ОПРЕДЕЛЕНИЕ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ НА ПРОМІГЛОШАЛКЕ

НПС «Косшагьд» на существующее положение (2024 г.) и период нормирования (2024—2028 гг.)

Расчеты выбросов загрязняющих веществ в атмосферу производились на основании технических характеристих применяемого оборудования, в соответствии со следующими отраслевыми нормами технологического проектирования и отраслевыми методическими указаниями, и рекомендациями по определению выбросов вредных веществ в атмосферу:

- Сборник методик по расчету выбросов вредных в атмосферу различными производствами", п.2. Расчет выбросов вредных веществ при свигании топлива в котлах паропроизводительностью до 30 т/час
- Методические указания по определению загрязняющих веществ в атмосферу из резервуаров. РНД 211.2.02.09-2005, Астана, 2005 г. -2
- Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла". Астама, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- Методики расчета выбросов загрязияющих веществ в атмосферу при механической обработке металлов (по величивам удельных выбросов). РНД 211.2.02.06-2004., Астана, 2004 г.
- Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (кефтебазы, АЗС) и других жидкостей и газов». Приложение к приказу МООС РК от 29.07.2011 №196
- Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по велячинам удельных выбросов). РНД 211.2.02.03-2004, Астана, 2004 г.
- Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приказ Министра охраны окружиющей среды Республики Казахстан от 18, 04, 2008 г. № 100 -п.
- Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок.
 Приложение №14 к Приказу Министра охраны окружающей среды Республики Казахстая от 18.04.2008
 №100.00
- Временные рекомендации по расчету выбросов от стационарных дюзельных установок. Л., 1988.
- Методика расчета выбросов загрязывощих веществ в атмосферу от объектов 4 категории. Приложение №9 к Прикату Министра охраны окружающей среды Республики Казахстан от 18.04.2008 № 100-п
- Методика расчета выбросов загрязьяющих веществ от предприятий дорожно-строительной отрасли (раздел 4)/ Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- Методика расчета выбросов загрязьяющих веществ от автогранспортных предприятий (раздел 4.10. Мединцкие работы) Приложение №3 в Пряказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-и
- Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами.
 Ленниград Гидрометеождат, 1986 г.
- Оборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами, Азматы, 1996 г.
- Методика определения валовых выбросов вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения. Приложение № 4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 №221-Ө

РЕЗЕРВУАРНЫЙ ПАРК

Источник загрязиения: 0005, Дыхательный клапан

Источник выделения: 0005 01, Дренамиая емкость V-63 м3

Список литературы:

 Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астажа, 2005. Расчеты по п.5.

Вид выброса, VV - Выбросы паров нефти и бензинов

Нефтепродукт, NPN4ME - Сырая нефть

Минимальная температура смеси, гр.С, *ТМЕ*N = 9.06

Коэффициент К1 (Прил.7), ЖТ = 0.4

ETMEN = 0.4

Максимальная температура смеси, гр.С, TM4X = 17.1

Коэффициент Kt (Прил.7), ET = 0.52

XTMAX = 0.52

Режим эксплуатации, NAME - "меринк", ССВ - отсутствуют

Конструкция резервуаров, NAME - Заглубленный

Объем одного резервуара данного типа, м3, 17 = 63

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров, XNR - 1

Категория веществ, NAME - А - Нефть из магистрального трубопровода и др. нефтепродукты при

температуре закачиваемой жилкости, блиркой к температуре воздуха

Зкачение Kpsr(Прил.8), **XPSR** = 0.56

Значение Кртах(Прил.8), ЕРМ = 0.8

Коэффиционт, ДРУК = 0.56

Коэффиционт, **ХРМ.4X = 0.8**

Общий объем резервуаров, м3, V = 63

Количество жидкости, закачиваемое в резервуар в течение года, т/год B=100

Плотность смеси, $\tau/м3$, RO = 0.8922

Годовая оборачиваемость резервуара (5.1.8), NN = B / (RO · V) = 100 / (0.8922 · 63) = 1.78 Коэффициент (Прил. 10), XOB = 2.5

Максимальный объем паровоздушной смеси, вытесняемой

из резервуара во время его закачки, м3/час, УСМАХ = 10

Давление паров смеси, мм.рт.ст., РS = 104.9

P = 104.9

Коэффиционт, **XD - 1**

Температура начала кипения смеси, гр.С., ТЕТР = 162.5.

Молекулярная масса паров смеси, кт/кмоль, $MRS = 0.6 \cdot TEIP + 45 = 0.6 \cdot 162.5 + 45 = 142.5$

Среднегодовые выбросы паров нефтепродукта, τ /год (5.2.2), $M = 0.294 \cdot PS \cdot MRS \cdot (KTM:1X \cdot KE + KTMEN) \cdot$

 $EPSR \cdot EOB \cdot B / (10^{\circ} \cdot RO) = 0.294 \cdot 104.9 \cdot 142.5 \cdot (0.52 \cdot 1 + 0.4) \cdot 0.56 \cdot 2.5 \cdot 100 / (10^{\circ} \cdot 0.8922) = 0.0634$

Максимальный из разовых выброс паров нефтепродукта, г/с (5.2.1), G = (0.163 · PS · MRS · ETM4X · EPM4X ·

 $EB \cdot VCM430 / 10^4 = (0.163 \cdot 104.9 \cdot 142.5 \cdot 0.52 \cdot 0.8 \cdot 1 \cdot 10) / 10^4 = 1.014$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1501*)

Кожцентрация ЗВ в парах, % масс(Прил. 14), СТ = 72.46

Среднегодовые выбросы, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 72.46 \cdot 0.0634 / 100 = 0.0459000$

Максимальный из разовых выброс, г/с (5.2.4), _G_ = CI · G / 100 = 72.46 · 1.014 / 100 = 0.7350000

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.86

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 26.86 \cdot 0.0634 / 100 = 0.0170300$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 200 = 26.86 \cdot 1.014 / 100 = 9.2724000$

Примесь: 0602 Бензоп (64)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.35

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.0634 / 100 = 0.0002220$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 260 = 0.35 \cdot 1.014 / 100 = 0.0035500$

Примесь: 0621 Менципбензоп (349)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.22

Среднегодовые выбросы, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 0.0634 / 100 = 0.0001395$

Максимальный из разовых выбрес, n (5.2.4), $G = CI \cdot G / 100 = 0.22 \cdot 1.014 / 100 = 0.0022300$

Примесь: 0616 Диметилбетэол (смесь с-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), СГ = 0.11

Среднегодовые выбросы, т/год (5.2.5), M = CI · M / 100 = 0.11 · 0.0634 / 100 = 0.0000697

Максимальный из разовых выбрес, r/c (5.2.4), $G = CI \cdot G / 100 = 0.11 \cdot 1.014 / 100 = 0.0011150$

Нтого:

Kod	Наименование 3Б	Bubpoc sta	Bushper misek
0415	Смесь углеводородов предельных С1-С5 (1502*)	0,735	0.0459
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.2724	0.01703
0602	Econom (64)	0.00355	0.000222
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.001115	0.0000697
0521	Метнибензов (349)	0.00223	0.0001395

Источник загрязнения: 6001, Неорганированный источник

Источник выделения: 6001 01, ЗРА и ФС Резернуарного парка

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астима, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Acrassa, 2005

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кп/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотиемий, потерявших герметичность, доли единицы (Прид.Б1), X = 0.07

Общее количество данного оборудования, шт., N = 16

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кт/час (6.1), $G = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 16 = 0.00738$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.00738/3.6 = 0.00205

Примесь: 0415 Смесь углеводородов предельных СІ-С5 (1502*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.00205 \cdot 72.46 / 100 = 0.001485$ Валовый выброс, v/ro_{A} , $M = G \cdot T \cdot 3600 / 10^6 = 0.001485 \cdot 8760 \cdot 3600 / <math>10^6 = 0.046831$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, С = 26.86

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.00205 \cdot 26.86 / 100 = 0.000551$ Валовый выброс, v/rox, $M = G \cdot T \cdot 3600 / 10^6 = 0.000551 \cdot 8760 \cdot 3600 / 10^6 = 0.017376$

Примесь: 0603 Бензол (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.00205 \cdot 0.35 / 100 = 0.000007$ Валовый выброс, v/rox, $M = G \cdot I \cdot 3600 / 10^4 = 0.000007 \cdot 8760 \cdot 3600 / 10^4 = 0.0000221$

Примесь: 0616 Диметилбензол (смесь с-, м-, п- изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный резовый выброс, v/с, $G = G \cdot C / 100 = 0.00205 \cdot 0.11 / 100 = 0.000002$ Валовый выброс, v/год, $M = G \cdot T \cdot 3600 / 10^6 = 0.000002 \cdot 8760 \cdot 3600 / 10^6 = 0.000063$

Примесь: 0621 Менципбензоп (349)

Массовая концентрация компонента в потоке, %, С = 0.22

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.00205 \cdot 0.22 / 100 = 0.000005$ Валовый выброс, v/rox, $M = G \cdot T \cdot 3600 / 10^6 = 0.000005 \cdot 8760 \cdot 3600 / 10^6 = 0.000158$

Наименование оборудования: Фланцевые соединения (тяжелые углеводороды)

Наименование технологического потока: Поток Xv8

Расчетная величина утечки, кп/час (Прил.Б1), Q = 0.000288

Расчетная доля уплотмений, потерявших герметичность, доля единицы (Прил.Б1), X = 0.02

Общее количество данного оборудования, шт., N = 64

Среднее время работы данного оборудования, час/год I = 8760 Суммарная утечка всех компонентов, кт/час (6.1), $G = X \cdot Q \cdot N = 0.02 \cdot 0.000288 \cdot 64 = 0.000369$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.000369/3.6 = 0.0001025

Примесь: 0415 Смесь углегодородог предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, n'c, $C = C \cdot C / 100 = 0.0001025 \cdot 72.46 / 100 = 0.000074$

Валовый выброс, $\pi/\text{год}$, $M = G \cdot I \cdot 3609 / 10^4 = 0.000074 \cdot 8760 \cdot 3600 / <math>10^4 = 0.002334$

Примесь: 0416 Смесь углегодородог предельных С6-С10 (1503+)

Массовая концентрация компонента в потоке, %, С = 26.86

Максимальный разовый выброс, v/с, $G = G \cdot C / 100 = 0.0001025 \cdot 26.86 / 100 = 0.000028$ Валовый выброс, v/год, $M = G \cdot I \cdot 3600 / 10^4 = 0.000028 \cdot 8760 \cdot 3600 / 10^4 = 0.000883$

Примесь: 0602 Евизоп (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный резовый выброс, r/c, $G = G \cdot C / 100 = 0.0001025 \cdot 0.35 / 100 = 3.587E-7$ Валовый выброс, π/rox , $M = G \cdot T \cdot 3600 / 10^4 = 0.0000003587 \cdot 8760 \cdot 3600 / <math>10^4 = 0.000011$

Примесь: 0616 Диметилбетэол (смесь с-, м-, п- изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный разовый выброс, г/с, $G = G \cdot C / 160 = 0.0001025 \cdot 0.11 / 100 = 1.128E-7$ Валовый выброс, т/год, $M = G \cdot T \cdot 3600 / 10^4 = 0.0000001128 \cdot 8760 \cdot 3600 / 10^4 = 0.000004$

Примесь: 0621 Менципбензоп (349)

Массовая концентрация компонента в потоке, %, C = 0.22

Максимальный резовый выброс, r/c, $G = G \cdot C / 100 = 0.0001025 \cdot 0.22 / 100 = 2.255Е-7$ Валовый выброс, v/rox, $M = G \cdot T \cdot 3600 / 10^4 = 0.0000002255 \cdot 8760 \cdot 3600 / 10^4 = 0.000007$

Сволямя таблица расчетов:

Оборудов.	Геопология. поток	Общее кол- ео, шт.	Bperen pa- banna, v/s
Запорно-регулирующая арматура (тяжелые углеводороды)	Поток №8	16	8760
Фланцевые соединения (тяжелые углеводороды)	Поток №8	64	8760

Итого:

Kod	Наименование 35	Ευέρρος είς	Бибрес т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.001485	0.049165
0416	Смесь углеводородов предельных C6-C10 (1503*)	0.000551	0.018259
0602	Бензол (64)	7e-6	0.000232
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	26-6	6.7e-5
0621	Метилбеннол (349)	5e-6	0.000165

Источник загрязнения: 6021, Неорганизованный источник

Источник выделения: 6021 01, Резервуарный парк (РВС №2, №3, №4 по 5000м3)

Список литературы:

 Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астака, 2005. Расчеты по п 5.

Вид выброса, VV - Выбросы паров нефти и бензинов

Нефтепродукт, NPN4ME - Сырая нефть.

Мянимальная температура смеси, гр.С. IMEN = 9.06

Коэффициент КI (Прил.7), ET = 0.4

ETMEN = 0.4

Максимальная температура смеси, гр.С., ТМ4X = 17.1

Коэффициент КI (Прил.7), ET = 0.52

XTML4X = 0.52

Режим эксплуатации, N4ME - "мерник", CCB - отсутствуют

Конструкция резервуаров, NAME - Наземный вертикальный

Объем одного резервуара данного типа, м3, 1/2 - 5000

Количество резервуаров данного типа, NR = 3

Количество групп одноцелевых резервуаров, XNR - 1

Категория веществ, NAME - А - Нефть из магистрального трубопровода и др. нефтепродукты при

температуре закачиваемой жидкости, близкой к температуре воздуха

Значение Кряг(Прил.8), ДРЗЯ = 0.56

Значение Кртах(Прил.8), ЕРМ = 0.8

Коэффициент, XPSR = 0.56

Коэффициент, XPM.4X = 0.8

Общий объем резервуаров, м3, V = 15000

Количество жидкости, закачиваемое в резервуар в течение года, т/год. В = 600000

Плотность смеси, т/ы3, RO = 0.8922

Годовая оборачиваемость резервуара (5.1.8), NN = Б / (RO · V) = 600000 / (0.8922 · 15000) = 44.8

Коэффициент (Прил. 10), XOB = 1.94

Максимальный объем паровоздушной смеси, вытесняемой

из резервуара во время его закачки, м3/час, РСМ4X = 300

Давление паров смеси, мм.рт.ст., PS = 104.9

P = 104.9

Коэффиционт, 27 - 1

Температура начала кипения смоси, гр.С, TEIP = 162.5

Молекулярная масса паров смеси, кт/кмоль, $MRS = 0.6 \cdot TEIP + 45 = 0.6 \cdot 162.5 + 45 = 142.5$

Среднегодовые выбросы паров нефтепродукта, π /год (5.2.2), $M = 0.294 \cdot PS \cdot MRS \cdot (ETMAX \cdot EB + ETMEN) \cdot$

 $\mathbf{EPSR} \cdot \mathbf{EOB} \cdot \mathbf{B} / (16^{7} \cdot \mathbf{RO}) = 0.294 \cdot 104.9 \cdot 142.5 \cdot (0.52 \cdot 1 + 0.4) \cdot 0.56 \cdot 1.94 \cdot 600000 / (10^{7} \cdot 0.8922) = 295.4$

Максимальный из разовых выброс паров нефтепродукта, г/с (5.2.1), С = (0.163 · PS · MRS · XTMAX · XFMAX ·

 $EB \cdot VCM(430)/10^4 = (0.163 \cdot 104.9 \cdot 142.5 \cdot 0.52 \cdot 0.8 \cdot 1 \cdot 300)/10^4 = 30.4$

Примесь: 8415 Смесь услеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46

Среднегодовые выбросы, т/год (5.2.5), $_{_}M_{_}$ = CI · M / 100 = 72.46 · 295.4 / 100 = 214.0000000

Максимальный из разовых выброс, г/с (5.2.4), G = CI · G / 100 = 72.46 · 30.4 / 100 = 22.0300000

Примесь: 0416 Смесь уславодородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс (Прил. 14), CI = 26.86

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 26.86 \cdot 295.4 / 100 = 79.3000000$

Максимальный из разовых выброс, π/c (5.2.4), $G = CI \cdot G / 100 = 26.86 \cdot 30.4 / 100 = 8.1700000$

Примесь: 0602 Бепзол (64)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 0.35

Среднегодовые выбросы, т/год (5.2.5), _M_ = CI · M / 100 = 0.35 · 295.4 / 100 = 1.0340000

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C / 100 = 0.35 \cdot 30.4 / 100 = 0.1064000$

Примесь: 0621 Менцибепзол (249)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.22

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 295.4 / 100 = 0.6500000$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot C / 100 = 0.22 \cdot 30.4 / 100 = 0.0669000$

Примесь: 0616 Дименилбензол (смесь с-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс (Прил. 14), СТ = 0.11

Среднегодовые выбросы, τ /год (5.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 295.4 / 100 = 0.3250000$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.11 \cdot 30.4 / 100 = 0.0334400$

HTOTO:

Ked	Наименование 35	Выброс de	Быбрес т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	22,03	214
0416	Смесь углеводородов предельных С6-С10 (1503*)	8.17	79,3
0602	Бежнол (64)	0.1064	1.034
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.03344	0.325
0621	Метилбензол (349)	0.0669	0.65

МАГИСТРАЛЬНАЯ НАСОСНАЯ

Источник загрязнения: 0006, Дыхательный клапан

Источник выделения: 0006 01, Емкость сбора утечки нефти V-2 м3 №2

Список литературы:

 Методические указания по определению выбросов загрязывющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005. Расчеты по п 5.

Вид выброса, VV - Выбросы паров нефти и бекцинов

Нефтепролукт, NPN4ME = Сырая нефть

Минимальная температура смеси, гр.С, *ТМЕN* = 9,06

Коэффициент К1 (Прил.7), ЕТ = 0.4

ETMEN = 0.4

Максимальная температура смеси, гр.С., ТМАХ = 17.1

Коэффициент Kt (Прил.7), ET = 0.52

XTML4X = 0.52

Режим эксплуатации, "МАМЕ" - "мерник", ССВ - отсутствуют

Конструкция резервуаров, NAME - Заглубленный

Объем одного резервуара данного типа, м3, 1/2 - 2

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров, XNR = 1

температуре закачиваемой жидкости, близкой к температуре воздуха

Зкачение Кряг (Прид.8), ДРSR = 0.56

Зкачение Кртах (Прял.8), КРМ = 0.8

Коэффициент , XPSR = 0.56

Коэффициент, XPMAX = 0.8

Общий объем резервуаров, м3, V = 2

Количество жидкости закачиваемое в резервуар в течение года, т/год, Б = 25

Плотность смеси, т/м3, RO = 0.8922

Годовая оборачиваемость резервуара (5.1.8), $NN = B / (RO \cdot V) = 25 / (0.8922 \cdot 2) = 14$

Коэффициент (Прил. 10), XOB = 2.5

Максимальный объем паровоздушной смеся, вытесяяемой

из резервуара во время его закачки, м3/час, VCM4X = 20

Давление паров смеси, мм.рт.ст., РУ = 104.9

P = 104.9

Коэффицискт, ХБ = 1

Температура начала кипения смеси, гр.С., ТЕТР = 162.5

Молекулярная масса паров смеси, кт/кмоль, $MRS = 0.6 \cdot TEIP + 45 = 0.6 \cdot 162.5 + 45 = 142.5$

Среднегодовые выбросы паров нефтепродукта, τ /год (5.2.2), $M = 0.294 \cdot PS \cdot MRS \cdot (ETM4X \cdot EB + ETMEN) \cdot$ $EFSR \cdot EOB \cdot B / (10^{6} \cdot RO) = 0.294 \cdot 104.9 \cdot 142.5 \cdot (0.52 \cdot 1 + 0.4) \cdot 0.56 \cdot 2.5 \cdot 25 / (10^{6} \cdot 0.8922) = 0.01586$ Максимальный но разовых выброс паров нефтепродукта, г/с (5.2.1), G = (0.163 · PS · MRS · ETM4X · EPM4X · $EB \cdot VCM(4X) / 10^4 = (0.163 \cdot 104.9 \cdot 142.5 \cdot 0.52 \cdot 0.8 \cdot 1 \cdot 20) / 10^4 = 2.027$

Примесь: 0415 Смесь углеводородов предельных СІ-С5 (1502+)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 72.46

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 72.46 \cdot 0.01586 / 100 = 0.011492$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 72.46 \cdot 2.027 / 100 = 1.468764$

Примесь: 0416 Смесь услеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 26.86

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 26.86 \cdot 0.01586 / 100 = 0.004260$

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C/100 = 26.86 \cdot 2.027/100 = 0.544452$

Примесь: 0602 Бензоп (64)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.35

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.01586 / 100 = 0.000056$

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C / 160 = 0.35 \cdot 2.027 / 100 = 0.007095$

Примесь: 0621 Менципбепзол (349)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.22

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 0.01586 / 100 = 0.000035$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.22 \cdot 2.027 / 100 = 0.004459$

Примесь: 0616 Диметилбетэол (смесь с-, м-, п- изомеров) (203) Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.11

Среднегодовые выбросы, π /год (5.2.5), $_{_}M_{_} = CI \cdot M / 100 = 0.11 \cdot 0.01586 / 100 = 0.000017$

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C / 100 = 0.11 \cdot 2.027 / 100 = 0.002230$

Hammer

Kod	Hannenovanne 35	Εικόρου ε/ο	Быброс тілед
0415	Смесь углеводородов предельных С1-С5 (1502*)	1.468764	0.011492
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.544452	0.00426
0602	Бекзол (64)	0.007095	0.000056
0616	Диметкибекзол (смесь о-, м-, п- изомеров) (203)	0,00223	0.000017
0621	Mensubersion (349)	0.004459	0.000035

Источник загрязнения: 0009, Вентиляционная труба

Источник выделения: 0009 01, Насесы магистральной насесной

Список литературы:

Методические указания по определению выбросов загрязьяющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астака, 2005. Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепролукт: Сырая нефть

Тип вофтепродукта и средняя температура жидкости: Нофть, мазут и жидкости с температурой кипения >300 rp.C

Наименование аппаратуры или средства перекачки: Насос центробежный с одины торцевым уплотиением вала Удельный выброс, кт/час(табл. 8.1), Q = 0.02

Общее количество аппаратуры или средств перекачки, шт., NI = 1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NN2 - 1

Время работы одной единицы оборудования, час/год. Т = 4000

Максимальный из разовых выброс, r/c (8.1), $G = Q \cdot NNI/3.6 = 0.02 \cdot 1/3.6 = 0.00556$

Валовый выброс, $\pi/\text{год}$ (8.2), $M = (Q \cdot NI \cdot T) / 1000 = (0.02 \cdot 1 \cdot 4000) / 1000 = 0.08$

Примесь: 6415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 72.46

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 72.46 · 0.08 / 100 = 0.0580000

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 72.46 \cdot 0.00556 / 100 = 0.0040300$

Примесь: 0416 Смесь успеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 26.86

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 26.86 · 0.08 / 100 = 0.0215000

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 26.86 \cdot 0.00556 / 100 = 0.0014930$

Примесь: 0602 Бепзол (64)

Комцентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.35

Banonsili nsibpoc, π /rog (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.08 / 100 = 0.0002800$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.35 \cdot 0.00556 / 100 = 0.00001946$

Примесь: 0621 Менцибепзал (349)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.22

Banonsili nuopoc, π /rog (5.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 0.08 / 100 = 0.0001760$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.22 \cdot 0.00556 / 100 = 0.00001223$

Примесь: 0616 Дименилбензол (смесь o_γ , m_γ , n_γ изомеров) (203) Комцентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Banonsili nsibpoc, π/rog (5.2.5), $M_{-} = CI \cdot M / 100 = 0.11 \cdot 0.08 / 100 = 0.0000880$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G/100 = 0.11 \cdot 0.00556/100 = 0.00000612$

Kod	Наименование 35	Bubpoc do	Ενεύρου πένοδ
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.00403	0.058
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.001493	0.0215
0602	Бежнол (64)	0.00001946	0.00028
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000612	0.000088
0621	Меткибекзол (349)	0.00001223	0.000176

Источник загрязнения: 0009, Вентиляционная труба

Источник выделения: 0009 02, Насосы магистральной насосной

Список литературы:

Методические укражив по определению выбросов загрязьяющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астама, 2005. Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Тип вефтепродукта и средняя температура жидкости: Нефть, малут и жидкости с температурой кипения >300 m.C.

Наимежование аппаратуры или средства перекачки: Насос центробежный с одням торцевым уплотнением вала Удельный выброс, кт/час(табл. 8.1), Q = 0.02

Общее количество аппаратуры или средств перекачки, шт., NI - 1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI - 1

Время работы одной единицы оборудования, час/год. T=4000Максимальный из разовых выброс, г/с (8.1), $G=Q\cdot NNI/3.6=0.02\cdot 1/3.6=0.00556$

Валовый выброс, т/год (8.2), $M = (Q \cdot NI \cdot I) / 1000 = (0.02 \cdot I \cdot 4000) / 1000 = 0.08$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46 Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 72.46 · 0.08 / 100 = 0.0580000

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 72.46 \cdot 0.00556 / 100 = 0.0040300$

Примесь: 0416 Смесь углегодородог предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 26.86

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 26.86 · 0.08 / 100 = 0.0215000

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 26.86 \cdot 0.00556 / 100 = 0.0014930$

Примесь: 0602 Бензоп (64)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.35

Валовый выброс, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.08 / 100 = 0.0002800$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.35 \cdot 0.00556 / 100 = 0.00001946$

Примесь: 0621 Менципбензоп (349)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.22

Banonsili nsifipoc, π/rog (5.2.5), $M_{-} = CI \cdot M / 100 = 0.22 \cdot 0.08 / 100 = 0.0001760$

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C / 100 = 0.22 \cdot 0.00556 / 100 = 0.00001223$

Примесь: 0616 Дименилбенкол (смесь с-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 0.11 · 0.08 / 100 = 0.0000880

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.11 \cdot 0.00556 / 100 = 0.00000612$

Итого:

Ked	Наименование 35	Επέφου να	Budgee m/sed
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.00403	0.058
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.001493	0.0215
0602	Бекзол (64)	0.00001946	0.00028
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000612	0.000088
0621	Метилбекоол (349)	0.00001223	0.000176

Источник загрязнения: 6006, Неорганизованный источник

Источник выделения: 6006 01, ЗРА и ФС МНС

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астина, 2005 (п.б.1, б.2, б.3 и б.4).
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астака, 2005

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кт/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотнений, потерявших герметичность, доля единицы (Прид.Б1), X = 0.07

Общее количество данного оборудования, шт., N = 5

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кп/час (6.1), $C = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 5 = 0.002306$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.002306/3.6 = 0.00064

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, n/c, _C _ = C · C / 100 = 0.00064 · 72.46 / 100 = 0.000464

Валовый выброс, vгод, $M = C \cdot I \cdot 3600 / 10^4 = 0.000464 \cdot 8760 \cdot 3600 / <math>10^4 = 0.014633$

Примесь: 0416 Смесь углегодородов предельных С6-С10 (1503+) Массовая концентрация компонента в потоке, %, C = 26.86

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.00064 \cdot 26.86 / 100 = 0.000172$ Валовый выброс, v/rox, $M = G \cdot I \cdot 3600 / 10^6 = 0.000172 \cdot 8760 \cdot 3600 / 10^6 = 0.005424$

Примесь: 0602 Бензол (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, v'c, $G = G \cdot C / 100 = 0.00064 \cdot 0.35 / 100 = 0.000002$ Валовый выброс, v'rog, $M = G \cdot I \cdot 3600 / 10^6 = 0.000002 \cdot 8760 \cdot 3600 / 10^6 = 0.000063$

Примесь: 0616 Диметилбензол (смесь с-, м-, п- изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный разовый выброс, v/c, $C = C \cdot C / 100 = 0.00064 \cdot 0.11 / 100 = 7.04E-7$ Валовый выброс, v/rox, $M = C \cdot I \cdot 3600 / 10^4 = 0.000000704 \cdot 8760 \cdot 3600 / 10^4 = 0.000022$

Примесь: 0621 Менципбензол (349)

Массовая концентрация компонента в потоке, %, С = 0.22

Максимальный разовый выброс, r/c, $G = G \cdot C / 100 = 0.00064 \cdot 0.22 / 100 = 0.000001$

Валовый выброс, т/год, $M = C \cdot I \cdot 3600 / 10^6 = 0.000001 \cdot 8760 \cdot 3600 / 10^6 = 0.000032$

Наименование оборудования: Фланцевые соединения (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кп/час (Прил.Б1), Q = 0.000288

Расчетная доля уплотнений, потерявших герметичность, доля единицы (Прил.Б1), X = 0.02

Общее количество данного оборудования, шт., N = 20

Среднее время работы данного оборудования, час/год _ Г = 8760

Суммарная утечка всех компонентов, кп/час (6.1), $G = X \cdot Q \cdot N = 0.02 \cdot 0.000288 \cdot 20 = 0.0001152$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.0001152/3.6 = 0.000032

Примесь: 0415 Смесь углегодородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.000032 \cdot 72.46 / 100 = 0.000023$ Валовый выброс, v/rox, $M = C \cdot T \cdot 3600 / 10^6 = 0.000023 \cdot 8760 \cdot 3600 / 10^6 = 0.000725$

Примесь: 0416 Смесь успекодородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, С = 26.86

Максимальный разовый выброс, r/c, $G = G \cdot C / 100 = 0.000032 \cdot 26.86 / 100 = 0.000009$ Валовый выброс, v/rox, $M = G \cdot T \cdot 3600 / 10^6 = 0.000009 \cdot 8760 \cdot 3600 / 10^6 = 0.000284$

Примесь: 0602 Бепзол (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, r/c, $C = C \cdot C / 100 = 0.000032 \cdot 0.35 / 100 = 1.12E-7$

Валовый выброс, $\pi/rод$, $M = C \cdot T \cdot 3600 / 10^6 = 0.000000112 \cdot 8760 \cdot 3600 / 10^6 = 0.000004$

Примесь: 0616 Лиметилбенкол (смесь с., м., п. изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный разовый выброс, г/с, $G = G \cdot C / 100 = 0.000032 \cdot 0.11 / 100 = 3.52E-8$ Валовый выброс, г/год, $M = G \cdot T \cdot 3600 / 10^6 = 0.0000000352 \cdot 8760 \cdot 3600 / <math>10^6 = 0.0000001$

Примесь: 0621 Менципбензоп (349)

Массовая концентрация компонента в потоке, %, С = 0.22

Максимальный разовый выброс, π/c , $G = G \cdot C / 100 = 0.000032 \cdot 0.22 / 100 = 7.04E-8$ Валовый выброс, π/rox , $M = G \cdot I \cdot 3600 / 10^6 = 0.0000000704 \cdot 8760 \cdot 3600 / <math>10^6 = 0.000002$

Своджая таблица расчетов:

Οδοργόσε.	Гентологич. петек	Общее кол- ео, шт	Bperen pa- bonne, v/s
Запорно-регулирующая арматура (тяжелые углеводороды)	Поток №8	5	8760
Фланцевые соединения (тяжелые углеводороды)	Поток №8	20	8760

Hroro:

Kod	Национевание 35	Ειμέρου είσ	Βιώρου πένοδ
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.000464	0.015358
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000172	0.005708
0602	Бензол (64)	26-6	6.7e-5
0616	Диметилбектол (смесь о-, м-, п- изомеров) (203)	7.04c-7	2.36-5
0621	Метилбежнол (349)	le-6	3.46-5

Источник загрязнения: 6013, Неорганизованный источник

Источник выделения: 6013 01, Насос сбора утечки нефти

Список литературы:

Методические укравия по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астама, 2005. Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Тип нефтепродукта и средняя температура жидкости: Нефть, мазут и жидкости с температурой кипения >300 m.C

Наименование аппаратуры или средства перекачки: Насос центробежный с одины торцевым уплотнением вала Удельный выброс, кп/час(табл. 8.1), Q = 0.02

Общее количество аппаратуры или средств перекачки, шт., NI = 1

Одновременно работающее количество аппаратуры или средств перскачки, шт., NNI = 1

Время работы одной единицы оборудования, час/год. I = 50Максимальный из разовых выброс, r/c (8.1), $G = Q \cdot NNI / 3.6 = 0.02 \cdot 1 / 3.6 = 0.00556$

Banossiši subpoc, $\pi / \exp(8.2)$, $M = (Q \cdot NI \cdot I) / 1000 = (0.02 \cdot I \cdot 50) / 1000 = 0.001$

Примесь: 0415 Смесь углегодородог предельных С1-С5 (1501*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 72.46 · 0.001 / 100 = 0.0007250

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 72.46 \cdot 0.00556 / 100 = 0.0040300$

Примесь: 0416 Смесь успекодородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.86

Banossiši suopoc, π/rog (5.2.5), $M = CI \cdot M / 100 = 26.86 \cdot 0.001 / 100 = 0.0002686$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 200 = 26.86 \cdot 0.00556 / <math>100 = 0.0014930$

Примесь: 0602 Бепзол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.35

Валовый выброс, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.001 / 100 = 0.0000035$ Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G/100 = 0.35 \cdot 0.00556/100 = 0.00001946$

Примесь: 0621 Менцибецкоп (349)

Концентрация 3В в парах, % масс(Прил. 14), СТ = 0.22

Валовый выброс, т/год (5.2.5), _M_ = CI · M / 100 = 0.22 · 0.001 / 100 = 0.0000022

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C/100 = 0.22 \cdot 0.00556/100 = 0.00001223$

Примесь: 0616 Дименилбензол (смесь г., м., п. изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.001 / 100 = 0.0000011$ Максимальный из разовых выброс, π/c (5.2.4), $G = CI \cdot G / 100 = 0.11 \cdot 0.00556 / 100 = 0.00000612$

Ked		Εκόρος είς	Εικόφου πένοδ
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.00403	0.000725
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.001493	0.0002686
0602	Sexton (64)	0.00001946	0.0000035
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000612	0.0000011
0621	Метилбензол (349)	0.00001223	0.0000022

ТК №9 (МАГИСТРАЛЬНАЯ НАСОСНАЯ)

Источник загрязнения: 6020, Неорганизованный источник

Источник выделения: 6020 01, ЗРА и ФС пробоотборного устройства

Список литературы:

- Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойза" Астама, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Acrasa, 2005

Наимсковажие оборудоважих: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кт/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотнений, потерявших герметичность, доля единицы (Прил. Б1), X = 0.07

Общее количество данного оборудования, шт., N = 1

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кт/час (6.1), С = X · Q · N = 0.07 · 0.006588 · 1 = 0.000461

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.000461/3.6 = 0.000128

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, v/с, $C_{-} = C \cdot C / 100 = 0.000128 \cdot 72.46 / 100 = 0.000093$

Валовый выброс, $\pi/\text{год}$, $M = G \cdot I \cdot 3600 / 10^6 = 0.000093 \cdot 8760 \cdot 3600 / <math>10^6 = 0.002933$

Примесь: 0416 Смесь успекодородов предельями С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, С = 26.86

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.000128 \cdot 26.86 / 100 = 0.000034$ Валовый выброс, v/rog, $M = G \cdot T \cdot 3600 / 10^6 = 0.000034 \cdot 8760 \cdot 3600 / <math>10^6 = 0.001072$

Human: 0601 Empa (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный резовый выброс, v/c, $C = C \cdot C / 100 = 0.000128 \cdot 0.35 / 100 = 4.48E-7$ Валовый выброс, v/rog, $M = C \cdot T \cdot 3600 / 10^6 = 0.000000448 \cdot 8760 \cdot 3600 / <math>10^6 = 0.000014$

Примесь: 0616 Лиметилбенгол (смесь с-. м., п. изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный разовый выброс, r/c, $C = C \cdot C / 100 = 0.000128 \cdot 0.11 / 100 = 1.408E-7$

Валовый выброс, $\pi/rод$, $M = G \cdot T \cdot 3600 / 10^6 = 0.0000001408 \cdot 8760 \cdot 3600 / <math>10^6 = 0.0000004$

Примесь: 0621 Менцибепров (349).

Массовая концентрация компонента в потоке, %, С = 0.22

Максимальный разовый выброс, v/с, C = C \cdot C / 100 = $0.000128 \cdot 0.22$ / 100 = 2.816E-7

Banossiā subpoc, v/rea, $M = C \cdot T \cdot 3600 / 10^6 = 0.0000002816 \cdot 8760 \cdot 3600 / 10^6 = 0.000009$

Сводиля таблица расчетов:

Оборудов.	Гентологич.	Общее кол-	Speen pa-
	потек	ео, ник	Sonne, w/s
Запорно-регулирующая арматура (тежелые углеводороды)	Поток №8	1	876

H men:

Kob	Наименование 35	Выбрес в'е	Выбрес т/год
0415	Смесь углеводородов предельямих С1-С5 (1502*)	9.3e-5	0.002933
0415 0416	Смесь углеводородов предельных С6-С10 (1503*)	3.4e-5	0.001072
0602	Бензол (64)	4.48e-7	1.46-5
0616	Дименилбеков (смесь с-, м-, п- изомеров) (203)	1.408e-7	46-6
0621	Менилбекзоп (349)	2.816e-7	90-6

KAHdI TTOX

Источник загрязнения: 0011, Дымовая труба

Источник выделения: 0011 01, Котел МГ 160/4 №1 (газ)

Список литературы:

*Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КакЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжитании топлива в котпах. производительностью до 30 т/час

Вид топлика, ЖЗ - Газ (преродивый)

Packog rominos, ruc.m3/rog, BI = 60

Расход топлива, в/с, ВС = 6.56

Месторождение, М - "Месторождения газа: Тенгиз

Низшая теплота сгорания рабочего топлика, ккап/м3(прил. 2.1), QR = 9270

Пересчет в МДж, $QR = QR \cdot 0.004187 = 9270 \cdot 0.004187 = 38.81$

Средняя зольность топлива, %(прил. 2.1), AR = 0

Предельная зольность топлина, % не более(прил. 2.1), AIR = 0

Среднее содержание серы в топлике, %(прил. 2.1), SR = 0.0025

Предельное содержание серы в топливе, % не более(прил. 2.1), \$2R = 0.0044

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) дионенд (Азота дионенд) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 186.08

Фактическая мощность котлоагрегата, кВт. QF = 186.08

Кол-во окислов взота, кг/1 Гдж тепла (рыс. 2.1 или 2.2), **ENO = 0.083**

Коэфф. синжения выбросов азота в рез-те техи, решений, В = 0

Кол-во окислов взота, кг/1 Гдж тепла (ϕ -на 2.7a), **ENO – ENO** · (QF / QN)^{8,15} = 0.083 · (186,08) (186,08) = 0.083 Budgec essentes atom, virea (\$\psi\$-as 2.7), MNOT = 0.001 · \$\overline{BI} · (\$\overline{BR} · \overline{BNO} · (\$I\$-\$\overline{B}\$) = 0.001 · 60 · 38.81 · 0.083 · (\$I\$-0) = 0.1933

Business ossesson arora, vic (6-ma 2.7), MNOC = 0.002 · BG · (/R · ENO · (1-8) = 0.001 · 6.56 · 38.81 · 0.083 · (1-0) = 0.02113

Выброс акога двоженда (0301), т/год. М = 0.8 · MNOT = 0.8 · 0.1933 = 0.1546000 Выброс азота двоксида (0301), г/с, _G = 0.8 · MNOG = 0.8 · 0.02113 = 0.0169000

Примесь: 0204 Azom (ID oxend (Azoma oxend) (6). Выброс азота оксида (0304), viros, _M_ = 0.13 · MNOT = 0.13 · 0.1933 = 0.0251300. Выброс доста оксила (0304), г/с, _G_ = 0.13 · MNOG = 0.13 · 0.02113 = 0.0027470

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Аплидрид серпнотый, Серпнотый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 = 0

Содержание сероводореда в топливе, %(прил. 2.1), Н25 - 0.0006

Выбросы окислов серы, т/год (ф-та 2.2), М = 0.02 · ВТ · SR · (1-NSO2) + 0.0188 · H2S · ВТ = 0.02 · 60 · 0.0025 · $(1-0) + 0.0188 \cdot 0.0006 \cdot 60 = 0.0036800$

Выбросы окислоя серы, r/c (ф-та 2.2), _G_ = 0.02 · BG · S1R · (1-NSO2) + 0.0188 · H25 · BG = 0.02 · 6.56 · 0.0044 · $(1-0) + 0.0188 \cdot 0.0006 \cdot 6.56 = 0.0006510$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод окомд (Окись углерода, Угартый газ) (584) Потери тепла от механической неполноты сгорания, %(тябл. 2.2), Q4 = 0

Тип топки

Потери тепла от химической неполноты сгорания, %(табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R=0.5

Выход окиси углерода в кл/тови или кл/тыс м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.5 \cdot 38.81 = 9.7$

Выбросы окиси углерода, т/год (ф-ла 2.4), $M = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 60 \cdot 9.7 \cdot (1-0/100) = 0.5520000$

Выбросы окиси углерода, г/с (ф-ла 2.4), _ C_ = 0.001 · BG · CCO · (1-Q4 / 100) = 0.001 · 6.56 · 9.7 · (1-0 / 100) = 0.0636000

HTOCO:

Ked	Насметование 35	Βυέρο ς ε/ο	Εμέρος πέροδ
0301	Азота (IV) дновенд (Азота дновенд) (4)	0.0169	0.3092
0304	Азот (II) оксид (Азота оксид) (6)	0.002747	0.05026
0330	Сера дновсяд (Ангядряд сернястый, Серяястый газ, Сера (IV) оксяд) (516)	0.000651	0.00736
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0636	1.164

Источник загрязнения: 0011, Дымовая труба

Источник выделения: 0011 02, Котел МГ 160/4 №1 (а/т)

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КасЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, 23 - Жидкое другое (Диосльное топливо и т.п.)

Расход топлива, $\pi/rод$, BT = 0.9

Расход топлива, r/c, BC = 5

Марка топлива, M = Дизельное топливо

Низшая теплота сгорания рабочего топлина, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлява, %(прил. 2.1), 4R = 0.025

Предельная зольность топлива, % не более(прил. 2.1), AZR = 0.025

Среднее содержание серы в топляве, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 186.08

Фактическая мощность котлоагрегата, кВт, QF = 186.08

Кол-во окислов доста, кп/1 Гдж тепла (рыс. 2.1 или 2.2), **ENO = 0.083**

Коэфф. смижения выбросов дзота в рез-те техи, решений, В = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-за 2.7a), ENO – ENO · (QF / QN)^{±25} – 0.083 · (186.08 / 186.08)^{±25} = 0.083 Выброс окислов азота, т/год (ф-за 2.7), MNO I = 0.001 · BT · QR · ENO · (2-B) = 0.001 · 0.9 · 42.75 · 0.083 · (1-0) = 0.003193

Выброс окислов азота, г/с (ф-ла 2.7), MINOC = 0.002 · BC · QR · ENO · (1-B) = 0.001 · 5 · 42.75 · 0.083 · (1-0) = 0.01774

Выброс взота двоксида (0301), т/год, $M = 0.8 \cdot MNOT = 0.8 \cdot 0.003193 = 0.0025540$

Выброс взота двоксида (0301), г/с, С = 0.8 · MNOC = 0.8 · 0.01774 = 0.0142000

Hyumses: 0304 Asom (II) oxend (Asoma oxend) (6)

Выброс эзота оксила (0304), т/гол, $M = 0.13 \cdot MNOT = 0.13 \cdot 0.003193 = 0.0004150$ Выброс эзота оксила (0304), т/с, $G = 0.13 \cdot MNOG = 0.13 \cdot 0.01774 = 0.0023060$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Аплидрид серпистый, Серпистый газ. Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлика(п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, %(прил. 2.1), Н25 - 0

But Special extremes copia, viron (ϕ -ma 2.2), $M = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 0.9 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 0.9 = 0.0052500$

Busépecta expense cepta, $\pi'c$ (ϕ -m 2.2), $_G_ = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 5 = 0.0294000$

Примесь: 0337 Угаерод оконд (Окись угаерода, Угараній 121) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Кол-во окиси углерода на единицу тепла, кг/Гдж(табл. 2.1), ЕСО = 0.32

Выход окиси углерода в кт/токи или кт/тыс.м3', CCO = QR · XCO = 42.75 · 0.32 = 13.68

Выбросы окиси углерода, т/год (ф-ла 2.4), _M_ = 0.001 · ВТ · ССО · (1-Q4/100) = 0.001 · 0.9 · 13.68 · (1-0/100) =

Выбросы окиси углерода, г/с (ф-ла 2.4), С = 0.001 · ВС · ССО · (1-Q4/100) = 0.001 · 5 · 13.68 · (1-0/100) = 0.0684000

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 8328 Углерод (Сажа, Углерод черпый) (583)

Коэффиционт (таба. 2.1), F = 0.01

Выброс твердых частиц, т/год (ф-ла 2.1), $M = BI \cdot AR \cdot F = 0.9 \cdot 0.025 \cdot 0.01 = 0.0002250$ Выброс твердых частиц, т/с (ф-ла 2.1), $G = BG \cdot AIR \cdot F = 5 \cdot 0.025 \cdot 0.01 = 0.0012500$

Kod	Наиметование 35	Βιώδρος είς	Ειμέρου πένοδ
0301	Азота (IV) дновенд (Азота дновенд) (4)	0.0142	0.002554
0304	Азот (II) оксид (Азота оксид) (б)	0.002306	0.000415
0328	Углерод (Сава, Углерод черный) (583)	0.00125	0.000225
0330	Сера дноксяд (Ангидряд сериястый, Серяястый газ, Сера (IV) оксяд) (516)	0.0294	
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0684	0.0123

Так как котел не работвет одновременно на газе и на дизтопливе выбираем максимально разовые выбросы (п'сек), валовые выбросы (т/год) суммируем и получаем:

H morror

Kod	Наиметование 3Б	Биброс s/с	Быброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0169	0,311754
0304	Азот (II) оксид (Азота оксид) (6)	0.002747	0,050675
0330	Сера дноксяд (Ангядряд сернястый, Серяястый газ, Сера (IV) оксяді (516)	0.0294	0,01265
0337	Углерод оксид (Окись углеродь, Угарный газ) (584)	0.0684	1,1763
0328	Углерод (Сажа, Углерод черный) (583)	0.00125	0.000225

Источник загрязнения: 0011, Дымовая труба

Неточник выделения: 0011 03, Котел МГ160/4 №2 (газ)

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КасЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час:

Вид топлива, 🜃 = Газ (природивий)

Расход топлива, тыс.м3/год, DI = 60

Расход топлива, n/c, BC = 6.56

Месторождение, М = "Месторождения газа: Тенгил

Низшая теплота сгорания рабочего топлина, ккал/ы3(прил. 2.1), QR = 9270

Пересчет в МДж, $QR = QR \cdot 0.004187 = 9270 \cdot 0.004187 = 38.81$

Средняя зольность топлива, %(прил. 2.1), AR = 0

Предельная зольность топлива, % не более(прил. 2.1), AIR = 0

Среднее содержание серы в топляве, %(прил. 2.1), SR = 0.0025

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.0044

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диокоид (Азота диокоид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 186.08

Фактическая мощность котлоагрегата, кВт, QF = 186.08

Кол-во окислов азота, кв/1 Гдж тепла (рис. 2.1 или 2.2), ENO = 0.083

Коэфф. синжения выбросов дзота в рез-те техи, решений, В = 0

Кол-во окислов азота, кт/1 Гдж тепла (ф-ла 2.7a), ENO = ENO · $(QF/QN)^{0.23}$ = 0.083 · $(186.08)^{0.23}$ = 0.083

Выброс окаклов азота, т/год (ф-ла 2.7), MNO I = 0.001 · В I · QR · ENO · (2-В) = 0.001 · 60 · 38.81 · 0.083 · (1-0) = 0.1032

Busépec essenos atom, n/c (ϕ -na 2.7), MNOC = 0.001 · BC · QR · ENO · (1-B) = 0.001 · 6.56 · 38.81 · 0.083 · (1-0) = 0.02113

Выброс взота двоксяда (0301), т/год. M. = 0.8 · MNOT = 0.8 · 0.1933 = 0.1546000

Выброс дзота двоксида (0301), г/с, G = 0.8 · MNOG = 0.8 · 0.02113 = 0.0169000

Примесь: 0304 Азот (II) оконд (Азота оконд) (6)

Выбрес эзота оксида (0304), v/год, $M = 0.23 \cdot MNOT = 0.13 \cdot 0.1933 = 0.0251300$ Выбрес эзота оксида (0304), v/с, $C = 0.13 \cdot MNOC = 0.13 \cdot 0.02113 = 0.0027470$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Аплидрид серпистий, Серпистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 - 0

Содержание сероводорода в топливе, %(прил. 2.1), Н25 = 0.0006

Buffpocus oxistenos cepus, vírea (ϕ -na 2.2), $M = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 60 \cdot 0.0025 \cdot (1-0) + 0.0188 \cdot 0.0006 \cdot 60 = 0.0036800$

Budépocas expanses cepus, n (e) $(\Phi - m \cdot 2.2)$, $G = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 6.56 \cdot 0.0044 \cdot (1-0) + 0.0188 \cdot 0.0006 \cdot 6.56 = 0.0006510$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОЛА

Примесь: 0337 Углерод оконд (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Тип топки:

Потери тепла от химической неполноты сгорания, %(табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R = 0.5

Выход окиси углерода в кг/токи или кг/тыс м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.5 \cdot 38.81 = 9.7$

Выбросы окиси углерода, v/rog (ф-ла 2.4), $M = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 60 \cdot 9.7 \cdot (1-0/100) = 0.5820000$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_{-}G_{-} = 0.001 \cdot BG \cdot CCO \cdot (1-Q4 / 100) = 0.001 \cdot 6.56 \cdot 9.7 \cdot (1-0 / 100) = 0.0636000$

Нтого:

Kod	Hannemoranne 35	Επέρρος είς	Εικόρου πένοδ
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0169	0.3092
0304	Азот (II) оксид (Азота оксид) (6)	0.002747	0.05026
0330	Сера дновожд (Ангидряд сернястый, Серкистый газ, Сера (IV) оксид) (516)	0.000651	0.00736
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0636	1.164

Источник загрязнения: 0011, Дымовая труба

Источник выделения: 0011 04, Котел МГ160/4 №2 (ц/г)

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Альяты, КасЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при своятании топлива в котлах производительностью до 30 т/час

Вид топлика, ХЗ - Жилкое другое (Дипельное топлико и т.п.)

Расход топлина, т/год, БТ = 0.9

Расход топлива, r/e, BC = 5

Марка топлива, М = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлина, % не более(прил. 2.1), AZR = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Поимесь: 0301 Азота (ПУ) дионенд (Азота дионенд) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 186.08

Фиктическая мощность котлоагрегата, кВт, QF = 186.08

Кол-во окислов доота, кг/1 Гдж тепла (рыс. 2.1 или 2.2), ЕМО = 0.083

Коэфф. синжения выбросов взота в рез-те техи, решений, В = 0

Кол-во окислов ахота, кг/1 Гдж тепла (ϕ -ла 2.7a), $ENO = ENO \cdot (QF/QN)^{0.23} = 0.083 \cdot (186.08)^{0.26} = 0.083$ Выбрес окислов эзота, т/год (ф-ла 2.7), MNOI = 0.001 · BI · QR · ENO · (1-B) = 0.001 · 0.9 · 42.75 · 0.083 · (1-0) =

Buffect observe from, r/c (ϕ -ra 2.7), $MNOG = 0.001 \cdot BG \cdot (QR \cdot ENO \cdot (1-B) = 0.001 \cdot 5 \cdot 42.75 \cdot 0.083 \cdot (1-0) = 0.001 \cdot 5 \cdot 42.75 \cdot 0.083 \cdot (1-0) = 0.001 \cdot 5 \cdot 42.75 \cdot 0.083 \cdot (1-0) = 0.001 \cdot BG \cdot (QR \cdot ENO \cdot (1-B) = 0.001 \cdot 5 \cdot 42.75 \cdot 0.083 \cdot (1-0) = 0.001 \cdot BG \cdot (QR \cdot ENO \cdot (1-B) = 0.001 \cdot 5 \cdot 42.75 \cdot 0.083 \cdot (1-0) = 0.001 \cdot BG \cdot (QR \cdot ENO \cdot (1-B) = 0.001 \cdot 5 \cdot 42.75 \cdot 0.083 \cdot (1-0) = 0.001 \cdot BG \cdot (QR \cdot ENO \cdot (1-B) = 0.001 \cdot 5 \cdot 42.75 \cdot 0.083 \cdot (1-0) = 0.001 \cdot BG \cdot (QR \cdot ENO \cdot (1-B) + QR \cdot (QR \cdot ENO \cdot (1-B) + QR \cdot$

Выбрес взета двоксида (0301), т/год. М = 0.8 · MNOT = 0.8 · 0.003193 = 0.0025540 Выброс доота двоксида (0301), г/с, С = 0.8 · MNOC = 0.8 · 0.01774 = 0.0142000

Примесь: 0304 Азот (П) оконд (Азота оконд) (б)

Выброс взота оксила (0304), τ /год, $M = 0.13 \cdot MNOT = 0.13 \cdot 0.003193 = 0.0004150$ Выброс взота оксила (0304), r/c, _G_ = 0.13 · MNOG = 0.13 · 0.01774 = 0.0023060

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоконд (Аплидрид серпнотий, Серпнотий газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 - 0.02

Содержание сероводорода в топливе, %(прил. 2.1), Н25 - 0

Выбросы окислов серы, т/год (ф-т 2.2), M = 0.02 · БТ · SR · (1-NSO2) + 0.0188 · H2S · БТ = 0.02 · 0.9 · 0.3 · (1- $0.02) + 0.0188 \cdot 0 \cdot 0.9 = 0.0052900$

Выбросы окислов серы, r/c (ф-ла 2.2), $_G_ = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot 0.0$ $0.02) + 0.0188 \cdot 0 \cdot 5 = 0.0294000$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оконд (Окись углерода, Угарный газ) (584)

Потери тепла от мехажической неполноты сгорания, %(табл. 2.2), Q4 = 0

Кол-во окиси углерода на единицу тепла, ки/Гдж(табл. 2.1), ЕСО = 0.32

Тип топки:

Выход окиси углерода в кт/тоня или кт/тыс м3', CCO = QR · ECO = 42.75 · 0.32 = 13.68

Выбросы окиси углерода, π /год (ф-ла 2.4), $M_{\perp} = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 0.9 \cdot 13.68 \cdot (1-0/100) = 0.001 \cdot 0.9 \cdot 13.68 \cdot$

Выбросы окиси углерода, r/c (ф-ла 2.4), $G = 0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 5 \cdot 13.68 \cdot (1-0/100) = 0.001 \cdot 1$ 0.0684000

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 9328 Угаерод (Самса, Угаерод перный) (583) Коэффицисыт (табл. 2.1), F = 0.01

Тип топки:

Выброс твердых частиц, n'год (ф-ла 2.1), $M = BT \cdot AR \cdot F = 0.9 \cdot 0.025 \cdot 0.01 = 0.0002250$

Выбрее твердых частиц. r/c (ф-ла 2.1), $G = BG \cdot AIR \cdot F = 5 \cdot 0.025 \cdot 0.01 = 0.0012500$

Harrier .

Kod	Haunenceanne 35	Εμέρου είσ	Быброс м/год
0301	Азота (IV) днокенд (Азота днокенд) (4)	0.0142	0.002554
0304	Азот (II) оксид (Азота оксид) (б)	0.002306	0.000415
0328	Углерод (Сажа, Углерод черный) (583)	0.00125	0.000225
0330	Сера диоксяд (Ангядряд сернястый, Серкястый газ, Сера (IV) оксяд) (516)	0.0294	0.00529
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0684	0.0123

Так как котел не работает одновременно на тазе и на дизголливе выбираем максимально разовые выбросы (г/сех), валовые выбросы (т/год) суммируем и получаем:

Итого:

Ked	Наиметование 3Б	Επέρου είσ	Ενώρος πέροδ
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0169	0,311754
0304	Азот (II) оксид (Азота оксид) (6)	0.002747	0,050675
0330	Сера дновсяд (Ангядряд сернястый, Серяястый газ, Сера (IV) оксяд) (516)	0.0294	0,01265
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0684	1,1763
0328	Углерод (Саяза, Углерод черный) (583)	0.00125	0.000225

Источник загразнения: 0012, Труба

Источник выделения: 0012 01, Суточная емкость котла V-0,8 м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астама, 2005. Расчет по п. 9

Нефтепродукт: Дипельное топлино

Расчет выбросов от резервуаров

Конструкция резервуара: напемный

Климатическая эсна: третья - кожные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резериуаре, г/м3(Прил. 15), CM4X = 2.25

Количество закачиваємого в резервуар нефтепродукта в осенне-зимний период, м3, QQZ = 0.8

Концентрация паров нефтепродуктов при заполнении резервуаров

в осение-зимний период, г/м3(Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весение-летний период, м3, QVZ = 0.8

Концентрация гаров нефтепродуктов при заполнении резервуаров

в весение-летний период, г/м3(Прил. 15), CVZ = 1.6

Объем сливаемого нефтепродукта из витопистерны в резервуар, иЗ/час, УУД = 0.8

Maccossam-soull on paroment multipote, v(c(9.2.1), GR = (CMAX - VZL) / 3600 = (2.25 - 0.8) / 3600 = 0.0005

Выбросы при закачес в резервуары, ч/год (9.2.4), MZ.4X = (COZ · QOZ + CVZ · QVZ) · 10° = (1.19 · 0.8 + 1.6 · 0.8) $-10^4 = 0.00000223$

Удельный выброс при проливах, r/м3, J = 50

Bыбросы паров seфтепролукта при проливах, т/год (9.2.5), MPRR = 0.5 · J · (QOZ + QVI.) · 10° = 0.5 · 50 · (0.8 + $0.80 - 10^4 = 0.00004$

Banonick matter, $\pi/\pi \approx (9.2.3)$, MR = MZAE + MPRR = 0.00000223 + 0.00004 = 0.0000422

Примесь: 2754 Алкани С12-19 /е пересчение на С/ (Успесодороды предельные С12-С19 (е пересчение на С);

Расписониваль РПК-265П) (10)

Комиситрация 3В в парах, % масс(Прил. 14), CI = 99,72

Валовый выброс, в'год (5.2.5), _M = CI · M / 100 = 99.72 · 0.0000422 / 100 = 0.0000421

Максимальный из разовых выброс, n(c (5.2.4), $_{-}G = CI \cdot G / 100 = 99.72 \cdot 0.0005 / 100 = 0.000499$

Примесь: 0333 Сероводород (Пилидросульфид) (518)

Комцентрация 3В в парах, % масс(Прил. 14), CI = 0.28Валовый выброс, $\pi \log (5.2.5)$, $M = CI \cdot M / 200 = 0.28 \cdot 0.0000422 / 100 = 0.0000001182$

Максимальный из разовых выброс, π/c (5.2.4), $G = CI \cdot G/100 = 0.28 \cdot 0.0005/100 = 0.0000014$

H roro:

Kod	Наименование 35	Выбрас г/с	Выбрес тігод
0333	Сероводород (Дигидросульфид) (518)	0.0000014	0.0000001182
	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.000499	0.0000421

Источник загрязнения: 0013, Дыхательный клапан

Источник выделения: 0013 01, РГС №1 V-3 м3

Список литературы:

Методические укравния по определению выбросов загрязновощих веществ в атмосферу из резервуаров РНД 211 2.02.09-2004. Астика, 2005. Расчет по п. 9

Нефтепродукт: Дизельное топляно

Расчет выбросов от резервуаров

Конструкция резервуара: наземный

Климатическая зона: третья - кожные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), CM.4X = 2.25.

Количество закачиваємого в резервуар нефтепродукта в осение-зимний период, м3, QOZ = 0.5851

Концентрация паров нефтепродуктов при заполнении резернуаров.

в осение-зимний период, n/м3 (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весение-летний период, м3, QVZ = 0.5852

Концентрация паров нефтепродуктов при заполнении резервуаров

в весение-летний период, г/м3 (Прил. 15), CVL = 1.6

Объем сливаемого нефтепролукта из автопистерны в резервуар, м3/час, 1/5Z = 3

Максимальный из разовых выброс, r/c (9.2 I), GR = (CM4X · VEL) / 3600 = (2.25 · 3) / 3600 = 0.001875

Выбросы при закачес в резервуары, т/год (9.2.4), MZ.4K = (COZ - OOZ + CVZ - OVZ) - 10° = (1.19 - 0.5852 + 1.6 -

 $0.5852) \cdot 10^4 = 0.000001633$

Удельный выброс при проликах, r/м3, J = 50

Выбросы паров вофтепролукта прв проликах, п'год (9.2.5), МРЕК = 0.5 ⋅ J ⋅ (QOZ + QVZ) ⋅ 10 ° = 0.5 ⋅ 50 ⋅ (0.5852 +0.5852) - 104 = 0.00002926

Banomali mafipoc, v(rog)(9,2.3), MR = MZ4E + MPRR = 0.000001633 + 0.00002926 = 0.0000309

Примесь: 2754 Алкапы С12-19 /е пересчени на С/ (Успесодороды предельные С12-С19 (е пересчени на С); Распиоритель РПК-365П) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 99.72

Валовый выброс, т/год (5.2.5), $M_{-} = CI \cdot M / 100 = 99.72 \cdot 0.0000309 / 100 = 0.000031$

Максимальный из разовых выброс, г/с (5.2.4), _ G _ = CI · G / 100 = 99.72 · 0.001875 / 100 = 0.00187

Примесь: 0333 Сероводород (Дилидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 0.28

Banossiš subpoc, π/rox (5.2.5), $M = CI \cdot M / 100 = 0.28 \cdot 0.0000309 / 100 = 0.00000008652$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.28 \cdot 0.001875 / 100 = 0.000005$

Итого:

End		Bubpocalo	Business missel
0333	Сероводород (Дигидросульфид) (518)	5e-6	8,652e-8
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.00187	3.1e-5
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 0014, Дыхательный клапан

Источник выделения: 0014 01, РГС №2 V-3 м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005. Расчет по п. 9

Нефтепродукт: Дизельное топливо Расчет выбросов от резервуаров Конструкция резервуара: наземный

Климатическая зона: третья - комине области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), CM-4X = 2.25

Количество закачиваемого в резервуар нефтепродукта в осение-зимний период, м3, QQZ = 0.5852

Концентрация паров нефтепродуктов при заполнении резервуаров

в осение-зимний период, n/м3 (Прил. 15), COZ = 1.19

Количество закачиваемого и резервуар нефтепродукта и весение-летний период, м3, QVL = 0.5852

Концентрация паров нефтепродуктов при заполнении резервуаров

в весеняе-летний пернод, г/м3 (Прил. 15), CVI = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, У2Z = 3

Максимальный из разовых выброс, r/c (9.2.1), $GR = (CM4X \cdot VXL) / 3600 = (2.25 \cdot 3) / 3600 = 0.001875$

Выбросы при закачке в резервуары, т/год (9.2.4), MZ.4K = (COZ · QOZ + CVI · QVI) · 10⁻⁶ = (1.19 · 0.5852 + 1.6 ·

 $0.5852) \cdot 10^4 = 0.000001633$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров вефтепродукта при проливах, π /год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^4 = 0.5 \cdot 50 \cdot (0.5852 + 0.5852) \cdot 10^4 = 0.00002926$

Banonsiñ nsi6poc, π/rog (9.2.3), MR = MZ4E + MPRR = 0.000001633 + 0.00002926 = 0.0000309

Примесь: 2754 Алкепы С12-19 /е пересчени па С/ (Успесодороды предельные С12-С19 (с пересчени па С);

Расписовника РПК-265П) (10):

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 59.72

Валовый выброс, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.0000309 / 100 = 0.000031$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G/100 = 99.72 \cdot 0.001875/100 = 0.00187$

Примесь: 0333 Сероводород (Пилидросульфид) (518)

Комцентрация ЗВ в парах, % масс (Прил. 14), СТ = 0.28

Валовый выброс, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 0.28 \cdot 0.0000309 / 100 = 0.00000008652$

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C / 100 = 0.28 \cdot 0.001875 / 100 = 0.000005$

Итого:

Kod	Наиметогание 35	Βιώρρος ε/σ	Быбрес м/гед
0333	Сероводород (Дигидросульфид) (518)	5e-6	8.652e-8
	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.00187	3.1e-5
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 0015, Свеча

Источник выделения: 0015 01, Свеча стравливания на котле

Список литературы:

 Методика расчета выбросов загрязыващих неществ в атмосферу на объектах транспорта и хранения газа. Придожение №1 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г.

Выбросы газа на КС: стракливание газа из метаномельниц, щлебфов и соединительных газопроводов на свечу КС-компрессорные станции

Геометрический объем агрегита, м3, УХ = 0.058

Общее количество агрегатов данного типа, шт., N = 1

Количество одновременно обслуживаемых (работающих) агрегатов, агт., NI = 1

Максимальная продолжительность стравливания гіхіа в течение 20 минут, в минутих, TN = 10

Время стракливания газа из одного агрегата, час/год. Т = 10

Атмосферное давление, МПа, РО = 0.101

Дакление газа в агрегате перед стракливанием, МПа, РА = 1.5

Температура газа в агрегате перед стравливанием, К, Т.4 = 5

Коэффициент синмаемости газа при рабочих условиях, Z = 0.98

Плотность газа, кп/ы3, РГ = 0,809

Количество серворганического вещества в газе, r/43, MS = 0.02

Томпература газа при муле град. С. К., TO = 273

Примесь: 0410 Метап (727*);

Объем выброса при стравликания гата, м3/год (3.1), $VR = VX \cdot (PA \cdot IO) / (PO \cdot IA \cdot Z) = 0.058 \cdot (1.5 \cdot 273) / (0.101 \cdot 5 \cdot 0.98) = 48$

Banonsch nuffpot, $\pi/\pi \chi$ (5.2), $M = VR \cdot PT \cdot I\theta^{+} \cdot N = 48 \cdot 0.809 \cdot 10^{3} \cdot 1 = 0.0388000$

Максимальный регольній выброс, π/c , $G = ((M / N) \cdot NI \cdot IN / 20 \cdot I0^6) / (3600 \cdot I) = ((0.0388 / 1) \cdot 1 \cdot 10 / 20 \cdot 10^6) / (3600 \cdot 10) = 0.5390000$

Примесь: 0333 Серогодород (Дилидросульфид) (512)

Banonicki materior, $\pi \log (5.5)$, $M = VR \cdot MS \cdot 10^4 \cdot N = 48 \cdot 0.02 \cdot 10^4 \cdot 1 = 0.00000096$

Максимальный разовый выброс, π/c , $G = \ell(M/N) \cdot NI \cdot IN/20 \cdot 10^4) / (3600 \cdot I) = ((0.00000096 / 1) \cdot 1 \cdot 10 / 20 \cdot 10^4) / (3600 \cdot 10) = 0.00001333$

H roro:

Kod	Hausencounse 35	Виброс во	Выбрес т/год
0333	Сероводород (Динидросульфид) (518)	0.00001333	0.00000096
0410	Метан (727*)	0.539	0.0388

Источник загразмения: 0016, Свеча

Источник выделения: 0016 01, Свеча стравливания газа на ГРПШ от котельной

Список литературы:

Методика расчета выбросов загрязыващих неществ в атмосферу на объектах транспорта и хранения газа.
 Придожение №1 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казакстан от 12.06.2014 г. № 221-г.

Выбросы газа на КС: страклювание газа из метаномельниц, шлебфов и соединительных газопроводов на свечу

КС-компрессорные стиции
Геометрический объем агрегата, м3, РХ = 0.058

I сометрический осъем агрегата, м.з., г.д. = 0.0058

Общее количество агрегатов данного типа, шт., N = 3

Количество одновременно обслуживаемых (работвощих) агрегатов, шт., NI = 1

Максимальная продолжительность стравликания газа в течение 20 минут, в минутах, TN = 10

Время стравликания газа из одного агрегата, час/год. Т = 10

Алмосферное давление, МПа, РО = 0.101

Дакление газа в агрегате перед стракливанием, МПа, Р.4 = 1.5

Температура газа в агрегите перед стравливанием, К, Т.4 = 5

Коэффициент свимаемости газа при рабочих условиях, Z = 0.98

Плотность газа, кг/м3, РТ = 0.809

Количество осрворганического вещества в газе, г/нд, М2 = 0.02

Температура газа при муле град. С. К., TO = 273

Примесь: 0410 Менап (727*)

Объем выброса при стравлежания газа, м3/год (3.1), $VR = VX \cdot (PA \cdot IO) / (PO \cdot IA \cdot Z) = 0.058 \cdot (1.5 \cdot 273) / (0.101 \cdot 5 \cdot 0.98) = 48$

Bancascii autipoc, virox (5.2), M = VR · PT · 10° · N = 48 · 0.809 · 10° - 3 = 0.1165

Максимальный разовый выброс, n'c, $G = ((M/N) \cdot NI \cdot IN/20 \cdot I0^4)/(3600 \cdot I) = ((0.1165/3) \cdot 1 \cdot 10/20 \cdot 10^4)/(3600 \cdot I0) = 0.539$

Примесь: 0333 Сероводород (Дихидросульфид) (518) Ваповый выброс, π /год (5.5), $\underline{M} = VR \cdot MS \cdot 10^4 \cdot N = 48 \cdot 0.02 \cdot 10^4 \cdot 3 = 0.00000288$

Максимальный разовый выброс, z/c, $C = ((M / N) \cdot NI \cdot IN / 20 \cdot 10^6) / (3600 \cdot I) = ((0.00000288 / 3) \cdot 1 \cdot 10^6)$ / 20 · 10⁶) / (3600 · 10) = 0.00001333

Нтого:

Ked	Hannenovanne 35	Ειμέρου είν	Budgoe mised
0333	Сероводород (Дигидросульфид) (518)	0.00001333	0.00000288
0410	Метан (727*)	0.539	0.1165

Источник загрязнения: 6009, Неорганизованный источник

Источник выделения: 6009 01, 3PA и ФС топливной сыкости котельной XrI

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Каэтрансойза" Астама, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязияющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязияющих веществ в атмооферу из резервуаров РНД 211.2.02.09-2004. Acrasa, 2005

Наименование оборудования: Запорно-регулирующая арматура (тижелые углеводороды)

Наименование технологического потока: Утечки из тяжелой жидкости

Расчетная величина утечки, кт/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотнений, потерявших герметичность, доля единицы (Прид.Б1), X = 0.07

Общее количество данного оборудования, шт., N = 8

Среднее время работы данного оборудования, час/год _ Т _ = 8760

Суммарная утечка всех компонентов, кп/час (6.1), $C = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 8 = 0.00369$

Суммарная утечка всех компонентов, г/с, C = C/3.6 = 0.00369/3.6 = 0.001025

Примесь: 2732 Керосип (654*) Массовая концентрация компонента в потоке, %, C = 100

Максимальный разовый выброс, г/с, $\underline{G} = G \cdot C / 100 = 0.001025 \cdot 100 / 100 = 0.001025$ Валовый выброс, т/год, $\underline{M} = \underline{G} \cdot \underline{I} \cdot 3600 / 10^4 = 0.001025 \cdot 8760 \cdot 3600 / 10^4 = 0.032324$

Наименование оборудования: Фланценые соединения (тяжелые углеводороды)

Наименование технологического потока: Утечки из тяжелой жидкости

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.000288

Расчетная доля уплотвений, потерявших герметичность, доля единицы (Прид.Б1), X = 0.02

Общее количество данного оборудования, шт., N = 32

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кп/час (6.1), $G = X \cdot Q \cdot N = 0.02 \cdot 0.000288 \cdot 32 = 0.0001843$

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.0001843/3.6 = 0.0000512

Примесь: 2732 Керосип (654*)

Массовая концентрация компонента в потоке, %, С = 100

Максимальный разовый выброс, г/с, $G = G \cdot C / 100 = 0.0000512 \cdot 100 / 100 = 0.000051$ Валовый выброс, г/год, $M = G \cdot T \cdot 3600 / 10^4 = 0.000051 \cdot 8760 \cdot 3600 / 10^4 = 0.001608$

Сволява таблица пасчетов:

Оборудов.	Гентопосыч. поток	Obuçes xon- eo, nem.	Eperen po- bonne, v/s
Запорно-регулирующая арматура (тяжелые	Утечки из тяжелой	8	8760
утлеводороды)	жиджести		
Фланцевые соединения (тяжелые углеводороды)	Утечки из тяжелой	32	8760
	жидкости		

Hroro:

Kod	Наименование 3Б	Busipec s/c	Duápec m/seð
2732	Керосии (654*)	0.001025	0.033932

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Утечки из тяжелой жидкости

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотвений, потерявших герметичность, доля единицы (Прил.Б1), X = 0.07

Общее количество данного оборудования, шт., N = 8

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 8 = 0.00369$

Суммарная утечка всех компонентов. r/c. G = G/3.6 = 0.00369/3.6 = 0.001025

Примесь: 2732 Керосип (654*)

Массовая концентрация компонента в потоке, %, C = 100

Максимальный разовый выброс, v/c, $_G_=G\cdot C/100=0.001025\cdot 100/100=0.001025$

Валовый выброс, т/год, M = C · I · 3600 / 10⁴ = 0.001025 · 8760 · 3600 / 10⁴ = 0.032324

Наименование оборудования: Фланценые соединения (тяжелые утлеводороды)

Наименование технологического потока: Утечки из тяжелой жидкости

Расчетная величина утечки, кп/час (Прил.Б1), Q = 0.000288

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил. Б1), X = 0.02

Общее количество данного оборудования, шт., N = 32

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кт/час (6.1), $G = X \cdot Q \cdot N = 0.02 \cdot 0.000288 \cdot 32 = 0.0001843$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.0001843/3.6 = 0.0000512

Примесь: 2732 Керосип (654*)

Массовая концентрация компонента в потоке, %, С = 100

Максимальный разовый выброс, r/c, $C = C \cdot C / 100 = 0.0000512 \cdot 100 / 100 = 0.000051$

Валовый выброс, $\pi/\text{год}$, $M = C \cdot I \cdot 3609 / 10^4 = 0.000051 \cdot 8760 \cdot 3600 / <math>10^4 = 0.001608$

Сводная таблица расчетов:

Оборудов.	Техтологич. поток	Общее хол- ев, неп.	Бремя ра- бота, ч/г
Запорно-регулирующая арматура (тяжелые	Утечки из тежелой	8	8760
Флинцевые соединения (тяжелые углеводороды)	Утечки из тяжелой	32	8760
	жидкости		

Hroro:

Kod	Наименование 30	Εκέρος είς	Εικόρος πέροδ
2732	Керосии (654*)	0.001025	0.033932

ГРПШ

Источник загрязнения: 6016, Неорганизованный источник

Источник выделения: 6016 01, 3PA и ФС от ГРПШ и газопровода

Список литературы:

- Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла".
 Астака, 2005 (п. 6.1, 6.2, 6.3 и 6.4).
- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- Методические указания по определению выбросов загрязкиющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астака, 2005

Наименование оборудования: Запорно-регулирующая арматура (среда газовая)

Наименование технологического потока: Природный газ (топливо)

Расчетная величина утечки, кп/час(Прил.Б1), Q = 0.020988

Расчетная доля уплотмений, потерявших герметичность, доля единицы (Прил.Б1), X = 0.293

Общее количество данного оборудования, шт., N = 15

Среднее время работы данного оборудования, час/год, I = 4400 Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.293 \cdot 0.020988 \cdot 15 = 0.0922$

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.0922 / 3.6 = 0.0256

Примесь: 0410 Метап (727*)

Массовая концентрация компонента в потоке, %, С = 98.43

Максимальный разовый выброс, vic, $C = C \cdot C / 100 = 0.0256 \cdot 98.43 / 100 = 0.0252$

Валовый выброс, т/год, M = C · I · 3600 / 10⁴ = 0.0252 · 4400 · 3600 / 10⁴ = 0.399

Примесь: 0412 Изобутан (2-Менестропан) (279)

Массовая концентрация компонента в потоке, %, C = 0.02

Максимальный разовый выброс, n'c, $C = C \cdot C / 100 = 0.0256 \cdot 0.02 / 100 = 0.00000512$

Banonsië natipoc, $\pi/m_{\rm H}$ = $G \cdot I \cdot 3600/10^4 = 0.00000512 \cdot 4400 \cdot 3600/10^4 = 0.0000811$

Примесь: 0405 Пептап (450)

Массовая концентрация компонента в потоке, %, С = 0.02

Максимальный разовый выброс, n'c, $C = C \cdot C / 100 = 0.0256 \cdot 0.02 / 100 = 0.00000512$

Валовый выброс, $\pi/\text{год}$, $M = G + I + 3600 / 10^6 = 0.00000512 + 4400 + 3600 / <math>10^6 = 0.00000811$

Наименование оборудования: Фланцевые соединения (парогазовые потоки)

Наименование технологического потока: Природный газ (топливо)

Расчетная величина утечки, кт/час(Прил.Б1), Q = 0.00072

Расчетная доля уплотыевий, потерявших герметичность, доля единицы(Прил.Б1), X = 0.03

Общее количество данного оборудования, шт., N = 60

Среднее время работы данного оборудования, час/год. Т = 4400

Суммарная утечка всех компонентов, кп/час (6.1), $G = X \cdot Q \cdot N = 0.03 \cdot 0.00072 \cdot 60 = 0.001296$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.001296/3.6 = 0.00036

Примесь: 0410 Метап (727*)

Массовая концентрация компонента в потоке, %, С = 98.43

Максимальный резовый выброс, г/с, $G = G \cdot C / 100 = 0.00036 \cdot 98.43 / 100 = 0.000354$ Валовый выброс, т/год, $M = G \cdot I \cdot 3600 / 10^6 = 0.000354 \cdot 4400 \cdot 3600 / 10^6 = 0.00561$

Примесь: 0412 Изобутал (2-Менеклиропал) (279)

Массовая концентрация компонента в потоке, %, C=0.02 Максимальный разовый выброс, π/c , $C=C/100=0.00036 \cdot 0.02 / 100=0.00000072$ Валовый выброс, π/rox , $M=C-1 \cdot 3600 / 10^4=0.000000072 \cdot 4400 \cdot 3600 / 10^4=0.000000114$

Примесь: 0405 Пептап (450)

Массовая концентрация компонента в потоке, %, С = 0.02

Максимальный разовый выброс, r/c, $C = C \cdot C / 100 = 0.00036 \cdot 0.02 / 100 = 0.000000072$

Валовый выброс, vrox, $M = C \cdot I \cdot 3600 / 10^4 = 0.000000072 \cdot 4400 \cdot 3600 / 10^4 = 0.00000114$

Сводиля таблица расчетов:

Оборудов.	Termonomen. nomen	Obmes non-	Bpenes pa- benne, v/s
Запорно-регулирующая арматура (среда газовая)	Природный газ (топливо)	15	4400
Фланцевые соединения (парогазовые потоки)	Природный газ (топливо):	60	4400

H roro:

Ked	Наименование 35	Εικέρου είς	Выбрес т/гед
0405	Пентая (450)	0.00000512	0.00008224
0410	Метан (727*)	0.0252	0.40461
0412	Изобутан (2-Метялиропан) (279)	0.00000512	0.00008224

ПАБОРАТОРИЯ АНА ПИЗА НЕ+ТИ

Источник загрязнения: 0010, Вытожной шкаф

Источник выделения: 0010 01, Лаборатория анализа нефти

Количество нефти в одной пробе 1 л. За день будет расходоваться до 12 кг вефти. За сутки анализируется 14 проб. Все анализы проводятся под вытижимым зонтом. Пары углеводородов выделяются только при передняду. нефти. Потери составляют до 1%.

```
Углеводороды предельные С12-19 /в пересчете на С/ (592):
           M^{1} = 1000 \times 0.82 \times 0.01 : 20 : 60 = 0.0068 \text{ n/c},
   M_{\text{reg}} = 1.0\pi \times 14 \times 0.82 \times 365 \times 0.01 \times 10^{-9} = 0.0419 \text{ t/reg}
```

Для анализа используют также бекзин-растворитель. Расход бекзина - 300 мл на один акализ. За сутки проводится 2 анализа. Пары углеводородов выделяются только при переливах бензина. Потери составляют до 5% (т.к. бежин «легкий»).

```
Уайт-спирит (1316*):
       M^1 = 300 \times 0.76 \times 0.05 : 20 : 60 = 0.0095 \text{ p/c}.
M_{\text{reg}} = 0.3 \times 2 \times 0.76 \times 365 \times 0.05 \times 10^{-3} = 0.0083 \text{ t/rog}
```

Кроме того, в лаборатории используются:

- 1. Азотная кислота (5)
- Серная кислота (517)
- Натрий гидровсид (Натр едкий, Сода каустическая) (876*)
- Этакол (Эткловый спирт) (667)
- Менилбекоол (349)
- Протин-2-ов (Ацетов) (470)

Расчет проведен по унифицированной программе расчета загрязнения атмосферы «ПК ЭРА 4.0.400».

Список литературы:

 Методика расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории п.6. Расчет выбросов. загрязьяющих веществ в атмосферу от химических лабораторий Приложение № 7 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Оборудование: Химическая даборатория. Шкаф вытяжной химический ШВ-4.2 (ШВ-3,3)

Частое время работы одного шкафа, час/год. _T = 2000 Общее воличество таких шкафов, шт. _ *EOLIV* = 4

Количество одновременно работнощих шкафов, шт., 27 - 4

Примесь: 0302 Азонтал киспота (5)

Удельный выброс, n/c (табл. 6.1), Q = 0.0005

Максимальный разовый выброс, n(c (2.1), $G = Q \cdot KI = 0.0005 \cdot 4 = 0.002$

Максимальный разовый выброс, r/c, G = 0.002Валовый выброс, $\pi/rод$ (2.11), $M = Q \cdot T \cdot 3600 \cdot EOLIV / 10^6 = 0.0005 \cdot 2000 \cdot 3600 \cdot 4 / 10^6 = 0.0144$

Примесь: 0322 Серпал хиспона (517)

Удельный выброс, n/c (табл. 6.1), Q = 0.0000267

Максимальный разовый выброс, vc (2.1), $G = Q \cdot XI = 0.0000267 \cdot 4 = 0.0001068$

Максимальный разовый выброс, г/с, C = 0.0001

Валовый выброс, $\pi / \exp (2.11)$, $M = Q \cdot T \cdot 3600 \cdot EOLEV \cdot / 10^6 = 0.0000267 \cdot 2000 \cdot 3600 \cdot 4 \cdot / 10^6 = 0.0008$

Примесь: 0150 Наприй гидроконд (Напр едкий, Сода каустыческая) (876*)

Удельный выброс, n/c (табл. 6.1), Q = 0.0000131

Максимальный разовый выброс, vc (2.1), $G = Q \cdot XI = 0.0000131 \cdot 4 = 0.0000524$

Максимальный разовый выброс, г/с, _C_ = 0.000052

Валовый выброс, π /год (2.11), $M = Q \cdot I \cdot 3600 \cdot EOLIV / 10^4 = 0.0000131 \cdot 2000 \cdot 3600 \cdot 4 / 10^4 = 0.0004$

Примесь: 1061 Этапол (Этиловий спирт) (667)

Удельный выброс, r/c (табл. 6.1), Q = 0.00167

Максимальный разовый выброс, r/c (2.1), $G = Q \cdot EI = 0.00167 \cdot 4 = 0.00668$

Максимальный разовый выброс, v'с, G' = 0.0067Валовый выброс, v'год (2.11), $M' = Q \cdot I' \cdot 3600 \cdot EOLIV_10^6 = 0.00167 \cdot 2000 \cdot 3600 \cdot 4 / 10^6 = 0.0481$

Поциясь: 0621 Менципбенция (349)

Удельный выброс, п/с (табл. 6.1), Q = 0.0000811

Максимальный разовый выброс, г/с (2.1), $C = Q \cdot XI = 0.0000811 \cdot 4 = 0.0003244$

Максимальный разовый выброс, r/c, _C_ = 0.0003

Валовый выброс, π /год (2.11), $M = Q \cdot I \cdot 3600 \cdot KOLIV / 10^4 = 0.0000811 \cdot 2000 \cdot 3600 \cdot 4 / 10^4 = 0.0023$

Примесь: 1401 Пропап-2-оп (Аценоп) (470)

Удельный выброс, n/c (тибл. 6.1), Q = 0.000637

Максимальный разовый выброс, г/с (2.1), $C = Q \cdot EI = 0.000637 \cdot 4 = 0.00255$

Максимальный разовый выброс, r/c, C = 0.0026

Banonsid subpoc, $\pi/\pi c_1(2.11)$, $M_1 = Q \cdot I_1 \cdot 3600 \cdot KOLIV_1/10^4 = 0.000637 \cdot 2000 \cdot 3600 \cdot 4/10^4 = 0.0183$

Итого

Ked	Наименование 35	Βιώρρος ε/ο	Επέρος πέροδ
0150	Натрий гидроксид (Натр едкий, Сода каустическая) (876°)	5.2e-5	0.0004
0302	Азотная кислота (5)	0.002	0.0144
0322	Серная кислота (517)	0.0001	0.0008
0621	Метилбекзол (349)	0.0003	0.0023
1061	Этанол (Этиловый спирт) (667)	0.0067	0.0481
1401	Пропан-2-он (Ацетон) (470)	0.0026	0.0183
2752	Уайт-спирит (1316*)	0,0095	0,0083
2754	Углеводороды предельные С12-19 /в пересчете на С/ (592)	0,0068	0,0419

кппоу

Источник загрязнения: 0007, Дыхательный клапан

Источник выделения: 0007 01, Емкость сбора утечки камеры приема скребка V-5 м3 №5

Список литературы:

 Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астажа, 2005. Расчеты по п 5.

Вид выброса, VV - Выбросы паров нефти и бензинов

Нефтепролукт, NPN4ME = Сырая нефть

Минимальная температура смеси, гр.С. TMIN = 9.06

Коэффициент KI (Прил.7), XT = 0.4

XTMEN = 0.4

Максимальная температура смеси, гр.С., TM4X = 17.1

Коэффициент Kt (Прил.7), XT = 0.52

ETMAX = 0.52

Режим эксплуатации, _N4ME_ = "мерник", ССВ - отсутствуют

Комструкция резервуаров, NAME = Заглубленный

Объем одного резервуара данного типа, м3, 17 - 5

Количество резервуаров данного типа, NR - 1

Количество групп одноцелевых резервуаров, XNR = 1

Категория веществ, N4ME - А - Нефть из магистрального трубопровода и др. нефтепродукты при

температуре закачиваемой жидкости, близкой к температуре воздуха

Зкачение Кряг (Прил. 8), XPSR = 0.56

Зкачение Кртах (Прил.8), ХРМ = 0.8

Коэффиционт, ДРSR - 0.56

Коэффицисят, **ЕРМ-А**Х = 0.8 Общий объем резервуаров, ыЗ, V = 5

Количество жидкости закачиваемое в резервуар в течение года, т/год, В = 25

Плотность смеси, т/м3, RO = 0.8922

Годовая оборачиваемость резервуара (5.1.8), NN = B / (RO · V) = 25 / (0.8922 · 5) = 5.6

Коэффициент (Прил. 10), XOB = 2.5

Максимальный объем паровоздушной смеси, вытесняемой

из резервуара во время его закачки, м3/час, УСМАХ - 20

Давление паров смеси, мм.рт.ст., РЅ = 104.9

P = 104.9

Коэффиционт, ХВ = 1

Температура начала кипения смеси, гр.С., TETP - 162.5

Молекулярная масса паров смеси, кт/кмоль, $MES = 0.6 \cdot TEIP + 45 = 0.6 \cdot 162.5 + 45 = 142.5$

Среднегодовые выбросы паров нефтепродукта, π/r од (5.2.2), $M = 0.294 \cdot PS \cdot MRS \cdot (ETMAX \cdot EB + ETMEN) \cdot$

 $EPSR \cdot EOB \cdot B / (10^{\circ} \cdot RO) = 0.294 \cdot 104.9 \cdot 142.5 \cdot (0.52 \cdot 1 + 0.4) \cdot 0.56 \cdot 2.5 \cdot 25 / (10^{\circ} \cdot 0.8922) = 0.01586$

Максимальный по разовых выброс паров нефтепролукта, г/с (5.2.1), G = (0.163 · PS · MRS · ETM4X · EPM4X · EB · VCM430 / 10⁴ = (0.163 · 104.9 · 142.5 · 0.52 · 0.8 · 1 · 20) / 10⁴ = 2.027

Примесь: 0415 Смесь успекодородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 72.46

Среднегодовые выбросы, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 72.46 \cdot 0.01586 / 100 = 0.011492$

Маженмальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 72.46 \cdot 2.027 / 100 = 1.468764$

Примесь: 0416 Смесь уславодородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 26.86

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 26.86 \cdot 0.01586 / 100 = 0.004260$

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot C/100 = 26.86 \cdot 2.027/100 = 0.544452$

Примесь: 0602 Бензоп (64)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.35

Среднегодовые выбросы, $\pi/\text{год}$ (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.01586 / 100 = 0.000056$

Максимальный из разовых выброс, r/c (5.2.4), $_{-}G_{-} = CI \cdot G / 100 = 0.35 \cdot 2.027 / 100 = 0.007095$

Примесь: 0621 Менцибепзол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 0.22

Среднегодовые выбросы, т/год (5.2.5), $_{_}M_{_} = CI \cdot M / 100 = 0.22 \cdot 0.01586 / 100 = 0.000035$

Максимальный из разовых выброс, г/с (5.2.4), G = CI · G / 100 = 0.22 · 2.027 / 100 = 0.004459

Примесь: 0616 Дименилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 0.11

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.01586 / 100 = 0.000017$

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C / 100 = 0.11 \cdot 2.027 / 100 = 0.002230$

H roco:

Kod	Наимен ование 35	Βιεύρου είν	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	1.468764	0.011492
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.544452	0.00426
0602	Бексол (64)	0.007095	0.000056
0616	Диметилбексол (смесь о-, м-, п- изомеров) (203)	0.00223	0.000017
0621	Меткибежкая (349)	0.004459	0.000035

Источник загрязнения: 6008, Неорганизованный источник

Источник выделения: 6008 01, ЗРА и ФС камеры приема ОУ

Список литературы:

- 1. Методина расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астама, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормярованию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Агмосфера, 2005
- 3. Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Acrassa, 2005

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотмений, потерявших герметичность, доля единицы (Прил. Б1), X = 0.07

Общее количество данного оборудования, шт., N = 15

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кп/час (6.1), $C = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 15 = 0.00692$

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.00692/3.6 = 0.001922

Примесь: 0415 Смесь услеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, r/c, $C = C \cdot C / 100 = 0.001922 \cdot 72.46 / 100 = 0.001393$ Валовый выброс, v/roz, $M = C \cdot T \cdot 3600 / 10^4 = 0.001393 \cdot 8760 \cdot 3600 / 10^4 = 0.04393$

Примесь: 0416 Смесь услеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, C = 26.86 Максимальный разовый выброс, v/с, $G = G \cdot C / 100 = 0.001922 \cdot 26.86 / <math>100 = 0.000516$ Валовый выброс, v/год, $M = G \cdot I \cdot 3600 / <math>10^6 = 0.000516 \cdot 8760 \cdot 3600 / <math>10^6 = 0.016273$

Примесь: 0602 Бепзол (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, vc, $C = C \cdot C / 100 = 0.001922 \cdot 0.35 / 100 = 0.000007$

Валовый выброс, т/год, $M = G \cdot I \cdot 3600 / 10^4 = 0.000007 \cdot 8760 \cdot 3600 / 10^4 = 0.000221$

Примесь: 0616 Дименилбензол (смесь e-, M-, R- изомеров) (203) Массовая концентрация компонента в потоке, %, C=0.11 Максимальный разовый выброс, v/с, C = $C \cdot C / 100 = 0.001922 \cdot 0.11 / 100 = 0.000002$ Валовый выброс, v/год, M = C \cdot T \cdot 3600 / 10^6 = $0.000002 \cdot 8760 \cdot 3600 / <math>10^6$ = 0.000063

Примесь: 0631 Менципбецзоп (349)

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.001922 \cdot 0.22 / 100 = 0.000004$ Валовый выброс, v/c, $M = G \cdot I \cdot 3600 / 10^6 = 0.000004 \cdot 8760 \cdot 3600 / 10^6 = 0.000126$

Наименование оборудования: Фланцевые соединения (тяжелые углеводороды)

Наименование технологического потока: Поток Xv8

Расчетная величина утечки, кт/час (Прил.Б1), Q = 0.000288

Расчетная доля уплотмений, потерявших герметмчность, доля единицы (Прил. E1), X = 0.02

Общее количество данного оборудования, шт., N = 60

Среднее время работы данного оборудования, час/год. I = 8760Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.02 \cdot 0.000288 \cdot 60 = 0.0003456$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.0003456/3.6 = 0.000096

Примесь: 8415 Смесь услеводородов предельных С1-С5 (1582*) Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, r/c, $G = G \cdot C / 100 = 0.000096 \cdot 72.46 / 100 = 0.00007$

Валовый выброс, т/год, $M = G \cdot I \cdot 3600 / 10^4 = 0.00007 \cdot 8760 \cdot 3600 / 10^4 = 0.002208$

Примесь: 0416 Смесь услагодородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, С = 26.86

Максимальный разовый выброс, r/c, $C = C \cdot C / 160 = 0.000096 \cdot 26.86 / 100 = 0.000026$ Валовый выброс, π /год, $M = C \cdot T \cdot 3600 / 16^4 = 0.000026 \cdot 8760 \cdot 3600 / 10^4 = 0.00082$

Примесь: 0602 Бензол (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, vic, $G = G \cdot C / 100 = 0.000096 \cdot 0.35 / 100 = 3.36E-7$ Валовый выброс, virog, $M = G \cdot T \cdot 3600 / 10^6 = 0.000000336 \cdot 8760 \cdot 3600 / 10^6 = 0.000011$

Примесь: 0616 Диметилбенэол (смесь о-, м-, п- изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный резовый выброс, π/c , $G = G \cdot C / 100 = 0.000096 \cdot 0.11 / 100 = 1.056E-7$ Валовый выброс, $\pi/rол$, $M = G \cdot I \cdot 3600 / 10^6 = 0.0000001056 \cdot 8760 \cdot 3600 / 10^6 = 0.000003$

Примесь: 0631 Менципбецзоп (349)

Массовая концентрация компонента в потоке, %, С = 0.22

Максимальный разовый выброс, п'с, $C = C \cdot C / 166 = 0.000096 \cdot 0.22 / 100 = 2.112E-7$

Валовый выброс, $\pi/\text{год}$, $M = C \cdot I \cdot 3600/10^6 = 0.0000002112 \cdot 8760 \cdot 3600/10^6 = 0.000007$

Своджая таблица расчетов:

Оборудов.	Геоположч. поток	Общее кол- ео, ник.	Брент ра- бания, ч/г
Запорно-регулирующая арматура (тяжелые углеводороды)	Поток №8	15	8760
Фланцевые соединения (тяжелые углеводороды)	Поток №8	60	3760

Итого:

Kod	Наименование 3Б	Busipeo de	Budgoo misod
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.001393	0.046138
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000516	0.017093
0602	Беизол (64)	7e-6	0.000232
0616	Диметилбектол (смесь о-, м-, п- изомеров) (203)	26-6	6.6e-5
0621	Метилбектол (349)	40-6	0.000133

Источник загрязнения: 6012, Неорганизованный источник

Источник выделения: 6012 01, Насос угла пуска скребка

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астака, 2005. Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Тип кефтепродукта и средняя температура видкости. Нефть, мазут и жидкости с температурой кипения >300

Наименование аппаратуры или средства перекачки:

Общее количество аппаратуры или средств перекачки, шт., NI = 1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI = 1

Время работы одной единицы оборудования, час/год. _ Г = 50

Маженмальный из разовых выброс, r/c (8.1), $G = Q \cdot NNI / 3.6 = 0.02 \cdot 1 / 3.6 = 0.00556$

Валовый выброс, $\pi/\text{год}$ (8.2), $M = (Q \cdot NI - I) / 1000 = (0.02 \cdot I \cdot 50) / 1000 = 0.001$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Кожцентрация 3В в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 72.46 · 0.001 / 100 = 0.0007250

Максимальный из разовых выброс, r/c (5.2.4), $C = CI \cdot C / 100 = 72.46 \cdot 0.00556 / 100 = 0.0040300$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 26.86

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 26.86 · 0.001 / 100 = 0.0002686

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 26.86 \cdot 0.00556 / 100 = 0.0014930$

Примесь: 0602 Беплол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.35

Валовый выброс, т/год (5.2.5), _M_ = CI · M / 100 = 0.35 · 0.001 / 100 = 0.0000035

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 200 = 0.35 \cdot 0.00556 / 100 = 0.00001946$

Примесь: 0631 Менципбепроп (349)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.22

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 0.22 · 0.001 / 100 = 0.0000022

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.22 \cdot 0.00556 / 100 = 0.00001223$

Примесь: 0616 Дименилбенэол (смесь с-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), СТ = 0.11

Валовый выброс, т/год (5.2.5), M = CI · M / 100 = 0.11 · 0.001 / 100 = 0.0000011

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G / 100 = 0.11 \cdot 0.00556 / 100 = 0.00000612$

H roro:

Kod	Наименование 35	Επέρου είν	Busines mised
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.00403	0.000725
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.001493	0.0002686
0602	Бекоол (64)	0.00001946	0.0000035
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000612	0.0000011
0621	Метилбензол (349)	0.00001223	0.0000022

Источник загрязнения: 6019, Неорганизованный источник

Источник выделения: 6019 01, ЗРА и ФС пробоотборного устройства

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астана, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормярованию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Acrasa, 2005

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кп/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотвений, потерявших герметичность, доля единицы (Прил.Б1), X = 0.07

Общее воличество данного оборудования, шт., N = 1

Среднее время работы данного оборудования, час/год _ 7 = 8760

Суммарная утечка всех компонентов, кт/час (6.1), $G = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 1 = 0.000461$

Суммарная утечка всех компонентов, г/с, G = G / 3.6 = 0.000461 / 3.6 = 0.000128

Примесь: 0415 Смесь успекодородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, n'c, $G = G \cdot C / 100 = 0.000128 \cdot 72.46 / 100 = 0.000093$

Валовый выброс, $\pi/\text{год}$, $M = C \cdot I \cdot 3600 / 10^4 = 0.000093 \cdot 8760 \cdot 3600 / <math>10^4 = 0.002933$

Примесь: 0416 Смесь успекодородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, С = 26.86

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.000128 \cdot 26.86 / 100 = 0.000034$ Валовый выброс, v/rox, $M = G \cdot T \cdot 3600 / 10^6 = 0.000034 \cdot 8760 \cdot 3600 / 10^6 = 0.001072$

Примесь: 0602 Беплол (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, π /с, $G = G \cdot C / 100 = 0.000128 \cdot 0.35 / 100 = 4.48E-7$ Валовый выброс, π /год, $M = G \cdot I \cdot 3600 / 10^6 = 0.000000448 \cdot 8760 \cdot 3600 / 10^6 = 0.000014$

Примесь: 0616 Диметилбеносл (смесь с-, м-, п- изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный разовый выброс, v/с, $C = C \cdot C / 100 = 0.000128 \cdot 0.11 / 100 = 1.408E-7$

Валовый выброс, $\pi/\text{год}$, $M = C \cdot I \cdot 3600/10^6 = 0.0000001408 \cdot 8760 \cdot 3600/10^6 = 0.000004$

Примесь: 0621 Менцибепзол (349)

Массовая концентрация компонента в потоке, %, C = 0.22

Максимальный разовый выброс, n'c, $C = C \cdot C / 100 = 0.000128 \cdot 0.22 / 100 = 2.816E-7$

Валовый выброс, π /год, $M = G - I - 3600 / 10^6 = 0.0000002816 \cdot 8760 \cdot 3600 / <math>10^6 = 0.000009$

Сводная таблица расчетов:

Оборудов.	Гатологич.	Общее кол-	Spenes pa-
	потек	ео, ник	Sanna, v/s
Запорно-регулирующая арматура (тяжелые углеводороды)	Поток №8	1	8760

Hammer

Kod	Hannenceanus 35	Εικέρου είν	Bubpec m/sed
0415	Смесь углеводородов предельных С1-С5 (1502*)	9.3e-5	0.002933
0416	Смесь углеводородов предельных С6-С10 (1503*)	3.46-5	0.001072
0602	Бензол (64)	4.48e-7	1.4e-5
0616	Диметилбеннол (смесь о-, м-, п- изомеров) (203)	1.408e-7	40-6
0621	Метилбекова (349)	2.816e-7	9e-6

площадка +ильтров-грязеуловителей

Источник загрязнения: 0004, Дыхательный клапан

Источник выделения: 0004 01, Дренциная емкость площадки фильтров V-8 м3 №6

Список литературы:

1. Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астака, 2005. Расчеты по п 5.

Вид выброса, VV - Въбросы паров нефти и бекцинов

Нефтепродукт, NPN4ME - Сырая нефть

Минимальная температура смеси, гр.С., TMEN = 9.06

Коэффициент KI, $\Delta T = 0.52$

XTMIN = 0.52

Максимальная температура смеси, гр.С., TM4X = 17.1

Коэффициент KI, XT = 0.52

XTMAX = 0.52

Режим эксплуатации, _N4ME_ = "мерник", CCB - отсутствуют

Конструкция резервуаров, NAME - Заглубленный

Объем одного резервуара данного типа, м3, 17-8

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров, ЕУК - 1

Категория веществ, NAME - A - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Зкачение Kpsr (Прид. 8), XPSR = 0.56

Зкачение Кртах (Прял.8), ЕРМ = 0.8

Коэффициент , XPSR = 0.56

Коэффициент, XPMAX = 0.8

Общий объем резервуаров, м3, V = 8

Количество жидкости закачиваемое в резервуар в течение года, т/год, Б = 30

Плотность смеси, т/м3, RO = 0.8922

Годовая оборачиваемость резервуара (5.1.8), NN = Б / (RO · V) = 30 / (0.8922 · 8) = 4.2

Коэффициент (Прил. 10), ДОБ = 2.5

Максимальный объем паровоздушной смеси, вытесняемой

из резервуара во время его закачки, м3/час, УСМАХ - 10

Давление паров смеси, мм.рт.ст., PS = 104.9

P = 104.9

Коэффиционт, ХБ - 1

Температура начала кипения смеси, гр.С., ГЕПР = 162.5

Молекулярная масса паров смеси, кт/кмоль, $MRS = 0.6 \cdot TEIP + 45 = 0.6 \cdot 162.5 + 45 = 142.5$

Среднегодовые выбросы паров нефтепродукта, π /год (5.2.2), $M = 0.294 \cdot PS \cdot MRS \cdot (ETM4X \cdot EB + ETMEN) \cdot$

 $EPSR \cdot EOB \cdot B / (10^7 \cdot RO) = 0.294 \cdot 104.9 \cdot 142.5 \cdot (0.52 \cdot 1 + 0.52) \cdot 0.56 \cdot 2.5 \cdot 30 / (10^7 \cdot 0.8922) = 0.0215$

Максимальный из разовых выброс паров нефтепродукта, r (c (5.2.1), $G = (0.163 \cdot PS \cdot MES \cdot ETM4X \cdot EPM4X \cdot$

ED - $VCMAXO / 10^4 = (0.163 \cdot 104.9 \cdot 142.5 \cdot 0.52 \cdot 0.8 \cdot 1 \cdot 10) / 10^4 = 1.014$

Примесь: 0415 Смесь успекодородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 72.46

Среднегодовые выбросы, т/год (5.2.5), M = CI · M / 100 = 72.46 · 0.0215 / 100 = 0.015579

Максимальный из разовых выброс, r/c (5.2.4), G = CI · G / 100 = 72.46 · 1.014 / 100 = 0.734744

<u> Примесь: 0416 Смесь услеводородов предельных С6-С10 (1503*)</u>

Концентрация 3В в парах, % масс (Прил. 14), CI = 26.86

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 26.86 \cdot 0.0215 / 100 = 0.005775$

Максимальный из разовых выброс, n/c (5.2.4), $G = CI \cdot G / 100 = 26.86 \cdot 1.014 / 100 = 0.272360$

Пициесь: 0602 Бензоп (64)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.35

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.0215 / 100 = 0.000075$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.35 \cdot 1.014 / 100 = 0.003549$

Примесь: 0621 Менцибензол (349)

Концентрация 3В в парах, % масс (Прил. 14), CI = 0.22

Среднегодовые выбросы, т/год (5.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 0.0215 / 100 = 0.000047$

Максимальный из разовых выброс, r/c (5.2.4), $C = CT \cdot C / 160 = 0.22 \cdot 1.014 / 100 = 0.002231$

Примесь: 0616 Лиметилбензол (смесь с-. м-. п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), СТ = 0.11

Среднегодовые выбросы, т/год (5.2.5), M = CI · M / 100 = 0.11 · 0.0215 / 100 = 0.000024

Максимальный из разовых выброс, r/c (5.2.4), $G = CI \cdot G/100 = 0.11 \cdot 1.014/100 = 0.001115$

Итого:

Kod	Накменование 35	Εικόρου ε/ο	Быброс тілед
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.734744	0.015579
0416	Смесь утлеводородов предельных С6-С10 (1503*)	0.27236	0.005775
0602	Бекзол (64)	0.003549	0.000075
0616	Диметкибекзол (смесь о-, м-, п- изомеров) (203)	0.001115	0.000024
0621	Memuberson (349)	0.002231	0.000047

Источник загрязнения: 6004, Неорганизованный источник

Источник выделения: 6004 01, ЗРА и ФС площадка фильтров

Список литературы:

- Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казгрансойла" Астана, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ и атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Acrasia, 2005

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кг/час (Прил.Б1), Q = 0.006588

Расчетная доля уплотнений, потерявших герметичность, доля единицы (Прил.Б1), X = 0.07

Общее количество данного оборудования, шт., N = 18

Среднее время работы данного оборудования, час/год. T = 8760Суммарыя утечка всех компонентов, кт/час (6.1), $C = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 18 = 0.0083$

Суммарная утечка всех компонентов, r/c, G = G/3.6 = 0.0083/3.6 = 0.002306

Примесь: 0415 Смесь успекодородов предельных С1-С5 (1502*).

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, v/с, $G = G \cdot C / 100 = 0.002306 \cdot 72.46 / 100 = 0.001671$ Валовый выброс, v/год, $M = C \cdot I \cdot 3600 / 10^6 = 0.001671 \cdot 8760 \cdot 3600 / 10^6 = 0.052697$

Примесь: 0416 Смесь услеводородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, С = 26.86

```
Максимальный разовый выброс, г/с, G = G \cdot C / 100 = 0.002306 \cdot 26.86 / 100 = 0.000619
Валовый выброс, т/год, M = G \cdot T \cdot 3600 / 10^4 = 0.000619 \cdot 8760 \cdot 3600 / 10^4 = 0.019521
```

Примесь: 0602 Бензол (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.002306 \cdot 0.35 / 100 = 0.000008$ Валовый выброс, v/rox, $M = G \cdot T \cdot 3600 / 10^6 = 0.000008 \cdot 8760 \cdot 3600 / 10^6 = 0.000252$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Массовая концентрация компонента в потоке, %, С = 0.11

Максимальный разовый выброс, v'с, $C = C \cdot C / 100 = 0.002306 \cdot 0.11 / 100 = 0.000003$ Валовый выброс, v'год, $M = C \cdot T \cdot 3600 / 10^4 = 0.000003 \cdot 8760 \cdot 3600 / 10^4 = 0.000095$

Примесь: 0621 Менципбензоп (349)

Массовая концентрация компонента в потоке, %, С = 0.22

Максимальный разовый выброс, r/c, $C = C \cdot C / 100 = 0.002306 \cdot 0.22 / 100 = 0.000005$

Валовый выброс, $\pi/\text{год}$, $M = G \cdot I \cdot 3600 / 10^4 = 0.000005 \cdot 8760 \cdot 3600 / 10^4 = 0.000158$

Наимежование оборудования: Фланцевые соединения (тяжелые углеводороды)

Наименование технологического потока: Поток №8

Расчетная величина утечки, кт/час (Прил.Б1), Q = 0.000288

Расчетная доля уплотнений, потерявших герметичность, доля единицы (Прил.Б1), X = 0.02

Общее количество данного оборудования, шт., N = 72

Среднее время работы данного оборудования, час/год. Т = 8760

Суммарная утечка всех компонентов, кп/час (6.1), $G = X \cdot Q \cdot N = 0.02 \cdot 0.000288 \cdot 72 = 0.000415$

Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.000415/3.6 = 0.0001153

Примесь: 0415 Смесь углегодородог предельных С1-С5 (1501*)

Массовая концентрация компонента в потоке, %, С = 72.46

Максимальный разовый выброс, v/с, $G = G \cdot C / 100 = 0.0001153 \cdot 72.46 / 100 = 0.000084$ Валовый выброс, v/год, $M = G \cdot T \cdot 3600 / 10^4 = 0.000084 \cdot 8760 \cdot 3600 / 10^4 = 0.002649$

Примесь: 0416 Смесь уславодородов предельных С6-С10 (1503*)

Массовая концентрация компонента в потоке, %, С = 26.86

Максимальный разовый выброс, v/c, $G = G \cdot C / 100 = 0.0001153 \cdot 26.86 / 100 = 0.000031$ Валовый выброс, v/rox, $M = G \cdot T \cdot 3600 / 10^6 = 0.000031 \cdot 8760 \cdot 3600 / 10^6 = 0.000978$

Humara: 0602 Estata (64)

Массовая концентрация компонента в потоке, %, С = 0.35

Максимальный разовый выброс, r/c, $C = C \cdot C / 100 = 0.0001153 \cdot 0.35 / 100 = 4.035E-7$ Валовый выброс, v/roд, $M = C \cdot T \cdot 3600 / 10^4 = 0.0000004035 \cdot 8760 \cdot 3600 / 10^4 = 0.000013$

Примесь: 0616 Лименильензол (смесь с., м., п. изомеров) (203).

Массовая концентрация компонента в потоке, %, C = 0.11

Максимальный разовый выброс, r/c, $G = G \cdot C / 100 = 0.0001153 \cdot 0.11 / 100 = 1.268E-7$ Валовый выброс, v/год, $M = G \cdot T \cdot 3600 / 10^4 = 0.0000001268 \cdot 8760 \cdot 3600 / 10^4 = 0.0000004$

Примесь: 0621 Менципбецзоп (349)

Массовая концентрация компонента в потоке, %, С = 0.22

Максимальный разовый выброс, г/с, $G = G \cdot C / 100 = 0.0001153 \cdot 0.22 / 100 = 2.537Е-7$ Валовый выброс, т/год, $M = G \cdot T \cdot 3600 / 10^4 = 0.0000002537 \cdot 8760 \cdot 3600 / 10^4 = 0.000008$

Своимая таблица пасчетов

Оборудов.	Гентология. потек	Общее кол-	Epmen pa- bonne, v/s
Запорно-регулирующая арматура (тяжелые углеводороды)	Поток №8	18	8760
Фланцевые соединения (тяжелые углеводороды)	Поток №8	72	8760

Himmon

Kod	Hannenceanne 35	Bulipec de	Bulipec mised
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.001671	0.055346
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000619	0.020499
0602	Бензол (64)	8c-6	0.000265
0616	Диметилбекпол (смесь о-, м-, п- изомеров) (203)	3e-6	9.9e-5
0621	Метилбекова (349)	Se-6	0.000166

СВАРОЧНЫЙ ПОСТ

Источник загрязнения: 6011. Неопсанизованный источник

Источник выделения: 6011 01, Газорезка

Список литературы:

Методика расчета выбросов загрязияющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент траноформации оксидов азота в NO2, XNO2 = 0.8 Коэффициент траноформации оксидов азота в NO, ENO = 0.13

РАСЧЕТ выбросов ЗВ от резки метациов

Вид режи: Газовая

Разрезаемый материал: Сталь углеродистая

Толщина материала, мм (табл. 4), I = 5

Способ расчета выбросов: по времени работы оборудования Время работы одной единицы оборудования, час/год, Т = 200

Удельное выделение сварочного вэрозоля, г/ч (табл. 4), GT = 74 в том числе:

Примесь: 0143 Маргапец и его соедипения (в пересчене на маргапца (IV) оксид) (327)

Удельное выделение, r/v (табл. 4), GT = 1.1

Banossili subpoc 3B, π/rog (6.1), $M = GT \cdot I / I\theta^4 = 1.1 \cdot 200 / I\theta^4 = 0.00022$

Максимальный разовый выброс 3B, r/c (6.2), C = GT / 3600 = 1.1 / 3600 = 0.0003056

Примесь: 0123 Железо (П, ПП) оксиды (в переслены на железо) (диЖелезо триоксид, Железа оксид) (274). Удельное выделение, v4 (126л. 4), GT = 72.9

Валовый выброс ЗВ, $\pi/rод$ (6.1), $M = GT \cdot T / 10^6 = 72.9 \cdot 200 / 10^6 = 0.01458$

Максимальный разовый выброс 3B, r/c (6.2), G = GT / 3600 = 72.9 / 3600 = 0.02025

Примесь: 0337 Углерод оконд (Окноь углерода, Угарпый газ) (584)

Удельное выделение, r/4 (табл. 4), CT = 49.5

Валовый выброс 3В, π /год (6.1), $M = GT \cdot T / 10^6 = 49.5 \cdot 200 / 10^6 = 0.0099$ Максимальный разовый выброс 3В, π /с (6.2), G = GT / 3600 = 49.5 / 3600 = 0.01375

Расчет выбросов оксидов азота:

Удельное выделение, п/ч (табл. 4), СТ = 39

С учетом траноформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс ЗВ, π /год (6.1), $M = ENO2 \cdot GI \cdot I \cdot /10^4 = 0.8 \cdot 39 \cdot 200 \cdot /10^4 = 0.00624$ Максимальный разовый выброс ЗВ, π /с (6.2), $G = ENO2 \cdot GI \cdot /3600 = 0.8 \cdot 39 \cdot 3600 = 0.00867$

Примесь: 6304 Азет (П) оксид (Азета оксид) (6) Валовый выброс ЗВ, т/год (6.1), $M = ENO \cdot GT \cdot T \cdot /10^6 = 0.13 \cdot 39 \cdot 200 / 10^6 = 0.001014$ Максимальный разовый выброс ЗВ, т/с (6.2), $G = ENO \cdot GT / 3600 = 0.13 \cdot 39 / 3600 = 0.001408$

Итого:

Kad	Наименование 3Б	Buspec s/c	Быброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0.02025	0.01458
	оксид) (274)		
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.0003056	0.00022
0301	Азота (ГV) дновенд (Азота дновенд) (4)	0.00867	0.00624
0304	Азот (II) оксид (Азота оксид) (б)	0.001408	0.001014
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01375	0.0099

Источник загрязнения: 6017, Неорганизованный источник

Источник выделения: 6017 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязияющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астина, 2005.

Коэффициент траноформации оксидов азота в NO2, ENO2 - 0.8

Коэффициент траноформации оксидов азота в NO, **ENO = 0.13**

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручкая дуговая сварка сталей штучными электродами

Электрод (сварочный материал): штучные электроды

Расход сварочных материалов, кг/год, В = 50

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BM4X = 0.06

Удельное выделение сварочного дорозоля,

п/кг расходуемого материала (таба. 1, 3), GES = 7.5

в том числе:

Примесь: 6123 Желеко (П. III) оконды (в пересъете на желеко) (диЖелеко прискоид. Желеко оконд) (274).

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), СЕУ = 4.49

Валовый выброс, $\pi/\text{год}$ (5.1), $M_{-} = \text{GIS} \cdot \text{Б} / 10^6 = 4.49 \cdot 50 / 10^6 = 0.0002245$

Макенмальный из разовых выброс, r/c (5.2), С = GIS · BMAX / 3600 = 4.49 · 0.06 / 3600 = 0.0000748

Примесь: 0143 Мархапен и его соедипения (в пересчене на мархапиа (IV) оконд) (327).

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (таба. 1, 3), GZS = 1.41

Валовый выброс, $\pi/\text{год}$ (5.1), $M = \text{GZS} \cdot B / 10^6 = 1.41 \cdot 50 / 10^6 = 0.0000705$

Максимальный из разовых выброс, г/с (5.2), С - GIS · BMAX / 3600 - 1.41 · 0.06 / 3600 = 0.0000235

Примесь: 1908 Пыль пеорганическая, содержащая деускись крентия в %: 70-20 (шамот, ценетт, пыль ценеттенного производства - глипа, глипистый слапец, доменный шлак, песск, клипкер, зола, крентеген, зола углей казанстаниям месторождений) (494)

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), GZS = 0.8

Валовый выброс, $\pi/\text{год}(5.1)$, $M = GZS \cdot B / 10^6 = 0.8 \cdot 50 / 10^6 = 0.00004$

Максимальный из разовых выброс, г/с (5.2), С = GIS · BMAX / 3600 = 0.8 · 0.06 / 3600 = 0.00001333

Примесь: 0344 Фториды пеорганические плого растеоричне - (алганипия фторид, кальшия фторид, патрия, зексафторал коминат) (Фториды пеорганические плого растеоричне /s пересчете на фтор/) (615)

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), GZS = 0.8

Валовый выброс, $\pi/\text{год}$ (5.1), $M = C25 \cdot B / 10^6 = 0.8 \cdot 50 / 10^6 = 0.00004$

Максимальный из разовых выброс, r/c (5.2), $G = GZS \cdot BMAX / 3600 = 0.8 \cdot 0.06 / 3600 = 0.00001333$

Гезы

Примесь: 0342 Фтористые газообразные соединения /е пересчены на фтор/ (617)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), GZS - 1.17

Banonsiši natopoc, π/rog (5.1), $M = GZS \cdot B / I\theta^6 = 1.17 \cdot 50 / I\theta^6 = 0.0000585$

Максимальный из разовых выброс, v/c (5.2), $C = GZS \cdot BM4X / 3600 = 1.17 \cdot 0.06 / 3600 = 0.0000195$ Нуюго:

Ked	Наименогалия 35	Βιώδρου είν	Быбрес т/год
	Железо (П, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксил) (274)	0.0000748	0.0002245
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.0000235	0.0000705
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.0000195	0.0000585
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция	0.00001333	0.00004
	фторид, натрия гексафторалюминат) (Фториды неорганические плохо		
	растворяные /в пересчете на фтор/) (615)		
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,	0.00001333	0.00004
	пыль цементного производства - глина, глиняетый сланец, доменный шлак,		
	песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		

ОКРАСОЧНЫЙ ПОСТ

Источник загрязнения: 6018, Неорганизованный источник

Источник выделения: 6018 01, Краска

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении дакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, токи, МУ - 1.5

Максимальный часовой расход ЛКМ, с учетом дискреткости работы оборудования, кг. MS2 = 0.2

Марка ЛКМ: Эмаль

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Лимениябенног (смесь с-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), $\pi/\text{год}$, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 1.5 \cdot 45 \cdot 50 \cdot 100 \cdot 10^4 = 0.3375$

Максимальный из разовых выброс 3В (5-6), r/c, $G = MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.2 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6)$ $10^{\circ}) = 0.0125$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), $\pi/\text{год}$, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 1.5 \cdot 45 \cdot 50 \cdot 100 \cdot 10^4 = 0.3375$

Максимальный из разовых выброс 3В (5-6), г/с, С = MSI · F2 · FPI · DP / (3.6 · 10*) = 0.2 · 45 · 50 · 100 / (3.6 · $10^6) = 0.0125$

H roro:

Ked	Haunenceanne 3D	Budgee de	Быброс міход
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0125	0.3375
2752	Уайт-спврит (1294*)	0.0125	0.3375

ДЭС

Источник загрязнения: 0008, Дымовая труба

Источник выделения: 0008 01, ДЭС Р-250Н "FH-Wilson"

Список литературы:

1. Методика расчета вормативов выбросов вредных веществ от стационарных дюзельных установок Приложение № в Приказу Мязянстра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-f

Максимальный расход диз. топлива установкой, кп/час, Сельге = 37.8

Годовой расход дизельного топлива, т/год, Сезоо = 15

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 30

Максимальный разовый выброс, г/с, _ G _= Grzecx · E> / 3600 = 37.8 · 30 / 3600 = 0.315

Валовый выброс, т/год, М = Gross · Es / 10³ = 15 · 30 / 10³ = 0.45

Примесь: 1325 Фермальдельд (Менапаль) (609)

Оценочное значение среднециклового выброса, п/кг топлива (табл.4), Ез = 1.2

Максимальный разовый выброс, г/с, С = Сгимх · Ез / 3600 = 37.8 · 1.2 / 3600 = 0.0126

Валовый выброс, $\pi/\text{год}$, $M = G_{PO00} \cdot E_{P} / 10^{4} = 15 \cdot 1.2 / 10^{3} = 0.018$

Примесь: 0304 Азот (П) оксид (Азота оксид) (б)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Е> - 39

Максимальный разовый выброс, vic, $C = Gross \cdot E_2 / 3600 = 37.8 \cdot 39 / 3600 = 0.4095$ Валовый выброс, viron, $M = Gross \cdot E_2 / 10^3 = 15 \cdot 39 / 10^3 = 0.585$

Примесь: 0330 Сера диоксид (Аплидрид серпистий, Серпистий газ, Сера (IV) оксид) (516) Оценочное значение среднециклового выброса, п/кг топлива (186л.4), Ез = 10

Максимальный разовый выброс, г/с, _G_ = Graux · Es / 3600 = 37.8 · 10 / 3600 = 0.105

Валовый выброс, т/год. M = Groso · Es / 10² = 15 · 10 / 10³ = 0.15

Примесь: 0337 Углерод оксид (Окись углерода, Угарпый газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 25

Максимальный разовый выброс, r/c, G = Grzи.cc · E> / 3600 = 37.8 · 25 / 3600 = 0.2625

Валовый выброс, т/год, $M = G_{P000} \cdot E_9 / 10^3 = 15 \cdot 25 / 10^3 = 0.375$

Примесь: 2754 Алкапы С12-19 /е перестены па С/ (Условодороды предельные С12-С19 (е перестены на С);

Расписоническ РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 12 Максимальный разовый выброс, г/с, _C _= Сельск · Е» / 3600 = 37.8 · 12 / 3600 = 0.126

Валовый выброс, т/год, $M = C_{POOO} \cdot E_9 / 10^4 = 15 \cdot 12 / 10^4 = 0.18$

Примесь: 1301 Пров-2-ек-1-аль (Акрелена, Акрилальдельд) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 1.2

Максимальный разовый выброс, r/c, $G = Gradex \cdot E_F / 3600 = 37.8 \cdot 1.2 / 3600 = 0.0126$ Валовый выброс, π/rox , $M = Groso \cdot E_F / 20^3 = 15 \cdot 1.2 / 10^3 = 0.018$

Примесь: 0328 Усперод (Самса, Усперод пераміі) (583).

Оценочное значение среднециклового выброса, п/кг топлива (табл.4), Еэ = 5

Максимальный разовый выброс, п/с, С = Стэмлс · E> / 3600 = 37.8 · 5 / 3600 = 0.0525

Валовый выброс, $\pi/\text{год}$, $M = G_{POCO} \cdot E_{P} / 10^{3} = 15 \cdot 5 / 10^{3} = 0.075$

Ked		Buspec de	Εμέρος πέροδ
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.315	0.45
0304	Азот (II) оксид (Азота оксид) (б)	0.4095	0.585
	Углерод (Сажа, Углерод черный) (383)	0.0525	0.075
0330	Сера дноксяд (Ангядряд сернястый, Серкистый газ, Сера (IV) оксяд) (516)	0.105	0.15
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.2625	0.375
1301	Проп-2-ея-1-аль (Акролеян, Акрилальдегид) (474)	0.0126	0.018
	Формальдегид (Метакаль) (609)	0.0126	0.018
	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.126	0.18
	пересчете на С); Растворитель РПК-265П) (10)		

ПЕРЕДВИЖНЫЕ ИСТОЧНИКИ (для работы на линейной части МН)

Источник загрязнения: 0017, Дымовая труба

Источник выделения: 0017 01, Akimotor water pump (мотопомпа переносная для работы на линейной части МН)

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение № к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. No 221-F

Максимальный расход диз. топлива установкой, кп'час, Симля = 0.0252

Годовой расход дизельного топлива, т/год, Слоко = 0.4

Примесь: 0301 Азота (TV) дионенд (Азота дионенд) (4).

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Еэ = 30

Максимальный разовый выброс, г/с, С = Graux · E> / 3600 = 0.0252 · 30 / 3600 = 0.0002

Banonsili nuopoc, π/rox , $M = C_{POSO} \cdot E_2 / 10^2 = 0.4 \cdot 30 / 10^3 = 0.012$

Примесь: 1325 Формальденід (Менапаль) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Е> = 1.2

Максимальный разовый выброс, г/с, С = Grama: E> / 3600 = 0.0252 · 1.2 / 3600 = 0.0000084

Валовый выброс, т/год, М = Cross · Es / 10³ = 0.4 · 1.2 / 10³ = 0.0005

Примесь: 0304 Азот (II) оконд (Азота оконд) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 39

Максимальный разовый выброс, π/c , $G = Grimax \cdot E_2 / 3600 = 0.0252 \cdot 39 / 3600 = 0.0003$ Валовый выброс, $\pi/rog_s = M = Gross \cdot E_2 / 10^2 = 0.4 \cdot 39 / 10^3 = 0.0156$

Примесь: 0330 Сера диоконд (Аплидрид серпнотий, Серпнотий газ. Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл. 4), Е> -10

Максимальный разовый выброс, π /с, $G = Gromax \cdot E_{T} / 3600 = 0.0252 \cdot 10 / 3600 = 0.00007$

Валовый выброс, т/год, M = Gross · E> / 10° = 0.4 · 10 / 10³ = 0.004

Примесь: 0337 Углерод оконд (Окись углерода, Угарпий 121) (584)

Оценочное значение среднециклового выброса, π /кг топлика (π 6л.4), $E_{S}=25$ Максимальный разовый выброс, π /с, $G_{S}=G_{FDMAX}\cdot E_{S}=/3600=0.0252\cdot 25/3600=0.0002$ Валовый выброс, π /год, $M_{S}=G_{FDMA}\cdot E_{S}=/10^{3}=0.01$

Примесь: 2754 Алкапи С12-19 /е пересчени па С/ (Успендороды предельные С12-С19 (е пересчени па С);

<u>Распиоритель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, $v/\kappa r$ топлива (табл.4), $E_2=12$ Максимальный разовый выброс, v/c, $G_1=Grout \cdot E_2 / 3600=0.0252 \cdot 12 / 3600=0.00084$ Валовый выброс, $v/rog_1 M_2=Groso \cdot E_2 / 10^2=0.4 \cdot 12 / 10^3=0.0048$

Примесь: 1301 Пров-2-ев-1-аль (Акролени, Акрипальдельд) (474)

Оценочное значение среднециклового выброса, т/кг топлива (табл.4), $E_2=1.2$ Максимальный разовый выброс, т/с, $G_1=Grimax\cdot E_2=/3600=0.0252\cdot 1.2/3600=0.0000084$ Валовый выброс, τ /год, $M_1=Grisso\cdot E_2=/10^2=0.4\cdot 1.2/10^2=0.0005$

Примесь: 8328 Углерод (Сажа, Углерод пераніі) (583)

Оценочное значение среднециклового выброса, г/кг топлива (габл.4), E₂ = 5 Максимальный разовый выброс, г/с, <u>G</u> = *Grama*: E₂ / 3600 = 0.0252 · 5 / 3600 = 0.000035 Валовый выброс, г/год, <u>M</u> = *Graso* · E₂ / 10³ = 0.4 · 5 / 10³ = 0.002

Kad	Наименование 35	Buspecule	Быброс т/год
0301	Азота (IV) дноксид (Азота дноксид) (4)	0.0002	
0304	Азот (II) оксид (Азота оксид) (6)	0.0003	
	Углерод (Сажа, Углерод черный) (583)	3.5e-5	
0330	Сера дновсяд (Ангидряд сернястый, Серкистый газ, Сера (IV) оксид) (516)	7e-5	
	Углерод оксид (Окись углерода, Угарный газ) (384)	0.0002	
1301	Проп-2-ем-1-аль (Акролеми, Акрилальдегиц) (474)	8.46-6	
	Формальдегид (Метакаль) (609)	8.40-6	
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	8.4c-5	
	пересчете на С); Растворитель РПК-265П) (10)		

Согласно п.17 стятья 202 Экологического кодекса РК «Нормативы эмиссий от перединявых источников ис устанавлению техновического. Соответственно, валюные ныбросы от перединявых источников не нормируются.

ОПРЕДЕЛЕНИЕ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОС+ЕРУ НА ПРОМПЛОЩАДКЕ НПС «Косшагыл»

на различные виды работ, выполняемые подрядными организациями п/или собственными силами на 2024-2028 годы

Расчеты выбросов загрязняющих веществ в атмосферу производились на основании технических характеристик применяемого оборудования, в соответствии со следующими отраслевыми нормани технологического проектирования и, отраслевыми методическими указаниями и рекомендациями по определению выбросов вредных веществ в атмосферу:

- Сборник методик по расчету выбросов вредных в атмосферу различными производствами. Алматы, КазЭКОЭКСП, 1996 г.
- Методические украиния по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 г.
- Методические указання расчета выбросов от предприятий, осуществляющих хранение и реализацию вефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение и приказу МООС РК от 29.07.2011 г. №196
- Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астажа, 2005 г.
- Менодика расчета выбросов загрязняющих веществ от автограмспортных предпрактий (раздел 3).
 Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстви от 18.04.2008 г. №100-и.
- Меходика расчета выбросов загразняющих веществ от предприятий дорожно-строительной отрасля (раздел 4). Приложение №12 к Прикозу Министра охраны окружающей среды Республики Казахстви от 18.04.2008 г. №100-и
- Методика расчета вормативов выбросов вредных веществ от стационарных дизельных установок Приложение №14 к Приказу Министра охраны окружающей среды Республики Казахстви от 18.04.2008 г. №100-и
- Временные рекомендации по расчету выбросов от стационарных дисельных установок. Л., 1988 г.
- Методика расчета выбросов загрязивющих веществ в атмосферу от объектов 4 категории. Придожение №9 к Прикату Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. №100-и.
- Методика расчета выбросов загрязняющих веществ в атмосферу при нанесения дакокрасочных метериалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астама, 2005 г.

На период нормированием на промилощадие НПС «Косшагъд» планируются следующие работы:

Текущий ремонт объектов НПС Косшагыл,

Отсечение РВС от технологического трубопровода;

Зачистка РВС;

Наружное антикоррозновное покрытие РВС,

Внутреннее антикоррозновное покрытие РВС

Гидравлическое испытание технологических трубопроводов;

Ремонт дефекта тела трубы;

Обслуживание запорной армитуры;

Обследование технологических трубопроводов;

Днагностика/обследование резервуаров и емкостей;

Внутритрубная днагностика,

Планово-предупредительные работы, в том числе ТОмТР, двагностика, обследование, изспертиов и т.д.;

При проведении таких работ выбросы могут быть от:

- Сварочных работ,
- Покрасочных работ,
- Компрессоров, насосов, ДЭС, ППУ, битумных котлов, отбойных молотков, перфораторов и т.п.;
- Земляных работ (разработка грунта при вскрытии оборудования пыление);
- Пълския от автотранспорта и спецтелники, а также от временного хранения стройматериалов;
- Работы переносных инструментов и оборудования (при шлифовально-операвльно-опрезных работах),
- Дегазаций емкостей и т.п.

ТЕКУЩИЙ РЕМОНТ ОБЪЕКТОВ НПС КОСШАГЫЛ – ежегодно

Источник загрязнения: 7000, Неорганизованный источник Источник выджления: 7000 01, Компрессор передвижной

Список литературы:

Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахетан от 12.06.2014 г. № 221-Г Максимальный расход двз. топлива установкой, кг/час, Сельст = 7.6 Годовой расход двзельного топлива, т/год, Селью = 0.3306

Примясь: 0301 Азота (IV) дноконд (Азота дноконд) (4)

Оценочное значение среднециклового выброса, г/кг тогинива (табл. 4), $E_2 = 30$ Максимальный разовый выброс, г/с, $G_1 = Grmox \cdot E_2 / 3600 = 7.6 \cdot 30 / 3600 = 0.0633$ Валовый выброс, т/год $M_1 = Grmox \cdot E_2 / 10^2 = 0.3306 \cdot 30 / 10^2 = 0.00992$

Примесь: 1325 Формальденид (Менедадзь) (609)

Оценочное значение среднециклового выброса, г/кг тогиява (табл.4), $E_2=1.2$ Максимальный разовый выброс, г/с, $G=Grmax\cdot E_2/3600=7.6\cdot 1.2/3600=0.002533$ Валовый выброс, т/год $M=Groso\cdot E_2/10^2=0.3306\cdot 1.2/10^3=0.000397$

Примясь: 0304 Азот (II) окоид (Азота окоид) (6)

Оценочное звачение среднециклового выброса, г/кг тоглява (табл.4), $E_2 = 39$ Максимальный разовый выброс, г/с, $G_1 = Gr_{1000} \cdot E_2 / 3600 = 7.6 \cdot 39 / 3600 = 0.0823$ Валовый выброс, τ /год $M_2 = Gr_{2000} \cdot E_2 / 10^2 = 0.3306 \cdot 39 / <math>10^2 = 0.0129$

Примесь: 0330 Сера дионенд (Аплидрид серпнотий, Серпнотий газ. Сера (IV) оконд) (316)

Оценочное звячение среднециклового выброса, г/кг топлява (твбл.4), $E_2 = 10$ Максимальный разовый выброс, г/с, $G_1 = Gr_{DOS} \cdot E_2 / 3600 = 7.6 \cdot 10 / 3600 = 0.0211$ Валовый выброс, $\pi/r_{OS} \cdot M_1 = Gr_{DOS} \cdot E_2 / 10^2 = 0.3306 \cdot 10 / 10^3 = 0.003306$

Примесь: 0337 Усперод оксид (Окись углерода, Угараміі газ) (584)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), $E_2 = 25$ Максимальный разовый выброс, г/с, $G = Grmax \cdot E_2 / 3600 = 7.6 \cdot 25 / 3600 = 0.0528$ Валовый выброс, π /год. $M = Groso \cdot E_2 / 10^4 = 0.3306 \cdot 25 / 10^4 = 0.00827$

Примет: 2754 Алкапи С12-19 /е перестени на С/ (Услеводероды предельные С12-С19 (е перестени на С); Расписовитель РПК-165П) (10)

Оценочное звачение среднециклового выброса, г/кг тоглява (твбл.4), $E_2=12$ Максимальный разовый выброс, г/с, $G_1=G_{PDGO}\cdot E_2/3600=7.6\cdot 12/3600=0.02533$ Валовый выброс, π /год $M_1=G_{PDGO}\cdot E_2/10^4=0.3306\cdot 12/10^4=0.00397$

Примесь: 1301 Пров-2-ев-1-аль (Акролена, Акрипальдевид) (474)

Оценочное звячение среднециклового выброса, г/кг тоглява (табл.4), $E_2=1.2$ Максимальный разовый выброс, г/с, $G_1=Grmax\cdot E_2/3600=7.6\cdot 1.2/3600=0.002533$ Валовый выброс, $\pi/rog_1M_1=Groso\cdot E_2/10^2=0.3306\cdot 1.2/10^3=0.000397$

Примесь: 0328 Углерод (Сажа, Углерод черпий) (583)

Оценочное звичение среднециклового выброса, г/кг топлява (табл.4), $E_2 = 5$ Максимальный разовый выброс, г/с, $G_1 = Grmax \cdot E_2 / 3600 = 7.6 \cdot 5 / 3600 = 0.01056$ Валовый выброс, τ /год $M_2 = Grmax \cdot E_3 / 10^4 = 0.3306 \cdot 5 / 10^4 = 0.001653$

Итого:

Koð		Bushpec sic	Bubpec m/seð
	Азота (IV) двоксяд (Азота дновсяд) (4)	0.0633	
	Азот (II) оксид (Азота оксид) (6)	0.0823	
	Углерод (Саяв, Углерод черный) (583)	0.01056	
	Сера двокенд (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0211	
	Углерод оксид (Окись углерода, Угарный газ) (384)	0.0528	
	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.002533	
1325	Формальдегид (Метаналь) (609)	0.002533	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.02533	
	пересчете на С); Растворитель РПК-265П) (10)		

Согласно п.17 стятья 202 Экологического кодекса РК «Нормативы эмиссий от перединением источников не устанавливаются. Соответственно, вызовые выбросы от передникимых источников не исрыируются

Источник загрязнения: 7000, Неорганизованный источник

Источник выделения: 7000 02, Молотки отбойные

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов. Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п Коэффиционт гранитационного осаждения твердых вомпонентов, п.2.3, EOC = 0.4

Тип источника выделения: Расчет выбросов пыли при буровых работах.

Буровой стакок: СБШ-200.

Общее количество работающих буровых станков данного типа, шт., N = 1

Каличество одновременно работнокорх буровых станков данного тига, шт., NI = 1

"Чистое" время работы одного станка данного типа, час/год. _ Т = 48

Крепость горной массы по шкале М.М.Протодывсонова: < = 4

Средняя объемняя производительность бурового станка, м3/час(габа, 3.4.1), V = 1.41

Тип выбуряваемой породы и ее крепость (f). Известняки, углистые сланцы, конгломераты, f< = 4

Влажность выбурнваемого материала, %, VZ = 5

Коэфф., учитывающий влажность выбуряваемого материала(табл.3.1.4), Е5 = 0.7

Средства пылеподавления или улавливание пыли: УСП - сухое пылеподавление

Удельное пылемыделение с 1 м3 выбуренной породы данным типом станков в зависимости от крепости породы, кг/м3 (габл 3.4.2). О = 0.8

Примесь: 1998 Пыль пеорганическая, содержащая двускись кремник в %: 78-20 (шамот, ценетт, пыль ценеттего производства - спипа, глипистый спапец, дометный млак, песок, клипкер, гола, крентеген, гола успей казакстанских местерожедений) (494)

С учетом коэффициента гранитационного осаждения

Максимальный разовый выброс одного станка, r/c (3.4.4), $G = EOC \cdot V \cdot Q \cdot E5 / 3.6 = 0.4 \cdot 1.41 \cdot 0.8 \cdot 0.7 / 3.6 = 0.0077$

Валовый выброс одного станка, τ' год (3.4.1), $M = KOC \cdot V \cdot Q \cdot \underline{\Gamma} \cdot K5 \cdot 10^{-6} = 0.4 \cdot 1.41 \cdot 0.8 \cdot 48 \cdot 0.7 \cdot 10^{-6} = 0.01516$

Разовый выброс одвовременно работающих станков данного типа, r/c, $_G_=G\cdot NI=0.0877\cdot 1=0.0877$ Валовый выброс от всех станков данного типа, r/rcа, $_M_=M\cdot N=0.01516\cdot 1=0.01516$

Hyaco:

Kod	Hannen ocanne 35	Выброс во	Выбрес т/год
2908	Пыль неорганическая, содержащая двускись кремник в % 70-20 (шамот, цемент, пыль цементного производства - гдина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторхожлений) (494)	0.0877	

Источник загрязнения: 7000, Неорганизованный источник

Источник выделения: 7000 03, Пыление автотранспорта

Список литературы:

Методика расчета нерыштивов выбросов от неорганизованных источников и. З Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов. Придожение №11 к Приказу Министра охраны окружающей среды Республики Казахстви от 18.04.2008 №100-п

Коэффиционт гравитационного ослядения твердых компонентов, п.2.3, $\Sigma OC = 0.4$

Тип источника выделения: Расчет выбросов пыли при транспоетных работах

Средняя грузоподъемность единицы автогранспорта: >5 - < = 10 токи

Коэфф., учитывающий грузоподъемность (таба.3.3.1), CI = 1

Средняя сворость передвижения автотранспорта: <= 5 км/час

Коэфф., учитывающий скорость передвижения (таба 3.3.2), С2 = 0.6

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (табл.3.3.3), СЗ = 1

Число автомация, одновременно работноция в карьере, шт., N2 = 7

Средняя продолжительность одной ходки в пределах промилопадки, км, Z = 0.2

Число ходок (туда + обратно) всего транспорта в час, N = 2

Коэфф., учитывающий долю пыли, уносимой в атмосферу, С7 = 0.01

Пылехыделение в атмосферу на 1 км пробега, г/км, Q1 = 1450

Влавность поверхностного слов дороги, %, VZ = 1

Коэфф., учитывающий уклажиенность дороги (габл. 3.1.4), #5 = 0.9

Коэфф., учитывающий профиль поверхности материала на платформе, С4 = 1.45

Наяболее характерная для данного района скорость ветра, м/с, V2 = 4.4

Средняя скорость движения транспортного средства, км/час, VZ = 5Скорость обдува, м/с, $VDB = (VZ \cdot VZ / 3.6)^{0.5} = (4.4 \cdot 5 / 3.6)^{0.5} = 2.47$

Coopers on the wife to B = [12 - 12 / 24 / - - (4.4 - 3 / 3.6) - - 2.4 /

Коэфф., учитывающий скорость обдува материала в кузове (табл. 3.3.4), С5 = 1.13

Площадь открытой поверхности материала в кузове, м2, $\mathcal{E}=2$

Перевозный материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2°с (табл.3.1.1), Q = 0.004

Влажность перевозньюго материала, %, РД - 1

Коэфф., учитывающий влажность перевозимого материала (табл.3.1.4), **К5М = 0.9**

Количество дней с устойчивым снежным покровом, ТЕР = 30

Продолжительность осалков в виде дожди, часов/год. IO = 80

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 80 / 24 = 6.67$

Примесь: 2008 Пыль пеоргалическая, содержащая деускись креняця в %: 70-20 (шанот, ценетт, пыль ценеттого производства - глипа, глипистый спапт, дометный иглак, песок, клипкер, эсла, кремпезен, зела услей казахотапских месторождений) (494).

С учетом коэффициента гравитационного осаждения

Максимальный разовый выброс, п'с (3.3.1), G = XOC · (C1 · C2 · C3 · X5 · C7 · N · L · (21 / 3600 + C4 · C5 · X5M · $Q \cdot S \cdot NI = 0.4 \cdot (1 \cdot 0.6 \cdot 1 \cdot 0.9 \cdot 0.01 \cdot 2 \cdot 0.2 \cdot 1450 / 3600 + 1.45 \cdot 1.13 \cdot 0.9 \cdot 0.004 \cdot 2 \cdot 7) = 0.0334$ Валовый выброс, v/год (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + ID)) = 0.0864 \cdot 0.0334 \cdot (365 \cdot (30 + 6.67)) = 0.947$ **Wirespee**

Ked	Евимепование 35	Bubpoc de	Выбрас т/год
2908	Пыль неорганическая, содержащая двужнось кремния в %: 70-20 (шамот,	0.0334	0.947
	цемент, пыль цементного производства - гляна, глянистый сланец, доменный		
	шлак, песок, клижер, зола, кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загразнения: 7000, Неорганизованный источник

Источник выделения: 7000 04, Переносные инструменты (прель)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка метадлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из феррадо: Сверлильные станки

Фактический годовой фонд времени работы одной единицы оборудовании, ч/год. Т - 30.5

Число станков данного типа, шт., _EOLIV _= 1

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2002 Бранцевине застыны (116)

Удельный выброс, r/c (табл. 1), GV = 0.007

Коэффициент гранитационного осединия (п. 5.3.2), EN = 0.2

Валовый выброс, $\pi/\text{год}$ (1), $M = 3600 \cdot \text{GV} \cdot \text{I} \cdot \text{EOLIV} / 10^4 = 3600 \cdot 0.007 \cdot 30.5 \cdot 1 / 10^4 = 0.000769$ Максимальный из разовых выброс, π/c (2), $G = \text{EN} \cdot \text{GV} \cdot \text{NSI} = 0.2 \cdot 0.007 \cdot 1 = 0.0014$

	W.		
Kod	Наименование 35	Βιεύρου ν'ο	Биброс полод
2902	Външенные частилы (116)	0.0014	0.000769

Источник загрязнения: 7000, Неорганизованный источник

Источник выделения: 7000 05, Переносные инструменты (шлифмашинка)

Списов литературы:

Методина расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлажления

Вид оборудования: Круглошлифовальные станки, с диаметром шлифовального круга - 100 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год. Т = 5.5

Число станков данного типа, шт., _КОЦІV_ = 1

Число станков данного типа, работающих одновременно, шт., NSI = 1

Примесь: 2030 Пінль абразневая (Корутд белий, Монохорутд) (1027*) Удельный выброс, г/с (табл. 1), GV = 0.01

Коэффициент гравитационного оседания (п. 5.3.2), EN = 0.2

Валовый выброс, т/год (1), $_{_}M_{_} = 3600 \cdot GV \cdot _{_}I_{_} \cdot _{_}KOLIV_{_} / 10^{4} = 3600 \cdot 0.01 \cdot 5.5 \cdot 1 / 10^{4} = 0.000198$ Максимальный из разовых выброс, r/c (2), $_{_}G_{_} = EN \cdot GV \cdot NSI = 0.2 \cdot 0.01 \cdot 1 = 0.002$

Примесь: 2002 Вмениеваме хасницы (216) Удельный выброс, r/c (табл. 1), GV = 0.018

Коэффициент гранитационного оседания (п. 5.3.2), EN = 0.2

Валовый выброс, π /год (1), $M = 3600 \cdot GV \cdot I - EOLIV / 10^4 = 3600 \cdot 0.018 \cdot 5.5 \cdot 1 / 10^4 = 0.0003564$

Максимальный из разовых выброс, n(c (2), G_{-} = $EN \cdot GV \cdot NSI = 0.2 \cdot 0.018 \cdot 1 = 0.0036$

Kad	Наименование 35	Buépoc do	Βιώρρος πέροδ
2902	Взяещенные частицы (116)	0.0036	0.0003564
2930	Пыль абразнявая (Корунд белый, Монокорунд) (1027*)	0.002	0.000198

Источник загрязнения: 7000, Неорганизованный источник

Источник выделения: 7000 06, Переносные инструменты (пила)

Список литературы:

Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности. РНД 211.2.02.08-2004. Астака, 2005

Количество загрязняющих веществ, выделяющихся при деревообработке подсчитывается по удельным показателям, отнесенным ко времени работы деревообрабатывающего оборудования

Вид станка: Станки круглопильные

Марка, модель станка: для смещанного раскроя пиломатериалов на заготовки: IIУ-2

Удельное выделение пыли при работе оборудования, $r/c(\Pi 1.1)$, Q = 1.39

Местный отсос пыли не проводится

Фактический годовой фонд времени работы единицы оборудования, час, _ T = 5.8

Количество станков данного типа, _XOLIV_ = 1

Количество одновременно работающих станков дажного типа, NI = 1

Примесь: 2036 Пыль древеская (1030*)

Согласно п.5.1.3 коэффициент, учитывающий

гравитационное оседание твердых частиц. XIV = 0.2

Удельное выделение пыли от станка, с учетом поправочного коэффициента, $v(c, Q = Q \cdot EN = 1.39 \cdot 0.2 = 0.278$ Максимальный из разовых выброс, r/c (3), $C = Q \cdot NI = 0.278 \cdot 1 = 0.278$

Banosoe выделение 3B, τ/τ од (1), $M_{-} = Q \cdot T_{-} \cdot 3600 \cdot EOLIV_{-} / 10^{4} = 0.278 \cdot 5.8 \cdot 3600 \cdot 1 / 10^{4} = 0.0058$

20.00	Us		
Kod	Наименование 35	Bushpee ele	Budgee m/sed
2936	Пьить этелеския (1039*)	0.278	0.0058

Источник загразнения: 7000, Неорганизованный источник

Источник выделения: 7000 07, Переносные инструменты (ножинцы электрические)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величиним удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка метадлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из стали: Отрезные станки

Фактический годовой фонд времени работы одной единицы оборудования, \sqrt{r} од, $I_{\perp} = 0.5$

Число станков данного типа, шт., **ЕОЦІ**V = 1

Число станков данного типа, работающих одновременно, шт., NS2 - 1

Примесь: 2002 Блениеване хаспини (216)

Удельный выброс, r/e (тябл. 1), CV = 0.203

Коэффиционт гранитационного оседания (п. 5.3.2), EV = 0.2

Валовый выброс, т/год (1), $M = 3600 \cdot GV \cdot I \cdot EOLIV / 10^4 = 3600 \cdot 0.203 \cdot 0.5 \cdot 1 / 10^4 = 0.0003654$ Максимальный из разовых выброс, т/с (2), $G = EN \cdot GV \cdot N\Sigma I = 0.2 \cdot 0.203 \cdot 1 = 0.0406$

Kod	Наименование 35	Bushpec ale	Bubpec m/seè
2902	Взяещенные частицы (116)	0.0406	0.0003654

Неточник загрязвения: 7000, Неорганизованный источник Неточник выделения: 7000 08, Пыление от стройматериалов

Список литературы:

- Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г
- Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по проклюдетну строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахетан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилица, узлы пересыпки пылящих материалов Материал: Песок

Примесь: 2005 Пыль пеорганическая, содержащая двускись крентия в %: 70-20 (шамот, ценетт, пыль неметятого производства – глипа, глипастый слапен, дометный шлак, песок, клипкер, эсла, крентезен, зела услей казакотапског местерождений) (404)

Branssoch материала, %, VL = 1

Коэфф., учитывающий влажность материала(табл.4), Д5 = 0.8

Операция: Храмевие

Скорость ветра (среднегодовая), м/с, G3SR = 4.4

Коэфф., учитывающий средвегодовую скорость ветра(табл. 2), X3SR = 1.2

Скорость ветра (максимальная), м/с, СЗ - 9

Коэфф., учитывающий максимальную скорость ветра(табл.2), 🗷 = 1.7

Коэффициент, учитывающий степень защищенности узла(табл.3), KI = 1

Размер куска материала, мм, G7 = 0.1

Коэффициент, учитывающий крупность материала(табл.5), 27 - 1

Поверхность тыления в плане, $\kappa 2$, F = 5

Коэфф., учитывающий профиль поверхности складируемого материала, Ж6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), GC = $\mathbf{E}3$ · $\mathbf{E}4$ · $\mathbf{E}5$ · $\mathbf{E}6$ · $\mathbf{E}7$ · \mathbf{Q} · \mathbf{F} = 1.7 · 1 · 0.8 ·

 $1.45 \cdot 1 \cdot 0.002 \cdot 5 = 0.01972$

Время работы склада в году, часов, RT = 100

Валовый выброс пыли при хранении, π /год (1), $MC = E3SR \cdot E4 \cdot E5 \cdot E6 \cdot E7 \cdot Q \cdot F \cdot RI \cdot 0.0036 = 1.2 \cdot 1 \cdot 0.8 \cdot 1.2 \cdot$

 $1.45 \cdot 1 \cdot 0.002 \cdot 5 \cdot 100 \cdot 0.0036 = 0.00501$

Максимальный разовый выброс, г/сек, G = 0.01972

Валовый выброс, т/год М = 0.00501

Материал: Шебенка

Примесь: 2008 Пыль пеорганическая, содержатая двускись кремпия в %: 70-20 (шамот, немет, пыль цеметтикого производства – глипа, глипистый слапец, дометный шлак, песок, клипкер, гола, кремпеген, гола углей казакстанског месторожедений) (404)

Влажность материали, %, VL = 1

Коэфф., учитывающий влажность материала(таба.4), Д5 = 0.8

Операция: Храмевие

Скорость ветра (среднегодовая), м/с, G3SR = 4.4

Коэфф., учитывающий средвегодовую скорость вегра(табл.2), X35R = 1.2

Скорость ветра (максимальная), м/с, СЗ - 9

Коэфф., учитывающий максимальную скорость ветра(табл. 2), 🗷 = 1.7

Коэффициент, учитывающий степень защищенности узла(табл.3), К4 = 1

Размер куска материала, мм., G7 = 10

Коэффициент, учитывающий крупность материала(табл.5), Д7 = 0.6

Поверхность пыления в плане, м2, F = 2

Коэфф., учитывающий профиль поверхности складируемого материала, 🗷 6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F = 1.7 \cdot 1 \cdot 0.8 \cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 2 = 0.00473$

Время работы склада в году, часов, RT = 100

Валовый выброс пыли при хранении, ч/год (1), MC = E3SR · E4 · E5 · E6 · E7 · Q · F · RI · 0.0026 = 1.2 · 1 · 0.8 ·

1.45 - 0.6 - 0.002 - 2 - 100 - 0.0036 = 0.001203

Максимальный разовый выброс, г/сех, C = 0.00473

Валовый выброс, $\pi/\text{год}$ M = 0.001203

Материал: Щебень из осад, пород крупи, до 20мм

Примесь: 1908 Пыль пеорганическая, содержащая двускись кремпия в %: 70-20 (шамот, цемент, пыльцементного преизводства - глипа, глипистый спапен, дометный шлак, песок, клипкер, гола, кремпегем, гола углей казахотапског месторождений) (494)

Влажность материала, %, УД - 1

Коэфф., учитывающий влажность материала(табл.4), Д5 = 0.8

Операция: Хражение

Скорость ветра (среднегодовая), м/с, G3SR = 4.4

Коэфф., учитывающий средвегодовую скорость вегра(таба. 2), X35R = 1.2

Скорость ветра (максимальная), м/с, СЗ = 9

Коэфф., учитывающий максимальную скорость ветра(таба.2), КЗ = 1.7

Коэффициент, учитывающий степень защищенности узла(табл.3), $\Sigma t = 1$

Размер куска материала, мм. С7 = 20

Коэффициент, учитывающий крупность материала(табл.5), Д7 = 0.5

Поверхность пылских в плане, м2, F = 2

Коэфф., учитывающий профиль поверхности складируемого материала, $\Sigma 6 = 1.45$

Уное пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранении, r/c (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F = 1.7 \cdot 1 \cdot 0.8 \cdot 10^{-6}$

 $1.45 \cdot 0.5 \cdot 0.002 \cdot 2 = 0.003944$

Время работы склада в году, часов, RT = 100

Валовый выброс пыли при хранении, чтод (1), MC = КЗSR · К4 · К5 · К6 · К7 · Q · F · RT · 0.0036 = 1.2 · 1 · 0.8 ·

 $1.45 \cdot 0.5 \cdot 0.002 \cdot 2 \cdot 100 \cdot 0.0036 = 0.001002$

Максимальный разовый выброс, г/сех, С = 0.003944

Валовый выброс, т/год, М = 0.001002

Материал: Щебень из осад, пород крупи, от 20мм и более

Примесь: 1908 Пыль пеорганическая, содержащая двускись кремпия в %: 70-20 (шамот, цемент, пыль пеметтого производства - глипа, глипистый спапен. дометный шлак, песок, клипкер, гола, кремпеген, зола углей казакстанских месторождений) (494)

Влажность материала, %, РД = 1

Коэфф., учитывающий влажность материала(табл.4), Д5 = 0.8

Операция: Хражевие

Скорость ветра (среднегодовая), м/с, G3SR = 4.4

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), X3SR = 1.2

Скорость ветра (максимальная), м/с, СЗ - 9

Коэфф., учитывающий максимальную скорость ветра(табл.2), 🗷 = 1.7

Коэффиционт, учитывающий степень защищенности узла(таба.3), X4 = 1

Размер куска материала, мм, С7 = 40

Коэффициент, учитывающий крупность материала(табл.5), 27 = 0.5

Поверхность пыления в плане, м2, F = 8

Коэфф., учитывающий профиль поверхности складируемого материала, $\Sigma \delta = 1.45$

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранения, г/с (1), GC = $\mathbf{K}3$ · $\mathbf{K}4$ · $\mathbf{K}5$ · $\mathbf{K}6$ · $\mathbf{K}7$ · \mathbf{Q} · \mathbf{F} = 1.7 · 1 · 0.8 ·

 $1.45 \cdot 0.5 \cdot 0.002 \cdot 8 = 0.01578$

Время работы склада в году, часов, RT = 100

Валовый выброс тыли при хранении, т/год (1), МС = КЗЕК · К4 · К5 · К6 · К7 · Q · F · RT · 0.0036 = 1.2 · 1 · 0.8 ·

 $1.45 \cdot 0.5 \cdot 0.002 \cdot 8 \cdot 100 \cdot 0.0036 = 0.00401$

Максимальный разовый выброс, п/сек, G = 0.01578

Валовый выброс, т/год M = 0.00401

Hroce

20.00	u.		-
End	Накменование 35	Bushper de	Budgee m/sed
2908	Пыль неорганическая, содержащая двуокись креминя в %: 70-20 (шамот,	0.01972	0.011225
	цемент, пыль цементного производства - глика, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола утлей казахстанских		
	месторождений (494)		

Источник загрязисния: 7000, Неорганизованный источник

Источник выделения: 7000 09, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астака, 2005 Коэффициент траноформации оксидов доста в NO2, XNO2 = 0.8 Коэффициент траноформации оксидов азота в NO, ENO - 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручкая дуговая сварка сталей штучкыми электродами

Электрод (сварочный материал): Сварочные электроды

Расход сварочных материалов, кг/год, Б = 21.05

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 1

Удельное выделение сварочного аэрозоля,

n/kr расходуемого материала (табл. 1, 3), GIS = 16.31

в том числе:

Примесь: 9123 Желего (П. П.) оксиди (в пересчете по желего) (диЖелего прискоид. Желего оксид) (274).

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), СЕС - 10.69

Валовый выброс, т/год (5.1), $M = CZS \cdot B / 10^6 = 10.69 \cdot 21.05 / 10^6 = 0.000225$ Макенмальный из разовых выброс, r/c (5.2), $G = CZS \cdot BMLX / 3600 = 10.69 \cdot 1 / 3600 = 0.00297$

Примесь: 0143 Маргапец и его соедипения (в переспене на маргапца (IV) оксид) (327)

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), CIS = 0.92

Валовый выброс, т/год (5.1), $M_{-} = GIS \cdot B / 10^{6} = 0.92 \cdot 21.05 / 10^{6} = 0.00001937$

Максимальный из разовых выброс, r/c (5.2), G = GZS · BMAX / 3600 = 0.92 · 1 / 3600 = 0.0002556

Примесь: 2008 Пыль пеорганическая, содержанная дерокись кремпия с %: 70-20 (шамот, цеметт, пыль цеметитого производения - глипа, глипистый спапен, дометный илак, песок, клипкер, гола, кремперем, эвла углей казахстанских месторождений) (494)

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), GZS = 1.4

Валовый выброс, τ /год (5.1), $M = G2S \cdot B / 10^6 = 1.4 \cdot 21.05 / 10^6 = 0.00002947$

Максимальный из разовых выброс, г/с (5.2), _G_ = GZS - BM-LX / 3600 = 1.4 · 1 / 3600 = 0.000389

Примесь: 0344 Фнориды пеорганические плохо растворимые - (алюминия фнорид, кальция фторид, пануня лексаф торалюнипані) (Фториды пеоргапические влого растеориные /е пересчете па фторі) (615)

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), СЗЗ = 3.3

Валовый выброс, т/год (5.1), M = GIS · Б / 10⁶ = 3.3 · 21.05 / 10⁶ = 0.0000695

Максимальный из разовых выброс, г/с (5.2), G = GES - BM-4X / 3600 = 3.3 · 1 / 3600 = 0.000917

Daniel.

Примесь: 0342 Фтористые газообразные соединения /е пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

п/кг расходуемого материала (табл. 1, 3), СЕГ = 0.75

Валовый выброс, $\pi/\text{год}$ (5.1), M_{-} = GES · B / 10^6 = 0.75 · 21.05 / 10^6 = 0.0000158 Максимальный из разовых выброс, π/c (5.2), C_{-} = GES · BMAX / 3600 = 0.75 · 1 / 3600 = 0.0002083

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), GZS - 1.5

С учетом траноформации оксидов азота получаем:

Примет: 0301 Азета (IV) днексид (Азета днексид) (4) Валовый выброс, vroд (5.1), M_{-} = $ENO2 \cdot GZS \cdot B / 10^{6} = 0.8 \cdot 1.5 \cdot 21.05 / 10^{6} = 0.00002526$

Максимальный из разовых выброс, r/c (5.2), G = ENO2 · GIS · ВМ4X/ 3600 = 0.8 · 1.5 · 1/ 3600 = 0.000333

Примесь: 0304 Азат (П) оконд (Азата оконд) (б)

Валовый выброс, т/год (5.1), M = ENO · CE · B / 10⁴ = 0.13 · 1.5 · 21.05 / 10⁴ = 0.000004105

Макенмальный из разовых выброс, г/с (5.2), С = ENO · GIS · BM4X / 3600 = 0.13 · 1.5 · 1 / 3600 = 0.0000542

Примесь: 0337 Углерод окомд (Окись углерода, Угартый газ) (584). Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), GIS = 13.3

Валовый выброс, п'год (5.1), M = GIS · В / 10⁴ = 13.3 · 21.05 / 10⁴ = 0.00028

Максимальный из разовых выброс, r/c (5.2), _G = GEV - BM.4X / 3600 = 13.3 · 1 / 3600 = 0.003694

H roco:

Kod	Наименование 35	Βωδρος είς	Выбрес т/год
0123	Железо (II, III) оксиды (в пересчете на железо) (даЖелезо триоксид, Железа оксид) (274)	0.00297	0.000225
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.0002556	0.00001937
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000333	0.00002526
0304	Азот (II) оксид (Азот оксид) (6)	0.0000542	0.000004105
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.003694	0.00028
	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.0002083	0.0000158
0344	Фториды неорганические плохо растворивые - (алюминия фторид, кальция фторид, натрия генсафторалюминат) (Фториды неорганические плохо растворимые /и пересчете на фтор/) (615)	0.000917	0.0000695
2908	Пыль неорганическая, содержащая двускись кремник в % 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинжер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.000389	0.00002947

Источник загрязнения: 7000, Неорганизованный источник

Источник выделения: 7000 10, Покрасочные работы (краска)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при наиссении дакожрасочных натериалов (по ведичинам удельных выбросов). РНД 211.2.02.05-2004. Астым, 2005

Технологический процесс: окраска и сущка

Фактический годовой расход ЛКМ, томи, М5 = 0.1138

Максимальный часовой расход ЛКМ, с учетом дисаретности работы оборудования, вг. MSI = 0.1

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля легучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Дименилбенкол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сущие

для данного способа окраски (табл. 3), %, DP = 100

Banonsail matter 3B (3-4), trivox, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 0.1138 \cdot 45 \cdot 50 \cdot 100 \cdot 10^4 = 0.0256$

Максимальный из разовых выброс 3B (5-6), t/c, $G = MSI \cdot FI \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.1 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.00625$

Присивсь: 2752 Увіли-спирим (1294*)

Доля вещества в летучей части ЛКМ (габл. 2), %, FPI - 50

Доля растворителя, при окраске и сущке

для динного способа окраски (табл. 3), %, DP = 100

Bancesali matipoc 3B (3-4), ninox, M = MS · F2 · FPI · DP · 10* = 0.1138 · 45 · 50 · 100 · 10* = 0.0256

Максимальный из разовых выброс 38 (5-6), t/c, $G = MSI \cdot FI \cdot DP / (3.6 \cdot 10^6) = 0.1 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.00625$

Итого:

Kod	Наименование 35	Bullpacele	Выброс т/год
0616	Диметкибекова (смесь с-, м-, п- изомеров) (203)	0.00625	0.0256
2752	Уайт-спирит (1294*)	0.00625	0.0256

Источник загрязнения: 7000, Неорганизованный источник

Источник выделения: 7000 11, Покрасочные работы (грунтовка)

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при намесении дакомрасочных натериалов (по ведичинам удельных выбросов). РНД 211.2.02.05-2004. Астама, 2005

Технологический процесс: окраска и сущка

Фактический годовой расход ЛКМ, тони, М5 = 0.0156

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, ат, MSI = 0.1

Марка ЛКМ: Грунговка ГФ-017

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 51.

Поимесь: 0616 Лиметилбензол (смесь с-, м-, п- изомеров) (202)

Доля вещества в летучей части ЛКМ (табл. 2), %, FFI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год, M = MS · F2 · FPI · DP · 104 = 0.0156 · 51 · 100 · 100 · 104 = 0.00796 Максимальный из разовых выброс 3В (5-6), r/c, G = MSI · F2 · FPI · DP / (3.6 · 10*) = 0.1 · 51 · 100 · 100 / (3.6

 $-10^6) = 0.01417$

HTOTO:

Kod	Наименование 35	Εμέρου είν	Выброс т/год
0616	Диметилбекпол (смесь о-, м-, п- изомеров) (203)	0.01417	0.00796

Источник загрязнения: 7000, Неорганизованный источник

Источник выделения: 7000 12, Покрасочные работы (растворитель)

Список литепатуры:

Методика расчета выбросов загрязняющих веществ в атмосферу при навесении дакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактыческий годовой расход ЛКМ, тони, МS = 0.0063

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. MSI = 0.1

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Удіян-спирим (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Banonsili nucleoc 3B (3-4), $v/vo_{A_{-}}M_{-}=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{4} = 0.0063 \cdot 100 \cdot 100 \cdot 10^{4} = 0.0063$ Максимальный из разовых выброс 3B (5-6), r/c, G = MSI · F2 · FFI · DF / (3.6 · 10*) = 0.1 · 100 · 100 · 100 /

 $(3.6 \cdot 10^6) = 0.0278$

HTOCO:

Kod	Наименование 35	Εκόρου είν	Быброс т/год
2752	Уайт-спирит (1294*)	0.0278	0.0063

ОТСЕЧЕНИЕ РВС ОТ ТЕХНОЛОГИЧЕСКОГО ТРУБОПРОВОДА - ежегодно

Источник загрязнения N 7001, Неорганизованный источник

Источник выделения N 7001 01, ДВС автомобиля (работа насоса)

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дюслыных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казалстан от 12.06.2014 r. No 221-F

Максимальный расход диз. топлива установкой, кг/час, Сульск = 15.4

Годовой расход дюсяльного топлива, т/год, Скосо = 0.752

Примясь: 0301 Азота (IV) дноконд (Азота дноконд) (4).

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 30

Максимальный разовый выброс, r/c, $G=Grisson \cdot E_2 / 3600 = 15.4 \cdot 30 / 3600 = 0.1283$ Валовый выброс, π/rog , $M=Grosso \cdot E_2 / 20^2 = 0.752 \cdot 30 / 10^2 = 0.02256$

Примесь: 1325 Формальденьд (Менапаль) (609)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Ез = 1.2

Максимальный разовый выброс, π/c , $G = Grzысс \cdot E_0 / 3600 = 15.4 \cdot 1.2 / 3600 = 0.00513$

Валовый выброс, т/год M = Gross · E5 / 10⁴ = 0.752 · 1.2 / 10⁴ = 0.000902

Понивов: 0304 Азат (П) аксид (Азата оксид) (б)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Ез = 39

Максимальный разовый выброс, г/с, _С = Сельск · Е> / 3600 = 15.4 · 39 / 3600 = 0.167

Валовый выброс, т/год. М. - Стого · Еэ / 10° - 0.752 · 39 / 10° = 0.0293

Примесь: 0330 Сера диоконд (Аплидрид серпновий, Серпновий газ, Сера (ПІ) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E> = 10

Максимальный разовый выброс, r/c, $G = Graux \cdot E_F / 3600 = 15.4 \cdot 10 / 3600 = 0.0428$ Валовый выброс, π/rox , $M = Grace \cdot E_F / 20^2 = 0.752 \cdot 10 / 10^2 = 0.00752$

Примесь: 0337 Усперод оксид (Окись усперода, Угарпый газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 25

Максинальный разовый выброс, r/c, $G = Grasse \cdot E_F / 3600 = 15.4 \cdot 25 / 3600 = 0.107$ Валовый выброс, π/rog , $M = Grasse \cdot E_F / 10^t = 0.752 \cdot 25 / 10^t = 0.0188$

Примесь: 2754 Алканы С12-19/е пересчение на С/ (Услеводороды предельные С12-С19 (е пересчение на С); Растиоритиль РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (забл.4), Ез = 12

Максимальный разовый выброс, п'с, С = Graux · E> /3600 = 15.4 · 12 / 3600 = 0.0513

Валовый выброс, $\pi/rод$ M = $Groso \cdot E_{\pi} / 2\theta^{2} = 0.752 \cdot 12 / 10^{2} = 0.00902$

Примесь: 1301 Прон-1-еп-1-аль (Авролени, Акрилальдевид) (474)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Ез = 1.2

Максимальный разовый выброс, т/с, _G_ = Grassev · Es /3600 = 15.4 · 1.2 / 3600 = 0.00513

Banomeli melipoc, $\pi / rog_{\perp} M = G_{POO} \cdot E_{2} / 10^{2} = 0.752 \cdot 1.2 / 10^{2} = 0.000902$

Примесь: 0328 Углерод (Сажа, Углерод первый) (583)

Оценочное значение среднешиклового выброса, г/кг топлява (табл. 4), Ез = 5

Максимальный резовый выброс, v'c, $G' = Grasser \cdot E_F / 3600 = 15.4 \cdot 5 / 3600 = 0.0214$ Валовый выброс, v'rog, $M' = Grasse \cdot E_F / 20' = 0.752 \cdot 5 / 10^2 = 0.00376$

Kod	Наименование 35	Bubpoc slo	Выбрас т/год
0301	Азота (IV) диоженд (Азота диоженд) (4)	0.1283	are grantered
	Азот (II) оксид (Азота оксид) (б)	0.167	
0328	Углерод (Сажа, Углерод червый) (583)	0.0214	8
	Сера двожсид (Авгидряд сервостый, Сервистый газ, Сера (IV) оксид) (516)	0.0428	- 5
	Углерод оксид (Окись углерода, Угарный гиз) (584)	0.107	
1301	Проп-2-ен-1-аль (Акролеян, Акрилальдегид) (474)	0.00513	
1325	Формальдегид (Метиналь) (609)	0.00513	
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C), Растворитель РПК-265П) (10)	0.0513	

Согласно в.17 статья 202 Веспотического колекса РК «Полективы замесяй от переделением источением на эспанациинались Соответствение, вызовые выбросы ст передвением источение не корывруются проистом нерыштенов допустимых выпросов.

Источник загрязнения N 7001, Неорганизованный источник

Источник выделения N 7001 02, Насос

Список литературы:

- Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Катгрансойла". Астава, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теплообменных аппаратов и

средств перекачки

Нефтепродукт: Локушечный продукт

Тип нефтепродукта и средняя температура жидкости:

Наимскование аппаратуры или средства перекачки: Насос центробежный с одним торцевым ушлотиением вала Удельный выброс, кг/час (Прил.Б2), Q = 0.08

Общее количество аппаратуры или средств перекачки, шт., NI - I

Одновременно работнющее количество аппаратуры или средств перекачки, шт., NNI -1

Время работы одной единицы оборудования, час/год, I = 24Максимальный из разовых выброс, r/c (6.2), $G = Q \cdot NN2 / 3.6 = 0.08 \cdot 1 / 3.6 = 0.02222$

Bancesell success, π/rox (6.3), $M = (Q \cdot NI \cdot I) / 1000 = (0.08 \cdot 1 \cdot 24) / 1000 = 0.00192$

Rymners: 2754 Armann C12-19 /a repersente na C/ (Vinteradopodu spedentante C12-C19 (a repersente na C): Распиориниль РПК-165П) (10)

Концентрация ЗВ в парах, % масс (Прил. 14[3]), CI = 99.87

Валовый выбрес, в'год (5.2.5 [3]), $M = CI \cdot M/100 = 99.87 \cdot 0.00192/100 = 0.0019$ Максимальный из разовых выбрес, в'с (5.2.4 [3]), $G = CI \cdot G/100 = 99.87 \cdot 0.02222/100 = 0.0222$

Примесь: 0333 Серокодород (Лигидросульфид) (518)

Комиситрация ЗВ в парах, % масс (Прил. 14[3]), CI = 0.13

Валовый выброс, т/год (5.2.5 [3]), М = СІ · М / 100 = 0.13 · 0.00192 / 100 = 0.0000025

Максинальный из разовых выброс, r/c (5.2.4 [3]), G = CI · G / 260 = 0.13 · 0.02222 / 100 = 0.000029

H more:

Kod	Наимепование 3Б	Биброс 2/с	Выброс тогод
0333	Сероводород (Дигидросульфид) (518)	2.96-5	2.56-6
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C), Растворитель РПК-265П) (10)	0.0222	0.0019

Источник загразнения N 7001, Неорганизованный источник

Источник выделения N 7001 03, Люк автомобиля. Автомобиль-нефтеноз

Список литературы

"Оборних методих по расчету выбросов вредных в атмосферу различными производствани". Альяты, КасЭКОЭКСП, 1996 г. п.5.3. Методика по расчету норм естественной убыли углеводородов в атмосферу на предприятиях нефтепродуктов

Расчет по пункту 5.3.2. При наливе в транспортные средства

4 (кожная) климатическая зона

Южная зона, области РК: Алматинская, Атырауская, Жамбылская, ют Карагадинской (ранее Жезказганская)

Группа нефтепродуктов: 6 группа

Производительность закачки, м3/час, 1/9 = 3200

Объем газовоздушной смеси, м3/с, VO = V0 / 3600 = 3200 / 3600 = 0.889

Максимальная концентрация паров углеводородов, r/м3, C = 0.4

Нефтепролукт Матут

Количество мефтепродукта 5, 6 гр., отгруженного в течение года, т, 1NP = 50

Плотность нефтепролукта, т/м3, РР = 0.8922

Объем нефтепродукта 5, 6 гр., отгруженного в течение года, м3, VNP = VNP / PP = 50 / 0.8922 = 56

Среднегодовая температура нефтепродукта при отгрузке, град.С. TSG = 9.06

Удельные потеря нефтепродукта, $\pi/43*10^4$ (таба. 5.17), QT=16

Годовой выброс, т (ф-ла 5.44), $G = VNP \cdot QT \cdot 0.00000I = 56 \cdot 16 \cdot 0.00000I = 0.000896$

Примесь: 2754 Алияни С12-19 /е переслете на С/ (Успекодероды предельные С12-С19 (е переслете на С); Растиоритель РПК-365П) (10)

Максимальный разовый выброс, г/с (ф-ла 5.39), С = № - С = 0.889 - 0.4 = 0.3556

Валовый выброс, т/год М = 0,0009

HTOCO:

Kod		Buspec 2/c	Быбрес т/год
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.3556	0.0009
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения N 7001, Неорганизованный источник

Источник выделения N 7001 04, Пыление при маневрирования автотранспорта

Список литературы:

"Оборних методик по расчету выбросов вредных в атмосферу различными производствами". Алыаты, КазЭКОЭКСП, 1996 г. п.9.3. Расчет выбросов вредных веществ неорганизованными источниками Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрив. Предприятия нерудных материалов и пористых заполнителей", Алма-Ага, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Глина

Впажность материала в диапазоне: 1.0 - 3.0 %

Коэфф., учитывающий влажность материала (табл. 9.1), $\mathbf{Z}\theta = 1.3$

Скорость ветра в днапазоне: 2.0 - 5.0 м/с

Коэфф., учитывающий среднегодомую скорость вегра (табл. 9.2), XI = 1.2

Местные условия: склады, хранилища отврытые с 4-х сторон

Коэфф., учитывающий степень защищенности ухла (тбл 9.4), $\Sigma 4 = 1$

Высота падения материала, м, СВ = 0.5

Коэффиционт, учитывающий высоту падемия материали (табл.9.5), Ж5 = 0.4

Удельное выделение твердых частиц с тонны материала, r/r, Q = 80

Эффективность применяемых средств пылоподавления (определяется

экспервыентально, либо принивается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 5

Максимальное количество отгружаемого (перегружаемого) материала , π /час, MH = 0.1

Примесь: 2008 Пыль пеорганическая, содержащая деускись кренения е %: 70-20 (шамот, ценетт, пыль ивиститего преизводения - глипа, глипистий спапен, деметний ислам, песом, клипкер, гола, преилеген, зела челей мазакетапских местереждений) (494).

Количество твердых частиц, выделяющихся при погрузочно-разгрухочных работах.

Banossili suffpot, v/rog (9.24), M = E0 · E1 · E4 · E3 · Q · MCOD · (2-N) · 10⁴ = 1.3 · 1.2 · 1 · 0.4 · 80 · 5 · (1-0) ·

Максимальный из разовых выброс, г/с (9.25), _ C _ = X0 - X1 - X4 - X5 - Q - MH - (1-20 / 3600 = 1.3 - 1.2 - 1 - 0.4 -80 - 0.1 - (1-0) / 3600 = 0.0014

Hyoro:

Kod	Hannenceanne 35	Bubpoc ste	Выброс тігод
	Пыль неорганическая, содержащая двускись кремник в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола утлей казахстанских месторождений) (494)	0,0014	0.0002

Источник загрязнения N 7001, Неорганизованный источник

Источник выделения N 7001 05, Пропарка паром ППУ

Список питературы:

"Оборянк методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КасЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлина в котлах производительностью до 30 т/час

Вид топлина, 🖾 - Жидкое другое (Дизельное топлино и т.п.)

Расход топлива, тугод, BI = 1.2

Расход топина, т/с, **ВС** = 10.057

Марка топлина, М - Дизельное топлино

Низная теплота сторания рабочего топлика, ккап/кг (прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.094187 = 10210 \cdot 0.004187 = 42.75$

Средняя эольность топлина, % (прил. 2.1), AR = 0.025

Предельная зольность топлина, % не более (прил. 2.1), AZR = 0.025

Среднее содержиние серы в топливе, % (прил. 2.1), SR = 0,3

Предельное содержание серы в топливе, % не более (прил. 2.1), \$IR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) дноможд (Азота дноженд) (4)

Номинальная паропроизв. котлоагрегата, т/ч, QN = 1.6

Факт. паропроизводительность котлоагрегать, $\tau/4$, QF = 1.6

Кол-во окислов доота, кг/1 Гдж тепла (рыс. 2.1 или 2.2), **ZNO = 0.0888**

Коэфф. синжения выбросов взота в рез-те техи, решений, Б = 0

Кол-во окислов ахота, кг/1 Гдж тепла (ф-ла 2.7a), $ENO = ENO \cdot (QF/QN)^{0.23} = 0.0888 \cdot (1.6/1.6)^{0.24} = 0.0888$

Выброс окислев эзота, т/год (ф-ла 2.7), MNOT = 0.001 · БТ · QR · ENO · (2-Б) = 0.001 · 1.2 · 42.75 · 0.0888 · (1-0)

Buffpoc oracana anona, r/c (\$\phi_{\text{-aa}} 2.7), MNOG = 0.001 \cdot BG \cdot QR \cdot \bar{\text{ENO}} \cdot (\$I\$-\$B\$) = 0.001 \cdot 10.057 \cdot 42.75 \cdot 0.0888 \cdot (\$I\$-01 = 0.0382

Выброс эхоти дискенди (0301), т/год, $M = 0.8 \cdot MNOI = 0.8 \cdot 0.004555 = 0.0036$ Выброс эхоти дискенди (0301), т/с, $G = 0.8 \cdot MNOC = 0.8 \cdot 0.0382 = 0.0306$

Присиясь: 0304 Азот (Ш) оксид (Азоти оксид) (б)

Выброс азота оксида (0304), т/год. М. = 0.13 · MNOT = 0.13 · 0.004555 = 0.0006

Выброс гост оксида (0304), г/с, _C_ = 0.13 · MNOC = 0.13 · 0.0382 = 0.005

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диокоид (Аплидрид серпистий, Серпистий газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.02

Содержание осроводорода в топливе, % (прил. 2.1), Н25 = 0

Busépocia osciences cepia, $\pi / \exp \left(\frac{1}{2} - \sin 2.2 \right)$, $\underline{M} = 0.02 \cdot BT \cdot SR \cdot (I-NS \cdot O2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 1.2 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 1.2 = 0.0071$

Выбросы окислов серы, r/c (ф-ла 2.2), $G = 0.02 \cdot BG \cdot SIR \cdot (I-NSO2) + 0.0188 \cdot H25 \cdot BG = 0.02 \cdot 10.057 \cdot 0.3 \cdot (I-0.02) + 0.0188 \cdot 0 \cdot 10.057 = 0.0591$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Усперод оксид (Окись усперода, Узараміі газ) (584)

Потери текла от механической неполноты сгорания, % (табл. 2.2), Q4 = 0

Кол-во окиси углерода на единицу тепла, кг/Гдж (табл. 2.1), ЕСО = 0.32

Тип топки: Камерная топка

Выход окиси углерода в кг/тони или кг/тыс м3°, $CCO = QR \cdot ECO = 42.75 \cdot 0.32 = 13.68$

Выбросы окиси углерода, т/год (ф-ла 2.4), _M_ = 0.002 · В I · CCO · (I-Q4 / 100) = 0.001 · 1.2 · 13.68 · (I-0 / 100) = 0.005

Выбросы окиси углерода, г/с (ф-ла 2.4), _ G_ = 0.002 · BG · CCO · (1-Q4 / 100) = 0.001 · 10.057 · 13.68 · (1-0 / 100) = 0.1376.

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черпый) (583)

Коэффицисат (табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частяц, т/год (ф-ла 2.1), $M = DT \cdot AR \cdot F = 1.2 \cdot 0.025 \cdot 0.01 = 0.0003$

Выброс твердых частяц, г/с (ф-т 2.1), $C = BC \cdot AIR \cdot F = 10.057 \cdot 0.025 \cdot 0.01 = 0.0025$

Hymno

Kod	Наименование 35	Επέρου ε/ο	Buspoc w/coð
0301	Азота (IV) двоксид (Азота дноксид) (4)	0.0306	0.0036
0304	Азот (П) оксид (Азота оксид) (6)	0.005	0.0006
0328	Углерод (Сажа, Углерод черный) (583)	0.0025	0.0003
0330	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (TV) оксид) (516)	0.0591	0.0071
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1376	0.0164

Источник загрязвения N 7001, Неорганизованный источник

Источник выделения N 7001 06, Сварочные работы

Списов литературы:

Методика расчета выбросов загрязывющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астака, 2005

Коэффициент траноформации оксидов дзота в NO2, XNO2 = 0.8

Коэффициент траноформации оксидов азота в NO, ENO = 0.13

Степень очистки, доли ед., п = 0

РАСЧЕТ выбросов 3В от сварки металлов

Вид сварки: Ручкая дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, кг/год, ВГОД - 25

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, E U + C = 0.5

Удельное выделение сварочного аэрозоля,

г/кг расходуемого материала (табл. 1, 3), $\mathbf{X} = 16.31$

в том числе:

Примесь: 0123 Железо (П., Ш) оксиды (в пересчете па железо) (диЖелезо приоксид, Железа оксид) (274)

Удельное выделение загрязняющих веществ,

г/кг расходуемого матерявла (табл. 1, 3), $\mathbf{X}_{\mathbf{M}}^{X} = 10.69$

Степень очистки, доли ед., 7 - 0

Валовый выброс, π' год (5.1), $MTOQ = K_M^X \cdot BFOQ / 10^6 \cdot (2-\eta) = 10.69 \cdot 25 / 10^6 \cdot (1-0) = 0.000267$

Максимальный из разовых выброс, n/c (5.2), $MCEK = K \frac{X}{M} \cdot E \nabla AC / 3600 \cdot (2-\eta) = 10.69 \cdot 0.5 / 3600 \cdot (1-0) = 0.001485$

Примесь: 0143 Маргапец и его соедипения (в переспени на маргапца (IV) оксид) (327)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\boldsymbol{X} = 0.92$

Степень очистки, доли ед., 7 = 0

Валовый выброс, т/год (5.1), $MTOJJ = K \frac{X}{M} \cdot BTOJJ / 10^6 \cdot (1-\eta) = 0.92 \cdot 25 / 10^6 \cdot (1-0) = 0.000023$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K\frac{X}{M} \cdot EVAC / 3600 \cdot (2-\eta) = 0.92 \cdot 0.5 / 3600 \cdot (1-0) = 0.0001278$

Примесь: 2008 Пыль пеорганическая, содержанная двускись кремния в %: 70-20 (неамот, неметт, пыль неметтного производства - липа, глипистый слапен, дометь ий нелак, песок, клипкер, гола, кремпеген, гола услей казакотапских месторождений) (404)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\mathbf{K} \stackrel{X}{\mathbf{M}} = 1.4$

Степень очистки, доли ед., 7 = 0

Валовый выброс, π /год (5.1), $MTO \mathcal{A} = K \frac{X}{M} \cdot B \Gamma O \mathcal{A} / 20^6 \cdot (2-\eta) = 1.4 \cdot 25 / 10^6 \cdot (1-0) = 0.000035$

Максимальный из разовых выброс, г/с (5.2), $MCEK = E\frac{X}{M} \cdot E \, \nabla AC / 3600 \cdot (1-\eta) = 1.4 \cdot 0.5 / 3600 \cdot (1-0) = 0.0001944$

Примесь: 0244 Фториды пеорганические плоко растиоримие - (алюминия фторид, кальния фторид. патрия зексафторализминам) (Фториды пеорганические плоко растиоримие /е пересчете на фтор/) (613) Удельное выделение загрязивающих веществ.

г/кг расходуемого материала (табл. 1, 3), $\mathbf{X}_{M}^{X} = 3.3$

Степень очистки, доли ед., у - 0

Валовый выброс, т/год (5.1), $M\Gamma O J = K \frac{X}{M} \cdot B\Gamma O J / 10^6 \cdot (1-\eta) = 3.3 \cdot 25 / 10^6 \cdot (1-0) = 0.0000825$

Максимальный из разовых выброс, п/с (5.2), $MCEK = K \frac{X}{M} \cdot E \nabla AC / 3690 \cdot (2-\eta) = 3.3 \cdot 0.5 / 3600 \cdot (1-0) = 0.000458$

Газы:

Примесь: 0242 Фтористые газообразвые соединения /е пересчене на фтор/ (617)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\boldsymbol{K}_{\boldsymbol{M}}^{X}$ = 0.75

Степень очистки, доли ед., 7 - 0

Валовый выброс, $\pi/rод$ (5.1), $MTOJJ = K \frac{X}{M} \cdot BTOJJ / 10^6 \cdot (2-\eta) = 0.75 \cdot 25 / 10^6 \cdot (1-0) = 0.00001875$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K\frac{X}{M} \cdot EVAC / 3600 \cdot (1-\eta) = 0.75 \cdot 0.5 / 3600 \cdot (1-0) = 0.0001042$

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\boldsymbol{X} \stackrel{X}{\boldsymbol{M}} = 1.5$

С учетом траноформации оксидов азота получаем:

Степень очистки, доли ед., 7 - 0

Примесь: 0301 Азота (IV) диокоид (Азота диокоид) (4)

Валовый выброс, $\pi / \text{год}$ (5.1), $MTO \mathcal{A} = ENO2 \cdot E \frac{X}{M} \cdot BTO \mathcal{A} / 10^6 \cdot (2-\eta) = 0.8 \cdot 1.5 \cdot 25 / 10^6 \cdot (1-0) = 0.00003$

Максимальный из разовых выброс, v/c (5.2), $MCEK = ENO2 \cdot E\frac{X}{M} \cdot B \nabla AC / 3600 \cdot (2-\eta) = 0.8 \cdot 1.5 \cdot 0.5 / 3600 \cdot (1-\eta) = 0.0001667$

Примесь: 0304 Asom (II) oxond (Asoma oxond) (6)

Валовый выброс, вітод (5.1), $MTOJI = ENO \cdot E\frac{X}{M} \cdot BTOJI / 10^6 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 25 / 10^6 \cdot (1-0) = 0.000004875$ Максимальный из разовых выброс, віс (5.2), $MCEK = ENO \cdot E\frac{X}{M} \cdot B \nabla AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.5 / 3600 \cdot (1-\eta) = 0.13 \cdot 0.$

(1-0) = 0.0000271

Примесь: 0337 Углерод окто (Окнов углерода, Угартый газ) (584)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\mathbf{X}_{\mathbf{M}}^{X}$ = 13.3

Степень очистки, доли ед., 7 - 0

Валовый выбрес, в'год (5.1), МГОД = \mathbb{Z}_{M}^{X} : ВГОД / $10^{6} \cdot (2-\eta) = 13.3 \cdot 25 / <math>10^{6} \cdot (1-\theta) = 0.0003325$

0.001847

Итого:

Kod	Наименование 35	Bubpoc slo	Быброс тігод		
0123	Железо (II, III) оксиды (в пересчете на железо) (дяЖелезо триоксид, Железа оксид) (274)	0.0015	0.0003		
0143	Марганец в его соединения (в пересчете на марганця (IV) оксид) (327)	0.0001	2.3e-5		
0301	Азота (IV) двокожд (Азота двокова) (4)	0,0002	3e-5		
0304	Азот (II) оксид (Азота оксид) (6)	2.76-5	4.96-6		
0337	Углерод оксид (Окись углерода, Угарный газ) (584).	0.0018	0.0003		
	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,0001	1.9e-5		
0344	344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо			0.0005	8.3e-5
2908	Пыль неорганическая, содержащая двускоксь кремник в % 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, запа углей казахстанових месторождений) (494)	0.0002	3.5e-5		

ЗАЧИСТКА РЕЗЕРВУАРА - ежегодно

Источник загрязвения N 7002, Неорганизованный источник

Источник выделения N 7002 01, Дегазация РВС 5000м3

Дегазация проводится естественным путем

Список литературы:

Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Катгрансойла" Астана, 2005 (расчет по п.6.6 Шавмонакопители)

Площиль поверхности 408 м2.

Выбросы загрязняющих веществ происходят с поверхности испарения нефтенцима.

Максимальный резовый выброс (r/c) определяется исходя из среднего значения количества углеводородов, испарающихся открытой поверхности по формуле:

rac

 п — нерма естественной убыли матута в весение-летний период для соответствующей влиматической зоны принимается по таблице Б.8., кг/м2 (n = 2.88 кг/м2 в месяц)

Климатическая зона определяется по тяблице Б.7 - иторая

F - площидь поверхности испарения, M^2 ($F = 408 M^2$)

2592 - конффиционт перевода кл/мес в п/с

Годовой выброс паров углеводородов с открытой поверхности определен в соответствии с Нормани естественной убыли мазута при приеме, отпуске, хранении в открытых сооружениях - амбарах.

 $G = 6F(n_1+n_2)10^3$, mroa

пі и пі – норым естественной убыли соответственно в осевне-замний (2,16 кг/м2 в месяц) и в весенне-летний перводы (2,88 кг/м2 в месяц) для соответствующей климатической зоны привимается по таблице Б.8.

6 - количество месяцев в кождом периоде. Принимаем 1 месяц, т.к. работы будут вестись не более одного месяца (в том числе период вывода из эксплуатации РВС до начала зачистки).

G=1*408*2.88*10*=1,175 a/rout

H roco:

Kob	Примесь	Buspec de	Быброс тігод
2754	Углеводороды предельные С12-19	0.45	1.175

Источник загрязнения N 7002, Неорганизованный источник

Источник выделения N 7002 02, Пароподготовительная установка

Список литературы:

"Оборник методик по расчету выбросов вредных в атмосферу рассичеными производствами". Алматы, КалЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании тоголика в котпах производительностью до 30 п/час

Вид топлина, 🗗 - Жидкое другое (Дизельное топлино и т.п.)

Расход топлива, $\pi/rод$, BI = 0.6

Расход топлина, г/с, BG - 54.2

Марка топлива, М - Дизельное топливо

Низивая теплота сгорания рабочего топлина, квал/кг (прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлина, % (прил. 2.1), АК = 0.025

Предельная эсльность топлика, % не более (прил. 2.1), AZR = 0.025

Среднее содержание серы в топлине, % (прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.3.

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примясь: 0301 Азота (IV) дноконд (Asoma дноконд) (4)

Номинальная паропрояти, котлоагрегата, т/ч, QN = 1.6

Факт. паропроизводительность котлоагрегата, т/ч, QF = 1.2

Кол-во окислов взота, кг/1 Гдж тепла (рис. 2.1 или 2.2), **ДОО = 0.0888**

Коэфф. синжения выбросов взота в рез-те техи, решений, 🗗 = 0

Kns-so ossenos mora, $\kappa r/1$ Γ_{DE} renna (ϕ -sn 2.7a), $ENO = ENO \cdot (QF/QN)^{0.71} = 0.0888 \cdot (1.2/1.6)^{0.35} = 0.0826$

Выброс окислов азота, т/mg (ф-ла 2.7), MNOT = 0.001 · ВТ · (/R · ENO · (1-В) = 0.001 · 0.6 · 42.75 · 0.0826 · (1-0) =0.00212

Businos energe anora, vic (\$\dagger\$-m 2.7), MNOG = 0.001 \cdot BG \cdot QR \cdot ENO \cdot (1-B) = 0.001 \cdot 54.2 \cdot 42.75 \cdot 0.0826 \cdot (1-0)

Выброс взотв двокендв (0301), τ/rox , $M = 0.8 \cdot MNOT = 0.8 \cdot 0.00212 = 0.0017$ Выброс взотв двокендв (0301), τ/c , $G = 0.8 \cdot MNOG = 0.8 \cdot 0.1914 = 0.1531$

Примясь: 0304 Азот (II) оконд (Азота оконд) (6)

Выброс эзот оксида (0304), т/год _ М _ = 0.13 · М/ОТ = 0.13 · 0.00212 = 0.0003 Выброс эзот оксида (0304), г/с, _ G _ = 0.13 · MNOG = 0.13 · 0.1914 = 0.0249

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ.

Примесь: 0330 Сера дионоид (Аплидрид серпновий, Серпновий газ, Сера (IV) оконд) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, % (прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), _M_ = 0.02 · БТ · SR · (1-NSO2) + 0.0185 · H25 · БТ = 0.02 · 0.6 · 0.3 ·

 $(1-0.02) + 0.0188 \cdot 0 \cdot 0.6 = 0.0035$

Выбросы окислов серы, г/с (ф-т 2.2), _G_ = 0.02 · BG · S2R · (1-NSO2) + 0.0128 · H25 · BG = 0.02 · 54.2 · 0.3 · $(1-0.02) + 0.0188 \cdot 0 \cdot 54.2 = 0.3187$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оконд (Окись углерода, Угаркый газ) (584)

Потери телла от механической неполноты сгорания, % (табл. 2.2), Q4 = 0

Кол-во окиси углерода на единицу тепла, кг/Гдж (табл. 2.1), ЕСО = 0.32

Тип топки: Камерная топка

Выход окиси углерода в кт/тони или кт/тыс м3°, ССО = QR · ECO = 42.75 · 0.32 = 13.68

Выбросы окиси углерода, т/год (ф-т 2.4), _M_ = 0.001 · БТ · ССО · (1-Q4 / 100) = 0.001 · 0.6 · 13.68 · (1-0 / 100)

Выбросы окиси углерода, г/с (ф-ла 2.4), G = 0.001 · BG · CCO · (1-Q4 / 100) = 0.001 · 54.2 · 13.68 · (1-0 / 100) = 0.7415

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Усперод (Сижа, Усперод черпий) (583)

Коэффициент (тюл. 2.1), F = 0.01

Тип топки: Камерная топка

Biofopoc megajax vacristi, π/rog (ϕ -rar 2.1), $M = BT \cdot AR \cdot F = 0.6 \cdot 0.025 \cdot 0.01 = 0.0001$

Выброс твердых частяц, г/с (ф-ла 2.1), G = BG · A2R · F = 54.2 · 0.025 · 0.01 = 0.0136

Harmon:

Ked	Наименование 3Б	Επέρρος είς	Επέρος πέροδ
0301	Азота (IV) дноксид (Азота дноксид) (4)	0.1531	0.0017
0304	Аэот (II) оксид (Аэота оксид) (6)	0.0249	0.0003
0328	Углерод (Сажа, Углерод черный) (583)	0.0136	0.0001
0330	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.3187	0.0035
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.7415	0.0082

Источник загрязнения N 7002, Неорганизованный источник

Источник выделения N 7002 03, Насос

Список литературы:

- Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астама, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теплообменных аппаратов и

средсти перекачки

Нефтепродукт: Ловушечный продукт

Тип нефтепродукта и средняя температура видкости:

Наименование аппаратуры или средства перекачки: Насос центробежный с одини торцевым уплотнением вала Удельный выброс, кг/час (Прил.Б2), Q = 0.08

Общее количество аппаратуры или средств перекачки, шт., NI = 1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI -1

Время работы одной единицы оборудования, час/год. Т = 32

Максимальный из разовых выброс, r/c (6.2), $G = Q \cdot NNI / 3.6 = 0.08 \cdot 1 / 3.6 = 0.02222$

Валовый выброс, π /год (6.3), $M = (Q \cdot NI \cdot I) / 1000 = (0.08 \cdot I \cdot 32) / 1000 = 0.00256$

Примесь: 2754 Алхапы C12-19/е пересчени па C/ (Услеводероды предельные C12-C19 (в пересчени па $C)_i$ Pacemerpumens PHK-165H) (10)

Концентрация ЗВ в парах, % масс (Прил. 14[3]), CI = 99.87

Валовый выброс, $\pi/\text{год}$ (5.2.5 [3]), $M = CI \cdot M / 100 = 99.87 \cdot 0.00256 / 100 = 0.0026$ Максимальный из разовых выброс, π/c (5.2.4 [3]), $G = CI \cdot G / 100 = 99.87 \cdot 0.02222 / 100 = 0.0222$

Примесь: 0333 Сероводород (Дилидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14[3]), СТ = 0.13

Валовый выброс, т/год (5.2.5 [3]), М = СІ · М / 100 = 0.13 · 0.00256 / 100 = 0.0000033

Максимальный из разовых выброс, r/c (5.2.4 [3]), С = CI · C / 100 = 0.13 · 0.02222 / 100 = 0.000029

Hiroco:

Kod	Наименевание 35	Βιεύρου είν	Εικέρου πένοδ
0333	Сероводород (Дигидросульфид) (518)	2.96-5	3.36-6
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.0222	0.0026
	пересчете на С): Растворитель РПК-265П) (10)		

Источник загрязнения: 7002, Неорганизованный источник

Источник выделения: 7002 04, ДВС автомобиля для работы насоса

Список литературы:

 Методика расчета нормативов выбросов вредных веществ от стационарных дюзельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, *Сельск* = 15.4 Годовой расход дизельного топлива, т/год, *Сегою* = 0.752

Примясь: 0301 Азата (IV) дноконд (Азата дноконд) (4)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), $E_2=30$ Максимальный разовый выброс, г/с, $G_1=Grnex$: $E_2=3600=15.4\cdot30/3600=0.1283$ Валовый выброс, $\pi/rog_1=M_2=Groco:E_2=10^2=0.752\cdot30/10^2=0.0226$

Примесь: 1325 Формальденид (Метапаль) (600)

Оценочное звачение среднециклового выброса, $\pi/\kappa\tau$ топлява (табл.4), $E_2=1.2$ Максимальный разовый выброс, π/c , $G_2=Grace$ · E_2 / 3600=15.4 · 1.2 / 3600=0.0051 Валовый выброс, π/rog , $M_1=Grace$ · E_2 / $10^4=0.752$ · 1.2 / $10^4=0.0009$

Примясь: 0304 Азот (II) оконд (Азота оконд) (6)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), $E_2 = 39$ Максимальный разовый выброс, г/с, $G_1 = Graco$ · $E_2 = 73600 = 15.4 \cdot 39 / 3600 = 0.1668$ Валовый выброс, π /год, $M_2 = Graco$ · $E_3 = 710^3 = 0.752 \cdot 39 / 10^3 = 0.0293$

Примесь: 0330 Сера диоксид (Аплидрид серпнотий, Серпнотий газ, Сера (IV) оксид) (316)

Оценочное звачение среднециклового выброса, г/кг топлива (табл.4), $E_2 = 10$ Максимальный разовый выброс, г/с, $\underline{G} = G_{r,nox} \cdot E_2 / 3690 = 15.4 \cdot 10 / 3600 = 0.0428$ Валовый выброс, τ /год, $\underline{M} = G_{r,nox} \cdot E_2 / 26^2 = 0.752 \cdot 10 / 10^3 = 0.0075$

Примесь: 0337 Углерод оксид (Окись углерода, Угарпый газ) (584)

Оценочное звачение среднециклового выброса, г/кг топлива (табл.4), E> = 25 Максимальный разовый выброс, г/с, _ G = Gr.nox · E> / 3600 = 15.4 · 25 / 3600 = 0.1069 Валовый выброс, т/год _ M = Gr200 · E> / 10* = 0.752 · 25 / 10* = 0.0188

Примесь: 2734 Алканы С12-19 /в переспете па С/ (Успеводероды предельные С12-С19 (в переспете па С); Растворитель РПК-365П) (10)

Оценочное звачение среднециклового выброса, $\pi/\kappa \tau$ топлива (табл.4), $E_2=12$ Максимальный разовый выброс, π/c , $G_1=G_{PDGC}$, $E_2=/3600=15.4\cdot 12/3600=0.0513$ Валовый выброс, π/c , $M_1=G_{PDGC}$, $E_2=/10^2=0.752\cdot 12/10^3=0.009$

Примесь: 1301 Пров-2-ев-1-аль (Акролеин, Акрипальденид) (474)

Оценочное звичение среднециклового выброса, $r/\kappa r$ топлива (забл.4), $E_2 = 1.2$ Максимальный разовый выброс, r/c, $G_1 = Grnex \cdot E_2 / 3600 = 15.4 \cdot 1.2 / 3600 = 0.0051 Валовый выброс, <math>r/rog_1 M_2 = Grsex \cdot E_2 / 10^2 = 0.752 \cdot 1.2 / 10^2 = 0.0009$

Примесь: 0328 Углерод (Сажа, Углерод черпый) (583)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), $E_2 = 5$ Максимальный разовый выброс, г/с, $C = Gr_{Abox} \cdot E_2 / 3600 = 15.4 \cdot 5 / 3600 = 0.0214$ Валовый выброс, т/год $M = Gr_{2000} \cdot E_2 / 10^3 = 0.752 \cdot 5 / 10^3 = 0.0038$

Koð	Наименование 35	Bushpec ale	Ενείφου πένοδ
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.1283	
	Аэот (П) оксид (Аэота оксид) (6)	0.1668	
0328	Углерод (Сама, Углерод черный) (383)	0.0214	
	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0428	
0337	Углерод оксид (Окись углерода, Угарный газ) (384)	0.1069	
1301	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.0051	
1325	Формальдегид (Метаналь) (609)	0.0051	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.0513	
	пересчете на С); Растворитель РПК-265П) (10)		

Согласно п.17 статья 202 Экологического кодиков РК «Порыштины зывесий от перадижених источению не устаналиваются. Соответственно, выпользе выбросы от передижения источению не корывруются проистом ворыштиков допустымих выбросов.

Источник загрязнения N 7002, Неорганизованный источник

Источник выделения N 7002 05, Люк автомобиля. Автомобиль-нефтевоз

Список литературы:

"Сборянк методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.5.3. Методика по расчету норм естественной убыли углеводородов в атмосферу на предприятиях вефтепродуктов

Расчет по пункту 5.3.2. При наливе в транспортные средства

4 (кожная) кляматическая зона

Южил зона, области РК: Алматинская, Атырауская, Жамбылская, ют Карагадинской (ранес Жезказганская)

Группа нефтепродуктов: 6 группа

Производительность закачки, м3/час, 179 - 3200

Объем газовоздушной смеси, м3/с, VO = V0 / 3600 = 3200 / 3600 = 0.889

Максимальная концентрация паров углеводородов, $\pi/м3$, C = 0.4

Нефтепродукт: Мазут

Количество нефтепродукта 5, 6 гр., отгруженного в течение года, т. VNP = 50

Плотность нефтепродукта, т/м3, РР = 0.8922

Объем нефтепродукта 5, 6 гр., отгруженного в течение года, м3, VNP = VNP / PP = 50 / 0.8922 = 56

Среднегодовая температура нефтепродукта при отгрузке, град С, ISG = 9.06

Удельные потери нефтепродукта, $\pi/43^{4}10^{4}$ (табл. 5.17), QT = 16

Годовой выбрес, т (ф-ла 5.44), С = VNP · QT · 0.000001 = 56 · 16 · 0.000001 = 0.000896

Примесь: 2754 Алкани С12-19 /е пересчение на С/ (Успесодороды предельные С12-С19 (е пересчение на С): Распиорипыль РПК-165П) (10)

Максимальный разовый выброс, г/с (ф-ла 5.39), С = VO · C = 0.889 · 0.4 = 0.3556

Валовый выброс, т/год _М_ = 0.0009

Hymne:

Kod	Наименование 35	Budgeo de	Bushper m/ceð
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.3556	0.0009
	пересчете на С); Растворитель РПК-265П) (10)		

НАРУЖНОЕ АНТИКОРРОЗИОННОЕ ПОКРЫТИЕ РВС – ежегодно

Источник загрязнения N 7003, Неорганизованный источник

Источник выделения N 7003 01, Компрессор передвижной

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дюслыных установок Приложение № в Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 r. No 221-F

Максимальный расход диз. топлива установкой, кг/час, Силых = 8

Годовой расход дюзельного топлива, т/год, Скою = 0.004

Примесь: 0301 Азота (IV) диокоид (Азота диокоид) (4)

Оценочное значение среднециклового выброса, г/кг топлява (186л.4), Е> - 30

Максимальный разовый выброс, r/c, $G=Grmex\cdot E>/3600=8\cdot 30/3600=0.0667$ Валовый выброс, π/rox , $M=Groso\cdot E>/10^3=0.004\cdot 30/10^3=0.0001$

Примесь: 1325 Форматденид (Менапаль) (600)

Оценочное звачение среднециклового выброса, г/кг топлива (табл.4), Ез = 1.2

Максимальный разовый выброс, г/с, С = Gracex E> /3600 = 8 · 1.2 / 3600 = 0.0027

Валовый выброс, $\pi/\text{год}$ $M = C_{F000} \cdot E_0 / 10^4 = 0.004 \cdot 1.2 / 10^5 = 0.0000048$

Примерь: 0304 Азот (II) оконд (Азота оконд) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 39

Максимальный разовый выброс, v'c, $G = Grmex \cdot E > /3600 = 8 \cdot 39 / 3600 = 0.0867$ Валовый выброс, v'rog, $M = Groso \cdot E > /10^4 = 0.004 \cdot 39 / 10^3 = 0.0002$

Примесь: 0330 Сера диокоид (Аплидрид серписний, Серписный газ, Сера (IV) окоид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл. 4), Ез = 10

Максимальный разовый выброс, v'c, $G = Grmex \cdot E > /3600 = 8 \cdot 10 /3600 = 0.0222$ Валовый выброс, v'rog, $M = Groso \cdot E > /10^3 = 0.004 \cdot 10 /10^3 = 0.00004$

Примесь: 0337 Углерод оксид (Окись углерода, Угарпый газ) (584)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), Е> = 25

Максимальный разовый выброс, v'c, $G = Grnex \cdot E > /3600 = 8 \cdot 25 /3600 = 0.0556$ Валовый выброс, v'rog, $M = Groso \cdot E > /10^3 = 0.004 \cdot 25 /10^3 = 0.0001$

Примесь: 2754 Алкапы С12-19/е пересчены па С/ (Услегодороды предельные С12-С19 (е пересчены на С); Растворитель РПК-365П) <u>(10)</u>

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Е> = 12

Максимальный разовый выброс, r/c, G = Grлых · Es /3600 = 8 · 12 / 3600 = 0.0267

Валовый выброс, т/год $M = C_{POSO} \cdot E_{P} / 10^{4} = 0.004 \cdot 12 / 10^{3} = 0.000048$

Примесь: 1301 Пров-2-ев-1-аль (Акролена, Акрипальдевид) (474)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Е> = 1.2

Максимальный разовый выброс, г/с, С = Сельск · Е> / 3600 = 8 · 1.2 / 3600 = 0.0027

Валовый выброс, π год. $M = G_{P000} \cdot E_0 / 10^3 = 0.004 \cdot 1.2 / 10^3 = 0.0000048$

Примесь: 0328 Углерод (Сажа, Углерод черпий) (583)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Ез = 5

Максимальный разовый выброс, r/c, $G = Grnecc \cdot E_0 / 3600 = 8 \cdot 5 / 3600 = 0.0111$

Валовый выброс, т/год $M = Groso \cdot E_2 / 10^3 = 0.004 \cdot 5 / 10^3 = 0.00002$

Kod	Наименование 35	Buópeo sie	Βιεύρου πένοδ
0301	Азота (IV) двоксяд (Азота дноксяд) (4)	0.0667	
	Азот (II) оксид (Азота оксид) (6)	0.0867	
0328	Углерод (Сажа, Углерод черный) (583)	0.0111	
0330	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0222	
	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0556	
	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.0027	
1325	Формальдегид (Метикаль) (609)	0.0027	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.0267	
	пересчете на С); Растворитель РПК-265П) (10)		

Согласно п.17 статья 202 Экологического кодикса РК «Пормативы зывосий от передиожении источников не устандиваются. Соответственно, выповые выбросы от передвижных источников не корывруются проистом нерыятивов допуствених выбросов.

Источник загрязнения N 7003, Неорганизованный источник

Источник выделения N 7003 02, Пескоструйные работы

36	Наименование, формула	Обозн.	Едлим.	Кол-во	Результат
1	Исходные данные:				
1.1	Производительность оборудования	8	M ² /Yac	10	
1.2	Время работы оборудования	T	час/год	40	
1.3	Число оборудования данного типа	Q	HIT.	1	
2	Расчет:				
	2008 Пыль пеорганическая: 70-20% двускисы кремпыя				
2.1	Максимальный из разовых выброс	M	r/e		0,02372
	$\mathbf{M} = (\mathbf{k}2 \times \mathbf{k}4 \times \mathbf{k}5 \times \mathbf{k}7 \times \mathbf{U} \times 10^3 \times \mathbf{S})/3600 \times \mathbf{Q}, \text{ rate:}$				
	Удельное выделение ЗВ	U	KE/M		2,668
	Доля пыли (от всей массы пыли), переходящая в аэрозоль	1/2			0,04
	Коэффициент, учитывающий местные условия, степень				
	защищенности укла от внешних воздействий, условия				0,1
	пылеобразования	k4			
	Коэффициент, учитывающий влажность материала	1.5			1
	Коэффициент, учитывающий крупность материала	k7			0,8
2.2	Валовый выброс	G	1/00,0		0,00342
	G = (M × T × 3600) / 10 ⁶				
	2002 Блениети не вещества				
2.3	Максимальный из разовых выброс	M	n/e		0,03557
	$M = (k2 \times k4 \times k5 \times k7 \times U \times 10^{3} \times S)/3600 \times Q, rate:$				
	Удельное выделение ЗВ	U	KETM		4,002
2.4	Валовый выброс	G	T/FOR		0,00512
	G = (M × T × 3600) / 10 ⁸				

Hymne

Kod	Hannenovanne 35	Busipec ste	Быброс т/год
2902	В вещенные вещества	0,03557	0,00512
2908	Пыль неорганическая: 70-20% Взвещенные вещества двускиси кремния	0,02372	0,00342

Источник загрязнения N 7003, Неорганизованный источник

Источник выделения N 7003 03, Краска

Список лителятуры:

Методика расчета выбросов загрязняющих веществ в атмосферу при навесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тони, MS = 0.403

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 1

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля легучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), v/roд, M - MS · F2 · FPI · DP · 10 ⁶ = 0.403 · 45 · 50 · 100 · 10 ⁶ = 0.0907

Максимальный из разовых выброс ЗВ (5-6), п/с, _ G _ = MS1 · F2 · FFI · DP / (3.6 · 10°) = 1 · 45 · 50 · 100 / (3.6 · 10°) = 0.0625

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (габл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), v'roд, $M_{-} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.403 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.0907$

Максимальный из разовых выброс ЗВ (5-6), п/с, _G = MSI · F2 · FPI · DP / (3.6 · 10°) = 1 · 45 · 50 · 100 / (3.6 · 10°) = 0.0625

Hroro:

Kod	Наименование 35	Εμέρου είν	Выбрес т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0625	0.0907
2752	Уайт-спирят (1294*)	0.0625	0.0907

Источник загрязнения N 7003, Неорганизованный источник

Источник выделения N 7003 04, Грунтовка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величикам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тони, MS = 0.697

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. MSI = 1

Марка ЛКМ: Грунтовка ГФ-017

Способ окраски: Пнеиматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 51

Примесь: 0616 Диметилбенэол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), vгод, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 0.697 \cdot 51 \cdot 100 \cdot 100 \cdot 10^4 = 0.3555$

Максимальный из разовых выброс $\overline{3B}$ (5-6), r/c, $\underline{G} = MSI \cdot F2 \cdot FFI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 51 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.1417$

Расчет выбросов окрасочного аэрозоля:

ASPROPER AREA AGREEMENT THORSE TAKEN

Доля дорозоля при окраске, для данного способа окраски (табл. 3), %, DК = 30

Вадовый выброс 3В (1), $viro_{A}$, $M_{-} = EOC \cdot MS \cdot (100 \cdot F2) \cdot DK \cdot 10^{+} = 1 \cdot 0.697 \cdot (100 \cdot 51) \cdot 30 \cdot 10^{+} = 0.1025$ Максимальный из разовых выброс 3В (2), $vic_{-} = EOC \cdot MSI \cdot (100 \cdot F2) \cdot DK / (3.6 \cdot 10^{+}) = 1 \cdot 1 \cdot (100 \cdot 51) \cdot 30 / (3.6 \cdot 10^{+}) = 0.0408$

HTOCO:

Kod	Наимепосапие 35	Виброс г/о	Быбрес тігед
0616	Диметнобензол (смесь о-, м-, п- изомеров) (203)	0.1417	0,3555
2902	Взясшенные частицы (116)	0.0408	0.1025

Источник загрязнения N 7003, Неорганизованный источник

Источник выделения N 7003 05, Растворитель

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при намесении дакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сущка

Фактический годовой расход ЛКМ, тони, MS = 2.4335

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. MSI - 1

Марка ЛКМ: Растюритель Уайт-спирит

Способ окраски: Кистью, наликом

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Улёт-спирит (1294+)

Доля вещества в летучей части ЛКМ (табл. 2), %, FFI = 100

Доля растворителя, при окраске и сушке

для двиного способя окраски (табл. 3), %, DP = 100

Barcosoli malipoc 3B (3-4), viros, M = MS · F2 · FPI · DP · 10° = 2.4335 · 100 · 100 · 100 · 10° = 2.4335

Максимальный из разовых выброс 3B (5-6), r/c, $=G_- = MSI \cdot FI \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 100 \cdot 100$

HTOCO:

Kod	Наименование 35	Быбросою	Виброс т/год
2752	Уайт-спирит (1294*)	0.2778	2,4335

ВНУТРЕННЕЕ АНТИКОРРОЗИОННОЕ ПОКРЫТИЕ РВС - ежегодно

Источник загрязнения N 7004, Неорганизованный источник

Источник выделения N 7004 01, Компрессор передыжной

Список лителятуры

Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок.
 Приложение №9 к Прикату Министра охраны окружающей среды и водных ресурсов Республики Казакстая от 12.06.2014 г. № 221-Г.

Максимальный расход доз. топлика установкой, кг/час, *Grace* = 8 Годовой расход дезельного топлика, т/год, *Groce* = 0.004

Примесь: 0301 Азота (IV) дионенд (Азота дионенд) (4)

Оценочное значение среднециклового выброса, г/кг топлина (186л.4), Ез = 30

Максимальный разовый выброс, г/с, _G_ = Graser · E> /3600 = 8 · 30 / 3600 = 0.0667

Banonick michoo, t/rog, $M = G_{POO} \cdot E_{P} / 10^3 = 0.004 \cdot 30 / 10^3 = 0.0001$

Примесь: 1325 Формальдельд (Метапаль) (600)

Оценочное значение среднециклового выброса, п'ят топлова (забл.4), Ез = 1.2

Максимальный разовый выброс, п'с, _G = Graux · Es /3600 = 8 · 1.2 / 3600 = 0.0027

Валовый выброс, $\pi/\text{год}$ _M = $G_{2000} \cdot E_2 / 10^3 = 0.004 \cdot 1.2 / 10^3 = 0.0000048$

Примесь: 0304 Asom (II) award (Asoma owned) (6)

Оценочное значение среднециклового выброса, г/кг топлика (забл.4), Ез = 39

Максимальный разовый выброс, г/с, _ G = Grassee · E > / 3600 = 8 · 39 / 3600 = 0.0867

Banonick subpoc, tfrog. M = Groon · En / 10' = 0.004 · 39 / 10' = 0.0002

Примесь: 0330 Сера диоконд (Аплидрид серпнотий, Серпнотий газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлява (габл.4), Еэ = 10

Максинальный разовый выброс, г/с, С = Grassy · E> / 3600 = 8 · 10 / 3600 = 0.0222

Валовый выброс, т/год. $M_{\perp} = G_{POO} \cdot E_{2} / 10^{3} = 0.004 \cdot 10 / 10^{3} = 0.0004$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлява (126л.4), Еэ = 25 Максимальный разовый выброс, n'c, $G = Grasor \cdot E_2 / 3600 = 8 \cdot 25 / 3600 = 0.0556$ Валовый выброс, n'rog, $M = Grasor \cdot E_2 / 10^2 = 0.004 \cdot 25 / 10^3 = 0.0001$

Примет: 2754 Атапи C12-19 /е перестепи по C/ (Успекодороды предетивне C12-C19 (е перестепи по C): Распи ориниль РПК-165П) (10)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), E> - 12 Максимальный разовый выброс, r/c, $G = Graux \cdot E_2 / 3600 = 8 \cdot 12 / 3600 = 0.0267$ Валовый выброс, v/rog, $M = Graco \cdot E_2 / 10^2 = 0.004 \cdot 12 / 10^3 = 0.000048$

Примесь: 1301 Пров-3-ев-1-аль (Авроленя, Аврилальдельд) (474)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), Ез = 1.2 Максимальный разовый выброс, r/c, $G = Grasov \cdot E \times /3600 = 8 \cdot 1.2 /3600 = 0.0027$ Валовый выброс, v/rox, $M = Grasov \cdot E \times /10^3 = 0.004 \cdot 1.2 /10^3 = 0.0000048$

Примесь: 0328 Успекод (Сажа, Успекод пертий) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Е> - 5 Максимальный разовый выброс, r/c, $G = Grisex \cdot E_3 / 3600 = 8 \cdot 5 / 3600 = 0.0111$ Валовый выброс, π/rog , $M = Groso \cdot E_3 / 10^3 = 0.004 \cdot 5 / 10^3 = 0.00002$

Hiroco:

Koð	Наименование 35	Busines s/e	Биброс т/год
0301	Азота (IV) дновсяд (Азота дноксяд) (4)	0.0667	
	Аэот (II) оксид (Аэота оксид) (б)	0.0867	
0328	Углерод (Сажа, Углерод черный) (583)	0.0111	
	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0222	
0337	Углерод оксид (Окись углерода, Угарямій газ) (584)	0.0556	
1301	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.0027	
	Формальдегид (Метаналь) (609)	0.0027	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.0267	
	пересчете на С); Растворитель РПК-265П) (10)		

Солнасно п.17 статья 202 Экологического кодика РК «Порыктикы зывесий от перадижения источников не устаналиваются. Соответственно, калоные выбросы от перадижениях источников не корыкруются проистом ворыктиков допустивых выбросов.

Источник загрязнения N 7004, Неорганизованный источник

Источник выделения N 7004 02. Пескоструйные работы

	очник иыделения у 7004 02, пескострунные рацоты		-		
	Наименование, формула	Обозн.	Едлям.	K0.1-80	Результат
1	Исходные данные:				
1.1	Производительность оборудования	8	M ² /vac	10	
1.2	Время работы оборудования	T	час/год	40	
1.3	Число оборудования данного типа	Q	шт		
1	Pacser:				
	2908 Пыль пеорганическая: 70-20% дерокисы крененыя				
2.1	Максимальный из разовых выброс	M	r/e		0,02372
	$M = (k2 \times k4 \times k5 \times k7 \times U \times 10^{3} \times S)/3600 \times Q$, rae:				
	Удельное выделение ЗВ	U	BOT M		2,668
	Доля пыли (от всей массы пыли), переходящая в аэрозоль	1/2			0,04
	Коэффициент, учитывающий местные условия, степень				
	защищенности укла от внешних воздействий, условия				0,1
	пылеобразования	k4			-
	Конфрициент, учитывающий влажность материала	k5			1
	Коэффициент, учитывающий крупность материала	k7			0,8
2.2	Валовый выброс	G	T/rog		0,00342
	G = (M × T × 3600) / 10 ⁸				
	2902 Бластеппис сещества				
2.3	Максимальный из разовых выброс	M	n/c		0,03557
	$M = (k2 \times k4 \times k5 \times k7 \times U \times 10^{3} \times S)/3600 \times Q, r,mc$				
	Удельное выделение ЗВ	Ü	KEP M		4,002
2.4	Валоный выброс	G	n/rog		0,00512
	G = (M × T × 3600) / 10 ⁶				

Hyoro:

Koð	Hausenseanus 35	Βιεύρου είν	Быброс т/год
2902	Въещенные вещества	0,03557	0,00512
2908	Пыль неорганическая: 70-20% Взвешенные вещества двуокиси кремния	0,02372	0,00342

Источник загразнения N 7004, Неорганизованный источник

Источник выделения N 7004 03, Краска

Список литературы:

Методика расчета выбросов загрязияющих веществ в атмосферу при навесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тони, MS = 0.403

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. МЕТ - 1

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), vroд, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 0.403 \cdot 45 \cdot 50 \cdot 100 \cdot 10^4 = 0.0907$

Максимальный из разовых выброс $\overline{3}B$ (5-6), π/c , $\underline{G} = M31 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0625$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год. М = MS · F2 · FPI · DP · 10⁻⁶ = 0.403 · 45 · 50 · 100 · 10⁻⁶ = 0.0907

Максимальный из разовых выброс 3B (5-6), n/c, $G_- = MSI \cdot FI \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.0625$

Hroco:

End	Наименование 35	Bushpec ele	Bubpec m/sed
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0625	0.0907
2752	Уайт-спирит (1294*)	0.0625	0.0907

Источник загрязнения N 7004, Неорганизованный источник

Источник выделения N 7004 04, Грунтовка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лаковрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астама, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тоны, MS = 0.697

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI - 1

Марка ЛКМ: Грунтовка ГФ-017

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 51

Примесь: 0616 Диметилбенкол (смесь о-, м-, п- изомеров) (103)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $\underline{M} = M\Sigma \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 0.697 \cdot 51 \cdot 100 \cdot 100 \cdot 10^4 = 0.3555$

Максимальный из разовых выброс 3B (5-6), n/c, $G = MSI \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 51 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 9.1417$

Расчет выбросов окрасочного аэрозоля:

Примесь: 2002 Блениевине часницы (116)

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), %, DE = 30

Валювай выбрес 3В (1), π /год, M_{-} = $EOC \cdot MS \cdot (100 \cdot F2) \cdot DE \cdot 10^{-4} = 1 \cdot 0.697 \cdot (100 \cdot 51) \cdot 30 \cdot 10^{-4} = 0.1025$ Максимальный из разовых выбрес 3В (2), π /с, G_{-} = $EOC \cdot MSI \cdot (100 \cdot F2) \cdot DE / (3.6 \cdot 10^{4}) = 1 \cdot 1 \cdot (100 \cdot 51) \cdot 30$ / (3.6 · 10⁴) = 0.0408

Hyaco!

Kod	Наименование 35	Выброс в'о	Быбрес пузой
0616	Диметилбеннол (смесь о-, м-, п- изомеров) (203)	0.1417	0.3555
2902	Взясшенные частицы (116)	0.0408	0.1025

Источник загрязнения N 7004, Неорганизованный источник

Источник выделения N 7004 05, Растворитель

Список литературы:

Методика расчета выбросов загрязняющих зеществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тони, МS = 2.4335

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI - 1

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Увіт-спарит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сущке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), тігод _M = MS · F2 · FPI · DP · 10° = 2.4335 · 100 · 100 · 100 · 10° = 2.4335

Максимальный из разовых выброс $\overline{3}$ В (5-6), nC, $\underline{G} = MSI \cdot FI \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 1 \cdot 100 \cdot 100 \cdot 100 \cdot 100 \cdot 10^6) = 0.2778$

HTOCO:

Kod	Наименование 3Б	Бибросою	Биброс т/год
2752	Уайт-спирит (1294*)	0.2778	2.4335

ГИДРАВЛИЧЕСКОЕ ИСПЫТАНИЕ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ НПС "Космагыл" – ежегодно

Источник загрязнения N 7005, Неорганизованный источник

Источник выделения N 70056 01, Пыление при манекрировании автотранспорта

Список литературы:

"Оборник методик по расчету выбросов вредных в атмосферу распичными производствами". Альяты, КасЭКОЭКСП, 1996 г. п. 9.3. Расчет выбросов вредных веществ неорганизованными негочниками Примечание некоторые вспомогательные коэффициенты для пылкщих материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязывющих веществ в атмосферу предприятиями строительной видустрии. Предприятия нерудных материалов в пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ. Расчет выбросов при погрузочно-раскрузочных работах (п. 9.3.3)

Материал: Глина

Влажность материали в диагазоне: 0.5 - 1.0 %

Коэфф., учитывающий влажность материала (табл.9.1), 20 - 1.5

Скорость ветра в дваназоне: 2.0 - 5.0 м/с

Коэфф., учитывающий средвегодовую скорость ветра (табл. 9.2), XI = 1.2

Местные условия: склады, хранилища отврытые с 4-х сторон

Коэфф., учитывающий степень защищенности укла (таба 9.4), К4 - 1

Высота падення материала, м, СБ - 1

Коэффициент, учитывающий высоту падемия материала (таба.9.5), \$5 = 0.5

Удельное выделение твердых частиц с тонны материала, r/r, Q = 80

Эффективность применяемых средств пылеподавления (определяется

экспериментально, либо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, МСОD = 0.5

Максимальное количество отгружаемого (перегружаемого) материала , π /час, MH = 0.1

Примет: 2008 Пыль пеорганическая, содержанная дерокись кремпия в %: 70-20 (шамот, пеметт, пыль ценеттого производства - глипа, глипистый спапец, дометный шлак, песок, клипкер, эсла, кремпезен, эсла углей казакстанских местерожедений) (404)

Количество твердых частиц, выделяющихся при погрузочно-разгрузочных работах:

Banonidi suffice, π/rog (9.24), $\underline{M} = E\theta \cdot EI \cdot E4 \cdot E5 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^4 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 0.5 \cdot (1-0) \cdot 10^4 = 0.000036$

Максимальный из разовых выброс, r/c (9.25), $_{-}G_{-} = X\theta \cdot XI \cdot X4 \cdot X5 \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 0.1 \cdot (1-0) / 3600 = 0.002$

Hyoro:

Kod	Наимепование 3Б	Биброс г/с	Быброс т/год
2908	Пыль неорганическая, содержащая двуокись кремиия и %: 70-20 (шамот,	0.002	3.6e-5
	цемент, пыль цементного производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских		
	месторождений) (494)		

РЕМОНТ ЛЕ + ЕКТА ТЕЛА ТРУБЫ МН «НПС-3-Костагыл» - ежегодно

Источник загрязнения: 7006, Неорганизованный источник

Источник выделения: 7006 01, Земляные работы. Пыление от автогранспорта

Список литературы:

"Оборянк методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КатЭКОЭКСП, 1996 г. п. 9.3. Расчет выбросов вредных веществ неортанизованными негочинками Примечание: некоторые вспомогательные коэффициенты для пылкщие материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Глина

Влажность материала в диапазоне: 1.0 - 3.0 %

Коэфф., учитывающий влажность материала (табл.9.1), 20 = 1.3

Скорость ветра в двапазоне: 2.0 - 5.0 м/с

Коэфф., учитывающий среднегодовую скорость вегра (табл.9.2), XI = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности узла (табл. 9.4), Д4 - 1

Высота падения материала, м, СВ = 0.5

Коэффициент, учитывающий высоту падения материала (табл.9.5), \$25 = 0.4

Удельное выделение твердых частиц с тонны материала, г/т, Q = 80

Эффективность применяемых средств пылеподавления (определяется

эксперяментально, лябо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 100

Максимальное количество отгружаемого (перегружаемого) материала, т/час, MH = 0.2

Примесь: 1998 Пыль пеорганическая, содержащая двускись кремения в %: 70-30 (шамот, цемент, пыльцементного кремоводства - глипа, глипистый слапец, доменный шлак, песок, клипкер, эсла, кременения, эсла углей казактивноских месторожедений) (494).

Количество твердых частящ, выделяющихся при погрузочно-разгрузочных работах:

Валовый выброс, w/rog (9.24), M = E0 · E1 · E4 · E3 · Q · MGOD · (1-N) · 10⁴ = 1.3 · 1.2 · 1 · 0.4 · 80 · 100 · (1-0) · 10⁴ = 0.005

Максимальный из разовых выброс, r/c (9.25), $_G_ = K\theta \cdot KT \cdot KT \cdot KT \cdot KT \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.3 \cdot 1.2 \cdot 1 \cdot 0.4 \cdot 80 \cdot 0.2 \cdot (1-0) / 3600 = 0.0028$

Нтого:

Kod	Hausenovanus 35	Bubpoc slo	Bubpoc misod
2908	Пыль неорганическая, содержащая двуокись кремняя в %: 70-20 (шамот,	0.0028	0.005
	цемент, пыль цементного производства - глина, глинистый сланец, доменный		
	шлак, песок, клиякер, зола, кремяезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 7006, Неорганизованный источник

Источник выделения: 7006 02, ДВС. Верхисе оборудование. Экскаватор

Список литературы:

 Методика расчета вормативов выбросов вредных веществ от стационарных дюсльных установок Приложение №9 к Приказу Министра охраны окружиющей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, Сильог - 15.4

Годовой расход двоельного топлива, т/год. Спосо - 10

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное звачение среднециклового выброса, г/кг топлява (табл. 4), Е> - 30

Максимальный разовый выброс, т/с, _ G _ = Сульск · Е» / 3600 = 15.4 · 30 / 3600 = 0.1283

Валовый выброс, т/год M = Croso · E> /10³ = 10 · 30 / 10³ = 0.3

Примесь: 1325 Формальденид (Менгапаль) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Еэ = 1.2

Максимальный разовый выброс, v'c, $G = Grnex \cdot E_P / 3600 = 15.4 \cdot 1.2 / 3600 = 0.0051$ Валовый выброс, v'rog, $M = Groso \cdot E_P / 10^2 = 10 \cdot 1.2 / 10^2 = 0.012$

Примясь: 0304 Азот (П) оконд (Азота оконд) (б)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 39

Максимальный разовый выброс, п'с, С = Сельск · Еэ / 3600 = 15.4 · 39 / 3600 = 0.1668

Валовый выброс, т/год $M = C_{POSO} \cdot E_S / 10^4 = 10 \cdot 39 / 10^4 = 0.39$

Примесь: 0330 Сера диоконд (Аплидрид серпноний, Серпноний газ, Сера (IV) оконд) (316)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Ез = 10

Максимальный разовый выброс, r/c, $G = Grasox \cdot E > /3600 = 15.4 \cdot 10 /3600 = 0.0428$ Валовый выброс, π/rog , $M = Grasox \cdot E > /20^i = 10 \cdot 10 /10^i = 0.1$

Примесь: 0337 Углерод оксид (Окись углерода, Угарпый газ) (584)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Еэ = 25

Максимальный разовый выброс, г/с, С = Сульск · Еэ / 3600 = 15.4 · 25 / 3600 = 0.1069

Валовый выброс, т/год $M = C_{POSO} \cdot E_{P} / 10^{3} = 10 \cdot 25 / 10^{3} = 0.25$

Примесь: 2754 Алкапы С12-19 /е пересъете па С/ (Услегодороды предельные С12-С19 (е пересъете на С); Растворитель РПК-165П) (10)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), Ез = 12

Максимальный разовый выброс, r/c, $_G_=G_{F,MAX} \cdot E_{P} / 3600 = 15.4 \cdot 12 / 3600 = 0.0513$

Валовый выброс, $\pi/\text{год}$ $M = C_{PODO} \cdot E_{P} / 10^3 = 10 \cdot 12 / 10^3 = 0.12$

Примесь: 1301 Пров-2-т-1-аль (Аэролени, Аэрилальденид) (474)

Оценочное значение среднециклового выброса, г/кг топлина (табл.4), Ез = 1.2

Максимальный разовый выброс, v'c, $G = Grnex \cdot E_P / 3600 = 15.4 \cdot 1.2 / 3600 = 0.0051$ Валовый выброс, v'rog, $M = Groso \cdot E_P / 10^4 = 10 \cdot 1.2 / 10^3 = 0.012$

Примесь: 0328 Усперод (Самса, Усперод червый) (583)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Е> = 5

Максимальный разовый выброс, p'c, $G_{-} = Grunox \cdot E_{S} / 3600 = 15.4 \cdot 5 / 3600 = 0.0214$

Валовый выброс, т/год $M = C_{POGO} \cdot E_0 / 10^3 = 10 \cdot 5 / 10^3 = 0.05$

Hroro:

Kod	Наимепование 3Б	Εμέρου είσ	Биебрес т/год
0301	Азота (IV) двоксид (Азота дновсид) (4)	0.1283	
	Азот (П) оксид (Азота оксид) (6)	0.1668	
0328	Углерод (Сажа, Углерод черный) (583)	0.0214	
	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0428	
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1069	
1301	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.0051	
1325	Формальдегид (Метаналь) (609)	0.0051	
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.0513	
	пересчете на С); Растворитель РПК-265П) (10)		

Согласно п.17 стятья 202 Экологического водевка РК «Нормативы эмиссий от передвижение источников не устанавливностся. Соответственно, валовые выбросы от передвижных источников не нормируются

Источник загразнения: 7006, Неорганизованный источник

Источник выделения: 7006 03, Шлифовальные круги

Методика расчета выбросов загрязияющих веществ в атмосферу при механической обработке метадлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка метадлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Заточные станки, с диаметром шлифовального круга - 250 мм Фактический годовой фокд времени работы одной единицы оборудования, чrод, T = 600

Число станков данного типа, шт., Ист = 1

Число станков данного типа, работающих одновременно, шт., $N\frac{M4X}{CT} = 1$

Примесь: 2030 Пыль абразивная (Корупд белый, Монохорупд) (1027*) Удельный выброс, г/с (табл. 1), Q = 0.011

Коэффициент гравитиционного оседания (п. 5.3.2), К = 0.2

Валовый выброс, $\pi/\text{год}$ (1), $MTOД = 3600 \cdot Q \cdot T \cdot N_{CT} / 10^6 = 3600 \cdot 0.011 \cdot 600 \cdot 1 / 10^6 = 0.02376$

Максимальный из разовых выброс, n/c (2), $MCEK = K \cdot Q \cdot N \frac{MAX}{CT} = 0.2 \cdot 0.011 \cdot 1 = 0.0022$

Примесь: 2992 Блееменные часницы (216) Удельный выброс, r/c (габл. 1), Q = 0.016

Коэффиционт гравитационного оссдания (п. 5.3.2), K = 0.2

Banonali nafipoc, π/rog (1), $MTOJI = 3600 \cdot Q \cdot T \cdot Ncz / 10^6 = 3600 \cdot 0.016 \cdot 600 \cdot 1 / 10^6 = 0.03456$

Максимальный из разовых выброс, n(с (2), $MCEK = E \cdot Q \cdot N \frac{MAX}{CT} = 0.2 \cdot 0.016 \cdot 1 = 0.0032$

Kod	Наимепование 35	Busipec s'e	Выброс т/год
2902	Взясшенные частицы (116)	0.0032	0.0346
2930	Пыль абразововая (Корунд белый, Монгкорунд) (1027*)	0.0022	0,0238

Источник загразмения N 7006, Неорганиопанный источник

Источник выделения N 7006 04, Машина безогневой резки труб

Синовк лителатуры:

Методика расчета выбросов загрязияющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без оклаждения

Вид оборудования: Обработка деталей из стали: Отрезные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, T = 50

Число станков данного типа, шт., Ner - 1.

Число станков данного типа, работающих одновременно, шт., $N\frac{M4X}{CI} = 1$

Примесь: 2992 Взееменные часницы (116) Удельный выброс, г/с (табл. 1), Q = 0.203

Коэффициент гранитационного оседения (п. 5.3.2), К = 0.2

Banonselli sudipoc, $\pi l rog (1)$, $MTOJI = 2600 \cdot Q \cdot I \cdot Ner / 10^6 = 3600 \cdot 0.203 \cdot 50 \cdot 1 / 10^6 = 0.03654$

Максимальный из разовых выброс, π/c (2), $MCEK = K \cdot Q \cdot N \frac{MAX}{CT} = 0.2 \cdot 0.203 \cdot 1 = 0.0406$

H roco:

Kob	Наимепование 35	Bulipec de	Выброс мілод
2902	Взяещенные частицы (116)	0.0406	0.0365

Источник загрязнения: 7006, Неорганиованный источник

Источник выделения: 7006 05, Поверхность наиссения гидрополлиции (испаремис (праймер)

Список литературы:

- 1. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасля, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-
- 2. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КасЭКОЭКСП, 1996 г. п. б. Методика расчета выбросов вредных веществ при работе асфальтобетонных заводов

Время работы оборудования, ч/год. Т = 50

Примесь: 2754 Алкани С12-19 /е переслени на С/ (Услеводероды предельные С12-С19 (е переслени на С); Растверитель РПК-165П) (10)

Об'ем праймера, т/год, МУ = 0.5

Валовый выброс, π' год (ф.-га 6.7[1]), $M = (I \cdot MI) / 1000 = (1 \cdot 0.5) / 1000 = 0.0005$ Максимальный разовый выброс, π' с, $G = M \cdot 10^6 / (T \cdot 3600) = 0.0005 \cdot 10^6 / (50 \cdot 3600) = 0.0028$

	99		
Kod	Наименование 35	Buspec de	Быбрес т/год
2754	Алканы C12-19 /в пересчете на C/ (Углекодороды предельные C12-C19 (в	0.0028	0,0005
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязвения: 7006, Неорганизованный источник

Источник выделения: 7006 06, Отрезные круги

Список литературы:

Методина расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работвет на открытом воздухе

Тип расчета: без оклаждения

Вид оборудования: Обработка деталей из стали: Отрезные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год. _ Г _ = 600

Число станков данного типа, пет. _ **ЕОЦІV** _ - 1

Число станков данкого типа, работающих одновременно, шт., NSI - 1

Примесь: 2992 Бэгенеппые часницы (116) Удельный выброс, г/с (табл. 1), GV = 0.203

Коэффиционт гравитационного оседнями (п. 5.3.2), EN = 0.2Валовый выброс, $\pi / \exp (1)$, $M_{-} = 3600 \cdot GV \cdot I_{-} \cdot EOLIV_{-} / 10^{6} = 3600 \cdot 0.203 \cdot 600 \cdot 1 / 10^{6} = 0.4385$ Максимальный из разовых выброс, $\pi / \exp (2)$, $G_{-} = EN \cdot GV \cdot NSI = 0.2 \cdot 0.203 \cdot 1 = 0.0406$

Kod	Наиметование 35	Выбрес в'е	Выбрес пусед
2902	Външенные частицы (116)	0.0406	0.4385

Источник загрязнения: 7006, Неорганизованный источник

Источник выделения: 7006 07, Скарочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астия, 2005

Коэффициент трансформации оксидов дост в NO2, XNO2 = 0.8

Коэффиционт трансформации оксидов азота в NO, ENO = 0.13

Степень очистки, доли ед., 7 - 0

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручкая дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, ко/год, БГОД - 700

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, Б 🗓 4С = 0.42

Удельное выделение сварочного аэрозоля,

п'юг расходуемого материала (табл. 1, 3), \boldsymbol{X}_{M}^{X} = 16.31

B TOM YOURS

Примесь: 0123 Желего (П, ПІ) оксиды (в пересчете из желего) (диЖелего приоксид, Желега оксид) (274). Удельное выделение загрязняющих испретя,

г/кг расходуемого материала (табл. 1, 3), X = 10.69

Степень очистки, доли ед., п = 0

Banonsell surspec, $\pi' rog (5.1)$, $MTO J = E \frac{X}{M} \cdot BTO J / 10^6 \cdot (2-\eta) = 10.69 \cdot 700 / 10^6 \cdot (1-0) = 0.00748$

Максимальный из разовых выброс, n/c (5.2), $MCEK = K \frac{X}{M} \cdot E \nabla AC / 3600 \cdot (2-\eta) = 10,69 \cdot 0.42 / 3600 \cdot (1-0) = 10.69 \cdot 0.42 / 3600 \cdot (1-0) = 10.60 \cdot 0.42 / 3600 \cdot 0.42$ 0.001247

Примесь: 0143 Маргапец и его соедипения (в пересчение на маргапија (IV) оксид) (327) Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\mathbf{X} = 0.92$

Степень очистки, доли ед., 7 - 0

Валовый выброс, $\pi/\text{год}$ (5.1), $MTOQ = K \frac{X}{M} \cdot B \Gamma OQ / 10^6 \cdot (2-\eta) = 0.92 \cdot 700 / 10^6 \cdot (1-0) = 0.000644$

Максимальный из разовых выброс, n/c (5.2), $MCEK = K \frac{X}{M} \cdot B \nabla AC / 3600 \cdot (2-\eta) = 0.92 \cdot 0.42 / 3600 \cdot (1-0) = 0.92 \cdot 0.02 / 3000 \cdot (1-0) = 0.92 \cdot 0.02 / 3000 \cdot 0.02 / 3000 \cdot 0.02 / 3000 \cdot 0.02 / 3000 \cdot 0.02 /$ 0.0001073

Примесь: 2008 Пиль пеорганическая, содержащая деускись кремния в %: 70-20 (шамон, цеменн, пыль ивметителе производения - глипа, глипистый спапен, деметный мелак, песек, клипаер, гола, кремпезен, зела услей казажения покох мастережедений) (494) Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\boldsymbol{X}_{M}^{X} = 1.4$

Степень очистки, доли ед., п = 0

Валовый выброс, $\pi/\text{год}$ (5.1), $MTOQ = K \frac{X}{M} \cdot EFOQ / 20^6 \cdot (2-\eta) = 1.4 \cdot 700 / 10^6 \cdot (1-0) = 0.00098$

Максимальный из разовых выброс, п/с (5.2), $MCEK = K \frac{X}{M} \cdot E \nabla AC / 3600 \cdot (2-\eta) = 1.4 \cdot 0.42 / 3600 \cdot (1-0) = 1.4 \cdot 0.42 / 3600 \cdot (1-0)$ 0.0001633

Примесь: 8344 Фториды пеоргапические клого растворимие - (алюнилия фторид, кальция фторид, патрия зексафторалюнилам) (Фториды пеоргалические клого растворимие /s пересчете на фтор/) (615). Удельное выделение загрязняющих вещестя,

г/кг расходуемого материала (табл. 1, 3), **Б** ^X = 3.3

Степень очистки, доли ед., 7 - 0

Валовый выброс, $\pi/\text{год}$ (5.1), $MTOQ = K \frac{X}{M} \cdot B \Gamma OQ / 10^6 \cdot (2-\eta) = 3.3 \cdot 700 / 10^6 \cdot (1-0) = 0.00231$

Максимальный из разовых выброс, r/c (5.2), $MCEK = K \frac{X}{L} \cdot E UAC / 3600 \cdot (2-\eta) = 3.3 \cdot 0.42 / 3600 \cdot (1-0) =$ 0.000385

Fanal:

Примесь: 0342 Фтористые газообразные соединения /е пересчете на фтор/ (617) Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\boldsymbol{\mathcal{K}} \stackrel{X}{\longleftarrow} = 0.75$

Степень очистки, доли ед., 77 - 0

Валовый выброс, $\pi/\text{год}$ (5.1), $MTO\mathcal{A} = K \frac{X}{M} \cdot B\Gamma O\mathcal{A} / 10^6 \cdot (2-\eta) = 0.75 \cdot 700 / 10^6 \cdot (1-0) = 0.000525$

Максимальный из разовых выброс, r/c (5.2), $MCEK = K \frac{X}{M} \cdot B \nabla AC / 3600 \cdot (1-n) = 0.75 \cdot 0.42 / 3600 \cdot (1-0) = 0.75 \cdot 0.22$ 0.0000875

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\boldsymbol{\mathcal{L}}_{k\ell}^{X}$ – 1.5

С учетом траноформации оксидов азота получаем:

Степень очистки, доли ед., п = 0

Примесь: 0301 Азота (IV) диокоид (Азота диокоид) (4)

Валовый выброс, $\pi/\text{год}$ (5.1), $MTO/I = ENO2 \cdot E \frac{X}{M} \cdot ETO/I / 10^6 \cdot (2-\eta) = 0.8 \cdot 1.5 \cdot 700 / 10^6 \cdot (1-0) = 0.00084$

Максимальный из разовых выброс, n/c (5.2), $MCEK = ENO2 \cdot E \frac{X}{M} \cdot B \nabla AC / 3600 \cdot (2-\eta) = 0.8 \cdot 1.5 \cdot 0.42 / 3600 \cdot (2-\eta)$ (1-0) = 0.00014

Πρωτικόν: 9304 Asom (II) σκουά (Asoma σκουά) (6)
Βαποπικά πιώρου, τέτομ (5.1), ΜΤΟ \overline{A} = ΣΝΟ · Σ $\frac{X}{M}$ · ΣΓΟ \overline{A} / 10 $^{\circ}$ · (1-η) = 0.13 · 1.5 · 700 / 10 $^{\circ}$ · (1-0) = 0.0001365

Максимальный из разовых выброс, n/c (5.2), $MCEK = ENO \cdot E \frac{X}{M} \cdot B VAC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.42 / 3600 \cdot (1-\eta) = 0.13 \cdot 0.42 / 3600 \cdot (1-\eta) = 0.13$ (1-0) = 0.000002275

Примесь: 0337 Усперод оксид (Окись усперода, Угарпый газ) (584)

Удельное выделение загрязняющих веществ,

 π /кг расходуемого материала (табл. 1, 3), $\boldsymbol{X}_{\boldsymbol{M}}^{X}$ = 13.3

Степень очистки, доли ед., 7 - 0

Banonski suspec, $\pi \log (5.1)$, $MTO J = K \frac{X}{M} \cdot BTO J / 10^6 \cdot (2-5) = 13.3 \cdot 700 / 10^6 \cdot (1-0) = 0.00931$

Максимальный из разовых выброс, r/c (5.2), $MCEK = E \frac{X}{M} \cdot B \mathbb{Z} 4C / 3600 \cdot (2-\eta) = 13.3 \cdot 0.42 / 3600 \cdot (1-0) = 10.000 \cdot (1-0) = 10$ 0.001552

Итого:

Kod	Нажнепование 35	Β ωύρος 2/σ	Выбрас т/год
0123	Железо (П. ПП) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0.0012	0.0075
0143	Маргажец и его соединения (в пересчете на маргажца (IV) оксид) (327)	0.0001	0.0006
0301	Азота (TV) двожсяд (Азота двожсяц) (4)	0.0001	0.0008
	Азот (II) оксид (Азота оксид) (6)	2.36-5	0.0001
0337	Углерод овенд (Овись углерода, Угарный газ) (584)	0.0016	0.0093
	Фтористые газообразные соединения /в пересчете на фтор/ (617)	8.8e-5	0.0005
0344	Фториды неорганические плохо растворимые - (длюминия фторид, вальция фторид, нагрия гексафторациоминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,0004	0.0023
2908	Пыль неорганическая, содержащая двускись кремини в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей капахстанских месторождений) (494)	0.0002	0.001

Источник загрязнения: 7006, Неорганизованный источник Источник выделения: 7006 08, ДЭС для САГ перединжной

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дюсльных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 r. No 221-F

Максимальный расход диз. топлина установкой, кг/час, Сельск = 4.4 Годовой расход дизельного топлива, т/год, Сихи - 8

Примет: 0301 Азата (IV) днаженд (Азата днаженд) (4).

Оценочное значение среднециклового выброса, г/кг топлива (тябл.4), E> = 30 Максимальный разовый выброс, n'c, $G = Grasser \cdot E_0 / 3600 = 4.4 \cdot 30 / 3600 = 0.0367$ Валовый выброс, n'rog, $M = Grasse \cdot E_0 / 20^3 = 8 \cdot 30 / 10^3 = 0.24$

Примесь: 1325 Форматделид (Менапаль) (699)

Оценочное значение среднециклового выброса, г/кг топлика (табл.4), Е> = 1.2 Максимальный резольній выброс, $n'c_- G_- = Grassc \cdot E_F / 3600 = 4.4 \cdot 1.2 / 3600 = 0.0015$ Выловый выброс, $n'rog_- M_- = Grassc \cdot E_F / 20^2 = 8 \cdot 1.2 / 10^2 = 0.0096$

Примесь: 0304 Asom (ID оконд (Азота оконд) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 39 Максимальный резельий выброс, r/c, $G = Grassex \cdot E_F / 3600 = 4.4 \cdot 39 / 3600 = 0.0477$ Валовый выброс, $r/rog_L M = Gross \cdot E_F / 10^f = 8 \cdot 39 / 10^3 = 0.312$

Примесь: 0330 Сера диоконд (Аплидрид серпистий, Серпистий газ, Сера (IV) оксид) (516)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), Е> - 10

Максимальный разовый выброс, г/с, _G_ = Сулых · Ез /3600 = 4.4 · 10 / 3600 = 0.0122

Валовый выброс, т/год M = Cross · E> / 10⁴ = 8 · 10 / 10³ = 0.08

Примесь: 0337 Углерод оксид (Окись углерода, Угартый газ) (584) Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), Еэ = 25

Максимальный разовый выброс, г/с, G = Grassx · Es / 3600 = 4.4 · 25 / 3600 = 0.0306

Валовый выброс, т/год. $M = C_{POCO} \cdot E_{P} / 10^{4} = 8 \cdot 25 / 10^{4} = 0.2$

Примесь: 2754 Алкапы С12-19 /е пересчение па С/ (Успесодороды предельные С12-С19 (е пересчение на С); Распиориниль РПК-165П) (10)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Ез = 12

Максимальный разовый выброс, г/с, _G_ = Grлых · Е> /3600 = 4.4 · 12 / 3600 = 0.0147

Валовый выброс, т/год _M_ = Gross · E> / 10³ = 8 · 12 / 10³ = 0.096

Примесь: 1301 Пров-3-ев -1-аль (Акролеин, Акрипальдевид) (474)

Оценочное значение среднециклового выброса, г/кг топлика (табл.4), Ез = 1.2

Максимальный разовый выброс, г/с, _G_ = Grassee · E> / 3600 = 4.4 · 1.2 / 3600 = 0.0015

Валовый выброс, $\pi/\text{год}$ $M = C_{POO} \cdot E_2 / 10^3 = 8 \cdot 1.2 / 10^3 = 0.0096$

Примесь: 0328 Углерод (Сижа, Углерод черпый) (583)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), Ез = 5

Максимальный разовый выброс, г/с, С = Стлых · Ез / 3600 = 4.4 · 5 / 3600 = 0.0061

Валовый выброс, т/год. $M = G_{P000} \cdot E_9 / 10^3 = 8 \cdot 5 / 10^3 = 0.04$

Kod	Наименование 35	Επέρου είν	Εμέρος πέροδ
0301	Азота (IV) двоксяд (Азота дноксяд) (4)	0.0367	
	Азот (II) оксид (Азота оксяд) (6)	0.0477	
0328	Углерод (Сама, Углерод черный) (583)	0.0061	
	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0122	
0337	Углерод оксид (Окись углерода, Угарный газ) (384)	0.0306	
1301	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.0015	
1325	Формальдегид (Метаналь) (609)	0.0015	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.0147	_
	пересчете на С); Растворитель РПК-265П) (10)		

Согласно п.17 стигья 202 Экологического кодекса РК «Нормативы эмиссий от передвижение источников не устанавливаются. Соотнетственно, валовые выбросы от переднивных источников не нормируются

ОБСЛУЖИВАНИЕ ЗАПОРНОЙ АРМАТУРЫ - ежегодно

Источник загрязнения N 7007, Неорганизованный источник

Источник выделения № 7007 01. Колска

Список литературы:

Методика расчета выбросов загрязияющих веществ в атмосферу при намесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тони, МЗ = 0.094

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. MSI = 0.5

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Динетилбензол (смесь о-, м-, п-изомеров) (203)

Доля вещества в летучей части ЛКМ (габл. 2), %, FFI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Banonsiš natūpoc 3B (3-4), vroz, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 0.094 \cdot 45 \cdot 50 \cdot 100 \cdot 10^4 = 0.0212$

Максимальный из разовых выброс ЗВ (5-6), r/c, С = MSI · F2 · FPI · DP / (3.6 · 10*) = 0.5 · 45 · 50 · 100 / (3.6 · 10^6) = 0.0313

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год. М = MS · F2 · FPI · DP · 10 4 = 0.094 · 45 · 50 · 100 · 10 4 = 0.0212

Максимальный из разовых выброс 3В (5-6), r/c, _C = MS1 · F2 · FPI · DP / (3.6 · 10*) = 0.5 · 45 · 50 · 100 / (3.6 · 10*) = 0.0313

Himmen:

Kob	Hannen ocanne 35	Bubpoc zle	Выброс т/год
0616	Диметилбектол (смесь о-, м-, п- изомеров) (203)	0.0313	0.0212
2752	Уайт-спирит (1294*)	0.0313	0.0212

ОБСЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ - ежегодно

Источник загрязнения: 7008, Неорганизованный источник Источник выделения: 7008 01, Земляные работы. Пыление

Списов литературы:

"Сборянк методих по расчету выбросов вредных в атмосферу различными производствами". Алматы, КахЭКОЭКСП, 1996 г. п.9.3. Расчет выбросов вредных веществ неорганизованными источниками Примечание: некоторые вспомогательные коэффициенты для пылкщие материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязовющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполжителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Глина

Влажность материала в диапазоне: 0.5 - 1.0 %

Коэфф., учитывающий влажность материала (табл. 9.1), 20 - 1.5

Скорость ветра в двапазоне: 2.0 - 5.0 м/с

Коэфф., учитывающий средвегодовую скорость ветра (табл.9.2), XI = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности узла (табл. 9.4), Д4 = 1

Высота падения материала, м, СБ - 1

Коэффициент, учитывающий высоту падения материала (табл.9.5), \$5 = 0.5

Удельное выделение твердых частиц с тонны материала, r/r, Q = 80

Эффективность примежяемых средств пылеподавления (определяется

экспериментально, либо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 100

Максимальное количество отгружаемого (перегружаемого) материала , $\pi/\text{час}$, MH = 0.1

Примесь: 2008 Пыль пеорганическая, содержащая деускись кремпия в %: 70-20 (шамот, цемент, пыль цеметтого производства - глипа, глипистый спапен, дометный шлак, песок, клипкер, гола, крентеген, гола углей казакстапского месторождений) (404)

Количество твердых частяц, выделяющихся при погрузочно-разгрузочных работах:

Banonsiši suspec, π /rog (9.24), $M = E\theta \cdot KI \cdot K4 \cdot K5 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^6 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 100 \cdot (1-0) \cdot 10^6 = 0.0072$

Максимальный из разовых выброс, п/с (9.25), $_{-}G_{-} = K\theta \cdot KT \cdot KT \cdot KT \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 0.1 \cdot (1-0) / 3600 = 0.002$

Итого:

Kod	Hannenceanne 35	Busipec de	Ενεύφους καίσοδ
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	0.002	0.0072
	цемент, пыль цементного производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола утлей казахстанских		
	месторождений) (494)		

ДИАГНОСТИКА/ОБСЛЕДОВАНИЕ РЕЗЕРВУАРОВ И ЕМКОСТЕЙ - ежегодно

Источник загрязнения: 7009, Неорганиованный источник

Источник выделения: 7009 01, Дегазация емкости

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от шламонакопителей (земляные амбары для мазута)

Вид нефтепродукта: Ловушечный продукт

Площадь испарения поверхности, м2, F = 100

Норма остественной убыли в осенно-зимний период, кг/м2 в месяц (табл. 6.5), MI = 2.16

Норма естественной убыли в весение-летний пернод, ко/м2 в месяц (таба. 6.5), N2 = 2.88

Коэффициент перевода кт/мес в т/с 2592.

Максимальный разовый выброс, н'с (6.6.1), G = N2 · F / 2592 = 2.88 · 100 / 2592 = 0.111

Banonsali nacipoc, π/rog (6.6.2), $M = 6 \cdot F \cdot (NI + N2) \cdot 20^{\circ} = 6 \cdot 100 \cdot (2.16 + 2.88) \cdot 10^{\circ} = 3.024$

Примесь: 2754 Алканы С12-19 /е переспете на С/ (Услеводороды предельные С12-С19 (е переспете на С); Растиоритель РПК-265П) (10)

Комиситрация ЗВ в парах, % масс (Прил. 14), СТ = 99.87

Максимальный из разовых выброс, n/c (4.2.4), G = CI · G/100 = 99,87 · 0.111 / 100 = 0.110856

Banonselli melipoc, n/rog (4.2.5), M = CI · M / 100 = 99.87 · 3.024 / 100 = 3.020069

Примесь: 0333 Сероводород (Дилидросульфий) (518)

Кожцентрация ЗВ в парах, % масс (Прил. 14), СТ = 0.13

Максинальный из разовых выброс, r/c (4.2.4), _ G = CI · G/100 = 0.13 · 0.111 / 100 = 0.000144

Валовый выброс, т/год (4.2.5), M = CI · M / 100 = 0.13 · 3.024 / 100 = 0.003931

Hyoro!

Kod	Нашинование 35	Bubpecale	Выбрес т/гед
0333	Сероводород (Дипидросульфид) (518)	0.000144	0.003931
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.110856	3,020069
	пересчете на С); Растворитель РПК-265П) (10)	1 36,000	g made to

Источник загрязнения: 7009, Неорганизованный источник

Источник выделения: 7009 02, Пропарка ШПУ

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, Ка:ОКООКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлина в котлах производительностью до 30 т/час

Вид топлика, 🔀 - Жидкое другое (Динельное топлико и т.п.)

Расход топлива, тугод, BI = 3

Расход топлива, г/с, **БС** = 0.083

Марка топлина, М - Дизельное топлино

Низная теплота сторания рабочего топлина, кнал/ат (прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.694187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлина, % (прил. 2.1), АВ = 0.025

Предельная зольность топлива, % не более (прил. 2.1), AIR = 0.025

Среднее содержиние серы в топляне, % (прил. 2.1), SR = 0.3

Предельное оодержание серы в топливе, % не более (прил. 2.1), \$IR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Hyunsen: 0301 Asoma (IV) duoxend (Asoma duoxend) (4)

Номинальная паропроизв. котлоагрегата, т/ч, QN = 1.6

Факт: паропроизводительность котлоагрегата, т/ч, QF = 1.2

Кол-во окислов взота, кг/1 Гдж тепла (рис. 2.1 или 2.2), **ZNO = 0.0888**

Коэфф. синжения выбросов алога в рез-те техи, решений, B=0

Кол-во окислен взота, кг/1 Гдж тепла (ф-за 2.7a), ENO = ENO - (QF / QN)^{4.23} = 0.0888 · (1.2 / 1.6)^{4.25} = 0.0826 BarSpoc cancium anorm, v'rog (ф. na 2. 7), MNOT = 0.001 · BT · QR · ENO · (2-B) = 0.001 · 3 · 42.75 · 0.0826 · (1-0) = 0.0106

Buffpoc osucana anora, r/c (\$\psi\$-aa 2.7), MNOG = \$0.001 \cdot BG \cdot (R \cdot ENO \cdot (I-B) = \$0.001 \cdot 0.083 \cdot 42.75 \cdot 0.0826 \cdot (I-00 = 0.000293

Выброс воет диоксида (0301), т/год, _M = 0.8 · MNOT = 0.8 · 0.0106 = 0.0085

Выброс morn диоконда (0301), r/c, G = 0.8 · MNOG = 0.8 · 0.000293 = 0.0002

Примесь: 0204 Азет (П) оконд (Азета оконд) (6). Выброс азета оксида (0304), тугод _M_ = 0.13 · MNOT = 0.13 · 0.0106 = 0.0014

Выброс взота оксыда (0304), г/с, _G_ = 0.13 · MNOG = 0.13 · 0.000293 = 0.000038

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера дисконд (Апондрид серпночний, Серпночний газ. Сера (IV) сконд) (Б16).

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, % (прил. 2.1), H2S = 0

Выбросы окислов серы, $\pi / \log (\phi - \ln 2.2)$, $M = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 3 \cdot 0.3 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 1.0 \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot B$ $0.02) + 0.0188 \cdot 0 \cdot 3 = 0.0176$

Выбросы окислов серы, т/с (ф-т 2.2), С = 0.02 · БС · S1R · (1-NSO2) + 0.0188 · H2S · БС = 0.02 · 0.083 · 0.3 · $(1-0.02) + 0.0188 \cdot 0 \cdot 0.083 = 0.0005$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарпий газ) (584)

Потеры тепла от механической неполноты сгорания, % (табл. 2.2), Q4 = 0

Кол-во окиси утлерода на единицу тепла, кг/Гдж (табл. 2.1), ЕСО = 0.32

Тип топки: Камерная топка

Выход окиси углерода в кг/тони или кг/тыс.м3°, $CCO = QR \cdot ECO = 42.75 \cdot 0.32 = 13.68$

Выбросы окиси углерола, т/год (ф-ла 2.4), _ M _ = 0.002 · БТ · ССО · (1-Q4 / 100) = 0.001 · 3 · 13.68 · (1-0 / 100) =

Выбросы окиси углерода, г/с (ф. лл. 2.4), G = 0.001 · BG · CCO · (1-Q4/100) = 0.001 · 0.083 · 13.68 · (1-0/100) = 0.0011

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Усперод (Самеа, Усперод черпий) (583)

Коэффициент (тюл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $M = BI \cdot AR \cdot F = 3 \cdot 0.025 \cdot 0.01 = 0.0008$ Выброс твердых частиц, т/с (ф-ла 2.1), $G = BG \cdot AIR \cdot F = 0.083 \cdot 0.025 \cdot 0.01 = 0.000021$

Harmon.

Ked		Bubpoc s/c	Биброс тігод
0301	Азота (IV) двоксид (Азота диоксид) (4)	0.0002	0.0085
0304	Азот (П) оксид (Азота оксид) (б)	3.8e-5	0.0014
0328	Углерод (Сажа, Углерод черный) (583)	2.1e-5	0.0008
0330	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0005	0.0176
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0011	0.041

Источник загразнения: 7009, Неорганизованный источник

Источник выделения: 7009 03, Насос

Список литературы:

- Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Катгрансойла" Астана, 2005 (п.б.1, б.2, б.3 и б.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязивощих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязияющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчет выбросов от теллообменных аппаратов и

средсти перекачки

Нефтепродукт: Ловушечный продукт

Тип нефтепродукта и средняя температура жидкости:

Наименование аппаратуры или средства перекачки. Насос центробежный с одним сальниковым уплотнением BOLTO.

Удельный выброс, кг/час (Прил.Б2), Q = 0.14

Общее количество аппаратуры или средств перекачки, шт., NI = 1

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI - 1

Время работы одной единицы оборудования, час/год, _ Г = 10

Максимальный из разовых выброс, n'c (6.2), $C = Q \cdot NN1/3.6 = 0.14 \cdot 1/3.6 = 0.0389$

Валовый выброс, π год (6.3), $M = (Q \cdot NI \cdot T) / 1000 = (0.14 \cdot 1 \cdot 10) / 1000 = 0.0014$

Примесь: 2734 Алкани C12-19/е пересчени на С/ (Успекодероди предельние C12-C19 (с пересчени на С): Расписаниями РПК-165II) (10)

Концентрация ЗВ в парах, % масс (Прил. 14[3]), СТ = 99.87

Валовый выброс, т/год (5.2.5 [3]), M = CI · M / 100 = 99.87 · 0.0014 / 100 = 0.0014

Максимальный из разовых выброс, r/c (5.2.4 [3]), G = CI · G / 100 = 99.87 · 0.0389 / 100 = 0.0388

Примесь: 0333 Сероводород (Лилидросульфид) (518)

Концентрация 3В в парах, % масс (Прил. 14[3]), CI = 0.13

Banossiš sufpoc, π /rog (5.2.5 [3]), $M = CI \cdot M / 100 = 0.13 \cdot 0.0014 / 100 = 0.0000018$

Максимальный из разовых выброс, r/c (5.2.4 [3]), _G_ = CI - G / 160 = 0.13 - 0.0389 / 100 = 0.000051

Hyoro:

Kod	Haponenovanne 35	Buspec de	Выбрес т/год
0333	Сероводород (Дипидросульфид) (518)	5.1e-5	1.8e-6
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.0388	0.0014
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 7009, Неорганизованный источник

Источник выделения: 7009 04, ДВС автомобиля (работа насося)

Список литературы:

Методика расчета вормативов выбрасов вредных веществ от стационарных дюсльных установок.
 Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахствя от 12.06.2014 г. № 221-f

Максимальный расход диз. топлика установкой, кг/час, *Сельст* = 15.4 Годовой расход дизельного топлика, з/год, *Сель*ю = 0.752

Присиясь: 0301 Asoma (IV) диоконд (Asoma диоконд) (4)

Оценочное значение среднециклового выброса, г/кг топляна (табл.4), $E_S=30$ Максимальный резовый выброс, г/с, $_G_=Grace\cdot E_S/3600=15.4\cdot 30/3600=0.1283$ Валовый выброс, $_T$ ггод $_M_=Grace\cdot E_S/10^2=0.752\cdot 30/10^2=0.0226$

Примесь: 1325 Форматделид (Метапаль) (609)

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), $E_2=1.2$ Максимальный резовый выброс, г/с, $G_1=Grmax\cdot E_2=/3600=15.4\cdot 1.2/3600=0.0051$ Валовый выброс, г/год, $M_1=Groco\cdot E_2=/20^2=0.752\cdot 1.2/10^2=0.0009$

Примесь: 0304 Азот (II) оконд (Азота оконд) (6)

Примесь: 0330 Сера диоксид (Аплидрид серписний, Серписний газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлина (тябл.4), $E_2=10$ Максимальный разовый выброс, г/с, $_G_=G_{FDGG} \cdot E_2 / 3690=15.4 \cdot 10 / 3690=0.0428$ Валовый выброс, $\pi/rog_M_=G_{FDGG} \cdot E_2 / 26^2=0.752 \cdot 10 / 10^2=0.0075$

Примесь: 0337 Усперод оксид (Окись усперода, Угарпый газ) (584)

Оценочное значение среднециклового выброса, г/кг топлика (табл.4), $E_F = 25$ Максимальный разовый выброс, г/с, $_G_=Grasov \cdot E_F / 3600 = 15.4 \cdot 25 / 3600 = 0.1069$ Валовый выброс, $_T$ /год, $_M_=Groso \cdot E_F / 20' = 0.752 \cdot 25 / 10^2 = 0.0188$

Примесь: 2754 Алканы С12-19 /е переспени на С/ (Условодороды предельные С12-С19 (е переспени на С); Растиоритель РПК-365П) (10)

Оценочное значение среднециклового выброса, г/кг топляна (габа.4), E> = 12 Максимальный разовый выброс, г/с, _G_ = Grass: E> /3600 = 15.4 · 12 / 3600 = 0.0513 Валовый выброс, г/год, _M = Gross: E> /20° = 0.752 · 12 / 10° = 0.009

Примесь: 1301 Пров-2-ев-1-аль (Акрепени, Акрипальделид) (474)

Оценочное звячение среднециклового выброса, v/кг топивна (таба.4), $E_S = 1.2$ Максимальный разовый выброс, v/с, $G_c = G_{FRGC} \cdot E_S / 3690 = 15.4 \cdot 1.2 / 3600 = 0.0051 Валовый выброс, <math>v$ /год, $M_c = G_{FRGC} \cdot E_S / 10^2 = 0.752 \cdot 1.2 / 10^2 = 0.0009$

Примесь: 0328 Усперод (Сажа, Усперод черпий) (583)

Оценочное экачение среднециклового выброса, г/ст тогинва (табл. 4), Es = 5 Максинальный разовый выброс, г/с, $G = Grassr \cdot Es / 3600 = 15.4 \cdot 5 / 3600 = 0.0214$ Валовый выброс, τ /год, $M = Grassr \cdot Es / 10^3 = 0.752 \cdot 5 / 10^3 = 0.0038$

Hroro:

Kod	Наименование 35	Выбрас з/с	Выброс тігод
	Азота (IV) диоксид (Азота диоксид) (4)	0.1283	0.0226
	Азот (II) оксид (Азота оксид) (6)	0.1668	0,0293
	Углерод (Сажа, Углерод черный) (583)	0.0214	0.0038
0330	Сера двоконд (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0428	0.0075

0337 Углерод овсяд (Окись углерода, Угарный газ) (584)	0.1069	0.0188
1301 Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.0051	0,0009
1325 Формальдегид (Метикаль) (609)	0.0051	0,0009
2754 Алканы С12-19 /в пересчете на С/ (Утлеводороды предельные С12-С19 (в пересчете на С), Растворитель РПК-265П) (10)	0.0513	0,009

Источник загрязнения: 7009, Неорганизованный источник

Источник выделения: 7009 05, Люк автомобиля

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КасЭКОЭКСП, 1996 г. п.5.3. Методика по расчету норм естественной убыли углеводородов в атмосферу на предприятиях вофтепродуктов

Расчет по пункту 5.3.2. При наливе в транспортные средства

4 (южная) влиматическая зона

Южива эсна, области РК: Алматинская, Атырауская, Жамбылская, юг Карагадинской (ранее Жезкаэтанская)

Группа нефтепродуктов: 6 группа

Производительность закачки, м3/чис, УУ - 3200

Объем газовоздушной смеси, м3/с, _ VO _ = V0 / 3600 = 3200 / 3600 = 0.889

Максимальная концентрация паров углеводородов, $\pi/43$, C = 0.4

Нефтепролукт: Мазут

Количество вофтепродукта 5, 6 гр., отгруженного в течение года, т, VNP = 85

Плотность нефтепродукта, т/м3, РР = 0.9

Объем нефтепродукта 5, 6 гр., отгруженного в течение года, м3, VNP = VNP / PP = 85 / 0.9 = 94.4

Среднегодовая температура нефтепродукта при отгрузке, град С, TSG = 35

Удельные потери нефтепродукта, $\tau/м3*10^{-6}$ (табл. 5.17), QT=38

Годовой выброс, т (ф-ла 5.44), G = VNP · QT · 0.000001 = 94.4 · 38 · 0.000001 = 0.00359

Примесь: 2754 Алианы С12-19 /е пересчены па С/ (Условодороды предельные С12-С19 (е пересчены на С);

Распиериниль РПК-265П) (10)

Максимальный разовый выброс, г/с (ф-ла 5.39), _C = _ VO _ · C = 0.889 · 0.4 = 0.3556

Валовый выброс, т/год. M = 0,0036

Harries

Kod	Наименование 35	Buspec de	Ευσύρειο πείτοδ
	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.3556	0,0036

ВНУТРИТРУБНАЯ ДИАГНОСТИКА - ежегодно

Источник загразнения: 7010, Неорганизованный источник Источник выделения: 7010 01, Компрессор передвижной

Список литеовтуры:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дезельных установок Приложение № к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 r. No 221-I

Максимальный расход диз. топлива установкой, кг/чес, Симск = 6.4

Годовой расход дизельного топлина, в'год, Сизи» = 0.004

Примесь: 0301 Asoma (IV) диокоид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 30

Максинальный разовый выброс, г/с, $_{-}G_{-}=Grzucx\cdot E>/3600=6.4\cdot30/3600=0.0533$ Валовый выброс, т/год. $_{-}M_{-}=Grzuc\cdot E>/20^{2}=0.004\cdot30/10^{3}=0.0001$

Принесь: 1325 Форматдельд (Менапать) (609)

Оценочное значение среднециклового выброса, г/кг топлива (тябл.4), Е» = 1.2

Максимальный разовый выброс, r/c, $G = Grasex \cdot E_0 / 3600 = 6.4 \cdot 1.2 / 3600 = 0.0021$ Валовый выброс, $\pi/ros_c M = Grase \cdot E_0 / 20^2 = 0.004 \cdot 1.2 / 10^2 = 0.0000048$

Примясь: 0304 Азат (П) аксид (Азата оксид) (б)

Оценочное значение среднециклового выброса, г/кг топлива (габл.4), E> = 39

Максимальный разовый выброс, r/c, $G = Grassr \cdot E_F / 3600 = 6.4 \cdot 39 / 3600 = 0.0693$

Валовый выброс, т/год. $M = Groso \cdot Er / 10^{4} = 0.004 \cdot 39 / 10^{4} = 0.0002$

Примесь: 0330 Сера диоконд (Аплидрид серписний, Серписний газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Е> = 10

Максимальный разовый выброс, $\pi'c$, $G = Grassv \cdot Es / 3600 = 6.4 \cdot 10 / 3600 = 0.0178$ Валовый выброс, $\pi'rog M = Grassv \cdot Es / 20' = 0.004 \cdot 10 / 10' = 0.00004$

Примесь: 0337 Углерод оксид (Окись углерода, Угарпый газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 25

Максимальный резельй выброс, π/c , $G = Grassee \cdot E_F / 3600 = 6.4 \cdot 25 / 3600 = 0.0444$ Валовый выброс, $\pi/cog_{_{\parallel}}M = Grosse \cdot E_F / 20^{\circ} = 0.004 \cdot 25 / 10^{\circ} = 0.0001$

Примесь: 2754 Алиани С12-19 /е переслете на С/ (Успекодороды предельные С12-С19 (с переслете на С); Растиоритиль РПК-265II) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Ез = 12

Максимальный разовый выброс, г/с, _G = Grassix · E> /3600 = 6.4 · 12 / 3600 = 0.0213

Валовый выброс, э/год. М. = Gross · E> / 201 = 0.004 · 12 / 101 = 0.000048

Примесь: 1301 Пров-1-еп-1-аль (Аврелени, Акрипальденид) (474)

Оценочное значение среднециклового выброса, г/кг топлява (186л.4), Ез = 1.2

Максимальный разовый выброс, π/c , $G = Grassiv \cdot E_2 / 3600 = 6.4 \cdot 1.2 / 3600 = 0.0021$

Валовый выброс, в'год M = Grose · Es / 10' = 0.004 · 1.2 / 10' = 0.0000048

Примесь: 0328 Углерод (Сама, Углерод черпий) (583)

Оценочное звачение среднециклового выброса, г/кг топлява (табл. 4), Ез = 5

Максимальный разовый выброс, r/c, $G = Graux \cdot E_F / 3600 = 6.4 \cdot 5 / 3600 = 0.0089$. Валовый выброс, π/rog , $M = Graus \cdot E_F / 20' = 0.004 \cdot 5 / 10^3 = 0.00002$

Hymen:

Kod		Buspec sle	Выброс тілод
0301	Азота (IV) двоконд (Азота двоконд) (4)	0.0533	Swarran
0304	Азот (II) оксид (Азота оксид) (6)	0.0693	(a) (c)
0328	Углерод (Сажа, Углерод черный) (583)	0.0089	8 8
	Сера двоженд (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.0178	8 8
0337	Углерод овенд (Окись углерода, Угарный газ) (584)	0.0444	0 0
1301	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0,0021	Q 9
1325	Формальдегид (Метаналь) (609)	0.0021	
	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С), Растворитель РПК-265П) (10)	0.0213	3 3

Согласно п.17 стятые 202 Экспотического водскоя РК «Нормативы эмиссий от передвиженых источноков устанавляваются. Соответственно, вызовые выбрюда от передвежных источников не исрыируются

Источник загразнения: 7010, Неорганизованный источник

Источник выделения: 7010 02, Пыление при землиных работах

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.9.3. Расчет выбросов вредных веществ неорганизованными источниками Примечание: некоторые эспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических указаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов в пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрухочно-разгрухочных работах (п. 9.3.3)

Материал: Глина

Влажность материали в диапазоне: 0.5 - 1.0 %

Коэфф., учитывающий влажность материала (табл.9.1), 20 - 1.5

Скорость ветра в двапазове: 2.0 - 5.0 м/с

Коэфф., учитывающий среднегодовую скорость вегра (таба.9.2), X2 = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности укла (табл 9.4), $\Sigma 4 = 1$

Высота падения материали, м, СБ - 1

Коэффиционт, учитывающий высоту падения материала (табл.9.5), 🖾 = 0.5

Удельное выделение твердых частиц с тонны материала, r/r, Q = 80

Эффективность применяемых средств пылеподавления (определяется

экспериментально, либо принимается по справочным діяных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 500

Максимальное количество отгружаемого (перегружаемого) материала, π /час, MH = 0.1

Примесь: 2008 Пыль пеорганическая, содержащая деускись кренения в %: 70-20 (шамот, цемент, пыль цеметтого производства - глипа, спинистый спапец, дометный шлак, песок, клипкер, гола, кренегезем,

эвла услей казанетапских местерождений) (494)

Количество тверших частиц, выделяющихся при погрузочно-разгрузочных работах:

Banomali mafipoc, $\pi \text{rog} (9.24)$, $M = E0 \cdot E1 \cdot E4 \cdot E3 \cdot Q \cdot MGOD \cdot (1-N) \cdot 10^4 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 500 \cdot (1-0) \cdot 10^4 = 0.036$

Максимальный из разовых выбрес, n(c (9.25), $_G_= K\theta \cdot K2 \cdot K4 \cdot K5 \cdot Q \cdot MH \cdot (1-N) / 3600 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 0.1 \cdot (1-0) / 3600 = 0.002$

Hroco:

Kod	Наименование 35	Выброс в/с	Биброс т/год
	Пыль неорганическая, содержащая двускись времния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинжер, зола, кремнезем, зола углей казалстанских месторождений) (494)	0.002	0.036

Источник загрязнения: 7010, Неорганизованный источник Источник выделения: 7010 03, Пьдзение от автотранспорта

Список литературы:

Методика расчета вормативов выбросов от воорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Прикату Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффиционт гравитиционного осаждения твердых компонентов, п.2.3, EOC = 0.4

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: < = 5 тони

Коэфф., учитывающий грузоподъемность (таба 3.3.1), CI = 0.8

Средняя сворость перединжения автотранспорта: < = 5 км/час

Коэфф., учитывающий скорость передвижения (табл. 3.3.2), С2 = 0.6

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (таба 3.3.3), СЗ = 1

Число автомации, одновременно работноции в карьере, шт., NI = 2

Средняя продолжительность одной ходки в пределах промилощался, км., Z = 0.2

Число ходок (туда + обратно) всего транспорта в час, N=2

Коэфф., учитывающий долю пыли, уносимой в атмооферу, С7 = 0.01

Пылевыделение в атмосферу на 1 км пробега, г/км, Q2 = 1450

Влажность поверхностного слок дороги, %, УД = 3

Коэфф., учитывающий увлажиемность дороги (табл. 3.1.4), $\Sigma 5 = 0.8$

Коэфф., учитывающий профиль поверхности материала на платформе, С4 = 1.45

Наиболее зарактерная для данного района скорость вегра, м/с, VI = 4.4

Средняя скорость движения транспортного средства, км/час, 1/2 = 5

Скорость облука, м/с, VDB = (V2 · V2 / 3.6)^{8.5} = (4.4 · 5 / 3.6)^{8.6} = 2.47

Коэфф., учитывающий скорость обдужа материала в кузове (таба 3.3.4), С5 = 1.13

Площадь открытой поверхности материала в кузове, м2, 5 = 2

Перевознимий материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2°с (табл. 3.1.1), Q = 0.004

Влажность перевозимого материала, %, РZ = 5

Коэфф., учитывающий влажность перевознього материала (табл.3.1.4), ЕЗМ = 0.7

Количество дней с устойчивым снежным покровом, ТЕР = 30

Продолжительность осадков в виде дождя, часов/год, ТО = 80

Количество дней с осадками в виде дождя в году, TD = 2 · TO / 24 = 2 · 80 / 24 = 6.67

Примесь: 2008 Пыль пеорганическая, содержатая двускись кремния в %: 70-20 (такот, немент, пыль нементного производства - глипа, глипистый слапен, доменный шлак, несок, клипкер, гола, кремперем, зола услей каз акстанских местереждений) (404)

С учетом коэффициента гразитационного осаждения

Максимальный резовый выброс, r/c (3.3.1), $G = KOC \cdot (CI \cdot C2 \cdot C3 \cdot K5 \cdot C7 \cdot N \cdot L \cdot (2.73600 + C4 \cdot C5 \cdot K5M \cdot O \cdot S \cdot NI) = 0.4 \cdot (0.8 \cdot 0.6 \cdot 1 \cdot 0.8 \cdot 0.01 \cdot 2 \cdot 0.2 \cdot 1450 / 3600 + 1.45 \cdot 1.13 \cdot 0.7 \cdot 0.004 \cdot 2 \cdot 2) = 0.00759$

Banomail material, $\pi = 0.0864 \cdot G \cdot (365 - (TSP + TD)) = 0.0864 \cdot 0.00759 \cdot (365 - (30 + 6.67)) = 0.2153$

Empro-

AL LOS	REPORTS:				
Kod	Hausenceanue 35	Buspec z'e	Выбрес тігод		
2908	Пыль неорганическая, содержащая двускись кремник в % 70-20 (шамот,	0.0076	0.2153		
Cont.	пемент, такль пементного прокражения - глание, гланиетый станец, доменный	24,100,00	200		

шлак, песок, клинкер, зола, кремнезем, зола утлей казахстанских месторождений) (494)

ПЛАНОВО-ПРЕДУПРЕДИТЕЛЬНЫЕ РАБОТЫ НПС «Костагыл» (в том числе ТО и ТР, диагностика, обследование, экспертиза и т.п.) – ежегодно

Источник загрязнения: 7011, Неорганизованный источник Источник выделения: 7011 01, Компрессор передвижной

Список литературы:

 Методика расчета нормативов выбросов вредных веществ от стационарных дазельных установок Приложение №9 к Приказу Манистра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г.

Максимальный расход диз. топлива установкой, кт/час, Стики = 3.04 Годовой расход дизельного топлива, т/год, Стоко = 0.00608

Примесь: 0301 Азота (IV) диоконд (Азота диоконд) (4)

Оценочное звачение среднециклового выброса, г/кг топлива (табл.4), $E_S = 30$ Максимальный разовый выброс, г/с, $G = G_{F,DGC} \cdot E_S / 3600 = 3.04 \cdot 30 / 3600 = 0.025333$ Валовый выброс, т/год, $M = G_{P,DGC} \cdot E_S / 10^3 = 0.00608 \cdot 30 / 10^3 = 0.000182$

Примесь: 1325 Формальденьд (Менапаль) (609)

Оценочное звачение среднециклового выброса, $r/\kappa r$ топлява (табл.4), $E_P = 1.2$ Максимальный разовый выброс, r/c, $C_L = C_{FDGO} \cdot E_P / 3600 = 3.04 \cdot 1.2 / 3600 = 0.001013 Валовый выброс, <math>\pi/rog$, $M_L = C_{FDGO} \cdot E_P / 10^6 = 0.00608 \cdot 1.2 / 10^6 = 0.000007$

Примесь: 0304 Азат (П) оконд (Азата оконд) (б)

Оценочное звачение среднециклового выброса, г/кг тоглива (табл. 4), $E_P = 39$ Максимальный разовый выброс, г/с, $G_- = G_{PDGO} \cdot E_P / 3690 = 3.04 \cdot 39 / 3600 = 0.032933 Валовый выброс, <math>\pi$ /год $M_- = G_{PDGO} \cdot E_P / 10^4 = 0.00608 \cdot 39 / 10^3 = 0.000237$

Примесь: 0330 Сера диоконд (Аплидрид серпнотый, Серпнотый газ, Сера (IV) оконд) (516)

Оценочное звичение среднециклового выброса, г/кг топлива (твбл.4), $E_P = 10$ Максимальный разовый выброс, г/с, $G_P = G_P x_0 x_0 \cdot E_P / 3600 = 3.04 \cdot 10 / 3600 = 0.008444$ Валовый выброс, т/год $M_P = G_P x_0 x_0 \cdot E_P / 10^4 = 0.00608 \cdot 10 / 10^4 = 0.000061$

Примесь: 0337 Углерод оксид (Окись углерода, Угарпый газ) (584)

Оценочное звачение среднециклового выброса, г/кг топлява (твбл.4), E = 25 Максимальный разовый выброс, г/с, $_G_=G$ глых $\cdot E > /3600 = 3.04 \cdot 25 / 3600 = 0.021111$ Валовый выброс, τ /год, $_M_=G$ госо $\cdot E > /10^{\circ} = 0.00608 \cdot 25 / 10^{\circ} = 0.000152$

Примесь: 2754 Алканы С12-19 /е переспени на С/ (Успесовороды предельные С12-С19 (е переспени на С); Распиоритель РПК-365П) (10)

Оценочное звачение среднециклового выброса, $r/\kappa r$ тогдина (табл. 4), $E_F = 12$ Максимальный разовый выброс, r/c, $G_{-} = G_{r,nc,\kappa} \cdot E_F / 3690 = 3.04 \cdot 12 / 3600 = 0.010133$ Валовый выброс, τ/rog , $M_{-} = G_{r,nc,\kappa} \cdot E_F / 20^2 = 0.00608 \cdot 12 / 10^3 = 0.000073$

Примесь: 1301 Пров-3-еп-1-аль (Акроленп, Акрипальдевид) (474)

Оценочное звичение среднециклового выброса, г/кг топлява (табл.4), $E_S = 1.2$ Максимальный разовый выброс, г/с, $G_- = G_{PDGS} \cdot E_S / 3600 = 3.04 \cdot 1.2 / 3600 = 0.001013$ Валовый выброс, π /год $M_- = G_{PDGS} \cdot E_S / 20^3 = 0.00608 \cdot 1.2 / 10^3 = 0.000007$

Примесь: 0328 Углерод (Самса, Углерод черпый) (583)

Оценочное звачение среднециклового выброса, г/кг топлива (табл.4), $E_2 = 5$ Максимальный разовый выброс, г/с, $C_1 = C_{PDMV} \cdot E_2 / 3600 = 3.04 \cdot 5 / 3600 = 0.004222$ Валовый выброс, т/год $M_1 = C_{PDMO} \cdot E_2 / 10^3 = 0.00608 \cdot 5 / 10^3 = 0.00003$ Итого:

Kod	Наименование 35	Budopeo ele	Εικέρου πένοδ
0301	Азота (IV) двоксяд (Азота двоксяд) (4)	0.025333	0.000182
0304	Азот (II) оксид (Азота оксид) (б)	0.032933	0.000237
0328	Углерод (Сажа, Углерод черный) (583)	0.004222	0.00003
0330	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.008444	
0337	Углерод оксид (Окись углеродь, Угарный газ) (584)	0.021111	0.000152
1301	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.001013	0.000007

1325	Формальдегид (Метаналь) (609)	0.001013	0.000007
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.010133	0.000073
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загразнения: 7011, Неорганизованный источник

Источник выделения: 7011 02, Молотки отбойные, перфоратор

Список литепатуры

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетвый метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, **ЕОС = 0.4**

Тип источника выделения: Расчет выбросов пыли при буровых работах

Буровой станок: СБШ-200

Общее количество работающих буровых станков данного тяпа, шт., N = 1

Количество одновременно работающих буровых станков данного типа, шт., NI = 1

"Чистое" время работы одного станка данного типа, час/год, _T_ = 50.14

Крепость горной массы по шкале М.М.Протодыженова: < = 4

Средняя объемная производительность бурового станка, м3/час (табл.3.4.1), V = 1.41

Тип выбуряваемой породы и ее крепость (f): Известняки, углистые сланцы, конгломераты, f< = 4

Влажность выбурняаемого материала, %, УZ = 5

Коэфф., учитывающий влажность выбуряваемого материала (табл.3.1.4), Д5 = 0.7

Средства пылегодавления или удавливание пыли: ВВП - водно-воздушное пылегодавление

Удельное пылевыделение с 1 м3 выбуренной породы данным типом станков в зависимости от крепости породы, кг/м3 (табл.3.4.2), Q = 0.6

Примет: 2008 Пікль пеорганическая, содержанцая двускись кремник в %: 70-20 (шамот, ценетт, пыльшенеттего производства - глипа, глипистый спапец, дометный шлак, песок, клипкер, гола, крентеген, гола углей казакстанских месторожедений) (404)

С учетом конффициента гравитационного осаждения

Максимальный разовый выброс одного станка, г/с (3.4.4), G = EOC · V · Q · E5 / 3.6 = 0.4 · 1.41 · 0.6 · 0.7 / 3.6 = 0.0658

Валовый выброс одного станка, т/год (3.4.1), **M = EOC** · V · Q · _ **I** _ · **E**5 · **I**0³ = 0.4 · 1.41 · 0.6 · 50.14 · 0.7 · 10³ = 0.01188

Разовый выброс одновременно работающих станков данного типа, n'e, $C_- = C \cdot NI = 0.0658 \cdot 1 = 0.0658$. Валовый выброс от всех станков данного типа, n'rog, $M_- = M \cdot N = 0.01188 \cdot 1 = 0.01188$. В того:

Kod	Наименование 35	Budipec s/c	Выбрес м/гед
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	0.0658	0.01188
	цемент, пыль цементного проководства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 03, Котлы битумные

Список литературы:

- Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в т.ч. АБЗ.
 Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-гг.
- "Сборник методик по расчету выбросов вредных в атмосферу раздичными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.6. Методика расчета выбросов вредных веществ при работе асфальтобетовных заводов.

Тип источника выделения: Битумопланильная установка

Время работы оборудования, ч/год. Т = 1

Примесь: 2754 Алкапы С13-19 /е пересчени па С/ (Углегодороды предельные С12-С19 (е пересчени на С); Расписаниель РПК-265П) (10)

Об'ем производства битума, т/год, МУ = 0.05

Валовый выброс, π /год (ф-ла 6.7[1]), $M = (I \cdot MI) / 1000 = (1 \cdot 0.05) / 1000 = 0.00005$

Максимальный разовый выброс, π/c , $G = M \cdot 10^6/(T \cdot 3600) = 0.00005 \cdot 10^6/(1 \cdot 3600) = 0.013889$

Hroco:

End	Наименование 35	Βιεύρου είσ	Εικόρος πέροδ
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.013889	0.00005

пересчете на С); Растворитель РПК-265П) (10)

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 04, Пыление при земляных работах

Список литературы:

"Сборяни методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КахЭКОЭКСП, 1996 г. п.9.3. Расчет выбросов вредных веществ неорганизованизыми источниками Примечание: некоторые вспомогательные коэффициенты для пылящих материалов (кроме угля) взяты из: "Методических ужазаний по расчету выбросов загрязняющих веществ в атмосферу предприятиями строительной индустрии. Предприятия нерудных материалов и пористых заполнителей", Алма-Ата, НПО Амал, 1992г.

Вид работ: Расчет выбросов при погрузочно-разгрузочных работах (п. 9.3.3)

Материал: Глина

Влажность материала в диапазоне: 0.5 - 1.0 %

Коэфф., учитывающий влажность материала (табл.9.1), 20 - 1.5

Скорость ветра в двапазоне: 2.0 - 5.0 м/с

Коэфф., учитывающий среднегодовую скорость ветра (табл. 9.2), XI = 1.2

Местные условия: склады, хранилища открытые с 4-х сторон

Коэфф., учитывающий степень защищенности укла (табл. 9.4), Ж4 = 1

Высота падения материала, м, СБ - 1

Коэффициент, учитывающий высоту падения материала (табл. 9.5), Д5 = 0.5

Удельное выделение твердых частиц с тонны материала, г/т, Q = 80

Эффективность примекземых средств пылеподавления (определяется

экспериментально, либо принимается по справочным данных), доли единицы, N=0

Количество отгружаемого (перегружаемого) материала, т/год, MGOD = 1

Максимальное количество отгружаемого (перегружаемого) материала , т/час, MH = 0.1

Примесь: 2008 Пыль пеорганическая, содержащая двускись кремпия в %: 70-20 (шамот, цемент, пыль цементного производства - глипа, глипистый спапец, дометный шлак, песок, клипкер, эспа, кремпезен, эспа углей казакотапског месторождений) (404).

Количество твердых частиц, выделяющихся при погрузочно-разгрузочных работах:

Banossiši sučejoc, $\pi / \exp (9.24)$, $M = E\theta \cdot EI \cdot E4 \cdot E5 \cdot Q \cdot MGOD \cdot (2-N) \cdot 10^4 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 1 \cdot (1-0) \cdot 10^4 = 0.000072$

Максимальный из разовых выброс, r/c (9.25), $_G_= E\theta \cdot ET \cdot E4 \cdot E5 \cdot Q \cdot MH \cdot (I-N) / 3600 = 1.5 \cdot 1.2 \cdot 1 \cdot 0.5 \cdot 80 \cdot 0.1 \cdot (1-0) / 3600 = 0.002$

Hroro:

Kod	Наименование 35	Bushper ste	Βιώρος πέροδ
2908	Пыль неорганическая, содержащая двускись кремния в %: 70-20 (шамот,	0.002	0.000072
	цемент, пыль цементного производства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 05, Шлифовальные работы

Список литературы:

Методика расчета выбросов загрязияющих веществ в атмосферу при механической обработке метадлов (по величикам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Круглошлифовальные станки, с диаметром шлифовального круга - 350 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, T = 15

Число станков данкого типа, шт., Ner = 1

Число станков данного типа, работающих одновременно, шт., $N\frac{M4X}{CT} = 1$

Примесь: 2030 Пиль ображеная (Корунд белий, Монокорунд) (1027*)

Удельный выброс, г/с (табл. 1), Q = 0.018

Коэффициент гранитационного оседания (п. 5.3.2), К = 0.2

Валовый выброс, π год (1), $MTOД = 3600 \cdot Q \cdot T \cdot Ncr / 10^6 = 3600 \cdot 0.018 \cdot 15 \cdot 1 / 10^6 = 0.000972$

Максимальный из разовых выброс, r/c (2), MCEK = $E \cdot Q \cdot N \frac{M4X}{CT}$ = 0.2 · 0.018 · 1 = 0.0036

Примесь: 2902 Вменетпие частици (116)

Удельный выброс, г/с (табл. 1), Q = 0.029

Комффициент гранитационного оседания (п. 5.3.2), E = 0.2

Валовый выброс, π год (1), $M\Gamma Q \overline{\chi} = 3600 \cdot Q \cdot \overline{I} \cdot N_{CT} / 10^6 = 3600 \cdot 0.029 \cdot 15 \cdot 1 / 10^6 = 0.001566$

Максимальный из разовых выброс, г/с (2), MCEK = $\mathbf{E} \cdot \mathbf{Q} \cdot \mathbf{N} \frac{\mathbf{M4X}}{CT} = 0.2 \cdot 0.029 \cdot 1 = 0.0058$

Итого:

Ked	Haumenoeanne 35	Busipec de	Выброс т/год
2902	Взяешенные частицы (116)	0.0058	0.001566
2930	Пыль абразовная (Корунд белый, Монокорунд) (1027*)	0.0036	0.000972

Источник загразнения: 7011, Неорганизованный источник Источник выделения: 7011 06, Ножницы электрические

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке метадлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005.

Технология обработки: Механическая обработка метадлов

Оборудование работает на открытом воздухе

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из стали: Отрезные станки

Фактический годовой фокд времени работы одной единицы оборудования, ч/год, I=4

Число станков данного типа, шт., Ner = 1

Число станков данного типа, работающих одновременно, шт., $N\frac{M4X}{CT} = 1$

Примесь: 2002 Блениевине часници (116)

Удельный выброс, r/c (табл. 1), Q = 0.203

Коэффициент гранитационного оседания (п. 5.3.2), $\mathbf{E} = 0.2$

Валовый выброс, т/год (1), MTOД = 3600 · Q · T · Ncт / 10⁴ = 3600 · 0.203 · 4 · 1 / 10⁴ = 0.002923

Максимальный из разовых выброс, г/с (2), MCEK – $E \cdot Q \cdot N \frac{M4X}{CT}$ – 0.2 · 0.203 · 1 = 0.0406

Marones-

Kod	Наименование 35	Εικόρου είν	Εικόρου τιένοδ
2902	Взвешенные частицы (116)	0.0406	0.002923

Источник загразнения: 7011, Неорганизованный источник

Источник выделения: 7011 07, Пила дисковая

Список литературы:

Методика по расчету выбросов загрязияющих веществ в атмосферу предприятиями деревообрабатывающей промышленности. РНД 211.2.02.08-2004. Астана, 2005

Количество загрязняющих веществ, выделяющихся при деревообработке подсчитывается по удельным показателям, отнесенным ко времени работы деревообрабатывающего оборудования

Вид станка: Станки ленточнопильные

Марка, модель станка: столярные: ЛМС-3

Удельное выделение пыли при работе оборудования, г/с (П1.1), Q = 0.56

Местный отсос пыли не проводится

Фактический годовой фонд времени работы единицы оборудования, час, Т = 1

Количество станков данного типа, **XOLIV** = 1

Количество одновременно работающих станков давного типа, NI = 1

Примесь: 2936 Пиль древестая (1039*)

Максимальный из разовых выброс, r/c (3), $C = Q \cdot NI = 0.56 \cdot 1 = 0.56$ Валовое выделение 3B, τ/rog (1), $M = Q \cdot T \cdot 3600 \cdot KOLIV / 10^6 = 0.56 \cdot 1 \cdot 3600 \cdot 1 / 10^6 = 0.002016$

Maronno.

Kod	Наименование 35	Budpec de	Биброс т/год
2936	Пыль превесная (1039*)	0.56	0.002016

Источник загрязнения: 7011, Неорганизованный источник Источник выделения: 7011 08, Пыление от автогранспорта

Список литературы:

Методика расчети нермативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Принату Министра охраны окружающей среды Республики Казачстви от 18.04.2008 №100-и

Коэффиционт гравитиционного осдждених твердых компонентов, п.2.3, EOC = 0.4

Тип источника выделения: Расчет выбросов пыли при транспортных работах

Средняя грузоподъемность единицы автотранспорта: < = 5 тони

Коэфф., учитывающий грузоподъемность (табл. 3.3.1), C2 = 0.8

Средняя скорость передвижения автотранспорта: <= 5 км/час

Коэфф., учитывающий скорость передвижения (табл. 3.3.2), С2 = 0.6

Состояние дороги: Дорога без покрытия (грунтовая)

Коэфф., учитывающий состояние дороги (таба.3.3.3), *СЗ* = 1

Число автомация, одвовременно работнопри в карьере, шт., N2 = 2

Средняя продолжительность одной ходки в пределах промилонадия, км, Z = 0.1

Число ходок (туда + обратно) всего транспорта в час, N = 2

Коэфф., учитывающий долю пыли, уносимой в атмосферу, С7 = 0.01

Пыловыделение в втиооферу на 1 км пробега, г/км, Q2 = 1450

Влажность поверхностного слоя дороги, %, УД = 3

Коэфф., учитывающий увлажиенность дороги (табл. 3.1.4), #5 = 0.8

Коэфф., учитывающий профиль поверхности материала на платформе, C4 = 1.45

Наиболее характерная для данного района скорость ветра, м/с, V2 = 4.4

Средняя скорость движения транспортного средства, км/час, V2 = 5. Скорость обдува, м/с, $VOB = (V2 \cdot V2/3.6)^{6.5} = (4.4 \cdot 5/3.6)^{6.5} = 2.47$

Коэфф., учитывающий скорость обдува материала в кузове (таба 3.3.4), С5 = 1.13

Площидь открытой поверхности материала в кузове, м2, S=2

Перевознимй материал: Глина

Унос материала с 1 м2 фактической поверхности, г/м2°с (таба.3.1.1), Q = 0.004

Влажность перевозимого материала, %, РД = 5

Коэфф., учитывающий влажность перевозимого материала (табл.3.1.4), **ЕЗМ = 0.7**

Количество дней с устойчивым снежным покровом, TSP = 85

Продолжительность осадков в виде дождя, часов/год, ТО = 100

Количество дней с осважами в виде дождя в году, TD = 2 - TO / 24 = 2 - 100 / 24 = 8.33

Примесь: 2008 Пыль пеорганическая, содержащая деуськогь кремпия с %: 70-20 (шамот, цемент, кыль ценеттого производства - глипа глипистий стапен, дометный иглак, песок, клипкер, гола, креителен, эвля услей казахетапских местерождений) (494).

С учетом коэффициента гравитационного осаждения

Максимальный разовый выброс, п'с (3.3.1), G = КОС · (C1 · C2 · C3 · К5 · C7 · N · L · ()1 / 3600 + C4 · C5 · К5М · $Q \cdot S \cdot NI = 0.4 \cdot (0.8 \cdot 0.6 \cdot 1 \cdot 0.8 \cdot 0.01 \cdot 2 \cdot 0.1 \cdot 1450 / 3600 + 1.45 \cdot 1.13 \cdot 0.7 \cdot 0.004 \cdot 2 \cdot 2) = 0.00746$

Baronsell mattee, π (3.3.2), $M = 0.0864 \cdot G \cdot (365 \cdot (TSP + TD)) = 0.0864 \cdot 0.00746 \cdot (365 \cdot (85 + 8.33)) = 0.175$

Hyaco!

Kob	Наименование 35	Выбросово	Выбрас т/год
2908	Пыль неорганическая, одержащая двужнеь кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, эсла, кремнезем, эсла углей казалетанских месторождений) (494)	0.00746	0.17

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 09, Грунтовка

Список литературы:

Методика расчета выбросов загрязияющих веществ в атмосферу при наиссении дакокрасочных материалов (повеличинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005.

Технологический процесс: окраска и сущка

Фактический годовой расход ЛКМ, тони, М5 = 0.03

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. MSI = 0.01

Марка ЛКМ: Грунговка ГФ-017

Способ окраски: Кистью, наликом

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 51

Примесь: 0616 Диметилбензол (смесь о-, м-, н- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI - 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), 1/год, M = MS · F2 · FPI · DP · 10⁻⁶ = 0.03 · 51 · 100 · 100 · 10⁻⁶ = 0.0153

Максимальный из разовых выброс 3В (5-6), r/c, G = MS1 · F2 · FFI · DF / (3.6 · 10°) = 0.01 · 51 · 100 · 100 /

 $(3.6 \cdot 10^6) = 0.001417$

Hypother

Kod	Наименование 35	Выбрес в'е	Ειώρρος πέροδ
0616	Диметилбектол (смесь о-, м-, п- изомеров) (203)	0.001417	0.0153

Источник загрязнения: 7011, Неорганиоованный источник

Источник выделения: 7011-10, Растворитель

Списов литературы:

Методика расчета выбросов загрязияющих веществ в атмосферу при наиссении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тони, MS = 0.02

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. МSI = 0.01

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Присиясь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI - 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс ЗВ (3-4), т/год. M = MS · F2 · FPI · DP · 10⁴ = 0.02 · 100 · 100 · 100 · 10⁴ = 0.02

Максимальный из разовых выброс ЗВ (5-6), r/c, _ G _= MS1 · F2 · FPI · DP / (3.6 · 10°) = 0.01 · 100 · 100 · 100 / $(3.6 \cdot 10^6) = 0.002778$

Hyoro:

Kod	Наименование 35	Bulipos de	Εικόρος πέροδ
2752	Уайт-спирит (1294*)	0.002778	0.02

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 11, Краска

Список дитепатуры:

Методика расчета выбросов загрязияющих веществ в этмосферу при намесении дакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактыческий годовой расход ЛКМ, тони, MS = 0.5

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. МЕІ = 0.01

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Дименилбензол (смесь с-, м-, п- изомеров) (203) Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), v'rод, $M_{-}=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.5 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1125$

Максимальный из разовых выброс 3B (5-6), r/c, С = M31 · F2 · FPI · DP / (3.6 · 10°) = 0.01 · 45 · 50 · 100 / (3.6 -10% = 0.000625

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI - 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), π год. $M_{\bullet} = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.5 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.1125$

Максимальный из разовых выброс 3В (5-6), r/c, $C_{-}=MSI \cdot FJ \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 45 \cdot 50 \cdot 100 / (3.6 \cdot 10^6) = 0.000625$

Homore

Kob	Hannest oceanne 35	Выброс г/с	Выброс т/год
0616	Диметилбектол (смесь о-, м-, п- изомеров) (203)	0.000625	0.1125
2752	Уайт-спирит (1294*)	0.000625	0.1125

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011-12, Шпатленка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при навесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактыческий годовой расход ЛКМ, тони, $M\Sigma = 0.5$

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг. МЕІ = 0.01

Марка ЛКМ: Шпитлевка ПФ-002 Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 25

Поимесь: 2750 Сельвени пафии (1149+)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI - 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), vгод, $M = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^4 = 0.5 \cdot 25 \cdot 100 \cdot 100 \cdot 10^4 = 0.125$

Максимальный из разовых выброс $\overline{3}B$ (5-6), r/c, $\underline{G} = MSI \cdot FI \cdot DP / (3.6 \cdot 10^6) = 0.01 \cdot 25 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.000694$

Hancor

Kod	Hawsen oceanie 3D	Bubpoc de	Быброс т/ход
2750	Сольвент нафта (1149*)	0.000694	0.125

Источник загрязнения: 7011, Неорганизованный источник Источник выделения: 7011 13, Пыление стройматериалов

Списов литературы:

- Методика расчета нормативов выбросов от неорганизованных источников Приловение №8 к Прихазу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г
- Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов Материал: Щебень из изверж пород крупи. до 20мм

Примесь: 1908 Пыль пеорганическая, содержащая деускись кремпия в %: 70-30 (шамот, цемент, пыль цементого производства - глипа, глипистый спапец, доменный шлак, пеоск, клипкер, гола, кремпезем, гола услей кагакстаничного местерожедений) (494)

Влажность материала, %, УД = 3

Коэфф., учитывающий влажность материала (табл.4), 🖾 = 0.7

Операция: Храмевие

Скорость ветра (среднегодовая), м/с, СЗУК = 4.4

Коэфф., учитывающий среднегодовую скорость ветра (табл.2), X35R = 1.2

Скорость ветра (максимальная), м/с, СЗ = 9

Коэфф., учитывающий максимальную скорость ветра (табл. 2), ДЗ = 1.7

Коэффициент, учитывающий степень защищенности узла (табл. 3), Ж4 = 1

Размер куска материала, мм., G7 = 15

Коэффициент, учитывающий крупность материала (табл.5), Е7 = 0.5

Поверхность пыления в плане, м2, F = 2

Коэфф., учитывающий профиль поверхности складируемого материала, Ж6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.002

Максимальный разовый выброс пыли при хранения, r/c (1), $GC = X3 \cdot X4 \cdot X5 \cdot X6 \cdot X7 \cdot Q \cdot F = 1.7 \cdot 1 \cdot 0.7 \cdot 1$

 $1.45 \cdot 0.5 \cdot 0.002 \cdot 2 = 0.00345$

Время работы склада в году, часов, RT = 48

Валовый выброс тыли при хранении, π rog (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot 0.0036 = 1.2 \cdot 1 \cdot 0.7 \cdot 1.45 \cdot 0.5 \cdot 0.002 \cdot 2 \cdot 48 \cdot 0.0036 = 0.000421$

Максимальный разовый выброс, r/cex, G = 0.00345

Валовый выброс, π год M = 0.000421

Итого:

Kod	Наиметование 35	Bubpoc s/o	Биброс тігод
	Пыль неорганическая, содержащая двускись кремния в %: 70-20 (шамот,	0.00345	0.000421
	цемент, пыль цементного проководства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 14, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астама, 2005

Коэффициент траноформации оксидов азота в NO2, XNO2 = 0.8

Коэффициент траноформации оксидов азота в NO, ENO = 0.13

Степень очистки, доли ед., п = 0

РАСЧЕТ выбросов 3В от сварки металлов

Вид сварки: Ручкая дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, кп/год, ВГОД = 1.25

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кт/час, $B \nabla A C = 0.1$

Удельное выделение сварочного аэрозоля,

г/кг расходуемого материала (табл. 1, 3), $\mathbf{Z}_{M}^{X} = 16.31$

R TOM SHORE

Примесь: 0123 Железо (П, ПІ) оксиды (в пересчете на железо) (диЖелезо приоксид, Железа оксид) (274)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\mathbf{Z} = 10.69$

Степень очистки, доли ед., 7 - 0

Валовый выброс, π год (5.1), $\mathbf{MTO} \mathbf{A} = \mathbf{K}_{\mathbf{M}}^{X} \cdot \mathbf{BTO} \mathbf{A} / 10^{6} \cdot (\mathbf{Z} \cdot \mathbf{n}) = 10.69 \cdot 1.25 / 10^{6} \cdot (1.0) = 0.00001336$

Максимальный из разовых выброс, π (c (5.2), $MCEK = K\frac{X}{M} \cdot B \nabla AC / 3600 \cdot (2-\eta) = 10.69 \cdot 0.1 / 3600 \cdot (1-0) = 0.000297$

Примесь: 0143 Маргапец и его соединения (в пересчение на марганца (IV) оксыд) (327)

Удельное выделение загрязняющих веществ,

г/кг расходуемого материала (табл. 1, 3), $\boldsymbol{X} \stackrel{X}{\boldsymbol{\mathsf{M}}} = 0.92$

Степень очистки, доли ед., 7 = 0

Валовый выброс, v/rog (5.1), $MTOR = K \frac{X}{M} \cdot BTOR / 10^6 \cdot (2-\eta) = 0.92 \cdot 1.25 / 10^6 \cdot (1-0) = 0.00000115$

Максимальный из разовых выброс, г/с (5.2), $MCEK = K\frac{X}{M} \cdot E \nabla AC / 3600 \cdot (2-\eta) = 0.92 \cdot 0.1 / 3600 \cdot (1-0) = 0.00002556$

Примесь: 2008 Пыль пеорганическая, содержанная дерокись кренены в %: 70-20 (шамот, немент, пыль цементного производства - глипа, слипистый слапец, доменный млак, пеоск, клипкер, гола, крентегем, гола услей казакстанских месторождений) (404)

Удельное выделение загрязняющих веществ,

г/кг расходу емого материала (табл. 1, 3), $\boldsymbol{X}_{\boldsymbol{M}}^{\boldsymbol{X}} = 1.4$

Степень очистки, доли ед., 7 - 0

Валовый выброс, т/год (5.1), $MTQQ = K \frac{X}{M} \cdot BTQQ / 10^6 \cdot (I-\eta) = 1.4 \cdot 1.25 / 10^6 \cdot (I-0) = 0.00000175$

Максимальный из разовых выброс, r/c (5.2), $MCEK = E \frac{X}{M} \cdot B \nabla AC / 3600 \cdot (2-\eta) = 1.4 \cdot 0.1 / 3600 \cdot (1-0) = 1.4 \cdot 0.1 /$ 0.0000389

Примесь: 0344 Фториды пеорганические клого растооримые - (алюмилия фторид, кальция фторид, панрия зексафторалюминам) (Фториды пеорганические клого растооримые /е пересчете на фтор!) (625) Удельное выделение загрязняющих веществ,

и/кг расходуемого материала (табл. 1, 3), $\mathbf{X}_{\mathbf{M}}^{X} = 3.3$

Степень очистки, доли ед., 7 - 0

Banomaik materia, $\pi rog (5.1)$, $MTO R = E \frac{X}{M} \cdot BTO R / 20^6 \cdot (2-\eta) = 3.3 \cdot 1.25 / 10^6 \cdot (1-0) = 0.000004125$

Максимальный из разовых выброс, r/c (5.2), $MCEK = \sum_{M}^{X} \cdot B \nabla AC / 3600 \cdot (2-\eta) = 3.3 \cdot 0.1 / 3600 \cdot (1-0) =$ 0.0000917

Tess:

Присмесь: 0342 Фтористые газообразные соединения /е пересчете на фтор/ (617) Удельное выделение загрязняющих веществ,

и/кг расходу емого материала (табл. 1, 3), $X_{L'}^{X}$ = 0.75.

Степень очистки, доли ед. 7 - 0

Banonsili malipoc, $\pi' rog (5.1)$, $MTO J = X \frac{X}{M} \cdot BTO J / 10^6 \cdot (2-\eta) = 0.75 \cdot 1.25 / 10^6 \cdot (1-0) = 0.000000938$

Максимальный из разовых выброс, t/c (5.2), $MCEK = K \frac{X}{M} \cdot B \mathbb{Z} 4C / 3600 \cdot (2-\eta) = 0.75 \cdot 0.1 / 3600 \cdot (1-0) =$ 0.00002083

Расчет выбросов оксидов доста:

Удельное выделение загрязняющих веществ;

п'юг расходуемого материала (таба. 1, 3), \boldsymbol{X}_{M}^{X} = 1.5

С учетом тракоформации оксидов взота получаем:

Степень очнстки, доли ед., 7 - 0

Πρικιστα: 9391 Azoma (IV) διισκούδ (Azoma διισκούδ) (4)
Βαποιωδί εωδρος, πίτοχ (5.1), ΜΓΟ $\overline{\chi}$ = ENO2 · \overline{K}_{M}^{X} · BΓΟ $\overline{\chi}$ / 10⁴ · (2- $\overline{\eta}$) = 0.8 · 1.5 · 1.25 / 10⁴ · (1-0) = 0.0000015

Максимальный из разовых выброс, $v(c.(5.2), MCEK = ENO2 \cdot E \xrightarrow{X} - B \mathbb{Z}4C / 3600 \cdot (2-\eta) = 0.8 \cdot 1.5 \cdot 0.1 / 3600 \cdot (2-\eta) = 0.8 \cdot 0.1 / 3600 \cdot (2-\eta) = 0.0 \cdot 0.1$ (1-0) = 0.00003333

Πρωτικό: 0304 Asom (II) σκουά (Asoma σκουά) (6)
Βαποπικά πιούρου, πίτομ (5.1), ΜΤΟ \overline{H} = KNO · \overline{K} \overline{K} - ΒΓΟ \overline{H} / 10 $^{\circ}$ · (1-η) = 0.13 · 1.5 · 1.25 / 10 $^{\circ}$ · (1-0) =

0.0000002438

Максимальный из разовых выброс, r/c (5.2), $MCEK = ENO \cdot E \frac{X}{M} \cdot E \, \nabla AC / 3600 \cdot (1-\eta) = 0.13 \cdot 1.5 \cdot 0.1 / 3600 \cdot 1.000 \cdot 1$ (1-0) = 0.000000542

Примесь: 0337 Углерод оксид (Окись углерода, Угаркый газ) (584) Удельное выделение загрязняющих веществ.

и/кг расходуемого материала (табл. 1, 3), $\mathbf{X}_{\mathbf{M}}^{X}$ = 13.3

Степень очистки, доли ед., 7 - 0

Banomaří mačpoc, π' rog (5.1), $MTO J = E \frac{X}{M} \cdot BTO J / 10^6 \cdot (2-\eta) = 13.3 \cdot 1.25 / 10^6 \cdot (1-0) = 0.00001663$

Максимальный из разовых выброс, n/с (5.2), $MCEK = K \frac{X}{M} \cdot EVL4C / 3600 \cdot (2-\eta) = 13.3 \cdot 0.1 / 3600 \cdot (1-0) = 10.00 \cdot$ 0.0003694

	W.		
Kod	Наименование 35	Εικόρου είσ	Busipos misod
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0.000297	0.000013
	оксид) (274)		
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.000026	0.000001
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000033	0.000002
0304	Азот (П) оксид (Азота оксид) (б)	0.000005	2,438e-7
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.000369	0.000017
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.000021	9.38c-7
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция	0.000092	0.000004
	фторяд, натрия гексафторалюминат) (Фторяды неорганические плохо		
	растворимые /в пересчете на фтор/) (615)		
2908	Пыль неорганическая, содержащая двускись кремиия в %: 70-20 (шамот,	0.000039	0.000002
	цемент, пыль цементного проководства - глина, глинистый сланец, доменный		
	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011-15, Резка метадла

Список литературы:

Методика расчета выбросов загрязывющих вещестя в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астака, 2005

Коэффициент траноформации оксидов азота в NO2, XNO2 = 0.8

Коэффициент траноформации оксидов азота в NO, XNO = 0.13

Степень очистки, доли ед., п = 0

РАСЧЕТ выбросов ЗВ от резки металлов

Видрезки: Газовая

Разрезаемый материал: Сталь углеродистая

Толщина материала, мм (табл. 4), L = 5

Способ расчета выбросов: по времени работы оборудования

Время работы одной единицы оборудования, час/год. Т = 8

Число единицы оборудования на участве, Nicr = 1

Число единицы оборудования, работающих одновременно, $N\frac{MAX}{3\sqrt{T}} = 1$

Удельное выделение сварочного аэрозоля, п/ч (табл. 4), X² = 74

R TOM SHORE:

Примесь: 0143 Маргапец и его соедипения (в переспени на маргапца (IV) оксид) (327)

Удельное выделение, r/v (табл. 4), $X^2 = 1.1$

Степень очистки, доли ед., п = 0

Валовый выброс 3В, τ /год (6.1), $MTOД = \Sigma^{X} \cdot I \cdot N \times \tau / 10^{6} \cdot (1 \cdot \eta) = 1.1 \cdot 8 \cdot 1 / 10^{6} \cdot (1 \cdot 0) = 0.0000088$

Максимальный разовый выброс 3B, г/с (6.2), $MCEK = E^{\chi} \cdot N \frac{MAX}{VCT} / 3600 \cdot (2-\eta) = 1.1 \cdot 1 / 3600 \cdot (1-0) = 1.1$

0.0003056

Примесь: 0123 Железо (П, ПІ) оксиды (в пересчете по железо) (диЖелезо приоксид, Железо оксид) (274) Удельное выделение, v4 (v65.1.4), E7 = 72.9

Степень очистки, доли ед., 7 - 0

Валовый выброс 3В, π год (6.1), $MTOД = E^X - I - N \times \pi / 10^6 \cdot (1 - \pi) = 72.9 \cdot 8 \cdot 1 / 10^6 \cdot (1 - 0) = 0.000583$

Максимальный разовый выброс 3B, г/с (6.2), $MCEK = E^{\chi} \cdot N \frac{M4X}{YCT} / 3600 \cdot (1-\eta) = 72.9 \cdot 1 / 3600 \cdot (1-0) = 0.02025$

Гезы:

<u> Примесь: 0337 Усперод оксид (Окиоз усперода, Угарскей газ) (384)</u>

Удельное выделение, n/4 (табл. 4), $\Sigma^2 = 49.5$

Степень очистки, доли ед., $\eta = 0$

Валовый выброс 3В, π /год (6.1), $MTOA = \Sigma^{X} \cdot I \cdot N_{PCT} / 10^{6} \cdot (1-\eta) = 49.5 \cdot 8 \cdot 1 / 10^{6} \cdot (1-0) = 0.000396$

Максимальный разовый выброс 3В, г/с (6.2), $MCEK = E^{N} \cdot N \frac{MAX}{VCT} / 3600 \cdot (2-\eta) = 49.5 \cdot 1 / 3600 \cdot (1-0) = 0.01375$

Расчет выбросов оксидов азота:

Удельное выделение, г/ч (табл. 4), $X^{2} = 39$

С учетом траноформации оксидов азота получаем:

Степень очистки, доли ед., # - 0

Примесь: 0201 Азоны (IV) диамонд (Азоны диамонд) (4). Валовый выброс ЗВ, т/год (6.1), МГОД = KNO2 · E^x · _ I _ · Nscr / 10⁶ · (1-д) = 0.8 · 39 · 8 · 1 / 10⁶ · (1-0) =

Максимальный разовый выброс 3B, г/с (6.2), $MCEK = ENO2 \cdot E^{X} \cdot N \frac{MAX}{YCT} / 3600 \cdot (1-7) = 0.8 \cdot 39 \cdot 1 / 3600 \cdot (1-7) = 0.8 \cdot 3000 \cdot (1-7) = 0.8 \cdot$ 0) = 0.00367

Примясь: 0204 Азот (П) оксид (Азота оксид) (6) Валовый выброс ЗВ, π/rog (6.1), $MTO_{il} = KNO \cdot K^{il} \cdot I_{i} \cdot Nrcr / 10^{6} \cdot (1-\eta) = 0.13 \cdot 39 \cdot 8 \cdot 1 / 10^{6} \cdot (1-0) =$

Максимальный разовый выброс 3B, г/с (6.2), $MCEK = ENO \cdot E^{\chi} \cdot N \frac{M4X}{NCT} / 3600 \cdot (1-\eta) = 0.13 \cdot 39 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3600 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3000 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3000 \cdot (1-\eta) = 0.13 \cdot 30 \cdot 1 / 3000 \cdot (1-$

00 = 0.001408

HTOCO:

Kod	Наименование 35	Busépos de	Βιώρος πέροδ
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0.02025	0.000583
	оксид) (274)		
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.000306	
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00867	0.00025
0304	Азот (II) оксид (Азота оксид) (6)	0.001408	0.000041
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01375	0.000396

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 16, Напланка метадла

Списов литературы:

Методина расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астака, 2005

Коэффиционт траноформации оксидов доста в NO2, XNO2 = 0.8

Коэффициент траноформации оксидов азота в NO, ENO = 0.13

Степень очистки, доли ед., п = 0

РАСЧЕТ выбросов 3В от сварки металлов

Вид сварки: Ручкая электролуговая напланка

Электрод (сварочный материал): ХР-19

Расход сварочных материалов, ки/год, BFOД = 0.2

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, В ДАС - 0.1

Удельное выделение сварочного аэрозоля,

г/кг расходуемого материала (табл. 1, 3), **К** ^X - 41.4

в том числе:

Примесь: 0203 Хром /в перестения па хром (VI) оконд/ (Хром насенивальняющий) (647). Удельное выделение загрязняющих веществ.

г/кг расходуемого материала (табл. 1, 3), $\mathbf{K} \stackrel{X}{\mathbf{M}} = 4.4$

Степень очистки, доли ед., 7 - 0

Валовый выброс, ψ год (5.1), $MTO \mathcal{A} = \mathcal{K} \frac{X}{M} \cdot \mathcal{B} \Gamma O \mathcal{A} / 20^6 \cdot (2-\eta) = 4.4 \cdot 0.2 / 10^6 \cdot (1-0) = 0.00000088$

Максимальный из разовых выброс, г/с (5.2), $MCEK = E\frac{X}{M} \cdot B \nabla 4C / 3600 \cdot (2-\eta) = 4.4 \cdot 0.1 / 3600 \cdot (1-0) = 4.4 \cdot 0.1 / 36$ 0.0001222

Примесь: 0123 Желего (П. ПD оксиды (с перестете из желего) (диЖелего присканд. Желего оксид) (274). Удельное выделение загрязняющих веществ,

г/кг расходуемого матеряала (табл. 1, 3), $\mathbf{K}_{\mathbf{M}}^{X}$ = 37

Степень очистки, доли ед., 7 - 0

Валовый выброс, π /год (5.1), $MTQД = K \frac{X}{M} \cdot BTQД / 10^6 \cdot (1-\eta) = 37 \cdot 0.2 / 10^6 \cdot (1-0) = 0.0000074$

Максимальный из разовых выброс, v/c (5.2), $MCEK = K \frac{X}{M} \cdot B \nabla AC / 3600 \cdot (2-\eta) = 37 \cdot 0.1 / 3600 \cdot (1-0) = 37 \cdot$

0.001028

Himmon:

Kod	Haumenceanne 35	Bushpac sla	Bushpen misab
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0.001028	0.000007
	оксиді (274)		
0203	Хром /в пересчете на хром (VI) оксиді (Хром шестивалентный) (647)	0.000122	8.8c-7

Источник загрязнения: 7011, Неорганизованный источник

Источник выделения: 7011 17, ДЭС передвижная

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приназу Министра охраны окружиющей среды и водных ресурсов Республики Казахстан от 12.06.2014 r. No 221-f

Максимальный расход диз. топлива установкой, кг/час, Сильск = 3.04 Годовой расход дизельного топлива, т/год. Сизон = 0.00608

Примесь: 0301 Азота (TV) диоксид (Азота диоксид) (4).

Оценочное значение среднециклового выброса, г/кг топлява (табл.4), Ез = 30

Максимальный разовый выброс, r/c, $G = Grasox \cdot E > /3600 = 3.04 \cdot 30 / 3600 = 0.025333$ Валовый выброс, v/rox, $M = Graso \cdot E > /20^2 = 0.00608 \cdot 30 / 10^3 = 0.000182$

Примесь: 1325 Формальденід (Менапаль) (609)

Оценочное значение среднециклового выброса, г/кг топлика (табл.4), Е> = 1.2

Максимальный разовый выброс, r/c, $G = Graco \cdot E_2 / 3600 = 3.04 \cdot 1.2 / 3600 = 0.001013$ Валовый выброс, v/rog, $M = Graco \cdot E_2 / 20^2 = 0.00608 \cdot 1.2 / 10^3 = 0.000007$

Примясь: 0304 Азот (П) окоид (Азота окоид) (б)

Оценочное значение среднециклового выброса, г/кг топлива (табл. 4), Ез = 39

Максимальный разовый выброс, v/c, $G=Grimax\cdot E>/3600=3.04\cdot 39/3600=0.032933$ Валовый выброс, v/rog, $M=Groso\cdot E>/10^f=0.00608\cdot 39/10^3=0.000237$

Примесь: 0330 Сера дискоид (Аплидрид серпнотий, Серпнотий газ. Сера (IV) оконд) (516)

Оценочное звачение среднециклового выброса, г/кг топлява (табл.4), Еэ = 10

Максимальный разовый выброс, v'c, $G = Grasov \cdot E_2 / 3600 = 3.04 \cdot 10 / 3600 = 0.008444$ Валовый выброс, $v'rog_-M = Graso \cdot E_2 / 10^2 = 0.00608 \cdot 10 / 10^3 = 0.000061$

Примесь: 0337 Углерод окомд (Окись углерода, Угартый газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), Еэ = 25

Максимальный разовый выброс, v'e, $G = Grasov \cdot E_2 / 3600 = 3.04 \cdot 25 / 3600 = 0.021111$ Валовый выброс, v'rog, $M = Grasov \cdot E_2 / 10^3 = 0.00608 \cdot 25 / 10^3 = 0.000152$

<u> Поприясь: 2754 Альялии С12-19/а перестепи па С/ (Услеводскоди представие С12-С19 (а перестепи па С):</u> Расписониями РПК-265II) (10):

Оценочное значение среднециклового выброса, г/кг топлява (табл. 4), Е> = 12

Максимальный разовый выброс, r/c, $G = Grnex \cdot E_2 / 3600 = 3.04 \cdot 12 / 3600 = 0.010133$ Валовый выброс, π/rog , $M = Groso \cdot E_2 / 10^2 = 0.00608 \cdot 12 / 10^3 = 0.000073$

Примесь: 1301 Пров-2-ев-1-аль (Акралева, Акралальдевад) (474).

Оценочное значение среднециклового выброса, г/кг тоглява (табл.4), Ез = 1.2

Максимальный разовый выброс, r/c, $G = Grasoc \cdot E \times /3600 = 3.04 \cdot 1.2 /3600 = 0.001013$ Валовый выброс, π/rog , $M = Grasoc \cdot E \times /10^3 = 0.00608 \cdot 1.2 /10^3 = 0.000007$

Примесь: 0328 Утерод (Сажа, Утерод черпий) (583)

Оценочное значение среднециклового выброса, г/кг топлика (табл.4), Ез = 5

Максимальный разовый выброс, n'c, $G = Gracor \cdot E_0 / 3600 = 3.04 \cdot 5 / 3600 = 0.004222$

Валовый выброс, т/год _M _ = $C_{PO00} \cdot E_2 / 10^3 = 0.00608 \cdot 5 / 10^3 = 0.00003$ H того:

Kod		Εκόρος ε/ο	Выбрес т/гед
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.025333	
	Азот (II) оксид (Азота оксяд) (6)	0.032933	
	Углерод (Сама, Углерод черный) (583)	0.004222	
	Сера двоксид (Ангидрид серинстый, Серинстый газ, Сера (IV) оксид) (516)	0.008444	
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.021111	
1301	Проп-2-ен-1-аль (Акролени, Акрилальдегид) (474)	0.001013	
1325	Формальдегид (Метаналь) (609)	0.001013	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.010133	
	пересчете на С); Растворитель РПК-265П) (10)		

Согласно п.17 статья 202 Экологического кодикса РК «Нермативы зывесий от передвижение источников не устаналиваются. Соответственно, калоные выбросы от передвижение источников не нермируются процетом нермативов допустаных выбросов.

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

1. Источники выделения вредных (загрязняющих) веществ

Наименовани е производства	№ ИЗА	№ ист. выде ления	Наименование источника выделения ЗВ	Наимено-вание выпускае-мой продукции	работ выде	оемя гы ист. гления, нас за год	Наименование ЗВ	Код ВВ (ЭНК, ПДК или ОБУВ)	Кол-во ЗВ, отходящего от ист. выделения, т/год
A	1	2	3	4	5	6	7	8	9
(001)	0005	0005	Дренажная	Хранение нефти	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,0459
Резервуарный		01	емкость V-63				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,01703
парк			м3				Бензол (64)	0602 (64)	0,000222
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	6,9700E-05
							Метилбензол (349)	0621 (349)	0,00014
	6001	6001	ЗРА и ФС	Хранение нефти	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,049165
		01	Резервуарного				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,018259
			парка				Бензол (64)	0602 (64)	0,000232
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	6,7000E-05
							Метилбензол (349)	0621 (349)	0,000165
	6021	6021	Резервуарный	Хранение нефти	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	214
		01	парк				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	79,3
							Бензол (64)	0602 (64)	1,034
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,325

							Метилбензол (349)	0621 (349)	0,65
(002)	0006	0006	Емкость сбора	Перекачка нефти	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,011492
Магистральн		01	утечки нефти				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,00426
ая насосная			V-2 м3 №2				Бензол (64)	0602 (64)	5,6000E-05
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	1,7000E-05
							Метилбензол (349)	0621 (349)	3,5000E-05
	0009	0009	Насосы	Перекачка нефти	24	1000	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,058
		01	магистрально				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,0215
			й насосной				Бензол (64)	0602 (64)	0,00028
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	8,8000E-05
							Метилбензол (349)	0621 (349)	0,000176
	0009	0009	Насосы	Перекачка нефти	24	1000	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,058
		02	магистрально				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,0215
			й насосной				Бензол (64)	0602 (64)	0,00028
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	8,8000E-05
							Метилбензол (349)	0621 (349)	0,000176
	6006	6006	ЗРА и ФС	Перекачка нефти	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,015358
		01	MHC				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,005708
							Бензол (64)	0602 (64)	6,7000E-05
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	2,3000E-05
					ļ		Метилбензол (349)	0621 (349)	3,4000E-05
	6013	6013	Насос сбора	Перекачка нефти	24	50	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,000725
		01	утечки нефти				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,000269
							Бензол (64)	0602 (64)	3,5000E-06
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	1,1000E-06
							Метилбензол (349)	0621 (349)	2,2000E-06
(003) T№9	6020	6020	ЗРА и ФС	Перекачка нефти	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,002933
MH		01	пробоотборно				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,001072
			го устройства				Бензол (64)	0602 (64)	1,4000E-05
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	4,0000E-06
							Метилбензол (349)	0621 (349)	9,0000E-06
(004)	0011	0011	Котел	Выработка	24	2543	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,3092
Котельная		01	MΓ160/4 №1	теплоэнергии			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,05026
			(газ)				Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,00736
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,164

0011	0011	Котел	Выработка	5	50	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,002554
	02	MΓ160/4 №1	теплоэнергии			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,000415
		(д/т)				Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,000225
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,00529
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0123
0011	0011	Котел	Выработка	24	2543	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,3092
	03	MΓ160/4 №2	теплоэнергии			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,05026
		(газ)				Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,00736
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,164
0011	0011	Котел	Выработка	5	50	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,002554
	04	MΓ160/4 №2	теплоэнергии			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,000415
		(д/т)				Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,000225
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,00529
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0123
0012	0012	Суточная	Хранение	24	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	1,1820E-07
	01	емкость котла V-0,8 м3	топлива			Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	4,2100E-05
0013	0013	PΓC №1 V-3	Хранение	24	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	8,6520E-08
	01	м3	топлива			Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	3,1000E-05
0014	0014	PΓC №2 V-3	Хранение	24	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	8,6520E-08
	01	м3	топлива			Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	3,1000E-05
0015	0015	Свечи	Стравливание	0,1	10	Сероводород (Дигидросульфид) (518)	0333 (518)	9,6000E-07
	01	стравливания на котле	газа			Метан (727*)	0410 (727*)	0,0388
0016	0016	Свеча	Стравливание	0,1	10	Сероводород (Дигидросульфид) (518)	0333 (518)	2,8800E-06
	01	стравливания газа на ГРПШ от котельной	газа			Метан (727*)	0410 (727*)	0,1165

	6009	6009	3РА и ФС топливной емкости котельной №1	ЗРА, ФС	24	8760	Керосин (654*)	2732 (654*)	0,033932
	6010	6010 01	3РА и ФС топливной емкости котельной №2	ЗРА, ФС	24	8760	Керосин (654*)	2732 (654*)	0,033932
(005) ГРПШ	6016	6016	ЗРА и ФС от	ЗРА, ФС	24	4400	Пентан (450)	0405 (450)	8,2240E-05
		01	ГРПШ и				Метан (727*)	0410 (727*)	0,40461
			газопровода				Изобутан (2-Метилпропан) (279)	0412 (279)	8,2240E-05
(006) Лаборатория	0010	0010 01	Лаборатория анализа нефти	Анализ нефти	8	8000	Натрий гидроксид (Натр едкий, Сода каустическая) (876*)	0150 (876*)	0,0004
анализа							Азотная кислота (5)	0302 (5)	0,0144
нефти							Серная кислота (517)	0322 (517)	0,0008
							Метилбензол (349)	0621 (349)	0,0023
							Этанол (Этиловый спирт) (667)	1061 (667)	0,0481
							Пропан-2-он (Ацетон) (470)	1401 (470)	0,0183
							Уайт-спирит (1294*)	2752 (1294*)	0,0083
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0419
(007) КППОУ	0007	0007	Емкость сбора	КППОУ	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,011492
		01	утечки камеры				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,00426
			приема				Бензол (64)	0602 (64)	5,6000E-05
			скребка V-5 м3 №5				Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	1,7000E-05
			MS Nes				Метилбензол (349)	0621 (349)	3,5000E-05
	6008	6008	ЗРА и ФС	ЗРА, ФС	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,046138
		01	камеры				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,017093
			приема ОУ				Бензол (64)	0602 (64)	0,000232
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	6,6000E-05
							Метилбензол (349)	0621 (349)	0,000133
	6012	6012	Насос узла	КППОУ	5	50	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,000725
		01	пуска скребка				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,000269
							Бензол (64)	0602 (64)	3,5000E-06
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	1,1000E-06
							Метилбензол (349)	0621 (349)	2,2000E-06
	6019	6019		ЗРА, ФС	2	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,002933
		01					Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,001072

			ЗРА и ФС				Бензол (64)	0602 (64)	1,4000E-05
			пробоотборно				Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	4,0000E-06
			го устройства				Метилбензол (349)	0621 (349)	9,0000E-06
(008)	0004	0004	Дренажная	КППОУ	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,015579
Площадка		01	емкость				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,005775
фильтров-			площадки				Бензол (64)	0602 (64)	7,5000E-05
грязеуловите лей			фильтров V-8 м3 №6				Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	2,4000E-05
Леи			M3 NºO				Метилбензол (349)	0621 (349)	4,7000E-05
	6004	6004	ЗРА и ФС	ЗРА, ФС	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0,055346
		01	площадка				Смесь углеводородов предельных С6-С10 (1503*)	0416 (1503*)	0,020499
			фильтров				Бензол (64)	0602 (64)	0,000265
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	9,9000E-05
							Метилбензол (349)	0621 (349)	0,000166
(009) Сварочный	6011	6011 01	Газорезка	Газорезка	1	200	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,01458
пост							Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0,00022
							Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,00624
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,001014
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0099
	6017	6017 01	Сварочные работы	Сварочные работы	1	200	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,000225
							Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	7,0500E-05
							Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	5,8500E-05
							Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	4,0000E-05
							Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	4,0000E-05
	6018		Краска		1	215	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,3375

(010) Окрасочный пост		6018 01		Лакокрасочные работы			Уайт-спирит (1294*)	2752 (1294*)	0,3375
(011) ДЭС	0008	0008	ДЭС Р-250Н	Электроэнергия	1,2	397	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,45
		01	"FH-Wilson"				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,585
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,075
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,15
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,375
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0,018
							Формальдегид (Метаналь) (609)	1325 (609)	0,018
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,18
(012)	0017	0017	Akimotor water	Электроэнергия	0,2	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
Передвижные		01	pump				Азот (II) оксид (Азота оксид) (6)	0304 (6)	
источники	істочники		(мотопомпа				Углерод (Сажа, Углерод черный) (583)	0328 (583)	
			переносная для работы на линейной				Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
			части МН)				Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
							Формальдегид (Метаналь) (609)	1325 (609)	
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	
(013)	7000	7000	Компрессор	ТР объектов	4	43,5	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
Ремонтные		01	передвижной	НПС Косшагыл			Азот (II) оксид (Азота оксид) (6)	0304 (6)	
работы							Углерод (Сажа, Углерод черный) (583)	0328 (583)	
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
							Формальдегид (Метаналь) (609)	1325 (609)	
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	

7000	7000 02	Молотки отбойные	ТР объектов НПС Косшагыл	4	48	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,01516
7000	7000 03	Пыление автотранспорт а	ТР объектов НПС Косшагыл	8	30,6	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,947
7000	7000 04	Переносные инструменты (дрель)	ТР объектов НПС Косшагыл	1	30,5	Взвешенные частицы (116)	2902 (116)	0,000769
7000	7000	Переносные	ТР объектов	0,3	5,5	Взвешенные частицы (116)	2902 (116)	0,000356
	05	инструменты (шлифмашинка)	НПС Косшагыл			Пыль абразивная (Корунд белый, Монокорунд) (1027*)	2930 (1027*)	0,000198
7000	7000 06	Переносные инструменты (пила)	ТР объектов НПС Косшагыл	0,3	5,8	Пыль древесная (1039*)	2936 (1039*)	0,0058
7000	7000 07	Переносные инструменты (ножницы электрические)	ТР объектов НПС Косшагыл	0,5	0,5	Взвешенные частицы (116)	2902 (116)	0,000365
7000	7000 08	Пыление от стройматериал ов	ТР объектов НПС Косшагыл	24	100	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,011225
7000	7000 09	Сварочные работы	ТР объектов НПС Косшагыл	8	40,4	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,000225
						Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	1,9370E-05
						Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	2,5260E-05
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	4,1050E-06
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,00028

						Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	1,5800E-05
						Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	6,9500E-05
						Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	2,9470E-05
7000	7000	Покрасочные	ТР объектов	1	3,5	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0256
	10	работы (краска)	НПС Косшагыл			Уайт-спирит (1294*)	2752 (1294*)	0,0256
7000	7000 11	Покрасочные работы (грунтовка)	ТР объектов НПС Косшагыл	1	3,5	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,00796
7000	7000 12	Покрасочные работы (растворитель)	ТР объектов НПС Косшагыл	1	3,5	Уайт-спирит (1294*)	2752 (1294*)	0,0063
7001	7001	ДВС	Отсечение РВС	8	24	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
	01	автомобиля	ОТ			Азот (II) оксид (Азота оксид) (6)	0304 (6)	
		(работа	технологическог			Углерод (Сажа, Углерод черный) (583)	0328 (583)	
		насоса)	о трубопровода			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
						Формальдегид (Метаналь) (609)	1325 (609)	
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	
7001	7001	Насос	Отсечение РВС	8	24	Сероводород (Дигидросульфид) (518)	0333 (518)	2,5000E-06
	02		от технологическог о трубопровода			Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0019
7001	7001 03	Люк автомобиля.	Отсечение РВС от	8	40	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,0009

		Автомобиль- нефтевоз	технологическог о трубопровода					
7001	7001 04	Пыление при маневрировани и автотранспорта	Отсечение РВС от технологическог о трубопровода	4	40	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0002
7001	7001	Пропарка	Отсечение РВС	8	24	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0036
	05	паром ППУ	OT			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0006
			технологическог			Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,0003
			о трубопровода			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0071
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0164
7001	7001 06	Сварочные работы	Отсечение РВС от	8	80	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,0003
		технологическог о трубопровода			Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	2,3000E-05	
					Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	3,0000E-05	
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	4,9000E-06
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0003
						Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	1,9000E-05
						Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	8,3000E-05
						Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	3,5000E-05
7002	7002 01	Дегазация РВС 5000м3	Зачистка резервуара	24	24	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	1,175
7002	7002		Зачистка	8	32	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0017
	02		резервуара			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0003

						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,0001
		Пароподготов ительная				Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0035
		установка				Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0082
7002	7002	Hacoc	Зачистка	8	32	Сероводород (Дигидросульфид) (518)	0333 (518)	3,3000E-06
	03		резервуара			Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0026
7002	7002	ДВС	Зачистка	8	32	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
	04	автомобиля	резервуара			Азот (II) оксид (Азота оксид) (6)	0304 (6)	
		для работы				Углерод (Сажа, Углерод черный) (583)	0328 (583)	
		насоса				Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
						Формальдегид (Метаналь) (609)	1325 (609)	
				8 32	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)		
7002	7002 05	Люк автомобиля. Автомобиль- нефтевоз	Зачистка резервуара	8	32	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0009
7003	7003	Компрессор	Наружное	8	40	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
	01	передвижной	антикоррозионн			Азот (II) оксид (Азота оксид) (6)	0304 (6)	
			ое покрытие РВС			Углерод (Сажа, Углерод черный) (583)	0328 (583)	
			PBC			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
						Формальдегид (Метаналь) (609)	1325 (609)	
					Алканы С12-19 /в пересчете на С/ (Углеводороды	2754 (10)		
						предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)		

	7003 02	Пескоструйны е работы	Наружное антикоррозионн ое покрытие РВС			Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,00342
7003	7003	Краска	Наружное	8	40	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0907
	03		антикоррозионн ое покрытие РВС			Уайт-спирит (1294*)	2752 (1294*)	0,0907
7003	7003	Грунтовка	Наружное	8	40	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,3555
	04		антикоррозионн ое покрытие РВС			Взвешенные частицы (116)	2902 (116)	0,1025
7003	7003 05	Растворитель	Наружное антикоррозионн ое покрытие РВС	8	40	Уайт-спирит (1294*)	2752 (1294*)	2,4335
7004	7004	Компрессор	Внутреннее	8	40	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
		антикоррозионн			Азот (II) оксид (Азота оксид) (6)	0304 (6)		
			ое покрытие РВС			Углерод (Сажа, Углерод черный) (583)	0328 (583)	
			PBC			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
						Формальдегид (Метаналь) (609)	1325 (609)	
						Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	
7004	7004	Пескоструйные	Внутреннее	8	40	Взвешенные частицы (116)	2902 (116)	0,00512
	02	работы	антикоррозионн ое покрытие РВС			Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,00342
7004	7004	Краска	Внутреннее	8	40	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0907
	03		антикоррозионн ое покрытие РВС			Уайт-спирит (1294*)	2752 (1294*)	0,0907

7004	7004	Грунтовка	Внутреннее	8	40	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,3555
	04		антикоррозионн ое покрытие PBC			Взвешенные частицы (116)	2902 (116)	0,1025
7004	7004 05	Растворитель	Внутреннее антикоррозионн ое покрытие РВС	8	40	Уайт-спирит (1294*)	2752 (1294*)	2,4335
7005	7005 01	Пыление при маневрировании автотранспорта	Гидравлическое испытание технологических трубопров	2	24	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	3,6000E-05
7006	7006 01	Земляные работы. Пыление от автотранспорта	Ремонт дефекта тела трубы	3	1500	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,005
7006	7006	ДВС. Верхнее	Ремонт дефекта	3	1000	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
	02	оборудование.	тела трубы			Азот (II) оксид (Азота оксид) (6)	0304 (6)	
		Экскаватор				Углерод (Сажа, Углерод черный) (583)	0328 (583)	
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
						Формальдегид (Метаналь) (609)	1325 (609)	
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	
7006	7006	Шлифовальные	Ремонт дефекта	3	600	Взвешенные частицы (116)	2902 (116)	0,0346
	03	круги	тела трубы			Пыль абразивная (Корунд белый, Монокорунд) (1027*)	2930 (1027*)	0,0238
7006	7006 04	Машина безогневой резки труб	Ремонт дефекта тела трубы	3	50	Взвешенные частицы (116)	2902 (116)	0,0365

7006	7006 05	Поверхность нанесения гидроизоляци и (испарение (праймер)	Ремонт дефекта тела трубы	1	50	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0,0005
7006	7006 06	Отрезные круги	Ремонт дефекта тела трубы	3	600	Взвешенные частицы (116)	2902 (116)	0,4385
7006	7006 07	Сварочные работы	Ремонт дефекта тела трубы	3	600	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,0075
						Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0,0006
						Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0008
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0001
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0093
						Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	0,0005
						Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	0,0023
						Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,001
7006	7006	ДЭС для САГ	Ремонт дефекта	5	1000	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
	08	передвижной	тела трубы			Азот (II) оксид (Азота оксид) (6)	0304 (6)	
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
						Формальдегид (Метаналь) (609)	1325 (609)	

							Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	
	7007	7007	Краска	Обслуживание	4	200	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0212
		01		запорной арматуры			Уайт-спирит (1294*)	2752 (1294*)	0,0212
(013) Ремонтные работы	7008	7008 01	Земляные работы. Пыление	Обследование технологических трубопроводов	8	240	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,0072
	7009	7009	Дегазация	Диагностика/обс	24	240	Сероводород (Дигидросульфид) (518)	0333 (518)	0,003931
		01	емкости	ледование резервуаров и емкостей			Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	3,020069
	7009	7009	Пропарка	Диагностика/обс ледование	2	240	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0085
		02	ППУ				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0014
				резервуаров и			Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,0008
				емкостей			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0176
		7000	7000				Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,041
	7009	7009	Насос	Диагностика/обс	1	10	Сероводород (Дигидросульфид) (518)	0333 (518)	1,8000E-06
		03		ледование резервуаров и емкостей			Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0014
	7009	7009	ДВС	Диагностика/обс	1	10	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0226
		04	автомобиля	ледование			Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0293
			(работа	резервуаров и емкостей			Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,0038
			насоса)	емкостеи			Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0075
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0188
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0,0009
							Формальдегид (Метаналь) (609)	1325 (609)	0,0009
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,009

7009	7009 05	Люк автомобиля	Диагностика/обс ледование резервуаров и емкостей	1	10	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0036
7010	7010	Компрессор	Внутритрубная	0,2	1,6	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
	01	передвижной	диагностика		ŕ	Азот (II) оксид (Азота оксид) (6)	0304 (6)	
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	
						Формальдегид (Метаналь) (609)	1325 (609)	
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	
7010	7010 02	Пыление при земляных работах	Внутритрубная диагностика	2,3	48	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,036
7010	7010 03	Пыление от автотранспорта	Внутритрубная диагностика	2,3	48	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,2153
7011	7011	Компрессор	ППР	1	2	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,000182
	01	передвижной				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,000237
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	3,0000E-05
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	6,1000E-05
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,000152
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	7,0000E-06
						Формальдегид (Метаналь) (609)	1325 (609)	7,0000E-06
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	7,3000E-05

7011	7011 02	Молотки отбойные, перфоратор	ППР	1	50,14	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,01188
7011	7011 03	Котлы битумные	ППР	1	1	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	5,0000E-05
7011	7011 04	Пыление при земляных работах	ППР	0,3	10	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	7,2000E-05
7011	7011	Шлифовальные	ППР	0,2	15	Взвешенные частицы (116)	2902 (116)	0,001566
	05	работы				Пыль абразивная (Корунд белый, Монокорунд) (1027*)	2930 (1027*)	0,000972
7011	7011 06	Ножницы электрические	ППР	0,5	4	Взвешенные частицы (116)	2902 (116)	0,002923
7011	7011 07	Пила дисковая	ППР	0,15	1	Пыль древесная (1039*)	2936 (1039*)	0,002016
7011	7011 08	Пыление от автотранспорта	ППР	4	200	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,175
7011	7011 09	Грунтовка	ППР	4	100	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0153
7011	7011 10	Растворитель	ППР	4	100	Уайт-спирит (1294*)	2752 (1294*)	0,02
7011	7011	Краска	ППР	4	100	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,1125
	11					Уайт-спирит (1294*)	2752 (1294*)	0,1125
7011	7011 12	Шпатлевка	ППР	4	100	Сольвент нафта (1149*)	2750 (1149*)	0,125
7011	7011 13	Пыление стройматериало в	ППР	4	48	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,	2908 (494)	0,000421

						кремнезем, зола углей казахстанских месторождений) (494)		
7011	7011 14	Сварочные работы	ППР	4,2	48	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	1,3000E-05
						Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	1,0000E-06
						Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	2,0000E-06
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	2,4380E-07
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1,7000E-05
						Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	9,3800E-07
						Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	4,0000E-06
						Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	2,0000E-06
7011	7011 15	Резка металла	ППР	0,2	8	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,000583
						Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	9,0000E-06
						Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,00025
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	4,1000E-05
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,000396
7011	7011 16	Наплавка металла	ППР	0,2	2	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	7,0000E-06
						Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0203 (647)	8,8000E-07
7011	7011	ДЭС	ППР	0,2	2	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	
	17	передвижная				Азот (II) оксид (Азота оксид) (6)	0304 (6)	
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	

	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)
	Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)
	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)
	Формальдегид (Метаналь) (609)	1325 (609)
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)

Примечание: В графе 8 в скобках (без "*") указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК), со "*" указан порядковый номер 3В в таблице 2 вышеуказанного Приложения (список ОБУВ).

2. Характеристика источников загрязнения атмосферного воздуха

	Параметры ИЗА				- Код ЗВ (ЭНК,		Кол-во ЗВ, выбрасываемых в атмосферу		
№ ИЗА	Высота, м	Диаметр устья, м	Скорость, м/с	Объемный расход, м3/с	м3/с Темпера тура, С	пдк или ОБУВ)	Наименование ЗВ	Макси мальное, г/с	Сум марное, т/год
1	2	3	4	5	6	7	8	9	10
							Резервуарный парк		
0005	2,5	0,05	1,5	0,0029453	34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,735	0,0459
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,2724	0,01703
						0602 (64)	Бензол (64)	0,00355	0,000222
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,001115	6,9700E-05
						0621 (349)	Метилбензол (349)	0,00223	0,00014
6001	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,001485	0,049165
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,000551	0,018259
						0602 (64)	Бензол (64)	7,0000E-06	0,000232
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	2,0000E-06	6,7000E-05
						0621 (349)	Метилбензол (349)	5,0000E-06	0,000165

6021	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	22,03	214
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	8,17	79,3
						0602 (64)	Бензол (64)	0,1064	1,034
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,03344	0,325
						0621 (349)	Метилбензол (349)	0,0669	0,65
							Магистральная насосная		
0006	2,5	0,05	1,5	0,0029453	34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	1,468764	0,011492
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,544452	0,00426
						0602 (64)	Бензол (64)	0,007095	5,6000E-05
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,00223	1,7000E-05
						0621 (349)	Метилбензол (349)	0,004459	3,5000E-05
0009	3,5	0,1	4	0,031416	34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,00806	0,116
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,002986	0,043
						0602 (64)	Бензол (64)	3,8920E-05	0,00056
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	1,2240E-05	0,000176
						0621 (349)	Метилбензол (349)	2,4460E-05	0,000352
6006	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,000464	0,015358
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,000172	0,005708
						0602 (64)	Бензол (64)	2,0000E-06	6,7000E-05
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	7,0400E-07	2,3000E-05
						0621 (349)	Метилбензол (349)	1,0000E-06	3,4000E-05
6013	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,00403	0,000725
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,001493	0,000269
						0602 (64)	Бензол (64)	1,9460E-05	3,5000E-06
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	6,1200E-06	1,1000E-06
						0621 (349)	Метилбензол (349)	1,2230E-05	2,2000E-06
							T№9 MH		
6020	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	9,3000E-05	0,002933
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	3,4000E-05	0,001072
						0602 (64)	Бензол (64)	4,4800E-07	1,4000E-05
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	1,4080E-07	4,0000E-06
						0621 (349)	Метилбензол (349)	2,8160E-07	9,0000E-06
							Котельная		
0011	10	0,32	10	0,8042477	350	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0338	0,623508
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,005494	0,10135
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,0025	0,00045

						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0588	0,0253
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,1368	2,3526
0012	3	0,05	1,5	0,0029453	34,8	0333 (518)	Сероводород (Дигидросульфид) (518)	1,4000E-06	1,1820E-07
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,000499	4,2100E-05
0013	3	0,05	1,5	0,0029453	34,8	0333 (518)	Сероводород (Дигидросульфид) (518)	5,0000E-06	8,6520E-08
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,00187	3,1000E-05
0014	3	0,05	1,5	0,0029453	34,8	0333 (518)	Сероводород (Дигидросульфид) (518)	5,0000E-06	8,6520E-08
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,00187	3,1000E-05
0015	2	0,015	5,5	0,0009719	34,8	0333 (518)	Сероводород (Дигидросульфид) (518)	1,3330E-05	9,6000E-07
						0410 (727*)	Метан (727*)	0,539	0,0388
0016	2	0,015	5,5	0,0009719	34,8	0333 (518)	Сероводород (Дигидросульфид) (518)	1,3330E-05	2,8800E-06
						0410 (727*)	Метан (727*)	0,539	0,1165
6009	2				34,8	2732 (654*)	Керосин (654*)	0,001025	0,033932
6010	2				34,8	2732 (654*)	Керосин (654*)	0,001025	0,033932
							ГРПШ		
6016	2				34,8	0405 (450)	Пентан (450)	5,1200E-06	8,2240E-05
						0410 (727*)	Метан (727*)	0,0252	0,40461
						0412 (279)	Изобутан (2-Метилпропан) (279)	5,1200E-06	8,2240E-05
							Лаборатория анализа нефти		
0010	3,5	0,1	4	0,031416	34,8	0150 (876*)	Натрий гидроксид (Натр едкий, Сода каустическая) (876*)	5,2000E-05	0,0004
						0302 (5)	Азотная кислота (5)	0,002	0,0144
						0322 (517)	Серная кислота (517)	0,0001	0,0008
						0621 (349)	Метилбензол (349)	0,0003	0,0023
						1061 (667)	Этанол (Этиловый спирт) (667)	0,0067	0,0481
						1401 (470)	Пропан-2-он (Ацетон) (470)	0,0026	0,0183
						2752 (1294*)	Уайт-спирит (1294*)	0,0095	0,0083
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,0068	0,0419
							КППОУ		
0007	3	0,1	1,5	0,011781	34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	1,468764	0,011492
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,544452	0,00426
						0602 (64)	Бензол (64)	0,007095	5,6000E-05

	Î					0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,00223	1,7000E-05
						0621 (349)	Метилбензол (349)	0,004459	3,5000E-05
6008	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,001393	0,046138
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,000516	0,017093
						0602 (64)	Бензол (64)	7,0000E-06	0,000232
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	2,0000E-06	6,6000E-05
						0621 (349)	Метилбензол (349)	4,0000E-06	0,000133
6012	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,00403	0,000725
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,001493	0,000269
						0602 (64)	Бензол (64)	1,9460E-05	3,5000E-06
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	6,1200E-06	1,1000E-06
						0621 (349)	Метилбензол (349)	1,2230E-05	2,2000E-06
6019	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	9,3000E-05	0,002933
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	3,4000E-05	0,001072
						0602 (64)	Бензол (64)	4,4800E-07	1,4000E-05
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	1,4080E-07	4,0000E-06
						0621 (349)	Метилбензол (349)	2,8160E-07	9,0000E-06
						Пл	ощадка фильтров-грязеуловителей		
0004	2,5	0,05	1,5	0,0029453	34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,734744	0,015579
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,27236	0,005775
						0602 (64)	Бензол (64)	0,003549	7,5000E-05
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,001115	2,4000E-05
						0621 (349)	Метилбензол (349)	0,002231	4,7000E-05
6004	2				34,8	0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0,001671	0,055346
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,000619	0,020499
						0602 (64)	Бензол (64)	8,0000E-06	0,000265
						0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,0000E-06	9,9000E-05
						0621 (349)	Метилбензол (349)	5,0000E-06	0,000166
							Сварочный пост		
6011	2				34,8	0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,02025	0,01458
						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,000306	0,00022
						0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,00867	0,00624
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,001408	0,001014
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,01375	0,0099
6017	2				34,8	0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	7,4800E-05	0,000225

						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	2,3500E-05	7,0500E-05
						0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	1,9500E-05	5,8500E-05
						0344 (615)	Фториды неорганические плохо растворимые - (алюминия фторид,	1,3330E-05	4,0000E-05
							кальция фторид, натрия гексафторалюминат) (Фториды неорганические		
							плохо растворимые /в пересчете на фтор/) (615)		
						2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	1,3330E-05	4,0000E-05
							цемент, пыль цементного производства - глина, глинистый сланец,		
							доменный шлак, песок, клинкер, зола, кремнезем, зола углей		
							казахстанских месторождений) (494) Окрасочный пост		
6018	2				34,8	0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0125	0,3375
0016	2				34,0	2752 (1294*)	Уайт-спирит (1294*)	0,0125	0,3375
						2732 (1294.)		0,0123	0,3373
ı		1		,		1	ДЭС		
8000	2,5	0,08	8	0,0402124	200	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,315	0,45
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,4095	0,585
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,0525	0,075
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,105	0,15
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,2625	0,375
						1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0126	0,018
						1325 (609)	Формальдегид (Метаналь) (609)	0,0126	0,018
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,126	0,18
			'				Передвижные источники		
0017	0,6	0,015	5,5	0,0009719	200	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0002	
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,0003	
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	3,5000E-05	
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	7,0000E-05	
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0002	
						1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	8,4000E-06	
						1325 (609)	Формальдегид (Метаналь) (609)	8,4000E-06	
						2754 (10)	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	8,4000E-05	
					1	l	Ремонтные работы	1	
7000	2				34,8	0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,00297	0,000225
						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,000256	1,9370E-05

					0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,063633	2,5260E-05
					0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,082354	4,1050E-06
					0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,01056	
					0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0211	
					0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,056494	0,00028
					0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,000208	1,5800E-05
					0344 (615)	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,000917	6,9500E-05
					0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,02042	0,03356
					1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,002533	
					1325 (609)	Формальдегид (Метаналь) (609)	0,002533	
					2752 (1294*)	Уайт-спирит (1294*)	0,03405	0,0319
				2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,02533		
					2902 (116)	Взвешенные частицы (116)	0,0456	0,001491
					2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	0,141209	0,973414
						казахстанских месторождений) (494)		
					2930 (1027*)	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,002	0,000198
5 004				240	2936 (1039*)	Пыль древесная (1039*)	0,278	0,0058
7001	2			34,8	0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,0015	0,0003
					0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,0001	2,3000E-05
					0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,1591	0,00363
					0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,171827	0,000605
					0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,0239	0,0003
					0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,1019	0,0071
					0333 (518)	Сероводород (Дигидросульфид) (518)	2,9000E-05	2,5000E-06
					0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,2463	0,0167
					0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,0001	1,9000E-05
					0344 (615)	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,0005	8,3000E-05
					1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0051	
					1325 (609)	Формальдегид (Метаналь) (609)	0,0051	

			2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,4291	0,0028
			2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0016	0,000235
7002	2	34,8	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,2814	0,0017
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,1917	0,0003
			0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,035	0,0001
			0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,3615	0,0035
			0333 (518)	Сероводород (Дигидросульфид) (518)	2,9000E-05	3,3000E-06
			0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,8484	0,0082
			1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0051	
			1325 (609)	Формальдегид (Метаналь) (609)	0,0051	
			2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,8791	1,1785
7003	2	34,8	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0667	
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,0867	
			0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,0111	
			0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0222	
			0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0556	
			0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2042	0,4462
			1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0027	
			1325 (609)	Формальдегид (Метаналь) (609)	0,0027	
			2752 (1294*)	Уайт-спирит (1294*)	0,3403	2,5242
			2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,0267	
			2902 (116)	Взвешенные частицы (116)	0,07637	0,10762
			2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,02372	0,00342
7004	2	34,8	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0667	
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,0867	
			0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,0111	
			0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0222	

				0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0556	
				0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2042	0,4462
				1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0027	
				1325 (609)	Формальдегид (Метаналь) (609)	0,0027	
				2752 (1294*)	Уайт-спирит (1294*)	0,3403	2,5242
				2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0,0267	
					пересчете на С); Растворитель РПК-265П) (10)		
				2902 (116)	Взвешенные частицы (116)	0,07637	0,10762
				2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	0,02372	0,00342
					цемент, пыль цементного производства - глина, глинистый сланец,		
					доменный шлак, песок, клинкер, зола, кремнезем, зола углей		
7005	2		34,8	2908 (494)	казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	0,002	3,6000E-05
7003	2		34,0	2900 (494)	цемент, пыль цементного производства - глина, глинистый сланец,	0,002	3,0000E-03
					доменный шлак, песок, клинкер, зола, кремнезем, зола углей		
					казахстанских месторождений) (494)		
7006	2		34,8	0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид,	0,0012	0,0075
					Железа оксид) (274)		
				0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,0001	0,0006
				0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,1651	0,0008
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,214523	0,0001	
				0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,0275	
				0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0,055	
					(516)		
				0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,1391	0,0093
				0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	8,8000E-05	0,0005
				0344 (615)	Фториды неорганические плохо растворимые - (алюминия фторид,	0,0004	0,0023
					кальция фторид, натрия гексафторалюминат) (Фториды неорганические		
				1301 (474)	плохо растворимые /в пересчете на фтор/) (615) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0066	
				1301 (474)	Формальдегид (Метаналь) (609)	0,0066	
				2754 (10)	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0,0688	0,0005
				2734 (10)	пересчете на С); Растворитель РПК-265П) (10)	0,0088	0,0003
				2902 (116)	Взвешенные частицы (116)	0,0844	0,5096
				2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	0,003	0,006
				2500 (151)	цемент, пыль цементного производства - глина, глинистый сланец,	0,003	0,000
					доменный шлак, песок, клинкер, зола, кремнезем, зола углей		
					казахстанских месторождений) (494)		
				2930 (1027*)	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,0022	0,0238
7007	2		34,8	0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,0313	0,0212

Î	Ì		2752 (1294*)	Уайт-спирит (1294*)	0,0313	0,0212
7008	2	34,8	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,002	0,0072
7009	2	34,8	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,1285	0,0311
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,166838	0,0307
			0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,021421	0,0046
			0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0433	0,0251
			0333 (518)	Сероводород (Дигидросульфид) (518)	0,000195	0,003933
			0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,108	0,0598
			1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0051	0,0009
			1325 (609)	Формальдегид (Метаналь) (609)	0,0051	0,0009
			2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,556556	3,034069
7010	010 2	34,8	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0533	
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,0693	
			0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,0089	
			0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0178	
			0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0444	
			1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,0021	
			1325 (609)	Формальдегид (Метаналь) (609)	0,0021	
			2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,0213	
			2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,0096	0,2513
7011	2	34,8	0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,021575	0,000603
			0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,000332	1,0000E-05
			0203 (647)	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0,000122	8,8000E-07
			0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,059369	0,000434
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,067279	0,000278
			0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,008444	3,0000E-05
			0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,016888	6,1000E-05

	0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,056341	0,000565
	0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	2,1000E-05	9,3800E-07
	0344 (615)	Фториды неорганические плохо растворимые - (алюминия фторид,	9,2000E-05	4,0000E-06
		кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		
	0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,002042	0,1278
	1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,002026	7,0000E-06
	1325 (609)	Формальдегид (Метаналь) (609)	0,002026	7,0000E-06
	2750 (1149*)	Сольвент нафта (1149*)	0,000694	0,125
	2752 (1294*)	Уайт-спирит (1294*)	0,003403	0,1325
	2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,034155	0,000123
	2902 (116)	Взвешенные частицы (116)	0,0464	0,004489
	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	0,078749	0,187375
		цемент, пыль цементного производства - глина, глинистый сланец,		
		доменный шлак, песок, клинкер, зола, кремнезем, зола углей		
		казахстанских месторождений) (494)		
	2930 (1027*)	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,0036	0,000972
	2936 (1039*)	Пыль древесная (1039*)	0,56	0,002016

Примечание: В графе 7 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

3. Показатели работы пылегазоочистного оборудования (ПГО)

Номер источника выделения	Наименование и тип	КПД аппаратов, %		Код ЗВ, по которому	Коэффициент			
	пылегазоулавливающего оборудования	Проект- ный	Факти- ческий	проис- ходит очистка	обеспеченности К(1),%			
1	1 2		4	5	6			
Пылегазоочистное оборудование отсутствует!								

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация, т/год

		Количество 3В отходящих от ист. выделения	В том числе		Из поступивших на очистку			
Код	Наименование		выбрасы-	поступает на очистку	выброшено в атмосферу	уловлено и обезврежено		Всего
3B	загрязняющего вещества		вается без очистки			Факти чески	из них утилизировано	выброшено в атмосферу
1	2	3	4	5	6	7	8	9
BCE	Β С Ε Γ Ο:		315,3183	0	0	0	0	315,3183
	в том числе:							
Тве	рдые:	2,3034	2,3034	0	0	0	0	2,3034
	из них:							
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,023433	0,023433	0	0	0	0	0,023433
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,000943	0,000943	0	0	0	0	0,000943
0203	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	8,8000E-07	8,8000E-07	0	0	0	0	8,8000E-07
0328	Углерод (Сажа, Углерод черный) (583)	0,08048	0,08048	0	0	0	0	0,08048
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,002497	0,002497	0	0	0	0	0,002497
2902	Взвешенные частицы (116)	0,73082	0,73082	0	0	0	0	0,73082
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1,43244	1,43244	0	0	0	0	1,43244
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,02497	0,02497	0	0	0	0	0,02497
2936	Пыль древесная (1039*)	0,007816	0,007816	0	0	0	0	0,007816
Газ	Газообразные и жидкие:		313,0149	0	0	0	0	313,0149
	из них:							
0150	Натрий гидроксид (Натр едкий, Сода каустическая) (876*)	0,0004	0,0004	0	0	0	0	0,0004
0301	Азота (IV) диоксид (Азота диоксид) (4)	1,117437	1,117437	0	0	0	0	1,117437

0302	Азотная кислота (5)	0,0144	0,0144	0	0	0	0	0,0144
0304	Азот (II) оксид (Азота оксид) (6)	0,719351	0,719351	0	0	0	0	0,719351
0322	Серная кислота (517)	0,0008	0,0008	0	0	0	0	0,0008
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,211061	0,211061	0	0	0	0	0,211061
0333	Сероводород (Дигидросульфид) (518)	0,003943	0,003943	0	0	0	0	0,003943
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	2,832345	2,832345	0	0	0	0	2,832345
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,000594	0,000594	0	0	0	0	0,000594
0405	Пентан (450)	8,2240E-05	8,2240E-05	0	0	0	0	8,2240E-05
0410	Метан (727*)	0,55991	0,55991	0	0	0	0	0,55991
0412	Изобутан (2-Метилпропан) (279)	8,2240E-05	8,2240E-05	0	0	0	0	8,2240E-05
0415	Смесь углеводородов предельных С1-С5 (1502*)	214,3738	214,3738	0	0	0	0	214,3738
0416	Смесь углеводородов предельных С6-С10 (1503*)	79,43857	79,43857	0	0	0	0	79,43857
0602	Бензол (64)	1,0358	1,0358	0	0	0	0	1,0358
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	1,738029	1,738029	0	0	0	0	1,738029
0621	Метилбензол (349)	0,653429	0,653429	0	0	0	0	0,653429
1061	Этанол (Этиловый спирт) (667)	0,0481	0,0481	0	0	0	0	0,0481
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0,018907	0,018907	0	0	0	0	0,018907
1325	Формальдегид (Метаналь) (609)	0,018907	0,018907	0	0	0	0	0,018907
1401	Пропан-2-он (Ацетон) (470)	0,0183	0,0183	0	0	0	0	0,0183
2732	Керосин (654*)	0,067864	0,067864	0	0	0	0	0,067864
2750	Сольвент нафта (1149*)	0,125	0,125	0	0	0	0	0,125
2752	Уайт-спирит (1294*)	5,5798	5,5798	0	0	0	0	5,5798
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	4,437996	4,437996	0	0	0	0	4,437996