ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «САУТС-ОЙЛ» ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «GEOSCIENCE CONSULTING» ИНДИВИДУАЛЬНЫЙ ПРЕДПРИНИМАТЕЛЬ «САПАЕВ ТИМУР МИХАЙЛОВИЧ»

ПРОЕКТ

нормативов допустимых выбросов (НДВ) для Карагансайского участка на 2025-2026 гг. ТОО «САУТС-ОЙЛ»

Директор TOO «Geoscience Consulting»

Ебрашева А.Е.

Директор ИП «Сапаев Т.М.»

Сапаев Т.М.

2. СПИСОК ИСПОЛНИТЕЛЕЙ

Настоящий «Проект нормативов допустимых выбросов (НДВ) для Карагансайского участка на 2025-2026 гг. ТОО «САУТС-ОЙЛ»» разработан Индивидуальным предпринимателем «Сапаев Тимур Михайлович» (государственная лицензия №02413Р от 17.02.17г.).

Руководитель проекта, м.т.н.

Т.М. Сапаев

3. АННОТАЦИЯ

Настоящий «Проект нормативов допустимых выбросов (НДВ) для Карагансайского участка на 2025-2026 гг. ТОО «САУТС-ОЙЛ»» разрабатывается в связи с необходимостью установления нормативов эмиссий (выбросов) на период эксплуатации для намечаемой деятельности связанной со строительством, в том числе испытанием оценочных скважины KRSO-1 и KRSO-2 глубиной 2850 м (по вертикали) с горизонтальным окончанием до глубины 4000 (±300) м (по стволу), согласно Индивидуального технического проекта для каждой скважины, и расположенных в Сырдарьинском районе Кызылординской области, а также для формирования полного пакета документов согласно п.2. ст. 122 Экологического кодекса РК от 2 января 2021 года № 400-VI 3РК.

Намечаемая деятельность: проведение доразведочных работ по оценке залежей нефти и газа в отложениях карагансайской свиты средней юры (J2kr), относится согласно пп.1.3 п.1 раздела 1 приложения 2 к Экологическому кодексу Республики Казахстан от 02.01.2021 года №400-VI κ I категории.

Карагансайский участок ТОО «Саутс-Ойл» расположен на территории листа L-41-XVIII Кызылординской и Улытауской областей Республики Казахстан. В географическом отношении площадь работ расположена в южной части Торгайской низменности. В непосредственной близости к контрактной территории имеется достаточно хорошо развитая инфраструктура. В северной части контрактной территории проходят нефтепровод Арыскум-Кумколь и Каракайын-Кумколь, а далее экспортный нефтепровод Казахстан-Китай и Шымкентский НПЗ. Также на юге проходит республиканский магистральный газопровод «Бейнеу-Бозой-Шымкент». Ближайшими станциями железной и автомобильной дороги являются Жосалы на юго-запад и областной центр Кызылорда на юг от южной границы участка, расположенные в 125 км и административно относящиеся к Кызылординской области. Расстояние до города Жезказган 210 км к северо-востоку.

Площадь участка недр за вычетом исключаемых месторождений Акшабулак Западный, Акшабулак Северный и Акшабулак Восточный составляет − 526,35 км2. Контракт № 5240-УВС от 14 июля 2023 года для проведения добычи и разведки углеводородного сырья в пределах блоков XXIX-39-А (частично), В (частично), D (частично), Е (частично), расположенных в Улытауской и Кызылординской областях Республики Казахстан.

Проектируемый объект – оценочные скважины KRSO-1 и KRSO-2 находятся на контрактной территории ТОО "Саутс-Ойл". Возможность выбора других мест осуществления намечаемой деятельности не предусматривается ввиду территориальной привязкой данного участка недр к контракту на добычу и разведку углеводородного сырья.

K организованным источникам относятся факельная установка, дыхательные клапана резервуаров для хранения нефти, а также выхлопные трубы УПА-60/80, дизельгенераторов, цементировочного агрегата.

Неорганизованные источники на предприятии представлены выделением углеводородов через неплотности устьевого и скважинного оборудования (ЗРА, ФС, ПК), налив нефти в автотранспорт, емкости для хранения дизельного топлива и масла.

ТОО «Саутс-Ойл» предусматривает на период 2025-2026гг. задействование следующей основной промплощадки:

Промплощадка 1 — строительство проектируемых оценочных скважин на Карагансайском участке (временный вид работ)

На период испытания оценочных скважин на 2025-2026гг. согласно проектным решениям Индивидуального технического проекта для двух скважин выявлено следующие количество источников загрязнения атмосферы:

• всего: 32 источников загрязнения атмосферы, их которых: 20 организованные и 12 неорганизованные.

В целом по предприятию в атмосферу выбрасываются загрязняющие вещества *19 наименований и 3 групп суммаций*.

Валовый объем выбросов загрязняющих веществ в атмосферный воздух составляет:

• всего: 79.5629 т/пер, в том числе: твердых -3.6127 т/пер, жидких и газообразных -76.3669 т/пер.

От источников выбросов в 2025-2026 году атмосферный воздух загрязняется вредными веществами **19 наименований**:

Азота (IV) диоксид (2 класс), Азот (II) оксид (3 класс), Углерод, сажа (3 класс), Сера диоксид (3 класс), Сероводород (2 класс), Углерод оксид (4 класс), Пентан (4 класс), Метан, Изобутан (4

класс), Смесь углеводородов предельных С1-С5, Смесь углеводородов предельных С6-С10, Пентилены (4 класс), Бензол (2 класс), Диметилбензол (3 класс), Метилбензол (3 класс), Проп-2-ен-1-аль (2 класс), Формальдегид (2 класс), Масло минеральное нефтяное, Алканы С12-19 (4 класс), Пыль неорганическая: 70-20% двуокиси кремния (3 класс).

Перечень загрязняющих веществ, выбрасываемых в атмосферу

	перечень загрязняющих веще	1				
Код	Наименование	Класс	_	ос вещест	_	
ЗВ	загрязняющего вещества	опас-	испытани	я скважин	KRSO-1 I	1 KRSO-2
		ности	r/c	т/пер	r/c	т/пер
		3B		(M)		(M)
			На 1 св	кважину	На 2 св	важины
1	2	7	8	9	10	11
0301	Азота (IV) диоксид (Азота диоксид) (4)	2	3.3435	9.5299	6.6869	19.0597
0304	Азот (II) оксид (Азота оксид) (6)	3	4.3456	12.3923	8.6912	24.7846
	Углерод (Сажа, Углерод черный) (3	0.5579		1.1158	3.1811
	583)					
0330	Сера диоксид (Ангидрид сернистый,	3	1.1144	3.1783	2.2288	6.3566
	Сернистый газ, Сера (IV) оксид) (
	516)					
0333	Сероводород (Дигидросульфид) (2	0.0051	0.0074	0.0102	0.0148
	518)					
0337	Углерод оксид (Окись углерода,	4	2.7911	7.9606	5.5821	15.9211
	Угарный газ) (584)					
0405	Пентан (450)	4	0.0018		0.0037	0.0136
	Метан (727*)		0.0099	0.0367	0.0199	0.0734
0412	Изобутан (2-Метилпропан) (279)	4	0.0027		0.0053	
0415	Смесь углеводородов предельных		3.8481	0.3007	7.6962	0.6014
	C1-C5 (1502*)					
0416	Смесь углеводородов предельных C6-C10 (1503*)		1.4070	0.0508	2.8140	0.1016
0602	Бензол (64)	2	0.0184	0.0007	0.0368	0.0013
0616	Диметилбензол (смесь о-, м-, п-	3	0.0058	0.0002	0.0116	0.0004
	изомеров) (203)					
0621	Метилбензол (349)	3	0.0116	0.0004	0.0231	0.0008
1301	Проп-2-ен-1-аль (Акролеин,	2	0.1337	0.3812	0.2674	0.7623
	Акрилальдегид) (474)					
1325	Формальдегид (Метаналь) (609)	2	0.1337	0.3812	0.2674	0.7623
2735	Масло минеральное нефтяное (0.0003	0.0001	0.0007	0.0001
	веретенное, машинное, цилиндровое					
	и др.) (716*)					
2754	Алканы С12-19 /в пересчете на С/	4	1.3686	3.9464	2.7372	7.8928
	(Углеводороды предельные С12-С19					
	(в пересчете на С); Растворитель					
	РПК-265П) (10)					
2908	Пыль неорганическая, содержащая	3	0.0026	0.0075	0.0053	0.0151
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного					
	производства - глина, глинистый					
	сланец, доменный шлак, песок,					
	клинкер, зола, кремнезем, зола					
	углей казахстанских					
	месторождений) (494)		40.40.5		00.005-	
	всего:		19.1018	39.7814	38.2035	79.5629

Согласно «Методики расчетов нормативов и объемов сжигания сырого газа при проведении операций по недропользованию» от 05.05.2018 года №164:

Расчет объемов сжигания сырого газа при испытании объектов нефтяных, газонефтяных, нефтегазовых, нефтегазоконденсатных и газоконденсатнонефтяных скважин (VIII) производится по следующей формуле:

$$V_{III} = Д \times \Gamma \phi \times T$$
,

где: V_{III} – объем сжигания сырого газа при испытании объектов скважин, м3;

Д – дебит скважин (объем добытой нефти за одни сутки), 9.8 м3/сут.;

Гф – газовый фактор (отношение количества сырого газа к количеству нефти), 2 м3/м3;

Согласно имеющимся прогнозным технологическим показателям и на основании формулы выше, расчетные объемы сжигания сырого газа при испытании объектов в оценочной скважине составят порядка 646.8 м3/пер или 0.00023 м3/с, и для двух скважин соответственно 1293.6 м3/пер или 0.00046 м3/с.

Прогнозирование загрязнения атмосферы с определением максимальных концентраций в приземном слое атмосферы для нормирования величин выбросов осуществлено программным комплексом "Эра-воздух" версия 3.0.

В настоящем проекте критерием качества атмосферного воздуха служит соотношение С/ПДК <1. Степень загрязнения атмосферы оценивается по величинам максимальных приземных концентраций См. Селитебная зона вблизи территории отсутствует, постов наблюдения за загрязнением атмосферного воздуха в указанном районе нет, в связи с этим рассеивание произведено без учета фоновых концентраций.

Расчет рассеивания приведен для летнего периода времени, когда наблюдается максимальное загрязнение приземного слоя атмосферы. Моделирование загрязнения атмосферы осуществлялось с учетом одновременности работы оборудования.

При строительстве скважины для всех загрязняющих веществ при их рассеивании в атмосфере выполняется условие нормативного качества атмосферного воздуха на территории предприятия и границе С33: См<1, поэтому рекомендуется расчетные перспективные выбросы загрязняющих веществ в 2025-2026 гг. принять в качестве нормативов допустимых выбросов (НДВ).

Расчеты рассеивания загрязняющих веществ в атмосфере показало, деятельность предприятия не повлечет за собой негативных последствий по изменению качества атмосферного воздуха и выполнение воздухоохранных мероприятий с целью достижения нормативов НДВ предприятию настоящим проектом не рекомендуется.

Сравнительный анализ по фактическим выбросам загрязняющих веществ в атмосферу за предыдущие года не представляется возможным, оператором объекта на рассматриваемом участке проводятся первые доразведочные работы, связанные со строительством проектируемых скважин.

Расчет платы за эмиссии в окружающую среду произведен на основании и соответствии с Экологическим кодексом Республики Казахстан от 02.01.2021 года №400-VI ЗРК и Кодексом Республики Казахстан «О налогах и других обязательных платежах в бюджет» от 25.12.2017 года № 121-VI ЗРК (п.2 ст.576).

Ставки платы за выбросы загрязняющих веществ в атмосферу определяются исходя из размера месячного расчетного показателя (МРП), установленного на соответствующий финансовый год законом о республиканском бюджете. В 2025 году с 1 января МРП составляет 3932 тенге.

Плата за эмиссии по выбросам ориентировочно составит 5 845 824.6 тенге.

В соответствии с «Санитарно-эпидемиологическими требованиями к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденных приказом Министра национальной экономики РК от 11 января 2022 года № ҚР ДСМ-2, а также исходя из расчетов рассеивания, санитарно-защитная зона устанавливается в размере 1000 м, класс опасности объекта — I.

4. СОДЕРЖАНИЕ

2. СПИСОК ИСПОЛНИТЕЛЕЙ	2
3. АННОТАЦИЯ	3
4. СОДЕРЖАНИЕ	6
5. ВВЕДЕНИЕ	
6. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ	
6.1. Почтовый адрес оператора объекта, количество площадок, взаиморасположение о	
6.2. Карта-схема предприятия с нанесенными на нее источниками выбросов загрязняю	
веществ в атмосферу.	9
6.3. Ситуационная карта-схема района размещения объекта.	
7. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕН	
7.1. Краткая характеристика технологии производства и технологического оборудован	
7.2. Краткая характеристика существующих установок очистки газов	16
7.3. Оценка степени применяемой технологии, технического и пылегазоочистного	1.6
оборудования7.4. Перспектива развития	
7.5. Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ	
7.6. Характеристика аварийных и залповых выбросов	
7.7. Перечень загрязняющих веществ, выбрасываемых в атмосферу	
7.8. Обоснование полноты и достоверности исходных данных (г/с, т/пер), принятых дл	
НДВ	
8. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ И ПРЕДЛОЖЕНИЯ ПО НОРМАТИВА	
ДОПУСТИМЫХ ВЫБРОСОВ	29
8.1. Метеорологические характеристики и коэффициенты, определяющие условия расс загрязняющих веществ	
8.2 Результаты расчетов уровня загрязнения атмосферы на существующие положение	
учетом перспективы развития	
8.3. Предложения по нормативам допустимых выбросов (НДВ) по каждому источнику	
ингредиенту	38
8.4. Обоснование возможности достижения нормативов с учетом использования малос	
технологии и других планируемых технологий	
8.5. Уточнение границ области воздействия объекта	
8.7. Документы (материалы), свидетельствующие об учете специальных требований (п	
наличии) к качеству атмосферного воздуха для данного района	
9. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ	
МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ	
9.1. План мероприятий по сокращению выбросов загрязняющих веществ в атмосферу	
HMY	
9.2. Обобщённые данные о выбросах загрязняющих веществ в атмосферу в период НМ	
9.3. Краткая характеристика мероприятий. Обоснование возможного диапазона регули	
выбросов по каждому мероприятию	
10. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ	
11. РАСЧЕТ ПЛАТЕЖЕЙ ЗА ЭМИССИИ В ОКРУЖАЮЩУЮ СРЕДУ	65
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	67
ПРИЛОЖЕНИЯ	

5. ВВЕДЕНИЕ

В проекте содержится оценка уровня загрязнения атмосферного воздуха вредными веществами от источников выбросов на Карагансайском участке при строительстве оценочных скважин и даны предложения по установлению нормативов выбросов на 2025-2026 годы.

Работы выполнялись согласно действующим природоохранным нормам и правилам с использованием технической документации заказчика.

При разработке проекта нормативов допустимых выбросов использованы основные директивные и нормативные документы, инструкции и методические рекомендации по нормированию качества атмосферного воздуха, указанные в списке использованной литературы.

- Экологический кодекс Республики Казахстан от 2 января 2021 года №400-VI;
- «Об утверждении Методики определения нормативов эмиссий в окружающую среду» Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.
- РНД 211.2.02-97 «Рекомендации по оформлению и содержанию проектов нормативов предельно допустимых выбросов в атмосферу (НДВ) для предприятий Республики Казахстан»;
- ГОСТ 17.2.1.04-77 «Охрана природы. Атмосфера. Источники и метеорологические факторы загрязнения, промышленные выбросы. Основные термины и определения»;
- ГОСТ 17.2.3.02-2014 «Межгосударственный стандарт. Правила установления допустимых выбросов, загрязняющих веществ промышленными предприятиями».
- Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий», Приложение № 12 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221—ө (ОНД-86).
- Санитарные правила «Санитарно-эпидемиологические требования к санитарнозащитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» утвержденные Приказом и.о. Министра здравоохранения Республики Казахстан Республики Казахстан от от 11 января 2022 года № КР ДСМ-2.

В соответствии с природоохранными нормами и правилами Республики Казахстан нормативы допустимых выбросов загрязняющих веществ в атмосферу для отдельных предприятий устанавливаются в целях предотвращения загрязнения воздушного бассейна от загрязнений.

НДВ устанавливается для каждого источника загрязнения атмосферы (и для каждой примеси, выбрасываемой этим источником) таким образом, что выбросы вредных веществ от данного источника и от совокупности источников с учетом перспективы развития промышленных предприятий и рассеивания вредных веществ в атмосфере не создают приземную концентрацию, превышающую их ПДК мр. Основные значения НДВ - максимальные разовые - устанавливаются при условии полной нагрузки технологического и газоочистного оборудования и их нормальной работы и не должны превышаться в любой 20-минутный период времени.

Генеральный Заказчик: ТОО «САУТС-ОЙЛ»

160713, Республика Казахстан, Туркестанская область, Отрарский район, Шиликский с.о., с.Жана Шилик, улица Кажымукан Мунайтпасов, дом № 21, БИН 060440001855,

Тел: +7 7252 98-21-15,

e-mail: president@south-oil.com

Подрядчик:

TOO «Geoscience Consulting» (Геосайнс Консалтинг)

010000, Республика Казахстан, г. Астана пр-т Кабанбай батыра, д.17, блок "Е", 3 этаж, оф.310

Тел./факс: 8 (778) 1025960 e-mail: geosciencec@gmail.com

Исполнитель:

ИП «Canaeв Тимур Михайлович»

050063, Республика Казахстан, г. Алматы, ул. Радостовца 158, оф.234 БИН 940208300432 тел. +7 707 388-86-86

E-mail: t.sapayev@gmail.com

6. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ

6.1. Почтовый адрес оператора объекта, количество площадок, взаиморасположение объекта

Карагансайский участок ТОО «Саутс-Ойл» расположен на территории листа L-41-XVIII Кызылординской и Улытауской областей Республики Казахстан. В географическом отношении площадь работ расположена в южной части Торгайской низменности. В непосредственной близости к контрактной территории имеется достаточно хорошо развитая инфраструктура. В северной части контрактной территории проходят нефтепровод Арыскум-Кумколь и Каракайын-Кумколь, а далее экспортный нефтепровод Казахстан-Китай и Шымкентский НПЗ. Также на юге проходит республиканский магистральный газопровод «Бейнеу-Бозой-Шымкент». Ближайшими станциями железной и автомобильной дороги являются Жосалы на юго-запад и областной центр Кызылорда на юг от южной границы участка, расположенные в 125 км и административно относящиеся к Кызылординской области. Расстояние до города Жезказган 210 км к северо-востоку.

Площадь участка недр за вычетом исключаемых месторождений Акшабулак Западный, Акшабулак Северный и Акшабулак Восточный составляет − 526,35 км2. Контракт № 5240-УВС от 14 июля 2023 года для проведения добычи и разведки углеводородного сырья в пределах блоков XXIX-39-А (частично), В (частично), D (частично), Е (частично), расположенных в Улытауской и Кызылординской областях Республики Казахстан.

Проектируемый объект – оценочные скважины KRSO-1 и KRSO-2 находятся на контрактной территории ТОО "Саутс-Ойл". Возможность выбора других мест осуществления намечаемой деятельности не предусматривается ввиду территориальной привязкой данного участка недр к контракту на добычу и разведку углеводородного сырья.

К организованным источникам относятся факельная установка, дыхательные клапана резервуаров для хранения нефти, а также выхлопные трубы УПА-60/80, дизельгенераторов, цементировочного агрегата.

Неорганизованные источники на предприятии представлены выделением углеводородов через неплотности устьевого и скважинного оборудования (ЗРА, ФС, ПК), налив нефти в автотранспорт, емкости для хранения дизельного топлива и масла.

ТОО «Саутс-Ойл» предусматривает на период 2025-2026гг. задействование следующей основной промплощадки:

Промплощадка 1 — строительство проектируемых оценочных скважин на Карагансайском участке (временный вид работ)

На период испытания оценочных скважин на 2025-2026гг. согласно проектным решениям Индивидуального технического проекта для двух скважин выявлено следующие количество источников загрязнения атмосферы:

• всего: 32 источников загрязнения атмосферы, их которых: 20 организованные и 12 неорганизованные.

В целом по предприятию в атмосферу выбрасываются загрязняющие вещества 19 наименований и 3 групп суммаций.

Валовый объем выбросов загрязняющих веществ в атмосферный воздух составляет:

• всего: 79.5629 т/пер, в том числе: твердых -3.6127 т/пер, жидких и газообразных -76.3669 т/пер.

От источников выбросов в 2025-2026 году атмосферный воздух загрязняется вредными веществами **19 наименований**:

Азота (IV) диоксид (2 класс), Азот (II) оксид (3 класс), Углерод, сажа (3 класс), Сера диоксид (3 класс), Сероводород (2 класс), Углерод оксид (4 класс), Пентан (4 класс), Метан, Изобутан (4 класс), Смесь углеводородов предельных С1-С5, Смесь углеводородов предельных С6-С10, Пентилены (4 класс), Бензол (2 класс), Диметилбензол (3 класс), Метилбензол (3 класс), Проп-2-ен1-аль (2 класс), Формальдегид (2 класс), Масло минеральное нефтяное, Алканы С12-19 (4 класс), Пыль неорганическая: 70-20% двуокиси кремния (3 класс).

Основная деятельность предприятия — добыча и разведка углеводородного сырья на Карагансайском участке контрактной территории ТОО «Саутс-Ойл» расположенной в Улытауской и Кызылординской области. Проектируемые скважины KRSO-1 и KRSO-2 расположены на территории Кызылординской области, Сырдарьинский и Жалагашский районы.

В районе размещения объекта и на прилегающей территории не расположены зоны

заповедников, музеев, памятников архитектуры и т.п.

Проектом предусматривается обустройство вахтового поселка на территории работ. Территория лагеря будет оснащена жилыми помещениями, соответствующими ожидаемым условиям окружающей среды, емкостями для питьевой воды, помещениями и средствами связи, средствами подачи электроэнергии, автостоянкой. Организация питания — трехразовое. Продукты будут доставляться из г. Кызылорда.

На рабочих местах, где концентрация пыли превышает установленные ПДК, обслуживающий персонал должен быть обеспечен средствами индивидуальной защиты органов дыхания (респираторами). Обслуживающий персонал будут оснащен индивидуальными средствами защиты при необходимости.

Доставка рабочих на работу и обратно будет осуществляться автотранспортом. Доставку вахт осуществляет буровой подрядчик. Снабжение строительство потребным количеством местных строительных материалов и конструкций производится от существующих предприятий области.

Режим работы и численность персонала. Количество персонала, обслуживающих буровые работы, составляет 32 человек. Общая продолжительность строительства скважины - 265 суток, в том числе испытание скважин составляет 33 суток, включая операции ГРП.

6.2. Карта-схема предприятия с нанесенными на нее источниками выбросов загрязняющих веществ в атмосферу.

Ситуационная карта-схема, расположения источников загрязнения представлена на рисунке 1 и в приложении 5.

6.3. Ситуационная карта-схема района размещения объекта.

В районе размещения объекта и на прилегающей территории не расположены зоны заповедников, музеев, памятников архитектуры и т.п.

Деятельность объекта не будет приводить к нарушению установленных экологических нормативов качества окружающей среды.

Ситуационная карта-схема района размещения объекта с указанием на ней селитебных территорий, зон отдыха (территории заповедников, музеев, памятников архитектуры), санаториев, домов отдыха представлена на рисунке 2 и в приложение 6.

7. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

7.1. Краткая характеристика технологии производства и технологического оборудования

В настоящее время лицензионной территорией владеет ТОО «Саутс-Ойл», согласно Контракта № 5240-УВС от 14 июля 2023 года для проведения добычи и разведки углеводородного сырья в пределах блоков XXIX-39-А (частично), В (частично), D (частично), Е (частично), расположенных в Улытауской и Кызылординской областях Республики Казахстан.

Площадь участка недр за вычетом исключаемых месторождений Акшабулак Западный, Акшабулак Северный и Акшабулак Восточный составляет -526,35 км2.

ТОО «Саутс-Ойл» проводит доразведку углеводородного сырья на Карагансайском участке в пределах контрактной территории.

Намечаемая деятельность на Карагансайском участке, связанная с проведением доразведочных работ, в частности бурением и испытанием оценочных скважин KRSO-1 и KRSO-2, в период выполнения необходимых производственных операций будет сопровождаться поступлением в атмосферу загрязняющих веществ, что требует оценки их возможного воздействия на атмосферный воздух.

Качество атмосферного воздуха, как одного из основных компонентов природной среды, является важным аспектом при оценке воздействия проектируемого объекта на окружающую среду и здоровье населения.

Объектом проведения экологической оценки является строительство двух оценочных скважин с проектной глубиной 2850м по вертикали и 4000 (± 300) м по стволу на контрактной территории ТОО «Саутс-Ойл» расположенной преимущественно в пределах Кызылординской области (см. приложение 6).

Территория месторождения со всех сторон граничат с землями производственного и частично сельскохозяйственного назначения. Населенные пункты расположены от границ месторождения:

- с севера на расстоянии 183 км. (г. Байконур);
- с востока на расстоянии 165 км (с. Тайконыр);
- с запада на расстоянии 148 км (с. Дерментобе);
- с юга на расстоянии 114 км (с. Теренозек, ближайший населенный пункт).

Проектируемые оценочные скважины, строительство которых предполагается рассматриваемыми индивидуальными техническими проектами, будет расположена в пределах контрактной территории ТОО «Саутс-Ойл» и в административном отношении относится к Кызылординской области.

Общая площадь земельного отвода на одну скважину 3,5 га (СН 459-74), отведенные земли (площадка) расположена на территории месторождения и их выбор обусловлен проектом исследования пород и наличием залежей нефти и газа.

Таблица 7.3.1 – Основные проектные данные одной скважины и по аналогии другой

п/п №	Наименование	Значение
1	Номера скважин, строящаяся по данному типовому проекту	KRSO-1 и KRSO-2
2	Площадь (месторождение)	контрактная территория ТОО «САУТС-ОЙЛ»
3	Расположение (суша, море)	Суша
4	Глубина Балтийского моря на точке бурения, м	-
5	Цель бурения и назначенные скважины	оценка залежей нефти и газа в отложениях карагансайской свиты средней юры (J ₂ kr)
6	Проектный горизонт:	отложения карагансайской свиты средней юры (J ₂ kr)
7	Средняя проектная глубина (от уровня моря), м по вертикали по стволу	2850 4000±300
8	Число объектов испытания: в колонне: в открытом стволе	1

9	Вид скважины (вертикальная, наклонно-направленная, кустовая)	Наклонно-направленная
10	Тип профиля	наклонно-направленная, с
		горизонтальным участком ствола
11	Азимут бурения, град	38.15
12	Максимальный зенитный угол, град	90
13	Максимальная интенсивность изменения зенитного угла, град/10 м	2
14	Глубина по вертикали кровли продуктивного (базисного) пласта, м	2850
15	Допустимое отклонение заданной точки входа в кровлю продуктивного	5
	(базисного) пласта от проектного положения (радиус круга допуска), м	3
16	Способ бурения	Роторный (или верхний привод),
		ВЗД
17	Вид привода	Дизельэлектрический
18	Класс буровой установки	7
19	Максимальная масса колонны, т:	
	обсадной	150
	бурильной	151
20	Тип установки для испытаний	УПА-60/80
21	Продолжительность цикла бурения скважин, сут.:	265
	в том числе:	
	строительно-монтажные работы	6,0
	подготовительные работы к бурению	4,0
	бурение и крепление	222
	освоение всего:	33
	ГРП	12,0
	в эксплуатационной колонне:	21

Проектом предусматривается обустройство временных объектов: бурового лагеря и промышленной зоны.

Вахтовый поселок. Проектом предусматривается обустройство вахтового поселка на территории работ. Территория лагеря будет оснащена жилыми помещениями, соответствующими ожидаемым условиям окружающей среды, емкостями для питьевой воды, помещениями и средствами связи, средствами подачи электроэнергии, ремонтными мастерскими, автостоянкой. Организация питания — трехразовое. Продукты будут доставляться из г. Кызылорда. Количество персонала, обслуживающих буровые работы, составляет порядка 32 человек.

На рабочих местах, где концентрация пыли превышает установленные ПДК, обслуживающий персонал должен быть обеспечен средствами индивидуальной защиты органов дыхания (противопылевыми респираторами). Обслуживающий персонал в случае необходимости будут оснащен индивидуальными средствами защиты.

Доставка рабочих на работу и обратно будет осуществляться автотранспортом. Доставку вахт осуществляет буровой подрядчик.

Снабжение строительство потребным количеством местных строительных материалов и конструкций производится от существующих предприятий области.

Промышленная зона. На территории промышленной зоны (площадки буровой) проектом запланировано обустройство следующих объектов: буровой установки ZJ-70 или аналог не меньшей грузоподъемности, установки испытания УПА-60/80, система энергоснабжения, склада ГСМ для дизтоплива, емкостей для технической воды, блоков для приготовления бурового раствора, насоса перекачки топлива, насосной установки буровой, пожарного устройства, склад для хим-реагентов, буровых оборудовании и т.д., вагон-домики для рабочего персонала.

Обслуживающий персонал будут оснащен индивидуальными средствами защиты в случае необходимости. Доставка рабочих на работу и обратно будет осуществляться автотранспортом. Доставку вахт осуществляет буровой подрядчик. Снабжение строительство потребным количеством местных строительных материалов и конструкций производится от существующих предприятий области.

Техническая и биологическая рекультивация.

По окончании бурения и опробования скважин, демонтажа и вывоза оборудования работу по технической рекультивации земель необходимо проводить в следующей последовательности:

- демонтировать сборные фундаменты и вывезти для последующего использования;
- разобрать монолитные бетонные фундаменты и площадки и вывезти их для использования при строительстве дорог и других объектов;

- очистить участок от металлолома и других материалов;
- снять загрязненные грунты, обезвредить их и вывезти на полигон промышленных отходов;
- провести планировку территории и взрыхлить поверхность грунтов в местах, где они сильно уплотнены;
- нанести плодородный слой почвы на поверхность участка, где он был снят (с планировкой территории).

Биологический этап рекультивации осуществляется для восстановления плодородного слоя почв, быстрейшего освоения нарушенных земель и использования их в хозяйстве (после этапа технической рекультивации). Биологическая рекультивация может быть произведена основным землепользователем, с выделением ему соответствующих средств.

Технологическая схема на бурение скважины

Основными производственными операциями (этапами) являются:

- строительно-монтажные работы;
- подготовительные работы к бурению;
- бурение и крепление;
- подготовительные работы к испытанию
- испытание скважины, в том числе интенсификация притока нефти методом МГРП.

Строительно-монтажные работы включают:

- насыпь под полотно дороги;
- планировки площадки под буровую;
- обваловка вокруг площадки буровой;
- обваловка площадки ГСМ и др.

Подготовительные работы к бурению состоят из следующих видов работ:

- стыковка технологических линий;
- проверка работоспособности оборудования.

Монтируется оборудование буровой.

Площадки буровой, расположения емкостей для шлама и склада ГСМ обваловываются.

Строительство скважины производится буровой установкой: ZJ-70 или аналог

Строительство скважины состоит из 3-х этапов:

- 1. Подготовительные и строительно-монтажные работы. Сооружение фундаментов, монтаж бурового оборудования, строительство привышечных сооружений, устройство сточных желобов, бетонирование площадок. Продолжительность работ 10 суток.
- 2. Бурение и крепление скважины. Бурение скважины производится путем разрушения горных пород на забое скважины породоразрушающим инструментом (долотом) с транспортировкой (промывкой) выбуренной породы на поверхность химически обработанным буровым раствором. Тип бурового раствора и его рецептура (таблицы 7.1-7.7 ИТП) подбирается исходя из горногеологических условий бурения (разделы 4.1-4.5 ИТП) с учетом их наименее вредного воздействия на почвы и подземные воды.

Буровой раствор готовится в блоке приготовления на слабоминерализованной воде. Исходя из горно-геологических условий, при достижении определенной глубины, предусмотренной проектом, предусматривается крепление скважины обсадными колоннами и цементирование заколонного пространства. Продолжительность работ — 222 суток.

3. Испытание (освоение). В скважинах, строящихся по настоящему техническому проекту предусматривается проведение до 40 операций ГРП и освоение в эксплуатационной колонне с целью оценки залежей нефти и газа в отложениях карагансайской свиты средней юры (J2kr). Продолжительность работ — 33 суток (включая подготовительные работы к испытанию, операции методом МГРП и освоение в эксплуатационной колонне).

<u>Интенсификация притока пластового флюида или повышение приемистости пласта в оценочной скважине методом ГРП</u> проводиться в целях увеличение степени извлечения нефти. Интенсификация притока нефти проводятся с использованием метода гидроразрыва пласта (ГРП).

В настоящее время наиболее эффективным методом интенсификации притока углеводородов и повышения нефтеотдачи продуктивных пластов в скважинах, в частности, с горизонтальным окончанием, остается технология гидравлического разрыва пласта (ГРП). Во многих регионах, по мнению большинства специалистов, это единственная технология вовлечения в разработку месторождений с трудноизвлекаемыми запасами, приуроченных к низкопроницаемым,

слабодренируемым, неоднородным и расчлененным коллекторам, позволяющая существенно увеличить добычу углеводородов и сделать скважины экономически рентабельными.

Многостадийный ГРП - одна из самых передовых технологий в нефтегазовой отрасли, наиболее эффективная для горизонтальных скважин. Отличие МГРП от 1-стадийного ГРП в том, что МГРП проводится поочередно, цикл за циклом, несколько гидроразрывов пласта с изучением механики горных пород. МГРП в горизонтальных стволах скважин является хорошо известной технологией и является ключевый для добычи нефти и газа из низкопроницаемых пластов. Она заключается в закачке в скважину с помощью мощных насосных станций жидкости, создающей в породе трещины, по которым нефть попадает в забой. Для поддержания трещины в открытом состоянии используется расклинивающий агент.

Однако при разработке месторождений в горизонтах, сформированных сланцевыми породами со сверхнизкой проницаемостью, эффективность стандартного процесса оказывается недостаточной. Для создания не единичных трещин, а их разветвленной сети нужны более высокая скорость закачки жидкости разрыва и ее объем.

Многостадийный гидроразрыв пласта (МГРП) — это сложная и высокоэффективная технология, используемая для увеличения добычи нефти и газа из низкопроницаемых пластов, таких как сланцевые. Этот метод включает создание множества трещин в породе, которые позволяют углеводородам легче перемещаться к скважине. Давайте рассмотрим технологию и порядок проведения работ более подробно.

Подготовительные работы

Перед началом МГРП необходимо провести подготовительные мероприятия:

Выбор месторождения и проектирование скважины: На этапе проектирования определяется местоположение скважины, глубина и направление бурения, а также количество стадий гидроразрыва.

Бурение горизонтальной скважины: Скважина бурится вертикально до определенной глубины, после чего происходит горизонтальное бурение, которое может достигать нескольких километров. Горизонтальная часть скважины увеличивает контакт с продуктивным пластом.

Цементирование и перфорация: После бурения скважину цементируют, чтобы предотвратить утечку флюида. Затем проводят перфорацию — создание отверстий в цементе и обсадной колонне, через которые будет проводиться гидроразрыв.

Порядок проведения МГРП включает в себя следующие этапы:

Подготовка флюида для гидроразрыва

Флюид для гидроразрыва обычно состоит из воды, пропанта (обычно песка или керамических гранул) и химических добавок. Пропант необходим для того, чтобы трещины оставались открытыми после прекращения давления. Химические добавки улучшают транспортировку пропанта и защищают оборудование от коррозии.

Закачка флюида в скважину посредством двухнасосных цементировочных агрегатов

Флюид закачивается в скважину под высоким давлением. Давление должно быть достаточно высоким, чтобы преодолеть сопротивление породы и создать трещины. В случае многостадийного гидроразрыва этот процесс повторяется несколько раз, в зависимости от количества стадий.

Создание трещин

Под действием высокого давления в породе образуются трещины. Пропант, находящийся в составе флюида, попадает в эти трещины и удерживает их открытыми после снижения давления. Это позволяет нефти или газу свободнее перемещаться к скважине.

Проведение нескольких стадий

Многостадийный гидроразрыв проводится в нескольких секциях горизонтальной части скважины. Это достигается путем использования пакеров (специальных устройств), которые изолируют определенные участки скважины, позволяя проводить гидроразрыв поэтапно. Чем больше стадий, тем больше трещин создается в породе, что увеличивает добычу.

Извлечение флюида и начало добычи (дизельный флотатор)

После завершения МГРП часть флюида возвращается на поверхность в процессе так называемой "откачки". Этот флюид может содержать как первоначальный состав, так и углеводороды. После завершения всех операций скважина готова к регулярной добыче нефти или газа.

Общая продолжительность строительства скважины - **265 суток**, включая 12 суток на проведение операций по ГРП.

Таблица 7.3.2 - Продолжительность испытания (освоения) объектов в эксплуатационной колонне

НАЗВАНИЕ ПРОЦЕССА, ОПЕРАЦИИ ПО ИСПЫТАНИЮ (ОСВОЕНИЮ) И	НОМЕРА ТАБЛИЦ ПО ССНВ НА	ПРОДОЛЖИТ Ь, СУ	
интенсификации	ИСПЫТАНИЕ ИЛИ МЕСТНЫЕ НОРМЫ	процесса (операции) по объектам, сут	суммарна я по объекту
1	2	3	
ПЗР перед испытанием	ССНВ табл.22, п.3	1,5	1,5
Шаблонировка эксплуатационной колонны	ССНВ табл.22, п.13	2,1	2,1
Перфорация обсадной колонны	ССНВ таб.25, графа 8	3,2	3,3
Вызов притока, освоение, очистка ПЗП	ССНВ таб.22, графы 6	5,2	5,3
Испытание скважины	ССНВИ табл 17	9	9,1
СПО для установки пакера до ГРП, распакеровка после ГРП	ССНВ таб.22, графы 14	2,0	2,0
Гидравлический разрыв пласта	ССНВ таб.24, графа 6	3,0	3,0
Работа после интенсификации притока из пласта, освоение	ССНВ таб.26, гр. 8 и Табл. А, гр. 7	7,0	7,0
Итого		33	33

<u>Примечание:</u> Процесс операции по освоению и интенсификации притока может корректироваться с учетом программы освоения сервисной компании, согласованной с «Заказчиком».

Ликвидация и консервация скважин

Разработка проектных технологических и технических решений по ликвидации и консервации скважин на месторождении направлены на обеспечение промышленной безопасности, охрану недр и окружающей природной среды, безопасности жизни и здоровья людей. Решение о ликвидации и консервации будет приниматься Заказчиком с обязательным согласованием с областной инспекцией геологии и недропользования. После выполнения работ, предусмотренных планом ликвидации скважины, скважина будет ликвидирована по инициативе недропользователя. Скважина ликвидируется на основании решения ГТС «Заказчика» с определением категории ликвидации в соответствии. Недропользователь обязан обеспечить ликвидацию скважины, не подлежащей использованию в установленном порядке.

Рабочий проект предусматривает, что после достижения проектной глубины в скважину спускается и цементируется до устья эксплуатационной колонны. Подготовку материалов в комиссию для оформления ликвидации скважины, право контроля, ответственность за своевременное и качественное проведение работ при ликвидации скважины, охрану недр и рациональное использование природных ресурсов, несет недропользователь (Заказчик).

Конкретный план действий по ликвидации скважины, законченной строительством, разрабатывается недропользователь с учетом местных условий, и других нормативных документов и согласовывается с областной инспекцией геологии и недропользования.

При оценке воздействия объекта на окружающую среду и здоровье населения важным аспектом является качество атмосферного воздуха. Загрязненность атмосферного воздуха токсичными веществами может влиять на состояние здоровья населения, на почвы, животный и растительный мир промышленной площадки и санитарно-защитной зоны.

В данном разделе оценка воздействия на окружающую среду выполнена исходя из наименее благоприятного с экологической точки зрения варианта строительства скважины. Так, продолжительность цикла строительства скважины, количество и состав используемой техники, и другие экологически значимые параметры приняты максимально возможными. То есть все расчеты выполнены в сторону завышения предполагаемого техногенного воздействия на окружающую среду. В соответствии с периодами операций на строительной площадке, объемы эмиссии загрязняющих веществ в атмосферу не будут постоянными, их объемы будут меняться в зависимости от сочетания, используемого в каждый момент времени техники и оборудования.

В качестве основы для расчетов были приняты данные из «Индивидуального технического проекта на строительство оценочной скважины KRSO-1 глубиной 2850 м (по вертикали) с горизонтальным окончанием на Карагансайском участке нетрадиционных источников углеводородов, расположеннного в Улытауской и Кызылординской областях Республики Казахстан» и «Индивидуального технического проекта на строительство оценочной скважины KRSO-2 глубиной 2850 м (по вертикали) с горизонтальным окончанием на Карагансайском участке

нетрадиционных источников углеводородов, расположеннного в Улытауской и Кызылординской областях Республики Казахстан».

Все необходимые исходные данные на разработку проекта НДВ были представлены и согласованы с заказчиком ТОО «Саутс-Ойл».

Населенные пункты и крупные промышленные предприятия вблизи площади проектируемых работ отсутствуют. Ближайшим населенным пунктом является п. Теренозек приблизительно в 114 км по прямой от района расположения контрактной территории и площадки буровой внутри ее.

Объектом проведения экологической оценки является испытание оценочных скважин с проектной глубиной 2850м по вертикали и 4000 (±300) м по стволу на контрактной территории ТОО «Саутс-Ойл» расположенной преимущественно в пределах Кызылординской области.

Поступление загрязняющих веществ в атмосферу в период бурения оценочных скважин будет происходить от стационарных и передвижных источников выбросов.

По воздействию на воздушный бассейн проектируемые работы разделяются на три группы:

- **в**оздействие строительно-монтажных работ, включая периоды общеплощадочных и подготовительных работ, монтажа и демонтажа оборудования буровой площадки;
- **»** воздействие работ по бурению и креплению скважины при эксплуатации буровой установки;
- **в** воздействие работ по испытанию скважин, с этапом интенсификации притока нефти методом ГРП.

Испытание оценочных скважин на Карагансайском участке

На стадии проведения **работ по испытанию скважины KRSO-1**, включая методы интенсификации притока (ГРП) количество источников загрязнения составит 16 единиц, из них 10 организованных и 6 неорганизованных:

Организованные источники:

- ист. №0012 факел;
- ист. №0013 Дизельный двигатель УПА 60/80;
- ист. №0014 Дизельный генератор БУ;
- ист. №0015 Дизельная электростанция ВП;
- ист. №0016 Цементировочный агрегат ЦА-320;
- ист. №0017 Емкость для нефти;
- ист. №0018 Двухнасосный цементировочный агрегат 250кВт;
- ист. №0019 Двухнасосный цементировочный агрегат 250кВт;
- ист. №0020 Дизельный генератор флотатора;
- ист. №0021 Дизельный генератор флотатора.

Неорганизованные источники:

- ист. №6016 скважина (ЗРА и ФС);
- ист. №6017 насос для подачи ГСМ к дизелям;
- ист. №6018 пункт налива нефти;
- ист. №6019 емкость для хранения дизельного топлива;
- ист. №6020 емкость для хранения масла;
- ист. №6021 узел разгрузки цемента (приготовление цемент. раствора).

Аналогичный перечень источников загрязнения атмосферы представлен при испытании скважины KRSO-2 на Карагансайском участке.

От источников выбросов в 2025-2026 году атмосферный воздух загрязняется вредными веществами **19 наименований**:

Азота (IV) диоксид (2 класс), Азот (II) оксид (3 класс), Углерод, сажа (3 класс), Сера диоксид (3 класс), Сероводород (2 класс), Углерод оксид (4 класс), Пентан (4 класс), Метан, Изобутан (4 класс), Смесь углеводородов предельных С1-С5, Смесь углеводородов предельных С6-С10, Пентилены (4 класс), Бензол (2 класс), Диметилбензол (3 класс), Метилбензол (3 класс), Проп-2-ен-1-аль (2 класс), Формальдегид (2 класс), Масло минеральное нефтяное, Алканы С12-19 (4 класс), Пыль неорганическая: 70-20% двуокиси кремния (3 класс).

Перечень загрязняющих веществ, выбрасываемых в атмосферу, составлен по расчетам выбросов вредных веществ при строительстве скважины.

Таблицы составлены с помощью программного комплекса «ЭРА 3.0» (фирма «Логосплюс», г. Новосибирск) на основе расчетов выбросов загрязняющих веществ на 2025-2026 гг., которые представлены в приложении 1.

Количественная характеристика выбрасываемых в атмосферу загрязняющих веществ (т/пер) приводится по усредненным годовым значениям в зависимости от изменения режима работы предприятий, технологического процесса и оборудования, расхода и характеристик сырья, топлива, реагентов, материала и т.д.

Перечень загрязняющих веществ, выбрасываемых в атмосферу от источников строительства скважины приведен в таблицах 7.7.2.

При совместном присутствии в воздухе атмосферы веществ, выделяемых в процессе строительства скважины, увеличивается токсичность воздействия этих веществ на окружающую среду и на здоровье человека, т.е. проявляется эффект суммации. Показатель эффекта суммации является одной из характеристик опасности загрязняющих веществ, выделяемых в атмосферу источниками выбросов. Токсичность воздействия этих веществ на организм человека и окружающую среду увеличивается при их совместном присутствии в воздухе атмосферы. В таблице 7.7.1 представлены группы суммации.

7.2. Краткая характеристика существующих установок очистки газов

Ввиду отсутствия технологии очистки на применяемом оборудовании при добыче углеводородного сырья пылегазоочистное оборудование (ПГОУ) не применяется.

Таблица 7.2.1 - Показатели работы газоочистных и пылеулавливающих установок (ПГО)

				, , , , , , , , , , , , , , , , , , ,	,						
Номер	Наименование и тип	КПД аппа	ратов, %	Код	Коэффициент						
источника	пылегазоулавливающего			загрязняющего	обеспеченности						
выделения	оборудования	проектный	фактичес-	вещества по	K(1),%						
			кий	котор.проис-							
				ходит очистка							
1	2	3	4	5	6						
H	На рассматриваемом объекте оператора пылегазоочистное оборудование отсутствует										

7.3. Оценка степени применяемой технологии, технического и пылегазоочистного оборудования

Применяемая технология и оборудование соответствуют современному научнотехническому уровню и потенциалу в Республике Казахстан и за рубежом. В основном, оборудование и механизмы, используемые в главном и вспомогательном производстве, являются наилучшими стандартами зарубежных технологий.

На основе расчетов для каждого стационарного источника эмиссий и предприятия в целом устанавливаются нормативы допустимых выбросов с таким условием, чтобы обеспечить достижение нормативов качества окружающей среды.

Норматив допустимого выброса вредных (загрязняющих) веществ в атмосферу (НДВ) устанавливается для каждого источника загрязнения атмосферы при условии, что выбросы вредных веществ от данного источника и от совокупности источников города или другого населенного пункта, с учетом перспективы развития предприятия и рассеивания вредных веществ в атмосфере, не создадут приземную концентрацию, превышающую их предельно допустимые концентрации (ПДК) на границах санитарно-защитных зон и населенных пунктов.

Согласно п.23 Методики - нормативы допустимых выбросов устанавливаются с таким условием, чтобы общая нагрузка на атмосферный воздух в пределах области воздействия не приводила к нарушению установленных экологических нормативов качества окружающей среды или целевых показателей качества окружающей среды, а также на территории ближайшей жилой зоны, расчетные максимально разовые концентрации загрязняющих веществ в приземном слое атмосферного воздуха не превышали соответствующие экологические нормативы качества с учетом фоновых концентраций.

Согласно справки РГП «Казгидромет» работы за определением фоновой концентрации на Карагансайском участке (Сырдарьинский район Кызылординской области) не ведутся (приложение 4).

Расчеты рассеивания загрязняющих веществ на период строительства скважин выполнены программным комплексом «Эра-воздух» версии 3.0 фирмы НПП «Логос-Плюс», г. Новосибирск. Результаты расчета приземных концентраций загрязняющих веществ в форме изолиний и карт рассеивания, уровней шума и риски здоровья населения представлены в расчетной части проекта.

В связи с тем, максимальные концентрации вредных веществ на границе СЗЗ и, соответственно, на границе жилой застройки не превышают 1 ПДК, дополнительные мероприятия по защите населения от воздействия выбросов вредных химических примесей в атмосферный воздух не требуются.

7.4. Перспектива развития

Оператором объекта в период реализации производственной деятельности 2025-2026гг. предусматривается перспектива развития, связанная со следующими событиями:

- на строительство двух оценочных скважин на Карагансайском участке;

Нормативы эмиссии на период эксплуатации согласно ст. 39 Экологического кодекса устанавливаются на 2025-2026 годы в связи с продолжительностью проводимых работ по испытанию. Нормативы эмиссии на период строительно-монтажных и подготовительных работ, работ по бурению и креплению установлены в проекте РООС.

Недропользователем с целью реализации намечаемой деятельности, связанной со строительством новых скважин, было подготовлено Заявление о намечаемой деятельности и инициирован процесс скрининга воздействия намечаемой деятельности.

Согласно представленному Заявлению, намечаемая деятельность не подлежит обязательной оценке воздействия на окружающую среду в соответствии с Приложением 1 к Экологическому кодексу РК от 02.01.2021 г. (далее — Кодекс). В соответствии п.3 ст.49 Кодекса, для намечаемой деятельности, не подлежащей обязательной оценке воздействия на окружающую среду, экологическая оценка проводится по упрощённому порядку.

7.5. Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ

Для определения количественных и качественных величин выбросов от объектов, ТОО «Саутс-Ойл» выполнены расчеты по действующим нормативно-методическим документам.

Количественная характеристика, выбрасываемых в атмосферу загрязняющих веществ (т/пер) приводится по усредненным годовым значениям в зависимости от изменения режима работы предприятия, технологического процесса и оборудования, материалов и т. д. Расчеты по определению количества загрязняющих веществ, выбрасываемых в атмосферу источниками выбросов приведены в приложении № 1.

Параметры выбросов загрязняющих веществ в атмосферу для расчета предельно допустимых выбросов (НДВ) составлена согласно «Методика определения нормативов эмиссий в окружающую среду», (утверждена Приказом Министра экологии, геологии и природных ресурсов РК от 10 марта 2021 года № 63-п). В расчетах валовых выбросов загрязняющих веществ в атмосферу использованы методики, утвержденные уполномоченным органом в области ООС, список которых приводится в перечне используемой литературы, и программном комплексе «ЭРА» (фирма «Логос-плюс», г. Новосибирск).

Данные из таблицы параметров источников выбросов загрязняющих веществ в атмосферу использованы для проведения расчетов рассеивания и моделирования максимально-возможных приземных концентраций веществ и их групп суммаций в месте размещения производственной базы при существующих метеорологических характеристиках района.

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ представлены в таблице 7.5.1.

TOO «Caymc-Ойл» TOO «Geoscience Consulting» ИП «Canaeв Т.М.»

ЭРА v3.0 ИП "Сапаев Т.М."

Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на период испытания одной оценочной скважины

Про цех	ский район, ИТП Источник выде загрязняющих в	еления	Число	Наиме источния	енование	Номер источ	Высо та	метр	на вых	тры газовоз, оде из трубы симальной ра	и при	1		ы источния -схеме, м		Наименование газоочистных установок,	Вещество по кото-	Коэфф обесп газо-	Средняя эксплуат степень	Код ве- Наименование ще- вещества	Выброс з	агрязняющего	вещества
одс тво	Наименование	Коли- чест- во,	ты в году		х веществ	выбро		трубы м		нагрузке		точечног /1-го ко /центра	нца лин.	2-го ко /длина, площа		тип и мероприятия по сокращению	произво- дится газо-		очистки/ мах.степ очистки%		r/c	мг/нм3	т/пер Год дос- тиж
		шт.					М		рость м/с	трубу, м3/с	пер. oC	ного ист		источ	иника Ү2	выбросов	очистка						ния НДВ
1 2	3	4	5		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25 26
002 01	факел	1	792	факел		0012	11.2	0.207	1.23	0.041503	2363.3	-6	68	Площадн	ka I					0301 Азота (IV) диоксид (0.000654672	152.327	0.001866601 202
																				Азота диоксид) (4) 0304 Азот (II) оксид (0.000106384	24.753	0.000303323 202
																				Азота оксид) (6) 0328 Углерод (Сажа,	0.00054556	126.939	0.001555501 202
																				Углерод черный) (583) 0337 Углерод оксид (Окись углерода, Угарный газ) (584)	0.0054556		
002 01	Дизельный	1	792	Дымовая	mpy/5a	0013	5	0.2	123.	3.8752691	230	1.5	3 -104							0410 Метан (727*) 0301 Азота (IV) диоксид (0.00013639 0.565	31.735 268.628	0.000388875 202 1.61 202
002 01	двигатель УПА		132	Дымовая	труба	0013		0.2	35	3.0732091	250		0 -104							Азота диоксид) (4)			
	60/80																			0304 Азот (II) оксид (Азота оксид) (6)	0.735		2.094 202
																				0328 Углерод (Сажа, Углерод черный) (583)	0.0942	44.787	0.2685 202
																				0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.1883	89.527	0.537 202
																				0337 Углерод оксид (Окись углерода, Угарный газ) (584)	0.471	223.936	1.343 202
																				1301 Проп-2-ен-1-аль (Акролеин,	0.0226	10.745	0.0644 202
																				Акрилальдегид) (474) 1325 Формальдегид (0.0226	10.745	0.0644 202
																				Метаналь) (609) 2754 Алканы С12-19 /в	0.226	107.451	0.644 202
																				пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)			
002 01	Дизельный	1	792	Дымовая	труба	0014	5	0.2	95.03	2.9856127	230	72	-105							0301 Азота (IV) диоксид (0.2933	181.002	0.836 202
	генератор БУ																			Азота диоксид) (4) 0304 Азот (II) оксид (0.381	235.124	1.087 202
																				Азота оксид) (6) 0328 Углерод (Сажа,	0.0489	30.177	0.1394 202
																				Углерод черный) (583) 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.0978		0.279 202
																				IV) оксид) (516) 0337 Углерод оксид (Окись углерода, Угарный	0.2444	150.825	0.697 202
																				газ) (584) 1301 Проп-2-ен-1-аль (0.01173	7.239	0.03345 202
																				Акролеин, Акрилальдегид) (474)			
																				1325 Формальдегид (Метаналь) (609)	0.01173		0.03345 202
																				2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.1173	72.389	0.3345 202
002 01	Дизельная	1	792	Дымовая	труба	0015	3	0.2	46.21	1.4517049	230	-540	369							0301 Азота (IV) диоксид (0.155	196.725	0.442 202
	электростанция ВП																			Азота диоксид) (4) 0304 Азот (II) оксид (0.2015	255.742	0.575 202
																				Азота оксид) (6) 0328 Углерод (Сажа,	0.02583	32.783	0.0737 202
																				Углерод черный) (583) 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (65.617	0.1473 202
																				IV) оксид) (516) 0337 Углерод оксид (Окись углерода, Угарный	0.1292	163.979	0.368 202
																				газ) (584) 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0062		0.01768 202
																				1325 Формальдегид (Метаналь) (609)	0.0062		0.01768 202
																				2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	0.062	78.690	0.1768 202

Табл. 7.5.1

TOO «Caymc-Ойл» TOO «Geoscience Consulting» ИП «Canaeв Т.М.»

•																	
														Растворитель РПК-			
002	01 Цементировочны	1 7	92 Дымовая труба	0016	4	0.2	71.49	2.2459866	230	-70	62			265П) (10) Азота (IV) диоксид (0.2125	174.324	0.606 2026
002	й агрегат ЦА-	1	JZ ZDIMODUM IPYOU	0010		0.2	71.15	2.2133000	230	7 0	02		0301	Азота диоксид) (4)	0.2123	171.321	
	320												0304	Азот (II) оксид (0.276	226.416	0.788 2026
													0328	Азота оксид) (6) Углерод (Сажа,	0.0354	29.040	0.101 2026
													0320	Углерод (сажа, Углерод черный) (583)	0.0334	29.040	0.101 2026
													0330	Сера диоксид (0.0708	58.081	0.202 2026
														Ангидрид сернистый,			
														Сернистый газ, Сера (IV) оксид) (516)			
													0337	Углерод оксид (Окись	0.177	145.202	0.505 2026
														углерода, Угарный			
														газ) (584) Проп-2-ен-1-аль (0.0085	6.973	0.02424 2026
													1301	Акролеин,	0.0003	0.373	0.02424 2020
														Акрилальдегид) (474)			
														Формальдегид (Метаналь) (609)	0.0085	6.973	0.02424 2026
														Метаналь) (609) Алканы C12-19 /в	0.085	69.730	0.2424 2026
														пересчете на С/ (
														Углеводороды			
														предельные С12-С19 (в пересчете на С);			
														Растворитель РПК-			
														265π) (10)			
002	01 Емкость для нефти	1 7	92 Емкость для нефти	0017	4	0.05	45.39	0.0891256	80	-166	- 27		0333	Сероводород (Дигидросульфид) (518)	0.00315	45.700	0.0001138 2026
	нефти												0415	Смесь углеводородов	3.804	55188.692	0.1374 2026
														предельных С1-С5 (
													0.41.6	1502*)	1 105	00410 050	0.0500.0006
														Смесь углеводородов предельных C6-C10 (1.407	20412.852	0.0508 2026
														1503*)			
														Бензол (64)	0.01838	266.658	0.000664 2026
														Диметилбензол (смесь	0.00578	83.857	0.0002086 2026
														о-, м-, п- изомеров) (203)			
														Метилбензол (349)	0.01155	167.568	0.000417 2026
002	Двухнасосный	1 7	92 Дымовая труба	0018	4	0.2	88.11	2.7680638	230	-3	-102		0301	Азота (IV) диоксид (0.635	422.672	1.81 2026
	цементировочны й агрегат												0304	Азота диоксид) (4) Азот (II) оксид (0.826	549.806	2.354 2026
	250кВт												0301	Азота оксид) (6)	0.020	313.000	2.331 2020
														Углерод (Сажа,	0.1059	70.490	0.302 2026
														Углерод черный) (583) Сера диоксид (0.2117	140.913	0.604 2026
													0330	Ангидрид сернистый,	0.2117	140.913	0.004 2020
														Сернистый газ, Сера (
														IV) оксид) (516)	0 500	252 115	1 51 2026
													0337	Углерод оксид (Окись углерода, Угарный	0.529	352.115	1.51 2026
														ras) (584)			
													1301	Проп-2-ен-1-аль (0.0254	16.907	0.0724 2026
														Акролеин, Акрилальдегид) (474)			
													1325	Формальдегид (0.0254	16.907	0.0724 2026
														Метаналь) (609)			
													2754	Алканы С12-19 /в	0.254	169.069	0.724 2026
														пересчете на С/ (Углеводороды			
														предельные С12-С19 (в			
														пересчете на С);			
														Растворитель РПК- 265П) (10)			
002	Двухнасосный	1 7	92 Дымовая труба	0019	4	0.2	88.11	2.7680638	230	-3	-102		0301	Азота (IV) диоксид (0.635	422.672	1.81 2026
	цементировочны													Азота диоксид) (4)			
	й агрегат 250кВт												0304	Азот (II) оксид (Азота оксид) (6)	0.826	549.806	2.354 2026
	ZOURBT												0328	Углерод (Сажа,	0.1059	70.490	0.302 2026
														Углерод черный) (583)			
													0330	Сера диоксид (0.2117	140.913	0.604 2026
														Ангидрид сернистый, Сернистый газ, Сера (
														IV) оксид) (516)			
													0337	Углерод оксид (Окись	0.529	352.115	1.51 2026
														углерода, Угарный газ) (584)			
														Газ) (584) Проп-2-ен-1-аль (0.0254	16.907	0.0724 2026
														Акролеин,			
														Акрилальдегид) (474)	0 0054	16 007	0 0704 0006
														Формальдегид (Метаналь) (609)	0.0254	16.907	0.0724 2026
														Алканы С12-19 /в	0.254	169.069	0.724 2026
														пересчете на С/ (
														Углеводороды предельные C12-C19 (в			
														пересчете на С);			
														Растворитель РПК-			
000	Пиро —	1 -	02 Пинково — ————	0000		0 0	75 (1	0 2752620	220	۔ ا	_01			265Π) (10)	0 4005	200 405	1 207 2006
002	Дизельный генератор	1 7	92 Дымовая труба	0020	3	0.2	75.61	2.3753638	230	-5	-81			Азота (IV) диоксид (Азота диоксид) (4)	0.4235	328.495	1.207 2026
	флотатора													Азот (II) оксид (0.55	426.617	1.57 2026
														Азота оксид) (6)			
														Углерод (Сажа, Углерод черный) (583)	0.0706	54.762	0.2012 2026
														Сера диоксид (0.1412	109.524	0.4025 2026
														Ангидрид сернистый,			
1	1	ĺ	1	1	1 1				ı İ	l	ı l	I	I	Сернистый газ, Сера (1	

TOO «Саутс-Ойл»	TOO «Geoscience Consulting»	ИП «Сапаев Т.М.»
100 «Cavmc-Ouл»	100 «Geoscience Consulling»	viii «Canaes 1.vi.»

12		,	1	ı				1												
Column C																IV) ОКСИД) (516)	0 353	273 810	1 006	2026
## 15 1.00 1																	0.333	2/3.010	1.000	2020
Commonweight Comm																газ) (584)				
March Marc																	0.01694	13.140	0.0483	2026
Part																Акрилальдегид) (474)				
March Processed 1 100/000000 1 1 100/0000000 1 1 100/0000000 1 1 100/0000000000																	0.01694	13.140	0.0483	2026
Column Processing Process																	0.1694	131.398	0.483	2026
Column C																				
Part																				
20 10 10 10 10 10 10 10																				
Processor Proc																				
Property	002	Лизельный	1	792 Лг	ымовая тру	.fa 0021	3	0.2	75.61	2.3753638	230	-5 -81					0.4235	328 - 495	1.207	2026
Part				, , , ,	zmiozani ipj				70.01	2.070000	200					Азота диоксид) (4)				
Company Comp		флотатора															0.55	426.617	1.57	2026
2016																	0.0706	54.762	0.2012	2026
Description																Углерод черный) (583)				
Comment of the comm																	0.1412	109.524	0.4025	2026
Section 1985 1																				
Column C																	0.252	072 010	1 000	0006
## 150 100																	0.353	2/3.810	1.006	2026
September 1 September																газ) (584)				
Color Colo																	0.01694	13.140	0.0483	2026
1.55 September 178 1.70 Regions, empower 60.0 2.0 3.0 -3.17 20.12 2.0 2.																				
Col.																1325 Формальдегид (0.01694	13.140	0.0483	2026
Deciding																	0.1694	131.398	0 - 483	2026
PAC CLASSING (SEE)																	0.1031	101.000	0.100	
Decidical Control (1976) 1 172 Response, Recording 6015 2 30 -2 17 20 13 20 14 20 13 20 20 20 20 20 20 20 2																				
Processional Place																				
22 C1 Source and (\$70.) 1 702 Response, Morevaux 60.6 2 33 -317 2015 2015 2016 20																Растворитель РПК-				
Per	002 01	скважина (ЗРА	1	792 H	еорган, ис	точник (6016	2				30	-3117		2015			0.001863		0.00689579	2026
000 000	002 01			, 32	coprum. no											Дигидросульфид) (518)				
Self-School-School Self-School-School Self-School-School Self-School-School Self-School-School Self-School-School Self-School-School Self-School-School Self-School-School Self-School-Sc																			0.00681855	2026
New Composate 1 1 1 1 1 1 1 1 1																				
Description 1 732 Resperant 1 73																Метилпропан) (279)				
1 1000 1 1000 1 1 1 1																	0.0441		0.1632913	2026
родини ТСХ к																				
Designation			1	792 H	еорган. ис	точник 6017	2				30	1 -79	9	2 3			0.0000622		0.000355	2026
Repercence on a C																дигидросульфид) (518) 2754 Алканы С12-19 /в	0.02216		0.1263	2026
пределения (1																пересчете на С/ (
Response and C); Response an																				
1																				
100 10 мункт малива нефти 1 792 Неорган. источник 6018 6 80 -163 -36 12 6																				
мефтк меткк меткк меткк меткк меткк мефтк меткк меткк меткк меткк меткк меткк меткк мефтк меткк мет	002 01	пункт налива	1	792 H	еорган. ис	точник 6018	6				80	-163 - 36	5	12 6			0.000005		0.000013	2026
002 01 емкость для дляемые делейные обращения вересием в пределейные обращения в торовов обращения обраще				, 32	copram. no											предельных С1-С5 (0.00000		0.000010	
1																	0 000003		0 000005	2026
1																	0.000002		0.000003	2026
Хранения джевного солива 2754 Алжаны (21-19 / 8 перечете на С/ (Утлеводороды предельные С12-С19 (в перечете на С/ (Утлеводороды предельные С12-С19 (в перечете на С); Растворитель FIR- (265II) (10) 2755 Масло минеральное джев (275 масло минеральное джев (277 масло м	00000			5 00									,			1503*)	0.0000000		0.000000	2005
дизельного топлива 2754 Алканы С12-19 / В			1	792 H	еорган. ис	точник 6019	2				30	-60 -82	2	3 2			0.00002626		0.0000235	2026
Nation		дизельного														2754 Алканы С12-19 /в	0.00935		0.00838	2026
1		топлива																		
002 01 емкость для 1 792 Неорган. источник 6020 2 30 -60 -89 3 2 2 2 30 -60 -89 3 2 2 2 30 -60 -89 3 2 2 2 30 -60 -89 3 2 2 2 30 -60 -89 3 2 2 2 30 -68 43 7 14 2 2 30 -68 43 7 14 2 2 30 -68 43 7 14 2 2 30 -68 43 7 14 2 2 30 -68 43 7 14 2 2 3 3 -68 43 7 14 3 3 -68 43 7 14 3 3 -68 43 7 14 3 3 -68 14 -60 -89 3 2 3 -68 43 7 14 3 -68 14 -60 -68 -60 -89 3 2 3 -60 -89 3 2 3 -60 -89 3 2 3 -60 -89 3 2 3 -60 -89 3 2 3 -60 -89 3 2 -60 -89 -60																				
002 01 емкость для 1 792 Неорган. источник 6020 2 30 -60 -89 3 2 2 255П (10) 2735 Масло минеральное нефтяное (веретенное, машинное, плиндровое и др.) (716*) 1 792 Неорган. источник 6021 2 30 -68 43 7 1 4 2908 Пыль неорганическая, содержащая двускись кремния в %: 70-20 (притотовление цемент. пыль цемент, пыль цементор производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола утлей казакстанских																пересчете на С);				
002 01 емкость для 1 792 Неорган. источник 6020 2 30 -60 -89 3 2 2735 Масло минеральное 0.000333 0.0000508 2026 мефтяное (веретанное, машинное, шилиндровое и др.) (716*) 1 1 792 Неорган. источник 6021 2 30 -68 43 7 14 2908 Пашь неорганическая, содержащая двуокись кремния в %: 70 70 70 70 70 70 70 70																				
хранения масла нефтяное (веретенное, машиндрое и др.) (716*) 1 792 неорган. источник 6021 2 30 -68 43 7 14 2908 Пыль неорганадническая, 0.002641 0.00753 2026 1	002 01	емкость для	1	792 H	еорган. ис	точник 6020	2				30	-60 -89	9	3 2		2735 Масло минеральное	0.000333		0.0000508	2026
002 01 узел разгрузки приготовление приготование приготовани		хранения масла														нефтяное (веретенное,				
002 01 узел разгрузки 1 792 Неорган. источник 6021 2 30 -68 43 714 2908 Пыль неорганическая, содержащая двускись кремния авускись кремния в 70-20 (шемент. раствора) производства – глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола, кремнезем, зола углей казакстанских																				
приготовление цемент. раствора) кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казакстанских	002 01		1	792 H	еорган. ис	точник 6021	2				30	-68 43		7 14		2908 Пыль неорганическая,	0.002641		0.00753	2026
цемент. раствора) шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, песок, кремнезем, зола углей казахстанских																				
раствора) цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских																				
глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских																цементного				
доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских																				
кремнезем, зола углей казахстанских																доменный шлак, песок,				
казахстанских																				

7.6. Характеристика аварийных и залповых выбросов

Аварийным выбросом является любой выброс вредных веществ, произошедших в ходе нарушения технологии или в результате аварии.

Для снижения риска возникновения аварий и снижения ущерба от их последствий, выявляются проблемы, анализируются ситуации и разрабатывается комплекс мер по обеспечению безопасности и оптимизации средств подавления и локализации аварий, разрабатываются планы мероприятий на случай любых аварийных ситуаций.

План содержит требования об оповещении и действиях персонала, необходимых для проведения аварийных работ с целью защиты персонала, объектов и окружающей среды.

Первоочередные и последующие действия разработаны для каждого объекта, установки, системы в случае: пожара, дорожно-транспортных происшествий, несчастного случая с людьми, угрозы взрыва.

Меры безопасности предусматривают соблюдение действующих противопожарных норм и правил на объекте, в том числе:

- соблюдение необходимых расстояний между объектами и опасными участками потенциальных источников возгорания;
- обеспечение беспрепятственного проезда аварийных служб к любой точке производственного участка;
- обучение персонала правилам техники безопасности, пожарной безопасности и соблюдение правил эксплуатации при выполнении работ;
- регулярные технические осмотры оборудования, ремонт и замена неисправных материалов и оборудования.

Для борьбы с возможным пожаром предусматривается достаточное количество противопожарного оборудования, средств индивидуальной защиты.

Для залповых выбросов, которые являются составной частью технологического процесса, оценивается разовая и суммарная за год величина (г/с, т/пер). Максимальные разовые залповые выбросы (г/с) не нормируются ввиду их кратковременности и в расчетах рассеивания вредных веществ в атмосфере не учитываются. Суммарная за год величина залповых выбросов нормируется при установлении общего годового выброса с учетом штатного (регламентного) режима работы оборудования (т/пер).

Таблица 7.6.1 – Перечень источников залповых выбросов

Наименование	Наименование	Выбросы ве	еществ, г/с	Периодичность,	Продолжительность	Годовая
производств	вещества	по	залповый	раз/год	выброса, час, мин.	величина
(цехов) и		регламенту	выброс			залповых
источников						выбросов,
выбросов						
1	2	3	4	5	6	7
-	-	-	-	-	-	-

Примечание - Залповых и аварийных источников выбросов на предприятии в результате производственной деятельности не предвидится.

Разведка (доразведка) и добыча нефти и газа в соответствии с принятыми в Республике Казахстан нормативами относится к экологически опасным видам хозяйственной деятельности, сопряженным с высоким риском для окружающей среды в результате возникновения аварийных ситуаций.

С учетом вероятности возникновения аварийных ситуаций одним из эффективных методов минимизации ущерба от потенциальных аварий является готовность к ним – разработка вариантов возможного развития событий при аварии и методов реагирования на них.

Для отработанных привычных видов деятельности, отличающихся сравнительно невысокой сложностью и непродолжительностью деятельности, при оценке экологического риска может быть использован количественный подход.

Проведение обустройства площадок скважин и технологического оборудования: подвоз оборудования, монтаж оборудования, электросварочные работы, демонтаж оборудования является хорошо отработанным, с изученной технологией.

Исходя из общеотраслевых статистических данных, общая вероятность возникновения аварийных ситуаций по нефтегазовой промышленности составляет 0,02 процента.

В процессе бурения скважины могут возникнуть следующие осложнение – открытое фонтанирование.

Для предупреждения оставления шарошек при разбуривании цементных пробок необходимо не передерживать работу долота на забое, не использовать долото вторично.

Для предупреждения падения посторонних предметов необходимо предусмотреть использование устройства, предупреждающего падение посторонних предметов в скважину.

Основной аварийной ситуацией в процессе добычи, сбора и транспортировки нефти и газа является разгерметизация технологического оборудования.

В целях предотвращения и ликвидации осложнений в скважине при различной интенсивности поглощений или при полном прекращении циркуляции промывочной жидкости предпринимаются следующие меры:

- уменьшение перепада давления в системе «скважина-пласт» путем изменения параметров промывочной жидкости;
- изоляция поглощающего пласта путем закупорки каналов пласта специальными наполнителями, цементными растворами или пастами;
- бурение без выхода циркуляции, с последующим спуском обсадной колонны.

При газопроявлениях необходимо предпринять следующие меры:

- повысить плотность бурового раствора (в случаях, когда поступления пластового флюида во время проявления приводит к увеличению уровня в приемных емкостях и появлению избыточного давления в бурильных трубах при закрытой скважине);
- подъем инструмента, во избежание проявления, производить только после выравнивания показателей бурового раствора до установленной величины;
- установить интенсивность проявления в процессе бурения и промывок. Для этого углубление скважины прекращается и ведется промывка в течение одного года циркуляции;
- после закрытия превентора и стабилизации давления необходимо принять меры по ликвидации проявления;
- при появлении признаков начавшегося проявления при подъеме труб необходимо остановить подъем. При отсутствии перелива сразу же приступить к спуску труб в башмак обсадной колонны;
- замеченных признаках проявлений необходимо немедленно поставить в известность инженерную службу.

При начавшемся поглощении необходимо предпринять следующие меры:

- поднять бурильную колонну в башмак обсадной колонны или в прихвато-безопасный интервал и приступить к ликвидации поглощения;
- процесс бурения с частичной потерей циркуляции или без выхода циркуляции производить по специальному проекту;
- долив скважины при подъеме бурильной колонны необходимо производить периодически после подъема расчетного количества свечей;
- подъем и спуск бурильной колонны производить с такой скоростью, при которой сумма гидростатического и гидродинамического давлений была бы выше пластового давления и меньше давления гидроразрыва пород;
- длительные ремонтные или профилактические работы, не связанные с ремонтом устья скважины, необходимо производить при нахождении бурильной колонны в башмаке обсадной колонны с обязательной установкой шарового крана.

Если ремонт устья скважины или противовыбросового оборудования продолжителен и нет возможности промыть скважину, то нужно установить отсекающий цементный мост.

Одним из основных видов аварий является возможные разливы нефтепродуктов, выделение газа при открытом фонтанировании скважины и разгерметизации технологического оборудования.

Перечень неотложных мероприятий по ликвидации аварии приведен в таблице

Таблица 7.6.2 - Мероприятия по ликвидации аварий

Перечень мероприятий	Сроки проведения
1. Ликвидировать (отключить, перекрыть, заглушить) источник выделения	в течение 1 суток
нефтепродукта, таза.	
2. Локализовать разлив, преградив растекание нефтепродукта по	
поверхности земли сооружением валов, насыпей, дамб, прокладкой сборных	в течение 2-х суток
канав, устройством ям-ловушек.	
3. Выполнить противопожарное устройство участка, оградив базовый лагерь	
лигнерализованными полосами шириной не менее 1,4 м, установить	р тананна 2 у султок
предупредительные знаки о запрете сжигания, разведения огня, организовать	в течение 2-х суток
сторожевую охрану.	
4. Осуществить сбор замазученного грунта и вывоз в пункты утилизации.	в течение 10 суток

В случае возникновения аварий, мероприятия по их ликвидации проводятся по дополнительным планам.

Недропользователь должен иметь разработанный и утвержденный "План проведения работ по предотвращению и ликвидации аварийных ситуаций" в соответствии со следующими положениями:

- возможные аварийные ситуации при намечаемой хозяйственной деятельности:
- методы реагирования на аварийные ситуации:
- создание аварийной бригады (численность, состав, руководители, метод оповещения и т.д.):
- фазы реагирования на аварийную ситуацию;
- оснащенность оборудованием, материалами и техникой бригады для локализации и ликвидации разливов;
- методы локализации очагов загрязнения.

Залповые выбросы отсутствуют.

7.7. Перечень загрязняющих веществ, выбрасываемых в атмосферу

Перечень загрязняющих веществ, выбрасываемых в атмосферу, составлен по расчетам выбросов вредных веществ при строительстве скважины.

Таблицы составлены с помощью программного комплекса «ЭРА 3.0» (фирма «Логос-плюс», г. Новосибирск) на основе расчетов выбросов загрязняющих веществ на 2025-2026 гг., которые представлены в приложении 1.

Количественная характеристика выбрасываемых в атмосферу загрязняющих веществ (т/пер) приводится по усредненным годовым значениям в зависимости от изменения режима работы предприятий, технологического процесса и оборудования, расхода и характеристик сырья, топлива, реагентов, материала и т.д.

Перечень загрязняющих веществ, выбрасываемых в атмосферу от источников испытания оценочных скважин приведен в таблицах 7.7.2.

При совместном присутствии в воздухе атмосферы веществ, выделяемых в процессе строительства скважины, увеличивается токсичность воздействия этих веществ на окружающую среду и на здоровье человека, т.е. проявляется эффект суммации. Показатель эффекта суммации является одной из характеристик опасности загрязняющих веществ, выделяемых в атмосферу источниками выбросов. Токсичность воздействия этих веществ на организм человека и окружающую среду увеличивается при их совместном присутствии в воздухе атмосферы. В таблице 7.7.1 представлены группы суммации.

От источников загрязнения атмосферы выделяются *на перспективу (2025-2026 гг.)* загрязняющие вещества *19* наименований и *3* групп суммаций.

ЭРА v3.0 ИП "Сапаев Т.М."

Таблица 7.7.1

Таблица групп суммаций на существующее положение

Жалагашский район, ИТП оценочных скважин Карагансай испытание

Номер	Код	
группы	загряз-	Наименование

сумма-	няющего	загрязняющего вещества
ции	вещества	
1	2	3
		Площадка:01,Площадка 1
6007	0301	Азота (IV) диоксид (Азота диоксид) (4)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Cepa (IV) оксид) (516)
6037	0333	Сероводород (Дигидросульфид) (518)
	1325	Формальдегид (Метаналь) (609)
6044	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,
		Сера (IV) оксид) (516)
	0333	Сероводород (Дигидросульфид) (518)

Табл. 7.7.2

Перечень загрязняющих веществ, выбрасываемых в атмосферу на испытание двух оценочных скважин

Жалагашский район, ИТП оценочных скважин Карагансай_испытание

Код Наименование	энк,	пдк	пдк		Класс	Выброс вещества	Выброс вещества	Выброс вещества	Выброс вещества	Значение
ЗВ загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	с учетом	с учетом	м/энк
		ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/пер	очистки, г/с	очистки, т/пер	
		вая, мг/м3	мг/м3		3B		(M)		(M)	
						Ha 1 ci	кважину	На 2 с	кважины	
1 2	3	4	5	6	7	8	9	10	11	12
0301 Азота (IV) диоксид (Азота		0.2	0.04		2	3.343454672	9.529866601	6.686909344	19.0597332	238.246665
диоксид) (4)										
0304 Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	4.345606384				206.538389
0328 Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.55787556	1.590555501	1.11575112	3.181111002	31.81111
583)										
0330 Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	1.1144	3.1783	2.2288	6.3566	63.566
Сернистый газ, Сера (IV) оксид) (
516)										
0333 Сероводород (Дигидросульфид) (0.008			2	0.00510146	0.00738809	0.01020292	0.01477618	0.92351125
518)										
0337 Углерод оксид (Окись углерода,		5	3		4	2.7910556	7.960555007	5.5821112	15.92111001	2.65351834
Угарный газ) (584)										
0405 Пентан (450)		100	25		4	0.00184	0.00681855			
0410 Метан (727*)				50	0	0.00994639	0.036718375	0.01989278	0.07343675	0.00073437
0412 Изобутан (2-Метилпропан) (279)		15			4	0.002655	0.00983163		0.01966326	0.00065544
0415 Смесь углеводородов предельных				50	0	3.848105	0.3007043	7.69621	0.6014086	0.00601409
C1-C5 (1502*)										
0416 Смесь углеводородов предельных				30	0	1.407002	0.050805	2.814004	0.10161	0.0016935
C6-C10 (1503*)										
0602 Бензол (64)		0.3	0.1		2	0.01838				0.00664
0616 Диметилбензол (смесь о-, м-, п-		0.2			3	0.00578	0.0002086	0.01156	0.0004172	0.001043
изомеров) (203)										
0621 Метилбензол (349)		0.6			3	0.01155	0.000417	0.0231	0.000834	0.000695
1301 Проп-2-ен-1-аль (Акролеин,		0.03	0.01		2	0.13371	0.38117	0.26742	0.76234	38.117
Акрилальдегид) (474)										
1325 Формальдегид (Метаналь) (609)		0.05	0.01		2	0.13371	0.38117			38.117
2735 Масло минеральное нефтяное (0.05	5	0.000333	0.0000508	0.000666	0.0001016	0.001016
веретенное, машинное, цилиндровое										

и др.)	(716*)	I								
2754 Алканы	С12-19 /в пересчете на С/		1		4	1.36861	3.94638	2.73722	7.89276	3.94638
(Углево	одороды предельные C12-C19									
(в пере	есчете на С); Растворитель									
РПК-265	5Π) (10)									
2908 Пыль не	еорганическая, содержащая		0.3	0.1	3	0.002641	0.00753	0.005282	0.01506	0.0753
двуокис	сь кремния в %: 70-20 (
шамот,	цемент, пыль цементного									
произво	дства - глина, глинистый									
сланец,	доменный шлак, песок,									
клинкер	, зола, кремнезем, зола									
углей к	казахстанских									
месторо	рждений) (494)									
ВСЕГ	0:					19.101756066	39.781436777	38.20351213	79.56287355	624.013638

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/пер; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

7.8. Обоснование полноты и достоверности исходных данных (г/с, т/пер), принятых для расчета НДВ

В соответствии с требованиями п. 12 Методики определения нормативов эмиссий в окружающую среду, утверждённой приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 (далее — Методика определения нормативов) перечень источников выбросов и их характеристики определяются для проектируемых объектов на основе проектной информации.

В соответствии с требованиями Методики определения нормативов эмиссий определение количественных и качественных характеристик выбросов вредных веществ проводится с применением инструментальных или расчётных (расчётно-аналитических) методов.

Инструментальные методы являются превалирующими для источников с организованным выбросом загрязняющих веществ в атмосферу. Инструментальные измерения массовой концентрации и определения значений массовых выбросов загрязняющих веществ в отходящих газах выполняются аккредитованными лабораториями на сертифицированном оборудовании и/или посредством автоматизированной системы мониторинга при наличии.

Расчётные методы применяются для определения характеристик неорганизованных выделений (выбросов) при отсутствии возможности проведения инструментальных замеров на источниках с организованным выбросом, разработанных и согласованных в установленном порядке методов количественного химического анализа, а также для получения данных о параметрах выбросов проектируемых и реконструируемых объектов.

Перед разработкой проекта НДВ проведена инвентаризация источников выделения загрязняющих веществ в атмосферу, изучены материалы юридического обоснования открытия предприятия.

В результате изучения исходных данных определены источники выделения загрязняющих веществ в атмосферу и образования отходов, определена загрязнения атмосферы.

Исходные данные (г/с, т/пер) для расчёта эмиссий загрязняющих веществ (НДВ) уточнены расчётным методом. Для определения количественных выбросов использованы действующие и утверждённые методики.

Для расчета приняты наиболее достоверные результаты, определяющие максимальное выделение вредных веществ в атмосферу.

Расчёты выбросов проводились с учётом мощностей, нагрузок работы технологического оборудования и времени его работы.

На основании проведенных расчетов, представленных в расчетной части, а также по исходным данным об используемых материалах, реагентах, объемах добычи определены количественные и качественные характеристики выбросов загрязняющих веществ в атмосферу расчетным путем по утвержденным в РК нормативным документам.

Определение величин выбросов загрязняющих веществ от оборудования проведено расчетными методами в соответствии со следующими методическими документами:

- 1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г;
- 2. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8;
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п 5.
- 4. Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008г.

Обоснованием полноты и достоверности исходных данных, принятых для расчета нормативов допустимых выбросов, является задание на проектирование полученное от оператора, утвержденная оператором проектная документация, материалы инвентаризации выбросов загрязняющих веществ и их источников; данные первичного учета или данные из форм статической отчетности, данные полученные инструментальными замерами или расчетными и балансовыми методами с указанием перечня методических документов, регламентирующих методы отбора, анализа выброса загрязняющих веществ, паспортные данные производителя оборудования (установки), заключение по результатам оценки воздействия на окружающую среду в соответствии

с подпунктом 3) пункта 2 статьи 76 Кодекса или заключение об отсутствии необходимости обязательной оценки воздействия на окружающую среду, с учетом соответствующих значений, указанных в заявлении о намечаемой деятельности в соответствии с подпунктом 9) пункта 2 статьи 68 Колекса.

Перед разработкой проекта проведена инвентаризация источников выделения загрязняющих веществ в атмосферу без полевого обследования, так как проектными решениями предусматривается только перспектива развития предприятия и существующие источники загрязнения атмосферы отсутствуют. Для определения величины выбросов использовались методики, действующие в Республике Казахстан.

Все исходные данные на разработку проекта нормативов допустимых выбросов (НДВ) загрязняющих веществ в атмосферу согласованы руководством предприятия.

8. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ И ПРЕДЛОЖЕНИЯ ПО НОРМАТИВАМ ДОПУСТИМЫХ ВЫБРОСОВ

8.1. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ

В современной концепции охраны окружающей среды особое место занимает состояние воздушного бассейна. Любое антропогенное влияние может привести к недопустимым уровням загрязнения компонентов природной среды, снижению биоразнообразия фауны и флоры, деградации почвенно-растительного покрова, изменению мест обитания животного мира, исчезновению и сокращению популяций, а главное — угрозе здоровью населения. Основными принципами охраны атмосферного воздуха согласно «Экологический кодекс» являются:

- охрана жизни и здоровья человека, настоящего и будущих поколений;
- недопущения необратимых последствий загрязнения атмосферного воздуха для окружающей среды.

В целом, природно-климатические условия территории способствуют быстрому очищению атмосферного воздуха от вредных примесей. В период проектируемых работ наиболее существенным загрязняющим фактором следует считать работу буровой установки, дизельных генераторов и т.д. Состояние атмосферного воздуха в районе проведения работ, влияющего на компоненты окружающей среды, определяется двумя факторами:

- климатическими особенностями территории, определяющими условия рассеивания загрязняющих компонентов;
- ингредиентным составом, объемами выбросов ЗВ и характеристиками источников вредных выбросов (высота, диаметр, скорость, объем ГВС, площадь пыления).

Участки планируемых работ расположены в зоне внутриматериковых пустынь, для которых характерен резко континентальный климат с жарким сухим продолжительным летом и холодной короткой малоснежной зимой. Такой климатический режим обусловлен расположением области внутри Евроазиатского материка, южным положением, особенностями циркуляции атмосферы, характером подстилающей поверхности и другими факторами. Континентальность климата проявляется в больших колебаниях метеорологических элементов, в их суточном, месячном и годовом ходе. В последние годы за счет процесса высыхания Аральского моря отмечается заметное изменение климатических условий Приаралья. Ранее Арал выступал в роли своеобразного регулятора, смягчая холодные ветры, приходившие осенью и зимой из С ужесточением климата лето в регионе стало более сухим и коротким, зимы – длинными и холодными. Вегетативный сезон сократился до 170 дней. На прибрежных территориях Аральского моря атмосферные осадки сократились в несколько раз, их величина в среднем составляет 150-200 мм со значительной неравномерностью по сезонам. Отмечается высокая испаряемость (до 1700 мм в год) при уменьшении влажности воздуха на 10%.

Температура воздуха зимой понизилась, а летом повысилась на 2-3°C. В летний период отмечаются высокие температуры (до 49°C). Характерной чертой климата Приаралья является высокая повторяемость и значительная продолжительность пыльных бурь и поземков.

 $\underline{Teмnepamypa\ Boздухa}$. Годовой ход температуры на станции Кызылорда минимум достигается в январе, максимум — в июле. Лето жаркое и продолжительное. Резких различий в температурах в этот период не наблюдается. Абсолютный максимум температуры -44 -47 $^{\circ}$ С. Средняя температура самого холодного месяца района участка от -9 $^{\circ}$ С до -12 $^{\circ}$ С. Открытость к северу позволяет холодным массам беспрепятственно проникать на территорию области и вызвать резкие похолодания, особенно зимой. Абсолютный минимум температуры воздуха достигает -40 $^{\circ}$ С, -45 $^{\circ}$ С. Период со среднесуточной температурой воздуха выше 0 $^{\circ}$ С длится 235-275 дней. Он начинается обычно 23 февраля — 18 марта и заканчивается 12-28 ноября. Продолжительность безморозного периода составляет 160-200 дней. Первые заморозки наступают 8 ноября, а последние — 12 апреля. Продолжительность безморозного периода составляет примерно 178 дней в году. Снежный покров незначителен и неустойчив, обычно его сдувает с поверхности. Средняя максимальная высота снежного покрова достигает до 6 см. Продолжительность пребывания снежного покрова до 35-55 дней.

<u>Влажность воздуха.</u> Годовой ход относительной влажности противоположен ходу температуры воздуха, т.е. с ростом температуры воздуха относительная влажность уменьшается.

Наиболее высокой относительная влажность воздуха бывает в холодное время года. Средние месячные значения ее в это время (XI-III) составляют 57-90% м/с Кызылорда. В период с апреля по октябрь значения ее колеблются от 27-50 до 54-57% с минимумом в июле. Дефицит влажности в районе работ составляет в среднем за год 10,4 гПа. В холодный период, когда температура воздуха низкая, дефицит влажности невелик (0,6-1,7 гПа) и минимальное его значение 0,6 гПа наблюдается в январе. К июлю дефицит влажности возрастает и в среднем поднимается до 26,6 гПа.

Атмосферные осадки. Засушливость – одна из отличительных черт климата данного района. Осадков выпадает очень мало. Среднегодовое количество их не превышает 100-150 мм и распределяется по сезонам года крайне неравномерно, 60% всех осадков приходится на зимневесенний период. В отдельные влажные годы сумма осадков может достигать 227 мм. Наличие большого дефицита влажности при высоких температурах воздуха создает условия для значительного испарения. Засушливый период начинается с июня месяца и продолжается до октября месяца. Средняя величина испарения с открытой водной поверхности, по многолетним наблюдениям может составлять 1478 мм, что более чем в 10 раз превышает сумму годовых атмосферных осадков. Этим объясняется значительная засоленность грунтов данной территории.

<u>Ветер.</u> Для данного региона характерны частые и сильные ветры, преимущественно северовосточного направления. Сильные ветры зимой при низких температурах сдувают незначительный покров с возвышенных частей рельефа, что вызывает глубокое промерзание и растрескивание верхних слоев почвы. В летние месяцы наблюдаются пыльные бури. Средняя годовая скорость ветра по данным метеостанций Кызылорда равна— 2,7-3,0 м/с и наибольшую повторяемость имеют ветры северо-восточного направления (31%).

<u>Атмосферные явления.</u> Число дней в год с пыльной бурей в данном районе составляет 23,1. Наибольшее число дней с пыльной бурей приходится на апрель-май. Туманы здесь бывают чаще зимой, и среднее число дней с туманом в год составляет около 22. Гроза регистрируется в среднем 8 лней в год.

Метеорологические особенности, определяющие особо неблагоприятные условия для рассеивания вредных примесей

Метеорологические условия оказывают существенное влияние на перенос и рассеивание вредных примесей, поступающих в атмосферу. Наибольшее влияние на рассеивание примесей в атмосферу оказывает режим ветра и температуры. На формирование уровня загрязнения воздуха оказывают также влияние туманы, осадки и радиационный режим.

Ветры оказывают существенное влияние на перенос и рассеивание примесей в атмосфере, особенно слабые. Однако в это время значительно увеличивается подъем перегретых выбросов в слои атмосферы, где они рассеиваются, если при этих условиях наблюдаются инверсии, то может образоваться "потолок", который будет препятствовать подъему выбросов, и концентрация примесей у земли резко возрастает.

Осадки очищают воздух от примесей. После длительных и интенсивных осадков высокие концентрации примесей наблюдаются очень редко. Засушливость климата в изучаемом районе не способствует очищению атмосферы.

Солнечная радиация обуславливает фотохимические реакции в атмосфере и формирование различных вторичных продуктов, обладающих часто более токсичными свойствами, чем вещества, поступающие от источников выбросов. Совокупность климатических условий: режим ветра, застой воздуха, туман, инверсии и т.д., определяет способность атмосферы рассеивать продукты выбросов и формировать некоторый уровень ее загрязнения. Для оценки климатических условий рассеивания примесей на территории СНГ используется показатель - потенциал загрязнения атмосферы (ПЗА), по которому выделяется пять зон. Изучаемый нами район относится к IV зоне с высоким ПЗА.

Таблица 8.1.1 – Метеорологические характеристики и коэффициент, определяющий условия рассеивания загрязняющих веществ в атмосфере

Средняя максимальная температура наружного	
воздуха наиболее жаркого месяца года, ⁰ С	34,3
Средняя максимальная температура наружного	
воздуха наиболее холодного месяца года, ⁰ С	-9,2
Много летняя роза ветров, %	
С	16
СВ	31
В	14
IOB	4

Ю	6
Ю3	8
3	12
C3	9
Штиль	13
Скорость ветра по средним многолетним данным,	
повторяемость которой составляет 5%, м/с	9

Таким образом, природно-климатические условия контрактной площади характеризуются резко континентальным климатом с жарким сухим продолжительным летом и холодной малоснежной зимой. Засушливость — одна из отличительных черт климата данного района. Наличие большого дефицита влажности при высоких температурах воздуха создает условия для значительного испарения.

8.2 Результаты расчетов уровня загрязнения атмосферы на существующие положение и с учетом перспективы развития

Расчет рассеивания загрязняющих веществ в приземном слое атмосферного воздуха, выбрасываемых в атмосферу от источников при строительстве оценочных скважин произведен Программным комплексом «ЭРА-воздух v.3.0».

Программный комплекс «ЭРА» разработан ООО «Логос-плюс» (г. Новосибирск) для ПК и предназначен для решения широкого спектра задач в области охраны атмосферного воздуха.

Программа расчета приземных концентраций вредных веществ в атмосфере согласована ГГО им. А.И. Воейкова (г. Санкт-Петербург), рекомендована к использованию МОС и ВР РК (№ 09-335 от 01.02.2002 г.).

Указанная программа реализует Методику расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий, РНД 211.2.01.10-97. Настоящая методика предназначена для расчета концентраций в двухметровом слое над поверхностью земли, а также вертикального распределения концентраций. Степень опасности загрязнения атмосферного воздуха характеризуется наибольшим рассчитанным значением концентрации, соответствующим неблагоприятным метеорологическим условиям, в том числе «опасными» скоростью и направлением ветра, встречающимися примерно в 1-2% случаев.

Так как на расстоянии, равном 50-ти высотам наиболее высокого источника предприятия, перепад высот не превышает 50 м, безразмерный коэффициент, учитывающий влияние рельефа местности (h), принят равным 1,0.

Расчёт рассеивания загрязняющих веществ выполнен с учётом метеорологических характеристик рассматриваемого региона.

Согласно полученной справки с портала РГП Казгидромет при проведении расчета рассеивания загрязняющих веществ фоновое загрязнение района не учитывалось.

Расчет рассеивания загрязняющих веществ в приземном слое атмосферного воздуха проводился в соответствии с программным определением необходимости расчета рассеивания приземных концентраций.

При проведении расчета рассеивания учитывались максимально-разовые выбросы загрязняющих веществ с учетом одновременности работы источников выбросов, с выбором из них наихудших значений по каждому участку работ.

Детальные данные по проведенному расчету рассеивания представлены в приложении 2.

ЭРА v3.0 ИП "Сапаев Т.М."

Табл. 8.2.1

Определение необходимости расчетов приземных концентраций по веществам на период испытания скважин

Жалагашский район, ИТП оценочных скважин Карагансай испытание

Код	Наименование	пдк	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	димость
веще-		разовая,	суточная,	безопасн.	г/с	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ , мг/м3	(M)	(H)	для Н<10	пин
								расчетов
1	2	3	4	5	6	7	8	9
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		4.345606384	3.96	10.864	Да
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.55787556	3.96	3.7192	Да
0337	Углерод оксид (Окись углерода, Угарный	5	3		2.7910556	3.97	0.5582	Да
	газ) (584)							
0405	Пентан (450)	100	25		0.00184	2	0.0000184	Нет
0410	Метан (727*)			50	0.00994639	2.13	0.0002	Нет
0412	Изобутан (2-Метилпропан) (279)	15			0.002655	2	0.0002	Нет
0415	Смесь углеводородов предельных С1-С5 (50	3.848105	3.98	0.077	Нет
	1502*)							
0416	Смесь углеводородов предельных С6-С10 (30	1.407002	4	0.0469	Нет
	1503*)							
0602	Бензол (64)	0.3			0.01838		0.0613	
0616	Диметилбензол (смесь о-, м-, п- изомеров)	0.2			0.00578	4	0.0289	Нет
	(203)							
0621	Метилбензол (349)	0.6			0.01155		0.0193	
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.03	0.01		0.13371	3.96	4.457	Да
2735	Масло минеральное нефтяное (веретенное,			0.05	0.000333	2	0.0067	Нет
	машинное, цилиндровое и др.) (716*)							
2754	Алканы С12-19 /в пересчете на С/ (1			1.36861	3.91	1.3686	Да
	Углеводороды предельные С12-С19 (в							
	пересчете на C); Растворитель РПК-265П) (
2908	Пыль неорганическая, содержащая двуокись	0.3	0.1		0.002641	2	0.0088	Нет
	кремния в %: 70-20 (шамот, цемент, пыль	, , ,						
	цементного производства - глина,							
	глинистый сланец, доменный шлак, песок,							
1	клинкер, зола, кремнезем, зола углей							
	казахстанских месторождений) (494)							

	Вещества, обла	дающие эффен	стом сумма	арного вредного воздейст	вия		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2	0.04	3.343454672	3.96	16.7173	Да
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05	1.1144	3.96	2.2288	Да
	Сернистый газ, Сера (IV) оксид) (516)						
0333	Сероводород (Дигидросульфид) (518)	0.008		0.00510146	3.23	0.6377	Да
1325	Формальдегид (Метаналь) (609)	0.05	0.01	0.13371	3.96	2.6742	Да

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с

Максимальные приземные концентрации на границе C33 и в селитебной зоне, перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Расчет величин приземных концентраций загрязняющих веществ в атмосферном воздухе (ПДК) проведен в соответствии с РНД 211.2.01.01-97 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий». Алматы, 1997 г. и МРК 2014 (реализованного в ПК «ЭРА») в условиях реально возможного совпадения по времени операций с учетом периода года.

При моделировании рассеивания был принят расчетный прямоугольник со следующими параметрами:

No	Производственная площадка	Параметры прямоугольника					
1	Карагансайский участок	Размер ширина	ы (м) высота	Шаг, (м)			
	оценочные скважины	10 000	10 000	200			

Расчеты концентраций ЗВ были проведены по всем загрязняющим веществам и группам веществ, обладающих при совместном присутствии суммирующим вредным действием, с учетом одновременности работы оборудования на наиболее худшие условия (теплый период года) для рассеивания загрязняющих веществ.

Расчеты рассеивания выбросов загрязняющих веществ ТОО «Саутс-Ойл» произведены для каждого вещества на период строительства оценочных скважин.

Результаты расчета величин приземных концентраций представлены в таблице 8.2.2.

Расчеты выполнены по всем загрязняющим веществам и группам веществ, обладающих при совместном присутствии суммирующим вредным действием, с учетом одновременности работы оборудования, на наиболее худшие условия для рассеивания загрязняющих веществ, в теплый период года.

Веществами, формирующие основное загрязнение воздушной среды в районе предприятия, являются: диоксид азота, углерод, оксид углерода, алканы C12-19, а также группы суммации: диоксид азота + диоксид серы и сероводород + диоксид серы.

Расчет рассеивания загрязняющих веществ отходящих от источников выбросов предприятия представлен в приложении 3.

Анализ результатов расчетов рассеивания загрязняющих веществ при строительстве скважины показал, что на границе минимальной нормативной санитарно-защитной зоны (1000 метров) по всем загрязняющим веществам приземные концентрации, не превышают предельно допустимых значений (ПДК), установленных санитарными нормами. Следовательно, санитарно-защитная зона при строительстве скважины, размером 1000 метров, обеспечивает требуемые гигиенические нормы содержания в приземном слое атмосферы загрязняющих веществ.

Населенные пункты в радиусе санитарно-защитных зон отсутствуют. Ближайшим населенным пунктом является поселок Теренозек приблизительно в 144 км от района расположения контрактной территории.

(сформирована 15.09.2025 23:07)

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ ПК ЭРА v3.0. Модель: MPK-2014

Город :013 Жалагашский район.

Объект :0014 ИТП оценочных скважин Карагансай испытание.

Вар.расч. :5 на период испытания

Код ЗВ	Наименование загрязняющих веществ	Cm	РП	C33	Ж3	ФТ	_	Территория			Класс
I	и состав групп суммаций			I				предприяти	ASA	мг/м3	опасн
I	l I						возд.	Я			
<											
0301	Азота (IV) диоксид (Азота	5.5717	3.003943	0.518755	нет расч.	нет расч.	нет расч.	нет расч.	9	0.2000000	2
	диоксид) (4)										1 1
0304	Азот (II) оксид (Азота оксид)	3.6197	1.951891	0.337125	нет расч.	нет расч.	нет расч.	нет расч.	9	0.4000000	3
	(6)										1 1
0328	Углерод (Сажа, Углерод черный)	3.7209	1.857369	0.114136	нет расч.	нет расч.	нет расч.	нет расч.	9	0.1500000	3
I	(583)							1			
0330	Сера диоксид (Ангидрид	0.7428	0.400545	0.069170	нет расч.	нет расч.	нет расч.	нет расч.	8	0.5000000	3
1	сернистый, Сернистый газ, Сера										
1	(IV) оксид) (516)										
0333	Сероводород (Дигидросульфид)	10.3200	4.369114	0.030014	нет расч.	нет расч.	нет расч.	нет расч.	4	0.0080000	2
1	(518)										
0337	Углерод оксид (Окись углерода,	0.1863	0.100258	0.017306	нет расч.	нет расч.	нет расч.	нет расч.	9	5.0000000	4
1	Угарный газ) (584)										
1301	Проп-2-ен-1-аль (Акролеин,	1.4852	0.800935	0.138320	нет расч.	нет расч.	нет расч.	нет расч.	8	0.0300000	2
1	Акрилальдегид) (474)										1
1325	Формальдегид (Метаналь) (609)	0.8911	0.480561	0.082992	нет расч.	нет расч.	нет расч.	нет расч.	8	0.0500000	2
2754	Алканы С12-19 /в пересчете на С/	1.5710	0.292641	0.043401	нет расч.	нет расч.	нет расч.	нет расч.	10	1.0000000	4
1	(Углеводороды предельные С12-С19										
1	(в пересчете на С); Растворитель										1 1
I	РПК-265П) (10)				1			1			1
07	0301 + 0330	6.3145	3.404488	0.587925	нет расч.	нет расч.	нет расч.	нет расч.	9		i i
37	0333 + 1325	11.2111	4.369189		_	_	нет расч.	_	12		i i
44	0330 + 0333	11.0627	4.369177	0.090878	нет расч.	нет расч.	нет расч.	нет расч.	12		i i

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК-2014
- 3. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек), на границе области воздействия и зоне "Территория предприятия" приведены в долях ПДКмр.

ЭРА v3.0 ИП "Сапаев Т.М."

Табл. 8.3.3

Перечень источников, дающих наибольшие вклады в уровень загрязнения на период испытания

Жалагашский район, ИТП оценочных скважин Карагансай испытание

Код			альная приземная	_	аты точек				Принадлежность	
вещества	Наименование	концентрация (общая	н и без учета фона)			наибо	льший і	вклад в	источника	
/	вещества	доля ПДК / мг/м3			приземной конц.			макс. концентрацию		
группы									цех, участок	
суммации		в жилой	на границе	в жилой	на грани	N	% BF	пада		
		зоне	санитарно -	зоне	це СЗЗ	ист.				
			защитной зоны	X/Y	X/Y		ЖЗ	C33		
1	2	3	4	5	6	7	8	9	10	
		Существун	ощее положение (2025	год.)						
			яющие веще	•						
0301	Азота (IV) диоксид (0.5187555/0.1037511		0/-1600	0018		20.2	Испытание	
	Азота диоксид) (4)					0019		20.2	Испытание	
						0020		17.5	Испытание	
0304	Азот (II) оксид (Азота		0.3371248/0.1348499		0/-1600	0018		20.2	Испытание	
	оксид) (6)					0019		20.2	Испытание	
						0020		17.5	Испытание	
0328	Углерод (Сажа, Углерод		0.1141356/0.0171203		0/-1600	0018		21.1	Испытание	
	черный) (583)					0019		21.1	Испытание	
						0013		16.4	Испытание	
0330	Сера диоксид (Ангидрид		0.0691696/0.0345848		0/-1600	0018		20.2	Испытание	
	сернистый, Сернистый					0019		20.2	Испытание	
	газ, Сера (IV) оксид) (516)					0020		17.5	Испытание	
1301	Проп-2-ен-1-аль (0.1383204/0.0041496		0/-1600	0018		20.2	Испытание	
	Акролеин,					0019		20.2	Испытание	
	Акрилальдегид) (474)					0020		17.5	Испытание	
1325	Формальдегид (Метаналь)		0.0829922/0.0041496		0/-1600	0018		20.2	Испытание	
	(609)					0019		20.2	Испытание	
						0020		17.5	Испытание	
	•	груг	ппы суммаци	и:	•			•	•	
07(31) 0301	Азота (IV) диоксид (0.5879252		0/-1600	0018		20.2	Испытание	
	Азота диоксид) (4)					0019		20.2	Испытание	
0330	Сера диоксид (Ангидрид					0020		17.5	Испытание	
	сернистый, Сернистый									
	газ, Сера (IV) оксид) (
	516)									

ТОО «Саутс-Ойл»	TOO «Geoscience Consulting»	ИП «Canaeв T.M.»
, 1		10 / 1000 100101

37(39) 0333	Сероводород (0.1047007	0/-1600	0018	16	Испытание
	Дигидросульфид) (518)			0019	16	Испытание
	Формальдегид (Метаналь)			0020	13.9	Испытание
1325	(609)					
44(30) 0330	Сера диоксид (Ангидрид	0.0908781	0/-1600	0018	15.4	Испытание
	сернистый, Сернистый			0019	15.4	Испытание
	газ, Сера (IV) оксид) (6016	14.6	Испытание
	516)					
0333	Сероводород (
	Дигидросульфид) (518)					

8.3. Предложения по нормативам допустимых выбросов (НДВ) по каждому источнику и ингредиенту

В настоящем проекте нормативов предельно допустимых выбросов (НДВ) предлагаются нормативы для источников загрязнения атмосферы при испытании проектируемых скважин ТОО «Саутс-Ойл». При разработке проекта нормативов НДВ использовались максимальные прогнозные производительности всех рассматриваемых установок при возможной одновременной их работе. При расчете выбросов использовались максимальные расходы материалов.

В связи с тем, максимальные концентрации вредных веществ на границе СЗЗ и, соответственно, на границе жилой застройки не превышают 1 ПДК, дополнительные мероприятия по защите населения от воздействия выбросов вредных химических примесей в атмосферный воздух не требуются, в связи с чем, также нет необходимости применения пылегазоочистного оборудования.

Нормативы допустимых выбросов (НДВ) загрязняющих веществ в атмосферу устанавливают для каждого источника выбросов загрязняющих веществ, при условии, что выбросы вредных веществ, при рассеивании не создадут приземную концентрацию, превышающую их ПДК на границе СЗЗ. На основании расчетов и анализа выбросов вредных веществ разработано предложение по нормативам НДВ.

Результаты расчётов приземных концентраций, создаваемых всеми источниками по всем ингредиентам, показывают, что максимальная концентрация в приземном слое на границе СЗЗ не превышает ПДК, следовательно, расчётные значения выбросов загрязняющих веществ можно признать предельно-допустимыми выбросами.

При проведении работ на стационарных источниках (ДЭС, ЦА, СМН) необходимо производить мероприятия по техническому обслуживанию топливной аппаратуры и систем выхлопа дымовых газов.

На период испытания оценочных скважин на 2025-2026гг. согласно проектным решениям Индивидуального технического проекта для двух скважин выявлено следующие количество источников загрязнения атмосферы:

• всего: 32 источников загрязнения атмосферы, их которых: 20 организованные и 12 неорганизованные.

В целом по предприятию в атмосферу выбрасываются загрязняющие вещества 19 наименований и 3 групп суммаций.

Валовый объем выбросов загрязняющих веществ в атмосферный воздух составляет:

• всего: 79.5629 т/пер, в том числе: твердых -3.6127 т/пер, жидких и газообразных -76.3669 т/пер.

Нормативы выбросов на 2025-2026гг., по источникам загрязнения и по веществам, представлены в таблице 8.3.1.

Нормативы допустимых выбросов устанавливаются для всех штатных (регламентных) условий эксплуатации стационарных источников, входящих в состав объекта I или II категорий, при их максимальной нагрузке (мощности), предусмотренной проектными и техническими документами, в том числе при условии нормального (регламентного) функционирования всех систем и устройств вентиляции и установок очистки газа.

.

ЭРА v3.0 ИП "Сапаев Т.М."

Табл. 8.3.1

Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Жалагашский район, ИТП оценочных скважин Карагансай испытание

малагашский район, или	Но-				в загрязняющих	веществ		
	мер							
Производство	NC-	существующе	е положение	На период	испытания			год
цех, участок	точ-	на 20	год	на 2025-2		н д	В	дос-
·	ника		_					тиже
Код и наименование		г/с	т/пер	г/с	т/пер	г/с	т/пер	ния
загрязняющего вещества								НДВ
1	2	3	4	5	6	7	8	9
**0301, Азота (IV) дио	ксид ((Азота диоксид)	(4)					•
Организован	ные	источн	ики					
Испытание	0018			0.635	1.81	0.635		2026
Испытание	0019			0.635	1.81	0.635	1.81	2026
Испытание	0020			0.4235	1.207	0.4235		2026
Испытание	0021			0.4235	1.207	0.4235	1.207	2026
Испытание	0028			0.635	1.81	0.635	1.81	2026
Испытание	0029			0.635	1.81	0.635	1.81	2026
Испытание	0030			0.4235	1.207	0.4235	1.207	2026
Испытание	0031			0.4235	1.207	0.4235	1.207	2026
Испытание	0012			0.000654672	0.001866601	0.000654672	0.001866601	2026
Испытание	0013			0.565	1.61	0.565	1.61	2026
Испытание	0014			0.2933	0.836	0.2933	0.836	2026
Испытание	0015			0.155	0.442	0.155	0.442	2026
Испытание	0016			0.2125	0.606	0.2125	0.606	2026
Испытание	0022			0.000654672	0.001866601	0.000654672	0.001866601	2026
Испытание	0023			0.565	1.61	0.565	1.61	2026
Испытание	0024			0.2933	0.836	0.2933	0.836	2026
Испытание	0025			0.155	0.442	0.155	0.442	2026
Испытание	0026			0.2125	0.606	0.2125	0.606	2026
MTOPO:				6.686909344	19.059733202	6.686909344	19.059733202	2
Всего по				6.686909344	19.059733202	6.686909344	19.059733202	2026
загрязняющему	1							
веществу:								
**0304, Азот (II) окси	л (Азс	та оксил) (6)	I					1
Организован		источн	ики					
Испытание	0018			0.826	2.354	0.826	2,354	2026
Испытание	0019			0.826	2.354	0.826		2026
Inclinianie	10019	I	I	0.020	2.334	0.020	2.334	1 2020

Испытание 0020 0.55 1.57 0.55 1.57 2026
Вильмание 0028 0.826 2.354 0.826 2.354 0.826 2.354 0.826 2.354 0.826
Вспытание 0029 0.826 2.354 0.826 2.354 2.26 Испытание 0030 0.55 1.57 0.55 1.57 2026 Испытание 0031 0.000106384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.000303323 0.00016384 0.0003
Менятание 0030 0.55 1.57 0.55 1.57 0.226 Ийментание 0012 0.000106384 0.000303323 0.000106384 Менятание 0013 0.735 2.094 0.735 2.094 Менятание 0014 0.381 1.087 0.381 1.087 0.381 Менятание 0015 0.2015 0.575 0.2015 0.575 0.2026 Менятание 0015 0.2015 0.575 0.2015 0.575 0.2026 Менятание 0016 0.2016 0.2015 0.575 0.2015 0.575 0.2026 Менятание 0016 0.276 0.788 0.000106384 0.000303323 0.000106384 Менятание 0022 0.000106384 0.0003323 0.000106384 0.000303323 0.000106384 Менятание 0023 0.735 2.094 0.735 2.094 0.735 2.094 Менятание 0024 0.381 1.087 0.381 1.087 0.381 1.087 0.226 Менятание 0025 0.2015 0.575 0.2015 0.575 0.2026 Менятание 0026 0.2015 0.575 0.2015 0.575 0.2026 Менятание 0026 0.2015 0.576 0.788 0.276 0.788 0.2026 Менятание 0026 0.2016 0.2026 0.788 0.276 0.788 0.2026 Менятание 0026 0.2016 0.2026 0.2026 0.2026 0.2026 Менятание 0019 0.1059 0.302 0.1059 0.302 0.2026 Менятание 0019 0.1059 0.302 0.1059 0.302 0.2026 Менятание 0020 0.0706 0.2012 0.0706 0.2012 0.2026 Менятание 0021 0.0706 0.2012 0.0706 0.2012 0.026 Менятание 0020 0.0706 0.2012 0.0706 0.2012 0.026 Менятание 0020 0.0706 0.2012 0.0706 0.2012 0.026 Менятание 0030 0.0706 0.2012 0.0706 0.2012 0.2026 Менятание 0031 0.0706 0.2012 0.0706 0.2012 0.026 Менятание 0031 0.0706 0.2012 0.0706 0.2012 0.026 Менятание 0031 0.0706 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.0054556 0.00155501 0.005
МСПЫТАНИЕ 0031
Мспытание 0012 0.000106384 0.000303323 0.000106384 0.000303323 2026 Испытание 0014 0.381 1.087 0.381 1.087 0.2026 Испытание 0015 0.2015 0.575 0.2015 0.575 2026 Испытание 0016 0.276 0.788 0.2026 Испытание 0016 0.276 0.788 0.2026 Испытание 0022 0.000106384 0.000303323 0.000106384 Испытание 0023 0.735 2.094 0.735 2.094 0.735 Испытание 0024 0.381 1.087 0.381 1.087 2026 Испытание 0024 0.381 1.087 0.381 1.087 2026 Испытание 0025 0.2015 0.575 0.2015 0.575 0.2015 Испытание 0026 0.2015 0.276 0.788 2026 Испытание 0026 0.276 0.788 0.276 0.788 2026 Итого: 8.691212768 24.784606646 8.691212768 24.784606646 Всего по вагрязняющему 8.691212768 24.784606646 24.784606646 Всего по вагрязняющему 8.691212768 24.784606646 24.784606646 Всего по вагрязняющему 0.0000 0.0000 0.00000 Испытание 0.019 0.1059 0.302 0.1059 0.302 2026 Испытание 0.019 0.1059 0.302 0.1059 0.302 2026 Испытание 0.020 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0.021 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0.022 0.0006 0.0000 0.00000 0.000000 Испытание 0.023 0.0000000000000000000000000000000000
Мелектание
Мспытание 0014 0.381 1.087 0.381 1.087 2026 Испытание 0015 0.2015 0.575 0.2015 0.575 2026 2026 Испытание 0.276 0.788 0.276 0.788 2026 0.7575 2026 Испытание 0.002 0.00106384 0.000303323 0.00106384 0.000303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00106384 0.00303323 0.00105384 0.00106384 0.00303323 0.00106384 0.00303323 0.0015 0.0021 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.00706 0.00706 0.00
Испытание 0015 (Испытание) 0.2015 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.788 (0.276 (0.735 (0.2016 (0.735 (0.735 (0.2016 (0.735 (0.735 (0.2016 (0.735 (0.7
Испытание 0016 0.276 0.788 0.276 0.788 0.276 0.788 2026 Испытание 0022 0.000106384 0.000303323 0.000106384 0.000303323 2026 Испытание 0024 0.735 2.094 0.735 2.094 2026 Испытание 0025 0.2015 0.575 0.2015 0.575 0.2015 0.575 2026 Итого: Итого: 8.691212768 24.78460646 8.691212768 24.784606646 8.691212768 24.784606646 2026 Всего по загрязняющему веществу: веществу: 24.784606646 8.691212768 24.784606646 8.691212768 24.784606646 2026 Испытание 0018 0.1059 0.302 0.059 0.302 2026 Испытание 0019 0.1059 0.302 0.1059 0.302 2026 Испытание 0020 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0028 0.1059 0.302
Испытание 0022
Испытание 0023 (польтание) 0.735 (0.381) 2.094 (0.735) 2.094 (0.735) 2.094 (0.206) 2026 (0.2015) 0.381 (0.381) 1.087 (0.381) 1.087 (0.381) 1.087 (0.206) 2026 (0.2015) 0.575 (0.2015) 0.2015 (0.575 (0.2015) 0.2015 (0.575 (0.2015) 0.2015 (0.575 (0.2015) 0.2015 (0.575 (0.2015) 0.2015 (0.575 (0.2015) 0.2015 (0.575 (0.2015) 0.2015 (0.788 (0.2015) 0.2016 (0.788 (0.2015) 0.2016 (0.788 (0.2012) 0.2016 (0.2012) 0.2016 (0.2012) 0.2016 (0.2012) 0.2016 (0.2012) 0.2016 (0.2012) 0.2016 (0.2012) 0.2016 (0.2012) 0.2012 (0.2012) 0.201
Испытание 0024 0025 0.381 1.087 0.381 1.087 2026 Испытание 0025 0.205 0.2015 0.575 0.2015 0.575 2026 Испытание 0026 0.206 0.2
Испытание истору: **0328, Углерод (Сажа, Углерод черный) (583) Органие 0019 0105 0105 0105 0105 0105 0105 0105
Испытание Итого: Всего по Загрязняющему веществу: **0328, Углерод (Сажа, Углерод черный) (583) Организованные источники Испытание О019 Испытание О020 Испытание О021 Испытание О021 Испытание О021 Испытание О021 Испытание О021 Испытание О021 Испытание О022 Испытание О023 Испытание О024 Испытание О025 Испытание О026 Испытание О027 Испытание О028 О029 О0302 О03032 О0302 О03032 О030332 О030332 О03032 О030332 О030332 О030332 О030332 О030332 О030332 О030332 О030332 О030332 О0303332 О0303332 О0303333333333
Всего по загрязняющему веществу: 8.691212768 24.784606646 8.691212768 24.784606646 2026 **0328, Углерод (Сажа, Углерод черный) (583) 0 р ганизованные источники 0.1059 0.302 0.1059 0.302 2026 Испытание (мспытание источники 0019 0.1059 0.302 0.1059 0.302 2026 Испытание (мспытание источники 0020 0.0706 0.2012 0.0706 0.2012 2026 Испытание (мспытание испытание испытание (мспытание испытание испытание (мспытание испытание (мспытание испытание (мспытание испытание (мспытание испытание (мспытание (мспытание испытание (мспытание (мспыт
Всего по загрязняющему веществу: **0328, Углерод (Сажа, Углерод черный) (583) О р г а н и з о в а н н ы е и с т о ч н и к и Испытание 0019 0.1059 0.302 0.1059 0.302 2026 Испытание 0020 0.1059 0.302 0.1059 0.302 2026 Испытание 0021 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0028 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0028 0.1059 0.302 0.1059 0.302 2026 Испытание 0029 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0030 0.1059 0.302 0.1059 0.302 2026 Испытание 0030 0.1059 0.302 0.1059 0.302 2026 Испытание 0031 0.1059 0.302 0.1059 0.302 2026 Испытание 0031 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0031 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0031 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0012 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0013 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0014 0.0942 0.2685 0.0942 0.2685 2026 Испытание 0014 0.0489 0.1394 0.0489 0.1394 2026 Испытание 0015 0.00583 0.0737 0.02583 0.0737 2026
веществу: **0328, Углерод (Сажа, Углерод черный) (583) Организованные источники Испытание 0018 Испытание 0020 Испытание 0021 Испытание 0021 Испытание 0028 Испытание 0029 Испытание 0030 Испытание 0030 Испытание 0030 Испытание 0031 Испытание 0033 Испытание 0034 Испытание 0034 Испытание 0035 Испытание 0036 Испытание 0037 Испытание 0038 Испытание 0049
веществу: **0328, Углерод (Сажа, Углерод черный) (583) Организованные источники Испытание 0018 Испытание 0020 Испытание 0021 Испытание 0021 Испытание 0028 Испытание 0029 Испытание 0030 Испытание 0030 Испытание 0030 Испытание 0031 Испытание 0033 Испытание 0034 Испытание 0034 Испытание 0035 Испытание 0036 Испытание 0037 Испытание 0038 Испытание 0049
веществу: **0328, Углерод (Сажа, Углерод черный) (583) О р г а н и з о в а н н ы е источник и 0.1059 0.302 0.1059 0.302 2026 Испытание и
**0328, Углерод (Сажа, Углерод черный) (583) Организованные источники Испытание 0018 Испытание 0020 Испытание 0021 Испытание 0021 Испытание 0028 Испытание 0029 Испытание 0029 Испытание 0020 Испытание 0029 Испытание 0029 Испытание 0029 Испытание 0029 Испытание 0030 Испытание 0030 Испытание 0031 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0013 Испытание 0013 Испытание 0014 Испытание 0014 Испытание 0015 Испытание 0014 Испытание 0015 Испытание 0015 Испытание 0014 Испытание 0015 Испытание 0015 Испытание 0015 Испытание 0016 Испытание 0017 Испытание 0018 Испытание 0019 Испытание
Организованные источники Испытание 0018 Испытание 0019 Испытание 0020 Испытание 0021 Испытание 0021 Испытание 0028 Испытание 0029 Испытание 0030 Испытание 0030 Испытание 0030 Испытание 0031 Испытание 0031 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0013 Испытание 0014 Испытание 0014 Испытание 0014 Испытание 0015 Испытание 0015 Особан 0.00583 Особан 0.00489 Особан 0.00489 Особан 0.00737 Особан 0.0737
Организованные источники Испытание 0018 Испытание 0019 Испытание 0020 Испытание 0021 Испытание 0021 Испытание 0028 Испытание 0029 Испытание 0030 Испытание 0030 Испытание 0030 Испытание 0031 Испытание 0031 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0012 Испытание 0013 Испытание 0014 Испытание 0014 Испытание 0014 Испытание 0015 Испытание 0015 Особан 0.00583 Особан 0.00489 Особан 0.00489 Особан 0.00737 Особан 0.0737
Испытание 0018 0.1059 0.302 0.1059 0.302 2026 Испытание 0019 0.1059 0.302 0.1059 0.302 2026 Испытание 0020 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0021 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0028 0.1059 0.302 0.1059 0.302 2026 Испытание 0030 0.01059 0.302 0.1059 0.302 2026 Испытание 0031 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0012 0.00054556 0.001555501 0.00054556 0.001555501 0.00054556 0.001555501 0.2685 0.0942 0.2685 2026 Испытание 0014 0.0489 0.1394 0.0489 0.1394 0.0489 0.1394 0.0489 0.1394 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583
Испытание 0020 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0021 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0028 0.1059 0.302 0.1059 0.302 2026 Испытание 0030 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0031 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0012 0.00054556 0.001555501 0.00054556 0.001555501 2026 Испытание 0013 0.0489 0.1394 0.0489 0.1394 0.0489 0.1394 0.0489 0.1394 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583
ИСПЫТАНИЕ 0021 0.0706 0.2012 0.0706 0.2012 2026 ИСПЫТАНИЕ 0029 0.1059 0.302 0.1059 0.302 2026 ИСПЫТАНИЕ 0030 0.0706 0.2012 0.0706 0.2012 2026 ИСПЫТАНИЕ 0031 0.0706 0.2012 0.0706 0.2012 2026 ИСПЫТАНИЕ 0012 0.00054556 0.001555501 0.00054556 0.001555501 2026 ИСПЫТАНИЕ 0013 0.0489 0.1394 0.0489 0.1394 0.0489 0.1394 2026 ИСПЫТАНИЕ 0015 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583
ИСПЫТАНИЕ 0021 0.0706 0.2012 0.0706 0.2012 2026 ИСПЫТАНИЕ 0029 0.1059 0.302 0.1059 0.302 2026 ИСПЫТАНИЕ 0030 0.0706 0.2012 0.0706 0.2012 2026 ИСПЫТАНИЕ 0031 0.0706 0.2012 0.0706 0.2012 2026 ИСПЫТАНИЕ 0012 0.00054556 0.001555501 0.00054556 0.001555501 2026 ИСПЫТАНИЕ 0013 0.0489 0.1394 0.0489 0.1394 0.0489 0.1394 2026 ИСПЫТАНИЕ 0015 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 0.02583
ИСПЫТАНИЕ 0028 0.1059 0.302 0.1059 0.302 2026 ИСПЫТАНИЕ 0030 0.1059 0.302 0.1059 0.302 2026 ИСПЫТАНИЕ 0031 0.0706 0.2012 0.0706 0.2012 2026 ИСПЫТАНИЕ 0012 0.00054556 0.001555501 0.00054556 0.001555501 2026 ИСПЫТАНИЕ 0013 0.0489 0.1394 0.0489 0.1394 2026 ИСПЫТАНИЕ 0015 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 2026
Испытание 0030 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0031 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0012 0.00054556 0.001555501 0.00054556 0.001555501 2026 Испытание 0013 0.0942 0.2685 0.0942 0.2685 2026 Испытание 0014 0.0489 0.1394 0.0489 0.1394 2026 Испытание 0015 0.02583 0.0737 0.02583 0.0737 2026
Испытание 0031 0.0706 0.2012 0.0706 0.2012 2026 Испытание 0012 0.00054556 0.001555501 0.00054556 0.001555501 2026 Испытание 0013 0.0489 0.1394 0.0489 0.1394 0.0489 0.1394 2026 Испытание 0015 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737 2026
Испытание 0012 0.00054556 0.001555501 0.00054556 0.001555501 2026 Испытание 0013 0.0942 0.2685 0.0942 0.2685 2026 Испытание 0014 0.0489 0.1394 0.0489 0.0489 0.0737 0.02583 0.0737 0.02583 0.0737 2026
Испытание 0013 Испытание 0014 Испытание 0.0489 Испытание 0.02685 0.0489 0.1394 0.02583 0.0737 0.02583 0.0737 0.02583 0.0737
Испытание 0014 Испытание 0.0489 Испытание 0.02583 0.02583 0.0737 0.02583 0.0737
Испытание 0015 0.02583 0.0737 0.02583 0.0737 2026
Испытание 0015 0.02583 0.0737 0.02583 0.0737 2026
Испытание 0016 0.0354 0.101 0.0354 0.101 2026
Испытание 0022 0.00054556 0.001555501 0.00054556 0.001555501 2026
Испытание 0023 0.0942 0.2685 0.0942 0.2685 2026
Испытание 0024 0.0489 0.1394 0.0489 0.1394 2026
Испытание 0024 0.0489 0.1394 0.0489 0.1394 2026 Испытание 0025 0.02583 0.0737 0.02583 0.0737 0.02583

Итого:				1.11575112	3.181111002	1.11575112	3.181111002	
Всего по				1.11575112	3.181111002	1.11575112	3.181111002	2026
загрязняющему								
веществу:								
**0330 , Сера диоксид (<i>I</i>	дрична	ид сернистый,	Сернистый газ,	Cepa (IV) okci	ид)	•		
Организованн		источн	_					
л Испытание	0018			0.2117	0.604	0.2117	0.604	2026
Испытание	0019			0.2117	0.604	0.2117	0.604	2026
Испытание	0020			0.1412	0.4025	0.1412	0.4025	2026
Испытание	0021			0.1412	0.4025	0.1412	0.4025	2026
Испытание	0028			0.2117	0.604	0.2117	0.604	2026
Испытание	0029			0.2117	0.604	0.2117	0.604	2026
Испытание	0030			0.1412	0.4025	0.1412	0.4025	2026
Испытание	0031			0.1412	0.4025	0.1412	0.4025	2026
Испытание	0013			0.1883	0.537	0.1883	0.537	2026
Испытание	0014			0.0978	0.279	0.0978	0.279	2026
Испытание	0015			0.0517	0.1473	0.0517	0.1473	2026
Испытание	0016			0.0708	0.202	0.0708	0.202	2026
Испытание	0023			0.1883	0.537	0.1883	0.537	2026
Испытание	0024			0.0978	0.279	0.0978	0.279	2026
Испытание	0025			0.0517	0.1473	0.0517	0.1473	2026
Испытание	0026			0.0708	0.202	0.0708	0.202	2026
Итого:				2.2288	6.3566	2.2288	6.3566	
Всего по				2.2288	6.3566	2.2288	6.3566	2026
загрязняющему								
веществу:								
**0333 , Сероводород (Ди	гидро	сульфид) (518)						
Организовань	иые	источн	ики					_
Испытание	0017			0.00315	0.0001138	0.00315	0.0001138	
Испытание	0027			0.00315	0.0001138	0.00315	0.0001138	
Итого:				0.0063	0.0002276	0.0063	0.0002276	
неорганизова	нн	ые исто	чники					
Испытание	6016			0.001863	0.00689579	0.001863	0.00689579	
Испытание	6017			0.0000622	0.000355	0.0000622	0.000355	
Испытание	6019			0.00002626	0.0000235	0.00002626	0.0000235	
Испытание	6022			0.001863	0.00689579	0.001863	0.00689579	
Испытание	6023			0.0000622	0.000355	0.0000622	0.000355	
Испытание	6026			0.00002626	0.0000235	0.00002626	0.0000235	2026
Итого:				0.00390292	0.01454858	0.00390292	0.01454858	

41

			•			
Всего по		0.01020292	0.01477618	0.01020292	0.01477618	2026
загрязняющему						
веществу:						
	ь углерода , Угарный газ) (584))				
Организованные	источники	•	•			
Испытание 0018		0.529	1.51	0.529	1.51	
Испытание 0019		0.529	1.51	0.529		
Испытание 0020		0.353	1.006	0.353	1.006	
Испытание 0021		0.353	1.006	0.353	1.006	2026
Испытание 0028		0.529	1.51	0.529	1.51	2026
Испытание 0029		0.529	1.51	0.529	1.51	
Испытание 0030		0.353	1.006	0.353	1.006	2026
Испытание 0031		0.353	1.006	0.353	1.006	2026
Испытание 0012		0.0054556	0.015555007	0.0054556	0.015555007	2026
Испытание 0013		0.471	1.343	0.471	1.343	2026
Испытание 0014		0.2444	0.697	0.2444	0.697	2026
Испытание 0015		0.1292	0.368	0.1292	0.368	2026
Испытание 0016		0.177	0.505	0.177	0.505	2026
Испытание 0022		0.0054556	0.015555007	0.0054556	0.015555007	2026
Испытание 0023		0.471	1.343	0.471	1.343	
Испытание 0024		0.2444	0.697	0.2444	0.697	2026
Испытание 0025		0.1292	0.368	0.1292	0.368	
Испытание 0026		0.177	0.505	0.177	0.505	
Итого:			15.921110014		15.921110014	
Всего по		5.5821112	15.921110014	5.5821112	15.921110014	2026
загрязняющему		3.3021112	13.521110014	3.3021112	13.721110014	2020
веществу:						
**0405, Пентан (450)						
Неорганизованн	ые источники					
Испытание 6016		0.00184	0.00681855	0.00184	0.00681855	2026
Испытание 6022		0.00184	0.00681855	0.00184	0.00681855	2026
Итого:		0.00368	0.0136371	0.00368	0.0136371	
B0070 70		0.00368	0.0136371	0.00368	0.0136371	2026
Всего по		0.00368	0.01303/1	0.00368	0.01303/1	2020
загрязняющему						
веществу:						
**0410, Метан (727*)						
Организованные Испытание 0012	источники	0.00013639	0.000388875	0.00013639	0.000388875	2026

He op p а и и зова и и ме и сточии и испытание 6016 0.00027278 0.00077775 0.00027278 0.00077775 0.000077775 0.00077775 0.00077775 0.00077775 0.00077775 0.000077775 0.00077775 0.00077775 0.00077775 0.00077775 0.00077775 0.00077775 0.00077775 0.00077775 0.00077775 0.00077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000077775 0.000097775 0.0009810 0.0009812 0.0006229 0.0009812 0.0009816 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009816 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009816 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812 0.0009812	1	1		1		1		ń
Неорганизованные источники 1.407 1.632913 0.0981 0.0363295 2026	Испытание	0022						2026
Меньтание 6016 0.00881 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.0363295 0.00983163 0.00				0.00027278	0.00077775	0.00027278	0.00077775	
Меличание 6022 0.00981 0.0363295 0.00981 0.0363295 0.00981 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.01962 0.072659 0.0196278 0.0196278 0.0196278 0.0196278 0.0196278 0.0196278 0.0196278 0.0196278 0.0196278 0.0196278 0.00983163 0.002655 0.00983163 0.00966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.00966326	_		СТОЧНИКИ	11		1		
Всего по затрязняющему веществу: **0415, Смесь углеводородов предельных С1-C5 (1502*) Испытание 0027 3.804 0.1374 3.804 0.1374 0.0508 1.407 0.0508 2026 Испытание 6018 0027 3.804 0.1374 3.804 0.1374 0.0508 2026 Испытание 6018 0.0027 0.0041 0.1632913 0.0041 0.1632913 0.206 Испытание 6018 0.0027 0.0041 0.1632913 0.0041 0.1632913 0.206 Испытание 6018 0.00005 0.00005 0.000013 0.00005 0.000013 0.2748 7.608 0.2748 7.608 0.2748 7.608 0.2748 0.0013 0.00005 0.000013 0.00005 0.000013 0.206 Испытание 6016 0.00005 0.000013 0.00005 0.000013 0.206 Испытание 6024 0.00005 0.000013 0.0005 0.000013 0								
Всего по загрязняющему веществу: **V0412, Изобутан (2-Метилиропан) (279) Не организованные источники Испытание 6016 Испытание 6016 О 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Испытание	6022						2026
веществу: **V0412, Изобутан (2-метилпропан) (279) Неорганизованные источники Испытание 6016 Всего по Загрязняющему веществу: **V0415, Смесь углеводородов предельных С1-С5 (1502*) Организованные источники Испытание 6016 Испытание 0017 Испытание 0027 Весто по Загрязняющему веществу: **V0415, Смесь углеводородов предельных С1-С5 (1502*) Организованные источники Испытание 0017 Испытание 6016 Испытание 6016 Испытание 6016 Испытание 6018 Испытание 6018 Испытание 6018 Испытание 6018 Испытание 6022 Олобата 3.804 Испытание 6018 Испытание 6021 Олобата 3.804 Испытание 6018 Испытание 6021 Олобата 3.804 Олого: 0.000015 Олобата 4.804 Олого:	NTOPO:			0.01962	0.072659	0.01962	0.072659	
веществу: **0412, Изобутан (2-Метилпропан) (279) Не организованные источники испытание 6016 Испытание 6022 Всего по загрязняющему веществу: **0415, Смесь углеводородов предельных C1-C5 (1502*) Организованные источники испытание 0017 Испытание 0027 Испытание 6016 Испытание 6016 Испытание 0027 Испытание 0027 Испытание 6016 Испытание 6018 Испытание 6018 Испытание 6018 Испытание 6018 Испытание 6018 Испытание 6018 Испытание 6022 Одана О	Всего по			0.01989278	0.07343675	0.01989278	0.07343675 2	2026
**0412, Изобутан (2-Метилпропан) (279) Не организованные источники Испытание 6016 Испытание 6016 Испытание 6016 Итого: 0.002655 0.00983163 0.001966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.01966326 0.00531 0.001966326 0.00531 0.00	загрязняющему							
Неорганизованные источники Испытание боле итого: Всего по загрязняющему веществу: **0415, Смесь углеводородов предельных С1-С5 (1502*) Организованные источники Испытание боле итого: Всего по загрязняющему веществу: **0415, Смесь углеводородов предельных С1-С5 (1502*) Организованные источники Испытание боле итого: Неорганизованные источники Испытание боле боле боле итого: Всего по загрязняющему веществу: **0416, Смесь углеводородов предельных С1-С5 (1502*) Организованные источники Испытание боле итого: Всего по загрязняющему веществу: **0416, Смесь углеводородов предельных С6-С10 (1503*) Организованные источники Испытание боле итого: Всего по загрязняющему веществу: **0416, Смесь углеводородов предельных С6-С10 (1503*) Организованные источники Испытание боле итого: Всего по загрязняющему веществу: **0416, Смесь углеводородов предельных С6-С10 (1503*) Организованные источники Испытание боле итого: 1,407 0,0508 1,407 0,0508 2026 итого: 1,407 0,0508 1,407 0,0508 2026 итого: Неорганизованные источники Испытание боле итого: Неорганизованные источники испытание боле итого: Неорганизованные источники	веществу:							
МСПЫТВАНИЕ 6016 0.002655 0.00983163 0.002655 0.00983163 2026	**0412 , Изобутан (2-	Метилпропан) (2	79)		•			
МСПЫТВАНИЕ 6016 0.002655 0.00983163 0.002655 0.00983163 2026	Неорганизо	ванные и	сточники					
Всего по загрязняющему веществу: **0415, Смесь углеводородов предельных С1-С5 (1502*) О рганизованные источники Испытание 0027 3.804 0.1374 3.804 0.1374 2026 Игого: 7.608 0.2748 7.608 0.2748 7.608 0.2748 Испытание 6016 0.00005 0.000013 0.000005 0.000013 2026 Испытание 6018 0.000005 0.000013 0.000005 0.000013 2026 Испытание 6022 0.0441 0.1632913 0.0441 0.1632913 2026 Испытание 6024 0.000005 0.000013 0.00005 0.000013 2026 Испытание 6024 0.00005 0.000013 0.00005 0.000013 2026 Испытание 60014 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.00005 0.000013 0.00005 0	Испытание	6016		0.002655	0.00983163	0.002655	0.00983163 2	2026
Всего по загрязняющему веществу: **0415, Смесь углеводородов предельных С1-С5 (1502*) О рганизованные источники Испытание 0017 0027 3.804 0.1374 3.804 0.1374 2026 Испытание 16016 0.22 3.804 0.1374 0.0278 7.608 0.2748 Испытание 6016 0.00005 0.000013 0.000005 0.00013 2026 Испытание 6022 0.0441 0.1632913 0.0441 0.1632913 2026 Испытание 6022 0.0441 0.1632913 0.0441 0.1632913 0.00005 0.00013 2026 Испытание 6022 0.0441 0.1632913 0.	Испытание	6022		0.002655	0.00983163	0.002655	0.00983163 2	2026
веществу: **0415, Смесь углеводородов предельных C1-C5 (1502*) О р ганизованные источники Испытание 0017 Испытание 0027 Испытание 10027 Испытание 10028 Испытание 10029 Испыт	Итого:			0.00531	0.01966326	0.00531	0.01966326	
веществу: **0415, Смесь углеводородов предельных C1-C5 (1502*) О р ганизованные источники Испытание 0017 3.804 0.1374 3.804 0.1374 2026 Испытание Итого: 7.608 0.2748 7.608 0.2748 Неорганизованные источники Испытание 6016 0.00005 0.00013 0.00005 0.000013 2026 Испытание 6018 0.00005 0.00013 0.00005 0.000013 2026 Испытание 6022 0.00005 0.000013 0.00005 0.000013 2026 Испытание 6024 0.000005 0.000013 0.00005 0.000013 2026 Испы								
веществу: **0415, Смесь углеводородов предельных C1-C5 (1502*) О р ганизованные источники Испытание 0017 3.804 0.1374 3.804 0.1374 2026 Испытание Итого: 7.608 0.2748 7.608 0.2748 Неорганизованные источники Испытание 6016 0.00005 0.00013 0.00005 0.000013 2026 Испытание 6018 0.00005 0.00013 0.00005 0.000013 2026 Испытание 6022 0.00005 0.000013 0.00005 0.000013 2026 Испытание 6024 0.000005 0.000013 0.00005 0.000013 2026 Испы	Всего по			0.00531	0.01966326	0.00531	0.01966326 2	2026
веществу: **0415, Смесь углеводородов предельных C1-C5 (1502*) Организованные источники Испытание 0017 Испытание 0027 Итого: 7.608 0.2748 7.608 0.2748 Неорганизованные источники Испытание 6016 Испытание 6018 0.00005 0.000013 0.00005 0.000013 2026 Испытание 6022 0.0441 0.1632913 0.0441 0.1632913 2026 Испытание 6024 0.00005 0.000013 0.00005 0.000013 2026 Испытание 0.00005 0.000013 0.00005 0.000013 0.0005 0.000013 2026 Испытание 0.00005 0.000013 0.00005 0.000013 0.0005 0.000013 0.0005 0.00013 0.0005	загрязняющему							
Организованные источники 3.804 0.1374 3.804 0.1374 3.804 0.1374 3.804 0.1374 2026 0.1374 3.804 0.1374 3.804 0.1374 2026 0.2748 0.2748 0.2748 0.2748 0.2748 0.2748 0.2748 0.2748 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.00005 0.000013 0.00005	веществу:							
Организованные источники 3.804 0.1374 3.804 0.1374 3.804 0.1374 3.804 0.1374 2026 0.1374 3.804 0.1374 3.804 0.1374 2026 0.2748 0.1374 2026 0.2748 0.2748 7.608 0.2748 7.608 0.2748 7.608 0.2748 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 0.00005 0.000013		дородов предельн	ных С1-С5 (1502*)		L		L	
Испытание 0017 (0027 м) 3.804 (0.1374 3.804 0.1374 3.804 0.1374 3.804 0.1374 2026 7.608 0.2748 7.608 0.2748 7.608 0.2748 0.1374 2026 7.608 0.2748 7.608								
ИСПЫТАНИЕ ИТОГО: Неорганизованные источники ИСПЫТАНИЕ ВСЕГО ПО Загрязняющему веществу: **0416, Смесь углеводородов предельных C6-C10 (1503*) Организованные источники ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИТОГО: Неорганизованные источники ИПОГО: Неорганизованные источники ИСПЫТАНИЕ ИТОГО: Неорганизованные источники	Испытание			3.804	0.1374	3.804	0.1374 2	2026
Итого: 17.608 0.2748 7.608 0.2748 Неорганизованные источники 0.0441 0.1632913 0.0441 0.1632913 2026 Испытание 6018 0.000005 0.000013 0.000005 0.000013 2026 Испытание 6022 0.0441 0.1632913 0.0441 0.1632913 2026 Испытание 6024 0.000005 0.000013 0.000005 0.000013 0.000005 0.000013 2026 Всего по 3агрязняющему 0.0821 0.3266086 0.08821 0.3266086 0.08821 0.3266086 Веществу: **0416, Смесь углеводородов предельных С6-С10 (1503*) 7.69621 0.6014086 7.69621 0.6014086 2026 Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Испытание 0027 1.407 0.0508 1.407 0.0508 2026 Итого: 1.407 0.0508 1.407 0.0508 2026 Неорганизованные источники 2.814 0.1016 2.814 0.1016	Испытание	0027						2026
Неорганизованные источники 0.0441 0.1632913 0.0441 0.1632913 0.00005 0.000013 0.000005 0.000013 2026 Испытание испытание испытание испытание испытание испытание испытание источники 0.0441 0.1632913 0.0441 0.1632913 0.0441 0.1632913 2026 Испытание испытание источники 0.000005 0.000013 0.000005 0.000013 0.000005 0.000013 0.000005 0.000013 0.000005 0.000013 0.000005 0.000013 0.000013 0.000005 0.000013 0.000013 0.000005 0.000000000000000000000000000	Итого:						0.2748	
Испытание 6016		ванные и	СТОЧНИКИ	1	**-**		**	
ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИТОГО: ВСЕГО ПО Загрязняющему ВЕЩЕСТВУ: **0416, Смесь углеводородов предельных C6-C10 (1503*) Организованные источники ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСПЫТАНИЕ ИСТОЧНИКИ ИСПЫТАНИЕ ИСТОЧНИКИ ИПОТО: Неорганизованные источники	Испытание		1	0.0441	0.1632913	0.0441	0.1632913 2	2026
ИСПЫТАНИЕ 6022 0.0441 0.1632913 0.0441 0.1632913 2026 0.000005 0.000005 0.0000013 0.00000013 0.00000013 0.00000013 0.0000013 0.00000013 0.00000013 0.00000013 0.00000013 0.0000000000	Испытание							
Испытание 6024 0.000005 0.0000013 0.000005 0.0000013 0.0000001 0.0000013 0.0000013 0.0000013 0.0000013 0.0000013 0.0000013 0.0000013 0.0000013 0.000001 0.0000013 0.0000013 0.0000013 0.0000013 0.000001 0.000001 0.0000001 0.00000000000 0.0000000000 0.00000000000 0.0000000000 0.0000000000 0.0000000000 0.00000000000 0.00000000000 0.00000000000 0.000000000000 0.000000000000 0.000000000000 0.0000000000000 0.000000000000000 0.0000000000000 0.000000000000000 0.0000000000000000 0.000000000000000 0.000000000000000000 0.0000000000000000000 0.000000000000000000000000 0.0000000000000000000000 0.0000000000000000000000000000000 0.00000000000000000000000000000000000	Испытание							
Всего по загрязняющему веществу: **0416, Смесь углеводородов предельных C6-C10 (1503*) Организованные источники Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Итого: 1 407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016	Испытание							
Всего по загрязняющему веществу: **0416, Смесь углеводородов предельных C6-C10 (1503*) О р г а н и з о в а н н ы е и с т о ч н и к и Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Итого: 1.407 0.0508 1.407 0.0508 1.407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016								
загрязняющему веществу: **0416, Смесь углеводородов предельных C6-C10 (1503*) Организованные источники Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Итого: 1.407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016								
загрязняющему веществу: **0416, Смесь углеводородов предельных C6-C10 (1503*) Организованные источники Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Итого: 1.407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016	Всего по			7.69621	0.6014086	7.69621	0.6014086 2	2026
веществу: **0416, Смесь углеводородов предельных C6-C10 (1503*) Организованные источники Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Итого: 1.407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016	умэшокнгкольг							
**0416, Смесь углеводородов предельных C6-C10 (1503*) Организованные источники Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Испытание 0027 1.407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016								
Организованные источники Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Испытание 0027 1.407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016 0.1016		лоролов прелельн	ных C6-C10 (1503*)		L		<u> </u>	
Испытание 0017 1.407 0.0508 1.407 0.0508 2026 Испытание 0027 1.407 0.0508 1.407 0.0508 2026 Итого: 2.814 0.1016 2.814 0.1016								
ИСПЫТАНИЕ 0027 1.407 0.0508 1.407 0.0508 2026 ИТОГО: 2.814 0.1016 2.814 0.1016	Испытание			1.407	0.0508	1.407	0.0508 2	026
Итого: 2.814 0.1016 2.814 0.1016 Heopганизованные источники	Испытание							
Неорганизованные источники								320
		ванные и	СТОЧНИКИ І	2.011	0.1010	2.011	3.1010	
ИСПЫТАНИЕ 6018 0.000002 0.000005 0.000002 0.000005 2026	Испытание	6018		0.000002	0.000005	0.000002	0.000005 2	2026

Испытание	6024		0.000002	0.000005	0.000002	0.000005 202
Итого:			0.000004	0.00001	0.000004	0.00001
Всего по			2.814004	0.10161	2.814004	0.10161 202
загрязняющему						
веществу:						
**0602 , Бензол (64)	-	•	<u> </u>	1	•	•
Организова	нные ист	очники				
Испытание	0017		0.01838	0.000664	0.01838	0.000664 202
Испытание	0027		0.01838	0.000664	0.01838	0.000664 202
Итого:			0.03676	0.001328	0.03676	0.001328
Всего по			0.03676	0.001328	0.03676	0.001328 202
загрязняющему						
веществу:						
**0616 , Диметилбензо	ол (смесь о-, м-	, п- изомеров) (20	13)	L	I	l
Организова		очники				
Испытание	0017		0.00578	0.0002086	0.00578	0.0002086 202
Испытание	0027		0.00578	0.0002086	0.00578	0.0002086 202
Итого:			0.01156	0.0004172	0.01156	0.0004172
Всего по			0.01156	0.0004172	0.01156	0.0004172 202
загрязняющему						
веществу:						
**0621 , Метилбензол	(349)			·		
Организова		очники				
Испытание	0017		0.01155	0.000417	0.01155	0.000417 202
Испытание	0027		0.01155	0.000417	0.01155	0.000417 202
Итого:			0.0231	0.000834	0.0231	0.000834
7110101				0.000001	0.0201	0.000001
Всего по			0.0231	0.000834	0.0231	0.000834 202
загрязняющему						
веществу:						
**1301, Проп-2-ен-1-	-аль (Акролеин.		74)			
Организова		очники	= /			
Испытание	0018		0.0254	0.0724	0.0254	0.0724 202
Испытание	0019		0.0254	0.0724	0.0254	0.0724 202
Испытание	0020		0.01694	0.0483	0.01694	0.0483 202
Испытание	0021		0.01694	0.0483	0.01694	0.0483 202
Испытание	0021		0.0254	0.0724	0.0254	0.0724 202
Испытание	0029		0.0254	0.0724	0.0254	0.0724 202
I TO TIDE L'ATTRIC	10023	I	0.0234	0.0724	0.0254	0.0/24 202

Испытание	0030		0.01694	0.0483	0.01694	0.0483 2020
Испытание	0031		0.01694	0.0483	0.01694	0.0483 2020
Испытание	0013		0.0226	0.0644	0.0226	0.0644 2020
Испытание	0014		0.01173	0.03345	0.01173	0.03345 2020
Испытание	0015		0.0062	0.01768	0.0062	0.01768 2020
Испытание	0016		0.0085	0.02424	0.0085	0.02424 2020
Испытание	0023		0.0226	0.0644	0.0226	0.0644 2020
Испытание	0024		0.01173	0.03345	0.01173	0.03345 2020
Испытание	0025		0.0062	0.01768	0.0062	0.01768 2020
Испытание	0026		0.0085	0.02424	0.0085	0.02424 2020
Итого:			0.26742	0.76234	0.26742	0.76234
Всего по			0.26742	0.76234	0.26742	0.76234 2020
загрязняющему						
веществу:						
**1325 , Формальдеги	ид (Метаналь) (609					
Организова	анные ист	очники				
Испытание	0018		0.0254	0.0724	0.0254	0.0724 2020
Испытание	0019		0.0254	0.0724	0.0254	0.0724 2020
Испытание	0020		0.01694	0.0483	0.01694	0.0483 2020
Испытание	0021		0.01694	0.0483	0.01694	0.0483 2020
Испытание	0028		0.0254	0.0724	0.0254	0.0724 2020
Испытание	0029		0.0254	0.0724	0.0254	0.0724 2020
Испытание	0030		0.01694	0.0483	0.01694	0.0483 2020
Испытание	0031		0.01694	0.0483	0.01694	0.0483 2020
Испытание	0013		0.0226	0.0644	0.0226	0.0644 2020
Испытание	0014		0.01173	0.03345	0.01173	0.03345 2020
Испытание	0015		0.0062	0.01768	0.0062	0.01768 2020
Испытание	0016		0.0085	0.02424	0.0085	0.02424 2020
Испытание	0023		0.0226	0.0644	0.0226	0.0644 2020
Испытание	0024		0.01173	0.03345	0.01173	0.03345 2020
Испытание	0025		0.0062	0.01768	0.0062	0.01768 2020
Испытание	0026		0.0085	0.02424	0.0085	0.02424 2020
Итого:			0.26742	0.76234	0.26742	0.76234
Всего по			0.26742	0.76234	0.26742	0.76234 2020
загрязняющему						
веществу:						
**2735, Масло минер	альное нефтяное (веретенное, машинно	е, цилиндровое и	•		•
неорганизс		сточники				
Испытание	6020	1	0.000333	0.0000508	0.000333	0.0000508 2020

Испытание	6027		0.000333	0.0000508	0.000333	0.0000508	2026
Итого:			0.000666	0.0001016	0.000666	0.0001016	
Всего по			0.000666	0.0001016	0.000666	0.0001016	2026
загрязняющему							
веществу:							
**2754 , Алканы C12-	19 /в пересчете :	а С/ (Углеводородь	лредельные C12-C1	9	•	1	
Организова		очники	-				
Испытание	0018		0.254	0.724	0.254	0.724	2026
Испытание	0019		0.254	0.724	0.254	0.724	2026
Испытание	0020		0.1694	0.483	0.1694	0.483	2026
Испытание	0021		0.1694	0.483	0.1694	0.483	2026
Испытание	0028		0.254	0.724	0.254	0.724	2026
Испытание	0029		0.254	0.724	0.254	0.724	2026
Испытание	0030		0.1694	0.483	0.1694	0.483	
Испытание	0031		0.1694	0.483	0.1694	0.483	
Испытание	0013		0.226	0.644	0.226	0.644	
Испытание	0014		0.1173	0.3345	0.1173	0.3345	
Испытание	0015		0.062	0.1768	0.062	0.1768	
Испытание	0016		0.085	0.2424	0.085	0.2424	
Испытание	0023		0.226	0.644	0.226	0.644	
Испытание	0024		0.1173	0.3345	0.1173	0.3345	
Испытание	0025		0.062	0.1768	0.062	0.1768	
Испытание	0026		0.085	0.2424	0.085	0.2424	
Итого:			2.6742	7.6234	2.6742	7.6234	
Неорганизо	ванные и	СТОЧНИКИ	11				
Испытание	6017		0.02216	0.1263	0.02216	0.1263	2026
Испытание	6019		0.00935	0.00838	0.00935	0.00838	
Испытание	6023		0.02216	0.1263	0.02216	0.1263	
Испытание	6026		0.00935	0.00838	0.00935	0.00838	
Итого:			0.06302	0.26936	0.06302	0.26936	
Всего по			2.73722	7.89276	2.73722	7.89276	2026
загрязняющему							
веществу:							
**2908 , Пыль неорга:	ническая, солерж	шая лвуокись кремн	ия в %: 70-20 (шам	ОТ	<u> </u>	<u> </u>	
Неорганизо							
Испытание	6021		0.002641	0.00753	0.002641	0.00753	2026
Испытание	6028		0.002641	0.00753	0.002641	0.00753	
Итого:			0.005282	0.01506	0.005282	0.01506	
, , , , , , , , , , , , , , , , , , , ,			1	3.31000	0.00202	0.01000	

	i	ı	,	ı	ı	Ī	
Всего по			0.005282	0.01506	0.005282	0.01506	2026
загрязняющему							
веществу:							
Всего по объекту:			38.203512132	79.562873554	38.203512132	79.562873554	
из них:							
Итого по организованным			38.013817212	78.831225414	38.013817212	78.831225414	
источникам:							
Итого по неорганизованным			0.18969492	0.73164814	0.18969492	0.73164814	
источникам:							

8.4. Обоснование возможности достижения нормативов с учетом использования малоотходной технологии и других планируемых технологий

Так как разработан проект нормативов допустимых выбросов в нем не рассматривались вопросы влияния на подземные и поверхностные воды и процесс образования, сбора, хранения и утилизации отходов производства и потребления.

Воздействие на воздушный бассейн будет оказываться практически при проведении всех операций, связанных с выбросами от факельных установок, при наливе нефти в резервуары хранения.

Проектом предлагается выполнение следующих природоохранных мероприятий:

- проведение контроля на источниках выбросов загрязняющих веществ в атмосферу согласно плану-графику контроля проекта НДВ,
- проведение контроля качества атмосферного воздуха на границе условной санитарнозащитной зоны,
- ведение контроля за технологическими процессами сжигания газа на факельных установках;
 - проведение сжигания газа на факелах в определенные проектными решениями сроки;
- не допускать возникновения аварийных ситуаций в процессе сжигания газа, для исключения сверхнормативных выбросов;
- для исключения сверхнормативных выбросов в атмосферу не допускать проливов нефти на почву при ее наливе в резервуары хранения и сливе в накопительные.

Измерения показателей загрязненности атмосферного воздуха могут проводиться как экологической службой самого предприятия, так и сторонней организацией на договорной основе с аккредитованными лабораториями. Для замеров должны использоваться приборы, поверенные органами государственной метрологической службы.

В случае возникновения аварийной ситуации или фонтанирования скважины контроль источников выбросов и состояния воздушного бассейна должен проводиться газоспасательной службой или противофонтанной военизированной службой.

Учитывая проведенные расчеты выбросов загрязняющих веществ, рассеивания приземных концентраций следует вывод о достижение нормативов допустимых выбросов (НДВ), которое предполагается в 2026г.

Оператором объекта использование малоотходной технологии и других мероприятий, в том числе перепрофилирования или сокращения объема производства не предполагается.

8.5. Уточнение границ области воздействия объекта

Нормативы допустимых выбросов устанавливаются для отдельного стационарного источника и (или) совокупности стационарных источников, входящих в состав объекта I или II категории, расчетным путем с применением метода моделирования рассеивания приземных концентраций загрязняющих веществ с таким условием, чтобы общая нагрузка на атмосферный воздух в пределах области воздействия не приводила к нарушению установленных экологических нормативов качества окружающей среды или целевых показателей качества окружающей среды.

Областью воздействия является территория (акватория), подверженная антропогенной нагрузке и определенная путем моделирования рассеивания приземных концентраций загрязняющих веществ.

Для совокупности стационарных источников область воздействия рассчитывается как сумма областей воздействия отдельных стационарных источников выбросов.

Нормирование выбросов вредных веществ в атмосферу основано на необходимости соблюдения экологических нормативов качества или целевых показателей качества окружающей среды.

При этом требуется выполнение соотношения:

C/ЭHK≤1,

где: С - расчетная концентрация вредного вещества в приземном слое воздуха;

ЭНК – экологический норматив качества.

До утверждения экологических нормативов качества применяются гигиенические нормативы, утвержденные государственным органом в сфере санитарно-эпидемиологического

благополучия населения в соответствии с законодательством Республики Казахстан в области здравоохранения.

В качестве гигиенических нормативов для атмосферного воздуха населенных мест в целях нормирования выбросов в атмосферу принимаются значения предельно допустимых максимальноразовых концентраций потенциально-опасных химических веществ (ПДКм.р.), в случае отсутствия ПДКм.р. принимаются значения ориентировочно безопасных уровней воздействия потенциальноопасных химических веществ (ОБУВ).

В соответствии с Приказом Приказ И.о. Министра здравоохранения Республики Казахстан № ҚР ДСМ-2 от 11 января 2022 года Об утверждении Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» п.43 «Для групп объектов одного субъекта, объединенных в территориальный промышленный комплекс (промышленный узел), устанавливается единый расчетный и окончательно установленный размер СЗЗ с учетом суммарных выбросов загрязняющих веществ в атмосферный воздух и физического воздействия объектов, входящих в территориальный промышленный комплекс (промышленный узел)».

В границах санитарно-защитной зоны предприятия не размещены:

- 1) вновь строящиеся жилые застройки, включая отдельные жилые дома;
- 2) ландшафтно-рекреационные зоны, зоны отдыха, территории курортов, санаториев и домов отдыха;
- 3) вновь создаваемые и организующиеся территории садоводческих товариществ, коллективных или индивидуальных дачных и садово-огородных участков;
- 4) спортивные сооружения, детские площадки, образовательные и детские организации, лечебно-профилактические и оздоровительные организации общего пользования. В связи этим, данные по режиму использования территории СЗЗ предприятия не представлены.
- В связи с тем, максимальные концентрации вредных веществ на границе СЗЗ и, соответственно, на границе жилой зоны не превышают 1 ПДК, дополнительные мероприятия по защите населения от воздействия выбросов вредных химических примесей в атмосферный воздух не требуются.

Работа производится в соответствии с существующими правилами безопасности при работе подобного предприятия. На предприятии разработаны инструкции-памятки по технике безопасности для всех видов профессий и по правилам технической эксплуатации оборудования.

Каждый рабочий должен:

- пройти медицинское освидетельствование и вводный инструктаж по технике безопасности;
- без разрешения технического руководителя не оставлять место работы и не выполнять не порученную ему работу;
- при обнаружении технической неисправности оборудования и агрегатов немедленно предупредить об этом ответственных лиц и принять все возможные меры к устранению;
- Для защиты населения (персонала) от воздействия выбросов вредных веществ в атмосферный воздух принимаются следующие мероприятия:
 - соблюдаются правила безопасности и охраны труда на рабочих местах;
- в местах повышенной токсичности (коптильный цех и т.п.) персонал использует средства индивидуальной защиты, согласно нормам выдачи спецодежды и индивидуальных средств защиты. Категория

Намечаемая деятельность согласно «Строительства скважин» относится к I категории (разведка и добыча углеводородов) в соответствии с пп.1.3 п.1 раздела 1 приложения 2 к Экологическому кодексу РК от 02.01.2021 г. №400-VI.

Согласно проектным данным в нефти и попутном газе рассматриваемой площади работ сероводород и меркаптаны отсутствуют. Учитывая кратковременность проведения планируемых работ, санитарно-защитная зона не организовывается и не обустраивается.

Обоснование размера санитарно-защитной зоны (СЗЗ)

В соответствии с Санитарными правилами «Санитарно-эпидемиологическими требованиями к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденных приказом Министра национальной экономики РК от 11 января 2022 года № ҚР ДСМ-2, производства по добыче нефти при выбросе сероводорода от 0,5

до 1 тонн в сутки, а также с высоким содержанием летучих углеводородов относятся к предприятиям с СЗЗ не менее 1000 м.

8.6. Данные о пределах области воздействия

В соответствии с Методикой определения нормативов эмиссий, утв. Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63, пределы области воздействия определяются с учетом экологических нормативов качества (ЭНК). Уполномоченный орган в области охраны окружающей среды обеспечивает разработку и утверждение экологических нормативов качества не позднее 1 января 2024 года (п.1 ст.418 ЭК РК).

До утверждения экологических нормативов качества при регулировании соответствующих отношений вместо экологических нормативов качества применяются гигиенические нормативы, утвержденные государственным органом в сфере санитарно-эпидемиологического благополучия населения в соответствии с законодательством Республики Казахстан в области здравоохранения, а также нормативы состояния природных ресурсов, если такие нормативы установлены в соответствии с законодательством Республики Казахстан по соответствующему виду природных ресурсов (водным, лесным, земельным законодательством Республики Казахстан, законодательством Республики Казахстан об охране, воспроизводстве и использовании животного мира).

8.7. Документы (материалы), свидетельствующие об учете специальных требований (при их наличии) к качеству атмосферного воздуха для данного района.

Согласно имеющимся данным у оператора объекта, в непосредственной близости от рассматриваемого участка зон отдыха (территории заповедников, музеев, памятников архитектуры), санаториев, домов отдыха, лесов, с/х угодий, жилых массивов не имеется.

Соответственно специальных требований (при их наличии) к качеству атмосферного воздуха для данного района не установлено.

9. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ

Согласно ст. 210 Экологического Кодекса Республики Казахстан от 02.01.2021 г. № 400- VI ЗРК под неблагоприятными метеорологическими условиями для целей настоящего Кодекса понимаются метеорологические условия, способствующие накоплению загрязняющих веществ в приземном слое атмосферного воздуха в концентрациях, представляющих опасность для жизни и (или) здоровья людей.

Неблагоприятные метеоусловия (НМУ) представляют собой краткосрочное особое сочетание метеорологических факторов, обусловливающее ухудшение качества воздуха в приземном слое. К ним можно отнести приподнятые инверсии с расстоянием от земли 0,01 - 0,1 км, туманы, сочетание неблагоприятных факторов, например, когда при опасной скорости ветра (скорость, при которой возможна максимальная концентрация в точке на местности) ожидается приподнятая инверсия в сочетании с неблагоприятным направлением ветра.

Предотвращению опасного загрязнения воздуха в периоды неблагоприятных метеоусловий способствует своевременное регулирование выбросов или их кратковременное снижение при заблаговременном прогнозировании таких условий.

Одним из важнейших факторов, определяющих формирование уровня загрязнения, является прогноз синоптической ситуации (ветер, осадки, влажность, температура воздуха).

Определение периода действия и режима НМУ находится в ведении органов Казгидромета. В обязанности этих органов входит оповещение предприятия о наступлении и завершении периода НМУ и режима НМУ.

На основании этого на период НМУ – при сильных ветрах и туманах предлагаются мероприятия организационного характера по первому режиму работы и мероприятия по второму режиму работы, сопровождающиеся незначительным снижением производительности предприятия.

Главное условие: выполнение мероприятий при НМУ не должно приводить к нарушению технологического процесса, следствием которого могут явиться аварийные ситуации.

Меры по уменьшению выброса в периоды НМУ могут проводиться без сокращения производства и без существенных изменений технологического режима — это I режим работы предприятия.

Мероприятия по I режиму носят организационно-технический характер, их можно быстро провести без существенных затрат и снижения производительности предприятия. К ним относятся:

- усиление контроля за процессом сжигания попутного газа на факельных установках,
- контроль работы измерительных приборов и оборудования,
- усиление контроля за герметичностью технологического оборудования.

В случае оповещения предприятия о наступлении НМУ *по II режиму* предусматриваются следующие мероприятия по кратковременному снижению выбросов:

- выполняются все организационно-технические мероприятия по I режиму НМУ;
- запрещением работы оборудования в форсированном режиме.

При III режиме – предусматривается полное прекращение сжигания газа на факелах.

Согласно п. 9 Приложения 3 «Методики определения нормативов эмиссий в окружающую среду (утв. приказом МЭГиПР РК от 10 марта 2021 года № 63) мероприятия по регулированию выбросов при неблагоприятных метеорологических условиях (далее - НМУ) разрабатываются при наличии в данном населенном пункте или местности стационарных постов наблюдения.

Согласно «Методике по регулированию выбросов при неблагоприятных метеорологических условиях» (приложение 40 к приказу Министра охраны окружающей среды от 29 ноября 2010 года № 298) мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в периоды НМУ разрабатывают предприятия, имеющие стационарные источники выбросов, расположенные в населенных пунктах, где подразделениями «Казгидромета» проводятся прогнозирования НМУ.

Рассматриваемое предприятие находится вне населенных пунктов, максимальные концентрации вредных веществ на границе СЗЗ не превышают 1 ПДКм.р. Поэтому предусматривать какие-либо дополнительные мероприятия для НМУ для данного объекта нет необходимости.

51

9.1. План мероприятий по сокращению выбросов загрязняющих веществ в атмосферу в период НМУ

При разработке нормативов допустимых выбросов одним из важных вопросов является снижение экологической нагрузки в районе расположения предприятия в период наступления неблагоприятных метеорологических условий.

В периоды неблагоприятных метеорологических условий (НМУ) предприятие обязано осуществлять временные мероприятия по дополнительному снижению выбросов вредных веществ в атмосферу. Мероприятия осуществляются после заблаговременного получения предприятием от органов гидрометеослужбы сведений, в которых указывается продолжительность НМУ, ожидаемое увеличение приземных концентраций вредных веществ.

9.2. Обобщённые данные о выбросах загрязняющих веществ в атмосферу в период НМУ

В связи с тем, что мероприятия на период НМУ не разрабатываются выбросы загрязняющих веществ останутся в прежнем объеме.

9.3. Краткая характеристика мероприятий. Обоснование возможного диапазона регулирования выбросов по каждому мероприятию

В связи с тем, что объект находится в Сырдарьинском районе Кызылординской области, где НМУ не прогнозируется, в связи этим мероприятия по регулированию выбросов при неблагоприятных метеорологических характеристиках не разрабатываются.

При этом существуют 3 режима мероприятия при НМУ.

При первом режиме работы мероприятия должны обеспечить уменьшение концентрации веществ в приземном слое атмосферы примерно на 15-20 %. Эти мероприятия носят организационный характер и включают в себя: • усиление контроля за технологическим регламентом производственного процесса; • ограничение работ, связанных со значительными выделениями загрязняющих веществ; • проведение влажной уборки производственного помещения, где это допускается правилами техники безопасности.

Мероприятия по второму режиму уменьшают приземные концентрации загрязняющих веществ в приземном слое атмосферы на 20 - 40 % и включают в себя все мероприятия, разработанные для первого режима, а также мероприятия, разработанные на базе технологических процессов, и сопровождающиеся незначительным снижением производительности предприятия.

Мероприятия общего характера:

- ограничить движение транспорта по территории;
- снизить производительность отдельных агрегатов и технологических линий, работа которых связана со значительным выделением в атмосферу вредных веществ;
- в случае, если сроки начала планово-предупредительных работ по ремонту оборудования и наступления НМУ достаточно близки, следует произвести остановку оборудования.

При третьем режиме работы мероприятия должны обеспечить сокращение концентрации загрязняющих веществ в приземном слое атмосферы на 40-60% и в некоторых особо опасных условиях. Мероприятия полностью включают в себя все условия, разработанные для первого и второго режимов, осуществление которых позволяет снизить выбросы загрязняющих веществ за счет временного сокращения производительности предприятия.

Мероприятия общего характера:

• снизить нагрузку или остановить производства, сопровождающиеся значительным выделением загрязняющих веществ;

Определение эффективности каждого мероприятия (%) осуществляется по формуле: n=(Mi'/Mi)*100%, где Mi'-выбросы 3B каждого разработанного мероприятия (r/c); Mi- размер сокращения выбросов за счет мероприятий.

10. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ

В соответствии с Экологическим кодексом Республики Казахстан физические и юридические лица, осуществляющие специальное природопользование, обязаны осуществлять производственный экологический контроль, составной частью которого является производственный мониторинг.

Для выполнения требований законодательства в области охраны атмосферного воздуха, в том числе для соблюдения нормативов предельно допустимых выбросов, предусматривается система контроля источников загрязнения атмосферы.

Система контроля источников загрязнения атмосферы (ИЗА) представляет собой совокупность организованных, технических и методических мероприятий, направленных на выполнение требований законодательства в области охраны атмосферного воздуха, в том числе, на обеспечение действенного контроля за соблюдением нормативов предельно допустимых выбросов.

Контроль соблюдения нормативов НДВ на предприятии подразделяется на следующие виды:

- непосредственно на источниках выбросов
- на специально выбранных контрольных точках
- на границе СЗЗ или/ и в жилой зоне

Контроль соблюдения установленных нормативов выбросов загрязняющих веществ в атмосферу должен осуществляться путем определения массы выбросов каждого загрязняющего вещества в единицу времени от источников выбросов и сравнения полученного результата с установленными нормативами в соответствии с установленными правилами. Годовой выброс не должен превышать установленного значения НДВ тонн/год, максимальный — установленного значения НДВ г/сек.

План-график контроля представлен в таблице 10.1.

В соответствии с п. 15 Методики — «Нормативы выбросов определяются как масса (в граммах) вредного вещества, выбрасываемого в единицу времени (секунду). Наряду с максимальными разовыми допустимыми выбросами (г/с) устанавливаются годовые значения допустимых выбросов в тоннах в год (т/пер) для каждого источника и предприятия в целом с учетом снижения выбросов загрязняющих веществ в атмосферу согласно плану мероприятий».

Согласно плану мероприятий, предусмотрены мероприятия по снижению выбросов загрязняющих веществ в атмосферный воздух.

Учитывая проведение мероприятий по доразведки рассматриваемого участка, а также проведение работ по строительству скважины как временного вида работ проведение инструментальных замеров предполагается в зависимости от фактического задействования оборудования на момент проведения замеров и технических возможностей для проведения замеров.

Таблица 10.1

ЭРА v3.0 ТОО "Сапаев Т.М."

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на период испытания

Жалагашский район, ИТП оценочных скважин Карагансай испытание

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив до выбро		Кем осуществляет	Методика проведе- ния
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
0018	Испытание	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.635	422.671502	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.826	549.805765	Силами предприятия	0001
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.1059	70.4896254	Силами предприятия	0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.2117	140.912688	Силами предприятия	0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.529	352.115315	Силами предприятия	0001
		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1 раз/ кварт	0.0254	16.9068601	Силами предприятия	0001
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.0254	16.9068601	Силами предприятия	0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.254	169.068601	Силами предприятия	0001
0019	Испытание	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.635	422.671502	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.826	549.805765	_ · · · _	0001
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.1059	70.4896254		0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.2117	140.912688		0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.529			0001

Проп-2-ем-1-апы (Акромени, Агмания (1474) орожальдегид (Метаналь) (609) 1 раз/ кварт 0.0254 16.9068601 0.01 мами предприятия									
Осорматьлегид (Метаналь) (609) 1 раз/ кварт 0.0254 16.9088601 (Слами предприжчия				1 pas/	кварт	0.0254	16.9068601		0001
Алканы С12-19 / В пересчете на С/ (Утиреводороды пределеньнае С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Утирерод (Сажа, Утирерод черкый) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Утирерод оксид (Окись утирерода, Утирерод (Сажа, Утирерода, Утирерод (Сажа, Утирерода, Утирерод (Сажа) (Ба4) Окола (Сера (Сажа) (Сажа) (Сажа) (Сажа) (Сажа) Окола (Сера (Сажа) (Саж			=	1 pas/	кварт	0.0254	16.9068601		0001
Мильтание Мил									
Пересчете на С); Растворитель РПК- 265П (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт 0.4235 328.494891 Силами 0001 Предприятия Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.555 426.61671 Силами 0001 Предприятия Осера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0706 54.7620762 Силами 0001 Предприятия Осера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.1412 109.524152 Силами 0001 Предприятия Осера диоксид (Окись углерода, 1 раз/ кварт 0.353 273.810381 Силами 0001 Предприятия Осера диоксид (Окись углерода, 1 раз/ кварт 0.01694 13.1397956 Силами 0001 Предприятия Осера диоксид (Азота оксид) (1 раз/ кварт 0.1694 13.1397956 Силами 0001 Предприятия Осера диоксид (Азота оксид) (1 раз/ кварт 0.4235 328.494891 Силами 0001 Предприятия Осера диоксид (Азота оксид) (1 раз/ кварт 0.4235 328.494891 Силами 0001 Предприятия Осера диоксид (Азота оксид) (1 раз/ кварт 0.554 426.616741 Силами предприятия Осера диоксид (Азота оксид) (6) 1 раз/ кварт Осера диоксид (Азота оксид) (6) 1 раз/ кварт Осера диоксид (Азота оксид) (6) 1 раз/ кварт Осера диоксид (Ангидрид сернистый, 1 раз/ кварт Осера диоксид (Ангидрид сернистый, 1 раз/ кварт Осера диоксид (Ангидрид сернистый, 1 раз/ кварт Осера диоксид (Окись углерода, углерод оксид (Окись углерода, углерод оксид (Окись углерода, углерода, углерод оксид (Окись углерода, углерода, оксид (Окись углерода, углерод оксид (Окись углерода, углерода, оксид (Окись углерода, углерода, оксид (Окись углерода, углерода, оксид (Окись углерода, углерода, оксид (Окись углерода, оксид (Окись углерода, углерода, оксид (Окись углерода, углерода, оксид (Окись углерода, углерода, оксид (Окись				1 pas/	кварт	0.254	169.068601	Силами	0001
4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт О.55 426.616741 Силами предприятия Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сериистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Испытание ООО1 Предприятия ООО1 Пре			пересчете на С); Растворитель РПК-					предприятия	
Даот (II) оксид (Азота оксид) (6) раз/ кварт 0.55 426.616741 Силами предприятия	0020	Испытание		1 pas/	кварт	0.4235	328.494891	Силами	0001
Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрипальдегид) (474) Формальдегид (Метаналь) (609) Испытание О021 Испытание О021 Испытание О021 Испытание О021 Испытание О022 Оксид (Окись углерода, Углерод черный) (583) Оот оксид (Окись углерода, Углерод черный) (583) Оот оксид (Окись углерода, Углерод черный) (583) Оот оксид (Окись углерод черный) (От оксид (Отами предприятия предприя									
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0706 54.7620762 Силами предприятия 1 раз/ кварт 0.1412 109.524152 (силами предприятия 1 раз/ кварт 0.353 273.810381 (силами предприятия 1 раз/ кварт 0.01694 13.1397956 Силами предприятия 0001 1 раз/ кварт 0.01694 1 раз/			Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.55	426.616741	Силами	0001
Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Останами осрмальдегид (474) Останами остана Силами предприятия предприятия остана Силами предприятия остана Силами предприятия остана Силами предприятия предприятия остана Силами предприятия остана Силами предприятия остана Силами предприятия предприятия остана Силами предприятия предприят									
Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Праз/ кварт О.01694 Предприятия п			Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.0706	54.7620762	Силами	0001
Сернистый газ, Сера (IV) оксид) (516) Утлерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, 1 раз/ кварт О.01694 13.1397956 Силами предприятия О001 мальдегид) (474) Формальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт О.01694 13.1397956 Силами предприятия О001 мальдегид (Метаналь) (609) 1 раз/ кварт О.1694 13.1397956 Силами предприятия О001 мальдегид (Метаналь) (609) 1 раз/ кварт О.1694 13.1397956 Силами предприятия О001 мальдегид (Метаналь) (609) 1 раз/ кварт О.1694 13.1397956 Силами предприятия О001 мальдегид (Азота диоксид) (1 раз/ кварт О.223 328.494891 Силами предприятия О001 мальдегид (Азота оксид) (6) 1 раз/ кварт О.55 426.616741 Силами предприятия О001 мальдегид (Окись утлерода, 1 раз/ кварт О.0706 54.7620762 Силами предприятия О001 мальдегид (Окись утлерода, 1 раз/ кварт О.353 273.810381 Силами предприятия О001 мальдегид (Окись утлерода, 1 раз/ кварт О.353 273.810381 Силами предприятия О001 мальдегид (Окись утлерода, 1 раз/ кварт О.01694 13.1397956 Силами предприятия О001 мальдегид (Окись утлерода, 1 раз/ кварт О.01694 13.1397956 Силами предприятия О001 марилинатия О00								_ · · · _	
Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ент-1-аль (Акролеин, Проп-2-ент-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Праз/ кварт О.01694 Польтание Портоден предприятия О.01694 Польтание Портоден предприятия О.01694 Польтание Портоден предприятия О.01694 Польтание Портоден предприятия О.01694 Портоден Пор				1 pas/	кварт	0.1412	109.524152	Силами	0001
Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Проможений город (Силами предприятия (Силами предприя									
Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.1694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.1694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.1694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.1694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.1694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.1694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.1412 109.524152 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.353 273.810381 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (мотанальной каканальной каканальной каканаль				1 pas/	кварт	0.353	273.810381	Силами	0001
Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) ОО21 Испытание Азота (IV) диоксид (Азота диоксид) (Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Азота (IV) диоксид (Взота диоксид) (1 раз/ кварт оли 10 дазина предприятия предприятия опольный предприятия опольный предприятия предприятия опольный предприятия опольный предприятия опольный предприятия опольный предприятия опольный предприятия опольный газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Акрилальдегид (Метаналь) (609) Траз/ кварт оли 10 дазина опольный предприятия оп									
Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на С/ (Утлеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (6) Утлерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Утлерод оксид (Окись углерода, Утарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694				1 pas/	кварт	0.01694	13.1397956		0001
Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт				1/		0 01 00 4	12 1207056	_ · · · _	0001
Углеводороды предельные C12-C19 (В пересчете на C); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт 4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 54.7620762 Силами предприятия 79 предприятия 79 предприятия 79 предприятия 70			Формальдегид (метаналь) (609)	l pas/	кварт	0.01694	13.139/956		0001
Пересчете на С); Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/кварт 0.4235 328.494891 Силами предприятия 0001 Азота (II) оксид (Азота оксид) (6) 1 раз/кварт 0.55 426.616741 Силами предприятия 0001 Оли Ол			Алканы C12-19 /в пересчете на C/ (1 pas/	кварт	0.1694	131.397956	Силами	0001
Пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт			Углеводороды предельные С12-С19 (в	-	_			предприятия	
0021 Испытание Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт 0.4235 328.494891 Силами предприятия (0001 4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.55 426.616741 Силами предприятия (0001 Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0706 54.7620762 Силами предприятия (0001 Сера диоксид (Ангидрид сернистый газ, Сера (IV) оксид) (516) 1 раз/ кварт 0.1412 109.524152 Силами предприятия (0001 Углерод оксид (Окись углерода, Угарный газ) (584) 1 раз/ кварт 0.353 273.810381 Силами предприятия (0001 Акрилальдегид) (474) 400 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (0001 Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия (0001			пересчете на С); Растворитель РПК-						
4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.55 426.616741 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0706 54.7620762 Силами предприятия Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия О001 предприятия	0021	Испытание		1 pas/	кварт	0.4235	328.494891	Силами	0001
Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.55 426.616741 Силами предприятия 0001 Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0706 54.7620762 Силами предприятия 0001 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерода, Окраи О	0021	71011211 (111110		I pac	112471	0.1200	020.131031		0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0706 54.7620762 Силами предприятия Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерода, Гараный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия предприя				1 pas/	кварт	0.55	426.616741		0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0706 54.7620762 Силами предприятия Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерода, Образорода) 1 раз/ кварт 0.353 273.810381 Силами предприятия 0001 предприятия				1 1 1 1 1 1	<u>-</u> -				
Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Проп-2-ен-1-аль (Метаналь) (609)			Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.0706	54.7620762		0001
Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.1412 109.524152 Силами предприятия 0.001 предприятия 0			reserved (comment of contract	1 1 1 1 1 1	<u>-</u> -				
Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Проп-2-ен-1-аль (Метаналь) (609) Проп-2-ен-1-аль (Акролеин, Олими предприятия			Сера лиоксил (Ангилрил сернистый.	1 pas/	кварт	0.1412	109.524152		0001
Углерод оксид (Окись углерода, 1 раз/ кварт 0.353 273.810381 Силами предприятия Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия				Ι ρασ,	112471	0.1112	103.021102		0001
Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Проп-2-ен-1-аль (Акролеин, Акрилальдегид (Метаналь) (609) Праз/ кварт О.01694 Предприятия О.01694 Предприятия Предприятия Предприятия Предприятия Предприятия Предприятия Предприятия				1 pas/	кварт	0.353	273.810381		0001
Проп-2-ен-1-аль (Акролеин, 1 раз/кварт 0.01694 13.1397956 Силами предприятия формальдегид (Метаналь) (609) 1 раз/кварт 0.01694 13.1397956 Силами предприятия 0001				I Pac	112471	3.333	270.010001		
Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия				1 pas/	кварт	0.01694	13.1397956		0001
Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами 0001			_ =			3.02031			
предприятия				1 pas/	кварт	0.01694	13.1397956		0001
			1 111 111 (1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 /	- I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			Алканы C12-19 /в пересчете на C/ (1 pas/	кварт	0.1694	131.397956		0001

		Углеводороды предельные С12-С19 (в					предприятия	
		пересчете на С); Растворитель РПК-						
		265Π) (10)						
0028	Испытание		1 pas/	кварт	0.635	422.671502	Силами	0001
		4)					предприятия	
		Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.826	549.805765	Силами	0001
							предприятия	
		Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.1059	70.4896254	Силами	0001
							предприятия	
		Сера диоксид (Ангидрид сернистый,	1 pas/	кварт	0.2117	140.912688	Силами	0001
		Сернистый газ, Сера (IV) оксид) (516)					предприятия	
		Углерод оксид (Окись углерода,	1 pas/	кварт	0.529	352.115315	Силами	0001
		Угарный газ) (584)					предприятия	
		Проп-2-ен-1-аль (Акролеин,	1 pas/	кварт	0.0254	16.9068601	Силами	0001
		Акрилальдегид) (474)					предприятия	
		Формальдегид (Метаналь) (609)	1 pas/	кварт	0.0254	16.9068601	Силами	0001
							предприятия	
		Алканы С12-19 /в пересчете на С/ (1 pas/	кварт	0.254	169.068601	Силами	0001
		Углеводороды предельные C12-C19 (в					предприятия	
		пересчете на С); Растворитель РПК-						
		265π) (10)						
0029	Испытание		1 pas/	кварт	0.635	422.671502	Силами	0001
		4)					предприятия	
		Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.826	549.805765		0001
			. ,				предприятия	
		Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.1059	70.4896254		0001
			. ,				предприятия	
		Сера диоксид (Ангидрид сернистый,	1 pas/	кварт	0.2117	140.912688		0001
		Сернистый газ, Сера (IV) оксид) (516)			0.500	050 445045	предприятия	
		Углерод оксид (Окись углерода,	1 pas/	кварт	0.529	352.115315		0001
		Угарный газ) (584)	1 /		0 0054	16 0060601	предприятия	0.001
		Проп-2-ен-1-аль (Акролеин,	1 pas/	кварт	0.0254	16.9068601		0001
		Акрилальдегид) (474)	1 /		0 0054	16 0060601	предприятия	0.001
		Формальдегид (Метаналь) (609)	1 pas/	кварт	0.0254	16.9068601		0001
		7	1/		0 254	169.068601	предприятия	0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	1 pas/	кварт	0.254	1000001		0001
							предприятия	
		пересчете на C); Растворитель РПК- 265П) (10)						
0030	Испипанио		1 pas/	MDONE	0.4235	328.494891	Сипоми	0001
0030	Испытание	Азота (IV) диоксид (Азота диоксид) (4)	r has/	ураћд.	0.4235	JZ0.494091		0001
	1	[4]			1		предприятия	

Долго				1 .				i	
Углерод (Сажа, Углерод черний) (583) раз/ кварт 0.0706 54.7620762 (клами предприятия предприятия предприятия предприятия предприятия предприятия предприятия предприятия предприятия нединация (674) раз/ кварт 0.1412 109.524152 (клами предприятия предприяти			Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.55	426.616741		0001
Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Угмерод скил (Окись угмерода, Угмерода, Угмерод (Сидами Предприятия Предприятия Предприятия Предприятия Акрилальдегии) (474) Формальдегий (Механаль) (609) 1 раз/ кварт О.01694 13.1397956 Сидами предприятия Алкань С12-19 /в пересчете на С/ (Угмеводором предельные С12-С19 (в пересчете на С); Гастворичель РПК- 265П) (10) 1 раз/ кварт О.4233 328.494891 Сидами предприятия О001 Опить Оток Оток Оток Оток Оток Оток Оток Оток			V (C V (F02)	1 /		0 0706	F4 7600760	T ' ' T	0.001
Сера диоксид (Антиприд сернистый, Сернистый, Сернистый, Сернистый, Сернистый, Сернистый, Сернистый, Свяд)			углерод (Сажа, углерод черныи) (583)	I pas/	кварт	0.0706	54./620/62		0001
Сервистый газ, Сера (IV) оксид) (516) раз/ кварт 0.353 273.810381 Силами предприятия 0001 предпри			Cons. HMOMOME (AMEMERICA CONTROLLIA	1 222/	MD 210 m	0 1/12	100 52/152	_ · · · _	0.001
Упперод оксид (Окись упперода, угарым дов) (584) 1 раз/ кварт 0.353 273.810381 Силами предприятия 0001 предприятия				I pas/	кварт	0.1412	109.524152		0001
Мериприятия 1 раз / кварт			=	1 nas/	кварт	0 353	273 810381	1 1	0001
Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) 1 раз/ кварт 0.01694 13.1397956 (Силами предприятия обормальдегид) (474) 1 раз/ кварт 0.01694 13.1397956 (Силами предприятия предприяти				I pasi	кварт	0.333	273.010301		0001
Акрипальдегид (474) формальдегид (Метаналь) (609) Праз/ кварт О.01694 О				1 pas/	кварт	0.01694	13.1397956		0001
формальдегид (Метаналь) (609) Алканы С12-19 / В пересчете на С/ (Углеводороды пределеные С12-С19 (В пересчете на С/) (Углеводороды пределеные С12-С19 (В пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт (11) дази (11) оксид (Азота оксид) (1 раз/ кварт (12) дази (13) дази (13) дази (13) дази (13) дази (13) дази (14) дази (14) дази (1583) (15				1 .	-				
Адканы C12-19 /в первсчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 255П) (10) Авота (IV) диоксид (Авота диоксид) (1 рав/ кварт (1 рав/ кварт о.4235 328.494891 Силами предприятия Оло1 Авота (IV) диоксид (Авота диоксид) (1 рав/ кварт о.55 426.616741 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 рав/ кварт о.7006 54.7620762 Силами Гера диоксид (Ангидрид сернистый, Сернистый гав, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерод оксид (Окись углерода) Углерод оксид (Окись углерода) Акрилальдегид (Метаналь) (609) 1 рав/ кварт о.01694 13.1397956 Силами предприятия Оло1 Алканы С12-19 /в пересчете на С/ (Углеродороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10) Авота (IV) диоксид (Авота диоксид) (1 рав/ кварт о.00016384 24.7530665 Силами предприятия Оло1 Оло1 Оло1 Оло1 Оло1 Оло2 Оло2 Оло3 Оло1 Оло1 Оло1 Оло2 Оло3 Оло1 Оло3 Оло3 Оло1 Оло3 Оло3 Оло3 Оло3 Оло3 Оло3 Оло3 Оло4 Оло4 Оло5 Оло4 Оло5 Оло4 Оло5 Оло4 Оло6 Оло6 Оло6 Оло7 Оло7 Оло7 Оло7 Оло7 Оло7 Оло7 Оло7				1 pas/	кварт	0.01694	13.1397956	Силами	0001
Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) Авота (IV) диоксид (Авота диоксид) (1 раз/ кварт 0.4235 328.494891 Силами предприятия 0001 предприятия 4) Авот (II) оксид (Авота оксид) (6) 1 раз/ кварт 0.55 426.616741 Силами предприятия 0001								предприятия	
Пересчете на С); Растворитель РПК-265П) (10) Праз/кварт О.4235 328.494891 Силами предприятия О.001 Праз/кварт О.55 426.616741 Силами предприятия О.001 Праз/кварт О.55 426.616741 Силами предприятия О.001 О.0004 О			<u>-</u>	1 pas/	кварт	0.1694	131.397956	Силами	0001
Мспытание Добли (Поможения (Авота диоксид) (1 раз/кварт 1 раз/кварт 0.4235 328.494891 Силами предприятия (Силами предприятия (О001 мутиерод оксид (Окись утперода, утарный газ) (584) 1 раз/кварт 0.353 273.810381 (Силами предприятия (О001 мутиерод оксид (Окись утперод (Сама, утлерод оксид (Окись утперод (Сама, утперод (Сама, утлерод черный) (583) 1 раз/кварт 0.01694 13.1397956 (Силами предприятия (Сил			<u> </u>					предприятия	
Мспытание									
4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт О.55 426.616741 Силами предприятия опол				,					
Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.55 426.616741 Силами предприятия 0001 пенеприятия 0001 пен	00.	31 Испытание		l pas/	кварт	0.4235	328.494891		0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0706 54.7620762 Силами предприятия Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия Оио1 пр				1/		0 55	106 616711		0.001
Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерода, Углерод оксид (Окись углерода, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель РПК-265П) (10) Азот (IV) диоксид (Азота диоксид) (6) Испытание, Цех 01, Азота (IV) диоксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.01694 1 раз/ квар			АЗОТ (11) ОКСИД (АЗОТА ОКСИД) (6)	I pas/	кварт	0.55	420.010/41		0001
Сера диоксид (Ангидрид сернистый, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерода, Окись углерод оксид (Окись углерод оксид (Окись углерод оксид) (Окись			VIIIANOII (Cawa VIIIANOII HANULIK) (583)	1 222/	שמבסע	0 0706	5/ 7620762	_ · · · _	0001
Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Праз/ кварт О.01694 Предприятия ООО1			утперод (сажа, утперод черный) (303)	I pas/	кварт	0.0700	34.7020702		0001
Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 /В пересчете на С/ (Углеводороды предельные C12-C19 (В пересчете на С); Растворитель РПК- 265П) (10) Азот (IV) диоксид (Азота диоксид) (60) Испытание, Цех 01, Участок 01 О012 Испытание, Цех 01, Участок 01 О013 Испытание, Цех 01, Опитание, Це			Сера диоксид (Ангидрид сернистый,	1 pas/	кварт	0.1412	109.524152		0001
Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10) О012 Испытание, Цех 01, Участок 01 О012 Испытание, Цех 01, Участок 01 О014 Испытание, Цех 01, Участок 01 О015 Испытание, Цех 01, Участок 01 О016 Испытание, Цех 01, Участок 01 О017 Испытание, Цех 01, Участок 01 О018 Испытание, Цех 01, Оксид (Азота оксид) (6) О019 Испытание, Цех 01, Оксид (Азота оксид) (6) О019 Испытание, Цех 01, Оксид (Азота оксид) (6) О019 Оксид (Азота оксид) (6)				F - F - F - F - F - F - F - F - F - F					
Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 / В пересчете на С/ (Углеводороды предельные C12-C19 (В пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт Участок 01 Углерод (Сажа, Углерод черный) (583) Углерод (Сажа, Углерод черный) (583) Раз/ кварт О.01694 13.1397956 Силами предприятия О.01694 13.1397956 Силами предприятия О.01694 13.1397956 Силами предприятия О.01694 О				1 pas/	кварт	0.353	273.810381		0001
Акрилальдегид (474) Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (Участок 01 Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Траз/ кварт О.01694 О.016				_	-			предприятия	
Формальдегид (Метаналь) (609) 1 раз/ кварт 0.01694 13.1397956 Силами предприятия Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (Участок 01 4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.00054556 126.939041 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.00054556 126.939041 Силами предприятия			Проп-2-ен-1-аль (Акролеин,	1 pas/	кварт	0.01694	13.1397956	Силами	0001
Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10) О012 Испытание, Цех 01, Азота (IV) диоксид (Азота диоксид) (1 раз/кварт О.000654672 152.326849 Силами предприятия Азот (II) оксид (Азота оксид) (6) 1 раз/кварт О.000106384 24.7530665 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 раз/кварт О.00054556 126.939041 Силами предприятия О001									
Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) О012 Испытание, Цех 01, Участок 01 О013 Испытание, Цех 01, Участок 01 О014 Испытание, Цех 01, Участок 01 О015 Испытание, Цех 01, Участок 01 О01694 ОО1694			Формальдегид (Метаналь) (609)	1 pas/	кварт	0.01694	13.1397956	Силами	0001
Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10) О012 Испытание, Цех 01, Участок 01 Азота (IV) диоксид (Азота диоксид) (1 раз/кварт 0.000654672 152.326849 Силами предприятия 0001 предприятия 0				l. ,					
пересчете на C); Растворитель РПК- 265П) (10) О012 Испытание, Цех 01, Участок 01 Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Пересчете на C); Растворитель РПК- 265П) (10) О.000654672 О.000654672 О.000106384 О.000106384 О.00054556 О.00054556 О.00054556 О.00054556 О.00054556 О.00054556 О.00054556 О.00054556			<u>-</u>	1 pas/	кварт	0.1694	131.397956		0001
0012 Испытание, Цех 01, Участок 01 265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт 0.000654672 152.326849 Силами предприятия 0001 предприятия 000			<u> </u>					предприятия	
0012 Испытание, Цех 01, Участок 01 Азота (IV) диоксид (Азота диоксид) (1 раз/кварт 0.000654672 152.326849 Силами предприятия 0001 предприяти									
Участок 01 4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.000106384 24.7530665 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.00054556 126.939041 Силами предприятия	0.0	12 Marimaino iloy 01		1 222/	MD 210 m	0 000654672	152 326940	CIATIONIA	0.001
Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.000106384 24.7530665 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.00054556 126.939041 Силами предприятия				r Pas/	кварт	0.000034072	102.020049		0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.00054556 126.939041 Силами предприятия предприятия		vacion of	,	1 pas/	кварт	0.000106384	24.7530665	- · · · -	0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.00054556 126.939041 Силами предприятия 0001			(12014 010014)				_ 1		
предприятия			Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.00054556	126.939041	_ · · · _	0001
Углерод оксид (Окись углерода,					-			предприятия	
			Углерод оксид (Окись углерода,	1 pas/	кварт	0.0054556	1269.39041	Силами	0001

	ı	l × , , , , , , , , , , , , , , , , , ,	I	ı	ı		I	1
		Угарный газ) (584)				04	предприятия	
		Метан (727*)	1 раз/ к	зварт	0.00013639	31.7347602		0001
			,				предприятия	
0013	Испытание, Цех 01,		1 раз/ к	зварт	0.565	268.628397		0001
	Участок 01	4)					предприятия	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ к	зварт	0.735	349.45464		0001
							предприятия	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ к	зварт	0.0942	44.7872478	Силами	0001
							предприятия	
		Сера диоксид (Ангидрид сернистый,	1 раз/ к	сварт	0.1883	89.5269507	Силами	0001
		Сернистый газ, Сера (IV) оксид) (516)					предприятия	
		Углерод оксид (Окись углерода,	1 раз/ к	варт	0.471	223.936239	Силами	0001
		Угарный газ) (584)					предприятия	
		Проп-2-ен-1-аль (Акролеин,	1 раз/ к	варт	0.0226	10.7451359	Силами	0001
		Акрилальдегид) (474)					предприятия	
		Формальдегид (Метаналь) (609)	1 раз/ к	сварт	0.0226	10.7451359	Силами	0001
							предприятия	
		Алканы C12-19 /в пересчете на C/ (1 раз/ к	сварт	0.226	107.451359	Силами	0001
		Углеводороды предельные С12-С19 (в					предприятия	
		пересчете на С); Растворитель РПК-						
		265Π) (10)						
0014	Испытание, Цех 01,	Азота (IV) диоксид (Азота диоксид) (1 раз/ к	сварт	0.2933	181.002233	Силами	0001
	Участок 01	4)					предприятия	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ к	сварт	0.381	235.123937	Силами	0001
							предприятия	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ к	сварт	0.0489	30.1773241	Силами	0001
							предприятия	
		Сера диоксид (Ангидрид сернистый,	1 раз/ к	сварт	0.0978	60.3546483	Силами	0001
		Сернистый газ, Сера (IV) оксид) (516)					предприятия	
		Углерод оксид (Окись углерода,	1 раз/ к	зварт	0.2444	150.824908	Силами	0001
		Угарный газ) (584)					предприятия	
		Проп-2-ен-1-аль (Акролеин,	1 раз/ к	зварт	0.01173	7.23885505	Силами	0001
		Акрилальдегид) (474)					предприятия	
		Формальдегид (Метаналь) (609)	1 раз/ к	зварт	0.01173	7.23885505	Силами	0001
							предприятия	
		Алканы С12-19 /в пересчете на С/ (1 раз/ к	варт	0.1173	72.3885505	Силами	0001
		Углеводороды предельные С12-С19 (в					предприятия	
		пересчете на С); Растворитель РПК-						
		265Π) (10)						
0015	Испытание, Цех 01,	Азота (IV) диоксид (Азота диоксид) (1 раз/ к	сварт	0.155	196.72461	Силами	0001

		Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.2015	255.741993	Силами предприятия	0001
		Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.02583	32.7832044	Силами	0001
		Сера диоксид (Ангидрид сернистый,	1 pas/	кварт	0.0517	65.6171764	предприятия Силами	0001
		Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода,	1 pas/	KBANT	0.1292	163.979482	предприятия Сипами	0001
		Угарный газ) (584)					предприятия	0001
		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1 pas/	кварт	0.0062	7.86898441	Силами предприятия	0001
		Формальдегид (Метаналь) (609)	1 pas/	кварт	0.0062	7.86898441	Силами	0001
		Алканы C12-19 /в пересчете на C/ (1 pas/	кварт	0.062	78.6898441	предприятия Силами	0001
		Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)					предприятия	
0016	Испытание, Цех 01, Участок 01		1 pas/	кварт	0.2125	174.323971	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.276	226.416076	_ · · · <u>-</u>	0001
		Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.0354	29.0403228	_ · · · _	0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 pas/	кварт	0.0708	58.0806456		0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 pas/	кварт	0.177	145.201614		0001
		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1 pas/	кварт	0.0085	6.97295886	Силами	0001
		Формальдегид (Метаналь) (609)	1 pas/	кварт	0.0085	6.97295886		0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	1 pas/	кварт	0.085	69.7295886	предприятия Силами предприятия	0001
		пересчете на C); Растворитель РПК- 265П) (10)					продприлтил	
0017	Испытание, Цех 01, Участок 01	Сероводород (Дигидросульфид) (518)	1 pas/	кварт	0.00315	45.7004152	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 pas/	кварт	3.804	55188.6919		0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 pas/	кварт	1.407	20412.8521	Силами	0001
		Бензол (64)	1 pas/	кварт	0.01838	266.658296	предприятия Силами	0001

59

Пимерильбензол (смесь о-, м-, п- изомеров) (202) Праз/ кварт изомеров) (203) Праз/ кварт									
Метилбензоп (349) раз/ кварт раз/ ква								предприятия	
Метилбензоп (349) 1 раз/ кварт 0.01155 167.568.88 (клами предприятия дологования 0.001 предприятия дологования 0.000654672 152.326849 (клами предприятия дологования 0.00016384 126.93944 (клами предприятия дологования 0.00016384 126.93944 (клами предприятия дологования 0.00016384 126.93944 (клами предприятия дологования 0.001 предприятия дологования			Диметилбензол (смесь о-, м-, п-	1 pas/	кварт	0.00578	83.8566348	Силами	0001
0022 Испытание, Цех 01, Участок 01 Долго (П) диоксид (Азота диоксид) (6) 1 раз/ кварт 0.000654672 152.326845 Сидами предприятия 0001			изомеров) (203)					предприятия	
Метятание, Цех 01			Метилбензол (349)	1 pas/	кварт	0.01155	167.568189	Силами	0001
Участок 01 4) Авота (II) оксид (Авота оксид) (6) 1 раз/ кварт 0.000106384 24.753066 Силами предприятия (измания) 1 раз/ кварт 0.000106384 126.939041 Силами предприятия (измания) 1 раз/ кварт 0.00013639 126.939041 Силами предприятия (измания) 1 раз/ кварт 0.00013639 31.7347602 Силами предприятия (измания) 1 раз/ кварт 0.00013639 31.7347602 Силами предприятия (измания) 1 раз/ кварт 0.00013639 31.7347602 Силами предприятия (измания) 1 раз/ кварт 0.565 268.628397 Силами предприятия (измания) 1 раз/ кварт 0.735 349.45464 Силами предприятия (измания) 1 раз/ кварт 0.735 1 раз/ кварт 0.735 1 раз/ кварт 0.745								предприятия	
Дарт (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.000106384 24.7530665 Склами предприятия пр	0022	Испытание, Цех 01,	Азота (IV) диоксид (Азота диоксид) (1 pas/	кварт	0.000654672	152.326849	Силами	0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.00054556 126.939041 (Сидами препприятия преприятия препр		Участок 01	4)	_	_			предприятия	
Углерод (Сажа, Углерод черный) (583) раз/ кварт 0.00054556 126.939041 Силами предприятия предприятия предприятия полот предприятия предприя			Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.000106384	24.7530665	Силами	0001
Углерод оксид (Окись углерода, угарный газ) (584) 0023 Испытание, Цех 01, Участок 01				_				предприятия	
Оставрати предприятия предп			Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.00054556	126.939041	Силами	0001
Угарым газ (584) 1 раз кварт 0.00013639 31.7347602 Силами предприятия (0001 предприятия (1) раз кварт 0.565 268.628397 (Силами предприятия (2) предприятия (2) предприятия (2) предприятия (3)				_	-			предприятия	
Метан (727*) 1 раз/ кварт 0.00013639 31.7347602 Силами предприятия пр			Углерод оксид (Окись углерода,	1 pas/	кварт	0.0054556	1269.39041	Силами	0001
О023 Испытание, Цех 01, Участок 01 Авота (IV) диоксид (Авота диоксид) (1 раз/ кварт О.565 268.628397 Силами предприятия О001 предпри			Угарный газ) (584)	_	_			предприятия	
О023 Испытание, Цех 01, Участок 01 Азота (IV) диоксид (Азота диоксид) (6) раз/ кварт О.565 268.628397 Силами предприятия опредприятия опр			Метан (727*)	1 pas/	кварт	0.00013639	31.7347602	Силами	0001
Участок 01 4) Азот (II) оксид (Азота оксид) (6) Руглерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 2024 Испытание, Цех 01, Участок 01 Испытание, Цех 01, Утлерод (Сажа, Углерод черный) (583) Оид (Сажа, Углерод черный) (583) Оид (Сажа, Углерод черный) (583) Оид (Сера диоксид (Ангидрид сернистый, Сера диоксид Сера диоксид (Ангидрид сернистый, Сера диоксид Сера дио				_	_			предприятия	
Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.735 349.45464 Силами предприятия 0001 пре	0023	Испытание, Цех 01,	Азота (IV) диоксид (Азота диоксид) (1 pas/	кварт	0.565	268.628397	Силами	0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0942 44.7872478 Силами предприятия Силами предприятия Силами предприятия Силами предприятия О001 предприят		Участок 01	4)	_	-			предприятия	
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0942 44.7872478 Силами предприятия Сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) 1 раз/ кварт 0.0226 10.7451359 Силами предприятия Омо1 Омо1 Омо1 Омо1 Омо1 Омо1 Омо1 Омо1			Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.735	349.45464	Силами	0001
Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид) (474) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (В пересчете на С); Растворитель РПК-265П) (10) О224 Испытание, Цех 01, Участок 01 О024 Испытание, Цех 01, Утлерод (Сажа, Углерод черный) (583) О026 Олим (Олими предприятия) Оли (Силами предприятия) Оли				_	-			предприятия	
Сера диоксид (Ангидрид сернистый, Сернистый, Сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10) О024 Испытание, Цех 01, Азота (IV) диоксид (Азота диоксид) (1 раз/кварт 0.293 181.002233 Силами предприятия 0001 предприятия 000			Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.0942	44.7872478	Силами	0001
Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (6) Азот (II) оксид (Азота оксид) (6) Азот (II) оксид (Азота оксид) (6) Осера диоксид (Ангидрид сернистый, Сера диоксид (Ангидрид сернистый, Сера диоксид (Ангидрид сернистый, Олити 223.936239 Силами предприятия Олитоварт Олитов				_	-			предприятия	
Углерод оксид (Окись углерода, Угарьый газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 / В пересчете на С/ (Углеводороды предельные C12-C19 (В пересчете на С); Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота диоксид) (60) Азота (II) оксид (Азота оксид) (6) Азота (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0078 60.3546483 Силами предприятия 0001 пр			Сера диоксид (Ангидрид сернистый,	1 pas/	кварт	0.1883	89.5269507	Силами	0001
Углерод оксид (Окись углерода, Угарый газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 / В пересчете на С/ (Углеводороды предпъные C12-C19 (В пересчете на С); Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота диоксид) (60) Испытание, Цех 01, Участок 01 Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, 1 раз/ кварт О.471 1 раз/ кварт О.0226 О.0			Сернистый газ, Сера (IV) оксид) (516)	_	_			предприятия	
Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 /В пересчете на С/ (Углеводороды предприятия Силами предприятия О.0226 10.7451359 Силами предприятия Олими предпри			Углерод оксид (Окись углерода,	1 pas/	кварт	0.471	223.936239		0001
Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) О024 Испытание, Цех 01, Участок 01 О024 Испытание, Цех 01, Участок 01 О025 О026 О0.7451359 О026 О0.7451359 О027 О027 О028 О028 О028 О028 ОО28 ОО28 ОО28 ОО28				_	-			предприятия	
Формальдегид (Метаналь) (609) 1 раз/ кварт 0.0226 10.7451359 Силами предприятия 0001 Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт 0.2933 181.002233 Силами предприятия 0001 участок 01 4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.381 235.123937 Силами предприятия 0001			Проп-2-ен-1-аль (Акролеин,	1 pas/	кварт	0.0226	10.7451359	Силами	0001
Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) О024 Испытание, Цех 01, Участок 01 О024 Испытание, Цех 01, Участок 01 О024 Испытание, Цех 01, Участок 01 О026 О027 Оплами предприятия Опредприятия Опредприят			Акрилальдегид) (474)	_	_			предприятия	
Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) О024 Испытание, Цех 01, Участок 01 О024 Испытание, Цех 01, Участок 01 О024 Испытание, Цех 01, Участок 01 О026 О026 О026 О026 О026 О026 О026 О026			Формальдегид (Метаналь) (609)	1 pas/	кварт	0.0226	10.7451359	Силами	0001
Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10) 0024 Испытание, Цех 01, Азота (IV) диоксид (Азота диоксид) (1 раз/кварт				_	-			предприятия	
пересчете на C); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт Участок 01 Участок 01 Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт Сера диоксид (Ангидрид сернистый, 1 раз/ кварт О.2933 181.002233 Силами предприятия О.381 235.123937 Силами предприятия О.001 Предприятия О.001 О.0078 60.3546483 Силами предприятия О.001			Алканы C12-19 /в пересчете на C/ (1 pas/	кварт	0.226	107.451359	Силами	0001
0024 Испытание, Цех 01, Участок 01 Даота (IV) диоксид (Азота диоксид) (1 раз/ кварт 0.2933 181.002233 Силами предприятия 0001 1 раз/ кварт 0.381 235.123937 Силами предприятия 0001 1 раз/ кварт 0.0489 30.1773241 Силами предприятия 0001 1 раз/ кварт 0.0489 30.1773241 Силами предприятия 0001 1 раз/ кварт 0.0978 60.3546483 Силами 0001 1 раз/ кварт 0.0978 0.0978 0.3546483 Силами 0001 1 раз/ кварт 0.0978 0.0978 0.3546483 Силами 0001 00			Углеводороды предельные С12-С19 (в	_	_			предприятия	
0024 Испытание, Цех 01, Участок 01 Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт			пересчете на С); Растворитель РПК-						
Участок 01 4) Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.381 235.123937 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0489 30.1773241 Силами предприятия Сера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0978 60.3546483 Силами 0001			265Π) (10)						
Азот (II) оксид (Азота оксид) (6) 1 раз/ кварт 0.381 235.123937 Силами предприятия Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0489 30.1773241 Силами предприятия Сера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0978 60.3546483 Силами 0001	0024	Испытание, Цех 01,	Азота (IV) диоксид (Азота диоксид) (1 pas/	кварт	0.2933	181.002233	Силами	0001
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0489 30.1773241 Силами предприятия Сера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0978 60.3546483 Силами 0001		Участок 01	4)					предприятия	
Углерод (Сажа, Углерод черный) (583) 1 раз/ кварт 0.0489 30.1773241 Силами предприятия Сера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0978 60.3546483 Силами 0001			Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.381	235.123937	Силами	0001
Сера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0978 60.3546483 Силами 0001								предприятия	
Сера диоксид (Ангидрид сернистый, 1 раз/ кварт 0.0978 60.3546483 Силами 0001			Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.0489	30.1773241	Силами	0001
								предприятия	
Сернистый газ, Сера (IV) оксид) (516) предприятия			Сера диоксид (Ангидрид сернистый,	1 pas/	кварт	0.0978	60.3546483	Силами	0001
			Сернистый газ, Сера (IV) оксид) (516)					предприятия	

		Углерод оксид (Окись углерода, Угарный газ) (584)	1 pas/	кварт	0.2444	150.824908	Силами предприятия	0001
		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1 pas/	кварт	0.01173	7.23885505		0001
		Формальдегид (Метаналь) (609)	1 pas/	кварт	0.01173	7.23885505		0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 pas/	кварт	0.1173	72.3885505		0001
0025	Испытание, Цех 01, Участок 01		1 pas/	кварт	0.155	196.72461	Силами предприятия	0001
	V AGTOR OT	Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.2015	255.741993		0001
		Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.02583	32.7832044		0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 pas/	кварт	0.0517	65.6171764		0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 pas/	кварт	0.1292	163.979482		0001
		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1 pas/	кварт	0.0062	7.86898441		0001
		Формальдегид (Метаналь) (609)	1 pas/	кварт	0.0062	7.86898441		0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 pas/	кварт	0.062	78.6898441		0001
0026	Испытание, Цех 01, Участок 01	Азота (IV) диоксид (Азота диоксид) (4)	1 pas/	кварт	0.2125	174.323971	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 pas/	кварт	0.276	226.416076		0001
		Углерод (Сажа, Углерод черный) (583)	1 pas/	кварт	0.0354	29.0403228		0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 pas/	кварт	0.0708	58.0806456		0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 pas/	кварт	0.177	145.201614		0001
		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1 pas/	кварт	0.0085	6.97295886		0001
		Формальдегид (Метаналь) (609)	1 pas/	кварт	0.0085	6.97295886		0001

							предприятия	
			1 раз/ кв	зарт	0.085	69.7295886	Силами	0001
		Углеводороды предельные С12-С19 (в					предприятия	
		пересчете на С); Растворитель РПК-						
		265Π) (10)						
0027	Испытание, Цех 01,	Сероводород (Дигидросульфид) (518)	1 раз/ кв	зарт	0.00315	45.7004152	Силами	0001
	Участок 01						предприятия	
			1 раз/ кв	зарт	3.804	55188.6919	Силами	0001
		(1502*)					предприятия	
		Смесь углеводородов предельных С6-С10	1 раз/ кв	зарт	1.407	20412.8521	Силами	0001
		(1503*)					предприятия	
		Бензол (64)	1 раз/ кв	зарт	0.01838	266.658296	Силами	0001
							предприятия	
			1 раз/ кв	зарт	0.00578	83.8566348		0001
		изомеров) (203)					предприятия	
		Метилбензол (349)	1 раз/ кв	зарт	0.01155	167.568189		0001
			,				предприятия	
6016	Испытание, Цех 01,	Сероводород (Дигидросульфид) (518)	1 раз/ кв	зарт	0.001863		Силами	0001
	Участок 01				0 00101		предприятия	0.001
		Пентан (450)	1 раз/ кв	зарт	0.00184		Силами	0001
		16 (707+)	1 /		0 00001		предприятия	0001
		Метан (727*)	1 раз/ кв	варт	0.00981		Силами	0001
		Magazina (2 Magazina 200) (270)	1/		0.002655		предприятия	0001
		Изобутан (2-Метилпропан) (279)	1 раз/ кв	варт	0.002655		Силами	0001
		Смесь углеводородов предельных С1-С5	1 раз/ кв		0.0441		предприятия Силами	0001
		(1502*)	I pas/ KB	sapr	0.0441		силами предприятия	0001
6017	Испытание, Цех 01,	· · · · · · · · · · · · · · · · · · ·	1 раз/ кв	220	0.0000622		предприятия Силами	0001
0017	Участок 01	сероводород (дигидросульфид) (318)	I pas/ KB	sapī	0.0000022		предприятия	0001
	J 4aciok oi	Алканы С12-19 /в пересчете на С/ (1 раз/ кв	anm l	0.02216		предприятия Силами	0001
		Углеводороды предельные С12-С19 (в	I pas/ kb	sapi	0.02210		предприятия	0001
		пересчете на С); Растворитель РПК-					предприятия	
		265Π) (10)						
6018	Испытание, Цех 01,		1 раз/ кв	зарт	0.000005		Силами	0001
0010	Участок 01	(1502*)	r pas, RE	γαρΊ	0.000000		предприятия	0001
		Смесь углеводородов предельных С6-С10	1 раз/ кв	тава	0.000002		Силами	0001
		(1503*)		- T	1.100002		предприятия	
6019	Испытание, Цех 01,	1,	1 раз/ кв	тава	0.00002626		Силами	0001
	Участок 01		1 - 2, -12	1			предприятия	
		Алканы C12-19 /в пересчете на C/ (1 раз/ кв	зарт	0.00935		Силами	0001
		Углеводороды предельные C12-C19 (в	_	-			предприятия	
•	ı	• • • •	1	į	Ĺ			•

		пересчете на С); Растворитель РПК- 265П) (10)				
5020	Испытание, Цех 01, Участок 01	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	1 раз/ кварт	0.000333	Силами предприятия	0001
5021	Испытание, Цех 01, Участок 01	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1 раз/ кварт	0.002641	Силами предприятия	0001
022	Испытание, Цех 01, Участок 01	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.001863	Силами предприятия	0001
		Пентан (450)	1 раз/ кварт	0.00184	Силами предприятия	0001
		Метан (727*)	1 раз/ кварт	0.00981	Силами предприятия	0001
		Изобутан (2-Метилпропан) (279)	1 раз/ кварт	0.002655	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0.0441	Силами предприятия	0001
023	Испытание, Цех 01, Участок 01	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.0000622	Силами предприятия	0001
		Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.02216	Силами предприятия	0001
024	Испытание, Цех 01, Участок 01	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0.000005	Силами предприятия	0001
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0.000002	Силами предприятия	0001
026	Испытание, Цех 01, Участок 01	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00002626	Силами предприятия	0001
		Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.00935	Силами предприятия	0001
027	Испытание, Цех 01, Участок 01	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	1 раз/ кварт	0.000333	Силами предприятия	0001

	' ' '		1 раз/ кварт	0.002641	Сила		0001
	Участок 01	двуокись кремния в %: 70-20 (шамот,			пред	приятия	
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					

примечание:

Методики проведения контроля:

0001 - Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.

11. РАСЧЕТ ПЛАТЕЖЕЙ ЗА ЭМИССИИ В ОКРУЖАЮЩУЮ СРЕДУ

Расчет платы за эмиссии в окружающую среду производится в соответствии с:

- Кодексом Республики Казахстан «О налогах и других обязательных платежах в бюджет от 10.12.2008 года № 99 IV 3PK (Налоговый Кодекс).
- Решением маслихата Кызылординской области «О ставках платы за эмиссии в окружающую среду» (от 29.03.2018 года №188).
- Размером 1 МРП на соответствующий год.

Таблица 11.1 - Ставки платы за выбросы загрязняющих веществ от стационарных источников.

№ n/n	Виды загрязняющих веществ	Ставки платы за 1 тонну, (МРП)	Ставки платы за 1 килограмм, (МРП)
1	2	3	4
1	Окислы серы	20	
2	Окислы азота	20	
3	Пыль и зола	10	
4	Свинец и его соединения	3986	
5	Сероводород	124	
6	Фенолы	332	
7	Углеводороды	0,32	
8	Формальдегид	332	
9	Окислы углерода	0,32	
10	Метан	0,02	
11	Сажа	24	
12	Окислы железа	30	
13	Аммиак	24	
14	Хром шестивалентный	798	
15	Окислы меди	598	
16	Бенз(а)пирен		996,6

Таблица 11.2 - Ставки платы за выбросы загрязняющих веществ от сжигания попутного и (или) природного газа в факелах

№ n/n	Виды загрязняющих веществ	Ставки платы за 1 тонну, (МРП)
1	2	3
1	Углеводороды	44,6
2	Окислы углерода	14,6
3	Метан	0,8
4	Диоксид серы	200
5	Диоксид азота	200
6	Сажа	240
7	Сероводород	1240
8	меркаптан	199320

Расчет платы за выбросы загрязняющих веществ от автотранспорта

Плата за выбросы загрязняющих веществ автотранспортными средствами (экологический налог) рассматривается как плата, направляемая на сохранение и улучшение состояния атмосферного воздуха.

Размер платы за выброс загрязняющих веществ автотранспортными средствами определяется из расчета количества всего израсходованного топлива по формуле:

где: $Q_{\text{авто}}$ - плата за выбросы 3B от автотранспортных средств, тенге/год;

 γ - норматив платы за выбросы, образовавшиеся при сжигании 1 тонны і-го вида топлива, МРП/т.;

 $Mi^{aвто}$ - расход і-го вида топлива, т;

і - вид топлива;

п - количество видов используемого топлива.

Для автотранспортных предприятий плата взимается за весь объем использованного топлива. Для предприятий, которые используют автотранспорт на условиях аренды, плата взимается с арендодателя, если иные условия не оговорены в договоре на аренду автотранспорта.

Таблица 11.3 - Ставки платы за передвижной транспорт

Показатель выброса ЗВ в атмосферу от передвижных	Ставка платы за 1 тонну
источников	топлива (МРП), γ
Для неэтилированного бензина	0,66
Для дизельного топлива	0,9
Для сжиженного газа	0,48

Расчет платы за выбросы загрязняющих веществ в период реализации намечаемой деятельности производится в порядке специального природопользования на основании экологического разрешения.

Таблица 11.3 – Расчет платежей за эмиссии на период строительства скважины

Наименование загрязняющих веществ	Объем выбросов ЗВ, т/пер	МРП, тенге	Ставка платы за 1 тонну, тенге	Плата за эмиссии, тенге/пер	
	От стациона	оных источник	ОВ		
Углерод оксид	15,8900	3932	1258,2	19993,4	
Окислы азота	43,8400	3932	78640,0	3447577,6	
Оксилы серы	6,3566	3932	78640,0	499883,0	
Пыль неорганическая: ниже					
20% двуокиси кремния	0,0151	3932	39320,0	592,2	
Углеводороды	9,3941	3932	1258,2	11820,0	
Метан	0,0727	3932	78,6	5,7	
Формальдегид	0,7623	3932	1305424,0	995176,9	
Углерод (Сажа)	3,1780	3932	94368,0	299901,5	
Сероводород	0,0148	3932	487568,0	7204,4	
	Итого от стационарных источников: 5 274 950,				
	При сжигани	и газа на факел	ıax		
Углерод оксид	0,0311	3932	57407,2	1785,9	
Метан	0,0008	3932	3145,6	2,4	
Азота (IV) диоксид	0,0037	3932	786400,0	2935,8	
Углерод (Сажа)	0,0031	3932	943680,0	2935,8	
Азот (II) оксид	0,0006	3932	786400,0	477,1	
	Итог	о при сжигані	ии газа на факелах:	8 137,0	
	От передвиж	ных источнико	DB:		
Расход топлива	-			159,0	
Норматив платы				3538,8	
Плата тенге/пер.				562737,1	
_		-	Итого:	5 845 824,6	

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Экологический кодекс РК №400-VI 3PK от 02.01.2021 г.
- 2. ГОСТ 17.2.3.01-86. Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов
- 3. ГОСТ 17.2.4.02-81. Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ
- 4. Приказ МЭГПР Республики Казахстан от 10 марта 2021 года № 63 «Об утверждении Методики определения нормативов эмиссий в окружающую среду».
- 5. Приказ Министра национальной экономики Республики Казахстан от 28 февраля 2015 года № 168 «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах».
- 6. Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04.-2004. Астана, 2005г.
- 7. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. РНД 211.2.01.-97. Алматы, 1997 г.
- 8. Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей. Министерство охраны окружающей среды РК. РНД. Астана 2008г.
- 9. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных, Приложение №4 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100.
- 10. Методические указания по определению загрязняющих веществ в атмосфере из резервуаров. РНД 211.2.02.09.-2004. Астана, 2005 г.
 - 11. Рекомендация по делению предприятий на категории опасности (КОП). Алматы, 1991г.
- 12. Рекомендация по оформлению и содержанию проектов нормативов предельно допустимых выбросов в атмосферу для предприятий РК. РНД 211.02.02-97, Астана-2005г.
- 13. Руководство по контролю источников загрязнения атмосферы РНД 211.3.01.06-97, Алматы, 1997 г.
- 14. Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы, 1996 г.
- 15. Сборник нормативно-методических документов по охране атмосферного воздуха. Алматы, 1995 г.
- 16. "Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008г. (*Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух.(дополненное и переработанное), СПб, НИИ Атмосфера, 2012).
- 17. Методика по регулированию выбросов при неблагоприятных метеорологических условиях (Приложение 40 к приказу Министра ООС №298 от 29.11.2010 г.). Астана, 2010 г.
- 18. Проект разработки сланцевой нефти Карагансайского участка нетрадиционных источников углеводородов, расположенного в Улытауской и Кызылординской областях Республики Казахстан, г. Астана, 2024, ТОО "Geoscience Consulting";
- 19. Индивидуальный технический проект на строительство оценочной скважины KRSO-1 глубиной 2850 м (по вертикали) с горизонтальным окончанием на Карагансайском участке нетрадиционных источников углеводородов, расположеннного в Улытауской и Кызылординской областях Республики Казахстан, г. Астана, 2025, TOO "Geoscience Consulting".

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ НА ПЕРИОД РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ ПО ИСПЫТАНИЮ ОЦЕНОЧНЫХ СКВАЖИН

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

1. "Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008г.

2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. (дополненное и переработанное), СПб, НИИ Атмосфера, 2005

Площадка: ИТП оценочных скважин Карагансай

Цех: Испытание Источник: 0012 Наименование: факел Тип: Высотная

Тип сжигаемой смеси: Некондиционная газовая и газоконденсатная смесь

Тип месторождения: бессернистое

1. РАСЧЕТ ВСПОМОГАТЕЛЬНЫХ ПАРАМЕТРОВ

Таблица процентного содержания составляющих смеси.

Состав смеси задавался в объемных долях.

Компонент	[%]об.	[%]мас.	Молек.мас.	Плотность
Метан(СН4)	40.684	20.1034996	16.043	0.7162
Этан(С2Н6)	19.859	18.3930283	30.07	1.3424
Пропан(СЗН8)	20.521	27.8721199	44.097	1.9686
Бутан(С4Н10)	16.504	29.5465750	58.124	2.5948
Пентан(С5Н12)	1.373	3.05123269	72.151	3.2210268
Азот(N2)	0.816	0.70413952	28.016	1.2507
Диоксид углерода(СО2)	0.243	0.32940481	44.011	1.9648

Молярная масса смеси M, кг/моль (прил.3,(5)): 32.46665627

Плотность сжигаемой смеси $\mathbf{\textit{R}}_{o}$, кг/м 3 : 1.186

Показатель адиабаты \boldsymbol{K} (23):

$$K = \sum_{i=1}^{N} (K_i * [i]_o) = 1.201514$$

где (K_i) - показатель адиабаты для индивидуальных углеводородов;

 $[i]_o$ - объемные единицы составляющих смеси, %;

Скорость распространения звука в смеси W_{36} , м/с (прил.6):

$$W_{36} = 91.5 * (K * (T_0 + 273) / M)^{0.5} = 91.5 * (1.201514 * (800 + 273) / 32.46665627)^{0.5} = 576.5893166$$

где T_{σ} - температура смеси, град.С;

Объемный расход B, м³/с: **0.00023**

Скорость истечения смеси W_{ucm} , м/с (3):

$$W_{ucm} = 4 * B / (pi * d^2) = 4 * 0.00023 / (3.141592654 * 0.08^2) = 0.045757046$$

Массовый расход G, г/с (2):

 $G = 1000 * B * R_0 = 1000 * 0.00023 * 1.186 = 0.27278$

Проверка условия бессажевого горения, т.к. $W_{ucm} \ / W_{36} = 0.000079358 < 0.2$, горение сажевое.

2.РАСЧЕТ МОЩНОСТИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Полнота сгорания углеводородной смеси n: 0.9984

Массовое содержание углерода $[C]_M$, % (прил.3, (8)):

$$[C]_{M} = 100 * 12 * \sum_{i=1}^{N} (x_{i} * [i]_{o}) / ((100 - [\text{Her}]_{o}) * M) = 100 * 12 * \sum_{i=1}^{N} (x_{i} * [i]_{o}) / ((100 - 0) * 32.4666563) = i = 1$$

79.49903983

```
[нег]_{o} - общее содержание негорючих примесей, %: ; величиной [нег]_{o} можно пренебречь, т.к. ее значение не превышает 3%; Расчет мощности выброса метана, оксида углерода, оксидов азота, сажи M_{i}, г/с: (1) M_{i} = yB_{i} * G где yB_{i} - удельные выбросы вредных веществ, г/г;
```

0.8, 0.13 - коэффициенты трансформации оксидов азота в атмосфере ([2], π .2.2.4)

Код	Примесь	<i>УВ г/г</i>	М г/с
0337	Углерод оксид (Окись углерода, Угарный	0.02	0.0054556
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.8*0.003	0.0006547
0304	Азот (II) оксид (Азота оксид) (6)	0.13*0.003	0.0001064
0410	Метан (727*)	0.0005	0.00013639
0328	Углерод (Сажа, Углерод черный) (583)	0.002	0.00054556

```
Мощность выброса диоксида углерода M_{co2} , г/с (6):
0.3294048)-0.0054556-0.0001364-0.0005456 = 0.789354568
где [CO2]_{M} - массовое содержание диоксида углерода, %;
                \emph{M}_{\it co} - мощность выброса оксида углерода, г/с;
                M_{ch4} - мощность выброса метана, г/с;
                M_c - мощность выброса сажи, г/с;
 3.РАСЧЕТ ТЕМПЕРАТУРЫ ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ
Низшая теплота сгорания \mathbf{Q}_{m}, ккал/м³ (прил.3,(1)):
 Q_{H2} = 85.5 * [CH4]_o + 152 * [C2H6]_o + 218 * [C3H8]_o + 283 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * [C4H10]_o + 349 * [C5H12]_o + 349 
40.684 + 152 * 19.859 + 218 * 20.521 + 283 * 16.504 + 349 * 1.373 + 56 * 0 = 16120.437
 где [CH2]_o - содержание метана, %;
                [C2H6]_{o} - содержание этана, %;
                [СЗН8]_{0} - содержание пропана, %;
                [C4H10]_o - содержание бутана, %;
                [C5H12]_{o} - содержание пентана, %;
Доля энергии теряемая за счет излучения \boldsymbol{E} (11):
E = 0.048 * (M)^{0.5} = 0.048 * (32.46665627)^{0.5} = 0.274
Объемное содержание кислорода [02]_o, %:
                          N
                                                                                                            N
[02]_0 = \sum ([i]_0 * A_0 * x_i / M_0) = \sum ([i]_0 * 16 * x_i / M_0) = 0.176683102
                    i = 1
                                                                                                       i = 1
 где A_o - атомная масса кислорода;
                x_i - количество атомов кислорода;
                M_o - молярная масса составляющей смеси содержащая атомы кислорода;
Стехиометрическое количество воздуха для сжигания 1~{\rm M}^3 углеводородной смеси и
 природного газа V_o , м^3/м^3 (13):
                                                                                                N
V_0 = 0.0476 * (1.5 * [H2S]_0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n} ((x + y / 4) * [CxHy]_0) - [O2]_0) = 0.0476 * (1.5 * 0 + \sum_{i=1}^{n}
0.176683102) = 17.68639008
 где x - число атомов углерода;
               у - число атомов водорода;
Количество газовоздушной смеси, полученное при сжигании 1 м³ углеводородной смеси и
 природного газа V_{nc}, м^3/м^3 (12):
 V_{nc} = 1 + V_o = 1 + 17.68639008 = 18.68639008
 Предварительная теплоемкость газовоздушной смеси C_{nc} , ккал/(м^3\starград.С): {f 0.4}
 Ориентировочное значение температуры горения T_{\epsilon}, град.С (10):
 T_{c} = T_{o} + (Q_{nc} * (1-E) * n) / (V_{nc} * C_{nc}) = 800 + (16120.437 * (1-0.274) * 0.9984) / (18.68639008 * 0.4) = (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6120.437 * (1.6
 2363.26499
где T_{\it o} - температура смеси или газа, град.С;
Уточнённая теплоемкость газовоздушной смеси C_{nc}, ккал/(м^3*град.С):0.4
Температура горения T_c, град.С (10):
 T_c = T_o + (Q_{nc} * (1-E) * n) / (V_{nc} * C_{nc}) = 800 + (16120.437 * (1-0.274) * 0.9984) / (18.68639008 * 0.4) = (1.68639008 * 0.4) = (1.68639008 * 0.4)
2363.26499
```

4. РАСЧЕТ РАСХОДА ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Расход выбрасываемой в атмосферу газовоздушной смеси V_I , м $^3/$ с (14):

 $V_1 = B * V_{nc} * (273 + T_2) / 273 = 0.00023 * 18.68639008 * (273 + 2363.26499) / 273 = 0.041503016$

Длина факела $L_{\phi extit{ extit{ iny H}}}$, м:

 $L_{\phi H} = 15 * d = 15 * 0.08 = 1.2$

Высота источника выброса вредных веществ H, м (16):

 $H = L_{\phi H} + h_{\theta} = 1.2 + 10 = 11.2$

где $\pmb{h}_{\pmb{\theta}}$ - высота факельной установки от уровня земли, м;

5. РАСЧЕТ СРЕДНЕЙ СКОРОСТИ ПОСТУПЛЕНИЯ В АТМОСФЕРУ ГАЗОВОЗДУШНОЙ СМЕСИ ИЗ ИСТОЧНИКА ВЫБРОСА ($W_{\rm o}$)

Диаметр факела D_{ϕ} , м (29):

 $D_{\phi} = 0.14 * L_{\phi_H} + 0.49 * d = 0.14 * 1.2 + 0.49 * 0.08 = 0.2072$

Средняя скорость поступления в атмосферу газовоздушной смеси (W_{σ}), (м/с):

 $W_o = 1.27 * V_1 / D_{\phi}^2 = 1.27 * 0.041503016 / 0.2072^2 = 1.227732862$

6. РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Продолжительность работы факельной установки au_{r} ч/год: 792

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Валовый выброс ЗВ Π_i , т/год:

 $\Pi_i = 0.0036 * \tau * M_i = 0.0036 * 792 * 0.0054556 = 0.015555007$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс ЗВ Π_i , т/год:

 $\Pi_i = 0.0036 * \tau * M_i = 0.0036 * 792 * 0.000654672 = 0.001866601$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс ЗВ Π_i , т/год:

 $\Pi_i = 0.0036 * \tau * M_i = 0.0036 * 792 * 0.000106384 = 0.000303323$

Примесь: 0410 Метан (727*)

Валовый выброс ЗВ Π_i , т/год:

 $\Pi_i = 0.0036 * \tau * M_i = 0.0036 * 792 * 0.00013639 = 0.000388875$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Валовый выброс ЗВ Π_i , т/год:

 $\Pi_i = 0.0036 * \tau * M_i = 0.0036 * 792 * 0.00054556 = 0.001555501$

Примесь: 0380 Диоксид углерода

Валовый выброс ЗВ Π_i , т/год:

 $\Pi_i = 0.0036 * \tau * M_i = 0.0036 * 792 * 0.789354568 = 2.250607744$

Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный	0.0054556	0.015555007
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000654672	0.001866601
0304	Азот (II) оксид (Азота оксид) (6)	0.000106384	0.000303323
0410	Метан (727*)	0.00013639	0.000388875
0328	Углерод (Сажа, Углерод черный) (583)	0.00054556	0.001555501

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0013, Дымовая труба

Источник выделения N 0013 01, Дизельный двигатель УПА 60/80

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX}=67.8$ Годовой расход дизельного топлива, т/год, $G_{FGGO}=53.70$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=67.8\cdot 30$ / 3600=0.565 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=53.7\cdot 30$ / $10^3=1.61$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $67.8\cdot 1.2$ / 3600 = 0.0226 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $53.7\cdot 1.2$ / 10^3 = 0.0644

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_3=39$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / $3600=67.8\cdot 39$ / 3600=0.735 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / $10^3=53.7\cdot 39$ / $10^3=2.094$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 10 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $67.8\cdot 10$ / 3600 = 0.1883 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $53.7\cdot 10$ / 10^3 = 0.537

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=67.8\cdot 25$ / 3600=0.471 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / $10^3=53.7\cdot 25$ / $10^3=1.343$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> <u>Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $67.8\cdot 12$ / 3600 = 0.226 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $53.7\cdot 12$ / 10^3 = 0.644

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $67.8\cdot 1.2$ / 3600 = 0.0226 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $53.7\cdot 1.2$ / 10^3 = 0.0644

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_3=5$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / $3600=67.8\cdot 5$ / 3600=0.0942 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / $10^3=53.7\cdot 5$ / $10^3=0.2685$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.565	1.61
0304	Азот (II) оксид (Азота оксид) (6)	0.735	2.094
0328	Углерод (Сажа, Углерод черный) (583)	0.0942	0.2685
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.1883	0.537
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.471	1.343
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0226	0.0644
1325	Формальдегид (Метаналь) (609)	0.0226	0.0644

2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.226	0.644
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0014, Дымовая труба

Источник выделения N 0014 01, Дизельный генератор БУ

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 35.2$ Годовой расход дизельного топлива, т/год, $G_{FGGO} = 27.878$

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}/3600=35.2\cdot 30/3600=0.2933$ Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}/10^3=27.878\cdot 30/10^3=0.836$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 35.2 · 1.2 / 3600 = 0.01173 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 27.878 · 1.2 / 10^3 = 0.03345

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 39 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $35.2\cdot39$ / 3600 = 0.381 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $27.878\cdot39$ / 10^3 = 1.087

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 10 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $35.2\cdot 10$ / 3600 = 0.0978 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $27.878\cdot 10$ / 10^3 = 0.279

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 35.2 · 25 / 3600 = 0.2444 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 27.878 · 25 / 10^3 = 0.697

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> <u>Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=12$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}/3600=35.2\cdot 12/3600=0.1173$ Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}/10^3=27.878\cdot 12/10^3=0.3345$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 35.2 · 1.2 / 3600 = 0.01173 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 27.878 · 1.2 / 10^3 = 0.03345

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_9=5$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=35.2\cdot 5$ / 3600=0.0489 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / $10^3=27.878\cdot 5$ / $10^3=0.1394$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2933	0.836
0304	Азот (II) оксид (Азота оксид) (6)	0.381	1.087
0328	Углерод (Сажа, Углерод черный) (583)	0.0489	0.1394
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0978	0.279
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.2444	0.697
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.01173	0.03345
1325	Формальдегид (Метаналь) (609)	0.01173	0.03345
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.1173	0.3345

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0015, Дымовая труба

Источник выделения N 0015 01, Дизельная электростанция ВП $^{\circ}$

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX}=18.6$ Годовой расход дизельного топлива, т/год, $G_{FGGO}=14.731$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 30 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=18.6\cdot 30$ / 3600=0.155 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / $10^3=14.731\cdot 30$ / $10^3=0.442$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 18.6 · 1.2 / 3600 = 0.0062 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 14.731 · 1.2 / 10^3 = 0.01768

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_3 = 39 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / 3600 = $18.6\cdot39$ / 3600 = 0.2015 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / 10^3 = $14.731\cdot39$ / 10^3 = 0.575

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 10 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $18.6\cdot 10$ / 3600 = 0.0517 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $14.731\cdot 10$ / 10^3 = 0.1473

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $18.6\cdot 25$ / 3600 = 0.1292 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $14.731\cdot 25$ / 10^3 = 0.368

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> <u>Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $18.6\cdot 12$ / 3600 = 0.062 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $14.731\cdot 12$ / 10^3 = 0.1768

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 18.6 · 1.2 / 3600 = 0.0062 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 14.731 · 1.2 / 10^3 = 0.01768

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 5 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $18.6\cdot5$ / 3600 = 0.02583 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $14.731\cdot5$ / 10^3 = 0.0737

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.155	0.442
0304	Азот (II) оксид (Азота оксид) (6)	0.2015	0.575
0328	Углерод (Сажа, Углерод черный) (583)	0.02583	0.0737
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0517	0.1473
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1292	0.368
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0062	0.01768
1325	Формальдегид (Метаналь) (609)	0.0062	0.01768
2754	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.062	0.1768

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0016, Дымовая труба

Источник выделения N 0016 01, Цементировочный агрегат ЦА-320 Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Максимальный расхол лиз. топлива установкой, кг/час, $G_{FIMAX} = 25.5$

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX}=25.5$ Годовой расход дизельного топлива, т/год, $G_{FGGO}=20.196$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = **30** Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = **25.5** · **30** / 3600 = **0.2125** Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = **20.196** · **30** / 10^3 = **0.606**

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 25.5 \cdot 1.2 / 3600 = 0.0085 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 20.196 \cdot 1.2 / 10^3 = 0.02424

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 39 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=25.5\cdot 39$ / 3600=0.276

Валовый выброс, т/год, $_M_ = G_{FGGO} \cdot E_{3} / 10^{3} = 20.196 \cdot 39 / 10^{3} = 0.788$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 10 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 25.5 \cdot 10 / 3600 = 0.0708 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 20.196 \cdot 10 / 10^3 = 0.202

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 25.5 \cdot 25 / 3600 = 0.177 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 20.196 \cdot 25 / 10^3 = 0.505

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 25.5 \cdot 12 / 3600 = 0.085 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 20.196 \cdot 12 / 10^3 = 0.2424

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = 25.5 \cdot 1.2 / 3600 = 0.0085 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = 20.196 \cdot 1.2 / 10^3 = 0.02424

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_3=5$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / $3600=25.5\cdot 5$ / 3600=0.0354 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / $10^3=20.196\cdot 5$ / $10^3=0.101$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2125	0.606
0304	Азот (II) оксид (Азота оксид) (6)	0.276	0.788
0328	Углерод (Сажа, Углерод черный) (583)	0.0354	0.101
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0708	0.202
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.177	0.505
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0085	0.02424
1325	Формальдегид (Метаналь) (609)	0.0085	0.02424
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.085	0.2424

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0017, Емкость для нефти

Источник выделения N 0017 01, Емкость для нефти

Список литературы:

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Расчет по п. 4

вид выброса, VV = Выбросы паров нефти и бензинов

Нефтепродукт, *NPNAME* = Сырая нефть

Минимальная температура смеси, гр.С, TMIN = 27

Коэффициент Кt (Прил.7), KT = 0.69

KTMIN = 0.69

```
Максимальная температура смеси, гр.С, TMAX = 80 Коэффициент Кt (Прил.7), KT = 1.25
```

KTMAX = 1.25

Режим эксплуатации, _NAME_ = "мерник", ССВ - понтон (резервуар наземный вертикальный)

Конструкция резервуаров, _NAME_ = Наземный вертикальный

Объем одного резервуара данного типа, м3, VI = 100

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров, KNR = 1

Категория веществ, $_NAME_$ = **A**, **B**, **B**

Значение Kpsr(Прил.8), KPSR = 0.14

Значение Кртах (Прил. 8), KPM = 0.2

Коэффициент , KPSR = 0.14

Коэффициент, KPMAX = 0.2

Общий объем резервуаров, м3, V = 100

Количество жидкости закачиваемое в резервуар в течении года, т/год, $\emph{\textbf{B}} = 269.1$

Плотность смеси, $\tau/м3$, RO = 0.73

Годовая оборачиваемость резервуара (4.1.13), $NN = B / (RO \cdot V) = 269.1 / (0.73 \cdot 100) = 3.686$

Коэффициент (Прил. 10), KOB = 2.5

Максимальный объем паровоздушной смеси, вытесняемой

из резервуара во время его закачки, м3/час, VCMAX = 50

Расчет для летнего сорта нефти (бензина)

Давление паров летнего сорта, мм.рт.ст., PL = 300

Температура начала кипения смеси, гр.С, TKIP = 68.175

Молекулярная масса паров смеси, кг/кмоль, $MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 68.175 + 45 = 85.9$

Молекулярная масса паров летнего сорта, кг/кмоль, MRL = 85.9

Расчет для зимнего сорта нефти (бензина)

Давление паров зимнего сорта, мм.рт.ст., PZ = 300

Температура начала кипения смеси, гр.С, TKIP = 68.175

Молекулярная масса паров смеси, кг/кмоль, $MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 68.175 + 45 = 85.9$

Молекулярная масса паров зимнего сорта, кг/кмоль, MRZ = 85.9

Коэффициент, KB = 1

 $M = (PL \cdot KTMAX \cdot KB \cdot MRL) + (PZ \cdot KTMIN \cdot MRZ) = (300 \cdot 1.25 \cdot 1 \cdot 85.9) + (300 \cdot 0.69 \cdot 85.9) = 49993.8$

Среднегодовые выбросы, т/год (4.2.3), $M = M \cdot 0.294 \cdot KPSR \cdot KOB \cdot B / (10^7 \cdot RO) = 49993.8 \cdot 0.294 \cdot 10^7 \cdot 1$

 $0.14 \cdot 2.5 \cdot 269.1 / (10^7 \cdot 0.73) = 0.1896$

Максимальный из разовых выброс, г/с (4.2.1), $G = 0.163 \cdot PL \cdot MRL \cdot KTMAX \cdot KPMAX \cdot KB \cdot$

 $VCMAX / 10^4 = 0.163 \cdot 300 \cdot 85.9 \cdot 1.25 \cdot 0.2 \cdot 1 \cdot 50 / 10^4 = 5.25$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3В в парах, % масс (Прил. 14), CI = 72.46 Среднегодовые выбросы, т/год (4.2.5), $_M_=CI\cdot M/100$ = 72.46 \cdot 0.1896 / 100 = 0.1374 Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI\cdot G/100$ = 72.46 \cdot 5.25 / 100 = 3.804

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8 Среднегодовые выбросы, т/год (4.2.5), $_M_=CI \cdot M/100 = 26.8 \cdot 0.1896/100 = 0.0508$ Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G/100 = 26.8 \cdot 5.25/100 = 1.407$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35 Среднегодовые выбросы, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.1896 / 100 = 0.000664$ Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 5.25 / 100 = 0.01838$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22 Среднегодовые выбросы, т/год (4.2.5), $_M_=CI \cdot M/100 = 0.22 \cdot 0.1896/100 = 0.000417$ Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G/100 = 0.22 \cdot 5.25/100 = 0.01155$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Среднегодовые выбросы, т/год (4.2.5), $_M_=CI \cdot M/100 = 0.11 \cdot 0.1896/100 = 0.0002086$ Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G/100 = 0.11 \cdot 5.25/100 = 0.00578$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Среднегодовые выбросы, т/год (4.2.5), $_M_=CI\cdot M/100=0.06\cdot 0.1896/100=0.0001138$ Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI\cdot G/100=0.06\cdot 5.25/100=0.00315$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00315	0.0001138
0415	Смесь углеводородов предельных С1-С5 (1502*)	3.804	0.1374
0416	Смесь углеводородов предельных С6-С10 (1503*)	1.407	0.0508
0602	Бензол (64)	0.01838	0.000664
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00578	0.0002086
0621	Метилбензол (349)	0.01155	0.000417

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0018

Источник выделения N 0018 01, Двухнасосный цементировочный агрегат $250\,\mathrm{kBT}$ Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G_{FJMAX} = 76.22 Годовой расход дизельного топлива, т/год, G_{FGGO} = 60.370

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 30 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 30$ / 3600 = 0.635 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $60.37\cdot 30$ / 10^3 = 1.81

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 1.2$ / 3600 = 0.0254 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $60.37\cdot 1.2$ / 10^3 = 0.0724

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 39 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 39$ / 3600 = 826 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $80.37\cdot 39$ / 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_3 = 10 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / 3600 = $76.22\cdot 10$ / 3600 = 0.2117 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / 10^3 = $60.37\cdot 10$ / 10^3 = 0.604

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=76.22\cdot 25$ / 3600=0.529

Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=60.37\cdot 25$ / $10^3=1.51$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_3 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / 3600 = $76.22\cdot 12$ / 3600 = 12.54 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 10^3 = 12 / 12 / 10^3 = 12 /

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}/3600=76.22\cdot 1.2/3600=0.0254$ Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}/10^3=60.37\cdot 1.2/10^3=0.0724$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = **5** Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 5/3600$ = **0.1059** Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9/10^3$ = $60.37\cdot 5/10^3$ = **0.302**

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.635	1.81
0304	Азот (II) оксид (Азота оксид) (6)	0.826	2.354
0328	Углерод (Сажа, Углерод черный) (583)	0.1059	0.302
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.2117	0.604
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.529	1.51
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0254	0.0724
1325	Формальдегид (Метаналь) (609)	0.0254	0.0724
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.254	0.724

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014,Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0019

Источник выделения N 0019 01, Двухнасосный цементировочный агрегат $250\,\mathrm{kBt}$ Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 76.22$ Годовой расход дизельного топлива, т/год, $G_{FGGO} = 60.370$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 30 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 30$ / 3600 = 80.35 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $80.37\cdot 30$ / 10^3

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathfrak{I}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathfrak{I}}$ / $3600=76.22\cdot 1.2$ / 3600=0.0254 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathfrak{I}}$ / $10^3=60.37\cdot 1.2$ / $10^3=0.0724$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_3 = 39 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / 3600 = $76.22\cdot 39$ / 3600 = 826 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / 10^3 = $80.37\cdot 39$ / 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3 — 10^3

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_3=10$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / $3600=76.22\cdot 10$ / 3600=0.2117 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / $10^3=60.37\cdot 10$ / $10^3=0.604$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_3 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / 3600 = $76.22\cdot 25$ / 3600 = 80.529 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / 10^3 = $80.37\cdot 25$ / 10^3

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 12$ / 3600 = 0.254 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $60.37\cdot 12$ / 10^3 = 0.724

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 1.2$ / 3600 = 0.0254 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $60.37\cdot 1.2$ / 10^3 = 0.0724

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 5 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $76.22\cdot 5$ / 3600 = 1059 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 =

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.635	1.81
0304	Азот (II) оксид (Азота оксид) (6)	0.826	2.354
0328	Углерод (Сажа, Углерод черный) (583)	0.1059	0.302
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.2117	0.604
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.529	1.51
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0254	0.0724
1325	Формальдегид (Метаналь) (609)	0.0254	0.0724
2754	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.254	0.724

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0020

Источник выделения N 0020 01, Дизельный генератор флотатора Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 50.82$ Годовой расход дизельного топлива, т/год, $G_{FGGO} = 40.247$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_3=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / $3600=50.82\cdot 30$ / 3600=0.4235 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / $10^3=40.247\cdot 30$ / $10^3=1.207$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 1.2$ / 3600 = 0.01694 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 1.2$ / 10^3 = 0.0483

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_3=39$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / $3600=50.82\cdot 39$ / 3600=0.55 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / $10^3=40.247\cdot 39$ / $10^3=1.57$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_3 = 10 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_3$ / $3600=50.82\cdot 10$ / 3600=0.1412 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_3$ / $10^3=40.247\cdot 10$ / $10^3=0.4025$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 25$ / 3600 = 0.353 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 25$ / 10^3 = 1.006

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 12$ / 3600 = 0.1694 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 12$ / 10^3 = 0.483

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 1.2$ / 3600 = 0.01694 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 1.2$ / 10^3 = 0.0483

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 5 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot5$ / 3600 = 0.0706 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot5$ / 10^3 = 0.2012

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.4235	1.207
0304	Азот (II) оксид (Азота оксид) (6)	0.55	1.57
0328	Углерод (Сажа, Углерод черный) (583)	0.0706	0.2012
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.1412	0.4025
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.353	1.006
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.01694	0.0483
1325	Формальдегид (Метаналь) (609)	0.01694	0.0483
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.1694	0.483
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 0021

Источник выделения N 0021 01, Дизельный генератор флотатора Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 50.82$ Годовой расход дизельного топлива, т/год, $G_{FGGO} = 40.247$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_9=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / $3600=50.82\cdot 30$ / 3600=0.4235 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / $10^3=40.247\cdot 30$ / $10^3=1.207$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 1.2$ / 3600 = 0.01694 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 1.2$ / 10^3 = 0.0483

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 39 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 39$ / 3600 = 0.55 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 39$ / 10^3 = 1.57

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 10 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 10$ / 3600 = 0.1412 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 10$ / 10^3 = 0.4025

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 25 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 25$ / 3600 = 0.353 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 25$ / 10^3 = 1.006

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 12 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 12$ / 3600 = 0.1694 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 12$ / 10^3 = 0.483

<u> Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = 1.2 Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 1.2$ / 3600 = 0.01694 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 1.2$ / 10^3 = 0.0483

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E_9 = **5** Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_9$ / 3600 = $50.82\cdot 5$ / 3600 = 0.0706 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_9$ / 10^3 = $40.247\cdot 5$ / 10^3 = 0.2012

Итоговая таблица:

Код	Наименование 3В	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.4235	1.207
0304	Азот (II) оксид (Азота оксид) (6)	0.55	1.57
0328	Углерод (Сажа, Углерод черный) (583)	0.0706	0.2012
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.1412	0.4025
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.353	1.006
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.01694	0.0483
1325	Формальдегид (Метаналь) (609)	0.01694	0.0483
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.1694	0.483
	предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 6016, Неорган. источник Источник выделения N 6016 01, скважина (ЗРА и Φ С) Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Наименование оборудования: Запорно-регулирующая арматура (среда газовая) Наименование технологического потока: Неочищенный нефтяной газ

Расчетная величина утечки, кг/час(Прил.Б1), Q = 0.020988

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), $X = \mathbf{0.293}$ Общее количество данного оборудования, шт., $N = \mathbf{12}$

Среднее время работы данного оборудования, час/год, $_T_=792$

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.293 \cdot 0.020988 \cdot 12 = 0.0738$ Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.0738/3.6 = 0.0205

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 63.39 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0205\cdot 63.39/100=0.013$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.013\cdot 792\cdot 3600/10^6=0.0371$

<u>Примесь: 0410 Метан (727*)</u>

Массовая концентрация компонента в потоке, %, C = 14.12 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0205\cdot 14.12/100=0.002895$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.002895\cdot 792\cdot 3600/10^6=0.00825$

Примесь: 0412 Изобутан (2-Метилпропан) (279)

Массовая концентрация компонента в потоке, %, C=3.82 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0205\cdot 3.82/100=0.000783$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000783\cdot 792\cdot 3600/10^6=0.000232$

Примесь: 0405 Пентан (450)

Массовая концентрация компонента в потоке, %, C=2.65 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0205\cdot 2.65/100=0.000543$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.000543\cdot 792\cdot 3600/10^6=0.001548$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Массовая концентрация компонента в потоке, %, C = 2.68 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0205\cdot 2.68/100=0.000549$

```
Валовый выброс, т/год, \_M\_=\_G\_\cdot\_T\_\cdot 3600/10^6=0.000549\cdot 792\cdot 3600/10^6=0.001565
```

Наименование оборудования: Предохранительные клапаны (парогазовые потоки) Наименование технологического потока: Неочищенный нефтяной газ Расчетная величина утечки, кг/час (Прил.Б1), Q=0.136008 Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил.Б1), X=0.46 Общее количество данного оборудования, шт., N=4 Среднее время работы данного оборудования, час/год, $_T=792$ Суммарная утечка всех компонентов, кг/час (6.1), $G=X\cdot Q\cdot N=0.46\cdot 0.136008\cdot 4=0.2503$ Суммарная утечка всех компонентов, г/с, G=G/3.6=0.2503/3.6=0.0695

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C=63.39 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0695\cdot 63.39/100=0.0441$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0441\cdot 792\cdot 3600/10^6=0.1257$

Примесь: 0410 Метан (727*)

Массовая концентрация компонента в потоке, %, C=14.12 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0695\cdot 14.12/100=0.00981$ Валовый выброс, т/год, $_M_=_G_\cdot _T_\cdot 3600/10^6=0.00981\cdot 792\cdot 3600/10^6=0.02797$

Примесь: 0412 Изобутан (2-Метилпропан) (279)

Массовая концентрация компонента в потоке, %, C = 3.82 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0695\cdot 3.82/100=0.002655$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.002655\cdot 792\cdot 3600/10^6=0.00757$

Примесь: 0405 Пентан (450)

Массовая концентрация компонента в потоке, %, C=2.65 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0695\cdot 2.65/100=0.00184$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00184\cdot 792\cdot 3600/10^6=0.00525$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Массовая концентрация компонента в потоке, %, C = 2.68 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.0695\cdot 2.68/100=0.001863$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.001863\cdot 792\cdot 3600/10^6=0.00531$

Наименование оборудования: Φ ланцевые соединения (легкие углеводороды, двух Φ азные среды)

Наименование технологического потока: Неочищенный нефтяной газ

Расчетная величина утечки, кг/час(Прил.Б1), Q = 0.000396

Расчетная доля уплотнений, потерявших герметичность, доли единицы(Прил.Б1), X = 0.05 Общее количество данного оборудования, шт., N = 26

Среднее время работы данного оборудования, час/год, $_T_=792$

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.05 \cdot 0.000396 \cdot 26 = 0.000515$ Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.000515/3.6 = 0.000143

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C=63.39 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000143\cdot 63.39/100=0.0000906$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000906\cdot 792\cdot 3600/10^6=0.0002583$

Примесь: 0410 Метан (727*)

Массовая концентрация компонента в потоке, %, C=14.12 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000143\cdot 14.12/100=0.0000202$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000202\cdot 792\cdot 3600/10^6=0.0000576$

Примесь: 0412 Изобутан (2-Метилпропан) (279)

Массовая концентрация компонента в потоке, %, C=3.82 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000143\cdot 3.82/100=0.0000546$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000546\cdot 792\cdot 3600/10^6=0.00001557$

Примесь: 0405 Пентан (450)

Массовая концентрация компонента в потоке, %, C = 2.65 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000143\cdot 2.65/100=0.00000379$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000379\cdot 792\cdot 3600/10^6=0.0000108$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Массовая концентрация компонента в потоке, %, C=2.68 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000143\cdot 2.68/100=0.0000383$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000383\cdot 792\cdot 3600/10^6=0.00001092$

Наименование оборудования: Насосы с сальниковыми уплотнениями (легкие и сжиженные углеводороды)

Наименование технологического потока: Неочищенный нефтяной газ

Расчетная доля уплотнений, потерявших герметичность, доли единицы (Прил. E1), X = 0.293

Общее количество данного оборудования, шт., $N=\mathbf{4}$

Среднее время работы данного оборудования, час/год, $_T_=792$

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.293 \cdot 0.000396 \cdot 4 = 0.000464$ Суммарная утечка всех компонентов, г/с, G = G/3.6 = 0.000464/3.6 = 0.000129

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 63.39 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000129\cdot 63.39/100=0.0000818$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000818\cdot 792\cdot 3600/10^6=0.000233$

Примесь: 0410 Метан (727*)

Массовая концентрация компонента в потоке, %, C=14.12 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000129\cdot 14.12/100=0.0000182$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.0000182\cdot 792\cdot 3600/10^6=0.0000519$

Примесь: 0412 Изобутан (2-Метилпропан) (279)

Массовая концентрация компонента в потоке, %, C=3.82 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000129\cdot 3.82/100=0.0000493$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000493\cdot 792\cdot 3600/10^6=0.00001406$

Примесь: 0405 Пентан (450)

Массовая концентрация компонента в потоке, %, C=2.65 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000129\cdot 2.65/100=0.0000342$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000342\cdot 792\cdot 3600/10^6=0.00000975$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Массовая концентрация компонента в потоке, %, C=2.68 Максимальный разовый выброс, г/с, $_G_=G\cdot C/100=0.000129\cdot 2.68/100=0.0000346$ Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600/10^6=0.00000346\cdot 792\cdot 3600/10^6=0.00000987$

Сводная таблица расчетов:

Оборудов.	Технологич. поток	Общее кол- во, шт.	Время ра- боты, ч/г
Запорно-регулирующая арматура (среда газовая)	Неочищенный нефтяной газ	12	792
Предохранительные клапаны (парогазовые потоки)	Неочищенный нефтяной газ	4	792

Фланцевые соединения (легкие углеводороды,	Неочищенный нефтяной газ	26	792
двухфазные среды)			
Насосы с сальниковыми уплотнениями (легкие и	Неочищенный нефтяной газ	4	792
сжиженные углеводороды)			

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.001863	0.00689579
0405	Пентан (450)	0.00184	0.00681855
0410	Метан (727*)	0.00981	0.0363295
0412	Изобутан (2-Метилпропан) (279)	0.002655	0.00983163
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.0441	0.1632913

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 6017, Неорган. источник

Источник выделения N 6017 01, насос для подачи ГСМ к дизелям

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Дизельное топливо

Наименование оборудования: Насос центробежный с одним торцевым уплотнением вала

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = **792**

Общее количество оборудования данного типа, шт., $N={f 4}$

Количество одновременно работающего оборудования, шт., N1=2

GNV = 2

Удельный выброс, кг/час(табл. 6.1), Q = 0.04

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot N1/3.6 = 0.04 \cdot 2/3.6 = 0.02222$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_{-})/1000 = (0.04 \cdot 4 \cdot 792)/1000 = 0.1267$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> Растворитель РПК-265П) (10)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G/100=99.72 \cdot 0.02222/100=0.02216$

Валовый выброс, т/год (4.2.5), $_M_=CI\cdot M/100=99.72\cdot 0.1267/100=0.1263$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.28**

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI\cdot G/100=0.28\cdot 0.02222/100=0.0000622$

Валовый выброс, т/год (4.2.5), $_M_=CI\cdot M/100=0.28\cdot 0.1267/100=0.000355$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.0000622	0.000355
	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.02216	0.1263

Источник № 6018 Пункт налива нефти

Автоматизированные нефтеналивные стояки предназначены для налива нефти в автоцистерны(АСН 5M2 «Дельта») в количестве 1 шт.

Количество выбросов загрязняющих веществ (кг/ч) при наливе нефтепродуктов в автоцистерны определяется по формуле:

$M=2.52*V**Ps(38)*M**(K5x+K5T)*K8*(1-n)*10^{-9},$

где

Vж- годовой объем наливаемой жидкости (м³/год)

 K_{8} - коэффициент, зависящий от давления насыщенных паров и климатической зоны

%

%

(значение К₈ при наливе в нижнюю част цистерны принимается по таблице 4.1)

Ps₍₃₈₎-давление насыщенных паров жидкости при температуре 38°C

Мп- молекулярная масса паров жидкости

К5х, К5т- коэффициенты, принимаются по таблицам приложения 1

η- коэффициент эффективности газоулавливающего устройства резервуара

Исхолные ланные:

- /					
	Vж	323	время работы	792	ч/год
	p	0,8320	коэффициент	0,350729517	
	$m_{\mathbb{x}}$	269,07			
	$Ps_{(38)}$	239			
	Мπ	120			
	K ₅ x	0,323			
	K_{5T}	0,633			
	K ₈	0,51			
	ŋ	0,8			

Потери от испарения для нефти составят:		0,002279175	кг/ч
Максимально – разовый выброс составит:	Пм.Р.	0,000633104	г/с
Валовой выброс составит:	Пвал	0.001805107	т/год

Значение массовых долей общей серы, сероводорода и меркаптановой серы принимаются по данным результата анализа нефти.

Углеводороды (C₆-C₁₀) 0,268 Углеводороды (C₁-C₅) 0,7246

Значение массового содержание в парах нефти их выбросы можно рассчитать по формуле:

 $\Pi_{i} = \Pi_{\text{вал}} * C_{i} * 10^{-2}$ где

C- массовая концентрация —го компонента в парах нефтепродуктов (% по массе) принимается по результатам анализа компонентного состава нефти.

Выбросы (С6-С10)	4,84E-06	т/год	0,000002	г/с
Выбросы (С1-С5)	1,31E-05	т/год	0,000005	г/с

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 6019, Неорган. источник

Источник выделения N 6019 01, емкость для хранения дизельного топлива

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011~M196

Выбросы от резервуаров

Климатическая зона: третья - южные области РК (прил. 17)

Нефтепродукт: Дизельное топливо

Конструкция резервуара: Наземный

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 15), CMAX =

2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 117.74

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3 (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL =

200

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, r/м3 (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL=15

Максимальный из разовых выброс, г/с (7.1.2), $GR = (CMAX \cdot VSL)/3600 = (2.25 \cdot 15)/3600 =$

0.00938

Выбросы при закачке в резервуары, т/год (7.1.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 117.74 + 1.6 \cdot 200) \cdot 10^{-6} = 0.00046$

Удельный выброс при проливах, г/м3 (с. 20), J = 50

Выбросы паров нефтепродукта при проливах, т/год (7.1.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (117.74 + 200) \cdot 10^{-6} = 0.00794$

Валовый выброс, т/год (7.1.3), MR = MZAK + MPRR = 0.00046 + 0.00794 = 0.0084

Полагаем, G = 0.00938

Полагаем, M = 0.0084

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);</u> <u>Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 99.72

Валовый выброс, т/год (4.2.5), $_{M_{-}}$ = $CI \cdot M/100 = 99.72 \cdot 0.0084/100 = 0.00838$

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G/100 = 99.72 \cdot 0.00938/100 = 0.00935$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (4.2.5), $M_{-} = CI \cdot M / 100 = 0.28 \cdot 0.0084 / 100 = 0.0000235$

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI\cdot G/100=0.28\cdot 0.00938/100=$

0.00002626

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00002626	0.0000235
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.00935	0.00838

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 013, Жалагашский район

Объект N 0014, Вариант 4 ИТП оценочных скважин Карагансай

Источник загрязнения N 6020, Неорган. источник

Источник выделения N 6020 01, емкость для хранения масла

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от резервуаров

Климатическая зона: третья - южные области РК (прил. 17)

Нефтепродукт: Масла

Конструкция резервуара: Наземный

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX =

0.24

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, $QOZ = \mathbf{5}$ Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, r/м3 (Прил. 15), COZ = 0.15

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 2.9434

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, r/м3 (Прил. 15), CVL = 0.15

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, $VSL=\mathbf{5}$

Максимальный из разовых выброс, г/с (7.1.2), $GR = (CMAX \cdot VSL)/3600 = (0.24 \cdot 5)/3600 =$

0.000333

Выбросы при закачке в резервуары, т/год (7.1.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.15 \cdot 5 + 0.15 \cdot 2.9434) \cdot 10^{-6} = 0.000001192$

Удельный выброс при проливах, г/м3 (с. 20), J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (7.1.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} =$

$0.5 \cdot 12.5 \cdot (5 + 2.9434) \cdot 10^{-6} = 0.0000496$

Валовый выброс, τ /год (7.1.3), MR = MZAK + MPRR = 0.000001192 + 0.0000496 = 0.0000508

Полагаем, G = 0.000333

Полагаем, M = 0.0000508

Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 100Валовый выброс, т/год (4.2.5), $_M_=CI \cdot M/100 = 100 \cdot 0.0000508/100 = 0.0000508$ Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G/100 = 100 \cdot 0.000333/100 = 0.000333$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
2735	Масло минеральное нефтяное (веретенное, машинное,	0.000333	0.0000508	
	цилиндровое и др.) (716*)			

Исто	чник №6021 Узел разгрузки цемента		
Pac	нет выбросов пыли цемента, образуемой при пересыпке в смесительны	й аппарат	
1.	Исходные данные:		
1.1.	G _{год} - Количество поступающего материала за год	345,63	т/год
.2.	G - Количество перерабатываемого материала	0,43640	т/час
.3.	F - Поверхность пыления в плане	50,0	M ²
1.4.	В - Коэффициент, учитывающий высоту пересыпки	0,50	(таблица 7)
1.5.	Т - Время работы	792	ч/год
2.	Расчет:		
2.1.	Q - Объем пылевыделения, где		
	$K_1*K_2*K_3*K_4*K_5*K_7*G*10^6*B$		
	$Q = + K_3 *K_4 *K_5 *K_6 *K_7 *q *F$	0,00203	г/сек
	0,0000000000,3600		
	q - Объем пылевыделения, где	0,003	(таблица 6)
	К1 - доля пылевой фракции в материале	0,04	(таблица 1)
	К2 - доля пыли переходящая в аэрозоль	0,03	(таблица 1)
	Кз - коэффициент, учитывающий метеоусловий	1,4	(таблица 2)
	К4 - коэффициент, учитывающий местных условий	1	(таблица 3)
	К5 - коэффициент, учитывающий влажность материала	0,01	(таблица 4)
	К ₆ - коэфф., учит-щий профиль поверхности складируемого мат-ла	1,45	(таблица 5)
	К7 - коэффициент, учитывающий крупность материала	0,5	(таблица 5)
2.2.	М - Общее пылевыделения*		
Утв.	Q*T*3600/10 ⁶ , т/год (Выбросы ВВ пыль цементная) одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г.	0,006	т/год
<i>Утв.</i> Расч	одика расчета нормативов выбросов от неорганизованных источников	0,006	т/год
Утв. Расч №	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование	0,006	т/год Ед.изм.
Утв. Расч № пп	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении		
Утв. Расч № пп	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование		
Утв. Расч № пп 1.1.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные:	Количество	Ед.изм.
Утв. Расч № пп 1.1. 1.2.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Gгод - Количество поступающего материала за год	Количество 345,63	Ед.изм. т/год
Утв. Расч № пп 1.1. 1.2. 1.3.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: G _{год} - Количество поступающего материала за год G - Количество перерабатываемого материала	Количество 345,63 0,43640	Ед.изм. т/год т/час
Утв.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Gгод - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане	Количество 345,63 0,43640 50	Ед.изм. т/год т/час м ²
Утв. Расу № пп 1.1. 1.2. 1.3. 1.4. 2.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Gгод - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане Т - Время работы Расчет:	Количество 345,63 0,43640 50	Ед.изм. т/год т/час м ²
Утв. Расу № пп 1.1. 1.2. 1.3. 1.4. 2.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Gгод - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане Т - Время работы	Количество 345,63 0,43640 50	Ед.изм. т/год т/час м ²
Утв. Расч № пп 1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Gгод - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане Т - Время работы Расчет: Q - Объем пылевыделения, где	Количество 345,63 0,43640 50	Ед.изм. т/год т/час м ²
Утв. Расч № пп 1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Gгод - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане Т - Время работы Расчет:	Количество 345,63 0,43640 50 792	Ед.изм. т/год т/час м² ч/год
Утв. Расч № пп 1.1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: G _{год} - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане Т - Время работы Расчет: Q - Объем пылевыделения, где Q = K3 *K4 *K5 *K6 *K7 *q *F	Количество 345,63 0,43640 50 792 0,000609	Ед.изм. т/год т/час м² ч/год
Утв. Расч № пп 1.1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: G_{rog} - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане T - Время работы Расчет: Q - Объем пылевыделения, где $Q = K_3 * K_4 * K_5 * K_6 * K_7 * q * F$ K_3 - коэффициент, учитывающий метеоусловий	Количество 345,63 0,43640 50 792 0,000609 1,4	Ед.изм. т/год т/час м² ч/год г/сек (таблица 2)
Утв. Расч № пп 1.1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: G_{rog} - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане T - Время работы Расчет: Q - Объем пылевыделения, где $Q = K_3 * K_4 * K_5 * K_6 * K_7 * q * F$ K_3 - коэффициент, учитывающий метеоусловий K_4 - коэффициент, учитывающий местных условий	Количество 345,63 0,43640 50 792 0,000609 1,4 1	Ед.изм. т/год т/час м² ч/год г/сек (таблица 2) (таблица 3)
Утв. Расч № пп 1.1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: G_{rog} - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане T - Время работы Расчет: Q - Объем пылевыделения, где $Q = K_3 * K_4 * K_5 * K_6 * K_7 * q * F$ K_3 - коэффициент, учитывающий метеоусловий K_4 - коэффициент, учитывающий местных условий K_5 - коэффициент, учитывающий влажность материала	Количество 345,63 0,43640 50 792 0,000609 1,4 1 0,01	Ед.изм. т/год т/час м² ч/год г/сек (таблица 2) (таблица 3) (таблица 4)
Утв. Расч № пп 1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Grog - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане T - Время работы Расчет: Q - Объем пылевыделения, где $Q = K_3 * K_4 * K_5 * K_6 * K_7 * q * F$ Кз - коэффициент, учитывающий метеоусловий К4 - коэффициент, учитывающий местных условий К5 - коэффициент, учитывающий влажность материала К6 - коэфф., учит-щий профиль поверхности складируемого мат-ла	Количество 345,63 0,43640 50 792 0,000609 1,4 0,01 1,45	Ед.изм. т/год т/час м² ч/год г/сек (таблица 2) (таблица 3) (таблица 4) (таблица 5)
Утв. Расч № пп 1.1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. Нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Grog - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане T - Время работы Расчет: Q - Объем пылевыделения, где $Q = K_3 *K_4 *K_5 *K_6 *K_7 *q *F$ K_3 - коэффициент, учитывающий метеоусловий K_4 - коэффициент, учитывающий влажность материала K_6 - коэфф, учит-щий профиль поверхности складируемого мат-ла K_7 - коэффициент, учитывающий крупность материала	Количество 345,63 0,43640 50 792 0,000609 1,4 0,01 1,45 0,5	Ед.изм. т/год т/час м² ч/год г/сек (таблица 2) (таблица 3) (таблица 4) (таблица 5)
Утв. Расч № пп 1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. Нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Gгод - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане Т - Время работы Расчет: Q - Объем пылевыделения, где Кз - коэффициент, учитывающий метеоусловий К4 - коэффициент, учитывающий метеных условий К5 - коэффициент, учитывающий влажность материала К6 - коэфф., учит-щий профиль поверхности складируемого мат-ла К7 - коэффициент, учитывающий крупность материала q - объем пылевыделения, где	Количество 345,63 0,43640 50 792 0,000609 1,4 0,01 1,45 0,5 0,003	Ед.изм. т/год т/час м² ч/год г/сек (таблица 2) (таблица 3) (таблица 4) (таблица 5)
Утв. Расч № пп 1. 1.1. 1.2. 1.3. 1.4.	одика расчета нормативов выбросов от неорганизованных источников Приказом министра ООС РК № 100-п от 18 апреля 2008 г. Нет выбросов неорганической пыли цемента, образуемой при хранении Наименование Исходные данные: Grog - Количество поступающего материала за год G - Количество перерабатываемого материала F - Поверхность пыления в плане T - Время работы Расчет: Q - Объем пылевыделения, где $Q = K_3 *K_4 *K_5 *K_6 *K_7 *q *F$ K_3 - коэффициент, учитывающий метеоусловий K_4 - коэффициент, учитывающий влажность материала K_6 - коэфф, учит-щий профиль поверхности складируемого мат-ла K_7 - коэффициент, учитывающий крупность материала	Количество 345,63 0,43640 50 792 0,000609 1,4 0,01 1,45 0,5	Ед.изм. т/год т/час м² ч/год г/сек (таблица 2) (таблица 3) (таблица 4) (таблица 5)

Утв. Приказом министра ООС РК № 100-п от 18 апреля 2008 г.

(Фамилия,	, RMN	отчеств			
(при	его	наличии))		

(подпись)

" " 2025 г

М.П.

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

1. Источники выделения вредных (загрязняющих) веществ

Жалагашский район, ИТП оценочных скважин Карагансай

	Номер	Номер	Наименование		Время	работы		Код вредного	Количество
Наименование	источ-	источ-	источника	Наименование	источ	иника	Наименование	вещества	загрязняющего
производства	ника	ника	выделения	выпускаемой	выделен	ния,час	огарязняющего	(ЭНК,ПДК	вещества,
номер цеха,	загряз	выде-	загрязняющих	продукции			вещества	или ОБУВ) и	отходящего
участка	нения	ления	веществ		В	за		наименование	от источника
	атм-ры				сутки	год			выделения,
									т/год
А	1	2	3	4	5	6	7	8	9
					Площадка	a 1			
(002)	0018	0018 01	Двухнасосный		24	792	Азота (IV) диоксид (Азота	0301(4)	1.81
Испытание			цементировочный				диоксид) (4)		
			агрегат 250кВт				Азот (II) оксид (Азота	0304(6)	2.354
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.302
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.604
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	1.51
							углерода, Угарный газ) (
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.0724
							Акрилальдегид) (474)		
								1325 (609)	0.0724
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.724

		•				•	<u>.</u>
					на С/ (Углеводороды		
					предельные С12-С19 (в		
					пересчете на С);		
					Растворитель РПК-265П) (
					10)		
	0019	0019 01	Двухнасосный цементировочный	24	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	1.81
			агрегат 250кВт		Азот (II) оксид (Азота	0304(6)	2.354
					оксид) (б)	()	
					Углерод (Сажа, Углерод	0328 (583)	0.302
					черный) (583)	, ,	
					Сера диоксид (Ангидрид	0330 (516)	0.604
					сернистый, Сернистый газ,		
					Сера (IV) оксид) (516)		
					Углерод оксид (Окись	0337 (584)	1.51
					углерода, Угарный газ) (
					584)		
					Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.0724
					Акрилальдегид) (474)		
					Формальдегид (Метаналь) (1325 (609)	0.0724
					609)		
					Алканы С12-19 /в пересчете	2754(10)	0.724
					на С/ (Углеводороды		
					предельные С12-С19 (в		
					пересчете на С);		
					Растворитель РПК-265П) (
					10)		
	0020	0020 01	Дизельный	24	Азота (IV) диоксид (Азота	0301(4)	1.207
			генератор		диоксид) (4)		
			флотатора		Азот (II) оксид (Азота	0304(6)	1.57
					оксид) (б)		
					Углерод (Сажа, Углерод	0328 (583)	0.2012
					черный) (583)		
					Сера диоксид (Ангидрид	0330 (516)	0.4025
					сернистый, Сернистый газ,		
					Сера (IV) оксид) (516)		
					Углерод оксид (Окись	0337 (584)	1.006
					углерода, Угарный газ) (
					584)	1201 (474)	0.0400
					Проп-2-ен-1-аль (Акролеин,	1301 (4/4)	0.0483
					Акрилальдегид) (474)	1225 (600)	0.0483
					Формальдегид (Метаналь) (1325 (609)	0.0483
					· · · · · · · · · · · · · · · · · · ·	2754 (10)	0.483
			l l		Алканы С12-19 /в пересчете	[2/34(IU)	0.483

						F • • • • • • • • • • • • • • • • • • •	- F
					на С/ (Углеводороды предельные C12-C19 (в пересчете на C);		
					Растворитель РПК-265П) (
	0021	0021 01	Дизельный генератор	24	10) Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	1.207
			флотатора		Азот (II) оксид (Азота оксид) (6)	0304(6)	1.57
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.2012
					Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.4025
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	1.006
					Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.0483
					Формальдегид (Метаналь) (609)	1325 (609)	0.0483
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	2754(10)	0.483
					пересчете на С); Растворитель РПК-265П) (10)		
(002) Испытание, Цех	0012	0012 01	факел	24	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.001866601
01,					Азот (II) оксид (Азота оксид) (6)	0304(6)	0.000303323
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.001555501
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.015555007
					Метан (727*)	0410(727*)	0.000388875
	0013	0013 01	Дизельный двигатель УПА	24	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	1.61
			60/80		Азот (II) оксид (Азота оксид) (6)	0304(6)	2.094
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.2685
					Сера диоксид (Ангидрид	0330 (516)	0.537

						сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись	0337 (584)	1.343
						углерода, Угарный газ) (584)	0337 (301)	1.515
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.0644
						Формальдегид (Метаналь) (609)	1325 (609)	0.0644
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);	2754(10)	0.644
						Растворитель РПК-265П) (10)		
	0014	0014 01	Дизельный генератор БУ	24	792	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.836
						Азот (II) оксид (Азота оксид) (6)	0304(6)	1.087
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.1394
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.279
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.697
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.03345
						Формальдегид (Метаналь) (609)	1325 (609)	0.03345
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754(10)	0.3345
	0015	0015 01	Дизельная электростанция	24	792	ло) Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.442
			ВП			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.575
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.0737
						Сера диоксид (Ангидрид	0330(516)	0.1473

						сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	1325 (609)	0.368 0.01768 0.01768 0.1768
	0016	0016 01	Цементировочный агрегат ЦА-320	24	792	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.606
						Азот (II) оксид (Азота оксид) (6)	0304(6)	0.788
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.101
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.202
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.505
						Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.02424
						=	1325 (609)	0.02424
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754(10)	0.2424
	0017	0017 01	Емкость для нефти	24	792	то) Сероводород (Дигидросульфид) (518)	0333 (518)	0.0001138
			нефли			дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (1502*)	0415(1502*)	0.1374
						Смесь углеводородов предельных С6-С10 (1503*)	0416(1503*)	0.0508
						предельных С6-С10 (1503^) Бензол (64)	0602(64)	0.000664

						Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616(203)	0.0002086
							0621 (349)	0.000417
6016	6016	01 скважина (ЗР	A M	24			0333 (518)	0.00689579
	0010	ΦC)	7 1	2 1		Сероводород (Дигидросульфид) (518)	0333 (310)	0.00003373
		10)				Пентан (450)	0405 (450)	0.00681855
						, ,	0410(727*)	0.0363295
						Изобутан (2-Метилпропан) (0.00983163
						279)		
						Смесь углеводородов	0415 (1502*)	0.1632913
						предельных С1-С5 (1502*)	,	
6017	6017	01 насос для		24		<u>-</u>	0333 (518)	0.000355
		подачи ГСМ к				Дигидросульфид) (518)		
		дизелям				Алканы С12-19 /в пересчете	2754(10)	0.1263
						на С/ (Углеводороды		
						предельные С12-С19 (в		
						пересчете на С);		
						Растворитель РПК-265П) (
						10)		
6018	6018	01 пункт налива		24		Смесь углеводородов	0415(1502*)	0.000013
		нефти				предельных С1-С5 (1502*)		
						Смесь углеводородов	0416(1503*)	0.000005
6010	6010	0.1		2.4		предельных С6-С10 (1503*)	0000 (510)	0 0000005
6019	6019	01 емкость для		24		Сероводород (0333 (518)	0.0000235
		хранения				Дигидросульфид) (518) Алканы C12-19 /в пересчете	0754/10)	0.00838
		дизельного				алканы ст2-тэ /в пересчете на С/ (Углеводороды	2/34(10)	0.00838
		топлива				на С7 (УГЛеводороды предельные С12-С19 (в		
						пересчете на С);		
						пересчете на с), Растворитель РПК-265П) (
						10)		
6020	6020	01 емкость для		24	792	Масло минеральное нефтяное	2735 (716*)	0.0000508
		хранения мас	та			(веретенное, машинное,		
						цилиндровое и др.) (716*)		
6021	6021	01 узел разгрузі	KN	24	792	Пыль неорганическая,	2908 (494)	0.00753
		цемента (содержащая двуокись		
		приготовление				кремния в %: 70-20 (шамот,		
		цемент.				цемент, пыль цементного		
		раствора)				производства - глина,		
						зола, кремнезем, зола		
						месторождений) (494)		

Примечание: В графе 8 в скобках (без "*") указан код ЗВ из таблицы 1 Приложения 1 к Приказу Министерства национальной экономики РК от 28.02.2015 г. №168 (список ПДК), со "*" указан код ЗВ из таблицы 2 вышеуказанного Приложения (список ОБУВ).

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

2. Характеристика источников загрязнения атмосферного воздуха

Жалагашский район, ИТП оценочных скважин Карагансай

Номер источ ника	Пар	аметры загрязнен.	Параметр	оы газовоздушной де источника заг	й смеси	Код загряз- няющего вещества (ЭНК, ПДК	Наименование ЗВ	Количество : веществ, выб в атмо	_
ряз-	М	размер сечения устья, м	M/C		ратура,	или ОБУВ)	паименование ЗВ	Максимальное,	Суммарное, т/год
1	2	3	4	5	6	7	7a	8	9
						Испытание			
0018	4	0.2	88.11	2.7680638	230	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.635	1.81
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.826	2.354
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.1059	0.302
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.2117	0.604
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.529	1.51
						1301 (474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0254	0.0724
						1325 (609)	Формальдегид (Метаналь) (609)	0.0254	0.0724
						2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.254	0.724
0019	4	0.2	88.11	2.7680638	230	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.635	1.81
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.826	2.354
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.1059	0.302

1 1	ı	ı	ı	ı İ		losso	(51.6)	la (3	- 0 0117	0.604
						0330	(210)	Сера диоксид (Ангидрид сернистый, Сернистый,	0.2117	0.604
						0007	(504)	Сера (IV) оксид) (516)	0 500	1 51
						0337	(584)	Углерод оксид (Окись углерода, Угарный газ) (0.529	1.51
								584)		
						1301	(474)	Проп-2-ен-1-аль (Акролеин,	0.0254	0.0724
							(- · - /	Акрилальдегид) (474)		
						1325	(609)	Формальдегид (Метаналь) (0.0254	0.0724
								609)		
						2754	(10)	Алканы С12-19 /в пересчете	0.254	0.724
								на С/ (Углеводороды		
								предельные С12-С19 (в		
								пересчете на C); Растворитель РПК-265П) (10)		
0020	3	0.2	75.61	2.3753638	230	0301	(4)	Азота (IV) диоксид (Азота	0.4235	1.207
0020		0.2	73.01	2:3733030	200	0301	(1)	диоксид) (4)	0.1233	1.207
						0304	(6)	Азот (II) оксид (Азота	0.55	1.57
								оксид) (6)		
						0328	(583)	Углерод (Сажа, Углерод	0.0706	0.2012
								черный) (583)		
						0330	(516)	Сера диоксид (Ангидрид	0.1412	0.4025
								сернистый, Сернистый газ,		
						0337	(501)	Сера (IV) оксид) (516) Углерод оксид (Окись	0.353	1.006
						0337	(304)	углерод оксид (окись углерода, Угарный газ) (0.333	1.000
								утлерода, Утариын таз, (584)		
						1301	(474)	Проп-2-ен-1-аль (Акролеин,	0.01694	0.0483
								Акрилальдегид) (474)		
						1325	(609)	Формальдегид (Метаналь) (0.01694	0.0483
								609)		
						2754	(10)	Алканы С12-19 /в пересчете	0.1694	0.483
								на С/ (Углеводороды		
								предельные C12-C19 (в пересчете на C);		
								Растворитель РПК-265П) (10)		
0021	3	0.2	75.61	2.3753638	230	0301	(4)	Азота (IV) диоксид (Азота	0.4235	1.207
							` '	диоксид) (4)		
						0304	(6)	Азот (II) оксид (Азота	0.55	1.57
								оксид) (6)		
						0328	(583)	Углерод (Сажа, Углерод	0.0706	0.2012
								черный) (583)	_	
						0330	(516)	Сера диоксид (Ангидрид	0.1412	0.4025
						l		сернистый, Сернистый газ,		

								-	•
					0227	(584)	Сера (IV) оксид) (516) Углерод оксид (Окись	0.353	1.006
					0337	(304)	углерод оксид (окись углерода, Угарный газ) (584)	0.333	1.000
					1301	(474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.01694	0.0483
					1325	(609)	Формальдегид (Метаналь) (0.01694	0.0483
					2754	(10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);	0.1694	0.483
							Растворитель РПК-265П) (10)		
0012	11.2	0.207	1.23	0.041503 2363	.3 0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.000654672	0.001866601
					0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.000106384	0.000303323
					0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.00054556	0.001555501
					0337	(584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0054556	0.015555007
					0410	(727*)	Метан (727*)	0.00013639	0.000388875
0013	5	0.2	123.35	3.8752691 23			Азота (IV) диоксид (Азота диоксид) (4)	0.565	1.61
					0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.735	2.094
					0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.0942	0.2685
					0330	(516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.1883	0.537
					0337	(584)	Углерод оксид (Окись углерода, Угарный газ) (0.471	1.343
					1301	(474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0226	0.0644
					1325	(609)	Формальдегид (Метаналь) (0.0226	0.0644
					2754	(10)	Алканы C12-19 /в пересчете на C/ (Углеводороды	0.226	0.644
							предельные С12-С19 (в		
							пересчете на С); Растворитель РПК-265П) (10)		

									•	•
0014	5	0.2	95.03	2.9856127	230	0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.2933	0.836
						0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.381	1.087
						0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.0489	0.1394
						0330	(516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0978	0.279
						0337	(584)	Углерод оксид (Окись Углерода, Угарный газ) (584)	0.2444	0.697
						1301	(474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.01173	0.03345
						1325	(609)	Формальдегид (Метаналь) (609)	0.01173	0.03345
						2754	(10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.1173	0.3345
0015	3	0.2	46.21	1.4517049	230	0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.155	0.442
						0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.2015	0.575
						0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.02583	0.0737
						0330	(516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0517	0.1473
						0337	(584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1292	0.368
						1301	(474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0062	0.01768
						1325	(609)	Формальдегид (Метаналь) (609)	0.0062	0.01768
						2754	(10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.062	0.1768
0016	4	0.2	71.49	2.2459866	230	0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.2125	0.606

1	, i	j	ı	ı	ı	0001	(6)	l-	2 2 2	2 5 5 5
						0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.276	0.788
						0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.0354	0.101
						0330	(516)	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0708	0.202
						0337	(584)	Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.177	0.505
						1301	(474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0085	0.02424
						1325	(609)	Формальдегид (Метаналь) (609)	0.0085	0.02424
						2754	(10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);	0.085	0.2424
0017	4	0.05	45.39	0.0891256	80	0333	(518)	Растворитель РПК-265П) (10) Сероводород (Дигидросульфид) (518)	0.00315	0.0001138
						0415	(1502*)	Смесь углеводородов предельных С1-С5 (1502*)	3.804	0.1374
						0416	(1503*)	Смесь углеводородов предельных С6-С10 (1503*)	1.407	0.0508
						0602	(64)	Бензол (64)	0.01838	0.000664
						0616	(203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00578	0.0002086
						0621	(349)	Метилбензол (349)	0.01155	0.000417
6016	2				30	0333	(518)	Сероводород (Дигидросульфид) (518)	0.001863	0.00689579
						0405	(450)	Пентан (450)	0.00184	0.00681855
							(727*)	Метан (727*)	0.00981	0.0363295
						0412	(279)	Изобутан (2-Метилпропан) (279)	0.002655	0.00983163
						0415	(1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.0441	0.1632913
6017	2				30	0333	(518)	- Сероводород (Дигидросульфид) (518)	0.0000622	0.000355
						2754	(10)	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.02216	0.1263

6			80	0415	(1502*)		0.000005	0.000013
				0.41.6	(1 5 0 0 4)		0 000000	0 000005
				0416	(1503^)	_	0.000002	0.000005
2			3.0	U333	(510)		0 00002626	0.0000235
۷			30	0333	(310)		0.00002020	0.0000233
				2754	(10)		0 00935	0.00838
				2754	(10)	_	0.00933	0.00050
						Растворитель РПК-265П) (10)		
2			30	2735	(716*)	Масло минеральное нефтяное	0.000333	0.0000508
						(веретенное, машинное,		
						цилиндровое и др.) (716*)		
2			30	2908	(494)	Пыль неорганическая,	0.002641	0.00753
						содержащая двуокись кремния		
						1		
						·		
						± ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
	2 2 2	2 2 2		2 30	2 0416 30 0333 2754 2 30 2735	2 30 0333 (518) 2754 (10) 2 30 2735 (716*)	очи предельных C1-C5 (1502*) очи предельных C6-C10 (1503*) очи предельных С6-С10 (1503*) ози ози (518) Сероводород (Дигидросульфид) (518) очи предельные С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10) очи предельные С12-С19 (в пересчете на С); очи предельных С1-С5 (1502*) очи предельных С1-С5 (1503*) очи предельных С6-С10 (1503*) очи предельных С6-С10 (1503*) очи предельных С6-С10 (1503*) очи предельных С6-С10 (1503*) очи предельных С6-С10 (1503*) очи предельных С6-С10 (1503*) очи предельных С1-С5 (1503*) очи предельных С1-С5 (1503*) очи предельных С1-С5 (1503*) очи предельных С1-С5 (1503*) очи предельных С1-С5 (1503*) очи предельных С1-С5 (1503*) очи предельных С1-С10 (1503*) о	предельных C1-C5 (1502*) 0416 (1503*) 041

Примечание: В графе 7 в скобках (без "*") указан код ЗВ из таблицы 1 Приложения 1 к Приказу Министерства национальной экономики РК от 28.02.2015 г. №168 (список ПДК), со "*" указан код ЗВ из таблицы 2 вышеуказанного Приложения (список ОБУВ).

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

3. Показатели работы пылегазоочистного оборудования (ПГО)

Жалагашский район, ИТП оценочных скважин Карагансай

Номер	Наименование и тип	КПД аппа	ратов, %	Код	Коэффициент
источника	пылегазоулавливающего			загрязняющего	обеспеченности
выделения	оборудования	Проектный	Фактичес-	вещества по	K(1),%
			кий	котор.проис-	
				ходит очистка	
1	2	3	4	5	6
	Пылегазоочистное о	борудовани	е отсутств	ует!	

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/пер

Жалагашский район, ИТП оценочных скважин Карагансай испытание

Код заг-	Наименование	Количество загрязняющих	В том	числе	оп еМ	ступивших на о	чистку	Всего выброшено
ряз-	загрязняющего	веществ	выбрасыва-	поступает	выброшено	уловлено и	обезврежено	В
няющ	вещества	отходящих от	ется без	на	В		-	атмосферу
веще		источника	очистки	очистку	атмосферу	фактически	из них ути-	
ства		выделения					лизировано	
1	2	3	4	5	6	7	8	9
		,		ощадка:01			<u> </u>	
E	В С Е Г О по площадке: 01	39.989781777	39.989781777	0	0	0	0	39.989781777
	в том числе:							
	Твердые:	1.806330501	1.806330501	0	0	0	0	1.806330501
	N3 HNX:							
0123	Железо (II, III) оксиды (0.0019	0.0019	0	0	0	0	0.0019
	диЖелезо триоксид, Железа							
	оксид) /в пересчете на							
	железо/ (274)	0 10054	0 10054	0	0	0	0	0 10054
	Калий хлорид (301)	0.12254 0.0002	0.12254	0	0	0	0	0.12254 0.0002
0143	Марганец и его соединения /в пересчете на марганца (IV)	0.0002	0.0002	U	U	U	U	0.0002
	пересчете на марганца (17) оксид/ (327)							
0155	диНатрий карбонат (Сода	0.083004	0.083004	0	0	0	0	0.083004
	кальцинированная, Натрий	0.005001	0.003001	Ŭ		Ŭ	O O	0.003001
	карбонат) (408)							
	Углерод (Сажа, Углерод	1.590555501	1.590555501	0	0	0	0	1.590555501
	черный) (583)							
0344	Фториды неорганические плохо	0.0006	0.0006	0	0	0	0	0.0006
	растворимые - (алюминия							
	фторид, кальция фторид,							
	натрия гексафторалюминат) (
	Фториды неорганические плохо							
	растворимые /в пересчете на							
	Фтор/) (615)							
0.703	Бенз/а/пирен (3,4-Бензпирен)	0.000001	0.000001	0	0	0	0	0.000001
2000	(54)	0 00753	0 00753			^		0 00753
2908	Пыль неорганическая,	0.00753	0.00753	U	U	U	U	0.00753
	содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль							
	тементного производства -							
1	Птементного производства -	l l			l			!

глина, глинистый сланец,							
доменный шлак, песок,							
клинкер, зола, кремнезем,							
зола углей казахстанских							
месторождений) (494)							
Газообразные, жидкие:	38.183451276	38.183451276	0	0	0	0	38.183451276
N3 HNX:							
0301 Азота (IV) диоксид (Азота диоксид) (4)	9.529866601	9.529866601	0	0	0	0	9.529866601
0304 Азот (II) оксид (Азота оксид) (6)	12.392303323	12.392303323	0	0	0	0	12.392303323
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ,	3.1783	3.1783	0	0	0	0	3.1783
Сера (IV) оксид) (516) 0333 Сероводород (Дигидросульфид)	0.00738809	0.00738809	0	0	0	0	0.00738809
(518) 0337 Углерод оксид (Окись	7.960555007	7.960555007	0	0	0	0	7.960555007
углерода, Угарный газ) (584)							
0342 Фтористые газообразные	0.0001	0.0001	0	0	0	0	0.0001
соединения /в пересчете на фтор/ (617)							
0405 Пентан (450)	0.00681855	0.00681855	0	0	0	0	0.00681855
0410 Merah (727*)	0.036718375	0.036718375	0	0	0	0	0.036718375
0412 Изобутан (2-Метилпропан) (279)	0.00983163	0.00983163	0	0	0	0	0.00983163
0415 Смесь углеводородов предельных C1-C5 (1502*)	0.3007043	0.3007043	0	0	0	0	0.3007043
0416 Смесь углеводородов предельных С6-С10 (1503*)	0.050805	0.050805	0	0	0	0	0.050805
0602 Бензол (64)	0.000664	0.000664	0	Λ	0	0	0.000664
0616 Диметилбензол (смесь о-, м-,	0.0002086	0.0002086	0	0	0	0	0.0002086
п- изомеров) (203)	0.0002000	0.0002000	Ŭ	Ŭ	Ŭ	· ·	0.0002000
0621 Метилбензол (349)	0.000417	0.000417	0	0	0	0	0.000417
1301 Проп-2-ен-1-аль (Акролеин,	0.38117	0.38117	0	0	0	0	0.38117
Акрилальдегид) (474)	3.00117	3.0021	Ğ	Ŭ		Ŭ	
1325 Формальдегид (Метаналь) (609)	0.38117	0.38117	0	0	0	0	0.38117
2735 Масло минеральное нефтяное (0.0000508	0.0000508	0	0	0	0	0.0000508
веретенное, машинное,							
цилиндровое и др.) (716*) 2754 Алканы С12-19 /в пересчете на	3.94638	3.94638		0		^	3.94638
С/ (Углеводороды предельные	3.94030	3.94030	U	U	U	U	3.94030
С/ (Углеводороды предельные С12-С19 (в пересчете на С);							
Растворитель РПК-265П) (10)							
ractbophrene rin-20011) (10)							

РАСЧЕТ РАССЕИВАНИЯ ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ

НА ПЕРИОД ИСПЫТАНИЯ

```
1. Общие сведения.
          ышие сведения.
Расчет проведен на ПК "ЭРА" v3.0 фирмы НПП "Логос-Плюс", Новосибирск
Расчет выполнен ИП "Сапаев Т.М."
     І Заключение экспертизы Министерства природных ресурсов и Росгидромета
     | на программу: письмо № 140-09213/20и от 30.11.2020
2. Параметры города
ПК ЭРА v3.0. Модель: МРК-2014
Название: Жалагашский район
          Коэффициент A = 200
Скорость ветра Ump = 9.0 \text{ м/c}
          Скорфски скорость ветра = 3.2 м/с
Температура летняя = 34.3 град.С
Температура зимняя = -9.2 град.С
Коэффициент рельефа = 1.00
           Площадь города = 0.0 кв.км
          Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников
      ПК ЭРА v3.0. Модель: МРК-2014

Город :013 Жалагашский район.

Объект :0014 ИТП оценочных скважин
                                                                                                  Расчет проводился 02.07.2024 00:29
          Вар.расч. :3 Расч.год: 2024 (СП)
           Группа суммации :6044=0330 Сера дисксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                                   (516)
                                                        0333 Сероводород (Дигидросульфид) (518)
           Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
                                                                                                                                                                   Y2
                                                                                                                                                                              |Alf| F | KP |Ди| Выброс
KOT | TMT | H | D | WO | VI | I | AI | II | AE | IE | MILI I | AI | AN | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN | C | AN
- примесь 0330-

001401 0213 Т 5.0 0.20 123.3

001401 0214 Т 5.0 0.20 95.03

001401 0215 Т 3.0 0.20 мс от

001401 0216 "
                     ----- Примесь 0330-----
                                                                                                                                                                                        1.0 1.000 0 0.1883000
1.0 1.000 0 0.0978000
1.0 1.000 0 0.0517000
                                                                            3.88 230.0
                                                                            2.99 230.0
                                                                                                                 72
                                                                                                                               -105
                                                                              1.45 230.0
                                                                          2.25 230.0
                                                                                                             -70
                                                                                                                                    62
                                                                                                                                                                                        1.0 1.000 0 0.0708000
                                   --- Примесь 0333----
001401 0217 Т
                                   4.0 0.050 45.39 0.0891 80.0
2.0 30.0
                                                                                                                                -27
                                                                                                            -166
                                                                                                                                                                                        1.0 1.000 0 0.0074000
                                                                                                                             -27
17 20 15 0 1.0 1.000 0 0.0018630
-79 2 3 0 1.0 1.000 0 0.0000622
-82 3 2 4 1.0 1.000 0 0.0000263
001401 6217 1
001401 6116 П1
001401 6117 П1
                                                                                                            -3
1
                                     2.0
                                                                                          30.0
001401 6219 П1
                                     2.0
                                                                                          30.0
                                                                                                               -60
4. Расчетные параметры См, Uм, Xм
      ПК ЭРА v3.0. Модель: МРК-2014
Город :013 Жалагашский район.
                               :0014 ИТП оценочных скважин
          Вар.расч. :3 Расч.год: 2024 (СП) Расчет и
Сезон :ЛЕТО (температура воздуха 34.3 град.С)
                                                                                                 Расчет проводился 02.07.2024 00:29
          Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                                        0333 Сероводород (Дигидросульфид) (518)
   - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная | концентрация См = См1/ПДК1 +...+ Смn/ПДКn
    - Для линейных и площадных источников выброс является суммарным по
         всей площади, а Cm - концентрация одиночного источника,
        расположенного в центре симметрии, с суммарным М
 1 |001401 0213|
2 |001401 0214|
                                            0.376600| T |
0.195600| T |
                                                                                  0.056831 | 14.11
0.038313 | 10.87
                                                                                                                                  202.6
177.8
                                             0.103400| T | 0.082310 | 0.103400| T | 0.082310 | 0.141600| T | 0.049645 | 0.925000| T | 3.776450 | 0.232875 | П | 8.317486 | 0.007775 | П | 0.277696 | 0.003282 | П | 0.117239 |
                                                                                   0.082310 | 8.81 |
0.049645 | 10.22 |
         3 |001401 0215|
                                                                                                                                      96.1
         4 | 001401 0216 |
                                                                                                                                   138.0
                                                                                   3.776450 | 0.74 |
8.317486 | 0.50 |
0.277696 | 0.50 |
0.117239 | 0.50 |
             |001401 0217|
                                                                                                                                      33.6
         6 1001401 61161
                                                                                                                                     11.4
             |001401 6117|
         8 |001401 6219|
                                                                                                                                     11 4
          Суммарный Mq = 1.986133 (сумма Mq/ПДК по всем примесям)
Сумма См по всем источникам = 12.715971 долей ПДК
                  Средневзвешенная опасная скорость ветра = 0.75 м/с
5. Управляющие параметры расчета
       ПК ЭРА v3.0. Модель: МРК-2014
Город :013 Жалагашский район.
          Тород 1013 жили шиский ризоп.

Объект : 0014 ИПП оценочных скважин

Вар.расч. : 3 Расч.год: 2024 (СП) Расчет

Сезон :ЛЕТО (температура воздуха 34.3 град.С)
                                                                                                 Расчет проводился 02.07.2024 00:29
           Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                                   (516)
                                                        0333 Сероводород (Дигидросульфид) (518)
           Фоновая концентрация не задана
           Расчет по прямоугольнику 001 : 10000x10000 c шагом 200
```

```
Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 9.0(Ump) м/с Средневзвешенная опасная скорость ветра Ucb= 0.75 м/с
6. Результаты расчета в виде таблицы. 
ПК ЭРА v3.0. Модель: MPK-2014
                          :013 Жалагашский район.
:0014 ИТП оценочных скважин
чч.:3 Расч.год: 2024 (СП)
           Объект
          Вар.расч. :3
                                                                                                   Расчет проводился 02.07.2024 00:29
          Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
                                                         0333 Сероводород (Дигидросульфид) (518)
          Расчет проводился на прямоугольнике 1
          с параметрами: координаты центра X= 0, Y= 0 размеры: длина(по X)= 10000, ширина(по Y)= 10000, шаг сетки= 200
           Фоновая концентрация не задана
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
           Скорость ветра: автоматический поиск опасной скорости от 0.5 до 9.0 (Uмp) м/с
                                                 _Расшифровка_обозначений_
                          | Qc - суммарная концентрация [поли ПДК]
| Фоп- опасное направл. ветра [ угл. град.]
| Uon- опасная скорость ветра [ м/с ]
| Ви - вклад ИСТОЧНИКА в Qc [поли ПДК]
                           | Ки - код источника для верхней строки Ви
             -При расчете по группе суммации концентр. в мг/м3 не печатается
            -Если в строке Стах=< 0.05 ПДК, то Фоп, Иоп, Ви, Ки не печатаются
 y= 5000 : Y-строка 1 Cmax= 0.011 долей ПДК (x= -200.0; напр.ветра=179)
  x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.008: 0.008: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                         0: 200: 400: 600: 800: 1000: 1200:
Oc: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011
           1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.011: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008: 0.008: 0.008: 0.008:
            4600: 4800: 5000:
Qc: 0.008: 0.007: 0.007:
  y= 4800 : Y-строка 2 Cmax= 0.012 долей ПДК (x= -200.0; напр.ветра=179)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.008: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011:
  x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200: 0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.011: 0.011: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.012: 0.01
            1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.011: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008: 0.008: 0.008:
 x= 4600: 4800: 5000:
Oc : 0.008: 0.008: 0.007:
 v= 4600 : Y-строка 3 Cmax= 0.013 долей ПДК (x= -200.0; напр.ветра=179)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2400: -2000: -2000:
Qc: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.011: 0.011: 0.012:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                         0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.012: 0.012: 0.012: 0.012: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.012: 0.012:
           1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc • 0 012• 0 012• 0 011• 0 011• 0 011• 0 011• 0 010• 0 010• 0 010• 0 009• 0 009• 0 009• 0 008• 0 008•
           4600: 4800: 5000:
Oc : 0.008: 0.008: 0.008:
 y= 4400 : Y-строка 4 Cmax= 0.014 долей ПДК (x= -200.0; напр.ветра=179)
```

Расчет по границе санзоны. Покрытие РП 001

```
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
OC: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.012: 0.012:
           -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                              0: 200:
                                                                                                                                                                                                         400: 600:
                                                                                                                                                                                                                                           800: 1000: 1200:
Qc: 0.013: 0.013: 0.013: 0.013: 0.013: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014
             1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.013; 0.012; 0.012; 0.012; 0.012; 0.011; 0.011; 0.011; 0.010; 0.010; 0.010; 0.009; 0.009; 0.009; 0.009; 0.008;
           4600: 4800: 5000:
Qc: 0.008: 0.008: 0.008:
  y= 4200 : Y-строка 5 Cmax= 0.015 долей ПДК (x= 0.0; напр.ветра=181)
  x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.008: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.012: 0.012: 0.013: 0.013:
  x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                            0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.013: 0.014: 0.014: 0.014: 0.014: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.014: 0.014: 0.014:
  x= 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400
Qc : 0.014: 0.013: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009:
  x= 4600: 4800: 5000:
Qc: 0.008: 0.008: 0.008:
  y= 4000 : Y-строка 6 Cmax= 0.016 долей ПДК (x= 0.0; напр.ветра=181)
  x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.013: 0.014:
  x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                            0: 200: 400: 600: 800: 1000: 1200:
Qc: 0.014: 0.015: 0.015: 0.015: 0.015: 0.015: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016
  x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.014: 0.014: 0.014: 0.013: 0.013: 0.013: 0.012: 0.012: 0.012: 0.011: 0.011: 0.010: 0.010: 0.010: 0.009: 0.009:
            4600: 4800: 5000:
Oc : 0.009: 0.008: 0.008:
  <u>у= 3800 :</u> Y-строка 7 Cmax= 0.017 долей ПДК (x= -200.0; напр.ветра=178)
  x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.014: 0.014: 0.015:
             -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                             0: 200: 400: 600: 800: 1000: 1200:
Qc: 0.015: 0.016: 0.016: 0.016: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017
             1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.015: 0.015: 0.015: 0.014: 0.014: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.010: 0.010: 0.010: 0.009: 0.009:
             4600: 4800: 5000:
Qc: 0.009: 0.009: 0.008:
  у= 3600 : У-строка 8 Стах= 0.019 долей ПДК (х= -200.0; напр.ветра=178)
  x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.012: 0.013: 0.014: 0.014: 0.014: 0.015: 0.015: 0.016:
  x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200: 0: 200: 400: 600: 800: 1000: 1200:
Oc: 0.016: 0.017: 0.017: 0.018: 0.018: 0.018: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.018: 0.018: 0.018: 0.018:
            1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.017: 0.016: 0.016: 0.015: 0.014: 0.014: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.010: 0.010: 0.010: 0.009:
```

```
x= 4600: 4800: 5000:
Oc : 0.009: 0.009: 0.009:
y= 3400 : Y-строка 9 Cmax= 0.021 долей ПДК (x= -200.0; напр.ветра=178)
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.014: 0.014: 0.015: 0.016: 0.016: 0.017:
x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200: 0: 200: 400: 600: 800: 1000: 1200:
Oc: 0.018: 0.018: 0.019: 0.019: 0.020: 0.020: 0.020: 0.020: 0.021: 0.021: 0.020: 0.020: 0.020: 0.020: 0.019: 0.019:
     1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.018: 0.017: 0.017: 0.016: 0.015: 0.015: 0.014: 0.014: 0.013: 0.012: 0.012: 0.011: 0.011: 0.011: 0.010: 0.010:
  = 4600: 4800: 5000:
Qc: 0.009: 0.009: 0.009:
 y= 3200 : Y-строка 10 Cmax= 0.023 долей ПДК (x= -200.0; напр.ветра=178)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.009: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.013: 0.013: 0.014: 0.014: 0.015: 0.016: 0.017: 0.017: 0.018:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400:
                                                                          200:
                                                                                 400:
Qc: 0.019: 0.020: 0.020: 0.021: 0.022: 0.022: 0.022: 0.022: 0.023: 0.022: 0.022: 0.022: 0.022: 0.022: 0.021: 0.021: 0.020:
 x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.019: 0.019: 0.018: 0.017: 0.016: 0.016: 0.015: 0.014: 0.014: 0.013: 0.012: 0.012: 0.011: 0.011: 0.010: 0.010:
 x= 4600: 4800: 5000:
Qc : 0.010: 0.009: 0.009:
y= 3000 : Y-строка 11 Стах= 0.025 долей ПДК (x= -200.0; напр.ветра=178)
 x= -5000: -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.015: 0.015: 0.016: 0.017: 0.018: 0.019: 0.020:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                    0: 200: 400: 600: 800: 1000: 1200:
Qc: 0.020: 0.021: 0.022: 0.023: 0.024: 0.024: 0.024: 0.025: 0.025: 0.025: 0.025: 0.024: 0.024: 0.024: 0.023: 0.023: 0.022:
     1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.021: 0.020: 0.019: 0.018: 0.018: 0.017: 0.016: 0.015: 0.014: 0.014: 0.013: 0.012: 0.012: 0.011: 0.011: 0.011: 0.010:
x= 4600: 4800: 5000:
Oc : 0.010: 0.009: 0.009:
y= 2800 : Y-строка 12 Cmax= 0.027 долей ПДК (x= -200.0; напр.ветра=178)
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.014: 0.015: 0.016: 0.017: 0.018: 0.019: 0.020: 0.021:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200: 0: 200: 400: 600: 800: 1000: 1200:
Oc: 0.022: 0.023: 0.024: 0.025: 0.026: 0.027: 0.027: 0.027: 0.027: 0.027: 0.027: 0.027: 0.027: 0.027: 0.028: 0.026: 0.025: 0.025: 0.024:
     1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.023: 0.022: 0.021: 0.020: 0.019: 0.018: 0.017: 0.016: 0.015: 0.014: 0.014: 0.013: 0.012: 0.012: 0.011: 0.011:
     4600: 4800: 5000:
Qc: 0.010: 0.010: 0.009:
y= 2600 : Y-строка 13 Cmax= 0.030 долей ПДК (x= -200.0; напр.ветра=178)
x= -5000: -4800: -4800: -4400: -4200: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.014: 0.015: 0.016: 0.017: 0.018: 0.019: 0.020: 0.022: 0.023:
```

```
x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200: 0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.024: 0.025: 0.027: 0.028: 0.029: 0.029: 0.030: 0.030: 0.030: 0.030: 0.029: 0.029: 0.028: 0.027: 0.026:
x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.025; 0.024; 0.022; 0.021; 0.020; 0.019; 0.018; 0.017; 0.016; 0.015; 0.014; 0.013; 0.013; 0.012; 0.011; 0.011;
x= 4600: 4800: 5000:
Qc : 0.010: 0.010: 0.010:
y= 2400 : Y-строка 14 Cmax= 0.033 долей ПДК (x= -200.0; напр.ветра=177)
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.010: 0.011: 0.011: 0.012: 0.013: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.019: 0.021: 0.022: 0.023: 0.025:
x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                   0: 200: 400: 600: 800: 1000: 1200:
Oc: 0.026: 0.028: 0.029: 0.031: 0.032: 0.032: 0.033: 0.033: 0.033: 0.033: 0.033: 0.033: 0.031: 0.031: 0.031: 0.030: 0.028:
x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.027: 0.026: 0.024: 0.023: 0.022: 0.020: 0.019: 0.018: 0.017: 0.016: 0.015: 0.014: 0.013: 0.012: 0.012: 0.011:
x= 4600: 4800: 5000:
Oc : 0.011: 0.010: 0.010:
y= 2200 : Y-строка 15 Cmax= 0.037 долей ПДК (x= -200.0; напр.ветра=177)
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.019: 0.020: 0.022: 0.024: 0.025: 0.027:
x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                   0: 200: 400: 600: 800: 1000: 1200:
Qc: 0.029: 0.031: 0.032: 0.034: 0.035: 0.036: 0.036: 0.037: 0.037: 0.037: 0.036: 0.035: 0.035: 0.033: 0.032: 0.031:
     1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.029: 0.028: 0.026: 0.025: 0.023: 0.022: 0.020: 0.019: 0.018: 0.017: 0.015: 0.015: 0.014: 0.013: 0.012: 0.011:
x= 4600: 4800: 5000:
Qc : 0.011: 0.010: 0.010:
y= 2000 : Y-строка 16 Cmax= 0.041 долей ПДК (x= -200.0; напр.ветра=177)
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2400: -2000: -2000:
Qc: 0.011: 0.011: 0.012: 0.013: 0.013: 0.014: 0.015: 0.016: 0.017: 0.019: 0.020: 0.022: 0.023: 0.025: 0.027: 0.030:
x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                    0:
                                                                         200:
                                                                               400:
                                                                                      600:
                                                                                            800: 1000: 1200:
Qc: 0.032: 0.034: 0.036: 0.037: 0.038: 0.039: 0.040: 0.041: 0.041: 0.041: 0.040: 0.039: 0.038: 0.037: 0.035: 0.033:
x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.032: 0.030: 0.028: 0.027: 0.025: 0.023: 0.021: 0.020: 0.019: 0.017: 0.016: 0.015: 0.014: 0.013: 0.013: 0.012:
x= 4600: 4800: 5000:
Oc : 0.011: 0.011: 0.010:
y= 1800 : Y-строка 17 Cmax= 0.046 долей ПДК (x= -200.0; напр.ветра=176)
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.011: 0.011: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.019: 0.021: 0.023: 0.025: 0.027: 0.030: 0.032:
x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                   0: 200: 400: 600: 800: 1000: 1200:
Oc: 0.035: 0.037: 0.039: 0.041: 0.043: 0.044: 0.045: 0.045: 0.046: 0.046: 0.045: 0.044: 0.042: 0.041: 0.038: 0.036:
    1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.034: 0.032: 0.030: 0.028: 0.026: 0.024: 0.023: 0.021: 0.019: 0.018: 0.017: 0.016: 0.015: 0.014: 0.013: 0.012:
    4600: 4800: 5000:
```

y= 16	600 :	У-стро	ка 18	Cmax=	0.053 д	олей ПД	K (x=	-200.0;	напр.в	етра=17	6)					
															-2200:	
Qc : 0. Фол: 1	.011: 108:	0.012: 109: 2.72:	0.012: 110: 2.73:	0.013: 111: 2.70:	0.014: 111 : 2.73 :	0.015: 112: 3.50:	0.016: 114: 3.50:	0.017: 115: 3.50:	0.019: 116: 3.52:	0.020: 117: 3.52:	0.022: 119: 3.56:	0.024: 121: 3.31:	0.026: 123: 3.10:	0.029: 125: 2.78:	0.032: 127: 2.66:	0.035: 130:
Ки: 02 Ви: 0. Ки: 61 Ви: 0. Ки: 02	217 : .002: 116 : .001: 213 :	0217 : 0.002: 6116 : 0.001: 0213 :	0.007: 0217: 0.002: 6116: 0.001: 0213:	0.007: 0217: 0.002: 6116: 0.001: 0213:	0.008: 0217: 0.002: 6116: 0.001: 0213:	0.007: 0217: 0.003: 6116: 0.002: 0213:	0.008: 0217: 0.003: 6116: 0.002: 0213:	0217 : 0.004: 6116 : 0.002: 0213 :	0.009: 0217: 0.004: 6116: 0.003: 0213:	0.009: 0217: 0.005: 6116: 0.003: 0213:	0.010: 0217: 0.006: 6116: 0.003: 0213:	0.011: 0217: 0.006: 6116: 0.003: 0213:	0.012: 0217 : 0.006: 6116 : 0.003: 0213 :	0.013: 0217: 0.007: 6116: 0.003: 0213:	0.014: 0217: 0.008: 6116: 0.003: 0213:	0217 : 0.008: 6116 : 0.003: 0213 :
															1000:	
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	0.042:	:
Фол: 1 Иол: 2.	133 : .55 :	137 : 2.55 : :	141 : 2.55 :	146 : 2.54 :	151 : 2.55 :	157 : 2.55 :	163 : 2.56 :	169 : 9.00 :	176 : 9.00 :	183 : 9.00 :	190 : 9.00 :	197 : 9.00 :	203 : 2.56 : :	208 : 2.58 :	214 : 2.56 :	218 : 2.58 : :
Ки : 02	217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0217 :	0.019: 0217 :	0217 :
Ки : 61	116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	6116 :	0.012: 6116:	6116 :
Ки : 02	215 :	0215 :	0215 :	0215 :	0213 :	0213 :	0216 :	0213 :	0213 :	0213 :	0213 :	0213 :	0216 :	0213 :	0.004: 0213:	0213 :
															4200:	
Qc : 0. Фол: 2 Иол: 2.	.037: 222 : .57 :	0.035: 226: 2.56:	0.032: 229: 2.57:	0.030: 232: 2.56:	0.028: 235: 2.68:	0.026: 237: 2.85:	0.024: 239: 3.11:	0.022: 241: 3.35:	0.020: 242: 3.52:	0.019: 244: 3.52:	0.017: 245: 3.52:	0.016: 246: 3.52:	0.015: 247: 3.51:	0.014: 248: 3.52:	0.013: 249: 3.50:	0.012: 250: 3.52:
		0.016:	0.014:	0.013:		0.011:	0.011:	0.010:	0.009:	0.009:	0.008:		0.007:	0.007:	0.007:	0.006:
Ви : 0.	.010:	0.010:	0.009:	0.008:	0.008:	0.007:	0.007:	0.006:	0.006:	0.005:	0.004:	0.004:	0.004:	0.003:	0217 : 0.003: 6116 :	0.003:
ви : 0.	.004:	0.003:	0.003:	0.003:	0.003:	0.003:	0.003:	0.003:	0.003:	0.003:	0.003:	0.002:	0.002:	0.002:	0.002:	0.002:
															~~~~~	
	:	4800:	:													
Фоп: 2 Иоп: 3.	251 : .51 :	0.011: 252: 3.51:	252 : 2.71 :													
			:													
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 02	.006: 217 : .002: 116 : .002: 213 :	0.006: 0217: 0.002: 6116: 0.002: 0213:	0217 : 0.002: 6116 : 0.001: 0213 :													
Ви: 0. Ки: 02 Ви: 0. Ки: 61 Ви: 0. Ки: 02	.006: 217 : .002: 116 : .002: 213 :	0.006: 0217: 0.002: 6116: 0.002: 0213:	0.006: 0217 : 0.002: 6116 : 0.001: 0213 :		0.064 д	олей ПД	к (х=	-200.0;	напр.в	етра=17	6)					
Ви: 0. Ки: 02 Ви: 0. Ки: 61 Ви: 0. Ки: 02 ————————————————————————————————————	.006: 217 : .002: 116 : .002: 213 : ~~~~~	0.006: 0217: 0.002: 6116: 0.002: 0213: Y-CTPO:	0.006: 0217: 0.002: 6116: 0.001: 0213:	Cmax=	-4200:	-4000:	-3800:	-3600:	-3400:	-3200:	-3000:				-2200:	
Ви: 0. Ки: 02 Ви: 0. Ки: 61 Ви: 0. Ки: 02 	.006: 217 : .002: 116 : .002: 213 : ~~~~~ 400 : : 000 : .011: 106 :	0.006: 0217: 0.002: 6116: 0.002: 0213: Y-CTPO: -4800: 0.012: 107:	0.006: 0217: 0.002: 6116: 0.001: 0213: -4600: -4600: 0.013:	Cmax= -4400:: 0.013: 108:	-4200: : 0.014: 109:	-4000: : 0.015: 110:	-3800: : 0.017: 111:	-3600: : 0.018: 112:	-3400: : 0.019: 113:	-3200: : 0.021: 114:	-3000: : 0.023: 116:	0.025: 117:	0.028: 119:	0.031: 121:	0.034: 124:	0.037: 126:
Ви: 0. Ки: 02 Ви: 0. Ки: 61 Ви: 0. Ки: 62  ———————————————————————————————————	.006: 217 : .002: 116 : .002: 213 : ~~~~~ 400 : : .011: 106 : .71 : .006:	0.006: 0217: 0.002: 6116: 0.002: 0213: Y-cTpo: -4800: -2.72: 0.012: 107: 2.72: 0.007:	0.006: 0217: 0.002: 6116: 0.001: 0213: -4600:: 0.013: 107: 2.73: 0.007:	-4400: : 0.013: 108: 2.71: 0.007:	-4200: : 0.014: 109: 3.52: :	-4000: : 0.015: 110: 3.51: :	-3800: : 0.017: 111: 3.51: :	-3600: : 0.018: 112: 3.52: :	-3400: : 0.019: 113: 3.52: :	-3200: : 0.021: 114: 3.52: :	-3000: : 0.023: 116: 3.47: :	0.025: 117: 3.21: .: 0.011:	0.028: 119: 2.88: :	0.031: 121: 2.73: 0.013:	0.034: 124: 2.53: 0.015:	0.037: 126: 2.55: 0.016:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 63 Ви : 0. Си : 52  ———————————————————————————————————	.006: 217 : .002: 116 : .002: 213 :	0.006: 0217: 0.002: 6116: 0.002: 0213: Y-crpo: -4800: 0.012: 107: 2.72: 0.007: 0.007: 0.002: 0.002:	0.006: 0217: 0.002: 6116: 0.001: 0213: -4600:: 0.013: 107: 2.73: : 0.007: 0217: 0.002:	Cmax=  -4400:: 0.013: 108: 2.71: 0.007: 0.007: 0.007: 0.002:	-4200: : 0.014: 109: 3.52: : 0.007: 0217: 0.003:	-4000: : 0.015: 110: 3.51: : 0.008: 0217: 0.003:	-3800: : 0.017: 111: 3.51: : 0.008: 0217: 0.004:	-3600: : 0.018: 112: 3.52: : 0.009: 0217: 0.004:	-3400: : 0.019: 113: 3.52: : 0.009: 0217: 0.005:	-3200: : 0.021: 114: 3.52: : 0.010: 0217: 0.005:	-3000: : 0.023: 116: 3.47: : 0.010: 0217: 0.006:	0.025: 117: 3.21: 0.011: 0217: 0.006:	0.028: 119: 2.88: : 0.012: 0217: 0.007:	0.031: 121: 2.73:  0.013: 0217: 0.007:	0.034: 124: 2.53: 0.015: 0217: 0.008:	0.037: 126: 2.55: 0.016: 0217: 0.009:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 63  ———————————————————————————————————	.006: 217 : .002: 116 : .002: 213 : ~~~~~ 400 : .001: .011: 106 : .71 : .006: 217 : .002: 116 : .001:	0.006: 0217: 0.002: 6116: 0.002: 0213:  Y-CTPO: -4800: -2.72: 0.012: 107: 0.007: 0.007: 6116: 0.001:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0213: 0213: 0.013: 0.013: 0.013: 0.007: 0217: 0.002: 6116: 0.001:	-4400: : 0.013: 108: 2.71: 0.007: 0217: 0.002: 6116: 0.001:	-4200: : 0.014: 109: 3.52: 0.007: 0217: 0.003: 6116: 0.002:	-4000: : 0.015: 110: 3.51: 0.008: 0217: 0.003: 6116: 0.002:	-3800: : 0.017: 111: 3.51: 0.008: 0217: 0.004: 6116: 0.002:	-3600: : 0.018: 112: 3.52: 0.009: 0217: 0.004: 6116: 0.002:	-3400: : 0.019: 113: 3.52: 0.009: 0217: 0.005: 6116: 0.003:	-3200: : 0.021: 114: 3.52: 0.010: 0217: 0.005: 6116: 0.003:	-3000: : 0.023: 116: 3.47: 0.010: 0217: 0.006: 6116: 0.003:	0.025: 117: 3.21: : 0.011: 0217: 0.006: 6116: 0.003:	0.028: 119: 2.88: : 0.012: 0217: 0.007: 6116: 0.003:	0.031: 121 : 2.73 : 0.013: 0217 : 0.007: 6116 : 0.003:	0.034: 124: 2.53: : 0.015: 0217: 0.008: 6116: 0.003:	0.037: 126: 2.55: : 0.016: 0217: 0.009: 6116: 0.003:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 62  ———————————————————————————————————	.006: 217 : .002: 116 : .002: 213 : : 000 : : .011: 106 : .71 : .006: 217 : .002: 116 : .001:	0.006: 0217: 0.002: 6116: 0.002: 0213: V-CTPO: 0.012: 107: 2.72: 0.007: 0.002: 6116: 0.002: 0.001: 0.002:	0.006: 0.0017: 0.0022: 6116: 0.0013: 0.0023: 0.013: 0.013: 0.0013: 0.007: 0.007: 0.002: 6116: 0.001: 0.001: 0.001:	Cmax=  -4400:: 0.013: 108: 2.71: 0.007: 0.002: 6116: 0.001: 0.001: 0213:	-4200: : 0.014: 109: 3.52: 0.007: 0.007: 0.003: 6116: 0.002: 0213:	-4000: : 0.015: 110: 3.51: 0.008: 0.003: 6116: 0.002: 0213:	-3800: : 0.017: 111: 3.51: 0.008: 0217: 0.004: 6116: 0.002: 0213:	-3600: : 0.018: 112: 3.52: 0.009: 0217: 0.004: 6116: 0.002: 0213:	-3400: : 0.019: 113: 3.52: 0.009: 0.017: 0.005: 6116: 0.003: 0.003:	-3200: : 0.021: 114: 3.52: 0.010: 0.0217: 0.005: 6116: 0.003: 0.213:	-3000: : 0.023: 116: 3.47: : 0.010: 0217: 0.006: 6116: 0.003: 0213:	0.025: 117: 3.21: .: 0.011: 0217: 0.006: 6116: 0.003: 0213:	0.028: 119: 2.88: : 0.012: 0217: 0.007: 6116: 0.003: 0213:	0.031: 121: 2.73: : 0.013: 0217: 0.007: 6116: 0.003: 0213:	0.034: 124: 2.53: 0.015: 0217: 0.008: 6116:	0.037: 126: 2.55: : 0.016: 0217: 0.009: 6116: 0.003: 0215:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 63 Ви : 0. Ки : 62  ———————————————————————————————————	.006: 217 : .002: 116 : .002: 213 : : 000 : : .011: 106 : .71 : .006: 217 : .002: 116 : .001: 217 : .002: 116 : .001: .002: .002: .003: .003: .004: .005: .005: .006: .007: .006: .007: .007: .008: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .0	0.006: 0217: 0.002: 6116: 0.002: 0213: 0.012: 107: 2.72: 0.007: 0.007: 0.002: 6116: 0.001: 0.001: 0.001:	0.006: 0217: 0.1017: 0.002: 6116: 0.001: 0.213: 0.013: 107: 2.73: 0.007: 0.007: 0.002: 6116: 0.001: 0.001:	Cmax=  -4400:: 0.013: 108: 2.71: 0.007: 0217: 0.002: 6116: 0.001: 0213:	-4200: : 0.014: 109: 3.52: 0.007: 0.217: 0.003: 6116: 0.002: 0213:	-4000: : 0.015: 110 : 3.51 : 0.008: 0217 : 0.003: 6116 : 0.002: 0213 :	-3800: : 0.017: 111: 3.51: 0.008: 0.217: 0.004: 6116: 0.002: 0213:	-3600: : 0.018: 112: 3.52: 0.009: 0217: 0.004: 6116: 0.002: 0213:	-3400: : 0.019: 113: 3.52: 0.009: 0217: 0.005: 6116: 0.003: 0213:	-3200: : 0.021: 114: 3.52: : 0.010: 0217: 0.005: 6116: 0.003: 0213:	-3000: : 0.023: 116: 3.47: : 0.010: 0217: 0.006: 6116: 0.003: 0213:	0.025: 117: 3.21: 0.011: 0217: 0.006: 6116: 0.003: 0213:	0.028: 119: 2.88: 0.012: 0217: 0.007: 6116: 0.003: 0213:	0.031: 121: 2.73: : 0.013: 0217: 0.007: 6116: 0.003: 0213:	0.034: 124: 2.53: 0.015: 0217: 0.008: 6116: 0.003: 0213:	0.037: 126: 2.55: 0.016: 0217: 0.009: 6116: 0.003: 0215:
Bu: 0. Ku: 02 Bu: 0. Ku: 61 Bu: 0. Ku: 63 Bu: 0. Ku: 60 Constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the consta	.006: 217:	0.006: 0217: 0.002: 6116: 0.002: 0213: 7-crpo: -4800: 0.012: 107: 2.72: 0.007: 0.002: 6116: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.00	0.006: 0217: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.002: 6116: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	-4400:: 0.013: 108: 2.71: 0.007: 0.002: 6116: 0.001: 0.001: 0.005: 142: 2.55:	-4200: : 0.014: 109: 3.52: 0.007: 0217: 0.003: 6116: 0.002: 0213: : 0.055: 148: 2.55:	-4000: : 0.015: 110: 3.51: 0.008: 0.217: 0.003: 6116: 0.002: 0213: : 0.057: 154: 9.00:	-3800: : 0.017: 111: 3.51: 0.008: 0217: 0.004: 6116: 0.002: 0213: : 0.061: 161: 9.00:	-3600: : 0.018: 112: 3.52: 0.009: 0217: 0.004: 6116: 0.002: 0213: -400: -400: 168: 9.00:	-3400: : 0.019: 113: 3.52: 0.009: 0217: 0.005: 6116: 0.003: 0213: -200: -200: 176: 9.00:	-3200: : 0.021: 114: 3.52: 0.010: 0.217: 0.005: 6116: 0.003: 0213: : 0.064: 184: 9.00:	-3000: : 0.023: 116: 3.47: : 0.010: 0217: 0.006: 6116: 0.003: 0213: : 0.063: 192: 9.00:	0.025: 117: 3.21: 0.011: 0217: 0.006: 0.006: 0.003: 0213:	0.028: 119: 2.88: 0.012: 0217: 0.007: 6116: 0.003: 0213:	0.031: 121: 2.73: 0.013: 0217: 0.007: 6116: 0.003: 0213:	0.034: 124: 2.53: 0.015: 0217: 0.008: 0.008: 0.003: 0213: 0.007: 0.047: 217: 2.58:	0.037: 126: 2.55: 0.016: 0217: 0.009: 6116: 0.003: 0215:: 1200:: 0.044: 222: 2.58:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 63 Ви : 0. Ки : 62 Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 63 Ви : 0. Ки : 64 Ви : 0. Ки : 64 Ви : 0. Ки : 65 Ви : 0. Ки : 65 Ви : 0. Ки : 62 Ви : 0. Ки : 63 Ви : 0. Ки : 63 Ви : 0. Ки : 63 Ви : 0. Ки : 63 Ви : 0. Ки : 63 Ви : 0.	.006: 2217 : 217 : 217 : 217 : 217 : 217 : 218 : 219 : 219 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 : 210 :	0.006: 0217: 0.002: 6116: 0.002: 0213:  Y-cTPO: 0.012: 107: 2.72: 0.007: 0.002: 6116: 0.001: 0.001: 103: 0.001: 103: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	0.006: 0217: 0.1017: 0.001: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.007: 0.002: 6116: 0.001: 0.001: 137: 2.55: 0.002:	Cmax=  -4400:: 0.013: 108: 2.71: 0.007: 0217: 0.002: 6116: 0.001: 0213:: 0.052: 142: 2.55: : 0.023:	-4200: 	-4000: 	-3800: : 0.017: 111: 3.51: 0.008: 0217: 0.004: 6116: 0.002: 0213: -600: -600: 9.00: 9.00: 0.002:	-3600: : 0.018: 112: 3.52: 0.009: 0217: 0.004: 6116: 0.002: 0213: -400: -400: -0.063: 168: 9.00: 0.039:	-3400: 	-3200: 	-3000: : 0.023: 116: 3.47: 0.010: 0217: 0.006: 6116: 0.003: 0213: : 9.00: 9.00: 0.006:	0.025: 117: 3.21: 0.011: 0217: 0.006: 6116: 0.003: 0213:	0.028: 119: 2.88: 0.012: 0217: 0.007: 6116: 0.003: 0213:	0.031: 121: 2.73: 0.013: 0.017: 0.007: 6116: 0.003: 0217: 0.0052: 212: 9.00: 0.052:	0.034: 124: 2.53: 0.015: 0.015: 0.0217: 0.008: 6116: 0.003: 0.213: 0.003: 0.037: 217: 2.58: 0.021: 0.0217: 2.58: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0213: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.0212: 0.021	0.037: 126: 2.55: : 0.016: 0217: 0.009: 6116: 0.003: 0215:: 1200:: 222: 2.58: : 0.020:
Bu : 0. Ku : 0.2 Bu : 0. Ku : 6.1 Bu : 0. Ku : 6.2  Y= 1.4  X= -5.0  Dun: 2. Bu : 0. Ku : 6.2  Bu : 0. Ku : 6.1 Bu : 0. Ku : 6.1 Bu : 0. Ku : 0.2  Bu : 0. Ku : 0.2  Eu : 0.  Con: 1  Con:	.006: 2217: .002: 217: .002: 116: .002: 127: .002: .003: .006: .006: .007: .007: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .009: .009:	0.006: 0217: 0.002: 6116: 0.002: 0213: 7-crpoi -4800: 0.012: 107: 2.72: 0.007: 0.002: 6116: 0.001: 0213: 0.001: 0213: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.007: 0.002: 6116: 0.013: 107: 2.73: 0.007: 0.002: 6116: 0.001: 0.013: 0.017: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:	Cmax=  -4400:: 0.013: 108: 2.71: 0.007: 0.002: 6116: 0.001: 0213:: 0.001: 142: 2.55: 0.023: 0217: 0.0013:	-4200: 	-4000: 	-3800:	-3600:	-3400: 	-3200: -3200: -3200: -3200: 0.021: 114: 3.52: 0.010: 0.005: 6116: 0.003: 0213: 	-3000: 	0.025: 117: 3.21: 0.011: 0217: 0.006: 6116: 0.003: 0213: 0.060: 199: 9.00: 0.035: 0.017: 0.015:	0.028: 119: 2.88: 0.012: 0217: 0.007: 6116: 0.003: 0213: 0.056: 206: 9.00: 0.032: 0.032: 0.017:	0.031: 121: 2.73: 0.013: 0.013: 0.007: 6116: 0.003: 0.003: 0.013: 212: 9.00: 9.00: 0.029: 0.0217: 0.017:	0.034: 124: 2.53: 0.015: 0217: 0.008: 6116: 0.003: 0213: 0.047: 217: 2.58: 0.021: 0.0217: 0.013:	: 0.037: 126: 2.55: : 0.016: 0217: 0.009: 6116: 0.003: 0215:: 0.044: 222: 2.58: : 0.020: 0217: 0.012:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 63 Ви : 0. Ки : 62	.006: 217:	0.006: 0217: 0.002: 6116: 0.002: 0213:  Y-cTPO: -4800: -72: 0.012: 107: 0.002: 6116: 0.001: 0.001: 133: 2.56: 0.019: 0.010: 6116: 0.01: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.005:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.002: 6116: 0.001: 0.013: 137: 2.55: 0.021: 0.021: 0.011: 6116: 0.001:	-4400:: 0.013: 108: 2.71: 0.007: 0.002: 6116: 0.001: 0.001: 0.005: 142: 2.55: 0.023: 0.023: 0.0217: 0.001: 6116: 0.001: 0.005:	-4200:	-4000:	-3800:	-400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400:	-3400:	-3200: : 0.021: 114: 3.52: 0.010: 0217: 0.005: 6116: 0.003: 0213: : 0.064: 184: 9.00: 0.039: 0.039: 0.015: 60: 0.015: 60: 0.015:	-3000:	0.025: 117: 3.21: 0.011: 0217: 0.006: 6116: 0.003: 0213: 0.060: 199: 9.00: 0.035: 0217: 0.015: 6116: 0.004:	0.028: 119: 2.88: 0.012: 0.012: 0.007: 6116: 0.003: 0.056: 206: 9.00: 0.032: 0.056: 6016: 0.032: 0.015: 6116: 0.003:	800:	0.034: 124: 2.53: 0.015: 0217: 0.008: 6116: 0.003: 0213: 0.047: 217: 22.58: 0.021: 0.021: 0.013: 6116: 0.004:	: 0.037: 126: 2.55: 0.016: 0.017: 0.009: 6116: 0.003: 0215:: 0.044: 222: 225: 0.020: 0.0217: 0.012: 6116: 0.004:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 62	.006: 2217: .002: 217: .002: 116: .002: .003: .003: .006: .007: .007: .007: .007: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .0	0.006: 0217: 0.002: 6116: 0.002: 0213: 7-crpoi -4800: -4800: 0.012: 107: 2.72: 0.007: 0.002: 6116: 0.001: 0213: 0.001: 0213: 0.001: 0213:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0213: 0.013: 107: 2.73: 0.007: 0.002: 6116: 0.013: 137: 0.001: 0213:	-4400:	-4200:	-4000:	-3800:	-3600:: 0.018: 112: 3.52: 0.009: 0.004: 6116: 0.002: 0213: -400:: 0.063: 168: 9.00: 0.014: 6116: 0.014: 6116: 0.004: 0.014:	-3400:	-3200:	-3000:	0.025: 117: 3.21: 0.001: 0.011: 0217: 0.006: 6116: 0.003: 0213: 0.060: 199: 0.060: 199: 0.035: 0.015: 6116: 0.004: 0.004:	0.028: 119: 2.88: 0.012: 0.017: 0.007: 6116: 0.003: 0.056: 206: 9.00: 0.032: 0.015: 6116: 0.003: 0.015:	0.031: 121: 2.73: 0.003: 0.013: 0.013: 0.007: 6116: 0.003: 0.003: 0.052: 212: 9.00: 0.052: 212: 9.00: 0.014: 6116: 0.003: 0.003:	0.034: 124: 2.53: 0.015: 0217: 0.008: 6116: 0.003: 0213:: 0.047: 217: 2.58: 0.0217: 0.0217: 0.0217:	: 0.037: 126: 2.55: 0.016: 0217: 0.009: 6116: 0.003: 0215:: 0.044: 222: 2.58: 0.020: 0.021: 0.012: 6116: 0.004: 0.00213:
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 62	.006: 2217: .002: 218: .002: 116: .002: .003: .006: .006: .007: .007: .007: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .008: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .009: .0	0.006: 0217: 0.002: 6116: 0.002: 0213: 7-crpoi -4800: 0.012: 107: 2.72: 0.007: 0.002: 6116: 0.001: 0213: 0.001: 0213: 0.016: 0.001: 0217: 0.0010: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.007: 0.002: 6116: 0.013: 137: 0.001: 0213: 0.001: 0213:	-4400:	-4200:	-4000:	-3800:	-3600:: 0.018: 112: 3.52: 0.009: 0.004: 6116: 0.002: 0213: -400:: 0.063: 168: 9.00: 0.014: 6116: 0.004: 0.014: 6116: 0.004: 0.014:	-3400:	-3200:	-3000:	0.025: 117: 3.21: 0.0011: 0.011: 0.013: 0.003: 0.003: 0.003: 0.006: 199: 0.060: 199: 0.035: 0.015: 6116: 0.004: 0.004:	0.028: 119: 2.88: 0.012: 0.017: 0.007: 6116: 0.003: 0.056: 206: 9.00: 0.032: 0.015: 6116: 0.003:	0.031: 121: 2.73: 0.003: 0.013: 0.013: 0.007: 6116: 0.003: 0.003: 0.052: 212: 9.00: 0.052: 212: 9.00: 0.014: 6116: 0.003:	0.034: 124: 2.53: 0.015: 0217: 0.008: 6116: 0.003: 0213: 0.047: 217: 2.58: 0.021: 0.013: 6116: 0.003:	: 0.037: 126: 2.55: 0.016: 0217: 0.009: 6116: 0.003: 0215:: 0.044: 222: 2.58: 0.020: 0.021: 0.012: 6116: 0.004: 0.003:
Ви : 0 . Ки : 02 Ви : 0 . Ки : 61 Ви : 0 . Ки : 62 Ви : 0 . Ки : 62 Ви : 0 . Ки : 62 Ви : 0 . Ки : 62 Ви : 0 . Ки : 62 Ви : 0 . Ки : 63 Ви : 0 . Ки : 63 Ви : 0 . Ки : 63 Ви : 0 . Ки : 63 Ви : 0 . Ки : 64 Ви : 0 . Ки : 64 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 65 Ви : 0 . Ки : 0	.006: 217: 217: 217: 217: 217: 218: 218: 218: 218: 218: 218: 218: 218	0.006: 0217: 0.002: 6116: 0.002: 0213:  7-crpo: -4800: -4800: -0.012: 107: 2.72: 0.002: 6116: 0.013: 0.014: 133: 2.56: 0.019: 0.010: 6116: 0.015: 0.015: 0.015: 0.015: 0.015: 0.016: 0.016: 0.017: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.007: 0.002: 6116: 0.0013: 137: 2.55: 0.0021: 0.011: 6116: 0.011: 6116: 0.005: 0.015: 0.005: 0.015: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:	Cmax=  -4400:	-4200:	-4000:	-3800:	-400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400:	-3400:	-3200:	-3000:	0.025: 117: 3.21: 0.011: 0217: 0.006: 6116: 0.003: 0213: 0.060: 199: 9.00: 0.035: 0217: 0.015: 6116: 0.004: 0213:	0.028: 119: 2.88: 0.012: 0.012: 0.007: 6116: 0.003: 0.056: 206: 9.00: 0.032: 0.015: 6116: 0.003: 0.015: 6116: 0.003: 0.015: 6116: 0.003:	0.031: 121: 2.73: 0.013: 0.013: 0.017: 0.007: 6116: 0.003: 0.052: 212: 9.00: 0.0217: 0.014: 6116: 0.003: 0.013:	: 0.034: 124: 2.53: 0.015: 0217: 0.008: 6116: 0.003: 0213:: 0.047: 217: 227: 2.58: 0.021: 0.003: 0.013: 6116: 0.004: 0213:	
Ви : 0. Ки : 02 Ви : 0. Ки : 61 Ви : 0. Ки : 63 Ви : 0. Ки : 62  У= 14	.006: .011: .0217: .002: .0218: .0228: .0228: .0228: .0228: .0228: .0228: .0228: .0228: .0228: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328: .0328	0.006: 0217: 0.002: 6116: 0.002: 0213:  7-crpo: -4800: -4800: -0.012: 107: 2.72: 0.002: 6116: 0.001: 0213: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.002: 6116: 0.001: 0213: 0.002: 0.001: 0213: 0.001: 0213:	Cmax=  -4400:	-4200:	-4000:	-3800:	-400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400: -400:	-3400:	-3200:	-3000:	0.025: 117: 3.21: 0.011: 0217: 0.006: 6116: 0.003: 0213: 0.060: 199: 9.00: 0.035: 0217: 0.015: 6116: 0.004: 0213:	0.028: 119: 2.88: 0.012: 0.012: 0.007: 6116: 0.003: 0.056: 206: 9.00: 0.032: 0.015: 6116: 0.003: 0.016: 250: 3800:	0.031: 121: 2.73: 0.013: 0.013: 0.017: 0.007: 6116: 0.003: 0.052: 212: 9.00: 0.052: 212: 0.014: 6116: 0.003: 0.013:	: 0.034: 124: 2.53: 0.015: 0217: 0.008: 6116: 0.003: 0213:: 0.047: 217: 2.58: 0.021: 0.001: 0.001: 0.013: 6116: 0.004: 0213:: 0.014: 0213:	
Bu : 0. Ku : 0.2 Bu : 0. Ku : 6.3 Bu : 0. Ku : 6.5 Bu : 0. Ku : 6.5 Bu : 0. Ku : 6.6 Bu : 0. Ku : 0.2 Constant in the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of	.006: 217: .002: 213: .002: 213: .002: 213: .002: 213: .002: 213: .001: .001: .001: .001: .002: 217: .002: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .001: .	0.006: 0217: 0.002: 6116: 0.002: 0213: 7-cTpo: -4800: -4800: -107: 0.012: 107: 0.002: 6116: 0.001: 133: 2.56: 0.019: 0.010: 6116: 0.005: 0.019: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007:	0.006: 0217: 0.002: 6116: 0.001: 0213: 0.013: 107: 2.73: 0.007: 0217: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	-4400:	-4200:	-4000:	-3800:	-3600:: 0.018: 112: 3.52: 0.009: 0217: 0.004: 6116: 0.002: 0213: -400:: 0.039: 0217: 0.039: 0217: 0.014: 6116: 0.004: 0213:: 0.023: 244: 3.21: : 0.010: 0.010:	-3400:	-3200:	-3000:	0.025: 117: 3.21: 0.011: 0.016: 0.006: 0.006: 0.006: 0.013: 0.0060: 0.0060: 0.0060: 0.0060: 0.0060: 0.0060: 0.0060: 0.0060: 0.007: 0.015: 0.004: 0.013:	0.028: 119: 2.88: 0.012: 0.012: 0.007: 6116: 0.003: 0.056: 9.00: 0.015: 6116: 0.003: 0217: 0.015: 6116: 0.003: 0217: 0.015: 6116: 0.003: 0213:	0.031: 121: 2.73: 0.013: 0.013: 0.017: 0.007: 6116: 0.003: 0213: 212: 9.00: : 0.052: 212: 9.00: : 0.029: 0217: 0.014: 6116: 0.003: 0213:	0.034: 124: 2.53: 0.015: 0217: 0.008: 0.008: 0.008: 0.003: 0213: 0217: 0.047: 2.58: 0.0217: 0.013: 0.0217: 0.013: 0.0217: 0.013: 0.0213:	

```
ви : 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0
                               4600: 4800: 5000:
  Oc : 0.012: 0.011: 0.011:
                              253 : 254 : 254 :
  Фоп:
  Uoπ: 3.51 : 3.52 : 3.51
                         0.006: 0.006: 0.006:
  ки · 0217 · 0217 · 0217 ·
  Ви : 0.002: 0.002: 0.002:
  Ки : 6116 : 6116 : 6116 :
Ви : 0.002: 0.002: 0.001:
  Ки: 0213: 0213: 0213:
     у= 1200 : Y-строка 20 Cmax= 0.080 долей ПДК (x= -200.0; напр.ветра=176)
     x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
   Qc : 0.011: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.020: 0.022: 0.024: 0.026: 0.029: 0.032: 0.036: 0.039:
 Φοπ: 104 : 104 : 105 : 106 : 106 : 107 : 108 : 109 : 110 : 111 : 113 : 114 : 116 : 118 : 120 : 122

Uοπ: 2.71 : 2.72 : 2.73 : 2.73 : 3.52 : 3.52 : 3.51 : 3.52 : 3.52 : 3.56 : 3.33 : 3.09 : 2.78 : 2.61 : 2.55 : 2.53
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            122 :
  Ви: 0.007: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.013: 0.014: 0.016: 0.017:
  Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
                           6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
  Ви: 0.001: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003
   Ки : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0215 :
      x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                                                                                                                                          0: 200: 400:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         600:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           800:
  Qc : 0.044: 0.049: 0.054: 0.060: 0.065: 0.069: 0.074: 0.077: 0.080: 0.079: 0.077: 0.073: 0.068: 0.061: 0.054: 0.048:
 ФОП: 125 : 129 : 133 : 138 : 144 : 151 : 158 : 167 : 176 : 185 : 194 : 202 : 210 : 216 : 222 : 227
UOП: 2.56 : 2.55 : 2.56 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00
  Ви: 0.019: 0.021: 0.023: 0.034: 0.039: 0.045: 0.047: 0.052: 0.054: 0.051: 0.048: 0.043: 0.041: 0.035: 0.031: 0.027:
  Ku : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
                                                                                      : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
                         0.005: 0.006: 0.007: 0.005: 0.005: 0.005: 0.005: 0.004: 0.005: 0.005: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003:
  Ви:
  Ku : 0215 : 0215 : 0215 : 0215 : 0213 : 0213 : 0213 : 0213 : 0216 : 0216 : 0216 : 0216 : 0216 : 0213 : 0213 : 0213 : 0213 :
                               1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000:
                                                                                                                                                                                                                                                                                                                                                         3200: 3400: 3600: 3800: 4000: 4200: 4400:
  Qc : 0.044: 0.040: 0.037: 0.034: 0.031: 0.029: 0.026: 0.024: 0.022: 0.020: 0.019: 0.017: 0.016: 0.015: 0.014: 0.013:
 Φοπ: 230 : 234 : 237 : 240 : 242 : 244 : 245 : 247 : 248 : 250 : 251 : 252 : 253 : 253 : 254 : 255 : 

Uοπ: 2.69 : 2.57 : 2.58 : 2.56 : 2.56 : 2.63 : 2.85 : 3.11 : 3.37 : 3.52 : 3.52 : 3.52 : 3.52 : 3.50 : 3.52 : 3.51 :
                         0.019: 0.018: 0.016: 0.015: 0.014: 0.013: 0.011: 0.011: 0.010: 0.009: 0.008: 0.008: 0.008: 0.007: 0.007: 0.006:
  Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
                                                                                    : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
  Ви : 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: Ки : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 
                              4600: 4800: 5000:
  Qc: 0.012: 0.011: 0.011:
Φοπ: 255 : 256 : 257 : 
Uoπ: 3.51 : 3.50 : 2.73 :
  Ви: 0.006: 0.006: 0.006:
                         0217 : 0217 : 0217
  Ви: 0.003: 0.002: 0.002:
  Ви : 0.002: 0.002: 0.001:
  Ки: 0213: 0213: 0213:
      y= 1000 : Y-строка 21 Cmax= 0.101 долей ПДК (x= 0.0; напр.ветра=187)
      x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
    Qc: 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.019: 0.021: 0.023: 0.025: 0.027: 0.030: 0.034: 0.037: 0.042:
Φοπ: 102 : 102 : 103 : 103 : 104 : 105 : 105 : 106 : 107 : 108 : 109 : 110 : 112 : 113 : 115 : 118 : Uoπ: 2.71 : 2.72 : 2.71 : 2.72 : 3.50 : 3.51 : 3.51 : 3.52 : 3.52 : 3.51 : 3.26 : 2.99 : 2.73 : 2.51 : 2.55 : 2.56 :
                        0.007: 0.007: 0.008: 0.008: 0.008: 0.008: 0.009: 0.009: 0.010: 0.010: 0.011: 0.012: 0.014: 0.015: 0.016: 0.016: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.017: 0.
                        0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.004: 0.004: 0.005: 0.006: 0.006: 0.007: 0.007: 0.008: 0.009: 0.009: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6
  Ки:
                          0.001; \ 0.001; \ 0.001; \ 0.001; \ 0.002; \ 0.002; \ 0.002; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0.004; \ 0
  Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                            -1800: -1600: -1400: -1200: -1000:
                                                                                                                                                                                                              -800:
                                                                                                                                                                                                                                                   -600:
                                                                                                                                                                                                                                                                                     -400:
                                                                                                                                                                                                                                                                                                                                                                                                  200:
  Qc: 0.047: 0.053: 0.061: 0.072: 0.081: 0.086: 0.093: 0.098: 0.101: 0.101: 0.098: 0.092: 0.082: 0.073: 0.063: 0.055:
                                                                 124:
                                                                                                    128 :
                                                                                                                                      133 :
                                                                                                                                                                         139 :
                                                                                                                                                                                                          146 :
                                                                                                                                                                                                                                                 155 : 165 :
                                                                                                                                                                                                                                                                                                                       176 : 187 :
                                                                                                                                                                                                                                                                                                                                                                                            197 :
                                                                                                                                                                                                                                                                                                                                                                                                                            207 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  215 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     221 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         227 :
 Uon: 2.55 : 2.56 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 :
  Ви: 0.020: 0.023: 0.034: 0.040: 0.048: 0.056: 0.065: 0.072: 0.075: 0.073: 0.065: 0.060: 0.051: 0.042: 0.036: 0.036: ки: 0.0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 021
  Ви : 0.010: 0.011: 0.012: 0.013: 0.013: 0.014: 0.014: 0.014: 0.014: 0.016: 0.021: 0.020: 0.021: 0.020: 0.017: 0.015:
```

```
ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 :
ви: 0.005: 0.006: 0.005: 0.007: 0.007: 0.006: 0.006: 0.005: 0.006: 0.007: 0.007: 0.006: 0.005: 0.004: 0.004: 0.004:
 Ки: 0215: 0215: 0215: 0215: 0215: 0215: 0213: 0213: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0213: 0213:
                                                                                                                                              2400:
                                                                                                                                                                                               2800:
                                                                                                                                                                                                                                                                      3400:
Qc: 0.047: 0.043: 0.039: 0.035: 0.032: 0.030: 0.027: 0.025: 0.023: 0.021: 0.019: 0.018: 0.016: 0.015: 0.014: 0.013:
                                             239 :
                                                                                                                                                                                              250 :
                                                                                                                                              248 :
                                                                                                                                                                     249 :
                                                                                                                                                                                                                      252:
                                                                                                                                                                                                                                              253:
Uon: 2.68 : 2.58 : 2.58 : 2.58 : 2.56 : 2.56 : 2.74 : 3.01 : 3.26 : 3.52 : 3.52 : 3.52 : 3.52 : 3.52 : 3.52 : 3.52
 Ви: 0.021: 0.019: 0.017: 0.016: 0.014: 0.013: 0.012: 0.011: 0.010: 0.009: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007:
                 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
                0.013: 0.012: 0.011: 0.010: 0.009: 0.008: 0.007: 0.006: 0.006: 0.005: 0.004: 0.004: 0.004: 0.003: 0.003: 0.003: 0.116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6
 Ки:
                 0.005: 0.004: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                     4600: 4800:
Oc : 0.012: 0.012: 0.011:
∪оп: 3.52 : 3.50 : 3.52
 Ви : 0.006: 0.006: 0.006:
 Ки: 0217: 0217: 0217:
                0.003: 0.002: 0.002:
 Ки: 6116: 6116: 6116:
                 0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213:
                    800 : У-строка 22 Стах= 0.130 долей ПДК (х= 0.0; напр.ветра=190)
   \nabla =
   x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
 Oc: 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.018: 0.019: 0.021: 0.023: 0.025: 0.028: 0.031: 0.035: 0.039: 0.043:
Фоп: 99 : 100 : 100 : 101 : 101 : 102 : 102 : 103 : 104 : 105 : 106 : 107 : 108 : 109 : 111 : 113 : 

Uoп: 2.71 : 2.73 : 2.71 : 3.52 : 3.50 : 3.52 : 3.51 : 3.52 : 3.52 : 3.47 : 3.17 : 2.92 : 2.65 : 2.55 : 2.55 : 2.55
 Ви: 0.007: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.013: 0.014: 0.016: 0.017: 0.020: Ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217
                 0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.004: 0.005: 0.005: 0.006: 0.006: 0.007: 0.008: 0.008: 0.009: 0.010:
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 Км: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
   x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                     0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.049: 0.056: 0.068: 0.084: 0.105: 0.113: 0.117: 0.125: 0.129: 0.130: 0.126: 0.118: 0.104: 0.088: 0.074: 0.062: Φοπ: 115 : 118 : 122 : 127 : 133 : 141 : 150 : 162 : 176 : 190 : 202 : 212 : 221 : 228 : 233 : 238 :
                                                                                                                                                                                                                                                                                           212 :
 Uon: 2.56: 2.56: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00
                 0.022: 0.025: 0.039: 0.048: 0.061: 0.076: 0.087: 0.100: 0.110: 0.108: 0.094: 0.077: 0.065: 0.052: 0.042: 0.035:
 Ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217:
                 0.011: 0.012: 0.013: 0.014: 0.015: 0.014: 0.015: 0.012: 0.010: 0.012: 0.020: 0.028: 0.027: 0.024: 0.021: 0.017:
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 Ки: 0213: 0215: 0213: 0215: 0215: 0215: 0215: 0215: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0213: 0213:
                     1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
 Oc: 0.053: 0.046: 0.041: 0.037: 0.034: 0.031: 0.028: 0.026: 0.024: 0.022: 0.020: 0.018: 0.017: 0.015: 0.014: 0.013:
Φοπ: 241 : 244 : 246 : 248 : 250 : 252 : 253 : 254 : 255 : 256 : 257 : 257 : 258 : 259 : 259 : 260 : 

Uoπ: 9.00 : 2.70 : 2.70 : 2.56 : 2.58 : 2.57 : 2.67 : 2.92 : 3.19 : 3.47 : 3.52 : 3.50 : 3.51 : 3.52 : 3.56 : 3.50 :
                 0.029: 0.020: 0.018: 0.016: 0.015: 0.014: 0.012: 0.011: 0.010: 0.009: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007:
                0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 02
 Ки:
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 Ku: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
   x= -
                    4600: 4800: 5000:
 0c • 0 013• 0 012• 0 011•
 Фоп: 260: 260: 261:
 Uon: 3.47 : 3.51 : 3.50
                 0.006: 0.006: 0.006:
 Ки: 0217: 0217: 0217:
                 0.003: 0.002: 0.002:
 Ки : 6116 : 6116 : 6116 :
Ви : 0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213:
                     600 : Y-строка 23 Cmax= 0.178 долей ПДК (x= -200.0; напр.ветра=176)
    v= -5000 · -4800 · -4600 · -4400 · -4200 · -4000 · -3800 · -3600 · -3400 · -3200 · -3000 · -2800 · -2600 · -2400 · -2200 · -2000
                                                                                                                                              ----:-
 Qc : 0.012: 0.012: 0.013: 0.014: 0.015: 0.017: 0.018: 0.020: 0.021: 0.024: 0.026: 0.029: 0.032: 0.036: 0.040: 0.044:
Φοπ: 97 : 97 : 98 : 98 : 99 : 99 : 100 : 100 : 101 : 102 : 103 : 103 : 105 : 106 : 107 Uοπ: 2.72 : 2.72 : 2.71 : 3.52 : 3.51 : 3.52 : 3.52 : 3.52 : 3.50 : 3.39 : 3.12 : 2.83 : 2.59 : 2.55 : 2.56 : 2.55
                                                                                                                                                                                                                                                                                                                                                                                              107:
 Ви: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.013: 0.015: 0.016: 0.018: 0.020:
 ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
```

```
ви : 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.004: 0.004: 0.005: 0.005: 0.006: 0.006: 0.007: 0.008: 0.009: 0.009: 0.010:
Ки: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6
                                   : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
   x= -1800: -1600: -1400: -1200: -1000: -800:
                                                                                                                                                                              -600: -400:
                                                                                                                                                                                                                                                                      0:
                                                                                                                                                                                                                                                                                                                  400:
                                                                                                                                                                                                                                                                                                                                            600:
                                                                                                                                                                                                                                                                                                                                                                     800:
Qc : 0.050: 0.060: 0.073: 0.092: 0.117: 0.167: 0.153: 0.167: 0.178: 0.177: 0.169: 0.157: 0.132: 0.107: 0.086: 0.070:
                                                                                                                                                                                                                                                           194:
                                                                                                                                                                                                                                                                                                            220 :
                                                                                                                                                                                                                                                                                                                                       229 :
Фоп:
                     109:
                                              112 :
                                                                      116 :
                                                                                                  120 :
                                                                                                                          125 :
                                                                                                                                                  132 :
                                                                                                                                                                              143 :
                                                                                                                                                                                                      159 :
                                                                                                                                                                                                                                  176:
                                                                                                                                                                                                                                                                                    208:
                                                                                                                                                                                                                                                                                                                                                                 236 :
                                                                                                                                                                                                                                                                                                                                                                                            240:
                                                                     9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00:
                                                                                                                                                                                                                                                                                  9.00:
                 0.023: 0.036: 0.046: 0.059: 0.074: 0.091: 0.120: 0.157: 0.170: 0.163: 0.129: 0.104: 0.082: 0.065: 0.048: 0.039:
                0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 02
                  6116 : 6116 : 6116 : 6116 : 6116 : 0215 : 6116 : 6116 : 0216 : 0216 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 :
                 0.004: 0.005: 0.006: 0.007: 0.009: 0.020: 0.008: 0.003: 0.003: 0.005: 0.015: 0.012: 0.008: 0.006: 0.005: 0.005:
                  0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0116 : 0213 : 0216 : 6116 : 6116 : 0216 : 0216 : 0216 : 0216 : 0216 : 0213 : 0213
                      1400: 1600:
                                                                         1800: 2000: 2200: 2400: 2600: 2800:
                                                                                                                                                                                                                                                            3200: 3400:
                                                                                                                                                                                                                                                                                                             3600: 3800: 4000:
Qc: 0.058: 0.049: 0.043: 0.039: 0.035: 0.032: 0.029: 0.026: 0.024: 0.022: 0.020: 0.018: 0.017: 0.016: 0.015: 0.014:
                                                                    252 : 253 : 255 : 256 : 257 : 258 : 259 : 259 : 2.68 : 2.66 : 2.58 : 2.57 : 2.63 : 2.85 : 3.12 : 3.40 :
Φοπ:
                      247 :
                                               250 :
                                                                                                                                                                                                                                                                                   260:
                                                                                                                                                                                                                                                                                                             260:
                                                                                                                                                                                                                                                                                                                                       261:
                                                                                                                                                                                                                                                                                                                                                                 261:
                                                                                                                                                                                                                                                                                                                                                                                            262 :
                                                                                                                                                                                                                                                                                                           3.56:
                                                                                                                                                                                                                                                                                                                                    3.51 :
                 0.032: 0.026: 0.019: 0.017: 0.015: 0.014: 0.013: 0.012: 0.010: 0.010: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007:
                0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 02
Bи·
                                                            : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
                 0.005; 0.004; 0.004; 0.004; 0.004; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.003; 0.002; 0.002;
Ви:
                 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 :
                      4600: 4800: 5000:
Oc : 0.013: 0.012: 0.011:
Фол: 262 : 263 : 263
Uoл: 3.47 : 3.51 : 3.50
                                                                      263 :
ви: 0.006: 0.006: 0.006:
 Ки : 0217 : 0217 : 0217 :
Ви: 0.003: 0.002: 0.002:
Ви: 0.002: 0.002: 0.002:
Ки: 0213: 0213: 0213:
                      400 : Y-строка 24 Cmax= 0.279 долей ПДК (x= -200.0; напр.ветра=175)
                                          -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
                 0.012: 0.013: 0.013: 0.014: 0.015: 0.017: 0.018: 0.020: 0.022: 0.024: 0.026: 0.029: 0.033: 0.036: 0.040: 0.045:
                                                                                                                                                                                                            97 :
                                                   95:
                                                                           95 :
                                                                                                      95 :
                                                                                                                               96:
                                                                                                                                                         96:
                                                                                                                                                                                  96 :
                                                                                                                                                                                                                                      97:
                                                                                                                                                                                                                                                               98 :
                                                                                                                                                                                                                                                                                        98:
                                                                                                                                                                                                                                                                                                                  99 :
                                                                                                                                                                                                                                                                                                                                            99:
                                                                                                                                                                                                                                                                                                                                                                  100:
                                                                                                                                                                                                                                                                                                                                                                                            101:
Uon: 2.72 : 2.73 : 2.71 : 3.51 : 3.52 : 3.52 : 3.52 : 3.52 : 3.52 : 3.53 : 3.34 : 3.07 : 2.80 : 2.56 : 2.56 : 2.55 : 2.56
Ви: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.014: 0.015: 0.017: 0.019: 0.021:
                                                            : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
                0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.004: 0.005: 0.005: 0.006: 0.007: 0.007: 0.008: 0.009: 0.010: 0.011: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 61
Bи·
Ви: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0.004: Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213
                   -1800: -1600: -1400: -1200: -1000:
                                                                                                                                                      -800:
                                                                                                                                                                               -600:
                                                                                                                                                                                                         -400:
                                                                                                                                                                                                                                   -200:
                                                                                                                                                                                                                                                                                         200:
                                                                                                                                                                                                                                                                                                                   400:
                                                                                                                                                                                                                                                                                                                                             600:
                                                                                                                                                                                                                                                                                                                                                                       800:
Qc: 0.053: 0.064: 0.080: 0.103: 0.133: 0.170: 0.208: 0.242: 0.279: 0.263: 0.237: 0.221: 0.170: 0.128: 0.098: 0.078:
Φοπ: 104 : 106 : 108 : 111 : 116 : 122 : 133 : 151 : 175 : 201 : 219 : 231 : 240 : 245 : 249 : 252 : 

Uοπ: 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 8.03 : 6.29 : 7.47 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00
                 0.032: 0.040: 0.051: 0.067: 0.092: 0.122: 0.173: 0.237: 0.278: 0.256: 0.191: 0.137: 0.103: 0.075: 0.056: 0.044:
                                                                                      : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
                                                             : 0217
                0.011: 0.013: 0.015: 0.018: 0.019: 0.022: 0.012: 0.002: : 0.007: 0.024: 0.069: 0.054: 0.039: 0.028: 0.021: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6
                                                                                                                                                                                                                                                 : : 0.022: 0.014: 0.010: 0.006: 0.005: 0.005:
                  0.004: 0.005: 0.006: 0.008: 0.010: 0.013: 0.011: 0.001:
Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 6116:
                                                                                                                                                                                                                                                                          : 6116 : 0216 : 0216 : 0216 : 0213 : 0213 :
                                                                                                                                                                                                                                                            3200:
                      1400:
                                               1600:
                                                                         1800:
                                                                                                  2000:
                                                                                                                           2200:
                                                                                                                                                    2400:
                                                                                                                                                                               2600:
                                                                                                                                                                                                        2800:
                                                                                                                                                                                                                                  3000:
                                                                                                                                                                                                                                                                                     3400:
                                                                                                                                                                                                                                                                                                               3600:
                                                                                                                                                                                                                                                                                                                                        3800:
                                                                                                                                                                                                                                                                                                                                                                   4000:
  Qc: 0.063: 0.052: 0.045: 0.040: 0.036: 0.033: 0.030: 0.027: 0.024: 0.022: 0.020: 0.019: 0.017: 0.016: 0.015: 0.014:
                                                                                                                                                                                                         262 :
                                                                                                   259:
                                                                                                                                                      260:
                                                                                                                                                                               261 :
                                                                                                                                                                                                                                  262
                                                                                                                                                                                                                                                            263
                                                                                                                                                                                                                                                                                     263:
                                                                                                                                                                                                                                                                                                               263:
Uon: 9.00 : 9.00 : 2.71 : 2.58 : 2.58 : 2.58 : 2.56 : 2.81 : 3.09 : 3.36 : 3.52 : 3.56 : 3.51 : 3.52 : 3.50 : 3.52 :
                  0.034: 0.028: 0.019: 0.017: 0.016: 0.014: 0.013: 0.012: 0.011: 0.010: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007:
                0.017: 0.217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217
Ки:
                  0.005: 0.004: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002:
Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                      4600:
                                            4800:
Qc : 0.013: 0.012: 0.011:
                      265:
                                              265:
Поп: 3.52 : 3.52 : 3.50
ви : 0.006: 0.006: 0.006:
Ки: 0217: 0217: 0217
Ви : 0.003: 0.002: 0.002:
```

Ки: 6116: 6116: 6116: Ви: 0.002: 0.002: 0.002: Ки: 0213: 0213: 0213:

~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~															
	200 :	У-стро	ка 25	Cmax=	0.714 д	олей ПД	K (x=	-200.0;	напр.в	етра=17	2)					
					-4200:											
Qc : 0 Фол:	92 :	0.013: 93:	0.013: 93:	0.014: 93:	0.016: 93: 3.52:	0.017: 93:	0.018: 93:	0.020: 94:	0.022: 94:	0.024: 94:	0.027: 94:	0.030: 94:	0.033: 95:	0.036: 95:	0.040: 96:	0.046: 96:
Ки : 0 Ви : 0 Ки : 6 Ви : 0	0.007: 0217 : 0.002: 5116 : 0.001:	0.007: 0217: 0.002: 6116: 0.001:	0.007: 0217: 0.002: 6116: 0.001:	0.007: 0217: 0.003: 6116: 0.002:	: 0.008: 0217: 0.003: 6116: 0.002: 0213:	0217 : 0.004: 6116 : 0.002:	0.009: 0217: 0.004: 6116: 0.003:	0.009: 0217 : 0.005: 6116 : 0.003:	0.010: 0217: 0.005: 6116: 0.003:	0.011: 0217 : 0.006: 6116 : 0.003:	0.012: 0217 : 0.007: 6116 : 0.003:	0.014: 0217: 0.007: 6116: 0.003:	0.015: 0217: 0.008: 6116: 0.003:	0.017: 0217: 0.009: 6116: 0.003:	0.019: 0217 : 0.010: 6116 : 0.004:	0217 : 0.011: 6116 : 0.004:
					~~~~~											
	:	:	:	:	-1000: :	:	:	:	:	:	:	:	:	:	:	:
Фоп:	97 :	99 : 9.00 :	100 : 9.00 :	102 : 9.00 :	0.153: 104: 9.00:	109 : 9.00 :	116 : 9.00 :	133 : 1.64 :	172 : 1.48 :	216 : 1.86 :	234 : 8.60 :	247 : 9.00 :	253 : 9.00 :	256 : 9.00 :	259 : 9.00 :	260 : 9.00 :
Ви : 0 Ки : 0 Ви : 0 Ки : 6 Ви : 0	0.033: 0217 : 0.012: 5116 : 0.004: 0213 :	0.043: 0217: 0.013: 6116: 0.005: 0213:	0.055: 0217: 0.016: 6116: 0.006: 0213:	0.076: 0217: 0.019: 6116: 0.008: 0213:	0.104: 0217: 0.026: 6116: 0.010: 0213:	0.155: 0217: 0.027: 6116: 0.015: 0213:	0.225: 0217: 0.023: 6116: 0.020: 0213:	0.400: 0217: 0.015: 6116: 0.004: 0213:	0.713: 0217 : :	0.516: 0217: 0.004: 0216:	0.208: 0217: 0.162: 6116: 0.010: 0216:	0.176: 0217 : 0.135: 6116 : 0.011: 0216 :	0.120: 0217: 0.075: 6116: 0.008: 0216:	0.084: 0217: 0.044: 6116: 0.006: 0213:	0.062: 0217: 0.030: 6116: 0.006: 0213:	0.046: 0217: 0.022: 6116: 0.007: 0213:
					2200:											
Qc : 0 Фол:	0.067: 261 :	0.054: 262:	0.046: 263:	0.041: 264:	0.037: 265: 2.58:	0.033: 265:	0.030: 265:	0.027: 266:	0.025: 266:	0.023: 266:	0.021: 266:	0.019: 267:	0.017: 267:	0.016: 267:	0.015: 267:	0.014: 267:
Ки : 0 Ви : 0 Ки : 6 Ви : 0 Ки : 0	0217 : 0.017: 5116 : 0.006: 0213 :	0217 : 0.014: 6116 : 0.005: 0213 :	0.020: 0217 : 0.012: 6116 : 0.005: 0213 :	0.018: 0217: 0.011: 6116: 0.005: 0213:	: 0.016: 0217: 0.010: 6116: 0.004: 0213:	0217 : 0.009: 6116 : 0.004: 0213 :	0.013: 0217 : 0.008: 6116 : 0.003: 0213 :	0.012: 0217: 0.007: 6116: 0.003: 0213:	0.011: 0217: 0.007: 6116: 0.003: 0213:	0.010: 0217: 0.006: 6116: 0.003: 0213:	0.009: 0217: 0.005: 6116: 0.003: 0213:	0.008: 0217: 0.005: 6116: 0.003: 0213:	0.008: 0217: 0.004: 6116: 0.003: 0213:	0.007: 0217: 0.004: 6116: 0.002: 0213:	0.007: 0217: 0.003: 6116: 0.002: 0213:	0.007: 0217: 0.003: 6116: 0.002: 0213:
QC: 0 Фоп: Uon: 3 : Ви: 0 Ки: 0 Ви: 0 Ки: 6 Ви: 0	0.013: 267: 3.52: 0.006: 0.217: 0.003: 5116: 0.002:	4800:: 0.012: 267: 3.52: 0.006: 0217: 0.002: 6116: 0.002: 0213:	0.011: 268: 3.50: 0.006: 0217: 0.002: 6116: 0.002: 0213:													
	0:	У-стро	ка 26	Cmax=	4.369 д	олей ПД	K (x=	0.0;	напр.в	етра=35	1)					
	:	:	:	:	-4200: :	:	:	:	:	:	:	:	:	:	:	:
Фоп: Иоп: 2	90 : 2.72 :	90 : 2.73 :	90 : 2.73 :	90 : 3.50 :	0.016: 90: 3.52:	90 : 3.52 :	90 : 3.52 :	90 : 3.52 :	90 : 3.51 :	90 : 3.31 :	90 : 3.03 :	90 : 2.76 :	90 : 2.56 :	90 : 2.55 :	90 : 2.58 :	91 : 9.00 :
Ки : 0 Ви : 0 Ки : 6 Ви : 0 Ки : 0	0217 : 0.002: 5116 : 0.001: 0213 :	0.007: 0217: 0.002: 6116: 0.001: 0213:	0.007: 0217: 0.002: 6116: 0.001: 0213:	0.007: 0217: 0.003: 6116: 0.002: 0213:	0.008: 0217: 0.003: 6116: 0.002: 0213:	0.008: 0217: 0.004: 6116: 0.002: 0213:	0.009: 0217: 0.004: 6116: 0.003: 0213:	0.009: 0217: 0.005: 6116: 0.003: 0213:	0.010: 0217: 0.006: 6116: 0.003: 0213:	0.011: 0217 : 0.006: 6116 : 0.003: 0213 :	0.012: 0217 : 0.007: 6116 : 0.003: 0213 :	0.014: 0217: 0.007: 6116: 0.003: 0213:	0.015: 0217: 0.008: 6116: 0.003: 0213:	0217 : 0.009: 6116 : 0.003: 0213 :	0.019: 0217: 0.010: 6116: 0.004: 0213:	0.028: 0217: 0.010: 6116: 0.003: 0213:
x=	-1800:	-1600:	-1400:	-1200:	-1000:	-800:	-600:	-400:	-200:	0:	200:	400:	600:	800:	1000:	1200:
Qc : 0 Фол:	0.055: 91:	0.069: 91:	0.088:	0.118:	0.162: 92: 9.00:	0.236: 92:	0.353: 93:	0.770: 96:	3.537: 129:	4.369: 351:	0.580: 270:	0.336: 270:	0.219: 269:	0.155: 269:	0.115: 269:	0.087: 269:
Ви : 0 Ки : 0 Ви : 0 Ки : 6 Ви : 0 Ки : 0	: 0.034: 0217 : 0.012: 5116 : 0.004:	: 0.044: 0217: 0.014: 6116: 0.005: 0213:	: 0.057: 0217: 0.017: 6116: 0.006: 0213:	: 0.079: 0217: 0.022: 6116: 0.007: 0213:	0.113: 0217:	: 0.169: 0217: 0.041: 6116: 0.011: 0213:	: 0.266: 0217: 0.060: 6116: 0.012: 0213:	: 0.686: 0217 : 0.071: 6116 : 0.004: 0213 :	: 3.526: 0217: 0.005: 6219: 0.004: 6117:	: 4.369: 6116 : :	: 0.294: 0217: 0.283: 6116: 0.003: 0216:	: 0.176: 0217 : 0.150: 6116 : 0.009: 0216 :	: 0.127: 0217: 0.073: 6116: 0.007: 0216:	: 0.088: 0217: 0.044: 6116: 0.009: 0213:	: 0.064: 0217: 0.030: 6116: 0.009: 0213:	: 0.048: 0217: 0.022: 6116: 0.008: 0213:
	1400:	1600:	1800:	2000:	2200:	2400:	2600:	2800:	3000:	3200:	3400:	3600:	3800:	4000:	4200:	4400:
Qc : 0 Фоп:	0.069: 269:	0.056: 269:	0.047: 269:	0.041: 269:	0.037: 270: 2.58:	0.033: 270:	0.030: 270:	0.028: 270:	0.025: 270:	0.023: 270:	0.021: 270:	0.019: 270:	0.017: 270:	0.016: 270:	0.015: 270:	0.014: 270:
: Ви : 0	:	0.029:	0.020:	0.018:	0.016: 0217:	: 0.014:	0.013:	0.012:	0.011:	0.010:	0.009:	0.008:	0.008:	0.008:	0.007:	0.007:

```
Bu: 0.017: 0.014: 0.012: 0.011: 0.010: 0.009: 0.008: 0.007: 0.007: 0.006: 0.006: 0.005: 0.004: 0.004: 0.003: 0.003: Ku: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 
 Ви: 0.007: 0.005: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002:
                     0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
                          4600: 4800: 5000:
 Qc : 0.013: 0.012: 0.011:
 Фоп:
                     270 : 270 : 270 :
 Ви: 0.006: 0.006: 0.006:
 Ки: 0217: 0217: 0217:
 Ви : 0.003: 0.002: 0.002:
 Ки : 6116 : 6116 : 6116 :
 Ви: 0.002: 0.002: 0.002:
    y= -200 : Y-строка 27 Cmax= 1.065 долей ПДК (x= -200.0; напр.ветра= 11)
                                                   -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
 Qc : 0.012: 0.013: 0.013: 0.014: 0.016: 0.017: 0.018: 0.020: 0.022: 0.024: 0.026: 0.029: 0.032: 0.036: 0.040: 0.045:
                                                                                                                                                                                                                   87 :
                                                                                                                                                                                                                                                                                                                                                                                                         86:
                                                                                                                                                                                                                                                                                                                                                                                                                                      85 :
                                                            88 :
                                                                                        88 :
                                                                                                                      88 :
                                                                                                                                                                                   87 :
                                                                                                                                                                                                                                                 87 :
                                                                                                                                                                                                                                                                             87 :
                                                                                                                                                                                                                                                                                                            87 :
                                                                                                                                                                                                                                                                                                                                           86:
                                                                                                                                                                                                                                                                                                                                                                        86:
Uon: 2.72 : 2.73 : 2.72 : 3.50 : 3.51 : 3.52 : 3.52 : 3.52 : 3.52 : 3.33 : 3.04 : 2.78 : 2.56 : 2.56 : 2.57 : 9.00 :
 Ви: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.014: 0.015: 0.017: 0.019: 0.027:
 Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
                       6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
 Ви: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003
 Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                        -1800: -1600: -1400: -1200: -1000:
                                                                                                                                                                                  -800:
                                                                                                                                                                                                                -600:
                                                                                                                                                                                                                                               -400:
                                                                                                                                                                                                                                                                                                                                                                            400:
 Qc : 0.055; 0.068; 0.086; 0.115; 0.156; 0.224; 0.333; 0.557; 1.065; 0.678; 0.330; 0.277; 0.208; 0.153; 0.114; 0.087;
                                                                                                                                                                                                                                                                                                         316 :
Φοπ: 84 : 83 : 82 : 81 : 79 : 75 : 69 : 54 : 11 : 316 : 296 : 288 : 284 : 281 : 279 : 278 : 

Uοπ: 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 1.67 : 1.25 : 1.58 : 7.28 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00
 Ви: 0.034: 0.043: 0.056: 0.077: 0.109: 0.162: 0.246: 0.490: 1.061: 0.668: 0.294: 0.183: 0.121: 0.086: 0.063: 0.047:
KW: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 02
                     6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 0215 : 0213 : 0213 : 6116 : 6116 : 6116 : 6116
 ви : 0.004: 0.005: 0.005: 0.006: 0.007: 0.008: 0.011: 0.007: 0.002: 0.002: 0.008: 0.027: 0.020: 0.015: 0.011: 0.009:
 Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0216: 0216: 0216: 0216: 0216: 6219: 6117: 6116: 0213: 0213: 0213: 0213:
                                                      1600: 1800:
                                                                                                                    2000: 2200:
                                                                                                                                                                                2400:
                                                                                                                                                                                                              2600: 2800:
                                                                                                                                                                                                                                                                                                                                      3400:
                                                                                                                                                                                                                                                                                                                                                                                                   3800:
 Qc: 0.068: 0.056: 0.047: 0.041: 0.037: 0.033: 0.030: 0.028: 0.025: 0.023: 0.021: 0.019: 0.017: 0.016: 0.015: 0.014:
                                                                                                                                                                                                                                                                            273 :
                                                                                                                                                                                                                                                                                                         273 :
                                                                                                                                                  275 :
                                                                                                                                                                                                               274 :
                                                                                                                                                                                                                                            274 :
Uon: 9.00 : 9.00 : 2.72 : 2.71 : 2.67 : 2.68 : 2.58 : 2.79 : 3.07 : 3.34 : 3.52 : 3.56 : 3.51 : 3.52 : 3.52 : 3.52
 Ви: 0.036: 0.029: 0.020: 0.018: 0.016: 0.014: 0.013: 0.012: 0.011: 0.010: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007:
                                                                        : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
                    0.017: 0.014: 0.012: 0.011: 0.010: 0.009: 0.008: 0.007: 0.006: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 611
 Ви: 0.007: 0.006: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                                                     4800: 5000:
                          4600:
Qc: 0.013: 0.012: 0.011:
Uon: 3.50 : 3.56 : 3.50
 Ви : 0.006: 0.006: 0.006:
                                           : 0217
 Ви : 0.003: 0.002: 0.002:
 Ки: 6116: 6116: 6116:
 Ви : 0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213:
                        -400 : Y-строка 28 Cmax= 0.338 долей ПЛК (x= -200.0; напр.ветра= 5)
    x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc: 0.012: 0.013: 0.013: 0.014: 0.015: 0.017: 0.018: 0.020: 0.022: 0.024: 0.026: 0.029: 0.032: 0.035: 0.039: 0.044:
Ви: 0.007: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.014: 0.015: 0.017: 0.019: 0.026:
Ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217
  Ви : 0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.004: 0.005: 0.005: 0.006: 0.007: 0.007: 0.008: 0.009: 0.010: 0.010:
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 км · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 021
                        -1800: -1600: -1400: -1200: -1000: -800: -600: -400:
 Qc : 0.053: 0.065: 0.081: 0.105: 0.138: 0.185: 0.246: 0.294: 0.338: 0.299: 0.227: 0.209: 0.180: 0.139: 0.107: 0.083:
Φοπ: 77 : 76 : 74 : 71 : 67 : 60 : 50 : 33 : 5 : 336 : 316 : 307 : 298 : 293 : 289 : 286 : 

Uοπ: 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 7.58 : 4.29 : 5.71 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00
 Ви: 0.033: 0.041: 0.052: 0.071: 0.096: 0.137: 0.194: 0.265: 0.334: 0.297: 0.217: 0.126: 0.102: 0.075: 0.058: 0.044:
```

```
\mathtt{Ku} : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
Mu : 0.012: 0.014: 0.017: 0.021: 0.028: 0.035: 0.035: 0.036: 0.036: 0.001: 0.005: 0.026: 0.029: 0.028: 0.023: 0.018: Mu : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 
                       1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.066: 0.054: 0.046: 0.041: 0.037: 0.033: 0.030: 0.027: 0.025: 0.023: 0.021: 0.019: 0.017: 0.016: 0.015: 0.014:
                                                  283 : 281 : 280 : 280 :
                                                                                                                                                             279 : 278 : 278 : 277 : 277 :
                                                                                                                                                                                                                                                                                                     276 :
                                                                                                                                                                                                                                                                                                                                276 : 276 : 275 :
Uon: 9.00 : 9.00 : 2.72 : 2.72 : 2.65 : 2.69 : 2.58 : 2.81 : 3.09 : 3.37 : 3.51 : 3.56 : 3.51 : 3.56 : 3.52 : 3.52 :
 Ви: 0.035: 0.028: 0.020: 0.017: 0.016: 0.014: 0.013: 0.012: 0.011: 0.010: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007: Ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217:
 ви : 0.015; 0.013; 0.011; 0.010; 0.009; 0.009; 0.008; 0.007; 0.007; 0.006; 0.005; 0.005; 0.004; 0.004; 0.003; 0.003;
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                        4600: 4800: 5000:
    x=
Oc : 0.013: 0.012: 0.011:
                        275 : 274 :
 Uon: 3.52 : 3.52 : 3.50
 Ви: 0.006: 0.006: 0.006:
 Ки: 0217: 0217: 0217:
  Ви : 0.003: 0.002: 0.002:
 Ки: 6116: 6116: 6116:
                    0.002: 0.002: 0.002:
 ки · 0213 · 0213 · 0213 ·
   y= -600 : Y-строка 29 Cmax= 0.203 долей ПДК (x= -200.0; напр.ветра= 4)
    x= -5000 : -4800 : -4600 : -4400 : -4200 : -4000 : -3800 : -3600 : -3400 : -3200 : -3000 : -2800 : -2600 : -2400 : -2200 : -2000 :
 Qc : 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.018: 0.019: 0.021: 0.023: 0.026: 0.028: 0.031: 0.034: 0.038: 0.042:
                                                                                                             82:
                                                                                                                                        82 :
                                                                                                                                                                    82 :
                                                                                                                                                                                                81 :
                                                                                                                                                                                                                           81 :
                                                                                                                                                                                                                                                     80:
                                                                                                                                                                                                                                                                                   79:
                                                                                                                                                                                                                                                                                                              79:
                                                                                                                                                                                                                                                                                                                                        78:
                                                       83 :
                                                                                83 :
                                                                                                                                                                                                                                                                                                                                                                                               76:
                            83 :
 Uon: 2.72 : 2.70 : 2.72 : 3.52 : 3.56 : 3.52 : 3.52 : 3.52 : 3.52 : 3.36 : 3.13 : 2.87 : 2.59 : 2.56 : 2.58 : 2.58
 Ви: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.013: 0.015: 0.017: 0.018: 0.021:
 Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 :
                   0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0.004:
 Ku : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
    x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                                                        0: 200: 400: 600:
                                                                                                                                                                                                                                                                                                                                                                                             800: 1000: 1200:
 Qc : 0.050: 0.060: 0.074: 0.092: 0.115: 0.145: 0.175: 0.197: 0.203: 0.190: 0.165: 0.153: 0.143: 0.119: 0.094: 0.076:
                                                                                                                                                                                                38 :
                                                                                                                                                                                                                                                                             344 :
Φοπ: 71 : 69 : 66 : 62 : 57 : 49 : 38 : 23 : 4 : 344 : 328 : 319 : 310 : 303 : 298 : 294 : 

Uοπ: 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 :
  Ви : 0.031: 0.038: 0.048: 0.062: 0.080: 0.107: 0.141: 0.174: 0.193: 0.184: 0.153: 0.097: 0.077: 0.063: 0.050: 0.040:
 Кы : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 0216 : 0216 : 0216 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 Ки : 0213 : 0213 : 0213 : 0213 : 0216 : 0216 : 0216 : 0216 : 0216 : 6116 : 6116 : 0216 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 :
                      1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
 Qc : 0.062: 0.052: 0.045: 0.040: 0.036: 0.033: 0.030: 0.027: 0.024: 0.022: 0.020: 0.019: 0.017: 0.016: 0.015: 0.014: Φοπ: 291 : 289 : 287 : 286 : 284 : 283 : 282 : 281 : 281 : 280 : 279 : 279 : 278 : 278 : 278 : 277 :
 Φοπ: 291 : 289 : 287 : 286 : 284 : 283 : 282 : 281 : 281 : 280 : 279 : 279 : 278 : 278 : 278 : 277 : 

Uοπ: 9.00 : 9.00 : 2.71 : 2.71 : 2.71 : 2.67 : 2.72 : 2.87 : 3.13 : 3.41 : 3.51 : 3.56 : 3.52 : 3.56 : 3.51 : 3.52 :
                  0.032: 0.026: 0.019: 0.017: 0.015: 0.014: 0.013: 0.012: 0.010: 0.010: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007:
 Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
                   6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
 Ви: 0.007: 0.006: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002:
                   0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
                       4600: 4800: 5000:
    v=
 Qc: 0.013: 0.012: 0.011:
 Фоп:
                        277 :
                                                  277 : 276 :
 Uoп: 3.50 : 3.52 : 3.50
 ви: 0.006: 0.006: 0.006:
 Ки : 0217 : 0217 : 0217 :
Ви : 0.003: 0.002: 0.002:
 ки: 6116: 6116: 6116:
 Ви: 0.002: 0.002: 0.002:
   y= -800 : Y-строка 30 Cmax= 0.141 долей ПДК (x= -200.0; напр.ветра= 4)
    x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
 Qc : 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.018: 0.019: 0.021: 0.023: 0.025: 0.027: 0.030: 0.033: 0.037: 0.041:
Φοπ: 81 : 80 : 80 : 80 : 79 : 79 : 78 : 77 : 76 : 75 : 74 : 73 : 71 : 70 : 68 : 

Uοπ: 2.72 : 2.72 : 2.73 : 3.50 : 3.52 : 3.56 : 3.52 : 3.52 : 3.52 : 3.47 : 3.20 : 2.89 : 2.68 : 2.56 : 2.55 : 2.58 :
```

```
ви : 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.013: 0.014: 0.016: 0.018: 0.020:
Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
Ви: 0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.004: 0.005: 0.005: 0.006: 0.006: 0.007: 0.008: 0.008: 0.009: 0.010:
                        6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 :
                     0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0
                       -1800: -1600: -1400: -1200: -1000:
                                                                                                                                                                                                                                                                                                                                                                  200:
                                                                                                                                                                                            -800:
                                                                                                                                                                                                                            -600:
                                                                                                                                                                                                                                                             -400:
                                                                                                                                                                                                                                                                                                                                                                                                  400:
                                                                                                                                                                                                                                                                                                                                                                                                                                   600:
                                                                                                                                                                                                                                                                                                                                           0:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   800:
                      0.046: 0.054: 0.065: 0.078: 0.095: 0.112: 0.129: 0.139: 0.141: 0.135: 0.125: 0.120: 0.112: 0.097: 0.082: 0.068:
                                                                                                                                                               48 :
                                                                                                                                                                                             41 :
Фоп•
                                                                63 •
                                                                                              59 .
                                                                                                                                54 .
                                                                                                                                                                                                                                31 :
                                                                                                                                                                                                                                                               18:
                                                                                                                                                                                                                                                                                                     4: 349:
                                                                                                                                                                                                                                                                                                                                                           336: 327: 318:
                                                                                                                                                                                                                                                                                                                                                                                                                                                            311 •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              306 •
Uon: 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 :
                      0.028: 0.034: 0.042: 0.052: 0.067: 0.081: 0.098: 0.117: 0.123: 0.121: 0.106: 0.077: 0.065: 0.052: 0.042: 0.036:
Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
                       6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
                     0.003: 0.004: 0.004: 0.004: 0.004: 0.005: 0.007: 0.007: 0.006: 0.005: 0.004: 0.010: 0.012: 0.012: 0.010: 0.008: 0213: 0213: 0213: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 02
                          1400:
                                                                                                                                                                                                                                                                                                                                                                                                                           3800:
                                                                                                                                                        2200: 2400: 2600: 2800:
                                                                                                                                                                                                                                                                                                                            3200: 3400:
                                                          1600:
                                                                                         1800: 2000:
                                                                                                                                                                                                                                                                                                                                                                                           3600:
                                                                                                                                                                                                                                                                                                                                                                                                                                                             4000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4200:
                      0.057: 0.048: 0.043: 0.039: 0.035: 0.032: 0.029: 0.026: 0.024: 0.022: 0.020: 0.018: 0.017: 0.016: 0.015: 0.014:
                                                                                                                                                                                                                                                                                                                                                                                                                            281 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                           281 :
                           298 : 295 : 293 :
                                                                                                                           291 : 289 : 288 :
                                                                                                                                                                                                                            286 : 285 : 284 :
                                                                                                                                                                                                                                                                                                                             283 : 283 : 282 :
Uon: 9.00 : 2.71 : 2.70 : 2.70 : 2.70 : 2.68 : 2.71 : 2.95 : 3.21 : 3.44 : 3.56 : 3.56 : 3.52 : 3.52 : 3.50 : 3.52 :
Ви: 0.029: 0.020: 0.018: 0.016: 0.015: 0.013: 0.012: 0.011: 0.010: 0.009: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007:
                     0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 02
                       6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
Ви: 0.006: 0.006: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002:
Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                           4600:
                                                           4800:
Qc : 0.013: 0.012: 0.011:
                          279 :
Uoп: 3.51 : 3.52 : 3.50
Ви: 0.006: 0.006: 0.006:
Ви: 0.003: 0.002: 0.002:
                      6116 : 6116 : 6116 :
Ви: 0.002: 0.002: 0.002:
Ки: 0213: 0213: 0213:
   y= -1000 : Y-строка 31 Cmax= 0.106 долей ПДК (x= -200.0; напр.ветра= 4)
   x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.011: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.019: 0.020: 0.022: 0.024: 0.026: 0.029: 0.032: 0.035: 0.039:
                                                                                                                                                                                                                                                                                                                                  73 :
                                                                                                                                                                                                                                75 :
                                                                                                                                                                                                                                                                 74:
                                                                                                                                                                                                                                                                                                                                                                                                  70 :
                                                                78
                                                                                                                                                                                                                                                                                                                                                                 71 :
                                                                                                                                                                                                                                                                                                                                                                                                                                   69:
Von: 772 : 2.73 : 2.71 : 3.52 : 3.52 : 3.48 : 3.52 : 3.52 : 3.50 : 3.27 : 3.01 : 2.76 : 2.56 : 2.56 : 2.56
Ви: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.010: 0.011: 0.013: 0.014: 0.015: 0.017: 0.019: ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217:
Ви: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.004: 0.004: 0.005: 0.006: 0.006: 0.007: 0.007: 0.008: 0.009: 0.010:
ки: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116:
                       0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004:
Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                       -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                                                                                                         0: 200:
                                                                                                                                                                                                                                                                                                                                                                                         400:
                                                                                                                                                                                                                                                                                                                                                                                                                                   600:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 800:
Qc: 0.043: 0.049: 0.057: 0.067: 0.077: 0.089: 0.098: 0.104: 0.106: 0.103: 0.100: 0.096: 0.089: 0.080: 0.070: 0.060:
                                                                                                                                                                                               35 :
                                                                                                                                                                                                                                                                                                                            352 :
                                                                                                                                                                                                                                                                                                                                                                                             333 :
                                                                                                                                                                                                                                                                                                                                                                                                                             325 :
Φοπ: 60: 57: 53: 48: 42: 35: 26: 15: 4: 352: 342: 333: 325: 318: 312: 307: 

Uοπ: 2.58: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00:
                     0.021: 0.030: 0.036: 0.043: 0.052: 0.061: 0.071: 0.081: 0.083: 0.082: 0.071: 0.059: 0.048: 0.042: 0.037: 0.031: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 02
Ви: 0.010: 0.011: 0.013: 0.015: 0.016: 0.018: 0.018: 0.015: 0.014: 0.012: 0.015: 0.018: 0.018: 0.017: 0.015: 0.013:
Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
Ки: 0213: 0213: 0213: 0213: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0216: 0213: 0213: 0213: 0213: 0213: 0213:
                           1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200:
   x=
Oc: 0.051: 0.046: 0.041: 0.037: 0.034: 0.031: 0.028: 0.026: 0.023: 0.021: 0.020: 0.018: 0.017: 0.015: 0.014: 0.013:
                                                                                                                                                         293 :
                                                                                                                                                                                                                                                         289 : 288 :
                                                                                                                                                                                                                                                                                                                                                           286 :
                                                                                                                                                                                                                                                                                                                                                                                                                            284 :
                                                                                        298 :
                                                                                                                      295 :
                                                                                                                                                                                        292 :
                                                                                                                                                                                                                       290 :
                                                                                                                                                                                                                                                                                                                            287 :
                                                                                                                                                                                                                                                                                                                                                                                             285 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                           283 :
                     9.00 : 2.71 : 2.70 : 2.72 : 2.71 : 2.71 : 2.76 : 3.01 : 3.27 : 3.52 : 3.56 : 3.51 : 3.52 : 3.52 : 3.50 : 3.52 :
Uon:
                     0.027: 0.019: 0.017: 0.016: 0.014: 0.013: 0.012: 0.011: 0.010: 0.009: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007: 0.217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0
                      0.011: 0.010: 0.000: 0.000: 0.008: 0.008: 0.007: 0.007: 0.006: 0.006: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003:
                     6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 61
км · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 0213 · 021
Oc : 0.013: 0.012: 0.011:
                           282 : 281 :
Uon: 3.51 : 3.52 : 3.50
Ви : 0.006: 0.006: 0.006:
```

```
Ки : 0217 : 0217 : 0217 :
 Ви : 0.003: 0.002: 0.002:
 Ки : 6116 : 6116 : 6116 :
Ви : 0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213:
   y= -1200 : Y-строка 32 Стах= 0.083 долей ПДК (x= -200.0; напр.ветра= 4)
    x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
 Qc: 0.011: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.020: 0.021: 0.023: 0.025: 0.028: 0.031: 0.033: 0.036:
                                                                                               75 :
                                                                                                                               75:
                                                                                                                                                              74:
                                                                                                                                                                                              73:
                                                                                                                                                                                                                             72:
                                                                                                                                                                                                                                                            71:
                                                                                                                                                                                                                                                                                            70:
                                                                                                                                                                                                                                                                                                                          69:
                                                                                                                                                                                                                                                                                                                                                          68:
                                                                                                                                                                                                                                                                                                                                                                                         67 :
                                                                                                                                                                                                                                                                                                                                                                                                                         65:
                                                                                                                                                                                                                                                                                                                                                                                                                                                        63:
Uon: 2.73 : 2.73 : 2.71 : 3.52 : 3.52 : 3.47 : 3.52 : 3.52 : 3.52 : 3.52 : 3.57 : 3.11 : 2.86 : 2.62 : 2.56 : 2.56 :
 ви : 0.007: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009: 0.009: 0.010: 0.011: 0.012: 0.013: 0.015: 0.016: 0.018:
 Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 ки : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
                    -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                                                                                                  0: 200: 400: 600:
                                                                                                                                                                                                                                                                                                                                                                                                                                                     800:
    ×=
Qc : 0.040: 0.044: 0.050: 0.057: 0.064: 0.071: 0.077: 0.082: 0.083: 0.082: 0.081: 0.077: 0.072: 0.066: 0.059: 0.052:
                                                               52:
                                                                                              48:
                                                                                                                               43:
                                                                                                                                                                                            30 :
                                                                                                                                                                                                                           22:
                                                                                                                                                                                                                                                                                                                     354:
                                                                                                                                                                                                                                                                                                                                                   345 :
                                                                                                                                                                                                                                                                                                                                                                                    337 : 330 :
 Фоп:
                                                                                                                                                            37 :
                                                                                                                                                                                                                                                           13:
                                                                                                                                                                                                                                                                                               4 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                   323 :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   317 :
Uon: 2.55 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 :
 Ви: 0.020: 0.026: 0.031: 0.036: 0.042: 0.048: 0.053: 0.059: 0.059: 0.059: 0.054: 0.046: 0.039: 0.036: 0.032: 0.028:
 Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
                      0213 : 0213 : 0213 : 0213 : 0213 : 0216 : 0216 : 0216 : 0216 : 0216 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
   ×= -
                          1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
 Qc : 0.047: 0.043: 0.039: 0.035: 0.032: 0.030: 0.027: 0.025: 0.023: 0.021: 0.019: 0.018: 0.016: 0.015: 0.014: 0.013:
                                                         305 :
                                                                                      302 : 300 : 297 : 296 : 294 : 292 : 291 : 290 :
                                                                                                                                                                                                                                                                                                                                                   289 :
                                                                                                                                                                                                                                                                                                                                                                                 288 :
                                                                                                                                                                                                                                                                                                                                                                                                                 287 :
                                                                                                                                                                                                                                                                                                                                                                                                                                               286:
                            309:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  285 :
 Uon: 2.71 : 2.70 : 2.71 : 2.70 : 2.67 : 2.71 : 2.87 : 3.11 : 3.37 : 3.52 : 3.56 : 3.52 :
                                                                                                                                                                                                                                                                                                                                                                                                               3.56 : 3.52 : 3.52 : 3.52
                      0.020: 0.018: 0.016: 0.015: 0.014: 0.013: 0.012: 0.011: 0.010: 0.009: 0.008: 0.008: 0.008: 0.007: 0.007: 0.006:
 Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 :
                      0.006: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002:
 Ku : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
                          4600: 4800: 5000:
 Oc : 0.012: 0.012: 0.011:
 Фоп:
                            284:
                                                         284 :
 Uoπ: 3.51 : 3.51 : 3.50
  Ви : 0.006: 0.006: 0.006:
 Ки : 0217 : 0217 : 0217 :
Ви : 0.003: 0.002: 0.002:
 Ки : 6116 : 6116 : 6116 :
Ви : 0.002: 0.002: 0.002:
 Ки : 0213 : 0213 : 0213 :
   y= -1400 : Y-строка 33 Cmax= 0.067 долей ПДК (x= -200.0; напр.ветра= 4)
     x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
 Qc : 0.011: 0.012: 0.013: 0.013: 0.014: 0.015: 0.016: 0.018: 0.019: 0.021: 0.022: 0.024: 0.027: 0.029: 0.032: 0.034:
Φοπ: 74 : 73 : 73 : 72 : 71 : 70 : 70 : 69 : 67 : 66 : 65 : 63 : 61 : 59 : 57 : 54 : 

Uοπ: 2.71 : 2.71 : 2.71 : 2.72 : 3.52 : 3.50 : 3.48 : 3.52 : 3.52 : 3.52 : 3.47 : 3.23 : 2.99 : 2.74 : 2.55 : 2.56 :
  ви : 0.006; 0.007; 0.007; 0.007; 0.007; 0.008; 0.008; 0.009; 0.009; 0.010; 0.011; 0.012; 0.013; 0.014; 0.015; 0.017;
 Ки : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
                        6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
 Ви: 0.001: 0.001: 0.001: 0.001: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003
  Ки : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213
                        -1800: -1600: -1400: -1200: -1000:
                                                                                                                                                                                                                       -600:
                                                                                                                                                                                      -800:
                                                                                                                                                                                                                                                      -400:
                                                                                                                                                                                                                                                                                       -200:
                                                                                                                                                                                                                                                                                                                                    0:
                                                                                                                                                                                                                                                                                                                                                         200:
                                                                                                                                                                                                                                                                                                                                                                                         400:
                                                                                                                                                                                                                                                                                                                                                                                                                         600:
                      0.037: 0.040: 0.044: 0.049: 0.054: 0.059: 0.063: 0.065: 0.067: 0.067: 0.066: 0.063: 0.060: 0.056: 0.051: 0.047:
Φοπ: 51 : 48 : 44 : 38 : 33 : 27 : 20 : 12 : 4 : 356 : 348 : 340 : 333 : 327 : 322 : 317 : 

Uοπ: 2.56 : 2.58 : 2.58 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 2.71 :
 Ви: 0.018: 0.020: 0.021: 0.031: 0.034: 0.037: 0.040: 0.043: 0.043: 0.041: 0.039: 0.038: 0.034: 0.030: 0.026: 0.020:
 Ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0
                       6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
 Ви : 0.003: 0.004: 0.004: 0.003: 0.003: 0.003: 0.004: 0.004: 0.004: 0.005: 0.005: 0.006: 0.006: 0.006: 0.006: 0.006: ки : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 
                           1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.043: 0.040: 0.036: 0.031: 0.028: 0.026: 0.024: 0.022: 0.020: 0.019: 0.017: 0.016: 0.015: 0.014: 0.013: 0.013: 313: 310: 306: 304: 301: 299: 297: 296: 294: 293: 292: 291: 290: 289: 288: 287: Uon: 2.70: 2.71: 2.72: 2.67: 2.71: 2.76: 2.99: 3.24: 3.49: 3.56: 3.56: 3.56: 3.52: 3.52: 3.52: 3.52: 3.51:
```

```
Bu: 0.018: 0.016: 0.015: 0.014: 0.013: 0.012: 0.011: 0.010: 0.009: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.007: 0.00
                      6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116
                   0.005: 0.005: 0.004: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.
                         4600: 4800: 5000:
 Oc : 0.012: 0.011: 0.011:
 Фоп•
                     286 : 286 : 285 :
 Uoп: 3.56 : 3.51 : 3.50
 ви: 0.006: 0.006: 0.006:
 Ки : 0217 : 0217 : 0217 :
 Ви: 0.002: 0.002: 0.002:
                     6116 : 6116 : 6116
 Ви : 0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213:
    у= -1600 : Y-строка 34 Cmax= 0.055 долей ПДК (x=
                                                                                                                                                                                                                              0.0; напр.ветра=356)
     x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.011: 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.020: 0.021: 0.023: 0.025: 0.027: 0.030: 0.032:
Φοπ: 72 : 71 : 70 : 70 : 69 : 68 : 67 : 66 : 65 : 63 : 62 : 60 : 58 : 56 : 53 : 50 : 

Uoπ: 2.73 : 2.71 : 2.72 : 2.72 : 3.50 : 3.52 : 3.52 : 3.52 : 3.52 : 3.52 : 3.52 : 3.37 : 3.12 : 2.88 : 2.68 : 2.56 :
 Bu: 0.006; 0.007; 0.007; 0.007; 0.007; 0.008; 0.008; 0.008; 0.009; 0.010; 0.010; 0.011; 0.012; 0.013; 0.014; 0.016;
                     0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
 Ви: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.004: 0.004: 0.004: 0.005: 0.006: 0.006: 0.006: 0.007: 0.008: 0.008:
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                     -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                                                                         0: 200:
 Qc: 0.035: 0.037: 0.040: 0.043: 0.046: 0.049: 0.052: 0.054: 0.055: 0.055: 0.054: 0.053: 0.050: 0.048: 0.045: 0.043:
Φοπ: 47 : 44 : 40 : 35 : 30 : 24 : 17 : 11 : 4 : 356 : 349 : 343 : 337 : 331 : 326 : 321 : 

Uοπ: 2.56 : 2.56 : 2.55 : 2.56 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 2.71 : 2.72 : 2.71 : 2.72
                                                                                                                                                                                                        17 :
                                                                                                                                                                                                                                                                                                                                                                              337 :
 Bu: 0.017: 0.018: 0.019: 0.021: 0.027: 0.030: 0.033: 0.033: 0.034: 0.033: 0.029: 0.022: 0.021: 0.019: 0.018:
                    0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
 ви : 0.009: 0.009: 0.010: 0.011: 0.011: 0.011: 0.011: 0.012: 0.013: 0.012: 0.011: 0.012: 0.012: 0.012: 0.011: 0.011: 0.010:
 Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
 Кы : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 021
                         1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200:
 Qc: 0.040: 0.037: 0.034: 0.032: 0.029: 0.027: 0.025: 0.023: 0.021: 0.019: 0.018: 0.017: 0.015: 0.014: 0.014: 0.013:
Фоп: 317 : 313 : 310 : 307 : 305 : 303 : 301 : 299 : 297 : 296 : 294 : 293 : 292 : 291 : 290 : 289 : 

Uoп: 2.70 : 2.71 : 2.68 : 2.69 : 2.71 : 2.90 : 3.15 : 3.37 : 3.52 : 3.56 : 3.51 : 3.52 : 3.52 : 3.50 : 3.52 : 3.51 :
 Ви: 0.017: 0.016: 0.014: 0.013: 0.012: 0.011: 0.010: 0.010: 0.009: 0.009: 0.008: 0.008: 0.007: 0.007: 0.007: 0.007: 0.007: ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217
 Ви: 0.010: 0.009: 0.008: 0.008: 0.008: 0.007: 0.006: 0.006: 0.005: 0.005: 0.004: 0.004: 0.003: 0.003: 0.003: 0.003:
 ки: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116: 6116:
                     0.005; \ 0.004; \ 0.004; \ 0.004; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.002; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0.003; \ 0
 Ки: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
   _{\rm X}=
                         4600: 4800: 5000:
 Oc : 0.012: 0.011: 0.011:
                        289 :
                                                   288
                                                                                    287
Uoп: 3.52 : 3.50 : 3.52
 Ви: 0.006: 0.006: 0.006:
 Ки: 0217: 0217: 0217:
 Ви : 0.002: 0.002: 0.002:
 Ки: 6116: 6116: 6116:
                    0.002: 0.002: 0.002:
 Ки: 0213: 0213: 0213:
    y= -1800 : Y-строка 35 Стах= 0.047 долей ПДК (x= 0.0; напр.ветра=357)
    x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc : 0.011: 0.012: 0.013: 0.013: 0.014: 0.015: 0.016: 0.018: 0.019: 0.020: 0.022: 0.024: 0.026: 0.028: 0.030:
   x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                                                                       0: 200: 400: 600: 800: 1000: 1200:
 Oc: 0.032: 0.034: 0.037: 0.039: 0.041: 0.043: 0.045: 0.046: 0.047: 0.047: 0.047: 0.046: 0.045: 0.043: 0.041: 0.039:
                        1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800:
Qc: 0.036: 0.034: 0.032: 0.030: 0.027: 0.025: 0.024: 0.022: 0.020: 0.019: 0.017: 0.016: 0.015: 0.014: 0.013: 0.012:
                     4600: 4800:
 Qc : 0.012: 0.011: 0.010:
```

```
y= -2000 : Y-строка 36 Стах= 0.042 долей ПДК (x= 0.0; напр.ветра=358)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.020: 0.021: 0.023: 0.024: 0.026: 0.028:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                      200:
                                                                                                                                                 400:
Qc : 0.030: 0.032: 0.034: 0.035: 0.037: 0.039: 0.040: 0.041: 0.042: 0.042: 0.042: 0.041: 0.040: 0.039: 0.037: 0.035:
         1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.033; 0.032; 0.030; 0.028; 0.026; 0.024; 0.022; 0.021; 0.019; 0.018; 0.017; 0.016; 0.015; 0.014; 0.013; 0.012;
         4600: 4800: 5000:
Qc : 0.011: 0.011: 0.010:
 <u>у= -2200 :</u> Y-строка 37 Стах= 0.038 долей ПДК (x= 0.0; напр.ветра=358)
 x= -5000: -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.010: 0.011: 0.011: 0.012: 0.013: 0.013: 0.014: 0.015: 0.016: 0.017: 0.019: 0.020: 0.021: 0.023: 0.024: 0.026:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                            0: 200: 400: 600: 800: 1000: 1200:
Oc. • 0 028 • 0 029 • 0 031 • 0 032 • 0 034 • 0 035 • 0 036 • 0 037 • 0 038 • 0 037 • 0 037 • 0 036 • 0 035 • 0 034 • 0 032 •
         1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.031: 0.029: 0.027: 0.026: 0.024: 0.023: 0.021: 0.020: 0.018: 0.017: 0.016: 0.015: 0.014: 0.013: 0.012: 0.012:
         4600: 4800: 5000:
Oc : 0.011: 0.011: 0.010:
 y= -2400 : Y-строка 38 Cmax= 0.034 долей ПДК (x= 0.0; напр.ветра=358)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc : 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.015: 0.016: 0.016: 0.018: 0.019: 0.020: 0.021: 0.023: 0.024:
       -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200: 0: 200: 400: 600: 800: 1000: 1200:
Qc: 0.026: 0.027: 0.029: 0.030: 0.031: 0.032: 0.033: 0.033: 0.034: 0.034: 0.034: 0.033: 0.033: 0.032: 0.031: 0.030:
          1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000:
Qc: 0.028: 0.027: 0.025: 0.024: 0.023: 0.021: 0.020: 0.019: 0.017: 0.016: 0.015: 0.014: 0.014: 0.013: 0.012: 0.011:
 x= 4600: 4800: 5000:
Qc: 0.011: 0.010: 0.010:
 <u>y= -2600 :</u> Y-строка 39 Стах= 0.031 долей ПДК (x= 0.0; напр.ветра=358)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.010: 0.010: 0.011: 0.011: 0.012: 0.013: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.019: 0.020: 0.021: 0.022:
                                                                                                                             0: 200: 400:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                             600:
                                                                                                                                                                          800: 1000: 1200:
Qc: 0.024: 0.025: 0.026: 0.027: 0.028: 0.029: 0.030: 0.030: 0.031: 0.031: 0.031: 0.030: 0.030: 0.029: 0.028: 0.027:
 x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.026: 0.025: 0.024: 0.022: 0.021: 0.020: 0.019: 0.018: 0.017: 0.016: 0.015: 0.014: 0.013: 0.012: 0.012: 0.011:
 x= 4600: 4800: 5000:
Qc : 0.011: 0.010: 0.010:
 <u>у= -2800 :</u> Y-строка 40 Стах= 0.028 долей ПДК (x= 0.0; напр.ветра=358)
 x = -5000 \cdot -4800 \cdot -4600 \cdot -4400 \cdot -4200 \cdot -4000 \cdot -3800 \cdot -3600 \cdot -3400 \cdot -3200 \cdot -3000 \cdot -2800 \cdot -2600 \cdot -2400 \cdot -2200 \cdot -2000 \cdot 
Qc : 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.014: 0.015: 0.016: 0.017: 0.018: 0.019: 0.020: 0.021:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                         0: 200: 400: 600: 800: 1000: 1200:
Qc: 0.022: 0.023: 0.024: 0.025: 0.026: 0.026: 0.027: 0.028: 0.028: 0.028: 0.028: 0.028: 0.027: 0.026: 0.026: 0.025:
```

```
x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.024: 0.023: 0.022: 0.021: 0.020: 0.019: 0.018: 0.017: 0.016: 0.015: 0.014: 0.013: 0.013: 0.012: 0.011: 0.011:
        4600: 4800: 5000:
Qc: 0.010: 0.010: 0.010:
 <u>y= -3000 :</u> Y-строка 41 Стах= 0.025 долей ПДК (x= 0.0; напр.ветра=359)
 x= -5000: -4800: -4800: -4400: -4200: -4200: -3800: -3800: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.009: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.014: 0.015: 0.016: 0.017: 0.017: 0.018: 0.019:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                         0: 200: 400: 600: 800: 1000: 1200:
Qc: 0.020: 0.021: 0.022: 0.023: 0.023: 0.024: 0.025: 0.025: 0.025: 0.025: 0.025: 0.025: 0.025: 0.025: 0.024: 0.023: 0.023:
        1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.022: 0.021: 0.020: 0.019: 0.018: 0.017: 0.017: 0.016: 0.015: 0.014: 0.013: 0.013: 0.012: 0.011: 0.011: 0.010:
 x= 4600: 4800: 5000:
Qc: 0.010: 0.010: 0.009:
y= -3200 : Y-строка 42 Cmax= 0.023 долей ПДК (x= 0.0; напр.ветра=359)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.014: 0.014: 0.015: 0.016: 0.016: 0.017: 0.018:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                         0: 200: 400: 600: 800: 1000: 1200:
                                                                                                 -;---
Qc: 0.019: 0.019: 0.020: 0.021: 0.022: 0.022: 0.022: 0.023: 0.023: 0.023: 0.023: 0.023: 0.023: 0.022: 0.022: 0.022: 0.021:
        1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.020: 0.019: 0.019: 0.018: 0.017: 0.016: 0.016: 0.015: 0.014: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.010:
       4600: 4800: 5000:
Qc : 0.010: 0.009: 0.009:
y= -3400 : Y-строка 43 Стах= 0.021 долей ПДК (x= 0.0; напр.ветра=359)
x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.014: 0.015: 0.015: 0.016: 0.017:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                         0: 200: 400: 600:
                                                                                                                                                800: 1000: 1200:
Oc: 0.017: 0.018: 0.019: 0.019: 0.020: 0.020: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021
     1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.019: 0.018: 0.017: 0.017: 0.016: 0.015: 0.015: 0.014: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.010: 0.010:
        4600: 4800: 5000:
Qc : 0.010: 0.009: 0.009:
 <u>y= -3600 :</u> Y-строка 44 Стах= 0.019 долей ПДК (x= 0.0; напр.ветра=359)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.014: 0.014: 0.015: 0.016:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                         0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.016: 0.017: 0.017: 0.018: 0.018: 0.018: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.019: 0.018: 0.018:
        1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.017: 0.017: 0.016: 0.016: 0.015: 0.014: 0.014: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.010: 0.010: 0.010:
 x= 4600: 4800: 5000:
Qc: 0.009: 0.009: 0.009:
<u>у= -3800 :</u> Y-строка 45 Стах= 0.018 долей ПДК (х= 0.0; напр.ветра=359)
 x= -5000: -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
```

```
Qc: 0.009: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.014: 0.014: 0.015:
   x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                    0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.015; 0.016; 0.016; 0.016; 0.017; 0.017; 0.017; 0.017; 0.018; 0.018; 0.018; 0.017; 0.017; 0.017; 0.017; 0.016;
  x= 1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
00 - 0 016 0 016 0 015 0 015 0 014 0 014 0 013 0 013 0 012 0 012 0 011 0 011 0 010 0 010 0 010 0 010 0
  x= 4600: 4800: 5000:
Oc : 0.009: 0.009: 0.009:
 y= -4000 : Y-строка 46 Cmax= 0.016 долей ПДК (x= 0.0; напр.ветра=359)
   x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.008: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.012: 0.012: 0.012: 0.013: 0.013: 0.014:
                                                                                                                                                                                                                     0: 200:
                                                                                                                                                                                                                                                                           600:
  x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                                       400:
                                                                                                                                                                                                                                                                                                 800: 1000: 1200:
Oc: 0.014: 0.015: 0.015: 0.015: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016: 0.016
                1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.015: 0.015: 0.014: 0.014: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.009: 0.009:
                4600: 4800: 5000:
Qc : 0.009: 0.009: 0.008:
   <u>y= -4200 :</u> Y-строка 47 Стах= 0.015 долей ПДК (x= 0.0; напр.ветра=359)
   x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013:
   x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                   0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.013: 0.014: 0.014: 0.014: 0.014: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.01
                1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.014: 0.014: 0.013: 0.013: 0.013: 0.012: 0.012: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009:
   x= 4600: 4800: 5000:
Qc: 0.009: 0.008: 0.008:
 y= -4400 : Y-строка 48 Cmax= 0.014 долей ПДК (x= 0.0; напр.ветра=359)
  x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.012: 0.012:
  x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                   0: 200: 400: 600: 800: 1000: 1200:
Qc : 0.012: 0.013: 0.013: 0.013: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.014: 0.01
                1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.013: 0.013: 0.012: 0.012: 0.012: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009:
               4600: 4800: 5000:
Qc: 0.008: 0.008: 0.008:
  <u>y= -4600 :</u> Y-строка 49 Стах= 0.013 долей ПДК (x= 0.0; напр.ветра=359)
  x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Oc: 0.008: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011: 0.012:
                                                                                                                                                                                                                    0:
   x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                                                                                                                                  200:
                                                                                                                                                                                                                                                       400:
                                                                                                                                                                                                                                                                            600:
                                                                                                                                                                                                                                                                                                 800: 1000: 1200:
Qc: 0.012: 0.012: 0.012: 0.012: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013
               1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc: 0.012: 0.012: 0.012: 0.011: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009: 0.008:
```

```
x= 4600: 4800: 5000:
Oc : 0.008: 0.008: 0.008:
 <u>y= -4800 :</u> Y-строка 50 Стах= 0.012 долей ПДК (x= 0.0; напр.ветра=359)
 x= -5000: -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
Qc : 0.008: 0.008: 0.008: 0.008: 0.008: 0.009: 0.009: 0.009: 0.009: 0.010: 0.010: 0.010: 0.010: 0.010: 0.011: 0.011:
 x= -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                   0: 200: 400:
                                                                                                                                                   600.
                                                                                                                                                             800 •
                                                                                                                                                                        1000: 1200:
Oc : 0.011; 0.011; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.012; 0.01
        1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Qc : 0.011: 0.011: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008: 0.008:
 x= 4600: 4800: 5000:
Oc : 0.008: 0.008: 0.008:
<u>y= -5000 :</u> Y-строка 51 Стах= 0.012 долей ПДК (x= 0.0; напр.ветра=359)
 x= -5000 : -4800: -4600: -4400: -4200: -4000: -3800: -3600: -3400: -3200: -3000: -2800: -2600: -2400: -2200: -2000:
00 • 0 007• 0 008• 0 008• 0 008• 0 008• 0 008• 0 009• 0 009• 0 009• 0 009• 0 010• 0 010• 0 010• 0 010• 0 010•
       -1800: -1600: -1400: -1200: -1000: -800: -600: -400: -200:
                                                                                                                   0: 200: 400: 600: 800: 1000: 1200:
OG: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.012: 0.012: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011: 0.011:
         1400: 1600: 1800: 2000: 2200: 2400: 2600: 2800: 3000: 3200: 3400: 3600: 3800: 4000: 4200: 4400:
Oc: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.010: 0.010: 0.010: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.008: 0.008: 0.008:
         4600: 4800: 5000:
Qc: 0.008: 0.008: 0.007:
 Результаты расчета в точке максимума \, ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= \, 0.0 м, Y= \, 0.0 м
 Максимальная суммарная концентрация | Сs= 4.3691769 доли ПДКмр|
 Достигается при опасном направлении 351 град.
                                     и скорости ветра 0.50 м/с
Всего источников: 8. В таблице заказано вкладчиков не более чем с 95% вклада
                                                е заказано вкладчико
__ВКЛАДЫ_ИСТОЧНИКОВ_
ос | Вклад |Вю
| Ном. | Код | Тип | Выброс | Вклад В% | | ---- | <06-П>-</r>
                                                                        |Вклад в%| Сум. %| Коэф.влияния
   7. Суммарные концентрации в узлах расчетной сетки.
    ПК ЭРА v3.0. Модель: MPK-2014
Город :013 Жалагашский район.
Объект :0014 ИТП оценочных скважин
Вар.расч. :3 Расч.год: 2024 (СП)
                                                                          Расчет проводился 02.07.2024 00:29
        Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                    (516)
                                          0333 Сероводород (Дигидросульфид) (518)
                  _Параметры_расчетного_прямоугольника_No 1__
         | Координаты центра : X= 0 м; Y= 0 | Длина и ширина : L= 10000 м; B= 10000 м | Шаг сетки (dX=dY) : D= 200 м
                                                  200 м
200 м
        Фоновая концентрация не задана
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
        Скорость ветра: автоматический поиск опасной скорости от 0.5 до 9.0(Uмp) м/с
     (Символ ^ означает наличие источника вблизи расчетного узла)
 1-| 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.011 |- 1
 2-| 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 -- 2
 3-| 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.012 0.012 0.012 | - 3
 4-| 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.013 |- 4
 5-| 0.008 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.013 0.014 |- 5
```

```
6-| 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.015 |- 6
 7-| 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.015 0.015 0.016 |- 7
 8-| 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.012 0.013 0.014 0.014 0.015 0.015 0.015 0.016 0.016 0.017 |- 8
 9-| 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.016 0.016 0.017 0.018 0.018 |- 9
10-| 0.009 0.010 0.010 0.011 0.011 0.011 0.012 0.013 0.013 0.014 0.014 0.015 0.016 0.017 0.017 0.018 0.019 0.020 |-10
11-| 0.010 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.013 0.014 0.015 0.015 0.016 0.017 0.018 0.019 0.020 0.020 0.021 |-11
12-| 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.014 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023 |-12
13-| 0.010 0.011 0.011 0.012 0.012 0.013 0.014 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.022 0.023 0.024 0.025 |-13
14-| 0.010 0.011 0.011 0.012 0.013 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.021 0.022 0.023 0.025 0.026 0.028 |-14
15-| 0.011 0.011 0.012 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.022 0.024 0.025 0.027 0.029 0.031 |-15
16-| 0.011 0.011 0.012 0.013 0.013 0.014 0.015 0.016 0.017 0.019 0.020 0.022 0.023 0.025 0.027 0.030 0.032 0.034 |-16
17 - 10.011 \ 0.011 \ 0.012 \ 0.013 \ 0.014 \ 0.015 \ 0.016 \ 0.017 \ 0.018 \ 0.019 \ 0.021 \ 0.023 \ 0.025 \ 0.027 \ 0.030 \ 0.032 \ 0.035 \ 0.037 \ 1-17 \ 0.018 \ 0.019 \ 0.021 \ 0.023 \ 0.025 \ 0.027 \ 0.030 \ 0.032 \ 0.035 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \ 0.037 \
18-| 0.011 0.012 0.012 0.013 0.014 0.015 0.016 0.017 0.019 0.020 0.022 0.024 0.026 0.029 0.032 0.035 0.037 0.041 |-18
19-1 0.011 0.012 0.013 0.013 0.014 0.015 0.017 0.018 0.019 0.021 0.023 0.025 0.028 0.031 0.034 0.037 0.041 0.044 1-19
20-| 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.020 0.022 0.024 0.026 0.029 0.032 0.036 0.039 0.044 0.049 |-20
21-| 0.012 0.012 0.013 0.014 0.015 0.016 0.017 0.019 0.021 0.023 0.025 0.027 0.030 0.034 0.037 0.042 0.047 0.053 |-21
22-| 0.012 0.012 0.013 0.014 0.015 0.016 0.018 0.019 0.021 0.023 0.025 0.028 0.031 0.035 0.039 0.043 0.049 0.056 |-22
23-| 0.012 0.012 0.013 0.014 0.015 0.017 0.018 0.020 0.021 0.024 0.026 0.029 0.032 0.036 0.040 0.044 0.050 0.060 |-23
24-| 0.012 0.013 0.013 0.014 0.015 0.017 0.018 0.020 0.022 0.024 0.026 0.029 0.033 0.036 0.040 0.045 0.053 0.064 | -24
25-| 0.012 0.013 0.013 0.014 0.016 0.017 0.018 0.020 0.022 0.024 0.027 0.030 0.033 0.036 0.040 0.046 0.055 0.068 |-25
27-| 0.012 0.013 0.013 0.014 0.016 0.017 0.018 0.020 0.022 0.024 0.026 0.029 0.032 0.036 0.040 0.045 0.055 0.068 |-27
28-1 0.012 0.013 0.013 0.014 0.015 0.017 0.018 0.020 0.022 0.024 0.026 0.029 0.032 0.035 0.039 0.044 0.053 0.065 1-28
29-| 0.012 0.012 0.013 0.014 0.015 0.016 0.018 0.019 0.021 0.023 0.026 0.028 0.031 0.034 0.038 0.042 0.050 0.060 |-29
30-1 0.012 0.012 0.013 0.014 0.015 0.016 0.018 0.019 0.021 0.023 0.025 0.027 0.030 0.033 0.037 0.041 0.046 0.054 1-30
31-| 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.019 0.020 0.022 0.024 0.026 0.029 0.032 0.035 0.039 0.043 0.049 |-31
32-| 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.020 0.021 0.023 0.025 0.028 0.031 0.033 0.036 0.040 0.044 |-32
33-| 0.011 0.012 0.013 0.013 0.014 0.015 0.016 0.018 0.019 0.021 0.022 0.024 0.027 0.029 0.032 0.034 0.037 0.040 |-33
34-| 0.011 0.012 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.020 0.021 0.023 0.025 0.027 0.030 0.032 0.035 0.037 |-34
35-| 0.011 0.011 0.012 0.013 0.013 0.014 0.015 0.016 0.018 0.019 0.020 0.022 0.024 0.026 0.028 0.030 0.032 0.034 |-35
36-| 0.011 0.012 0.012 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.020 0.021 0.023 0.024 0.026 0.028 0.030 0.032 |-36
37-| 0.010 0.011 0.011 0.012 0.013 0.013 0.014 0.015 0.016 0.017 0.019 0.020 0.021 0.023 0.024 0.026 0.028 0.029 |-37
38-1 0.010 0.011 0.011 0.012 0.012 0.013 0.014 0.015 0.016 0.016 0.018 0.019 0.020 0.021 0.023 0.024 0.026 0.027 1-38
39-| 0.010 0.010 0.011 0.011 0.012 0.013 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.024 0.025 |-39
40-| 0.010 0.010 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023 |-40
41-| 0.009 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.014 0.014 0.015 0.016 0.017 0.017 0.018 0.019 0.020 0.021 |-41
42-| 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.014 0.014 0.015 0.016 0.016 0.017 0.018 0.019 0.019 |-42
43-1 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.015 0.015 0.016 0.017 0.017 0.018 1-43
44-| 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.016 0.016 0.016 0.017 |-44
45-| 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.014 0.015 0.015 0.015 0.016 |-45
46-| 0.008 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.014 0.014 0.015 |-46
47-| 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.013 0.013 0.013 0.014 |-47
48-| 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.013 |-48
49-| 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.000 0.010 0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.012 0.012
50-| 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 |-50
51-1 0 007 0 008 0 008 0 008 0 008 0 008 0 009 0 009 0 009 0 009 0 010 0 010 0 010 0 010 0 011 0 011 1-51
       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
      0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.010
      0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011
```

Продолжение Приложения №3

0.012	0.012	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.012	0.012	0.012	0.012	0.011	0.011	- 3
0.013	0.013	0.013	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.013	0.013	0.013	0.013	0.012	0.012	0.012	- 4
0.014	0.014	0.014	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.014	0.014	0.014	0.014	0.013	0.013	0.013	  - 5
																	0.013	1
																	0.014	1
																		İ
																	0.015	1
0.019	0.019	0.020	0.020	0.020	0.020	0.021	0.021	0.020	0.020	0.020	0.020	0.019	0.019	0.018	0.017	0.017	0.016	- 9 
0.020	0.021	0.022	0.022	0.022	0.022	0.023	0.022	0.022	0.022	0.022	0.021	0.021	0.020	0.019	0.019	0.018	0.017	-10 
0.022	0.023	0.024	0.024	0.024	0.025	0.025	0.025	0.025	0.024	0.024	0.023	0.023	0.022	0.021	0.020	0.019	0.018	-11 
0.024	0.025	0.026	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.026	0.025	0.025	0.024	0.023	0.022	0.021	0.020	-12
0.027	0.028	0.029	0.029	0.030	0.030	0.030	0.030	0.030	0.029	0.029	0.028	0.027	0.026	0.025	0.024	0.022	0.021	-13
0.029	0.031	0.032	0.032	0.033	0.033	0.033	0.033	0.033	0.032	0.031	0.031	0.030	0.028	0.027	0.026	0.024	0.023	-14
0.032	0.034	0.035	0.036	0.036	0.037	0.037	0.037	0.036	0.035	0.035	0.033	0.032	0.031	0.029	0.028	0.026	0.025	-15
0.036	0.037	0.038	0.039	0.040	0.041	0.041	0.041	0.040	0.039	0.038	0.037	0.035	0.033	0.032	0.030	0.028	0.027	-16
0.039	0.041	0.043	0.044	0.045	0.045	0.046	0.046	0.045	0.044	0.042	0.041	0.038	0.036	0.034	0.032	0.030	0.028	-17
0.043	0.046	0.048	0.049	0.051	0.052	0.053	0.053	0.052	0.050	0.047	0.045	0.042	0.040	0.037	0.035	0.032	0.030	  -18
0.048	0.052	0.055	0.057	0.061	0.063	0.064	0.064	0.063	0.060	0.056	0.052	0.047	0.044	0.040	0.037	0.034	0.032	  -19
0.054	0.060	0.065	0.069	0.074	0.077	0.080	0.079	0.077	0.073	0.068	0.061	0.054	0.048	0.044	0.040	0.037	0.034	  -20
0.061	0.072	0.081	0.086	0.093	0.098	0.101	0.101	0.098	0.092	0.082	0.073	0.063	0.055	0.047	0.043	0.039	0.035	  -21
0.068	0.084	0.105	0.113	0.117	0.125	0.129	0.130	0.126	0.118	0.104	0.088	0.074	0.062	0.053	0.046	0.041	0.037	  -22
																	0.039	1
																	0.040	1
																	0.041	İ
																		Ì
																	0.041	1
																	0.041	İ
																	0.041	Ì
0.074	0.092	0.115	0.145	0.175	0.197	0.203	0.190	0.165	0.153	0.143	0.119	0.094	0.076	0.062	0.052	0.045	0.040	-29 
0.065	0.078	0.095	0.112	0.129	0.139	0.141	0.135	0.125	0.120	0.112	0.097	0.082	0.068	0.057	0.048	0.043	0.039	-30 
0.057	0.067	0.077	0.089	0.098	0.104	0.106	0.103	0.100	0.096	0.089	0.080	0.070	0.060	0.051	0.046	0.041	0.037	-31 
0.050	0.057	0.064	0.071	0.077	0.082	0.083	0.082	0.081	0.077	0.072	0.066	0.059	0.052	0.047	0.043	0.039	0.035	-32 
0.044	0.049	0.054	0.059	0.063	0.065	0.067	0.067	0.066	0.063	0.060	0.056	0.051	0.047	0.043	0.040	0.036	0.033	-33 
0.040	0.043	0.046	0.049	0.052	0.054	0.055	0.055	0.054	0.053	0.050	0.048	0.045	0.043	0.040	0.037	0.034	0.032	-34
0.037	0.039	0.041	0.043	0.045	0.046	0.047	0.047	0.047	0.046	0.045	0.043	0.041	0.039	0.036	0.034	0.032	0.030	i -35
0.034	0.035	0.037	0.039	0.040	0.041	0.042	0.042	0.042	0.041	0.040	0.039	0.037	0.035	0.033	0.032	0.030	0.028	-36
0.031	0.032	0.034	0.035	0.036	0.037	0.037	0.038	0.037	0.037	0.036	0.035	0.034	0.032	0.031	0.029	0.027	0.026	-37
0.029	0.030	0.031	0.032	0.033	0.033	0.034	0.034	0.034	0.033	0.033	0.032	0.031	0.030	0.028	0.027	0.025	0.024	-38
0.026	0.027	0.028	0.029	0.030	0.030	0.031	0.031	0.031	0.030	0.030	0.029	0.028	0.027	0.026	0.025	0.024	0.022	1-39
0.024	0.025	0.026	0.026	0.027	0.028	0.028	0.028	0.028	0.028	0.027	0.026	0.026	0.025	0.024	0.023	0.022	0.021	-40
0.022	0.023	0.023	0.024	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.024	0.023	0.023	0.022	0.021	0.020	0.019	  -41
0.020	0.021	0.022	0.022	0.022	0.023	0.023	0.023	0.023	0.023	0.022	0.022	0.022	0.021	0.020	0.019	0.019	0.018	  -42
0.019	0.019	0.020	0.020	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.020	0.020	0.019	0.019	0.018	0.017	0.017	  -43
0.017	0.018	0.018	0.018	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.018	0.018	0.017	0.017	0.016	0.016	  -44
0.016	0.016	0.017	0.017	0.017	0.017	0.018	0.018	0.018	0.017	0.017	0.017	0.017	0.016	0.016	0.016	0.015	0.015	  -45
																	0.014	1
																	0.013	1
																	0.013	1
																		1
																	0.011	1
																	0.011	1
																	0.010	-51 
19	20	21	22	23	24	 25	26	27	28	29	30	31	32	33	 34	 35	36	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51				

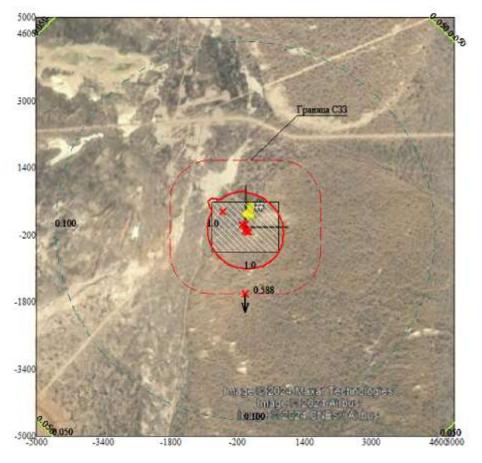
0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.007 0.007 |-1 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.007 |-2 0.011 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 | - 4 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 | - 5 0.013 0.012 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 |- 6 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 |-7 0.014 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 | - 8 0.015 0.015 0.014 0.014 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.016 0.016 0.015 0.014 0.014 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 1-10 0.018 0.017 0.016 0.015 0.014 0.014 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.009 0.009 |-11 0.019 0.018 0.017 0.016 0.015 0.014 0.014 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.009 1-120.020 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.010 0.010 0.010 |-13 0.022 0.020 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.011 0.011 0.010 0.010 | -14 0.023 0.022 0.020 0.019 0.018 0.017 0.015 0.015 0.014 0.013 0.012 0.011 0.011 0.010 0.010 |-15 0.025 0.023 0.021 0.020 0.019 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.010 |-16 0.026 0.024 0.023 0.021 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.011 0.010 -17 0.028 0.026 0.024 0.022 0.020 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.011 0.010 |-18 0.030 0.027 0.025 0.023 0.021 0.020 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.011 |-19 0.031 0.029 0.026 0.024 0.022 0.020 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.011 |-20 0.032 0.030 0.027 0.025 0.023 0.021 0.019 0.018 0.016 0.015 0.014 0.013 0.012 0.012 0.011 |-21 0.034 0.031 0.028 0.026 0.024 0.022 0.020 0.018 0.017 0.015 0.014 0.013 0.013 0.012 0.011 |-22 0.035 0.032 0.029 0.026 0.024 0.022 0.020 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.011 1-23 0.036 0.033 0.030 0.027 0.024 0.022 0.020 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.011 |-24 0.037 0.033 0.030 0.027 0.025 0.023 0.021 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.011 1-25 0.037 0.033 0.030 0.028 0.025 0.023 0.021 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.011 C-26 0.037 0.033 0.030 0.028 0.025 0.023 0.021 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.011 |-27  $0.037\ 0.033\ 0.030\ 0.027\ 0.025\ 0.023\ 0.021\ 0.019\ 0.017\ 0.016\ 0.015\ 0.014\ 0.013\ 0.012\ 0.011\ |-28$ 0.036 0.033 0.030 0.027 0.024 0.022 0.020 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.011 1-29 0.035 0.032 0.029 0.026 0.024 0.022 0.020 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.011 1-30 0.034 0.031 0.028 0.026 0.023 0.021 0.020 0.018 0.017 0.015 0.014 0.013 0.013 0.012 0.011 |-31 0.032 0.030 0.027 0.025 0.023 0.021 0.019 0.018 0.016 0.015 0.014 0.013 0.012 0.012 0.011 |-32 0.031 0.028 0.026 0.024 0.022 0.020 0.019 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.011 1-33 0.029 0.027 0.025 0.023 0.021 0.019 0.018 0.017 0.015 0.014 0.014 0.013 0.012 0.011 0.011 |-34  $0.027\ 0.025\ 0.024\ 0.022\ 0.020\ 0.019\ 0.017\ 0.016\ 0.015\ 0.014\ 0.013\ 0.012\ 0.012\ 0.011\ 0.010\ | -35$ 0.026 0.024 0.022 0.021 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.011 0.010 | -36 0.024 0.023 0.021 0.020 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.011 0.011 0.010 |-37 0.023 0.021 0.020 0.019 0.017 0.016 0.015 0.014 0.014 0.013 0.012 0.011 0.011 0.010 0.010 1-38 0.021 0.020 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.011 0.011 0.010 0.010 |-39 0.020 0.019 0.018 0.017 0.016 0.015 0.014 0.013 0.013 0.012 0.011 0.011 0.010 0.010 0.010 1-40  $0.018\ 0.017\ 0.017\ 0.016\ 0.015\ 0.014\ 0.013\ 0.013\ 0.012\ 0.011\ 0.011\ 0.010\ 0.010\ 0.010\ 0.009\ |-41$ 0.017 0.016 0.016 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.009 0.009 -42 0.016 0.015 0.015 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.015 0.014 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.014 0.014 0.013 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0 013 0 013 0 012 0 012 0 011 0 011 0 011 0 010 0 010 0 009 0 009 0 009 0 009 0 008 1-46 0.013 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 1-47 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 |-50

```
0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.007 |-51
                  ___ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ___ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ___ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ___ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ___ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | _____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | ____ | 
                                     38 39 40 41 42 43 44 45 46 47 48 49 50
                            В целом по расчетному прямоугольнику:
   В целюм по расчетному прямоугольнику:
Везразмерная макс. концентрация ---> См = 4.3691769
Достигается в точке с координатами: Xм = 0.0 м
( X-столбец 26, Y-строка 26) Yм = 0.0 м
При опасном направлении ветра : 351 град.
и "опасной" скорости ветра : 0.50 м/с
9. Результаты расчета по границе санзоны.
            ПК ЭРА v3.0. Модель: МРК-2014
Город :013 Жалагашский район.
Объект :0014 ИТП оценочных скважин
                     Вар.расч. :3 Расч.год: 2024 (СП) Расчет проводился 02.07.2024 00:29 Группа суммации :6044=0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)
                                                                                                                                         (516)
                                                                                                               0333 Сероводород (Дигидросульфид) (518)
                      Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
                      Всего просчитано точек: 81
                      Фоновая концентрация не задана
                      Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
                     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 9.0(Ump) м/с
                                                                                                  _Расшифровка_обозначений_
                                                    | Qc - суммарная концентрация [доли ПДК]
| Фоп- опасное направл. ветра [ угл. град.]
                                                     | Uon- опасная скорость ветра [ м/с | Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                                                      | Ки - код источника для верхней строки Ви |
                   | -При расчете по группе суммации концентр. в мг/м3 не печатается |
  y=
                         -600: -400: -200:
                                                                                                                                                    200:
                                                                                                                                                                                  400:
                                                                                                                                                                                                                600: 663:
                                                                                                                                                                                                                                                                                 787:
                                                                                                                                                                                                                                                                                                           909: 1026: 1136: 1237: 1329: 1409:
    x= -1800: -1800: -1800: -1800: -1800: -1800: -1800: -1798: -1782: -1751: -1705: -1644: -1571: -1485: -1388:
                    0.050: 0.053: 0.055: 0.055: 0.055: 0.053: 0.050: 0.050: 0.050: 0.049: 0.049: 0.049: 0.049: 0.049: 0.048:
ФОП: 71: 77: 84: 91: 97: 104: 109: 111: 115: 119: 122: 126: 130: 134: 138
UОП: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 9.00: 2.56: 2.56: 2.56: 2.56: 2.55: 2.55: 2.55: 2.55: 2.55: 2.55
                    0.031: 0.033: 0.034: 0.034: 0.033: 0.032: 0.023: 0.023: 0.022: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021:
Ku : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 021
Ви : 0.003: 0.003: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.005: 0.005: 0.006: 0.006: 0.006: 0.006: ки : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0213 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 : 0215 
                          1476: 1530: 1569: 1592: 1600: 1600: 1600: 1600: 1600: 1600: 1600: 1600: 1600: 1600:
                                                                                                                                                                                                              ----:
                   -1282: -1168: -1049: -925: -800: -600: -400: -200:
Qc: 0.048: 0.048: 0.049: 0.049: 0.049: 0.051: 0.052: 0.053: 0.053: 0.052: 0.050: 0.047: 0.045: 0.044: 0.043:
                                                                                                                                                 157 :
                                                                                                                                                                                                                                                                                                                                                                                                                                 210 :
                                                                                    149 : 153 :
                                                                                                                                                                             163 : 169 : 176 : 183 : 190 :
                                                                                                                                                                                                                                                                                                                                     197 : 203 : 208 :
                                                       146:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  214 .
Uon: 2.55 : 2.55 : 2.55 : 2.55 : 2.55 : 2.55 : 2.56 : 9.00 : 9.00 : 9.00 : 9.00 : 2.56 : 2.58 : 2.56 : 2.56 :
Ви: 0.021: 0.022: 0.022: 0.023: 0.023: 0.024: 0.030: 0.031: 0.030: 0.030: 0.029: 0.022: 0.020: 0.020: 0.020:
                                                                         : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217 : 0217
Ви : 0.010: 0.010: 0.011: 0.011: 0.011: 0.012: 0.012: 0.013: 0.013: 0.013: 0.013: 0.013: 0.013: 0.012: 0.012: 0.012: ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 
 Ви : 0.005: 0.005: 0.004: 0.004: 0.004: 0.005: 0.004: 0.004: 0.004: 0.004: 0.003: 0.004: 0.004: 0.004: 0.004
Ки: 0215: 0215: 0213: 0213: 0213: 0213: 0216: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213: 0213:
                          1551: 1505: 1444: 1371: 1285: 1188: 1082:
                                                                                                                                                                                                                                                 968:
                                                                                                                                                                                                                                                                                                                                           600:
   у=
                        1109: 1226: 1336: 1437: 1529: 1609: 1676: 1730: 1769: 1792: 1800: 1800: 1800: 1800: 1800:
Oc: 0.042: 0.041: 0.041: 0.040: 0.040: 0.040: 0.040: 0.041: 0.041: 0.042: 0.043: 0.045: 0.046: 0.047: 0.047:
                                                                                                                                                    -909: -1026: -1136: -1237: -1329: -1409: -1476: -1530: -1569: -1592: -1600:
   x= 1800: 1800: 1798: 1782: 1751: 1705: 1644: 1571: 1485: 1388: 1282: 1168: 1049: 925: 800:
Oc: 0.046: 0.045: 0.044: 0.044: 0.043: 0.043: 0.043: 0.043: 0.043: 0.043: 0.043: 0.044: 0.044: 0.046: 0.047: 0.048:
                   -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1600: -1598: -1582: -1551: -1505: -1444: -1371: -1285:
   y=
                                                                                                                                 0: -200: -400: -600: -800: -863: -987: -1109: -1226: -1336: -1437: -1529:
Oc: 0.050: 0.053: 0.054: 0.055: 0.055: 0.054: 0.052: 0.049: 0.048: 0.047: 0.045: 0.045: 0.044: 0.044: 0.044:
                                                                                                                                                                                                                                                 24 :
                     337 : 343 : 349 : 356 :
                                                                                                                                                            4:
                                                                                                                                                                                    11 :
                                                                                                                                                                                                                                                                               26:
                                                                                                                                                                                                                                                                                                             30 :
                                                                                                                                                                                                                                                                                                                                            33 :
Uon: 2.71 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.00 : 9.0
Ви: 0.022: 0.029: 0.033: 0.034: 0.033: 0.033: 0.033: 0.030: 0.029: 0.028: 0.028: 0.027: 0.022: 0.022: 0.022: ки: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 0217: 
Ви: 0.012: 0.012: 0.011: 0.012: 0.013: 0.012: 0.011: 0.011: 0.011: 0.011: 0.010: 0.010: 0.010: 0.011: 0.011: 0.011:
Ки : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 6116 : 611
```

```
y= -1188: -1082: -968: -849: -725: -600:
```

Результаты расчета в точке максимума  $\,$  ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= -1800.0 м, Y=  $\,$  0.0 м

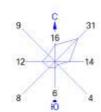
Максимальная суммарная концентрация | Cs= 0.0554651 доли ПДКмр|

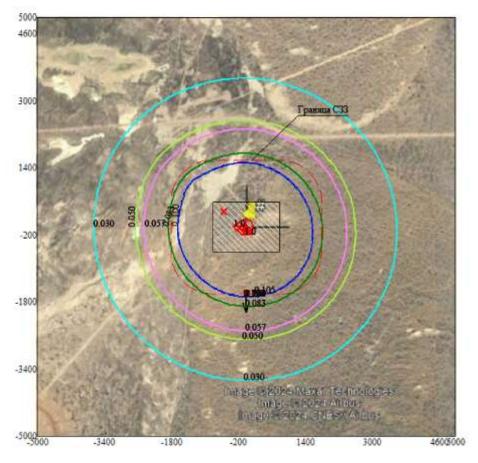

Достигается при опасном направлении 91 град. и скорости ветра 9.00 м/с Всего источников: 8. В таблице заказано вкладчиков не более чем с 95% вклада

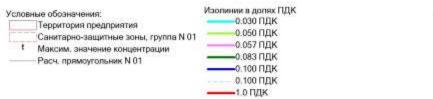
0017140	Juriu Juri	o brond micob	-
	ВКЛАДЫ	ИСТОЧНИКОВ	

HOM.	Код	Тип	Выброс	Вклад	B	клад в%	Сум.	용	Коэф.влияния	- 1
	<06-U>- <nc></nc>	.	-M- (Mq)   -C	[доли ПДК]				-	b=C/M	-
1	001401 0217	'  T	0.9250	0.034183		61.6	61.	6	0.036954805	- 1
2	001401 6116	і  П1	0.2329	0.011966		21.6	83.	2	0.051383447	- 1
3	001401 0213	T	0.3766	0.004130		7.4	90.	6	0.010965334	- 1
4	001401 0214	T	0.1956	0.002407		4.3	95.	0	0.012303640	- 1
5	001401 0216	T	0.1416	0.002173		3.9	98.	9	0.015347502	- 1
			В сумме =	0.054858		98.9				- 1
	Суммарный	вклад о	стальных =	0.000607		1.1				
~~~~		. ~ ~ ~ ~ ~ ~ ~ ~			~~	. ~ ~ ~ ~ ~ ~		~~~		~~

Город: 013 Жалагашский район Объект: 0014 ИТП оценочных скважин Карагансай Вар.№ 4 ПК ЭРА v3.0 Модель: MPK-2014 6007 0301+0330

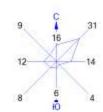


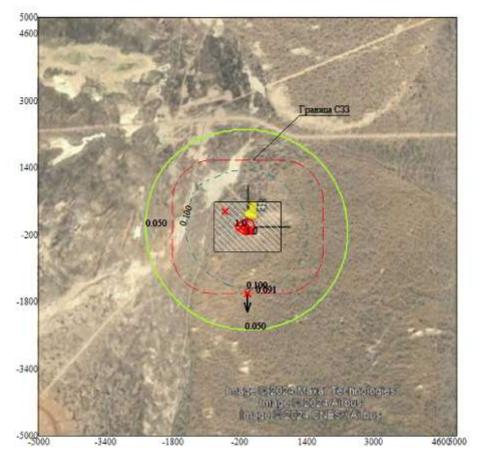




Макс концентрация 3.4044881 ПДК достигается в точке х= 0 y= -200 При опасном направлении 358° и опасной скорости ветра 9 м/с Расчетный прямоугольник № 1, ширина 10000 м, высота 10000 м, шаг расчетной сетки 200 м, количество расчетных точек 51*51 Расчёт на существующее положение.

Город: 013 Жалагашский район Объект: 0014 ИТП оценочных скважин Карагансай Вар.№ 4 ПК ЭРА v3.0 Модель: MPK-2014 6037 0333+1325





0 735 2205м. Масштаб 1:73500

Макс концентрация 4.3691888 ПДК достигается в точке х= 0 y= 0 При опасном направлении 351° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 10000 м, высота 10000 м, шаг расчетной сетки 200 м, количество расчетных точек 51*51 Расчёт на существующее положение.

Город: 013 Жалагашский район Объект: 0014 ИТП оценочных скважин Карагансай Вар.№ 4 ПК ЭРА v3.0 Модель: MPK-2014 6044 0330+0333

Макс концентрация 4.3691769 ПДК достигается в точке х≈ 0 у≈ 0 При опасном непревлении 351° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 10000 м, высота 10000 м, шаг расчетной сетки 200 м, количество расчетных точек 51°51 Расчёт на существующее положение.

РАНЕЕ ПОЛУЧЕННЫЕ ЗАКЛЮЧЕНИЯ И РАЗРЕШЕНИЯ ЗАЯВЛЕНИЕ О НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ МОТИВИРОВАННЫЙ ОТКАЗ

Қазақстан Республикасы Экология және табиғи ресурстар министрлігі

«Қазақстан Республикасы Экология және табиғи ресурстар министрлігі Экологиялық реттсу және бақылау комитетінің Қызылорда облысы бойынша экология департаменті» республикалық мемлекеттік мемесі

КЫЗЫЛОРДА Қ.Ә., ҚЫЗЫЛОРДА Қ., Желтоксан көшесі, № 124 үй

Homep: KZ55VWF00419760

Дата: 10.09.2025

Министерство экологии и природных ресурсов Республики Казахстап

Республиканское государственное учреждение «Департамент экологии по Кызылординской области Комитета экологического ретулирования и контроля Министерства экологии и природных ресурсов Республики Казахстап»

КЫЗЫЛОРДА Г.А., Г.КЫЗЫЛОРДА, улица Желгоксан, дом № 124

Товарищество с ограниченной ответственностью "САУТС-ОЙЛ"

160713, РЕСПУБЛИКА КАЗАХСТАН, ТУРКЕСТАПСКАЯ ОБЛАСТЬ, ОТРАРСКИЙ РАЙОН, ШИЛИКСКИЙ С.О., С.ЖАНА ШИЛИК, улица Кажымукан Мунайтласов, дом № 21

Мотивированный отказ

Республиканское государственное учреждение «Департамент экологии по Кызылординской области Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан», рассмотрев Ваше заявление от 09.09.2025 № KZ56RYS01346111, сообщает следующее:

На Ваше заявление за №KZ56RYS01346111 от 09.09.2025 г. (вх. №494 от 10.09.2025 г.)

Департамент экологии по Кызыпординской области (далее – Департамент), рассмотрев представленное «Заявление о намечаемой деятельности» (Строительство оценочной скважины KRSO-1 глубиной 2850 м (по вертикали) с горизонтальным окончанием до глубины 4000 (±300)м (по стволу)) на предмет полноты представленных документов и их соответствия нормативным требованиям, сообщает следующее.

Сотласно требованиям разделов 1, 2 приложения 1 к Экологическому кодексу РК (далее Колеке), данная намечаемая деятельность не входит в перечень видов намечаемой деятельности и объектов, для которых проведение оценки воздействия на окружающую среду, а также проведение процедуры екрипинга является обязательным.

В соответствии п.3 ст.49 Кодекса, для намечаемой деятельности, не подлежащей обязательной оценке воздействия на окружающую среду, экологическая оценка проводится по упрощённому порядку.

Требования и порядок проведения экологической оценки по упрошённому порядку определяются «Инструкцией по организации и проведению экологической оценки», утверждённой Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280.

Исходя из вышеизложенного, Департамент, отклоняет от рассмотрения представленное «Заявление о намечаемой деятельности».

В случае несогласия с принятым решением, Вы имеете право обжалования в порядке,

дл құхат ҚР 2003 жылдын 7 қа дарындағы. «Өлектоонды құхат нане алектронды карилиндепклюх туралы заңдың 7 бабы, 1 тармалына саймес қаза белтіндеп заңдың төң, аяннай документ оолысы піңықу 1 отаны 7 30% от 7 январл 2003 года 10% электронном документе и электронном дифровой годиной давноснагия документу из бужаном носитете.

установленным главой 3 Правил оказания государственной услуги «Выдача заключения об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействий намечаемой деятельности» от 02.06.2020 г. №130.

Руководитель департамента

Омірсерікұлы Нұржан

Казақстан Республикасы Экология және табиги ресурстар министрлігі

«Қазақстап Республикасы Экология және табиғи ресурстар министрлігі Экологиялық реттеу және бақылау комитетінің Қызылорда облысы бойынша экология департаменті» республикалық мемлекеттік мекемесі

ҚЫЗЫЛОРДА К.Ә., ҚЫЗЫЛОРДА Қ.. Же,ттоқсан көшесі, № 124 үй

Номер: KZ31VWF00419610

Дата: 10.09.2025

Министерство экологии и природных ресурсов Республики Казахстан

Республиканское государственное учреждение «Департамент экологии по Кызылординской области Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстап»

КЫЗЫЛОРДА Г.А., Г.КЫЗЫЛОРДА, улица Желтоксан, дом № 124

Товарищество с ограниченной ответственностью "САУТС-ОЙ,1"

160713, РЕСПУБЛИКА КАЗАХСТАН, ТУРКЕСТАНСКАЯ ОБЛАСТЬ, ОТРАРСКИЙ РАЙОП, ШИЛИКСКИЙ С.О., С.ЖАНА ШИЛИК, улица Кажымукан Мунайтпасов, дом № 21

Мотивированный отказ

Республиканское государственное учреждение «Денартамент экологии по Кызылординской области Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан», рассмотрев Ваше заявление от 09.09.2025 № KZ45RYS01346115, сообщает следующее:

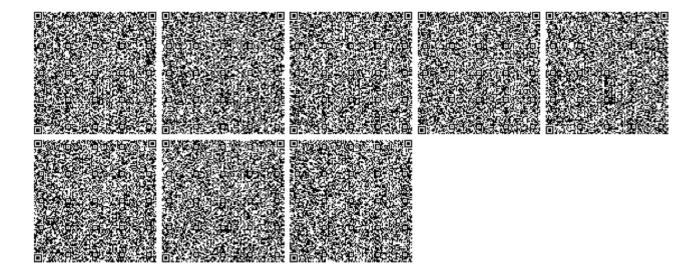
На Ваше заявление за №KZ45RYS01346115 от 09.09.2025 г. (вх. №495 от 10.09.2025 г.)

Департамент экологии по Кызылординской области, рассмотрев представленное « Заявление о намечаемой деятельности» (строительство оценочной скважины KRSO-2 глубиной 2850 м (по вертикали) с горизонтальным окончанием до глубины 4000 (+300) м (по стволу)) на предмет соответствия требованиям, установленным нормативными правовыми актами Республики Казахстан в области охраны окружающей среды, сообщает следующее.

Согласно требованиям разделов 1, 2 приложения 1 к Экологическому кодексу РК (далее Кодекс), данная намечаемая деятельность не входит в перечень видов намечаемой деятельности и объектов, для которых проведение оценки воздействия на окружающую среду, а также проведение процедуры скрининга является обязательным.

В соответствии и.3 ст.49 Кодекса, для намечаемой деятельности, не подлежащей обязательной оценке воздействия на окружающую среду, экологическая оценка проводится по упрощённому порядку.

Требования и порядок проведения экологической оценки по упрощённому порядку определяются «Инструкцией по организации и проведению экологической оценки», утверждённой Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года №280.


Исходя из вышеизложенного, Департамент, отклоняет от рассмотрения представленное

рі құмат ҚР 2003 жылдың / қаңтарындағы «Элентронды құжат мәне олектронды баңдық қол дою туралы заңыны / бабы, 1 тармалына сайжес жағаз бетыдегі заңысы тең иный доқумент соттасно тулкту 1 статыл 7 ЭРК от 7 январл 2000 года 106 олектронном документе и электронной цэфревой подгасы" равнозначен документу на бумамием несителе. «Заявление о намечаемой деятельности».

В случае несогласия с принятым решением, Вы имеете право обжалования в порядке, установленным главой 3 Правил оказания государственной услуги «Выдача заключения об определении сферы охвата оценки воздействия на окружающую среду и (или) скрининга воздействий намечаемой деятельности» от 02.06.2020 г. №130.

Руководитель департамента

Өмірсерікұлы Нұржан

«ҚАЗГИДРОМЕТ» РМК

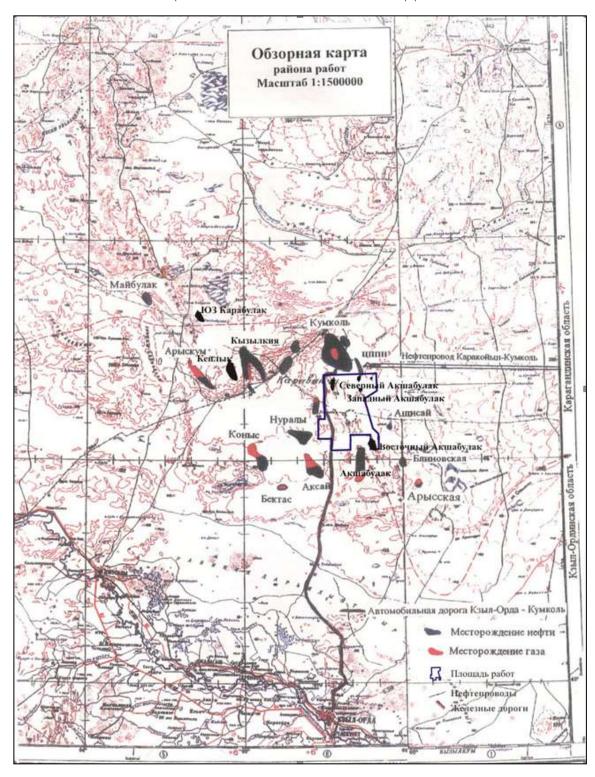
РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ МИНИСТЕРСТВО ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН


14.09.2025

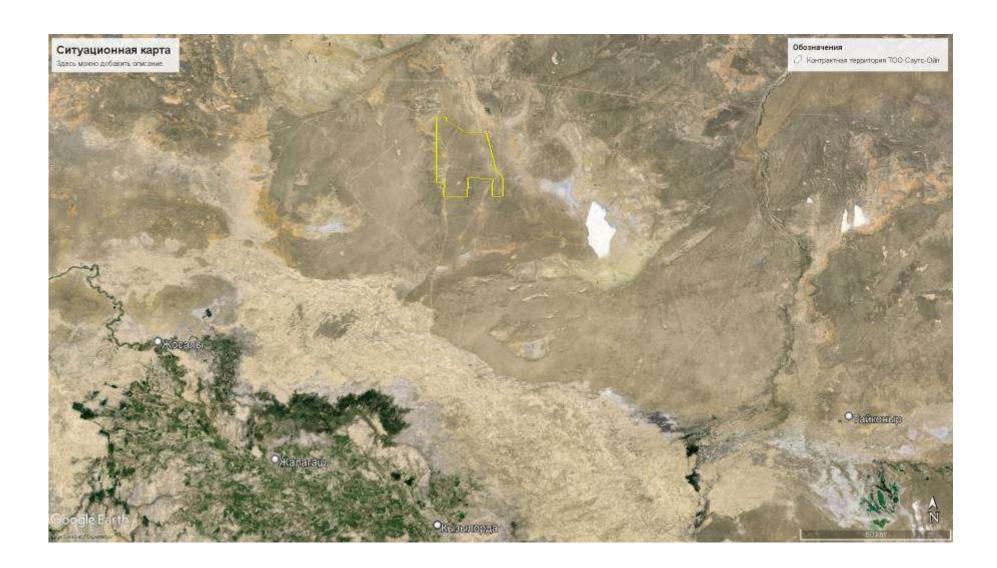
- 1. Город -
- 2. Адрес Кызылординская область, Сырдарьинский район, сельский округ имени Токмаганбетова
- 4. Организация, запрашивающая фон ИП Сапаев Т.М.
- 5. Объект, для которого устанавливается фон **ТОО САУТС-ОЙЛ, Карагансайский участок**
- Разрабатываемый проект РООС к ИТП, Проект НДВ
 Перечень вредных веществ, по которым устанавливается фон: Взвешанные
 частицы РМ2.5, Взвешанные частицы РМ10, Азота диоксид, Взвеш.в-ва,
- Диоксид серы, Сульфаты, Углерода оксид, Азота оксид, Озон, Сероводород, Фенол, Фтористый водород, Хлор, Водород хлористый, Углеводороды, Свинец, Аммиак, Кислота серная, Формальдегид, Мышьяк, Хром,

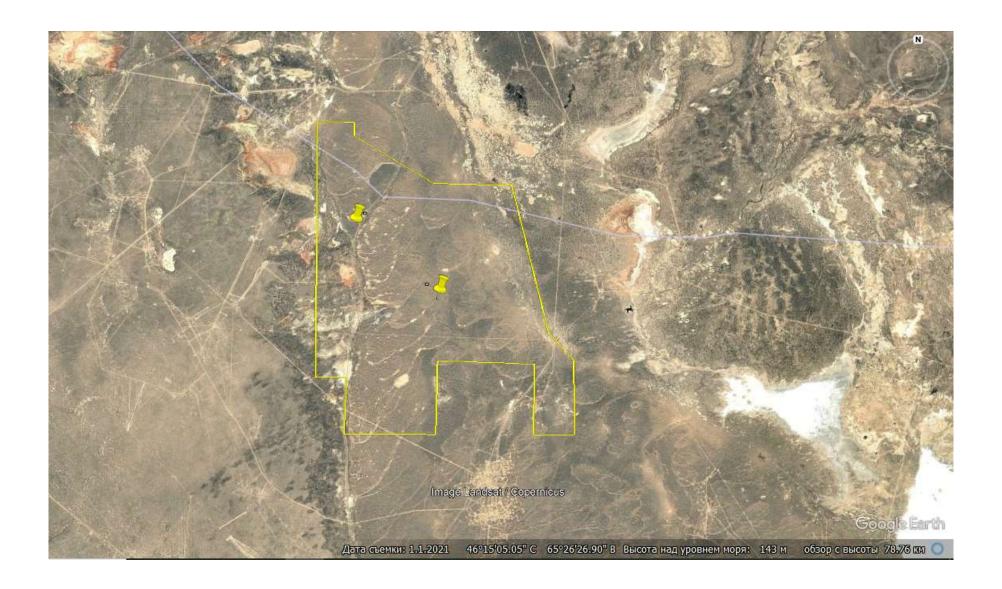
В связи с отсутствием наблюдений за состоянием атмосферного воздуха в Кызылординская область, Сырдарьинский район, сельский округ имени Токмаганбетова выдача справки о фоновых концентрациях загрязняющих веществ в атмосферном воздухе не представляется возможным.


Приложение №5

КАРТЫ СХЕМА УЧАСТКА СТРОИТЕЛЬСТВА С НАНЕСЕННЫМИ НА НЕЕ ИСТОЧНИКАМИ ВЫБРОСОВ

СИТУАЦИОННЫЕ КАРТЫ-СХЕМЫ ПРЕДПРИЯТИЯ




Обзорная карта района работ.

Приложение № по Контракту Ма на право недропользования углеводороды (вид полезного ископаемого) добыча (вид недропользования) от « » апреля 2023 г. Рег. № Д-УВ

Картограмма расположения месторождения Карагансайский в пределах блоков XXIX-39-А(частично), В(частично), D(частично), Е(частично)

ЛИЦЕНЗИЯ ПРОЕКТИРОВЩИКА

17002878

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

17.02.2017 года 92413Р

Выдана САПАЕВ ТИМ УР МИХАЙЛОВИЧ

ИИН: 940208300432

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнее -идентификационный номер физиала или представительства иностранного юридического лица — и случае отсутствия бизнее-идентификационного помера у юридического лица/полностью фамилия, имя, отчество (и случае наличия), индивидуальный илентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицентируемого вида деятельности в соответствии с Законом Республики Кизахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

Примечание Неотчуждаемая, класс 1

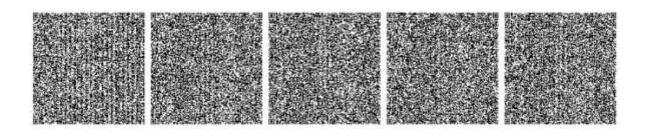
(отчуждаемость, класе разрешения)

Лицензиар Республиканское государственное учреждение «Комитет

экологического регулирования и контроля Министерства энергетики Республики Казахстан» . Министерство энергетики

Республики Казахстан.

(полное наименование лицензиара)


Руководитель АЛИМБАЕВ АЗАМАТ БАЙМУРЗИНОВИЧ

(уполномоченное лицо) (фамилия, имя, отчество (в случае наличия)

Дата первичной выдачи

Срок действия лицеизии

Место выдачи г.Астана

17002878 Страница 1 из 1

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии 02413Р

Дата выдачи лицензии 17.02.2017 год

Подвид(ы) лицензируемого вида деятельности:

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиат САПАЕВ ТИМУР МИХАЙЛОВИЧ

ИИН: 940208300432

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица - в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Производственная база 050051, город Алматы, улица Луганского, дом 54/9

(местонахождение)

Особые условия действия лицеизии

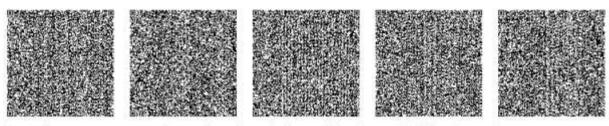
(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиар Республиканское «Комитет государственное учреждение экологического регулирования и контроля Министерства энергетики

Республики Казахстан» . Министерство энергетики Республики Казахстан.

(полное наименование органа, выдавшего приложение к лицензии)

АЛИМБАЕВ АЗАМАТ БАЙМУРЗИНОВИЧ Руководитель


(уполномоченное лицо) (фамилия, имя, отчество (в случае наличия)

001 Номер приложения

Срок действия

Дата выдачи 17.02.2017 приложения

Место выдачи г.Астана

Осы аджат «Эликтроццы краят жэне эликтроцыя, цифроми, калтанба туралы» Қамыстан Республикосының 2003 жылғы 7 қантарыны Таны 7 байынын 1 тармағына сайыс қағы тасы моңылы бірдей, Данный документ сосласна нумету 1 саяты 7 1РК от 7 кшара 2003 года "Об зағытраннам документо и электронной кифроной подписи" равионачин документу на бумақыны п