,400000	1	Нет	Нет
0143	Марганец и его соединения (в пересчете на марганца (IV) ок- сид)	ПДК м/р	0,0100000	0,0100000	1	Нет	Нет
0168	ЗОлово оксид	ПДК с/с	0,0200000	0,2000000	1	Нет	Нет
0184	Свинец и его неорганические соединения (в пересчете на свинец)	ПДК м/р	0,0010000	0,0010000	1	Нет	Нет
0301	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0,2000000	0,2000000	1	Нет	Нет
0304	Азот (II) оксид (Азота оксид)	ПДК м/р	0,4000000	0,4000000	1	Нет	Нет
	ВУглерод (Сажа)	ПДК м/р	0,1500000	0,1500000	1	Нет	Нет
0330	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0,5000000	0,5000000	1	Нет	Нет
	Углерод оксид	ПДК м/р	5,0000000	5,0000000	1	Нет	Нет
0342	Фториды газообразные	ПДК м/р	0,0200000	0,0200000	1	Нет	Нет
0344	Фториды плохо растворимые	ПДК м/р	0,2000000	0,2000000	1	Нет	Нет
	Диметилбензол (Ксилол) (с- месь изомеров о-, м-, п-)	ПДК м/р	0,2000000	0,2000000	1	Нет	Нет
	Метилбензол (Толуол)	ПДК м/р	0,6000000	0,6000000	1	Нет	Нет
0703	В Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с	0,0000010	0,0000100	1	Нет	Нет
	7 Хлорэтилен	ПДК с/с	0,0100000	0,1000000	1	Нет	Нет
	Вутан-1-ол (Спирт н-бутило- вый)	ПДК м/р	0,1000000	0,1000000	1	Нет	Нет
	32-метилпропан-1-ол (спирт изобутиловый)	ПДК м/р	0,1000000	0,1000000	1	Нет	Нет
	Этанол (Спирт этиловый)	ПДК м/р	5,0000000	5,0000000	1	Нет	Нет
1119	2-Этоксиэтанол (этилцелло- зольв)	ПДК м/р	0,0002300	0,0002300	1	Нет	Нет
1210)Бутилацетат	ПДК м/р	0,1000000	0,1000000	1	Нет	Нет
1325	Формальдегид	ПДК м/р	0,0350000	0,0350000	1	Нет	Нет
1401	Пропан-2-он (Ацетон)	ПДК м/р	0,3500000	0,3500000	1	Нет	Нет
2732	Керосин	ОБУВ	1,2000000	1,2000000	1	Нет	Нет
2735	масло минеральное	ОБУВ	0,0500000	0,0500000	1	Нет	Нет
	Уайт-спирит	ОБУВ	1,0000000	1,0000000	1	Нет	Нет
2754	Углеводороды предельные С12-С19	ПДК м/р	1,0000000	1,0000000	1	Нет	Нет
2902	Взвешенные вещества	ПДК м/р	0,5000000	0,5000000	1	Нет	Нет
	Пыль неорганическая: 70-20% SiO2	ПДК м/р	0,3000000	0,3000000	1	Нет	Нет
2930	Пыль абразивная (Корунд белый, Монокорунд)	ОБУВ	0,0400000	0,0400000	1	Нет	Нет
6009	Ргруппа неполной суммации с коэффициентом "1,6": Азота диоксид, серы диоксид	Группа	-	-	1	Нет	Нет
6034	Группа суммации: Свинца ок- сид, серы диоксид	Группа	-	-	1	Нет	Нет
6039	рГруппа суммации: Серы диок-	Группа	-	-	1	Нет	Нет

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

	paq oog/o. opazza.z		p				
00.40	_				-		
6046	Группа суммации: Углерода	Группа	_	_	1	Нет	Нот І
0040	п руппа суммации. Этл ерод а	ιργιιια	_	_	l l	1101	пет

Раздел охрана окружающей среды

оксид и пыль цементного про- изводства						
Группа суммации: Фтористый водород и плохо растворимые соли фтора	Группа	-	-	1	Нет	Нет
Группа неполной суммации с коэффициентом "1,6": Серы диоксид, азота диоксид	Группа	-	-	1	Нет	Нет

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Перебор метеопараметров при расчете Набор-автомат

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные площадки

Nº	Тип	Полн	ное описа	ание плоц	цадки	Ширина, (м)	Ш; (N	•	Высота, (м)	Комментарий
		Коорд сере <i>д</i> 1-й стор	цины	cepe	Координаты середины 2-й стороны (м)					
		X Y		Х Ү			Χ	Υ		
1	Заданная	212	990 1595 1019		1000	100	100	2		

Расчетные точки

Nº	Координа (•		Высота (м)	Тип точки	Комментарий
	Х	Υ			
1	383,00	622,00	2	на границе жилой зоны	

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0,01

Код	Наименование	Сумма Ст/ПДК
0827	Хлорэтилен	0,0010715

Результаты расчета и вклады по веществам (расчетные точки)

Типы точек:

- 0 расчетная точка пользователя
- 1 точка на границе охранной зоны
- 2 точка на границе производственной зоны
- 3 точка на границе СЗЗ
- 4 на границе жилой зоны
- 5 точка на границе здания

Раздел охрана окружающей среды

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,02	68	0,72	0,000	0,000	4

Вещество: 0184 Свинец и его неорганические соединения (в пересчете на свинец)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,12	68	0,72	0,000	0,000	4

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

N º	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2		68	0,72	0,000	0,000	4

Вещество: 0328 Углерод (Сажа)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,04	68	0,72	0,000	0,000	4

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4

Вещество: 0616 Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,03	68	0,72	0,000	0,000	4

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4

Вещество: 2735 масло минеральное

 Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,01	. 68	0,72	0,000	0,000	4

Вещество: 6009 Азота диоксид, серы диоксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2		68	0,72	0,000	0,000	4

Вещество: 6034 Свинца оксид, серы диоксид

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип

	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,13	68	0,72	0,000	0,000	4

Вещество: 6039 Серы диоксид и фтористый водород

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,02	68	0,72	0,000	0,000	4

Вещество: 6046 Углерода оксид и пыль цементного производства

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4

Вещество: 6053 Фтористый водород и плохо растворимые соли фтора

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	3,8e-3	68	0,72	0,000	0,000	4

Вещество: 6204 Серы диоксид, азота диоксид

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,05	68	0,72	0,000	0,000	4

Максимальные концентрации и вклады по веществам (расчетные площадки)

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	1)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,12	88	0,50	0,000	0,000
Площадка	Це	х Источник	Вклад в д.	ПДК Вкл	ад %		
0	0	6003		0,10	31,82		

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

Площадка: 1

Поле максимальных концентраций

Коорд Х(г	Коорд Х(м) Коорд Ү(м)		((м) Коорд Ү(м)		Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения		
121	1,8	1011	0,14	88	0,50	0,000	0,000		
Площадка	Цех	к Источник	Вклад в д.	ПДК Вкл	ад %		_		
0	0	6003		0.11 7	76.92				

Вещество: 0184 Свинец и его неорганические соединения (в пересчете на свинец)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү	′(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до	
Раздел охран	a «A	Модер	низация и техничес	ское дооснащение п	<i>пунктов пропуска,</i>	расположенных н	а	
окружающей	і среды ка	азахст	панском участке т	аможенной границ	ны Евразийского э	кономического сок	<i>оза и</i>	
ry:r		Ситуационного центра (ГДУ) Комитета государственных доходов Министерства финансов						
	P_{ℓ}	еспубл	шки Казахстан»	Пункт пропуска «Т	Гажен» ЛГЛ по Ма	$\mu z \mu c m a v c \kappa lpha ec{0}$	mu	

Корректировка.

			ПДК)				исключения
121	1,8	1011	1,07	88	0,50	0,000	0,000
Площадка	Цех	Источник	Вклад в д.	. ПДК Вкл	ад %		
0	0	6013		1.07 10	20.00		

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	и)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,55	88	0,50	0,000	0,000
Площадка	Цех	к Источник	Вклад в д.	ПДК Вкл	ад %		
0	0	6007		0.26	46.47		

Вещество: 0328 Углерод (Сажа)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	1)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,32	88	0,50	0,000	0,000
Площадка	Цех	и Источник	Вклад в д.	ПДК Вкл	ад %		_
0	0 0 6005			0,28	38,24		

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	Коорд Х(м) Коорд Ү(м)		Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
1211	1,8	1011	0,12	88	0,50	0,000	0,000
Площадка	Цех	Источник	Вклад в д.	ПДК Вкл	ад %		
0	0	6005		0,11	36,81		

Вещество: 0616 Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	1)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,25	88	0,50	0,000	0,000
Площадка	Цех	х Источник	Вклад в д.	ПДК Вкл	ад %		
0	0	6004		0,25	00,00		

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	N)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,13	88	0,50	0,000	0,000
Площадка	Це	х Источник	Вклад в д.	ПДК Вкл	ад %		
0	0	6005		0,11	33,33		

Раздел охрана окружающей среды

Вещество: 2735 масло минеральное

Площадка: 1

Поле максимальных концентраций

Коорд Х	Коорд Х(м) Коорд Ү(м)		Коорд Ү(м) Концентр. (д.		Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
12	11,8	1011	0,13	88	0,50	0,000	0,000
Площадка	Це	ех Источник	Вклад в д.	ПДК Вкл	ад %		
0	лощадка Цех Источ 0 0 600			0,13	00,00		

Вещество: 6009 Азота диоксид, серы диоксид

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	I)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,42	88	0,50	0,000	0,000
Площадка	Площадка Цех Источник		Вклад в д.	ПДК Вкл	ад %		_
0	0 0 6007			0,17	39,89		

Вещество: 6034 Свинца оксид, серы диоксид

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	1)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	1,19	88	0,50	0,000	0,000
Площадка	Це	х Источник	Вклад в д.	ПДК Вкл	ад %		_
0	0	6013		1,07	39,67		

Вещество: 6039 Серы диоксид и фтористый водород

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	Коорд Х(м) Коорд Ү(м)		Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,16	88	0,50	0,000	0,000
Площадка	Це	х Источник	Вклад в д.	ПДК Вкл	ад %		
0	0 0 6005			0,11	88,87		

Вещество: 6046 Углерода оксид и пыль цементного производства

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	Коорд Х(м) Коорд Ү(м)		орд Ү(м) Концентр. (д.		Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,12	88	0,50	0,000	0,000
Площадка	Це	х Источник	Вклад в д.	ПДК Вкл	ад %		
0	0 0 6001			0.10	34.00		

Вещество: 6053 Фтористый водород и плохо растворимые соли фтора

Площадка: 1

Раздел охрана окружающей среды

Поле максимальных концентраций

Коорд Х(м	и)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,03	88	0,50	0,000	0,000
Площадка	Цех	к Источник	Вклад в д.	ПДК Вкл	ад %		
0	0	6002		0.03	00.00		

Вещество: 6204 Серы диоксид, азота диоксид

Площадка: 1

Поле максимальных концентраций

Коорд Х(м	1)	Коорд Ү(м)	Концентр. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
			ПДК)				исключения
121	1,8	1011	0,42	88	0,50	0,000	0,000
Площадка	Це	х Источник	Вклад в д.	ПДК Вкл	ад %		_
0	0	6007		0,17	39,89		

Максимальные концентрации и вклады по веществам (расчетные точки)

Типы точек:

- 0 расчетная точка пользователя
- 1 точка на границе охранной зоны
- 2 точка на границе производственной зоны
- 3 точка на границе СЗЗ
- 4 на границе жилой зоны
- 5 точка на границе здания

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6003		0,01	81,82				

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,02	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	к Вклад в	д. ПДК	Вклад %				
0	0	6003		0,01	76,92				

Вещество: 0184 Свинец и его неорганические соединения (в пересчете на свинец)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,12	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6013		0,12	100,00				

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

	Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
ſ	1	383	622	2	0,06	68	0,72	0,000	0,000	4

Раздел охрана окружающей среды Площадка Цех Источник Вклад в д. ПДК Вклад % 0 0 6007 0,03 46,47

Вещество: 0328 Углерод (Сажа)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,04	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	к Вклад в	д. ПДК	Вклад %				
0	0	6005		0,03	88,24				

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383		2	0,01	68		0,000		
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6005		0,01	86,81				

Вещество: 0616 Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,03	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6004		0,03	100,00				

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6005		0,01	83,33				

Вещество: 2735 масло минеральное

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6004		0,01	100,00				

Вещество: 6009 Азота диоксид, серы диоксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,05	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6007		0.02	39.89				

Вещество: 6034 Свинца оксид, серы диоксид

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,13	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6013		0,12	89,67				

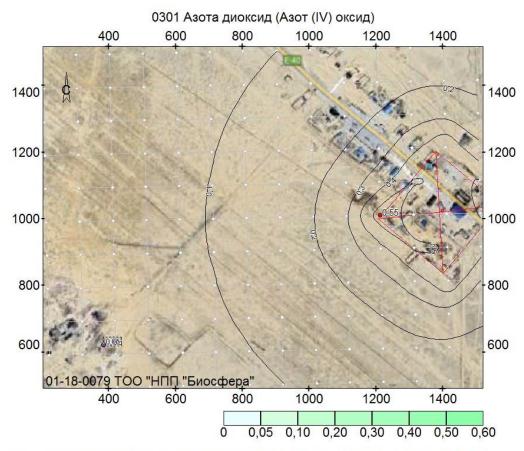
Вещество: 6039 Серы диоксид и фтористый водород

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	0,02	68	0,72	0,000	0,000	4

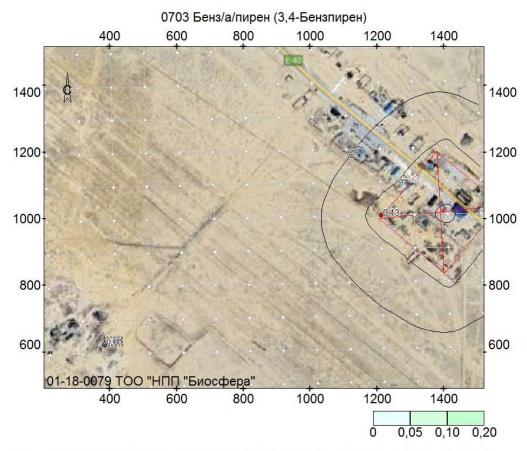
Раздел охрана окружающей среды

Площадка Цех Источник Вклад в д. ПДК Вклад % 0 0 6005 0,01 68,87

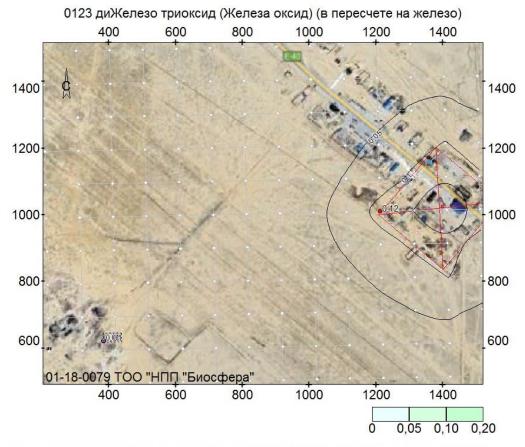
Вещество: 6046 Углерода оксид и пыль цементного производства

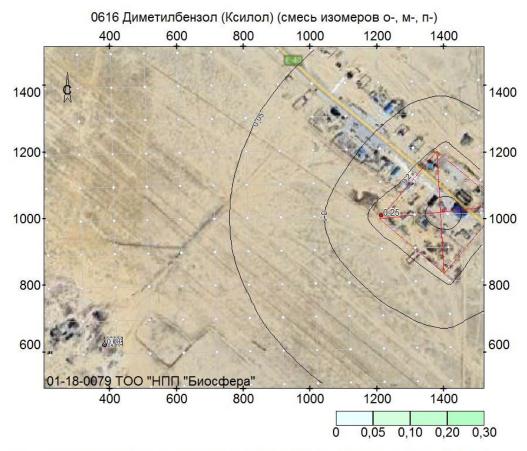

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,01	68	0,72	0,000	0,000	4
Площад	ка Цех	Источни	ік Вклад в	д. ПДК	Вклад %				
0	0	6001		0,01	84,00				

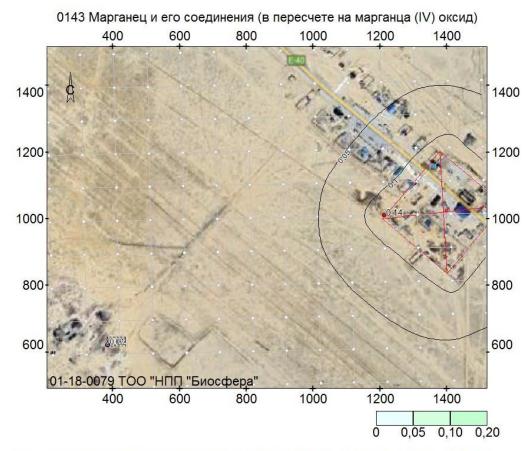
Вещество: 6053 Фтористый водород и плохо растворимые соли фтора

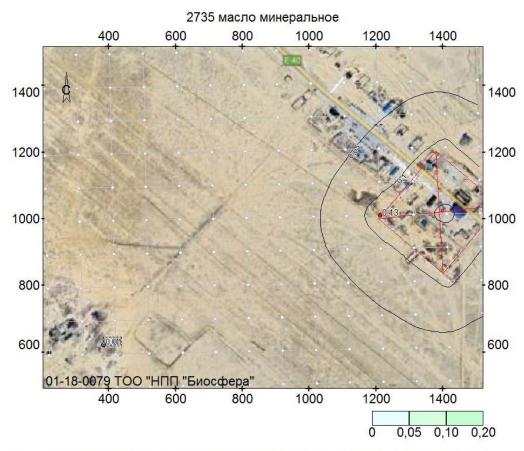

Nº	Коорд	Коорд		Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
1	383	622	2	3,8e-3	68	0,72	0,000	0,000	4
Площад	ка Цех	Источник Вклад в д. ПДК			Вклад %				
0	0	6002		3,8e-3	100,00				

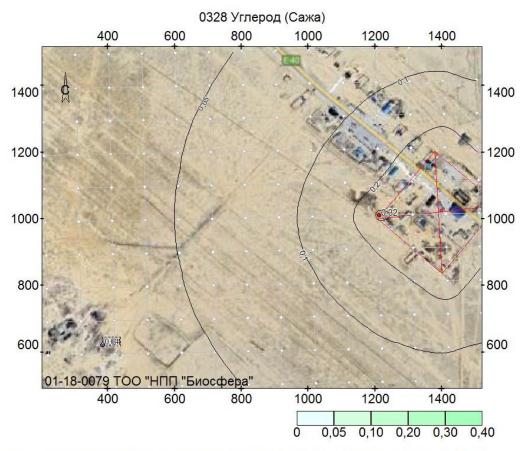
Вещество: 6204 Серы диоксид, азота диоксид


Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
1	383	622	2	0,05	68	0,72	0,000	0,000	4
Площад	ка Цех	Источник Вклад в д. ПДК			Вклад %				
0	0	6007		0,02	39,89				

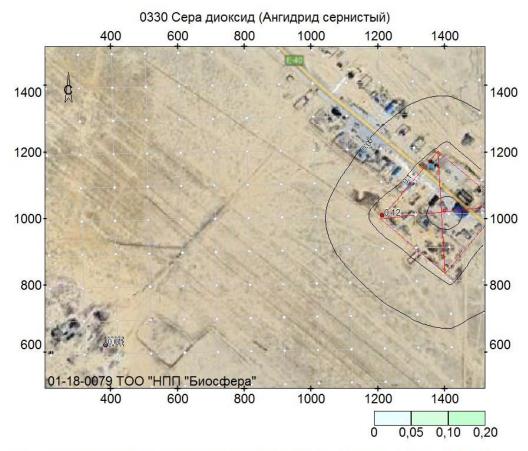

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

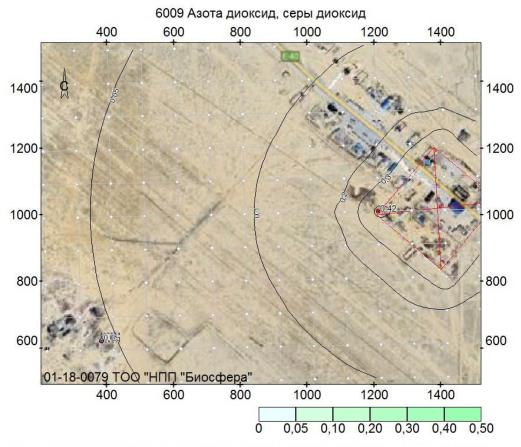

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

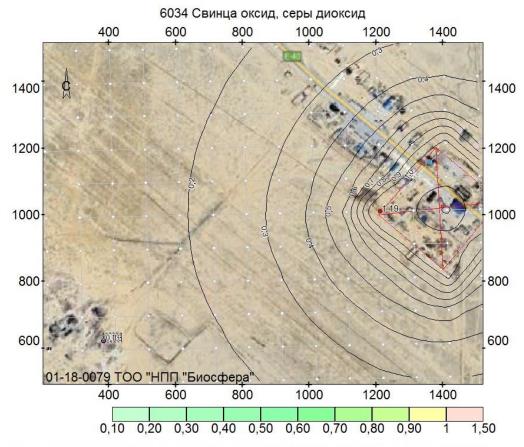

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

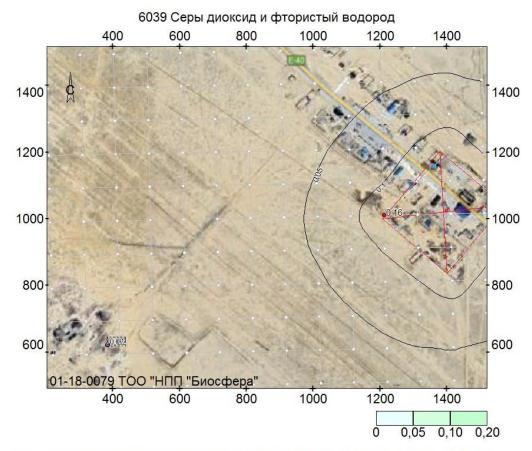

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

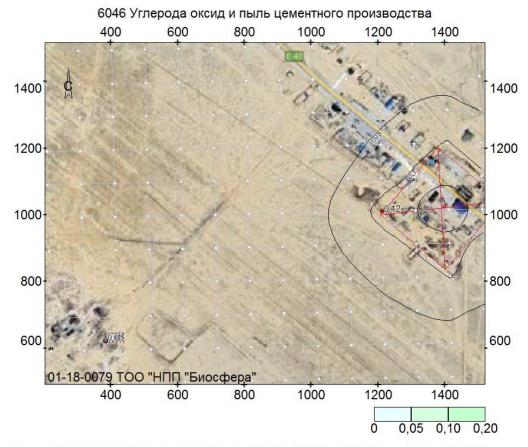

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

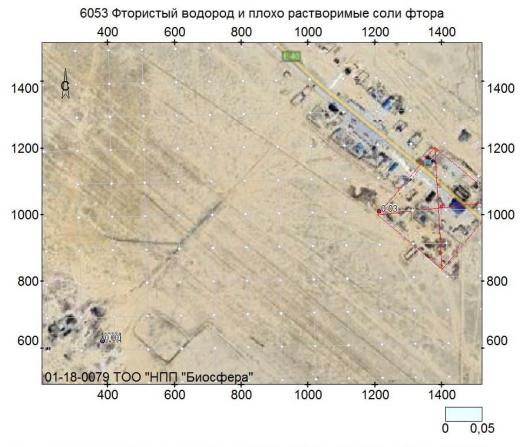

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

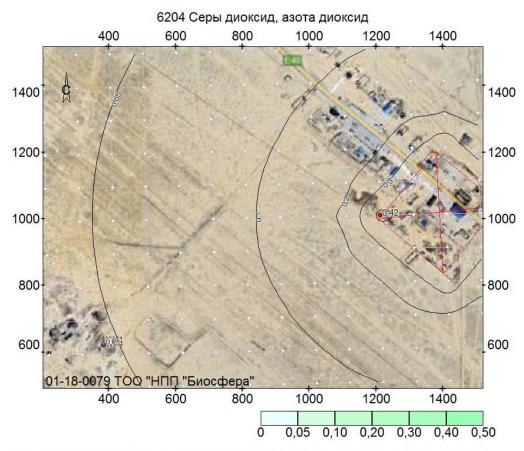

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

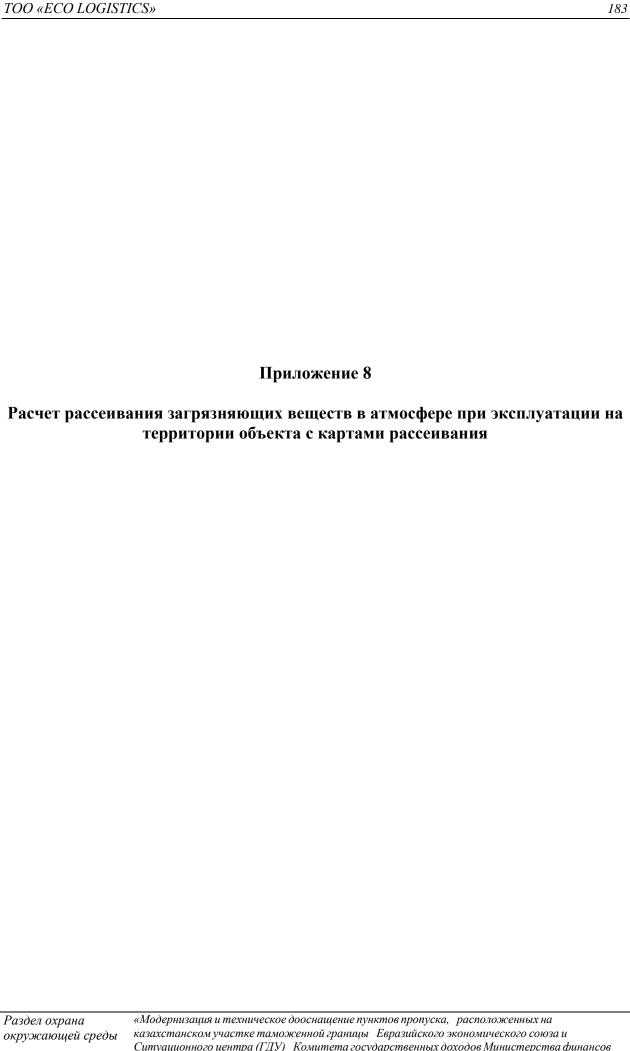

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900


кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900


кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900


кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900


кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900


кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

кое дооснащение пункта пропуска "Тажен"; вар.исх.д. 1; вар.расч.1; пл.1(h=2м) Масштаб 1:8900

РАСЧЕТ РАССЕИВАНИЯ НА ЭКСПЛУАТАЦИЮ

```
1. Общие сведения.
   Расчет проведен на УПРЗА "ЭРА" v1.7 фирмы НПП "Логос-Плюс", Новосибирск Расчет выполнен ТОО
   "Оргтехэнергострой"
   | Разрешение на применение в Республике Казахстан: письмо МПРООС РК №09-335 от 04.02.2002 |
   | Сертифицирована Госстандартом РФ рег.№ РОСС RU.CП09.H00010 от 25.12.2003 до 30.12.2021 |
   | Согласовывается в ГГО им.А.И.Воейкова начиная с 30.04.1999
   Последнее согласование: письмо ГГО №199/25 от 09.03.2005 на срок до 31.12.2021
2. Параметры города.
   УПРЗА ЭРА v1.7
   Название Бейнеуский р-н Коэффициент А = 200
   Скорость ветра U^* = 7.0 \text{ м/c}
   Средняя скорость ветра =
                                        2.3 м/с Температура летняя = 28.6 градС Температура
   зимняя = -21.1 градС Коэффициент рельефа = 1.00
   Площадь города = 0.0 кв.км
  Угол между направлением на СЕВЕР и осью X = 90.0 угл.град Фоновые концентрации на постах не заданы
   3. Исходные параметры источников. УПРЗА ЭРА v1.7
  Город :055 Бейнеуский р-н. Задание :0001 Тажен.
   Вар.расч.:2
                            Расч.год: 2025
                                                Расчет проводился 25.12.2021 0:00: Группа суммации
     41=0337 Углерод оксид
   2908 Пыль неорганическая: 70-20% двуокиси кремния Коэффициент рельефа (КР): индивидуальный с
   источников
   Коэффициент оседания (F): индивидуальный с источников
                   Признак источников "для зимы" - отрицательное значение высоты.
            |Тип| Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf| F | КР | Ди| выброс
  Кол
   <06~П>~<Nc>|~~~|~~м~~|~~м~~|~м/с~|~~м3/с~|градС|~м~|~~м~~|~~м~~|~~м~|гр.|~~|~~~|~~|~т/с~~
   ----- Примесь 0337-----
        38
44
                                                                    -3
3
                                                                                      1.0 1.00 0 0 1.0 1.00 0
                                                                            1
                                                                                 1
                                                           37
                                                                    2.6
                                                                            1
                                                                                1
                                                                                      0 1.0 1.00 0
         ----- Примесь 2908-----
        000201 6001 Π1 2.0
                                                           21 13
42 25
                                         24.3
                                                                            1 1
                                                                                      0 3.0 1.00 0
        000201 6002 Π1 2.0
                                         24.3
                                                                            1
                                                                                      0 3.0 1.00 0
                                                                                      0.0228670
   4. Расчетные параметры См, Uм, Xм УПРЗА ЭРА v1.7
   Город :055 Бейнеуский р-н. Задание :0001 Тажен.
   Вар.расч.:2 Расч.год: 2021 Расчет проводился 25.12.2021 0:00: Группа суммации : 41=0337
  Углерод оксид
                            2908 Пыль неорганическая: 70-20% двуокиси кремния Сезон : ЗИМА для
   энергетики и ЛЕТО для остальных
   | - Для групп суммации выброс Mq = M1/\Pi Д K1 + ... + Mn/\Pi Д K n,
             а суммарная концентрация Cm = Cm1/\Pi ДК1 + ... + Cmn/\Pi ДКn
             (подробнее см. стр.36 ОНД-86);
           Для групп суммации, включающих примеси с различными коэф.
            оседания, нормированный выброс указывается для каждой
             примеси отдельно вместе с коэффициентом оседания F;
         | - Для линейных и площадных источников выброс является сум-
             марным по всей площади , а Ст - есть концентрация одиноч-
            ного источника с суммарным М ( стр.33 ОНД-86 )
                ~~~~~
Источники_
| Мq
                                 |_Их_ расчетные_ параметры_
[q |Тип| Ст (Ст`)| Um | Xi
                                                          Um | Xm
   |Номер| Код
              |-п/п-|<об-п>-<ис>|-----|[доли ПДК]|-[м/с
                                                                  ---|----[м]---|--
           11.0
                                                                         11.0
           11.4
19.9
                                                       0.50
                                                                        11.0
                                                             i.
                                                       0.50
                                                                        13.0
          5 |000201 6002| 0.07622| Π | 0.629 | 0.50 | 17.1
                                                                       13.0
            Суммарный M = 0.26535 (сумма М/ПДК по всем примесям)
Сумма См по всем источникам = 1.909575 долей ПДК
               Средневзвешенная опасная скорость ветра = 0.50 \text{ м/c}
```

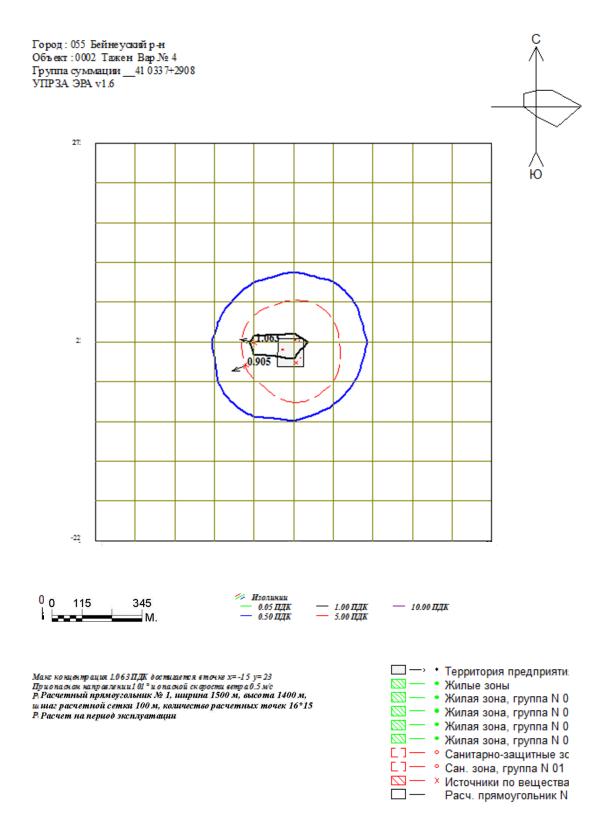
Раздел охрана окружающей среды

```
5. Управляющие параметры расчета. УПРЗА ЭРА v1.7
Город :055 Бейнеуский р-н. Задание :0001 Тажен.
                          Расч.год: 2021 Расчет проводился 25.12.2021 0:00: Группа суммации : 41=0337
Вар.расч.:2
Углерод оксид
2908 Пыль неорганическая: 70-20% двуокиси кремния Сезон : ЗИМА для энергетики и ЛЕТО для
остальных
Фоновая концентрация не задана.
Расчет по прямоугольнику 001 : 500x500 с шагом 50 Направление ветра: перебор от 0 до 360 с шагом
10 град. Перебор скоростей ветра: 0.5 6.0 м/с
0.5 1.0 1.5 долей Ucв Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
6. Результаты расчета в виде таблицы УПРЗА ЭРА v1.7
Город :055 Бейнеуский р-н. Задание :0001 Тажен.
                        Расч.год: 2021 Расчет проводился 25.12.2021 0:00: Группа суммации : 41=0337
Вар.расч.:2
Углерод оксид
2908 Пыль неорганическая: 70-20% двуокиси кремния Расчет проводился на прямоугольнике 1
с параметрами: координаты центра X= 35.0 Y=
размеры: Длина(по X)= 500.0, Ширина(по Y)= 500.0 шаг сетки =50.0
             Расшифровка
                                     обозначений
_____ Qc - суммарная концентрация [ доли ПДК ]
| Фоп- опасное направл. ветра [ угл. град.] |
| Uon- опасная скорость ветра [ \rm m/c ] | | Ви - вклад ИСТОЧНИКА в Qc [ доли ПДК ] |
| Ки - код источника для верхней строки Ви |
                       ~~~~~~~~
| -Если расчет для суммации, то концентр. в мг/м3 не печатается|
| -Если в строке Стах=<0.05пдк, то Фоп, Иоп, Ви, Ки не печатаются|
| -Если один объект с одной площадкой, то стр. Кпл не печатается|
                      273 : Y-строка 1 Cmax= 0.110 долей ПДК (x=
                                                                                                                  35.0; напр.ветра=181)
0.085: 0.094: 0.102: 0.107: 0.110: 0.109: 0.104: 0.096: 0.087: 0.076:
Фол: 137: 143: 151: 160: 170: 181: 193: 203: 211: 219: 225:
Uon: 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 :
                                                                                                                                                                  : Ви :
0.052: 0.058: 0.064: 0.068: 0.069: 0.070: 0.072: 0.068: 0.061: 0.055: 0.049:
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
Ви : 0.021: 0.025: 0.027: 0.030: 0.034: 0.035: 0.033: 0.033: 0.033: 0.029: 0.025:
Ku: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
Ви: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002:
Ки: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006:
                       223 : Y-строка 2 Стах= 0.131 долей ПДК (х= 85.0; напр.ветра=195)
                                                          -65: -15: 35: 85: 135: 185:
215 : -165: -115:
                                                                                                                                                            285:
                                                                                                                                               235:
-----:---:----:----: Qc : 0.086:
0.099: 0.110: 0.118: 0.126: 0.130: 0.131: 0.126: 0.115: 0.101: 0.087:
Фоп: 130 : 137 : 145 : 155 : 169 : 181 : 195 : 207 : 217 : 225 : 231 :
{\tt Uon: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.00: 6.
                                                                                                                                                                  : Ви :
0.058: 0.067: 0.073: 0.077: 0.088: 0.081: 0.083: 0.079: 0.072: 0.064: 0.055:
Ku : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 : 6001 :
Ви: 0.026: 0.028: 0.032: 0.037: 0.032: 0.043: 0.043: 0.043: 0.039: 0.034: 0.029:
Ки: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
Ви: 0.002: 0.003: 0.003: 0.004: 0.003: 0.004: 0.003: 0.003: 0.002: 0.002: 0.002:
Ки : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 :
                      173 : Y-строка 3 Стах= 0.227 долей ПДК (х= 35.0; напр.ветра=183)
215 : -165: -115:
                                                          -65: -15: 35: 85: 135: 185: 235: 285:
-----:---:---:----: Qc : 0.098:
0.113: 0.125: 0.164: 0.212: 0.227: 0.207: 0.149: 0.136: 0.117: 0.098:
Фол: 123 : 129 : 137 : 150 : 165 : 183 : 200 : 215 : 225 : 233 : 239 :
Uon: 6.00: 6.00: 6.00: 0.75: 0.75: 0.75: 0.75: 6.00: 6.00: 6.00: 6.00:
                                                                                                                                                                  : Ви :
0.067: 0.076: 0.082: 0.120: 0.143: 0.148: 0.131: 0.096: 0.084: 0.073: 0.062:
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
Ви: 0.027: 0.032: 0.037: 0.040: 0.064: 0.073: 0.070: 0.049: 0.047: 0.040: 0.033:
{\tt K}{\tt M} : {\tt 6002} : 
Ки: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006:
```

Раздел охрана

123 : Y-строка 4 Cmax= 0.411 долей ПДК (x= 35.0; напр.ветра=183) -65: -15: 35: 85: 135: 185: 235: 285: 215 : -165: -115: -----:----:----: Qc : 0.107: 0.126: 0.171: 0.267: 0.363: 0.411: 0.356: 0.250: 0.155: 0.131: 0.108: Фол: 113 : 119 : 127 : 139 : 159 : 183 : 207 : 225 : 235 : 243 : 247 : Uon: 6.00 : 6.00 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 6.00 : 6.00 : 6.00 : 0.071: 0.086: 0.128: 0.186: 0.251: 0.263: 0.216: 0.153: 0.094: 0.081: 0.068: Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: Ви: 0.033: 0.035: 0.039: 0.074: 0.102: 0.138: 0.131: 0.091: 0.055: 0.046: 0.036: Ки : 6002 : 600 Ku: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 73 : Y-строка 5 Стах= 0.785 долей ПДК (х= 35.0; напр.ветра=185) y= 215 : -165: -115: -65: -15: 35: 85: 135: 185: 235: 285: ----::---:: Qc : 0.116: 0.138: 0.233: 0.402: 0.636: 0.785: 0.656: 0.364: 0.211: 0.140: 0.114: Φ оп: 103 : 107 : 113 : 123 : 145 : 185 : 225 : 243 : 250 : 255 : 257 : Uon: 6.00 : 6.00 : 0.75 : 0.75 : 0.75 : 0.50 : 0.75 : 0.75 : 0.75 : 6.00 : 6.00 : Ku: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: Ви: 0.034: 0.037: 0.056: 0.098: 0.139: 0.270: 0.264: 0.139: 0.075: 0.049: 0.037: Ки: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: Ви: 0.003: 0.004: 0.004: 0.007: 0.013: 0.015: 0.011: 0.007: 0.005: 0.003: 0.003: Ки: 6006: 6 23 : У-строка 6 Стах= 1.063 долей ПДК (х= -15.0; напр.ветра=101) 0.146: 0.271: 0.520: 1.063: 1.061: 0.890: 0.432: 0.232: 0.140: 0.115: 91 : 93 : 95 : 101 : 235 : 265 : 267 : 267 : 269 : 269 : Uon: 6.00: 0.75: 0.75: 0.75: 0.50: 0.50: 0.75: 0.75: 0.75: 6.00: : Ви : 0.080: 0.112: 0.196: 0.383: 0.805: 1.061: 0.521: 0.258: 0.144: 0.086: 0.072: Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: Ви : 0.037: 0.029: 0.068: 0.124: 0.229: : 0.349: 0.160: 0.080: 0.049: 0.039: Ки : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : : 0.014: 0.011: 0.006: 0.004: 0.003: Ви : 0.003: 0.003: 0.005: 0.009: 0.021: Ки : 6006 : 6006 : 6006 : 6006 : : 6006 : 6006 : 6006 : 6006 : 6006 : -27 : Y-строка 7 Cmax= 0.920 долей ПДК (x= 35.0; напр.ветра=347) 0.148: 0.249: 0.465: 0.857: 0.920: 0.649: 0.373: 0.215: 0.133: 0.112: Фоп: 80: 77: 73: 65: 43: 347: 307: 293: 285: 281: 280: Uon: 6.00 : 6.00 : 0.75 : 0.75 : 0.75 : 0.50 : 0.75 : 0.75 : 0.75 : 6.00 : 6.00 : : : 0.098: 0.185: 0.341: 0.636: 0.719: 0.432: 0.233: 0.137: 0.089: 0.071: $\mathtt{K}\mathtt{u}$: 6001 Ku: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: Ви : 0.003: 0.003: 0.004: 0.008: 0.009: 0.017: 0.034: 0.012: 0.006: 0.005: 0.003: Ки: 6006: 6006: 6006: 6006: 6006: 0001: 6006: 6006: 6006: 6006: 6006: у= -77 : У-строка 8 Стах= 0.490 долей ПДК (х= 35.0; напр.ветра=355) 0.138: 0.190: 0.313: 0.449: 0.490: 0.393: 0.266: 0.162: 0.124: 0.105: Фоп: 69: 65: 57: 45: 23: 355: 329: 311: 301: 295: 290: Uon: 6.00: 6.00: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 0.75: 6.00: 6.00: : Ви : 0.077: 0.092: 0.146: 0.227: 0.330: 0.349: 0.263: 0.175: 0.109: 0.078: 0.068: Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: Ви: 0.034: 0.042: 0.039: 0.078: 0.107: 0.122: 0.110: 0.080: 0.046: 0.040: 0.033: Ки : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : 6002 : Ви: 0.003: 0.003: 0.004: 0.006: 0.008: 0.013: 0.014: 0.008: 0.005: 0.004: 0.003: Ки: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006:

Раздел охрана


```
y= -127 : Y-строка 9 Cmax= 0.263 долей ПДК (x=
                                                                                     35.0; напр.ветра=357)
                                                                                                                    285: x=
 215 : -165: -115:
                                                -65: -15: 35: 85: 135:
                                                                                                 185:
                                                                                                           235:
 ----: Qc : 0.105:
 0.125: 0.145: 0.189: 0.245: 0.263: 0.231: 0.171: 0.127: 0.112: 0.096:
 Фол: 59: 53: 45: 33: 17: 357: 339: 323: 313: 305: 299:
 Uon: 6.00 : 6.00 : 6.00 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 6.00 : 6.00 : 6.00 :
 0.071: 0.084: 0.096: 0.143: 0.176: 0.184: 0.157: 0.121: 0.081: 0.073: 0.063:
 Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
 Ви : 0.031: 0.038: 0.045: 0.040: 0.061: 0.069: 0.066: 0.043: 0.038: 0.034: 0.029:
 Ки: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
 Ви: 0.002: 0.002: 0.003: 0.004: 0.005: 0.007: 0.006: 0.005: 0.005: 0.004: 0.003:
Ки : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 :
у= -177 : У-строка 10 Стах= 0.139 долей ПДК (х=
                                                                                      35.0; напр.ветра=357)
                                               x=
-65: -15: 35: 85: 135: 185: 235: 285:
 -----:---:----: Qc : 0.093:
 0.109: 0.123: 0.133: 0.138: 0.139: 0.131: 0.123: 0.112: 0.099: 0.086:
             51 : 45 : 37 : 25 : 13 : 357 : 343 : 331 : 321 : 313 : 307 :
Uoπ: 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 :
                                                                                                                       : Ви:
 0.063: 0.073: 0.081: 0.092: 0.090: 0.103: 0.091: 0.083: 0.074: 0.066: 0.057:
 Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
 Ви: 0.027: 0.032: 0.038: 0.038: 0.042: 0.030: 0.033: 0.034: 0.032: 0.029: 0.026:
 Ku: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
 Ви: 0.002: 0.002: 0.003: 0.003: 0.003: 0.004: 0.004: 0.004: 0.004: 0.003: 0.003:
 Ки : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 :
                                                                                   -15.0; напр.ветра= 10)
y= -227 : Y-строка 11 Cmax= 0.116 долей ПДК (x=
                                               -65: -15: 35: 85: 135: 185: 235: 285:
 215 : -165: -115:
 ----:-:--:-: Qc : 0.082:
 0.092: 0.103: 0.111: 0.116: 0.115: 0.112: 0.104: 0.096: 0.086: 0.076:
          45 : 39 : 30 : 21 : 10 : 359 : 347 : 337 : 327 : 320 : 313 :
Uon: 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 : 6.00 :
                                                                                                                       : Ви :
 0.055: 0.062: 0.070: 0.075: 0.078: 0.075: 0.074: 0.067: 0.065: 0.056: 0.051:
 Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
 Ви: 0.024: 0.028: 0.030: 0.033: 0.034: 0.035: 0.032: 0.032: 0.027: 0.026: 0.022:
 Ku: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
 Ви: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002:
Ки : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 6006 : 600
прямоугольнику:
Безразмерная макс. концентрация ---> См =1.06290 Достигается в точке с координатами: XM = 1.06290 Достигается в точке с координатами: XM = 1.06290 Достигается в точке с координатами:
15.0 м
                                                              Y_M =
                                                                         23.0 м При опасном направлении ветра:
      ( Х-столбец 5, У-строка 6)
                                                             101 град.
 7. Суммарные концентрации в узлах расчетной сетки. УПРЗА ЭРА v1.7
Город :055 Вейнеуский р-н. Задание :0001 Тажен. Вар.расч.:2 Расч-год: 2025 Расчет проволитов
                                      Расч.год: 2025
                                                               Расчет проводился 25.12.2025 0:00: Группа суммации
    41=0337 Углерод оксид
 2908 Пыль неорганическая: 70-20% двуокиси кремния
Параметры_расчетного_прямоугольника_No 1
 | Координаты центра : X= 35 м; Y= 23 м
| Длина и ширина : L= 500 м; B=
                                       : L= 500 м; B=
 | Шаг сетки (dX=dY) : D= 50 м
                                                   (Символ ^ означает наличие источника вблизи расчетного узла)
                                             4
                                                      5
                                                                6
                                                                          7
                                                                                    8
                     *--|----|----|----|----|
          1-| 0.076 0.085 0.094 0.102 0.107 0.110 0.109 0.104 0.096 0.087 0.076 |- 1
           2-| 0.086 0.099 0.110 0.118 0.126 0.130 0.131 0.126 0.115 0.101 0.087 |- 2
           3-| 0.098 0.113 0.125 0.164 0.212 0.227 0.207 0.149 0.136 0.117 0.098 |- 3
           4-| 0.107 0.126 0.171 0.267 0.363 0.411 0.356 0.250 0.155 0.131 0.108 |- 4
```

Раздел охрана окружающей среды

```
5-| 0.116 0.138 0.233 0.402 0.636 0.785 0.656 0.364 0.211 0.140 0.114 |- 5
      6-C 0.121 0.146 0.271 0.520 1.063 1.061 0.890 0.432 0.232 0.140 0.115 C- 6
      7-| 0.121 0.148 0.249 0.465 0.857 0.920 0.649 0.373 0.215 0.133 0.112 |- 7
      8-| 0.115 0.138 0.190 0.313 0.449 0.490 0.393 0.266 0.162 0.124 0.105 |- 8
      9-| 0.105 0.125 0.145 0.189 0.245 0.263 0.231 0.171 0.127 0.112 0.096 |- 9
     10-| 0.093 0.109 0.123 0.133 0.138 0.139 0.131 0.123 0.112 0.099 0.086 |-10
     11-| 0.082 0.092 0.103 0.111 0.116 0.115 0.112 0.104 0.096 0.086 0.076 |-11
      5
                                                   8
В целом по расчетному прямоугольнику:
Безразмерная макс. концентрация ---> См =1.06290 Достигается в точке с координатами: Хм =
15.0 м
( Х-столбец 5, У-строка 6)
                              YM = 23.0 M
При опасном направлении ветра :
                             101 град.
и "опасной" скорости ветра :
                              0.50 м/с
9. Результаты расчета по границе санзоны (для расч. прямоугольника 001). УПРЗА ЭРА v1.7
Город :055 Бейнеуский р-н. Задание :0001 Тажен.
            Расч.год: 2021 Расчет проводился 25.12.2021 0:00: Группа суммации : 41=0337
Вар.расч.:2
Углерод оксид
2908 Пыль неорганическая: 70-20% двуокиси кремния
                      Расшифровка обозначений
\overline{\ } Qc - суммарная концентрация [ доли ПДК ] \ |
 Фоп- опасное направл. ветра [ угл. град.]
| Иоп- опасная скорость ветра [
                                            м/с
                                                1 1
| Ви - вклад ИСТОЧНИКА в Qc [ доли ПДК ]
| Ки - код источника для верхней строки Ви
| -Если расчет для суммации, то концентр. в мг/м3 не печатается|
| -Если в строке Стах=<0.05 пдк, то Фоп, Иоп, Ви, Ки не печатаются|
| -Если один объект с одной площадкой, то стр. Кпл не печатается|
           -53: -52: -49: -44: -29: -23: -15: -7:
                                                          3: 10: 19: 20: 29:
\nabla =
39: 47:
--:---: x= 38: 28:
                      18:
                            10:
                                  -8: -16: -22:
                                                  -26:
                                                        -29:
                                                              -30:
                                                                    -31:-31:-30:-
27: -23:
---:- Qc: 0.665: 0.689: 0.725: 0.772: 0.886: 0.890: 0.900: 0.905: 0.899: 0.891: 0.860:
0.858: 0.831: 0.800: 0.776:
Φοπ: 350 : 359 :
105 : 115 : 123 :
                       7 :
                            15: 37: 47: 57: 67: 77: 85: 95: 95:
Uon: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
0.75 : 0.50 :
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
6001 : 6001 :
Ви: 0.148: 0.161: 0.165: 0.178: 0.214: 0.217: 0.222: 0.221: 0.218: 0.208: 0.189: 0.195: 0.174:
0.163: 0.173:
Ки: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
6002 : 6002 :
Ви: 0.017: 0.015: 0.012: 0.011: 0.009: 0.010: 0.011: 0.013: 0.014: 0.016: 0.017: 0.016: 0.017:
0.017: 0.015:
Ки: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006:
6006 : 6006 :
~~~~~~~~~~
                                                   76:
                                                                     74:
                                                                          71:
           55: 61: 66:
                            72:
                                  75:
                                        76:
                                              76:
                                                                                    66: 60:
                                                         76:
                                                               75:
\nabla =
                                                                           --:---
---: x=
              -17: -9: -1: 16: 26: 36: 36: 37: 37: 47: 52:
                                                                                    62: 70:
---:----: Qc: 0.759: 0.756: 0.750: 0.752: 0.748: 0.755: 0.755: 0.756: 0.756: 0.768: 0.780:
0.800: 0.822: 0.825: 0.834:
Фол: 133 : 143 : 151 : 167 : 177 : 185 : 185 : 187 : 187 : 195 : 201 : 210 : 219 :
229 : 237 :
Uon: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.50: 0.75: 0.75:
0.75 : 0.75 :
                              :
                                    :
                                         :
                                               :
                                                      :
                                                                                    :
```

Раздел охрана окружающей среды

```
Ки: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
6001 : 6001 :
Ви: 0.168: 0.165: 0.179: 0.216: 0.234: 0.270: 0.270: 0.262: 0.262: 0.297: 0.288: 0.319: 0.336:
0.342: 0.351:
Ки: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
6002 : 6002 :
Ви : 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.014: 0.014: 0.015: 0.013: 0.013: 0.012:
0.011: 0.012:
Ки: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006:
6006 : 6006 :
                                                                               -33:
             44:
                    34:
                          23:
                                 14:
                                       13:
                                              3:
                                                     2:
                                                           -7:
                                                                -17: -25:
                                                                                     -39:
                                                                                           -44:-49:
                                      94:
---: x= 88: 91: 93:
                               94:
                                            94: 94: 93: 90: 86: 80: 72:
                                                                                             66:58:48:
    ----:--:---:--
---:-Qc: 0.834: 0.826: 0.797: 0.764: 0.761: 0.725: 0.720: 0.691: 0.667: 0.653: 0.644:
0.649: 0.643: 0.639: 0.648:
Фол: 245 : 255 : 265 : 273 : 275 : 283 : 283 : 291 : 299 : 305 : 313 : 321 : 327 :
335 : 343 :
Uon: 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75 : 0.75
0.75 : 0.75 :
                                                                                               : :
Ku: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001: 6001:
6001 : 6001 :
Ви: 0.347: 0.336: 0.307: 0.278: 0.287: 0.251: 0.239: 0.223: 0.197: 0.172: 0.163: 0.158: 0.153:
0.155: 0.153:
Ки: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002: 6002:
6002 : 6002 :
Ви: 0.013: 0.014: 0.017: 0.020: 0.019: 0.024: 0.026: 0.029: 0.033: 0.034: 0.034: 0.033: 0.029:
0.026: 0.021:
Ки: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006: 6006:
6006 : 6006 :
~~~~~~~~
y=
   -53:
----·
x= 38:
Oc : 0.665:
Фоп: 350 :
Uoπ: 0.75 :
Ви : 0.489:
Ки: 6001:
Ви : 0.148:
Ки: 6002:
Ви : 0.017:
Ки: 6006:
                                        УПРЗА ЭРА v1.7 Координаты точки : X=
                                                                                  -26.0 м
Результаты расчета в точке максимума.
    Y= -7.0 м
Максимальная суммарная концентрация | Cs= 0.90452 долей ПДК |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Достигается при опасном направлении 67 град
и скорости ветра 0.75 м/с
Всего источников: 5. В таблице заказано вкладчиков не более чем с 95% вклада
                              ВКЛАДЫ ИСТОЧНИКОВ
               Код |Тип| Выброс | Вклад |Вклад в%| Сум. %| Коэф.влияния |
|----|<0б-П>-<ИС>|---|-М-(Мq)--|-С[доли ПДК]|----
                                                 ---|----|---- b=C/M ---|
                                                   73.5 | 73.5 | 3.5871418
24.4 | 97.9 | 2.8996503
     | 1 |000201 6001| N | 0.1853|
                                    0.664817 |
       2 |000201 6002| П | 0.0762|
                                       0.221021 |
                           В сумме =
                                       0.885838
                                                   97.9
                        остальных = 0.018681
     I Суммарный вклад
                                                   2.1
```

