TOO "Ecology Food"

Проект «Нормативов допустимых выбросов» для TOO «ALMATY TANNERY+ (Алматинский кожевенный завод+)» расположен по адресу Алматинская область, Карасайский район с. Кокозек.

Директор **TOO «ALMATY TANNERY+** (Алматинский кожевенный завод+)»

таков С.

Исполнительный директор

Food»

Койлюбаева

Алматы, 2025г.

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель проекта	Омирбек А.Ж.
Руководитель проектной группы	Кавелина Е.В.
Исполнитель	Ералинова А.Е.

АННОТАЦИЯ

В настоящей работе представлены результаты, полученные при разработке проекта «Нормативов допустимых выбросов» для ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+). Проект разрабатывается впервые.

Промышленная площадка TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) расположена по адресу Алматинская область, Карасайский районе с. Кокозек.

Промышленная площадка размещена на собственном земельном участке согласно акта на право частной собственности на земельный участок №13353, кадастровый номер №03-047-062-062 от 10 октября 2017 года, площадью $100~000~\text{m}^2$ (10~га), из них

- площадь застройки -39400 м^2
- площадь твердых покрытий -15600 м^2
- площадь озеленения -45000 м^2 на собственной территории. процент озеленения -45%.

Основным видом деятельности ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+), является обработка кожи, производительность предприятия 11 тонн в сутки готовой продукции.

Электроснабжение осуществляется от существующих сетей согласно договору № 85764 от 01. 04.2024 года.

Теплоснабжение – осуществляется от собственной котельной.

Водоснабжение — осуществляется от насосных станция водозаборных скважин № 0795, № 0796, № 0797 (скважина № 1754 в резерве).

Bodoombedehue — осуществляется в существующие канализационные сети, согласно договору №5375 от 01.01.2018 года.

Вывоз бытовых отходов (ТБО) от осуществляется согласно договору.

При проведении инвентаризации в 2025 году на ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) выявлены 26 источников загрязнения атмосферного воздуха, из них:

организованных - 10:

- ист. загр. № 0001 парогенератор №1;
- ист. загр. №0002 парогенератор №2; (резервный)
- ист. загр. № 0020 парогенератор №3; (резервный)
- ист. загр. № 0003 емкость для хранения дизельного топлива;
- ист. загр. №0021 цех финишной обработки кожи;
- ист. загр. № 0022 раскройно-штамповочный цех;
- ист. загр. №0023 –заготовочный цех;
- ист. загр. № 0024 затяжной цех;
- ист. загр. №0025 литьевой цех;
- ист. загр. №0019 столовая;

неорганизованных нормируемых— 14:

- ист. загр. № 6004 производство полуфабриката Wet-bliue;
- ист. загр. № 6005 производство полуфабриката Wet-bliue;
- ист. загр. № 6006 производство полуфабриката CRUST;
- ист. загр. № 6007 производство полуфабриката CRUST;
- ист. загр. № 6008 –производственный корпус;
- ист. загр. № 6009 производственный цех;

- ист. загр. № 6010 производственный цех;
- ист. загр. № 6011 -сооружение локальной очистки сточных вод;
- ист. загр. № 6012 сварочные работы;
- ист. загр. № 6013 сварочные работы;
- ист. загр. № 6014 сварочные работы;
- ист. загр. № 6015 ремонтные работы;
- ист. загр. № 6016 ремонт мастерского цеха;
- ист. загр. № 6012 сварочные работы;

<u>неорганизованных ненормируемых – 2</u>

- ист. загр. № 6017- автотранспорт предприятия;
- ист. загр. № 6018 –автотранспорт, приезжающего на территорию промышленной площадки (парковочный карман).

При эксплуатации TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) в атмосферный воздух выделяются:

- **загрязняющие вещества 1 класса опасности** хром (0203), бензапирен (0703), 2;
- загрязняющие вещества **2** класса опасности оксид алюминия (0101), марганец и его соединения (0143), диоксид азота (0301), серная кислота (0322), сероводород (0333), фтористые и газообразные соединения (0342), акриловая кислота (1206), акролеин (1301), формальдегид (1325), смола (2743) 9;
- загрязняющие вещества 3 класса опасности оксид железа (0123), оксид магния (0138), сода кальцинированная (0150), кальция стеарат (0258), оксид азота (0304), сажа (0328), диоксид серы (0330), диметилбензол (0616), метилбензол (0621), бутиловый спирт (1042), этенилацетат (1213), муравьиная кислота (1231), ацетальдегид (1317), ацетальдегид (1317), ацетальдегид (1411), уксусная кислота (1555), альтакс (2406), взвешенные частицы (2902), пыль неорганическая (2908), 19;
- **загрязняющие вещества 4 класса опасности** аммиак (0303), оксид углерода (0337), дихлорметан (0869), этиловый спирт (1061), уксусная кислота (1210), метилакрилат (1225), этилацетат (1240), бензин (2704), алканы (2754), пыль мучная (3721)- 10;
- загрязняющие вещества ОБУВ сода кальцинированная (0150), гексан (0256), бутанол (1288), канифоль (2726), керосин (2732), пыль меховая (2920), каучук (2928), пыль абразивная (2930), пыль токого измельчённого резинового вулканизата (2978), Бор хлорид (0373), Гликоль (1078) Ацетальдегид (1115).

Анализ выбросов вредных веществ в атмосферу данного раздела «ООС» (2026-2035) гг. по сравнению с проектом «НДВ» для ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) (2016-2025г.)

Таблица 1

Код ЗВ	Наименование	Проект (2016-2	г «НДВ» 2025)	Проект «РООС» (2026-2035) гг.			
0101	вещества Алюминий оксид	0,0003	0,0001	0.000203	0.00076		
	, ,	<u> </u>	· ·				
0123	Железо оксид	0,0242	0,1153	0.030534	0.08439		
138	Магний оксид			0.004641	0.0034		

0143	Марганец и его соединения	0,0012	0,0048	0.0005086	0.00131
0150	Натрий гидроксид	-	_	0.0066	0.00865
0155	Сода кальцинированная	0,0022	0,0694	0.002192	0.069127
0203	Хром	0,000003	0,000001	0.000473	0.003751
0256	Гексан	-	-	0.36	1.6848
0258	Стеарат кальция	-	_	0.00225	0.001649
0301	Азота диоксид	0,6562	4,7495	0.801466	2.974136
0303	Аммиак	0,2567	4,0220	0.262556	4.045738
0304	Азот оксид	0,1048	0,7632	0.12843	0,47833
		0,1040	0,7032	0.000892	0.012821
0322	Серная кислота	0.0502	0.0276	0.000892	0.012821
0328	Сажа	0,0592	0,0376	0.03771	0.03
0330	Сера диоксид	1,3912	0,8820		0.7036
0333	Сероводород	0,007	0,0913	0.0069674 3.384102	11.7619
0337	Углерод оксид	3,2908	18,8924		
0342	Фтористые газообразные соединения	0,0004	0,0012	0.00004	0.0001
0373	Бор хлорид	-	-	0.016313	0.012229
0616	Диметилбензол	-	-	0.056255	0.2332
0621	Метилбензол	-	-	0.018068	0.079
0703	Бензапирен	0,00002	0,000002	0,000000344	0.000006
0869	Дихлорметан	-	-	0.06	0.2808
1042	Бутиловый спирт	-	-	0.0069	0.0518
1061	Этиловый спирт	-	-	0.45185	1.88378
1078	Гликоль	-	-	0.0000036	0.00003
1115	Ацетальдегид	_	_	0.0000107	0.000168
1206	Акриловая кислота	_	_	0.000556	0.00228
1210	Уксусная кислота			0.672222	2.7588
1213		<u>-</u>	-	0,000000015	0.00000077
	Этилацетат	-	-	·	
1225	Метилакрилат	0.0052	- 0.0602	0.000556 0.005278	0.00228 0.068255
1231	Муравьиная кислота	0,0053	0,0683	0.624781	0.068233
1240	Этилацетат	-	-		2.508
1288	Бутанол	-	-	0.611112	0.0091724
1301	Акролеин	-	-	0.0022353	
1317 1325	Ацетальдегид	-	-	0.0000036 0.0078474	0.00003 0.036584
1411	ацетальдегид	-	-	0.116667	0.4788
1555	Циклогексанол Уксусная кислота	-	-	0.000053	0.00084
2406	,	-	-	0.004641	0.0034
2704	Альтакс Бензин	<u>-</u>	-	1.830181	0.6511
		-	-		
2726	Канифоль	-	-	0.009286 0.0729	0.006989 0.0546
2732	Керосин	-	-		
2743	Смола	- 0.0174	- 0.0012	0.041881	0.0313
2754	Алканы	0,0174	0,0012	0.0083322	0.0037267
2902	Взвешенные частицы	0,009	0,1016	0.507434	1.862084
2908	Пыль неорганическая	0,0002	0,0004	0.000003	0.00001
2920	Пыль меховая	0,0004	0,0126	0.000389	0.012264
2930	Пыль абразивная	0,0038	0,0008	0.0016	0.0029
2978	Пыль резинового	-	-	0.269197	0.2016
2721	вулканизата			0.00220127	0.00076
3721	Пыль мучная	-	- 0.0120	0.00230137	0.00076
0322	Кислота серная	0,0009	0,0120	-	-
	Всего	5,8316	29,8297	11,3146	33.6624

Увеличение выбросов г/сек, т/год произошло в связи с изменением количества и параметров выбросов.

Таблица групп суммаций на существующее положение

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

1 17		
Номер	Код	
группы	загряз-	Наименование
сумма-	няющего	загрязняющего вещества
ции	вещества	
1	2	3
		Площадка:01,Площадка 1
01(03)	0303	Аммиак (32)
	0333	Сероводород (Дигидросульфид) (518)
02(04)	0303	Аммиак (32)
	0333	Сероводород (Дигидросульфид) (518)
	1325	Формальдегид (Метаналь) (609)
03(05)	0303	Аммиак (32)
	1325	Формальдегид (Метаналь) (609)
07 (31)	0301	Азота (IV) диоксид (Азота диоксид) (4)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
11(09)	1213	Этенилацетат (Винилацетат, Уксусной кислоты виниловый эфир) (670)
	1317	Ацетальдегид (Этаналь, Уксусный альдегид) (44)
37 (39)	0333	Сероводород (Дигидросульфид) (518)
	1325	Формальдегид (Метаналь) (609)
41 (35)	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
	0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)
42 (28)	0322	Серная кислота (517)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
44 (30)	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
	0333	Сероводород (Дигидросульфид) (518)
58 (70)	1206	Бутилакрилат (Акриловой кислоты бутиловый эфир) (109)
	1225	Метилакрилат (Акриловой кислоты метиловый эфир,
Пыли	2902	Взвешенные частицы (116)
	2908	Пыль неорганическая, содержащая двуокись кремния в
	2920	Пыль меховая (шерстяная, пуховая) (1050*)
	2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)
	2978	Пыль тонко измельченного резинового вулканизата из
		отходов подошвенных резин (1090*)
	3721	Пыль мучная (491)
I —		

Примечание: В колонке 1 указан порядковый номер группы суммации по Приложению 1 к СП, утвержденным Постановлением Правительства РК от 25.01.2012 №168. После него в круглых скобках указывается служебный код групп суммаций, использовавшийся в предыдущих сборках ПК ЭРА.

Промышленная площадка TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) расположена по адресу Алматинская область, Карасайский район с. Кокозек и граничит с:

- севера — автомобильная дорога на расстоянии 80 м и далее размещаются жилые дома на расстоянии 127 м от крайнего источника №6008;

- с севера –востока на расстоянии 105 м от крайнего источника №0001 расположены жилые дома;
- с востока на расстоянии 129 метров от крайнего источника №0023 расположены жилые дома;
- с юго-восточной стороны от крайнего источника №0023 на расстоянии 251 м размещаются жилые дома;
- с юга на расстоянии 245 метров расположены жилые дома от крайнего источника №0023;
- с юго-западной стороны на расстоянии 275 м от крайнего источника №6006 размещаются жилые дома;
- с запада свободная от застройки территория, далее на расстоянии 219 метров от крайнего источника №0003 расположены жилые дома;
 - с северо-западной стороны за автотрассой, жилые дома на расстоянии 140 м;

Ближайшая жилая зона расположена в север –восточном направлении на расстоянии 105 м от крайнего источника №0001.

Согласно письма ГУ "Отдел архитектуры и градостроительства" Карасайского района (далее «отдел»), согласно проекта детальной планировки с. Кокозек, утвержденного решением Маслихата Карасайского района №32-3 от 13.06.2014 г., территория кожевенного завода имеет санитарно защитную зону в радиусе 300 м. В радиусе 300 метров имеется строительство жилых домов без какой-либо разрешительной документации.

С северо-западной стороны расположены Исаевские Озера, расстояние от территории предприятия более 2 км.

Согласно Приложения 2, Раздела 2, п 7, пп. 7.3 (производство кожи и изделий из кожи с использованием оборудования для дубления, крашения, выделки шкур и кож (с проектной мощностью обработки не более 12 тонн годовой продукции в сутки)) ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) относится ко II категории – производительность предприятия 11 тонн в сутки готовой продукции.

Вид деятельности ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) входит в Приложение 1 Раздел 2, в связи с этим требуется Заключение по скринингу Номер: KZ54VWF00420166 10.09.2025

Вид деятельности ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) входит в Приложение 1 Раздел 2 пункт 10.7 (предприятия по дублению шкур) под скрининг попадает

Согласно Статье 418. Переходные положения

2. Положительные заключения государственной экологической экспертизы или комплексной вневедомственной экспертизы, выданные до 1 июля 2021 года, сохраняют свою силу в течение срока их действия. В отношении намечаемой деятельности, ПО которым имеются действующие проектов положительные заключения государственной экологической экспертизы или комплексной вневедомственной экспертизы, выданные до 1 июля 2021 года, проведение оценки воздействия на окружающую среду или воздействий намечаемой деятельности в соответствии с положениями настоящего Кодекса не требуется.

Согласно Приложения 1, Раздела 7, п.30, пп.1 (производства по обработке сырых меховых шкур животных и крашению (овчино-шубные, овчино –дубильные, меховые) производство замши, сафьяна, лайки). Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов являющихся объектами воздействия на среду обитания и здоровья человека» нормативная СЗЗ для ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) составляет 300 м.

TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) сегодняшний день проводят работы по разработке проекта СЗЗ для уменьшения СЗЗ и получения санитарно-эпидемиологического заключения в уполномоченном гос. органе. Согласно санитарных правил для подтверждения расчетных параметров необходимо проведение натурных исследований и измерений в течении одного года. Вместе с тем, в связи с необходимостью введения в эксплуатацию объекта ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) в данный момент в течении года будут проводится работы по налаживанию оборудовании и пробного запуска производственного процесса. Проект СЗЗ находится в разработке для получения санитарно- эпидемиологического заключения уполномоченного органа в течении года.

На балансе предприятия имеется автотранспорт в количестве 23 автомашин, из них 8 работающие на бензине, 15 работающие на дизельном топливе.

На территории промышленной площадки для приезжающих автомашин на объект ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) парковочный кармана рассчитан для 10 автомашин.

Анализ расчетов приземных концентраций показал, что зон загрязнения (без учета фона), где См> ПДК – нет. Срок достижения ПДВ для предприятия – 2025 год.

При изменении условий (количества или параметров источников выбросов загрязняющих веществ) настоящего раздела, должна быть произведена корректировка проекта с последующим согласованием в уполномоченных органах.

СОДЕРЖАНИЕ

A	ННОТАЦИЯ2
B	ВЕДЕНИЕ9
1.	ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ11
2.	ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ14
	2.1. Краткая характеристика технологии производства и технологического оборудования 14 2.2 Краткая характеристика существующих установок очистки газа, укрупненный анализ их технологического состояния и эффективности работы
3.	ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ51
	3.1. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города
	3.3 Предложения по нормативам допустимых выбросов по каждому источнику и
	ингредиенту
	3.3.1. Нормативы выбросов загрязняющих веществ в атмосферу по предприятию
4.	3.7. Учет специальных требований к качеству атмосферного воздуха для данного района 66 МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ
	ЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ67
5.	4.1. План мероприятий по снижению выбросов загрязняющих веществ в атмосферу с целью достижения ПДВ
C	5.1 Расчет категории источников, подлежащих контролю
Б.	панк инвентаризации выбросов вредных веществ в атмосферный воздух82
	АСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ104

ВВЕДЕНИЕ

Проект «Нормативов допустимых выбросов» для ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) разрабатывался специалистами ТОО «Ecology Food». Проект разрабатывается в впервые.

В соответствии с требованиями регламентирующих нормативных документов на основании:

Экологического кодекса РК;

Задания на проектирование на разработку раздела «НДВ»;

- Справки о государственной перерегистрации юридического лица от 3 марта 2014г. БИН 061140002558;
- Акта на право частной собственности на земельный участок №0995346 кадастровый номер № 03-047-062-062 от 17.10.2017 г.;
 - Технический паспорт кадастровый номер № 03-047-062-062 от 16.06.2009год;
- Договор на предоставление услуг водоснабжения и(или) водоотведения №5375 от 01.01.2018год;
- Договор с АО «Алатау Жарық Компаниясы» «Энергосбыт» Карасайского РОЭС № 85764 от 01.04.2024года;
- Договор №160-2-Т/О от 20 февраля 2018 г по техническому обслуживанию и текущему ремонту газорегуляторной установки ШГРП с РДНК -100
- Договор на оказание услуг №63/02 прием и утилизацию твердых бытовых отходов от 03 января 2024 года;
- Договор №9/25 по приему, хранению, переработке, утилизации отходов от 1 января 2025 года;
- Договор №64/02 на оказание услуг по утилизации отходов производства биологических отходов от 03 января 2024 года;
- Заключения Государственной экологической экспертизы KZ49VDC00051375 от 02.08.2016.
 - Разрешение на эмиссии в окружающую среду серия KZ87VDD00057109
 - Разрешение на специальное водопользование KZ77VTE00280591 от 15.01.2025 г.
- Мотивированный отказ № KZ54VWF00420166 10.09.2025 Республиканское государственное учреждение "Департамент экологии по Алматинской области Комитета экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан",
- Письмо №3Т A-1007 от 01.07.2021 года Ген директору ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) от заместителя акима Карасайского района;
- Письмо №659 от 19.07.2021года Ген директору ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) от ГУ «Отдела архитектуры и градостроительства» Карасайского района
- Письмо №1244 от 01.07.2021года Акиму Ельтайского сельского округа Б.Белгожаеву от ГУ «Отдела архитектуры и градостроительства» Карасайского района
 - Письмо от ГУ «Отдела архитектуры и градостроительства» Карасайского района 01-20 № 1234 от 30.065.2021 года.

- Паспорт парового котла GX-4000 №5452311 от 06.06.12
- Ситуационная схема объекта;
- Справка по климатическим данным с розой ветров
- Справки о фоновых концентрациях;
- Ситуационной схемы с указанием источников выбросов ЗВ.

Информация, содержащаяся в данном разделе, была представлена руководством предприятия и основана на учредительных документах, на которые мы полагались при разработке проекта «Нормативов допустимых выбросов».

TOO «Ecology Food» имеет:

Государственную лицензию 01806Р от 29.12.2015 г., выданную Министерством охраны окружающей среды Республики Казахстан.

Адрес ТОО «Ecology Food» г. Алматы, ул. Сатпаева, 88a/1, тел. 8 (727) 3778614.

Реквизиты предприятия:

Площадка ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) расположена по адресу Алматинская область, Карасайский районе с. Кокозек.

Юридический адрес: Алматинская область, Карасайский районе с. Елтай, учетный квартал 062, стр 62, БИН 061140002558.

Тел: 87017327924

1. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ

Промышленная площадка TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) расположена по адресу Алматинская область, Карасайский районе с. Кокозек.

Промышленная площадка размещена на собственном земельном участке согласно акта на право частной собственности на земельный участок №13353, кадастровый номер №03-047-062-062 от 10 октября 2017 года, площадью 100 000 м 2 (10 га), из них

- площадь застройки -39400 м^2
- площадь твердых покрытий -15600 м^2
- площадь озеленения 45000 м^2 на собственной территории.

процент озеленения – 45%.

Основным видом деятельности ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+), является обработка кожи, производительность предприятия 11 тонн в сутки готовой продукции.

Электроснабжение осуществляется от существующих сетей согласно договору № 85764 от 01. 04.2024 года,

Теплоснабжение – осуществляется от собственной котельной.

Водоснабжение — осуществляется от насосных станция водозаборных скважин № 0795, № 0796, № 0797 (скважина № 1754 в резерве).

Bodoombedehue — осуществляется в существующие канализационные сети, согласно договору №5375 от 01.01.2018 года.

Вывоз бытовых отходов (ТБО) от осуществляется согласно договору.

Месторасположение площадки

Промышленная площадка TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) расположена по адресу Алматинская область, Карасайский район с. Кокозек и граничит с:

- севера автомобильная дорога на расстоянии 80 м и далее размещаются жилые дома на расстоянии 127 м от крайнего источника №6008;
- с севера –востока на расстоянии 105 м от крайнего источника №0001 расположены жилые дома;
- с востока на расстоянии 129 метров от крайнего источника №0023 расположены жилые дома;
- с юго-восточной стороны от крайнего источника №0023 на расстоянии 251 м размещаются жилые дома;
- с юга на расстоянии 245 метров расположены жилые дома от крайнего источника №0023;
- с юго-западной стороны на расстоянии 275 м от крайнего источника №6006 размещаются жилые дома;
- с запада свободная от застройки территория, далее на расстоянии 219 метров от крайнего источника №0003 расположены жилые дома;
 - с северо-западной стороны за автотрассой, жилые дома на расстоянии 140 м;

Ближайшая жилая зона расположена в север –восточном направлении на расстоянии 105 м от крайнего источника №0001.

Согласно письма ГУ "Отдел архитектуры и градостроительства" Карасайского района (далее «отдел»), согласно проекта детальной планировки с. Кокозек, утвержденного решением Маслихата Карасайского района №32-3 от 13.06.2014 г., территория кожевенного завода имеет санитарно защитную зону в радиусе 300 м. В радиусе 300 метров имеется строительство жилых домов без какой-либо разрешительной документации.

С северо-западной стороны расположены Исаевские Озера, расстояние от территории предприятия более 2 км.

1.1. Карта схема источников выбросов загрязняющих веществ в атмосферу

Карта-схема источников выбросов загрязняющих веществ в атмосферу представлена в Приложении.

1.2. Ситуационная карта схема

Оценка воздействия на земельные ресурсы и почвы

Воздействие на почвенный покров не предусматривается.

На промышленной площадке мероприятия по снятию, транспортировке и хранению плодородного слоя почвы не предусматриваются.

2. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

2.1. Краткая характеристика технологии производства и технологического оборудования

Промышленная площадка TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) расположена по адресу Алматинская область, Карасайский районе с. Кокозек.

Промышленная площадка размещена на собственном земельном участке согласно акта на право частной собственности на земельный участок №13353, кадастровый номер №03-047-062-062 от 10 октября 2017 года, площадью $100~000~\text{m}^2$ (10~га), из них

- площадь застройки -39400 м^2
- площадь твердых покрытий -15600 м^2
- площадь озеленения 45000 м^2 на собственной территории.

процент озеленения – 45%.

В состав предприятия входит:

производственный корпус,

котельная,

склад дизельного топлива,

трансформаторная подстанция,

контрольно-пропускной пункт,

ремонтно-механический цех,

общежитие,

установка локальной системы очистки сточных вод (станция механической очистки сточных вод, резервуар очистки от сульфатов каталитическим окислением, резервуар усреднитель потоков, резервуар очищенных вод, насосная станция очищенных вод,

резервуар технической воды (артезианской), насосная станция технической воды, насосная станция пожаротушения),

площадка отходов,

насосная станция на водозаборной скважине № 0795,

насосная станция на водозаборной скважине № 0796,

насосная станция на водозаборной скважине № 0797,

насосная станция на водозаборной скважине № 1754,

резервуар питьевой воды,

насосная хозяйственно-питьевого водоснабжения,

участок рекуперации хрома.

Основным видом деятельности ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+), является обработка кожи, производительность предприятия 11 тонн в сутки готовой продукции.

Краткое описание технологического процесса

Итальянская компания «Erreci» оборудовала кожевенный завод TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) для обработки кожи крупного рогатого скота в готовую кожу, для использования в обувном и отделочном

производстве с проектной мощностью обработки 11 тонн в сутки готовой продукции.

Программа производства реализована по следующим технологическим фазам.

Первая фаза предусматривает производство кожи, выделанной в хроме (wet-blue).

Вторая фаза предусматривает производство кожи «crust», то есть выделанной, покрашенной, жированной и высушенной.

Установленные рабочие системы и химические технологии на данном производстве являются самыми современными среди применяющихся на кожевенных предприятиях Италии и других государств с точки зрения защиты окружающей среды и безопасности в эксплуатации.

Внутри главного производственного корпуса установлено производственное оборудование для выпуска продукции, имеются помещения для склада сырья, готовой кожи, для химикатов, используемых в производстве, технические устройства для распределения холодной и горячей воды, пара, распределения электроэнергии, в тоже время сооружены новые помещения экологических устройств защиты окружающей среды, сокращения количества вредных веществ и повторного использования дубильных солей (хромовый дубитель), чье попадание в окружающую среду представляет большую опасность. Вытяжка общеобменная механическая через аэрационный фонарь размером короба 40*30, на высоте 12,0 м.

Сырьевой склад.

Прием сырья. Сырье от различных поставщиков поступает либо непосредственно на завод (автотранспортом), либо на железнодорожный тупик, откуда сырье перевозится на завод. Количество поступающего сырья в год — 20 000 т/год. При дублении шкур и кож, мощность обработки составляет 11 тонн готовой продукции в сутки.

Сортировка сырья по сортности. Сырье расстилается на столе и рассматривается с бахтармянной стороны. При сортировке сырья учитываются, прижизненные пороки (свищ, кнутовина т др.), пороки при ручном съеме (подрези, прорези, отсутствие контура шкуры), а также количество консервации сырья.

Сортировка сырья по размерным группам. После определения сортности шкуру взвешивают на весах. Сырье распределяется на такие весовые группы, менее $8~\rm kf$, от $8~\rm do$ $12~\rm kf$, от $12~\rm do$ $17~\rm kf$, от $17~\rm do$ $23~\rm kf$ и свыше $23~\rm kf$.

Обрядка сырья. Производится во время сортировки. Со шкуры удаляют такие части как хвост, вымя, лобаш и др.

Укладка. Отсортированное сырье аккуратно укладывают на поддон. При этом на листе бумаги указывается поставщик сырья, сортность и развес сырья, а также количество шкур на поддоне.

Взвешивание сырья. Уложенное на поддон сырье взвешивается на весах. В сопроводительном листе записывается вес поддона. Ведется учет готовых поддов с сырьем.

Комплектовка партий. Производится путем складывания готовых поддонов с сырьем в одну группу. При этом в одной партии может быть сырье только одного поставщика, одного сорта и одной весовой группы. Общий вес и количество шкур одной партии ограничено максимальной загрузкой зольного барабана производственного цеха. Оптимальный вес одной партии 18-20 тонн и оптимальное количество шкур в одной партии 1000 штук.

Пересчет. Количество шкур в подготовленной к отправке в производственный цех партии осуществляется в присутствии представителей, как сырьевого склада, так и производственного цеха.

Сырьевой склад оборудован механической вытяжной вентиляцией через аэрационный фонарь размер короба 40*30, на высоте 12,0 м в количестве 3 штук.

Производственный цех.

Загрузка сырья в зольный барабан осуществляется при помощи специальной техники «Кальмар».

Процесс отмоки и золения наряду с преддубильно-дубильными процессами являются химико- технологическими процессами, проводимые в подвесных барабанах. Общими для химико – технологических процессов являются следующие параметры:

- механическое воздействие при вращении барабана;
- во всех процессах в большей или меньшей степени присутствуют химические реактивы (какие и в каком количестве на один процесс и т/год);
- во всех процессах используется вода (количество и температура воды зависит от проводимого процесса.).

После загрузки сырья в барабан шкуры тщательно промываются.

Процесс отмоки проводится для того, чтобы привести шкуры в обводненное состояние. Используемые химикаты: сода кальцинированная $-30\,$ т/год, моющие средства.

Процесс золения осуществляется при помощи извести 350 т/год, сернистого натрия 150 т/год. Со шкуры удаляется волосяной покров, шкуры равномерно набухают. После золения голье промывается. Выгрузка голья производится в передвижные кассеты. Мездрение голья осуществляется при помощи мездрильных станков, с целью удаления со шкур подкожную жировую прослойку — мездру. Затем производится обрядка голья — со шкур удаляются участки непригодные к дальнейшей обработке. Далее производится взвешивание голья для определения веса голья перед последующими технологическими процессами. Затем голье загружается в дубильные барабаны «Кальмаром» где голье тщательно промывается.

Обеззоливание: с голья удаляются остатки извести при помощи сульфата аммония 55 т/год.

Мягчение: при помощи ферментальных препаратов (50 т/год) с голья полностью удаляются остатки гнейста и волосяных фолликул. После мягчения голье промывается.

Пикель: при помощи органических и неорганических кислот (муравьиная кислота (органическая) расход 100 т/год и серная кислота (неорганическая) расход 40 т/год) рН доводится до показателей пригодных для дубления кож.

Дубление: кожи подвергаются воздействию хромовых (200 т/год) дубящих соединений. Процесс дубления завершается добавлением пищевой соды (40 т/год). Для того чтобы готовый полуфабрикат не подвергался воздействиям плесени, его обрабатывают специальным химическим раствором (40 т/год). После завершения процесса полуфабрикат промывают. Выгрузка полуфабриката производится в передвижные кассеты.

Пролежка полуфабриката: кожи аккуратно без заминов расстилаются лицевой стороной вверх на поддоны. Это делается для того, чтобы находящийся внутри кож хромовый дубитель окончательно закрепился. Полуфабрикат пролеживается не менее суток.

Отжим полуфабриката проводится на отжимно-разводном валочном прессе, с целью удалить из полуфабриката излишки влаги.

Измерение площади полуфабриката производится на измерительных машинах, снабженных считывающими сенсорными датчиками и затем отправляется на склад готовой продукции.

Производственный цех оборудован механической вытяжной вентиляцией через аэрационный фонарь размер короба 40*30, на высоте 12,0 м в количестве 3 штук.

Склад готовой продукции.

Сортировка полуфабриката по сорности происходит на сортировочных столах, установленных в хорошо освещаемом месте. При сортировке учитываются следующие критерии: прижизненные пороки (свищ, лизуха, царапины, тавро, кнутовина и другие), пороки при съеме сырья (подрези, прорези, отсутствие контура кожи и другие), технологические браки (недостаточное мездрение, стяжка лицевой поверхности, хромовые пятна и другие). Суммарность выявленных пороков определяет количество той или иной кожи.

Сортировка по размерным группам проводится по площади полуфабриката. Есть несколько размерных групп: кожи площадью менее 1,8 м², кожи от 1,8 до 2,8 м², кожи от 2,8 до 3,3 м² и кожи площадью свыше 3,3 м².

Укладка полуфабриката на поддоны: сортированный полуфабрикат аккуратно складывается в зависимости от сортности и размерной группы на разные поддоны. При этом ведется учет количества и квадратуры каждого полуфабриката на поддоне.

Комплектовка поддона с полуфабрикатом ограничивается высотой и максимальным весом поддона. Высота поддона не более 1,5 м.

Взвешивание поддона с полуфабрикатом. Максимальный вес поддона не должен превышать 2 тонны. Затем поддон с полуфабрикатом упаковывается в полиэтиленовую пленку и хранится на стеллажах.

Описание производственного цикла для производства кожи крупного рогатого скота

Восстановление. Эта операция имеет целью очистить кожу от грязи и вернуть ее в естественное влажное состояние, чтобы сделать более пригодной для последующих работ. Осуществляется с помощью воды температурой 22-25°С, объемом равным 150% веса необработанной кожи, в течение 24 часов. Используется также поверхностно-активные моющие средства в количестве 1% веса необработанной кожи. Обычно за этим следует промывание в воде 22-25°С с объемом 400-450% веса необработанной кожи. Операция проводится с помощью деревянного цилиндрического дубильного барабана с высокой теплоизоляцией. Также в дубильном барабане производится операция:

Кальцинация — депиляция. Операция имеет целью очистить кожу от шерсти, подкожного жира и разрушить эпидермис. Одновременно происходит усиленное разбухание волокнистой ткани и частичная эмульгация кожного жира. Операция осуществляется с помощью воды 22-25°C с объемом 500-600% веса необработанной кожи, в течение 24 часов, с добавлением гидросульфида натрия (55 т/год). Обычно за этим следует промывание в воде 22-25°C с объемом 600-700% веса необработанной кожи. После этой операции кожа вынимается из дубильного барабана и подвергается мездрению.

Мездрение. С помощью этой операции механически удаляются со внутренней стороны кожи все частицы мяса, прилегающие к волокнистой ткани. Операция осуществляется при использовании специальной машины с винтовыми вращающимися ножами. За мездрение следует операция обрезка.

Обрезка. Посредством этой операции вручную удаляются те части кожи, которые не могут быть подвергнуты дублению (голова, хвост, передние части ног и другие). После вышеописанной операции кожа (очищенная и обезвреженная) взвешивается и помещается в другой дубильный барабан для декальцинации- мацерация.

Декальцинация-мацерация. Удаляется с внутренней стороны волокнистой ткани кальций, оставшийся после предыдущих операций, а также удаляются все белковые остатки. Для этой цели используется вода 36° С с объемом 150% от веса и добавлением сульфат аммония (50 т/год) и энзимы (30 т/год), выдерживается около 2 часов. Обычно производится с помощью деревянного цилиндрического дубильного барабана с высокой теплоизоляцией. Выполняется если необходимо в том же барабане обезжиривание.

Обезжиривание. С этой целью используется вода 36° С и объемом 150% веса кожи, с добавлением поверхностно-активных эмульгаторов ($20\,$ т/год) затем следует промывание водой 25° С на примерно 600-620% от веса необработанной кожи. После этой операции кожа подготовлена к дублению, перед которой проводится глубокая очистка.

Глубокая очистка. Операция имеет целью химически активизировать вещества волокнистых тканей, чтобы осуществить химическую связь с трех металлическими солями, используемыми при дублении. С начала добавляют хлорид натрия, объемом 10% веса кожи (380 т/год). Добавление хлорида натрия приводит к обезвоживанию кожи. Потом добавляется вода вплоть до получения раствора, равного 80% веса кожи. Затем следует добавление смеси серной (40 т/год) и муравьиной кислот (30 т/год) в равных пропорциях (0,6-1,2% веса кожи для обеих). Операция длится в среднем 6 часов и производится с помощью дубильного барабана с высокой теплоизоляцией. После положенного времени следует операция дубление в хроме.

Дубление в хроме (для обувной и обивочной кожи). В раствор добавляется эквивалент 2,4Сг (203), разделенный на 2 части. Добавляется при необходимости — маскирующие соли (муравьиной кислоты (30 т/год)). Вращается в течение 2 часов. Затем следует добавление основной соли бикарбонат натрия (10 т/год) и вращается 6-7 часов. Вся операция осуществляется в том же дубильном барабане, что и предыдущая. После окончания операции дубления кожа вынимается из дубильного барабана и помещается во влажную среду, где останавливается для контакта с раствором для дубления на 24 часа. Эта операция называется созревание.

Созревание. Увеличивается фиксация хрома на коже. На практике это и есть завершение дубления.

Прессование. Операция осуществляется посредством машины (пресс для дубления кожи), которая с помощью легкой прессовки удаляет избыток дубильной жидкости с кожи. После этих операций кожа принимает характерный для дубления хромом синезеленый цвет и становится влажной на ощупь. Кожа готова к реализации и называется in wet-blue, либо для продолжения операции окраски и окончательной отделки для дальнейшего использования в обувной промышленности или отделочного производства, как описано в дальнейшем.

Технологический цикл выделки кожи в хроме и окончательной отделки предусматриваются следующие рабочие фазы.

Разрез в выделке. Целью этой операции является разделение кожи на два слоя, верхний слой (сторона ворса) так называемый мерея (grain) и составляющий наиболее ценную часть кожи — нижний слой (сторона мяса) называемая спилок (split). Операция производится машиной, называемой «двоильная для дубления кож». Операция

заключается в сухом механическом действии (без использования воды). Затем следует операция строжка.

Строжка. Целью этой операции является выравнивание толщины кожи, как мереи, так и спилка. Операция проводится машиной, называемой «строгальная». Речь идет о механической операции в сухую (без использования воды).

Обрезка и взвешивание подстриженной кожи. Целью операции служит обрезание части кожи более тонкой (в основном края шкур) и установить точный вес партии шкур, выделанных и стриженных для поставки их для дубления, крашения и жирования с целью установления точного количества используемых химических продуктов, красителей и вспомогательных веществ. Для выполнения операции используются весы.

Раскисления. Операция имеет целью подготовить выделанные кожи, получить одинаковую окраску и жирование. С этой целью используется вода 30° С в объеме 150% с добавлением бикарбоната натрия (0,3%) (10 т/год) для последующей темной окраски или щавелевой кислоты (10 т/год) для последующей светлой окраски. Следуют промывки в 450% от веса обрезанных шкур. В этом же барабане проводятся последующие операции.

Крашение, жирование и додубливание. Целью этой операции является стабильная окраска кожи, сделать ее более мягкой, так же и после высушивания. Операции выполняются в барабане с изменяющимся потреблением в пределах от 1000% до 1250% от веса обрезанных шкур. Используются кислотные красители (15 т/год), прямые и непрямые, жиры синтетические (7 т/год) или животного происхождения (5,5 т/год), сернистые и не сернистые (65,9 т/год), выделанные в хроме, синтетические и (или) растительные танины, поверхностно-активные, аммоний в количестве (47,1, т/год), зависящем от типа конечного изделия производства.

Разводка (высушивание перед механическим отжиманием). Целью этой операции является быстрое избавление от воды с поверхности кожи после окрашивания, жирования и додубливания для того, чтобы облегчить и сделать более легкой следующую просушку в печи. Используются специальные машины, называемые «машины для удерживания и высушивания» (постоянное механическое отжимание). Воды от отжима идут в сточную сеть.

Просушка. Проводится быстрой системой (вакуумная печь) или более быстрой системой (туннельная печь и печь растягиваемая). Потребление воды для подачи в конденсаторы вакуумных печей почти 22 м³/час. Предусмотрено использование двух печей с работой по 16 час/дн каждой. Потребление воды предусмотрено 1400 м³/дн.

Кондиционирование в воздушной цепи. Операция имеет целью довести кожу до натуральной степени влажности. Тут используются естественные условия влажности и тепла внутри цеха (под потолком), кожа подцеплена на специальной движущийся цепи под потолком и остается там 24-36 часов.

Мягчение для способствования мягкости и эластичности кожи после высушивания. Речь идет о механической операции выполняемой машиной с механической вибрацией (палисон).

Шлифование. Применяется для приукрашивания шкур спилок или для изменения внешнего вида шкур мерея. Речь идет о механической операции, выполняемой с помошью

специальной машины для придания мягкости на ощупь и придания одинакового внешнего вида поверхности кожи.

Измерение. Производится с помощью измерительной машины.

Цех финишной обработки кож

С целью получения финишной отделки кожи (финишное покрытие) готовый продукт «Crust» направляется для дальнейшей переработки.

Приёмка материалов: кожевенный полуфабрикат Краст перемещается отделочный цех. Приёмка материалов осуществляется по следующим параметрам: артикул, цвет, толщина, количество и общая площадь товара.

Сортировка полуфабриката по сорту и по толщинам.

Приготовление раствора для нанесения первого грунтового слоя краски. Раствор состоит из нескольких химических материалов (15 т/год), соотношение материалов строго по рецептуре. Нанесение раствора на красильно-валичной машине 3Р. Сушка в сушильной камере при определённой температуре на плечеках.

Прессование кожи через ротопресс Мостардини при определённых параметров температуры и давления. Происходит фиксация нанесенного грунтового слоя к коже.

Крашение: нанесение раствора краски при помощи линии покрывного крашения Барнини. При необходимости процесс крашения повторяется два-три раза. Сушка осуществляется в сушильной камере при определённой температуре.

Закрепление: нанесение специального раствора для фиксации краски. Сушка в сушильной камере при определённой температуре.

Теснение: при помощи гидравлического пресса Гоззини на лицевой поверхности кожи фиксируется определённый узор. Сортировка кожи по сортам. Измерение площади кожи.

Упаковка: готовые кожи сворачиваются в рулон. На бирке указывается: артикул, цвет, толщина, сорт и номер лота.

В рабочем проекте, подготовленном ПТИ «Пищепром». Раздел 3. Б. «Сооружение локальной очистки…» описана «установка для рекуперации хрома». Использованый раствор хрома от процесса дубления по отдельному каналу перенаправляется на участок локальной очистки, где производится упрощенный вариант рекуперации.

Технологический процесс выглядит следующим образом:

- 1.Первичное просеивание на фильтре грубой очистки производится для удаления взвешенных веществ, содержащихся в сточной воде.
 - 2.Сточные воды собираются в резервуар.
- 3. Усредненные сточные воды насосом перекачиваются в три сборника с мешалками, в которые добавляется каустическая сода и кальцинированная сода.
- 4. Полученный раствор перекачивается в конусообразный резервуар, где происходит осаждение гидрата хрома. Верхний слой воды откачивается.
- 5.Осажденный раствор перекачивается в два резервуара, где продолжается процесс осаждения.
- 6. При помощи насоса раствор по трубе подается в производственный цех, где подкисляется серной кислотой.
- 7. Полученный раствор основного сульфата хрома используется в процессе дубления.

Цех финишной обработки кож оборудован механической вытяжной вентиляцией через аэрационный фонарь размер короба 40 на 30, на высоте 12,0 м в количестве 1 штук.

Обувной цех

В *раскройно-штамповочном цехе* осуществляется начальный этап производственного процесса, где обувные материалы подвергаются раскрою на раскрой-прессах гидравлического действия. Используются обувные материалы: натуральная кожа, искусственная кожа, жесткая кожа из шкур КРС, также текстиль,

подкладочные материалы, мех, картон, термопластичные материалы для задников и подносков. Раскроенные детали проходят ряд операций по их обработке на оборудовании типа «Фортуна». После раскроя деталей остаются меж модельные и краевые отходы в количестве 15- 20% от общего количеств обрабатываемого материала. Раскроенные детали обуви передаются в заготовочный цех, где происходит сборка деталей.

При проведении работ от закройного цеха в атмосферный воздух выделяется взвешенные вещества (2902).

Выброс загрязняющих веществ от раскройно-штамповочного цеха осуществляется через трубу высотой 4,5 м и диаметром 0,4.

Заготовочной цех. В обуви (чулок) посредством ниточных и клеевых швов. В заготовочном цехе производится сборка деталей кроя в узлы обуви и в заготовку единицы технологического оборудования: швейные машины различных типов, оборудование «Фортуна» с пылесборниками. Часть операций, в том числе клеенамазочные, выполняются вручную. Организация труда в цехе поточная, оборудование скомпоновано вокруг конвейерной линии. Конвейер является средством транспортировки деталей обуви, в цехе используются 2 конвейера. Укомплектованные согласно заказу, заготовки передаются по технологической цепочке в затяжной цех.

Время работы — 8 час/день, 260 дней в год, 2080 дней в год. Расчет ВВ произведен по "Инструкции по контролю установленных отрасли Минлегрома СССР" величин ПДВ и инвентаризации источников выбросов в атмосферу на предприятиях шерстяной.

При проведении работ от заготовочного цеха в атмосферный воздух выделяется наирит НТ (2978), смола (2743), альтакс (2406), магнезия жженая (0138), аэросил (0373), канифоль (2726), стеарат Са (0258), этилацетат (1240), бензин (2704), керосин (2732), взвешенные вещества (2902), каучук (2978), этенилацетат (1213).

Выброс загрязняющих веществ при проведении работ в заготовочном цехе происходит через трубу с высотой 4,5 м, диаметром 0,4 м. В заготовочном цехе используются следующие виды сырья (расход согласно данным заказчика предоставлен на одну пару обуви):

В затяжном цехе производится сборка обуви посредством затяжки заготовки на Фиксирование заготовки осуществляется затяжную колодку. оборудовании: затяжки носочной, голеночной и пяточной части заготовок. Затяжка производится клеевым способом, для чего края заготовки и поверхность основной стельки промазывается полихлорвиниловым клеем. При этом затянутая на колодке заготовка подготавливается для приклеивания подошвы, подготовительная операция включает в себя взъерошивание затяжной кромки. Эта операция производится на специальном оборудовании MLLIKO с местным пылесборником. Подготовка и завершается клеенамазочными операциями приклейка использованием полихлорвинилового и полиуретанового клея. Приклейка подошвы осуществляется на специальном гидравлическом прессе. При производстве обуви клеевым методом процесс сборки обуви завершается отделкой обуви с помощью отделочных лаков и нитрокрасок. Далее обувь упаковывается и сдается на склад.

При производстве обуви литьевым способом крепления низа, конечной продукцией цеха является не готовая обувь, а ее полуфабрикат: заготовка затянутая обувь, снятая с колодки, передается в литьевой цех.

При проведении работ от затяжного цеха в атмосферный воздух выделяется наирит НТ (2978), смола (2743), альтакс (2406), магнезия жженая (0138), аэросил Выброс загрязняющих веществ при проведении работ в затяжном цехе происходит

через две трубы с высоты одной трубы 15 м, диаметр 0,3 м В затяжном цехе используются следующие виды сырья (расход согласно данным заказчика предоставлен на одну пару обуви):

В литьевом цехе на литьевом агрегате аналогично «Десма» конвейерного типа (24-секционная) к затянутой заготовке приливается подошва двухслойная ПУ-ТПУ (ПУполиуретан вспененный для верхнего слоя, ТПУ- термопластичный полиуретан для нижнего слоя). ТПУ-грануловидные сухие смеси, расплавляясь в инжекторе, впрыскиваются в пресс-форму открытого типа. ПУ-жидкая смесь из полиола, изоционата и цветной пасты. Каждая из этих составляющих заливается в свой реактор, смешивается в инжекторе и под давлением подается в закрытую пресс-форму вторым слоем, соединясь воедино с нижним слоем. Изоционат и полиол перед заливкой в реакторы проходят термическую подготовку в специальной печи. Подготовленные к реакции смеси в открытом виде заливаются в реакторы. Подошва приливается посредством прямого литья под давлением к заготовке. Процесс сборки обуви на данном этапе заканчивается. Обувь с прилитой подошвой отделывается с использованием отделочных материалов (обувных кремов на основе воска и красок на водной основе), упаковывается и передается далее на склад.

Проектная мощность обувного производства согласно данным заказчика 300 пар обуви литьевым методом в одну смену с 8-часовым графиком.

Время работы литьевого цеха составляет -8 час/день; 260 дней в год; 2080 часов в год.

В литьевом цехе используются следующие виды сырья (расход согласно данным

заказчика предоставлен на одну пару обуви):

Наименование веществ	расходы	ед.
		M.
полиуретановая система для изготовления под	0,41238	КГ
пигментая паста Black remap 99685	0,00640	КГ
краситель ТПУ (гранулы)	0,03000	ΚΓ
разделительная смазка	0,00400	КГ

При проведении работ от литьевого цеха в атмосферный воздух выделяется этиленгликоль (1078), ацетальдегид (1317), формальдегид (1325), спирт бутиловый (1042), бутилацетат (1210), спирт этиловый (1061), ксилол (0616), толуол (0621), гексан (0256), метилен хлористый (0869).

Выброс загрязняющих веществ при проведении работ в литьевом цехе происходит через две трубы с высотой 3 м, диаметром 0,3 м для каждой. Разогрев полиуретановой системы для изготовления подошвы серии EXTRA марок E16305, E44339, E 56102 (ист.выд. №001) Расход полиуретановой смеси составляет 0,41238 кг за однин 38,66 кг/час 80,41 т/год. 10,73906 г/с.

Время работы литьевого цеха -8 час/дн; 260 дн/год; 2080 час/год.

Теплоснабжение. Для обеспечения технологического пароснабжения, отопления и горячего водоснабжения на предприятии эксплуатируется собственная котельная, оборудованная тремя котлоагрегатами марки GX400, производительностью 6,8 т пара/ч каждый. В <u>штатном режиме</u> эксплуатации используется один котлоагрегат, мощность которого достаточна для покрытия всех потребностей предприятия. Два оставшихся агрегата находятся в резерве и вводятся в работу при необходимости (например, при выходе основного котла из строя).

Котлоагрегаты работают **на природном газе**. Годовой расход природного газа составляет 1200 тыс. м³/год.

При выходе из строя основного котлоагрегата осуществляется переход на один из резервных. По факту эксплуатации такие случаи происходят крайне редко — примерно один раз в три, четыре года.

В случае временного отсутствия подачи природного газа (например, при проведении ремонтных работ на газопроводе), предусмотрено только на одном котле использование дизельного топлива в качестве резервного энергоносителя. Подобные ситуации также являются редкими и, как правило, происходят не чаще одного раза в два, три года, продолжительность отключения газа — несколько часов. Расход дизельного топлива при работе котлоагрегата на нем составляет 4 тонны в час (не более 28 часов в год).

Режим работы котельного оборудования: круглосуточно, 365 дней в году, что соответствует 8760 ч/год. Выброс дымовых газов осуществляется через вертикальную трубу высотой 12 м и диаметром 0,5 м. Для хранения резервного топлива имеется один заглублённый резервуар емкостью 50 м 3 .

Ремонтно-механический цех (*РМЦ*). Ремонт собственного оборудования и автотранспорта осуществляется в РМЦ в закрытых боксах или при необходимости на открытой площадке и включает токарные и заточные работы, электро- и газосварочные работы.

Также, для работы предусматриваются мастерская электрика, агрегатная, склады для хранения запасных частей и материалов и различные помещения бытового назначения.

В РМЦ имеются следующие станки, один пресс гидравлический, время работы 0 час/дн, 0 час/год (неисправен);

один трубогибочный станок - время работы 0 час/дн, 0 час/год (неисправен);

один горизонтально-расточной станок, время работы 0 час/дн, 0 час/год (неисправен);

один горизонтально- фрезерный станок, время работы 0 час/дн, 0 час/год (неисправен);

один радиально-сверлильный станок, время работы 0,01 час/дн, 17,5 час/год;

один распиловочно-горизонтальный станок, время работы 0,1 час/дн, 17,5 час/год; три токарных станка, время работы $_4$ _ час/дн, 1000 час/год (1 рабочий, 2 неисправны);

один вертикально-сверлильный станок, время работы 1 час/дн, 250 час/год;

один ленточно-отрезной станок, время работы 1 час/дн, 250 час/год;

один заточной станок, время работы 1 час/дн, 250 час/год;

одна гильотина, время работы 0.01 час/дн, 17,5 час/год.

Электросварочные работы производятся с помощью двух переносных сварочных аппаратов. Расход электродов и марка 0,240 т/год (20% УОНИ, 80% МР), время работы 4 час/дн, 1000 час/год.

Газовая резка осуществляется двумя резаками с использованием пропанбутановой смеси расход пропанобутановой смеси 972 т/год, время работы 1час/дн, 250 час/год.

Ставан. На предприятии имеется столовая на 100 посадочных мест, предназначена для питания работающих на предприятии. Для приготовления блюд и мытья кухонной и столовой посуды используется кухня с рабочими столами и

моечными раковинами. Плиты для приготовления блюд электрические с вытяжными зонтами. Холодильники бытовые. Выпечка дрожжевых изделий не предусмотрена.

Электроснабжение осуществляется согласно договору №85784 от 01.04.2024г.

Водоснабжение – осуществляется от насосных станция водозаборных скважин № 0795, № 0796, № 0797 (скважина № 1754 в резерве).

Водоотведение хозяйственно – бытовых сточных вод предусмотрено в бетонированный септик.

Отходы ТБО отгружаются на полигон согласно договору №64/02 от 03/01/2024.

На балансе предприятия имеется автотранспорт в количестве 23 автомашин, из них 8 работающие на бензине, 15 работающие на дизельном топливе.

На территории предприятия организована парковка на 10 ед. автомашин.

Количество персонала предприятия (по штатному расписанию) — 118 человек. Режим работы предприятия — 16 час/дн, 306 дн/год, 4896 час/год

2.2 Краткая характеристика существующих установок очистки газа, укрупненный анализ их технологического состояния и эффективности работы

Для снижения содержания загрязняющих веществ в пылегазовых потоках, выбрасываемых в атмосферу от источников выделения на промышленной площадке не предусмотрено пылегазоулавливающее оборудование.

Карасайский	район,	Almaty	Tannery	(Алматинский	кожевенный	завод)
-------------	--------	--------	---------	--------------	------------	--------

Номер	Наименование и тип	КПД аппа	ратов, %	Код	Коэффициент							
источника	пылегазоулавливающего			загрязняющего	обеспеченности							
выделения	оборудования	Проектный	Фактичес-	вещества по	K(1),%							
			кий	котор.проис-								
				ходит очистка								
1	2	3	4	5	6							
	Пылегазоочистное оборудование отсутствует!											

2.3 Оценка степени применяемой технологии, технического и пылегазоочистного оборудования передовому научно – техническому уровню в стране и мировому опыту

Применяемая технология и оборудование соответствуют современному научнотехническому уровню и потенциалу в Республике Казахстан и за рубежом. В основном, оборудование и механизмы, используемые в главном и вспомогательном производстве, являются наилучшими стандартами зарубежных технологий.

2.4 Перспектива развития предприятия

Данный проект «НДВ» разработан с учетом того, что ближайшие 10 лет на предприятия не будут предусматриваться действия, связанные с увеличением мощности работы предприятия, которые способны повлечь за собой увеличение выбросов вредных веществ в атмосферу.

При изменении условий (количества или параметров источников выбросов загрязняющих веществ) настоящего проекта в ближайшие 10 лет, должна быть

произведена корректировка «НДВ» с последующим согласованием в уполномоченных органах.

Карасайский район, Almaty Tannery (Алматинский кожевенный завод

Кара	асайс	кий район, Alma	ty Tan	ınery (Алматинский кожеве	нный з	завод)							
		Источник выдел	пения	Число	Наименование	Номер	Высо	Диа-	Параметры	газовозд	цушной	Коорді	инаты ис	гочника
Про		загрязняющих ве	еществ	часов	источника выброса	источ	та	метр	смеси на выходе из трубы		з трубы	на к	еме, м	
изв	Цех			рабо-	вредных веществ	ника	источ	устья	при	иаксималы	ной			
одс		Наименование	Коли-	ты		выбро	ника	трубы	разог	вой нагруз	зке			2-го конц
TBO			чест-	В		COB	выбро	M				ника/1-го		ного исто
			во,	году		на	COB,		скорость	объемный	темпе-	линейного	источ-	/длина, ш
			шт.			карте	M		M/C	расход,	ратура	HNI	ка	площадн
						схеме			(T =	м3/с	смеси,	/центра г	площад-	источни
									293.15 К		oC	ного исто	очника	
									P= 101.3					
									кПа)	P= 101.3				
										кПа)		Х1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			-											Площадка
001	-	парогенератор	1	8760	труба	0001	12	0.5		0.		137		
		№1 на								9817477			548	
		природном газе												
		котлоагрегат	1	8760										
		при работе на												
		дизельном												
		топливе												
001	-	хранение	1		дыхательный	0003	3	0.05	5	0.		26		
		дизельного			клапан					0098175			509	
		топлива												

	Наименование газоочистных			агрязняющего	вещества					
	установок,	рому	газо-	тационная		вещества				
а линей	тип и	произво-	очист	степень	ства	20400120	г/с	мг/м3	т/год	Год
чника	мероприятия	дится	кой,	очистки/	0120		1,0	211 / 220	1/100	дос-
ирина	по сокращению	газо-	응	максималь						тиже
OFO	выбросов	очистка		ная						пия
ка	1			степень						ндв
				очистки%						
Y2										
16	17	18	19	20	21	22	23	24	25	26
		1		1		1	1			,
						Азота (IV) диоксид (0.790636	805.335	2.943736	2026
						Азота диоксид) (4)				
						Азот (II) оксид (0.12843	130.818	0.47833	2026
						Азота оксид) (6)	0 00771	20 411	0.00	0006
						Углерод (Сажа,	0.03771	38.411	0.03	2026
						Углерод черный) (583) Сера диоксид (0.8869	903.389	0.7056	2026
						сера диоксид (Ангидрид сернистый,	0.8869	903.389	0.7056	2026
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	3.370352	3433.012	11.7233	2026
						углерод скейд (скиев	3.370332	3433.012	11.7255	2020
						ras) (584)				
						Бенз/а/пирен (3,4-	0.000000344	0.0004	0.000005576	2026
						Бензпирен) (54)				
						Сероводород (0.0000234	2.383	0.0000105	2026
						Дигидросульфид) (518)				
						Алканы С12-19 /в	0.0083322	848.709	0.0037267	2026
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

кара	саис	кии раион, Атма	ty Tan:	nery ((Алматинский кожевенный завод)									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		столовая брожение теста протирка столов обжарка мяса	1 1 1	46 4380 365 1095		0019	6	0.5		0. 5890486		113	553	
001		цех по финишной обработке кож первое закрепление покрытия на коже	1		аэрационный фонарь	0021	12	0.4		0. 6283185		34	530	
		второе закрепление покрытия на коже	1	2280										
		нанесение пигментированн ого покрытия и сушка	1	2280										
		нанесение полиуретановог о покрытия и сушка	1	2280										
		нанесение пропитывающего	1	2280										

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
					0150	265П) (10) Натрий гидроксид (Натр едкий, Сода каустическая) (876*)	0.0066	11.205	0.00865	
					1061	Этанол (Этиловый спирт) (667)	0.000506	0.859	0.00798	2026
					1115	2-Метил-1,3-диоксолан (Ацетальдегида этилацеталь) (761*)	0.0000107	0.018	0.000168	2026
					1301	Проп-2-ен-1-аль (Акролеин,	0.0000133	0.023	0.0000524	2026
					1555	Акрилальдегид) (474) Уксусная кислота (Этановая кислота) (586)	0.000053	0.090	0.00084	2026
					3721 0303 0616	Пыль мучная (491) Аммиак (32) Диметилбензол (смесь о-, м-, п- изомеров)	0.00230137 0.005889 0.055555	9.373	0.024168	2026
					1061	(203) Метилбензол (349) Этанол (Этиловый спирт) (667)	0.016668 0.444444			
					1206	Бутилакрилат (Акриловой кислоты	0.000556	0.885	0.00228	2026
					1210	бутиловый эфир) (109) Бутилацетат (Уксусной кислоты бутиловый	0.672222	1069.875	2.7588	2026
						эфир) (110) Метилакрилат (0.000556	0.885	0.00228	2026
						Тетрабутоксититан /по бутанолу/ (Бутиловый	0.611112	972.615	2.508	2026

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		грунта нанесение пигментированн ого грунта, сушка, прессование закрепление	1	2280										
		закрепление покрытий на коже	Τ	2200										
001		раскрой штамповочного цеха	1		труба	0022	4.5	0.4	į.	6283185		79	533	
		использование клея ПХК 20251	1	2080										

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
						эфир о-титановой кислоты) (1186*)				
					1301	Проп-2-ен-1-аль (0.002222	3.536	0.00912	2026
						Акролеин,				
						Акрилальдегид) (474)				
					1325	Формальдегид (0.006555	10.433	0.026904	2026
						Метаналь) (609)				
						Циклогексанон (654)	0.116667	185.681		1
					2902	Взвешенные частицы (0.064777	103.096	0.265848	2026
						116)				
						Магний оксид (325)	0.002578	4.103		
						Кальций октадеканоат	0.00125	1.989		
					0373	Бор трихлорид (Бор	0.009063	14.424	0.0068	2026
						хлорид) (163*)				
						Этилацетат (674)	0.300781			
					2406	2,2-	0.002578	4.103	0.0019	2026
						Дибензтиазолилдисульф				
						ид (Альтакс) (176)				
					2704	Бензин (нефтяной,	0.300781	478.708	0.2252	2026
					0.700	малосернистый) /в	0 005456	0.006		0000
					2726	Канифоль талловая (642*)	0.005156	8.206	0.0039	2026
					2743	Смола легкая	0.023281	37.053	0.0174	2026
						высокоскоростного				
						пиролиза бурых углей				
						/по органическому				
						углероду/ (528)				
					2902	Взвешенные частицы (0.1237	196.875	0.07147	2026
						116)				
					2978	Пыль тонко	0.129297	205.783	0.0968	2026
						измельченного				
						резинового				

Кара	саис		ty Tan	nery (Алматинский кожеве	нныи з	авод)							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		заготовочный цех использование клея НК	1	2080		0023	4.5	0.5	5	0. 9817477		121	488	
		клея нк клей луч ЛТ 6010 этилацетат керосин	1 1 1	2080 2080 2080										
001		затяжной цех	1	2080	труба	0024	15	0.3	6	0.424115		69	490	

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
						вулканизата из				
						отходов подошвенных				
						резин (1090*)				
					1213	Этенилацетат (1.56e-8	0.00002	0.000000115	2026
						Винилацетат, Уксусной				
						кислоты виниловый				
						эфир) (670)				
						Этилацетат (674)	0.0834	84.951	0.0625	2026
					2704	Бензин (нефтяной,	0.8725	888.721	0.2457	2026
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
						Керосин (654*)	0.0729	74.255	0.0546	2026
					2902	Взвешенные частицы (0.09693	98.732	0.7258	2026
						116)				
					2978	Пыль тонко	0.0365	37.179	0.0273	2026
						измельченного				
						Магний оксид (325)	0.002063			
					0258	Кальций октадеканоат	0.001	2.358	0.000749	2026
						(Кальция стеарат,				
						Октадеканоат кальция)				
						(307)				
					0373	Бор трихлорид (Бор	0.00725	17.094	0.005429	2026
						хлорид) (163*)				
						Этилацетат (674)	0.2406			
					2406	2,2-	0.002063	4.864	0.0015	2026
						Дибензтиазолилдисульф				
						ид (Альтакс) (176)				
					2704	Бензин (нефтяной,	0.6562	1547.222	0.1802	2026
						малосернистый) /в				
						пересчете на углерод/				
						(60)				
					2726	Канифоль талловая (0.00413	9.738	0.003089	2026

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
001	литьевой цех литье полиуретановой смеси разделительная смазка и пигментная паста лакокрасочные работы	1	1300		0025	3	0.3	28.29	2		18	535	

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
					2743	642*) Смола легкая высокоскоростного пиролиза бурых углей /по органическому	0.0186	43.856	0.0139	2026
					2902	углероду/ (528) Взвешенные частицы (116)	0.0969	228.476	0.7258	2026
						Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (1090*)	0.1034	243.802	0.0775	2026
					0256	(R*,S*)-4,4'-(1,2- Диэтил-162-этандиил) дикалиевая соль) (560*)	0.36	180.000	1.6848	
					0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0007	0.350	0.0052	2026
					0869	Метилбензол (349) Дихлорметан (Метиленхлорид, Метилен хлористый) (250)	0.0014			1
					1042	Бутан-1-ол (Бутиловый спирт) (102)	0.0069	3.450	0.0518	2026
					1061	Этанол (Этиловый спирт) (667)	0.0069	3.450	0.0518	2026
					1078	Этан-1,2-диол (Гликоль, Этиленгликоль) (1444*	0.0000036	0.002	0.00003	2026

кара		_			Алматинский кожев		вавод)					T		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		производство полуфабриката Wet - biue	1	2080	аэрационный фонарь	6004	12					54	531	7
001		производство полуфабриката Wet-bliue	1	2080	аэрационный фонарь	6005	12					95	546	4
001		производство полувабриката CRUST	1	2080	аэрационный фонарь	6006	12					34	486	8
001		производство полуфабриката CRUST	1	2080	аэрационный фонарь	6007	12					117	528	9
001		производственн ый корпус	1	2080	неорганизованный	6008	12					47	556	8
001		производственн ый цех	1	2080	неорганизованный	6009	3					121	531	5
001		производственн ый цех	1		неорганизованный	6010	3					72	553	6
001		сооружение	1	2080	неорганизованный	6011	3					989		4

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
					1317) Ацетальдегид (Этаналь, Уксусный альдегид) (44)	0.0000036	0.002	0.00003	2026
					1325	Формальдегид (Метаналь) (609)	0.0012924	0.646	0.00968	2026
5					0203	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0.000361		0.000219	2026
					0303	Аммиак (32)	0.24		3.75877	2026
					0322	Серная кислота (517)	0.000556		0.0073	2026
						Сероводород (Дигидросульфид) (518)	0.006944		0.09125	2026
					1231	Метилформиат (Муравьиной кислоты 391)	0.005278		0.068255	
6					2902	Взвешенные частицы (0.000859		0.0271	2026
4					0303	Аммиак (32)	0.011111		0.1752	2026
7					2902	Взвешенные частицы (116)	0.000068		0.002166	2026
8					0303	Аммиак (32)	0.005556		0.0876	2026
6					2920	Пыль меховая (шерстяная, пуховая) (1050*)	0.000389		0.012264	2026
7					0322	Серная кислота (517)	0.000336		0.005521	2026
					0155	диНатрий карбонат (0.002192		0.069127	2026

1	2	RMM PAMOH, AIMA	4	5 5	Алматинский кожеве 6	7	8 8	9	10	11	12	13	14	15
Τ		локальной	4	5	0	/	Ö	9	10	11	12	1.5	518	13
		очистки											010	
		сточных вод												
0.01			-	200	,	6010						100		
001		сварочные работы	1	300	неорганизованный	6012	3					137	522	6
		раоочы											322	
0.01			-	1000	,	6010						2.6		
001		сварочные	1	1000	неорганизованный	6013	3					36	540	6
		работы											540	
001		сварочные	1	250	неорганизованный	6014	3					110		5

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
9						Сода				
						кальцинированная,				
						Натрий карбонат) (
						408)				
					0203	Хром /в пересчете на	0.000112		0.003532	2026
						хром (VI) оксид/ (
						Хром шестивалентный)				
					0400	(647)			0 0005	0000
					0123	Железо (II, III)	0.0004		0.0005	2026
8						оксиды (в пересчете				
					0112	оксид) (274)	0.0001		0.0001	2026
					0143	Марганец и его	0.0001		0.0001	2026
						соединения (в				
						пересчете на марганца (IV) оксид) (327)				
					0342	Фтористые	0.00002		0.00002	2026
					0512	газообразные	0.00002		0.00002	2020
						соединения /в				
						пересчете на фтор/ (
						617)				
					0123	Железо (II, III)	0.0005		0.0019	2026
4						оксиды (в пересчете				
						на железо) (диЖелезо				
						триоксид, Железа				
						оксид) (274)				
					0143	Марганец и его	0.0001		0.0003	2026
						соединения (в				
						пересчете на марганца				
						(IV) оксид) (327)				
					0342	Фтористые	0.00002		0.00008	2026
						газообразные				
					0405	617)			0 0	0000
					0123	Железо (II, III)	0.02025		0.0569	2026

работы 556
001 ремонтные работы 1 1040 неорганизованный 6015 3 3 544

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
3						оксиды (в пересчете				
					0143	Марганец и его	0.0003056		0.0009	2026
						соединения (в				
						пересчете на марганца				
						(IV) оксид) (327)				
					0301	Азота (IV) диоксид (0.01083		0.0304	2026
						Азота диоксид) (4)				
					0337	Углерод оксид (Окись	0.01375		0.0386	2026
						углерода, Угарный				
						газ) (584)				
					0101	Алюминий оксид (0.000203		0.00076	2026
4						диАлюминий триоксид)				
						(в пересчете на				
						алюминий) (20)				
					0123	Железо (II, III)	0.000024		0.00009	2026
						оксиды (в пересчете				
						на железо) (диЖелезо				
						триоксид, Железа				
						оксид) (274)				
					0143	Марганец и его	0.000003		0.00001	2026
						соединения (в				
						пересчете на марганца				
						(IV) оксид) (327)				
					2908	Пыль неорганическая,	0.000003		0.00001	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				

001	ремонтно мастерской цех радиально-	1	250	неорганизованный	6016						
	радиально-				0010	3			97	527	5
	CDANTIALL HLIM	1	18							527	
	сверлильный станок распиловочно-	1	1000								
	горизонтальный станок		0.5.0								
	токарный станок	1	250								
	вертикально сверлильный	1	250								
	станок лентиочно - отрезной	1	250								
	станок отрезной станок	1	18								

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
3					0123	месторождений) (494) Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0.00936		0.025	2026
						оксид) (274) Взвешенные частицы (116)	0.1242		0.0439	2026
						Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0016		0.0029	2026

2.6 Характеристика аварийных и залповых выбросов

Под аварией понимают существенные отклонения от нормативно-проектных или допустимых эксплуатационных условий производственно-хозяйственной деятельности по причинам, связанным с действиями человека или техническими средствами, а также в результате любых природных явлений (наводнение, землетрясение, оползни, ураганы, и другие стихийные бедствия).

Анализ аварий включает в себя рассмотрение многочисленных аварийных сценариев в условиях эксплуатации промышленного объекта, включая вероятность возникновения стихийных бедствий.

К главным причинам аварий следует отнести:

- полные или частичные отказы технических систем и транспортных средств;
- пожары, вызванные различными причинами;
- ошибки обслуживающего персонала;
- опасные и стихийные природные явления.

Необходимость в санитарно-защитной зоне (СЗЗ) объясняется особенностями производства, не позволяющими в ряде случаев при достигнутом уровне развития технических средств очистки и обезвреживания вредных выбросов, при необходимой мощности предприятия, исключить превышение норм загрязнения атмосферного воздуха на территории, прилегающей к предприятию.

Расчет рассеивания концентраций вредных веществ в приземном слое атмосферы выполнен без учета фоновых концентраций загрязняющих веществ. Расчеты рассеивания выполнены с использованием программы «ЭРА», версия 3.0.405 Программа рекомендована Главной геофизической обсерваторией им. А.И. Воейкова для расчетов рассеивания вредных веществ, согласована и утверждена Министерством природных ресурсов и охраны окружающей среды РК.

Расчеты показали, что вклад данных объектов в загрязнение атмосферного воздуха не значителен.

2.6.1 Перечень источников залповых выбросов

Наименова	Наименова	Выбросы	веществ,	Периодично	Продолжительн	Годова
ние	ние	г/с	ек	сть, раз/год	ость выброса,	R
производст	вещества	По	Залпов		час, мин	величи
в (цехов) и		регламен	ый			на
источников		ту	выброс			залпов
выбросов						ЫХ
						выброс
						ОВ
	Источники	залповых ві	ыбросов н	а предприятии	отсутствуют	

2.7 Перечень загрязняющих веществ, выбрасываемых в атмосферу на период 2026-2035 гг. Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

	аискии раион, Almaty Tannery (Алы		ожевенный з	авод)					
Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс	Выброс	Значение
							вещества	вещества	
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	м/энк
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год	
			вая, мг/м3	мг/м3		3B		(M)	
1	2	3	4	5	6	7	8	9	10
0101	Алюминий оксид (диАлюминий			0.01		2	0.000203	0.00076	0.076
	триоксид) (в пересчете на								
	алюминий) (20)								
0123	Железо (II, III) оксиды (в			0.04		3	0.030534	0.08439	2.10975
	пересчете на железо) (диЖелезо								
	триоксид, Железа оксид) (274)								
0138	Магний оксид (325)		0.4	0.05		3	0.004641	0.0034	0.068
0143	Марганец и его соединения (в		0.01	0.001		2	0.0005086	0.00131	1.31
	лересчете на марганца (IV)								
	оксид)								
	(327)								
0150	Натрий гидроксид (Натр едкий,				0.01		0.0066	0.00865	0.865
	Сода каустическая) (876*)								
0155	диНатрий карбонат (Сода		0.15	0.05		3	0.002192	0.069127	1.38254
	кальцинированная, Натрий								
	карбонат) (408)								
0203	хром /в пересчете на хром (VI)			0.0015		1	0.000473	0.003751	2.50066667
	оксид/ (Хром шестивалентный) (
	647)								
0256	(R*,S*)-4,4'-(1,2-Диэтил-162-				0.1		0.36	1.6848	16.848
	этандиил) бис (бензолсульфонат								
0258	Кальций октадеканоат (Кальция		0.5	0.15		3	0.00225	0.001649	0.01099333
	Азота (IV) диоксид (Азота		0.2			2	0.801466	2.974136	74.3534
	диоксид) (4)								
0303	Аммиак (32)		0.2	0.04		4	0.262556	4.045738	101.14345
	Азот (II) оксид (Азота оксид)		0.4			3	0.12843		7.97216667
	(6)								
0322	Серная кислота (517)		0.3	0.1		2	0.000892	0.012821	0.12821

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

1	2	3	4	5	6	7	8	9	10
0328	Углерод (Сажа, Углерод черный)		0.15	0.05		3	0.03771	0.03	0.6
0330	Сера диоксид (Ангидрид		0.5	0.05		3	0.8869	0.7056	14.112
	сернистый,								
0333	Сероводород (Дигидросульфид) (0.008			2	0.0069674	0.0912605	11.4075625
	518)								
0337	Углерод оксид (Окись углерода,		5	3		4	3.384102	11.7619	3.92063333
	Угарный газ) (584)								
0342	Фтористые газообразные		0.02	0.005		2	0.00004	0.0001	0.02
	соединения								
0373	Бор трихлорид (Бор хлорид)				0.03		0.016313	0.012229	0.40763333
	(163*)								
	Диметилбензол (смесь о-, м-, п-		0.2			3	0.056255		
	Метилбензол (349)		0.6			3	0.018068		0.13166667
0703	Бенз/а/пирен (3,4-Бензпирен)			0.000001		1	0.000000344	0.000005576	5.576
	(54)								
0869	Дихлорметан (Метиленхлорид,		8.8			4	0.06	0.2808	0.03190909
	Метилен хлористый) (250)								
1042	Бутан-1-ол (Бутиловый спирт) (0.1			3	0.0069	0.0518	0.518
	102)								
	Этанол (Этиловый спирт) (667)		5			4	0.45185		
1078	Этан-1,2-диол (Гликоль,				1		0.0000036	0.00003	0.00003
	Этиленгликоль) (1444*)								
	2-Метил-1,3-диоксолан (0.2	_	0.0000107		
1206	Бутилакрилат (Акриловой кислоты		0.0075			2	0.000556	0.00228	0.304
	бутиловый эфир) (109)					_			
1210	Бутилацетат (Уксусной кислоты		0.1			4	0.672222	2.7588	27.588
1010	бутиловый эфир) (110)		0 45				1.50.0		
	Этенилацетат (Винилацетат,		0.15			3	1.56e-8	0.000000115	
	Метилакрилат (Акриловой кислоты		0.01			4	0.000556		
1231	Метилформиат (Муравьиной кислоты		0.2			3	0.005278	0.068255	0.341275

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

1	2	3	4	5	6	7	8	9	10
	метиловый эфир, Метил-5,5-								
	диметил-2,4-диоксогексаноат) (
	391)								
1240	Этилацетат (674)		0.1			4	0.624781	0.4679	4.679
1288	Тетрабутоксититан /по бутанолу/				0.1		0.611112	2.508	25.08
	(
	Бутиловый эфир о-титановой								
	кислоты) (1186*)								
1301	Проп-2-ен-1-аль (Акролеин,		0.03	0.01		2	0.0022353	0.0091724	0.91724
	Акрилальдегид) (474)								
1317	Ацетальдегид (Этаналь, Уксусный		0.01			3	0.0000036	0.00003	0.003
	альдегид) (44)								
1325	Формальдегид (Метаналь) (609)		0.05	0.01		2	0.0078474	0.036584	3.6584
1411	Циклогексанон (654)		0.04			3	0.116667	0.4788	11.97
1555	Уксусная кислота (Этановая		0.2	0.06		3	0.000053	0.00084	0.014
	кислота) (586)								
2406	2,2-Дибензтиазолилдисульфид (0.08	0.03		3	0.004641	0.0034	0.11333333
	Альтакс) (176)								
2704	Бензин (нефтяной, малосернистый)		5	1.5		4	1.829481	0.6511	0.43406667
	/в пересчете на углерод/ (60)								
2726	Канифоль талловая (642*)				0.5		0.009286	0.006989	0.013978
2732	Керосин (654*)				1.2		0.0729	0.0546	0.0455
2743	Смола легкая высокоскоростного		0.2			2	0.041881	0.0313	0.1565
	пиролиза бурых углей /по								
	органическому углероду/ (528)								
2754	Алканы С12-19 /в пересчете на		1			4	0.0083322	0.0037267	0.0037267
	РПК-265П) (10)								
2902	Взвешенные частицы (116)		0.5	0.15		3	0.507434	1.862084	12.4138933
2908	Пыль неорганическая, содержащая		0.3	0.1		3	0.000003	0.00001	0.0001
	клинкер, зола, кремнезем, зола								
	углей казахстанских								

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

1	2	3	4	5	6	7	8	9	10
	месторождений) (494)								
2920	Пыль меховая (шерстяная,				0.03		0.000389	0.012264	0.4088
	пуховая)								
	(1050*)								
2930	Пыль абразивная (Корунд белый,				0.04		0.0016	0.0029	0.0725
	Монокорунд) (1027*)								
2978	Пыль тонко измельченного				0.1		0.269197	0.2016	2.016
	резинового вулканизата из								
	отходов								
	подошвенных резин (1090*)								
3721	Пыль мучная (491)		1	0.4		4	0.00230137	0.00076	0.0019
	всего:						11.3146225296	33.662410291	337.500421

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р.

или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

2.8 Обоснование полноты и достоверности исходных данных (г/сек, т/год), принятых для расчета НДВ

Перед разработкой проекта НДВ проведена инвентаризация источников выделения загрязняющих веществ в атмосферу. В результате изучения исходных данных определены источники выделения загрязняющих веществ в атмосферу и образования отходов, определены источники загрязнения атмосферы. Для определения величины выбросов использовались методики, действующие в Республике Казахстан.

Все исходные данные на разработку проекта нормативов допустимых выбросов (НДВ) загрязняющих веществ в атмосферу представлены руководством предприятия (см. Приложение).

2.8.1 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Райымбекский район, Kapьep BkR Construction

Код	и раион, карьер вкк const		альная приземная	Координ	аты точек	Источ	иники,	дающие	Принадлежность
вещества	Наименование	концентрация (общая	-	_	имальной			вклад в	источника
/	вещества	доля ПДК		приземн	ой конц.	макс	. конце	нтрацию	(производство,
группы								-	цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BI	клада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
		1. Существ	ующее положение (202	5 год.)					
		Загрязн	яющие веще	ства					
2908	Пыль неорганическая,		0.0964946/0.0289484		303/-330	6008		100	производство:
	содержащая двуокись								Основное
	кремния в %: 70-20 (
	шамот, цемент, пыль								
	цементного производства								
	- глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (494)								
		2.	Перспектива (НДВ)						
		Загрязн	яющие веще	ства	:				
2908	Пыль неорганическая,		0.0964946/0.0289484		303/-330	6008		100	производство:
	содержащая двуокись								Основное
	кремния в %: 70-20 (
	шамот, цемент, пыль								
	цементного производства								
	- глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (494)								

3. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ

3.1. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города

На момент разработки проекта «Нормативов допустимых выбросов» в 2025 году Промышленная площадка ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) расположена по адресу Алматинская область, Карасайский районе с. Кокозек.

Ближайшая жилая зона расположена в север –восточном направлении на расстоянии 105 м от крайнего источника №0001.

Рельеф местности вокруг производственной площадки равнинный, перепад высот менее 50 м на 1 км, поэтому безразмерный коэффициент, учитывающий рельеф местности равен 1.

Природные условия Алматинской области включают 5 климатических зон — от пустынь до вечных снегов. Климат резко континентальный, средняя температура января в равнинной части - 15 С, в предгорьях — 6-8 С; июля — +16 С и +24+25 С соответственно. Годовое количество осадков на равнинах — до 300 мм, в предгорьях и горах — от 500-700 до 1000 мм в год.

Алматинская область расположена между хребтами Северного Тянь-Шаня на юге, озеро Балхаш — на северо-западе и река Или — на северо-востоке; на востоке граничит с КНР.

Всю северную половину занимает слабонаклоненная к северу равнина южного Семиречья, или Прибалхашья (высота 300-500 м), пересечённая сухими руслами - баканасами, с массивами грядовых и сыпучих песков (Сары-Ишикотрау, Таукум). Южная часть занята хребтами высотой до 5000 м: Кетмень, Заилийский Алатау и северными отрогами Кунгей-Алатау. С севера хребты окаймлены предгорьями и неширокими предгорными равнинами. Вся южная часть - район высокой сейсмичности.

Для северной, равнинной части характерна резкая континентальность климата, относительно холодная зима (января -9°C, -10°C), жаркое лето (июль около 24°C). Осадков выпадает всего 110 мм в год. В предгорной полосе климат мягче, осадков до 500-600 мм. В горах ярко выражена вертикальная поясность; количество осадков достигает 700-1000 мм в год. Вегетационный период в предгорьях и на равнине 205-225 дней.

Север и северо-запад почти лишены поверхностного стока; единственная река здесь - Или, образующая сильно развитую заболоченную дельту и впадающая в западную часть озера Балхаш. В южной, предгорной части речная сеть сравнительно густа; большинство рек (Курты, Каскелен, Талгар, Иссык, Тургень, Чилик, Чарын и др.) берёт начало в горах и обычно не доходит до реки Или; реки теряются в песках или разбираются на орошение. В горах много мелких пресных озёр (Большое Алматинское и др.) и минеральных источников (Алма-Арасан и др.).

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосферу

Согласно данным Казгидромета «Роза ветров» по данным АМС Карасайский район 2024 г. метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосферу представлены в таблице.

Наименование	Величина
Коэффициент, зависящий от стратификации атмосферы, А	<u>200</u>
Коэффициент рельефа местности	<u>1</u>
Средняя максимальная температура наружного воздуха наиболее	24
жаркого месяца года, град.С	
Средняя температура наружного воздуха наиболее холодного месяца	-2,3
года, град.С	
Среднегодовая роза ветров	
<u>C</u>	11
<u>CB</u> <u>B</u>	8
<u>B</u>	8
<u>IOB</u>	<u>17</u>
<u>Ю</u>	8
<u>HO3</u> <u>3</u>	8
<u>3</u>	13
<u>C3</u>	<u>27</u>
Среднегодовая скорость ветра	<u>-</u>
Скорость ветра (по средним многолетним данным), повторяемость	<u>-</u>
превышения которой составляет 5%, U*, м/с	

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ

Дата формирования: 08.09.2025 14:25

ПК ЭРА v3.0. Модель: MPК-2014

Город: 004 Карасайский район

Объект: 0001 Almaty Tannery (Алматинский кожевенный завод)

Вар.расч.: 2 существующее положение (2026 год)

Код 3В	Наименование загрязняющих веществ и состав групп суммаций	PII	C33	ЖЗ	ФТ	Грани ца област и возд.	Территор ия предприя тия	Колич.И ЗА	ПДКм р (ОБУ В) мг/м3	Кла сс опас н.
010 1	Алюминий оксид (диАлюминий триоксид) (в пересчете на алюминий) (20)	0,020685	0,014188	0,004504	нет расч.	нет расч.	нет расч.	1	0.1*	2
012 3	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0,178102	0,509296	0,119466	нет расч.	нет расч.	нет расч.	4	0.4*	3
014	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0,099871	0,290763	0,063826	нет расч.	нет расч.	нет расч.	3	0,01	2
015 5	диНатрий карбонат (Сода кальцинированная, Натрий карбонат) (408)	0,045212	0,002107	0,002489	нет расч.	нет расч.	нет расч.	1	0,15	3
020 3	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0,023101	0,001077	0,001272	нет расч.	нет расч.	нет расч.	1	0.015*	1
030	Азота (IV) диоксид (Азота диоксид) (4)	0,923506	1,22455	0,772736	нет расч.	нет расч.	нет расч.	2	0,2	2
030	Аммиак (32)	0,045719	0,05022	0,038692	нет расч.	нет расч.	нет расч.	3	0,2	4
030	Азот (II) оксид (Азота оксид) (6)	0,065936	0,070144	0,056674	нет расч.	нет расч.	нет расч.	1	0,4	3
032	Серная кислота (517)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,3	2
033	Сероводород (Дигидросульфид) (518)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,008	2

033	Углерод оксид (Окись углерода, Угарный газ) (584)	0,132377	0,152754	0,112789	нет расч.	нет расч.	нет расч.	2	5	4
034	Фтористые газообразные соединения /в пересчете на фтор/ (617)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,02	2
061 6	Диметилбензол (смесь о-, м-, п- изомеров) (203)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,2	3
062 1	Метилбензол (349)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	2	0,6	3
070 3	Бенз/а/пирен (3,4-Бензпирен) (54)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0.0000 1*	1
104	Бутан-1-ол (Бутиловый спирт) (102)	0,058232	0,059722	0,05103	нет расч.	нет расч.	нет расч.	1	0,1	3
106 1	Этанол (Этиловый спирт) (667)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	2	5	4
107 8	Этан-1,2-диол (Гликоль, Этиленгликоль) (1444*)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	1	-
111 5	2-Метил-1,3-диоксолан (Ацетальдегида этилацеталь) (761*)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,2	-
120 6	Бутилакрилат (Акриловой кислоты бутиловый эфир) (109)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,0075	2
121	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,1	4
121	Этенилацетат (Винилацетат, Уксусной кислоты виниловый эфир) (670)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,15	3
122 5	Метилакрилат (Акриловой кислоты метиловый эфир, Метиловый эфир акриловой кислоты) (340)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,01	4
128 8	Тетрабутоксититан /по бутанолу/ (Бутиловый эфир о-титановой кислоты) (1186*)	0,302635	0,299501	0,210641	нет расч.	нет расч.	нет расч.	1	0,1	-
130	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	2	0,03	2
131 7	Ацетальдегид (Этаналь, Уксусный альдегид) (44)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,01	3
132 5	Формальдегид (Метаналь) (609)	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	нет расч.	1	0,05	2
141 1	Циклогексанон (654)	0,075664	0,074881	0,052664	нет расч.	нет расч.	нет расч.	1	0,04	3

155	Уксусная кислота (Этановая кислота) (586)	Cm<0.05	Cm<0.05	Cm<0.05	нет	нет	нет расч.	1	0,2	3
5					расч.	расч.				
273	Керосин (654*)	0,080914	0,103294	0,083874	нет	нет	нет расч.	1	1,2	-
2					расч.	расч.				
275	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,037478	0,034488	0,011536	нет	нет	нет расч.	1	1	4
4	предельные С12-С19 (в пересчете на С);				расч.	расч.				
	Растворитель РПК-265П) (10)									
290	Взвешенные частицы (116)	0,161024	0,14559	0,069421	нет	нет	нет расч.	3	0,5	3
2					расч.	расч.	_			
290	Пыль неорганическая, содержащая двуокись	Cm<0.05	Cm<0.05	Cm<0.05	нет	нет	нет расч.	1	0,3	3
8	кремния в %: 70-20 (шамот, цемент, пыль				расч.	расч.	_			
	цементного производства - глина, глинистый					_				
	сланец, доменный шлак, песок, клинкер, зола,									
	кремнезем, зола углей казахстанских									
	месторождений) (494)									
292	Пыль меховая (шерстяная, пуховая) (1050*)	0,036087	0,064665	0,028232	нет	нет	нет расч.	1	0,03	1
0					расч.	расч.				
293	Пыль абразивная (Корунд белый, Монокорунд)	0,127577	0,238546	0,073381	нет	нет	нет расч.	1	0,04	-
0	(1027*)				расч.	расч.				
372	Пыль мучная (491)	Cm<0.05	Cm<0.05	Cm<0.05	нет	нет	нет расч.	1	1	4
1					расч.	расч.				
600	0303 + 0333	0,05415	0,059319	0,041958	нет	нет	нет расч.	4		
1					расч.	расч.				
600	0303 + 0333 + 1325	0,055004	0,059979	0,0432	нет	нет	нет расч.	5		
2					расч.	расч.				
600	0303 + 1325	0,046821	0,050861	0,039909	нет	нет	нет расч.	4		
3					расч.	расч.				
601	1213 + 1317	Cm<0.05	Cm<0.05	Cm<0.05	нет	нет	нет расч.	2		
1					расч.	расч.				
603	0333 + 1325	0,025238	0,023226	0,022018	нет	нет	нет расч.	2		
7					расч.	расч.				
635	1206 + 1225	0,088338	0,087424	0,061486	нет	нет	нет расч.	1		
8					расч.	расч.				
П	2902 + 2908 + 2920 + 2930 + 3721	0,16188	0,145624	0,070898	нет	нет	нет расч.	6		
Л					расч.	расч.				

Примечания:

- **1.** Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- **2.** "Звездочка" (*) в графе "ПДКмр(ОБУВ)" означает, что соответствующее значение взято как 10ПДКсс.
- **3.** Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "С33" (по санитарно-защитной зоне), "Ж3" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек), на границе области воздействия и зоне "Территория предприятия" приведены в долях ПДКмр.

3.2.2 Ситуационные карты-схемы с нанесенными на них изолиниями расчетных концентраций

Представлены в Приложении.

3.3 Предложения по нормативам допустимых выбросов по каждому источнику и ингредиенту

Расчетами концентраций установлено: концентрации всех загрязняющих веществ и всех групп суммаций, создаваемые предприятием в атмосферном воздухе на границе СЗЗ предприятия без учета фоновых концентраций, не превышают Π ДК.

На основании выполненных расчетов рассеивания, для всех выбросов предприятия предлагается установить нормативы ПДВ.

Нормативы ПДВ по веществам показано в таблице 3.3.1.

3.3.1. Нормативы выбросов загрязняющих веществ в атмосферу по предприятию

Карасайский район, Alma	ty Ta	nnery (Алматин	скии кожевенны	и завод)				
	Ho-		Нор	мативы выбросо	в загрязняющих	веществ		
	мер							
Производство	NC-							год
цех, участок	точ-	на 202	26 год	на 202	7 год	ндв (20	28-2035)	дос-
	ника							тиже
Код и наименование	выб-	r/c	т/год	r/c	т/год	r/c	т/год	пия
загрязняющего вещества	poca							НДВ
1	2	3	4	5	6	7	8	9
		Орга	низован	ные ист	очники			
(0138) Магний оксид (32	25)							
Основное	0022	0.002578	0.0019	0.002578	0.0019	0.002578	0.0019	2026
	0024	0.002063	0.0015	0.002063	0.0015	0.002063	0.0015	2026
(0150) Натрий гидроксид	ц (Нат	р едкий, Сода	каустическая)	(876*)	<u>.</u>			
Основное	0019	0.0066	0.00865	0.0066	0.00865			
(0256) $(R*,S*)-4,4'-(1,$	2-Диэ	тил-162-этанди	ил) бис (бензолс	ульфонат дикал	ия) (Сигетин, (560*)		
Основное	0025	0.36	1.6848	0.36	1.6848			
(0258) Кальций октадека	аноат	(Кальция стеар	оат, Октадеканс	ат кальция) (3	07)			
Основное	0022	0.00125	0.0009	0.00125	0.0009	0.00125	0.0009	2026
	0024	0.001	0.000749	0.001	0.000749	0.001	0.000749	2026
(0301) Азота (IV) диоко	сид (А	зота диоксид)	(4)					
Основное	0001	0.790636	2.943736	0.790636	2.943736	0.790636	2.943736	2026
(0303) Аммиак (32)								
Основное	0021	0.005889	0.024168	0.005889	0.024168	0.005889	0.024168	2026
(0304) Азот (II) оксид	TOEA)	а оксид) (6)						
Основное	0001	0.12843	0.47833	0.12843	0.47833	0.12843	0.47833	2026
(0328) Углерод (Сажа, 3	/глеро	д черный) (583	3)		<u>.</u>			
Основное	0001	0.03771	0.03	0.03771	0.03	0.03771	0.03	2026

	ao _j ran	11019 (1101111011)	аскии кожевенны	л эавод,				
1	2	3	4	5	6	7	8	9
(0330) Сера диоксид (А			Сернистый газ,				_	
Основное	0001	0.8869	0.7056	0.8869	0.7056	0.8869	0.7056	2026
(0333) Сероводород (Ди	гидросу	ильфид) (518)					_	
Основное	0003	0.0000234	0.0000105	0.0000234	0.0000105	0.0000234	0.0000105	2026
(0337) Углерод оксид	Окись у	углерода , Угај	рный газ) (584)					
Основное	0001	3.370352	11.7233	3.370352	11.7233	3.370352	11.7233	2026
(0373) Бор трихлорид	(Бор хлс	рид) (163*)						
Основное	0022	0.009063	0.0068	0.009063	0.0068	0.009063	0.0068	
	0024	0.00725	0.005429	0.00725	0.005429	0.00725	0.005429	2026
(0616) Диметилбензол	(смесь с	о-, м-, п- из	омеров) (203)					
Основное	0021	0.055555				0.055555	0.228	
	0025	0.0007	0.0052	0.0007	0.0052	0.0007	0.0052	2026
(0621) Метилбензол (34	19)							
Основное	0021	0.016668	0.0684	0.016668	0.0684	0.016668	0.0684	2026
	0025	0.0014	0.0106	0.0014	0.0106	0.0014	0.0106	2026
(0703) Бенз/а/пирен (3	3 , 4-Бенз	впирен) (54)					_	
Основное	0001	0.00000344	0.000005576	0.000000344	0.000005576	0.000000344	0.000005576	2026
(0869) Дихлорметан (Ме		порид, Метиле	н хлористый) (2	50)				
Основное	0025	0.06	0.2808	0.06	0.2808			
(1042) Бутан-1-ол (Бут	иловый	спирт) (102)					_	
Основное	0025	0.0069	0.0518	0.0069	0.0518	0.0069	0.0518	2026
(1061) Этанол (Этиловь	ій спирт	r) (667)						
Основное	0019	0.000506	0.00798	0.000506	0.00798	0.000506	0.00798	
	0021	0.444444		0.444444	1.824	0.444444	1.824	
	0025	0.0069	0.0518	0.0069	0.0518	0.0069	0.0518	2026
(1078) Этан-1,2-диол	(Гликоль	, Этиленглик						
Основное	0025	0.0000036	0.00003	0.0000036	0.00003	0.0000036	0.00003	2026

Rapacanckin panon, Aliie	icy rai	micry (Isimarini	CRIM ROMEBEILIBI	л завод)				
1	2	3	4	5	6	7	8	9
(1115) 2-Метил-1,3-диог	ксолан	(Ацетальдегид	а этилацеталь)	(761*)				
Основное	0019	0.0000107	0.000168	0.0000107	0.000168	0.0000107	0.000168	2026
(1206) Бутилакрилат (Ан	крилов	ой кислоты бут	иловый эфир) (109)	<u>.</u>			
Основное	0021	0.000556	0.00228	0.000556	0.00228	0.000556	0.00228	2026
(1210) Бутилацетат (Уко	сусной	кислоты бутил	овый эфир) (11	0)	<u>.</u>			
Основное	0021	0.672222	2.7588	0.672222	2.7588	0.672222	2.7588	2026
(1213) Этенилацетат (Ви	инилац	етат, Уксусной	кислоты винил	овый эфир) (670	0)	•		
Основное	0023	0.0000000156	0.00000115	0.000000156	0.000000115	0.0000000156	0.000000115	2026
(1225) Метилакрилат (Ан	крилов	ой кислоты мет	иловый эфир, М	етиловый эфир а	акриловой (340)			
Основное	0021	0.000556	0.00228	0.000556	0.00228	0.000556	0.00228	2026
(1240) Этилацетат (674))			<u>.</u>	<u>.</u>			
Основное	0022	0.300781	0.2252	0.300781	0.2252	0.300781	0.2252	2026
	0023	0.0834	0.0625	0.0834	0.0625	0.0834	0.0625	2026
	0024	0.2406	0.1802	0.2406	0.1802	0.2406	0.1802	2026
(1288) Тетрабутокситита	ан /по	бутанолу/ (Бу	тиловый эфир о	-титановой кис	поты) (1186*)			
Основное	0021	0.611112	2.508	0.611112	2.508	0.611112	2.508	2026
(1301) Проп-2-ен-1-аль	(Акро	леин, Акрилаль	дегид) (474)					
Основное	0019	0.0000133	0.0000524	0.0000133	0.0000524	0.0000133	0.0000524	2026
	0021	0.002222	0.00912	0.002222	0.00912	0.002222	0.00912	2026
(1317) Ацетальдегид (Эт	ганаль	, Уксусный аль	дегид) (44)					
Основное	0025	0.0000036	0.00003	0.0000036	0.00003	0.0000036	0.00003	2026
(1325) Формальдегид (Ме	етанал	ь) (609)						
Основное	0021	0.006555	0.026904	0.006555	0.026904	0.006555	0.026904	2026
	0025	0.0012924	0.00968	0.0012924	0.00968	0.0012924	0.00968	2026
(1411) Циклогексанон (654)							. 7
Основное	0021	0.116667	0.4788	0.116667	0.4788	0.116667	0.4788	2026

карасаискии раион, атша	cy ia	ппету (жиматин	ский кожевенны	и завод)				
1	2	3	4	5	6	7	8	9
(1555) Уксусная кислота			(586)					
Основное	0019	0.000053	0.00084	0.000053	0.00084	0.000053	0.00084	2026
(2406) 2,2-Дибензтиазол	илдис	ульфид (Альтак	c) (176)					
Основное	0022	0.002578	0.0019	0.002578	0.0019	0.002578	0.0019	2026
	0024	0.002063	0.0015	0.002063	0.0015	0.002063	0.0015	2026
(2704) Бензин (нефтяной	, мал	осернистый) /в	пересчете на	углерод/ (60)				
Основное	0022	0.300781	0.2252	0.300781	0.2252	0.300781	0.2252	
	0023	0.8725	0.2457	0.8725	0.2457	0.8725	0.2457	I
	0024	0.6562	0.1802	0.6562	0.1802	0.6562	0.1802	2026
(2726) Канифоль таллова	я (64	2*)						
Основное	0022	0.005156	0.0039	0.005156		0.005156	0.0039	
	0024	0.00413	0.003089	0.00413	0.003089	0.00413	0.003089	2026
(2732) Керосин (654*)								
Основное	0023	0.0729	0.0546	0.0729	0.0546	0.0729	0.0546	2026
(2743) Смола легкая выс	окоск	оростного пирс	лиза бурых угл	ей /по органич	ескому (528)			
Основное	0022	0.023281	0.0174	0.023281	0.0174	0.023281	0.0174	
	0024	0.0186	0.0139	0.0186	0.0139	0.0186	0.0139	2026
(2754) Алканы С12-19 /в	пере	счете на С/ (У	тлеводороды пр	едельные С12-С	19 (в пересчет	e(10)		
Основное	0003	0.0083322	0.0037267	0.0083322	0.0037267	0.0083322	0.0037267	2026
(2902) Взвешенные части	цы (1	16)						
Основное	0021	0.064777		0.064777	0.265848	0.064777	0.265848	2026
	0022	0.1237	0.07147	0.1237	0.07147	0.1237	0.07147	2026
	0023	0.09693	0.7258	0.09693	0.7258	0.09693	0.7258	
	0024	0.0969	0.7258	0.0969	0.7258	0.0969	0.7258	2026
(2978) Пыль тонко измел								
Основное	0022	0.129297	0.0968	0.129297	0.0968	0.129297	0.0968	
	0023	0.0365	0.0273	0.0365	0.0273	0.0365	0.0273	
	0024	0.1034	0.0775	0.1034	0.0775	0.1034	0.0775	2026

Карасаискии раион, Аlma	ty Tai	nnery (Алматинс	скии кожевенны	и завод)				
1	2	3	4	5	6	7	8	9
(3721) Пыль мучная (491	.)				_			
Основное	0019	0.00230137	0.00076	0.00230137			0.00076	2026
Итого по организованным	1	10.8591919296	29.151736291	10.8591919296	29.151736291	10.4325919296	27.177486291	
источникам:								
твердые:		1.084005714	3.730350576	1.084005714	3.730350576	0.724005714	2.045550576	
Газообразные, ж и д к и	r e:	9.7751862156	25.421385715	9.7751862156	25.421385715	9.7085862156	25.131935715	
		Неорг	анизова	нные ис	точники			
(0101) Алюминий оксид (диАлю	миний триоксид) (в пересчете	на алюминий)	(20)			
Основное	6015	0.000203	0.00076	0.000203	0.00076	0.000203	0.00076	2026
(0123) Железо (II, III)	окси	ды (в пересчет	е на железо) (диЖелезо триок	сид, Железа(27	4)		
Основное	6012	0.0004	0.0005	0.0004	0.0005	0.0004	0.0005	2026
	6013	0.0005	0.0019	0.0005	0.0019	0.0005	0.0019	
	6014	0.02025	0.0569	0.02025	0.0569	0.02025	0.0569	
	6015	0.000024	0.00009		0.00009	0.000024	0.00009	
	6016	0.00936	0.025	0.00936	0.025	0.00936	0.025	2026
(0143) Марганец и его с			ете на марганц			i		
Основное	6012	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	
	6013	0.0001	0.0003	0.0001	0.0003	0.0001	0.0003	
	6014	0.0003056	0.0009	0.0003056	0.0009	0.0003056	0.0009	
	6015	0.000003	0.00001	0.000003	0.00001	0.000003	0.00001	2026
(0155) диНатрий карбона			_	_		1		
Основное	6011	0.002192	0.069127			0.002192	0.069127	2026
(0203) Хром /в пересчет		-	_	валентный) (64		•		
Основное	6004	0.000361	0.000219		0.000219		0.000219	
	6011	0.000112	0.003532	0.000112	0.003532	0.000112	0.003532	2026
(0301) Азота (IV) диоко			(4)	1		I		
Основное	6014	0.01083	0.0304	0.01083	0.0304	0.01083	0.0304	2026

		скии кожевенны	1 17				
2	3	4	5	6	7	8	9
						·	
6004	0.24	3.75877	0.24	3.75877	0.24	3.75877	2026
6006	0.011111	0.1752	0.011111	0.1752	0.011111	0.1752	2026
6008	0.005556	0.0876	0.005556	0.0876	0.005556	0.0876	2026
(517)							
6004	0.000556	0.0073	0.000556	0.0073	0.000556	0.0073	2026
6010	0.000336	0.005521	0.000336	0.005521	0.000336	0.005521	2026
гидрос	ульфид) (518)						
6004	0.006944	0.09125	0.006944	0.09125	0.006944	0.09125	2026
Экись !	углерода, Угар:	ный газ) (584)					
6014	0.01375	0.0386	0.01375	0.0386	0.01375	0.0386	2026
	е соединения /:	в пересчете на	фтор/ (617)				
6012	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	2026
6013	0.00002	0.00008	0.00002	0.00008	0.00002	0.00008	2026
уравьин	ной кислоты ме	тиловый эфир,	Метил-5 , 5-диме	тил-2,4(391)			
6004	0.005278	0.068255	0.005278	0.068255			
ицы (1.	16)						
6005	0.000859	0.0271	0.000859	0.0271	0.000859	0.0271	2026
6007	0.000068	0.002166	0.000068	0.002166	0.000068	0.002166	2026
6016	0.1242	0.0439	0.1242	0.0439	0.1242	0.0439	2026
ская, (содержащая дву	окись кремния	в %: 70-20 (ша:	мот, цемент,(4	94)		
6015	0.000003	0.00001	0.000003	0.00001	0.000003	0.00001	2026
ерстяна	ая, пуховая) (1050*)					
6009	0.000389	0.012264	0.000389	0.012264	0.000389	0.012264	2026
(Корун	нд белый, Моно	корунд) (1027*)				
6016	0.0016	0.0029	0.0016	0.0029	0.0016	0.0029	2026
ным	0.4554306	4.510674	0.4554306	4.510674	0.4501526	4.442419	
	6004 6008 (517) 6004 6010 гидросу 6004 5разные 6012 6013 уравьии 6004 6005 6007 6016 ская, (6015 ерстяна 6009 (Коруг 6016	6004 0.24 6006 0.011111 6008 0.005556 (517) 6004 0.000556 6010 0.000336 гидросульфид) (518) 6004 0.006944 Окись углерода, Угар 6014 0.01375 бразные соединения / 6012 0.00002 6013 0.00002 уравьиной кислоты ме 6004 0.005278 ицы (116) 6005 0.000859 6007 0.00068 6016 0.1242 Ская, содержащая дву 6015 0.00003 ерстяная, пуховая) (6009 0.000389 (Корунд белый, Монос 6016 0.0016	6004 0.24 3.75877 6006 0.011111 0.1752 6008 0.005556 0.0876 (517) 6004 0.000556 0.0073 6010 0.000336 0.005521 гидросульфид) (518) 6004 0.006944 0.09125 Окись углерода, Угарный газ) (584) 6014 0.01375 0.0386 Оразные соединения /в пересчете на 6012 0.00002 0.00002 6013 0.00002 0.00002 уравьиной кислоты метиловый эфир, 6004 0.005278 0.068255 ицы (116) 6005 0.000859 0.0271 6007 0.000068 0.002166 6016 0.1242 0.0439 Ская, содержащая двуокись кремния 6015 0.00003 0.00001 врстяная, пуховая) (1050*) 6009 0.000389 0.012264 (Корунд белый, Монокорунд) (1027* 6016 0.0016 0.0029	6004	6004	6004 0.24 3.75877 0.24 3.75877 0.24 6006 0.011111 0.1752 0.011111 0.1752 0.011111 6008 0.005556 0.0876 0.005556 0.0876 0.005556 (517) 6004 0.000556 0.0073 0.000556 0.0073 0.000556 6010 0.000336 0.005521 0.000336 0.005521 0.000336 гидросульфид) (518) 6004 0.006944 0.09125 0.006944 0.09125 0.006944 Ожись углерода, Угарный газ) (584) 6014 0.01375 0.0386 0.01375 0.0386 0.01375 Бразные соединения / в пересчете на фтор/ (617) 6012 0.00002 0.00002 0.00002 0.00002 0.00002 6013 0.00002 0.00008 0.00002 0.00008 0.00002 гидросульфий кислоты метиловый эфир, Метил-5,5-диметил-2,4 (391) 6004 0.005278 0.068255 0.005278 0.068255 ищы (116) 6005 0.000859 0.0271 0.000859 0.0271 0.000859 6007 0.000068 0.002166 0.00068 0.002166 0.00068 6016 0.1242 0.0439 0.1242 0.0439 0.1242 Ская, содержащая двуокись кремния в %: 70-20 (шамот, цемент, (494) 6015 0.00003 0.00001 0.000003 0.00001 0.000003 врстяная, пуховая) (1050*) 6009 0.000389 0.012264 0.000389 0.012264 0.000389 (Корунд белый, Монокорунд) (1027*) 6016 0.0016 0.0029 0.0016 0.0029 0.0016	6004 0.24 3.75877 0.24 3.75877 0.24 3.75877 0.24 3.75877 6006 0.011111 0.1752 0.011111 0.1752 0.011111 0.1752 0.0876 0.00556 0.0876 0.00556 0.0876 0.00556 0.0876 0.00556 0.0876 0.00556 0.0876 0.00556 0.0876 0.00556 0.0876 0.0073 0.00556 0.0876 0.0073 0.000556 0.0073 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.000336 0.005521 0.00034 0.000520 0.00052 0.00064 0.001375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.01375 0.0386 0.00002 0.00003 0.00002 0.00008 0.00000 0.00008 0.00001 0.00003 0.0000

1 2	3	4	5	6	7	8	9				
источникам:											
твердые:	0.1610296	0.247678	0.1610296	0.247678	0.1610296	0.247678					
Газообразные, жидкие:	0.294401	4.262996	0.294401	4.262996	0.289123	4.194741					
Всего по объекту:	11.3146225296	33.662410291	11.3146225296	33.662410291	10.8827445296	31.619905291					
твердые:	1.245035314	3.978028576	1.245035314	3.978028576	0.885035314	2.293228576					
Газообразные, жидкие:	10.0695872156	29.684381715	10.0695872156	29.684381715	9.9977092156	29.326676715					

3.4. Обоснование возможности достижения нормативов ПДВ

Эколого-экономическая эффективность проекта — показатель, характеризующий соотношение общих экономических выгод и потерь от проекта, включая внешние экологические эффекты и связанные с ними социальные и экономические последствия, затрагивающие интересы населения и будущих поколений в результате реализации данного проекта.

3.5. Уточнение области воздействия объекта

Согласно Приложения 2, Раздела 2, п 7, пп. 7.3 (производство кожи и изделий из кожи с использованием оборудования для дубления, крашения, выделки шкур и кож (с проектной мощностью обработки не более 12 тонн годовой продукции в сутки)) ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) относится ко II категории — производительность предприятия 11 тонн в сутки готовой продукции.

Вид деятельности TOO «ALMATY TANNERY+» (Алматинский кожевенный завод+) входит в Приложение 1 Раздел 2, в связи с этим требуется Заключение по скринингу Homep: KZ54VWF00420166 10.09.2025

Вид деятельности ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) входит в Приложение 1 Раздел 2 пункт 10.7 (предприятия по дублению шкур) под скрининг попадает

Согласно Статье 418. Переходные положения

Пункт 2. Положительные заключения государственной экологической экспертизы или комплексной вневедомственной экспертизы, выданные до 1 июля 2021 года, сохраняют свою силу в течение срока их действия. В проектов намечаемой деятельности, по которым отношении действующие положительные заключения государственной экологической экспертизы или комплексной вневедомственной экспертизы, выданные до 1 июля 2021 года, проведение оценки воздействия на окружающую среду или воздействий намечаемой деятельности R соответствии скрининга положениями настоящего Кодекса не требуется.

3.6. Данные о пределах области воздействия

Согласно Приложения 1, Раздела 7, п.30, пп.1 (производства по обработке сырых меховых шкур животных и крашению (овчино-шубные, овчино —дубильные, меховые) производство замши, сафьяна, лайки). Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов являющихся объектами воздействия на среду обитания и здоровья человека» нормативная СЗЗ для ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) составляет 300 м.

ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) на сегодняшний день проводят работы по разработке проекта СЗЗ для уменьшения СЗЗ и получения санитарно-эпидемиологического заключения в уполномоченном гос. органе. Согласно санитарных правил для подтверждения расчетных параметров необходимо проведение натурных исследований и измерений в

течении одного года. Вместе с тем, в связи с необходимостью введения в эксплуатацию объекта ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) в данный момент в течении года будут проводится работы по налаживанию оборудовании и пробного запуска производственного процесса. Проект СЗЗ находится в разработке для получения санитарно- эпидемиологического заключения уполномоченного органа в течении года.

3.7. Учет специальных требований к качеству атмосферного воздуха для данного района

В связи с тем, что в районе размещения рассматриваемого объекта и на прилегающей территории не расположены зоны заповедников, музеев, памятников архитектуры документы, свидетельствующие об учете специальных требований к качеству атмосферного воздуха, не приводятся.

4. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ

При неблагоприятных метеорологических условиях (НМУ), то есть в периоды сильной инверсии температуры, штиля, тумана, предприятие обязано осуществлять временные мероприятия по снижению выбросов в атмосферу. Мероприятия выполняются после получения предупреждения от подразделений Казгидромета, в которых указываются: ожидаемая продолжительность НМУ, кратность увеличения приземных концентраций по отношению к фактическим.

Регулирование выбросов загрязняющих веществ при НМУ осуществляется согласно, регламентирующего порядок разработки мероприятий при НМУ и их осуществление.

4.1. План мероприятий по снижению выбросов загрязняющих веществ в атмосферу с целью достижения ПДВ

На основании полученных данных инвентаризации промышленная площадка ТОО «ALMATY TANNERY+» (Алматинский кожевенный завод+) источники загрязнения при эксплуатации объекта по воздействию на загрязнения атмосферного воздуха, относятся к предприятиям II категории, согласно таблице 5.1.

4.2. Обобщённые данные о выбросах загрязняющих веществ в атмосферу в период НМУ

В периоды неблагоприятных метеорологических условий (НМУ) предприятие обязано осуществлять временные мероприятия по дополнительному снижению выбросов вредных веществ в атмосферу. Мероприятия осуществляются после заблаговременного получения предупреждения от органов гидрометеослужбы, в котором указываются продолжительность НМУ, ожидаемое увеличение приземных концентраций вредных веществ.

4.3. Краткая характеристика каждого конкретного мероприятия с учетом реальных условий эксплуатации технологического оборудования

Настоящие мероприятия разработаны для предприятия при трех режимах работы. При **первом режиме** работ мероприятия должны обеспечить уменьшение концентраций веществ в приземном слое атмосферы примерно на 15-20%.

Эти мероприятия носят организационно-технический характер:

- ужесточение контроля за точным соблюдением технологического регламента производства;
 - прекращение работы оборудования в форсированном режиме;
- обеспечение бесперебойной работы всех действующих пылегазоочистных установок;
- запрещение продувки и очистки оборудования, вентиляционных систем и емкостей:
 - влажная уборка производственных помещений;

- прекращение испытаний оборудования, приводящих к увеличению выбросов вредных веществ.

При **втором режиме** работ предприятия мероприятия должны обеспечить сокращение концентрации загрязняющих веществ в приземном слое атмосферы примерно на 20-40%. Эти мероприятия включают в себя мероприятия первого режима, а также мероприятия на технологические процессы, сопровождающиеся незначительным снижением производительности предприятия. Мероприятия общего характера:

- снизить производительность отдельных агрегатов и технологических линий, работа которых связана со значительным выделением в атмосферу вредных веществ;
- в случае, если сроки начала планово-предупредительных работ по ремонту оборудования и наступления НМУ достаточно близки, следует произвести остановку оборудования.

При **третьем режиме** работы предприятия мероприятия должны обеспечить сокращение концентраций загрязняющих веществ в приземном слое атмосферы примерно на 40-60 % и в некоторых особо опасных условиях предприятию следует полностью прекратить выбросы.

Мероприятия третьего режим полностью включают в себя условия первого и второго режимов, а также мероприятия, осуществление которых позволяет снизить выбросы загрязняющих веществ за счёт временного сокращения производительности предприятия, Мероприятия общего характера:

- снизить нагрузку или остановить производства, сопровождающиеся значительным выделением загрязняющих веществ;
- снизить нагрузку или остановить производства, не имеющие газоочистных сооружений.

4.4. Обоснование возможного диапазона регулирования выбросов по каждому мероприятию

Регулирование выбросов загрязняющих веществ при НМУ осуществляется согласно, регламентирующего порядок разработки мероприятий при НМУ и их осуществление.

5. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ

После установления нормативов ДВ для источников вредных выбросов в атмосферу необходимо организовать систему контроля над соблюдением НДВ.

Контроль за соблюдением установленных величин НДВ должен осуществляться в соответствии с «Руководством по контролю источников загрязнения атмосферы» РНД 211.3.01.06-97 (ОНД-90).

В основу системы контроля должно быть положено определение величины приземных концентраций в приземном слое и сопоставление их с нормативами ПДВ.

Если по результатам анализа концентрации вредных веществ на контролируемых источниках равны или меньше эталона, можно считать, что режим выбросов на предприятии отвечает нормативу.

Превышение фактической концентрации вредного вещества над эталонной в каком-либо контролируемом источнике свидетельствует о нарушении нормативного режима выбросов. В этом случае должны быть выявлены и устранены причины, вызывающие нарушения.

Все контролируемые источники делятся на две категории.

Источники первой категории, вносящие наиболее существенный вклад в загрязнение воздуха, должны контролироваться 1 раз в квартал. Все остальные источники относятся ко второй категории и подлежат контролю 1 раз в год.

Контроль величин выбросов и качества атмосферного воздуха осуществляется сторонней организацией.

Ответственность за организацию контроля за соблюдением нормативов ПДВ и своевременную отчетность возлагается на руководителя предприятия.

На существующее положение был произведен анализ расчетов рассеивания максимальных приземных концентраций для источников выбросов загрязняющих веществ на промышленной площадке.

Расчет концентраций вредных веществ в приземном слое атмосферы.

Согласно ОНД-86, для ускорения и упрощения расчетов приземных концентраций на предприятии, рассматриваются те из выбрасываемых вредных веществ, для которых:

____> φ

ПДК

M

 $\phi = 0.01 \text{ H}$ при H> 10 м,

 $\phi = 0,1$, при H <10 м,

M – суммарное значение выброса от всех источников предприятия, включая вентиляционные источники и неорганизованные, г/сек.

 $\Pi \coprod K$ — максимально-разовая предельно-допустимая концентрация, мг/м³.

H – средневзвешенная по предприятию высота источников выброса, следует, что загрязняющие вещества не оказывают заметного воздействия на окружающую среду

Расчёт концентраций вредных веществ, в приземном слое атмосферы проведен по программе «ЭРА» (версия 3.0.405). Метеорологические данные представлены в таблице 3.1.

Размер расчётного прямоугольника выбран 2960*2120 Для анализа рассеивания вредных веществ, в зоне влияния предприятия и на его территории, выбран шаг 212 м.

Расчет рассеивания загрязняющих веществ от источников выбросов загрязняющих веществ от площадки рассчитан на максимум как наиболее не благоприятный вариант.

Расчет рассеивания загрязняющих веществ от источников выбросов загрязняющих веществ от площадки рассчитан на максимум как наиболее не благоприятный вариант.

В таблице 5.1 приведен расчет категории источников, подлежащих контролю.

Контроль на источниках выбросов необходимо осуществлять в соответствии с планом-графиком, представленным в таблице 5.2.

5.1 Расчет категории источников, подлежащих контролю

	Карасайский район, Almaty Tannery (Алматинский кожевенный завод)										
Номе	Наименование	Высота	КПД	Код	ПДКм.р	Macca		Максимальная	См*100	Катего-	
исто	источника	источ-	очистн.	веще-	(ОБУВ,	выброса (М)		приземная		рия	
чник	выброса	ника,	сооруж.	ства	10*ПДКс.с.)	с учетом		концентрация	ПДК* (100-	источ-	
		M	양		мг/м3	очистки, г/с	-КПД)	(См) мг/м3	КПД)	ника	
1	2	3	4	5	6	7	8	9	10	11	
					Площадка	1					
0001	труба	12		0301	0.2	0.790636		0.4317	2.1585		
				0304	0.4	0.12843	0.0268	0.0701	0.1753		
				0328	0.15	0.03771	0.021	0.0618	0.412	2	
				0330	0.5	0.8869		0.4842	0.9684		
				0337	5	3.370352		1.8402	0.368	2	
				0703	**0.000001	0.00000344	0.0029		0.1	2	
0003	дыхательный клапан	3		0333	0.008	0.0000234		0.0003	0.0375		
				2754	1	0.0083322		0.1155	0.1155		
0019	вентилятор	6		0150	*0.01	0.0066		0.0182	1.82	1	
				1061	5	0.000506		0.0014	0.0003		
				1115	*0.2	0.0000107		0.00003	0.0002	2	
				1301	0.03	0.0000133		0.00004	0.0013		
				1555	0.2	0.000053		0.0001	0.0005		
				3721	1	0.00230137		0.019	0.019		
0021	аэрационный фонарь	12		0303	0.2	0.005889		0.0032	0.016		
				0616	0.2	0.055555		0.0303	0.1515		
				0621	0.6	0.016668		0.0091	0.0152	2	
				1061	5	0.44444		0.2427	0.0485		
				1206	0.0075	0.000556		0.0003	0.04		
				1210	0.1	0.672222	0.5602	0.367	3.67	1	
				1225	0.01	0.000556			0.03		
				1288	*0.1	0.611112	0.5093	0.3337	3.337	1	
				1301	0.03	0.002222	0.0062	0.0012	0.04		
				1325	0.05	0.006555			0.072	2	
				1411	0.04	0.116667		0.0637	1.5925		
				2902	0.5	0.064777		0.1061	0.2122	2	
0022	труба	4.5		0138	0.4	0.002578	0.0006		0.086		
				0258	0.5	0.00125		0.0167	0.0334		
				0373	*0.03	0.009063	0.0302	0.121	4.0333		
				1240	0.1	0.300781	0.3008	1.3383	13.383	1	

Расчет категории источников, подлежащих контролю на существующее положение Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

1	2	3	4	5	6	7	8	9	10	11
				2406	0.08	0.002578	0.0032	0.0115	0.1438	2
				2704	5	0.300781	0.006	1.3383	0.2677	2
				2726	*0.5	0.005156	0.001	0.0688	0.1376	2
				2743	0.2	0.023281	0.0116	0.1036	0.518	1
				2902	0.5	0.1237	0.0247	1.6511	3.3022	1
				2978	*0.1	0.129297	0.1293	1.7258	17.258	1
0023	труба	4.5		1213	0.15	1.56e-8	0.00000001	0.000001	0.000001	2
				1240	0.1	0.0834	0.0834	0.2672	2.672	1
				2704	5	0.8725	0.0175	2.7949	0.559	1
				2732	*1.2	0.0729	0.0061	0.2335	0.1946	2
				2902	0.5	0.09693	0.0194	0.9315	1.863	1
				2978	*0.1	0.0365	0.0365	0.3508	3.508	1
0024	труба	15		0138	0.4	0.002063	0.0003	0.002	0.005	2
				0258	0.5	0.001	0.0001	0.001	0.002	2
				0373	*0.03	0.00725	0.0161	0.0071	0.2367	2
				1240	0.1	0.2406	0.1604	0.078	0.78	1
				2406	0.08	0.002063	0.0017	0.0007	0.0088	2
				2704	5	0.6562	0.0087	0.2129	0.0426	2
				2726	*0.5	0.00413	0.0006	0.004	0.008	2
				2743	0.2	0.0186	0.0062	0.006	0.03	2
				2902	0.5	0.0969	0.0129	0.0943	0.1886	2
				2978	*0.1	0.1034	0.0689	0.1006	1.006	1
0025	труба	3		0256	*0.1	0.36	0.36	0.936	9.36	1
				0616	0.2	0.0007	0.0004	0.0006	0.003	2
				0621	0.6	0.0014	0.0002	0.0012	0.002	2
				0869	8.8	0.06	0.0007	0.052	0.0059	2
				1042	0.1	0.0069	0.0069	0.006	0.06	2
				1061	5	0.0069	0.0001	0.006	0.0012	2
				1078	*1	0.0000036	0.0000004	0.000003	0.000003	2
				1317	0.01	0.0000036	0.00004	0.000003	0.0003	2
				1325	0.05	0.0012924	0.0026	0.0011	0.022	2
6004	аэрационный фонарь	12		0203	**0.0015	0.000361	0.002	0.0006	0.04	2
				0303	0.2	0.24	0.1	0.131	0.655	1
				0322	0.3	0.000556	0.0002	0.0003	0.001	2
				0333	0.008	0.006944	0.0723	0.0038	0.475	2
				1231	0.2	0.005278	0.0022	0.0029	0.0145	2

Расчет категории источников, подлежащих контролю на существующее положение

1 2	3	4	5	6	7	8	9	10	11
6005 аэрационный фонарь	12		2902	0.5	0.000859	0.0001	0.0014	0.0028	2
6006 аэрационный фонарь	12		0303	0.2	0.011111	0.0046	0.0061	0.0305	2
6007 аэрационный фонарь	12		2902	0.5	0.000068	0.00001	0.0001	0.0002	2
6008 неорганизованный	12		0303	0.2	0.005556	0.0023	0.003	0.015	2
6009 неорганизованный	3		2920	*0.03	0.000389	0.0013	0.0162	0.54	2
6010 неорганизованный	3		0322	0.3	0.000336	0.0001	0.0047	0.0157	2
6011 неорганизованный	3		0155	0.15	0.002192	0.0015	0.0912	0.608	2
			0203	**0.0015	0.000112	0.0007	0.0047	0.3133	2
6012 неорганизованный	3		0123	**0.04	0.0004	0.0001	0.0166	0.0415	2
			0143	0.01	0.0001	0.001	0.0042	0.42	2
			0342	0.02	0.00002	0.0001	0.0003	0.015	2
6013 неорганизованный	3		0123	**0.04	0.0005	0.0001	0.0208	0.052	2
			0143	0.01	0.0001	0.001	0.0042	0.42	2
			0342	0.02	0.00002	0.0001	0.0003	0.015	2
6014 неорганизованный	3		0123	**0.04	0.02025	0.0051	0.8424	2.106	2
			0143	0.01	0.0003056	0.0031	0.0127	1.27	2
			0301	0.2	0.01083	0.0054	0.1502	0.751	2
			0337	5	0.01375	0.0003	0.1907	0.0381	2
6015 неорганизованный	3		0101	**0.01	0.000203	0.0002	0.0084	0.084	2
			0123	**0.04	0.000024	0.00001	0.001	0.0025	2
			0143	0.01	0.000003	0.00003	0.0001	0.01	2
			2908	0.3	0.000003	0.000001	0.0001	0.0003	2
6016 неорганизованный	3		0123	**0.04	0.00936	0.0023	0.3894	0.9735	2
			2902	0.5	0.1242	0.0248	5.1669	10.3338	1
			2930	*0.04	0.0016	0.004	0.0666	1.665	2

Примечания: 1. М и См умножаются на 100/100-КПД только при значении КПД очистки >75%. (ОНД-90,Іч.,п.5.6.3)

^{2.} К 1-й категории относятся источники с CM/Π ДК>0.5 и $M/(\Pi$ ДК*H)>0.01. При H<10м принимают H=10. (ОНД-90, Iч., п.5.6.3)

^{3.} В случае отсутствия ПДКм.р. в колонке 6 указывается "*" - для значения ОБУВ, "**" - для ПДКс.с

^{4.} Способ сортировки: по возрастанию кода ИЗА и кода ЗВ

5.2 План-график контроля за соблюдение нормативов допустимых выбросов на источниках выбросов на период 2026-2035 гг.

	ский район, Almaty Tan	nnery (Алматинский кожевенный завод)		T		1	T
N				Норматив до	ПУСТИМЫХ		Методика
источ-	Производство,	Контролируемое	Периодичность	выбро	COB	Кем	проведе-
ника	цех, участок.	вещество				осуществляет	РИН
						ся контроль	контроля
				r/c	мг/м3		
1	2	3	5	6	7	8	9
0001	Парогенератор №1	Азота (IV) диоксид (Азота диоксид) (0.790636	805.33522		
		4)	1 раз в год			Спец лаб	Инструм
		Азот (II) оксид (Азота оксид) (6)		0.12843	130.817724		
		Углерод (Сажа, Углерод черный) (583)		0.03771	38.4110908		
		Сера диоксид (Ангидрид сернистый,		0.8869	903.388926		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		3.370352	3433.01237		
		Угарный газ) (584)					
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз в кв	0.000000344	0.0003504		Расчет
0003	Емкость для хранения	Сероводород (Дигидросульфид) (518)		0.0000234	2.38349885		
	Дизельного топлива	Алканы С12-19 /в пересчете на С/ (1 раз в кв	0.0083322	848.708938		Расчет
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
0019	Столовая	Натрий гидроксид (Натр едкий, Сода		0.0066	11.2045084		
		каустическая) (876*)	1 раз в кв				Расчет
		Этанол (Этиловый спирт) (667)		0.000506	0.85901231		
		2-Метил-1,3-диоксолан (Ацетальдегида		0.0000107	0.01816488		
		этилацеталь) (761*)					
		Проп-2-ен-1-аль (Акролеин,		0.0000133	0.02257878		
		Акрилальдегид) (474)					
		Уксусная кислота (Этановая кислота) (0.000053	0.0899756		
		586)					
		Пыль мучная (491)		0.00230137			
0021	Цех финишной	Аммиак (32)		0.005889	9.37263506		
	обработки кож						
		Диметилбензол (смесь о-, м-, п-	1 раз в кв	0.055555	88.418533		Расчет
		изомеров) (203)					
		Метилбензол (349)		0.016668	26.5279472		

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

		annery (Алматинский кожевенный завод)			_		
1	2	3	5	6	7	8	9
		Этанол (Этиловый спирт) (667)		0.444444	707.35463		
		Бутилакрилат (Акриловой кислоты		0.000556	0.88490153		
		бутиловый эфир) (109)					
		Бутилацетат (Уксусной кислоты		0.672222	1069.87459		
		бутиловый эфир) (110)					
		Метилакрилат (Акриловой кислоты		0.000556	0.88490153		
		метиловый эфир, Метиловый эфир					
		акриловой кислоты) (340)					
		Тетрабутоксититан /по бутанолу/ (0.611112	972.615003		
		Бутиловый эфир о-титановой кислоты) (
		1186*)					
		Проп-2-ен-1-аль (Акролеин,		0.002222	3.53642301		
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.006555	10.432607		
		Циклогексанон (654)		0.116667	185.681307		
		Взвешенные частицы (116)		0.064777	103.095803		
0022		Магний оксид (325)		0.002578	4.10301463		
	Раскройно -	Кальций октадеканоат (Кальция		0.00125	1.98943689		
		стеарат, Октадеканоат кальция) (307)					
		Бор трихлорид (Бор хлорид) (163*)		0.009063	14.4242132		
	штамповочный цех	Этилацетат (674)		0.300781	478.707853		
		2,2-Дибензтиазолилдисульфид (Альтакс) 1 раз	в кв	0.002578	4.10301463		Расчет
		(176)					
		Бензин (нефтяной, малосернистый) /в		0.300781	478.707853		
		пересчете на углерод/ (60)					
		Канифоль талловая (642*)		0.005156	8.20602927		
		Смола легкая высокоскоростного		0.023281	37.0528641		
		Взвешенные частицы (116)		0.1237	196.874674		
		Пыль тонко измельченного резинового		0.129297	205.782577		
		вулканизата из отходов подошвенных					
		резин (1090*)					
0023	Заготовочный цех	Этенилацетат (Винилацетат, Уксусной 1 раз	в кв	1.56e-8	0.00001589		Расчет
		кислоты виниловый эфир) (670)					

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

	скии раион, Алмату	Tannery (Алматинский кожевенный завод)					
1	2	3	5	6	7	8	9
		Этилацетат (674)		0.0834	84.9505428		
		Бензин (нефтяной, малосернистый) /в		0.8725	888.721206		
		пересчете на углерод/ (60)					
		Керосин (654*)		0.0729	74.2553306		
		Взвешенные частицы (116)		0.09693	98.7320877		
		Пыль тонко измельченного резинового		0.0365	37.1785949		
		вулканизата из отходов подошвенных					
		резин (1090*)					
0024	Затяжной цех	Магний оксид (325)		0.002063	4.86424673		
		Кальций октадеканоат (Кальция		0.001	2.35785105		
		стеарат, Октадеканоат кальция) (307)					
		Бор трихлорид (Бор хлорид) (163*)		0.00725	17.0944201		
		Этилацетат (674)	1 раз в кв	0.2406	567.298964		Расчет
		2,2-Дибензтиазолилдисульфид (Альтакс)		0.002063	4.86424673		
		(176)					
		Бензин (нефтяной, малосернистый) /в		0.6562	1547.22186		
		пересчете на углерод/ (60)					
		Канифоль талловая (642*)		0.00413	9.7379249		
		Смола легкая высокоскоростного		0.0186	43.8560296		
		пиролиза бурых углей /по					
		органическому углероду/ (528)					
		Взвешенные частицы (116)		0.0969	228.475767		
		Пыль тонко измельченного резинового		0.1034	243.801799		
		вулканизата из отходов подошвенных					
		резин (1090*)					
0025	Литьевой цех	(R*,S*)-4,4'-(1,2-Диэтил-162-		0.36	180		
		этандиил) бис (бензолсульфонат дикалия)					
		Диметилбензол (смесь о-, м-, п-		0.0007	0.35		
		изомеров) (203)	1 раз в кв				Расчет
		Метилбензол (349)		0.0014	0.7		
		Дихлорметан (Метиленхлорид, Метилен		0.06	30		
		хлористый) (250)					
		Бутан-1-ол (Бутиловый спирт) (102)		0.0069	3.45		

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

		nery (Алматинский кожевенный завод)	1		1		
1	2	3	5	6	7	8	9
		Этанол (Этиловый спирт) (667)		0.0069	3.45		
		Этан-1,2-диол (Гликоль,		0.0000036	0.0018		
		Этиленгликоль) (1444*)					
		Ацетальдегид (Этаналь, Уксусный		0.0000036	0.0018		
		альдегид) (44)					
		Формальдегид (Метаналь) (609)		0.0012924	0.6462		
6004	Производство	Хром /в пересчете на хром (VI) оксид/		0.000361			
	Полуфабриката Wet-bliue	Аммиак (32)	1 раз в кв	0.24			Расчет
		Серная кислота (517)		0.000556			
		Сероводород (Дигидросульфид) (518)		0.006944			
		Метилформиат (Муравьиной кислоты		0.005278			
6005	Производство	Взвешенные частицы (116)	1 раз в кв	0.000859			Расчет
	Полуфабриката Wet-bliue						
6006	Производство	Аммиак (32)	1 раз в кв	0.011111			Расчет
	полуфабриката CRUST						
6007	Производство	Взвешенные частицы (116)	1 раз в кв	0.000068			Расчет
	полуфабриката CRUST	, , ,	1				
6008	Производственный	Аммиак (32)	1 раз в кв	0.005556			Расчет
	корпус		1				
6009		Пыль меховая (шерстяная, пуховая) (1 раз в кв	0.000389			Расчет
			1				
6010	Производственный цех	Серная кислота (517)	1 раз в кв	0.000336			Расчет
		(02/)	_ r				
6011		диНатрий карбонат (Сода		0.002192			
	Сооружение локальной	кальцинированная, Натрий карбонат) (1 раз в кв				Расчет
		Хром /в пересчете на хром (VI) оксид/	_ r	0.000112			
	ОЧИСТКИ СТОЧНЫХ ВОЛ	(Хром шестивалентный) (647)		0.000111			
6012		Железо (II, III) оксиды (в пересчете		0.0004			
	Сварочные работы	Марганец и его соединения (в		0.0001			Расчет
	ezape mizie pace izi	пересчете на марганца (IV) оксид) (1 раз в кв	0.0001			1 40 10 1
		327)	- Pac 2 112				
		Фтористые газообразные соединения /в		0.00002			
		пересчете на фтор/ (617)		0.00002			
6013	Сварочные работы	Железо (II, III) оксиды (в пересчете		0.0005			

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		на железо) (диЖелезо триоксид, Железа оксид) (274)					
		Марганец и его соединения (в		0.0001			
		пересчете на марганца (IV) оксид) (
		327)					
		Фтористые газообразные соединения /в		0.00002			
		пересчете на фтор/ (617)					
6014	Сварочные работы	Железо (II, III) оксиды (в пересчете		0.02025			
		на железо) (диЖелезо триоксид, Железа					
		оксид) (274)					
		± 1	раз в кв	0.0003056			
		пересчете на марганца (IV) оксид) (Расчет
		327)		0.01083			
		Азота (IV) диоксид (Азота диоксид) (0.01083			
		VERNOR ORGAN (ORGAN APPROPRIE		0.01375			
		Углерод оксид (Окись углерода, Угарный газ) (584)		0.01373			
6015	Ремонтные работы	Алюминий оксид (диАлюминий триоксид)		0.000203			
0010	Tementinae paeera	(в пересчете на алюминий) (20)		0.000203			
		Железо (II, III) оксиды (в пересчете		0.000024			
		на железо) (диЖелезо триоксид, Железа 1	рас в кв				Расчет
		оксид) (274)	-				
		Марганец и его соединения (в		0.000003			
		пересчете на марганца (IV) оксид) (
		327)					
		Пыль неорганическая, содержащая		0.000003			
		месторождений) (494)					
6016	Ремонтно-	Железо (II, III) оксиды (в пересчете 1	раз в кв	0.00936			Расчет
	Мастерской цех	на железо) (диЖелезо триоксид, Железа					
		оксид) (274)					

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Взвешенные частицы (116) Пыль абразивная (Корунд белый, Монокорунд) (1027*)		0.1242 0.0016			

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Экологический Кодекс Республики Казахстан.
- 2. ГОСТ 17.2.3.02-78. Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями.
- 3. «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» (утверждено приказом от 11 января 2022 года № ҚР ДСМ-2).
- 4. «Сборник методик по расчету выбросов вредных в атмосферу различными производствами». Алматы 1996г.
- 5. «Методика определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения». Приложение №5 к приказу Министра охраны окружающей среды Республики Казахстан от 18. 04.2008 г № 100-п) таб, 1.14.
- 6. Методика определения валовых выбросов вредных веществ в атмосферу основным технологическим оборудованием предприятий химического и нефтяного машиностроения», табл.1.24, стр. 78.
- 7. «Методика расчета выбросов загрязняющих веществ в атмосферу при производстве металлопокрытий гальваническим способом».
- 8. РНД 2.11.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов).
- 9. РНД 2.11.2.02.06 2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).
- 10. «Рекомендации по расчету отходящих газов и установлению допустимых выбросов в атмосферу предприятиями пищевой промышленности», Алматы 1985 г.
- 11. Методика расчета выбросов загрязняющих веществ от транспортных средств предприятия (раздел3) Приложение № 3 к Приказу Министра ООС РК от 18 апреля 2008 года № 100-п.
- 12. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел4) Приложение № 12 к Приказу Министра ООС РК от 18 апреля 2008 года № 100-п.

РАЗДЕЛЫ ИНВЕНТАРИЗАЦИИ

Бланк инвентаризации выбросов вредных веществ в атмосферный воздух

	УТВЕРЖДАЮ
Руковолитель	оператора

 $(\overline{\Phi}$ амилия, имя, отчество (при его наличии))

(подпись)

" " 2025 г

М.П.

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

	Номер	Номер	Наименование		Время	работы		Код вредного	Количество
Наименование	источ-	источ-	источника	Наименование	источ	чника	Наименование	вещества	загрязняющего
производства	ника	ника	выделения	выпускаемой	выделе	ния,час	загрязняющего	(ЭНК , ПДК	вещества,
номер цеха,	загряз	выде-	загрязняющих	продукции			вещества	или ОБУВ) и	отходящего
участка	нения	ления	веществ		В	за		наименование	от источника
	атм-ры				сутки	год			выделения,
									т/год
А	1	2	3	4	5	6	7	8	9
					Площадка	a 1			
(001) Основное	0001	0001 01	парогенератор			8760	Азота (IV) диоксид (Азота	0301(4)	2.574336
			№1 на природном				диоксид) (4)		
			газе				Азот (II) оксид (Азота	0304(6)	0.41833
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	10.056
							Бенз/а/пирен (3,4-	0703 (54)	0.000004663
							Бензпирен) (54)		
	0001	0001 02	котлоагрегат			8760	Азота (IV) диоксид (Азота	0301(4)	0.3694
			при работе на				диоксид) (4)		
			дизельном				Азот (II) оксид (Азота	0304(6)	0.06
			топливе				оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.03

А	1	2	3	4	5	6	7	8	9
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.7056
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		4 665
							Углерод оксид (Окись	0337 (584)	1.6673
							углерода, Угарный газ) (
							584)	0702(54)	0.000000913
							Бенз/а/пирен (3,4-	0703 (54)	0.000000913
	0003	0002 01	хранение				Бензпирен) (54)	0333(518)	0.0000105
	0003	0003 01	хранение дизельного				Сероводород (Дигидросульфид) (518)	0333 (310)	0.000103
			топлива				Алканы С12-19 /в пересчете	2754 (10)	0.0037267
			ТОПЛИВа				на С/ (Углеводороды	2734(10)	0.0037207
							10)		
	0019	0019 01	столовая			4	бПыль мучная (491)	3721 (491)	0.00076
	0019	0019 02	брожение теста		12		0 Этанол (Этиловый спирт) (· · · · ·	0.00798
							667)	, ,	
							2-Метил-1,3-диоксолан (1115 (761*)	0.000168
							Ацетальдегида этилацеталь)		
							(761*)		
							Уксусная кислота (Этановая	1555 (586)	0.00084
							кислота) (586)		
	0019	0019 03	протирка столов			36	5 Натрий гидроксид (Натр	0150(876*)	0.00865
							едкий, Сода каустическая)		
							(876*)		
	0019	0019 04	обжарка мяса			109	5 Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.0000524
	0001					000	Акрилальдегид) (474)		
	0021	0021 01	цех по финишной			228	0 Аммиак (32)	0303 (32)	0.0228
			обработке кож				Бутилакрилат (Акриловой	1206(109)	0.00228
							кислоты бутиловый эфир) (109)		
							· ·	2002 (116)	0.228
	0021	0021 02	папроа			220	Взвешенные частицы (116) Диметилбензол (смесь о-,	2902 (116) 0616 (203)	0.228
	0021	0021 02	закрепление			220	м-, п- изомеров) (203)	0010(203)	0.1024
			Sarbeinieune		1	1	M , 11 NOOMEDOD) (702)	1	

A	1	2	3	4	5	6	7	8	9
			покрытия на				Метилбензол (349)	0621(349)	0.0228
			коже				Этанол (Этиловый спирт) (1061 (667)	0.912
							667)		
							Бутилацетат (Уксусной	1210 (110)	1.3224
							кислоты бутиловый эфир) (
							110)		
							Тетрабутоксититан /по 1186*)	1288 (1186*)	1.14
							Формальдегид (Метаналь) (609)	1325 (609)	0.001368
							Циклогексанон (654)	1411 (654)	0.2736
							Взвешенные частицы (116)	2902 (116)	0.01368
	0021	0021 03	второе			2280	Диметилбензол (смесь о-,	0616(203)	0.0456
			закрепление				м-, п- изомеров) (203)		
			покрытия на				Метилбензол (349)	0621(349)	0.0228
			коже				Этанол (Этиловый спирт) (1061 (667)	0.912
							667)		
							Бутилацетат (Уксусной	1210 (110)	1.3224
							кислоты бутиловый эфир) (
							110)		
							Тетрабутоксититан /по	1288 (1186*)	1.14
							бутанолу/ (Бутиловый эфир		
							о-титановой кислоты) (
							1186*)	1205 (600)	0 005536
							Формальдегид (Метаналь) (609)	1325 (609)	0.025536
							Циклогексанон (654)	1411 (654)	0.0912
							Взвешенные частицы (116)	2902 (116)	0.001368
	0021	0021 04	нанесение				Бутилацетат (Уксусной	1210 (110)	0.0456
	0021	0021 01	пигментированно			2200	кислоты бутиловый эфир) (1210(110)	0.0130
			го покрытия и				110)		
			сушка				Циклогексанон (654)	1411 (654)	0.0456
	0021	0021 05	нанесение				Бутилацетат (Уксусной	1210 (110)	0.0456
			полиуретанового				кислоты бутиловый эфир) (, , ,	
			покрытия и				110)		

А	1	2	3	4	5	6	7	8	9
			сушка				Циклогексанон (654)	1411 (654)	0.0456
	0021	0021 06	нанесение			2280	Аммиак (32)	0303(32)	0.001368
			пропитывающего				Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.00456
			грунта				Акрилальдегид) (474)		
	0021	0021 07	нанесение			2280	Метилакрилат (Акриловой	1225 (340)	0.00228
			пигментированно				кислоты метиловый эфир,		
			прессование				Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.00456
							Акрилальдегид) (474)		
							Взвешенные частицы (116)	2902 (116)	0.01368
	0021	0021 08	закрепление			2280	Метилбензол (349)	0621 (349)	0.0228
			покрытий на				Бутилацетат (Уксусной	1210(110)	0.0228
			коже				кислоты бутиловый эфир) (
							110)		
							Тетрабутоксититан /по	1288 (1186*)	0.228
							бутанолу/ (Бутиловый эфир		
							о-титановой кислоты) (
							1186*)		
							Циклогексанон (654)	1411 (654)	0.0228
							Взвешенные частицы (116)	2902 (116)	0.00912
	0022	0022 01	раскрой			2080	Взвешенные частицы (116)	2902 (116)	0.07147
			штамповочного						
			цеха						
	0022	0022 02	использование			2080	Магний оксид (325)	0138 (325)	0.0019
			клея ПХК 20251				Кальций октадеканоат (0258 (307)	0.0009
							Кальция стеарат,		
							Октадеканоат кальция) (
							307)		
							Бор трихлорид (Бор хлорид)	0373(163*)	0.0068
							(163*)		
							Этилацетат (674)	1240 (674)	0.2252
							2,2-	2406(176)	0.0019
							Дибензтиазолилдисульфид (
							Альтакс) (176)		
							Бензин (нефтяной,	2704 (60)	0.2252
							малосернистый) /в		

A	1	2	3	4	5	6	7	8	9
							пересчете на углерод/ (60)		
							Канифоль талловая (642*)	2726(642*)	0.0039
							Смола легкая	2743 (528)	0.0174
							528)		
							Пыль тонко измельченного	2978 (1090*)	0.0968
							резинового вулканизата из		
							отходов подошвенных резин		
							(1090*)		
	0023	0023 01	заготовочный			2080	Взвешенные частицы (116)	2902 (116)	0.7258
			цех						
	0023	0023 02	использование			2080	Бензин (нефтяной,	2704(60)	0.2457
			клея НК				малосернистый) /в		
							пересчете на углерод/ (60)		
							Пыль тонко измельченного	2978 (1090*)	0.0273
							резинового вулканизата из		
							отходов подошвенных резин		
							(1090*)		
	0023	0023 03	клей луч ЛТ			2080	Этенилацетат (Винилацетат,	1213(670)	0.000000115
			6010				Уксусной кислоты виниловый		
							эфир) (670)		
	0023	0023 04	этилацетат			2080	Этилацетат (674)	1240 (674)	0.0625
	0023	0023 05	керосин			2080	Керосин (654*)	2732 (654*)	0.0546
	0024	0024 01	затяжной цех			2080	Магний оксид (325)	0138 (325)	0.0015
							Кальций октадеканоат (0258 (307)	0.000749
							Кальция стеарат,		
							Октадеканоат кальция) (
							307)		
							Бор трихлорид (Бор хлорид)	0373 (163*)	0.005429
							(163*)		
							Этилацетат (674)	1240 (674)	0.1802
							2,2-	2406 (176)	0.0015
							Дибензтиазолилдисульфид (
							Альтакс) (176)		
							Бензин (нефтяной,	2704 (60)	0.1802

1. Источники выделения вредных (загрязняющих) веществ

A	1	2	ery (Алматинский к	4	5	6	7	8	9
	_				-		малосернистый) /в	-	<u> </u>
							пересчете на углерод/ (60)		
							Канифоль талловая (642*)	2726 (642*)	0.003089
							Смола легкая	2743 (528)	0.0139
							высокоскоростного пиролиза		
							528)		
							Взвешенные частицы (116)	2902 (116)	0.7258
							Пыль тонко измельченного	2978 (1090*)	0.0775
							резинового вулканизата из		
							отходов подошвенных резин		
							(1090*)		
	0025	0025 01	литьевой цех			2080	Диметилбензол (смесь о-,	0616(203)	0.0052
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.0106
							Бутан-1-ол (Бутиловый	1042 (102)	0.0518
							спирт) (102)		
							Этанол (Этиловый спирт) (1061 (667)	0.0518
							667)		
							Этан-1,2-диол (Гликоль,	1078 (1444*)	0.00001
							Этиленгликоль) (1444*)		
							Ацетальдегид (Этаналь,	1317 (44)	0.00001
							Уксусный альдегид) (44)	1 2 2 5 7 6 2 2 2	0 0006
							Формальдегид (Метаналь) (1325 (609)	0.00966
	0025	0005 00				2000	609)	1070/1444	0 00001
	0025	0025 02				2080	Этан-1,2-диол (Гликоль,	1078 (1444*)	0.00001
			полиуретановой				Этиленгликоль) (1444*)	1217/44)	0.00001
			смеси				Ацетальдегид (Этаналь, Уксусный альдегид) (44)	1317 (44)	0.00001
							Формальдегид (Метаналь) (1325 (609)	0.00001
							Формальдетид (метаналь) (609)	1323 (809)	0.00001
	0025	0025 03	разделительная			1300	(R*,S*)-4,4'-(1,2-Диэтил-	0256(560*)	1.6848
	0023	0025 05	смазка и			1300	162-этандиил) бис (0230(300)	1.0010
			пигментная				102-этандиин онс (бензолсульфонат дикалия) (
			паста				Сигетин, мезо-3,4-Ди(п-		
							сульфофенил) гексан,		

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							дикалиевая соль) (560*)		
							Дихлорметан (0869 (250)	0.2808
							Метиленхлорид, Метилен		
							хлористый) (250)		
	0025	0025 04	лакокрасочные			2080.2	Этан-1,2-диол (Гликоль,	1078 (1444*)	0.00001
			работы				Этиленгликоль) (1444*)		
							Ацетальдегид (Этаналь,	1317 (44)	0.00001
							Уксусный альдегид) (44)		
							Формальдегид (Метаналь) (1325 (609)	0.00001
							609)		
	6004	6004 01	производство			2080	Хром /в пересчете на хром	0203 (647)	0.000219
			полуфабриката				(VI) оксид/ (Хром		
			Wet - biue				шестивалентный) (647)		
							Аммиак (32)	0303 (32)	3.75877
							Серная кислота (517)	0322 (517)	0.0073
							Сероводород (0333 (518)	0.09125
							Дигидросульфид) (518)		
							Метилформиат (Муравьиной	1231 (391)	0.068255
	6005	6005 01	производство			2080	Взвешенные частицы (116)	2902 (116)	0.0271
			полуфабриката						
			Wet-bliue						
	6006	6006 01	производство			2080	Аммиак (32)	0303(32)	0.1752
			полувабриката						
			CRUST						
	6007	6007 01	производство			2080	Взвешенные частицы (116)	2902 (116)	0.002166
			полуфабриката						
			CRUST						
	6008	6008 01	производственны			2080	Аммиак (32)	0303(32)	0.0876
			й корпус						
	6009		производственны			2080	Пыль меховая (шерстяная,	2920(1050*)	0.012264
			й цех				пуховая) (1050*)		
	6010	6010 01	производственны			2080	Серная кислота (517)	0322 (517)	0.005521
			й цех						
	6011	6011 01	сооружение			2080	диНатрий карбонат (Сода	0155 (408)	0.069127

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

А	1	2	3	4	5	6	7	8	9
			локальной				кальцинированная, Натрий		
			очистки сточных				карбонат) (408)		
			вод				Хром /в пересчете на хром	0203(647)	0.003532
							(VI) оксид/ (Хром		
							шестивалентный) (647)		
	6012	6012 01	сварочные			300	Железо (II, III) оксиды (в	0123 (274)	0.0005
			работы				пересчете на железо) (
							Марганец и его соединения	0143 (327)	0.0001
							(в пересчете на марганца (
							IV) оксид) (327)		
							Фтористые газообразные	0342(617)	0.00002
							соединения /в пересчете на		
							фтор/ (617)		
	6013	6013 01	сварочные			1000	Железо (II, III) оксиды (в	0123 (274)	0.0019
			работы				пересчете на железо) (
							диЖелезо триоксид, Железа		
							оксид) (274)		
							Марганец и его соединения	0143 (327)	0.0003
							(в пересчете на марганца (
							IV) оксид) (327)		
								0342(617)	0.00008
							соединения /в пересчете на		
							фтор/ (617)		
	6014	6014 01	сварочные			250	Железо (II, III) оксиды (в	0123 (274)	0.0569
			работы				пересчете на железо) (
							диЖелезо триоксид, Железа		
							оксид) (274)		
							Марганец и его соединения	0143 (327)	0.0009
							(в пересчете на марганца (
							IV) оксид) (327)		
							Азота (IV) диоксид (Азота	0301(4)	0.0304
							диоксид) (4)		
							Углерод оксид (Окись	0337 (584)	0.0386
							углерода, Угарный газ) (
	<u> </u>						584)		

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
	6015	6015 01	ремонтные работы				Алюминий оксид (диАлюминий триоксид) (в пересчете на алюминий) (20)	0101(20)	0.00076
							Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0123(274)	0.00009
							оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143(327)	0.00001
								2908 (494)	0.00001
	6016	6016 01	ремонтно мастерской цех			250	Взвешенные частицы (116)	2902 (116) 2930 (1027*)	0.0022 0.0029
	6016	6016 02	радиально- сверлильный станок			18	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123(274)	0.0004
	6016	6016 03	распиловочно- горизонтальный станок					2902 (116)	0.0026
	6016	6016 04	токарный станок				Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123(274)	0.0242
	6016	6016 05	вертикально сверлильный станок			250	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0123(274)	0.0004

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

A	1	2	3	4	5	6	7	8	9
							оксид) (274)		
	6016	6016 06	лентиочно -			250	Взвешенные частицы (116)	2902 (116)	0.0365
			отрезной станок						
	6016	6016 07	отрезной станок			18	Взвешенные частицы (116)	2902 (116)	0.0026

Примечание: В графе 8 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

Napace	THERMIN P	arion, minac	y rannery	(АЛМАТИНСКИЙ КО	MCDCIIIDIV.	д Завод,	1		
Номер	Пар	раметры	Параметр	ры газовоздушног	й смеси	Код загряз-		Количество	хишокнгкдльг
источ	источн.	загрязнен.	на выхо;	де источника заг	рязнения	няющего		веществ, выб	брасываемых
ника						вещества		в атмо	сферу
заг-	Высота	Диаметр,	Скорость	Объемный	Темпе-	(ЭНК, ПДК	Наименование ЗВ		
-евд	М	размер	м/с	расход,	ратура,	или ОБУВ)		Максимальное,	Суммарное,
нения		сечения		м3/с	С			r/c	т/год
		устья, м							
1	2	3	4	5	6	7	7a	8	9
						Основное			
0001	12	0.5	5	0.9817477		0301 (4)	Азота (IV) диоксид (Азота	0.790636	2.943736
0001				0,301,1,,		0001 (1)	диоксид) (4)		2,310,00
						0304 (6)	Азот (II) оксид (Азота	0.12843	0.47833
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.03771	0.03
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.8869	0.7056
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	3.370352	11.7233
							углерода, Угарный газ) (
							584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.000000344	0.000005576
							Бензпирен) (54)		
0003	3	0.05	5	0.0098175		0333 (518)	Сероводород (0.0000234	0.0000105
							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0083322	0.0037267
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0019	6	0.5	3	0.5890486		0150 (876*)	Натрий гидроксид (Натр	0.0066	0.00865
							едкий, Сода каустическая) (
							876*)		

^{2.} Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6		7	7a	8	9
						1061	(667)	Этанол (Этиловый спирт) (667)	0.000506	0.00798
						1115	(761*)	2-Метил-1,3-диоксолан (0.0000107	0.000168
								Ацетальдегида этилацеталь) (761*)		
						1301	(474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0000133	0.0000524
						1555	(586)	Уксусная кислота (Этановая кислота) (586)	0.000053	0.00084
						3721	(491)	Пыль мучная (491)	0.00230137	0.00076
0021	12	0.4	5	0.6283185		0303	(32)	Аммиак (32)	0.005889	0.024168
						0616	(203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.055555	0.228
						0621	(349)	Метилбензол (349)	0.016668	0.0684
						1061	(667)	Этанол (Этиловый спирт) (667)	0.444444	1.824
						1206	(109)	Бутилакрилат (Акриловой кислоты бутиловый эфир) (109)	0.000556	0.00228
						1210	(110)	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0.672222	2.7588
						1225	(340)	Метилакрилат (Акриловой кислоты метиловый эфир,	0.000556	0.00228
						1288	(1186*)	Тетрабутоксититан /по бутанолу/ (Бутиловый эфир о-титановой кислоты) (1186*	0.611112	2.508
						1301	(474)	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.002222	0.00912
						1325	(609)	Формальдегид (Метаналь) (0.006555	0.026904
						1411	(654)	Циклогексанон (654)	0.116667	0.4788
							(116)	Взвешенные частицы (116)	0.064777	0.265848
0022	4.5	0.4	5	0.6283185		0138	(325)	Магний оксид (325)	0.002578	0.0019

2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

 Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

 1
 2
 3
 4
 5
 6
 7
 7a
 8
 9

					0258	(307)	Кальций октадеканоат (0.00125	0.0009
							Кальция стеарат,		
							Октадеканоат кальция) (307)		
					0373	(163*)	Бор трихлорид (Бор хлорид) (163*)	0.009063	0.0068
						(674)	Этилацетат (674)	0.300781	0.2252
					2406	(176)	2,2-Дибензтиазолилдисульфид (Альтакс) (176)	0.002578	0.0019
					2704	(60)	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.300781	0.2252
					2726	(642*)	Канифоль талловая (642*)	0.005156	0.0039
					2743	(528)	Смола легкая	0.023281	0.0174
							высокоскоростного пиролиза 528)		
					2902	(116)	Взвешенные частицы (116)	0.1237	0.07147
					2978	(1090*)	Пыль тонко измельченного	0.129297	0.0968
							резинового вулканизата из отходов подошвенных резин (1090*)		
0023	4.5	0.5	5	0.9817477	1213	(670)	Этенилацетат (Винилацетат, Уксусной кислоты виниловый эфир) (670)	1.56e-8	0.00000115
					1240	(674)	Этилацетат (674)	0.0834	0.0625
					2704	(60)	Бензин (нефтяной, малосернистый) /в пересчете	0.8725	0.2457
							на углерод/ (60)		
					2732	(654*)	Керосин (654*)	0.0729	0.0546
						(116)	Взвешенные частицы (116)	0.09693	0.7258
						(1090*)	Пыль тонко измельченного	0.0365	0.0273
						•	резинового вулканизата из		
							отходов подошвенных резин (1090*)		
0024	15	0.3	6	0.424115	0138	(325)	Магний оксид (325)	0.002063	0.0015
					0258	(307)	Кальций октадеканоат (0.001	0.000749

2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

				(Алматинский ко		и заво,		,		
1	2	3	4	5	6		7	7a	8	9
						0272	(163*)	Кальция стеарат, Октадеканоат кальция) (307)	0.00725	0.005429
							,	Бор трихлорид (Бор хлорид) (163*)		
						1240		Этилацетат (674)	0.2406	0.1802
						2406	(176)	2,2-Дибенэтиазолилдисульфид (Альтакс) (176)	0.002063	0.0015
						2704	(60)	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.6562	0.1802
						2726	(642*)	Канифоль талловая (642*)	0.00413	0.003089
						2743	(528)	Смола легкая	0.0186	0.0139
								высокоскоростного пиролиза 528)		
						2902	(116)	Взвешенные частицы (116)	0.0969	0.7258
						2978	(1090*)	Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (0.1034	0.0775
								1090*)		
0025	3	0.3	28.29	2		0256	(560*)	(R*,S*)-4,4'-(1,2-Диэтил- 162-этандиил)бис(0.36	1.6848
								бензолсульфонат дикалия) (Сигетин, мезо-3,4-Ди(п-		
								сульфофенил) гексан, дикалиевая соль) (560*)		
						0616	(203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0.0007	0.0052
						0621	(349)	Метилбензол (349)	0.0014	0.0106
						0869		Дихлорметан (Метиленхлорид,	0.06	0.2808
							•	Метилен хлористый) (250)		
						1042	(102)	Бутан-1-ол (Бутиловый	0.0069	0.0518
								спирт) (102)		
						1061	(667)	Этанол (Этиловый спирт) (667)	0.0069	0.0518
						1078	(1444*)	Этан-1,2-диол (Гликоль,	0.0000036	0.00003

2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	(Алматинскии ко 5	6	Т	7	7a	8	9
	۷	<u> </u>	7	<u> </u>	0			Этиленгликоль) (1444*)	0	J
						1317	(44)	Этиленгликоль) (1444) Ацетальдегид (Этаналь, Уксусный альдегид) (44)	0.0000036	0.00003
						1325	(609)	Формальдегид (Метаналь) (609)	0.0012924	0.00968
6004	12					0203	(647)	Хром /в пересчете на хром (VI) оксид/ (Хром шестивалентный) (647)	0.000361	0.000219
						0303	(32)	Аммиак (32)	0.24	3.75877
						0322		Серная кислота (517)	0.000556	0.0073
						0333		Сероводород (0.006944	0.09125
								Дигидросульфид) (518)		
						1231	(391)	Метилформиат (Муравьиной кислоты метиловый эфир,	0.005278	0.068255
6005	12					2902	(116)	Взвешенные частицы (116)	0.000859	0.0271
6006	12					0303	(32)	Аммиак (32)	0.011111	0.1752
6007	12					2902	(116)	Взвешенные частицы (116)	0.000068	0.002166
6008	12					0303	(32)	Аммиак (32)	0.005556	0.0876
6009	3					2920	(1050*)	Пыль меховая (шерстяная, пуховая) (1050*)	0.000389	0.012264
6010	3					0322	(517)	Серная кислота (517)	0.000336	0.005521
6011	3					0155	(408)	диНатрий карбонат (Сода	0.002192	0.069127
								кальцинированная, Натрий карбонат) (408)		
						0203	(647)	Хром /в пересчете на хром (VI) оксид/ (Хром	0.000112	0.003532
								шестивалентный) (647)		
6012	3					0123	(274)	Железо (II, III) оксиды (в	0.0004	0.0005
								пересчете на железо) (
								диЖелезо триоксид, Железа		
								оксид) (274)		
						0143	(327)	Марганец и его соединения (0.0001	0.0001
								в пересчете на марганца (
								IV) оксид) (327)		
						0342	(617)	Фтористые газообразные	0.00002	0.00002

2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

				(Алматинский кс					
1	2	3	4	5	6	7	7a	8	9
6013	3					0123 (274)	соединения /в пересчете на фтор/ (617) Железо (II, III) оксиды (в	0.0005	0.0019
						0143 (327)	пересчете на железо) (дижелезо триоксид, Железа оксид) (274)	0.0001	0.0003
						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.0001	0.0003
						0342 (617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.00002	0.00008
6014	3					0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (0.02025	0.0569
						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.0003056	0.0009
						0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.01083	0.0304
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01375	0.0386
6015	3					0101 (20)	Алюминий оксид (диАлюминий триоксид) (в пересчете на алюминий) (20)	0.000203	0.00076
						0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0.000024	0.00009
						0143 (327)	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.000003	0.00001
						2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,	0.000003	0.00001

2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

Карасайский район, Almaty Tannery (Алматинский кожевенный завод)

Napaca	INCKNIN F	Danon, Almat	y rannery	(AJIMATUHCKUM KO	жереппыл	завод)			
1	2	3	4	5	6	7	7a	8	9
							пыль цементного производства — глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		
6016	3					0123 (274)	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0.00936	0.025
						2902 (116)	Взвешенные частицы (116)	0.1242	0.0439
						2930 (1027*)	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0016	0.0029

Примечание: В графе 7 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

3. Показатели работы пылегазоочистного оборудования (ПГО) на 2026 год

Номер	Наименование и тип	КПД аппа	ратов, %	Код	Коэффициент					
источника	пылегазоулавливающего			загрязняющего	обеспеченности					
выделения	оборудования	Проектный	Фактичес-	вещества по	K(1),%					
			кий	котор.проис-						
				ходит очистка						
1	2	3	4	5	6					
	Пылегазоочистное оборудование отсутствует!									

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026 гол

	сайский район, Almaty Tannery	(АЛМАТИНСКИЙ	и кожевенный з	завод)				
Код		Количество	В том	числе	ооп ви	ступивших на	очистку	Всего
заг-	Наименование	загрязняющих						выброшено
-екд	оперязняющего	веществ	выбрасыва-	поступает	выброшено	уловлено и	обезврежено	В
диян	вещества	то хишкдокто	ется без	на	В			атмосферу
веще		источника	очистки	очистку	атмосферу	фактически	из них ути-	
ства		выделения					лизировано	
1	2	3	4	5	6	7	8	9
	всего:	33.662410291	33.662410291	0	0	0	0	33.662410291
	в том числе:							
	Твердые:	3.978028576	3.978028576	0	0	0	0	3.978028576
	из них:							
0101	Алюминий оксид (диАлюминий	0.00076	0.00076	0	0	0	0	0.00076
	триоксид) (в пересчете на							
	алюминий) (20)							
0123	Железо (II, III) оксиды (в	0.08439	0.08439	0	0	0	0	0.08439
	пересчете на железо) (
	диЖелезо триоксид, Железа							
	оксид) (274)							
	Магний оксид (325)	0.0034		0	0	0	0	0.0034
	Марганец и его соединения (в	0.00131	0.00131	0	0	0	0	0.00131
l l	пересчете на марганца (IV)							
l l	оксид) (327)							
l l	диНатрий карбонат (Сода	0.069127	0.069127	0	0	0	0	0.069127
	кальцинированная, Натрий							
l l	карбонат) (408)							
	Хром /в пересчете на хром (0.003751	0.003751	0	0	0	0	0.003751
	VI) оксид/ (Хром							
	шестивалентный) (647)							
0256	(R*,S*)-4,4'-(1,2-Диэтил-	1.6848	1.6848	0	0	0	0	1.6848
	162-							
	этандиил) бис (бензолсульфонат							
	дикалия) (Сигетин, мезо-3,4-							
	Ди(п-сульфофенил) гексан,							
	дикалиевая соль) (560*)							

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026 гол

Napac	саискии раион, Almaty Tanner	-					,	
1	2	3	4	5	6	7	8	9
0258	Кальций октадеканоат	0.001649	0.001649	0	0	0	0	0.001649
	(Кальция							
	стеарат, Октадеканоат							
	кальция) (307)							
0328	Углерод (Сажа, Углерод	0.03	0.03	0	0	0	0	0.03
	черный) (583)							
0373	Бор трихлорид (Бор хлорид)	0.012229	0.012229	0	0	0	0	0.012229
	(
	163*)							
0703	Бенз/а/пирен (3,4-	0.000005576	0.000005576	0	0	0	0	0.000005576
	Бензпирен)							
	(54)							
2726	Канифоль талловая (642*)	0.006989	0.006989	0	0	0	0	0.006989
2902	Взвешенные частицы (116)	1.862084	1.862084	0	0	0	0	1.862084
2908	Пыль неорганическая,	0.00001	0.00001	0	0	0	0	0.00001
	содержащая двуокись							
	кремния в							
	месторождений) (494)							
2920	Пыль меховая (шерстяная,	0.012264	0.012264	0	0	0	0	0.012264
	пуховая) (1050*)							
2930	Пыль абразивная (Корунд	0.0029	0.0029	0	0	0	0	0.0029
	белый, Монокорунд) (1027*)							
2978	Пыль тонко измельченного	0.2016	0.2016	0	0	0	0	0.2016
3721	Пыль мучная (491)	0.00076	0.00076	0	0	0	0	0.00076
	Газообразные, жидкие:	29.684381715	29.684381715	0	0	0	0	29.684381715
	N3 HNX:							
0150	Натрий гидроксид (Натр	0.00865	0.00865	0	0	0	0	0.00865
	едкий ,							
	Сода каустическая) (876*)							
0301	Азота (IV) диоксид (Азота	2.974136	2.974136	0	0	0	0	2.974136

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026 гол

Napac	сайский район, Almaty Tanner		и кожевенныи					
1	2	3	4	5	6	7	8	9
	диоксид) (4)							
0303	Аммиак (32)	4.045738	4.045738	0	0	0	0	4.045738
0304	Азот (II) оксид (Азота	0.47833	0.47833	0	0	0	0	0.47833
	оксид)							
	(6)							
0322	Серная кислота (517)	0.012821	0.012821	0	0	0	0	0.012821
0330	- Сера диоксид (Ангидрид	0.7056	0.7056	0	0	0	0	0.7056
0333	Сероводород	0.0912605	0.0912605	0	0	0	0	0.0912605
	(Дигидросульфид)							
	(518)							
0337	Углерод оксид (Окись	11.7619	11.7619	0	0	0	0	11.7619
	углерода, Угарный газ)							
	(584)							
0342	Фтористые газообразные	0.0001	0.0001	0	0	0	0	0.0001
	Диметилбензол (смесь о-,	0.2332	0.2332	0	0	0	0	0.2332
	M-,							
	п- изомеров) (203)							
	Метилбензол (349)	0.079	0.079	0	0	0	0	0.079
	Дихлорметан	0.2808	0.2808	0	0	0	0	0.2808
	(Метиленхлорид,							
	Метилен хлористый) (250)							
	Бутан-1-ол (Бутиловый	0.0518	0.0518	0	0	0	0	0.0518
	спирт)							
	Этанол (Этиловый спирт)	1.88378	1.88378	0	0	0	0	1.88378
	(667)							
1078	Этан-1,2-диол (Гликоль,	0.00003	0.00003	0	0	0	0	0.00003
	Этиленгликоль) (1444*)							
	2-Метил-1,3-диоксолан (0.000168	0.000168	0	0	0	0	0.000168
	Бутилакрилат (Акриловой	0.00228	0.00228	0	0	0	0	0.00228
	кислоты бутиловый эфир)							
	(109)							
1210	Бутилацетат (Уксусной	2.7588	2.7588	0	0	0	0	2.7588
	кислоты							
1213	Этенилацетат (Винилацетат,	0.000000115	0.000000115	0	0	0	0	0.000000115
	Метилакрилат (Акриловой	0.00228	0.00228	0	0	0		0.00228

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026 год

Kapa	сайский район, Almaty Tanner	у (Алматински	и кожевенныи	завод)				
1	2	3	4	5	6	7	8	9
	кислоты метиловый эфир,							
	Метиловый эфир акриловой							
	кислоты) (340)							
1231	Метилформиат (Муравьиной	0.068255	0.068255	0	0	0	0	0.068255
	кислоты метиловый эфир,							
1240	Этилацетат (674)	0.4679	0.4679	0	0	0	0	0.4679
	Тетрабутоксититан /по	2.508	2.508	0	0	0	0	2.508
1301	Проп-2-ен-1-аль (Акролеин,	0.0091724	0.0091724	0	0	0	0	0.0091724
	Акрилальдегид) (474)							
1317	Ацетальдегид (Этаналь,	0.00003	0.00003	0	0	0	0	0.00003
	Уксусный альдегид) (44)							
1325	Формальдегид (Метаналь)	0.036584	0.036584	0	0	0	0	0.036584
	(609)							
1411	Циклогексанон (654)	0.4788	0.4788	0	0	0	0	0.4788
1555	Уксусная кислота (Этановая	0.00084	0.00084	0	0	0	0	0.00084
	кислота) (586)							
2406	2,2-	0.0034	0.0034	0	0	0	0	0.0034
	Дибензтиазолилдисульфид (
	Альтакс) (176)							
2704	Бензин (нефтяной,	0.6511	0.6511	0	0	0	0	0.6511
	малосернистый) /в							
	пересчете							
	на углерод/ (60)							
2732	Керосин (654*)	0.0546	0.0546	0	0	0	0	0.0546
2743	Смола легкая	0.0313	0.0313	0	0	0	0	0.0313
	высокоскоростного пиролиза							
2754	Алканы С12-19 /в пересчете	0.0037267	0.0037267	0	0	0	0	0.0037267
	на							
	Растворитель РПК-265П)							
	(10)							

104	

РАСЧЕТ ВЫБРОО	СОВ ЗАГРЯЗНЯІ	ОЩИХ ВЕЩЕС	ТВ В АТМОСФЕРУ

Расчет выбросов загрязняющих веществ в атмосферу от парогенератора № 1 (ист. № 0001).

Котлоагрегат, на природном газе (ист.выд. №001)

Для пароснабжения имеется 3 паровые котлоагрегат, GX 4000, одновременно в работе используется 1 котел (2-резервныт). Котел GX 4000 паропроизодительность - 6,8 т пара в час. Выбросы 3В от отопительного котла осуществляется через *трубу* высотой 12,0 м, диаметром 0,5 м.

Котлоагрегат предназначены для пароснабжения

Расход природного газа составляет:

(4651 kBt/4ac*860/8000/0,913) =

547,63 м.куб/час,

152,118 г/сек.

Максимальный расход топлива для пароснабжения по паспортным данным зависит от продолжительности работы котла и климатических условий данной местности (согласно "Справочнику по теплоснабжению и вентиляции" определяется по

 $Q=Q_{TO}*(t_{B.cp.-t_{B.cp.o_{II}}})*n_{I}/(t_{B.cp.-t_{II}})*Q*n,$ м³/год

где:

Ото-теплопотери здания (или теплопроизводительность котла для отопления в зимнее время)

3999860 ккал/час

tв.ср.-средняя внутренняя температура отапливаемых помещений; 20С

tв.ср.оп.-средняя температура отопительного периода (наружного воздуха C принимается по климатологии); -1,6C

n1- время работы котла;

8760

tп- температура наружного воздуха (средняя наиболее холодной пятидневки) -21 C (принимается по климатологии)

Qн-низшая теплота сгорания, ккал/м3

8000

п- КПД котельной установки

0,913

п- количество работающих котлов в котельной.

Q=2604003999860*(20-(-1,6)*8760/(20-(-21)*8000*0,913) =

2527307,155 м³/год

2527,31 тыс. м³/год

Время работы каждого котлоагрегата в зимний период –

365 дн/год,

24 час/сут,

8760 час/год.

Общий расход природного газа составляет согласно данным заказчика

1200,00 тыс. м³/год

В качестве топлива используется природный газ с низшей теплотой сгорания 8000 Ккал/кг, 33,52 МДж/м³, плотностью 0,758 кг/м³.

При сжигании природного газа в атмосферный воздух выбрасываются оксид углерода (0337), диоксид азота (0301), оксид азота (0304), бенз(а)пирен Расчёт выбросов оксида углерода выполняется по формуле:

M(CO) = 0.001 x B x Cco x (1-g4/100), т/год, г/сек;

B – расход топлива, тыс. M^3 /год;

1200,00

Ссо – выход оксида углерода при сжигании топлива кг/тыс. м³ топлива

 $Cco = q_3 * R* Q$

Q1 – теплота сгорания натурального топлива, МДж/м³

q₃ – потери теплоты вследствие механической неполноты сгорания топлива, %;

0,5

R – коэффициент, учитывающий долю потери тепла, вследствие химической неполноты сгорания топлива

0,5

Cco	q ₃	R	Q	
	0,5	0,5	33,52	8,38

Оксид углерода (0337)

		В	Cco	(1-q4/100)	Выброс	Ед.изм.
M(CO)	0,001	1200,00	8,38	1	10,056000	т/год
M'(CO)	0,001	152,118	8,38	1	1,274752	г/сек

Расчёт выбросов оксидов азота выполняется по формуле:

 $M(NO) = 0,001 \times B \times Q1 \times Kno \times (1-b)$ т/год, г/сек; где

В - расход топлива, тыс. $M^3/год$;

Q - теплота сгорания натурального топлива МДж/м³;

Кпо - параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла, кг/ГДж;

ь - коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических решений;

Окислы азота

		В	Q	Kno	(1-b)	Выброс	Ед. изм.
M(NO)	0,001	1200,00	33,52	0,08	1	3,217920	т/год
M'(NO)	0,001	152,118	33,52	0,08	1	0,407920	г/сек

Диоксид азота (80%)

2,574336 т/год

0,326336 г/сек

Оксид азота (13%)

0,418330 т/год

0,053030 г/сек

Максимальный разовый выбросов бенз(а)пирена выполняется по формуле:

$$M = B * Cбп * V_B / 1000 000, г/сек;$$

где:

Сбп – концентрация бенз(а)пирена в факеле, Сбп = 0.30 мгк/м^3 ;

 V_B – объем газовоздушной смеси от источника выброса, V_B = 0,98 M^3/cek ;

В – расход топлива, г/сек

Бенз(а)пирен (0703)

	Сбп	В	V3		Выброс	Ед. изм.
M	0,3	1,00	0,98	0,000001	0,000000294	г/сек

Валовый выброс бенз(а)пирен выполняется по формуле:

$$M* = 1.1 * 10^{-9} * Сби * Vr^1 * В, т/год$$

где:

$$V_{\Gamma}^{1} = V_{\Gamma}^{0} + 0.3 * V_{B} = 11.48 + 0.30 * 2.6=$$

11,774

В – годовой расход топлива,т/год

Бенз(а)пирен (0703)

			Сбп	V_{Γ}^{1}	В	Выброс	Ед. изм.
M*	1,1	1000000000	0,3	11,774	1200,00	0,000004663	т/год

Итого выбросы загрязняющих веществ от котлоагрегатов, работающих от природного газа (ист. выд. № 001)

Код загр.	Наименование	Выбросы		
в-ва	загрязняющего вещества	г/с	т/год	
337	Оксид углерода	1,274752	10,056000	
301	Диоксид азота	0,326336	2,574336	
304	Оксид азота	0,053030	0,418330	
703	Бенз(а)пирен	0,000000294	0,000004663	
		1,654118	13,048671	

Котлоагрегат при работе на дизельном топливе (ист. выд. № 002)

Расход д/ топлива составляет

543,00 кг/час

150,83

л/сек

120,00 т/год

В качестве топлива для работы котельной используется дизельное топливо с низшей теплотой сгорания 42,75 МДж/кг, зольностью 0,025 %,

Время работы котельной

30 дн/год

1 час/дн

30 час/год

При сжигании дизельного топлива в атмосферный воздух выделяются, углерод черный (сажа) (0328), сернистый ангидрид (0330), диоксид азота (0301), оксид азота (0304), оксид углерода (0337), бенз(а)пирен (0703).

Расчет выбросов сажи выполняется по формуле:

$$M_{TB} = B * A * X * (1 - п), т/год, г/сек$$

где:

В – расход топлива, т/год;

543,00 кг/час

150,83

г/сек

120,00

т/год

Ар – зольность топлива на рабочую массу, %;

п – доля твердых частиц, улавливаемых в золоуловителях;

 $X - Ayh/(100 - \Gamma yh)$, где Ayh - доля топлива в уносе, доля единиц.

Сажа (0328)

	В	A	X	(1-п)	Выброс	Ед. изм.
М(тв)	120,000	0,025	0,01	1	0,0300	т/год
M'(TB)	150,833	0,025	0,01	1	0,0377	г/сек

Расчёт выбросов сернистого ангидрида выполняется по формуле:

$$M(SO_2) = 0.02 * B_T * S^T * (1 - h') * (1 - h'') т/год, г/сек$$

где:

В - расход топлива, т/год;

S – содержание серы в топливе, 0,3 %;

п' – доля окислов серы, связанная летучей золой топлива;

n" – доля окислов серы, улавливаемых в золоуловителе.

Сернистый ангидрид (0330)

		В	S	(1 - h')	(1 - h")	Выброс	Ед. изм.
$M(SO_2)$	0,02	120,000	0,3	0,98	1	0,7056	т/год
$M'(SO_2)$	0,02	150,833	0,3	0,98	1	0,8869	г/сек

Расчёт выбросов оксида углерода выполняется по формуле:

$$M(CO) = 0.001 * B * Cco * (1-g_4/100), т/год, г/сек;$$

В - расход топлива, т/год;

Ссо – выход оксида углерода при сжигании топлива кг/т топлива

$$Cco = q_3 * R * Q$$

Q1 - теплота сгорания натурального топлива, МДж/м³,

Q1 =

42,75 МДж/м3;

 ${
m q}_3$ - потери теплоты вследствие химической неполноты сгорания топлива, %

R =	0.6°	
1.	0,0.	-

Ссо	q ₃	R	Q_1	
	0,5	0,65	42,75	13,894

Оксид углерода (0337)

		В	Ссо	$(1-q_4/100)$	Выброс	Ед. изм.
M(CO)	0,001	120,000	13,894	1	1,6673	т/год
M'(CO)	0,001	150,833	13,894	1	2,0956	г/сек

Расчет выбросов оксидов азота выполняется по формуле:

$$M(NO) = 0.001 * B * Q_1 * K_{no} * (1-b), т/год$$

где:

В - расход топлива;

 Q_1 — теплота сгорания натурального топлива;

 K_{no} – параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла;

b – коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических

Оксиды азота

		В	K _{no}	(1-b)	Q_1	Выброс	Ед. изм.
M(NO)	0,001	120,000	0,09	1	42,75	0,4617	т/год
M'(NO)	0,001	150,833	0,09	1	42,75	0,5803	г/сек
Диоксид	ц азота (80)%) –	0,3694	т/год;	0,4643	г/сек	
Оксид аз	вота (13%) —	0,0600	т/год;	0,0754	г/сек	

Максимальный разовый выбросов бенз(а)пирена выполняется по формуле:

$$M = Cбп * Vв * 0,000001, г/сек;$$

где:

Сбп – концентрация бенз(а)пирена в факеле,

$$C6\pi = 0.6$$

мкг/м3

для дизельного топлива, согласно «Справочника «Охрана атмосферного воздуха» Тищенко Н.Ф.;

 V_B – концентрация газовоздушной смеси от источника выброса, $V_B = 0.07854 \text{m}^3/\text{сек}$.

Бенз(а)пирен (0703)

	Сбп	V_B		Выброс	Ед. изм.
М _{зима}	0,6	0,087	0,000001	0,00000005	г/сек

Валовый выброс бенз(а)пирен выполняется по формуле:

$$M* = 1,1 * 10^{-9} * Сби * Vr^1 * В, т/год$$

где:

$$V_{\Gamma}^{1} = V_{\Gamma}^{0} + 0.6 * V_{B} = 11.48 + 0.6 * 0.07854 = 11.53 \text{ m}^{3}/\text{cek}$$

В – годовой расход топлива, т/год

Бенз(а)пирен (0703)

			Сбп	V_{Γ}^{1}	В	Выброс	Ед. изм.
М* _{зима}	1,1	1000000000	0,6	11,53	120	0,00000091	т/год

Итого выбросы загрязняющих веществ от котельной, при работе на дизельном топливе (ист. выд. № 002)

	Наименование ЗВ	Выбросы		
Код ЗВ	Паименование ЗВ	г/c	т/год	
0328	Углерод черный (сажа)	0,03771	0,03000	
0330	Сернистый ангидрид	0,88690	0,70560	
0337	Оксид углерода	2,0956	1,6673	
0301	Диоксид азота	0,4643	0,3694	
0304	Оксид азота	0,0754	0,0600	
0703	Бенз(а)пирен	0,00000005	0,000000913	
	Итого	3,5600	2,8322	

Итого выбросы загрязняющих веществ от котлоагрегатов (ист. № 0001)

Код загр. Наименование		Выбросы		
в-ва	загрязняющего вещества	г/с	т/год	
337	Оксид углерода	2,095641	11,723250	
301	Диоксид азота	0,464265	2,943696	
304	Оксид азота	0,075443	0,478351	

703	Бенз(а)пирен	0,000000294	0,000006
328	Сажа	0,037708	0,030000
330	Сернистый ангидрид	0,886900	0,705600
	Итого:	3,559957	15,880903

Расчет выбросов загрязняющих веществ в атмосферу от парогенератора № 2 (ист. № 0002).

Котлоагрегат, на природном газе (ист.выд. №001)

Для пароснабжения имеется 3 паровые котлоагрегат, GX 4000, одновременно в работе используется 1 котел (2-резервный). Котел GX 4000 паропроизодительность - 6,8 т пара в час. Выбросы 3В от отопительного котла осуществляется через *трубу* высотой 12,0 м, диаметром 0,5 м.

Котлоагрегат предназначены для пароснабжения

Расход природного газа составляет:

(4651 kBt/4ac*860/8000/0,913) =

547,63 м.куб/час,

152,118 г/сек.

Максимальный расход топлива для пароснабжения по паспортным данным зависит от продолжительности работы котла и климатических условий данной местности (согласно "Справочнику по теплоснабжению и вентиляции" определяется по формуле:

 $Q=Q_{TO}*(t_{B.cp.-t_{B.cp.o_{II.}}})*n_{I}/(t_{B.cp.-t_{II}})*Q*n, м^3/год$

где:

Ото-теплопотери здания (или теплопроизводительность котла для отопления в зимнее время) 3999860 ккал/час

tв.ср.-средняя внутренняя температура отапливаемых помещений; 20С

tв.ср.оп.-средняя температура отопительного периода (наружного воздуха C принимается по климатологии); -1,6C

n1- время работы котла;

8760

tп- температура наружного воздуха (средняя наиболее холодной пятидневки) -21 C (принимается по климатологии)

Он-низшая теплота сгорания, ккал/м3

8000

п- КПД котельной установки

0,913

п- количество работающих котлов в котельной.

Q=2604003999860*(20-(-1,6)*8760/(20-(-21)*8000*0,913) = 2527307,155 м³/год

2527,31 тыс. м³/год

Время работы каждого котлоагрегата в зимний период –

365 дн/год,

24 час/сут,

8760 час/год.

Общий расход природного газа составляет согласно данным заказчика

400,00 тыс. м³/год

В качестве топлива используется природный газ с низшей теплотой сгорания 8000 Ккал/кг, 33,52 МДж/м³, плотностью 0,758 кг/м³. При сжигании природного газа в атмосферный воздух выбрасываются оксид углерода (0337), диоксид азота (0301), оксид азота (0304), Расчёт выбросов оксида углерода выполняется по формуле:

M(CO) = 0,001 x B x Cco x (1-g4/100), т/год, г/сек;

B -расход топлива, тыс. $M^3/$ год;

1200,00

Ссо – выход оксида углерода при сжигании топлива кг/тыс. м³ топлива

$$Cco = q_3 * R* Q$$

Q1 – теплота сгорания натурального топлива, МДж/м³

 ${
m q}_{\ 3}$ – потери теплоты вследствие механической неполноты сгорания топлива, %;

0,5

R – коэффициент, учитывающий долю потери тепла, вследствие химической неполноты сгорания топлива

0,5

Cco	q ₃	R	Q	
	0,5	0,5	33,52	8,38

Оксид углерода (0337)

		В	Cco	(1-q4/100)	Выброс	Ед.изм.
M(CO)	0,001	1200,00	8,38	1	10,056000	т/год
M'(CO)	0,001	152,118	8,38	1	1,274752	г/сек

Расчёт выбросов оксидов азота выполняется по формуле:

M(NO) = 0,001 x B x Q1 x Kno x (1-b) т/год, г/сек; где

B - расход топлива, тыс. $M^3/$ год;

Q - теплота сгорания натурального топлива МДж/м³;

Кпо - параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла, кг/ГДж;

ь - коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических решений;

Окислы азота

		В	Q	Kno	(1-b)	Выброс	Ед. изм.
M(NO)	0,001	1200,00	33,52	0,08	1	3,217920	т/год
M'(NO)	0,001	152,118	33,52	0,08	1	0,407920	г/сек
_	(0.00.1)						

Диоксид азота (80%)

2,574336 т/год

0,326336 г/сек

Оксид азота (13%)

0,418330 т/год

0,053030 г/сек

Максимальный разовый выбросов бенз(а)пирена выполняется по формуле:

где:

Сбп – концентрация бенз(а)пирена в факеле, Сбп = 0.30 мгк/м^3 ;

 V_B – объем газовоздушной смеси от источника выброса, $V_B = 2.6 \text{ m}^3/\text{сек}$;

В – расход топлива, г/сек

Бенз(а)пирен (0703)

	Сбп	В	V3		Выброс	Ед. изм.
M	0,3	152,12	2,6	0,000001	0,000118652	г/сек

Валовый выброс бенз(а)пирен выполняется по формуле:

$$M* = 1,1 * 10^{-9} * Сбп * Vг^1 * В, т/год$$

где:

$$V_{\Gamma}^{1} = V_{\Gamma}^{0} + 0.3 * V_{B} = 11.48 + 0.30 * 2.6=$$

12,26

В – годовой расход топлива,т/год

Бенз(а)пирен (0703)

			Сбп	V_{Γ}^{1}	В	Выброс	Ед. изм.
M*	1,1	1000000000	0,3	12,26	1200,00	0,000004855	т/год

Итого выбросы загрязняющих веществ от котлоагрегатов, работающих от природного газа (ист. выд. № 001)

Код загр.	Наименование	Выбросы		
в-ва	загрязняющего вещества	г/с	т/год	
337	Оксид углерода	1,274752	10,056000	
301	Диоксид азота	0,326336	2,574336	
304	Оксид азота	0,053030	0,418330	
703	Бенз(а)пирен	0,000118652	0,000004855	
		1,654237	13,048671	

Котлоагрегат при работе на дизельном топливе (ист. выд. № 002)

Расход д/ топлива составляет

543,00 кг/час

150,83

л/сек

120,00 т/год

В качестве топлива для работы котельной используется дизельное топливо с низшей теплотой сгорания $42,75\,\mathrm{MДж/кг}$, зольностью $0,025\,\%$,

Время работы котельной

30 дн/год

1 час/дн

30 час/год

При сжигании дизельного топлива в атмосферный воздух выделяются, углерод черный (сажа) (0328), сернистый ангидрид (0330),

Расчет выбросов сажи выполняется по формуле:

Mтв = B * A * X * (1 - п), т/год, г/сек

где:

В – расход топлива, т/год;

543,00 кг/час

150,83

г/сек

120,00

т/год

Ар – зольность топлива на рабочую массу, %;

п – доля твердых частиц, улавливаемых в золоуловителях;

 $X - Ayh/(100 - \Gamma yh)$, где Ayh - доля топлива в уносе, доля единиц.

Сажа (0328)

	В	A	X	(1-п)	Выброс	Ед. изм.
М(тв)	120,000	0,025	0,01	1	0,0300	т/год
M'(TB)	150,833	0,025	0,01	1	0,0377	г/сек

Расчёт выбросов сернистого ангидрида выполняется по формуле:

$$M(SO_2) = 0.02 * B_T * S^T * (1 - h') * (1 - h'') т/год, г/сек$$

где:

В - расход топлива, т/год;

S – содержание серы в топливе, 0,3 %;

п' – доля окислов серы, связанная летучей золой топлива;

n" – доля окислов серы, улавливаемых в золоуловителе.

Сернистый ангидрид (0330)

		В	S	(1 - h')	(1 - h")	Выброс	Ед. изм.
$M(SO_2)$	0,02	120,000	0,3	0,98	1	0,7056	т/год
$M'(SO_2)$	0,02	150,833	0,3	0,98	1	0,8869	г/сек

Расчёт выбросов оксида углерода выполняется по формуле:

$$M(CO) = 0.001 * B * Cco * (1-g_4/100), т/год, г/сек;$$

В - расход топлива, т/год;

Ссо – выход оксида углерода при сжигании топлива кг/т топлива

$$\mathbf{Cco} = \mathbf{q_3} * \mathbf{R} * \mathbf{Q}$$

Q1 - теплота сгорания натурального топлива, МДж/м³,

$$Q1 =$$

42,75 МДж/м3;

q₃ - потери теплоты вследствие химической неполноты сгорания топлива, %

q3 = 0.5

R – коэффициент, учитывающий долю потери тепла, вследствие химической неполноты

R = 0.65

 q_4 – потеря теплоты в следствие неполноты сгорания топлива, %, q_4 = 0.

Ссо	q ₃	R	Q_1	
	0,5	0,65	42,75	13,894

Оксид углерода (0337)

		В	Cco	$(1-q_4/100)$	Выброс	Ед. изм.
M(CO)	0,001	120,000	13,894	1	1,6673	т/год
M'(CO)	0,001	150,833	13,894	1	2,0956	г/сек

Расчет выбросов оксидов азота выполняется по формуле:

$$M(NO) = 0.001 * B * Q_1 * K_{no} * (1-b), т/год$$

где:

В - расход топлива;

Q₁ – теплота сгорания натурального топлива;

 K_{no} – параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла;

b – коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических

Оксиды азота

		В	K_{no}	(1-b)	Q_1	Выброс	Ед. изм.
M(NO)	0,001	120,000	0,09	1	42,75	0,4617	т/год
M'(NO)	0,001	150,833	0,09	1	42,75	0,5803	г/сек
Диоксид азота (80%) –			0,3694	т/год;	0,4643	г/сек	
Оксид аз	вота (13%) —	0,0600	т/год;	0,0754	г/сек	

Максимальный разовый выбросов бенз(а)пирена выполняется по формуле:

$$M = Cбп * Vв * 0,000001, г/сек;$$

где:

Сбп – концентрация бенз(а)пирена в факеле,

$$C6\pi = 0.6$$

для дизельного топлива, согласно «Справочника «Охрана атмосферного воздуха» Тищенко Н.Ф.;

 V_B – концентрация газовоздушной смеси от источника выброса, $V_B = 0.07854 \text{m}^3/\text{сек}$.

Бенз(а)пирен (0703)

	Сбп	V_{B}		Выброс	Ед. изм.
М _{зима}	0,6	0,087	0,000001	0,00000005	г/сек

Валовый выброс бенз(а)пирен выполняется по формуле:

$$M* = 1,1 * 10^{-9} * Сбп * Vг^1 * В, т/год$$

где:

$$V_{\Gamma}^{1} = V_{\Gamma}^{0} + 0.6 * V_{B} = 11.48 + 0.6 * 0.07854 = 11.53 \text{ m}^{3}/\text{cek}$$

В – годовой расход топлива, т/год

Бенз(а)пирен (0703)

			Сбп	V_{Γ}^{1}	В	Выброс	Ед. изм.
М* зима	1,1	1000000000	0,6	11,53	120	0,00000091	т/год

Итого выбросы загрязняющих веществ от котельной, при работе на дизельном топливе (ист. выд. № 002)

	Наименование ЗВ	Выбросы		
Код ЗВ	Паименование ЗВ	г/с	т/год	
0328	Углерод черный (сажа)	0,03771	0,03000	
0330	Сернистый ангидрид	0,88690	0,70560	
0337	Оксид углерода	2,0956	1,6673	
0301	Диоксид азота	0,4643	0,3694	
0304	Оксид азота	0,0754	0,0600	
0703	Бенз(а)пирен	0,00000005	0,000000913	
	Итого	3,5600	2,8322	

Итого выбросы загрязняющих веществ от парогенератора № 2 (ист. № 0002)

Код загр.	Наименование	Выбросы		
в-ва	в-ва загрязняющего вещества		т/год	
337	Оксид углерода	2,095641	11,723250	

301	Диоксид азота	0,464265	2,943696
304	Оксид азота	0,075443	0,478351
703	Бенз(а)пирен	0,000119	0,000006
328	Сажа	0,037708	0,030000
330	Сернистый ангидрид	0,886900	0,705600
	Итого:	3,560076	15,880903

Расчет выбросов загрязняющих веществ в атмосферу от парогенератора № 3 (ист. № 0020).

Котлоагрегат, на природном газе (ист.выд. №001)

Для пароснабжения имеется 3 паровые котлоагрегата, GX 4000, одновременно в работе используется 1 котел (2-резервный). Котел GX 4000

Котлоагрегат предназначены для пароснабжения

Расход природного газа составляет:

(4651 kBt/4ac*860/8000/0,913) =

547,63 м.куб/час,

152,118 г/сек.

Максимальный расход топлива для пароснабжения по паспортным данным зависит от продолжительности работы котла и

 $Q=Q_{TO}*(t_B.cp.-t_B.cp.o_{\Pi}.)*n_{\Pi}/(t_B.cp.-t_{\Pi})*Q*n, м_{\Pi}/r_{\Pi}$

где:

Ото-теплопотери здания (или теплопроизводительность котла для отопления в зимнее время)

3999860 ккал/час

tв.ср.-средняя внутренняя температура отапливаемых помещений; 20С

tв.ср.оп.-средняя температура отопительного периода (наружного воздуха C принимается по климатологии); -1,6C

n1- время работы котла; 8760

tп- температура наружного воздуха (средняя наиболее холодной пятидневки) -21 C (принимается по климатологии)

Он-низшая теплота сгорания, ккал/м. 8000 п- КПД котельной установки 0,913

п- количество работающих котлов в котельной.

Q=2604003999860*(20-(-1,6)*8760/(20-(-21)*8000*0,913)

2527307,155 м³/год

2527,31 тыс. м³/год

Время работы каждого котлоагрегата в зимний период –

365 дн/год,

24 час/сут,

8760 час/год.

Общий расход природного газа составляет согласно данным заказчика

1200,00 тыс. м³/год

В качестве топлива используется природный газ с низшей теплотой сгорания 8000 Ккал/кг, 33,52 МДж/м³, плотностью 0,758 кг/м³. при сжигании природного газа в атмосферныи воздух выорасываются оксид углерода (0557), диоксид азота (0501), оксид азота (0504), оенз(а)пирен (0703)

Расчёт выбросов оксида углерода выполняется по формуле:

M(CO) = 0.001 x B x Cco x (1-g4/100), т/год, г/сек;

B – расход топлива, тыс. M^3 /год;

1200,00

Ссо – выход оксида углерода при сжигании топлива кг/тыс. м³ топлива

 $Cco = q_3 * R* Q$

Q1 – теплота сгорания натурального топлива, МДж/м³

q₃ – потери теплоты вследствие механической неполноты сгорания топлива, %;

Cco	q ₃	R	Q	
	0,5	0,5	33,52	8,38

Оксид углерода (0337)

		В	Cco	(1-q4/100)	Выброс	Ед.изм.
M(CO)	0,001	1200,00	8,38	1	10,056000	т/год
M'(CO)	0,001	152,118	8,38	1	1,274752	г/сек

Расчёт выбросов оксидов азота выполняется по формуле:

$$M(NO) = 0,001 x B x Q1 x Kno x (1-b) т/год, г/сек; где$$

В - расход топлива, тыс. $M^3/год$;

Q - теплота сгорания натурального топлива МДж/м³;

Кпо - параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла, кг/ГДж;

b - коэффициент, зависящий от степени снижения выбросов оксидов азота в результате применения технических решений;

Окислы азота

		В	Q	Kno	(1-b)	Выброс	Ед. изм.
M(NO)	0,001	1200,00	33,52	0,08	1	3,217920	т/год
M'(NO)	0,001	152,118	33,52	0,08	1	0,407920	г/сек

Диоксид азота (80%)

2,574336 т/год

0,326336 г/сек

Оксид азота (13%)

0,418330 т/год

0,053030 г/сек

Максимальный разовый выбросов бенз(а)пирена выполняется по формуле:

$$M = B * Cбп * V_B / 1000 000, г/сек;$$

где:

Сбп – концентрация бенз(а)пирена в факеле, Сбп = 0.30 мгк/м^3 ;

 V_B – объем газовоздушной смеси от источника выброса, $V_B = 2.6 \text{ m}^3/\text{сек}$;

B- расход топлива, г/сек

Бенз(а)пирен (0703)

	Сбп	В	V3		Выброс	Ед. изм.
M	0,3	152,12	2,6	0,000001	0,000118652	г/сек

Валовый выброс бенз(а)пирен выполняется по формуле:

$$M* = 1,1 * 10^{-9} * Сбп * Vг^1 * В, т/год$$

где:

$$V_{\Gamma}^{1} = V_{\Gamma}^{0} + 0.3 * V_{B} = 11.48 + 0.30 * 2.6 =$$

12,26

В – годовой расход топлива,т/год

Бенз(а)пирен (0703)

			Сбп	V_{Γ}^{1}	В	Выброс	Ед. изм.
M*	1,1	1000000000	0,3	12,26	1200,00	0,000004855	т/год

Итого выбросы загрязняющих веществ от котлоагрегатов, работающих от природного газа (ист. выд. № 001)

Код загр.	загрязняющего	загрязняющего Выбросы	
в-ва	вещества	г/с	т/год
337	Оксид углерода	1,274752	10,056000
301	Диоксид азота	0,326336	2,574336
304	Оксид азота	0,053030	0,418330
703	Бенз(а)пирен	0,000118652	0,000004855
		1,654237	13,048671

Котлоагрегат при работе на дизельном топливе (ист. выд. № 002)

Расход д/ топлива составляет $543,00~{\rm kr/чаc}$ 150,83 л/сек 120,00 т/год в качестве топлива для раооты котельной используется дизельное топливо с низшей теплотой сторания 42,73 мідж/кг, зольностью 0,023 %,

солевузнием севы 0 3 %

Время работы котельной 30 дн/год 1 час/дн 30 час/год при сжигании дизельного топлива в атмосферный воздух выделяются, углерод черный (сажа) (0528), сернистый ангидрид (0530), диоксид

220T2 (0301) оксил 220T2 (0304) оксил угленола (0337) Бецэ(а)пинец (0703)

Расчет выбросов сажи выполняется по формуле:

$$Mтв = B * A * X * (1 - п), т/год, г/сек$$

где:

В – расход топлива, т/год;

543,00 кг/час

150,83

г/сек

120,00

т/год

Ар – зольность топлива на рабочую массу, %;

п – доля твердых частиц, улавливаемых в золоуловителях;

 $X - Ayh/(100 - \Gamma yh)$, где Ayh - доля топлива в уносе, доля единиц.

Сажа (0328)

	В	A	X	(1-п)	Выброс	Ед. изм.
М(тв)	120,000	0,025	0,01	1	0,0300	т/год
M'(TB)	150,833	0,025	0,01	1	0,0377	г/сек

Расчёт выбросов сернистого ангидрида выполняется по формуле:

$$M(SO_2) = 0.02 * B_T * S^T * (1 - h') * (1 - h'') т/год, г/сек$$

где:

В - расход топлива, т/год;

S – содержание серы в топливе, 0,3 %;

n' – доля окислов серы, связанная летучей золой топлива;

n" – доля окислов серы, улавливаемых в золоуловителе.

Сернистый ангидрид (0330)

		В	S	(1 - h')	(1 - h")	Выброс	Ед. изм.
$M(SO_2)$	0,02	120,000	0,3	0,98	1	0,7056	т/год
$M'(SO_2)$	0,02	150,833	0,3	0,98	1	0,8869	г/сек

Расчёт выбросов оксида углерода выполняется по формуле:

$$M(CO) = 0.001 * B * Cco * (1-g_4/100), т/год, г/сек;$$

В - расход топлива, т/год;

Ссо – выход оксида углерода при сжигании топлива кг/т топлива

$$Cco = q_3 * R * Q$$

Q1 - теплота сгорания натурального топлива, МДж/м³,

Q1 =

42,75 МДж/м3;

 ${\bf q}_3\,$ - потери теплоты вследствие химической неполноты сгорания топлива, %

q3 = 0.5

топлива,

R = 0.65

 q_4 – потеря теплоты в следствие неполноты сгорания топлива, %, q_4 = 0.

Cco	q ₃	R	Q_1	
	0,5	0,65	42,75	13,894

Оксид углерода (0337)

		В	Cco	$(1-q_4/100)$	Выброс	Ед. изм.
M(CO)	0,001	120,000	13,894	1	1,6673	т/год
M'(CO)	0,001	150,833	13,894	1	2,0956	г/сек

Расчет выбросов оксидов азота выполняется по формуле:

$$M(NO) = 0.001 * B * Q_1 * K_{no} * (1-b), т/год$$

где:

В - расход топлива;

 Q_1 — теплота сгорания натурального топлива;

 K_{no} – параметр, характеризующий количество оксидов азота, образующихся на 1 ГДж тепла; решений;

Оксиды азота

		В	K _{no}	(1-b)	Q_1	Выброс	Ед. изм.
M(NO)	0,001	120,000	0,09	1	42,75	0,4617	т/год
M'(NO)	0,001	150,833	0,09	1	42,75	0,5803	г/сек
Диоксид	азота (80%	(o) –	0,3694	т/год;	0,4643	г/сек	
Оксид аз	ота (13%)	_	0,0600	т/год;	0,0754	г/сек	

Максимальный разовый выбросов бенз(а)пирена выполняется по формуле:

где:

Сбп – концентрация бенз(а)пирена в факеле,

$$C6\pi = 0.6$$

мкг/м3

для дизельного топлива, согласно «Справочника «Охрана атмосферного воздуха» Тищенко Н.Ф.;

 V_B – концентрация газовоздушной смеси от источника выброса, $V_B = 0.07854 \text{м}^3/\text{сек}$.

Бенз(а)пирен (0703)

	Сбп	VB		Выброс	Ед. изм.
$M_{_{3 \text{\tiny MM}} a}$	0,6	0,087	0,000001	0,00000005	г/сек

Валовый выброс бенз(а)пирен выполняется по формуле:

$$M* = 1,1 * 10^{-9} * Сбп * Vг^1 * В, т/год$$

где:

$$V_{\Gamma}^{1} = V_{\Gamma}^{0} + 0.6 * V_{B} = 11.48 + 0.6 * 0.07854 = 11.53 \text{ m}^{3}/\text{cek}$$

В – годовой расход топлива, т/год

Бенз(а)пирен (0703)

			Сбп	V_{Γ}^{1}	В	Выброс	Ед. изм.
М* _{зима}	1,1	1000000000	0,6	11,53	120	0,00000091	т/год

Итого выбросы загрязняющих веществ от котельной, при работе на дизельном топливе (ист. выд. № 002)

	Наименование ЗВ	Выбросы		
Код ЗВ	паименование зв	г/с	т/год	
0328	Углерод черный (сажа)	0,03771	0,03000	
0330	Сернистый ангидрид	0,88690	0,70560	
0337	Оксид углерода	2,0956	1,6673	
0301	Диоксид азота	0,4643	0,3694	
0304	Оксид азота	0,0754	0,0600	
0703	Бенз(а)пирен	0,00000005	0,000000913	
	Итого	3,5600	2,8322	

Итого выбросы загрязняющих веществ от котлоагрегатов (ист. № 0020)

Код загр.	загрязняющего	Выбросы		
в-ва	вещества	г/с	т/год	
337	Оксид углерода	2,095641	11,723250	
301	Диоксид азота	0,464265	2,943696	
304	Оксид азота	0,075443	0,478351	
703	Бенз(а)пирен	0,000119	0,000006	
328	Сажа	0,037708	0,030000	

	Итого:	3,560076	15,880903
330	Сернистый ангидрид	0,886900	0,705600

Расчет выбросов загрязняющих веществ от емкости для хранения дизельного топлива (ист. загр. № 0003)

Емкость для хранения дизтоплива (ист. выд. № 001)

Для хранения топлива на территории площадки установлена подземная емкость, объемом

Дизельное топливо, необходимое для работы котла, завозится автотранспортом

 Максимальный расчетный расход дизельного топлива составляет –
 120,00
 т/год
 142,857 м³/год

 Время хранения дизельного топлива –
 24
 час/сут, 365
 дн./год.
 8760 час/год,

 Производительность слива дизельного топлива составляет
 16
 м³

загрязняющими

Выброс загрязняющих веществ в атмосферу производится через дыхательный клапан высотой 3,0 м, диаметром 0,05 м.

Максимальные (разовые) выбросы из резервуаров рассчитываются по формуле:

$$Mp* = (Cp^{max} * Vcл)/t$$
, г/сек

где:

Vсл – объем слитого нефтепродукта (м³) из автоцистерны в резервуар;

 ${\rm Cp}^{\rm max}$ - максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров, в зависимости от их конструкции и климатической зоны, в которой расположено предприятие, ${\rm r/m}^3$ приложения 15-17 ${\rm t-cpe}$ днее время слива заданного объема (${\rm Vcn}$) нефтепродукта, ${\rm c.}$

Нефтепродукты

	Vсл	Cp ^{max}	T	Выброс	Ед. изм.
М* _{зима}	16	1,88	3600	0,0084	г/сек

Годовые выбросы (М) паров нефтепродуктов от резервуаров при закачке рассчитываются как сумма выбросов из резервуаров (Мзак) и выбросов от проливов нефтепродуктов на поверхность (Мпр.р.):

$$Mp = Mзак + Mпр.р$$

Значение Мзак вычисляется по формуле:

Мзак =
$$(Cp^{03} * Q_{03} + Cp^{B\pi} * Q_{B\pi})/1000\ 000$$
, т/год

где:

Ср^{оз}, Ср^{вл} – концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров в осенне-зимний и весенне-летний периоды соответственно, г/м³ приложение 15;

Qоз, Qвл – количество нефтепродуктов, закачиваемых в резервуары в течении осенне-зимнего и весенне-летнего периода года, M^3 /период.

	Cp ^{o3}	Qоз	Срвл	Qвл		Выброс	Ед. изм.
Мзак _(зима)	0,99	71,43	1,33	71,43	0,000001	0,000166	т/год

50 м3.

Значение Мпр.р. вычисляется по формуле:

Мпр.р =
$$0.5 * J * (Q_{03} + Q_{BЛ})/1000 000, т/год$$

где:

J – удельные выбросы при проливах, г/м 3 . Для дизельных топлив J =

		J	Qоз	Qвл		Выброс	Ед. изм.
Мпр.р.	0,5	50	71,43	71,43	0,000001	0,00357	т/год

Нефтепродукты

	Мзак	Мпр.р.	Выброс	Ед. изм.
$M_{\scriptscriptstyle 3 MMa}$	0,000166	0,00357	0,003737	т/год

Итого выбросов паров нефтепродуктов в атмосферу

Наименование	Выбросы	
3B	г/сек	т/год
Пары		
нефтепродуктов	0,0084	0,0037371

Для идентификации в выбросах индивидуальных углеводородов по их содержанию в поровой фазе используются данные непосредственных инструментальных определений массового состава выброса из Приложения 14.

Идентификация состава выброса

	Углеводороды			
Определяемый параметр	Предельные $C_{12} - C_{19}$	Непредельные	Ароматическ ие*	Сероводород
Сі мас %	99,72	_	_	0,28
М _і , г/сек	0,00833216	_	_	0,0000234
G _i , т/год	0,0037267	_	_	0,0000105

^{*} ароматические углеводороды (0,15) не учитываются в связи с отсутствием ПДК (условно отнесены к углеводородам предельным C12-C19).

Итого выбросы загрязняющих веществ при приме и хранении дизельного топлива (ист. выд. № 001)

		ВЫБРОСЫ	
Код ЗВ	Наименование ЗВ	г/с	т/год
2754	Алканы $C_{12} - C_{19}$	0,0083322	0,0037267
0333	Сероводород	0,0000234	0,0000105
	Итого	0,0083556	0,0037

50

Итого выбросы загрязняющих веществ при приме и хранении дизельного топлива (ист. загр. № 0003)

		ВЫБРОСЫ	
Код ЗВ	Наименование ЗВ	г/с	т/год
2754	Алканы $C_{12} - C_{19}$	0,0083322	0,0037267
0333	Сероводород	0,0000234	0,0000105
	Итого	0,0083556	0,0037

Расчет выбросов загрязняющих веществ от производства полуфабриката Wet-biue (ист. загр. № 6004)

Источник неорганизованный. Вытяжка общеобменная естественная через аэрационный фонарь на высоте 12,0 м.

Отмочно-зольный участок (ист. выд. № 001)

На данном участке происходит следующие виды работ: промывка, отмока, золение, сгонка волоса, мездрение, чистка лицевой поверхности голья, двоение голья, обеззоливание, мягчение голья, промывка и дубление.

Участок по переработк шкур рассчитан максимально на 4300 шкур КРС (средний вес одной шкуры 20 кг) в сутки.

Обработка шкур крупного рогатого сткота производится в барабанах дубления в водных растворах.

По данным фирмы "Erreci" при обработке 86 т/сутки шкур крупного рогатого скота ежесуточные выбросы вредных веществ в атмосферу цеха приведены в таблице

	Наименование вредных	Кол-во в	Количество	
№ пп	веществ	кг/сутки	кг/час	тах кг/час
1	2	3	4	5
1	Газ сероводород H2S	0,25	0,016	0,025
2	Аммиак	0,362	0,023	0,036
3	Серная кислота H2SO4	0,02	0,0013	0,002
4	Муравьиная кислота	0,187	0,012	0,019
5	Хром (3+) трехвалентный	0,01	0,0006	0,0013

Выше указанные значения выбросов вредных веществ относятся к операциям, проводящимся в барабаннах дубления, оснащенных вытяжными устройствами.

Секундный и валовый выброс вредных веществ составляется:

Газ сероводород H2S

Mcek = 0.025*1000/3600 =	0,006944 г/сек
Mгод= $0,25/1000*365$ дн=	0,091250 т/год

Аммиак

$$M$$
сек= $0.036*1000/3600 = 0.010000 г/сек M год= $0.362/1000*365$ дн = 0.132130 т/год$

Серная кислота H2SO4

Mcek = 0.002*1000/3600 =	0,000556 г/сек
Mгод= $0.02/1000*365$ дн=	0,007300 т/год

Муравьиная кислота

Mcek = 0.019*1000/3600 =	0,005278 г/сек
Mгод= $0.187/1000*365$ дн=	0,068255 т/год

Хром (3+) трехвалентный

Mcek = 0.002*1000/3600 = 0.000361 г/cekMroд = 0.02/1000*365дH = 0.000219 т/год

При промывке, отмоке, золении, сгонке волос, мездрении, чистке лицевой поверхности голья, двоении голья, обеззоливании, мягчении гольяи промывке происходит выброс аммиака в количестве от $5-40 \text{ мг/м}^3$ при температуре $20-25^0\text{C}$

В атмосферу выбрасывается аммиак:

Аммиак

Mсек= 41400*(20-0)/(3600*100)= 0,230000 г/сек Mгод=0,5*0,23*365*24 = 3,626640 т/год

41400 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от производства полуфабриката Wet-biue (ист. загр. № 6004)

Код ЗЕ	Наименование ЗВ	ВЫЫ	ВЫБРОСЫ	
ход эг		г/с	т/год	
	Газ сероводород H2S	0,006944	0,091250	
	Аммиак	0,240000	3,758770	
	Серная кислота H2SO4	0,000556	0,007300	
	Муравьиная кислота	0,005278	0,068255	
	Хром (3+) трехвалентный	0,000361	0,000219	
	ИТОГО:	0,253139	3,925794	

Расчет выбросов загрязняющих веществ от производства полуфабриката Wet-biue (ист. загр. № 6005)

Отмочно-зольный участок, растирание химикатов (ист. выд. № 001)

Источник неорганизованный, выброс пыли через аэрационный фонарь

При растаривании химикатов выбрасываются взвешенные частицы (пыль химикатов).

Уд. количество взвешенных веществ при ручном растаривании составляет 0,1 кг/т (применительно к песку).

Пыль в основном оседает внутри цеха (90%) -

=

 $0,1 \text{ K}\Gamma/T$

Количество химикатов, расходуемых в сутки для обработки -

7,424658 т

Количество химикатов, расходуемых в год для обработки -

2710 т

 $Mce_K = 0.1*7.424658*1000/24/3600*0.1 =$

0,000859 г/сек

Mгод=0,1*2710/1000*0,1=

0,0271 т/год

Итого выбросы загрязняющих веществ от производства полуфабриката Wet-biue (ист. загр. № 6005)

Кол 3B	Наименование ЗВ	ВЫБРОСЫ	
Код ЗВ	паименование зв	г/с	т/год
2902	Взвещенные частицы	0,000859	0,027100
	ИТОГО:	0,000859	0,027100

Расчет выбросов загрязняющих веществ от производства полуфабриката CRUST (ист. загр. № 6006)

Красильно-жировальное отделение отделочного цеха (ист. выд. № 001)

На данном участке происходит следующие виды работ: крашение, жирование и наполнение. При работе данного участка происходит выброс аммиака в количестве от $5-20 \text{ мг/м}^3$ при температуре $45-50^0$ C

В атмосферу выбрасывается аммиак:

Аммиак

$$Mcek = 4000*(10-0)/(3600*100) = 0,0111111 г/сек$$

 $Mroд = 0,5*0,0111*365*24 = 0,175200 т/год$

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от производства полуфабриката CRUST (ист. загр. № 6006)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
	Аммиак	0,011111	0,175200
	ИТОГО:	0,011111	0,175200

Расчет выбросов загрязняющих веществ от производства полуфабриката CRUST (ист. загр. № 6007

Красительно-жировальное отделение, растирание химикатов (ист. выд. № 001)

Источник неорганизованный, выброс пыли через аэрационный фонарь

При растаривании химикатов выбрасываются взвешенные частицы (пыль химикатов).

Уд. количество взвешенных веществ при ручном растаривании составляет 0,1 кг/т (применительно к песку).

Пыль в основном оседает внутри цеха (90%) -

0,1 кг/т

Количество химикатов, расходуемых в сутки для обработки -

0,59 т

Количество химикатов, расходуемых в год для обработки -

216,6 т

MceK = 0.1*0.59*1000/24/3600*0.1 =

0,000068 г/сек

Mгод=0,1*216,6/1000*0,1=

0,002166 т/год

Итого выбросы загрязняющих веществ от производства полуфабриката CRUST (ист. загр. № 6007)

Код ЗВ	ВВ Наименование ЗВ	ВЫБРОСЫ	
код зв		г/с	т/год
2902	Взвещенные частицы	0,000068	0,002166
	ИТОГО:	0,000068	0,002166

Расчет выбросов загрязняющих веществ от производственного корпуса (ист. загр. № 6008)

сушильное отделение (ист. выд. № 001)

При работе данного участка происходит выброс аммиака в количестве от $5-20 \text{ мг/м}^3$ при температуре $60-70^0 \text{C}$

В атмосферу выбрасывается аммиак:

Аммиак

$$Mcek= 2000*(10-0)/(3600*100)= 0,005556 г/cek$$
 $Mrog=0,5*0,0056*365*24 = 0,087600 т/год$

2000 - расход удаляемого воздуха, м³/час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от производственного куопуса (ист. загр. № 6008)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
	Аммиак	0,005556	0,087600
	ИТОГО:	0,005556	0,087600

Расчет выбросов загрязняющих веществ от производственного цеха (ист. загр. № 6009)

Отделение механической обработки полуфабриката (ист. выд. № 001)

При работе отделочной шлифовальной машины происходит выброс пыли меховой (органической) в количестве от 1-10 мг/м³

Машина оснащена вытяжным устройством с очисткой воздуха в многослойных тканевых фильтрах (кэф= 99%), которые установлены в закрытом помещении с северной стороны производственного корпуса.

В атмосферу выбрасывается пыль меховая:

Аммиак

Mcek = 14000*10-0.01/(3600*1000) = 0,000389 г/секMгод = 00,0004*365*24*3600/1000000 = 0,012264 т/год

14000 - расход удаляемого воздуха, м 3 /час

Итого выбросы загрязняющих веществ от производствиного цеха (ист. загр. № 6009)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
	пыль меховая	0,000389	0,012264
	ИТОГО:	0,000389	0,012264

Расчет выбросов загрязняющих веществ от производственного цеха (ист. загр. № 6010)

Участок хранения серной кислоты (ист. выд. № 001)

При отсуствии необходимых данных используются результаты натуральных исследований на аналогичных объектов или данных, полученных путем расчетов.

Мощности выбросов определены по расходу воздуха, удаляемого общеобменной вентиляцией и ПДК в рабочей зоне по измененной (при нулевом расходе воздуха, удаляемого местными отсосами Lwz):

$$L=mpo/(g1-gin), m^3/q$$

где:

 ${f L}$ - расход удаляемого воздуха, м $^3/{f q}$;

тро - расход каждого из вредного вещества, поступающих в воздух помещения, мг/ч;

g и gin - концентрация вредного вещества в рабочей зоне и в приточном воздухе, соотвественно, мг/м³

Мощность выброса в г/с определяется формулой:

$$Mce\kappa = mpo/(g1-gin)/(3600*1000)$$

Выбросы т/год определяются формулой:

где:

К - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне;

N - количество рабочих суток в год;

Т - продолжительность работы источника выброса, час/сут

В атмосферу выбрасывается серной кислоты:

в секунду

$$Mcek = 1210*(1-0)/(3600*1000) = 0,0003361 г/сек$$

в год

$$M$$
год=0,5*0,0003*365*24*3600/1000000= 0,005521 т/год

Итого выбросы загрязняющих веществ от производствиного цеха (ист. загр. № 6010)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
	серная кислота	0,000336	0,005521
	ИТОГО:	0,000336	0,005521

Расчет выбросов загрязняющих веществ от цеха финишной обработки кож (ист. загр. № 0021)

Нанесение покрывной краски (ист. выд. № 001)

На данном участке происходит следующие виды работ: крашение, жирование и наполнение. При работе данного участка происходит выброс аммиака в количестве от $5-15 \text{ мг/м}^3$ при температуре $45-50^{0}\text{C}$

285

Время работы

8

час/дн

дн/год

2280

час/год

В атмосферу выбрасывается аммиак:

Аммиак (0303)

Mceκ= 4000*(5-0)/(3600*100)=

0,005556 г/сек

Mгод=0,5*0,005556*2280 =

0,022800 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Взвешенные частицы (2902)

концентрация - $50-55 \text{ мг/ м}^3$

Mcek = 4000*(50-0)/(3600*100) =

0,055556 г/сек

M = 0.5*0.055556*2280 =

0,228000 т/год

4000 - расход удаляемого воздуха, м³/час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутилакрилат (1206)

концентрация - 0.5-3.0 мг/ м³

Mcek = 4000*(0.5-0)/(3600*100) =

0,000556 г/сек

Мгол=0.5*0.000556*2280 =

0,002280 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от нанесения покрывной краски (ист. выд.. № 001)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
303	Аммиак	0,005556	0,022800
2902	взвешенные частицы	0,055556	0,228000
1206	Бутилакрилат	0,000556	0,002280
	ИТОГО:	0,005556	0,022800

Первое закрепление покрытия на коже (ист. выд. № 002)

В атмосферу выбрасывается:

Формальдегид (1325)

концентрация - 0,3-5,6 мг/ м³

Mсек= 4000*(0,3-0)/(3600*100)= 0,000333 г/сек Mгод=0,5*0,000333*2280= 0,001368 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Взвешенные частицы (2902)

концентрация -3,0-20,0 мг/ м³

Mсек= 4000*(3,0-0)/(3600*100)= 0,003333 г/сек Mгод=0,5*0,003333*2280= 0,013680 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Циклогексанол (1411)

концентрация - $20-60 \text{ мг/ м}^3$

Mсек= 4000*(60-0)/(3600*100)= 0,066667 г/сек Mгод=0,5*0,066667*2280 = 0,273600 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутанол (1288)

концентрация - $250-300 \text{ мг/ м}^3$

Mcek = 4000*(250-0)/(3600*100) = 0,277778 г/секMrog = 0,5*0,277778*2280 = 1,140000 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Этанол (1061)

концентрация - $200-500 \text{ мг/ м}^3$

Mсек= 4000*(200-0)/(3600*100)= 0,222222 г/сек Mгод=0,5*0,2222*2280 = 0,912000 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутилацетат (1210)

концентрация - 290-390 мг/ м³

Mсек= 4000*(290-0)/(3600*100)= 0,322222 г/сек Mгод=0,5*0,32222*2280 = 1,322400 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Ксилол (0616)

концентрация - $10-60 \text{ мг/ м}^3$

Mcek = 4000*(40-0)/(3600*100) = 0,044444г/сек Mrog = 0,5*0,0444*2280 = 0,182400т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Толуол (0621)

концентрация $-5-100 \text{ мг/ м}^3$

Mсек= 4000*(50)/(3600*100)= 0,005556 г/сек Mгод=0,5*0,00556*2280 = 0,022800 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от первого закрепления покрытия (ист. выд.. № 002)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
1325	формальдегид	0,000333	0,001368
2902	взвешенные частицы	0,003333	0,013680
1411	циклогексанол	0,066667	0,273600
1288	бутанол	0,277778	1,140000
1061	этанол	0,222222	0,912000
1210	бутилацетат	0,322222	1,322400
616	ксилол	0,044444	0,182400
621	толуол	0,005556	0,022800
	ИТОГО:	0,942556	3,868248

Второе закрепление покрытия на коже (ист. выд. № 003)

В атмосферу выбрасывается:

Формальдегид (1325)

концентрация -0.3-5.6 мг/ м³

Mcek = 4000*(0,3-0)/(3600*100) = 0,006222 г/сек Mrog = 0,5*0,006222*2280 = 0,025536 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Взвешенные частицы (2902)

концентрация -3,0-20,0 мг/ м³

 $Mcek = 4000*(20-0)/(3600*100) = 0,000333 \ г/cek$ $Mrog = 0,5*0,000333*2280 = 0,001368 \ т/год$

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Циклогексанол (1411)

концентрация - $20-60 \text{ мг/ м}^3$

Mсек= 4000*(20-0)/(3600*100)= 0,022222 г/сек Mгод=0,5*0,0222*2280= 0,091200 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутанол (1288)

концентрация - $250-300 \text{ мг/ м}^3$

Mсек= 4000*(250-0)/(3600*100)= 0,277778 г/сек Mгод=0,5*0,277778*2280 = 1,140000 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Этанол (1061)

концентрация - $200-500 \text{ мг/ м}^3$

Mсек= 4000*(200-0)/(3600*100)= 0,222222 г/сек Mгод=0,5*0,2222*2280 = 0,912000 т/год

4000 - расход удаляемого воздуха, м³/час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутилацетат (1210)

концентрация - 290-390 мг/ м^3

Mcek = 4000*(290-0)/(3600*100) = 0,322222 г/сек Mroд = 0,5*0,32222*2280 = 1,322400 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Ксилол (0616)

концентрация - $10-60 \text{ мг/ м}^3$

Mсек= 4000*(10-0)/(3600*100)= 0,011111 г/сек Mгод=0,5*0,0111*2280 = 0,045600 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Толуол (0621)

концентрация $-5-100 \text{ мг/ м}^3$

Mcek = 4000*(5-0)/(3600*100) = 0,005556 г/cekMroд = 0,5*0,005556*2280 = 0,022800 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от второго закрепления покрытия (ист. выд.. № 003)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
1325	формальдегид	0,006222	0,025536
2902	взвешенные частицы	0,000333	0,001368
1411	циклогексанол	0,022222	0,091200
1288	бутанол	0,277778	1,140000
1061	этанол	0,222222	0,912000
1210	бутилацетат	0,322222	1,322400
616	ксилол	0,011111	0,045600
621	толуол	0,005556	0,022800

ИТОГО: 0,867667 3,560904

Нанесение пигментированного покрытия и сушка (ист. выд. № 004)

В атмосферу выбрасывается:

Циклогексанол (1411)

концентрация - $10-100 \text{ мг/ м}^3$

Mсек= 4000*(10-0)/(3600*100)= 0,011111 г/сек Mгод=0,5*0,0111*2280 = 0,045600 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутилацетат (1210)

концентрация $-10-250 \text{ мг/ м}^3$

Mсек= 4000*(10-0)/(3600*100)= 0,011111 г/сек Mгод=0,5*0,0111*2280 = 0,045600 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от нанесения пигментированного грунта и сушка (ист. выд.. № 004)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ	
		г/с	т/год
1411	циклогексанол	0,011111	0,045600
1210	бутилацетат	0,011111	0,045600
	ИТОГО:	0,022222	0,091200

Нанесение полиуретанового покрытия и сушка (ист. выд. № 005)

В атмосферу выбрасывается:

Циклогексанол (1411)

концентрация - $10-100 \text{ мг/ м}^3$

Mсек= 4000*(10-0)/(3600*100)= 0,011111 г/сек Mгод=0,5*0,0111*2280 = 0,045600 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутилацетат (1210)

концентрация $-10-250 \text{ мг/ м}^3$

Mсек= 4000*(10-0)/(3600*100)= 0,011111 г/сек Mгод=0,5*0,0111*2280= 0,045600 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от нанесения полиуретанового покрытия и сушка (ист. выд.. № 004)

итого:		0,022222	0,091200	
1210	1210 бутилацетат		0,045600	
1411	циклогексанол	0,011111	0,045600	
код зв	Паименование ЭБ	г/с	т/год	
Код ЗВ	Наименование ЗВ	ВЫБРОСЫ		

Нанесение пропитывающего грунта (ист. выд. № 006)

В атмосферу выбрасывается:

Аммиак (0303)

концентрация - 0.3-6.0мг/ м³

 $Mcek = 4000*(0,3-0)/(3600*100) = 0,000333 \ г/cek$ $Mrog = 0,5*0,000333*2280 = 0,001368 \ т/год$

4000 - расход удаляемого воздуха, м³/час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Акролеин (1301)

концентрация -1,0-6,0мг/ M^3

Mсек= 4000*(1,0-0)/(3600*100)= 0,001111 г/сек Mгод=0,5*0,00111*2280 = 0,004560 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от нанесения полиуретанового покрытия и сушка (ист. выд.. № 006)

	акролеин	0,000333	0,001368	
	аммиак	0,000333	,	
Код ЭБ	таимснование зв	г/с	т/год	
Код ЗВ	Наименование ЗВ	ВЫБРОСЫ		

Нанесение пигментированного грунта, подсушка, прессование, нанесение покрытий, сушка (ист. выд. № 007)

В атмосферу выбрасывается:

Взвешенные частицы (2902)

концентрация -3,0-20,0 мг/ м³

 $Mсек = 4000*(3-0)/(3600*100) = 0,003333 \ г/сек$ $Mгод = 0,5*0,003333*2280 = 0,013680 \ т/год$

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Акролеин (1301)

концентрация - 1,0-4,0 мг/ м^3

Mcek = 4000*(1-0)/(3600*100) = 0,001111 г/cek Mrog = 0,5*0,00111*2280 = 0,004560 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Метилакрилат (1225)

концентрация -0.5-2.0мг/ м³

Mсек= 4000*(0,5-0)/(3600*100)= 0,000556 г/сек Mгод=0,5*0,000556*2280 = 0,002280 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ от нанесения пигментированного покрытия, подсушки, прессование, нанесения покрытий, сушка (ист. выд.. N 007)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ		
	Паименование ЭБ	г/с	т/год	
2902 взвешенные частицы		0,003333	0,013680	

1223	ИТОГО:	0,005000	· · · · · · · · · · · · · · · · · · ·
1225	метилакрилат	0,000556	0,002280
1301	акролеин	0,001111	0,004560

Закрепление покрытий на коже (ист. выд. № 008)

В атмосферу выбрасывается:

Взвешенные частицы (2902)

концентрация $-2,0-10,0 \text{ мг/ м}^3$

Mcek = 4000*(2-0)/(3600*100) = 0,002222 г/сеk Mroд = 0,5*0,00222*2280 = 0,009120 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Циклогексанол (1411)

концентрация - 5-50 мг/ 3

Mсек= 4000*(5-0)/(3600*100)= 0,005556 г/сек Mгод=0,5*0,005556*2280 = 0,022800 т/год

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутанол (1288)

концентрация - $50-200 \text{ мг/ м}^3$

 $Mcek = 4000*(50-0)/(3600*100) = 0,055556 \ г/cek$ $Mrog = 0,5*0,05556*2280 = 0,228000 \ т/год$

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Бутилацетат (1210)

концентрация - $50-200 \text{ мг/ м}^3$

 $Mcek = 4000*(5-0)/(3600*100) = 0,005556 \ г/cek$ $Mrog = 0,5*0,00556*2280 = 0,022800 \ т/год$

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Толуол (0621)

концентрация $-5-100 \text{ мг/ м}^3$

 $Mcek = 4000*(5-0)/(3600*100) = 0,005556 \ г/cek$ $Mrog = 0,5*0,00556*2280 = 0,022800 \ т/год$

4000 - расход удаляемого воздуха, м 3 /час

0,5 - понижающий коэффициент, учитывающий среднегодовую концентрацию вредного вещества в рабочей зоне

Итого выбросы загрязняющих веществ при закреплении покрытий на коже (ист. выд.. № 008)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ		
код зв	Паименование ЭБ	г/с	т/год	
2902	взвешенные частицы	0,002222	0,009120	
1411	циклогексанол	0,005556	0,022800	
1288	бутанол	0,055556	0,228000	
1210	бутилацетат	0,005556	0,022800	
621	толуол	0,005556	0,022800	
	ИТОГО:	0,074444	0,305520	

Итого выбросы загрязняющих веществ от цеха финишной обработки кожи (ист. загр.. № 0021)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ		
код зв	Паименование 3В	г/с	т/год	
303	аммиак	0,005889	0,024168	
1325	формальдегид	0,006556	0,026904	
1206	бутилакрилат	0,000556	0,002280	
2902	взвешенные частицы	0,064778	0,265848	
1411	циклогексанол	0,116667	0,478800	
1288	бутанол	0,611111	2,508000	
1061	этанол	0,444444	1,824000	
1210	бутилацетат	0,672222	2,758800	
616	ксилол	0,055556	0,228000	
621	толуол	0,016667	0,068400	
1301	акролеин	0,002222	0,009120	
1225	метилакрилат	0,000556	0,002280	
	ИТОГО:	1,997222	8,196600	

Расчет выбросов загрязняющих веществ от раскройного - штамповочного цеха (ист. № 0022)

В раскройно цехе осуществляется начальный этап производственного процесса, где обувные материалы подвергаются раскрою на раскрой-прессах гидравлического действия. Используются обувные материалы: натуральная кожа, искусственная кожа, жесткая кожа из шкур КРС, также текстиль, подкладочные материалы, мех, картон, термопластичные материалы для задников и подносков. Раскроенные детали проходят ряд операций по их обработке на оборудовании типа «Фортуна». После раскроя деталей остаютс ямежмодельные и краевые отходы в количестве 15- 20% от общего количеств аобрабатываемого материала. Раскроенные детали обуви передаются в заготовочный цех, где происходит сборка деталей.

При проведении работ от закройного цеха в атмосферный воздух выделяется взвешенные вещества (2902).

Выброс загрязняющих веществ от раскройно-штамповочного цеха осуществляется через трубу высотой 4,5 м и диаметром 0,4

Раскрой кожи (ист. выд. №001)

Максимально разовый выброс в процессе раскроя кожи рассчитывается по формуле

Qi=qi*V/1000, г/сек.

qі - показатели удельных выбросов і-го загрязняющего вещества на единицу, мг/м3

V = 5.5

Взвешенные вещества (2902)

 $qi = 0.5 \text{ M}\Gamma/\text{M}3$

Qi = 0.00275 r/cek

согласно инструментальным замерам

0,1237 r/c

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле:

G=Qi*T / 3600, т/год

Т = годовой фонд времяни, час/год

2080 час/год

Взвешенные вещества (2902)

G = 0,0715 т/год

Итого выбросов загрязняющих веществ при проведении работ в закройном цехе (ист. выд. №001)

	Итого		0,1237	0,0715	
2902	Взв	Взвешенные вещества		0,1237	0,07147
в-ва	вещества				
Код загр	Наименова	Наименование загрязняющего			т/год

Расчет выбросов загрязняющих веществ от штамповочного цеха

Виды работ провдимые в штамповочном цехе соглано данным заказчика:

- 1. приемка материалов: картон, кожкартон, термопласт, клей;
- 2. составление заланий:
- 3. выписка карт;
- 4. подборка приоизводственной карты;
- 5. транспортировка материалов и изделий;
- 6. раскрой материалов на вырубном прессе;
- 7. обработка изделий на спец. оборудований;
- 8. сборка деталей низа при помощи клея;
- 9. отстрачивание изделий на швейной машине;
- 10. формирование на пресс машине;
- 11. учет, комплектование и передача готовых изделий.

При проведении работ в штамповочном цехе в атмосферный воздух выделяется наирит НТ (2978), смола (2743), альтакс (2406), магнезия жженая (0138), аэросил (0373), канифоль (2726), стеарат Са (0258), этилацетат (1240), бензин (2704), керосин (2732).

В штамповочном цехе используются следующие виды сырья (расход согласно данным заказчика предоставлен на одну пару обуви):

Наименование веществ	расходы	ед.м.
клей луч ПХК 2051(неритовый)	0,03000	КГ

Использование клея ПХК 2051 (неритовый) (ист.выд №002)

Время работы использования клея 8 час/день, 260 день/год 2080 час/год.

Клей используется для склеивания заготовок.

Согласно данным заказчика данный клей является аналогм клея "Рапид-3" (удельные взяты соглано Методике расчета выбросов загрязняющих веществ в

Годовой расход клея –

5,85 т/год

2,8125 кг/час

Время работы

8 час/день

260 дн/год

2080 час/год

Максимально разовый выброс в применении клея рассчитывается по формуле

М = Вчас * 1000/3600, г/сек

	Вчас			Выброс	ед.изм
M	2,8125	1000	3600	0,7813	г/сек

где,

Вчас - расход краски, кг/час

Валовый выброс i-того загрязняющего вещества рассчитывается по формуле в соответствии Методике расчета выбросов вредных G=Q*Kk*0,001, $\tau/\Gamma o \chi$

где, Q - количество расходуемых материалов, т/год

Кк - содержание каждого вещества в летучей части расходемого материала, % (доля единицы);

Наирит НТ

	Q	Кк		Выброс	Ед. изм.
M	5,85	16,55	0,001	0,0968	т/год

Смола инден - кумароновая

	Q	Кк		Выброс	Ед. изм.
M	5,85		0,001	0,0145	т/год

Альтакс

	Q	Кк		Выброс	Ед. изм.
M	5,85	0,33	0,001	0,0019	т/год

Смола 101К

	Q	Кк		Выброс	Ед. изм.
M	5,85	0,50	0,001	0,0029	т/год

Магнезия жженая

	Q	Кк		Выброс	Ед. изм.
M	5,85	0,33	0,001	0,0019	т/год

Аэросил

	Q	Кк		Выброс	Ед. изм.
M	5,85	1,16	0,001	0,0068	т/год

Канифоль

	Q	Кк		Выброс	Ед. изм.
M	5,85	0,66	0,001	0,0039	т/год

Стеарат Са

	•				
	Q	Кк		Выброс	Ед. изм.
M	5,85	0,16	0,001	0,0009	т/год

Этилацетат

	Q	Кк		Выброс	Ед. изм.
M	5,85	38,50	0,001	0,2252	т/год

Бензин

	Q	Кк		Выброс	Ед. изм.
M	5,85	38,50	0,001	0,2252	т/год

Согласно Методике расчета выбросов вредных веществ в атмосферу для предприятий бытового обслуживания, Алматы 2004 год состав клея

2 смола инден-кумароновая 2, 3 смола 101 К 0,	
2 смола инден-кумароновая 2, 3 смола 101 К 0,	
3 смола 101 К 0,	55%
	48%
4 альтакс 0,	50%
	33%
5 магнезия жженая 0,	33%
6 аэросил 1,	16%
7 канифоль 0,	66%
8 стеарат Ca 0,	16%
9 этилацетат 38,	50%
10 бензин 38,	50%

Итого выбросов загрязняющих веществ (идентификация состава выбросов) (ист. выд. №002).

1240 2704	этилацетат бензин	0,300781 0,300781	0,2252 0,2252
258	стеарат Са	0,00125	0,0009
2726	канифоль	0,005156	0,0039
373	аэросил	0,009063	0,0068
138	магнезия жженая	0,002578	0,0019
2406	альтакс	0,002578	0,0019
2743	смола 101 К	0,003906	0,0029
2743	смола инден-кумароновая	0,019375	0,0145
2978	наирит НТ	0,129297	0,0968
ва	енование загрязняющих ве	М, г/сек	Мгод, т/год
Код в-		Выб	брос

Итого загрязняющих веществ от раскройно-штамповочного цеха (ист. загр. №0022)

Код загр	Наименование	г/сек	т/год
в-ва	загрязняющего вещества		
2978	наирит НТ	0,1293	0,0968
2743	смола	0,0233	0,0174
2406	альтакс	0,0026	0,0019
0138	магнезия жженая	0,0026	0,0019
0373	аэросил	0,009063	0,006786
2726	канифоль	0,005156	0,003861
0258	стеарат Са	0,00125	0,000936
1240	этилацетат	0,3008	0,2252
2704	бензин	0,3008	0,2252
2902	взвешенные частицы	0,1237	0,0715
	Итого	0,8985	0,6516

Расчет выбросов загрязняющих веществ от заготовочного цеха (ист. № 0023)

В обуви (чулок) посредством ниточных и клеевых швов. В заготовочном цехе производится сборка деталей кроя в узлы

обуви и в заготовку единицы технологического оборудования: швейные машины различных типов,оборудование «Фортуна» с пылесборниками. Часть операций, в том числе клеенамазочные, выполняются вручную. Организация труда в цехе поточная,оборудование скомпоновано вокруг конвейерной линии. Конвейер является средством транспортировки деталей обуви, в цехе используются 2 конвейера. Укомплектованные согласно заказа, заготовки передаются по технологической цепочке в затяжной цех.

Время работы – 8 час/день, 260 дней в год, 2080 дней в год. Расчет ВВ произведен по "Инструкции по контролю установленных отрасли Минлегрома СССР" величин ПДВ и инвентаризации источников выбросов в атмосферу на предприятиях шерстяной.

При проведении работ от заготовочном цеха в атмосферный воздух выделяется наирит НТ (2978), смола (2743), альтакс (2406), магнезия жженая (0138), аэросил (0373), канифоль (2726), стеарат Са (0258), этилацетат (1240), бензин (2704), керосин (2732), взвешенные вещества (2902), каучук (2978), этенилацетат (1213).

Выброс загрязняющих веществ при проведении работ в заготовочном цехе происходит через трубу с высотой 4,5 м, диаметром 0,4 м.

В заготовочном цехе используются следующие виды сырья (расход согласно данным заказчика предоставлен на одну пару обуви):

Наименование веществ	расходы	ед.м.
клей резиновый 1010	0,03500	кг
клей латексный 6010	0,00500	кг
этилацетат	0,00900	кг
керосин	0,00700	кг

Шитье изделий (ист. выд. №001)

Взвешенные вещества (2902)

Мсек=0,09693 г/сек

Mгод=0,09693*3,6*2,080=0,7258 т/год

согласно инструментальным замерам

0,09693 r/c

Использование клея НК 1010 (резиновый) (ист.выд №002)

Время работы использования клея 8 час/день, 260 день/год 2080 час/год.

Клей используется для склеивания заготовок. В процессе склеивания применяется клей изготовленные на базе органических растворителей:

полихлоропреновый, резиновый и полиуретановый.

Согласно данным заказчика данный клей является аналогм клея НК (удельные взяты соглано Методике расчета выбросов загрязняющих веществ в атмосферу для

Годовой расход клея – Время работы 2,7 т/год

1,31 кг/час

260 лн/гол 2080 час/гол

При использовании клея в атмосферный воздух выделяется каучук (2928), бензин (2704).

Максимально разовый выброс в применении клея рассчитывается по формуле

8 час/день

М = Вчас * 1000/3600, г/сек

Вчас	Выброс	ед.изм
------	--------	--------

M	1,3125	1000	3600	0,3646	г/сек

где,

Вчас - расход клея, кг/час

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле в соответствии Методике расчета выбросов вредных веществ в

G=Q * Kk * 0,001, т/год

где, Q - количество расходуемых материалов, т/год

Кк - содержание каждого вещества в летучей части расходемого материала, % (доля единицы);

Каучук (2928)

	Q	Кк		Выброс	Ед. изм.
M	2,7	10,00	0,001	0,0273	т/год

Бензин (2704)

·	Q	Кк		Выброс	Ед. изм.
M	2,7	90,00	0,001	0,2457	т/год

Согласно Методике расчета выбросов вредных веществ в атмосферу для предприятий бытового обслуживания, Алматы 2004 год состав клея состоит

№ п/п	Наименова	%
1	каучук	10,00%
2	бензин	90,00%

Итого выбросов загрязняющих веществ (идентификация состава выбросов)

Код в-	HODAIIHA ZAFMUZIIGIOHIIAV DA	Выброс		
ва	нование загрязняющих ве	М, г/сек	Мгод, т/год	
2978	Каучук	0,0365	0,0273	
2704	Бензин*	0,87250	0,2457	
	Итого	0,9090	0,2730	

^{*} данные взяты согласно инструментальных замеров

Клей луч ЛТ 6010 (ист.выд. №003)

Годовой объем оборота клея

0,383 т

0,1875 кг/час

Расчет производится согласно РНД 2.11.2.02.08-2004 «Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями

Валовое количество винилацетата, поступающего, в атмосферу следует определять по формуле:

Мгод = В год *
$$\delta$$
 * Кф / 100, т/год

В год – расход клея, т/год

 δ – содержание винилацетата в составе клея, %, приложение 9 [14];

Кф – коэффициент поступления винилацетата в атмосферу

Максимальный разовый выброс, определяется по формуле:

Мсек = Вчас * δ * К ϕ * 1000/3600/100, г/сек

Bчас — фактический максимальный расход клея , кг/час

100, 1000, 3600 – переходные коэффициенты

Этенилвиниацетат (1213)

	В год	В час	δ	Кф	Выброс	Ед. изм.
М год	0,3825	-	0,0001	0,3	0,00000011	т/год
Мсек	-	0,188	0,0001	0,3	0,00000002	г/сек

Итого выбросов загрязняющих веществ от клея луч ЛТ 6010 (ист.выд.№003)

Код загр.	Наименование загрязняющих веществ	г/сек	т/год
вещ-ва			
1213	Этенилацетат (винилацетат)	0,0000000156	0,000000115
	ИТОГО	0,0000000156	0,000000115

Этилацетат (ист. выд. №004)

 Расход этилацета согласно данным заказчика
 0,009 кг/пару
 0,34 кг/час
 0,70 т/год

 Время работы, с учетом времени сушки
 8 час/день
 260 дн/год
 2080 час/год

Максимально разовый выброс в применении этилацетата рассчитывается по формуле

М = Вчас * 1000/3600, г/сек

	Вчас			Выброс	ед.изм
M	0,34	1000	3600	0,0938	г/сек

где,

Вчас - расход этилацетата, кг/час

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле в соответствии Методике расчета выбросов вредных веществ в

G=Q * Kk * 0,001, т/год

где, Q - количество расходуемых материалов, т/год

Кк - содержание каждого вещества в летучей части расходемого материала, % (доля единицы);

Этилацетат (1240)

	Q	Кк		Выброс	Ед. изм.
M	0,70	89,00	0,001	0,0625	т/год

Согласно Методике расчета выбросов вредных веществ в атмосферу для предприятий бытового обслуживания, Алматы 2004 год состав этилацетата состоит

0,55 т/год

№ п/п Наименование		%
1	этилацетат	89,00%

Итого выбросов загрязняющих веществ (идентификация состава выбросов)

Код в-	Наименование	Вы	брос
ва	загрязняющих веществ	М, г/сек	Мгод, т/год
124	этилацетат	0,0834	0,0625
	Итого	0,0834	0,0625

Керосин (ист. выд. №005)

Расход керосина согласно данным заказчика 0,007 кг/пару 0,26 кг/час

Время работы, 8 час/день 260 дн/год 2080 час/год

Максимально разовый выброс в применении керосина рассчитывается по формуле

М = Вчас * 1000/3600, г/сек

	Вчас			Выброс	ед.изм
M	0,26	1000	3600	0,0729	г/сек

где,

Вчас - расход керосина кг/час

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле в соответствии Методике расчета выбросов вредных веществ в $G=Q*Kk*0,001, \tau/rog$

где, Q - количество расходуемых материалов, т/год

Кк - содержание каждого вещества в летучей части расходемого материала, % (доля единицы);

Керосин (2732)

Этилацетат (1240)

	Q	Кк		Выброс	Ед. изм.
M	0,55	100 00	0,001	0,0546	т/год

Согласно Методике расчета выбросов вредных веществ в атмосферу для предприятий бытового обслуживания, Алматы 2004 год состав керосина состоит

№ п/п	Наименование	%
	1 Керосин	100,00%

Итого выбросов загрязняющих веществ (идентификация состава выбросов) ист.выд. №006)

Код	В-	Наименование	Выброс		
ва		загрязняющих веществ	М, г/сек	Мгод, т/год	
2	732	Керосин	0,0729	0,0546	
		Итого	0,0729	0,0546	

Итого загрязняющих веществ от заготовочного цеха (ист. загр. № 0023)

Код ЗВ	Наименование ЗВ	г/сек	т/год
1240	этилацетат	0,0834	0,0625
2704	бензин	0,8725	0,2457
2902	Взвешенные частицы	0,0969	0,7258
2978	Каучук	0,0365	0,0273
1213	Этенилацетат	0,000000016	0,00000011
2732	Керосин	0,07292	0,0546
	Итого	1,1622	1,1159

Расчет выбросов загрязняющих веществ от затяжного цеха (ист. № 0024)

В затяжном цехе производится сборка обуви посредством затяжки заготовки на затяжную колодку. Фиксирование заготовки осуществляется на затяжном оборудовании: затяжки носочной, голеночной и пяточной части заготовок. Затяжка производится клеевым способом, для чего края заготовки и поверхность основной стельки промазывается полихлорвиниловым клеем. При этом затянутая на колодке заготовка подготавливается для приклеивания подошвы, подготовительная операция включает в себя взъерошивание затяжной кромки. Эта операция производится на специальном оборудовании MLLIKO с местным пылесборником. Подготовка и приклейка завершается клеенамазочными операциями с использованием полихлорвинилового и полиуретанового клея. Приклейка подошвы осуществляется на специальном гидравлическом прессе. При производстве обуви клеевым методом процесс сборки обуви завершается отделкой обуви с помощью отделочных лаков и нитрокрасок. Далее обувь упаковывается и сдается на склад.

При производстве обуви литьевым способом крепления низа, конечной продукцией цеха является не готовая обувь, а ее полуфабрикат: заготовка - затянутая обувь, снятая с колодки, передается в литьевой цех.

При проведении работ от затяжного цеха в атмосферный воздух выделяется наирит HT (2978), смола (2743), альтакс (2406), магнезия жженая (0138), аэросил Выброс загрязняющих веществ при проведении работ в затяжном цехе происходит через две трубы с высота одной трубы 15 м, диаметр 0,3 м В затяжном цехе используются следующие виды сырья (расход согласно данным заказчика предоставлен на одну пару обуви):

Наименование веществ	расходы	ед.м.
клей луч ПХК 2051	0,06000	КΓ

Использование клея ПХК 2051 (неритовый) (ист.выд №001)

Время работы использовании клея 8 час/день, 260 день/год 2080 час/год.

Клей используется для склеивания заготовок.

Согласно данным заказчика данный клей является аналогм клея "Рапид-3" (удельные взяты соглано Методике расчета выбросов загрязняющих веществ в

Годовой расход клея – 4,68 т/год 2,25 кг/час

Время работы 8 час/день 260 дн/год 2080 час/год

Максимально разовый выброс в применении клея рассчитывается по формуле

М = Вчас * 1000/3600, г/сек

	Вчас			Выброс	ед.изм
M	2,250	1000	3600	0,6250	г/сек

где,

Вчас - расход клея, кг/час

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле в соответствии Методике расчета выбросов вредных веществ в G=Q * Kk * 0,001, т/год

где, Q - количество расходуемых материалов, т/год

Кк - содержание каждого вещества в летучей части расходемого материала, % (доля единицы);

Наирит НТ

	Q	Кк		Выброс	Ед. изм.
M	4,680	16,55	0,001	0,0775	т/год

Смола инден - кумароновая

	Q	Кк		Выброс	Ед. изм.
M	4,680	2,48	0,001	0,0116	т/год

Альтакс

	Q	Кк		Выброс	Ед. изм.
M	4,680	0,33	0,001	0,0015	т/год

Смола 101К

	Q	Кк		Выброс	Ед. изм.
M	4,680	0,50	0,001	0,0023	т/год

Магнезия жженая

	Q	Кк		Выброс	Ед. изм.
M	4,680	0,33	0,001	0,0015	т/год

Аэросил

	Q	Кк		Выброс	Ед. изм.
M	4,680	1,16	0,001	0,0054	т/год

Канифоль

	Q	Кк		Выброс	Ед. изм.
M	4,680	0,66	0,001	0,0031	т/год

Стеарат Са

	Q	Кк		Выброс	Ед. изм.
M	4,680	0,16	0,001	0,0007	т/год

Этилацетат

	Q	Кк		Выброс	Ед. изм.
M	4,680	38,50	0,001	0,1802	т/год

Бензин

	Q	Кк		Выброс	Ед. изм.
M	4,680	38,50	0,001	0,1802	т/год

Согласно Методике расчета выбросов вредных веществ в атмосферу для предприятий бытового обслуживания, Алматы 2004 год состав клея состоит

№ п/п	Наименование	%
1	наирит НТ	16,55%
2	смола инден-кумароновая	2,48%
3	смола 101 К	0,50%
4	альтакс	0,33%
5	магнезия жженая	0,33%
6	аэросил	1,16%
7	канифоль	0,66%
8	стеарат Са	0,16%
9	этилацетат	38,50%
10	бензин	38,50%

Итого выбросов загрязняющих веществ (идентификация состава выбросов)

Код в-	MAHADAHHA 22FMG2HGIAHHV DAHI	Выб	брос
ва	менование загрязняющих вещ	М, г/сек	Мгод, т/год
2978	наирит НТ	0,1034375	0,0775
2743	смола инден-кумароновая	0,0155	0,0116
2743	смола 101 К	0,00313	0,0023
2406	альтакс	0,00206	0,0015
138	магнезия жженая	0,00206	0,0015
373	аэросил	0,00725	0,0054
2726	канифоль	0,00413	0,0031
258	стеарат Са	0,00100	0,0007
1240	этилацетат	0,240625	0,1802
2704	бензин*	0,6562	0,1802
	Итого	1,0354	0,4641

^{*} данные взяты согласно инструментальных замеров

Итого загрязняющих веществ от затяжного цеха (ист.загр.№0024)

Код загр в Наименование г/сек т/год

	Итого	1,1323	1,1899
2704	Бензин	0,6562	0,1802
2902	Взвешенные частицы	0,0969	0,7258
1240	этилацетат	0,2406	0,1802
0258	стеарат Са	0,00100	0,000749
2726	канифоль	0,00413	0,003089
0373	аэросил	0,00725	0,005429
0138	магнезия жженая	0,002063	0,0015
2406	альтакс	0,002063	0,0015
2743	смола	0,0186	0,0139
2978	наирит НТ	0,1034	0,0775
ва	загрязняющего вещества		

Расчет выбросов загрязняющих веществ от литьевого цеха (ист. № 0025)

В литьевом цехе на литьевом имеется литьевая машина горизонтального типа 29 -ти секционная ПУ-ТПУ (ПУ-

полиуретан вспененный для верхнего слоя, ТПУ- термопластичный полиуретан для нижнего слоя). ТПУ-грануловидные сухие смеси, расплавляясь в инжекторе, впрыскиваются в пресс-форму открытого типа. ПУ-жидкая смесь из полиола, изоционата и цветной пасты. Каждая из этих составляющих заливается в свой реактор, смешивается в инжекторе и под давлением подается в закрытую пресс-форму вторым слоем, соединяясь «намертво» с нижним слоем. Изоционат и полиол перед заливкой в реакторы проходят термическую подготовку в специальной печи. Подготовленные к реакции смеси в открытом виде заливаются в реакторы. Подошва крепится посредством прямого литья под давлением к заготовке. Процесс сборки обуви на данном этапе заканчивается. Обувь с прилитой подошвой отделывается с использованием отделочных материалов,

упаковывается и передается далее на склад.

Проектная мощность обувного производства согласно данным заказчика 300 пар обуви литьевым методом в одну смену с 8 часовым графиком.

Время работы литьевого цеха составляет

8 час/день

260 дней вгод

2080 часов в год

В литьевом цехе используются следующие виды сырья (расход согласно данным заказчика предоставлен на одну пару обуви):

Наименование веществ	расходы	ед.м.
полиуретановая система для изготовления под	0,41238	ΚΓ
пигментая паста Black remap 99685	0,00640	ΚΓ
краситель ТПУ (гранулы)	0,03000	ΚΓ
разделительная смазка	0,00400	ΚΓ

При проведении работ от литьевого цеха в атмосферный воздух выделяется этиленгликоль (1078),ацетальдегид (1317), формальдегид (1325), спирт бутиловый (1042),бутилацетат (1210), спирт этиловый (1061), ксилол(0616), толуол (0621), гексан (0256), метилен хлористый (0869). Выброс загрязняющих веществ при проведении работ в литьевом цехе происходит через две трубы с высотой 3 м, диаметром 0,3 м для каждой.

Разогрев полиуретановой системы для изготовления подошвы серии EXTRA марок E16305, E44339, E 56102 (ист.выд. №001)

Расход полиуретановой смеси составляет 0,41238 кг за одну пару обуви,

15,46 кг/час

32,17 т/год.

4,295625 г/с

Время работы литьевого цеха –

8 час/лн

260 дн/год

2080 час/год

Максимально разовый выброс в процессе разогрева полиуретановой смеси рассчитываетс япо формуле

Qi=qi*V/1000, г/сек.

qi - гигиеническая характеристика продукции, мг/м.куб., согласно экспертного заключения

№77.01.03.П.010734.07.11 от 08.07. 2011г.

V - объем газовоздушной смеси, м.куб/сек;

1,2

Этиленгликоль (1078)

$$Qi = 0.001 * 1.2 / 1000 = 0.0000012 \text{ r/cek}$$

Ацетальдегид (1317)

$$Qi = 0.001 * 1.2 / 1000 = 0.0000012 \text{ r/cek}$$

Формальдегид (1315)

$$Qi = 0.001 * 1.2 / 1000 = 0.0000012 \text{ r/cek}$$

согласно инструментальным замерам

0.00129 r/c

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле:

Mгод = Qi/1000000*3600*T, T/год

где,

Т - время, час/год

Этиленгликоль (1078)

	Q	T			Выброс	Ед.изм.
Мгод	0,0000012	2080	1000000	3600	0,00001	т/год

Ацетальдегид (1317)

	Q	T			Выброс	Ед.изм.
Мгод	0,0000012	2080	0,000001	3600	0,00001	т/год

Формальдегид (1325)

	Qi	T			Выброс	Ед.изм.
Мгод	0,00129	2080	0,000001	3600	0,00966	т/год

Итого выбросов загрязняющих веществ разогреве полиуретановой смеси (ист. выд. №001)

Код загр в	Наименование	г/сек	т/год
ва	загрязняющего		
1078	Этиленгликоль	0,0000012	0,00001
1317	Ацетальдегид	0,0000012	0,00001
1325	Формальдегид	0,0012900	0,00966
	Итого	0,0012924	0,00968

Литье полиуретановой смеси EXTRA марок E16305, E44339, E 56102(ист.выд. №002)

Расход полиуретановой смеси составляет 0,41238 кг за одну пару обви,

15,46 кг/час

32,17 т/год.

4,295625 г/с

Время работы литьевого цеха –

8 час/дн

260 дн/год

2080 час/год

Максимально разовый выброс в процессе разогрева полиуретановой смеси рассчитывается по формуле

Qi=qi*V/1000, г/сек.

qі - гигиеническая характеристика продукции, мг/м.куб., согласно экспертного заключения

V - объем газовоздушной смеси, м.куб/сек;

1,2

Этиленгликоль (1078)

Qi = 0.001 * 1.2 / 1000

0,0000012 г/сек

Ацетальдегид (1317)

Qi = 0.001 * 1.2/1000

0,0000012 г/сек

Формальдегид (1315)

Qi = 0.001 *1.2 /1000

0,0000012 г/сек

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле:

Mгод = Qi/1000000*3600*T, T/год

где,

Т - время, час/год

Этиленгликоль (1078)

	Q	T			Выброс	Ед.изм.
Мгод	0,000001200	2080	0,000001	3600	0,00001	т/год

Ацетальдегид (1317)

	Q	T			Выброс	Ед.изм.
Мгод	0,000001200	2080	0,000001	3600	0,00001	т/год

Формальдегид (1325)

	Qi	T			Выброс	Ед.изм.
Мгод	0,000001200	2080	0,000001	3600	0,00001	т/год

Итого выбросов загрязняющих веществ литье полиуретановой смеси (ист. выд. №002)

Код загр в	Наименование	г/сек	т/год
ва	загрязняющего		
1078	Этиленгликоль	0,0000012	0,00001
1317	Ацетальдегид	0,0000012	0,00001
1325	Формальдегид	0,0000012	0,00001
	Итого	0,0000036	0,00003

Разделительная смазка и пигментная паста Black remap(ист. выд. №003)

Расход разделительной смазки составляет 0,0104 кг/пару,

0,624 кг/час

0,81 т/год.

 $0,2 \text{ } \Gamma/c$

Время работы использования материалов

5 час/день

260 дн/год

1300 час/год

Максимально разовый выброс в процессе разогрева полиуретановой смеси рассчитывается

Qi=qi*V/1000, г/сек.

qі - гигиеническая характеристика продукции, мг/м.куб, согласно санитарно-эпидемиологического заключения №40 Φ V.01.225. Π .000057.12.07 от 25.12.2007 г.

V - объем газовоздушной смеси, м.куб/сек;

1,2

Гексан (0256)

Qi = 300*1,2/1000=

0,360000 г/сек

Метилен хлористый (0869)

Oi = 50*1,2/1000=

0,060000 г/сек

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле:

Mгод = Qi/1000000*3600*T, T/год

Гексан (0256)

	/					
	Q	T			Выброс	Ед.изм.
Мгод	0,360000000	1300	1000000	3600	1,6848	т/год

Метилен хлористый (0869)

	Q	T			Выброс	Ед.изм.
Мгод	0,060000000	1300	1000000	3600	0,2808	т/год

Итого выбросов загрязняющих веществ при проведении работ с разделительной смазкой и пигментной пасты (ист. выд. №003)

Код загр в	Наименование	г/сек	т/год
ва	загрязняющего		
0256	Гексан	0,3600	1,6848
0869	Метилен хлористый	0,0600	0,2808
	Итого	0,4200	1,9656

Лакокрасочный работы (ист. выд. №004)

Расход краски согласно данным заказчика

0,03 кг/пару

1,13 кг/час

2,34 т/год 2080 час/год

Время работы использования краски 8 час/дн 260 дн/год Максимально разовый выброс в процессе использования лакокрасочных средств рассчитывается по формуле

Qi=qi*V/1000, г/сек.

qі - гигиеническая характеристика продукции, мг/м.куб., согласно экспертного заключения

V - объем газовоздушной смеси, м.куб/сек;

1,2

Этиленгликоль (1078)

Qi = 0.001 * 1.2 / 1000

0,0000012 г/сек

Ацетальдегид (1317)

Qi = 0.001 * 1.2/1000

0,0000012 г/сек

Формальдегид (1315)

Qi = 0.001 * 1.2 / 1000

0,0000012 г/сек

Валовый выброс і-того загрязняющего вещества рассчитывается по формуле:

Mгод = Qi/1000000*3600*T, T/год

где,

Т - время, час/год

Этиленгликоль (1078)

	Q	T			Выброс	Ед.изм.
Мгод	0,000001200	2080	0,000001	3600	0,00001	т/год

Ацетальдегид (1317)

	Q	T			Выброс	Ед.изм.
Мгод	0,000001200	2080	0,000001	3600	0,00001	т/год

Формальдегид (1325)

	Qi	T			Выброс	Ед.изм.
Мгод	0,000001200	2080	0,000001	3600	0,00001	т/год

Итого выбросов загрязняющих веществ при использовании лакокрасочных средств (ист.выд. №004)

Код загр в-	Наименование	г/сек	т/год
ва	загрязняющего		
1078	Этиленгликоль	0,0000012	0,00001
1317	Ацетальдегид	0,0000012	0,00001
1325	Формальдегид	0,0000012	0,00001
	Итого	0,0000036	0,00003

Также согласно иснтрументальным замерам на площадке обнаружены следующие вещества:

Наименование веществ	$M\Gamma/M^3$
Ксилол	0,58
Толуол	1,18
Бутанол	5,76
Этанол	5,76

Максимальный разовый выброс загрязняющих веществ определяются формулой:

 $M^* = Q * V / 1000, r/c$

где:

Q - значение по данным контрольных замеров, $\mbox{\rm M}\mbox{\rm f}/\mbox{\rm M}^3$

V - объем газовоздушной смеси, м³/с

1,2

Ксилол (0616)

	Q	V		Выброс	Ед.изм.
M*	0,58	1,2	1000	0,000696	г/сек

Толкол (0621)

	Q	V		Выброс	Ед.изм.
M*	1,18	1,2	1000	0,001416	г/сек

Спирт бутиловый (1042)

	Q	V		Выброс	Ед.изм.
M*	5,76	1,2	1000	0,006912	г/сек

Спирт этиловый (1061)

	Q	V		Выброс	Ед.изм.
M*	5,76	1,2	1000	0,006912	г/сек

Валовый разовый выброс загрязняющих веществ определяются формулой:

M = M* x 3600 x T / 1000000, т/год

где:

М* - максимально - разовый выброс, г/с

Т - время работы, час/год

2080

Ксилол (0616)

	M*	T			Выброс	Ед.изм.
M	0,000696	2080	3600	1000000	0,005212	т/год

Толуол (0621)

	M*	T			Выброс	Ед.изм.
M	0,001416	2080	3600	1000000	0,010603	т/год

Спирт бутиловый (1042)

	M*		T			Выброс	Ед.изм.
M		0,006912	2080	3600	1000000	0,051757	т/год

Спирт этиловый (1061)

	_	M*	T			Выброс	Ед.изм.
M		0,006912	2080	3600	1000000	0,051757	т/год

Итого загрязняющих веществ от литьевого цеха (ист. загр. №0025)

Код загр в-	Наименование	г/сек	т/год
ва	загрязняющего		
1078	Этиленгликоль	0,000004	0,0000270
1317	Ацетальдегид	0,000004	0,000027
1325	Формальдегид	0,000004	0,000027
0256	Гексан	0,3600	1,6848
0869	Метилен хлористый	0,0600	0,2808
0616	Ксилол	0,0007	0,0052
0621	Толуол	0,0014	0,0106
1042	Спирт бутиловый	0,0069	0,0518
1061	Спирт этиловый	0,0069	0,0518
	Итого	0,4359	2,0850

Расчет выбросов загрязняющих веществ от сооружений локальной очистки сточных вод (ист. загр. № 6011)

Участок дубления (ист. выд. № 001)

Очистные сооружения сточных вод оборудованы: фильтром грубой очистки, после которого сточные воды собираются в резервуар, затем усредненные сточные воды насосом перекачиваются в три сборника с мешалками, в которые добавляется каустическая сода (NaOH) и кальцинированная сода (Na2CO3). Полученный раствор перекачивается в конусообразный резервуар, где происходит осаждение гидрата хрома (Cr(OH)3). Верхний слой воды откачивается.

Осажденный раствор перекачивается в два резервуара, где продолжается процесс осаждения.

Вентиляция в помещении предусмотрена приточно-вытяжная, естественная, через проем ворот.

При работе оборудования выделяется хромовый ангидрид и сода кальцинированная.

Содержание загрязняющих веществ в удаляемом воздухе принято по

удаленный выброс хромового ангидрида - $0.7*10^{-6}$ г/сек $*m^3$ объема накопителей.

удаленный выброс щелочи - $13,7*10^{-6}$ г/сек $*m^3$

Объем накопителей составляет - 160 м³

Секундный выброс вредных веществ составляет:

Выброс оксида хрома составляет

0.7/1000000*160=0.000112 r/cek

Выброс щелочи составляет

 $13.7/1000000*160=0.002192 \ \Gamma/\text{cek}$

Годовой выброс вредных веществ составляет:

Выброс оксида хрома составляет

0,0000112*3600*24*365/1000С 0,003532 т/год

Выброс щелочи составляет

0,002192*3600*24*365/100000 0,069127 т/год

Итого выбросы загрязняющих веществ от сооружений локальной очистки сточных вод (ист. загр. № 6011)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ		
	паименование эв	г/с	т/год	
	оксид хрома	0,000112	0,003532	
	щелочи	0,002192	0,069127	
	ИТОГО:	0,002304	0,072659	

Расчет выбросов загрязняющих веществ от сварочных работ (ист. загр. № 6012)

Электродуговая сварка (ист. выд. № 001)

Электродуговая сварка производится электродами марки УОНИ.

Годовой расход электродов -

48 кг/год,

0,2 кг/час.

Время работы электродуговой сварки -

300 час/год.

Расчет производится согласно РНД 2.11.2.02.06 – 2004 Методика расчета выбросов

загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Валовое количество загрязняющих веществ, выбрасываемых в атмосферу в процессе электродуговой сварки, определяется по формуле:

Мгод = K_M^x * Вгод * (1 - η)/1000000, т/год

где:

 K_{M}^{x} - удельный показатель выброса загрязняющего вещества «Х» на единицу массы расходуемых (приготовляемых) сырья и материалов, г/кг; Вгод - расход применяемого сырья и материалов, кг/год;

η - степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Оксид железа (0123)

	Вгод	$K_{\scriptscriptstyle M}^{}$	Выброс	Ед. изм.
${ m M}_{ m rog}$	48	9,77	0,0005	т/год

Оксид марганца (0143)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
${ m M}_{ m rog}$	48	1,73	0,0001	т/год

Фтористый водород (0342)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
$ m M_{ m rog}$	48	0,4	0,00002	т/год

Максимально- разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе электродуговой сварки, определяется по формуле:

Мсек = $K_M^x * B$ час * (1 - η)/3600, г/сек где:

Вчас – фактический максимальный расход применяемого материала, с учетом

дискретной работы оборудования,

0,2 кг/час

 $K_{_{\rm M}}^{\ \ x}$ – удельный показатель выброса загрязняющего вещества «Х» на единицу массы расходуемых (приготовляемых) сырья и материалов, г/кг; η – степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Оксид железа (0123)

	Вчас	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
M_{cek}	0,2	9,77	0,0004	г/сек

Оксид марганца (0143)

	Вчас	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
M_{cek}	0,2	1,73	0,0001	г/сек

Фтористый водород (0342)

		$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
Мсек	0,2	0,4	0,00002	г/сек

Итого выброс загрязняющих веществ от сварочных работ (ист. №6012)

Код загр. в-ва	Наименование загрязняющего вещества	г/сек	т/год
123	Оксид железа	0,0004	0,0005
143	Оксид марганца	0,0001	0,0001
342	Фтористый водород	0,00002	0,00002
	Итого	0,0005	0,0006

Расчет выбросов загрязняющих веществ от сварочных работ (ист. загр. № 6013)

Электродуговая сварка (ист. выд. № 001)

Электродуговая сварка производится электродами марки МР - 3.

Годовой расход электродов MP - 3 - 192 кг/год, 0,2 кг/час.

Время работы электродуговой сварки - 1000 час/год.

Расчет производится согласно РНД 2.11.2.02.06 – 2004 Методика расчета выбросов

загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

Валовое количество загрязняющих веществ, выбрасываемых в атмосферу в процессе электродуговой сварки, определяется по формуле:

Мгод =
$$K_M^x * Вгод * (1 - \eta)/1000000, т/год$$

где

 $K_{\rm m}^{\ \ x}$ - удельный показатель выброса загрязняющего вещества «Х» на единицу массы расходуемых (приготовляемых) сырья и материалов, г/кг; Вгод - расход применяемого сырья и материалов, кг/год;

η - степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Оксид железа (0123)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
${ m M}_{ m rog}$	192	9,77	0,0019	т/год

Оксид марганца (0143)

	Вгод	K_{M}^{x}	Выброс	Ед. изм.
${ m M}_{ m rog}$	192	1,73	0,0003	т/год

Фтористый водород (0342)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
${ m M}_{ m rog}$	192	0,4	0,00008	т/год

Максимально- разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе электродуговой сварки, определяется по формуле:

Мсек = $K_M^x * Вчас * (1 - \eta)/3600$, г/сек где:

Вчас – фактический максимальный расход применяемого материала, с учетом

дискретной работы оборудования, 0,2 кг/час

 K_{M}^{x} – удельный показатель выброса загрязняющего вещества «Х» на единицу массы расходуемых (приготовляемых) сырья и материалов, г/кг; η – степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Оксид железа (0123)

i				
	Вчас	K_{M}^{x}	Выброс	Ед. изм.

Оксид марганца (0143)

	Вчас	$K_{\scriptscriptstyle M}^{}$	Выброс	Ед. изм.
M_{cek}	0,2	1,73	0,0001	г/сек

Фтористый водород (0342)

		$K_{\scriptscriptstyle M}^{}$	Выброс	Ед. изм.
M_{cek}	0,2	0,4	0,00002	г/сек

Итого выброс загрязняющих веществ от сварочных работ (ист. № 6013)

Код загр. в-ва	Наименование загрязняющего вещества	г/сек	т/год
123	Оксид железа	0,0005	0,0019
143	Оксид марганца	0,0001	0,0003
342	Фтористый водород	0,00002	0,00008
	Итого	0,0006	0,0023

Расчет выбросов загрязняющих веществ от сварочных работ (ист. загр. № 6014)

Газовая резка (ист. выд. № 001)

Время работы поста газовой резки –

час/дн,

дн/год,

250

250

час/год.

Годовой расход пропана – 50 баллона/год.

Газовой резкой осуществляется, резка стали углеродистой толщиной 5 мм. Сварочный цех оборудован одним постом газовой резки.

При проведении газовой резки в атмосферный воздух выделяются, оксид марганца (0143), оксид железа (0123),

оксид углерода (0337), диоксид азота (0301).

M = Q * T/1000000, т/год

 $M* = Q/3600, \Gamma/ce\kappa$

Q – удельный выброс загрязняющего вещества, г/час

Т – время работы поста газовой резки, час/год

250 час/год.

Оксид марганца (0143)

	Q	T	Выброс	Ед. изм.
М год	1,1	250	0,0003	т/год
M*	1,1	-	0,0003	г/сек

Оксид железа (0123)

	Q	T	Выброс	Ед. изм.
М год	72,9	250	0,0182	т/год
M*	72,9	-	0,0203	г/сек

Оксид углерода (0337)

	Q	Т	Выброс	Ед. изм.
М год	49,5	250	0,0124	т/год
M*	49,5	-	0,0138	г/сек

Диоксид азота (0301)

	Q	T	Выброс	Ед. изм.
М год	39	250	0,0098	т/год
M*	39	-	0,0108	г/сек

Итого выбросов загрязняющих веществ от сварочных работ (ист. № 6014)

Код загр. вещ-ва	Наименование загрязняющих веществ	г/сек	т/год
143	Оксид марганца	0,0003056	0,0009
123	Оксид железа	0,02025	0,0569

337	Оксид углерода	0,01375	0,0386
301	Диоксид азота	0,01083	0,0304
Итого		0,04514	0,1268

Расчет выбросов загрязняющих веществ от ремонтных работ (ист. загр. № 6015)

Сварка в среде аргона-сварочный аппарат (ист. выд. № 001)

 Годовой расход электрода
 100 кг/год
 0,096 кг/час

 Время работы сварочного поста
 4 час/дн
 1040 час/год

Расчет производится согласно РНД 2.11.2.02.06 – 2004 Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов).

При проведении сварочных работ в среде углекислого газа проволокой в атмосферный воздух выделяются, оксид железа (0123), оксид марганца (0143), пыль неорганическая (2908), оксид алюминия (0101).

Валовое количество загрязняющих веществ, выбрасываемых в атмосферу в процессе сварки, определяется по формуле:

Мгод =
$$K_M^x * Вгод * (1 - \eta)/1000000, т/год$$

где:

 $K_{_{M}}^{\ \ x}$ - удельный показатель выброса загрязняющего вещества «Х» на единицу массы

Вгод - расход применяемого сырья и материалов, кг/год;

100 кг/год

0,096 кг/час

η - степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических

Оксид железа (0123)

	Вгод	K_{M}^{x}	Выброс	Ед. изм.
М _{год}	100	0,9	0,000090	т/год

Оксид марганца (0143)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
М _{год}	100	0,1	0,000010	т/год

Пыль неорганическая (2908)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
М _{год}	100	0,1	0,000010	т/год

Оксид алюминия (0101)

	Вгод	K_{M}^{x}	Выброс	Ед. изм.
$M_{ m rog}$	100	7,6	0,000760	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе сварки, определяется по формуле:

Мсек =
$$K_M^x * Bчас * (1 - \eta)/3600$$
, г/сек

где:

Вчас – фактический максимальный расход применяемого материала, с учетом

0,096 кг/час

 $K_{_{\rm M}}^{^{\ \ X}}$ – удельный показатель выброса загрязняющего вещества «X» на единицу массы расходуемых

η – степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Оксид железа (0123)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
М _{год}	0,096	0,9	0,000024	г/сек

Оксид марганца (0143)

	Вгод	K_{M}^{x}	Выброс	Ед. изм.
М _{год}	0,096	0,1	0,000003	г/сек

Пыль неорганическая (2908)

	Вгод	K_{M}^{x}	Выброс	Ед. изм.
М _{год}	0,096	0,1	0,000003	г/сек

Оксид алюминия (0101)

	Вгод	$K_{\scriptscriptstyle M}^{\ \ x}$	Выброс	Ед. изм.
М _{год}	0,096	7,6	0,000203	г/сек

Итого выброс загрязняющих веществ от аргона-сварочного аппарата (ист. № 6015)

Код загр. в-ва	Наименование ЗВ	г/сек	т/год	
123	Оксид железа	0,000024	0,000090	
143	Оксид марганца	0,000003	0,000010	

2908	пыль неорганическая	0,000003	0,000010
101	оксид алюминия	0,000203	0,000760
	Итого	0,000232	0,000870

Расчет выбросов загрязняющих веществ от ремонтно-мастерского цеха (ист. загр. № 6016)

Заточной станок (ист. выд. № 001)

Участок оборудована двумя заточными станками с диаметром шлифовального круга 0,4 м -1 шт.

Время работы круглошлифовального станка –

250 дн/год, 250

час/гол.

При работе заточного станка в атмосферный воздух выделяется, пыль абразивная (2930), взвешенные частицы (2902).

Расчет производится согласно РНД 211.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу

выбрасываемых в атмосферу, в без применения СОЖ, процессе работы заточного станка

при механической обработке металлов (по величинам удельных выбросов).

Валовое количество загрязняющих веществ, образующихся при механической обработке металлов, определяются по формуле:

Mгод = 3600 * k * O * T / 1000000, т/год

k – коэффициент гравитационного оседания;

Q – удельное выделение загрязняющих веществ технологическим оборудованием, г/сек

Т – фактический годовой фонд времени, час;

п- количество станков:

Пыль абразивная (2930)

		k	Q	П	T		Выброс	Ед. изм.
Мгод	3600	0,2	0,008	2	250	1000000	0,0029	т/год

Взвешенные частицы (2902)

	,	k	Q	П	T		Выброс	Ед. изм.
Мгод	3600	0,2	0,012	1	250	1000000	0,0022	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе работы заточного станка, определяются по формуле:

 $Mce\kappa = k * Q, \Gamma/ce\kappa$

Пыль абразивная (2930)

	()				
	k	Q	П	Выброс	Ед. изм.
Мсек	0,2	0,008	1	0,0016	г/сек

Взвешенные частицы (2902)

	k	Q	П	Выброс	Ед. изм.
Мсек	0,2	0,012	1	0,0024	г/сек

Итого выбросы загрязняющих веществ от заточного станка (ист.выд № 001)

Код загр.	Наименование ингредиентов	выы	ЮСЫ
		г/сек	т/год
2930	Пыль абразивная	0,0016	0,0029
2902	Взвешенные частицы	0,0024	0,0022
ИТОГО		0,004	0,0050

Радиально-сверлильный станок (ист. выд. № 002)

Участок оборудован одним станком.

Время работы станка – 1 час/сут, 18 дн/год,

При работе станка в атмосферный воздух выделяется оксид железа (0123).

Расчет производится согласно РНД 2.11.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов).

час/год.

Валовое количество загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ, выбрасываемых в атмосферу, в процессе работы фрезерных станков определяются по формуле:

$$M$$
год = 3600 * k * Q * T / 1000000, т/год

k – коэффициент гравитационного оседания;

Q – удельное выделение пыли технологическим оборудованием, г/сек (табл.1)

Т – фактический годовой фонд времени, час;

п- количество станков;

Оксид железа (0123)

		k	Q	П	T	Выброс	Ед. изм.
Мгод	3600	0,4	0,0167	1	18	0,0004	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе работы станков, определяются по формуле:

Mceκ =
$$k * Q$$
, $\Gamma/ceκ$

Оксид железа (0123)

	k	Q	П	Выброс	Ед. изм.
Мсек	0,4	0,0167	1	0,006680	г/сек

Итого выбросы загрязняющих веществ от станка (ист. выд. № 002)

Код ЗВ	Наименование ЗВ	ВЫБРОСЬ	οI
		г/сек	т/год

0,006680 0,0004

распиловочно-горизонтальный сьанок (ист. выд. № 003)

Время работы одного станка-

час/день, дн/год, 18 час/год.

При работе отрезных станков в атмосферный воздух выделяется взвешенные частицы (2902).

Расчет производится согласно РНД 2.11.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов).

Валовое количество загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ, выбрасываемых в атмосферу, в процессе работы станка резки определяются по формуле:

$$M$$
год = 3600 * k * Q * T / 1000000, т/год

k – коэффициент гравитационного оседания;

Q – удельное выделение загрязняющих веществ технологическим оборудованием, г/сек (табл.4)

Т – фактический годовой фонд времени, час;

п – количество станков;

Взвешенные частицы (2902)

		k	Q	П	T	Выброс	Ед. изм.
Мгод	3600	0,2	0,203	1	18	0,0026	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе работы станка резки, определяются по формуле:

Mceκ =
$$k * Q$$
, $\Gamma/ceκ$

Взвешенные частицы (2902)

	k	Q	П	Выброс	Ед. изм.
Мсек	0,2	0,203	1	0,0406	г/сек

Итого выбросы загрязняющих веществ от распиловочно-горизонтального станка (ист. выд. № 003)

Код ЗВ	Наименование ЗВ	ВЫБРО	СЫ
		г/сек	т/год
2902	Взвешенные частицы	0,0406	0,0026
ИТОГО		0,0406	0,0026

Токарный станок (ист. выд. № 004)

Время работы каждого станка –

При работе станка в атмосферный воздух выделяется оксид железа (0123).

Расчет производится согласно РНД 2.11.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов).

Валовое количество загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ, выбрасываемых в атмосферу, в процессе работы станков определяются по формуле:

$$M$$
год = 3600 * k * Q * T / 1000000, т/год

k – коэффициент гравитационного оседания;

Q – удельное выделение пыли технологическим оборудованием, г/сек (табл.1)

Т – фактический годовой фонд времени, час;

п- количество станков;

		k	Q	П	T	Выброс	Ед. изм.
Мгод	3600	0,4	0,0056	3	1000	0,0242	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе работы станков, определяются по формуле:

$$Mce\kappa = k * Q, r/ce\kappa$$

Оксид железа (0123)

	k	Q	П	Выброс	Ед. изм.
Мсек	0,4	0,0056	1	0,002240	г/сек

Итого выбросы загрязняющих веществ от токарного станка (ист. выд. N 004)

Код ЗВ	Наименование ЗВ	ВЫБРОС	Ы	
		г/сек т/год		
123	Оксид железа	0,002240	0,0242	
	ИТОГО	0,002240 0,0242		

Вертикально -сверлильный станок (ист. выд. № 005)

Время работы каждого станка –

1 час/сут, 250 дн/год, 250 час/год.

При работе станка в атмосферный воздух выделяется оксид железа (0123).

Расчет производится согласно РНД 2.11.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов).

Валовое количество загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ, выбрасываемых в атмосферу, в процессе работы станков определяются по формуле:

$$M$$
год = 3600 * k * Q * T / 1000000, т/год

k – коэффициент гравитационного оседания;

Q – удельное выделение пыли технологическим оборудованием, г/сек (табл.1) [14]

Т – фактический годовой фонд времени, час;

п- количество станков;

Оксид железа (0123)

		k	Q	П	T	Выброс	Ед. изм.
Мгод	3600	0,4	0,0011	1	250	0,0004	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе работы станков, определяются по формуле:

Mceκ = k * Q, $\Gamma/ceκ$

Оксид железа (0123)

	k	Q	П	Выброс	Ед. изм.
Мсек	0,4	0,0011	1	0,000440	г/сек

Итого выбросы загрязняющих веществ от станка (ист. выд. № 005)

Код ЗВ	Наименование ЗВ	ВЫБРОС	СЫ
		г/сек	т/год
123	Оксид железа	0,000440	0,0004
	ИТОГО	0,000440	0,0004

ленточно-отрезной станок (ист. выд. № 006)

Время работы одного станка-

1 час/день, 250 дн/год,

250 час/год.

При работе отрезных станков в атмосферный воздух выделяется взвешенные частицы (2902).

Расчет производится согласно РНД 2.11.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при

Валовое количество загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ,

$$M$$
год = 3600 * k * Q * T / 1000000, т/год

k – коэффициент гравитационного оседания;

Q – удельное выделение загрязняющих веществ технологическим оборудованием, г/сек (табл.4)

Т – фактический годовой фонд времени, час;

 Π — количество станков;

Взвешенные частицы (2902)

		k	Q	П	T	Выброс	Ед. изм.
Мгод	3600	0,2	0,203	1	250	0,0365	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе работы станка резки, определяются

Mceκ = k * Q, $\Gamma/ceκ$

Взвешенные частицы (2902)

	k	Q	П	Выброс	Ед. изм.
Мсек	0,2	0,203	1	0,0406	г/сек

Итого выбросы загрязняющих веществ от станка (ист. выд. № 006)

Код ЗВ	Наименование ЗВ	ВЫБРО	СЫ
		г/сек	т/год
2902	Взвешенные частицы	0,0406	0,0365
ИТОГО		0,0406	0,0365

отрезной станок (ист. выд. № 007)

Время работы одного станка-

I час/день, 18 дн/год, 18 час/год.

При работе отрезных станков в атмосферный воздух выделяется взвешенные частицы (2902).

Расчет производится согласно РНД 2.11.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов).

Валовое количество загрязняющих веществ, образующихся при механической обработке металлов, без применения СОЖ, выбрасываемых в атмосферу, в процессе работы станка резки определяются по формуле:

$$M$$
год = 3600 * k * Q * T / 1000000, т/год

k- коэффициент гравитационного оседания;

Q – удельное выделение загрязняющих веществ технологическим оборудованием, г/сек (табл.4)

Т – фактический годовой фонд времени, час;

 Π — количество станков;

Взвешенные частицы (2902)

		k	Q	П	T	Выброс	Ед. изм.
Мго	д 3600	0,2	0,203	1	18	0,0026	т/год

Максимальный разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессе работы станка резки, определяются $\mathbf{Mce} \kappa = \mathbf{k} * \mathbf{Q}, \mathbf{r}/\mathbf{ce} \kappa$

Взвешенные частицы (2902)

	k	Q	П	Выброс	Ед. изм.
Мсек	0,2	0,203	1	0,0406	г/сек

Итого выбросы загрязняющих веществ от станка (ист. выд. № 007)

Код ЗВ	Наименование ЗВ	ВЫБРО	СЫ
		г/сек	т/год
2902	Взвешенные частицы	0,0406	0,0026
ИТОГО		0,0406	0,0026

Итого выбросов загрязняющих веществ от РМЦ (ист. № 6016)

Код ЗВ	Наименование загрязняющих веществ	г/сек	т/год
2930	пыль абразивная	0,0016000	0,0029
2902	взвешенные частицы	0,12420	0,0440
123	оксид железа	0,00936	0,0250
	Итого	0,13516	0,0719

Расчет выбросов загрязняющих веществ от столовой (ист № 0019)

На кухни осуществляется приготовление пищи, выпечка хлебобулочных изделий. Выпечка хлебобулочных изделий 4.2 т/год 11.51 кг/дн.

11,51 кг/дн.

(работа с мукой для выпечки хлебобулочных изделий проводится раз в неделю)

0.5 т/год

Выброс загрязняющих веществ от кухни и кухонного оборудования осуществляется через вентилятор высотой 6 м и Засыпка муки в просеиватель (ист. выд. № 001)

Выгрузка муки 50 кг за 25 мин, в неделю 15 кг (7,5 мин/дн или 0,125 час/дн), в год 4,2 т. Общее выделение муки Количество загрязняющих веществ, образующихся, в процессе засыпки муки определяются по формуле:

> $Mce\kappa = B(\kappa \Gamma) * Q / T, \Gamma / ce\kappa$ M год = B (кг/год)* Q/1000000, т/год

Q – удельное выделение, г/кг

B – расход, кг, т/год; 4,2 т/год

Т – усредненное время засыпки, сек (25 мин/60)

С учетом оседания в помещении 50%

Пыль мучная (3721)

	В (кг)	Q	T			Выброс	Ед. изм.
Мсек	11,5	0,18	0,125	3600	0,5	0,002301	г/сек

Пыль мучная (3721)

	В (кг/год)	Q	Выброс	Ед. изм.
Мгод	4200	0,18	0,000756	т/год

Итого выбросы загрязняющих веществ от засыпки муки (ист. выд. № 001)

Код ЗВ	Наименование ЗВ	ВЫБРОСЫ		
код зв	Паименование 3В	г/сек	т/год	
3721	Пыль мучная	0,00230137	0,00076	
ИТОГО		0,00230137	0,00076	

Брожение теста (ист. выд. № 002)

Брожение теста происходит в течение всего рабочего дня (12 час/сут), когда один замес закладывается в печь, Количество загрязняющих веществ, образующихся, в процессе брожения теста определяются по формуле:

> Mceκ = B(κΓ) * Q /T/3600, Γ/ceκM год = B (т/год)* Q/ 1000000, т/год

Q – удельное выделение, г/кг

B – расход,кг/сут, кг/год;

Т – усредненное время брожения, час/сут

11,51 кг/дн

12 час/дн

4200,0 кг/год

Спирт этиловый (1061)

	В (кг)	Q	T		Выброс	Ед. изм.
Мсек	11,507	1,9	12	3600	0,000506	г/сек

Спирт этиловый (1061)

	В (кг/год)	Q	Выброс	Ед. изм.
Мгод	4200,0	1,9	0,00798	т/год

Уксусная кислота (1555)

	В (кг)	Q	T		Выброс	Ед. изм.
Мсек	11,507	0,2	12	3600	0,000053	г/сек

Уксусная кислота (1555)

	В (кг/год)	Q	Выброс	Ед. изм.
Мгод	4200,0	0,2	0,00084	т/год

Ацетальдегид (1115)

	В (кг)	Q	T		Выброс	Ед. изм.
Мсек	11,507	0,04	12	3600	0,0000107	г/сек

Ацетальдегид (1115)

	В (кг/год)	Q	Выброс	Ед. изм.
Мгод	4200,0	0,04	0,000168	т/год

Итого выбросы загрязняющих веществ от брожения теста (ист. выд.№ 002)

Код ЗВ	Наименование ЗВ	ВЫБІ	РОСЫ
Код 5Б	Паименование ЭБ	г/сек	т/год
1061	Спирт этиловый	0,000506	0,007980
1555	Уксусная кислота	0,000053	0,00084
1115	Ацетальдегид	0,0000107	0,0001680
ИТОГО		0,00057	0,0090

Протирка столов (ист. выд. № 003)

Протирка столов для дезинфекции в конце рабочего дня осуществляется кальцинированной содой. Площадь протираемых столов -23.7 m^2 . Время работы 1 час/сут, 365 дн/год.

Количество загрязняющих веществ, образующихся, в процессе протирки столов определяются по формуле:

 $Mce\kappa = S * Q /3600, г/ce\kappa$ M год = M* T* 3600/ 1000000, т/год

Q – удельное выделение, г/час* м²

S – площадь протираемой поверхности, м2

Т – время протирки, час/год

23,7

1 час/сут

365 дн/год

Натрий гидроксид (0150)

	M*	T			Выброс	Ед. изм.
Мсек	0,007	365	3600	1000000	0,0087	т/год

Натрий гидроксид (0150)

	S	Q	Выброс	Ед. изм.
Мгод	23,7	1	0,007	г/сек

Итого выбросы загрязняющих веществ от протирки столов (ист. выд. № 003)

Код ЗВ	Наименование ЗВ	ВЫЫ	РОСЫ
код зв	Паименование ЭБ	г/сек	т/год
150	Натрий гидроксид	0,0066	0,00865
ИТОГО		0,0066	0,00865

Обжарка мяса (ист. выд. № 004)

В кухне столовой установлено оборудование для жарки, работающее от электричества.

Переработка мяса включает в себя следующие технологические процессы: транспортировка, приемка и хранение свежего мяса, разруб мяса, холодильная обработка (охлаждение, замораживание), маринование мяса, изготовление фарша; производство готовой продукции, полуфабрикатов и кулинарных изделий.

Термообработка мяса (варка, обжарка, бланширование и др.) проводятся для придания продуктам питания специфических потребительских свойств. С точки зрения образования газовоздушных выбросов все процессы тепловой обработки сырья растительного и животного происхождения протекают с выделением органических, преимущественно паро- и газообразных веществ. Качественный состав этих выбросов крайне сложен, однако в подавляющем большинстве случаев концентрации отдельных компонентов в отходящих газах крайне низки и не вызывают опасного загрязнения воздушного бассейна. Большая часть технологических и все виды вентиляционных выбросов участков термической обработки пищевых продуктов относятся к категории «условно чистых».

Обжарка мяса (ист. выд. № 004)

В кухне столовой установлено оборудование для жарки, работающее от электричества.

Переработка мяса включает в себя следующие технологические процессы: транспортировка, приемка и хранение свежего мяса, разруб мяса, холодильная обработка (охлаждение, замораживание), маринование мяса, изготовление фарша; производство готовой продукции, полуфабрикатов и кулинарных изделий.

Термообработка мяса (варка, обжарка, бланширование и др.) проводятся для придания продуктам питания специфических потребительских свойств. С точки зрения образования газовоздушных выбросов все процессы тепловой обработки сырья растительного и животного происхождения протекают с выделением органических, преимущественно паро- и газообразных веществ. Качественный состав этих выбросов крайне сложен, однако в подавляющем большинстве случаев концентрации отдельных компонентов в отходящих газах крайне низки и не вызывают опасного загрязнения воздушного бассейна. Большая часть технологических и все виды вентиляционных выбросов участков термической обработки пищевых продуктов относятся к категории «условно чистых».

Расчет выбросов от участка обжарки продукции:

Основными технологическими процессами в производстве продукции являются:

• термическая обработка (обжарка овощей).

По данным инструментальных замеров аналогичного предприятия концентрация акролеина в выбросах составляет 0,38 мг/м3 или 0,0000133 г/с.

Средний расход масла на 1 ед. оборудования может составить до 500 кг/год.

Время обжарки 3 час/дн, 365 дн/год 1095 час /год.

M* = C * V/1000, r/cek

M = M* * T * 3600 / 1000 000, т/год

C – концентрация, мг/м3; 0,38

V – объем ГВС – 0,035 м3 /сек

Т – время работы , час/год 1095

Акролеин (1301)

	Выброс	Ед. изм.
M*	0,0000133	г/сек

Акролеин (1301)

	M*	T		Выброс	Ед. изм.
M	0,0000133	1095	3600	0,0000524	т/год

Итого выбросы загрязняющих веществ при обжарке (ист. выд. 004)

Код ЗВ Наим-е ЗВ		ВЫБІ	РОСЫ
Код ЭБ	код зв наим-е зв		т/год
1301	Акролеин	0,0000133	0,0000524
ИТОГО		0,0000133	0,0000524

Итого выбросы загрязняющих веществ от столовой (ист. № 0019)

Код ЗВ	Наименование ЗВ	ВЫБІ	РОСЫ
Код эв	Паименование ЭВ	г/с	т/год
150	Натрий гидроксид	0,007	0,0087
3721	Пыль мучная	0,002301	0,0000524
1061	Спирт этиловый	0,00051	0,00798
1555	Уксусная кислота	0,000053	0,00084
1115	Ацетальдегид	0,0000107	0,000168
150	Натрий гидрооксид	0,0000	0,00000
1301	Акролеин	0,0000133	0,0000524
ИТОГО		0,00947	0,017743

Расчет выбросов загрязняющих веществ от автотранспорта предприятия (ист. № 6017)

На балансе находится 23 ед. автотранспорта, условно принимается

автомашины работающие на бензине

7

автомашин

автомашины, работающие на дизельном топливе

16

автомашин

Расчет вполнен согласно Методике расчета выбросов загрязняющих веществ от транспортных средств предприятия (раздел3)

Приложение № 3 к Приказу Министра ООС РК от 18 апреля 2008 года № 100-п

Расчет ЗВ от участка ТО и ТР

Расстояние от ворот помещения до поста КП

0,01 км

Группа автомобилей - легковые автомобили объемом 1,8-3,5 л, неэтилированный бензин (ист. выд. № 001)

Количество приезжающих в течение года для машин данной группы

1

Наибольшее число автомобилей приезжающих, в течение часа

.

Время прогрева

1,5 мин

Среднее время движения ДМ по зоне ТО и ТР

T = 3*0,01/3*60

0,2 мин

Расчет выполнен по формуле

 $M^* = (M\pi p^* S + 0.5*Q*T)*N/3600, г/сек$ Mгод = $(2*M\pi p^*S + Q*T)*N/1000000, т/год$

Q - удельный выброс ЗВ при прогреве двигателя, г/мин, табл. 4.5

Т - время прогрева, мин

1,5

Мпр - пробеговые выбросы, г/ми, табл. 4.6

Тср - среднее время движения ДМ по зоне ТО и ТР, мин

0,2

N- количество ТО и ТР в течение часа

1

Оксид углерода (033)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	4,5	1,5	13,2	0,01	1	3600	0,000974	г/сек
M	2	4,5	1,5	13,2	0,01	1	1000000	-	т/год

Бензин (2704)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,44	1,5	1,7	0,01	1	3600	0,000096	г/сек
M	2	0,44	1,5	1,7	0,01	1	1000000	-	т/год

Диоксид азота (0301)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,03	1,5	0,24	0,01	1	3600	0,000006	г/сек
M	2	0,03	1,5	0,24	0,01	1	1000000	-	т/год

Оксид азота (0304)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,03	1,5	0,24	0,01	1	3600	0,000001	г/сек
M	2	0,03	1,5	0,24	0,01	1	1000000	-	т/год

Сернистый ангидрид (0330)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,012	1,5	0,063	0,01	1	3600	########	г/сек
M	2	0,012	1,5	0,063	0,01	1	1000000	-	т/год

Итого от легковых автомобилей объемом 1,8-3,5 л (ист. выд. № 001)

Код ЗВ	Наименование ЗВ	г/сек	т/год
337	оксид углерода	0,000974167	-
2704	бензин	0,000096	-
301	диоксид азота	0,0000055	-
304	оксид азота	0,0000009	-
330	сернистый ангидрид	0,0000027	-
	Итого	0,001080	-

Группа автомобилей - Грузовые - мощность ДВС - 161-260 кВт, дизельное топливо (ист. выд. № 002)

Количество ТР и ТО, проведенных в течение года для машин данной группы

Наибольшее число автомобилей находящихся в зоне ТР и ТО, в течение часа

Время прогрева

1,5 мин

Среднее время движения ДМ по зоне ТО и ТР

T = 2*0.01/3*60

0,2 мин

Расчет выполнен по формуле

$$M^* = (0,5*Q*T+Mпp*Tcp)*N/3600, г/сек$$

 $Mгод = (Q*T+Mпp*Tcp)*N/1000000, т/год$

Q - удельный выброс 3B при прогреве двигателя, г/мин, табл. 4.5

Т - время прогрева, мин

Мпр - пробеговые выбросы, г/ми, табл. 4.6

Тср - среднее время движения ДМ по зоне ТО и ТР, мин

0,2

N- количество ТО и ТР в течение часа

Эксид углерода (0337

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	6,3	1,5	3,37	0,2	1	3600	0,0015	г/сек
M		6,3	1,5	0,45	0,2	1	1000000	-	т/год

Керосин (2732)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	0,79	1,5	1,14	0,2	1	3600	0,000228	г/сек
M		0,79	1,5	1,14	0,2	1	1000000	-	т/год

Диоксид азота (0301)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	1,27	1,5	6,47	0,4	1	3600	0,000787	г/сек
M		1,27	1,5	6,47	0,4	1	1000000	-	т/год

Оксид азота (0304)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	1,27	1,5	6,47	0,4	1	3600	########	г/сек
M		1,27	1,5	6,47	0,4	1	1000000	-	т/год

Сажа (0328)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	0,17	1,5	0,72	0,4	1	3600	0,000115	г/сек
M		0,17	1,5	0,72	0,4	1	1000000	-	т/год

Сернистый ангидрид (0330)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	0,25	1,5	0,51	0,4	1	3600	0,000109	г/сек
M		0,25	1,5	0,51	0,4	1	1000000	-	т/год

Итого от грузовых - ДВС -161-260 кВт (ист. выд. № 002)

Код ЗВ	Наименование ЗВ	г/сек	т/год
337	оксид углерода	0,001500	-
2732	керосин	0,000228	-
301	диоксид азота	0,000787	-
304	оксид азота	0,0001279	-
328	сажа	0,0001154	-
330	сернистый ангидрид	0,0001088	-
	Итого	0,002866	-

Итого выбросов загрязняющих веществ от автотранспорта, работающего на предприятии (ист. № 6017)

Код ЗВ	Наименование ЗВ	г/сек	т/год
337	оксид углерода	0,0024739	-
2732	керосин	0,000228	-
301	диоксид азота	0,0007923	-
304	оксид азота	0,0001288	-
328	сажа	0,0001154	-
330	сернистый ангидрид	0,000111	-
2704	бензин	0,000096	-
	Итого	0,003946	-

Расчет выбросов загрязняющих веществ от автотранспорта, приезжающего на территорию промышленной площадки (парковочный карман) (ист. № 6018)

За территорией предприятия имеется парковочный карман на 10 автоединиц.

автомашины работающие на бензине

5

автомашин

автомашины, работающие на дизельном топливе

5

автомашин

Расчет вполнен согласно Методике расчета выбросов загрязняющих веществ от транспортных средств предприятия (раздел3)

Приложение № 3 к Приказу Министра ООС РК от 18 апреля 2008 года № 100-п

Расчет ЗВ от участка ТО и ТР

Расстояние от ворот помещения до поста КП

0.01 км

Группа автомобилей - легковые автомобили объемом 1,8-3,5 л, неэтилированный бензин (ист. выд. № 001)

Количество приезжающих в течение года для машин данной группы

1

Наибольшее число автомобилей приезжающих, в течение часа

Время прогрева

1,5 мин

Среднее время движения ДМ по зоне ТО и ТР

T = 3*0.01/3*60

0,2 мин

Расчет выполнен по формуле

$$M^* = (M\pi p^* S + 0.5*Q*T)*N/3600, \Gamma/cek$$

 $Mrog = (2*M\pi p^*S+Q*T)*N/1000000, T/rog$

Q - удельный выброс 3B при прогреве двигателя, г/мин, табл. 4.5

Т - время прогрева, мин

1,5

Мпр - пробеговые выбросы, г/ми, табл. 4.6

Тср - среднее время движения ДМ по зоне ТО и ТР, мин

0,2

N- количество ТО и ТР в течение часа

- 1

Оксид углерода (0337)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	4,5	1,5	13,2	0,01	1	3600	0,00097417	г/сек
M	2	4,5	1,5	13,2	0,01	1	1000000	-	т/год

Бензин (2704)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,44	1,5	1,7	0,01	1	3600	0,000096	г/сек
M	2	0,44	1,5	1,7	0,01	1	1000000	1	т/год

Диоксид азота (0301)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,03	1,5	0,24	0,01	1	3600	0,000006	г/сек
M	2	0,03	1,5	0,24	0,01	1	1000000	-	т/год

Оксид азота (0304)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,03	1,5	0,24	0,01	1	3600	0,000001	г/сек
M	2	0,03	1,5	0,24	0,01	1	1000000	-	т/год

Сернистый ангидрид (0330)

		Q	T	Мпр	S	N		Выброс	Ед. изм
M*	0,5	0,012	1,5	0,063	0,01	1	3600	0,0000027	г/сек
M	2	0,012	1,5	0,063	0,01	1	1000000	-	т/год

Итого от легковых автомобилей объемом 1,8-3,5 л (ист. выд. № 001)

Код ЗВ	Наименование ЗВ	г/сек	т/год
337	оксид углерода	0,000974167	•
2704	бензин	0,000096	•
301	диоксид азота	0,0000055	ı
304	оксид азота	0,0000009	-
330	сернистый ангидрид	0,0000027	-
	Итого	0,001080	-

Группа автомобилей - Грузовые - мощность ДВС - 161-260 кВт, дизельное топливо (ист. выд. № 002)

Количество ТР и ТО, проведенных в течение года для машин данной группы

Наибольшее число автомобилей находящихся в зоне ТР и ТО, в течение часа

Время прогрева

1,5 мин

Среднее время движения ДМ по зоне ТО и ТР

T = 2*0,01/3*60

0,2 мин

Расчет выполнен по формуле

 $M^* = (0.5*Q*T+Mпp*Tcp)*N/3600, г/сек$ Mгод = (Q*T+Mпp*Tcp)*N/1000000, т/год

Q - удельный выброс 3В при прогреве двигателя, г/мин, табл. 4.5

Т - время прогрева, мин

1,5

Мпр - пробеговые выбросы, г/ми, табл. 4.6

Тср - среднее время движения ДМ по зоне ТО и ТР, мин

N- количество ТО и ТР в течение часа

ı

0,2

Оксид	углерода ((0337`

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	6,3	1,5	3,37	0,2	1	3600	0,00149972	г/сек
M		6,3	1,5	0,45	0,2	1	1000000	-	т/год

Керосин (2732)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	0,79	1,5	1,14	0,2	1	3600	0,000228	г/сек
M		0,79	1,5	1,14	0,2	1	1000000	-	т/год

Диоксид азота (0301)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	1,27	1,5	6,47	0,4	1	3600	0,000787	г/сек
M		1,27	1,5	6,47	0,4	1	1000000	-	т/год

Оксид азота (0304)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	1,27	1,5	6,47	0,4	1	3600	0,0001279	г/сек
M		1,27	1,5	6,47	0,4	1	1000000	-	т/год

Сажа (0328)

		Q	T	Мпр	Тср	N		Выброс	Ед. изм
M*	0,5	0,17	1,5	0,72	0,4	1	3600	0,000115	г/сек
M		0,17	1,5	0,72	0,4	1	1000000	-	т/год

Сернистый ангидрид (0330)

ееринетын аш идрид (0330)								
	Q	T	Мпр	Тср	N	Вы	брос	Ед. изм

M*	0,5	0,25	1,5	0,51	0,4	1	3600	0,000109	г/сек
M		0,25	1,5	0,51	0,4	1	1000000	-	т/год

Итого от грузовых - ДВС -161-260 кВт (ист. выд. № 002)

Код ЗВ	Наименование ЗВ	г/сек	т/год
337	оксид углерода	0,001500	-
2732	керосин	0,000228	-
301	диоксид азота	0,000787	-
304	оксид азота	0,0001279	-
328	сажа	0,0001154	ı
330	сернистый ангидрид	0,0001088	-
	Итого	0,002866	-

Итого выбросов загрязняющих веществ от автотранспорта, приезжающего на территорию промышленной площадки (парковочный карман) (ист. загр. № 6019).

Код ЗВ	Наименование ЗВ	г/сек	т/год
337	оксид углерода	0,0024739	-
2732	керосин	0,000228	-
301	диоксид азота	0,0007923	-
304	оксид азота	0,0001288	-
328	сажа	0,0001154	=
330	сернистый ангидрид	0,000111	-
2704	бензин	0,000096	-
	Итого	0,003946	-