ТОО СП «КУАТАМЛОНМУНАЙ» ИП «ЭКО-ОРДА»

«УТВЕРЖДАЮ»

Генеральный директор ТОО СП «Куатамлонмунай»

Янь Сяоцзюнь

2025 год

ПРОЕКТ

нормативов допустимых выбросов (НДВ) для ТОО СП «КУАТАМЛОНМУНАЙ» на 2026 год

Директор ИП«ЭКО-ОРДА» Әбдиев С. Б.

г.Кызылорда, 2025г.

СПИСОК ИСПОЛНИТЕЛЕЙ

Исполнитель:	Должность:
Әбдиев С.Б.	Директор
Адрес предприятия:	
Местонахождение - г.Кызылорда, мкр-н	Сырдария, 20/39
Контакты:	
Тел.:+77777851346	
Государственная лицензия:	
Государственная лицензия 02468Р выдан	а МЭРКот 08.04.2019 года на выполнение
работ и услуги в области охраны окружа	ющей среды, приложение к лицензии

Государственная лицензия 02468Р выдана МЭРКот 08.04.2019 года на выполнение работ и услуги в области охраны окружающей среды, приложение к лицензии №19008099 на природоохранное нормирование и проектирование для1 категории хозяйственной и иной деятельности.

АННОТАЦИЯ

В настоящем проекте нормативов допустимых выбросов (НДВ) загрязняющих веществ содержится оценка уровня загрязнения атмосферного воздуха вредными выбросами месторождении Коныс, Бектас ТОО СП «Куатамлонмунай», расположенный в Сырдарьинском районе Кызылординской области и даны предложения по нормативам допустимых выбросов (НДВ) на 2026 год.

Целью настоящей работы является определение количественных и качественных характеристик выбросов вредных веществ в атмосферу источниками предприятия, разработка нормативов НДВ и мероприятий по контролю экологической ситуации в зоне влияния, а также охраны поверхностного слоя земли, поверхностных и подземных вод от загрязнения.

С истечением срока Экологического разрешения на воздействие для объектов I категории № KZ21VCZ03444192 с периодом действия с 08.11.2024 года по 31.12.2025 года, разработан проект нормативов допустимых выбросов (НДВ) загрязняющих веществ, в котором содержится оценка уровня загрязнения атмосферного воздуха вредными выбросами месторождении Коныс и Бектас ТОО СП «Куатамлонмунай» на 2026 год, также с изменением условий природопользования.

Основанием для разработки проекта НДВ на 2026 год являются:

- Контракт на недропользование гос.регистрационный №5378-УВС от 01.11.2024г. со сроком действия Контракта с учетом продления периода добычи на 25 лет до 04.11.2049 года.
- Программа развития переработки сырого газа месторождений Коныс и Бектас с техноголическими показателями по месторождению Коныс-Бектас на 2026г. ТОО СП «Куатамлонмунай»;
- Протокол Рабочей группы по выработке предложений по утверждению Программы развития переработки сырого газа для месторождения Коныс Бектас;
 - Разрешение на сжигание сырого газа в факелах.

Проект нормативов допустимых выбросов включает в себя: общие сведения об операторе; характеристику технологии производства и технологического оборудования (описание выпускаемой продукции); краткая характеристика существующих установок очистки газа, анализ их технического состояния и эффективность работы; оценка степени применяемой технологии, технического и пылегазоочистного оборудования; параметры выбросов загрязняющих веществ в атмосферу; характеристика аварийных и залповых выбросов; перечень загрязняющих веществ, выбрасываемых в атмосферу; метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере месторождения; результаты расчетов уровня загрязнения атмосферы на соответствующее положение и с учетом перспективы развития; ситуационные карты-схемы с нанесением на них изолиниями расчетных концентраций; предложения по нормативам допустимых выбросов по каждому источнику и ингредиенту; мероприятия по регулированию выбросов при неблагоприятных метеорологических условиях.

Основными источниками выбросо вредных веществ на месторождении являются:

• неорганизованные источники: эксплуатационные скважины, групповая замерная установка, нефте и газосепараторы, концевая сепарационные установки, дренажи, насосные установки, отстойники - утечка вредных веществ в атмосферу через неплотности сальниковых уплотнений, предохранительных клапанов, фланцевых соединений и запорно-регулирующей арматуры; неорганизованный площадной источник электро - газосварочные посты — выбросы происходят при работе аппаратов;

Согласно требованиям «Правил обеспечения промышленной безопасности для опасных производственных объектов нефтяной и газовой отраслей промышленности» утвержденные приказом Министерства по инвестициям и развитию PK от 30.12.2014г. № 355, для обеспечения безопасной эксплуатации разработки нефтегазовых месторождений, не допускается эксплуатация технологического оборудования до устранения неисправностей. За счет герметизации неплотности 3PA и ΦC в атмосферу исключается выделение углеводородов и не подлежит нормированию. Нормативы выбросов загрязняющих веществ на 2024 год представлены без источников 3PA и ΦC .

- организованные источники: котельная, печи подогрева нефти, дизельные двигатели для генераторов, сварочный передвижной агрегат выбросы загрязняющих веществ в атмосферу производятся от дымовых и выхлопных труб; станки по обработке металлических деталей и химическая лаборатория выброс осуществляется через вентиляционную систему; резервуары для нефти, нефтеналивной стояк, емкости для топлива вредные вещества выделяются в атмосферу через дыхательные клапана;
 - передвижные источники выбросов спецтехника и автотранспорт.

Согласно n.24 «Методики определения нормативов эмиссий в окружающую среду», утвержденный приказом Министра экологии, геологии и природных ресурсов РК от 10.03.2021 года N2 63, валовые выбросы от двигателей передвижных источников (m/год) не нормируются и в общий объем выбросов вредных веществ не включаются.

По результатам инвентаризации на 2026 год в целом на предприятии насчитывается **274 источников выбросов вредных веществ в атмосферу**, из них организованных-183, неорганизованных - 2, 3PA и ФС- 43, в резерве – 41.

Согласно приведенным расчетам от промышленных площадок ТОО СП «Куатамлонмунай» в атмосферный воздух от стационарных источников выбрасываются загрязняющие вещества 22 наименований, с 2 по 4 класс опасности.

Нормативы выбросов в атмосферу установлены с учётом фактической максимальной нагрузки оборудования за последние 2-3 года. Разрешенные и фактические выбросы загрязняющих веществ по м/р Коныс, Бектас за последние 3 года, включительно 2024 год приведена в таблице 1:

Таблица 1

			таолица т.
Выбросы по годам/	2023г.	2024г.	2025г.
т/год			
Разрешенный	911,75	634,06778 тонн (на 309 дней 2024г.)	555,2
Фактический	671,2	614,05 тонн	221,61717651 тонн (первое полугодия)
Р азница, % +/-	- 26,4	-3,16	-

Данные по добыче и использованию попутного нефтяного газа на собственные нужды

Показатели	За 2024г.	за аналогичный период прошлого года	Уменьшение (-) Увеличение (+)
Добыча нефти, тыс.тн	93,2334	103,924	- 9,33
Добыча газа, млн.м ³	16,454727	18,242180	- 9,8
Всего утилизировано, млн.м ³ , из них:			
-использование на собственные нужды, млн.м ³	14,742478	16,961235	- 13
-закачка в пласт, млн.м ³	1,503200	1,051815	+ 42,9
-выработка электроэнергии, и т.д., млн.м ³	6,801240	8,832750	- 23
- сожжено газа (сырого и товарного газа) млн.м ³	-	-	-
- сожжено газа на факелах, млн.м ³	0,185819	0,202546	- 8,26
% утилизации	99%	99%	

Общий валового выброса загрязняющих веществ в атмосферу составляет:

- на 2026 год - 72,888 г/с, 479,615 т/год.

Из-за вышеуказанных причин годовые фактические выбросы ЗВ оказались меньше, чем установленные годовые нормативные выбросы ЗВ, из-за снижения объема газодобычи в месторождениях Коныс и Бектас.

Результатам анализа количества выбросов загрязняющих за последние 3 года показывают, что фактические выбросы не превышают нормативные показатели.

Максимально-разовые и средне-суточные допустимые концентрации загрязняющих веществ в атмосферном воздухе не должны превышать ПДК, установленных в требовании приказа Министра национальной экономики РК «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах» от 28.02.2015г.

При разработке проекта нормативов НДВ использованы санитарные правила "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека" утвержденные приказом Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚРДСМ-2. Зарегистрирован в Министерстве юстиции Республики Казахстан 11 января 2022 года № 26447, согласно, которому месторождения Коныс и Бектас относятся к І-ому классу опасности с СЗЗ - 1000м.

По определению категории объекта головной офис предприятия относится к IV категории опасности. В связи с этим не включены нормативы эмиссий в данном проекте.

Для проведения расчетов рассеивания загрязняющих веществ в атмосферу использован программный комплекс «ЭРА», версия 3.0, НПО «Логос», г. Новосибирск, согласованный с ГГО имени Воейкова, г.Санкт-Петербург и МООС Республики Казахстан. Расчет рассеивания в приземном слое атмосферы показал, что превышение ПДК не наблюдается на границе санитарно-защитной зоны месторождений Коныс и Бектас.

Нормативы НДВ устанавливаются на 2026 год и подлежат пересмотру (переутверждению) при изменении экологической обстановки в регионе, появлении новых и уточнении параметров существующих источников загрязнения окружающей природной среды в местных органах по контролю за использованием и охраной окружающей среды.

СОДЕРЖАНИЕ

	АННОТАЦИЯ	3
	ВВЕДЕНИЕ	6
1.	ОБЩИЕ СВЕДЕНИЕ ОБ ОПЕРАТОРЕ	7
1.1	Почтовый адрес оператора	7
1.2	Карта схем объекта	8
1.3	Ситуационная карта-схема района	9
2.	КРАТКАЯ ХАРАКТЕРИСТИКА ПРИРОДНЫХ УСЛОВИЙ И	11
	состояния компонентов окружающей природной	
	СРЕДЫ РАЙОНА РАСПОЛОЖЕНИЯ ПРЕДПРИЯТИЯ	
2.1	Климатические условия	11
2.1.1	Атмосферный воздух	11
3.	ХАРАКТЕРИСТИКА ПРОМПЛОЩАДОК МЕСТОРОЖДЕНИЯ КОНЫС И БЕКТАС, КАК ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ	14
3.1	Краткая характеристика технологии производства и технологического	17
	оборудования с точки зрения загрязнения атмосферы ТОО СП	
	«Куатамлонмунай»	
3.2	Характеристика залповых выбросов	28
3.3	Перспектива развития предприятия	30
3.4	Передвижные источники выбросов	31
3.5	Обоснование полноты и достоверности исходных данных (г/с, т/год) принятых для расчета НДВ	32
3.6	Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ	33
3.7	Проведение расчетов и определение предложений нормативов НДВ	140
3.7.1	Расчет приземных концентраций	142
3.7.2	Предложения по установлению нормативов НДВ	145
3.7.3	Размер санитарно-защитной зоны	146
3.8	МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ПРИ НМУ	163
3.8.1	МЕРОПРИЯТИЯ ПО ЗАЩИТЕ НАСЕЛЕНИЯ ОТ ВОЗДЕЙСТВИЯ ВЫБРОСОВ ВРЕДНЫХ ХИМИЧЕСКИХ ПРИМЕСЕЙ В АТМОСФЕРНЫЙ ВОЗДУХ	164
3.9	ПЕРЕЧЕНЬ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ВЫБРАСЫВАЕМЫХ В АТМОСФЕРУ	170
4.	ФИЗИЧЕСКИЕ ВОЗДЕЙСТВИЯ И РАДИАЦИОННАЯ ОБСТАНОВКА	203
4.1	ФИЗИЧЕСКИЕ ВОЗДЕЙСТВИЯ	205
4.2	ХАРАКТЕРИСТИКА ПРОИЗВОДСТВЕННОГОШУМА	210
4.3	МЕРОПРИЯТИЯ ПО СМЯГЧЕНИЮ ВОЗДЕЙСТВИЯ ФИЗИЧЕСКИХ	224
	ФАКТОРОВ	:
4.4	РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ	228
	СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	
	ПРИЛОЖЕНИЕ	
П-1	Копия лицензии поставщика	
П-2	Сведения о фоновой концентрации	
П-3	Исходные данные Заказчика	

ВВЕДЕНИЕ

Проект нормативов допустимых воздействий (НДВ) для ТОО СП «Куатамлонмунай» на 2026 год разработан на основании договора заключенный между ТОО СП «Куатамлонмунай» и ИП «ЭКО-ОРДА».

В соответствии с природоохранными нормами и правилами Республики Казахстан нормативы допустимых выбросов загрязняющих веществ в атмосферу для отдельных предприятий устанавливаются в целях предотвращения загрязнения воздушного бассейна от загрязнения.

При выполнении настоящей работы проведена инвентаризация источников выбросов в соответствии с требованиями «Инструкция по инвентаризации выбросов вредных веществ в атмосферу» (РНД211.1.02.03-97), также разработка данного проекта осуществлялась в соответствии со следующими нормативными документами:

- «Экологический кодекс РК» № 400-VI ЗРК от 02.01.2021г.;
- Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 «Об утверждении Методики определения нормативов эмиссий в окружающую среду»;
- Санитарные правила «Санитарно-эпидемиологические требования к санитарнозащитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» от 11 января 2022 года № ҚР ДСМ-2;
- РНД211.2.02.02-97 «Рекомендациями по оформлению и содержанию проекта нормативов ПДВ для предприятий»;

Расчетные формулы, используемые при определении мощности выбросов вредных веществ и их концентрации в атмосферном воздухе, а также термины и условные обозначения, применяемые в прилагаемых таблицах, приняты в соответствии с региональными и отраслевыми методиками, утвержденными в Республике Казахстан.

Юридические адреса сторон:

Заказчик:

120008, Республика Казахстан, г.Кызылорда, ул. А. Иманова, здание №108Г ТОО СП «КУАТАМЛОНМУНАЙ»

тел:+7(7242)235600 факс:+7(7242)237621

Исполнитель:

120000, Республика Казахстан, Юр.адрес:г.Кызылорда, мкр.Сырдария, № 20/39. ИП «ЭКО-ОРДА»

Телефон:+7777783 14 36 e-mail:ecoorda@bk.ru

1. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ

1.1.Почтовый адрес оператора

<u>Полное и сокращенное наименование:</u> Товарищество с ограниченной ответственностью совместное предприятие «Куатамлонмунай».

Юридический адрес оператора: РК, 120008, Кызылординская область,

г.Кызылорда, ул.Амангельды Иманова, здание №108Г.

Фактический адрес расположения объекта: РК, Кызылординская область,

Сырдарьинский район, месторождение Коныс и Бектас.

Электронный адрес: kuatamlonmunai@kuatamlommunai.kz.

Тел.: 8(7242)23-56-00 Факс: 8(7242) 23-29-87 БИН: 941040001050

Вид основной деятельности: добыча и подготовка нефти на месторождении Коныс,

Бектас.

Форма собственности: частная

Месторождения Коныс и Бектас. . Нефтегазовые месторождения Коныс и Бектас входят в состав нефтегазоносных структур ЮжноТоргайского прогиба.

В географическом отношении месторождения Коныс и Бектас расположены в Сырдарьинском районе, Кызылординской области на приграничной территории с Карагандинской областью, в зоне северных континентальных пустынь и приурочена к поверхности обширной озерной котловины.

Район без водных артерий и постоянных населенных пунктов. Железнодорожные станции Жусалы и Жалагаш расположены в 150–200 км. Ближайшими населенными пунктами являются железнодорожные станции Жалагаш (130 км), Жусалы (140 км), Карсакпай (180 км) и пос.Сатпаево (250 км). Расстояния до областных центров г.Кызылорда и г.Жезказган составляют 140 км и 290 км, соответственно. На расстоянии 230 км к востоку от месторождений проходит нефтепровод Омск — Павлодар — Шымкент, а в 20 км к северо-востоку проходит ЛЭП Жусалы—Байконур.

На предприятии функционируют замерные установки (ЗУ) с помощью которых осуществляется сбор добываемой водо-газонефтяной жидкости с куста скважин, замер добытых нефти и газа и транспортировка жидкости и газа для дальнейшей подготовки на ГУ Южный Коныс, ГУ Бектас и ЦППНГ.

Попутный нефтяной газ месторождения Бектас, отделенный при сепарации продукции, по газовому коллектору транспортируется на ЦППНГ.

Оператор относится к I категории, оказывающих негативное воздействие на окружающую среду согласно решения по определению категории объекта, оказывающего негативное воздействие на окружающую среду, выданного Министерством экологии, геологии и природных ресурсов Республики Казахстан РГУ «Департамент экологии по Кызылординской области» Комитета экологического регулирования и контроля от 21 сентября 2021 г. (приложение).

ТОО СП «Куатамлонмунай» имеет транспорт и спецтехнику из 60 единиц, в том числе:

- автотранспорт на бензине 20 единиц;
- дизельный автотранспорт 65 единиц.

1.2.Карта схема объекта

Ситуационная карта-схема расположения месторождений Коныс — Бектас приведена на рисунке 1.1, ЦППНГ- на рисунке 1.2.

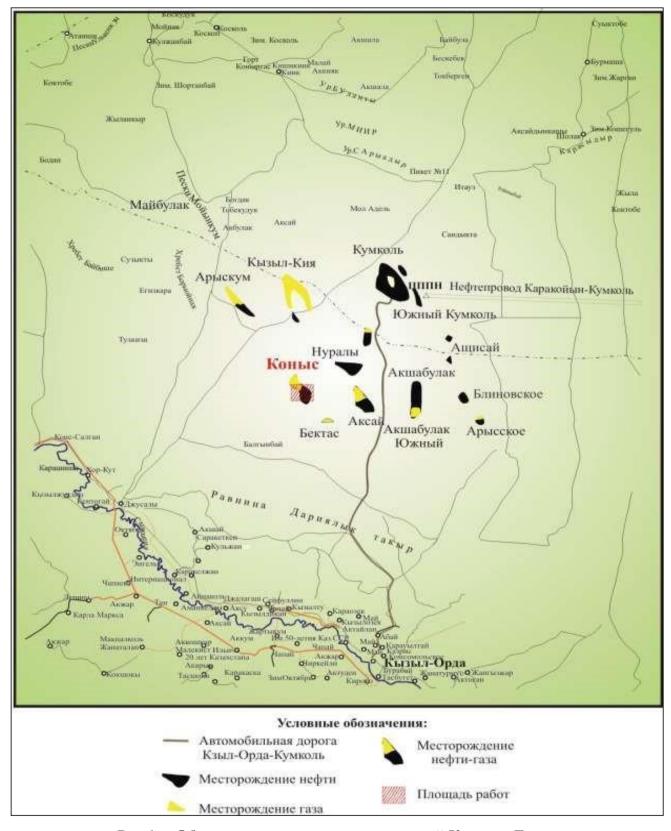


Рис.1. – Обзорная карта схема месторждений Коныс и Бектас

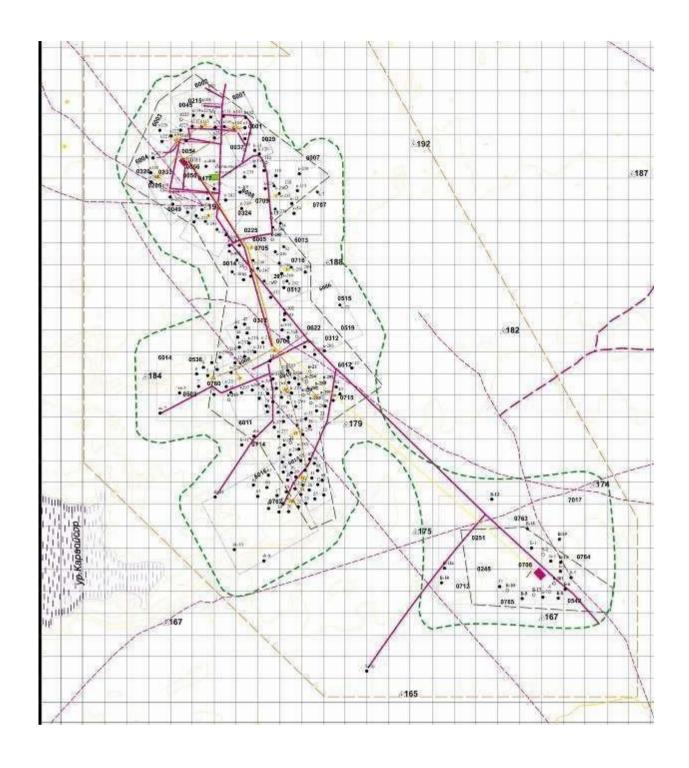


Рис.1.1.- Ситуационная карта-схема расположения месторождений Коныс – Бектас с нанесенными на нее источниками загрязнения атмосферы и санитарно-защитной зоной.

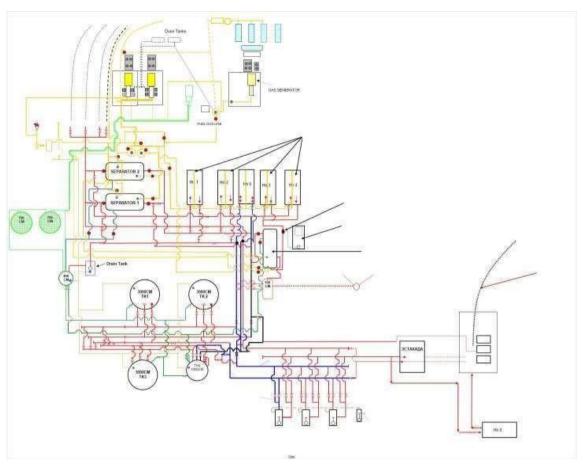


Рис. 1.2.Схема расположения источников выбросов ЦППН на м/р Коныс

1.3. КРАТКАЯ ХАРАКТЕРИСТИКА ПРИРОДНЫХ УСЛОВИЙИ И СОСТОЯНИЯ КОМПОНЕНТОВ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ РАЙОНА РАСПОЛОЖЕНИЯ ПРЕДПРИЯТИЯ

1.3.1.Климатические условия

Климат района-резкоконтинентальный, с большими колебаниями сезонных и суточных температур воздуха, малым количеством осадков (10 мм в год) и засушливым летом. Максимальные температуры летом плюс $30...35^{\circ}$ С, минимальные зимой минус $38...40^{\circ}$ С.

Характерны сильные ветры: летом—западные и юго-западные, в остальное время года —северные и северо-восточные. Характерны постоянные ветры юго-восточного направления, в зимнее время часто метели и бураны.

Годовое количество осадков до 150 мм, выпадающих в основном, в зимнее - весенний сезон.

1.3.2. Атмосферный воздух

Температурный режим.

Зима—умеренно холодная, малоснежная и короткая. Устойчивые морозы наблюдаются со второй половины ноября до конца февраля. В зимние месяцы возможны оттепели, с повышением температуры воздуха до 10^{0} C.

Весна продолжается с середины марта до середины мая, теплая с неустойчивой погодой. По ночам до середины апреля обычно заморозки. В весенние месяцы выпадает наибольшее количество осадков в виде дождей.

Лето – сухое, жаркое и продолжительное (середина мая – середина сентября). Дожди кратковременные, ливневого характера, бывает очень редко, преимущественно в июне. Относительная влажность воздуха днем падает до 30%, ночью около 56%. Летом часто суховей, во время которых возникает явление мглы, когда видимость не превышает 1 км, а иногда снижается до нескольких сотен метров.

Осень (сентябрь-первая половина ноября) в первой половине теплая, во второй прохладная. В конце сентября начинаются ночные заморозки.

Влажность воздуха

В летнее время сильная жара в сочетании с частыми ветрами осущает нижние слои атмосферы, в результате чего создается большой дефицит влаги, достигающей 25-28 миллибар. Дефицит влаги обусловливает интенсивное испарение с водной поверхности и грунтовых вод в местах не глубокого залегания. Испарение с открытой водной поверхности составляет 1478 мм, испарение с поверхности почвы — 100 мм в год. Среднегодовая влажность воздуха составляет 56%, ее набольшее значение достигается в холодное время года (78%), с ростом температуры влажность воздуха падает до 38%.

Снежный покров.

Устойчивый снежный покров наблюдается не каждый год, его высота редко превышает 15 см. Продолжительность периода с устойчивым снежным покровом — 51...60 дней, сход снежного покрова происходит в марте.

Bemep.

Господствующими направлениями ветра в районе являются восточные, северовосточные ветры, со средней скоростью 4,5 м/с. Средняя годовая повторяемость направлений ветра и штиля по данным метеостанции Жусалы отражена на рисунке 2.1.

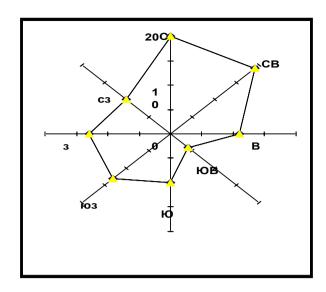


рис.1.3.1.- Среднегодовая роза ветров.

Атмосферные осадки. Засушливость - одна из отличительных черт климата района. Осадков выпадает очень мало и они распределяются по сезонам года крайне неравномерно: 60% всех осадков приходится на зимне-весенний период. Осадки летнего периода не имеют существенного значения, как для увлажнения почвы, так и для развития культурных растений.

Снежный покров незначителен и неустойчив; образуется он во второй - третьей декаде декабря. Средняя высота его 10...25 см. Устойчиво снег лежит 2,5 месяца. Средние запасы воды в снеге составляют 30...60 мм.

Изучаемый регион отличается ярко выраженной засушливостью с годовым количеством осадков 130...137 мм. Количество осадков убывает с севера на юг и составляет на севере 137 мм, на юге-130мм.

Характер годового распределения месячных сумм осадков также неоднороден: летом 4...6 мм, зимой 15...17 мм. Осадки ливневого характера с грозами и градом наблюдаются в теплое время года. Зимой ливневые осадки наблюдаются значительно реже.

Снежный покров является фактором, оказывающим существенное влияние на формирование климата в зимний период, главным образом, вследствие большой отражательной способности поверхности снега. Небольшое количество солнечной радиации, поступающей зимой на подстилающую поверхность, почти полностью отражается.

В холодный период наблюдаются туманы, в среднем их бывает 18...27 дней в году. Характеристика климатических, метеорологических условийи коэффициенты, Определяющие условия рассеивания загрязняющих веществ в атмосфере (СНиП 2.01.01.–82) представлены в таблице 2.1.

 Таблица 1.3

 Климатические характеристики района расположения контрактной территории

Наименование	Величина
Коэффициент, зависящий от стратификации атмосферы	200
Коэффициент рельефа местности	1.0
Средняя температура воздуха наиболее жаркого месяца,С	27.8
Средняя температура воздуха наиболее холодного месяца	-10.8
Средняя роза ветров,% м/с,	
С	20.0
СВ	19.0
В	11.0
ЮВ	4.0
Ю	10.0
ЮЗ	13.0
3	13.0
C3	10.0
Скорость ветра(V*), повторяемость превышения которой составляет	6.0
5%,M/c	

2. ХАРАКТЕРИСТИКА ПРОМПЛОЩАДОК МЕСТОРОЖДЕНИЯ КОНЫС И БЕКТАС, КАК ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

Для сбора и транспортировки нефти на месторождении Коныс и Бектас проложена лучевая герметизированная напорная система сбора продукции скважин. В настоящее время на месторождении уже обустроены следующие объекты сбора и подготовки добываемой продукции:

- Выкидные трубопроводы;
- Замерные установки (ЗУ);
- Трубопроводы от ЗУ до ГУ, ЦППНГ;
- Групповая установка (ГУ Южный Коныс);
- Цех подготовки и перекачки нефти, газа (ЦППНГ);
- Магистральный нефтепровод (МН) «Коныс-Кумколь»;
- Пункт сдачи нефти (ПСН).

В основу технологической схемы сбора нефти заложена однотрубная герметизированная система выкидных линий, представляющих собой индивидуальные для каждой скважины трубопроводы, соединяющие устье с блоком входных манифольдов объекта подготовки нефти. На каждой скважине предусматривается размещение устьевого оборудования, путевой подогреватель, сепаратор. Все скважины снабжены выкидными линиями диаметром 89 мм, по которым добываемая продукция поступает на ЗУ, где производится индивидуальный поочередный замер дебита скважин и добываемого газа, нагрев нефти и ее дальнейшая транспортировка до ЦППНГ (или до ГУ). Печь нагрева нефти на замерных установках работает на попутном газе, выделившемся в сепараторе, установленном на ЗУ и рассчитанном на объем продукции одной скважины.

Все трубопроводы от устьев скважин до ЗУ выполнены из труб стальных бесшовных, из углеродистой стали (API 5L X42) с фаской, с использованием 3-х слойной полиэтиленовой изоляции (API 5L X42, BE, 3PE), способ укладки — подземно, на глубине 1,8-2,0м, ниже глубины промерзания грунта.

На месторождении Коныс для промежуточного учета добываемой нефти установлены замерные установки. На каждой замерной установке предусматривается размещение групповой замерной установки типа «Спутник», путевого подогревателя, камеры пуска скребка и дренажной емкости. Добытая со скважин нефтяная смесь по выкидным линиям поступает, для замера ее количества, на замерную установку «Спутник». После учета ее количества, она отправляется на путевой подогреватель и далее отправляется в трубопровод. Для очистки внутренней поверхности труб от парафинистых отложений и грязи, на замерных установках установлены камеры пуска средств очистки.

Для сбора дренажа и утечек от замерной установки, путевого подогревателя и камеры СОД предусмотрены дренажные ёмкости объемом $V=8 \text{m}^3$ и $V=10 \text{m}^3$, с откачкой дренажа в передвижную ёмкость.

Вся продукция, добываемая на месторождении Коныс и Бектас проходит подготовку на обустроенном ЦППНГ. Технология в соответствии с техническими решениями предусматривает сепарацию, нагрев нефти, хранение в резервуарном парке, откачку потребителю магистральными винтовыми и центробежными насосами через нефтепровод Коныс-Кумколь и далее по маршруту Атасу или ПКОП (Шымкентнефтьоргсинтез). Энергоснабжение промысла осуществляется из своего источника электроэнергии – газопоршневых установок (ГПУ-13 ед) мощностью 1 МВт. Существующая схема системы сбора и транспорта добываемой продукции месторождения Коныс на 01.01.2024г. представлена на рисунке 2.1.

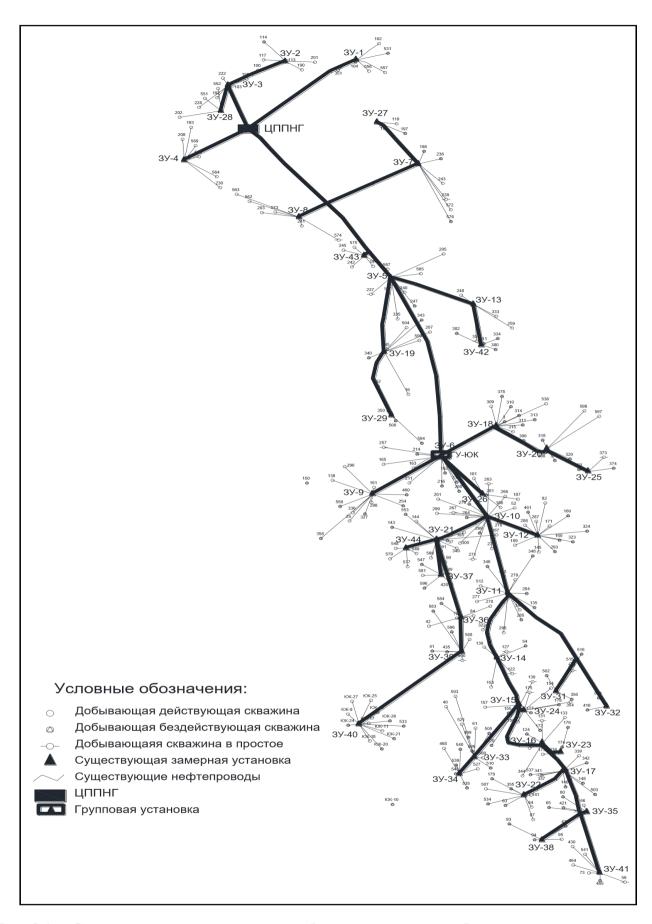


Рис. 2.1. – Существующая схема системы сбора и транспорта добываемой продукции м/р Коныс.

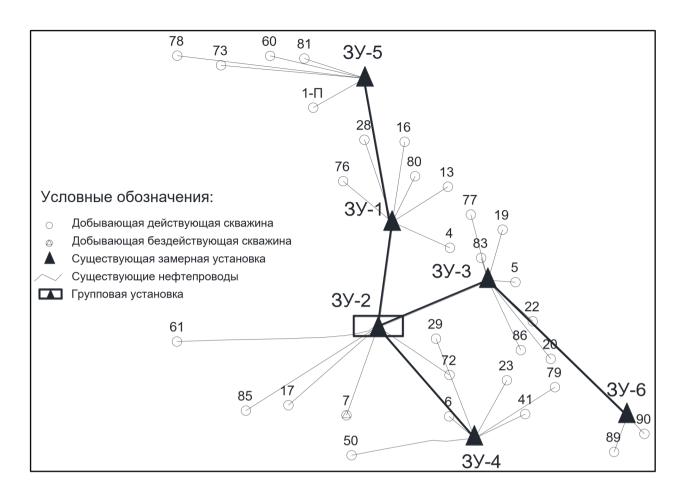


Рис. 2.2. – Существующая схема системы сбора и транспорта добываемой продукции м/р Бектас.

2.1. Существующая система подготовки и сдачи продукции скважин Групповая установка ЮК (ГУ-Южный Коныс)

Групповая установка предназначена для сбора, замера и транспорта продукции скважин до пункта подготовки нефти, а также для разделения жидкости и газа. Подключение скважин к ГУ осуществляется по лучевой схеме по территориальному принципу без учета принадлежности к объектам разработки.

На ГУ предусмотрен замер дебита скважины, 1-ая ступень сепарации, подогрев нефти и раздельный транспорт нефти и газа. Нефть накапливается в емкости РВС-2000 м³ (в количестве 2 ед.), а газ транспортируется по самостоятельному трубопроводу на объект подготовки.

Технологический процесс характеризуется непрерывностью, законченностью технологического цикла. Весь технологический комплекс выполнен на основе строительно — технологических блоков, оснащенных во всех необходимых случаях приборами контроля и регулирования и системами автоматизации, являющимися частью общей системы автоматического управления ГУ.

В состав сооружений ГУ входят следующие площадки:

- Площадка емкостного сепаратора НГС объемом 25 м³ 2шт.;
- Насосы DY 125/70/4 3 шт.;
- Hacoc DY 125/70/10 -- 1 шт.
- Насосы DY 65-50 1 шт.;
- Площадка вертикального сепаратора;
- Площадка подогревателя нефти ПП-0,63 4 шт.;

- Площадка дренажной емкости $E\Pi\Pi 10 \text{ м}^3$;
- Площадка дренажной емкости $E\Pi\Pi 63 \text{ м}^3$;
- Площадка факела;
- Площадка приема и запуска скребка;
- Резервуар вертикальный стальной РВС-2000 2шт.

производительность ГУ _ 2500 м³/сут Расчетная по жидкости, количество отсепарированного газа определяется величиной газового фактора нефти.

Технологический процесс осуществляется следующим образом: газожидкостная смесь от эксплуатационных скважин по выкидным линиям поступает на групповую установку под собственным давлением. Удаленные скважины предварительно подключаются к замерным установкам (ЗУ), которые в свою очередь подключаются к ГУ.

Жидкость со скважин и ЗУ поступает в нефтегазовые сепараторы (параллельно на 2 сепаратора), где происходит разделение на газ и жидкость. Газ через газовый скруббер направляется на ЦППНГ, а жидкость предварительно подогревается и поступает параллельно на РВС-2000 м3 (2 ед). С РВС-2000 м3 жидкость поступает на насосы перекачки нефти предварительно нагреваясь в печах подогрева, после чего транспортируется на ЦППНГ.

На ГУ предусмотрен замер дебита скважины, 1-ая ступень сепарации, отвод газа в газосборную систему, подогрев жидкости в путевой подогреватель ПП-0.63, а также слив сточных вод и откачка в систему нефтесбора для дальнейшего транспорта на ЦППНГ.

На случай создания аварийных ситуаций (в газовом коллекторе) на ГУ предусмотрена дренажная емкость и факел для сжигания газа.

Для повышения надежности работы, газовая линия непосредственно обустроена вертикальным сепаратором (конденсатосборник), герметично обвязанным с дренажной системой. На участках газовых линий от сепараторов до печей подогрева ПП-0,63 дополнительно обвязан понижающий редуктор.

PBC 2000m3 Nº2 PRC 2000m3

Технологическая схема ГУ Южный Коныс представлена на рисунке 2.3.

Рис. 2.3.- Технологическая схема ГУ Южный Коныс

Цех подготовки и перекачки нефти и газа (ЦППНГ)

Цех подготовки и перекачки нефти и газа предназначен для приема добываемой жидкости с близлежащих замерных установок и групповой установки Южный Коныс, разделения нефти, пластовой воды и газа, подготовки нефти до товарного качества, а также для подготовка и очистки пластовой воды от остаточной нефти.

В ЦППНГ входит следующее оборудование:

- пункт приема скребка;
- трехфазный сепаратор V-25 $M^3 2 \text{шт.}$;
- трехфазный V-50м³, (концевая сепарационная установка (КСУ)) 1шт.;
- трехфазный сепаратор V-50м³ DWELL-LTD 3 шт.;
- газовый вертикальный сепаратор "ГС-2-2,5-1200-2-И", V-4м³;
- газоочистное устройство 2013FL-MP005, V-10 м³;
- печь косвенного подогрева BSS-HJ2500-Y/4.0-G 4 шт.;
- печь подогрева трубопровода Коныс-Кумколь ПП-0,63 3 шт.;
- дренажная емкость V-100м³ 1 шт.;
- дренажная емкость V-12,5м³ 4 шт.;
- дренажная емкость $V-5m^3-2$ шт.;
- дренажная емкость V-10м³ 1 шт.;
- дренажная емкость V-30м³ 1 шт.;
- дренажная емкость V-8м³ − 1 шт.;
- PBC (резервуар вертикальный стальной) для нефти V-5000м³ 2 шт.;
- PBC (резервуар вертикальный стальной) для нефти V-3000м³ 3 шт.;
- PBC (резервуар вертикальный стальной) для нефти V-1000м³ 1 шт.;
- PBC (резервуар вертикальный стальной) для нефти V-400м³ 1 шт.;
- PBC (резервуар вертикальный стальной) для пластовой воды V-1000м³ 1 шт.;
- факельная стойка 1 шт.;
- печь подогрева воды УН-0,2 2шт.;
- печь подогрева газа для ГПУ HJ 200-H/10 Q 2шт.;
- печь подогрева газа для ГПУ ЈМ-СНЈ400-Q/15.0-Q 2 шт.;
- вертикальные дренажные насосы 12НА-22х6 1шт.;
- вертикальные дренажные насосы ВНД 100/100 1шт.;
- нефтяные насосы (бустерные) СРКЕ 80-250 3 шт.;
- насосы для нефтепровода Коныс-Кумколь DLH12DHST-400AJ- 3 шт. и DY85-80A*8 2шт.;
- УПВ (установка очистки пластовой воды) КАМ-500 1шт.;
- насосы для откачки пластовой воды из РВС 2шт.;
- насосы для закачки воды в пласт НБ-125 2 шт.;
- газокомпрессорная станция марки WAUKESHA, производительностью $200000 \text{M}^3/\text{cyr} 3 \text{ шт.};$
- газовый генератор для выработки электроэнергии 850 кВт 1 шт.;
- нефтеналивная эстакада для нефтевозов 1шт.;
- блок дозировки реагента БДР 1 шт.;
- насосы буровые марки НБ-125 для системы ППД 2шт.

Технологическая схема ЦППНГ представлена на рисунке 2.4.

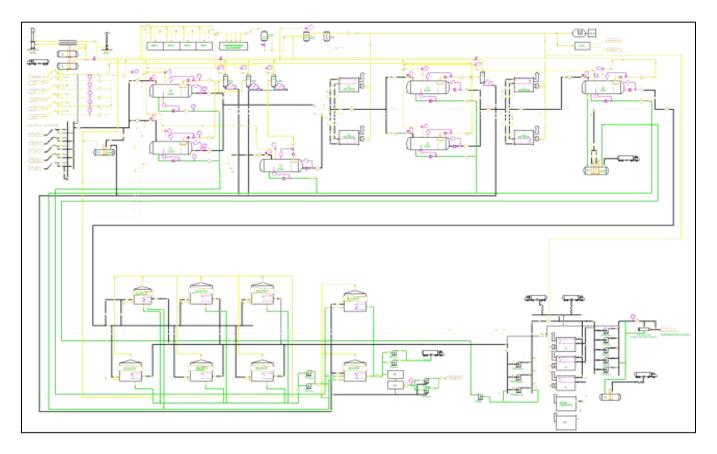


Рисунок 2.4. – Технологическая схема ЦППНГ месторождения Коныс

Технологический процесс на ЦППНГ осуществляется следующим образом:

Вся добытая жидкость месторождений Коныс и Бектас поступает по закрытой нефтесборной системе на ЦППНГ. В цехе подготовки нефти происходит разделение нефти, пластовой воды и попутного газа, подготовка нефти до товарного качества для ее реализации, а также подготовка (очистка) пластовой воды от остаточной нефти для дальнейшей отгрузки на БКНС-СК и БКНС-ЮК, для закачки ее в продуктивные горизонты через систему поддержания пластового давления - ППД.

Сырьем для ЦППНГ является жидкость со средней обводненностью 70-80 % и температурой 25-30°С. Поступающая на ЦППНГ водонефтяная эмульсия, часть из которой предварительно сепарируется на ГУ-ЮК, обрабатывается реагентом деэмульгатором УН1, средний расход которого составляет 55гр/м³. Для ускорения процесса раздела фаз при снижении температуры подогрева флюида в зимний период дозировка деэмульгатора может быть увеличена.

Водогазонефтяная эмульсия, пройдя через пункт приема скребка поступает в сепараторы, где происходит разделение нефти, газа и воды, после чего поступает в печи подогрева нефти и нагревается до температуры 55-60°С. Подогретая сырая нефть поступает по трубопроводу Ø273мм в КСУ, где происходит окончательное отделение нефти от газа и остаточной воды. Для поддержания оптимальной сепарации, в аппарате необходимо поддерживать уровень жидкости в размере 50%. Отсепарированная нефть после КСУ поступает в технологический резервуар РВС-1000м³, где за счет действия реагентов деэмульгаторов, температуры и гравитации происходит окончательное разделение нефти и свободной воды. Отделившаяся нефть от воды и солей с технологического резервуара переливается через линию перетока (на уровне 10,45 м) в товарные резервуары.

С товарных резервуаров, товарная нефть бустерными насосами подается на насосную

станцию, откуда закачивается в нефтепровод Ø219мм Коныс-Кумколь.

Насосная станция состоит из трех винтовых и двух центробежных насосов. Винтовые насосы 400AJ плунжерного типа модель DLH12DHST-400AJ максимальный расход составляет 47 м³/час. Насосы центробежные (ЦНС) DY-85-80A максимальный расход составляет 85 м³/час.

Пластовая вода из сепараторов №1, 2, 3, 4, 5, 6, а также с нефтяных резервуаров поступает в РВС №1 с вместимостью 3000м³. Далее через установку очистки пластовой воды (НПВ) подается центробежными насосами (2ед.) на БКНС-СК. После чего подготовленная вода закачивается в систему ППД насосами БКНС-СК.

Газ из сепараторов и газовой линии с месторождении Бектас (10" линия) направляется в газосепаратор для очистки и осушки от остаточной жидкости. После газосепаратора газ подается на собственные нужды — печи подогрева, в газопоршневую станцию и в систему отопления. Излишки газа подаются на газокомпрессорную станцию для обратной закачки газа в пласт.

Пункт сдачи нефти (ПСН)

Пункт сдачи нефти предназначен для приема нефти, измерения качества нефти на блоке измерения качества нефти (БИКН) и учета на блоке измерительных линий (БИЛ). Товарная нефть поступает по трубопроводу 8" Коныс–Кумколь из ЦППНГ месторождения Коныс СП «Куатамлонмунай» с последующей сдачей нефти на НПС Кумколь ЖНУ АО «КазТрансОйл».

Вся товарная нефть, в объеме $\sim 400 \text{м}^3/\text{сут}$ поступает на ПСН Кумколь по нефтепроводу Ø8" и протяженностью 72,5 км от ЦППНГ с температурой 50 - 60°C и Pтр -2-3,5 МПа.

Нефть, поступая на ПСН проходит через камеру приёма очистного устройства (скребка) предназначенную для принятия скребка из трубопровода Коныс — Кумколь и направляется для доведения до товарного качества в два параллельно работающих подогревателя BSS-2500-Y/1100.

Обеспечения работы печей подогревателей нефти BSS-2500-Y/1100 (2 ед.) попутным нефтяным газом осуществляется согласно договору поставки газа с АО «ПетроКазахстан Кумколь Ресорсиз» 500 тыс. 3 /год.

Подогретая нефть с T_{min} =55°C (требования потребителя НПС Кумколь ЖНУ АО «КазТрансОйл») проходит через блок измерения качество нефти (БИКН) для определения качества сдаваемой нефти и для определения количества нефти проходит через БИЛ. На БИЛ установлены два обвязанных массомера Micro Motion ELITE CMF 300 Dy 4" (100 мм), производства Emerson (США, Голландия), принадлежащего ТОО СП «Куатамлонмунай». Массовый расходомер Micro Motion CMF 300 (один рабочий, другой резервный) предназначен для определения количества сдаваемой нефти с пределом допускаемой относительной погрешности не превышающей ± 0.25 % по массе брутто при учётнорасчётных операциях между поставщиком ТОО СП «Куатамлонмунай» и покупателем ВФ АО «КазТрансОйл».

Перед БИЛ установлен автоматический пробоотборник Clif Mock для контроля качества партии нефти сданной за предыдущие 12 часов. Количество нефти при учетно-расчетных операциях на БИЛ определяется в тоннах.

Имеется запасная технологическая схема на случай аварий на нефтепроводе Кумколь-Каракоин. В этом случае товарная нефть поступает от Камеры приёма скребка в $PBC-3000 \text{м}^3$. После ликвидации аварии нефть транспортируется в магистральный трубопровод центробежными насосами и подогревая в $\Pi \text{БT-1,6M}$ доводится до сдаваемой температуры $T_{min}=55^{\circ}\text{C}$.

Основной задачей ТОО СП «Куатамлонмунай» является добыча, подготовка и сдача нефти и газа.

На месторождений Коныс и Бектас ТОО СП «Куатамлонмунай» на 2026 год насчитывается 274 источников загрязнения атмосферы: из них 183 организованных, 2 неорганизованных и 44 источников от 3PA и ΦC , в резерве - 45 источников.

В процессе работы данных источников выбросов в атмосферу выделяются следующие компоненты: оксидуглерода, углеводороды C_{12} - C_{19} , сажа, сернистый ангидрид, формальдегид,

бензапирен, диоксид азота, оксид азота, мазутная зола, сероводород, масло минеральное нефтяное, углеводороды C_1 - C_5 , углеводороды C_6 - C_{10} , бензол, толуол, ксилол, пентилены, этилбензол, серная кислота, пыль абразивная, взвешенные частицы, пыль металлическая, древесная пыль.

С помощью замерных установок на месторождении Коныс и Бектас осуществляется сбор жидкости с куста скважин, замер добытой продукции, сепарация нефти и газа и транспортировка жидкости для дальнейшей подготовки на ГУ Южный Коныс, ГУ Бектас и ЦППН.

Технология ЗУ: продукция скважин поступает на ЗУ, где осуществляется периодический замер дебита нефти и газа, нагрев нефти и дальнейшая транспортировка до ЦППН (или до ГУ). Печь нагрева нефти работает на попутном газе, выделившемся в сепараторе, рассчитанном на продукцию одной скважины. Вся продукция, добываемая на месторождении Коныс, проходит подготовку на обустроенном ЦППН (цех подготовки и перекачки нефти).

Замерная установка (ЗУ) состоит из: сепаратор—1ед.; печь подогрева нефти—1ед.; дренажная емкость—1ед. (прилагается тех.схема ЗУ).

Попутный нефтяной газ ГУБектас и ГУ Южный Коныс по газовому коллектору транспортируется на ЦППН.

Энергоснабжение нефтепромысла осуществляется от газопоршневых установок (ГПУ). В одном контейнере ГПУ помещены по 4 единиц ГПУ-250 (с мощностью 0,25 МВт). Мощность одного контейнера ГПУ составляет 1,0 МВт (13ед.). Потребная мощность электроэнергии по м/р Южный Коныс составляет около 7 МВт, по м/р Северный Коныс 2 МВт. На м/р Южный Коныс в действии 9 ед., на м/р Северный Коныс в действии 4 ед.

Технические характеристики газопоршневых электростанций представляют собой одновременно и перечень неоценимых преимуществ этих установок:

- простая и надежная конструкция;
- высокий электрический КПД (газопоршневые электростанции на природном газе около 42...44%);
- широкий диапазон мощностей от 0.015 МВт до17...20 МВт;
- способность работать в режиме когенерации;
- соотношение выдачи электричества и тепловойэнергии 1:1,2;
- жидкостная система охлаждения;
- газопоршневые двигатели выдают средний уровень шума 75...78 Дб.

Подобная характеристика позволяет очень широко применять **газопоршневые** электростанции на природном газе и ГПТЭС на различных промышленных объектах для обеспечения электроснабжением.

Скважина

В настоящее время на месторождениях Коныс и Бектас добыча нефти осуществляется преимущественно механическим способом, на скважинах установлены винтовые погружные насосы и насосы ШГН. Вновь забуренные скважины присоединяются к ЗУ выкидными линиями.

Вахтовый поселок Коныс

Освещение и отопление поселка обеспечивается электричеством от сети нефтепромысла, ДЭС $1000~{\rm kBt}$ в вахтовом поселке — резервная, проверка $1~{\rm pas}$ в месяц. На территории поселка из источников загрязнения атмосферы имеется $2~{\rm pesepbyapa}$ для дизельного топлива по $10~{\rm m}^3$, сварочный агрегат и A3C.

В промышленной зоне вахтового поселка м/р Коныс имеется пункт пропарки насосно-компрессорных труб (НКТ), начиная с мая 2023 года находится в консервации. Пункт предназначен для очистки штанги насосно-компрессорных труб (НКТ) от нефтешлама (парафинисто-асфальтовые отложения) путем пропаривания.

Утилизация попутного газа

В соответствии с проектными решениями технологической схемы разработки месторождений Коныс и Бектас попутный нефтяной газ используется: для выработки электроэнергии, в качестве топлива для печей подогрева, оставшийся неиспользованный газ используется в системе поддержания пластового давления. Для закачки ПНГ смонтировано 4 компрессора на газовом генераторе на площадке ЦППНГ, из них постоянно работают два.

Данные по скважинам на 2026 год (с 01.01.2026г. по 31.12.2026г.) **по м/р Коныс**

№	Номер скважины	Название	Марка печи	Инвентаризационный	3У
п/п		месторождения		номер источника	
1.	K-230	Коныс	ППТМ-0,2Г	1109	3У-4
2.	K-300	Коныс	ППТМ-0,2Г	1127	3У- 10
3.	K-315	Коныс	ППТМ-0,2Г	0097	3У- 18
4.	К-349	Коныс	ППТМ-0,2Г	1128	3У- 21
5.	K-352	Коныс	ППТМ-0,2Г	1115	3У- 29
6.	K-373	Коныс	ППТМ-0,2Г	1167	3У- 25
7.	K-482	Коныс	ППТМ-0,2Г	1336	3У-6
8.	K-538	Коныс	ППТМ-0,2Г	1131	3У- 18
9.	K-573	Коныс	ППТМ-0,2Г	1124	3У-8
10.	K-574	Коныс	ППТМ-0,2Г	1123	3У-8
11.	K-556	Коныс	ППТМ-0,2Г	0033	3У- 1
12.	K-580	Коныс	ППТМ-0,2Г	1333	3У- 21
13.	К-599	Коныс	ППТМ-0,2Г	1133	3У- 19
14.	K-707	Коныс	ППТМ-0,2Г	1338	3У- 11
15.	K-708	Коныс	ППТМ-0,2Г	1339	3У- 33
16.	К-706	Коныс	ППТМ-0,2Г		3У- 36
17.	К-388	Коныс	ППТМ-0,2Г		3У-18
18.	K-371	Коныс	ППТМ-0,2Г		ЗУ-18

Данные по скважинам на 2026 год (с 01.01.2026г. по 31.12.2026г.) по м/р Бектас

No	Номер	Название	Марка печи	Инвентаризационный	3У
	скважины	месторождения		номер источника	
1.	Б-4	Бектас	ППТМ-0,2Г	1243	3У- 1Б
2.	Б-17	Бектас	ППТМ-0,2Г	0712	3У- 2Б
3.	Б-20	Бектас	ППТМ-0,2Г	0520	3У- 3Б
4.	Б-23	Бектас	ППТМ-0,2Г	1250	3У- 4Б
5.	Б-29	Бектас	ППТМ-0,2Г	0525	3У- 4Б
6.	Б-50	Бектас	ППТМ-0,2Г	1251	3У- 4Б
7.	Б-78	Бектас	ППТМ-0,2Г	1255	3У- 5Б
8.	Б-79	Бектас	ППТМ-0,2Г	1445	3У- 4Б
9.	Б-89	Бектас	ППТМ-0,2Г	0522	3У- 6Б
10.	Б-92	Бектас	ППТМ-0,2Г	0523	3У- 1Б
11.	Б-22	Бектас	ППТМ-0,2Г	1247	3У- 3Б
12.	Б-85	Бектас	ППТМ-0,2Г	1324	3У- 2Б
13.	Б-93	Бектас	ППТМ-0,2Г		3У- 1Б
14.	Б-94	Бектас	ППТМ-0,2Г		3У- 2Б

3. Краткая характеристика технологии производства и технологического оборудования с точки зрения загрязнения атмосферы

3.1. Центральный пункт подготовки нефти

На месторождении Коныс, согласно технологической схемы разработки в настоящее время обустроено и находится в эксплуатации 534 скважин, из них 315 добывающих, 169 нагнетательных, газонагнетательных 6 и 44 водяные. Добыча нефти на месторождении на данный период осуществляется фонтанным и механическим, при помощи станков-качалок, способами.

Газожидкостная смесь со скважин поступает по выкидным линиям диаметром 89 мм на блок манифольда, расположенного на замерных установках и оттуда по трубопроводам на центральный пункт подготовки нефти (ЦППН). Для очистки выкидной линии от парафина и солеотложении предусматривается узел запуска скребка на каждой замерной установке и узлы приема скребка на ЦППН. В целях предотвращения замерзания нефти на устье скважин предусмотрены устьевые подогреватели.

Газонефтяной поток с манифольда и/или разгрузочного резервуара направляется на подогреватель нефти, где нагревается до 60° С. После подогрева нефти, в нее добавляются деэмульгаторы из блока дозирования реагентов. Далее нефтегазовая смесь направляется в нефтегазовый сепаратор первой ступени сепарации, после отделившийся газ поступает на газовый сепаратор и КСУ. После первой ступени сепарации, нефть подается на вторую ступень — сепаратор $V=50\text{м}^3$. Отделившийся после первой и второй ступеней сепарации газ, поступает на газогенераторную и газокомпрессорную станции. Газ закачивается в «газовую шапку» для поддержания пластового давления и используется для выработки электроэнергии. Товарная нефть поступает для хранения в резервуары PBC-3000м³ и PBC-1000м³. Для возможности выполнения внутрибазовых перекачек предусмотрен насос внутрибазовых перекачек.

Для учета количества отпускаемой нефти, нефть на узел налива направляется через измерительную учетную станцию.

Для возможности опорожнения трубопроводов и оборудования предусмотрены две дренажные емкости.

Отделившаяся на сепараторах первой и второй ступени вода, подается на установку подготовки пластовой воды, а затем закачивается в пласт для поддержания пластового давления.

3.2. Замерные установки.

На месторождениях Коныс и Бектас, для промежуточного учета добываемой нефти установлены замерные установки.

На каждой замерной установке предусматривается размещение групповой замерной установки «Спутник», путевого подогревателя, камеры пуска скребка и дренажной емкости.

Добытая со скважин нефтяная смесь по выкидным линиям поступает, для замера ее количества, на замерную установку «Спутник». После учета ее количества, она отправляется на путевой подогреватель и далее отправляется в трубопровод.

Для очистки внутренней поверхности труб от парафинистых отложений и грязи, на замерных установках установлены камеры пуска средств очистки.

Для сбора дренажа и утечек от замерной установки, путевого подогревателя и камеры СОД предусмотрена дренажная ёмкость объемом $V=8 \, \mathrm{M}^3$, с откачкой дренажа в передвижную ёмкость.

3.3 Групповая установка.

На месторождениях размещены групповые установки сбора и отправки нефти. В состав установки входят: замерная установка «Спутник», камера приема скребка, путевой подогреватель, нефтегазовые сепараторы, резервуары хранения нефти, газовый сепаратор.

С ближайших скважин нефтяная смесь поступает на замерную установку «Спутник» для ее учета. Также нефтяная смесь с других замерных установок. Весь поток нефти поступает на

подогрев в путевой подогреватель, после чего, подогретая смесь, для ее разделения отправляется на нефтегазовые сепараторы. Пройдя дегазацию, нефть поступает на хранение в горизонтальные резервуары.

Газ, отделившийся от нефти в сепараторах и выделившийся при ее хранении в резервуарах, по трубопроводу поставляется для его подготовки в газовый сепаратор.

Для возможности опорожнения оборудования и трубопроводов, а также для сбора утечек на групповой установке, размещены дренажные емкости.

Для возможности приема очистных устройств, служит камера приема СОД.

3..4 Обустройство устьев скважин.

На месторождениях Коныс и Бектас принята эксплуатация скважин механическим и фонтанным способами.

На каждой скважине предусматривается размещение устьевого оборудования, путевой подогреватель, сепаратор, выкидные линии.

Устьевое оборудование рассчитано на давление 21...35 МПа. Обустройство устьев скважин включает установку арматуры, отключающей задвижки и обвязочных трубопроводов.

Путевой подогреватель служит для разогрева добытой нефти.

Сепаратор, предназначен для предварительного разделения добываемой нефтяной эмульсии.

Обустройство устья фонтанной скважины включает установку фонтанной арматуры, регулирующего штуцера, отключающей задвижки с обратным клапаном и обвязочных трубопроводов.

На каждой площадке скважины запроектированы следующие сооружения:

- устья скважины;
- приустьевой приямок $(5.5 \times 2.5 \times 1.5)$
- приемные мостки;
- площадка под ремонтный агрегат;
- якорь ветровых оттяжек;
- якорь грузовых оттяжек;
- фундамент под станок качалку;
- площадка обслуживания;
- площадка под КТП;
- путевой подогреватель;
- сепаратор;

Технологическая обвязка скважины позволяет выполнять замер дебита и исследование скважины непосредственно на устье передвижными средствами.

3.5 Выкидные линии.

В основу технологической схемы сбора нефти заложена однотрубная герметизированная система выкидных линий, представляющих собой индивидуальные для каждой скважины трубопроводы, соединяющие устье с блоком входных манифольдов объекта подготовки нефти. Материальное исполнение выкидных линий – сталь, глубина прокладки – ниже глубины промерзания грунта.

Выкидные линии предназначены для транспорта нефтегазового потока от скважин до замерной установки.

Выкидные линии выполнены из стальных труб диаметром 86 мм.

Выкидные линии выполнены в подземном исполнении. Трубопроводы относятся к III категории.

Общая протяженность выкидных, водонагнетательных линий, по данным ТОО СП «Куатамлонмунай», на месторождении Коныс составляет 311 км, на месторождении Бектас 65 км.

3.6. Электроснабжение

На ЦППН месторождения Коныс установлены газогенераторы для выработки электроэнергии из отделившегося попутного газа.

Электроснабжение площадки ЦППН в настоящее время осуществляется от электростанции, состоящей из нескольких газогенераторов. Для распределения напряжения, получаемого газогенераторов, на площадке ЦППН установлена подстанция трансформатора КТПН $1000~\mathrm{kBt}$.

3.7. Водоснабжение

Описываемый район характеризуется почти полным отсутствием пресных вод.

На территории месторождения и вблизи от него нет источников питьевого водоснабжения. Для удовлетворения производственных и хозяйственно-бытовых нужд в воде, используется вода из сенон-туронского водоносного горизонта прошедшая предварительную очистку, а так же привозная питьевая вода.

Вода для поддержания пластового давления закачивается водой из сенон-туронского водоносного горизонта.

На площадке ЦППН действуют раздельные системы хозяйственно-производственного и противопожарного водоснабжения.

3.8. Существующая система сбора и подготовки нефти и газа месторождение Коныс и Бектас

Месторождение Коныс

За последние годы на месторождении полностью осуществлена реализация проектных решений по обустройству системы сбора и подготовки добываемой продукции, обустройство участка нефтепровода товарной нефти.

В настоящее время уже обустроены: цех подготовки и перекачки нефти (ЦППН), 44 замерных установок (ЗУ) и 1 групповая установка (ГУ), в т.ч. ГУ размещен в южной части. Близлежащие скважины подключены к данным объектам по системе сбора по территориальному признаку. Продукция скважин по индивидуальным выкидным линиям направляется через ЗУ и, далее, по общей системе нефтесбора поступает на ЦППН. Все скважины обустроены устьевыми подогревателями.

Технология ЗУ следующая: продукция скважин поступает на ЗУ, где осуществляется периодический замер дебита нефти и газа, нагрев нефти и дальнейшая транспортировка до ЦППН (или до ГУ). Печь нагрева нефти работает на попутном газе, выделившемся в сепараторе, рассчитанном на продукцию одной скважины.

Вся продукция, добываемая на месторождении Коныс, проходит подготовку на обустроенном ЦППН. Технология в соответствии с техническими решениями предусматривает сепарацию, нагрев нефти, хранение в резервуарном парке, откачку потребителю магистральными винтовыми насосами через нефтепровод Коныс - Кумколь и далее по маршруту Атасу, ПКОП (г.Шымкент) или ПНХЗ (г.Павлодар).

Энергоснабжение промысла осуществляется из своего источника электроэнергии - газопоршневых установок (ГПУ) мощностью 1 МВт (13ед.).

Весь объем газа, для закачки в пласт направляется в 6 газонагнетательные скважины. Компрессорная станция включает в себя 4 компрессора (2 ед. в действий, 2 ед. в резерве) обратной закачки с максимальной производительностью 200 тыс.м³/сут каждая.

В качестве агента закачки используется газ сепарации после ЦППН без отделения жидких углеводородов. Учитывая, что нефти месторождений Коныс и Бектас проходят совместную подготовку на едином для компании ЦППН, необходимо отметить, что газ сепарации является газом, выделившимся из смеси нефти двух вышеназванных месторождений.

Температурный режим поддерживается работой устьевых подогревателей (ППТМ-0,2 Г) на скважинах и печами подогрева нефти типа (ПП-0,63A, Хановер) на ЗУ. Для обеспечения работы печей на ЗУ предусмотрена емкость — сепаратора, рассчитанная на прием продукции одной скважины. Газа сепарации достаточно для использования его в печи. Нефть после сепарации поступает в общий поток и откачивается вместе с продукцией остальных скважин на

ЦППН. Для возможности проведения капитальных ремонтов и других мероприятий на скважине обвязкой 51 предусмотрена возможность переключения на сепаратор любой из подключенных к 3У скважин.

Вся продукция, добываемая на месторождении Коныс, проходит подготовку на обустроенном ЦППН. Технология в соответствии с техническими решениями предусматривает сепарацию, нагрев нефти, наполнение в резервуарном парке, откачку потребителю магистральными насосами.

Месторождение Бектас

В настоящее время на месторождении Бектас эксплуатируются 30 скважин.

Каждая скважина обустроена аналогично скважинам месторождения Коныс и имеет на площадке устья печь подогрева совстроенным сепаратором.

На месторождении Бектас система сбора и технология ЗУ аналогична технологии, применяемой на ЗУ месторождения Коныс. Газ по газопроводу до ЦППН месторождения Коныс, жидкость (нефть+пластовая вода) транспортируется до ГУ Южный Коныс по трубопроводу.

В связи с близким расположением месторождения Бектас, вся добываемая нефть проходит подготовку до товарной продукции на едином для ТОО СП «Куатамлонмунай» объекте ЦППН, расположенном на территории м. Коныс.

Принципиальная блок-схема системы сбора и транспортировки добываемой продукции м. Коныс и Бектас рисунке 3.9.1-3.9.2.

Принципиальная технологическая схема ЦГГПН представлена на рисунке 3.9.3.

3.9. Инвентаризация источников выброса

Основные источники загрязнения атмосферы сосредоточены на месторождениях Коныс и Бектас.

На месторождений Коныс и Бектас ТОО СП «Куатамлонмунай» на 2026 год насчитывается 274 источников загрязнения атмосферы: из них 183 организованных, 2 неорганизованных и 44 источников от 3PA и Φ C, в резерве - 45 источников.

Организованные источники представлены трубами печей нагрева нефти и воды, устьевых подогревателей, ДЭС, компрессорных установок и котельных, дыхательными клапанами резервуаров хранения нефти, пластовой воды и ГСМ, дежурной горелкой сжигания газа на ЦППН.

Неорганизованные источники представлены выделением загрязняющих веществ при сварочных работах, эксплуатации АЗС, выделением углеводородов через неплотности тех.блоков ЗУ, ГУ, ЦППН.

От нагревательных печей нефти и устьевых подогревателей продукции скважин при сжигании попутного нефтяного газа в атмосферу поступают оксиды азота, оксид углерода и метан.

При работе ДЭС в атмосферу поступают оксиды углерода, азота, серы, углеводороды C_{12} - C_{19} , сажа, формальдегид и бенз(а)пирен.

При работе газогенератора компрессорной станции в атмосферу поступают оксиды азота, оксид углерода.

Через неплотности соединений тех.блоков в атмосферу поступают углеводороды C₁-C₅.

При сварочных работах в атмосферу поступают сварочный аэрозоль, содержащий оксиды железа и марганца.

При хранении топлива (бензин и дизтопливо) и заправке им автотранспорта на АЗС в атмосферу поступают: углеводороды C_1 - C_5 , углеводороды C_6 - C_{10} , C_{12} - C_{19} , сероводород, пентилены, бензол, ксилол, толуол и этилбензол.

От тех.блоков буровой в атмосферу поступают диоксиды азота и серы, оксид углерода, сажа, формальдегид, бенз(а)пирен и углеводороды C_{12} - C_{19} .

С дымовыми газами котельных, осуществляющих обогрев, в атмосферу поступают оксиды азота, серы, углерода и сажа.

От нефтеналивной эстакады и резервуаров нефти в атмосферу поступают углеводороды С₁-

Источники КПРС начинаются с нумерации № 3001-3026:

1.**ИЗА 3001 УПА-60А 60/80 – 1 ед**. (агрегат для освоения и ремонта скважин).

Марка силового двигателя ЯМЗ -238

Максимальный расход диз. топлива установкой 10 кг/час,

Высота и диаметр выхлопной трубы -4 м, 0.089 м

2.**ИЗА 3002 АПРС – 40 (Урал-4320) - 1 ед.** (агрегат ремонта скважин)

Марка силового двигателя ЯМЗ -236

Максимальный расход диз. топлива установкой 11,8 кг/час,

Высота и диаметр выхлопной трубы -3 м, 0.08 м

3.ИЗА 3003,3004 АСЦ -320 – 2 ед. (цементировочный агрегат).

Марка силового двигателя ЯМЗ -238

Максимальный расход диз. топлива установкой 10 кг/час,

Высота и диаметр выхлопной трубы – 3 м, 0,089 м

4.ИЗА 3005-3009 ППУА – 5 ед. (пропарочный агрегат).

Номинальная паропроизв. котлоагрегата 1,6 т/час,

Часовой расход топлива – 35 кг/час;

Высота и диаметр выхлопной трубы -3 м, 0,089 м

5. ИЗА 3010,3011,3012 АДПМ -3 ед. (агрегат депарафинизации - предназначен для нагрева и нагнетания горячей нефти в скважины с целью удаления парафина).

Марка силового двигателя ЯМЗ -236

Максимальный расход диз. топлива установкой 10 кг/час,

Высота и диаметр выхлопной трубы -3 м, 0.08 м

6. ИЗА 3013,3014 APOK AZN (Урал-4320) -2 ед. (агрегатремонта и обслуживания станковкачалок).

Марка силового двигателя ЯМЗ -236;

Максимальный расход диз. топлива установкой 10 кг/час,

Высота и диаметр выхлопной трубы -3 м, 0.08 м

7. **ИЗА 3015 AP 32/40 Урал-4320 - 1 ед.** (Агрегат для свабирования скважин)

Марка силового двигателя –ЯМЗ-236

Максимальный расход диз. топлива установкой 10 кг/час,

Высота и диаметр выхлопной трубы -3 м, 0,089 м.

8. ИЗА 3016 ЦА-320 – 1 ед. (цементировочный агрегат).

Максимальный расход диз. топлива установкой 10 кг/час,

Высота и диаметр выхлопной трубы -3 м, 0,089 м;

9. ИЗА 3017 Агрегат для свабирования скважин ShanxiZYT5200TCY - 1 ед.

Мощность двигателя – 169 кВт;

Максимальный расход диз. топлива установкой = 11,81кг/час,

Высота и диаметр выхлопной трубы -3 м, 0.05 м;

10. ИЗА 3018 Станок ZYT ТХҮ-250 - 1 ед.

Марка силового двигателя – CAT C9 JSC24914

Максимальный расход диз. топлива установкой = 5,5 кг/час,

Высота и диаметр выхлопной трубы – h = 2м, d = 0,1м

11. ИЗА 3019,3020 Агрегат прессовочный GEABOX FOR SLUPRY PUMP (для откачки и закачки технической воды) -2 ед. Марка силового двигателя –LV 301

Максимальный расход диз. топлива установкой 7,2 кг/час,

Высота и диаметр выхлопной трубы -h = 1,30 м, d = 0,07 м;

12. ИЗА 3021 Агрегат для ремонта скважины ХЈ250 (2 ед.). Марка силового двигателя САТ С9 (Caterpillar C9).

Максимальный расход диз. топлива установкой 36,2 кг/час,

Высота и диаметр выхлопной трубы -4 м, 0.08 м

13. ИЗА 3023 УПА-60А – 1 ед. (агрегат для освоения и ремонта скважин).

Марка силового двигателя ЯМЗ -238

Максимальный расход диз. топлива установкой 14,28 кг/час,

Высота и диаметр выхлопной трубы -4 м, 0,089 м

14.ИЗА 3024,3025 ДЭС модель DK 100 GFC (Volvo PENTO) (2 ед.).

Мощность дизель генератора 100 кВт,

Часовой расход дизельного топлива – 19.1 кг/час;

Высота и диаметр выхлопной трубы -3 м, 0,065 м

15. ИЗА 3026 ДЭСмодель AD-48 (John Deere) (1 ед.)

Мощность дизель генератора 48кВт,

Часовой расход дизельного топлива -8,16 кг/час;

Высота и диаметр выхлопной трубы -3 м, 0.05 м

Организованные источники представлены трубами печей нагрева нефти и воды, устьевых подогревателей, ДЭС, компрессорных установок и котельных, дыхательными клапанами резервуаров хранения нефти, пластовой воды и ГСМ, дежурной горелкой сжигания газа на ЦППН.

Неорганизованные источники представлены выделением загрязняющих веществ при сварочных работах, эксплуатации АЗС, выделением углеводородов через неплотности тех.блоковЗУ, Γ У, ЦППН.

От нагревательных печей нефти и устьевых подогревателей продукции скважин при сжигании попутного нефтяного газа в атмосферу поступают оксиды азота, оксид углерода и метан.

При работе ДЭС в атмосферу поступают оксиды углерода, азота, серы, углеводороды C_{12} - C_{19} , сажа, формальдегид и бенз(а)пирен.

При работе газогенератора компрессорной станции в атмосферу поступают оксиды азота, оксид углерода.

Через неплотности соединений тех. блоков в атмосферу поступают углеводороды C_1 - C_5 .

При сварочных работах в атмосферу поступают сварочный аэрозоль, содержащий оксиды железа и марганца.

При хранении топлива (бензин и дизтопливо) и заправке им автотранспорта на АЗС в атмосферу поступают: углеводороды C_1 - C_5 , углеводороды C_6 - C_{10} , C_{12} - C_{19} , сероводород, пентилены, бензол, ксилол, толуол из тилбензол.

От тех.блоков буровой в атмосферу поступают диоксиды азота и серы, оксид углерода, сажа, формальдегид, бенз(а)пирен и углеводороды C_{12} - C_{19} .

С дымовыми газами котельных, осуществляющих обогрев, в атмосферу поступают оксиды азота, серы, углерода и сажа.

От нефтеналивной эстакады и резервуаров нефти в атмосферу поступают углеводороды $C_1\text{-}C_5$.

3.10. Краткая характеристика установок очистки газа, укрупненный анализ их технического состояния и эффективности работы.

На объектах месторождения ТОО СП «Куатамлонмунай» газоочистное оборудование

отсутствует.

Обоснование полноты и достоверности исходных данных (г/с, т/год), принятых для расчетов нормативов $H\/DB$

Перед разработкой проекта нормативов предельно-допустимых выбросов (НДВ) проведена инвентаризация источников выделения загрязняющих веществ в атмосферу. По исходным данным Заказчика (приложение) определены источники выделения загрязняющих веществ в атмосферу, то есть возможность загрязнения атмосферы. Для определения величины выбросов от нефтепромысла ТОО СП «Куатамлонмунай» использовались методики согласно программным комплексом ЭРА, версия 3.0 фирмы НПП «Логос-Плюс», г. Новосибирск, действующие в Республике Казахстан.

4. ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ/УТИЛИЗАЦИИ И ПЕРЕЧЕНЬ ОБЪЕКТОВ ИСПОЛЬЗОВАНИЯ/УТИЛИЗАЦИИ СЫРОГО ГАЗА НА МЕСТОРОЖДЕНИЯХ ТОО СП «КУАТАМЛОНМУНАЙ»

На период промышленной эксплуатации месторождении Коныс и Бектас, в части утилизации сырого газа основными существующими направлениями являются:

Утилизация сырого газа на собственные технологические нужды;

Утилизация сырого газа для выработки электроэнергии;

Использование сырого газа для нагнетания в пласт.

В настоящее время месторождения находятся на стадии промышленной эксплуатации, в связи с чем необходимо утилизировать весь сырой газ, согласно требованиям законодательства Республики Казахстан.

Основными источниками на промысле, нуждающимися в попутном нефтяном газе, являются:

Устьевые нагреватели на скважинах;

Печи подогрева для транспортировки в ЦППН, ЗУ;

Газопоршневые установки (ГПУ), мощностью 1 МВт;

Газокомпрессорные установки.

Приведенный компонентный состав попутного нефтяного газа показывает его соответствие требованиям необходимым для эксплуатации вышеприведенного оборудования, после тонкой его очистки на существующих газосепараторных установках.

В программе также приведено к рассмотрению одно из основных направлений, по нагнетанию излишка попутного газа в пласт, с целью повышения добычи нефти и поддержания пластовой энергии.

Рассматриваемые направления утилизации попутного нефтяного газа являются основой для проведения технико-экономических расчетов и оценки воздействия на окружающую среду.

Использование сырого газа на собственные технологические нужды.

Использование газа в качестве топлива для печи подогрева.

Часть добываемого попутного газа используется на собственные нужды для подогрева скважинной продукции и для подогрева товарной нефти, поскольку нефть месторождений Коныс и Бектас - высокопарофинистые и высокосмолистые.

4.1 БАЛАНС ПОПУТНОГО ГАЗА МЕСТОРОЖДЕНИЯ КОНЫС И БЕКТАС ТОО СП «КУАТАМЛОНМУНАЙ»

Баланс попутного газа месторождений Коныс и Бектас ТОО СП «Куатамлонмунай» рассчитан в соответствии с основными технологическими показателями из утвержденных проектных документов и с учетом его использования на собственные нужды в существующих и построенных по проектным решениям «Программы…» потребителях, включая объем технологически неизбежного сжигания при техническом обслуживании, ППР оборудования.

В таблице 4.1 представлен баланс попутного газа месторождения Коныс и Бектас на 2026г.

Таблица 4.1 Баланс газа на месторождениях ТОО СП «Куатамлонмунай» на 2026г.

No	Показатели	2026 год
п/п		
1.	Добыча сырого газа, тыс. м ³ ;	16 441 000,0
1.1.	Из них: Месторождение Коныс, тыс.м ³ ;	12 427 000,0
1.2.	Месторождение Бектас, тыс. м ³ ;	4 014 000,0
2.	Объем сырого газа, используемый на собств. технолог. нужды, тыс. из них:	14 894 352,0
2.1.	Использование сырого газа на печах подогрева на устьях скважин месторождения Коныс, тыс. м ³ ;	749,625
2.2.	Использование сырого газа на печах подогрева на устьях скважин месторождения Бектас, тыс. м ³ ;	662,980
2.3.	Использование сырого газа на печах ЦППНГ, тыс. м ³ ;	1970,856
2.4.	Использование сырого газа на печах на ЗУ и ГУ месторождений Коныс и Бектас, тыс. м ³ ;	4115,520
2.5.	на БКНС месторождения Коныс, тыс. м ³ ;	252,0
2.6.	Потребление газа на газовый генератор компрессорной станции, тыс. м ³ ;	764,748
3.	Объем сырого газа на выработку электроэнергии (ГПУ), тыс. м ³ ;	6 378,624
4.	Объем сырого газа на технологические потери, тыс. м ³ в т.ч.	37,998
4.1.	на технологические потери на м/р Коныс, тыс. м ³ ;	28,557
4.2.	на технологические потери на м/р Бектас, тыс. м ³ ;	9,441
5.	Объем сырого газа, используемый на обратную закачка газа в пласт,тыс.м ³ ;	1297,862
6.	Объем технологически неизбежного сжигания сырого газа, тыс. м ³ ; в т.ч.	210,788
6.1.	Сжигание на дежурной горелке, тыс. м ³ ;	210,240
6.2.	Концевая сепарационная установка, тыс. м ³ ;	0,548

Прим* Для расчета валовых выбросов ИЗА 0056 дежурная горелка (факел) объемы газа на технологически неизбежного сжигания сырого газа сжигаются по Разрешению на сжигание сырого газа в факелах

Таблица 4.2 - Обоснование расхода сырого газа на собственные нужды на 2026г.

№	Наименование	Наименование	Кол-	Кол-во	Потреблен	Потребление
No	источников потребление	печей, марка,	во, шт	работы	ие газа в	газа в год, м ³
п/п	газа	производитель-		дней в	сутки, м ³	
		ность		году, сут		
		ППТМ-0,2Г	15	361	141	765 140
	устьевые печи в	ППТМ-0,2Г нов.	3	150	141	63 585
	скважинах (Коныс)	СКВ				
		Ханновер	0	0	0	0
1		ППТМ-0,2Г	12	361	141	612 112
	устьевые печи в скважинах (Бектас)	ППТМ-0,2Г нов. скв	2	150	141	42 390
		Ханновер	0	0	0	0
		Итого печи в скваж	инах	1 483 226		
		ПП-0,63А №5	1	122	720	87 840
		ПП-0,63А №6	1	122	720	87 840
		ПП-0,63А №7	1	121	720	87 120
	печи подогрева в	печь НЈ 2500 №1	1	183	1764	322 812
2	ЦППНГ	печь НЈ 2500 №2	1	183	1764	322 812
	·	печь НЈ 2500 №3	1	182	1764	321 048
		печь НЈ 2500 №4	1	182	1764	321 048
		HJ-200-H/10-Q	1	183	294	53 802

		HJ-200-H/10-Q	1	182	294	53 508
		JM-Y-J400-	1	183	714	130 662
		Q/15.0/10-Q				
		JM-Y-J400-	1	182	714	129 948
		Q/15.0/10-Q		0.1	200	26 200
		УН-0.2	1	91	288	26 208
		УН-0.2	1	91	288	26 208
		Итого печи в ЦППН	HHI"			1 970 856
	Выработка элек		-	2.52	22.52	020.256
	ГПУ №1 ГПУ №2	ГПУ - 1000	1	353 93	2352	830 256
	1113 N22 ΓΠΥ N23	ГПУ - 1000 ГПУ - 1000	1	52	2352	218 736 122 304
	ГПУ №4	ГПУ - 1000	1	51	2352	119 952
	ГПУ №5	ГПУ - 1000	1	353	2352	830 256
	ГПУ №6	ГПУ - 1000	1	353	2352	830 256
3	ГПУ №7	ГПУ - 1000	1	353	2352	830 256
	ГПУ №8	ГПУ - 1000	1	353	2352	830 256
	ГПУ №9	ГПУ - 1000	1	353	2352	830 256
	ГПУ №10	ГПУ - 1000	1	62	2352	145 824
	ГПУ №11	ГПУ - 1000	1	62	2352	145 824
	ГПУ №12	ГПУ - 1000	1	60	2352	141 120
	ГПУ №13	ГПУ - 1000	1	60	2352	141 120
	ИТОГО: газопорш	невые электростанций				6 016 416
	Газовый генератор КС	ГКУ №1	1	122	2095	255 614
4		ГКУ №2	1	122	2095	255 614
4		ГКУ №4	1	121	2095	253 519
		Итого компрессор	ы			764 748
	Групповые и замерные установки					
	ГУ-Южный Коныс	ПП-0,63А №1	1	183	600	109 800
	ГУ-Южный Коныс	ПП-0,63А №2	1	182	600	109 200
	ГУ-Южный Коныс	ПП-0,63А №3	1	183	600	109 800
	ГУ-Южный Коныс	ПП-0,63А №4	1	182	600	109 200
	3У-1	Ханновер	0	0	0	0
	ЗУ-2	Ханновер	1	183	720	131 760
	ЗУ-3	Ханновер	1	183	720	131 760
	3У -4	Ханновер	0	0	0	0
	ЗУ-5	ПП-0,63А	0	0	0	0
	ЗУ-6	-	0	0	0	0
	ЗУ-7	ПП-0,63А	1	361	600	216 600
_	ЗУ-8	ПП-0,63А	1	361	600	216 600
5	3y-9	ПП-0,63А	0	0	0	0
	3Y-10	ПП-0,63А	0	0	0	0
	3Y-11 2V 12	ПП-0,63А	0	0	0	0
	3У-12 3У-13	ПП-0,63А ПП-0,63А	0	0	0 0	0
	3y-13 3y-14	ПП-0,63А	0	0	0	0
	ЗУ-14 коллектор	ПП-0,63А	0	0	0	0
	3У-15	Ханновер	0	0	0	0
	3y-16	ПП-0,63А	0	0	0	0
	3y-17	ПП-0,63А	1	183	600	109 800
	3Y-18	ПП-0,63А	0	0	0	0
	3Y-19	ПП-0,63А	1	183	600	109 800
	ЗУ-20	ПП-0,63А	0	0	0	0
	ЗУ-21	ПП-0,63А	0	0	0	0
	ЗУ-22	ПП-0,63А	1	183	600	109 800
	ЗУ-23	ПП-0,63А	0	0	0	0

	3У-24	ПП-0,63А	1	183	600	109 800
	3У-25	ПП-0,63А	0	0	0	0
	ЗУ-26	ПП-0,63А	0	0	0	0
	ЗУ-27	ПП-0,63А	0	0	0	0
	ЗУ-28	ПП-0,63А	0	0	0	0
	ЗУ-29	ПП-0,63А	0	0	0	0
	ЗУ-30	ПП-0,63А	0	0	0	0
	ЗУ-31	ПП-0,63А	0	0	0	0
	ЗУ-32	ПП-0,63А	0	0	0	0
	ЗУ-33	ПП-0,63А	0	0	0	0
	ЗУ-34	ПП-0,63А	0	0	0	0
	ЗУ-35	ПП-0,63А	0	0	0	0
	ЗУ-36	ПП-0,63А	0	0	0	0
	ЗУ-37	ПП-0,63А	0	0	0	0
	ЗУ-38	ПП-0,63А	0	0	0	0
	ЗУ-39	ПП-0,63А	0	0	0	0
	3У -40	ПП-0,63А	1	183	600	109 800
	ЗУ-41	ПП-0,63А	1	183	600	109 800
	ЗУ-42	ПП-0,63А	0	0	0	0
	ЗУ-43	ПП-0,63А	0	0	0	0
	ЗУ-44	ПП-0,63А	1	183	600	109 800
	ГУ-Бектас	ПП-0,63А	1	183	600	109 800
	ГУ-Бектас	ПП-0,63А	1	182	600	109 200
	ГУ-Бектас	ПП-0,63А	1	361	600	216 600
	ГУ-Бектас	ПП-0,63А	1	361	600	216 600
	ГУ-Бектас	ПП-0,63А	1	361	600	216 600
	ГУ-Бектас ЗУ-Б2	ПП-0,63А	1	361	600	216 600
	3У-Б1	ПП-0,63А	1	361	600	216 600
	Промежуточная печь на 9 км нефтепровода	ПП-0,86	1	183	720	131 760
	ГУ-Бектас - ГУ-Южный Коныс	ПП-0,86	1	182	720	131 040
	ЗУ-БЗ	ПП-0,63А	0	361	600	216 600
	ЗУ-Б4	ПП-0,63А	0	361	600	216 600
	ЗУ-Б5	ПП-0,63А	1	361	600	216 600
	3У-Б6	ПП-0,63А	1	361	600	216 600
		Итого печи ЗУ и		102	600	4 224 720
	Пропарка городок (участок подогрева воды)	ПП-0,63А	1	183	600	109 800
		Итого печь пропа	<u> </u>	T		109 800
	БКНС-ЮК (участок подогрева воды)	ПП-0,63А	1	215	600	129 000
	БКНС-ЮК (участок подогрева воды)	ПП-0,63А	1	150	600	90 000
6	БКНС-СК (участок очистки пластовый	ПП-0,63А	1	150	600	90 000
	воды)					
	Итого печи БКНС					
	Технологически неизбежное сжигание					
	Дежурная горелка Концевая сепарационная	Факел	1	365	576	210 240
7	установка		1	365	1,5	548
		Итого сжигані	ие			210 788
	Всего по ТОО СП «КАМ»					

		КПРС на 2026г.	,		
№ π/π	Марка источника	Наименование источника	Время работы, час/год	Номер источника ИЗА	Расход топлива, тонн
1	УПА-60А 60/80	Агрегат для освое-ния и ремонта скважин	4380	3001	30,0 т
2	АПРС-40 (Урал- 4320)	Агрегат ремонта скважин	4380	3002	25,0 т
3	АСЦ-320	Цементировочный агрегат	2184	3003	20,0 т
4	АСЦ-320	Цементировочный агрегат	2184	3004	20,0 т
5	ППУА	Пропарочный агрегат	2184	3005	60,0 т
6	ППУА	Пропарочный агрегат	2184	3006	60,0 т
7	ППУА	Пропарочный агрегат	2184	3007	60,0 т
8	ППУА	Пропарочный агрегат	2184	3008	60,0 т
9	ППУА	Пропарочный агрегат	2184	3009	60,0 т
10	АДПМ	Агрегат депарафинизации	4380	3010	20,0 т
11	АДПМ	Агрегат депарафинизации	4380	3011	20,0 т
12	АДПМ	Агрегат депарафинизации	4380	3012	20,0 т
13	APOK AZN	Агрегат ремонта и обслуживания станков-качалок	4380	3013	20,0 т
14	APOK AZN	Агрегат ремонта и обслуживания станков-качалок	4380	3014	20,0 т
15	АР32/40 Урал- 4320	Агрегат для свабирования скважин	2184	3015	20,0 т
16	ЦА-320	Цементировочный агрегат	1560	3016	15,0 т
17	Shanxi ZYT5200TCY	Агрегат для свабирования скважин	2184	3017	20,0 т
18	ZYT TXY-250	Станок	2184	3018	10,0 т
19	GEABOX for SLUPRY PUMP	Агрегат прессовочный	480	3019	3,0 т
20	GEABOX for SLUPRY PUMP	Агрегат прессовочный	480	3020	3,0 т
21	XJ250	Агрегат для ремонта скважины	3072	3021	60,0 т
22	XJ250	Агрегат для ремонта скважины	3072	3022	60,0 т
23	УПА-60А	Агрегат для освоения и ремонта скважин	3072	3023	50,0 т
24	DK 100 GFC	ДЭС	3072	3024	40,0 т
25	DK 100 GFC	ДЭС	3072	3025	40,0 т
26	AD-48	ДЭС	3072	3026	20,0 т

Примечание:

¹⁾Устьевые печи в скважинах Коныс, Бектас будут работать на 30% от номинальной мощности приведенных в паспортных характеристиках.

²⁾Печи подогрева в ЦПНиГ: (ПП-0,63А) №5, №6 и №7 будут работать на 30% от номинальной

мощности приведенных в паспортных характеристиках, в связи с уменьшением объема транспортировки нефти по нефтепроводу; Печи будут работать на 30% от номинальной мощности приведенных в паспортных характеристиках, в связи с уменьшением объема подогреваемых жидкости; Печи подогрева газа для ГПУ –ЮК, будут работать на 35% от номинальной мощности приведенных в паспортных характеристиках, в связи с уменьшением объема потребление газа на собственные нужды. Режим работы: 1 ед. в работе,2-ая в резерве; Печи УН-0,2 работают только в отпительный период с октября по март месяц (6 месяцев).

3)Выработка электроэнергии: по технологическому режиму ГПУ будет работать в параллельном режиме, в холодное время года с октября по март (6 мес.) одновременно будет работать - ГПУ - Северный Коныс (СК) 2 станций в работе и в резерве 2 станция, ГПУ - Южный Коныс (ЮК) 6 станций в работе и в резерве 3 станций, а теплое время года с апреля по сентябрь (6 мес.) одновременно будут работать: ГПУ — Северный Коныс - 1 станций в работе и в резерве 3 станций, ГПУ — Южный Коныс - 5 станций в работе и в резерве - 4 станций. Оборудования будут работать на 35% от номинальной мощности приведенных в паспортных характеристиках.

4)Газовые генераторы KC: оборудование будут работать на 30% от номинальной мощности приведенных в паспортных характеристиках, $\Gamma KV №3$ будет продан. Режим работы: I ед. в работе, 2 ед. в резерве.

Примечание:

1)Устьевые печи месторождения Коныс, Бектас будут работать на 30% от номинальной мощности приведенных в паспортных характеристиках.

2)Печи подогрева в ЦПНиГ (ПП-0,63A) №5, №6 и №7 будут работать на 30% от номинальной мощности приведенных в паспортных характеристиках, в связи с уменьшением объема транспортировки нефти по нефтепроводу; Печи будут работать на 30% от номинальной мощности приведенных в паспортных характеристиках, в связи с уменьшением объема подогреваемых жидкости; Печи подогрева газа для ГПУ —ЮК, будут работать на 35% от номинальной мощности приведенных в паспортных характеристиках, в связи с уменьшением объема потребление газа на собственные нужды. Режим работы: 1 ед. в работе,2-ая в резерве; Печи УН-0,2 работают только в отпительный период с октября по март месяц (6 месяцев).

3)Выработка электроэнергии: по технологическому режиму ГПУ будет работать в параллельном режиме, в холодное время года с октября по март (6 мес.) одновременно будет работать - ГПУ - Северный Коныс (СК) 2 станций в работе и в резерве 2 станция, ГПУ - Южный Коныс (ЮК) 6 станций в работе и в резерве 3 станций, а теплое время года с апреля по сентябрь (6 мес.) одновременно будут работать: ГПУ — Северный Коныс - 1 станций в работе и в резерве 3 станций, ГПУ — Южный Коныс - 5 станций в работе и в резерве - 4 станций. Оборудования будут работать на 35% от номинальной мощности приведенных в паспортных характеристиках.

4)Газовые генераторы KC: оборудование будут работать на 30% от номинальной мощности приведенных в паспортных характеристиках, ΓKV №3 будет продан. Режим работы: 1 ед. в работе, 2 ед. в резерве.

Использование газа для выработки электроэнергии.

Часть газа на месторождениях ТОО СП «Куаталонмунай» служит для покрытия нужд промысла электрической энергией, для этих целей приобретены, установлены и введены в эксплуатацию на месторождении Коныс с января 2019 года газопоршневые электростанций (ГПУ) в количестве 13 ед. на 1 МВт каждая. По технологическому режиму ГПУ будет работать в параллельном режиме, одновременно будет работать - 9 ед. Оборудование будет работать на 50% от номинальной мощности приведенных в паспортных характеристиках.

Эксплуатация газопоршневых установок будет производиться по схеме 9 действующих и 4 в периодической эксплуатации.

Ниже приведены таблицы расчетов обоснования использования сырого газа на собственные технологические нужды (таблицы 4.2).

Использование сырого газа для нагнетания в пласт

Оставшая часть попутно-добываемого газа используется под нагнетание в пласт, закачка газа осуществляется с 2006 года на месторождении Коныс в газовую шапку (северный свод)

через шесть газонагнетательные скважины (2-Р, 105, 400, 401, 600, 601).

Попутный газ месторождения Бектас по централизованной системе поступает на газокомпрессорные станции и также закачивается в газовую шапку горизонта М-II месторождения Коныс.

После компрессора обратной закачки газ с требуемым давлением будет поступать по газопроводу в распределительный коллектор на газонагнетательные скважины для обратной закачки в пласт.

Нагнетание газа в пласт выполняется при давлении выше пластового на 10-20%.

К числу факторов, которые могут осложнять процесс закачки газа, относится наличие мех.примесей, тяжелых углеводородов, паров воды и углекислого газа.

Закачиваемый в пласт газ не должен содержать механических примесей, пыли, масла, продуктов коррозии, так как это может привести к снижению поглотительной способности скважин. Присутствие в газе твердых частиц приводит к абразивному износу труб, арматуры и деталей компрессорного оборудования, засорению контрольно-измерительных приборов.

Конденсат тяжелых углеводородов оседает в пониженных точках газопровода, увеличивая сопротивление движению газа.

Наличие водяных паров в газе приводит к коррозии трубопроводов и оборудования, а также к образованию в трубопроводах гидратов, способных полностью перекрыть сечение труб. Углекислый газ приводит к коррозии оборудования.

При промысловой подготовке газа для обратной закачки основным требованием являются очистка его от мех.примесей и влаги.

В соответствии с принятой технологией попутный газ после сепарации нефти на ЦППН проходит через газовый сепаратор, где очищается от мех.примесей, и поступает в систему компримирования, где в процессе сжатия выделяется конденсат.

Состав попутного газа, отобранного с ЦППН и поступающего в систему нагнетания газа, приведен в таблице 4.3

После компрессора обратной закачки газ с требуемым давлением поступает по газопроводу в распределительный коллектор на одну из нагнетательных скважин 2-P, 105, 400, 401, 600 и 601 для обратной закачки в пласт.

Анализ эффективности закачки попутного газа

Закачка газа наиболее эффективна при режиме смешивающегося вытеснения, при котором коэффициент вытеснения близок к единице. Реализация этого режима возможна при высоких пластовых давлениях, которые наблюдаются в глубокозалегающих пластах, и значительном содержании в газе бутан-пропановых фракций. При смешивающемся вытеснении нефть вытесняется из области охваченной процессом почти полностью.

вытеснение нефти меньших давлениях возможно в условиях смешиваемости. на примере месторождения Коныс. Развитие такого варианта обуславливается свойствами и термобарическим состоянием пластовой системы углеводороды».

Учитывая то, что из залежи при ее эксплуатации будет извлекаться нефть и попутный газ, а возвращаться только газ, то очевидно, что закачка только попутного газа не может полностью компенсировать отбора жидкости из пласта, поэтому приходиться компенсировать дополнительными источниками, водонагнетательными скважинами.

Поэтому, вариант с нагнетанием попутного газа в газовую шапку и путем при контурной закачки воды, с соответствующей компенсацией отбора закачкой, позволяет решить вопрос утилизации газа на месторождениях ТОО СП «Куатамлонмунай» до полной её утилизации. Также позволяет сохранить энергию газовой шапки и проникновения нефтяной оторочки в газовую шапку.

Объем закачки газа рассчитан с учетом недопущения прорывов газа, что контролируется значениями текущего газового фактора по скважинам, который не должен превышать 2-кратное увеличение пластового газосодержания нефти.

Для нагнетательных скважин расчёт забойного давления проведен, исходя из проектных значений приёмистости и возможных давлений нагнетания на устье скважин. На рисунке 4.1 приведён режим работы нагнетательных скважин закачивающих газ. Как видно из графика, колонна НКТ диаметром 73 мм обеспечивает проектный расход нагнетаемого газа при давлении на устье от 10 до 11 МПа и на забое от 17,8 до 18,9 МПа.

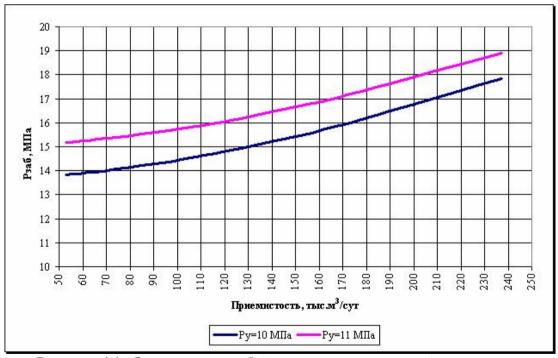


Рисунок 4.1 - Зависимость забойного давления от приёмистости скважин и давления нагнетания газа

Перечень источников на 2026 год

	1	ников на 2026 год			
№ п/п	Наименование	Время работы, час/год	№ИЗА	Годовой расход топлива	
1.	Дежурная горелка	8760	0056	210 788 m ³	
2	Печь ПП-0,63А №5	2928	0054	87 840 м ³	
3	Печь ПП-0,63А №6	2928	1260	87 840 м ³	
4	Печь ПП-0,63А №7	2904	1261	87 120 м ³	
5	Печь подогрева НЈ-2500 №1 (Китай)	4392	0051	322 812 м ³	
6	Печь подогрева НЈ-2500 №2 (Китай)	4392	0052	322 812 м ³	
7	Печь подогрева НЈ-2500 №3 (Китай)	4368	0053	321 048 м ³	
8	Печь подогрева HJ-2500 №4 (Китай)	4368	1257	321 048 м ³	
9	Печь HJ-200-H/10-Q	4392	1441	53 802 м ³	
10	Печь HJ-200-H/10-Q	4368	1442	53 508 м ³	
11	Печь JM-J400-Q/15.0/10- Q	4392	1439	130 662 м ³	
12	Печь JM-J400-Q/15.0/10- Q	4368	1440	129 948 м³	
13	Печь подогрева воды УН-02	2184	0057	26 208 м ³	
14	Печь подогрева воды УН-02	2184	0058	26 208 м ³	
15	Газовый генератор Waukesha/Ariel №1	2928	0490	255 614 м ³	
16	Газовый генератор Waukesha/Ariel №2	2928	0644	255 614 м ³	
17	Газовый генератор Waukesha/Ariel №4	2904	1401	253 519 м ³	
18	Техблок	8760	6042	ЗРА и ФС	
19	PBC №2 3000 м³ (для нефти)	8760	1403	30 805 т	
20	PBC №3 3000 м³ (для нефти)	8760	1404	30 805 т	
21	PBC №4 1000 м³ (для нефти)	8760	1406	30 805 т	
22	РВС №5 5000 м³ (для нефти)	8760	1407	91 300 т	
23	РВС №6 5000 м³ (для нефти)	8760	1408	91 300 т	
24	РВС 400 м ³ пластовая вода	8760	1409	30 199 т	
25	РВС 1000 м ³ пластовая вода	8760	1410	80 099 т	
26	Сливо-наливная эстакада	8760	1411	200 050 т	
27	100 м ³ дренажная емкость (для приема нефти)	8760	1412	60 250 т	
28	12м³ дренажная емкость (для нефти)	8760	1413	10 т	
	3Y-1				
29	Устьевой нагреватель Hanover	0	0001	0	
30	Дренажная емкость 12 м ³	8760	0900	5 т	
31	Техблок	8760	6001	ЗРА и ФС	
	Скважин	a № 556			
32	Устьевой нагреватель ППТМ-0,2Г	8664		51 009,33 м ³	
	3Y-2				
33	Устьевой нагреватель Hanover	4392	0003	131 760 м³	
34	Дренажная емкость12м ³	8760	0901	5 т	

35	Техблок	8760	6002	ЗРА и ФС
	3У-3			
36	Устьевой нагреватель Hanover	4392	0231	131 760 м³
37	Дренажная емкость12м ³	8760	0902	5 т
38	Техблок	8760	6003	ЗРА и ФС
	3У-4			
39	Устьевой нагреватель Hanover	0	0233	0
40	Дренажная емкость12м ³	8760	0903	5 т
41	Техблок	8760	6004	ЗРА и ФС
	Скважина № 230			
42	Устьевой нагреватель ППТМ-0,2Г	8664	1109	
	3Y-5			
43	Устьевой нагреватель ПП-0,63А	резерв	0705	-
44	Дренажная емкость 12 м ³	8760	0904	5 т
45	Техблок	8760	6005	ЗРА и ФС
	3Y-6	1		
46	Дренажная емкость 12 м ³	8760	0905	5 т
47	Техблок	8760	6006	ЗРА и ФС
	Скважина № К-1	1		
48	Устьевой нагреватель ППТМ-0,2Г	3600		21 195,0 м ³
	Скважина № 482	1		
49	Устьевой нагреватель ППТМ-0,2Г	8664	1336	51 009,33 м ³
	3 У -7	1		
50	Устьевой нагреватель ПП-0,63А	8664	1117	216 600 м ³
51	Дренажная емкость 12 м ³	8760	0906	3,76 т
52	Техблок	8760	6007	ЗРА и ФС
	3Y-8			
53	Устьевой нагреватель ПП-0,63А	8664	0709	216 600 м ³
54	Дренажная емкость 12м ³	8760	0907	5 т
55	Техблок	8760	6008	ЗРА и ФС
	Скважина № 573			
56	Устьевой нагреватель ППТМ-0,2Г	8664	1124	51 009,33 м ³
	Скважина № 574	1		
57	Устьевой нагреватель ППТМ-0,2Г	8664	1123	51 009,33 м ³
	3 y -9			
58	Устьевой нагреватель ПП-0,63А	резерв	0713	-
59	Дренажная емкость 12м ³	8760	0908	5 т
60	Техблок	8760	6009	ЗРА и ФС
	3Y-10	1		
61	Устьевой нагреватель ПП-0,63А	резерв	0711	-
62	Дренажная емкость 12м ³	8760	0909	5 т
63	Техблок	8760	6010	ЗРА и ФС
	Скважина № 300	1 2.20		1

64	Устьевой нагреватель ППТМ-0,2Г	8664	1127	51 009,33 м ³
	3 y -11	1		
65	Устьевой нагреватель ПП-0,63А	резерв	0714	_
66	Дренажная емкость 12м ³	8760	0910	5 т
67	Техблок	8760	6011	ЗРА и ФС
07			0011	ЭГА И ФС
	Скважина Ј			
68	Устьевой нагреватель ППТМ-0,2Г	3600		21 195,0 м ³
	Скважина №	⊵ К-707		
69	Устьевой нагреватель ППТМ-0,2Г	8664	1338	51 009,33 м ³
	3У-12	•		
70	Устьевой нагреватель ПП-0,63А	резерв	0715	-
	3 y -13	FF-		
71	Устьевой нагреватель ПП-0,63А	nanann	0716	
/ 1	-	резерв	0/16	-
	3Y-14			
72	Устьевой нагреватель ПП-0,63А	резерв	0224	-
73	Дренажная емкость12м ³	8760	0911	5 т
74	Техблок	8760	6014	ЗРА и ФС
	ЗУ-14 коллектор			
75	Устьевой нагреватель ПП-0,63А	резерв	0714	_
13	3y-15	резерв	0/14	
76	Устьевой нагреватель Hanover	резерв	0808	_
77	Дренажная емкость12м ³	8760	0912	5 т
78	Техблок	8760	6015	ЗРА и ФС
	ЗУ-16			
79	Устьевой нагреватель ПП-0,63А	резерв	0762	-
80	Дренажнаяемкость12м ³	8760	0913	5 т
81	Техблок	8760	6016	ЗРА и ФС
02	3 У-17	4392	0060	109 800 м ³
82	Устьевой нагреватель ПП-0,63A Дренажнаяемкость 12м ³	6600	0914	5 T
84	Техблок	6600	6024	ЗРА и ФС
0.	3Y-18	1 0000	1 0021	1 311111 1 0
85	Устьевой нагреватель ПП-0,63А	резерв	0090	-
86	Дренажная емкость12 м ³	8760	0915	5 т
87	Техблок	8760	6025	ЗРА и ФС
00	Скважина № 315	0.664	0007	51 000 22 3
88	Устьевой нагреватель ППТМ-0,2Г Скважина № 538	8664	0097	51 009,33 м ³
89	Устьевой нагреватель ППТМ-0,2Г	8664	1311	51 009,33 m ³
07	3y-19	0004	1311	31 007,33 W
90	Устьевой нагреватель ПП-0,63А	4392	0110	109 800 м ³
91	Дренажная емкость 12 м ³		0916	5 т
			6027	ЗРА и ФС
92	Техблок			
	Техблок 3У-20		1	
92	Техблок 3У-20 Устьевой нагреватель ПП-0,63A	резерв	0130	-
93	Техблок 3У-20 Устьевой нагреватель ПП-0,63A 3У-21			-
93	Техблок 3У-20 Устьевой нагреватель ПП-0,63A 3У-21 Устьевой нагреватель ПП-0,63A	резерв	0150	- - 5 T
93	Техблок 3У-20 Устьевой нагреватель ПП-0,63A 3У-21			- 5 т 3PA и ФС

97	Устьевой нагреватель ППТМ-0,2Г	8664	1128	51 009,33 м ³
	Скважина № 580			
98	Устьевой нагреватель ППТМ-0,2Г	8664	1333	51 009,33 м ³
	3У-22			
99	Устьевой нагреватель ПП-0,63А	4392	0170	109 800 м ³
	3У-23			
100	Устьевой нагреватель ПП-0,63А	резерв	0122	-
101	Дренажная емкость 12м ³	8760	0918	3,76 т
102	Техблок	8760	6038	ЗРА и ФС
	3У-24			
103	Устьевой нагреватель ПП-0,63А	4392	0124	109 800 м ³
104	Дренажная емкость12м ³	8760	0919	5 т
105	Техблок	8760	6039	ЗРА и ФС
	3Y-25			
106	Устьевой нагреватель ПП-0,63А	резерв	0126	-
107	Дренажная емкость12м ³	8760	0933	5 т
108	Техблок	8760	6302	ЗРА и ФС
	Скважина № 373			1
109	Устьевой нагреватель ППТМ-0,2Г	8664	1167	51 009,33 м ³
	1	V-26		
110	Устьевой нагреватель ПП-0,63А	резерв	0128	-
		3У-27		
111	Устьевой нагреватель ПП-0,63А	резерв	0142	-
112	Дренажная емкость12м ³	8760	0940	5 т
113	Техблок	8760	6304	ЗРА и ФС
		3 У-28		
114	Устьевой нагреватель ПП-0,63А	резерв	0144	-
		3У-29		
115	Устьевой нагреватель ПП-0,63А	резерв	1162	-
117	Дренажная емкость12м ³	8760	0920	5 т
118	Техблок	8760	6281	ЗРА и ФС
	Скважина	№ 352		
119	Устьевой нагреватель ППТМ-0,2Г	8664	1315	51 009,33 м ³
		3У-30		
120	Печь подогрева ПП-0,63А	резерв	1165	-
	-	3У-31		
121	Печь подогрева ПП-0,63А	резерв	1166	-
122	Дренажная емкость12м ³	8760	0921	5 т
123	Техблок	8760	6283	ЗРА и ФС
		3У-32	'	-
124	Печь подогрева ПП-0,63А	резерв	1169	-
125	Дренажная емкость12м ³	8760	0922	5 т
126	Техблок	8760	6284	ЗРА и ФС
		3У-33	·	•
127	Печь подогреваПП-0,63А	резерв	1172	-
128	Дренажная емкость12м ³	8760	0923	5 т
129	Техблок	8760	6285	ЗРА и ФС
	Скважина №		'	·
130	Устьевой нагреватель ППТМ-0,2Г	8664	1339	51 009,33 м ³
	Скважина №			,
	Устьевой нагреватель ППТМ-0,2Г	3600		21 195,0 м ³
	- /	3У-34)-
131	Печь подогрева ПП-0,63А	резерв	1178	-
132	Дренажная емкость12м ³	8760	0924	5 т
133	Техблок	8760	6285	ЗРА и ФС
	I .	1 2.00	1	

	Скважина №			
162	Устьевой нагреватель ППТМ-0,2Г	3600		21 195 м ³
	Скважина №	Б -1		
161	Устьевой нагреватель ППТМ-0,2Г	8664	0523	51 009,33 м ³
	Скважина № 1			,
160	Устьевой нагреватель ППТМ-0,2Г	8664	1243	51 009,33 м ³
	Скважина № Б-4		I	
159	Техблок	8760	6017	ЗРА и ФС
158	Дренажная емкость12м ³	8760	0929	5 т
157	Печь подогрева ПП-0,63А	8664	0708	216 600 м³
	3У-Б1			
	Месторожд	ение Бектас	1	•
156	Устьевой нагреватель ППТМ-0,2Г	8664	1330	51 009,33 м ³
	Скважина № 577			
155	Техблок	8760	6301	ЗРА и ФС
154	Дренажная емкость 8 м ³	8760	0939	5 т
153	Печь подогрева ПП-0,63А	4392	1238	109 800 м ³
	3	3У-44		
152	Техблок	8760	6300	ЗРА и ФС
151	Дренажная емкость12м ³	8760	0928	5 т
150	Печь подогрева ПП-0,63А	резерв	1235	-
	3V-43			
149	Печь подогрева ПП-0,63А	резерв	1239	-
	3 V -42			
148	Техблок	8760	6305	ЗРА и ФС
147	Дренажная емкость12м ³	8760	0941	5 T
146	Печь подогрева ПП-0,63А	4392	1233	109 800 м ³
1.4.5	3У		1222	100.000 2
145	Техблок	8760	6292	ЗРА и ФС
144	Дренажная емкость12м ³	8760	0927	5 T
	Печь подогрева ПП-0,63А			
143		4392	1221	109 800 м ³
142	Печь подогрева ПП-0,63А	резерв	1213	
142			1213	
141	Техблок	8760 - 39	6290	ЗРА и ФС
140	Дренажнаяемкость12м ³	8760	0926	5 T
139		резерв	1207	-
130		3 У-38	020)	JIM 4C
137	дренажная емкостьт 2м ³ Техблок	8760	6289	ЗРА и ФС
136 137	Печь подогрева ПП-0,63A Дренажная емкость12м ³	резерв 8760	1200 0925	- 5 т
		3У-37	1	1
135		резерв	1191	-
134		<u> 3У-36</u>	1102	-
134		<u>3У-35</u> резерв	1182	_

163	Устьевой нагреватель ППТМ-0,2Г	3600		21 195 м ³
	3У-Б2			
	Скважина № Б-1	17		
164	Устьевой нагреватель ППТМ-0,2Г	8664	0712	51 009,33 m ³
	Скважина № Б-8	 B5		,
165	Устьевой нагреватель ППТМ-0,2Г	8664		51 009,33 м ³
100	3У-3Б	0001		31 003,33 M
166	Печь подогрева ПП-0,63А	8664	1249	216 600 m ³
167	Дренажная емкость12м ³	8760	0931	5 т
168	дренажная емкостьт2м Техблок	8760		ЗРА и ФС
108			6034	ЗРА И ФС
	Скважина № Б-2			
169	Устьевой нагреватель ППТМ-0,2Г	8664	0520	51 009,33 м ³
	Скважина № Б-2	2		
170	Устьевой нагреватель ППТМ-0,2Г	8664		51 009,33 м ³
	3y-4l	Б		
171	Печь подогрева ПП-0,63А	8664	1254	216 600 м ³
172	Дренажная емкость12м ³	8760	0932	5 т
173	Техблок	8760	6047	ЗРА и ФС
	Скважина № Б-2	23		
174	Устьевой нагреватель ППТМ-0,2Г	8664	1250	51 009,33 м ³
-,.	Скважина № Б-2		1200	01000,001.1
175	Устьевой нагреватель ППТМ-0,2Г	8664	0525	51 009,33 м ³
175	Скважина № Б-5		0323	31 000,33 M
176	Устьевой нагреватель ППТМ-0,2Г	8664	1251	51 009,33 м ³
1/0	1		1231	31 009,33 M
	Скважина № Б-7			7.1 0.00 2.2 2
177	Устьевой нагреватель ППТМ-0,2Г	8664	1445	51 009,33 м ³
178	Печь подогрева ПП-0,63А	ЗУ-5Б 8664	1253	216 600 м³
179	Дренажная емкость12м ³	8760	0937	5 T
180	Техблок	8760	6048	ЗРА и ФС
	Скважина Л	ъ Б-78		
181	Устьевой нагреватель ППТМ-0,2Г	8664	1255	51 009,33 м ³
100	3У-6Б	0.664	1076	216600 3
182 183	Печь подогрева ПП-0,63A Дренажная емкость 12м ³	8664 8760	1256 0938	216 600 м ³ 5 т
184	Техблок	8760	6049	ЗРА и ФС
104	Скважина №		0047	JITH 40
185	Устьевой нагреватель ППТМ-0,2Г	8664	0522	51 009,33 м ³
	Бектас			_
186	Печь подогрева ПП-0,63А	4392		109 800 m ³
187 188	Печь подогрева ПП-0,63A Печь подогрева ПП-0,63A	4368 8664	0072	109 200 м ³ 216 600 м ³
188	Печь подогрева ПП-0,63А	8664	0072	216 600 M ³
190	Печь подогрева ПП-0,63А	8664	0073	216 600 M ³
191	Печь подогрева ПП-0,63А	8664	1252	216 600 m ³
105	(ГУ-Бектас, ЗУ-Б2)	05.0	0000	
192	Дренажная емкость12м ³	8760	0930	5 T
193	Техблок	8760	6026	ЗРА и ФС

194	Печь подогрева ПП-0,86 (промежуточная печь на 9 км нефтепровода ГУ Бектас- ГУ Южный).	4392	0075	131 760 м³
195	Печь подогрева ПП-0,86 (резервная)	4368	0076	131 040 м³
196	Резервуар 75 м ³	8760	0816	21 900 т
197	Резервуар 75 м ³	8760	0817	
198	Резервуар 75 м ³	8760	0818	21 900 т 21 900 т
198	Резервуар 75 м ³	8760	0819	21 900 T
200	Резервуар 75 м ³	резерв	0820	21 900 1
201	Дренажная емкость 10 м ³	8760	0934	4 т
202	Дренажная емкость 10 м ³	8760	0935	4 т
203	Дренажная емкость 20 м ³	8760	0936	6 т
204	Техблок	8760	6018	ЗРА и ФС
205	Резервуар 500 м ³	8760		145 000 т
206	Резервуар 500 м ³	8760		145 000 т
207	Дренажная емкость 10 м ³	8760		4 т
208	Техблок	8760		ЗРА и ФС
	ГУ Южнь	ый Коныс		
209	Печь подогрева ПП-0,63 №1	4392	1334	109 800 м ³
210	Печь подогрева ПП-0,63 №2	4368	1335	109 200 м ³
211	Печь подогрева ПП-0,63 №3	4392	1419	109 800 м ³
212	Печь подогрева ПП-0,63 №4	4368	1335	109 200 м ³
213	РВС-2000 м ³	8760	1420	27 390 т
214	РВС-2000 м ³	8760	1414	27 390 т
215	Дренажная емкость 63 м ³	8760	1421	27 390 т
216	Техблок	8760	6019	ЗРА и ФС
	ПСН Кумі	коль		
217	Резервуар для диз/топлива	8760	0100	1079,4 т
218	ДЭС-400	4380	1422	34,0 т
219	Печь подогрева нефти (Китай)	8760	0767	225 480 м ³
220	Печь подогрева нефти (Китай)	8760	0768	225 480 m ³
221	PBC-3000	8760	1500	45 650 т
222	PBC-3000	8760	1501	45 650 T
223	Дренажная емкость 8м ³ Техблок	8760 8760	6023	1,44 т ЗРАиФС
224	1 ехолок 45 км нефте		0023	ЭРАИФС
	<u> </u>		T	
225	Печь подогрева нефти (Китай)	8760	0019	972,0 т
226	Печь подогрева нефти (Китай)	8760	0020	972,0 т
227	Техблок	8760	6035	3РАиФС
228	Дизель генератор AKSA 120 кВт Дизель генератор AKSA 170 кВт	2190 2190	0024	26,2 т 26,2 т
230	Дизель генератор AKSA 170 кВт Дизель генератор AKSA 180 кВт	2190	0025	26,2 т
231	Дизель генератор AKSA 180 кВт	2190	1424	26,2 т
232	Печь марки ПТ-1,6 АЖ	8760	0478	1350 т
233	Дренажная емкость 8м ³	8760	1425	1,44 т
	Вахтовый пос	1		-,
234	Пункт пропарки труб печь ПП-0,63А	4392	1502	109 800 м ³
235	Резервуар для диз/топлива	8760	0237	719 т
236	Резервуар для диз/топлива	8760	0237	719 т
237	ДЭС 450 кВт		0238	/1/1
		резерв		-
238	ДЭС 1000 кВт	резерв	0480	-
239	Сварочный пост	160	6228	Электрод MP – 4000 кг .

240	A3C				6229	1	Бензин — 340 тыс. л/год; диз.топлив1380т ыс. л/год	
		БКНС Северный Конь	ыс					
241	РВС – 1000 м	3	8760		1426		100 000 т	
242	РВС – 1000 м	8760		1427	,	100 000 т		
243	PBC – 700 м ³		8760		1428	;	70 740 т	
244	PBC – 200 м ³		8760		1429)	30 000 т	
245	PBC – 200 м ³		8760		1430)	30 000 т	
246	БКНС-СК Пе	чь подогрева ПП- 0,63А	3600		1431		90 000 м ³	
247	РВС №1 3000 пластовой вод	м ³ (отстаивание ы)	8760		1405		44 400 т	
		БКНС Южный Ко	оныс					
248	PBC – 300 м³ (воды)	отстаивание пластовой	8760		1432	,	154 450 т	
249	$PBC - 300 \text{ M}^3$		8760		1433		154 450 т	
250	$PBC - 300 \text{ m}^3$		8760		1434		154 450 т	
251	$PBC - 300 \text{ m}^3$		8760		1435	,	154 450 т	
252	БКНС-ЮК П	ечь подогрева ПП- 0,63А	5160		1438	,	129 000 м³	
253	БКНС-ЮК П	ечь подогрева ПП- 0,63А	3600	00			90 000 м ³	
254	Дренажная ем	кость 8м³	8760	1436			1,44 т	
		м/р Северный	Коныс	2				
255	ГПУ-1	Газопоршневая установка	l	8472	72 1447		207 564 м ³	
256		Газопоршневая установка	ı	8472	1	448	207 564 м ³	
257		Газопоршневая установка	ı	8472 1449		449	207 564 м ³	
258		Газопоршневая установка	ı	8472	1	450	207 564 м ³	
259	ГПУ-2	Газопоршневая установка	ı	2232	1	451	54 684 м ³	
272		Газопоршневая установка	l	2232	1	452	54 684 м ³	
273		Газопоршневая установка	l	2232	1	453	54 684 м ³	
274		Газопоршневая установка	ı	2232	1	454	54 684 м ³	
275	ГПУ-3	Газопоршневая установка	ı	1248	1.	455	30 576 м ³	
276		Газопоршневая установка	ı	1248	1.	456	30 576 м ³	
277		Газопоршневая установка	ı	1248	1.	457	30 576 м ³	
278		Газопоршневая установка	l	1248	1	458	30 576 м ³	

279	ГПУ-4	Газопоршневая установка	1224	1459	29 988 м³
280		Газопоршневая установка	1224	1460	29 988 м³
281		Газопоршневая установка	1224	1461	29 988 м³
282		Газопоршневая установка	1224	1462	29 988 м³
		м/р Южный Коныс			
283	ГПУ-5	Газопоршневая установка	8472	1463	207 564 м ³
284		Газопоршневая установка	8472	1464	207 564 м³
285		Газопоршневая установка	8472	1465	207 564 м ³
286	_	Газопоршневая установка	8472	1466	207 564 м ³
287	ГПУ-6	Газопоршневая установка	8472	1467	207 564 м ³
288		Газопоршневая установка	8472	1468	207 564 м³
289		Газопоршневая установка	8472	1469	207 564 м³
290		Газопоршневая установка	8472	1470	207 564 м³
291	ГПУ-7 Газопоршневая установка		8472	1471	207 564 м³
292		Газопоршневая установка	8472	1472	207 564 м ³
293		Газопоршневая установка	8472	1473	207 564 м ³
294		Газопоршневая установка	8472	1474	207 564 м³
295	ГПУ-8	Газопоршневая установка	8472	1475	207 564 м ³
296		Газопоршневая установка	8472	1476	207 564 м³
297		Газопоршневая установка	8472	1477	207 564 м³
298		Газопоршневая установка	8472	1478	207 564 м³
299	ГПУ-9	Газопоршневая установка	8472	1479	207 564 м ³
300		Газопоршневая установка	8472	1480	207 564 м³
301		Газопоршневая установка	8472	1481	207 564 м ³
302		Газопоршневая установка	8472	1482	207 564 м ³

303	ГПУ-10	Газопоршневая установка	1488	1483	36 456 м³
304	_	Газопоршневая установка	1488	1484	36 456 м³
305	-	Газопоршневая установка	1488	1485	36 456 м³
306	-	Газопоршневая установка	1488	1486	36 456 м³
307	ГПУ-11	Газопоршневая установка	1488	1487	36 456 м ³
308		Газопоршневая установка	1488	1488	36 456 м³
309		Газопоршневая установка	1488	1489	36 456 м ³
310		Газопоршневая установка	1488	1490	36 456 м ³
311	ГПУ-12	Газопоршневая установка (резерв)	1440	1491	35 280 м³
312		Газопоршневая установка (резерв)	1440	1492	35 280 м ³
313		Газопоршневая установка (резерв)	1440	1493	35 280 м ³
314		Газопоршневая установка (резерв)	1440	1494	35 280 м ³
315	ГПУ-13	Газопоршневая установка (резерв)	1440	1495	35 280 м ³
316		Газопоршневая установка (резерв)	1440	1496	35 280 м ³
317		Газопоршневая установка (резерв)	1440	1497	35 280 м ³
318		Газопоршневая установка (резерв)	1440	1498	35 280 м ³
		КПРС			
319	УПА-60А 60/80	Агрегат для освоения и ремонта скважин	4380	3001	30,0 т
320	АПРС-40 (Урал4320)	Агрегат ремонта скважин	4380	3002	25,0 т
321	АСЦ-320	Цементировочный агрегат	2184	3003	20,0 т
322	АСЦ-320	Цементировочный агрегат	2184	3004	20,0 т
323	ППУА	Пропарочный агрегат	2184	3005	60,0 т
324	ППУА	Пропарочный агрегат	2184	3006	60,0 т
325	ППУА	Пропарочный агрегат	2184	3007	60,0 т
326	ППУА	Пропарочный агрегат	2184	3008	60,0 т
327	ППУА	Пропарочный агрегат	2184	3009	60,0 т
328	АДПМ	Агрегат депарафинизации	4380	3010	20,0 т

329	АДПМ	Агрегат депарафинизации	4380	3011	20,0 т
330	АДПМ	Агрегат депарафинизации	4380	3012	20,0 т
331	APOK AZN	Агрегат ремонта и обслуживания станков качалок	4380	3013	20,0 т
332	APOK AZN	Агрегат ремонта и обслуживания станков качалок	4380	3014	20,0 т
333	АР 32/40 Урал-4320	Агрегат для свабирования скважин	2184	3015	20,0 т
334	ЦА-320	Цементировочный агрегат	1560	3016	15,0 т
335	Shanxi ZYT5200TCY	Агрегат для свабирования скважин	2184	3017	20,0 т
336	ZYT TXY- 250	Станок	2184	3018	10,0 т
337	GEABOX for SLUPRY PUMP	Агрегат прессовочный	480	3019	3,0 т
338	GEABOX for SLUPRY PUMP	Агрегат прессовочный	480	3020	3,0 т
339	XJ250	Агрегат для ремонта скважины	3072	3021	60,0 т
340	XJ250	Агрегат для ремонта скважины	3072	3022	60,0 т
341	УПА-60А	Агрегат для освоения и ремонта скважин	3072	3023	50,0 т
342	DK 100 GFC	дэс	3072	3024	40,0 т
343	DK 100 GFC	дэс	3072	3025	40,0 т
344	AD-48	дэс	3072	3026	20,0 т

6. ОЦЕНКА СТЕПЕНИ СООТВЕТСТВИЯ ПРИМЕНЯЕМОЙ ТЕХНОЛОГИИ, ТЕХНИЧЕСКОГО И ПЫЛЕГАЗООЧИСТНОГО ОБОРУДОВАНИЯ ПЕРЕДОВОМУ НАУЧНО-ТЕХНИЧЕСКОМУ УРОВНЮ В СТРАНЕ И ЗАРУБЕЖОМ

Применяемая технология добычи нефти и газа на месторождениях соответствует научно-техническому уровню в стране и зарубежом.

Применяемые на предприятии технологии:

- исключение использования буровых растворов на нефтяной основе;
- повторное использование отфильтрованной воды из бурового раствора;
- применение биоцидов, ингибиторов коррозии;
- хранение сырой нефти в резервуарах;
- очистка пластовой воды перед закачкой в пласт.

К наилучшим доступным технологиям нефтедобычи, обеспечивающим снижение негативного воздействия на окружающую среду относятся:

- сбор и утилизация попутного нефтяного газа путем его использования для производства электрической энергии;
- добыча нефти с поддержанием пластового давления путем закачки (возврата) пластовой воды и попутного нефтяного газа (ПНГ) в пласт. Пластовая вода отделяется от нефти путем сепарирования и отстаивания нефти в резервуарах;
- отвод газа от технологического оборудования ЦППН на дежурную горелку (мера безопасности и предотвращения аварийных ситуаций);
- установка факельного оголовка специальной конструкции, обеспечивающей условия полноты сгорания газа;
 - осушка газа, отводимого на факел с установкой каплесборника нефтяного конденсата.

ПЕРСПЕКТИВА РАЗВИТИЯ

На срок действия разработки нормативов НДВ увеличение объемов работ не предусматривается. В случае увеличения объемов планируемых работ необходимо провести корректировку проекта нормативов НДВ.

ПЕРЕЧЕНЬ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ВЫБРАСЫВАЕМЫХ В АТМОСФЕРУ

Перечень загрязняющих веществ, выбрасываемых в атмосферу источниками загрязнения месторождения представлен в таблице 3.1.

ПАРАМЕТРЫ ВЫБРОСОВ ЗВ В АТМОСФЕРУ ДЛЯ РАСЧЕТА ПДВ

Параметры выбросов загрязняющих веществ в атмосферу для расчета норматива нормативов допустимых выбросов представлены в виде таблицы 3.3 (см.приложение). Таблица составлена с учетом требований приложение 1 Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 «Об утверждении Методики определения нормативов эмиссий в окружающую среду».

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Сырдарьинский район, ТОО СП "КуатАмлонМунай" на 2026 год

Код	Наименование	ЭНК,	пдк	ПДК		Клас с	Выброс вещества	Выброс вещества	Значение
3B	загрязняющего вещества	мг/м3	максималь	среднесу-	ОБУВ,	опас	с учетом	с учетом	м/энк
			ная разо-	точная,	мг/м3	ност и	очистки, г/с	очистки, т/год	
			вая, мг/м3	мг/м3		3В		(M)	
1	2	3	4	5	6	7	8	9	10
012	Железо (II, III) оксиды			0.04		3	0.01375	0.0396	0.99
3	(диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)								
014	Марганец и его соединения /в		0.01	0.001		2	0.001528	0.0044	4.4
	пересчете на марганца (IV) оксид/ (327)								
030	Азота (IV) диоксид (Азота		0.2	0.04		2	4.772073908	63.068648335	1576.7162
030	диоксид) (4) Азот (II) оксид (Азота оксид)		0.4	0.06		3	2.429715635	24.887794479	414.79657
4	(6)								5
032	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.478458868	8.121163096	162.42326
033	583) Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	1.099806667	7.819	156.38
	Сернистый газ, Сера (IV) оксид) (
033	516) Сероводород (Дигидросульфид) (0.008			2	0.00494594	0.0572383329	7.1547916
033	518) Углерод оксид (Окись углерода,		5	3		4	7.716003896	93.934086124	31.311362
034	Угарный газ) (584) Фтористые газообразные соединения		0.02	0.005		2	0.000556	0.0016	0.32
041	/в пересчете на фтор/ (617) Метан (727*)				50		1.612449925	28.767562153	0.5753512
0 041 5	Смесь углеводородов предельных				50		50.99266	218.4275661	4.3685513 2
041	C1-C5 (1502*) Смесь углеводородов предельных				30		2.43825	25.5636236	0.8521207
050	C6-C10 (1503*) Пентилены (амилены - смесь		1.5			4	0.0245	0.00539	0.0035933
060	изомеров) (460) Бензол (64)		0.3	0.1		2	0.0512018	0.338178609	3.3817860
061 6	Диметилбензол (смесь о-, м-, п-		0.2			3	0.0118409	0.1053512866	9 0.5267564 3
062	изомеров) (203) Метилбензол (349)		0.6			3	0.0392818	0.2141765724	0.3569609
062	Этилбензол (675)		0.02			3	0.000588	0.0001294	0.00647

070	Бенз/а/пирен (3,4-Бензпирен) (54)		0.000001	1	0.000001017	0.000002776	2.776
130	Проп-2-ен-1-аль (Акролеин,	0.03	0.01	2	0.062215	0.6432	64.32
	Акрилальдегид) (474)						
132	Формальдегид (Метаналь) (609)	0.05	0.01	2	0.07240675	0.663028968	66.302896
5							8
275	Алканы С12-19 /в пересчете на С/	1		4	1.066019417	6.953725516	6.9537255
4	(V						2
	(Углеводороды предельные C12-C19						
	(в пересчете на С); Растворитель						
	РПК-265П) (10)						
	всего:				72.888253523	479.615465348	2504.9164
							1

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ 2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

ЭРА v3.0 ИП "ЭКО-ОРДА" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения

Сырдарьинский район, ТОО СП "КУАТАМЛОНМУНАЙ" на 2026 год

Код вещества / группы суммации	йон, ТОО СП "КУАТАМЛОНМУНАИ" на Наименование вещества	Расчетная максим концентрация (общ	иальная приземная дая и без учета фона) [К / мг/м3 на границе санитарно -	с макси приземн	на грани	наиболы	ший вклад в нцентрацию		Принадлежность источника (производство, цех, участок
			защитной зоны	X/Y	X/Y		ЖЗ	C33	1
1	2	3	4	5	6	7	8	9	10
	1	3;	Существующее положение агрязняющие вещества:		1			ı	1
0301	Азота (IV) диоксид (Азота диоксид) (4)		0.33079/0.06616		-338/- 941	0019 0020		19.4 19.4	45 км нефтепровода 45 км
0328	Углерод (Сажа, Углерод		0.05306/0.00796		-851/524	0024 0019		16.1 35.1	нефтепровода 45 км нефтепровода 45 км
0326	черный) (583)		0.03300/0.00770		-031/324	0020		35.1	нефтепровода 45 км нефтепровода
						0478		12	45 км нефтепровода
0333	Сероводород (Дигидросульфид) (518)		0.06903/0.00055		3256 /22835	1426		10.6	БКНС Северный Коныс
						1427		10.6	БКНС Северный Коныс
						1428		10.6	БКНС Северный Коныс
	1	I Группы веществ, облад I	 ающих эффектом комбинированного 	вредного дейс	 ТВИЯ 	 		 	1
30 0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)		0.07148		3256 /22835	1426		10.2	БКНС Северный Коныс

Сырдарьинский район, ТОО СП "КУАТАМЛОНМУНАЙ" на 2026 год

сырдарьинский р	айон, ТОО СП "КУАТАМЛОНМУНАЙ" на	3	4	5	6	7	8	9	10
1	(516)	3	4	3	6	/	8	9	10
0333	(316) Сероводород (Дигидросульфид) (518)					1427 1428			БКНС Северный Коныс БКНС Северный
									Коныс
31 0301	Азота (IV) диоксид (Азота диоксид) (4)		0.35143		-338/- 941	0019		18.3	45 км нефтепровода
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)					0020			45 км нефтепровода
	(516)					0024		16.1	45 км нефтепровода
33 0301	Азота (IV) диоксид (Азота диоксид) (4)		0.36013		-338/- 941	0019		18.1	45 км нефтепровода
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)				741	0020		18.1	45 км нефтепровода
0337	(516) Углерод оксид (Окись углерода, Угарный газ) (584)					0024		16.2	45 км нефтепровода
39 0333 1071	Гидроксибензол (155) Сероводород (Дигидросульфид) (518)		0.06971		3256 /22835	1426		10.5	БКНС Северный Коныс
1325	Формальдегид (Метаналь) (609)					1427		10.5	БКНС Северный Коныс
						1428		10.5	БКНС Северный Коныс

Таблица 3.5

САНИТАРНО - ЗАЩИТНАЯ ЗОНА

Для определения размеров санитарно-защитной зоны проведены расчеты приземных концентраций по вредным веществам от источников загрязнения месторождений Коныс и Бектас.

Расчеты выполнены с использованием программного комплекса УПРЗА «ЭРА» версия 3.0.

В соответствии п.5.21.РНД211.2.01.01-97. Для ускорения и упрощения расчетов приземных концентраций рассматриваются те из выбрасываемых вредных веществ, для которых соблюдается условие:

 Φ = 0,01прим Φ =0,1прим

Здесь M (г/с) — суммарное значение выброса от всех источников, соответствующее наиболее неблагоприятным из установленных условий выброса, включая вентиляционные источники и неорганизованные выбросы;

ПДК (мг/м3)-максимальная разовая предельно допустимая концентрация;

(м) – средневзвешенная по предприятию высота источников выброса.

Расчеты, выполняемые при установлении положения границы и размера СЗЗ, проводятся на условиях нормального технологического режима работы организованных и неорганизованных источников выбросов.

Расчетная граница СЗЗ устанавливается таким образом, что на ней и за ее пределами не превышается ни один из установленных гигиенических нормативов качества атмосферного воздуха населенных мест. Расчет СЗЗ произведен для каждого из вредных веществ и групп суммаций.

Согласно указаниям Санитарных правил "Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека" утвержденные приказом Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚРДСМ-2. Зарегистрирован в Министерстве юстиции РеспубликиКазахстан 11 января 2022 года № 26447, согласно, которому месторождения Коныс и Бектас относится к І-ому классу опасности с СЗЗ-1000 м.

РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ПРОИЗВОДСТВЕННОГО ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА

В соответствии с требованиями раздела 4 «Экологический контроль» Экологического Кодекса Республики Казахстан, различают 2 вида экологического контроля:

- Государственный контроль, который проводится уполномоченным и государственными органами на территории Республики Казахстан (глава12);
- *Производственный экологический контроль*, осуществляющийся как природопользователем, так и специализированной организацией, имеющей лицензию на право проведения таких работ (глава14).

В соответствии со статьей 128 Экологического Кодекса «Физические и юридические лица, осуществляющие специальное природопользование, обязаны осуществлять производственный экологический контроль». В этой же статье определены следующие цели производственного экологического контроля:

- Получение информации для принятия решений в отношении экологической политики природопользователя, количественных и качественных показателей состояния окружающей среды,потенциально оказывающих воздействие на окружающую среду;
- Обеспечение соблюдения требований экологического законодательства Республики Казахстан;
- Сведение к минимуму воздействия производственных процессов природопользователя на окружающую среду и здоровье человека;

Оперативное упреждающее реагирование на нештатные ситуации и т.д. Согласно требованиям статей 128 и 131 ЭК РК, на основе оценки воздействия намечаемых работ на окружающую среду природопользователем должна быть разработана Программа производственного экологического контроля. Программа производственного экологического контроля должна содержать следующую информацию:

- Обязательный перечень параметров, отслеживаемых в процессе производственного контроля и мониторинга;
- Частоту, продолжительность и перечень обязательных параметров, отслеживаемых в процессе производственного мониторинга, а также сведения об используемых методах его проведения;
 - Места проведения измерений и точки отбора проб;
 - Протокол действий внештатных ситуациях и т.д.

Согласно требованиям статьи 132 ЭК РК «В рамках осуществления производственного экологического контроля выполняются операционный мониторинг (мониторинг производственного процесса), мониторинг эмиссий (количества и качества эмиссий) в окружающую среду и мониторинг воздействия».

Производственный экологический контроль (мониторинг) включает в себя три основных направления деятельности:

- Наблюдения за факторами воздействия и состоянием среды;
- Оценку фактического состояния среды;
- Прогноз состояния окружающей природной среды и оценку прогнозируемого состояния.

Основными функциями контроля (мониторинга) является контроль качества атмосферного воздуха, воды, почвы и других компонентов ландшафта, определение основных

источников загрязнения, прогнозирование состояния качества составляющих окружающей среды. Поэтому основными объектами экологического контроля с учетом специфики намечаемой деятельности будут являться:

- Атмосферный воздух и радиологическая обстановка;
- Подземные воды;
- Почвы, растительный и животный мир.

Предложения по организации производственного экологического контроля при эксплуатации

При эксплуатации месторождений эксплуатирующая организация должна Разработать Программу производственного экологического контроля. Программа ПЭК направлена на решение следующих задач:

- Получение количественных показателей состояния компонентов окружающей среды в районе функционирования нефтепромысла;
- Своевременное выявление изменений в природных средах;
- Получение информации о состоянии компонентов окружающей среды объеме, необходимом для расчета лимитов для получения Разрешения на эмиссии в окружающую среду, поскольку для действующих предприятий эти лимиты устанавливаются по результатам мониторинга.

На этапе эксплуатации системой мониторинга должны быть охвачены все компоненты окружающей среды:

- Атмосферный воздух;
- Подземные воды;
- Почвы, растительный и животный мир.

Программа производственного контроля должна включать в себя также проведение контроля за соблюдением правил обращения с отходами.

В целях соблюдения требований Кодекса РК «О здоровье народа и системе здравоохранения» по вопросу обеспечения санитарно-эпидемиологического благополучия населения, в Программу производственного экологического контроля следует заложить проведение производственного радиационного контроля на этапе эксплуатации нефтепромысла.

Главной целью радиационной безопасности является охрана здоровья персонала от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности.

Целью радиационного контроля (мониторинга) должно быть выявление тех операцийили рабочих мест, а также завозимого оборудования, где может иметь место периодическое облучение радиоактивными веществами, а также выявление тех мест, где эти вещества скапливаются в количествах, способных превысить допустимые для персонала дозы облучения.

- В соответствии со статьей 132 Экологического кодекса РК, Программа производственного экологического контроля должна содержать следующую информацию:
- Обязательный перечень параметров, отслеживаемых в процессе производственного мониторинга;
- период, продолжительность и частоту осуществления производственного мониторинга и измерений;

- сведения об используемых методах проведения производственного мониторинга;
- точки отбора проб и места проведения измерений;
- методы и частоту ведения учета, анализа и сообщения данных;
- план-график внутренних проверок и процедуру устранения нарушений экологического законодательства Республики Казахстан, включая внутренние инструменты реагирования на их несоблюдение;
 - механизмы обеспечения качества инструментальных измерений;
 - протокол действий в нештатных ситуациях;
- организационную и функциональную структуру внутренней ответственности работников за проведение производственного экологического контроля;
- иные сведения, отражающие вопросы организации проведения производственного экологического контроля.

В обязательном порядке необходимо подготовить и утвердить в соответствующих органах контроля регламенты проведения работ в аварийных ситуациях.

Должна быть разработана «Инструкция по ликвидации аварий», с обязательным освещением следующих положений:

- Методы реагирования на аварийную ситуацию;
- Оборудование и методы для локализации аварии;
- Отчетность и мониторинг загрязнения окружающей среды.

Структура контроля и распределения ответственности за выполнением всех возможных функций аварийного реагирования должна быть тщательно проработана. Служба эксплуатации должна проходить профессиональную подготовку и переподготовку персонала минимум один раз в год.

В рамках осуществления производственного экологического контроля выполняются операционный мониторинг, мониторинг эмиссий в окружающую среду и мониторинг воздействия.

Программа производственного экологического контроля разрабатывается природопользователем в объеме минимально необходимом для слежения за соблюдением экологического законодательства с учетом своих технических и финансовых возможностей.

Производственный мониторинг окружающей среды может осуществляться производственными или независимыми лабораториями, аккредитованными в порядке, установленном законодательством Республики Казахстан о техническом регулировании.

8. ХАРАКТЕРИСТИКА АВАРИЙНЫХ И ЗАЛПОВЫХ ВЫБРОСОВ

Залповые выбросы, как сравнительно непродолжительные и обычно во много раз превышающие по мощности средние выбросы, присуши многим производствам. Их наличие предусматривается технологическим регламентоми обусловлено проведением отдельных (специфических) стадий определенных технологических процессов.

В каждом из случаев залповые выбросы - это необходимая на современном этапе развития технологии составная часть (стадия) того или иного технологического процесса (производства), выполняемая, как правило, с заданной периодичностью (регулярностью).

Аварийные выбросы на территории месторождения ТОО СП «Куатамлонмунай» в основном связаны с нарушением технологического режима, значительной изношенностью оборудования и коррозионными процессами. На территории месторождении Коныс 30.07.2022 года на коллекторе № 2, выходящем из установки ЗУ-5, произошла аварийный разлив (износ трубы коллектора и утечка нефтепродуктов) нефтепродуктов, площадь загрязненной земли составляет - 431,2м². На месте аварий проведены восстановительные работы (снятие, сбор, погрузка и вывоз загрязненной нефтью земли с места аварий) и техническая рекультивация.

На месторождении Бектас **аварийных разливов и ситуаций не наблюдалось**, так как ведется контроль качества выполнения работ, соответствия материалов и конструкций установленным требованиям, квалификация и ответственность технических руководителей и исполнителей, организация системы защиты от неблагоприятных стихийных явлений.

Возможность локальных аварий существенно снижается при соблюдении установленных законодательными актами и отраслевыми нормами требований по охране труда, производственной санитарии и пожарной безопасности.

На предприятии разработан план мероприятий по предотвращению аварийных ситуаций и действий персонала при их возникновении. В последнее время состояние оборудования требует значительных ремонтов и дополнительной оснастки, в связи с этим для сокращения аварий на нефтепроводах необходима своевременная их диагностика, планово-предупредительный и капитальный ремонт оборудования с заменой на новое.

Характеристика залповых выбросов составлена в виде таблицы Приложения 5 к Методике определения нормативов эмиссий в окружающую среду № 63.

Таблица 8.1 –Перечень источников залповых выбросов

Наименование	Наименование	Выбросы ве	еществ,г/с	Периодичность,	Продолжительность	Годовая
производств	вещества	По	залповый	раз/год	выброса,час, мин.	величина
(цехов)		регламенту	выброс			залповых
иисточников						выбросов,
выбросов						тонн
1	2	3	4	5	6	7
		Залповы	е выбросы	отсутствует.		

МЕРОПРИЯТИЕ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ

Загрязнения приземного слоя воздуха, создаваемое выбросами предприятий в большой степени зависит от метеорологических условий. В отдельные периоды года, когда метеорологические условия способствуют накоплению загрязняющих веществ в приземном слое атмосферы, концентрации примесей в воздухе могут резко возрастать. Чтобы в эти недопускать возникновения высокого уровня загрязнения, необходимо периоды заблаговременное прогнозирование таких условий и своевременное сокращение выбросов В атмосферу OT предприятия. Прогнозирование веществ неблагоприятных метеорологических условий (НМУ) на территории Республики Казахстан осуществляют органы РГП «Казгидромет». Регулирование выбросов осуществляется с учетом прогноза НМУ на основе предупреждений о возможном росте концентраций примесей в воздухе с целью его предотвращения.

При определении фоновых концентраций в соответствии с Приложением 40 к <u>приказу</u> Министра охраны окружающей среды от 29 ноября 2010 года №298, предусматривается в периоды НМУ снижение приземных концентраций загрязняющих веществ по первому режиму на 20%, по второму режиму на 40%, по третьему режиму на 60%.

При первом режиме работы предприятия снижение выбросов достигается за счет проведения следующих организационно-технических мероприятий без снижения производительности предприятия:

- запрещение работы оборудования на форсированных режимах;
- усиление контроля за точным соблюдением технологического регламента производства;
- рассредоточение во времени работы технологических агрегатов, не участвующих в едином технологическом процессе, при работе которых выбросы загрязняющих веществ в атмосферу достигают максимальных значений;
- усиление контроля за работой КИП и автоматических систем управления технологическим процессом для исключения возникновения ситуаций, сопровождающихся аварийными и залповыми выбросами;
 - усилениеконтролязагерметичностьютехнологическогооборудования;
- обеспечение бесперебойной работы всех очистных систем и сооружений и их отдельных элементов, при этом недопускается снижение их производительности или отключение на профилактические осмотры, ревизии и ремонты;
- проведение внеплановых проверок автотранспорта на содержание загрязняющих веществ выхлопных газах;
- ограничение погрузочно-разгрузочных работ, связанных со значительными выделениями в атмосферу загрязняющих веществ;
- интенсифицированные влажной уборки производственных помещений и территории предприятия, где это допускается правилами техники безопасности;
- обеспечение инструментального контроля выбросов загрязняющих веществ в атмосферу непосредственно на источниках и награнице C33;
- использование запаса высококачественного сырья, при работе на котором обеспечивается снижение выбросов загрязняющих веществ;
- усиление контроля за соблюдением правил техники безопасности и противопожарных норм.

При втором режиме работы предприятия дополнительно к организационнотехническим мероприятиям проводятся мероприятия, влияющие на технологические процессы и сопровождающиеся незначительным снижением производительности

предприятия.

К дополнительным мероприятиям относятся следующие:

- снижение нагрузки на энергетические установкина 15%;
- использование газа для работы энергетических установок;
- прекращение ремонтных работ и работ по пуску оборудования во время плановых предупредительных ремонтов;
 - прекращение испытания оборудования на испытательных стендах;
 - ограничение использования автотранспорта на предприятии;

Мероприятия третьего режима работы предприятия включают в себя все мероприятия, разработанные для первого и второго режимов, а также мероприятия, влияющие на технологические процессы, осуществление которых позволяет снизить выбросы вредных веществ за счет временного сокращения производительности предприятия. При объявлении работы по третьему режиму НМУ для предприятия с непрерывным технологическим процессом, к которым относится и электростанции, не представляется возможным выполнить остановку оборудования, так как это приведет к дополнительным выбросам загрязняющих веществ и созданию аварийной ситуации. При третьем режиме НМУ возможно проведение следующих дополнительных мероприятий:

- Снижение нагрузки энергетических установокна25%;
- Прекращение движения автомобильного транспорта.

Объекты предприятия находятся вне населенных пунктов, максимальные концентрации вредных веществ на границе СЗЗ не превышают 1,0 доли ПДК. Предусматривать какие-либо дополнительные мероприятия В случае НМУ необходимости (прилагается фоновая справка Ф РГП на ПХВ «Казгидромет по Кызылординской области).

План технических мероприятий по снижению выбросов (сбросов) загрязняющих веществ с целью достижения нормативов допустимых выбросов (допустимых сбросов) представлен в таблице.

11. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ

В соответствии с требованием пункта 1 статьи 182 Экологического кодекса Республики Казахстан операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль.

Целями производственного экологического контроля являются:

- 1) получение информации для принятия оператором объекта решений в отношении внутренней экологической политики, контроля и регулирования производственных процессов, потенциально оказывающих воздействие на окружающую среду;
- 2) обеспечение соблюдения требований экологического законодательства Республики Казахстан;
- 3) сведение к минимуму негативного воздействия производственных процессов на окружающую среду, жизньи (или) здоровье людей;
 - 4) повышение эффективности использования природных и энергетических ресурсов;
 - 5) оперативное упреждающее реагирование на нештатные ситуации;
- 6) формирование более высокого уровня экологической информированности и ответственности руководителей и работников оператора объекта;
 - 7) информирование общественности об экологической деятельности предприятия;
 - 8) повышение эффективности системы экологического менеджмента.

Согласно Кодексу Республики Казахстан Производственный Экологическому программы экологический контроль проводится природопользователем на основе производственного экологического контроля (ПЭК). Программа производственного контроля приложена в приложении проекта НДВ. Производственный мониторинг является элементом производственного экологического контроля, выполняемым для получения объективных данных с установленной периодичностью.

План-график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов представлен в приложении 2.

Система контроля ИЗА функционирует в 3-х уровнях: государственном, отраслевом и производственном. Виды контроля ИЗА классифицируются по признакам: по способу определения параметра:

- инструментальный,
- инструментально-лабораторный,
- индикаторный,
- расчетный, по результатам анализа фактического загрязнения атмосферы;
- по месту контроля: на источнике загрязнения;
- по объему: полный и выборочный;
- по частоте измерений: эпизодический и систематический;
- по форме проведения: плановый и экстренный. При выполнении производственного контроля ИЗА службами предприятия производится:
- первичный учет видов и количества загрязняющих веществ, выбрасываемых в атмосферу в утвержденном порядке;
- определение номенклатуры и количества загрязняющих веществ с помощью инструментальных, инструментально-лабораторных или расчетных методов;
- составление отчета о вредных воздействиях по утвержденным формам;

- передача информации по превышению нормативов в результате аварийных ситуаций. Контроль над соблюдением нормативов НДВ на предприятии подразделяются на следующие виды:
- непосредственно на источниках выбросов;
- по фактическому загрязнению атмосферы воздуха на специально выбранных контрольных точках (постах);
- на постах, установленных на границе СЗЗ или в селитебной зоне района, в котором расположено предприятие.

Таблица 8.9- Класс опасности

Класс опасности		Класс от	пасности	
	1	2	3	4
Q	1,7	1,3	1,0	0,9

Расчет критериев опасности выбрасываемых веществ в атмосферу произведен в соответствии с требованиями «Руководства по контролю источников загрязнения атмосферы».

Результаты расчета приведены в таблице 8.10.

Определение категории опасности источников выбросов вредных веществ проведено на основании «Рекомендаций по делению предприятий на категории опасности».

Категория опасности предприятия рассчитывается по формуле:

$$KOB_i = \begin{pmatrix} Mi \\ \frac{1}{\Pi / MK} \end{pmatrix}_{c.c.}^q$$

где: M - масса выброса і-того вещества, T/Γ ;

 $\Pi \Pi K c/c$ - среднесуточная $\Pi \Pi K i$ -того вещества, мг/м³;

q - константа, позволяющая соотнести степень

вредоности і-того вещества с вредностью сернистого газа.

Категорию опасности выбросов от представленного объекта определяют, исходя из полученного значения критерия опасности КОВ в соответствии с таблицей 8.10.

Расчет категории опасности предприятия приведен в табл.

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ

ПК ЭРА v3.0.

Модель:МРК-2014

Город: 004

Сырдарьинский район;

Объект: ТОО СП "КУАТАМЛОНМУНАЙ" на 2026 год

Код	Наименование загрязняющих веществ и состав групп суммаций	Ст	РП	C33	ЕЖ	ФТ	Граница области возд.	ПДК Мр (ОБ УВ) мг/м3	Класс опасн.
0123	Железо (II, III) оксиды (диЖелезо триоксид, железаоксид) / в пересчете на железо/(274)	3,6833	0,16883	нет расч.	нет расч.	нет расч.	нетрасч	0.4*	3
0143	Марганец и его соединения /в пересчете на марганца (IV)оксид/(327)	16,3725	0,75046 9	нетрасч	нетрас ч.	нетрасч	нетрасч	0,01	2
0301	Азота (IV) диоксид (Азота диоксид) (4)	166,956 1	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,2	2
0304	Азот (II) оксид (Азота оксид)(6)	40,0392	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,4	3
0328	Углерод (Сажа, Углерод черный) (583)	52,8862	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,15	3
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	26,2591	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,5	3
0333	Сероводород (Дигидросульфид) (518)	0,2496	нетрасч.	нетрасч	нетрас ч.	нетрасч ·	нетрасч	0,008	2
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	6,8499	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	5	4
0342	Фтористые газообразные соединения /в пересчете на фтор/(617)	0,9929	0,16957 2	нетрасч ·	нетрас ч.	нетрасч ·	нетрасч	0,02	2
0410	Метан(727*)	0,0123	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	50	-
0415	Смесь углеводородов предельных C1-C5 (1502*)	2,4913	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	50	1
0416	Смесь углеводородов предельных C6-C10 (1503*)	0,5943	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	30	-
0501	Пентилены (амилены -смесь изомеров) (460)	1,1608	0,09484 5	нетрасч	нетрас ч.	нетрасч	нетрасч	1,5	4
0602	Бензол (64)	5,3614	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,3	2
0616	Диметилбензол (смесьо-,м-,п- изомеров) (203)	1,0199	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,2	3
0621	Метилбензол (349)	2,5262	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,6	3
0627	Этилбензол (675)	2,0894	0,17072	нетрасч	нетрас ч.	нетрасч	нетрасч	0,02	3
0703	Бенз/а/пирен (3,4- Бенз/а/пирен) (54)	7,3228	нетрасч.	нетрасч ·	нетрас ч.	нетрасч	нетрасч	0.000 01*	1

1071	Гидроксибензол (155)	0,0028	Cm<0.0	нетрасч	нетрас ч.	нетрасч	нетрасч	0,01	2
1301	Проп-2-ен-1-аль (Акролеин, Акрил альдегид) (474)	12,4457	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,03	2
1325	Формальдегид (Метаналь) (609)	12,362	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч	0,05	2
2754	Алканы С12-19 /в пересчете на С/(Углеводороды предельные С12-С19(в пересчете наС); Растворитель РПК-265П) (10)	10,0584	нетрасч.	нетрасч ·	нетрас ч.	нетрасч	нетрасч ·	1	4
6007	0301+0330	193,215 1	нетрасч.	нетрасч	нетрас ч.	нетрасч ·	нетрасч		
6008	0301+0330+0337+ 1071	200,067	15,0153 2	нетрасч	нетрас ч.	нетрасч ·	нетрасч		
6037	0333+1325	12,6116	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч		
6040	0330+1071	26,2619	1,72276 7	нетрасч	нетрас ч.	нетрасч	нетрасч		
6041	0330+0342	27,252	1,83368 1	нет расч.	нет расч.	нет расч.	нет расч		
6044	0330+0333	26,5087	нетрасч.	нетрасч	нетрас ч.	нетрасч	нетрасч ·		

Примечания:

- **1.** Таблица отсортировано по увеличению значений по коду загрязняющих веществ;
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр)-только для модели MPK-2014;
- **3.** "Звездочка"(*) в графе "ПДКмр (ОБУВ)" означает, что соответствующее значение взято как 10 ПДКсс.;
- 4. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек), на границе области воздействия приведены в долях ПДКмр.

ЭРА v3.0 ИП "ЭКО-ОРДА" Таблица 2.2

Определение необходимости расчетов приземных концентраций по веществам на существующее положение

Сырдарьинский район, ТОО СП "КуатАмлонМунай" на 2026 год

Код	Наименование	пдк	пдк	ОБУВ	Выброс	Средневзве	М/(ПДК*Н)	Необхо-
загр	вещества	максим.	средне-	ориентир	вещества	- шенная	для Н>10	димость
веще		разовая,	суточная	безопасн	r/c	высота, м	м/пдк	проведе
ства		мг/м3	м г/м3	УВ,мг/м3	(M)	(H)	для Н<10	ния расчето в
1	2	3	4	5	6	7	8	9
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)		0.04		0.01375	2	0.0344	Нет
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.01	0.001		0.001528	2	0.1528	Да
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		2.427732933	2.13	6.0693	Да
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.468291167	3.46	3.1219	Да
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		7.614326888	2.49	1.5229	Да
0410	Метан (727*)			50	1.609908	3.23	0.0322	Нет
0415	Смесь углеводородов предельных C1-C5 (1502*)			50	52.69632	2	1.0539	Да
0416	Смесь углеводородов предельных C6-C10 (1503*)			30	2.43825	2	0.0813	Нет
0501	Пентилены (амилены - смесь изомеров) (460)	1.5			0.0245	2	0.0163	Нет
0602	Бензол (64)	0.3	0.1		0.0512018	2	0.1707	Да
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.2			0.0118409	2	0.0592	Нет
0621	Метилбензол (349)	0.6			0.0392818	2	0.0655	Нет
0627	Этилбензол (675)	0.02			0.000588	2	0.0294	Нет
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0.000001		0.000001017	3.32	0.1017	Да

1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.03	0.01		0.062215	2	2.0738	Да
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1			1.066019417	2.48	1.066	Да
	I '	ı дающие эфф	 ектом сумм	I арного вре	і дного воздейст	вия		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2	0.04	-	4.759872667	3.01	23.7994	Да
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		1.099806667	2.43	2.1996	Да
	Сернистый газ, Сера (IV) оксид) (516)							
0333	Сероводород (Дигидросульфид) (518)	0.008			0.00494594	2	0.6182	Да
0342	Фтористые газообразные соединения /в	0.02	0.005		0.000556	2	0.0278	Нет
	пересчете на фтор/ (617)							
1325	Формальдегид (Метаналь) (609)	0.05	0.01		0.07240675	2.19	1.4481	Да

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с

ЭРА v3.0 ИП "ЭКО-ОРДА"

Расчет категории источников, подлежащих контролю на существующее положение

Сырдарьинский район, ТОО СП "КуатАмлонМунай" на 2026 год

Номе	Наименование	Высот	КПД	Код	ПДКм.р	Macca	M*100	Максимальная	См*100	Катего
p		a			,	- ()				_
исто	источника	источ	очистн	веще	(ОБУВ,	выброса (M)		приземная		рия
-	_	-	•	-	101===		=======================================			
чник	выброса	ника,	сооруж	ства	10*ПДКс.с.	с учетом	ПДК*Н* (100	концентрация	ПДК* (100-	источ-
a			•)	/ -	-	(0-1)	TATE TO \	
1	2	M	%	_	мг/м3 6	очистки, г/с	-кпд)	(См) мг/м3 9	КПД)	ника
1	2	3	4	5	ů	7	8	,	10	11
0003				0301	0.2	0.003464	0.0017	0.0047	0.0235	2
				0304	0.4	0.000563	0.0001	0.0008	0.002	2
				0337	5	0.00928	0.0002	0.0126	0.0025	2
0010				0410	*50	0.00928	0.00002	0.0126	0.0003	2
0019	Печь подогрева нефти (Китай)	6		0301	0.2	0.2259	0.113	0.874	4.37	1
				0328	0.15	0.0491	0.0327	0.5699	3.7993	1
				0337	5	0.0898	0.0018	0.3474	0.0695	2
				0410	*50	0.0898	0.0002	0.3474	0.0069	2
0020	Печь подогрева нефти (Китай)	6		0301	0.2	0.2259	0.113	0.874	4.37	1
				0328	0.15	0.0491	0.0327	0.5699	3.7993	1
				0337	5	0.0898	0.0018	0.3474	0.0695	2
				0410	*50	0.0898	0.0002	0.3474	0.0069	2
0024	Дизельгенератор AKSA 120кВт	5		0301	0.2	0.1024	0.0512	0.0881	0.4405	2
				0304	0.4	0.01664	0.0042	0.0143	0.0358	2
				0328	0.15	0.004762	0.0032	0.0123	0.082	2
				0330	0.5	0.04	0.008	0.0344	0.0688	2
				0337	5	0.103333333	0.0021	0.0889	0.0178	2
				0703	**0.000001	0.000000114	0.0011	0.0000003	0.03	2
				1325	0.05	0.001143	0.0023	0.001	0.02	2
				2754	1	0.027619	0.0028	0.0238	0.0238	2
0025	Дизельгенератор AKSA 170кВт	5		0301	0.2	0.145066667	0.0725	0.0804	0.402	2
	1,0101			0304	0.4	0.023573333	0.0059	0.0131	0.0328	2
				0328	0.15	0.006746167	0.0045	0.0131	0.0747	2
				0330	0.5	0.056666667	0.0113	0.0314	0.0628	2
				0337	5	0.146388889	0.0029	0.0812	0.0162	2
1 1				0703	· ·	0.000000162		0.0000003	0.03	

0026 Дизельгенератор АКSA 180кВт 5 0301 0.2 0.1536 0. 180кВт 0 0.02496 0. 0328 0.15 0.007143 0. 0330 0.5 0.06 0 0337 5 0.155 0. 0703 **0.000001 0.000000171 0. 1325 0.05 0.0017145 0. 2754 1 0.0414285 0. 050 0.051 Печь НЈ-2500 №1 6 0301 0.2 0.02976 0. 0337 5 0.0233 0. 0410 *50 0.0233 0. 052 Печь НЈ-2500 №2 6 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 0305 0.0052 Печь НЈ-2500 №2 6 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 0307 0.2 0.02976 0. 0304 0.4 0.00484 0. 0306 0.4 0.00484 0. 0307 0.2 0.00484 0. 0307 0.2 0.00484 0. 0307 0.2 0.00484 0. 0307 0.2 0.00484 0. 0307 0.2 0.00484 0. 0307 0.00484 0. 0307 0.2 0.00484 0. 0307 0. 0304 0.4 0.00484 0. 0306 0. 0306 0.4 0.00484 0. 0306 0	0039 0.0217 0768 0.079 0062 0.0128 0048 0.011 0.012 0.0309 0031 0.0797 0017 0.000003 0034 0.009 0041 0.0213 0149 0.0491 0005 0.0385 00149 0.0491 0.0491 0.0491	0.395 0.032 0.0733 0.0618 0.0159 0.03 0.018 0.0213 0.2455 0.02	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
180кВт 180кВт	0062 0.0128 0048 0.011 0.012 0.0309 0031 0.0797 0017 0.0000003 0034 0.0009 0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0128	0.032 0.0733 0.0618 0.0159 0.03 0.018 0.0213 0.2455 0.02	2 2 2 2 2 2 2 2 2 2
0304 0.4 0.02496 0.0007143 0.0328 0.15 0.007143 0.0330 0.5 0.06 0.05 0.155 0.155 0.0703 **0.00001 0.000000171 0.1325 0.05 0.0017145 0.2754 1 0.0414285 0.0051 Печь НЈ−2500 №1 6 0301 0.2 0.02976 0.0304 0.4 0.00484 0.0337 5 0.0233 0.0410 *50 0.0233 0.0052 Печь НЈ−2500 №2 6 0301 0.2 0.02976 0.0052 0.005976 0.0052 0.005976 0.0052 0.005976 0.0052 0.005976 0.0052 0.005976 0.0052 0.0052 0.005976 0.0052 0.005976 0.0052 0.005976 0.0052 0.005976 0.0052 0.005976 0.0052 0.005976 0.0052 0.0052 0.005976 0.0052 0.005976 0.0052 0	0048 0.011 0.012 0.0309 0031 0.0797 0017 0.0000003 0034 0.009 0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.0733 0.0618 0.0159 0.03 0.018 0.0213 0.2455 0.02	2 2 2 2 2 2 2 2
0328 0.15 0.007143 0. 0.330 0.5 0.06 0 0.337 5 0.155 0. 0.155 0. 0.0703 **0.00001 0.000000171 0. 1325 0.05 0.0017145 0. 2754 1 0.0414285 0. 0.2754 1 0.0414285 0. 0.301 0.2 0.02976 0. 0.337 5 0.0233 0. 0.337 5 0.0233 0. 0.410 *50 0.0233 0. 0.0052 Печь НЈ−2500 №2 6 0.301 0.2 0.02976 0. 0.304 0.4 0.00484 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0.00484 0. 0. 0. 0.00484 0. 0. 0. 0.00484 0. 0. 0. 0.00484 0. 0. 0. 0.00484 0. 0. 0. 0.00484 0. 0. 0. 0.00484 0. 0. 0. 0. 0.00484 0. 0. 0. 0.00484 0. 0. 0. 0. 0.00484 0. 0. 0. 0. 0.00484 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0048 0.011 0.012 0.0309 0031 0.0797 0017 0.0000003 0034 0.009 0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.0733 0.0618 0.0159 0.03 0.018 0.0213 0.2455 0.02	2 2 2 2 2 2 2 2
0051 Печь HJ-2500 №1 6 0337 5 0.006 0.0052 Печь HJ-2500 №2 6 0301 0.2 0.02976 0.0052 Печь HJ-2500 №2 6 0301 0.2 0.02976 0.0052 0.0052 0.00584 0.4 0.00484 0.0058	0.012 0.0309 0031 0.0797 0017 0.0000003 0034 0.0009 0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.0618 0.0159 0.03 0.018 0.0213 0.2455 0.02	2 2 2 2 2 2 2
0337 5 0.155 0. 0703 **0.000001 0.000000171 0. 1325 0.05 0.0017145 0. 2754 1 0.0414285 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 0337 5 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0304 0.4 0.4 0.00484 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0.	0031 0.0797 0017 0.0000003 0034 0.0009 0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.0159 0.03 0.018 0.0213 0.2455 0.02	2 2 2 2 2 2
0703 **0.000001 0.000000171 0. 1325 0.05 0.0017145 0. 2754 1 0.0414285 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 0337 5 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0304 0.4 0.4 0.00484 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0.	0017 0.0000003 0034 0.0009 0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.03 0.018 0.0213 0.2455 0.02	2 2 2 2
1325 0.05 0.0017145 0. 2754 1 0.0414285 0. 0051 Печь НЈ-2500 №1 6 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 0337 5 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0410 0.00484 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 04 0.00484 0. 04 0.00484 0. 04 0.00484 0. 052 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.00484 0. 052 0.	0034 0.0009 0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.018 0.0213 0.2455 0.02	2 2 2
0051 Печь HJ-2500 №1 6 2754 1 0.0414285 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 0337 5 0.0233 0. 0410 *50 0.0233 0. 0410 *50 0.0233 0. 0410 0.2 0.02976 0. 0304 0.4 0.00484 0. 0304 0.4 0.00484 0.	0041 0.0213 0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.0213 0.2455 0.02	2 2
0051 Печь HJ-2500 №1 6 0301 0.2 0.02976 0. 0304 0.4 0.00484 0. 0337 5 0.0233 0. 0410 *50 0.0233 0. 0301 0.2 0.02976 0. 0301 0.2 0.02976 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0.	0149 0.0491 0012 0.008 0005 0.0385 0001 0.0385	0.2455	2
0304 0.4 0.00484 0. 0337 5 0.0233 0. 0410 *50 0.0233 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0.	0012 0.008 0005 0.0385 0001 0.0385	0.02	
0052 Печь HJ-2500 №2 6 0337 5 0.0233 0. 0.0253 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0.	0005 0.0385 0001 0.0385		2
0052 Печь HJ-2500 №2 6 0410 *50 0.0233 0. 0301 0.2 0.02976 0. 0304 0.4 0.00484 0.	0.0385	0.0077	
0052 Печь НЈ-2500 №2 6 0301 0.2 0.02976 0. 0304 0.4 0.00484 0.			2
0304 0.4 0.00484 0.	0149 0 0491	0.0008	2
0304 0.4 0.00484 0.		0.2455	2
	0.008	0.02	2
0.0233 0.02	0.0385	0.0077	2
	0.0385	0.0008	2
0053 Печь НЈ-2500 №3 6 0301 0.2 0.02976 0.	0.0491	0.2455	2
	0.008	0.02	2
	0.0385	0.0077	2
	0.0385		2
	0.0166	0.083	2
	0.002	0.0068	2
	0.0318		2
	0.0318		2
0056 дежурная горелка 20.5 0301 0.2	_	_	_
0304 0.4 -	_	_	_
0328 0.15	_	_	_
0337 5	_	_	_
0410	_	_	_
	0.0226	0.113	2
	0.0037		2
	0001 0.0242		2
	0.0242		2
	0.0226		2
	0001 0.0037		2
	0.0242		2
	0.0242		2
	0019 0.0061		2
	0.001		
	0.0127		

	I I	1	0410	*50	0.00773	0.00002	0.0127	0.0003	2	1
0072	Печь подогрева ПП-0,63	6	0301	0.2	0.00335	0.0017	0.0132	0.066	2	
	meis megerpesa im e, ee		0304	0.4	0.000545	0.0001	0.0021	0.0053	2	
			0337	5	0.00735	0.0001	0.0289	0.0058	2	
			0410	*50	0.00735	0.00001	0.0289	0.0006	2	
0073	Печь подогрева ПП-0,63	6	0301	0.2	0.00335	0.0017	0.0132	0.066	2	
00,0	meis megerpesa im e, ee		0304	0.4	0.000545	0.0001	0.0021	0.0053	2	
			0337	5	0.00735	0.0001	0.0289	0.0058	2	
			0410	*50	0.00735	0.00001	0.0289	0.0006	2	
0074	Печь подогрева ПП-0,63	6	0301	0.2	0.00335	0.0017	0.0132	0.066	2	
00,1	meis megerpesa im e, ee		0304	0.4	0.000545	0.0001	0.0021	0.0053	2	
			0337	5	0.00735	0.0001	0.0289	0.0058	2	
			0410	*50	0.00735	0.00001	0.0289	0.0006	2	
075	Печь подогрева ПП-0,63	6	0301	0.2	0.00482	0.0024	0.0163	0.0815	2	
70 75	mean moderpend mi o, os	ĭ	0304	0.4	0.000784	0.0002	0.0027	0.0068	2	
			0337	5	0.00882	0.0002	0.0298	0.006	2	
			0410	*50	0.00882	0.00002	0.0298	0.0006	2	
0076	Печь подогрева ПП-0,63	6	0301	0.2	0.00482	0.0024	0.0163	0.0815	2	
3070	mean moderpend mi o, os	ĭ	0304	0.4	0.000784	0.0002	0.0027	0.0068	2	
			0337	5	0.00882	0.0002	0.0298	0.006	2	
			0410	*50	0.00882	0.00002	0.0298	0.0006	2	
0097	Устьевой нагреватель ППТМ-	6	0301	0.2	0.00245	0.0012	0.0195	0.0975	2	
	0,27		0004	0 4	0.000398	0.0001	0 0000	0.008	^	
			0304	0.4	0.000398	0.0001	0.0032 0.0145	0.008	2	
			0337	5 *50	0.001822	0.00004	0.0145		2	
2100		3	2754		0.16333	0.00004	2.2649	0.0003	2	
0100	резервуар для диз топлива	3	0301	0.2		0.0163	0.0061	2.2649	2	
JIIU					0.00371			0.0305		
			0304	0.4	0.000603	0.0002	0.001	0.0025	2	
			0337	5	0.00773	0.0002	0.0127	0.0025	2	
0104				*50	0.00773	0.00002	0.0127	0.0003	2	
0124			0301	0.2	0.00371	0.0019	0.0061	0.0305		
			0304	0.4	0.000603	0.0002	0.001	0.0025	2	4
			0337	5	0.00773	0.0002	0.0127	0.0025	2	
0150	,		0410	*50	0.00773	0.00002	0.0127	0.0003	2	
)170	Устьевой нагреватель ПП-0, 63	6	0301	0.2	0.00371	0.0019	0.014	0.07	2	
			0304	0.4	0.000603	0.0002	0.0023	0.0058	2	
			0337	5	0.00773	0.0002	0.0291	0.0058	2	
			0410	*50	0.00773	0.00002	0.0291	0.0006	2	
0231			0301	0.2	0.003464	0.0017	0.0047	0.0235	2	
			0304	0.4	0.000563	0.0001	0.0008	0.002	2	
			0337	5	0.00928	0.0002	0.0126	0.0025	2	
			0337	→ I	0.00320	0.0002	0.0120	0.0020	_	1

ı			0410	*50	0.00928	0.00002	0.0126	0.0003	2
0237	резервуар для диз топлива	3	2754	1	0.0109	0.0011	0.1512	0.1512	2
0238	резервуар для диз топлива	3	2754	1	0.0109	0.0011	0.1512	0.1512	2
)478	Печь марки ПТ-1,6 АЖ	6	0301	0.2	0.2201	0.1101	1.8441	9.2205	1
, , , ,	110 12 114 111 17 0 121		0328	0.15	0.0589	0.0393	1.4805	9.87	1
			0337	5	0.0889	0.0018	0.7449	0.149	2
			0410	*50	0.0889	0.0002	0.7449	0.0149	2
0490	Газокомпрессор Waukesha/	6	0301	0.2	0.011812	0.0059	0.0625	0.3125	2
0450	Ariel №1								
			0337	5	0.0618	0.0012	0.3272	0.0654	2
			0415	*50	0.0089	0.00002	0.0471	0.0009	2
0520	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.002214	0.0011	0.0114	0.057	2
			0304	0.4	0.00036	0.0001	0.0018	0.0045	2
			0337	5	0.00173	0.00003	0.0089	0.0018	2
			0410	*50	0.00173	0.000003	0.0089	0.0002	2
0522	Устьевой нагреватель ППТМ- 0,2Г	6	0301	0.2	0.002214	0.0011	0.0182	0.091	2
	,		0304	0.4	0.00036	0.0001	0.003	0.0075	2
			0337	5	0.00173	0.00003	0.0142	0.0028	2
			0410	*50	0.00173	0.000003	0.0142	0.0003	2
0523	Устьевой нагреватель ППТМ- 0,2Г	6	0301	0.2	0.002214	0.0011	0.0182	0.091	2
	,		0304	0.4	0.00036	0.0001	0.003	0.0075	2
			0337	5	0.00173	0.00003	0.0142	0.0028	2
			0410	*50	0.00173	0.000003	0.0142	0.0003	2
0525	Устьевой нагреватель ППТМ- 0,2Г	6	0301	0.2	0.002214	0.0011	0.0182	0.091	2
	0,21		0304	0.4	0.00036	0.0001	0.003	0.0075	2
			0337	5	0.00173	0.00003	0.0142	0.0028	2
			0410	*50	0.00173	0.000003	0.0142	0.0003	2
0644	Газокомпрессор Waukesha/ Ariel №2	6	0301	0.2	0.00173	0.0059	0.0625	0.3125	2
			0337	5	0.0618	0.0012	0.3272	0.0654	2
			0415	*50	0.0089	0.00002	0.0471	0.0009	2
0708	Печь подогрева ПП-0,63	6	0301	0.2	0.00335	0.0017	0.0132	0.066	2
.,	10 12 110401 peza 1111 0,00		0304	0.4	0.000545	0.0001	0.0021	0.0053	2
			0337	5	0.00735	0.0001	0.0289	0.0058	2
			0410	*50	0.00735	0.00001	0.0289	0.0006	2
0709	Устьевой нагреватель ПП-0,	6	0301	0.2	0.00733	0.0019	0.014	0.000	2
0100	63		0301	0.2	0.003/1	0.0019	0.014	0.07	4
	U D		0304	0.4	0.000603	0.0002	0.0023	0.0058	2
					0.0000031	0.0002	0.0023	0.0000	_
			0304	5	0.00773	0.0002	0.0291	0.0058	2

			0410	*50	0.00773	0.00002	0.0291	0.0006	2
0712	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.002214	0.0011	0.0114	0.057	2
	, ==		0304	0.4	0.00036	0.0001	0.0018	0.0045	2
			0337	5	0.00173	0.00003	0.0089	0.0018	2
			0410	*50	0.00173	0.000003	0.0089	0.0002	2
0767	Печь подогрева ПП-0,63 (Китай)	6	0301	0.2	0.00934	0.0047	0.0243	0.1215	2
			0304	0.4	0.001517	0.0004	0.0039	0.0098	2
			0337	5	0.00796	0.0002	0.0207	0.0041	2
			0410	*50	0.00796	0.00002	0.0207	0.0004	2
0768	Печь подогрева ПП-0,63 (Китай)	6	0301	0.2	0.00934	0.0047	0.0243	0.1215	2
	,		0304	0.4	0.001517	0.0004	0.0039	0.0098	2
			0337	5	0.00796	0.0002	0.0207	0.0041	2
			0410	*50	0.00796	0.00002	0.0207	0.0004	2
0816	Резервуар 75 м3		0415	*50	0.33508	0.0007	56.7631	1.1353	2
0817	Резервуар 75 м3		0415	*50	0.33508	0.0007	56.7631	1.1353	2
0818	Резервуар 75 м3		0415	*50	0.33508	0.0007	56.7631	1.1353	2
0819	Резервуар 75 м3		0415	*50	0.33508	0.0007	56.7631	1.1353	2
0900	Дренажная емкость 12м3		0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
	1 12		0415	*50	0.01338	0.00003	2.2666	0.0453	2
			0416	*30	0.00495	0.00002	0.8385	0.028	2
			0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
			0616	0.2	0.0000203	0.00001	0.0034	0.017	2
			0621	0.6	0.0000406	0.00001	0.0069	0.0115	
0901	Дренажная емкость 12м3		0333	0.008	0.00001108	0.0001	0.0019	0.2375	2 2
	1 12		0415	*50	0.01338	0.00003	2.2666	0.0453	2
			0416	*30	0.00495	0.00002	0.8385	0.028	2
			0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
			0616	0.2	0.0000203	0.00001	0.0034	0.017	2
			0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0902	Дренажная емкость 12м3		0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
			0415	*50	0.01338	0.00003	2.2666	0.0453	2
			0416	*30	0.00495	0.00002	0.8385	0.028	2
			0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
			0616	0.2	0.0000203	0.00001	0.0034	0.017	2
			0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0903	Дренажная емкость 12м3		0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
			0415	*50	0.01338	0.00003	2.2666	0.0453	2
			0416	*30	0.00495	0.00002	0.8385	0.028	2
			0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
			0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		•		71	·	·	·		

		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0904	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0905	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0906	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0907	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0908	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0909	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0910	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
	l l	0621	0.6	0.0000406	0.00001	0.0069	0.0115	2

0911	Дренажная емкость 12м3		0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0912	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0913	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0914	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0915	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0916	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0917	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0918	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
			73					

		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0919	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
	1	0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0920	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0921	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0922	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0923	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0924	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0925	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		•	74	·	·	·	·	·

		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
926	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
927	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
928	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
929	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
930	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
931	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
932	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2

	1	0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0933	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0934	Дренажная емкость 10 м3	0333	0.008	0.0001108	0.0014	0.0188	2.35	2
		0415	*50	0.1338	0.0003	22.666	0.4533	2
		0416	*30	0.0495	0.0002	8.3854	0.2795	2
		0602	0.3	0.000646	0.0002	0.1094	0.3647	2
		0616	0.2	0.000203	0.0001	0.0344	0.172	2
		0621	0.6	0.000406	0.0001	0.0688	0.1147	2
0935	Дренажная емкость 10 м3	0333	0.008	-	-	-	-	_
		0415	*50	-	-	-	-	_
		0416	*30	-	-	-	-	_
		0602	0.3	-	-	-	-	_
		0616	0.2	_	_	_	-	_
		0621	0.6	_	_	_	_	_
0936	Дренажная емкость 20 м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0937	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0938	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0939	Дренажная емкость 12м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
			76					

	1	1	100101	0 0 1		0 00001	0 0004	0 015	0
			0616	0.2	0.0000203	0.00001	0.0034	0.017	2 2
0.40	10.0			0.6	0.0000406	0.00001		0.0115	
0940	Дренажная емкость 12м3		0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
			0415	*50	0.01338	0.00003	2.2666	0.0453	
			0416	*30	0.00495	0.00002	0.8385	0.028	2
			0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
			0616	0.2	0.0000203	0.00001	0.0034	0.017	2
			0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
0941	Дренажная емкость 12м3		0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
			0415	*50	0.01338	0.00003	2.2666	0.0453	2
			0416	*30	0.00495	0.00002	0.8385	0.028	2
			0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
			0616	0.2	0.0000203	0.00001	0.0034	0.017	2
			0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
1109	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00245	0.0012	0.0117	0.0585	2
			0304	0.4	0.000398	0.0001	0.0019	0.0048	2
			0337	5	0.001822	0.00004	0.0087	0.0017	2
			0410	*50	0.001822	0.000004	0.0087	0.0002	2
1117	Устьевой нагреватель ПП-0, 63		0301	0.2	0.00371	0.0019	0.0061	0.0305	2
			0304	0.4	0.000603	0.0002	0.001	0.0025	2
			0337	5	0.00773	0.0002	0.0127	0.0025	2
			0410	*50	0.00773	0.00002	0.0127	0.0003	2
1122	Устьевой нагреватель ППТМ- 0,2Г	6	0301	0.2	0.00366	0.0018	0.0256	0.128	2
	0,21		0304	0.4	0.000595	0.0001	0.0042	0.0105	2
			0337	5	0.002225	0.00004	0.0156	0.0031	2
			0410	*50	0.002225	0.000004	0.0156	0.0003	2
1123	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00245	0.0012	0.0117	0.0585	2
	0,21		0304	0.4	0.000398	0.0001	0.0019	0.0048	2
			0337	5	0.001822	0.00004	0.0087	0.0017	2
			0410	*50	0.001822	0.000004	0.0087	0.0002	2
1124	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00245	0.0012	0.0117	0.0585	2
	·		0304	0.4	0.000398	0.0001	0.0019	0.0048	2
			0337	5	0.001822	0.00004	0.0087	0.0017	2
			0410	*50	0.001822	0.000004	0.0087	0.0002	2
1125	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00366	0.0018	0.0139	0.0695	2
	- ,		0304	0.4	0.000595	0.0001	0.0023	0.0058	2
			0337	5	0.002225	0.00004	0.0084	0.0017	2

			0410	*50	0.002225	0.000004	0.0084	0.0002	2
1126	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00366	0.0018	0.0139	0.0695	2
			0304	0.4	0.000595	0.0001	0.0023	0.0058	2
			0337	5	0.002225	0.00004	0.0084	0.0017	2
			0410	*50	0.002225	0.000004	0.0084	0.0002	2
1127	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00245	0.0012	0.0117	0.0585	2
			0304	0.4	0.000398	0.0001	0.0019	0.0048	2
			0337	5	0.001822	0.00004	0.0087	0.0017	2
			0410	*50	0.001822	0.000004	0.0087	0.0002	2
1128	Устьевой нагреватель ППТМ- 0,2Г	6	0301	0.2	0.00245	0.0012	0.0195	0.0975	2
			0304	0.4	0.000398	0.0001	0.0032	0.008	2
			0337	5	0.001822	0.00004	0.0145	0.0029	2
			0410	*50	0.001822	0.000004	0.0145	0.0003	2
1167	Устьевой нагреватель ППТМ- 0,2Г	6	0301	0.2	0.00245	0.0012	0.0195	0.0975	2
			0304	0.4	0.000398	0.0001	0.0032	0.008	2
			0337	5	0.001822	0.00004	0.0145	0.0029	2
			0410	*50	0.001822	0.000004	0.0145	0.0003	2
1221	Устьевой нагреватель ПП-0, 63		0301	0.2	0.00371	0.0019	0.0061	0.0305	2
			0304	0.4	0.000603	0.0002	0.001	0.0025	2
			0337	5	0.00773	0.0002	0.0127	0.0025	2
			0410	*50	0.00773	0.00002	0.0127	0.0003	2
1233	Устьевой нагреватель ПП-0, 63		0301	0.2	0.00371	0.0019	0.0061	0.0305	2
			0304	0.4	0.000603	0.0002	0.001	0.0025	2
			0337	5	0.00773	0.0002	0.0127	0.0025	2
			0410	*50	0.00773	0.00002	0.0127	0.0003	2
1238	Печь подогрева ПП-0,63		0301	0.2	0.00371	0.0019	0.0061	0.0305	2
			0304	0.4	0.000603	0.0002	0.001	0.0025	2
			0337	5	0.00773	0.0002	0.0127	0.0025	2
			0410	*50	0.00773	0.00002	0.0127	0.0003	2
1243	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.002214	0.0011	0.0114	0.057	2
			0304	0.4	0.00036	0.0001	0.0018	0.0045	2
			0337	5	0.00173	0.00003	0.0089	0.0018	2
			0410	*50	0.00173	0.000003	0.0089	0.0002	2
1249	Печь подогрева ПП-0,63		0301	0.2	0.00335	0.0017	0.0058	0.029	2
			0304	0.4	0.000545	0.0001	0.0009	0.0023	2
			0337	5	0.00735	0.0001	0.0127	0.0025	2

			0410	*50	0.00735	0.00001	0.0127	0.0003	2
1250	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.002214	0.0011	0.0114	0.057	2
			0304	0.4	0.00036	0.0001	0.0018	0.0045	2
			0337	5	0.00173	0.00003	0.0089	0.0018	2
			0410	*50	0.00173	0.000003	0.0089	0.0002	2
1251	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.002214	0.0011	0.0114	0.057	2
			0304	0.4	0.00036	0.0001	0.0018	0.0045	2
			0337	5	0.00173	0.00003	0.0089	0.0018	2
			0410	*50	0.00173	0.000003	0.0089	0.0002	2
1252	Печь подогрева ПП-0,63	6	0301	0.2	0.00335	0.0017	0.0132	0.066	2
1202	me is negerpesa im e, es	Ĭ	0304	0.4	0.000545	0.0001	0.0021	0.0053	2
			0337	5	0.00735	0.0001	0.0289	0.0058	2
			0410	*50	0.00735	0.00001	0.0289	0.0006	2
1253	Печь подогрева ПП-0,63		0301	0.2	0.00335	0.0017	0.0058	0.029	2
1233	I Head Hodolbera III 0,00		0301	0.4	0.000545	0.0001	0.0009	0.0023	2
			0304	5	0.00735	0.0001	0.0127	0.0025	2
			0410	*50	0.00735	0.00001	0.0127	0.0023	2
L254	Печь подогрева ПП-0,63		0301	0.2	0.00735	0.0017	0.0058	0.029	2
.234	печь подотрева пп-о, 05		0301	0.4	0.000545	0.0001	0.0009	0.023	2
			0304	5	0.00735	0.0001	0.0127	0.0025	2
			0337	*50	0.00735	0.00001	0.0127	0.0023	2
L255	Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00733	0.0001	0.0114	0.0003	2
	0,21		0304	0.4	0.00036	0.0001	0.0018	0.0045	2
			0304	5	0.00036	0.00001	0.0018	0.0045	2
			0410	*50		0.00003	0.0089	0.0018	2
256	П ПП 0 63				0.00173				2
L256	Печь подогрева ПП-0,63		0301	0.2	0.00335	0.0017	0.0058	0.029 0.0023	2
			0304	0.4	0.000545				2
			0410	5 *50	0.00735	0.0001	0.0127 0.0127	0.0025	2
0.57	H H 14 - 0 - 0 0 10 10 10 10 10 10 10 10 10 10 10 10		' '		0.00735			0.0003	2
L257	Печь НЈ-2500 №4		0301	0.2	0.02976	0.0149	0.0108	0.054	2
			0304	0.4	0.00484	0.0012	0.0018	0.0045	2
			0337	5	0.0233	0.0005	0.0084	0.0017	
1000		6	0410	*50	0.0233	0.0001	0.0084	0.0002	2
1260	Печь ПП-0,63 №6	6	0301	0.2	0.00491	0.0025	0.0165	0.0825	2
			0304	0.4	0.000798	0.0002	0.0027	0.0068	2
			0337	5	0.00944	0.0002	0.0318	0.0064	2
0.63			0410	*50	0.00944	0.00002	0.0318	0.0006	2
1261	Печь ПП-0,63 №7	6	0301	0.2	0.00491	0.0025	0.0165	0.0825	2
			0304	0.4	0.000798	0.0002	0.0027 0.0318	0.0068 0.0064	2 2
									_

Устьевой нагреватель ППТМ- Устьевой нагреватель ППТМ- О,2Г Устьевой нагреватель ППТМ- О,2Г	6	0301 0304 0337 0410 0301 0304 0337 0410 0301	0.2 0.4 5 *50 0.2 0.4 5 *50 0.2	0.00245 0.000398 0.001822 0.001822 0.00245 0.000398 0.001822 0.001822 0.002214	0.0012 0.0001 0.00004 0.00004 0.0012 0.0001 0.00004 0.00004 0.0011	0.0117 0.0019 0.0087 0.0087 0.0117 0.0019 0.0087 0.0087 0.0087	0.0585 0.0048 0.0017 0.0002 0.0585 0.0048 0.0017 0.0002 0.091	2 2 2 2 2 2 2 2
Устьевой нагреватель ППТМ- 0,2Г Устьевой нагреватель ППТМ- 0,2Г	6	0337 0410 0301 0304 0337 0410 0301	5 *50 0.2 0.4 5 *50 0.2	0.001822 0.001822 0.00245 0.000398 0.001822 0.001822 0.002214	0.00004 0.000004 0.0012 0.0001 0.00004 0.000004	0.0087 0.0087 0.0117 0.0019 0.0087 0.0087	0.0017 0.0002 0.0585 0.0048 0.0017 0.0002	2 2 2 2 2
устьевой нагреватель ППТМ-),2Г	6	0337 0410 0301 0304 0337 0410 0301	5 *50 0.2 0.4 5 *50 0.2	0.001822 0.001822 0.00245 0.000398 0.001822 0.001822 0.002214	0.00004 0.000004 0.0012 0.0001 0.00004 0.000004	0.0087 0.0087 0.0117 0.0019 0.0087 0.0087	0.0017 0.0002 0.0585 0.0048 0.0017 0.0002	2 2 2 2 2
устьевой нагреватель ППТМ-),2Г	6	0410 0301 0304 0337 0410 0301	0.2 0.4 5 *50 0.2	0.001822 0.00245 0.000398 0.001822 0.001822 0.002214	0.000004 0.0012 0.0001 0.00004 0.000004	0.0087 0.0117 0.0019 0.0087 0.0087	0.0002 0.0585 0.0048 0.0017 0.0002	2 2 2 2
устьевой нагреватель ППТМ-),2Г	6	0304 0337 0410 0301	0.4 5 *50 0.2	0.00245 0.000398 0.001822 0.001822 0.002214	0.0012 0.0001 0.00004 0.000004	0.0117 0.0019 0.0087 0.0087	0.0585 0.0048 0.0017 0.0002	2 2 2
Устьевой нагреватель ППТМ-),2Г Устьевой нагреватель ППТМ-	6	0337 0410 0301	5 *50 0.2	0.001822 0.001822 0.002214	0.00004 0.000004	0.0087 0.0087	0.0017 0.0002	2
7стьевой нагреватель ППТМ-	6	0337 0410 0301	5 *50 0.2	0.001822 0.001822 0.002214	0.00004 0.000004	0.0087 0.0087	0.0017 0.0002	2
7стьевой нагреватель ППТМ-	6	0301	0.2	0.001822	0.000004			2
7стьевой нагреватель ППТМ-	6	0301	0.2	0.002214				
· Истьевой нагреватель ППТМ-		I I	0.4				0.091	2
		0337		0.00036	0.0001	0.003	0.0075	2
			5	0.00173	0.00003	0.0142	0.0028	2
		0410	*50	0.00173	0.000003	0.0142	0.0003	2
J, ∠1.	6	0301	0.2	0.00245	0.0012	0.0195	0.0975	2
·		0304	0.4	0.000398	0.0001	0.0032	0.008	2
		0337	5	0.001822	0.00004	0.0145	0.0029	2
		0410	*50	0.001822	0.000004	0.0145	0.0003	2
/стьевой нагреватель ППТМ-	6	0301	0.2	0.00366	0.0018	0.0256	0.128	2
·		0304	0.4	0.000595	0.0001	0.0042	0.0105	2
		0337	5		0.00004	0.0156	0.0031	2
		0410	*50	0.002225	0.000004	0.0156	0.0003	2
стьевой нагреватель ППТМ- ,2Г	6	0301	0.2	0.00245	0.0012	0.0195	0.0975	2
		0304	0.4	0.000398	0.0001	0.0032	0.008	2
		0337	5	0.001822	0.00004	0.0145	0.0029	2
		0410	*50	0.001822	0.000004	0.0145	0.0003	2
Іечь подогрева ПП-0,63 №1		0301	0.2	0.00718	0.0036	0.0078	0.039	2
		0304	0.4	0.001167	0.0003	0.0013	0.0033	2
		0337	5	0.00773				2
		0410	*50	0.00773	0.00002	0.0084	0.0002	2
Іечь подогрева ПП-0,63 №2				0.00718		0.0078	0.039	2
						0.0013	0.0033	2
								2
		0410	*50					2
Устьевой нагреватель ППТМ- 0,2Г		0301	0.2	0.00245	0.0012	0.0117	0.0585	2
		0304	0.4	0.000398	0.0001	0.0019	0.0048	2
		0337	5	0.001822	0.00004	0.0087	0.0017	2
() () () () () () () () () ()	7.2Г Стьевой нагреватель ППТМ- 7.2Г Стьевой нагреватель ППТМ- 7.2Г ечь подогрева ПП-0,63 №1 ечь подогрева ПП-0,63 №2	7.2Г Стьевой нагреватель ППТМ- 6 Стьевой нагреватель ППТМ- 6 ,2Г ечь подогрева ПП-0,63 №1 ечь подогрева ПП-0,63 №2	,2Г 0304 0337 0410 0301	,2Г 0304 0.4 0337 5 0410 *50 0301 0.2	,2T	,2Г	,2Г	,2Г

1338	Устьевой нагреватель ППТМ-	0410	*50 0.2	0.001822 0.00245	0.000004	0.0087 0.0117	0.0002 0.0585	2 2
	0,2F	0304	0.4	0.000398 0.001822	0.0001	0.0019 0.0087	0.0048	2 2
		0410	*50	0.001822	0.00004	0.0087	0.0002	2
1339	Устьевой нагреватель ППТМ- 0,2Г	0301	0.2	0.00245	0.0012	0.0117	0.0585	2
		0304	0.4	0.000398	0.0001	0.0019	0.0048	2
		0337	5	0.001822	0.00004	0.0087	0.0017	2
		0410	*50	0.001822	0.000004	0.0087	0.0002	2
1340	Устьевой нагреватель ППТМ- 0,2Г	0301	0.2	0.00245	0.0012	0.0117	0.0585	2
		0304	0.4	0.000398	0.0001	0.0019	0.0048	2
		0337	5	0.001822	0.00004	0.0087	0.0017	2
		0410	*50	0.001822	0.000004	0.0087	0.0002	2
1401	Газокомпрессор Waukesha/ Ariel №4	0301	0.2	0.011812	0.0059	2.001	10.005	2
		0337	5	0.0618	0.0012	10.469	2.0938	2
		0415	*50	0.0089	0.00002	1.5077	0.0302	2
1403	РВС №2 3000 м3 (для нефти)	0415	*50	2.068	0.0041	350.3228	7.0065	2
1404	РВС №3 3000 м3 (для нефти)	0415	*50	2.068	0.0041	350.3228	7.0065	2
1405	PBC №1 3000 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
	(отстаивание пластовой воды)							
	пластовой воды/	0415	*50	0.2677	0.0005	45.3488	0.907	2
		0415	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.001233	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1406	РВС №4 3000 м3 (для нефти)	0415	*50	2.068	0.0041	350.3228	7.0065	2
1407	РВС №5 3000 м3 (для нефти)	0415	*50	6.204	0.0124	1050.9685	21.0194	1
1408	РВС №6 3000 м3 (для нефти)	0415	*50	6.204	0.0124	1050.9685	21.0194	1
1409	РВС 400 м3 пластовая вода	0333	0.008	0.000625	0.0078	0.1059	13.2375	2
		0415	*50	0.755	0.0015	127.8983	2.558	2
		0416	*30	0.279	0.0009	47.2631	1.5754	2
		0602	0.3	0.00365	0.0012	0.6183	2.061	2
		0616	0.2	0.001146	0.0006	0.1941	0.9705	2
		0621	0.6	0.002292	0.0004	0.3883	0.6472	2
1410	РВС 1000 м3 пластовая вода	0333	0.008	0.000625	0.0078	0.1059	13.2375	2
		0415	*50	0.755	0.0015	127.8983	2.558	2
		0416	*30	0.279	0.0009	47.2631	1.5754	2
		0602	0.3	0.00365	0.0012	0.6183	2.061	2

		0616	0.2	0.001146	0.0006	0.1941	0.9705	2
		0621	0.6	0.002292	0.0004	0.3883	0.6472	2
11	Сливо-наливная эстакада	0415	*50	10.0848	0.0202	1708.3828	34.1677	1
112	100 м3 дренажная емкость (для приема нефти)	0333	0.008	0.000625	0.0078	0.1059	13.2375	2
		0415	*50	0.755	0.0015	127.8983	2.558	2
		0416	*30	0.279	0.0009	47.2631	1.5754	2
		0602	0.3	0.00365	0.0012	0.6183	2.061	2
		0616	0.2	0.001146	0.0006	0.1941	0.9705	2
		0621	0.6	0.002292	0.0004	0.3883	0.6472	2
413	12 м3 дренажная емкость (для нефти)	0333	0.008	0.0000665	0.0008	0.0113	1.4125	2
		0415	*50	0.0803	0.0002	13.603	0.2721	2
		0416	*30	0.0297	0.0001	5.0312	0.1677	2
		0602	0.3	0.000388	0.0001	0.0657	0.219	2
		0616	0.2	0.000122	0.0001	0.0207	0.1035	2
		0621	0.6	0.000244	0.00004	0.0413	0.0688	2
414	PBC-2000M3	0415	*50	1.861	0.0037	315.2567	6.3051	2
419	Печь подогрева ПП-0,63 №3	0301	0.2	0.00718	0.0036	0.0078	0.039	2
		0304	0.4	0.001167	0.0003	0.0013	0.0033	2
		0337	5	0.00773	0.0002	0.0084	0.0017	2
		0410	*50	0.00773	0.00002	0.0084	0.0002	2
420	РВС-2000м3	0415	*50	1.861	0.0037	315.2567	6.3051	2
1421	Дренажная емкость 63 м3	0333	0.008	0.0001662	0.0021	0.0282	3.525	2
		0415	*50	0.2007	0.0004	33.9989	0.68	2
		0416	*30	0.0742	0.0002	12.5696	0.419	2
		0602	0.3	0.00097	0.0003	0.1643	0.5477	2
		0616	0.2	0.000305	0.0002	0.0517	0.2585	2
		0621	0.6	0.00061	0.0001	0.1033	0.1722	2
422	ДЭС 400 кВт	0301	0.2	0.341333333	0.1707	0.0225	0.1125	2
		0304	0.4	0.055466667	0.0139	0.0037	0.0093	2
		0328	0.15	0.015873333	0.0106	0.0031	0.0207	2
		0330	0.5	0.133333333	0.0267	0.0088	0.0176	2
		0337	5	0.34444444	0.0069	0.0228	0.0046	2
		0703	**0.000001	0.0000038	0.0038	0.0000001	0.01	2
		1325	0.05	0.00381	0.0076	0.0003	0.006	2
		2754	1	0.092063333	0.0092	0.0061	0.0061	2
423	Дренажная емкость 8 м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2

1424	Дизельгенератор AKSA 200кВт	0301	0.2	0.170666667	0.0853	0.0267	0.1335	2
		0304	0.4	0.027733333	0.0069	0.0043	0.0108	2
		0328	0.15	0.007936667	0.0053	0.0037	0.0247	2
		0330	0.5	0.066666667	0.0133	0.0104	0.0208	2
		0337	5	0.172222222	0.0034	0.0269	0.0054	2
		0703	**0.000001	0.00000019	0.0019	0.0000001	0.01	2
		1325	0.05	0.001905	0.0038	0.0003	0.006	2
		2754	1	0.046031667	0.0046	0.0072	0.0072	2
1425	Дренажная емкость 8 м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
1426	РВС-1000 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1427	РВС-1000 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1428	РВС-700 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1429	РВС-200 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1430	РВС-200 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
			83					

		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1431	Печь подогрева ПП-0,63	0301	0.2	0.00371	0.0019	0.0061	0.0305	2
	_	0304	0.4	0.000603	0.0002	0.001	0.0025	2
		0337	5	0.00773	0.0002	0.0127	0.0025	2
		0410	*50	0.00773	0.00002	0.0127	0.0003	2
1432	РВС - 300 м3 (отстаивание	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
	пластовой воды)							
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1433	РВС - 300 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1434	РВС - 300 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1435	РВС - 300 м3	0333	0.008	0.0002216	0.0028	0.0375	4.6875	2
		0415	*50	0.2677	0.0005	45.3488	0.907	2
		0416	*30	0.099	0.0003	16.7708	0.559	2
		0602	0.3	0.001293	0.0004	0.219	0.73	2
		0616	0.2	0.000406	0.0002	0.0688	0.344	2
		0621	0.6	0.000813	0.0001	0.1377	0.2295	2
1436	Дренажная емкость 8 м3	0333	0.008	0.00001108	0.0001	0.0019	0.2375	2
		0415	*50	0.01338	0.00003	2.2666	0.0453	2
		0416	*30	0.00495	0.00002	0.8385	0.028	2
		0602	0.3	0.0000646	0.00002	0.0109	0.0363	2
		0616	0.2	0.0000203	0.00001	0.0034	0.017	2
		0621	0.6	0.0000406	0.00001	0.0069	0.0115	2
1438	Печь подогрева ПП-0,63	0301	0.2	0.00718	0.0036	0.0078	0.039	2
	- '	0304	0.4	0.001167	0.0003	0.0013	0.0033	2
		0337	5	0.00773	0.0002	0.0084	0.0017	2
		0410	*50	0.00773	0.00002	0.0084	0.0002	2
1439	Печь ЈМ-СН-Ј400-Q15.0	0301	0.2	0.01069	0.0053	0.0096	0.048	2
		0304	0.4	0.001737	0.0004	0.0016	0.004	2
	ı	1 1 1 1 1	84		1	1	1	

		0337	5	0.00943	0.0002	0.0084	0.0017	2
		0410	*50	0.00943	0.00002	0.0084	0.0002	2
40	Печь JM-CH-J400-Q15.0	0301	0.2	0.01069	0.0053	0.0096	0.048	2
		0304	0.4	0.001737	0.0004	0.0016	0.004	2
		0337	5	0.00943	0.0002	0.0084	0.0017	2
		0410	*50	0.00943	0.00002	0.0084	0.0002	2
441	Печь HJ-200-H/10-Q	0301	0.2	0.00181	0.0009	0.0039	0.0195	2
		0304	0.4	0.0002943	0.0001	0.0006	0.0015	2
		0337	5	0.00388	0.0001	0.0084	0.0017	2
		0410	*50	0.00388	0.00001	0.0084	0.0002	2
442	Печь HJ-200-H/10-Q	0301	0.2	0.00181	0.0009	0.0039	0.0195	2
		0304	0.4	0.0002943	0.0001	0.0006	0.0015	2
		0337	5	0.00388	0.0001	0.0084	0.0017	2
		0410	*50	0.00388	0.00001	0.0084	0.0002	2
445	Устьевой нагреватель ППТМ- 0,2Г	0301	0.2	0.002214	0.0011	0.0114	0.057	2
		0304	0.4	0.00036	0.0001	0.0018	0.0045	2
		0337	5	0.00173	0.00003	0.0089	0.0018	2
		0410	*50	0.00173	0.000003	0.0089	0.0002	2
446	Печь подогрева ПП-0,63 №4	0301	0.2	0.00718	0.0036	0.0078	0.039	2
	-	0304	0.4	0.001167	0.0003	0.0013	0.0033	2
		0337	5	0.00773	0.0002	0.0084	0.0017	2
		0410	*50	0.00773	0.00002	0.0084	0.0002	2
447	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
448	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
449	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
450	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2

1451	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1452	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
	1110 /	0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1453	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1454	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
	1110 /	0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1455	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	-
1456	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1457	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1458	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
	- ,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1459	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
	1 /	0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
			86						

		5 l	0.0757	0.0015	12.8237	2.5647	2
							2
Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
гпу)							
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015	12.8237	2.5647	2
	0410	*50	0.01663	0.00003	2.8172	0.0563	2
Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015	12.8237	2.5647	2
	0410	*50	0.01663	0.00003	2.8172	0.0563	2
Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015	12.8237	2.5647	2
	0410	*50	0.01663	0.00003	2.8172	0.0563	2
Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015	12.8237	2.5647	2
	0410	*50	0.01663	0.00003		0.0563	2
Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015	12.8237	2.5647	2
	0410	*50	0.01663	0.00003	2.8172	0.0563	2
Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015	12.8237	2.5647	2
	0410	*50	0.01663	0.00003	2.8172	0.0563	2
Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015		2.5647	2
	0410	*50	0.01663	0.00003	2.8172	0.0563	2
Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
	0337	5	0.0757	0.0015	12.8237	2.5647	2
1	1 10410	*50	0.01663	0.00003	2.8172	0.0563	2
	0410	30	0.01000	0.00000	2.01/2	0.0000	_
	Газопоршневая установка (ГПУ) Газопоршневая установка (ГПУ)	ГПУ) Газопоршневая установка (ГПУ) Озона Озона Газопоршневая установка (ГПУ) Озона Газопоршневая установка (ГПУ) Озона Оз	Тазопоршневая установка (РПУ) Газопоршневая установка (РПУ) Озоча О.4 Озота Озота О.2 Газопоршневая установка (РПУ) Озоча О.4 Озота Оз	Газопоршневая установка (ГПУ) 0410 *50 0.01663 Озо1 0.2 0.02224 ГПУ) 0304 0.4 0.003614 Озот 0410 *50 0.01663 Газопоршневая установка (ГПУ) 0304 0.4 0.003614 Озот 0301 0.2 0.02224 ГПУ) 0304 0.4 0.003614 Озот 0.000 *50 0.01663 Газопоршневая установка (ГПУ) 0304 0.4 0.003614 Озот 0.000 0.000 0.000 Газопоршневая установка (ГПУ) 0301 0.2 0.02224 ППУ) 0304 0.4 0.003614 Озот 0.000 0.000 0.000 Газопоршневая установка (ГПУ) 0304 0.4 0.003614 Озот 0.000 0.000 0.000 Газопоршневая установка (ГПУ) 0304 0.4 0.003614 Озот 0.000 0.000 0.000 Озот 0.000 0.000 0.000 Озот 0.000 0.000	Пру (Стру) (Стр	Разопоршневая установка (Пазопоршневая установка (0410

	ГПУ)					1		
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1469	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	ГПУ)							
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1470	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	ГПУ)							
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1471	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	ГПУ)							
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1472	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	ГПУ)							
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1473	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	ГПУ)							
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1474	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	гпу)							
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1475	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	ГПУ)							
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1476	Газопоршневая установка (0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	гпу)							
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
	1		88	'	1	ı	I	

1477	Газопоршневая установка (0410	*50 0.2	0.01663 0.02224	0.00003	2.8172 3.7675	0.0563 18.8375	2 1
	гпу)			0.02221	0.0111	3.7070	10.0070	-
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1478	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1479	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1480	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1481	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1482	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1483	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1484	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1485	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	·		89	'	'			1

			0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1486	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	·	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1487	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1488	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	'	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1489	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1490	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	·	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1491	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	,	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1492	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
	·	0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
1493	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2
		0337	5	0.0757	0.0015	12.8237	2.5647	2
		0410	*50	0.01663	0.00003	2.8172	0.0563	2
	•		90	•	'	·	•	

1494	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1495	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1496	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1497	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1498	Газопоршневая установка (ГПУ)	0301	0.2	0.02224	0.0111	3.7675	18.8375	1	
		0304	0.4	0.003614	0.0009	0.6122	1.5305	2	
		0337	5	0.0757	0.0015	12.8237	2.5647	2	
		0410	*50	0.01663	0.00003	2.8172	0.0563	2	
1500	РВС-3000м3	0415	*50	3.102	0.0062	525.4842	10.5097	2	1
1501	РВС-3000м3	0415	*50	3.102	0.0062	525.4842	10.5097	2	
3001	УПА-60А 60/80	0301	0.2	0.0583	0.0292	9.8761	49.3805	1	
		0304	0.4	0.0758	0.019	12.8407	32.1018	1	
		0328	0.15	0.00972	0.0065	4.9398	32.932	2	
		0330	0.5	0.01944	0.0039	3.2932	6.5864	2	
		0337	5	0.0486	0.001	8.2329	1.6466	2	
		1301	0.03	0.002333	0.0078	0.3952	13.1733	2	
		1325	0.05	0.002333	0.0047	0.3952	7.904	2	
		2754	1	0.02333	0.0023	3.9521	3.9521	2	
3002	АПРС-40 (Урал-4320)	0301	0.2	0.0475	0.0238	8.0466	40.233	1	
		0304	0.4	0.0618	0.0155	10.469	26.1725	1	
		0328	0.15	0.00792	0.0053	4.025	26.8333	2	
		0330	0.5	0.01583	0.0032	2.6816	5.3632	2	
		0337	5	0.0396	0.0008	6.7083	1.3417	2	
		1301	0.03	0.0019	0.0063	0.3219	10.73	2	
		1325	0.05	0.0019	0.0038	0.3219	6.438	2	
		2754	1	0.019	0.0019	3.2186	3.2186	2	
			91						

I 3003 I	АСЦ-320	0301	0.2	0.0763	0.0382	12.9254	64.627	1 1
		0304	0.4	0.0991	0.0248	16.7877	41.9693	1
		0328	0.15	0.0127	0.0085	6.4542	43.028	2
		0330	0.5	0.0254	0.0051	4.3028	8.6056	2
		0337	5	0.0635	0.0013	10.757	2.1514	2
		1301	0.03	0.00305	0.0102	0.5167	17.2233	1
		1325	0.05	0.00305	0.0061	0.5167	10.334	2
		2754	1	0.0305	0.0031	5.1668	5.1668	2
3004	АСЦ-320	0301	0.2	0.0763	0.0382	12.9254	64.627	1
	· ·	0304	0.4	0.0991	0.0248	16.7877	41.9693	1
		0328	0.15	0.0127	0.0085	6.4542	43.028	2
		0330	0.5	0.0254	0.0051	4.3028	8.6056	2
		0337	5	0.0635	0.0013	10.757	2.1514	2
		1301	0.03	0.00305	0.0102	0.5167	17.2233	1
		1325	0.05	0.00305	0.0061	0.5167	10.334	2
		2754	1	0.0305	0.0031	5.1668	5.1668	2
3005	ППУА	0301	0.2	0.00427	0.0021	0.7233	3.6165	2
		0304	0.4	0.000694	0.0002	0.1176	0.294	2
		0328	0.15	0.001908	0.0013	0.9697	6.4647	2
		0330	0.5	0.0449	0.009	7.6061	15.2122	2
		0337	5	0.106	0.0021	17.9566	3.5913	2
3006	ППУА	0301	0.2	0.00427	0.0021	0.7233	3.6165	2
		0304	0.4	0.000694	0.0002	0.1176	0.294	2
		0328	0.15	0.001908	0.0013	0.9697	6.4647	2
		0330	0.5	0.0449	0.009	7.6061	15.2122	2
		0337	5	0.106	0.0021	17.9566	3.5913	2
3007	ППУА	0301	0.2	0.00427	0.0021	0.7233	3.6165	2
		0304	0.4	0.000694	0.0002	0.1176	0.294	2
		0328	0.15	0.001908	0.0013	0.9697	6.4647	2
		0330	0.5	0.0449	0.009	7.6061	15.2122	2
		0337	5	0.106	0.0021	17.9566	3.5913	2
3008	ППУА	0301	0.2	0.00427	0.0021	0.7233	3.6165	2
		0304	0.4	0.000694	0.0002	0.1176	0.294	2
		0328	0.15	0.001908	0.0013	0.9697	6.4647	2
		0330	0.5	0.0449	0.009	7.6061	15.2122	2
		0337	5	0.106	0.0021	17.9566	3.5913	2
3009	ППУА	0301	0.2	0.00427	0.0021	0.7233	3.6165	2
		0304	0.4	0.000694	0.0002	0.1176	0.294	2
		0328	0.15	0.001908	0.0013	0.9697	6.4647	2
		0330	0.5	0.0449	0.009	7.6061	15.2122	2
		0337	5	0.106	0.0021	17.9566	3.5913	2
3010	АДПМ	0301	0.2	0.038	0.019	6.4373	32.1865	1
		0304	0.4	0.0494	0.0124	8.3684	20.921	1
			0.0					

		0328	0.15	0.00633	0.0042	3.2169	21.446	2
		0330	0.5	0.01267	0.0025	2.1463	4.2926	2
		0337	5	0.03167	0.0006	5.365	1.073	2
		1301	0.03	0.00152	0.0051	0.2575	8.5833	2
		1325	0.05	0.00152	0.003	0.2575	5.15	2
		2754	1	0.0152	0.0015	2.5749	2.5749	2
3011	АДПМ	0301	0.2	0.038	0.019	6.4373	32.1865	1
	• •	0304	0.4	0.0494	0.0124	8.3684	20.921	1
		0328	0.15	0.00633	0.0042	3.2169	21.446	2
		0330	0.5	0.01267	0.0025	2.1463	4.2926	2
		0337	5	0.03167	0.0006	5.365	1.073	2
		1301	0.03	0.00152	0.0051	0.2575	8.5833	2
		1325	0.05	0.00152	0.003	0.2575	5.15	2
		2754	1	0.0152	0.0015	2.5749	2.5749	2
3012	АДПМ	0301	0.2	0.038	0.019	6.4373	32.1865	1
		0304	0.4	0.0494	0.0124	8.3684	20.921	1
		0328	0.15	0.00633	0.0042	3.2169	21.446	2
		0330	0.5	0.01267	0.0025	2.1463	4.2926	2
		0337	5	0.03167	0.0006	5.365	1.073	2
		1301	0.03	0.00152	0.0051	0.2575	8.5833	2
		1325	0.05	0.00152	0.003	0.2575	5.15	2
		2754	1	0.0152	0.0015	2.5749	2.5749	2
3013	APOK AZN	0301	0.2	0.038	0.019	6.4373	32.1865	1
		0304	0.4	0.0494	0.0124	8.3684	20.921	1
		0328	0.15	0.00633	0.0042	3.2169	21.446	2
		0330	0.5	0.01267	0.0025	2.1463	4.2926	2
		0337	5	0.03167	0.0006	5.365	1.073	2
		1301	0.03	0.00152	0.0051	0.2575	8.5833	2
		1325	0.05	0.00152	0.003	0.2575	5.15	2
		2754	1	0.0152	0.0015	2.5749	2.5749	2
3014	APOK AZN	0301	0.2	0.038	0.019	6.4373	32.1865	1
		0304	0.4	0.0494	0.0124	8.3684	20.921	1
		0328	0.15	0.00633	0.0042	3.2169	21.446	2
		0330	0.5	0.01267	0.0025	2.1463	4.2926	2
		0337	5	0.03167	0.0006	5.365	1.073	2
		1301	0.03	0.00152	0.0051	0.2575	8.5833	2
		1325	0.05	0.00152	0.003	0.2575	5.15	2
		2754	1	0.0152	0.0015	2.5749	2.5749	2
3015	АР 32/40 Урал-4320	0301	0.2	0.0763	0.0382	12.9254	64.627	1
	-	0304	0.4	0.0991	0.0248	16.7877	41.9693	1
		0328	0.15	0.0127	0.0085	6.4542	43.028	2
		0330	0.5	0.0254	0.0051	4.3028	8.6056	2
		0337	5	0.0635	0.0013	10.757	2.1514	2
			93	- 1	- 1	ı		, ,
			93					

			0.03	0.00305	0.0102	0.5167	17.2233	1
		1325	0.05	0.00305	0.0061	0.5167	10.334	2
		2754	1	0.0305	0.0031	5.1668	5.1668	2
3016	ЦА-320	0301	0.2	0.0801	0.0401	13.5691	67.8455	1
		0304	0.4	0.1041	0.026	17.6347	44.0868	1
		0328	0.15	0.01335	0.0089	6.7845	45.23	2
		0330	0.5	0.0267	0.0053	4.523	9.046	2
		0337	5	0.0667	0.0013	11.2991	2.2598	2
		1301	0.03	0.003203	0.0107	0.5426	18.0867	1
		1325	0.05	0.003203	0.0064	0.5426	10.852	2
		2754	1	0.03203	0.0032	5.4259	5.4259	2
3017	Shanxi ZYT5200TCY	0301	0.2	0.0763	0.0382	12.9254	64.627	1
		0304	0.4	0.0991	0.0248	16.7877	41.9693	1
		0328	0.15	0.0127	0.0085	6.4542	43.028	2
		0330	0.5	0.0254	0.0051	4.3028	8.6056	2
		0337	5	0.0635	0.0013	10.757	2.1514	2
		1301	0.03	0.00305	0.0102	0.5167	17.2233	1
		1325	0.05	0.00305	0.0061	0.5167	10.334	2
		2754	1	0.0305	0.0031	5.1668	5.1668	2
3018	ZYT TXY-250	0301	0.2	0.0381	0.0191	6.4542	32.271	1
		0304	0.4	0.0495	0.0124	8.3854	20.9635	1
		0328	0.15	0.00635	0.0042	3.2271	21.514	2
		0330	0.5	0.0127	0.0025	2.1514	4.3028	2
		0337	5	0.03174	0.0006	5.3768	1.0754	2
		1301	0.03	0.001523	0.0051	0.258	8.6	2
		1325	0.05	0.001523	0.003	0.258	5.16	2
		2754	1	0.01523	0.0015	2.58	2.58	2
3019	GEABOX for SLUPRY PUMP	0301	0.2	0.0521	0.0261	8.8258	44.129	1
		0304	0.4	0.0677	0.0169	11.4685	28.6713	1
		0328	0.15	0.00868	0.0058	4.4112	29.408	2
		0330	0.5	0.01736	0.0035	2.9408	5.8816	2
		0337	5	0.0434	0.0009	7.352	1.4704	2
		1301	0.03	0.002083	0.0069	0.3529	11.7633	2
		1325	0.05	0.002083	0.0042	0.3529	7.058	2
		2754	1	0.02083	0.0021	3.5286	3.5286	2
3020	GEABOX for SLUPRY PUMP	0301	0.2	0.0521	0.0261	8.8258	44.129	1
		0304	0.4	0.0677	0.0169	11.4685	28.6713	1
		0328	0.15	0.00868	0.0058	4.4112	29.408	2
		0330	0.5	0.01736	0.0035	2.9408	5.8816	2
		0337	5	0.0434	0.0009	7.352	1.4704	2
		1301	0.03	0.002083	0.0069	0.3529	11.7633	2
		I 1 1 1 1 2 2 5 1	0.05	0.002083	0.0042	0.3529	7.058	2
		1325						
		2754	1	0.02083	0.0042	3.5286	3.5286	2

3021	XJ250	0301	0.2	0.1628	0.0814	27.5786	137.893	1 1
		0304	0.4	0.2116	0.0529	35.8454	89.6135	1
		0328	0.15	0.0271	0.0181	13.7724	91.816	1
		0330	0.5	0.0543	0.0109	9.1985	18.397	1
		0337	5	0.1356	0.0027	22.9709	4.5942	2
		1301	0.03	0.00651	0.0217	1.1028	36.76	1
		1325	0.05	0.00651	0.013	1.1028	22.056	1
		2754	1	0.0651	0.0065	11.0281	11.0281	2
3022	XJ250	0301	0.2	0.1628	0.0814	27.5786	137.893	1
		0304	0.4	0.2116	0.0529	35.8454	89.6135	1
		0328	0.15	0.0271	0.0181	13.7724	91.816	1
		0330	0.5	0.0543	0.0109	9.1985	18.397	1
		0337	5	0.1356	0.0027	22.9709	4.5942	2
		1301	0.03	0.00651	0.0217	1.1028	36.76	1
		1325	0.05	0.00651	0.013	1.1028	22.056	1
		2754	1	0.0651	0.0065	11.0281	11.0281	2
3023	УПА-60А	0301	0.2	0.1356	0.0678	22.9709	114.8545	1
		0304	0.4	0.1763	0.0441	29.8655	74.6638	1
		0328	0.15	0.0226	0.0151	11.4854	76.5693	1
		0330	0.5	0.0452	0.009	7.657	15.314	2
		0337	5	0.113	0.0023	19.1424	3.8285	2
		1301	0.03	0.00542	0.0181	0.9182	30.6067	1
		1325	0.05	0.00542	0.0108	0.9182	18.364	1
		2754	1	0.0542	0.0054	9.1816	9.1816	2
3024	DK 100 GFC (ДЭС)	0301	0.2	0.1085	0.0543	18.3801	91.9005	1
		0304	0.4	0.141	0.0353	23.8856	59.714	1
		0328	0.15	0.0181	0.0121	9.1985	61.3233	1
		0330	0.5	0.0362	0.0072	6.1323	12.2646	2
		0337	5	0.0904	0.0018	15.3139	3.0628	2
		1301	0.03	0.00434	0.0145	0.7352	24.5067	1
		1325	0.05	0.00434	0.0087	0.7352	14.704	2
		2754	1	0.0434	0.0043	7.352	7.352	2
3025	DK 100 GFC (ДЭС)	0301	0.2	0.1085	0.0543	18.3801	91.9005	1
		0304	0.4	0.141	0.0353	23.8856	59.714	1
		0328	0.15	0.0181	0.0121	9.1985	61.3233	1
		0330	0.5	0.0362	0.0072	6.1323	12.2646	2
		0337	5	0.0904	0.0018	15.3139	3.0628	2
		1301	0.03	0.00434	0.0145	0.7352	24.5067	1
		1325	0.05	0.00434	0.0087	0.7352	14.704	2
		2754	1	0.0434	0.0043	7.352	7.352	2
3026	AD-48 (ДЭС)	0301	0.2	0.0543	0.0272	9.1985	45.9925	1
		0304	0.4	0.0705	0.0176	11.9428	29.857	1
		0328	0.15	0.00904	0.006	4.5942	30.628	2
			95					

1907 1908	Į	l I	I	0330	0.5	0.0181	0.0036	3.0662	6.1324	2
1301 0.03 0.00217 0.0072 0.3676 12.7333 2 1325 0.055 0.000217 0.0043 0.3676 7.352 2 2754 1 0.0217 0.0043 0.3676 7.352 2 2 2 2 2 2 2 2 2	l									
1325 0.05 0.00217 0.0043 0.3676 7.352 2 2754 1 0.00217 0.00022 3.676 3.676 2 2 2 2 2 2 2 2 2	l									
3027 Устьевой нагреватель ППТМ— 6 0301 0.2 0.00214 0.0011 0.0182 0.091 2	l									
О.2 О.2 О.2 О.002214 О.0011 О.0182 О.091 2	l									
3028 Устьевой нагреватель ППТМ— 6 0304 0337 5 0.00137 0.00003 0.0142 0.0023 2 0.021 0.021 0.021 0.0003 0.0142 0.0023 2 0.021 0.021 0.021 0.001 0.022 0.001 0.021 0.001 0.022 0.001 0.021 0.001 0.022 0.001 0.021 0.002 0.001	3027		6			l				
Note	l	0,2F								
3028 Устьевой нагреватель ППТМ— 0,2т	l			I		l				
Одератель ППТМ-	l									
0,2Г	l					l				
3029 Печь подогрева ПП-0,63 6 0337 5 0.00173 0.00003 0.0142 0.0028 2 0.001	3028		6	0301	0.2	0.002214	0.0011	0.0182	0.091	2
3029 Печь подогрева ПП-0,63 6 0410 *50 0.00173 0.00003 0.0142 0.0003 2 0.006 2 0.001 0.02 0.0053 2 0.001 0.002 0.0053 2 0.001 0.002 0.0053 2 0.001 0.002 0.0053 2 0.001 0.002 0.0053 2 0.001 0.002 0.0053 2 0.001 0.002 0.0058 2 0.001 0.002 0.004 0.003	l			0304	0.4	0.00036	0.0001	0.003	0.0075	
3029 Печь подогрева ПП-0,63 6 0301 0.2 0.00335 0.0017 0.0132 0.066 2 0304 0.4 0.000355 0.0001 0.0021 0.0053 2 0.0053 2 0.00735 0.0001 0.0289 0.0058 2 0.0053 2 0.00735 0.0001 0.0289 0.0058 2 0.0053 0.0001 0.0289 0.0058 2 0.0053 0.0001 0.0289 0.0058 2 0.0053 0.0001 0.0289 0.0066 2 0.0053 0.0001 0.0289 0.0066 2 0.0053 0.0001 0.0289 0.0066 2 0.0053 0.0001 0.0021 0.0053 0.0001 0.0021 0.0053 0.0001 0.0021 0.0053 0.0001 0.0021 0.0053 0.0001 0.0021 0.0053 0.0001 0.0028 0.0006 0.0053 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0028 0.0006 0.0058 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0008 0.0001 0.0002 0.0084 0.00	l			0337	5	0.00173	0.00003	0.0142	0.0028	2
3030 Печь подогрева ПП-0,63 6 0301 0.4 0.000545 0.0001 0.0021 0.0058 2 0.0006 2 0.0006 0.000	l			0410	*50	0.00173	0.000003	0.0142	0.0003	
Печь подогрева ПП-0,63 6 0337 5 0.00735 0.0001 0.0289 0.0088 2 0.000 2 0.0000 0.0000 2 0.0000 0.0000 2 0.0000 0.0000 2 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.00000000	3029	Печь подогрева ПП-0,63	6	0301	0.2	0.00335	0.0017	0.0132	0.066	
3030 Печь подогрева ПП-0,63 6 0301 0.2 0.00335 0.0001 0.0289 0.0066 2 0301 0.2 0.00335 0.0001 0.0132 0.066 2 0304 0.4 0.000545 0.0001 0.0021 0.0053 2 0337 5 0.0001 0.0289 0.0068 2 0410 *50 0.00735 0.0001 0.0289 0.0068 2 0410 *50 0.00735 0.0001 0.0289 0.0068 2 0410 *50 0.00735 0.0001 0.0289 0.0068 2 0415 *50 2.2007 0.0044 372.8024 7.456 2 0415 *50 2.2007 0.0044 373.8697 7.4774 2 0333 0.008	l			0304	0.4	0.000545	0.0001	0.0021	0.0053	
Печь подогрева ПП-0,63 Верхиподогрева ПП-0,63 Верхи	l			0337	5	0.00735	0.0001	0.0289	0.0058	
0304 0.4 0.000545 0.0001 0.0021 0.0053 2 0.0053 2 0.000735 0.00001 0.0289 0.0058 2 0.00735 0.00001 0.0289 0.0006 2 0.0058 2 0.00735 0.00001 0.0289 0.0006 2 0.0058 0.0058 2 0.0058 2 0.0058 2 0.0058 2 0.0058 2 0.0058 0.0058 2 0.0058 0	l			0410	*50	0.00735	0.00001	0.0289	0.0006	
Note	3030	Печь подогрева ПП-0,63	6	0301	0.2	0.00335	0.0017	0.0132	0.066	
3031 3031 3031 3032 Дренажная емкость 10 м3	l			0304	0.4	0.000545	0.0001	0.0021	0.0053	2
3031 3032 Дренажная емкость 10 м3	l			0337		0.00735	0.0001	0.0289	0.0058	
3032 дренажная емкость 10 м3	l			0410	*50	0.00735	0.00001	0.0289	0.0006	
3033 Дренажная емкость 10 м3 0333 0.008 - - - - - - - - -				0415	*50	2.2007	0.0044	372.8024	7.456	2
0415 *50	3032			0415	*50	2.207	0.0044	373.8697	7.4774	2
0416	3033	Дренажная емкость 10 м3				-	-	-	_	_
0602 0.3	l					-	-	-	-	-
0616 0.2	l					-	-	-	-	-
Печь подогрева ПП-0,63 0621 0.6 - - - - - - - - - - -	l					-	-	-	-	-
3034 Печь подогрева ПП-0,63 0301 0.2 0.00718 0.0036 0.0078 0.0039 2 0304 0.4 0.001167 0.0003 0.0013 0.0033 2 0337 5 0.00773 0.0002 0.0084 0.0017 2 0410 *50 0.00773 0.0002 0.0084 0.0002 2 0301 0.2 0.00245 0.0012 0.0117 0.0585 2 0304 0.4 0.000398 0.0001 0.0019 0.0048 2 0337 5 0.001822 0.00004 0.0087 0.0017 2 0410 *50 0.001822 0.00004 0.0087 0.0017 2 0410 *50 0.001822 0.00004 0.0087 0.0017 2 0410 *50 0.001822 0.00004 0.0087 0.0002 2 0301 0.2 0.00245 0.0012 0.0017 0.0585 2 0304 0.4 0.00398 0.001 0.0019 0.0088 2	l					-	-	-	-	-
0304 0.4 0.001167 0.0003 0.0013 0.0033 2 0337 5 0.00773 0.0002 0.0084 0.0017 2 0410 *50 0.00773 0.0002 0.0084 0.0002 2 0301 0.2 0.00245 0.0012 0.0117 0.0585 2 0304 0.4 0.000398 0.0001 0.0019 0.0048 2 0337 5 0.001822 0.00004 0.0087 0.0017 2 0410 *50 0.001822 0.00004 0.0087 0.0017 2 0410 *50 0.001822 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.2 0.00245 0.0012 0.0117 0.0585 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.2 0.00004 0.0087 0.0002 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	l					-	-	-	-	
3035 3035 3035 3035 3035 3035 3036 Устьевой нагреватель ППТМ- 0,2 0,2 г	3034	Печь подогрева ПП-0,63								
3035	l					l				
3035 0301 0.2 0.00245 0.0012 0.0117 0.0585 2 0304 0.4 0.00398 0.0001 0.0019 0.0048 2 0.001822 0.00004 0.0087 0.0017 2 0.410 *50 0.01822 0.00004 0.0087 0.0002 2 0.2Г 0301 0.2 0.00245 0.0012 0.0117 0.0585 2 0.2Г	l									
0304 0.4 0.000398 0.0001 0.0019 0.0048 2 0.001822 0.00004 0.0087 0.0017 2 0.019 0.001822 0.00004 0.0087 0.0002 2 0.002 0.2 0.2 0.00245 0.0012 0.0017 0.0585 2 0.002 0.000398 0.0001 0.0019 0.0048 2	l									
3036 Устьевой нагреватель ППТМ- 0304 0.4 0.000398 0.0001 0.0019 0.0048 2 0.0004 0.0019 0.0048 2 0.000398 0.0001 0.0019 0.0048 2	3035									
3036 Устьевой нагреватель ППТМ- 0301 0.410 0.001822 0.000004 0.0087 0.0002 2 0.02 0.2 0.2 0.0012 0.0012 0.0012 0.0014 0.0088 2 0.0012 0.0019 0.0048 2	l									
3036 Устьевой нагреватель ППТМ- 0301 0.2 0.00245 0.0012 0.0117 0.0585 2 0,2Г 0304 0.4 0.000398 0.0001 0.0019 0.0048 2	l			0337	-					
0,2F	l									
0304 0.4 0.000398 0.0001 0.0019 0.0048 2	3036			0301	0.2	0.00245	0.0012	0.0117	0.0585	2
	l			0304	0.4	0.000398	0.0001	0.0019	0.0048	2

		0410	*50	0.001822	0.000004	0.0087	0.0002	2
037	Устьевой нагреватель ППТМ-	0301	0.2	0.00245	0.0012	0.0117	0.0585	2
	0,27							
		0304	0.4	0.000398	0.0001	0.0019	0.0048	2
		0337	5	0.001822	0.00004	0.0087	0.0017	2
ļ		0410	*50	0.001822	0.000004	0.0087	0.0002	2
001	Техблок	0415	*50	0.03085	0.0001	5.226	0.1045	2
002	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
003	Техблок	0415	*50	0.04076	0.0001	6.9048	0.1381	2
004	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
005	Техблок	0415	*50	0.03828	0.0001	6.4847	0.1297	2
006	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
007	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
800	Техблок	0415	*50	0.03828	0.0001	6.4847	0.1297	2
009	Техблок	0415	*50	0.04324	0.0001	7.3249	0.1465	2
010	Техблок	0415	*50	0.05563	0.0001	9.4238	0.1885	2
011	Техблок	0415	*50	0.05067	0.0001	8.5836	0.1717	2
014	Техблок	0415	*50	0.03581	0.0001	6.0663	0.1213	2
015	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
016	Техблок	0415	*50	0.03581	0.0001	6.0663	0.1213	2
017	Техблок	0415	*50	0.04076	0.0001	6.9048	0.1381	2
018	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
019	Техблок	0415	*50	0.05068	0.0001	8.5853	0.1717	2
023	Техблок	0415	*50	0.01779	0.00004	3.0137	0.0603	2
024	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
025	Техблок	0415	*50	0.03085	0.0001	5.226	0.1045	2
027	Техблок	0415	*50	0.03828	0.0001	6.4847	0.1297	2 2
029	Техблок	0415	*50	0.03828	0.0001	6.4847	0.1297	2
030	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
034	Техблок	0415	*50	0.03581	0.0001	6.0663	0.1213	2
035	Техблок	0415	*50	0.00743	0.00001	1.2587	0.0252	2
038	Техблок	0415	*50	0.03536	0.0001	5.99	0.1198	2
039	Техблок	0415	*50	0.04076	0.0001	6.9048	0.1381	2
042	Техблок	0415	*50	0.17725	0.0004	30.0265	0.6005	2
047	Техблок	0415	*50	0.03085	0.0001	5.226	0.1045	2
048	Техблок	0415	*50	0.03333	0.0001	5.6462	0.1129	2
049	Техблок	0415	*50	0.03085	0.0001	5.226	0.1045	2
228	сварочный пост	0123	**0.04	0.01375	0.0034	6.9878	17.4695	2
-	·	0143	0.01	0.001528	0.0153	0.7765	77.65	1
		0342	0.02	0.000556	0.0028	0.0942	4.71	2
229	A3C	0333	0.008	0.000035	0.0004	0.0059	0.7375	2
		0415	*50	0.663	0.0013	112.3134	2.2463	2
ļ		0416	*30	0.245	0.0008	41.5034	1.3834	2

1	1	1	ا محمد ا					0 7660	•
			0501	1.5	0.0245	0.0016	4.1503	2.7669	2
			0602	0.3	0.02254	0.0075	3.8183	12.7277	2
			0616	0.2	0.00284	0.0014	0.4811	2.4055	2
			0621	0.6	0.02127	0.0035	3.6032	6.0053	2
			0627	0.02	0.000588	0.0029	0.0996	4.98	2
			2754	1	0.01247	0.0012	2.1124	2.1124	2
6281	Техблок		0415	*50	0.03085	0.0001	5.226	0.1045	2
6283	Техблок		0415	*50	0.03288	0.0001	5.5699	0.1114	2
6284	Техблок		0415	*50	0.02545	0.0001	4.3113	0.0862	2
6285	Техблок		0415	*50	0.03536	0.0001	5.99	0.1198	2
6286	Техблок		0415	*50	0.03783	0.0001	6.4085	0.1282	2
6289	Техблок		0415	*50	0.03783	0.0001	6.4085	0.1282	2
6290	Техблок		0415	*50	0.03536	0.0001	5.99	0.1198	2
6292	Техблок		0415	*50	0.05518	0.0001	9.3476	0.187	2
6300	Техблок		0415	*50	0.03783	0.0001	6.4085	0.1282	2
6301	Техблок		0415	*50	0.03085	0.0001	5.226	0.1045	2
6302	Техблок		0415	*50	0.03333	0.0001	5.6462	0.1129	2
6304	Техблок		0415	*50	0.03333	0.0001	5.6462	0.1129	2
6305	Техблок		0415	*50	0.03333	0.0001	5.6462	0.1129	2

Примечания: 1. М и См умножаются на 100/100-КПД только при значении КПД очистки >75%. (ОНД-90, Iч., п.5.6.3)

^{2.} К 1-й категории относятся источники с См/ПДК>0.5 и М/(ПДК*Н)>0.01. При Н<10м принимают Н=10. (ОНД-90, Iч., п.5.6.3)

^{3.} В случае отсутствия ПДКм.р. в колонке 6 указывается "*" - для значения ОБУВ, "**" - для ПДКс.с

^{4.} Способ сортировки: по возрастанию кода ИЗА и кода ЗВ

ЭРА v3.0 ИП "ЭКО-ОРДА" План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив до выброс		Кем осуществляет	Методин проведе ния
				r/c	мг/м3	ся контроль	контрол
1	2	3	5	6	7	8	9
0003	ЗУ-2	Азота (IV) диоксид (Азота диоксид) (0.003464	47.5824176		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000563	7.73351648		
		Углерод оксид (Окись углерода, Угарный газ) (584)		0.00928	127.472527		
		Метан (727*)		0.00928	127.472527		
0019	45 км нефтепровода	Азота (IV) диоксид (Азота диоксид) (0.2259	4380.24425		
		4)		0.0491	952.0584		
		Углерод (Сажа, Углерод черный) (583) Углерод оксид (Окись углерода,		0.0491	1741.23919		
		Угарный газ) (584)		0.0090	1/41.23919		
		метан (727*)		0.0898	1741.23919		
020	45 км нефтепровода	метан (727°) Азота (IV) диоксид (Азота диоксид) (0.2259	4380.24425		
0020	45 км нефтепровода	4)		0.2239	4300.24423		
		Углерод (Сажа, Углерод черный) (583)		0.0491	952.0584		
		Углерод оксид (Окись углерода,		0.0898	1741.23919		
		Угарный газ) (584)					
		Метан (727*)		0.0898	1741.23919		
024	45 км нефтепровода	Азота (IV) диоксид (Азота диоксид) (0.1024	443.27704		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.01664	72.0325191		
		Углерод (Сажа, Углерод черный) (583)		0.004762	20.6141139		
		Сера диоксид (Ангидрид сернистый,		0.04	173.155094		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.103333333	447.317325		
		Угарный газ) (584)					
		Бенз/а/пирен (3,4-Бензпирен) (54)		0.000000114	0.00049349		
		Формальдегид (Метаналь) (609)		0.001143	4.94790681		1

1	2	3	5	6	7	8	9
		Алканы C12-19 /в пересчете на C/ (0.027619	119.559263		
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265π) (10)					
025	45 км нефтепровода	Азота (IV) диоксид (Азота диоксид) (0.145066667	443.277042		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.023573333	72.0325181		
		Углерод (Сажа, Углерод черный) (583)		0.006746167	20.614115		
		Сера диоксид (Ангидрид сернистый,		0.056666667	173.155095		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.146388889	447.317326		
		Угарный газ) (584)					
		Бенз/а/пирен (3,4-Бензпирен) (54)		0.000000162	0.00049502		
		Формальдегид (Метаналь) (609)		0.00161925	4.94790681		
		Алканы C12-19 /в пересчете на C/ (0.039126917	119.559265		
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265П) (10)					
26	45 км нефтепровода	Азота (IV) диоксид (Азота диоксид) (0.1536	443.27704		
	1	4)					
		Азот (II) оксид (Азота оксид) (6)		0.02496	72.0325191		
		Углерод (Сажа, Углерод черный) (583)		0.007143	20.6141139		
		Сера диоксид (Ангидрид сернистый,		0.06	173.155094		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.155	447.317326		
		Угарный газ) (584)					
		Бенз/а/пирен (3,4-Бензпирен) (54)		0.000000171	0.00049349		
		Формальдегид (Метаналь) (609)		0.0017145	4.94790681		
		Алканы C12-19 /в пересчете на C/ (0.0414285	119.559263		
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265 _{II}) (10)					
051	пппн	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.02976	208.07572	Сторонняя	0002
-	'	4)	1 1 1 7 1 1 1 1 1			организация	
						на	1

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

			5	6	,		9
						договорной	
						основе	
		Азот (II) оксид (Азота оксид) (6)		0.00484	33.8402717		
		Углерод оксид (Окись углерода,		0.0233	162.908746		
		Угарный газ) (584)					
		Метан (727*)		0.0233	162.908746		
0052	цппн	Азота (IV) диоксид (Азота диоксид) (0.02976	208.07572		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00484	33.8402717		
		Углерод оксид (Окись углерода,		0.0233	162.908746		
		Угарный газ) (584)					
		Метан (727*)		0.0233	162.908746		
0053	иппн	Азота (IV) диоксид (Азота диоксид) (0.02976	208.07572		
	'	4)					
		Азот (II) оксид (Азота оксид) (6)		0.00484	33.8402717		
		Углерод оксид (Окись углерода,		0.0233	162.908746		
		Угарный газ) (584)					
		Метан (727*)		0.0233	162.908746		
0054	цппн	Азота (IV) диоксид (Азота диоксид) (0.00496	84.9921694		
		4)			01,0021001		
		Азот (II) оксид (Азота оксид) (6)		0.000806	13.8112275		
		Углерод оксид (Окись углерода,		0.0095	162.787421		
		Угарный газ) (584)			102.707121		
		Merah (727*)		0.0095	162.787421		
0056	шппн	Азота (IV) диоксид (Азота диоксид) (1	102.707421		
,030		4)					
		Азот (II) оксид (Азота оксид) (6)					
		Углерод (Сажа, Углерод черный) (583)					
		Углерод (Сажа, Углерод черным) (303)					
		Угарный газ) (584)					
		метан (727*)					
0057	ЦППН	метан (727") Азота (IV) диоксид (Азота диоксид) (0.00356	152.574346		
103/	ципп	АЗОТА (1V) ДИОКСИД (АЗОТА ДИОКСИД) (0.00356	132.3/4340		
		4) Азот (II) оксид (Азота оксид) (6)		0.000579	24.8147602		
		Углерод оксид (Окись углерода,		0.000379	163.117405		

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Метан (727*)		0.003806	163.117405		
0058	цппн	Азота (IV) диоксид (Азота диоксид) (0.00356	152.574346		
	•	4)					
		Азот (II) оксид (Азота оксид) (6)		0.000579	24.8147602		
		Углерод оксид (Окись углерода,		0.003806	163.117405		
		Угарный газ) (584)					
		Метан (727*)		0.003806	163.117405		
0060	3y-17	Азота (IV) диоксид (Азота диоксид) (0.00371	61.2211221		
		4)			*		
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.00773	127.557756		
		Угарный газ) (584)					
		Метан (727*)		0.00773	127.557756		
0072	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00335	111.419541		
, , , ,	TV BORTAG	4)			111.119011		
		Азот (II) оксид (Азота оксид) (6)		0.000545	18.1264627		
		Углерод оксид (Окись углерода,		0.00735	244.457799		
		Угарный газ) (584)					
		Метан (727*)		0.00735	244.457799		
073	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00335	111.419541		
	TV BORTAG	4)			111.110011		
		Азот (II) оксид (Азота оксид) (6)		0.000545	18.1264627		
		Углерод оксид (Окись углерода,		0.00735	244.457799		
		Угарный газ) (584)			211.107733		
		Метан (727*)		0.00735	244.457799		
074	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00335	111.419541		
.011	TV Bentae	4)		0.00555	111.119911		
		Азот (II) оксид (Азота оксид) (6)		0.000545	18.1264627		
		Углерод оксид (Окись углерода,		0.00735	244.457799		
		Угарный газ) (584)		0.00733	211,107799		
		Метан (727*)		0.00735	244.457799		
075	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00733	133.631251		
, , , ,	I Dektac	4)		0.00402	100.001201		
		Азот (II) оксид (Азота оксид) (6)		0.000784	21.7358715		

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Углерод оксид (Окись углерода,		0.00882	244.528554		
		Угарный газ) (584)					
		Метан (727*)		0.00882	244.528554		
0076	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00482	133.631251		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000784	21.7358715		
		Углерод оксид (Окись углерода,		0.00882	244.528554		
		Угарный газ) (584)					
		Метан (727*)		0.00882	244.528554		
0097	скв. №315	Азота (IV) диоксид (Азота диоксид) (0.00245	219.326624		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	35.6293862		
		Углерод оксид (Окись углерода,		0.001822	163.107391		
		Угарный газ) (584)					
		Метан (727*)		0.001822	163.107391		
0100	ПСН Кумколь	Алканы C12-19 /в пересчете на C/ (0.16333	112177.198		
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265π) (10)					
0110	зу-19	Азота (IV) диоксид (Азота диоксид) (0.00371	61.2211221		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.00773	127.557756		
		Угарный газ) (584)					
		Метан (727*)		0.00773	127.557756		
0124	ЗУ-24	Азота (IV) диоксид (Азота диоксид) (0.00371	61.2211221		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.00773	127.557756		
		Угарный газ) (584)					
		Метан (727*)		0.00773	127.557756		
0170	зу-22	Азота (IV) диоксид (Азота диоксид) (0.00371	117.284421		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000603	19.06267		
		Углерод оксид (Окись углерода,		0.00773	244.368887		

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Метан (727*)		0.00773	244.368887		
0231	37-3	Азота (IV) диоксид (Азота диоксид) (0.003464	47.5824176		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000563	7.73351648		
		Углерод оксид (Окись углерода,		0.00928	127.472527		
		Угарный газ) (584)					
		Метан (727*)		0.00928	127.472527		
0237	Вахтовый поселок	Алканы C12-19 /в пересчете на C/ (0.0109	7486.26374		
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
0000	D	265П) (10)		0.0100	7406 06074		
0238	Вахтовый поселок	Алканы C12-19 /в пересчете на С/ (0.0109	7486.26374		
		Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-					
		пересчете на С); Растворитель РПК- 265П) (10)					
0478	45 км нефтепровода	Азота (IV) диоксид (Азота диоксид) (0.2201	21338.9057		
0470	то км нефтепровода	4)		0.2201	21330.3037		
		Углерод (Сажа, Углерод черный) (583)		0.0589	5710.41138		
		Углерод оксид (Окись углерода,		0.0889	8618.9401		
		Угарный газ) (584)			0010.3101		
		Метан (727*)		0.0889	8618.9401		
0490	цппн	Азота (IV) диоксид (Азота диоксид) (0.011812	580.226918		
		4)					
		Углерод оксид (Окись углерода,		0.0618	3035.72837		
		Угарный газ) (584)					
		Смесь углеводородов предельных С1-С5		0.0089	437.184183		
		(1502*)					
0520	скв. №Б-20	Азота (IV) диоксид (Азота диоксид) (0.002214	108.903099		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	17.707821		
		Углерод оксид (Окись углерода,		0.00173	85.0959174		
		Угарный газ) (584)					
		Метан (727*)		0.00173	85.0959174		
0522	скв. №Б-89	Азота (IV) диоксид (Азота диоксид) (0.002214	208.631211		

Сырдарьин		уатАмлонМунай" на 2026 год		<u> </u>			
1	2	3	5	6	7	8	9
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	33.9237742		
		Углерод оксид (Окись углерода,		0.00173	163.022582		
		Угарный газ) (584)					
		Метан (727*)		0.00173	163.022582		
0523	скв. №Б-92	Азота (IV) диоксид (Азота диоксид) (0.002214	208.631211		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	33.9237742		
		Углерод оксид (Окись углерода,		0.00173	163.022582		
		Угарный газ) (584)					
		Метан (727*)		0.00173	163.022582		
0525	скв. №Б-29	Азота (IV) диоксид (Азота диоксид) (0.002214	208.631211		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	33.9237742		
		Углерод оксид (Окись углерода,		0.00173	163.022582		
		Угарный газ) (584)					
		Метан (727*)		0.00173	163.022582		
0644	ЦППН	Азота (IV) диоксид (Азота диоксид) (0.011812	580.226918		
		4)					
		Углерод оксид (Окись углерода,		0.0618	3035.72837		
		Угарный газ) (584)					
		Смесь углеводородов предельных С1-С5		0.0089	437.184183		
		(1502*)					
0708	ЗУ-Б1	Азота (IV) диоксид (Азота диоксид) (0.00335	111.419541		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000545	18.1264627		
		Углерод оксид (Окись углерода,		0.00735	244.457799		
		Угарный газ) (584)					
		Метан (727*)		0.00735	244.457799		
0709	3Y-8	Азота (IV) диоксид (Азота диоксид) (0.00371	117.284421		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000603	19.06267		
		Углерод оксид (Окись углерода,		0.00773	244.368887		
		Угарный газ) (584)					
1	1	Метан (727*)		0.00773	244.368887		

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
0712	скв. №Б-17	Азота (IV) диоксид (Азота диоксид) (0.002214	108.903099		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	17.707821		
		Углерод оксид (Окись углерода, Угарный газ) (584)		0.00173	85.0959174		
		метан (727*)		0.00173	85.0959174		
767	ПСН Кумколь	метан (727^) Азота (IV) диоксид (Азота диоксид) (0.00173	191.165743		
) / 6 /	IICH KYMKOJIB	АЗОТА (IV) ДИОКСИД (АЗОТА ДИОКСИД) (4)		0.00934	191.105/45		
		Азот (II) оксид (Азота оксид) (6)		0.001517	31.0490827		
		Углерод оксид (Окись углерода, Угарный газ) (584)		0.00796	162.920698		
		Метан (727*)		0.00796	162.920698		
768	ПСН Кумколь	метан (727~) Азота (IV) диоксид (Азота диоксид) (0.00798	191.165743		
0768	IICH KYMKOJIB	АЗОТА (IV) ДИОКСИД (АЗОТА ДИОКСИД) (4)		0.00934	191.105/45		
		Азот (II) оксид (Азота оксид) (6)		0.001517	31.0490827		
		Углерод оксид (Окись углерода,		0.00796	162.920698		
		Угарный газ) (584)					
		Метан (727*)		0.00796	162.920698		
0816	ГУ Бектас	Смесь углеводородов предельных С1-С5		0.33508			
		(1502*)					
0817	ГУ Бектас	Смесь углеводородов предельных С1-С5		0.33508			
		(1502*)					
0818	ГУ Бектас	Смесь углеводородов предельных C1-C5 (1502*)		0.33508			
0819	ГУ Бектас	Смесь углеводородов предельных С1-С5		0.33508			
		(1502*)					
900	3y-1	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)		1			
		Метилбензол (349)		0.0000406			

1	2	3	5	6	7	8	9
0901	зу-2	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0902	37-3	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		0 00405			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*) Бензол (64)		0.0000646			
		,		0.0000646			
		Диметилбензол (смесь о-, м-, п- изомеров) (203)		0.0000203			
		мэомеров) (203) Метилбензол (349)		0.0000406			
0903	3y-4	Сероводород (Дигидросульфид) (518)		0.00001108			
0 9 0 3		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		0.01330			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		1 0:00133			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0904	3y-5	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)	1				

1	2	3	5	6	7	8	9
		Метилбензол (349)		0.0000406			
0905	ЗУ-6	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0906	зу-7	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0907	ЗУ-8	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0908	3У-9	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов

на существующее положение

1	2	3	5	6	7	8	9
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0909	зу-10	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0910	3Y-11	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
0011	D. 14	Метилбензол (349)		0.0000406			
0911	ЗУ-14	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		0.00495			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*) Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000646			
		изомеров) (203)		0.0000203			
		Метилбензол (349)		0.0000406			
0912	3y-15	Сероводород (Дигидросульфид) (518)		0.00001108			
0 7 1 2		Смесь углеводородов предельных С1-С5		0.00001108			
		(1502*)		0.01330			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		0.00493			
		Бензол (64)		0.0000646			

1 2	3	5	6	7	8	9
	Диметилбензол (смесь о-, м-, п-		0.0000203			
	изомеров) (203)					
	Метилбензол (349)		0.0000406			
0913 3У-16	Сероводород (Дигидросульфид) (518)		0.00001108			
	Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
	Смесь углеводородов предельных C6-C10 (1503*)		0.00495			
	Бензол (64)		0.0000646			
	Диметилбензол (смесь о-, м-, п-		0.0000203			
	изомеров) (203)		"""			
	Метилбензол (349)		0.0000406			
0914 3y-17	Сероводород (Дигидросульфид) (518)		0.00001108			
00 17	Смесь углеводородов предельных С1-С5		0.01338			
	(1502*)		0.01000			
	Смесь углеводородов предельных C6-C10 (1503*)		0.00495			
	Бензол (64)		0.0000646			
	Диметилбензол (смесь о-, м-, п-		0.0000203			
	изомеров) (203)					
	Метилбензол (349)		0.0000406			
)915 3y-18	Сероводород (Дигидросульфид) (518)		0.00001108			
	Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
	Смесь углеводородов предельных C6-C10 (1503*)		0.00495			
	Бензол (64)		0.0000646			
	Диметилбензол (смесь о-, м-, п-		0.0000203			
	изомеров) (203)					
	Метилбензол (349)		0.0000406			
916 3y-19	Сероводород (Дигидросульфид) (518)		0.00001108			
	Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
	Смесь углеводородов предельных C6-C10 (1503*)		0.00495			

1	2	3	5	6	7	8	9
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
917	зу-21	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
918	ЗУ-23	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
919	ЗУ-24	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
20	ЗУ-29	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
		Смесь углеводородов предельных С6-С10		0.00495			

1	2	3	5	6	7	8	9
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)		1			
		Метилбензол (349)		0.0000406			
0921	зу-31	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		1			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		1			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)		1			
		Метилбензол (349)		0.0000406			
922	ЗУ-32	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		1			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		1			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)		1			
		Метилбензол (349)		0.0000406			
923	зу-33	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		1			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		1			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
924	3y-34	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					

1	2	3	5	6	7	8	9
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
925	3y-37	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		0.01000			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		0.00133			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)		0.0000203			
		Метилбензол (349)		0.0000406			
926	3У-38	Сероводород (Дигидросульфид) (518)		0.00001108			
J2 0		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		0.01330			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		0.00493			
		Бензол (64)		0.0000646			
		· /		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203) Метилбензол (349)		0.0000406			
927	DV 40	` '					
921	ЗУ-40	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)		0.00405			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
928	3y-43	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5	1	0.01338			1

1	2	3	5	6	7	8	9
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0929	ЗУ-Б1	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0930	ГУ Бектас	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0931	37-E3	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0932	ЗУ-4Б	Сероводород (Дигидросульфид) (518)		0.00001108			1

1	2	3	5	6	7	8	9
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0933	зу-25	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0934	ГУ Бектас	Сероводород (Дигидросульфид) (518)		0.0001108			
		Смесь углеводородов предельных С1-С5		0.1338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.0495			
		(1503*)					
		Бензол (64)		0.000646			
		Диметилбензол (смесь о-, м-, п-		0.000203			
		изомеров) (203)					
		Метилбензол (349)		0.000406			
0935	ГУ Бектас	Сероводород (Дигидросульфид) (518)					
		Смесь углеводородов предельных С1-С5					
		(1502*)					
		Смесь углеводородов предельных С6-С10					
		(1503*)					
		Бензол (64)					
		Диметилбензол (смесь о-, м-, п-					
		изомеров) (203)					
		Метилбензол (349)	1				

1	2	3	5	6	7	8	9
0936	ГУ Бектас	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0937	3Y-E5	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)		0.0000406			
0938	ЗУ-6Б	Метилбензол (349)		0.0000408			
0936	33-05	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
0939	3Y-44	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		0.00493			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)]			

1	2	3	5	6	7	8	9
		Метилбензол (349)		0.0000406			
0940	зу-27	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10 (1503*)		0.00495			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000040			
		изомеров) (203)		0.0000203			
		мэомеров) (203) Метилбензол (349)		0.0000406			
0941	3y-41	Сероводород (Дигидросульфид) (518)		0.00001108			
0311		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
1109	ckb. №230	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)					
		Метан (727*)		0.001822	85.1401869		
1117	ЗУ-7	Азота (IV) диоксид (Азота диоксид) (0.00371	61.2211221		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.00773	127.557756		
		Угарный газ) (584)					
	1	Метан (727*)		0.00773	127.557756		
1122	ckb. №240	Азота (IV) диоксид (Азота диоксид) (0.00366	267.926953		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000595	43.5564308		
		Углерод оксид (Окись углерода,		0.002225	162.87909		

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Метан (727*)		0.002225	162.87909		
1123	скв. №574	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)					
		Метан (727*)		0.001822	85.1401869		
1124	CKB. №573	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)		''''			
		Метан (727*)		0.001822	85.1401869		
1125	CKB. №285	Азота (IV) диоксид (Азота диоксид) (0.00366	139.854796		
1100		4)			203.001730		
		Азот (II) оксид (Азота оксид) (6)		0.000595	22.7359572		
		Углерод оксид (Окись углерода,		0.002225	85.0210164		
		Угарный газ) (584)		0.002220	00.0210101		
		Метан (727*)		0.002225	85.0210164		
1126	CKB. №299	Азота (IV) диоксид (Азота диоксид) (0.00366	139.854796		
1120	CRB. N233	4)		0.00000	133.031730		
		Азот (II) оксид (Азота оксид) (6)		0.000595	22.7359572		
		Углерод оксид (Окись углерода,		0.002225	85.0210164		
		Угарный газ) (584)		0.002220	00.0210101		
		Метан (727*)		0.002225	85.0210164		
1127	CKB. №300	Азота (IV) диоксид (Азота диоксид) (0.002223	114.485981		
112/	CKB. MOOO	4)		0.00243	114.400,001		
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.000330	85.1401869		
		Угарный газ) (584)		0.001022	33.1401003		
		Метан (727*)		0.001822	85.1401869		
1128	CKB. №349	метан (727°) Азота (IV) диоксид (Азота диоксид) (0.001822	219.326624		
1120	CKD. N:343	АЗОТА (IV) ДИОКСИД (АЗОТА ДИОКСИД) (4)		0.00243	219.320024		
		АЗОТ (II) ОКСИД (АЗОТА ОКСИД) (6)		0.000398	35.6293862		

эра v3.0 ип "эко-орда" Таблица 3.10 План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Углерод оксид (Окись углерода,		0.001822	163.107391		
		Угарный газ) (584)					
		Метан (727*)		0.001822	163.107391		
1167	скв. №373	Азота (IV) диоксид (Азота диоксид) (0.00245	219.326624		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	35.6293862		
		Углерод оксид (Окись углерода,		0.001822	163.107391		
		Угарный газ) (584)		''''			
		Метан (727*)		0.001822	163.107391		
1221	ЗУ-40	Азота (IV) диоксид (Азота диоксид) (0.00371	61.2211221		
		4)		0.00371	01.2211221		
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.00773	127.557756		
		Угарный газ) (584)		0.00773	127.007700		
		Метан (727*)		0.00773	127.557756		
233	3y-41	Азота (IV) диоксид (Азота диоксид) (0.00371	61.2211221		
-233	30 41	4)		0.00371	01,2211221		
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.00773	127.557756		
		Угарный газ) (584)		0.00773	127.337730		
		Метан (727*)		0.00773	127.557756		
L238	3y-44	Азота (IV) диоксид (Азота диоксид) (0.00773	61.2211221		
230	33-44	4)		0.003/1	01.2211221		
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.000003	127.557756		
		Угарный газ) (584)		0.00773	127.337736		
		метан (727*)		0.00773	127.557756		
243	CKB. №5-4	метан (727~) Азота (IV) диоксид (Азота диоксид) (0.00773	108.903099		
.243	CKB. N-D-4	Азота (IV) диоксид (Азота диоксид) (4)		0.002214	100.903099		
		I '		0.00036	17.707821		
		Азот (II) оксид (Азота оксид) (6)		0.00036			
		Углерод оксид (Окись углерода,		0.001/3	85.0959174		
		Угарный газ) (584)		0 00173	05 0050174		
0.40	27, 52	Метан (727*)		0.00173	85.0959174		
249	ЗУ-БЗ	Азота (IV) диоксид (Азота диоксид) (0.00335	58.1597222		
		(4)		1			1

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Азот (II) оксид (Азота оксид) (6)		0.000545	9.46180556		
		Углерод оксид (Окись углерода,		0.00735	127.604167		
		Угарный газ) (584)					
		Метан (727*)		0.00735	127.604167		
1250	скв. №Б-23	Азота (IV) диоксид (Азота диоксид) (0.002214	108.903099		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	17.707821		
		Углерод оксид (Окись углерода,		0.00173	85.0959174		
		Угарный газ) (584)					
		Метан (727*)		0.00173	85.0959174		
1251	CKB. №5-50	Азота (IV) диоксид (Азота диоксид) (0.002214	108.903099		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	17.707821		
		Углерод оксид (Окись углерода,		0.00173	85.0959174		
		Угарный газ) (584)					
		Метан (727*)		0.00173	85.0959174		
1252	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00335	111.419541		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000545	18.1264627		
		Углерод оксид (Окись углерода,		0.00735	244.457799		
		Угарный газ) (584)					
		Метан (727*)		0.00735	244.457799		
1253	3Y-B5	Азота (IV) диоксид (Азота диоксид) (0.00335	58.1597222		
		4)			0 46400556		
		Азот (II) оксид (Азота оксид) (6)		0.000545	9.46180556		
		Углерод оксид (Окись углерода,		0.00735	127.604167		
		Угарный газ) (584)		0.00725	107 604167		
1254	37-45	Метан (727*)		0.00735	127.604167 58.1597222		
1254	39-46	Азота (IV) диоксид (Азота диоксид) (0.00335	58.159/222		
		4)		0 000545	0 46100556		
		Азот (II) оксид (Азота оксид) (6)		0.000545	9.46180556 127.604167		
		Углерод оксид (Окись углерода, Угарный газ) (584)		0.00/35	12/.00410/		
		угарный газ) (584) Метан (727*)		0.00735	127.604167		
1255	скв. №Б-78	· · · · ·		0.00735	108.903099		
1233	CKB. N-D-/0	Азота (IV) диоксид (Азота диоксид) (0.002214	100.903099		

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	17.707821		
		Углерод оксид (Окись углерода,		0.00173	85.0959174		
		Угарный газ) (584)					
		Метан (727*)		0.00173	85.0959174		
1256	зу-6Б	Азота (IV) диоксид (Азота диоксид) (0.00335	58.1597222		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000545	9.46180556		
		Углерод оксид (Окись углерода,		0.00735	127.604167		
		Угарный газ) (584)			127.001107		
		Metah (727*)		0.00735	127.604167		
1257	ППППН	Азота (IV) диоксид (Азота диоксид) (0.02976	108.613139		
120,		4)		0.02370	100.010103		
		Азот (II) оксид (Азота оксид) (6)		0.00484	17.6642336		
		Углерод оксид (Окись углерода,		0.0233	85.0364964		
		Угарный газ) (584)		0.0255	03.0304904		
		Merah (727*)		0.0233	85.0364964		
1260	пппн	Азота (IV) диоксид (Азота диоксид) (0.00491	84.7417747		
1200	4	4)		0.00491	01./11//1/		
		Азот (II) оксид (Азота оксид) (6)		0.000798	13.7726958		
		Углерод оксид (Окись углерода,		0.000798	162.925123		
		Угарный газ) (584)		0.00944	102.923123		
		Метан (727*)		0.00944	162.925123		
1261	ЦППН	метан (727°) Азота (IV) диоксид (Азота диоксид) (0.00944	84.7417747		
1201	Циип	4)		0.00491	04./41//4/		
		1 '		0.000798	12 7706050		
		Азот (II) оксид (Азота оксид) (6)			13.7726958		
		Углерод оксид (Окись углерода,		0.00944	162.925123		
		Угарный газ) (584)		0 00044	160 005100		
1011	WE 2.0	Метан (727*)		0.00944	162.925123		
1311	скв. №538	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)			10 5001000		
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)		1			
	1	Метан (727*)	1	0.001822	85.1401869		l

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
1315 ск	св. №352	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)					
		Метан (727*)		0.001822	85.1401869		
.324 ск	св. №Б-85	Азота (IV) диоксид (Азота диоксид) (0.002214	208.631211		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	33.9237742		
		Углерод оксид (Окись углерода,		0.00173	163.022582		
		Угарный газ) (584)					
		Метан (727*)		0.00173	163.022582		
330 ск	«в. №577	Азота (IV) диоксид (Азота диоксид) (0.00245	219.326624		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	35.6293862		
		Углерод оксид (Окись углерода,		0.001822	163.107391		
		Угарный газ) (584)					
		Метан (727*)		0.001822	163.107391		
.331 ск	«в. №599	Азота (IV) диоксид (Азота диоксид) (0.00366	267.926953		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000595	43.5564308		
		Углерод оксид (Окись углерода,		0.002225	162.87909		
		Угарный газ) (584)		0.002220	102.07303		
		Метан (727*)		0.002225	162.87909		
333 ск	«в. №580	Азота (IV) диоксид (Азота диоксид) (0.00245	219.326624		
		4)		0.00210	213,020021		
		Азот (II) оксид (Азота оксид) (6)		0.000398	35.6293862		
		Углерод оксид (Окись углерода,		0.001822	163.107391		
		Угарный газ) (584)		0.001022	103.107331		
		Метан (727*)		0.001822	163.107391		
334 гу	/ Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.00718	78.9010989		
10	ionilibis itolibio	4)			.0.3010303		
		Азот (II) оксид (Азота оксид) (6)		0.001167	12.8241758		
		Углерод оксид (Окись углерода,		0.00773	84.9450549		
		Угарный газ) (584)			31.3130313		

1	2	3	5	6	7	8	9
		Метан (727*)		0.00773	84.9450549		
1335	ГУ Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.00718	78.9010989		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.001167	12.8241758		
		Углерод оксид (Окись углерода,		0.00773	84.9450549		
		Угарный газ) (584)					
		Метан (727*)		0.00773	84.9450549		
336	ckb. №482	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)					
		Метан (727*)		0.001822	85.1401869		
338	ckb. №707	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)					
		Метан (727*)		0.001822	85.1401869		
339	скв. №708	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)					
		Метан (727*)		0.001822	85.1401869		
340	скв. №706	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)					
		Метан (727*)		0.001822	85.1401869		
401	цппн	Азота (IV) диоксид (Азота диоксид) (0.011812			
		4)					
		Углерод оксид (Окись углерода,		0.0618			
		Угарный газ) (584)					l

1	2	3	5	6	7	8	9
		Смесь углеводородов предельных C1-C5 (1502*)		0.0089			
1403	цппн	Смесь углеводородов предельных C1-C5 (1502*)		2.068			
1404	цппн	Смесь углеводородов предельных C1-C5 (1502*)		2.068			
1405	БКНС Северный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
	_	Смесь углеводородов предельных C1-C5 (1502*)		0.2677			
		Смесь углеводородов предельных C6-C10 (1503*)		0.099			
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п- изомеров) (203)		0.000406			
		Метилбензол (349)		0.000813			
1406	цппн	Смесь углеводородов предельных C1-C5 (1502*)		2.068			
1407	цппн	Смесь углеводородов предельных C1-C5		6.204			
1408	цппн	Смесь углеводородов предельных C1-C5 (1502*)		6.204			
1409	цппн	Сероводород (Дигидросульфид) (518)		0.000625			
		Смесь углеводородов предельных C1-C5 (1502*)		0.755			
		Смесь углеводородов предельных C6-C10 (1503*)		0.279			
		Бензол (64)		0.00365			
		Диметилбензол (смесь о-, м-, п- изомеров) (203)		0.001146			
		Метилбензол (349)		0.002292			
1410	цппн	Сероводород (Дигидросульфид) (518)		0.000625			
_ 110		Смесь углеводородов предельных C1-C5 (1502*)		0.755			
		Смесь углеводородов предельных C6-C10 (1503*)		0.279			

1	2	3	5	6	7	8	9
		Бензол (64)		0.00365			
		Диметилбензол (смесь о-, м-, п-		0.001146			
		изомеров) (203)					
		Метилбензол (349)		0.002292			
1411	цппн	Смесь углеводородов предельных С1-С5		10.0848			
		(1502*)					
1412	цппн	Сероводород (Дигидросульфид) (518)		0.000625			
		Смесь углеводородов предельных С1-С5		0.755			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.279			
		(1503*)					
		Бензол (64)		0.00365			
		Диметилбензол (смесь о-, м-, п-		0.001146			
		изомеров) (203)					
		Метилбензол (349)		0.002292			
1413	цппн	Сероводород (Дигидросульфид) (518)		0.0000665			
		Смесь углеводородов предельных С1-С5		0.0803			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.0297			
		(1503*)					
		Бензол (64)		0.000388			
		Диметилбензол (смесь о-, м-, п-		0.000122			
		изомеров) (203)					
		Метилбензол (349)		0.000244			
1414	ГУ Южный Коныс	Смесь углеводородов предельных С1-С5		1.861			
		(1502*)					
1419	ГУ Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.00718	78.9010989		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.001167	12.8241758		
		Углерод оксид (Окись углерода,		0.00773	84.9450549		
		Угарный газ) (584)					
		Метан (727*)		0.00773	84.9450549		
1420	ГУ Южный Коныс	Смесь углеводородов предельных С1-С5		1.861			
		(1502*)					
1421	ГУ Южный Коныс	Сероводород (Дигидросульфид) (518)		0.0001662			

1	2	3	5	6	7	8	9
		Смесь углеводородов предельных С1-С5		0.2007			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.0742			
		(1503*)					
		Бензол (64)		0.00097			
		Диметилбензол (смесь о-, м-, п-		0.000305			
		изомеров) (203)					
		Метилбензол (349)		0.00061			
422	ПСН Кумколь	Азота (IV) диоксид (Азота диоксид) (0.341333333	374.600299		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.055466667	60.872549		
		Углерод (Сажа, Углерод черный) (583)		0.015873333	17.4203768		
		Сера диоксид (Ангидрид сернистый,		0.133333333	146.328242		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.34444444	378.014624		
		Угарный газ) (584)					
		Бенз/а/пирен (3,4-Бензпирен) (54)		0.00000038	0.00041704		
		Формальдегид (Метаналь) (609)		0.00381	4.18132951		
		Алканы C12-19 /в пересчете на C/ (0.092063333	101.035992		
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
23	ПСН Кумколь	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)		0.0000646			
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203) Метилбензол (349)		0.0000406			
124	45 104 1104 1104 110 110			0.0000406	443.277041		
124	45 км нефтепровода	Азота (IV) диоксид (Азота диоксид) (0.1/000000/	443.2//041		
		4) Азот (II) оксид (Азота оксид) (6)		0.027733333	72.0325182		
		Углерод (Сажа, Углерод черный) (583)		0.02773333	20.6141148		

Сырдарьи	нский район, ТОО СП "Куат		_				1
1	2	3	5	6	7	8	9
		Сера диоксид (Ангидрид сернистый,		0.066666667	173.155095		
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.172222222	447.317325		
		Угарный газ) (584)					
		Бенз/а/пирен (3,4-Бензпирен) (54)		0.00000019	0.00049349		
		Формальдегид (Метаналь) (609)		0.001905	4.94790681		
		Алканы С12-19 /в пересчете на С/ (0.046031667	119.559264		
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265π) (10)					
1425	45 км нефтепровода	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных C1-C5 (1502*)		0.01338			
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
1426	БКНС Северный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
		Смесь углеводородов предельных C1-C5 (1502*)		0.2677			
		Смесь углеводородов предельных С6-С10 (1503*)		0.099			
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)					
		Метилбензол (349)		0.000813			
1427	БКНС Северный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
	<u> </u>	Смесь углеводородов предельных С1-С5		0.2677			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.099			
		(1503*)					
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			

Сырдарьи		гАмлонМунай" на 2026 год					
1	2	3	5	6	7	8	9
		изомеров) (203)					
		Метилбензол (349)		0.000813			
1428	БКНС Северный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
		Смесь углеводородов предельных C1-C5 (1502*)		0.2677			
		Смесь углеводородов предельных C6-C10 (1503*)		0.099			
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)		0.000100			
		Метилбензол (349)		0.000813			
1429	БКНС Северный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
		Смесь углеводородов предельных С1-С5		0.2677			
		(1502*)					
		Смесь углеводородов предельных C6-C10 (1503*)		0.099			
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)					
		Метилбензол (349)		0.000813			
1430	БКНС Северный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
	_	Смесь углеводородов предельных C1-C5 (1502*)		0.2677			
		Смесь углеводородов предельных С6-С10		0.099			
		(1503*)					
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)					
		Метилбензол (349)		0.000813			
1431	БКНС Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.00371	61.2211221		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000603	9.95049505		
		Углерод оксид (Окись углерода,		0.00773	127.557756		
		Угарный газ) (584)			400 55055		
		Метан (727*)		0.00773	127.557756		

1	2	3	5	6	7	8	9
1432	БКНС Южный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
		Смесь углеводородов предельных С1-С5		0.2677			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.099			
		(1503*)					
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)					
		Метилбензол (349)		0.000813			
1433	БКНС Южный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
		Смесь углеводородов предельных С1-С5		0.2677			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.099			
		(1503*)					
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)		0.000013			
1434	БКНС Южный Коныс	Метилбензол (349)		0.000813 0.0002216			
1434	БКНС Южный коныс	Сероводород (Дигидросульфид) (518)		1			
		Смесь углеводородов предельных C1-C5 (1502*)		0.2677			
		Смесь углеводородов предельных C6-C10		0.099			
		(1503*)					
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)					
		Метилбензол (349)		0.000813			
1435	БКНС Южный Коныс	Сероводород (Дигидросульфид) (518)		0.0002216			
		Смесь углеводородов предельных С1-С5		0.2677			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.099			
		(1503*)					
		Бензол (64)		0.001293			
		Диметилбензол (смесь о-, м-, п-		0.000406			
		изомеров) (203)		1			

эра v3.0 ип "эко-орда" Таблица 3.10 План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Метилбензол (349)		0.000813			
1436	БКНС Южный Коныс	Сероводород (Дигидросульфид) (518)		0.00001108			
		Смесь углеводородов предельных С1-С5		0.01338			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.00495			
		(1503*)					
		Бензол (64)		0.0000646			
		Диметилбензол (смесь о-, м-, п-		0.0000203			
		изомеров) (203)					
		Метилбензол (349)		0.0000406			
438	БКНС Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.00718	78.9010989		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.001167	12.8241758		
		Углерод оксид (Окись углерода,		0.00773	84.9450549		
	Угарный газ) (584)						
		Метан (727*)		0.00773	84.9450549		
L439	цппн	Азота (IV) диоксид (Азота диоксид) (0.01069	96.393147		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.001737	15.6627592		
		Углерод оксид (Окись углерода,		0.00943	85.03156		
		Угарный газ) (584)					
		Метан (727*)		0.00943	85.03156		
440	цппн	Азота (IV) диоксид (Азота диоксид) (0.01069	96.393147		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.001737	15.6627592		
		Углерод оксид (Окись углерода,		0.00943	85.03156		
		Угарный газ) (584)			05 00456		
	l	Метан (727*)		0.00943	85.03156		
441	цппн	Азота (IV) диоксид (Азота диоксид) (0.00181	39.6061269		
		4)			6 42000405		
		Азот (II) оксид (Азота оксид) (6)		0.0002943	6.43982495		
		Углерод оксид (Окись углерода,		0.00388	84.9015317		
		Угарный газ) (584)		0.00300	04 001 521 7		
440	 	Метан (727*)		0.00388	84.9015317		
442	ЦППН	Азота (IV) диоксид (Азота диоксид) (0.00181	39.6061269	l	

эра v3.0 ип "эко-орда" Таблица 3.10 План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) Метан (727*) О.00173	6.43982495 84.9015317 84.9015317 108.903099 17.707821 85.0959174	
Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) 0.00388 1445 Скв. №Б-79 Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) 0.00173	84.9015317 84.9015317 108.903099 17.707821 85.0959174 85.0959174	
Углерод оксид (Окись углерода, угарный газ) (584) Метан (727*) 1445 Скв. №Б-79 Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, угарный газ) (584) Метан (727*) Метан (727*) О.00388 О.00388	84.9015317 108.903099 17.707821 85.0959174	
Угарный газ) (584) Метан (727*) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) О.00173	108.903099 17.707821 85.0959174 85.0959174	
Метан (727*) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) О.00388 О.002214 О.00036 О.00036	108.903099 17.707821 85.0959174 85.0959174	
1445 Скв. №Б-79 Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) 0.00173	108.903099 17.707821 85.0959174 85.0959174	
4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*) 0.00173	17.707821 85.0959174 85.0959174	
Азот (II) оксид (Азота оксид) (6) 0.00036 Углерод оксид (Окись углерода, 0.00173 Угарный газ) (584) Метан (727*) 0.00173	85.0959174 85.0959174	
Углерод оксид (Окись углерода, 0.00173 Угарный газ) (584) Метан (727*) 0.00173	85.0959174 85.0959174	
Угарный газ) (584) Метан (727*) 0.00173	85.0959174	
MeTaH (727*) 0.00173		
1446 ГУ Южный Коныс Азота (IV) пиоксип (Азота пиоксип) (0.00718		
1446 ГУ Южный Коныс Азота (IV) диоксид (Азота диоксид) (0.00718 4)	78.9010989	
	10 0041750	
Азот (II) оксид (Азота оксид) (6) 0.001167	12.8241758	
Углерод оксид (Окись углерода, 0.00773	84.9450549	
Угарный газ) (584)		
Meram (727*) 0.00773	84.9450549	
1447 м/р Северный Коныс Азота (IV) диоксид (Азота диоксид) (0.02224		
Азот (II) оксид (Азота оксид) (6) 0.003614		
Углерод оксид (Окись углерода, 0.0757		
Угарный газ) (584)		
Metal (727*) 0.01663		
1448 м/р Северный Коныс Азота (IV) диоксид (Азота диоксид) (0.02224		
Азот (II) оксид (Азота оксид) (6) 0.003614		
Углерод оксид (Окись углерода, 0.0757		
Угарный газ) (584)		
Metah (727*) 0.01663		
1449 м/р Северный Коныс Азота (IV) диоксид (Азота диоксид) (0.02224		
4)		
Азот (II) оксид (Азота оксид) (6) 0.003614		
Углерод оксид (Окись углерода, 0.0757		
Угарный газ) (584)		
Metal (727*) 0.01663		

1	2	3	5	6	7	8	9
450	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
451	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
452	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	,1	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
453	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	,1	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
L454	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
455	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	<u>.</u>	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					

1	2	3	5	6	7	8	9
		Метан (727*)		0.01663			
1456	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1457	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
	,	Метан (727*)		0.01663			
1458	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)		0.01663			
1.450	/ Q	Метан (727*)		0.01663			
1459	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)		0.003614			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода, Угарный газ) (584)		0.0737			
		метан (727*)		0.01663			
1460	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
1400	м/р северным коныс	4)		0.02224			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)		0.0757			
		Метан (727*)		0.01663			
1461	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	in, p cepepinal iteliate	4)		"""			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1462	м/р Северный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	1	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1463	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	, F	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1464	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	m, p iominasi itoliase	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1465	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
1100	m, p iominasi itoliase	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1466	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
1100	m, p iominasi itoliase	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1467	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	a, p iominar itornic	4)		0.02221			
		Азот (II) оксид (Азота оксид) (6)		0.003614			

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

⊥	2	3	5	6	7	8	9
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1468	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	· •	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1469	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	, <u>F</u>	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1470	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	m, p iominari recitate	4)		"""			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1471	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
/ -	M, p lokilasi reolisie	4)		0.02221			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)		"""			
		Метан (727*)		0.01663			
1472	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
11/2	M, p lokilasi reolisie	4)		0.02221			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.005014			
		Угарный газ) (584)]			
		Метан (727*)		0.01663			
1473	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
11/5	M, P IOMIBBI ROTIBLE	4)		0.02224			

Сырдарьин		гАмлонМунай" на 2026 год					-
1	2	3	5	6	7	8	9
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1474	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1475	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1476	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1477	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
	,	Метан (727*)		0.01663			
1478	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
1 470	,	Метан (727*)		0.01663			
1479	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			1

1	2	3	5	6	7	8	9
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1480	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	, <u>F</u>	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)		0.0757			
		Metah (727*)		0.01663			
1481	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.01003			
1101	M/ p lokibbi Rollbie	4)		0.02224			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.003014			
		Угарный газ) (584)		0.0757			
		Метан (727*)		0.01663			
1482	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.01003			
1402	м/р южный коныс	4)		0.02224			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
				0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)		0.01663			
1483	/ 10	Метан (727*)		0.01663			
1483	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)		0 002614			
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)		0.01662			
	/	Метан (727*)		0.01663			
1484	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
1485	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1486	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1487	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1488	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1489	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1490	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					

1	2	3	5	6	7	8	9
		Метан (727*)		0.01663			
1491	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	_	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
492	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
.493	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
.494	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
.495	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1496	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,	1	0.0757			

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Метан (727*)		0.01663			
497	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	_	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
498	м/р Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.02224			
	_	4)					
		Азот (II) оксид (Азота оксид) (6)		0.003614			
		Углерод оксид (Окись углерода,		0.0757			
		Угарный газ) (584)					
		Метан (727*)		0.01663			
1500	ПСН Кумколь	Смесь углеводородов предельных С1-С5		3.102			
		(1502*)					
L501	ПСН Кумколь	Смесь углеводородов предельных С1-С5		3.102			
		(1502*)					
3001	кпрс	Азота (IV) диоксид (Азота диоксид) (0.0583			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.0758			
		Углерод (Сажа, Углерод черный) (583)		0.00972			
		Сера диоксид (Ангидрид сернистый,		0.01944			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0486			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.002333			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.002333			
		Алканы C12-19 /в пересчете на C/ (0.02333			
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3002	КПРС	Азота (IV) диоксид (Азота диоксид) (0.0475			
		4)					

1	2	3	5	6	7	8	9
		Азот (II) оксид (Азота оксид) (6)		0.0618			
		Углерод (Сажа, Углерод черный) (583)		0.00792			
		Сера диоксид (Ангидрид сернистый,		0.01583			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0396			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.0019			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.0019			
		Алканы С12-19 /в пересчете на С/ (0.019			
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3003	КПРС	Азота (IV) диоксид (Азота диоксид) (0.0763			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.0991			
		Углерод (Сажа, Углерод черный) (583)		0.0127			
		Сера диоксид (Ангидрид сернистый,		0.0254			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0635			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.00305			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00305			
		Алканы C12-19 /в пересчете на C/ (0.0305			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3004	КПРС	Азота (IV) диоксид (Азота диоксид) (0.0763			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.0991			
		Углерод (Сажа, Углерод черный) (583)		0.0127			
		Сера диоксид (Ангидрид сернистый,		0.0254			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0635			

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.00305			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00305			
		Алканы С12-19 /в пересчете на С/ (0.0305			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3005 КПРС		Азота (IV) диоксид (Азота диоксид) (0.00427			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000694			
		Углерод (Сажа, Углерод черный) (583)		0.001908			
		Сера диоксид (Ангидрид сернистый,		0.0449			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.106			
		Угарный газ) (584)					
3006 КПРС		Азота (IV) диоксид (Азота диоксид) (0.00427			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000694			
		Углерод (Сажа, Углерод черный) (583)		0.001908			
		Сера диоксид (Ангидрид сернистый,		0.0449			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.106			
		Угарный газ) (584)					
3007 КПРС		Азота (IV) диоксид (Азота диоксид) (0.00427			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000694			
		Углерод (Сажа, Углерод черный) (583)		0.001908			
		Сера диоксид (Ангидрид сернистый,		0.0449			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.106			
		Угарный газ) (584)					
3008 КПРС		Азота (IV) диоксид (Азота диоксид) (0.00427			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000694			

1	2	3	5	6	7	8	9
		Углерод (Сажа, Углерод черный) (583)		0.001908			
		Сера диоксид (Ангидрид сернистый,		0.0449			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.106			
		Угарный газ) (584)					
3009	КПРС	Азота (IV) диоксид (Азота диоксид) (0.00427			
		4)					
		л Азот (II) оксид (Азота оксид) (6)		0.000694			
		Углерод (Сажа, Углерод черный) (583)		0.001908			
		Сера диоксид (Ангидрид сернистый,		0.0449			
		Сернистый газ, Сера (IV) оксид) (516)		0.0119			
		Углерод оксид (Окись углерода,		0.106			
		Угарный газ) (584)		0.100			
010	кпрс	Азота (IV) диоксид (Азота диоксид) (0.038			
010	I KIII C	4)		0.030			
		АЗОТ (II) ОКСИД (АЗОТА ОКСИД) (6)		0.0494			
		Углерод (Сажа, Углерод черный) (583)		0.00633			
		Сера диоксид (Ангидрид сернистый,		0.01267			
		сера диоксид (ангидрид сернистыи, Сернистый газ, Сера (IV) оксид) (516)		0.01207			
		Углерод оксид (Окись углерода,		0.03167			
		Углерод оксид (окись углерода, Угарный газ) (584)		0.03167			
				0.00152			
		Проп-2-ен-1-аль (Акролеин,		0.00152			
		Акрилальдегид) (474)		0 00153			
		Формальдегид (Метаналь) (609)		0.00152			
		Алканы С12-19 /в пересчете на С/ (0.0152			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
011	КПРС	Азота (IV) диоксид (Азота диоксид) (0.038			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.0494			
		Углерод (Сажа, Углерод черный) (583)		0.00633			
		Сера диоксид (Ангидрид сернистый,		0.01267			
		Сернистый газ, Сера (IV) оксид) (516)					
	1	Углерод оксид (Окись углерода,	1	0.03167			1

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.00152			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00152			
		Алканы C12-19 /в пересчете на C/ (0.0152			
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265m) (10)					
3012	кпрс	Азота (IV) диоксид (Азота диоксид) (0.038			
3012	Turi C	4)		0.050			
		Азот (II) оксид (Азота оксид) (6)		0.0494			
		Углерод (Сажа, Углерод черный) (583)		0.00633			
		Сера диоксид (Ангидрид сернистый,		0.01267			
		Сернистый газ, Сера (IV) оксид) (516)		0.01207			
		Углерод оксид (Окись углерода,		0.03167			
		Угарный газ) (584)		0.03107			
		Проп-2-ен-1-аль (Акролеин,		0.00152			
		Акрилальдегид) (474)		0.00132			
		Формальдегид (Метаналь) (609)		0.00152			
		Алканы C12-19 /в пересчете на C/ (0.0152			
		Углеводороды предельные С12-С19 (в		0.0132			
		пересчете на С); Растворитель РПК-					
		пересчете на с); Растворитель РПК- 265П) (10)					
3013	кпрс	Азота (IV) диоксид (Азота диоксид) (0.038			
3013	KIIPC	АЗОТА (IV) ДИОКСИД (АЗОТА ДИОКСИД) (4)		0.030			
		4) Азот (II) оксид (Азота оксид) (6)		0.0494			
				0.0494			
		Углерод (Сажа, Углерод черный) (583)		0.00633			
		Сера диоксид (Ангидрид сернистый,		0.01267			
		Сернистый газ, Сера (IV) оксид) (516)		0 02167			
		Углерод оксид (Окись углерода,		0.03167			1
		Угарный газ) (584)		0 00150			
		Проп-2-ен-1-аль (Акролеин,		0.00152			1
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00152			
		Алканы C12-19 /в пересчете на C/ (0.0152			

1 2	3	5	6	7	8	9
	Углеводороды предельные C12-C19 (в					
	пересчете на С); Растворитель РПК-					
	265π) (10)					
3014 КПРС	Азота (IV) диоксид (Азота диоксид) (0.038			
	4)					
	Азот (II) оксид (Азота оксид) (6)		0.0494			
	Углерод (Сажа, Углерод черный) (583)		0.00633			
	Сера диоксид (Ангидрид сернистый,		0.01267			
	Сернистый газ, Сера (IV) оксид) (516)					
	Углерод оксид (Окись углерода,		0.03167			
	Угарный газ) (584)					
	Проп-2-ен-1-аль (Акролеин,		0.00152			
	Акрилальдегид) (474)					
	Формальдегид (Метаналь) (609)		0.00152			
	Алканы С12-19 /в пересчете на С/ (0.0152			
	Углеводороды предельные С12-С19 (в		0.0101			
	пересчете на С); Растворитель РПК-					
	265Π) (10)					
3015 КПРС	Азота (IV) диоксид (Азота диоксид) (0.0763			
	4)					
	Азот (II) оксид (Азота оксид) (6)		0.0991			
	Углерод (Сажа, Углерод черный) (583)		0.0127			
	Сера диоксид (Ангидрид сернистый,		0.0254			
	Сернистый газ, Сера (IV) оксид) (516)		0.0201			
	Углерод оксид (Окись углерода,		0.0635			
	Угарный газ) (584)					
	Проп-2-ен-1-аль (Акролеин,		0.00305			
	Акрилальдегид) (474)					
	Формальдегид (Метаналь) (609)		0.00305			
	Алканы С12-19 /в пересчете на С/ (0.0305			
	Углеводороды предельные C12-C19 (в					
	пересчете на С); Растворитель РПК-					
	265 _П) (10)					
3016 кпрс	Азота (IV) диоксид (Азота диоксид) (0.0801			
1	4)		0.0001			

1	2 3	5	6	7	8	9
	Азот (II) оксид (Азота оксид) (6)		0.1041			
	Углерод (Сажа, Углерод черный) (583)		0.01335			
	Сера диоксид (Ангидрид сернистый,		0.0267			
	Сернистый газ, Сера (IV) оксид) (516)					
	Углерод оксид (Окись углерода,		0.0667			
	Угарный газ) (584)					
	Проп-2-ен-1-аль (Акролеин,		0.003203			
	Акрилальдегид) (474)					
	Формальдегид (Метаналь) (609)		0.003203			
	Алканы С12-19 /в пересчете на С/ (0.03203			
	Углеводороды предельные С12-С19 (в					
	пересчете на С); Растворитель РПК-					
	265m) (10)					
8017 КПРС	Азота (IV) диоксид (Азота диоксид) (0.0763			
14112 9	4)		3.3733			
	Азот (II) оксид (Азота оксид) (6)		0.0991			
	Углерод (Сажа, Углерод черный) (583)		0.0127			
	Сера диоксид (Ангидрид сернистый,		0.0254			
	Сернистый газ, Сера (IV) оксид) (516)					
	Углерод оксид (Окись углерода,		0.0635			
	Угарный газ) (584)		0.0000			
	Проп-2-ен-1-аль (Акролеин,		0.00305			
	Акрилальдегид) (474)		0.00000			
	Формальдегид (Метаналь) (609)		0.00305			
	Алканы С12-19 /в пересчете на С/ (0.0305			
	Углеводороды предельные С12-С19 (в		0.0303			
	пересчете на С); Растворитель РПК-					
	265Π) (10)					
018 КПРС	Азота (IV) диоксид (Азота диоксид) (0.0381			
	4)		0.0301			
	Азот (II) оксид (Азота оксид) (6)		0.0495			
	Углерод (Сажа, Углерод черный) (583)		0.00635			
	Сера диоксид (Ангидрид сернистый,		0.0127			
	Сернистый газ, Сера (IV) оксид) (516)		0.0127			
	Углерод оксид (Окись углерода,		0.03174			

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.001523			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.001523			
		Алканы С12-19 /в пересчете на С/ (0.01523			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3019	КПРС	Азота (IV) диоксид (Азота диоксид) (0.0521			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.0677			
		Углерод (Сажа, Углерод черный) (583)		0.00868			
		Сера диоксид (Ангидрид сернистый,		0.01736			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0434			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.002083			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.002083			
		Алканы С12-19 /в пересчете на С/ (0.02083			
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3020	КПРС	Азота (IV) диоксид (Азота диоксид) (0.0521			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.0677			
		Углерод (Сажа, Углерод черный) (583)		0.00868			
		Сера диоксид (Ангидрид сернистый,		0.01736			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0434			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.002083			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.002083			
		Алканы С12-19 /в пересчете на С/ (0.02083			

1	2	3	5	6	7	8	9
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3021	кпрс	Азота (IV) диоксид (Азота диоксид) (0.1628			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.2116			
		Углерод (Сажа, Углерод черный) (583)		0.0271			
		Сера диоксид (Ангидрид сернистый,		0.0543			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.1356			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.00651			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00651			
		Алканы C12-19 /в пересчете на C/ (0.0651			
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3022	КПРС	Азота (IV) диоксид (Азота диоксид) (0.1628			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.2116			
		Углерод (Сажа, Углерод черный) (583)		0.0271			
		Сера диоксид (Ангидрид сернистый,		0.0543			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.1356			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.00651			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00651			
		Алканы С12-19 /в пересчете на С/ (0.0651			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
3023	КПРС	Азота (IV) диоксид (Азота диоксид) (0.1356			
	1	4)	1				1

3	5	6	7	8	9
Азот (II) оксид (Азота оксид) (6)		0.1763			
Углерод (Сажа, Углерод черный) (583)		0.0226			
		0.0452			
		0.113			
		0.00542			
		0.00542			
		0.1085			
		0.1000			
l '		0.141			
		0.0904			
		0.0301			
		0 00434			
		0.00131			
		0 00434			
		0.0454			
		0 1085			
		0.1003			
		0 141			
		0.0302			
		0 0004			
	3	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид) (474) Формальдегид (Метаналь) (609) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	Азот (II) оксид (Азота оксид) (6)	Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксии (Ангидрии сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алканы С12-19 / В пересчете на С/ (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (Углерод (Сажа, Углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (Азота оксид) (Олибь (Орись углерода, Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид (Метаналь) (609) Алканы С12-19 / В пересчете на С/ (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (Ормальдегид (Метаналь) (609) Алканы С12-19 / В пересчете на С/ (Углеводороды предельные С12-С19 (В пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (Олобь (Ормальдегид) (Ормаль	Авот (II) оксид (Авота оксид) (6) Уплерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидирид сернистый, Сериистый таз, Сера (IV) оксид) (516) Уплерод оксид (Окись уплерода, Упарый таз) (584) Проп-2-ен-1-аль (Акролеин, Авот (II) оксид (Метаналь) (609) Алкани С12-19 / в пересчете на С/ (Уплеводороды предельные С12-С19 (в пересчете на С/ (Уплеводороды предельные С12-С19 (в пересчете на С/ Тулгерод (Сажа, Упрерод черный) (583) Сера диоксид (Ангирид сернистый, Сернистый таз, Сера (IV) оксид) (516) Уплерод оксид (Окись уплерод черный) (583) Сера диоксид (Окись уплерод черный) (584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474) Формальдегид (Метаналь) (609) Алкани С12-19 / в пересчете на С/ (Оло434 Арилальдегид) (474) Формальдегид (Метаналь) (609) Алкани С12-19 / в пересчете на С/ (Оло434 Оло436 Оло434 Оло436 Оло437 Оло436 Оло437 Оло437 Оло437 Оло437 Оло438 Оло438 Оло438 Оло438 Оло438 Оло438 Оло439 Оло4

1	2	3	5	6	7	8	9
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.00434			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00434			
		Алканы C12-19 /в пересчете на C/ (0.0434			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
026	КПРС	Азота (IV) диоксид (Азота диоксид) (0.0543			
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.0705			
		Углерод (Сажа, Углерод черный) (583)		0.00904			
		Сера диоксид (Ангидрид сернистый,		0.0181			
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,		0.0452			
		Угарный газ) (584)					
		Проп-2-ен-1-аль (Акролеин,		0.00217			
		Акрилальдегид) (474)					
		Формальдегид (Метаналь) (609)		0.00217			
		Алканы C12-19 /в пересчете на C/ (0.0217			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265π) (10)					
027	скв. №Б-93	Азота (IV) диоксид (Азота диоксид) (0.002214	208.631211		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	33.9237742		
		Углерод оксид (Окись углерода,		0.00173	163.022582		
		Угарный газ) (584)					
		Метан (727*)		0.00173	163.022582		
028	скв. №Б-94	Азота (IV) диоксид (Азота диоксид) (0.002214	208.631211		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.00036	33.9237742		
		Углерод оксид (Окись углерода,		0.00173	163.022582		
		Угарный газ) (584)					
		Метан (727*)		0.00173	163.022582		

ЭРА v3.0 ИП "ЭКО-ОРДА" Таблица 3.10 План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
3029	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00335	111.419541		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000545	18.1264627		
		Углерод оксид (Окись углерода,		0.00735	244.457799		
		Угарный газ) (584)					
		Метан (727*)		0.00735	244.457799		
3030	ГУ Бектас	Азота (IV) диоксид (Азота диоксид) (0.00335	111.419541		
		4)					
		Азот (II) оксид (Азота оксид) (6)		0.000545	18.1264627		
		Углерод оксид (Окись углерода,		0.00735	244.457799		
		Угарный газ) (584)					
		Метан (727*)		0.00735	244.457799		
3031	ГУ Бектас	Смесь углеводородов предельных С1-С5		2.2007			
		(1502*)					
3032	ГУ Бектас	Смесь углеводородов предельных С1-С5		2.207			
		(1502*)					
3033	ГУ Бектас	Сероводород (Дигидросульфид) (518)					
		Смесь углеводородов предельных С1-С5					
		(1502*)					
		Смесь углеводородов предельных C6-C10					
		(1503*)					
		Бензол (64)					
		Диметилбензол (смесь о-, м-, п-					
		изомеров) (203)					
		Метилбензол (349)					
3034	БКНС Южный Коныс	Азота (IV) диоксид (Азота диоксид) (0.00718	78.9010989		
		4)			40.0044550		
		Азот (II) оксид (Азота оксид) (6)		0.001167	12.8241758		
		Углерод оксид (Окись углерода,		0.00773	84.9450549		
		Угарный газ) (584)			04.0450540		
2025	No. T. C.	Метан (727*)		0.00773	84.9450549		
3035	CKB. №556	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)		0 000300	10 5001200		
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
	1	Углерод оксид (Окись углерода,	1	0.001822	85.1401869		l

эра v3.0 ип "эко-орда" Таблица 3.10 План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2.	3	5	6	7	8	9
		Угарный газ) (584)			,		
		Метан (727*)		0.001822	85.1401869		
3036	скв. №371	метан (727°) Азота (IV) диоксид (Азота диоксид) (0.001622	114.485981		
3030	CKB. Nº3/I	4)		0.00243	114.403901		
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.000398	85.1401869		
		Угарный газ) (584)		0.001022	03.1401009		
				0 001000	85.1401869		
2027	W200	Метан (727*)		0.001822			
3037	ckb. №388	Азота (IV) диоксид (Азота диоксид) (0.00245	114.485981		
		4)		0 000000	10 5001000		
		Азот (II) оксид (Азота оксид) (6)		0.000398	18.5981308		
		Углерод оксид (Окись углерода,		0.001822	85.1401869		
		Угарный газ) (584)			05 4404060		
		Метан (727*)		0.001822	85.1401869		
6001	ЗУ-1	Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.03085		Сторонняя	0001
		(1502*)				организация	
						на	
						договорной	
						основе	
6002	ЗУ-2	Смесь углеводородов предельных С1-С5		0.03333			
		(1502*)					
6003	3y-3	Смесь углеводородов предельных С1-С5		0.04076			
		(1502*)					
6004	ЗУ-4	Смесь углеводородов предельных С1-С5		0.03333			
		(1502*)					
6005	3y-5	Смесь углеводородов предельных С1-С5		0.03828			
		(1502*)					
6006	37-6	Смесь углеводородов предельных С1-С5		0.03333			
		(1502*)					
6007	ЗУ-7	Смесь углеводородов предельных С1-С5		0.03333			
		(1502*)					
6008	3Y-8	Смесь углеводородов предельных С1-С5		0.03828			
		(1502*)					
6009	ЗУ-9	Смесь углеводородов предельных С1-С5		0.04324			
		(1502*)					

1	2	3	5	6	7	8	9
6010	зу-10	Смесь углеводородов предельных C1-C5 (1502*)		0.05563			
6011	зу-11	Смесь углеводородов предельных C1-C5 (1502*)		0.05067			
6014	ЗУ-14	Смесь углеводородов предельных C1-C5 (1502*)		0.03581			
6015	зу-15	Смесь углеводородов предельных C1-C5 (1502*)		0.03333			
6016	зу-16	Смесь углеводородов предельных C1-C5 (1502*)		0.03581			
6017	ЗУ-Б1	Смесь углеводородов предельных C1-C5 (1502*)		0.04076			
6018	ГУ Бектас	Смесь углеводородов предельных C1-C5 (1502*)		0.03333			
6019	ГУ Южный Коныс	Смесь углеводородов предельных C1-C5 (1502*)		0.05068			
6023	ПСН Кумколь	Смесь углеводородов предельных C1-C5 (1502*)		0.01779			
6024	зу-17	Смесь углеводородов предельных C1-C5 (1502*)		0.03333			
6025	ЗУ-18	(1502*) Смесь углеводородов предельных C1-C5 (1502*)		0.03085			
6027	ЗУ-19	Смесь углеводородов предельных C1-C5 (1502*)		0.03828			
6029	ЗУ-21	(1502*) Смесь углеводородов предельных C1-C5 (1502*)		0.03828			
6030	ГУ Бектас	(1502*) Смесь углеводородов предельных C1-C5 (1502*)		0.03333			
5034	зу-Б3	(1502*) Смесь углеводородов предельных C1-C5 (1502*)		0.03581			
6035	45 км нефтепровода	(1502*) Смесь углеводородов предельных C1-C5 (1502*)		0.00743			
6038	зу-23	(1502*) Смесь углеводородов предельных C1-C5 (1502*)		0.03536			
6039	3У-24	(1302^) Смесь углеводородов предельных С1-С5		0.04076			

1	2	3	5	6	7	8	9
		(1502*)					
6042	цппн	Смесь углеводородов предельных С1-С5		0.17725			
		(1502*)					
047	ЗУ-4Б	Смесь углеводородов предельных С1-С5		0.03085			
		(1502*)					
048	ЗУ-Б5	Смесь углеводородов предельных С1-С5		0.03333			
		(1502*)					
049	ЗУ-6Б	Смесь углеводородов предельных С1-С5		0.03085			
		(1502*)					
228	Вахтовый поселок	Железо (II, III) оксиды (диЖелезо		0.01375			
		триоксид, Железа оксид) /в пересчете					
		на железо/ (274)					
		Марганец и его соединения /в		0.001528			
		пересчете на марганца (IV) оксид/ (
		327)					
		Фтористые газообразные соединения /в		0.000556			
		пересчете на фтор/ (617)					
229	Вахтовый поселок	Сероводород (Дигидросульфид) (518)		0.000035			
		Смесь углеводородов предельных С1-С5		0.663			
		(1502*)					
		Смесь углеводородов предельных С6-С10		0.245			
		(1503*)					
		Пентилены (амилены - смесь изомеров)		0.0245			
		(460)					
		Бензол (64)		0.02254			
		Диметилбензол (смесь о-, м-, п-		0.00284			
		изомеров) (203)					
		Метилбензол (349)		0.02127			
		Этилбензол (675)		0.000588			
		Алканы C12-19 /в пересчете на C/ (0.01247			
		Углеводороды предельные C12-C19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					
281	ЗУ-29	Смесь углеводородов предельных С1-С5		0.03085			
		(1502*)		1		l	

Сырдарьинский район, ТОО СП "КуатАмлонМунай" на 2026 год

1	2	3	5	6	7	8	9
6283	3y-31	Смесь углеводородов предельных C1-C5 (1502*)		0.03288			
6284	зу-32	Смесь углеводородов предельных C1-C5 (1502*)		0.02545			
6285	зу-33	Смесь углеводородов предельных C1-C5 (1502*)		0.03536			
6286	3y-34	Смесь углеводородов предельных C1-C5 (1502*)		0.03783			
6289	ЗУ-37	Смесь углеводородов предельных C1-C5 (1502*)		0.03783			
6290	зу-38	Смесь углеводородов предельных C1-C5 (1502*)		0.03536			
6292	3y-40	Смесь углеводородов предельных C1-C5 (1502*)		0.05518			
6300	зу-43	Смесь углеводородов предельных C1-C5 (1502*)		0.03783			
6301	3y-44	Смесь углеводородов предельных C1-C5 (1502*)		0.03085			
6302	3y-25	Смесь углеводородов предельных C1-C5 (1502*)		0.03333			
6304	зу-27	Смесь углеводородов предельных C1-C5 (1502*)		0.03333			
6305	ЗУ-41	Смесь углеводородов предельных C1-C5 (1502*)		0.03333			

примечание:

Методики проведения контроля:

0001 - Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.

0002 - Инструментальным методом, согласно Перечню методик, действующему на момент проведения мероприятий по контролю.

ЭРА v3.0 ИП "ЭКО-ОРДА" Таблица 3.6

	Но- мер			Нормативы выброс	эв хишикнекqтье во	еществ		
Производство цех, участок	ис- точ- ника	существующ	ее положение	на 2026	год	ндв	3	год дос- тиже
Код и наименование загрязняющего вещества		r/c	т/год	г/с	т/год	r/c	т/год	ния НДВ
1	2	3	4	5	6	7	8	9
(0123) Железо (II, III) ок	силы (лиже	лезо триоксид, Ж	елеза оксид) /в пе	ресчете на(274)		I		1
Неорганизован:			, , , , , , , , , , , , , , , , , , , ,					
Захтовый поселок	6228	0.01375	0.0396	0.01375	0.0396	0.01375	0.0396	1 20
Всего по		0.01375	0.0396	0.01375	0.0396	0.01375	0.0396	20
загрязняющему								
веществу:								
(0143) Марганец и его соед	инения /в	пепесчете на маг	Tahua (IV) ORCHI/	(327)	· · · · · · · · · · · · · · · · · · ·	l .		1
Неорганизован:			(II) ONOMA	\·/				
Захтовый поселок	6228	0.001528	0.0044	0.001528	0.0044	0.001528	0.0044	1 20
Всего по	0220	0.001528	0.0044	0.001528	0.0044	0.001528	0.0044	20
вагрязняющему		0.001320	0.0011	0.001320	0.0011	0.001320	0.0011	`
веществу:								
(0301) Азота (IV) диоксид	/Anoma ##6	L				<u> </u>		1
(0301) АЗОТА (IV) ДИОКСИД Организованны		ксид) (4) Очники						
лрганизованны. ПППН	0051	0.02976 	0.471	0.02976	0.471	0.02976	0.471	2
iiiin	0052	0.02976	0.471	0.02976	0.471	0.02976	0.471	21
	0052	0.02976	0.468	0.02976	0.468	0.02976	0.468	2
	0053	0.02976	0.0523	0.00496	0.468	0.02978	0.0523	20
	0054	0.00496	0.0323	0.00496	0.0323	0.00496	0.384778335	20
	0057	0.012201241	0.364776333	0.00356	0.364776333	0.012201241	0.364776333	2
	0057	0.00356	0.028	0.00356	0.028	0.00356	0.028	2
	0490	0.00356	0.028	0.00356	0.028	0.00356	0.37253	2
				.				
	0644	0.011812 0.02976	0.37253	0.011812 0.02976	0.37253	0.011812 0.02976	0.37253 0.468	21
	1257		0.03904	0.02976	0.468		0.468	20
	1260	0.00491				0.00491		
	1261 1401	0.00491 0.011812	0.03864 0.37253	0.00491 0.011812	0.03864 0.37253	0.00491 0.011812	0.03864 0.37253	20
								20
	1439	0.01069 0.01069	0.169 0.168	0.01069 0.01069	0.169 0.168	0.01069	0.169 0.168	20
	1440					0.01069		2
	1441	0.00181	0.02864	0.00181	0.02864	0.00181	0.02864	
37. 0	1442	0.00181 0.003464	0.0285	0.00181	0.0285 0.0548	0.00181	0.0285	2
Y-2	0003	0.003464	0.0548 0.0548	0.003464 0.003464	0.0548	0.003464	0.0548 0.0548	2 2
У-3	0231					0.003464		
Y-7	1117	0.00371	0.1158	0.00371	0.1158	0.00371	0.1158	2
Y-8	0709	0.00371	0.1158	0.00371	0.1158	0.00371	0.1158	2
39-17	0060	0.00371	0.0586	0.00371	0.0586	0.00371	0.0586	2
39-19	0110	0.00371	0.0586	0.00371	0.0586	0.00371	0.0586	2
3У-24	0124	0.00371	0.0586	0.00371	0.0586	0.00371	0.0586	2
3У-40	1221	0.00371	0.0586	0.00371	0.0586	0.00371	0.0586	21
3Y-B1	0708	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	20

37-E3	1249	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026
ЗУ-4Б	1254	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026
ЗУ-Б5	1253	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026
ГУ Бектас	0072	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026
	0073	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026
	0074	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026
	0075	0.00482	0.1504	0.00482	0.1504	0.00482	0.1504	2026
	0076	0.00482	0.1504	0.00482	0.1504	0.00482	0.1504	2026
	1252	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026
	3029	0.00335	0.053	0.00335	0.053	0.00335	0.053	2026
	3030	0.00335	0.0527	0.00335	0.0527	0.00335	0.0527	2026
ГУ Южный Коныс	1334	0.00718	0.1136	0.00718	0.1136	0.00718	0.1136	2026
	1335	0.00718	0.113	0.00718	0.113	0.00718	0.113	2026
	1419	0.00718	0.1136	0.00718	0.1136	0.00718	0.1136	2026
	1446	0.00718	0.113	0.00718	0.113	0.00718	0.113	2026
ПСН Кумколь	0767	0.00934	0.2944	0.00934	0.2944	0.00934	0.2944	2026
·	0768	0.00934	0.2944	0.00934	0.2944	0.00934	0.2944	2026
	1422	0.341333333	0.4352	0.341333333	0.4352	0.341333333	0.4352	2026
45 км нефтепровода	0019	0.2259	7.2069	0.2259	7.2069	0.2259	7.2069	2026
	0020	0.2259	7.2069	0.2259	7.2069	0.2259	7.2069	2026
	0024	0.1024	0.33536	0.1024	0.33536	0.1024	0.33536	2026
	0025	0.145066667	0.33536	0.145066667	0.33536	0.145066667	0.33536	2026
	0026	0.1536	0.33536	0.1536	0.33536	0.1536	0.33536	2026
	0478	0.2201	6.942	0.2201	6.942	0.2201	6.942	2026
	1424	0.170666667	0.33536	0.170666667	0.33536	0.170666667	0.33536	2026
БКНС Северный Коныс	1431	0.00371	0.0481	0.00371	0.0481	0.00371	0.0481	2026
БКНС Южный Коныс	1438	0.00718	0.1336	0.00718	0.1336	0.00718	0.1336	2026
Bitire lowings registed	3034	0.00718	0.0931	0.00718	0.0931	0.00718	0.0931	2026
скв. №230	1109	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №230	1122	0.00245	0.086	0.00366	0.086	0.00249	0.086	2026
CKB. №573	1124	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №574	1123	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №707	1338	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №708	1339	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №299	1126	0.00245	0.086	0.00243	0.086	0.00245	0.086	2026
CKB. №300	1127	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №285	1125	0.00366	0.086	0.00366	0.086	0.00245	0.086	2026
CKB. №315	0097	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №482	1336	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. Nº538	1311	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №352	1315	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. №5-4	1243	0.002214	0.0763	0.00243	0.069	0.00243	0.069	2026
CKB. №5-4 CKB. №5-17	0712	0.002214	0.069	0.002214	0.069	0.002214	0.069	2026
CKB. №5-17 CKB. №5-20	0520	0.002214	0.069		0.069		0.069	2026
CKB. №5-20 CKB. №5-79	1445	0.002214	0.069	0.002214 0.002214	0.069	0.002214 0.002214	0.069	2026
CKB. №5-79 CKB. №5-89	0522		0.069		0.069		0.069	2026
		0.002214		0.002214		0.002214		2026
CKB. №5-29 CKB. №5-23	0525 1250	0.002214	0.069	0.002214	0.069 0.069	0.002214 0.002214	0.069 0.069	2026
		0.002214		0.002214				
CKB. №5-50	1251	0.002214	0.069	0.002214	0.069	0.002214	0.069	2026
CKB. №5-78	1255	0.002214	0.069	0.002214	0.069	0.002214	0.069	2026
м/р Южный Коныс	1463	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1464	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1465	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1466	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
				157				

	1467	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1468	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1469	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1470	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1471	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1472	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1473	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1474	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1475	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1476	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1477	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1478	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1479	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1480	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1481	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1482	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1483	0.02224	0.1444	0.02224	0.1444	0.02224	0.1444	2026
	1484	0.02224	0.1444	0.02224	0.1444	0.02224	0.1444	2026
	1485	0.02224	0.1444	0.02224	0.1444	0.02224	0.1444	2026
	1486	0.02224	0.1444	0.02224	0.1444	0.02224	0.1444	2026
	1487	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1488	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1489	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1490	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1491	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1492	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1493	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1494	0.02224	0.0486	0.02224	0.0486	0.02224	0.0486	2026
	1495	0.02224	0.04704	0.02224	0.04704	0.02224	0.04704	2026
	1496	0.02224	0.04704	0.02224	0.04704	0.02224	0.04704	2026
	1497	0.02224	0.04704	0.02224	0.04704	0.02224	0.04704	2026
	1498	0.02224	0.04704	0.02224	0.04704	0.02224	0.04704	2026
м/р Северный Коныс	1447	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1448	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1449	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1450	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1451	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1452	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1453	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1454	0.02224	0.432	0.02224	0.432	0.02224	0.432	2026
	1455	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
	1456	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
	1457	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
	1458	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
	1459	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
	1460	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
	1461	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
	1462	0.02224	0.07216	0.02224	0.07216	0.02224	0.07216	2026
скв. №599	1331	0.00366	0.086	0.00366	0.086	0.00366	0.086	2026
CKB. №349	1128	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
ckb. №580	1333	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
ckb. №373	1167	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
ckb. №577	1330	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
3Y-6E	1256	0.00335	0.1046	0.00335	0.1046	0.00335	0.1046	2026

3Y-44	1238	0.00371	0.0586	0.00371	0.0586	0.00371	0.0586	2026
КПРС	3001	0.0583	0.9	0.0583	0.9	0.0583	0.9	2026
	3002	0.0475	0.75	0.0475	0.75	0.0475	0.75	2026
	3003	0.0763	0.6	0.0763	0.6	0.0763	0.6	2026
	3004	0.0763	0.6	0.0763	0.6	0.0763	0.6	2026
	3005	0.00427	0.0336	0.00427	0.0336	0.00427	0.0336	2026
	3006	0.00427	0.0336	0.00427	0.0336	0.00427	0.0336	2026
	3007	0.00427	0.0336	0.00427	0.0336	0.00427	0.0336	2026
	3008	0.00427	0.0336	0.00427	0.0336	0.00427	0.0336	2026
	3009	0.00427	0.0336	0.00427	0.0336	0.00427	0.0336	2026
	3010	0.038	0.6	0.038	0.6	0.038	0.6	2026
	3011	0.038	0.6	0.038	0.6	0.038	0.6	2026
	3012	0.038	0.6	0.038	0.6	0.038	0.6	2026
	3013	0.038	0.6	0.038	0.6	0.038	0.6	2026
	3014	0.038	0.6	0.038	0.6	0.038	0.6	2026
	3015	0.0763	0.6	0.0763	0.6	0.0763	0.6	2026
	3016	0.0801	0.45	0.0801	0.45	0.0801	0.45	2026
	3017	0.0763	0.6	0.0763	0.6	0.0763	0.6	2026
	3018	0.0381	0.3	0.0381	0.3	0.0381	0.3	2026
	3019	0.0521	0.09	0.0521	0.09	0.0521	0.09	2026
	3020	0.0521	0.09	0.0521	0.09	0.0521	0.09	2026
	3021	0.1628	1.8	0.1628	1.8	0.1628	1.8	2026
	3022	0.1628	1.8	0.1628	1.8	0.1628	1.8	2026
	3023	0.1356	1.5	0.1356	1.5	0.1356	1.5	2026
	3024	0.1085	1.2	0.1085	1.2	0.1085	1.2	2026
	3025	0.1085	1.2	0.1085	1.2	0.1085	1.2	2026
	3026	0.0543	0.6	0.0543	0.6	0.0543	0.6	2026
ЗУ-41	1233	0.00371	0.0586	0.00371	0.0586	0.00371	0.0586	2026
скв. №Б-92	0523	0.002214	0.069	0.002214	0.069	0.002214	0.069	2026
CKB. №5-85	1324	0.002211	0.069	0.002211	0.069	0.002211	0.069	2026
CKB. №5-93	3027	0.002214	0.069	0.002211	0.069	0.002211	0.069	2026
скв. №Б-94	3028	0.002211	0.069	0.002211	0.069	0.002211	0.069	2026
CKB. №556	3035	0.00245	0.0765	0.00245	0.0765	0.00245	0.0765	2026
CKB. Nº371	3036	0.00245	0.03176	0.00245	0.03176	0.00245	0.03176	2026
CKB. Nº388	3037	0.00245	0.03176	0.00245	0.03176	0.00245	0.03176	2026
3y-22	0170	0.00243	0.0586	0.00243	0.05170	0.00243	0.0586	2026
скв. №706	1340	0.00371	0.03176	0.00371	0.03176	0.00245	0.03176	2026
Всего по	1340	4.772073908	63.068648335	4.772073908	63.068648335	4.772073908	63.068648335	2026
загрязняющему		4.772073900	03.000040333	4.772073300	03.000040333	4.772073900	03.000040333	2020
веществу:								
		(6)						
(0304) Азот (II) оксид (Азот								
Организованные	ист	очники 0.00484	0.0766	0.00484	0.0766 l	0.00484	0.0766	2026
Циин	0051	0.00484	0.0766	0.00484	0.0766	0.00484	0.0766	2026
		0.00484	0.076		0.076			2026
	0053			0.00484		0.00484	0.076	
	0054	0.000806	0.0085	0.000806	0.0085	0.000806	0.0085	2026
	0056	0.001982702	0.062526479	0.001982702	0.062526479	0.001982702	0.062526479	2026
	0057	0.000579	0.00455	0.000579	0.00455	0.000579	0.00455	2026
	0058	0.000579	0.00455	0.000579	0.00455	0.000579	0.00455	2026
	1257	0.00484	0.076	0.00484	0.076	0.00484	0.076	2026
	1260	0.000798	0.00634	0.000798	0.00634	0.000798	0.00634	2026
	1261	0.000798	0.00628	0.000798	0.00628	0.000798	0.00628	2026
	1439	0.001737	0.02747	0.001737	0.02747	0.001737	0.02747	2026
1	1440	0.001737	0.0273	0.001737	0.0273	0.001737	0.0273	2026
				159				

							•	
	1441	0.0002943	0.00465	0.0002943	0.00465	0.0002943	0.00465	2026
	1442	0.0002943	0.00463	0.0002943	0.00463	0.0002943	0.00463	2026
ЗУ-2	0003	0.000563	0.0089	0.000563	0.0089	0.000563	0.0089	2026
3Y-3	0231	0.000563	0.0089	0.000563	0.0089	0.000563	0.0089	2026
3y-7	1117	0.000603	0.0188	0.000603	0.0188	0.000603	0.0188	2026
3Y-8	0709	0.000603	0.0188	0.000603	0.0188	0.000603	0.0188	2026
ЗУ-17	0060	0.000603	0.00953	0.000603	0.00953	0.000603	0.00953	2026
зу-19	0110	0.000603	0.00953	0.000603	0.00953	0.000603	0.00953	2026
3y-24	0124	0.000603	0.00953	0.000603	0.00953	0.000603	0.00953	2026
ЗУ-40	1221	0.000603	0.00953	0.000603	0.00953	0.000603	0.00953	2026
ЗУ-Б1	0708	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
ЗУ-БЗ	1249	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
ЗУ-4Б	1254	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
ЗУ-Б5	1253	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
ГУ Бектас	0072	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
	0073	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
	0074	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
	0075	0.000784	0.02444	0.000784	0.02444	0.000784	0.02444	2026
	0076	0.000784	0.02444	0.000784	0.02444	0.000784	0.02444	2026
	1252	0.000545	0.017	0.000545	0.017	0.000545	0.017	2026
	3029	0.000545	0.0086	0.000545	0.0086	0.000545	0.0086	2026
	3030	0.000545	0.00857	0.000545	0.00857	0.000545	0.00857	2026
ГУ Южный Коныс	1334	0.001167	0.01846	0.001167	0.01846	0.001167	0.01846	2026
1 y lowing Rolling	1335	0.001167	0.01837	0.001167	0.01837	0.001167	0.01837	2026
	1419	0.001167	0.01846	0.001167	0.01846	0.001167	0.01846	2026
	1446	0.001167	0.01837	0.001167	0.01837	0.001167	0.01837	2026
ПСН Кумколь	0767	0.001107	0.0478	0.001107	0.0478	0.001107	0.0478	2026
TICH RYMROSID	0768	0.001517	0.0478	0.001517	0.0478	0.001517	0.0478	2026
	1422	0.055466667	0.07072	0.055466667	0.07072	0.055466667	0.07072	2026
45 км нефтепровода	0024	0.01664	0.054496	0.033400007	0.054496	0.01664	0.054496	2026
чэ км пефтепровода	0025	0.023573333	0.054496	0.023573333	0.054496	0.023573333	0.054496	2026
	0026	0.02496	0.054496	0.02496	0.054496	0.02496	0.054496	2026
	1424	0.027733333	0.054496	0.027733333	0.054496	0.027733333	0.054496	2026
БКНС Северный Коныс	1431	0.000603	0.00781	0.000603	0.00781	0.000603	0.00781	2026
БКНС Южный Коныс	1438	0.001167	0.0217	0.001167	0.0217	0.001167	0.0217	2026
Dittie lowings Rouge	3034	0.001167	0.01513	0.001167	0.01513	0.001167	0.01513	2026
CKB. №230	1109	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. №240	1122	0.000595	0.01398	0.000595	0.01398	0.000595	0.01398	2026
CKB. Nº573	1124	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. Nº574	1123	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. №707	1338	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. №708	1339	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. №299	1126	0.000595	0.01398	0.000595	0.01398	0.000595	0.01398	2026
CKB. №300	1127	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. №285	1125	0.000595	0.01243	0.000595	0.01398	0.000595	0.01398	2026
CKB. №315	0097	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. Nº482	1336	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. Nº538	1311	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CKB. №352	1315	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	2026
CRB. Nº5-2	1243	0.000398	0.01243	0.000396	0.01243	0.000396	0.01243	2026
CKB. Nº5-17	0712	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	2026
CKB. NB-17 CKB. NB-20	0520	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	2026
CKB. Nº5-79	1445	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	2026
CKB. NB-79	0522	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	2026
CKB. ND-09	1 0222	0.00036	0.01122	0.00036	1 0.01122	0.00036	0.01122	2020

Care, 1987-35 1250 0.00036 0.01122 0.00036 0.01122 2026 Care, 1987-90 1251 0.00036 0.01122 0.00036 0.01122 2026 Care, 1987-90 1255 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 2026 Care, 1987-978 1255 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 2026 Care, 1987-98 1255 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.	CKB. №5-29	l 0525 l	0.00036 	0.01122	0.00036	0.01122	0.00036	0.01122	2026
CRES. 1985-50 1251 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00036 0.0	l .								
cmm, N=-78 1255 0.00036 0.01122 0.00036 0.01122 0.00036 0.01122 0.00364 0.0702 0.00364 0.00704 0.00364 0.00704 0.00364 0.00704 0.00364 0.00704 0.00364 0.00704 0.00364 0.00704	l .								
x/p fixenest kniece 1463 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1466 0.003614 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1466 0.003614 0.003614 0.0702 0.003614 0.0702 2026 0.003614 0.0702 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.00	l .		0.00036						
1466 0.003614 0.0702 0.003614 0.003			0.003614						
1465 0.003614 0.0702 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.00361									
1466									
1467									I I
1468 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1470 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1471 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1472 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1473 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1475 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1477 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1478 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1477 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1478 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1479 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1479 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1480 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1481 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1482 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1483 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1483 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1484 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1485 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1486 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1487 0.003614 0.0702 0.003614 0.0079 0.003614 0.007								0.0702	
1469 0.003614 0.0702 0.003614 0.0703 0.003614 0.0703 0.003614 0.0702 0.003614 0.0702 0.003614 0.0703 0.003614 0.0703 0.003614 0.0703 0.003614 0.									
1470									
1471			0.003614			0.0702	0.003614	0.0702	2026
1473 0.003614 0.0702 0.003614 0.0036									
1473 0.003614 0.0702 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614		1472	0.003614	0.0702	0.003614	0.0702	0.003614	0.0702	2026
1475 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1476 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1477 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1478 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1479 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1480 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1481 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1482 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1483 0.003614 0.02346 0.003614 0.0702 0.003614 0.0702 2026 1484 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 2026 1485 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 2026 1486 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 2026 1487 0.003614 0.003614 0.003614 0.02346 0.003614 0.02346 2026 1488 0.003614 0.00		1473	0.003614		0.003614		0.003614	0.0702	2026
1476 0.003614 0.0702 0.003614 0.003		1474	0.003614	0.0702	0.003614	0.0702	0.003614	0.0702	2026
1477 0.003614 0.0702 0.003614 0.070346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.0			0.003614	0.0702	0.003614	0.0702	0.003614		2026
1478		1476		0.0702	0.003614	0.0702	0.003614		2026
1479 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0		1477	0.003614	0.0702	0.003614	0.0702	0.003614	0.0702	2026
1480				0.0702	0.003614			0.0702	2026
1481 0.03614 0.0702 0.03614 0.0702 0.03614 0.0702 0.03614 0.0702 0.03614 0.0702 0.03614 0.0702 0.03614 0.0702 0.03614 0.0702 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614 0.0079 0.03614		1479	0.003614	0.0702		0.0702	0.003614	0.0702	2026
1482 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.007346 0.003614 0.00734 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732 0.003614 0.00732		1480	0.003614	0.0702	0.003614		0.003614		2026
1483 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.0079 </td <td></td> <td></td> <td></td> <td>0.0702</td> <td>0.003614</td> <td>0.0702</td> <td></td> <td></td> <td>2026</td>				0.0702	0.003614	0.0702			2026
1484 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 0.003614 0.003614 0.00346 0.003614 0.003614 0.003614 0.003614 0.0079 0.00					0.003614		0.003614		
1485 0.003614 0.02346 0.003614 0.02346 0.003614 0.02346 2026 1487 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.0079 0.00									
1486 0.003614 0.02346 0.003614 0.003614 0.003614 0.003614 0.003614 0.003614 0.0079 0.03614 0.00379 2026 1488 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1489 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1491 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614									
1487 0.003614 0.0079 0.003614 0.007644 0.003614 0.007644 0.003614 0.003614									I I
1488 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1489 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1490 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1491 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1493 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1494 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1494 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1495 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614									
1489 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1490 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1491 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1493 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644									
1490 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1492 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1493 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1494 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1495 0.003614 0.007644 0.0036									
1491 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1493 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1494 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1495 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1495 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 1496 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 1497 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 1497 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 2026 1498 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 2026 1448 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1448 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1450 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1451 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1451 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1453 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1454 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1454 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1454 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1455 0.003614 0.011726 0.003614 0.0117									
1492 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1493 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 2026 1494 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 1495 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 2026 1496 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 2026 1497 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 2026 1498 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 2026 1447 0.003614 0.00702 0.003614 0.00702 0.003614 0.00702 1448 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1449 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1450 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1451 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1452 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1453 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1454 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1455 0.003614 0.01726 0.003614 0.01726 0.003614 0.011726 0.00361			0.003614						
1493 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.007644 0.003614 0.00702 0.003614 0.007644 0.00762 0.003614 0.00762									
1494 0.003614 0.0079 0.003614 0.0079 0.003614 0.0079 0.003614 0.007644 0.007644 0.003614 0.007644 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.00762 0.003614 0.007									
1495 0.003614 0.007644 0.003614 0.00762 0.003614 0.0070									
1496 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.003614 0.007644 0.007644 0.003614 0.007644 0.007644 0.003614 0.00702 0.00									
1497 0.003614 0.007644 0.003614 0.007644 0.003614 0.003614 0.007644 2026 0.003614 0.003614 0.007644 0.003614 0.007644 2026 0.003614 0.007644 0.003614 0.007644 2026 0.003614 0.007644 0.003614 0.007644 2026 0.003614 0.00702 0.0									
м/р Северный Коныс									
М/р Северный Коныс									I I
1448	V/n Cananyay Mayara				0.003614				
1449	м/р северный коныс								
1450									
1451 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.001726 0.003614									I I
1452 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 1453 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 1454 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 1455 0.003614 0.011726 0.003614 0.011726 0.003614 0.001726 0.003614 0.011726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614									
1453 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 0.003614 0.011726 0.003614 0.001726 0.003614 0.001726 <									
1454 0.003614 0.0702 0.003614 0.0702 0.003614 0.0702 2026 1455 0.003614 0.011726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726 0.003614 0.001726									
$ \begin{bmatrix} 1455 \\ 1456 \\ 0.003614 \\ 1457 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.0011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.011726 \\ 0.003614 \\ 0.001726 \\ 0.0036$									
1456 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.0011726 0.003									
1457 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614<									
1458 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 0.001726 0.003614 0.011726 0.003614 0.001726 0.001726<									I I
1459 0.003614 0.011726 0.003614 0.011726 0.003614 0.011726 2026									
									I I
				0.011726		0.011726			

1	1461	0 000014	0.011706	0.000614	0.011706	0.000614	0.011706	000
	1461 1462	0.003614 0.003614	0.011726 0.011726	0.003614 0.003614	0.011726 0.011726	0.003614 0.003614	0.011726 0.011726	202 202
CKB. №599	1331	0.003614	0.011726	0.003614	0.011726	0.003614	0.011726	202
		0.000398		l l				202
скв. №349	1128		0.01243	0.000398	0.01243	0.000398	0.01243	
CKB. №580	1333	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	202
CKB. №373	1167	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	202
CKB. №577	1330	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	202
ЗУ-6Б	1256	0.000545	0.017	0.000545	0.017	0.000545	0.017	202
ЗУ-44	1238	0.000603	0.00953	0.000603	0.00953	0.000603	0.00953	202
КПРС	3001	0.0758	1.17	0.0758	1.17	0.0758	1.17	202
	3002	0.0618	0.975	0.0618	0.975	0.0618	0.975	202
	3003	0.0991	0.78	0.0991	0.78	0.0991	0.78	202
	3004	0.0991	0.78	0.0991	0.78	0.0991	0.78	202
	3005	0.000694	0.00546	0.000694	0.00546	0.000694	0.00546	202
	3006	0.000694	0.00546	0.000694	0.00546	0.000694	0.00546	202
	3007	0.000694	0.00546	0.000694	0.00546	0.000694	0.00546	202
	3008	0.000694	0.00546	0.000694	0.00546	0.000694	0.00546	202
	3009	0.000694	0.00546	0.000694	0.00546	0.000694	0.00546	202
	3010	0.0494	0.78	0.0494	0.78	0.0494	0.78	202
	3011	0.0494	0.78	0.0494	0.78	0.0494	0.78	202
	3012	0.0494	0.78	0.0494	0.78	0.0494	0.78	202
	3013	0.0494	0.78	0.0494	0.78	0.0494	0.78	202
	3014	0.0494	0.78	0.0494	0.78	0.0494	0.78	20:
	3015	0.0991	0.78	0.0991	0.78	0.0991	0.78	202
	3016	0.1041	0.585	0.1041	0.585	0.1041	0.585	202
	3017	0.0991	0.78	0.0991	0.78	0.0991	0.78	202
	3018	0.0495	0.39	0.0495	0.39	0.0495	0.39	20:
	3019	0.0677	0.117	0.0677	0.117	0.0677	0.117	20:
	3020	0.0677	0.117	0.0677	0.117	0.0677	0.117	202
	3021	0.2116	2.34	0.2116	2.34	0.2116	2.34	202
	3022	0.2116	2.34	0.2116	2.34	0.2116	2.34	202
	3023	0.1763	1.95	0.1763	1.95	0.1763	1.95	202
	3024	0.141	1.56	0.141	1.56	0.141	1.56	202
	3025	0.141	1.56	0.141	1.56	0.141	1.56	202
	3025	0.0705	0.78	0.0705	0.78	0.0705	0.78	202
зу-41	1233	0.000603	0.00953	0.000603	0.00953	0.000603	0.00953	202
CKB. №5-92	0523	0.00036	0.00333	0.000003	0.01122	0.00036	0.00333	202
CKB. №5-92	1324	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	20:
CKB. №5-03	3027	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	202
CKB. NºB-93	3027	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	202
CKB. Nº556	3028	0.00036	0.01122	0.00036	0.01122	0.00036	0.01122	20.
CKB. Nº370	3035	0.000398	0.01243	0.000398	0.01243	0.000398	0.01243	20.
CKB. N388	3036							20:
		0.000398	0.00516	0.000398	0.00516	0.000398	0.00516	
ЗУ-22	0170	0.000603	0.00953	0.000603	0.00953	0.000603	0.00953	201
CKB. №706	1340	0.000398	0.00516	0.000398	0.00516	0.000398	0.00516	202
Всего по		2.429715635	24.887794479	2.429715635	24.887794479	2.429715635	24.887794479	202
загрязняющему								
веществу:								
(0328) Углерод (Сажа, Углеро								
Организованные		очники						
цппн	0056	0.010167701	0.320648612	0.010167701	0.320648612	0.010167701	0.320648612	202
	1422	0.015873333	0.01942862	0.015873333	0.01942862	0.015873333	0.01942862	202
*		0 0 4 0 1	1.552	0.0491	1.552	0.0491	1.552	20:
ПСН Кумколь 45 км нефтепровода	0019	0.0491						
*	0019	0.0491	1.552	0.0491	1.552	0.0491	1.552	202

1	0024	0.004762	0.014971466	0.004762	0.014971466	0.004762	0.014971466	2026
	0025	0.006746167	0.014971466	0.006746167	0.014971466	0.006746167	0.014971466	2026
	0026	0.007143	0.014971466	0.007143	0.014971466	0.007143	0.014971466	2026
	0478	0.0589	1.8622	0.0589	1.8622	0.0589	1.8622	2026
	1424	0.007936667	0.014971466	0.007936667	0.014971466	0.007936667	0.014971466	2026
КПРС	3001	0.007936667	0.0149/1466	0.00/93666/		0.007936667	0.0149/1466	2026
KIIPC					0.15			
	3002	0.00792	0.125	0.00792	0.125	0.00792	0.125	2026
	3003	0.0127	0.1	0.0127	0.1	0.0127	0.1	2026
	3004	0.0127	0.1	0.0127	0.1	0.0127	0.1	2026
	3005	0.001908	0.015	0.001908	0.015	0.001908	0.015	2026
	3006	0.001908	0.015	0.001908	0.015	0.001908	0.015	2026
	3007	0.001908	0.015	0.001908	0.015	0.001908	0.015	2026
	3008	0.001908	0.015	0.001908	0.015	0.001908	0.015	2026
	3009	0.001908	0.015	0.001908	0.015	0.001908	0.015	2026
	3010	0.00633	0.1	0.00633	0.1	0.00633	0.1	2026
	3011	0.00633	0.1	0.00633	0.1	0.00633	0.1	2026
	3012	0.00633	0.1	0.00633	0.1	0.00633	0.1	2026
	3012	0.00633	0.1	0.00633	0.1	0.00633	0.1	2026
	3013	0.00633	0.1	0.00633	0.1	0.00633	0.1	2026
	3015	0.0127	0.1	0.0127	0.1	0.0127	0.1	2026
	3016	0.01335	0.075	0.01335	0.075	0.01335	0.075	2026
	3017	0.0127	0.1	0.0127	0.1	0.0127	0.1	2026
	3018	0.00635	0.05	0.00635	0.05	0.00635	0.05	2026
	3019	0.00868	0.015	0.00868	0.015	0.00868	0.015	2026
	3020	0.00868	0.015	0.00868	0.015	0.00868	0.015	2026
	3021	0.0271	0.3	0.0271	0.3	0.0271	0.3	2026
	3022	0.0271	0.3	0.0271	0.3	0.0271	0.3	2026
	3023	0.0226	0.25	0.0226	0.25	0.0226	0.25	2026
	3024	0.0181	0.2	0.0181	0.2	0.0181	0.2	2026
	3025	0.0181	0.2	0.0181	0.2	0.0181	0.2	2026
	3026	0.00904	0.1	0.00904	0.1	0.00904	0.1	2026
D	3020			0.478458868	8.121163096			2026
Всего по		0.478458868	8.121163096	0.4/8458868	8.121163096	0.478458868	8.121163096	2026
загрязняющему								
веществу:								
(0330) Сера диоксид (Ангидри			аз, Сера (IV) окси	д) (516)				
Организованные								
ПСН Кумколь	1422	0.133333333	0.17	0.133333333	0.17	0.133333333	0.17	2026
45 км нефтепровода	0024	0.04	0.131	0.04	0.131	0.04	0.131	2026
	0025	0.056666667	0.131	0.056666667	0.131	0.056666667	0.131	2026
	0026	0.06	0.131	0.06	0.131	0.06	0.131	2026
	1424	0.066666667	0.131	0.066666667	0.131	0.066666667	0.131	2026
кпрс	3001	0.01944	0.3	0.01944	0.3	0.01944	0.3	2026
	3002	0.01583	0.25	0.01583	0.25	0.01583	0.25	2026
	3002	0.0254	0.2	0.0254	0.2	0.0254	0.2	2026
	3003	0.0254	0.2	0.0254	0.2	0.0254	0.2	2026
	3004	0.0254	0.353	0.0254	0.353	0.0254	0.353	2026
	3006	0.0449	0.353	0.0449	0.353	0.0449	0.353	2026
	3007	0.0449	0.353	0.0449	0.353	0.0449	0.353	2026
	3008	0.0449	0.353	0.0449	0.353	0.0449	0.353	2026
	3009	0.0449	0.353	0.0449	0.353	0.0449	0.353	2026
	3010	0.01267	0.2	0.01267	0.2	0.01267	0.2	2026
	3011	0.01267	0.2	0.01267	0.2	0.01267	0.2	2026
	3012	0.01267	0.2	0.01267	0.2	0.01267	0.2	2026
	3013	0.01267	0.2	0.01267	0.2	0.01267	0.2	2026
•	. '		'	•	1	·	'	
				163				

SOLID COUNTY CO	1								
2016 0.0267 0.15 0.0267 0.026		3014	0.01267	0.2	0.01267	0.2	0.01267	0.2	2026
1,077 0.0754 0.2 0.0267 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0127 0.1 0.0278 0.00 0.0000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.00000178 0.000000178 0.000000178 0.0000000000000000000000000000000000		1							
3018									
3019 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.01736 0.03 0.05 0.0542 0.6 0.0542		1							
3020		1							
S071 N.0943 O.6 N.0943 O.6 O.0943			0.01736				0.01736	0.03	2026
S022 0.543 0.6 0.0543 0.6 0.0545 0.5 2026			0.01736				0.01736	0.03	2026
3023		3021	0.0543	0.6	0.0543	0.6	0.0543	0.6	2026
Section State Section Sectio		3022	0.0543	0.6	0.0543	0.6	0.0543	0.6	2026
Beeton 3025 0.0362 0.4 0.0362 0.4 0.0362 0.4 20.0681 0.2 0.0181 0.2 0.0181 0.2 0.028		3023	0.0452	0.5	0.0452	0.5	0.0452	0.5	2026
Ecero no 1.099806667 7.819 1.099806667 7.819 1.099806667 7.819 2026		3024	0.0362	0.4	0.0362	0.4	0.0362	0.4	2026
Hoero по		3025	0.0362	0.4	0.0362	0.4	0.0362	0.4	2026
Comparison Com		3026	0.0181	0.2	0.0181	0.2	0.0181	0.2	2026
	Всего по		1.099806667	7.819	1.099806667	7.819	1.099806667	7.819	2026
OPT B N M 3 O B B N N E	загрязняющему								
Company	веществу:								
Unite	(0333) Сероводород (Дигидрос	сульфид)	(518)						
1410									.
1412	цппн								
1413		1410						0.01358	2026
39-1		1412							
39-2		1413	0.0000665	0.000000714	0.0000665	0.00000714	0.0000665	0.00000714	2026
397-3	зу-1	0900	0.00001108	0.0000001788	0.00001108	0.000001788	0.00001108	0.000001788	2026
397-4	зу-2	0901	0.00001108	0.0000001788	0.00001108	0.000001788	0.00001108	0.000001788	2026
397-4	3y-3	0902	0.00001108	0.0000001788	0.00001108	0.000001788	0.00001108	0.000001788	2026
39-7	3y-4	0903	0.00001108	0.0000001788	0.00001108	0.000001788	0.00001108		2026
397-7	3y-5	0904	0.00001108	0.0000001788	0.00001108	0.000001788	0.00001108	0.000001788	2026
33-8 0.907 0.00001108 0.000001788 0.0001108 0.000001788 0.0001108 0.000001788 2026	3y-7	0906	0.00001108			0.0000001788			2026
39-9	1	0907							
3y-10									
33-11									
39-14 0.00001108 0.000001788 0.0000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.0000001788 0.000000000000000000000000000000000									
3y-15									
Sy-16		1							
Sy-17		1							
Sy-18 0915 0.00001108 0.000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.000000000000000000000000000000000									
3y-19		1							
3y-21		1							
Sy-23									
Sy-24 0919 0.00001108 0.000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.000001788 0.000001108 0.0000001788 0.000001788 0.000001108 0.0000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.0000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.000000000000000000000000000000000									
Sy-25									
Sy-29		1							
Sy-31	1	1							
Sy-32	1								
Sy-33									
Sy-34	I	1							
Sy-37									
3y-38 0926 0.00001108 0.000001788 0.0000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.0000001788 0.0000001788 0.000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.00000000000000000000000000000000000									
3y-40 0927 0.00001108 0.0000001788 0.000001108 0.0000001788 0.000001108 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.00000000000000000000000000000000000		1							
3y-43 0928 0.00001108 0.000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.0000001788 0.00000001788 0.00000000000000000000000000000000000									
3y-B1									
3y-B3 0.00001108 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.000001788 0.00000001788 0.0000001788 0.00000001788 0.00000001788 0.00000001788 0.00000001788 0.00000001788 0.00000001788 0.00000001788 0.00000001788 0.000000000000000000000000000000000	l .								
3y-4B 0932 0.00001108 0.000001788 0.000001788 0.000001788 0.000001788 2026									
		1							
	3y-4B	0932	0.00001108	0.0000001788	•	0.0000001788	0.00001108	0.0000001788	2026

ЗУ-Б5								
	0937	0.00001108	0.0000001788	0.00001108	0.0000001788	0.00001108	0.0000001788	2026
ГУ Бектас	0930	0.00001108	0.0000001788	0.00001108	0.000001788	0.00001108	0.000001788	2026
	0934	0.0001108	0.0000001428	0.0001108	0.0000001428	0.0001108	0.000001428	2026
	0935							2026
	0936	0.00001108	0.000000214	0.00001108	0.000000214	0.00001108	0.000000214	2026
	3033							2026
ГУ Южный Коныс	1421	0.0001662	0.000978	0.0001662	0.000978	0.0001662	0.000978	2026
ПСН Кумколь	1423	0.00001108	0.0000000515	0.00001108	0.0000000515	0.00001108	0.0000000515	2026
45 км нефтепровода	1425	0.00001108	0.0000000515	0.00001108	0.0000000515	0.00001108	0.000000515	2026
БКНС Северный Коныс	1405	0.0002216	0.001682	0.0002216	0.001682	0.0002216	0.001682	2026
	1426	0.0002216	0.002694	0.0002216	0.002694	0.0002216	0.002694	2026
	1427	0.0002216	0.002694	0.0002216	0.002694	0.0002216	0.002694	2026
	1428	0.0002216	0.001884	0.0002216	0.001884	0.0002216	0.001884	2026
	1429	0.0002216	0.000808	0.0002216	0.000808	0.0002216	0.000808	2026
FIGURE 10	1430 1432	0.0002216	0.000808	0.0002216	0.000808	0.0002216	0.000808	2026 2026
БКНС Южный Коныс	1432	0.0002216 0.0002216	0.00416 0.00416	0.0002216 0.0002216	0.00416	0.0002216 0.0002216	0.00416 0.00416	2026
	1433	0.0002216	0.00416	0.0002216	0.00416	0.0002216	0.00416	2026
	1434	0.0002216	0.00416	0.0002216	0.00416	0.0002216	0.00416	2026
	1436	0.00001108	0.000000515	0.00002210	0.000000515	0.00002210	0.000000515	2026
ЗУ-6Б	0938	0.00001108	0.0000000313	0.00001108	0.0000000313	0.00001108	0.0000000313	2026
3y-44	0939	0.00001108	0.0000001788	0.00001108	0.0000001788	0.00001100	0.0000001788	2026
ЗУ-6	0905	0.00001108	0.0000001788	0.00001108	0.0000001788	0.00001100	0.0000001788	2026
ЗУ-27	0940	0.00001108	0.0000001788	0.00001108	0.0000001788	0.00001108	0.0000001788	2026
3y-41	0941	0.00001108	0.0000001788	0.00001108	0.0000001788	0.00001108	0.0000001788	2026
Неорганизованн			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Вахтовый поселок	6229	0.000035	0.000102	0.000035	0.000102	0.000035	0.000102	2026
Всего по			0.0572383329	0.00494594	0.0572383329	0.00494594	0.0572383329	2026
		0.00494594				0.00494594	0.0572383329	2026
Всего по						0.00494594	0.0572383329	2026
Всего по загрязняющему	углерода	0.00494594				0.00494594	0.0572383329	2026
Всего по загрязняющему веществу:		0.00494594	0.0572383329			0.00494594	0.0572383329	2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись		0.00494594	0.0572383329	0.00494594		0.00494594	0.0572383329	2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052	0.00494594 , Угарный газ) (очники 0.0233 0.0233	0.0572383329 584) 0.3685 0.3685	0.00494594 0.0233 0.0233	0.0572383329 0.3685 0.3685	0.0233 0.0233	0.3685 0.3685	2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052 0053	0.00494594 , Угарный газ) (очники 0.0233 0.0233 0.0233	0.0572383329 584) 0.3685 0.3685 0.3665	0.00494594 0.0233 0.0233 0.0233	0.0572383329 0.3685 0.3685 0.3665	0.0233 0.0233 0.0233	0.3685 0.3685 0.3665	2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052 0053 0054	0.00494594 , Угарный газ) (очники 0.0233 0.0233 0.0233 0.0233	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001	0.00494594 0.0233 0.0233 0.0233 0.0233 0.0095	0.0572383329 0.3685 0.3685 0.3665 0.1001	0.0233 0.0233 0.0233 0.0233 0.0095	0.3685 0.3685 0.3665 0.1001	2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052 0053 0054 0056	0.00494594 , Угарный газ) (0 чники 0.0233 0.0233 0.0233 0.0095 0.101677008	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124	0.00494594 0.0233 0.0233 0.0233 0.0233 0.0095 0.101677008	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124	0.0233 0.0233 0.0233 0.0233 0.0095 0.101677008	0.3685 0.3685 0.3665 0.1001 3.206486124	2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ИСТ 0051 0052 0053 0054 0056 0057	0.00494594 , Угарный газ) (0 чники 0.0233 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299	0.00494594 0.0233 0.0233 0.0233 0.0033 0.0095 0.101677008 0.003806	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299	0.0233 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299	2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ИСТ 0051 0052 0053 0054 0056 0057	0.00494594 , Угарный газ) (0 чники 0.0233 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299	0.00494594 0.0233 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	И С Т 0051 0052 0053 0054 0056 0057 0058 0490	0.00494594 , Угарный газ) (0 чники 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.003806	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.003806	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492	0.0233 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.003806	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052 0053 0054 0056 0057 0058 0490 0644	0.00494594 , Угарный газ) (0 Ч н и к и 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0018 0.0618	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0018 0.0618	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0018	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257	0.00494594 , Угарный газ) (0 чники 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.00618 0.0618 0.0233	0.0572383329 584) 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.00618 0.0618 0.0618	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ИСТ 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260	0.00494594 , Угарный газ) (0 чники 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944	0.0572383329 584) 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ИСТ 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261	0.00494594 , Угарный газ) (0 чники	0.0572383329 584) 0.3685 0.3685 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0618 0.0233 0.00944 0.00944	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ИСТ 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401	0.00494594 , Угарный газ) (0 чники	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.00944	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.075 0.0743 1.9492	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	И С Т 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439	0.00494594 , Угарный газ) (0 чники	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0233 0.00944 0.00944 0.00944 0.00943	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.00944	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439 1440	0.00494594 , Угарный газ) (0 Ч н и к и	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0233 0.00944 0.00944 0.00943 0.00943	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.00944	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.0775 0.0743 1.9492 0.1482	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись Организованные	ист 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439 1440	0.00494594 , Угарный газ) (0 Ч н и к и	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0233 0.00944 0.00944 0.00943 0.00943 0.00943 0.00943 0.00943	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.0618 0.00943 0.00943	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись О р г а н и з о в а н н ы е цппн	ист 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439 1440 1441 1442	0.00494594 , Угарный газ) (0 Ч н и к и	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.00943 0.00943 0.00943 0.00388 0.00388	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.1482 0.1482 0.0614 0.0611	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00943 0.00943 0.00943 0.00943	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись О р г а н и з о в а н н ы е цппн	ИСТ 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439 1440 1441 1442 0003	0.00494594 , Угарный газ) (0 Ч н и к и 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.0618 0.0618 0.0618 0.0233 0.00944 0.00944 0.00944 0.00943 0.00943 0.00943 0.00948	0.0572383329 584) 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.1492 0.1482 0.0614 0.0611 0.1467	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0233 0.00944 0.00944 0.00943 0.00943 0.00388 0.00388 0.00388 0.00388	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.0611	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00943 0.00943 0.00943 0.00943 0.00388 0.00388 0.00388	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись О рганизованные ЦППН ЗУ-2 ЗУ-3	ИСТ 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439 1440 1441 1442 0003 0231	0.00494594 , Угарный газ) (0 Ч н и к и	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.1467 0.1467	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.00943 0.00943 0.00943 0.00943 0.00948 0.00388 0.00388 0.00388 0.00928 0.00928	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1492 0.1494 0.1495 0.0614 0.0611 0.1467	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00943 0.00943 0.00943 0.00943 0.00943 0.00943	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.1467	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись О р г а н и з о в а н н ы е цппн	ИСТ 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439 1440 1441 1442 0003 0231 1117	0.00494594 , Угарный газ) (0 Ч н и к и	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.1467 0.241	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.00943 0.00943 0.00388 0.00388 0.00388 0.00388 0.00388 0.00928 0.00928	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.1467 0.241	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.0618 0.00943 0.00943 0.00943 0.00943 0.00948	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.1467 0.1467	2026 2026 2026 2026 2026 2026 2026 2026
Всего по загрязняющему веществу: (0337) Углерод оксид (Окись О рганизованные ЦППН	ИСТ 0051 0052 0053 0054 0056 0057 0058 0490 0644 1257 1260 1261 1401 1439 1440 1441 1442 0003 0231	0.00494594 , Угарный газ) (0 Ч н и к и	0.0572383329 584) 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.1467 0.1467	0.00494594 0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.0618 0.0618 0.0233 0.00944 0.00944 0.00943 0.00943 0.00943 0.00943 0.00948 0.00388 0.00388 0.00388 0.00928 0.00928	0.0572383329 0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1492 0.1494 0.1495 0.0614 0.0611 0.1467	0.0233 0.0233 0.0233 0.0095 0.101677008 0.003806 0.003806 0.0618 0.0618 0.0233 0.00944 0.00943 0.00943 0.00943 0.00943 0.00943 0.00943	0.3685 0.3685 0.3665 0.1001 3.206486124 0.0299 0.0299 1.9492 1.9492 0.3665 0.075 0.0743 1.9492 0.149 0.1482 0.0614 0.0611 0.1467	2026 2026 2026 2026 2026 2026 2026 2026

ЗУ-19	0110	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
3y-24	0124	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
3Y-40	1221	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
ЗУ-Б1	0708	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
ЗУ-Б3	1249	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
ЗУ-4Б	1254	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
ЗУ-Б5	1253	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
ГУ Бектас	0072	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	0073	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	0074	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	0075	0.00882	0.275	0.00882	0.275	0.00882	0.275	2026
	0076	0.00882	0.275	0.00882	0.275	0.00882	0.275	2026
	1252	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	3029	0.00735	0.1162	0.00735	0.1162	0.00735	0.1162	2026
	3030	0.00735	0.1155	0.00735	0.1155	0.00735	0.1155	2026
ГУ Южный Коныс	1334	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
	1335	0.00773	0.1216	0.00773	0.1216	0.00773	0.1216	2026
	1419	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
	1446	0.00773	0.1216	0.00773	0.1216	0.00773	0.1216	2026
ПСН Кумколь	0767	0.00796	0.251	0.00796	0.251	0.00796	0.251	2026
ity mitouth	0768	0.00796	0.251	0.00796	0.251	0.00796	0.251	2026
	1422	0.34444444	0.442	0.34444444	0.442	0.34444444	0.442	2026
45 км нефтепровода	0019	0.0898	2.835	0.0898	2.835	0.0898	2.835	2026
43 км нефтепровода	0020	0.0898	2.835	0.0898	2.835	0.0898	2.835	2026
	0020	0.103333333	0.3406	0.103333333	0.3406	0.103333333	0.3406	2026
	0024	0.146388889			0.3406	0.146388889	0.3406	2026
	0025	I	0.3406	0.146388889		•		2026
		0.155	0.3406	0.155	0.3406	0.155	0.3406	
	0478	0.0889	2.8038	0.0889	2.8038	0.0889	2.8038	2026
	1424	0.172222222	0.3406	0.172222222	0.3406	0.172222222	0.3406	2026
БКНС Северный Коныс	1431	0.00773	0.1002	0.00773	0.1002	0.00773	0.1002	2026
БКНС Южный Коныс	1438	0.00773	0.1437	0.00773	0.1437	0.00773	0.1437	2026
	3034	0.00773	0.1002	0.00773	0.1002	0.00773	0.1002	2026
CKB. №230	1109	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №240	1122	0.002225	0.0523	0.002225	0.0523	0.002225	0.0523	2026
скв. №573	1124	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
скв. №574	1123	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
ckb. №707	1338	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
ckb. №708	1339	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
ckb. №299	1126	0.002225	0.0523	0.002225	0.0523	0.002225	0.0523	2026
CKB. №300	1127	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
скв. №285	1125	0.002225	0.0523	0.002225	0.0523	0.002225	0.0523	2026
скв. №315	0097	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. Nº482	1336	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №538	1311	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
ckb. №352	1315	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №5-4	1243	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №5-17	0712	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №B-20	0520	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №5-79	1445	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №5-89	0522	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
	0525	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №B-29		l l		l l				
CKB. №5-23	1250	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
скв. №5-50 скв. №5-78	1251	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
	1255	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026

м/р Южный Коныс	1463	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1464	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1465	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1466	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1467	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1468	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1469	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1470	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1471	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1472	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1473	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1474	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1475	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1476	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1477	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1478	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1479	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1480	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1481	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1482	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1483	0.0757	0.4933	0.0757	0.4933	0.0757	0.4933	2026
	1484	0.0757	0.4933	0.0757	0.4933	0.0757	0.4933	2026
	1485	0.0757	0.4933	0.0757	0.4933	0.0757	0.4933	2026
	1486	0.0757	0.4933	0.0757	0.4933	0.0757	0.4933	2026
	1487	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1488	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1489	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1490	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1491	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1492	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1493	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1494	0.0757	0.1662	0.0757	0.1662	0.0757	0.1662	2026
	1495	0.0757	0.1608	0.0757	0.1608	0.0757	0.1608	2026
	1496	0.0757	0.1608	0.0757	0.1608	0.0757	0.1608	2026
	1497	0.0757	0.1608	0.0757	0.1608	0.0757	0.1608	2026
	1498	0.0757	0.1608	0.0757	0.1608	0.0757	0.1608	2026
м/р Северный Коныс	1447	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1448	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1449	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1450	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1451	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1452	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1453	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1454	0.0757	1.474	0.0757	1.474	0.0757	1.474	2026
	1455	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
	1456	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
	1457	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
	1458	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
	1459	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
	1460	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
	1461	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
	1462	0.0757	0.2466	0.0757	0.2466	0.0757	0.2466	2026
CKB. №599	1331	0.002225	0.0523	0.002225	0.0523	0.002225	0.0523	2026
CKB. N:349	1128	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
1				•	•	•	•	

ckb. №580	l 1333 l	0.001822	0.0568	0.001822	0.0568 	0.001822	0.0568 	2026
скв. №373	1167	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №577	1330	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
ЗУ-6Б	1256	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
37-44	1238	0.00733	0.1223	0.00733	0.1223	0.00733	0.1223	2026
ЗУ-44 КПРС	3001	0.0486	0.1223	0.00773	0.1223		0.1223	2026
KIIPC					II	0.0486		
	3002	0.0396	0.625	0.0396	0.625	0.0396	0.625	2026
	3003	0.0635	0.5	0.0635	0.5	0.0635	0.5	2026
	3004	0.0635	0.5	0.0635	0.5	0.0635	0.5	2026
	3005	0.106	0.834	0.106	0.834	0.106	0.834	2026
	3006	0.106	0.834	0.106	0.834	0.106	0.834	2026
	3007	0.106	0.834	0.106	0.834	0.106	0.834	2026
	3008	0.106	0.834	0.106	0.834	0.106	0.834	2026
	3009	0.106	0.834	0.106	0.834	0.106	0.834	2026
	3010	0.03167	0.5	0.03167	0.5	0.03167	0.5	2026
	3011	0.03167	0.5	0.03167	0.5	0.03167	0.5	2026
	3012	0.03167	0.5	0.03167	0.5	0.03167	0.5	2026
	3013	0.03167	0.5	0.03167	0.5	0.03167	0.5	2026
	3014	0.03167	0.5	0.03167	0.5	0.03167	0.5	2026
	3014	0.0635	0.5	0.0635	0.5	0.0635	0.5	2026
	3013	0.0633	0.375	0.0667	0.375	0.0667	0.375	2026
	3016		l l	0.0635		I	0.373	2026
		0.0635	0.5		0.5	0.0635		
	3018	0.03174	0.25	0.03174	0.25	0.03174	0.25	2026
	3019	0.0434	0.075	0.0434	0.075	0.0434	0.075	2026
	3020	0.0434	0.075	0.0434	0.075	0.0434	0.075	2026
	3021	0.1356	1.5	0.1356	1.5	0.1356	1.5	2026
	3022	0.1356	1.5	0.1356	1.5	0.1356	1.5	2026
	3023	0.113	1.25	0.113	1.25	0.113	1.25	2026
	3024	0.0904	1	0.0904	1	0.0904	1	2026
	3025	0.0904	1	0.0904	1	0.0904	1	2026
	3026	0.0452	0.5	0.0452	0.5	0.0452	0.5	2026
3Y-41	1233	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
CKB. №5-92	0523	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
скв. №Б-85	1324	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
скв. №Б-93	3027	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
скв. №Б-94	3028	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
скв. №556	3035	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №371	3036	0.001822	0.0236	0.001822	0.0236	0.001822	0.0236	2026
CKB. N:388	3037	0.001822	0.0236	0.001822	0.0236	0.001822	0.0236	2026
3y-22	0170	0.001822	0.1223	0.001822	0.1223	0.001822	0.0230	2026
Sy-22 CKB. №706	1340	0.00773	0.0236	0.001822	0.0236	0.001822	0.1223	2026
CKB. №706 Bcero no	1340		93.934086124	7.716003896	93.934086124		93.934086124	2026
		7.716003896	93.934086124	1.110003896	93.934086124	7.716003896	93.934086124	2026
загрязняющему								
веществу:								
(0342) Фтористые газообраз			е на фтор/ (617)					
неорганизован								
Вахтовый поселок	6228	0.000556	0.0016	0.000556	0.0016	0.000556	0.0016	2026
Всего по		0.000556	0.0016	0.000556	0.0016	0.000556	0.0016	2026
загрязняющему								
веществу:								
(0410) Метан (727*)								
Организованны	е ист	очники Очники	į	I	ı	ļ	l	
цппн	0051	0.0233	0.3685	0.0233	0.3685	0.0233	0.3685	2026
	1 0001	0.0233	0.5005	0.0255	0.5005	0.0255	0.3003	2020

	0052	0.0233	0.3685	0.0233	0.3685	0.0233	0.3685	2026
	0053	0.0233	0.3665	0.0233	0.3665	0.0233	0.3665	2026
	0054	0.0095	0.1001	0.0095	0.1001	0.0095	0.1001	2026
	0056	0.002541925	0.080162153	0.002541925	0.080162153	0.002541925	0.080162153	2026
	0057	0.003806	0.0299	0.003806	0.0299	0.003806	0.0299	2026
	0058	0.003806	0.0299	0.003806	0.0299	0.003806	0.0299	2026
	1257	0.0233	0.3665	0.0233	0.3665	0.0233	0.3665	2026
	1260	0.00944	0.075	0.00944	0.075	0.00944	0.075	2026
	1261	0.00944	0.0743	0.00944	0.0743	0.00944	0.0743	2026
	1439	0.00943	0.149	0.00943	0.149	0.00943	0.149	2026
	1440	0.00943	0.1482	0.00943	0.1482	0.00943	0.1482	2026
	1441	0.00388	0.0614	0.00388	0.0614	0.00388	0.0614	2026
	1441	0.00388		0.00388	0.0611		0.0614	2026
3У-2	0003		0.0611	0.00388	0.1467	0.00388 0.00928	0.1467	2026
		0.00928	0.1467					
3У-3	0231	0.00928	0.1467	0.00928	0.1467	0.00928	0.1467	2026
3У-7	1117	0.00773	0.241	0.00773	0.241	0.00773	0.241	2026
3y-8	0709	0.00773	0.241	0.00773	0.241	0.00773	0.241	2026
ЗУ-17	0060	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
3y-19	0110	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
ЗУ-24	0124	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
ЗУ-40	1221	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
ЗУ-Б1	0708	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
ЗУ-Б3	1249	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
ЗУ-4Б	1254	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
3Y-B5	1253	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
ГУ Бектас	0072	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	0073	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	0074	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	0075	0.00882	0.275	0.00882	0.275	0.00882	0.275	2026
	0076	0.00882	0.275	0.00882	0.275	0.00882	0.275	2026
	1252	0.00735	0.229	0.00735	0.229	0.00735	0.229	2026
	3029	0.00735	0.1162	0.00735	0.1162	0.00735	0.1162	2026
	3030	0.00735	0.1155	0.00735	0.1155	0.00735	0.1155	2026
ГУ Южный Коныс	1334	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
	1335	0.00773	0.1216	0.00773	0.1216	0.00773	0.1216	2026
	1419	0.00773	0.1223	0.00773	0.1223	0.00773	0.1223	2026
	1446	0.00773	0.1216	0.00773	0.1216	0.00773	0.1216	2026
ПСН Кумколь	0767	0.00775	0.251	0.00776	0.251	0.00773	0.251	2026
TICH RYMROSIB	0768	0.00796	0.251	0.00796	0.251	0.00796	0.251	2026
45 км нефтепровода	0019	0.0898	2.835	0.0898	2.835	0.0898	2.835	2026
43 км нефтепровода	0020	0.0898	2.835	0.0898	2.835	0.0898	2.835	2026
	0478	0.0889	2.8038	0.0889	2.8038	0.0889	2.8038	2026
БКНС Северный Коныс	1431	0.00773	0.1002	0.00773	0.1002	0.00773	0.1002	2026
БКНС Южный Коныс	1431		0.1002	0.00773	0.1437	0.00773		2026
БКИС ЮЖНЫЙ КОНЫС	3034	0.00773					0.1437	
M-0.2.0		0.00773	0.1002	0.00773	0.1002	0.00773	0.1002	2026
CKB. №230	1109	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №240	1122	0.002225	0.0523	0.002225	0.0523	0.002225	0.0523	2026
CKB. №573	1124	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №574	1123	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №707	1338	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №708	1339	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №299	1126	0.002225	0.0523	0.002225	0.0523	0.002225	0.0523	2026
CKB. Nº300	1127	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №285	1125	0.002225	0.0523	0.002225	0.0523	0.002225	0.0523	2026

скв. №315	0097	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
ckb. №482	1336	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
скв. №538	1311	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
ckb. №352	1315	0.001822	0.0568	0.001822	0.0568	0.001822	0.0568	2026
CKB. №B-4	1243	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
ckb. №5-17	0712	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №5-20	0520	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
ckb. №5-79	1445	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №5-89	0522	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
скв. №Б-29	0525	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
скв. №Б-23	1250	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №E-50	1251	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
CKB. №5-78	1255	0.00173	0.054	0.00173	0.054	0.00173	0.054	2026
м/р Южный Коныс	1463	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
, F	1464	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1465	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1466	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1467	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1468	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1469	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1470	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1471	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1472	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1473	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1474	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1475	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1476	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1477	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1478	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1479	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1480	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1481	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1482	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1483	0.01663	0.1084	0.01663	0.1084	0.01663	0.1084	2026
	1484	0.01663	0.1084	0.01663	0.1084	0.01663	0.1084	2026
	1485	0.01663	0.1084	0.01663	0.1084	0.01663	0.1084	2026
	1486	0.01663	0.1084	0.01663	0.1084	0.01663	0.1084	2026
	1487	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1488	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1489	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1490	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1491	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1492	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1493	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1494	0.01663	0.0365	0.01663	0.0365	0.01663	0.0365	2026
	1494	0.01663	0.03535	0.01663	0.03535	0.01663	0.03535	2026
	1495	0.01663	0.03535	0.01663	0.03535	0.01663	0.03535	2026
	1496	0.01663			0.03535		0.03535	2026
			0.03535	0.01663	0.03535	0.01663		
14/2 Cononsum 1/2	1498 1447	0.01663	0.03535	0.01663		0.01663	0.03535	2026
м/р Северный Коныс	I I	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1448	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1449	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1450	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
	1451	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
				170				

1453 0.01663 0.324 0.01663 0.324 0.01663 0.324 0.01663 0.324 0.01663 0.324 0.01663 0.024 0.01663 0.0042 0.00463 0.0042 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00463 0.00462 0.00462 0.00463 0.00462 0.00463 0.00462 0.0046						1			
1494		1452	0.01663	0.324	0.01663	0.324	0.01663	0.324	2026
1455 0.01663 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0542 0.0568 0.00163 0.0568									
1496 0.01663 0.0942 0.01663 0.0942 0.01663 0.0942 0.01663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.0542 0.0568 0.001663 0.001663 0.00									
1457 0.01663 0.0962 0.0962 0.01663 0.0942 0.0944 0.0942 0.0944									
1458 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 202 1460 0.011663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 1461 0.011663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 1462 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 1463 0.01163 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 1463 0.01163 0.0542 0.0568 0.0542 0.01663 0.0542 0.01663 1464 0.01163 0.0542 0.0568 0.0542 0.01663 0.0542 1463 0.01163 0.0542 0.0568 0.0542 0.01663 0.0542 1464 0.01163 0.0542 0.0568 0.0542 0.0568 0.0568 1333 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 1333 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 1330 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 1330 0.001823 0.022 0.0568 0.001822 0.0568 0.001822 0.0568 1334 0.00173 0.1223 0.00733 0.1223 0.00733 0.1223 137-44 1239 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 137-45 1324 0.00173 0.0544 0.00173 0.054 0.00173 0.054 1465 0.0544 0.00173 0.054 0.00173 0.054 0.00173 0.054 147-45 0.0544 0.00173 0.054 0.00173 0.054 0.00173 0.054 147-45 0.0544 0.00173 0.054 0.00173 0.054 0.00173 0.054 147-45 0.00182 0.00182 0.00182 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.00182									
1459 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 201663 0.0542 201663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.0568									
1460 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.01663 0.0542 0.0568 0.0523 0.00225 0.0523 0.00225 0.0563 0.0563 0.0563 0.0563 0.0563 0.0568									
мя.									
скя, м599 1331 0.002225 0.0523 0.00223 0.00523 0.002225 0.0523 0.002225 0.0523 0.002225 0.0523 0.00222 0.068, м349 1128 0.001822 0.0568 0.001822 0.00182 0.00									
кия. #999 1331 0.002225 0.0523 0.05225 0.0523 0.002225 0.0523 0.0528 0.0568 0.001832 0.001832 0.0568 0.001832 0.001832 0.0568 0.001832 0.0									
окв. 9849 1128 0.001822 0.0568 0.001822 0.00173 0.0223 0.00173 0.1223 0.00173 0.1223 0.00173 0.1223 0.00173 0.1223 0.00173 0.1223 0.00173 0.1223 0.00173 0.1223 0.00173 0.054 0.00173 0.001822 0.0	No F O O								
смя. м880									
кия. м373									
xxx. мБ977									
ЗУ-66 1256 0.00735 0.229 0.00735 0.229 0.00735 0.229 202 ЗУ-41 1233 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.058 0.001822 0.0236 0.001822 0.0036 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236<									
39-44 1238 0.00773 0.1223 0.00773 0.1223 202 скв. ME-92 0523 0.00173 0.1223 0.00773 0.1223 202 скв. ME-92 0523 0.00173 0.054 0.00173 0.054 0.00173 0.056 1223 0.00773 0.1223 202 скв. ME-95 0523 0.00173 0.054 0.00173 0.055 0.00173 0.056 202 скв. ME-95 1324 0.00173 0.054 0.00173 0.056 0.00173 0.505 202 скв. ME-93 3027 0.00173 0.054 0.00173 0.056 0.00173 0.505 202 скв. ME-94 3028 0.00173 0.054 0.00173 0.056 0.00173 0.056 202 скв. ME-93 3035 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0236 0.00									
зу-41 1233 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 202 cms. NB-92 0.523 0.00173 0.054 0.00173 0.054 0.00173 0.054 202 cms. NB-95 1324 0.00173 0.054 0.00173 0.054 0.00173 0.054 202 cms. NB-93 3027 0.00173 0.054 0.00173 0.054 0.00173 0.054 202 cms. NB-93 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.054 0.00173 0.056 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.0022 0.00236 0.0022 0.00236 0.0022 0.00236									
кмв. Мя-92									
 скв. NB-85 1324 0.00173 0.054 0.00173 0.058 0.001822 0.0588 0.001822 0.0588 0.001822 0.0236 0.001									
 кмв. мв=93 дога дога дога дога дога дога дога дога									
 CRD. NBS-94 3028 0.001173 0.054 0.00173 0.056 0.001822 0.0568 0.001822 0.0568 0.001822 0.0236 0.001822 0.00773 0.1223 0.00775 0.0089 0.1223 0.00786 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.282									
скв. м351 3035 0.001822 0.0568 0.001822 0.0568 0.001822 0.0568 202 cks. м371 3036 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 202 cks. м388 3037 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 202 cks. м388 3037 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 202 cks. м388 3037 0.001822 0.0236 0.0236 0.0285 0.001822 0.0236 0.0285 0.001822 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.0285 0.									
скв. W371 3036 0.001822 0.0236 0.001822 0.0236 20.0236 0.001822 0.0236 20.235 0.001822 0.0236 20.235 0.001822 0.0236 20.235 0.001822 0.0236 0.001822 0.0236 0.001822 0.0236 20.235 20.235 0.001822 0.0236 20.235 20.235 0.001822 0.0236 20.235 20.235 0.001822 0.0236 20.235 20.235 0.001822 0.0236 20.225 20.235 0.001822 0.0236 20.225 20.235 0.001822 0.0236 20.225 20.235 0.001822 0.0236 20.225 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
скв. №388 30.37 0.001822 0.0236 0.001822 0.0036 20.2 SY-22 0170 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00773 0.1223 0.00732 0.0236 0.001822 0.0036 202 Sarpязняющему вешеству: вешеству: 0.001822 0.001822 28.767562153 1.612449925 28.767562153 202 Организованные источник инбини источник и 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0099 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
SУ-22 (кв. W706 0170 (0.0073) 0.1223 (0.0073) 0.1223 (0.0073) 0.1223 (0.0036) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.001822 (0.0236) 0.0089 (0.0089) 0.2825 (0.0089) 0.0089 (0.0089)									
скв. №706 1340 0.01822 0.0236 0.01822 0.0236 0.001822 0.0236 202 загрязнящему вешеству: воестору: 1.612449925 28.767562153 1.612449925 28.767562153 202 Организованные источники источники 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 202 1401 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 202 1401 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 0.0089 0.2825 202 1404 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268 2.068 4.268									
Всего по загрязняющему вешеству: 1.612449925 28.767562153 1.612449925 28.767562153 202 загрязняющему вешеству: (0415) Скесь углеводородов предельных С1-С5 (1502*) 0 у г а н и з о в а н н ы е и с т о ч н и к и и при и и при		1 1							
вапряняющему вешеству: источник и 0 <		1340							
веществу: (0415) Смесь углеводородов предельных С1-С5 (1502*) С07 (1502*) С0 (1502*)			1.612449925	28.767562153	1.612449925	28.767562153	1.612449925	28.767562153	2026
Оф15 Смесь углеводородов предельных C1-C5 (1502*) Организованные источник и (1000)									
Организованные источники советников сов			21 25 (1500±)						
Hith									
1401				0 0005 1	0.00001	0 0005 1	0 0000 1	0 0005	0000
1401	ЦШН								
1403									
1404 2.068									
1406									
1407									
1408									
1409		1 1							
1410									
1411									
1412									
1413 0.0803 0.000862 0.0803 0.000862 0.0803 0.000862 202									
3y-1 0900 0.01338 0.000216		1 1							
3y-2 0901 0.01338 0.000216	DV 1					0.000862			
3y-3 0902 0.01338 0.000216 0.01338 0.000216 0.01338 0.000216 202 3y-4 0903 0.01338 0.000216 0.01338<						0.000216			
3y-4 0903 0.01338 0.000216 0.01338 0.000216 0.01338 0.000216 202 3y-5 0904 0.01338 0.000216 0.01338<									
3y-5 0904 0.01338 0.000216 0.01338 0.000216 0.01338 0.000216 202 3y-7 0906 0.01338 0.000216 0.01338<									
3y-7 0906 0.01338 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.000216 0.0002									
3y-8 0907 0.01338 0.000216 0.000216	37-5								
3y-9 0.01338 0.000216 0.01338 0.000216 <td></td> <td>1 0006</td> <td>0.01338 I</td> <td>0.000216</td> <td></td> <td>0.000216</td> <td></td> <td></td> <td>2026</td>		1 0006	0.01338 I	0.000216		0.000216			2026
						0 00000		0 00000	
171	3À-8	0907	0.01338	0.000216	0.01338				2026
	3À-8	0907	0.01338	0.000216	0.01338				2026 2026

3Y-10	0909	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-11	0910	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3y-14	0911	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-15	0912	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-16	0913	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-17	0914	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-18	0915	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3У-19	0916	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-21	0917	0.01338	0.0003783	0.01338	0.0003783	0.01338	0.0003783	2026
3У-23	0918	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3У-24	0919	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3У-25	0933	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3У-29	0920	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3y-31	0921	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3y-32	0922	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3y-33	0923	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
39-34	0924	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3У-37	0925	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3У-38	0926	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3y-40	0927	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3y-43	0928	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-Б1	0929	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3Y-E3	0931	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-4Б	0932	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-Б5	0937	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ГУ Бектас	0816	0.33508	3.07	0.33508	3.07	0.33508	3.07	2026
	0817	0.33508	3.07	0.33508	3.07	0.33508	3.07	2026
	0818	0.33508	3.07	0.33508	3.07	0.33508	3.07	2026
	0819	0.33508	3.07	0.33508	3.07	0.33508	3.07	2026
	0930	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
	0934	0.1338	0.0001725	0.1338	0.0001725	0.1338	0.0001725	2026
	0935	0.1330	0.0001723	0.1330	0.0001723	0.1330	0.0001723	2026
	0936	0.01338	0.0002587	0.01338	0.0002587	0.01338	0.0002587	2026
	3031	2.2007	20.32	2.2007	20.32	2.2007		2026
							20.32	
	3032	2.207	20.32	2.207	20.32	2.207	20.32	2026
	3033							2026
ГУ Южный Коныс	1414	1.861	3.841	1.861	3.841	1.861	3.841	2026
	1420	1.861	3.841	1.861	3.841	1.861	3.841	2026
	1421	0.2007	1.18	0.2007	1.18	0.2007	1.18	2026
ПСН Кумколь	1423	0.01338	0.0000622	0.01338	0.0000622	0.01338	0.0000622	2026
	1500	3.102	6.401	3.102	6.401	3.102	6.401	2026
	1501	3.102	6.401	3.102	6.401	3.102	6.401	2026
45 км нефтепровода	1425	0.01338	0.0000622	0.01338	0.0000622	0.01338	0.0000622	2026
БКНС Северный Коныс	1405	0.2677	2.03	0.2677	2.03	0.2677	2.03	2026
	1426	0.2677	3.253	0.2677	3.253	0.2677	3.253	2026
	1427	0.2677	3.253	0.2677	3.253	0.2677	3.253	2026
	1428	0.2677	2.275	0.2677	2.275	0.2677	2.275	2026
	1429	0.2677	0.975	0.2677	0.975	0.2677	0.975	2026
	1430	0.2677	0.975	0.2677	0.975	0.2677	0.975	2026
БКНС Южный Коныс	1432	0.2677	5.02	0.2677	5.02	0.2677	5.02	2026
Ditio toxitibin nondic	1433	0.2677	5.02	0.2677	5.02	0.2677	5.02	2026
	1433	0.2677	5.02	0.2677	5.02	0.2677	5.02	2026
	1 1434							
	1/25	0 0677	E 00 I					
	1435 1436	0.2677 0.01338	5.02 0.0000622	0.2677 0.01338	5.02 0.0000622	0.2677 0.01338	5.02 0.0000622	2026 2026

ЗУ-6Б	0938	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
3Y-44	0939	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
37-6	0905	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-27	0940	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
ЗУ-41	0941	0.01338	0.000216	0.01338	0.000216	0.01338	0.000216	2026
Неорганизован		точники				•	,	
Вахтовый поселок	6229	0.663	0.146	0.663	0.146	0.663	0.146	2026
Всего по		50.99266	218.4275661	50.99266	218.4275661	50.99266	218.4275661	2026
загрязняющему								
веществу:								
(0416) Смесь углеводородо								
Организованны	and the second second	чники	2 26 1	0.070	2 26 1	0 070 1	2 26 1	2020
цппн	1409 1410	0.279	2.36	0.279	2.36	0.279 0.279	2.36	2026
		0.279	6.06	0.279	6.06		6.06	2026
	1412	0.279	4.5	0.279	4.5	0.279	4.5	2026
	1413	0.0297	0.000319	0.0297	0.000319	0.0297	0.000319	2026
ЗУ-1	0900	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-2	0901	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3Y-3	0902	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3Y-4	0903	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3У-5	0904	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-7	0906	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3Y-8	0907	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3y-9	0908	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-10	0909	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-11	0910	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-14	0911	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
зу-15	0912	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-16	0913	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3y-17	0914	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-18	0915	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3y-19	0916	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-21	0917	0.00495	0.0000733	0.00495	0.0000733	0.00495	0.0001399	2026
	0917							2026
ЗУ-23	0918	0.00495 0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	
ЗУ-24			0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-25	0933	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-29	0920	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-31	0921	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-32	0922	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
зу-33	0923	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-34	0924	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-37	0925	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-38	0926	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-40	0927	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3y-43	0928	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-Б1	0929	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
3Y-E3	0931	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-4Б	0932	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ЗУ-Б5	0937	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
ГУ Бектас	0930	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799	2026
	0934	0.0495	0.0000638	0.0495	0.0000638	0.0495	0.0000638	2026
	0935							2026
	0936	0.00495	0.0000957	0.00495	0.0000957	0.00495	0.0000957	2026
	3033							2026
	1 2022 1	I	1	173	ı	I	1	

ГУ Южный Коныс ПСН Кумколь	1421 1423	0.0742 0.00495	0.437	0.0742 0.00495	0.437	0.0742 0.00495	0.437
45 км нефтепровода	1425	0.00495	0.000023	0.00495	0.000023	0.00495	0.000023
БКНС Северный Коныс	1405	0.099	0.751	0.00499	0.751	0.099	0.000023
вкис северным коныс				0.099		0.099	
	1426	0.099	1.203		1.203		1.203
	1427	0.099	1.203	0.099	1.203	0.099	1.203
	1428	0.099	0.842	0.099	0.842	0.099	0.842
	1429	0.099	0.361	0.099	0.361	0.099	0.361
	1430	0.099	0.361	0.099	0.361	0.099	0.361
БКНС Южный Коныс	1432	0.099	1.857	0.099	1.857	0.099	1.857
	1433	0.099	1.857	0.099	1.857	0.099	1.857
	1434	0.099	1.857	0.099	1.857	0.099	1.857
	1435	0.099	1.857	0.099	1.857	0.099	1.857
	1436	0.00495	0.000023	0.00495	0.000023	0.00495	0.000023
ЗУ-6Б	0938	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799
3Y-44	0939	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799
ЗУ-6	0905	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799
зу-27	0940	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799
3y-41	0941	0.00495	0.0000799	0.00495	0.0000799	0.00495	0.0000799
Неорганизован			0.0000733	0.00100	0.0000733	0.00400	0.0000755
неорганизован Вахтовый поселок	6229	0.245	0.0539	0.245	0.0539	0.245	0.0539
Всего по	0223	2.43825	25.5636236	2.43825	25.5636236	2.43825	25.5636236
		2.43023	23.3030230	2.43023	23.3030230	2.43023	23.3030230
загрязняющему	+						
веществу:							
(0501) Пентилены (амилены							
Неорганизован		точники	0.00=0=1	0 00:- 1	0 00505	0 004- 1	0 00555
Вахтовый поселок	6229	0.0245	0.00539	0.0245	0.00539	0.0245	0.00539
Всего по		0.0245	0.00539	0.0245	0.00539	0.0245	0.00539
загрязняющему							
веществу:							
(0602) Бензол (64)							
Организованны		чники .					
ЦППН	1409	0.00365	0.0308	0.00365	0.0308	0.00365	0.0308
	1410	0.00365	0.0792	0.00365	0.0792	0.00365	0.0792
	1412	0.00365	0.0588	0.00365	0.0588	0.00365	0.0588
	1 1110						
	1413	0.000388	0.000004165	0.000388	0.000004165	0.000388	0.000004165
3Y-1	0900			0.000388 0.0000646	0.000004165 0.000001043	0.000388 0.0000646	0.000004165 0.000001043
3y-1 3y-2		0.000388	0.000004165				
	0900	0.000388 0.0000646	0.000004165 0.000001043 0.000001043	0.0000646	0.000001043 0.000001043	0.0000646	0.000001043
3y-2 3y-3	0900 0901 0902	0.000388 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4	0900 0901 0902 0903	0.000388 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5	0900 0901 0902 0903 0904	0.000388 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7	0900 0901 0902 0903 0904 0906	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8	0900 0901 0902 0903 0904 0906	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9	0900 0901 0902 0903 0904 0906 0907	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10	0900 0901 0902 0903 0904 0906 0907 0908 0909	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.00001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11	0900 0901 0902 0903 0904 0906 0907 0908 0909	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.00001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14 3y-15	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910 0911	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14 3y-15 3y-16	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910 0911 0912	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.00001043 0.00001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14 3y-15 3y-16 3y-17	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910 0911 0912 0913	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14 3y-15 3y-16 3y-17 3y-18	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910 0911 0912	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.00001043 0.00001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14 3y-15 3y-16 3y-17	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910 0911 0912 0913	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14 3y-15 3y-16 3y-17 3y-18	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910 0911 0912 0913 0914	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.000001043 0.000001043 0.000001043
3y-2 3y-3 3y-4 3y-5 3y-7 3y-8 3y-9 3y-10 3y-11 3y-14 3y-15 3y-16 3y-17 3y-18 3y-19	0900 0901 0902 0903 0904 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915	0.000388 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000004165 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043 0.00001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043	0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646 0.0000646	0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.000001043 0.00001043 0.00001043 0.000001043 0.000001043 0.000001043

3Y-24	0919	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ЗУ-25	0933	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
3Y-29	0920	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ЗУ-31	0921	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ЗУ-32	0922	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ЗУ-33	0923	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ЗУ-34	0924	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
3y-37	0925	0.0000646	0.000001013	0.0000646	0.000001013	0.0000646	0.000001013	202
3y-38	0926	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
3y-40	0927	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
	0927	0.0000646		0.0000646		III		202
3У-43			0.000001043		0.000001043	0.0000646	0.000001043	
3Y-51	0929	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ЗУ-БЗ	0931	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	20:
ЗУ-4Б	0932	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ЗУ-Б5	0937	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
ГУ Бектас	0930	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
	0934	0.000646	0.000000833	0.000646	0.000000833	0.000646	0.000000833	202
	0935							202
	0936	0.0000646	0.00000125	0.0000646	0.00000125	0.0000646	0.00000125	202
	3033							20:
ГУ Южный Коныс	1421	0.00097	0.0057	0.00097	0.0057	0.00097	0.0057	20:
ПСН Кумколь	1423	0.0000646	0.0000003	0.0000646	0.0000003	0.0000646	0.0000003	20
45 км нефтепровода	1425	0.0000646	0.0000003	0.0000646	0.0000003	0.0000646	0.0000003	20
БКНС Северный Коныс	1405	0.001293	0.00981	0.001293	0.00981	0.001293	0.00981	20
ordine cenepitani reliale	1426	0.001293	0.0157	0.001293	0.0157	0.001293	0.0157	20
	1427	0.001293	0.0157	0.001293	0.0157	0.001293	0.0157	20
	1427	0.001293	0.011	0.001293	0.011	0.001293	0.0137	20
	1420	0.001293	0.00471	0.001293	0.00471	0.001293		
							0.00471	202
	1430	0.001293	0.00471	0.001293	0.00471	0.001293	0.00471	202
БКНС Южный Коныс	1432	0.001293	0.02426	0.001293	0.02426	0.001293	0.02426	20:
	1433	0.001293	0.02426	0.001293	0.02426	0.001293	0.02426	202
	1434	0.001293	0.02426	0.001293	0.02426	0.001293	0.02426	20
	1435	0.001293	0.02426	0.001293	0.02426	0.001293	0.02426	20:
	1436	0.0000646	0.000003	0.0000646	0.0000003	0.0000646	0.0000003	20:
ЗУ-6Б	0938	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	20
3Y-44	0939	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	20:
3Y-6	0905	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	20
ЗУ-27	0940	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	20
ЗУ-41	0941	0.0000646	0.000001043	0.0000646	0.000001043	0.0000646	0.000001043	202
неорганизованн								
н с о р г а н и з о в а н н Вахтовый поселок	6229	0.02254	0.00496	0.02254	0.00496	0.02254	0.00496	20:
Всего по	7227	0.0512018	0.338178609	0.0512018	0.338178609	0.0512018	0.338178609	20:
		0.0312010	0.3361/6609	0.0312010	0.336176609	0.0312010	0.3301/0009	20.
загрязняющему								
веществу:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
(0616) Диметилбензол (смесь		_	3)					
Организованные		очники .						
цппн	1409	0.001146	0.00968	0.001146	0.00968	0.001146	0.00968	20
	1410	0.001146	0.0249	0.001146	0.0249	0.001146	0.0249	20
	1412	0.001146	0.01848	0.001146	0.01848	0.001146	0.01848	20
	1413	0.000122	0.00000131	0.000122	0.00000131	0.000122	0.00000131	20
	0900	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
3Y-1							0.000000328	20
	0901	0.0000203	0.000000328	0.0000203 I	0.000000328	U.UUUUZU3 I	0.000000000000	
3y-2	0901 0902	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203		
3V-1 3V-2 3V-3 3V-4	0901 0902 0903	0.0000203 0.0000203 0.0000203	0.000000328 0.000000328 0.000000328	0.0000203 0.0000203 0.0000203	0.000000328 0.000000328 0.000000328	0.0000203 0.0000203 0.0000203	0.000000328 0.000000328 0.000000328	20 20

3Y-5	0904	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
3Y-7	0906	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
3Y-8	0907	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
3Y-9	0908	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
ЗУ-10	0909	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
ЗУ-11	0910	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
3Y-14	0911	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
ЗУ-15	0912	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
ЗУ-16	0913	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
ЗУ-17	0914	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
ЗУ-18	0915	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	202
ЗУ-19	0916	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20:
ЗУ-21	0917	0.0000203	0.0000005744	0.0000203	0.0000005744	0.0000203	0.0000005744	20:
ЗУ-23	0918	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20:
ЗУ-24	0919	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20:
ЗУ-25	0933	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20:
ЗУ-29	0920	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20:
3y-31	0921	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
ЗУ-32	0922	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20:
3y-33	0923	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
ЗУ-34	0924	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
3y-34 3y-37	0925	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
3y-38	0925	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
3y-40	0928						0.000000328	20
		0.0000203	0.000000328	0.0000203	0.000000328	0.0000203		
3y-43	0928	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
ЗУ-Б1	0929	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
ЗУ-Б3	0931	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20:
ЗУ-4Б	0932	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
ЗУ-Б5	0937	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
ГУ Бектас	0930	0.0000203	0.000000328	0.0000203	0.00000328	0.0000203	0.00000328	20
	0934	0.000203	0.000000262	0.000203	0.000000262	0.000203	0.000000262	20
	0935							20
	0936	0.0000203	0.000000393	0.0000203	0.000000393	0.0000203	0.000000393	20
	3033							20:
ГУ Южный Коныс	1421	0.000305	0.001793	0.000305	0.001793	0.000305	0.001793	20:
ПСН Кумколь	1423	0.0000203	0.0000000944	0.0000203	0.000000944	0.0000203	0.0000000944	20
45 км нефтепровода	1425	0.0000203	0.000000944	0.0000203	0.000000944	0.0000203	0.000000944	20
БКНС Северный Коныс	1405	0.000406	0.003084	0.000406	0.003084	0.000406	0.003084	20
	1426	0.000406	0.00494	0.000406	0.00494	0.000406	0.00494	20
	1427	0.000406	0.00494	0.000406	0.00494	0.000406	0.00494	20
	1428	0.000406	0.003454	0.000406	0.003454	0.000406	0.003454	20
	1429	0.000406	0.00148	0.000406	0.00148	0.000406	0.00148	20
	1430	0.000406	0.00148	0.000406	0.00148	0.000406	0.00148	20
БКНС Южный Коныс	1432	0.000406	0.00762	0.000406	0.00762	0.000406	0.00762	20
	1433	0.000406	0.00762	0.000406	0.00762	0.000406	0.00762	20
	1434	0.000406	0.00762	0.000406	0.00762	0.000406	0.00762	20
	1435	0.000406	0.00762	0.000406	0.00762	0.000406	0.00762	20
	1436	0.0000203	0.0000000944	0.0000203	0.0000000944	0.0000203	0.0000000944	20
ЗУ-6Б	0938	0.0000203	0.000000328	0.0000203	0.000000311	0.0000203	0.000000311	20
3Y-44	0939	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
ЗУ-6	0905	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
3y-0 3y-27	0940	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
3y-27 3y-41	0941	0.0000203	0.000000328	0.0000203	0.000000328	0.0000203	0.000000328	20
JJ TI	U ⊅ ± 1	0.0000203	0.000000320	0.0000203	0.000000320	0.0000203	0.000000320	∠ ∪

Вахтовый поселок	6229	0.00284	0.000625	0.00284	0.000625	0.00284	0.000625	2026
Всего по		0.0118409	0.1053512866	0.0118409	0.1053512866	0.0118409	0.1053512866	2026
загрязняющему								
веществу:								
(0621) Метилбензол (349)								
Организованны		чники	0.0000		0.01006		0.01006	0000
ЦППН	1409	0.002292	0.01936	0.002292	0.01936	0.002292	0.01936	2026
	1410	0.002292	0.0498	0.002292	0.0498	0.002292	0.0498	2026
	1412	0.002292	0.03696	0.002292	0.03696	0.002292	0.03696	2026
	1413	0.000244	0.00000262	0.000244	0.00000262	0.000244	0.00000262	2026
3y-1	0900	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
ЗУ-2	0901	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
37-3	0902	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.00000656	2026
3Y-4	0903	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.00000656	2026
3Y-5	0904	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.00000656	2026
3y-7	0906	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
37-8	0907	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3У-9	0908	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-10	0909	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
ЗУ-11	0910	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3У-14	0911	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3У-15	0912	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3У-16	0913	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3У-17	0914	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-18	0915	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
37-19	0916	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
37-21	0917	0.0000406	0.0000001149	0.0000406	0.000000030	0.0000406	0.0000001149	2026
3У-23	0918	0.0000406	0.000001149	0.0000406	0.000001149	0.0000406	0.000001149	2026
37-24	0919	0.0000406	0.000000056	0.0000400	0.000000056	0.0000406	0.000000656	2026
39-24	0933	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
39-29	0920	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
37-29	0921	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-32	0922	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-33	0923	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-34	0924	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3У-37	0925	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-38	0926	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-40	0927	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
3y-43	0928	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
ЗУ-Б1	0929	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
ЗУ-БЗ	0931	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
ЗУ-4Б	0932	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
ЗУ-Б5	0937	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
ГУ Бектас	0930	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	2026
	0934	0.000406	0.000000524	0.000406	0.000000524	0.000406	0.000000524	2026
	0935							2026
	0936	0.0000406	0.000000785	0.0000406	0.000000785	0.0000406	0.000000785	2026
	3033							2026
ГУ Южный Коныс	1421	0.00061	0.003586	0.00061	0.003586	0.00061	0.003586	2026
ПСН Кумколь	1423	0.0000406	0.0000001888	0.0000406	0.0000001888	0.0000406	0.000001888	2026
45 км нефтепровода	1425	0.0000406	0.0000001888	0.0000406	0.0000001888	0.0000406	0.0000001888	2026
БКНС Северный Коныс	1405	0.000813	0.00617	0.000813	0.00617	0.000813	0.00617	2026
<u>.</u>	1426	0.000813	0.00988	0.000813	0.00988	0.000813	0.00988	2026
	1427	0.000813	0.00988	0.000813	0.00988	0.000813	0.00988	2026
	1 = -= : [177				

	1428 1429	0.000813	0.00691	0.000813 0.000813	0.00691 0.00296	0.000813 0.000813	0.00691 0.00296	
	1430	0.000813	0.00296	0.000813	0.00296	0.000813	0.00296	
БКНС Южный Коныс	1432	0.000813	0.01525	0.000813	0.01525	0.000813	0.01525	
Dittie lowing Rothe	1433	0.000813	0.01525	0.000813	0.01525	0.000813	0.01525	
	1434	0.000813	0.01525	0.000813	0.01525	0.000813	0.01525	
	1435	0.000813	0.01525	0.000813	0.01525	0.000813	0.01525	
	1436	0.0000406	0.0000001888	0.0000406	0.000001888	0.0000406	0.000001888	
ЗУ-6Б	0938	0.0000406	0.0000001888	0.0000406	0.0000001888	0.0000406	0.0000001888	
37-65	0938							
		0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	
3У-6	0905	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	
3У-27	0940	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	
3y-41	0941	0.0000406	0.000000656	0.0000406	0.000000656	0.0000406	0.000000656	
Неорганизован				1			1	
Вахтовый поселок	6229	0.02127	0.00468	0.02127	0.00468	0.02127	0.00468	
Всего по		0.0392818	0.2141765724	0.0392818	0.2141765724	0.0392818	0.2141765724	
загрязняющему								l
веществу:								
(0627) Этилбензол (675)								
Неорганизован	ные и	сточники						
Вахтовый поселок	6229	0.000588	0.0001294	0.000588	0.0001294	0.000588	0.0001294	l
Всего по	1	0.000588	0.0001294	0.000588	0.0001294	0.000588	0.0001294	
загрязняющему		1						
веществу:								
(0703) Бенз/а/пирен (3,4-	Бензпирен)	(54)		I		L		_
Организованны		Очники						
ПСН Кумколь	1 1422	0.00000038	0.00000068	0.00000038	0.00000068	0.00000038	0.00000068	ı
45 км нефтепровода	0024	0.00000033	0.000000524	0.000000114	0.000000524	0.000000114	0.000000524	
43 км нефтепровода	0024	0.000000114	0.000000524	0.000000114	0.000000524	0.000000114	0.000000524	
	0025	1	l l				0.000000524	
	1424	0.000000171	0.000000524	0.000000171	0.000000524	0.000000171		
-	1424	0.00000019	0.000000524	0.00000019	0.000000524	0.00000019	0.000000524	
Всего по		0.000001017	0.000002776	0.000001017	0.000002776	0.000001017	0.000002776	
загрязняющему		1						
веществу:								
(1301) Проп-2-ен-1-аль (А	-	•	1)					
Организованны		очники						
КПРС	3001	0.002333	0.036	0.002333	0.036	0.002333	0.036	
	3002	0.0019	0.03	0.0019	0.03	0.0019	0.03	
	3003	0.00305	0.024	0.00305	0.024	0.00305	0.024	
	3004	0.00305	0.024	0.00305	0.024	0.00305	0.024	
	3010	0.00152	0.024	0.00152	0.024	0.00152	0.024	
	3011	0.00152	0.024	0.00152	0.024	0.00152	0.024	
	3012	0.00152	0.024	0.00152	0.024	0.00152	0.024	
	3013	0.00152	0.024	0.00152	0.024	0.00152	0.024	
	3014	0.00152	0.024	0.00152	0.024	0.00152	0.024	
	3015	0.00305	0.024	0.00305	0.024	0.00305	0.024	
	3016	0.003203	0.018	0.003203	0.018	0.003203	0.018	
	3017	0.003203	0.024	0.00305	0.024	0.003203	0.024	
	3018	0.001523	0.012	0.001523	0.012	0.001523	0.012	
	3019	0.002083	0.0036	0.001323	0.0036	0.002083	0.0036	l
	3020	0.002083	0.0036	0.002083	0.0036	0.002083	0.0036	
	3020	0.002063	0.0036	0.002063	0.0036	0.002063	0.0036	
	3021	0.00651	0.072	0.00651	0.072	0.00651	0.072	
		1			• • • • • • • • • • • • • • • • • • •	0.00651	0.072	l
	2002							
	3023	0.00542	0.06	0.00542 178	0.06	0.00542	0.00	l

	3024	0.00434	0.048	0.00434	0.048	0.00434	0.048	2026
	3025	0.00434	0.048	0.00434	0.048	0.00434	0.048	2026
	3026	0.00217	0.024	0.00217	0.024	0.00217	0.024	2026
Всего по		0.062215	0.6432	0.062215	0.6432	0.062215	0.6432	2026
загрязняющему веществу:								
(1325) Формальдегид (Метана:	<u>I</u> пь) (609)			L				
Организованные		очники						
ПСН Кумколь	1422	0.00381	0.00485724	0.00381	0.00485724	0.00381	0.00485724	2026
45 км нефтепровода	0024	0.001143	0.003742932	0.001143	0.003742932	0.001143	0.003742932	2026
	0025	0.00161925	0.003742932	0.00161925	0.003742932	0.00161925	0.003742932	2026
	0026	0.0017145	0.003742932	0.0017145	0.003742932	0.0017145	0.003742932	2026
	1424	0.001905	0.003742932	0.001905	0.003742932	0.001905	0.003742932	2026
КПРС	3001	0.002333	0.036	0.002333	0.036	0.002333	0.036	2026
	3002	0.0019	0.03	0.0019	0.03	0.0019	0.03	2026
	3003	0.00305	0.024	0.00305	0.024	0.00305	0.024	2026
	3004	0.00305	0.024	0.00305	0.024	0.00305	0.024	2026
	3010	0.00152	0.024	0.00152	0.024	0.00152	0.024	2026
	3011	0.00152	0.024	0.00152	0.024	0.00152	0.024	2026
	3012	0.00152	0.024	0.00152	0.024	0.00152	0.024	2026
	3013	0.00152	0.024	0.00152	0.024	0.00152	0.024	2026
	3014	0.00152	0.024	0.00152	0.024	0.00152	0.024	2026
	3015	0.00305	0.024	0.00305	0.024	0.00305	0.024	2026
	3016	0.003203	0.018	0.003203	0.018	0.003203	0.018	2026
	3017	0.00305	0.024	0.00305	0.024	0.00305	0.024	2026
	3018	0.001523	0.012	0.001523	0.012	0.001523	0.012	2026
	3019	0.002083	0.0036	0.002083	0.0036	0.002083	0.0036	2026
	3020	0.002083	0.0036	0.002083	0.0036	0.002083	0.0036	2026
	3021	0.00651	0.072	0.00651	0.072	0.00651	0.072	2026
	3022	0.00651	0.072	0.00651	0.072	0.00651	0.072	2026
	3023	0.00542	0.06	0.00542	0.06	0.00542	0.06	2026
	3024	0.00434	0.048	0.00434	0.048	0.00434	0.048	2026 2026
	3025	0.00434	0.048	0.00434	0.048	0.00434	0.048	
Всего по	3026	0.00217	0.024	0.00217 0.07240675	0.024	0.00217 0.07240675	0.024 0.663028968	2026 2026
всего по загрязняющему		0.07240675	0.663028968	0.07240675	0.663028968	0.07240675	0.663028968	2026
веществу:								
(2754) Алканы С12-19 /в пер	есчете на	С/ (Углеводородь	л предельные C12-C	19 (в пересчете(10	0)			
Организованные		очники		· •				
ПСН Кумколь	0100	0.16333	0.0041	0.16333	0.0041	0.16333	0.0041	2026
	1422	0.092063333	0.11657138	0.092063333	0.11657138	0.092063333	0.11657138	2026
45 км нефтепровода	0024	0.027619	0.089828534	0.027619	0.089828534	0.027619	0.089828534	2026
	0025	0.039126917	0.089828534	0.039126917	0.089828534	0.039126917	0.089828534	2026
	0026	0.0414285	0.089828534	0.0414285	0.089828534	0.0414285	0.089828534	2026
	1424	0.046031667	0.089828534	0.046031667	0.089828534	0.046031667	0.089828534	2026
Вахтовый поселок	0237	0.0109	0.00272	0.0109	0.00272	0.0109	0.00272	2026
	0238	0.0109	0.00272	0.0109	0.00272	0.0109	0.00272	2026
КПРС	3001	0.02333	0.36	0.02333	0.36	0.02333	0.36	2026
	3002	0.019	0.3	0.019	0.3	0.019	0.3	2026
	3003	0.0305	0.24	0.0305	0.24	0.0305	0.24	2026
	3004	0.0305	0.24	0.0305	0.24	0.0305	0.24	2026
	3010	0.0152	0.24	0.0152	0.24	0.0152	0.24	2026
	3011	0.0152	0.24	0.0152	0.24	0.0152	0.24	2026
	3012	0.0152	0.24	0.0152	0.24	0.0152	0.24	2026
				179				

							2026
3014	0.0152	0.24	0.0152	0.24	0.0152	0.24	2026
3015	0.0305	0.24	0.0305	0.24	0.0305	0.24	2026
3016	0.03203	0.18	0.03203	0.18	0.03203	0.18	2026
3017	0.0305	0.24	0.0305	0.24	0.0305	0.24	2026
3018	0.01523	0.12	0.01523	0.12	0.01523	0.12	2026
3019	0.02083	0.036	0.02083	0.036	0.02083	0.036	2026
3020	0.02083	0.036	0.02083	0.036	0.02083	0.036	2026
3021	0.0651	0.72	0.0651	0.72	0.0651	0.72	2026
3022	0.0651	0.72	0.0651	0.72	0.0651	0.72	2026
3023	0.0542	0.6	0.0542	0.6	0.0542	0.6	2026
3024	0.0434	0.48	0.0434	0.48	0.0434	0.48	2026
3025	0.0434	0.48	0.0434	0.48	0.0434	0.48	2026
3026	0.0217	0.24	0.0217	0.24	0.0217	0.24	2026
ые и	сточники	·	'	·		'	
6229	0.01247	0.0363	0.01247	0.0363	0.01247	0.0363	2026
	1.066019417	6.953725516	1.066019417	6.953725516	1.066019417	6.953725516	2026
	72.888253523	479.615465348	72.888253523	479.615465348	72.888253523	479.615465348	
	71.880176523	479.317778948	71.880176523	479.317778948	71.880176523	479.317778948	
	1.008077	0.2976864	1.008077	0.2976864	1.008077	0.2976864	
	3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 ы е и	3014 0.0152 3015 0.0305 3016 0.03203 3017 0.0305 3018 0.01523 3019 0.02083 3020 0.02083 3021 0.0651 3022 0.0651 3023 0.0542 3024 0.0434 3025 0.0434 3026 0.0217 ые источники 6229 0.01247 1.066019417	3014 0.0152 0.24 3015 0.0305 0.24 3016 0.03203 0.18 3017 0.0305 0.24 3018 0.01523 0.12 3019 0.02083 0.036 3020 0.02083 0.036 3021 0.0651 0.72 3022 0.0651 0.72 3023 0.0542 0.6 3024 0.0434 0.48 3025 0.0434 0.48 3025 0.0434 0.48 3026 0.0217 0.24 ые источники 6229 0.01247 0.24 ые источники 6229 0.01247 0.0363 1.066019417 6.953725516	3014 0.0152 0.24 0.0152 3015 0.0305 0.24 0.0305 3016 0.03203 0.18 0.03203 3017 0.0305 0.24 0.0305 3018 0.01523 0.12 0.01523 3019 0.02083 0.036 0.02083 3020 0.02083 0.036 0.02083 3021 0.0651 0.72 0.0651 3022 0.0651 0.72 0.0651 3023 0.0542 0.6 0.0542 3024 0.0434 0.48 0.0434 3025 0.0434 0.48 0.0434 3026 0.0217 0.24 0.0217 Ы е и с т очники 6229 0.01247 0.0363 0.01247 1.066019417 6.953725516 1.066019417 72.888253523 479.615465348 72.888253523	3014 0.0152 0.24 0.0152 0.24 3015 0.0305 0.24 3016 0.03203 0.18 0.03203 0.18 3017 0.0305 0.24 0.0305 0.24 3018 0.01523 0.12 0.0305 0.24 3018 0.01523 0.12 0.01523 0.12 3019 0.02083 0.036 0.02083 0.036 3020 0.02083 0.036 0.02083 0.036 3021 0.0651 0.72 0.0651 0.72 3022 0.0651 0.72 0.0651 0.72 3022 0.0651 0.72 0.0651 0.72 3023 0.0542 0.6 0.0542 0.6 3024 0.0434 0.48 0.0434 0.48 3025 0.0434 0.48 0.0434 0.48 3025 0.0434 0.48 0.0434 0.48 3026 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0363 1.066019417 0.0363 0.0363 1.066019417 0.0363 0.0363 1.066019417 0.0363 0.01247 0.0363 1.066019417 0.0363 1.066019417 0.0363 1.066019417 0.0363 1.066019417 0.0363 1.066019417 0.0363 4.001247 0.0363 1.066019417 0.0363 1.066019417 0.0363 4.001247 0.0363 1.066019417 0.0363 4.001247 0.0363 1.066019417 0.0363 4.001247 0.0363 1.066019417 0.0363 4.001247 0.0363 1.066019417 0.0363 4.001247 0.0363 4.001247 0.0363 1.066019417 0.0363 4.001247 0.0363 4.001247 0.0363 1.066019417 0.0363 4.001247 0.001247 0.0363 4.001247 0.001247 0.001247 0.001247 0.001247 0.001247 0.001247 0.0012	3014 0.0152 0.24 0.0152 0.24 0.0152 0.24 0.0305 3015 0.0305 0.24 0.0305 0.24 0.0305 3016 0.03203 0.18 0.03203 0.18 0.03203 0.18 0.03203 3017 0.0305 0.24 0.0305 0.24 0.0305 3018 0.01523 0.12 0.01523 0.12 0.01523 3019 0.02083 0.036 0.02083 0.036 0.02083 3020 0.02083 0.036 0.02083 0.036 0.02083 3021 0.0651 0.72 0.0651 0.72 0.0651 3022 0.0651 0.72 0.0651 0.72 0.0651 3023 0.0542 0.66 0.0542 0.66 0.0542 0.66 0.0542 3024 0.0434 0.48 0.0434 0.48 0.0434 3025 0.0434 0.48 0.48 0.0434 0.048 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0217 0.24 0.0363 0.01247 1.066019417 6.953725516 1.066019417 6.953725516 1.066019417	3014 0.0152 0.24 0.0152 0.24 0.0152 0.24 0.0152 0.24 0.0305 0.024 0.024 0.0305 0.024 0.0305 0.024 0.0305 0.024 0.0305 0.024 0.0305 0.024 0.036 0.02083 0.036 0.0208

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан, 2 января 2021г;
- 2. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года №63 Об утверждении Методики определения нормативов эмиссий в окружающую среду;
- 3. ОНД-86 «Методика расчета концентрации в атмосферном воздухе, вредных веществ содержащихся в выбросах предприятий» М.Гидрометиздат.1987г. Унифицированная программа расчета загрязнения атмосферы «Эколог»;
- 4. «Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами», Алматы -1996г.;
- 5. «Правила инвентаризации выбросов вредных веществ (загрязняющих веществ) в атмосферный воздух, вредных физических воздействий на атмосферный воздух и их источников» Приказ №217-п от 4 августа 2005г.;
- 6. «Методика определения удельных выбросов вредных веществ в атмосферу и ущерба от вида используемого топлива Республики Казахстан», РНД 211.3.02.01-97. Алматы-1997г.;
- 7. Приказ Министра национальной экономики РК «Обутверждении гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах» №168 от 28.02.2015г.;
- 8. Методика расчета нормативов выбросов от неорганизованных источников. Приложение 13к Приказу МООС РК №100-п от 18апреля 2008 года;
- 9. «Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок», РНД 211.2.02.04-2004, Астана-2004г.;
- 10. «Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах(по величинам удельных выбросов)», РНД211.2.02.03-2004, Астана-2004г.;
- 11. «Методические указания по определению выбросов загрязняющих веществ атмосферу из резервуаров», РНД 211.2.02.09-2004, Астана-2005г.;
- 12. «Методика определения выбросов автотранспорта для сводных расчетов загрязнения атмосферы городов», РНД 211.2.02.11-2004, Астана-2004г.
- 13. Методические указания по расчету выбросов загрязняющих веществ в атмосферу от установок малой производительности по термической переработке ТБО и промотходов» Москва, 1998г.;
- 14. Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей. Утверждена Приказом Министра ООС N23- Π от 31.01.2007 Γ .;
- 15. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приложение №3к.от 18.04.2008г.

ПРИЛОЖЕН ИЯ

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

```
Город N 724, Сырдарынский район
  Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год
 Источник загрязнения N 0051, 0052 Печь HJ-2500 №1,2
 Источник выделения N 001, Печь HJ-2500 №1
Список литературы:
"Сборник методик по расчету выбросов вредных в атмосферу
различными производствами". Алматы, КазЭКОЭКСП, 1996 г.
п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в
трубчатых печах
Вид топлива: Газ нефтепромысловый
Общее количество топок, шт., N=1
Количество одновременно работающих топок, шт., N1 = 1
Время работы одной топки, час/год, T=4392
Максимальный расход топлива одной топкой, кг/час, B=55.904
Массовая доля жидкого топлива, в долях единицы, BB=\mathbf{0}
Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)
Количество выбросов, кг/час (5.2a), M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 55.904 \cdot 10 = 0.0839
Валовый выброс, т/год, M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.0839 \cdot 4392 \cdot 10 = 0.3685
Максимальный из разовых выброс, г/с, G = N1 \cdot M/3.6 = 1 \cdot 0.0839/3.6 = 1 \cdot 0.0839/3.
0.0233
Примесь: 0410 Метан (727*)
Количество выбросов, кг/час (5.26), M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 55.904 \cdot 10 = 0.0839
Валовый выброс, т/год, \_M\_=N\cdot M\cdot\_T\_\cdot 10=1\cdot 0.0839\cdot 4392\cdot 10=0.3685
Максимальный из разовых выброс, г/с, G = N1 \cdot M/3.6 = 1 \cdot 0.0839/3.6 =
0.0233
Расчет выбросов окислов азота:
Энергетический эквивалент топлива (табл. 5.1), E = 1.5
Число форсунок на одну топку, шт., NN=1
Расчетная теплопроизводительность топки, МДж/час, QP = 3750.7
Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/
NN = 3750.7 / 1 = 3750.7
Фактическая средняя теплопроизводительность
одной форсунки (МДж/ч) (по ф-ле на с. 105), QF = 29.4 \cdot E \cdot B / NN =
29.4 \cdot 1.5 \cdot 55.904 / 1 = 2465.4
Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5
Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V
Концентрация оксидов азота, кг/м3 (5.6), CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF
/QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 2465.4 / 3750.7 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.000136
Объем продуктов сгорания, м3/ч (5.4), VR = 7.84 \cdot A \cdot B \cdot E =
7.84 \cdot 1.5 \cdot 55.904 \cdot 1.5 = 986.1
Количество выбросов, кг/час (5.3), M = VR \cdot CNOX = 986.1 \cdot 0.000136 = 0.134
Валовый выброс окислов азота, т/год, M1 = N \cdot M \cdot T \cdot 10 =
1 \cdot 0.134 \cdot 4392 \cdot 10 = 0.589
Максимальный из разовых выброс окислов азота, г/с, G1 = N1 \cdot M/3.6 =
```

 $1 \cdot 0.134 / 3.6 = 0.0372$

Коэффициент трансформации для NO2, KNO2 = 0.8 Коэффициент трансформации для NO, KNO = 0.13 Коэффициенты приняты на уровне максимально установленной трансформации

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $M = KNO2 \cdot M1 = 0.8 \cdot 0.589 = 0.471$

Максимальный из разовых выброс, г/с, $_G_=KNO2\cdot G1=0.8\cdot 0.0372=0.02976$

<u>Примесь: 0304 Азот (II) оксид (Азота оксид) (6)</u>

Валовый выброс, т/год, $_M_=KNO\cdot M1=0.13\cdot 0.589=0.0766$

Максимальный из разовых выброс, г/с, $_G_=KNO\cdot GI=0.13\cdot 0.0372=0.00484$ Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02976	0.471
0304	Азот (II) оксид (Азота оксид) (6)	0.00484	0.0766
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0233	0.3685
0410	Метан (727*)	0.0233	0.3685

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения № 0053, 1257 Печь HJ-2500 №3,4

Источник выделения N 001, Печь HJ-2500 №3,4

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКС Π , 1996 г.

 $\pi.5.1.1$. Расчет выбросов вредных веществ при сжигании топлива в трубчатых π

Вид топлива: Газ нефтепромысловый

Общее количество топок, шт., N=1

Количество одновременно работающих топок, шт., N1 = 1

Время работы одной топки, час/год, T = 4368

Максимальный расход топлива одной топкой, кг/час, B = 55.904

Массовая доля жидкого топлива, в долях единицы, $BB = \mathbf{0}$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $\bar{\text{Количество}}$ выбросов, кг/час (5.2a), $M=1.5 \cdot B \cdot 10=1.5 \cdot 55.904 \cdot 10=0.0839$

Валовый выброс, т/год, $_{_M_} = N \cdot M \cdot _{_T_} \cdot 10 = 1 \cdot 0.0839 \cdot 4368 \cdot 10 = 0.3665$

Максимальный из разовых выброс, г/с, $_G_=N1 \cdot M / 3.6 = 1 \cdot 0.0839 / 3.6 = 0.0233$

Примесь: 0410 Метан (727*)

Количество выбросов, кг/час (5.2б), $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 55.904 \cdot 10 = 0.0839$

Валовый выброс, т/год, $_{\underline{M}}$ = $N \cdot M \cdot _{\underline{T}} \cdot 10 = 1 \cdot 0.0839 \cdot 4368 \cdot 10 = 0.3665$

Максимальный из разовых выброс, г/с, $_G_=N1 \cdot M / 3.6 = 1 \cdot 0.0839 / 3.6 = 0.0233$

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

```
Расчетная теплопроизводительность топки, МДж/час, QP = 3750.7
Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP / NN =
3750.7 / 1 = 3750.7
Фактическая средняя теплопроизводительность
одной форсунки (МДж/ч) (по ф-ле на с. 105), \mathit{QF} = 29.4 \cdot \mathit{E} \cdot \mathit{B} / \mathit{NN} =
29.4 \cdot 1.5 \cdot 55.904 / 1 = 2465.4
Коэффициент избытка воздуха в уходящих дымовых газах, A = 1.5
Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V =
0.875
Концентрация оксидов азота, кг/м3 (5.6), CNOX = 1.073 \cdot (180 + 1.000)
60 \cdot BB) \cdot QF / QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 2465.4 /
3750.7 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.000136
Объем продуктов сгорания, м3/ч (5.4), VR = 7.84 \cdot A \cdot B \cdot E =
7.84 \cdot 1.5 \cdot 55.904 \cdot 1.5 = 986.1
Объем продуктов сгорания, м3/с, VO = VR / 3600 = 986.1 / 3600 = 0.274
Количество выбросов, кг/час (5.3), \overline{M} = VR \cdot CNOX = 986.1 \cdot 0.000136 =
0.134
Валовый выброс окислов азота, т/год, M1 = N · M · T · 10 =
1 \cdot 0.134 \cdot 4368 \cdot 10 = 0.585
Максимальный из разовых выброс окислов азота, г/с, G1 = N1 \cdot M / 3.6 =
1 \cdot 0.134 / 3.6 = 0.0372
```

Коэффициент трансформации для NO2, KNO2 = 0.8 Коэффициент трансформации для NO, KNO = 0.13

Число форсунок на одну топку, шт., NN = 1

Коэффициенты приняты на уровне максимально установленной трансформации

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_{M}$ = KNO2 · M1 = 0.8 · 0.585 = 0.468

Максимальный из разовых выброс, г/с, $_{G}$ = $\mathit{KNO2}$ · $\mathit{G1}$ = 0.8 · 0.0372 =

0.02976

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_{\underline{M}}$ = KNO \cdot M1 = 0.13 \cdot 0.585 = 0.076

Максимальный из разовых выброс, г/с, $_G_$ = KNO \cdot G1 = 0.13 \cdot 0.0372 =

0.00484

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02976	0.468
0304	Азот (II) оксид (Азота оксид) (6)	0.00484	0.076
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0233	0.3665
0410	Метан (727*)	0.0233	0.3665

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 0054, 1260 Печь ПП-0,63 №5,6

Источник выделения N 001, Печь ПП-0,63

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

 $\pi.5.1.1$. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый

```
Общее количество топок, шт., N=1
Количество одновременно работающих топок, шт., N1 = 1
Время работы одной топки, час/год, _{\bf T} = 2928
Максимальный расход топлива одной топкой, кг/час, B = 22.818
Массовая доля жидкого топлива, в долях единицы, BB = 0
Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)
Количество выбросов, кг/час (5.2a), M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.818 \cdot 10
Валовый выброс, т/год, _{\bf M} = _{\bf N} · _{\bf M} · _{\bf T} · _{\bf 10} = _{\bf 1} · _{\bf 0.0342} · 2928 · _{\bf 10} =
Максимальный из разовых выброс, г/с, G = N1 \cdot M / 3.6 = 1 \cdot 0.0342 / M
3.6 = 0.0095
Примесь: 0410 Метан (727*)
Количество выбросов, кг/час (5.2б), M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.818 \cdot 10
Валовый выброс, т/год, M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.0342 \cdot 2928 \cdot 10 =
Максимальный из разовых выброс, г/с, G = N1 \cdot M / 3.6 = 1 \cdot 0.0342 / M
3.6 = 0.0095
Расчет выбросов окислов азота:
Энергетический эквивалент топлива (табл. 5.1), E = 1.5
Число форсунок на одну топку, шт., NN = 1
Расчетная теплопроизводительность топки, МДж/час, QP = 3750.7
Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP / NN =
3750.7 / 1 = 3750.7
Фактическая средняя теплопроизводительность
одной форсунки (МДж/ч) (по ф-ле на с. 105), QF = 29.4 \cdot E \cdot B / NN =
29.4 \cdot 1.5 \cdot 22.818 / 1 = 1006.3
Коэффициент избытка воздуха в уходящих дымовых газах, A = 1.5
Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V =
0.875
Концентрация оксидов азота, кг/м3 (5.6), CNOX = 1.073 · (180 +
60 \cdot BB) \cdot QF / QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 1006.3 /
3750.7 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000555
Объем продуктов сгорания, м3/ч (5.4), VR = 7.84 \cdot A \cdot B \cdot E =
7.84 \cdot 1.5 \cdot 22.818 \cdot 1.5 = 402.5
Объем продуктов сгорания, м3/с, VO = VR / 3600 = 402.5 / 3600 = 0.1118
Количество выбросов, кг/час (5.3), M = VR \cdot CNOX = 402.5 \cdot 0.0000555 =
0.02234
Валовый выброс окислов азота, т/год, M1 = N \cdot M \cdot T \cdot 10 =
1 \cdot 0.02234 \cdot 2928 \cdot 10 = 0.0654
Максимальный из разовых выброс окислов азота, г/с, G1 = N1 \cdot M / 3.6 =
1 \cdot 0.02234 / 3.6 = 0.0062
Коэффициент трансформации для NO2, KNO2 = 0.8
Коэффициент трансформации для NO, kno = 0.13
Коэффициенты приняты на уровне максимально установленной трансформации
Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)
Валовый выброс, т/год, M = KNO2 \cdot M1 = 0.8 \cdot 0.0654 = 0.0523
Максимальный из разовых выброс, r/c, _{G} = KNO2 \cdot G1 = 0.8 \cdot 0.0062 =
Примесь: 0304 Азот (II) оксид (Азота оксид) (6)
Валовый выброс, т/год, M = KNO \cdot M1 = 0.13 \cdot 0.0654 = 0.0085
Максимальный из разовых выброс, r/c, G = KNO \cdot G1 = 0.13 \cdot 0.0062 =
```

0.000806

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00496	0.0523
0304	Азот (II) оксид (Азота оксид) (6)	0.000806	0.0085
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0095	0.1001
0410	Метан (727*)	0.0095	0.1001

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

1. "Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008г.

2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. (дополненное и переработанное), СПб, НИИ Атмосфера, 2005

~~~

Площадка: ТОО СП "КуатАмлонМунай" на 2026 год

Цех: ЦППН

Источник: 0056

Наименование: дежурная горелка

Тип: Высотная

Тип сжигаемой смеси: Некондиционная газовая и газоконденсатная

смесь

Тип месторождения: бессернистое

1. РАСЧЕТ ВСПОМОГАТЕЛЬНЫХ ПАРАМЕТРОВ

#### Таблица процентного содержания составляющих смеси.

#### Состав смеси задавался в объемных долях.

| Компонент             | [%]об. | [%]мас.    | Молек.мас. | Плотность |
|-----------------------|--------|------------|------------|-----------|
| Метан(СН4)            | 87.577 | 75.0701038 | 16.043     | 0.7162    |
| Этан(С2Н6)            | 5.892  | 9.46645850 | 30.07      | 1.3424    |
| Пропан(СЗН8)          | 3.599  | 8.47973461 | 44.097     | 1.9686    |
| Бутан(С4Н10)          | 1.151  | 3.57455667 | 58.124     | 2.5948    |
| Пентан(С5Н12)         | 0.301  | 1.16037995 | 72.151     | 3.2210268 |
| Азот(N2)              | 1.441  | 2.15705629 | 28.016     | 1.2507    |
| Диоксид углерода(СО2) | 0.039  | 0.09171011 | 44.011     | 1.9648    |

Молярная масса смеси M, кг/моль (прил.3,(5)): **18.71581014** 

Плотность сжигаемой смеси R, кг/м: 0.7606

Показатель адиабаты K (23):

K = Ошибка! Закладка не определена.(K \* [i]) = 1.2751324

где ( $\pmb{K}$ ) - показатель адиабаты для индивидуальных углеводородов;

[i] - объемные единицы составляющих смеси, %;

Скорость распространения звука в смеси W, м/с (прил.6):

# W = 91.5 \* (K \* (T + 273) / M) = 91.5 \* (1.2751324 \* (1684 + 273) / 18.71581014) = 1056.549459

где T - температура смеси, град.С;

Объемный расход B, м/с: 0.006684

Скорость истечения смеси W, м/с (3):

W = 4 \* B / (pi \* d) = 4 \* 0.006684 / (3.141592654 \* 0.3) = 0.094559257

Массовый расход G, г/с (2):

G = 1000 \* B \* R = 1000 \* 0.006684 \* 0.7606 = 5.0838504

Проверка условия бессажевого горения, т.к. W/W = 0.000089498 < 0.2 , горение сажевое.

2.РАСЧЕТ МОЩНОСТИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Полнота сгорания углеводородной смеси n: 0.9984

Массовое содержание углерода [C], % (прил.3, (8)):

[C] = 100 \* 12 \* Ошибка! Закладка не определена.(<math>x \* [i]) / ((100-[нег]) \* M) = 100 \* 12 \* Ошибка! Закладка не определена.(<math>x \* [i]) / ((100-0) \* 18.7158101) = 74.57181867

где x - число атомов углерода;

[нег] - общее содержание негорючих примесей, %:;

величиной [нег] можно пренебречь, т.к. ее значение не превышает 3%;

Расчет мощности выброса метана, оксида углерода, оксидов азота, сажи M, г/с: (1)

M = YB \* G

где  ${\it YB}$  - удельные выбросы вредных веществ, г/г;

0.8, 0.13 - коэффициенты трансформации оксидов азота в атмосфере  $([2], \pi.2.2.4)$ 

| Код  | Примесь                                | <b>УВ</b> г/г | М г/с       |
|------|----------------------------------------|---------------|-------------|
| 0337 | Углерод оксид (Окись углерода, Угарный | 0.02          | 0.101677008 |
| 0301 | Азота (IV) диоксид (Азота диоксид) (4) | 0.8*0.003     | 0.0122012   |
| 0304 | Азот (II) оксид (Азота оксид) (6)      | 0.13*0.003    | 0.0019827   |
| 0410 | Метан (727*)                           | 0.0005        | 0.002541925 |
| 0328 | Углерод (Сажа, Углерод черный) (583)   | 0.002         | 0.010167701 |

Мощность выброса диоксида углерода M, г/с (6):

M = 0.01 \* G \* (3.67 \* n \* [C] + [CO2]) - M - M - M = 0.01 \* 5.0838504 \* (3.67 \* 0.9984000 \* 74.5718187 + 0.0917101) - 0.1016770 - 0.0025419 - 0.0101677 = 13.78142362

где [CO2] - массовое содержание диоксида углерода, %;

M - мощность выброса оксида углерода, г/с;

M - мощность выброса метана, г/с;

M - мощность выброса сажи, г/с;

3. РАСЧЕТ ТЕМПЕРАТУРЫ ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Низшая теплота сгорания Q, ккал/м (прил.3,(1)):

Q = 85.5 \* [CH4] + 152 \* [C2H6] + 218 \* [C3H8] + 283 \* [C4H10] + 349 \* [C5H12] + 56 \* [H2S]= 85.5 \* 87.577 + 152 \* 5.892 + 218 \* 3.599 + 283 \* 1.151 + 349 \* 0.301 + 56 \* 0 = 9598.7815

```
где [CH2] - содержание метана, %;
    [C2H6] - содержание этана, %;
    [СЗН8] - содержание пропана, %;
    [C4H10] - содержание бутана, %;
    [C5H12] - содержание пентана, %;
Доля энергии теряемая за счет излучения E (11):
E = 0.048 * (M) = 0.048 * (18.71581014) = 0.208
Объемное содержание кислорода [02], %:
[O2] = Ошибка! Закладка не определена.([i] * A * x / M) = Ошибка! Закладка не
определена.([i] * 16 * x / M) = 0.028356547
где A - атомная масса кислорода;
    x - количество атомов кислорода;
    M - молярная масса составляющей смеси содержащая атомы
кислорода;
Стехиометрическое количество воздуха для сжигания 1 м
углеводородной смеси и природного газа V_{\star} м/м (13):
V = 0.0476 * (1.5 * [H2S] + Ошибка! Закладка не определена.((x + y / 4) * [CxHy])-[O2]) =
0.0476 * (1.5 * 0 + Ошибка! Закладка не определена.((x + y / 4) * [CxHy])-0.028356547) =
10.64489003
где x - число атомов углерода;
    v - число атомов водорода;
Количество газовоздушной смеси, полученное при сжигании 1 м
углеводородной смеси и природного газа V, м/м (12):
V = 1 + V = 1 + 10.64489003 = 11.64489003
Предварительная теплоемкость газовоздушной смеси C_{\star}
ккал/(м*град.C): 0.4
Ориентировочное значение температуры горения T_{\iota} град.С (10):
T = T + (O * (1-E) * n) / (V * C) = 1684 + (9598.7815 * (1-0.208) * 0.9984) / (11.64489003 * 0.4)
= 3313.485412
где T - температура смеси или газа, град.С;
Уточнённая теплоемкость газовоздушной смеси C, ккал/(м*град.С):0.4
Температура горения T, град.С (10):
T = T + (Q * (1-E) * n) / (V * C) = 1684 + (9598.7815 * (1-0.208) * 0.9984) / (11.64489003 * 0.4)
= 3313.485412
4. РАСЧЕТ РАСХОДА ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ
Расход выбрасываемой в атмосферу газовоздушной смеси V, м/с (14):
V = B * V * (273 + T) / 273 = 0.006684 * 11.64489003 * (273 + 3313.485412) / 273 =
1.02253517
Длина факела L, м:
L = 15 * d = 15 * 0.3 = 4.5
Высота источника выброса вредных веществ H_{\star} м (16):
H = L + h = 4.5 + 16 = 20.5
где h - высота факельной установки от уровня земли, м;
5. РАСЧЕТ СРЕДНЕЙ СКОРОСТИ ПОСТУПЛЕНИЯ В АТМОСФЕРУ ГАЗОВОЗДУШНОЙ
СМЕСИ ИЗ ИСТОЧНИКА ВЫБРОСА (W)
```

Диаметр факела **D**, м (29):

#### D = 0.14 \* L + 0.49 \* d = 0.14 \* 4.5 + 0.49 \* 0.3 = 0.777

Средняя скорость поступления в атмосферу газовоздушной смеси (W), (м/с):

## W = 1.27 \* V/D = 1.27 \* 1.02253517/0.777 = 2.150997659

6.РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Продолжительность работы факельной установки Ошибка! Закладка не определена., ч/год: 8760

# Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Валовый выброс ЗВ II, т/год:

 $\Pi = 0.0036$  \* Ошибка! Закладка не определена. \* M = 0.0036 \* 8760 \* 0.101677008 = 3.206486124

# Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс ЗВ II, т/год:

 $\Pi = 0.0036$  \* Ошибка! Закладка не определена. \* M = 0.0036 \* 8760 \* 0.012201241 = 0.384778335

# Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс ЗВ II, т/год:

 $\Pi=0.0036$  \* Ошибка! Закладка не определена. \* M=0.0036 \* 8760 \* 0.001982702=0.062526479

#### Примесь: 0410 Метан (727\*)

Валовый выброс ЗВ  $\Pi_{I}$  т/год:

 $\Pi = 0.0036$  \* Ошибка! Закладка не определена. \* M = 0.0036 \* 8760 \* 0.002541925 = 0.080162153

# Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Валовый выброс ЗВ  $\Pi$ , т/год:

 $\Pi = 0.0036$  \* Ошибка! Закладка не определена. \* M = 0.0036 \* 8760 \* 0.010167701 = 0.320648612

| Код  | Примесь                                | Выброс г/с  | Выброс т/год |
|------|----------------------------------------|-------------|--------------|
| 0337 | Углерод оксид (Окись углерода, Угарный | 0.101677008 | 3.206486124  |
| 0301 | Азота (IV) диоксид (Азота диоксид) (4) | 0.012201241 | 0.384778335  |
| 0304 | Азот (II) оксид (Азота оксид) (6)      | 0.001982702 | 0.062526479  |
| 0410 | Метан (727*)                           | 0.002541925 | 0.080162153  |
| 0328 | Углерод (Сажа, Углерод черный) (583)   | 0.010167701 | 0.320648612  |

## РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год

Источник загрязнения N 1261, Печь ПП-0,63 №7

Источник выделения N 001, Печь ПП-0,63 №7

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год,  $_T=2904$  Максимальный расход топлива одной топкой, кг/час, B=22.818 Массовая доля жидкого топлива, в долях единицы, BB=0

# Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M=1.5\cdot B\cdot 10=1.5\cdot 22.818\cdot 10=0.0342$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.0342\cdot 2904\cdot 10=0.0993$  Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.0342/3.6=0.0095$ 

## Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M=1.5\cdot B\cdot 10=1.5\cdot 22.818\cdot 10=0.0342$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot\_T\_\cdot 10=1\cdot 0.0342\cdot 2904\cdot 10=0.0993$  Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.0342/3.6=0.0095$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 3750.7

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP / NN = 3750.7 / 1 = 3750.7

Фактическая средняя теплопроизводительность одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 22.818 / 1 = 1006.3$ 

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5 Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF$  /  $QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 1006.3 / 3750.7 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000555$  Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E =$ 

 $7.84 \cdot 1.5 \cdot 22.818 \cdot 1.5 = 402.5$ 

Объем продуктов сгорания, м3/с,  $_{_{}}VO_{_{}}=VR/3600=402.5/3600=0.1118$ 

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 402.5 \cdot 0.0000555 = 0.02234$ 

Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot T \cdot 10 =$ 

 $1 \cdot 0.02234 \cdot 2904 \cdot 10 = 0.0649$ 

Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 = 1 \cdot 0.02234/3.6 = 0.0062$ 

Коэффициент трансформации для NO2, KNO2 = 0.8 Коэффициент трансформации для NO, KNO = 0.13 Коэффициенты приняты на уровне максимально установленной трансформации

# Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

- Валовый выброс, т/год,  $\_M\_=KNO2\cdot M1=0.8\cdot 0.0649=0.0519$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2\cdot G1=0.8\cdot 0.0062=0.00496$ 

# Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.0649=0.00844$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot G1=0.13\cdot 0.0062=0.000806$ 

Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.00496    | 0.0519       |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.000806   | 0.00844      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.0095     | 0.0993       |
| 0410 | Метан (727*)                                      | 0.0095     | 0.0993       |

## РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004,Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год Источник загрязнения N 0057, 0058 Печь УН-02

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год,  $_T_=2184$  Максимальный расход топлива одной топкой, кг/час, B=9.127 Массовая доля жидкого топлива, в долях единицы, BB=0

# Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

\_

Количество выбросов, кг/час (5.2a),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 9.127 \cdot 10 = 0.0137$ Валовый выброс, т/год,  $_{\_}M_{\_}=N\cdot M\cdot _{\_}T_{\_}\cdot 10=1\cdot 0.0137\cdot 2184\cdot 10=0.0299$ Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.0137/3.6=1$ 0.003806

# Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 9.127 \cdot 10 = 0.0137$ Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot\_T$   $\cdot 10=1\cdot 0.0137\cdot 2184\cdot 10=0.0299$ Максимальный из разовых выброс, г/с,  $G = N1 \cdot M/3.6 = 1 \cdot 0.0137/3.6 =$ 0.003806

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 837.4

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/

NN = 837.4 / 1 = 837.4

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN =$ 

 $29.4 \cdot 1.5 \cdot 9.127 / 1 = 402.5$ 

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V= 0.875

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF$  $/OP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 402.5 / 837.4 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000995$ Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E =$  $7.84 \cdot 1.5 \cdot 9.127 \cdot 1.5 = 161$ 

Объем продуктов сгорания, м3/с, VO = VR/3600 = 161/3600 = 0.0447

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 161 \cdot 0.0000995 = 0.01602$ Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot T \cdot 10 =$ 

 $1 \cdot 0.01602 \cdot 2184 \cdot 10 = 0.035$ 

Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 =$  $1 \cdot 0.01602 / 3.6 = 0.00445$ 

Коэффициент трансформации для NO2, KNO2 = 0.8Коэффициент трансформации для NO, KNO = 0.13Коэффициенты приняты на уровне максимально установленной трансформации

# Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $M = KNO2 \cdot M1 = 0.8 \cdot 0.035 = 0.028$ Максимальный из разовых выброс, г/с,  $G = KNO2 \cdot G1 = 0.8 \cdot 0.00445 = 0.00445$ 0.00356

# Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.035=0.00455$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot G1=0.13\cdot 0.00445=0.000579$ 

# Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.00356    | 0.028        |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.000579   | 0.00455      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.003806   | 0.0299       |
| 0410 | Метан (727*)                                      | 0.003806   | 0.0299       |

# Емкость хранения нефти

Источники выбросов №0816,0817,0818,0819,1403,1404,1406,1414,1420,1500,1501

0.294 
$$\square P m \square (K)^{\max} K \square K \square^{\min}) K \square^{pp} K \square$$

$$\Pi \square \frac{38}{} t \frac{B}{} t \frac{p}{} ob \frac{m}{} zoo$$

10000000 □ \_\_\_ ф-ла 5.2.2

Р38 - давление насыщенных паров нефте и бензинов при темп. 38 С

*В*, ф-ла 5.2.1

m - молекулярная масса паров жидкости, зависит от t нач.кипения.

Т нач.кипения=40 CVmax - макс. объем паровозд. смеси, вытесняемой из резервуара во время его закачки

В - кол-во жидкости, закачиваемое в резервуар в течение года

Ктах t, Kmin - опытные коэффициенты (П.7)

Кр ср, Ктах р - опытные коэффициенты (П.8)

Кв - опытный коэффициент (П.9)

Коб - коэффициент оборачиваемости (П.10)

rж - плотность жидкости, т/куб.м

#### климатическая зона - южная

| AEN  | Объем                          |            | í J             |        |        |    |                     |      |          |      |            |                   |
|------|--------------------------------|------------|-----------------|--------|--------|----|---------------------|------|----------|------|------------|-------------------|
| иза  | резервуа<br>ра, <sub>м</sub> 3 | P38<br>r∏a | т<br>г/мол<br>ъ | Kmax t | Kmax p | КВ | Vmax<br>куб.м<br>/ч | Kmin | Kp<br>cp | KOE  | В<br>т/год | гж<br>т/куб<br>.м |
| 0816 | 75м³                           | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 50                  | 0,69 | 0,1      | 1,28 | 21900      | 0,82              |
| 0817 | 75м <sup>3</sup>               | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 50                  | 0,69 | 0,1      | 1,28 | 21900      | 0,82              |
| 0818 | 75м <sup>3</sup>               | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 50                  | 0,69 | 0,1      | 1,28 | 21900      | 0,82              |
| 0819 | 75м <sup>3</sup>               | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 50                  | 0,69 | 0,1      | 1,28 | 21900      | 0,82              |
| 1403 | PBC-№2<br>3000                 | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 60                  | 0,69 | 0,1      | 2,62 | 30805      | 0,82              |
| 1404 | PBC-№3<br>3000                 | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 60                  | 0,69 | 0,1      | 2,62 | 30805      | 0,82              |
| 1406 | PBC-№1<br>1000                 | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 60                  | 0,69 | 0,1      | 2,62 | 30805      | 0,82              |
| 1414 | PBC-2000                       | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 60                  | 0,69 | 0,1      | 2,1  | 27390      | 0,82              |
| 1420 | PBC-2000                       | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 60                  | 0,69 | 0,1      | 2,1  | 27390      | 0,82              |
| 1500 | PBC-3000                       | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 50                  | 0,69 | 0,1      | 2,62 | 45650      | 0,82              |
| 1501 | PBC-3000                       | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 50                  | 0,69 | 0,1      | 2,62 | 45650      | 0,82              |
| 1407 | PBC-5000                       | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 80                  | 0,69 | 0,1      | 2,62 | 91300      | 0,82              |
| 1408 | PBC-5000                       | 305        | 57 <b>,</b> 6   | 1,04   | 0,1    | 1  | 80                  | 0,69 | 0,1      | 2,62 | 91300      | 0,82              |

# Итого на 2026 г.

|         |             |         |        | Номер     | Местонахождение |
|---------|-------------|---------|--------|-----------|-----------------|
|         |             | -/-     | _/     | источника | источника       |
|         |             | r/c     | т/год  | выделения |                 |
|         |             | 0.33508 | 3.0700 | 0816      |                 |
|         |             | 0.33508 | 3.0700 | 0817      | ГУ Бектас       |
| выбросы |             | 0.33508 | 3.0700 | 0818      |                 |
| Быоросы | углеводород | 0.33508 | 3.0700 | 0819      |                 |
|         |             | 2,068   | 4,268  | 1403      |                 |

| OBC1- C5 | 2,068 | 4,268  | 1404 |
|----------|-------|--------|------|
|          | 2,068 | 4,268  | 1406 |
|          | 6,204 | 12,803 | 1407 |
|          | 6,204 | 12,803 | 1408 |

| 1,861 | 3,8   | 1414 | ГУ Южный Ко- |
|-------|-------|------|--------------|
|       | 41    |      | ныс          |
| 1,861 | 3,8   | 1420 |              |
|       | 41    |      |              |
| 3,102 | 6,401 | 1500 | псн          |
| 3,102 | 6,401 | 1501 |              |

# РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

```
Город N 724, Сырдарынский район
 Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год
 Источник загрязнения N 1409, РВС 400 м3 пластовая вода
 Источник выделения N 001, PBC 400 м3 пластовая вода
Список литературы:
1. Методические указания по определению выбросов загрязняющих веществ в
атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п 5.
 Вид выброса, VV = \mathbf{B}ыбросы паров нефти и бензинов
 Нефтепродукт, NPNAME = Сырая нефть
 Минимальная температура смеси, гр.С, TMIN = 30
 Коэффициент Кt (Прил.7), KT = 0.74
 KTMIN = 0.74
Максимальная температура смеси, гр.С, TMAX = 40
 Коэффициент Кt (Прил.7), KT = 0.92
 KTMAX = 0.92
 Режим эксплуатации, NAME =  "буферная емкость" (все типы резервуаров)
 Конструкция резервуаров, NAME = Наземный вертикальный
 Объем одного резервуара данного типа, м3, VI = 400
 Количество резервуаров данного типа, NR = 1
Количество групп одноцелевых резервуаров, KNR = 1
 Категория веществ, \_NAME\_ = A, Б, В
 Значение Kpsr(Прил.8), KPSR = 0.1
 Значение Крmax(Прил.8), KPM = 0.1
 Коэффициент , KPSR = 0.1
 Производительность закачки, м3/час, QZ = 20
 Производительность откачки, м3/час, QOT = 20
 Коэффициент, KPMAX = 0.1
Общий объем резервуаров, м3, V = 400
Количество жидкости закачиваемое в резервуар в течение года, T/год, B = 
30200
 Плотность смеси, T/M3, RO = 0.82
 Годовая оборачиваемость резервуара (5.1.8), NN = B/(RO \cdot V) = 30200/
 (0.82 \cdot 400) = 92.1
 Коэффициент (Прил. 10), KOB = 1.41
Максимальный объем паровоздушной смеси, вытесняемой из
резервуара во время его закачки, м3/час, VCMAX = 20 Расчет для
летнего сорта нефти (бензина)
Давление паров летнего сорта, мм.рт.ст., PL = 206
Температура начала кипения смеси, гр.С, ТКІР = 206
 Молекулярная масса паров смеси, кг/кмоль, MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 206 +
 45 = 168.6
Молекулярная масса паров летнего сорта, \kappa \Gamma / \kappa моль, MRL = 168.6
Расчет для зимнего сорта нефти (бензина) Давление паров
зимнего сорта, мм.рт.ст., PZ = 206 Температура начала
кипения смеси, гр.С, TKIP = 206
 Молекулярная масса паров смеси, кг/кмоль, MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 206 + 100
 45 = 168.6
```

Молекулярная масса паров зимнего сорта, кг/кмоль, MRZ = 168.6

Коэффициент, KB=1

 $M = (PL \cdot KTMAX \cdot KB \cdot MRL) + (PZ \cdot KTMIN \cdot MRZ) = (206 \cdot 0.92 \cdot 1 \cdot 168.6) + (206 \cdot 0.74 \cdot 168.6) = 57654.5$ 

Среднегодовые выбросы, т/год (5.2.3),  $M = M \cdot 0.294 \cdot KPSR \cdot KOB \cdot B / (10^7 \cdot RO)$ 

 $= 57654.5 \cdot 0.294 \cdot 0.1 \cdot 1.41 \cdot 30200 / (10^{7} \cdot 0.82) = 8.8$ 

Максимальный из разовых выброс, г/с (5.2.1), G =

 $0.163 \cdot PL \cdot MRL \cdot KTMAX \cdot KPMAX \cdot KB \cdot VCMAX / 10^4 =$ 

 $0.163 \cdot 206 \cdot 168.6 \cdot 0.92 \cdot 0.1 \cdot 1 \cdot 20 / 10^4 = 1.042$ 

# Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Среднегодовые выбросы, т/год (5.2.5),  $M = CI \cdot M / 100 = 72.46 \cdot 8.8 / 100 =$ 

# 6.38

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G/100 = 72.46 \cdot 1.042$ 

/100 = 0.755

# Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Среднегодовые выбросы, т/год (5.2.5),  $\_M\_=CI\cdot M/100=26.8\cdot 8.8/100=2.36$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_=CI\cdot G/100=26.8\cdot 1.042/100=0.279$ 

# Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Среднегодовые выбросы, т/год (5.2.5),  $_M = CI \cdot M / 100 = 0.35 \cdot 8.8 / 100 =$ 

#### 0.0308

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 1.042 / 100 = 0.00365$ 

## Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Среднегодовые выбросы, т/год (5.2.5),  $M = CI \cdot M/100 = 0.22 \cdot 8.8/100 =$ 

## 0.01936

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 1.042 / 100 = 0.002292$ 

## Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11

Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 8.8 / 100 = 0.11 \cdot 8.0 / 100 = 0.11 \cdot 8$ 

# 0.00968

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 1.042 / 100 = 0.001146$ 

# Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Среднегодовые выбросы, т/год (5.2.5),  $_{M}$  =  $CI \cdot M / 100 = 0.06 \cdot 8.8 / 100 = 0.06 \cdot 8.00 = 0.06 \cdot 8.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.$ 

# 0.00528

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_=CI\cdot G/100=0.06\cdot 1.042/100=0.000625$ 

| _ 0 0 | 0.000=0                              |            |              |
|-------|--------------------------------------|------------|--------------|
| Код   | Наименование ЗВ                      | Выброс г/с | Выброс т/год |
| 033   | Сероводород (Дигидросульфид) (518)   | 0.000625   | 0.00528      |
| 3     |                                      |            |              |
| 041   | Смесь углеводородов предельных С1-С5 | 0.755      | 6.38         |
| 5     | (1502*)                              |            |              |
| 041   | Смесь углеводородов предельных С6-   | 0.279      | 2.36         |
| 6     | C10 (1503*)                          |            |              |
| 060   | Бензол (64)                          | 0.00365    | 0.0308       |
| 2     |                                      |            |              |
| 061   | Диметилбензол (смесь о-, м-, п-      | 0.001146   | 0.00968      |
| 6     | изомеров) (203)                      |            |              |
| 062   | Метилбензол (349)                    | 0.002292   | 0.01936      |
| 1     |                                      |            |              |

## РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

```
Город N 724, Сырдарынский район
 Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год
 Источник загрязнения N 1410, РВС 1000 м3 пластовая вода
 Источник выделения N 001, PBC 1000 м3 пластовая вода
 Список литературы:
1. Методические указания по определению выбросов загрязняющих веществ в
атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п 5.
 вид выброса, VV = Выбросы паров нефти и бензинов
 нефтепродукт, NPNAME = Сырая нефть
 Минимальная температура смеси, гр.С, TMIN = 30
 Коэффициент Кt (Прил.7), KT = 0.74
 KTMIN = 0.74
Максимальная температура смеси, гр.С, TMAX = 40
 Коэффициент Кt (Прил.7), KT = 0.92
 KTMAX = 0.92
 Режим эксплуатации, NAME = "буферная емкость" (все типы резервуаров)
 Конструкция резервуаров, NAME = Наземный вертикальный
 Объем одного резервуара данного типа, м3, W = 1000
 Количество резервуаров данного типа, NR = 1
Количество групп одноцелевых резервуаров, KNR = 1
 Категория веществ, _{NAME} = A, B, B
 Значение Kpsr(Прил.8), KPSR = 0.1
 Значение Крмах (Прил. 8), KPM = 0.1
 Коэффициент , KPSR = 0.1
 Производительность закачки, м3/час, QZ = 20
 Производительность откачки, м3/час, QOT = 20
 Коэффициент, KPMAX = 0.1
 Общий объем резервуаров, м3, V = 1000
Количество жидкости закачиваемое в резервуар в течение года, \tauгод, В =
80100
 Плотность смеси, \tau/м3, RO = 0.82
 Годовая оборачиваемость резервуара (5.1.8), NN = B/(RO \cdot V) = 80100/
 (0.82 \cdot 1000) = 97.7
 Коэффициент (Прил. 10), KOB = 1.367
Максимальный объем паровоздушной смеси, вытесняемой из
резервуара во время его закачки, м3/час, VCMAX = 20
Расчет для летнего сорта нефти (бензина) Давление паров
летнего сорта, мм.рт.ст., PL = 206 Температура начала кипения
смеси, гр.С, ТКІР = 206
 Молекулярная масса паров смеси, кг/кмоль, MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 206 + 100
 45 = 168.6
Молекулярная масса паров летнего сорта, \kappa \Gamma / \kappaмоль, MRL = 168.6
Расчет для зимнего сорта нефти (бензина) Давление паров
зимнего сорта, мм.рт.ст., PZ = 206 Температура начала
кипения смеси, гр.С, TKIP = 206
 Молекулярная масса паров смеси, кг/кмоль, MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 206 + 100
```

45 = 168.6

Молекулярная масса паров зимнего сорта, кг/кмоль, MRZ = 168.6

Коэффициент, KB = 1

 $M = (PL \cdot KTMAX \cdot KB \cdot MRL) + (PZ \cdot KTMIN \cdot MRZ) = (206 \cdot 0.92 \cdot 1 \cdot 168.6) + (206 \cdot 0.74 \cdot 168.6) = 57654.5$ 

Среднегодовые выбросы, т/год (5.2.3),  $M = M \cdot 0.294 \cdot KPSR \cdot KOB \cdot B / (10^7 \cdot RO)$ 

 $= 57654.5 \cdot 0.294 \cdot 0.1 \cdot 1.367 \cdot 80100 / (10^7 \cdot 0.82) = 22.63$ 

Максимальный из разовых выброс, г/с (5.2.1), G =

 $0.163 \cdot PL \cdot MRL \cdot KTMAX \cdot KPMAX \cdot KB \cdot VCMAX / 10^4 =$ 

 $0.163 \cdot 206 \cdot 168.6 \cdot 0.92 \cdot 0.1 \cdot 1 \cdot 20 / 10^4 = 1.042$ 

# Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Среднегодовые выбросы, т/год (5.2.5),  $\_M\_=CI \cdot M/100 = 72.46 \cdot 22.63/100 = 16.4$ 

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 72.46 \cdot 1.042$ 

/100 = 0.755

# Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Среднегодовые выбросы, т/год (5.2.5),  $_{M}$  =  $CI \cdot M / 100 = 26.8 \cdot 22.63 / 100 = 26.8 \cdot 22.60 / 100 = 26.8 \cdot 22.60 / 100 = 26.8 \cdot$ 

6.06

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 26.8 \cdot 1.042 / 100 = 0.279$ 

#### Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.35 \cdot 22.63 / 100 = 0.0792$ 

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 1.042 / 100 = 0.00365$ 

# Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Среднегодовые выбросы, т/год (5.2.5),  $_{M}$  =  $CI \cdot M / 100 = 0.22 \cdot 22.63 / 100 = 0.22 \cdot$ 

#### 0.0498

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 1.042 / 100 = 0.002292$ 

# Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Среднегодовые выбросы, т/год (5.2.5),  $_M = CI \cdot M/100 = 0.11 \cdot 22.63/100 = 0.11$ 

#### 0.0249

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 1.042 / 100 = 0.001146$ 

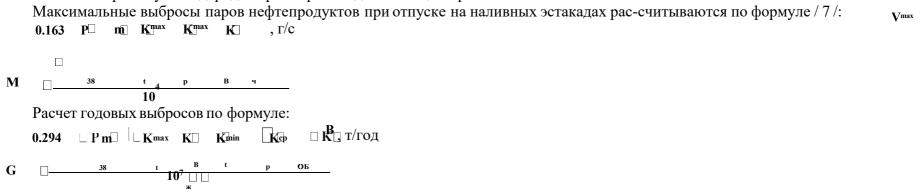
# Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Среднегодовые выбросы, т/год (5.2.5),  $_{M}$  =  $CI \cdot M / 100 = 0.06 \cdot 22.63 / 100 = 0.06 / 100 = 0.06 / 100 / 100 = 0.06 / 100 / 100 = 0.06 / 100 / 100 / 100 = 0.06 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 10$ 

# 0.01358

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.06 \cdot 1.042 / 100 = 0.000625$ 


| Код  | Наименование ЗВ                      | Выброс г/с | Выброс т/год |
|------|--------------------------------------|------------|--------------|
| 033  | Сероводород (Дигидросульфид) (518)   | 0.000625   | 0.01358      |
| 3    |                                      |            |              |
| 041  | Смесь углеводородов предельных С1-С5 | 0.755      | 16.4         |
| 5    | (1502*)                              |            |              |
| 041  | Смесь углеводородов предельных С6-   | 0.279      | 6.06         |
| 6    | C10 (1503*)                          |            |              |
| 060  | Бензол (64)                          | 0.00365    | 0.0792       |
| 2    |                                      |            |              |
| 0616 | Диметилбензол (смесь о-, м-, п-      | 0.001146   | 0.0249       |
|      | изомеров) (203)                      |            |              |
| 0621 | Метилбензол (349)                    | 0.002292   | 0.0498       |

# Расчет выбросов углеводородов при наливенефти в автоцистерны

#### Источник №1411

В связи с тем, что налив нефти в автоцистерны производится путем герметичного соединения рукава нефтеналивного стояка с нижней частью цистерны, то выброс углеводородов происходит только через клапан автоцистерны. Выбросы значительно уменьшаются по сравнению с наливом нефти от стояка через верхний люк.

Количество выбросов углеводородов при заправке одной автоцистерны.



Р38 - давление насыщенных паров нефте и бензинов при темп. 38 С

m - молекулярная масса паров жидкости, зависит от t нач.кипения. T нач.кипения=40 CV max - макс. объем паровозд. смеси, вытесняемой из резервуара во время его закачки B - кол-во жидкости, закачиваемое в резервуар в течение года

Ктах t, Kmin - опытные коэффициенты (П.7)Кв - опытный коэффициент (П.9)

rж - плотность жидкости, т/куб.м

Кр ср, Ктах р - опытные коэффициенты (П.8)Коб - коэффициент оборачиваемости (П.10)

# климатическая зона - южная

Налив нефти производится герметично "под слой", снижение выбросов на 50%

Наливная эстакала ШППН

№ 1411

| P38 | m      | Kmax t | Kmax p | KB | Vmax   | Kmin | Кр ср | K <sub>oб</sub> | В     | ρж    |
|-----|--------|--------|--------|----|--------|------|-------|-----------------|-------|-------|
| гПа | г/моль |        |        |    | куб.м/ |      |       |                 | т/год | т/куб |
|     |        |        |        |    | Ч      |      |       |                 |       | . M   |
|     |        |        |        |    | 2026   | год  |       |                 |       |       |
| 305 | 57,6   | 1,04   | 0,1    | 1  | 400    | 0,69 | 0,1   | 2,5             | 20005 | 0,82  |
|     |        |        |        |    |        |      |       |                 | 0     |       |

# ИЗА. № 1411

|                 | r/c     | т/год  |
|-----------------|---------|--------|
| выброс          | 10,0848 | 36,639 |
| углеводородовС1 |         |        |
| -C <sub>5</sub> |         |        |

# Расчет эмиссии вредных веществ от КС

3 КС. Всего расход газа 764747 м3 - №0490, 0644, 1401

# 1. Расчет эмиссии диоксида азота

 $M_{NOx} = J_{NOx} * B$ ,  $\Gamma/c$ 

В - расход топлива в камере сгорания, в нашем случае, м3/с  $J_{NOx}$ 

удельный выброс окислов азота г/м3 топлива,

определяемый по формуле:  $J_{NOX} = C_{NOX} * V_{\Gamma}$ 

 $C_{NOx}$  концентрация оксидов азота в пересчете на диоксид в отработанных газах, г/м³  $V_{\scriptscriptstyle \Gamma}$  объем сухих дымовых газов за турбиной на кг топлива, м³/м³, вычисляется по формуле: $V_{\scriptscriptstyle \Gamma} = (V_{\scriptscriptstyle T} - V_{\scriptscriptstyle H2O}) + (\alpha - 1) * V_{\scriptscriptstyle B} * 0.984$ 

Где  $V_{\scriptscriptstyle T}$  – теоретический объем газа, м³/сек

$$V_{6} = 0.0467 * \{1.5 * [H_{2}S] + \sum_{i=1}^{N} (x + y/4) * [CxHy] - [O_{2}] \},$$

[H2S], [CxHy],  $[O_2]$  – содержание сероводорода, углеводородов, кислорода, соответственно в

сжигаемом нефтяном газе, % об.  $V_T = V_{M_2}^0$  + +  $V_{H_2O}^0$ 

где:

теоретические объемы азота,

трехатомных газов и водяных паров, образующихся при полном сжигании топлива

Vт рассчитывается по формуле:

$$\begin{array}{ccc}
V_{N_2}^0 & & & & \\
V_{RO}^0 & = & & & (0.79*V_0 + 0.8*N/100) \text{ M}^3/\text{M}^3, \\
V_{RO}^0 & = & & & 1.866*(C + 0.375*S/100)*0.01 \text{ M}^3/\text{M}^3,
\end{array}$$

$$= (0.111*H+0.0124*W*Ve), \text{ M}^3/\text{M}^3.$$

| Состав топлива: | углерод | водород | кислоро<br>д | сера | азот  | влага |
|-----------------|---------|---------|--------------|------|-------|-------|
| Усл.имя         | С       | н       | 0            | S    | N     | w     |
| %               | 74,7288 | 22,636  | 0,097        | 0    | 1,643 | 0     |

 $V_{N_2}^0 = V_{RO}^0, V_{H_2O}^0$ 

| [H2S]  | [CxHy] | [02]  | Vв     | N     | W     | S     | С       | Н       |         |         |        |
|--------|--------|-------|--------|-------|-------|-------|---------|---------|---------|---------|--------|
| % об.  | % об.  | % об. | м3/м3  | % об. | % об. | % об. | % об.   | % об.   | m3/m3   | M3/M3   | м3/м3  |
| 0,0000 | 229,32 | 0,097 | 10,705 | 1,643 | 0     | 0     | 74,7288 | 22,6357 | 8,46996 | 1,39444 | 2,5126 |

#### эмиссия на 1 Компрессорную станцию

| Вс,<br>м3/ | α   | Vт,<br>м3/м | Vв,<br>м3/м | <i>V</i> <u>а</u><br>м3/с | D,<br>м | Wo,<br>м/c | Vг,<br>м3/м | С,<br>г/м3 | J <sub>NOx</sub><br>г/м3 | M <sub>NOx</sub><br>r/c | M <sub>NOx</sub><br>т/год |
|------------|-----|-------------|-------------|---------------------------|---------|------------|-------------|------------|--------------------------|-------------------------|---------------------------|
| С          |     | 3           | 3           |                           |         |            | 3           |            |                          |                         |                           |
| 0,02       | 3,5 | 12,377      | 10,705      | 1,08                      | 1       | 1,37       | 36,1983     | 0,077      | 2,78727                  | 0,011812                | 0,37253                   |

Расчетвыброса углеводородов и оксида углерода

Суммарные количества окиси углерода и несгоревших углеводородов в пересчете на C1-C5(Мсо и Мсн), выбрасываемых в атмосферу с отработанными газами:

 $M_{co}=J_{co}*B$ 

 $M_{cH} = J_{cH} * B$ 

где:

В – расход топлива в камере сгорания, кг/с;

 $J_{co}$  и  $J_{ch}$  – удельные выбросы CO и  $CH_4$ , г/кг топлива, вычисляются по формуле:

 $_{I}J_{co}~=\alpha _{co}*~^{Kco}$ 

 $_{I}J_{_{CH}}=\alpha _{_{CH}}\ast \ ^{KcH}$ 

где:

- потери теплоты от химической неполноты сгорания топлива (%), при

номинальном режиме  $\sim 0.5\%$   $\alpha$  - коэффициенты для газа

| Вс,<br>м3/ | плот-<br>ность | Вс,<br>кг/с | $lpha_{co}$ | $lpha_{\sf ch}$ |     | Ксо | Ксн | Ј <sub>со</sub><br>г/кг | Ј <sub>сн</sub><br>г/кг |  |
|------------|----------------|-------------|-------------|-----------------|-----|-----|-----|-------------------------|-------------------------|--|
| С          |                |             |             |                 |     |     |     |                         |                         |  |
| 0,02       | 0,7558         | 0,0194      | 22,8        | 5,01            | 0,5 | 0,6 | 1,2 | 15,0424                 | 2,18073                 |  |

эмиссия на 1 Компрессорную станцию

|        |          |          |       |            | 1 /    |          |        |
|--------|----------|----------|-------|------------|--------|----------|--------|
| Bc,    | $J_{co}$ | $J_{CH}$ | Т,    | оксид угле | рода   | УВ С1-С5 |        |
| кг/    | г/кг     | г/кг     | ч/год | г/с        | т/год  | г/с      | т/год  |
| С      |          |          |       |            |        |          |        |
| 0,0194 | 15,042   | 2,18073  | 456   | 0,0618     | 1,9492 | 0,0089   | 0,2825 |

# РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

# Печи на нефти: 45 км трубопровода №0478,0019,0020

1. Расчет выбросов СО и СН4 (кг/час, г/с и т/год) на 1 печь

|       |      |        |        | uc, 1, c 11 1, 1 0, | · · · · · · · · · · · · · · · · · · · |       |       |        |               |
|-------|------|--------|--------|---------------------|---------------------------------------|-------|-------|--------|---------------|
|       |      | расход |        | плотнос             |                                       |       |       |        |               |
| Ти    | кол  | нефт   | на 1   | ТЬ                  | время                                 |       |       |        | $N_{\bar{0}}$ |
| П     | - во | и,     | печь,  | нефт                | ,                                     | кг/ча | r/c   | т/год  | ис            |
| пе    |      | T/ro   | кг/час | И                   | ч/год                                 | С     |       |        | T             |
| ч     |      | Д      | , B    | кг/м                |                                       |       |       |        |               |
| N     |      |        |        | 3                   |                                       |       |       |        |               |
| ПТ-   |      | 1050   | 156.05 | 0.00                | 0.664                                 |       |       |        |               |
| 1.6AX | 1    | 1350   | 156,27 | 0,82                | 8664                                  | 0,274 | 0,088 | 2,8038 | 0478          |
|       |      |        |        |                     |                                       |       | 9     |        |               |
| Китай | 1    | 972    | 126,98 | 0,82                | 8760                                  | 0,225 | 0,089 | 2,835  | 0019          |
|       |      |        |        |                     |                                       |       | 8     |        |               |
| Китай | 1    | 972    | 126,98 | 0,82                | 8760                                  | 0,225 | 0,089 | 2,835  | 0020          |
|       |      |        |        |                     |                                       |       | 8     |        |               |

# 2. расчет эмиссии оксидов азота. кг/час

Расчет концентрации (кг/м³) оксидов азота на 1 печь

| Ти<br>п<br>пе<br>ч | a | Э    | В <b>,</b><br>кг/час | V,<br>м3/с | Vcr/V<br>r | b | Т,<br>ч/год | Qф,<br>мДж∕ча<br>с | Qp    | Q\$\Qp     | №<br>ИС<br>Т |
|--------------------|---|------|----------------------|------------|------------|---|-------------|--------------------|-------|------------|--------------|
| ПТ-<br>1.6A<br>Ж   | 1 | 1,37 | 156 <b>,</b> 27      | 0,72       | 0,85       | 1 | 8664        | 10584              | 6699, | 1,579<br>9 | 0478         |
| Китай              | 1 | 1,37 | 126,98               | 0,90       | 0,85       | 1 | 8760        | 13230              | 6699, | 1,974<br>9 | 0019         |
| Китай              | 1 | 1,37 | 126,98               | 0,90       | 0,85       | 1 | 8760        | 13230              | 6699, | 1,974<br>9 | 0020         |

|          | ٧r,  | C NOx, | п мож, | диок | № NCT. |  |
|----------|------|--------|--------|------|--------|--|
| Тип печи | м3/ч | кг/м3  | кг/час | r/c  | т/год  |  |

| ПТ-1.6АЖ | 128,14 | 0,00034 | 0,6784  | 0,2201 | 6,942  | 0478 |
|----------|--------|---------|---------|--------|--------|------|
|          |        | 58      |         |        |        |      |
| Китай    | 104,12 |         | 0,69648 | 0,2259 | 7,2069 | 0019 |
|          |        | 23      |         |        |        |      |
| Китай    | 104,12 | 0,00043 | 0,69648 | 0,2259 | 7,2069 | 0020 |
|          |        | 23      |         |        |        |      |

# Пп = B\*b\*Ar\*0,01, кг/ч

Ar - содержание золы в топливе, % по массе

| тип | расх<br>о д<br>нефт<br>и<br>,<br>т/год | на 1<br>печь,<br>кг/час<br>, В | Ar.% | время<br>,<br>ч/год | b | выбр<br>о с<br>кг/ч<br>ас | r/c | т/год | №<br>ИСТ. |  |
|-----|----------------------------------------|--------------------------------|------|---------------------|---|---------------------------|-----|-------|-----------|--|
|-----|----------------------------------------|--------------------------------|------|---------------------|---|---------------------------|-----|-------|-----------|--|

| ПТ-1.6АЖ | 1354   | 1350 | 0,1 | 8664 | 1 | 0,021 | 0,0589 | 1,8622 | 0478 |
|----------|--------|------|-----|------|---|-------|--------|--------|------|
| Китай    | 1112,4 | 972  | 0,1 | 8760 | 1 | 0,012 | 0,0491 | 1,552  | 0019 |
| Китай    | 1112,4 | 972  | 0,1 | 8760 | 1 | 0,012 | 0,0491 | 1,552  | 0020 |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год

Источник загрязнения N 0024 Дизельгенератор AKSA 120кВт Источник выделения N 001, Дизельгенератор AKSA 120кВт

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

#### Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по СО в 2 раза; NO, NO в 2.5 раза; СН, С, СНО и БП в 3.5 раза.

Расход топлива стационарной дизельной установки за год  $\pmb{B}$ , т, 26.2 Эксплуатационная мощность стационарной дизельной установки  $\pmb{P}$ , кВт, 120 Удельный расход топлива на экспл./номин. режиме работы двигателя  $\pmb{b}$ , г/кВт\*ч, 180

Температура отработавших газов T, K, 450 Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов Расход отработавших газов G, кг/с: G = 8.72 \* 10 \* b \* P = 8.72 \* 10 \* 180 \* 120 = 0.188352 (A.3)

Удельный вес отработавших газов Ошибка! Закладка не определена., кг/м: Ошибка! Закладка не определена. = 1.31/(1+T/273)=1.31/(1+450/273)=0.494647303 (A.5) где 1.31 – удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м;

Объемный расход отработавших газов Q, м/с: Q = G/Oшибка! Закладка не определена. = 0.188352/0.494647303 = 0.380780404 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов  $m{e}$  г/кВт\*ч стационарной дизельной установки до капитального ремонта

| Группа | СО  | NOx  | СН      | С       | SO2 | CH2O    | БП      |
|--------|-----|------|---------|---------|-----|---------|---------|
| Б      | 3.1 | 3.84 | 0.82857 | 0.14286 | 1.2 | 0.03429 | 3.42E-6 |

Таблица значений выбросов q г/кг.топл. стационарной дизельной установки до капитального ремонта

| Группа | СО | NOx  | СН      | С       | S02 | CH2O    | БП      |
|--------|----|------|---------|---------|-----|---------|---------|
| Б      | 13 | 1 16 | 3.42857 | 0.57143 | 5   | 0.14286 | 0.00002 |

Расчет максимального из разовых выброса  $M_{\star}$  г/с:

M = e \* P / 3600 (1)

Расчет валового выброса W, т/год:

W = q \* B / 1000 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

M = e \* P / 3600 = 3.1 \* 120 / 3600 = 0.103333333

W = q \* B = 13 \* 26.2 / 1000 = 0.3406

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

M = (e \* P/3600) \* 0.8 = (3.84 \* 120/3600) \* 0.8 = 0.1024

W = (q \* B / 1000) \* 0.8 = (16 \* 26.2 / 1000) \* 0.8 = 0.33536

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- $265\Pi$ ) (10)

M = e \* P / 3600 = 0.82857 \* 120 / 3600 = 0.027619

W = q \* B / 1000 = 3.42857 \* 26.2 / 1000 = 0.089828534

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

M = e \* P / 3600 = 0.14286 \* 120 / 3600 = 0.004762

W = q \* B / 1000 = 0.57143 \* 26.2 / 1000 = 0.014971466

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид (516)

M = e \* P / 3600 = 1.2 \* 120 / 3600 = 0.04

W = q \* B / 1000 = 5 \* 26.2 / 1000 = 0.131

Примесь:1325 Формальдегид (Метаналь) (609)

M = e \* P / 3600 = 0.03429 \* 120 / 3600 = 0.001143

W = q \* B = 0.14286 \* 26.2 / 1000 = 0.003742932

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

M = e \* P / 3600 = 0.00000342 \* 120 / 3600 = 0.000000114

W = q \* B = 0.00002 \* 26.2 / 1000 = 0.000000524

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

M = (e \* P/3600) \* 0.13 = (3.84 \* 120/3600) \* 0.13 = 0.01664

W = (q \* B / 1000) \* 0.13 = (16 \* 26.2 / 1000) \* 0.13 = 0.054496

#### Итого выбросы по вешествам:

| Код  | Примесь                                                  | г/сек    | т/год       | %       | г/сек            | т/год       |
|------|----------------------------------------------------------|----------|-------------|---------|------------------|-------------|
|      |                                                          | без      | без         | очистки | $\boldsymbol{c}$ | c           |
|      |                                                          | очистки  | очистки     |         | очисткой         | очисткой    |
| 1    | Азота (IV) диоксид (Азота<br>диоксид) (4)                | 0.1024   | 0.33536     | 0       | 0.1024           | 0.33536     |
| 0304 | Азот (II) оксид (Азота оксид) (6)                        | 0.01664  | 0.054496    | 0       | 0.01664          | 0.054496    |
| 1    | Углерод (Сажа, Углерод черный)<br>(583)                  | 0.004762 | 0.014971466 | 0       | 0.004762         | 0.014971466 |
| 1    | Сера диоксид (Ангидрид<br>сернистый, Сернистый газ, Сера |          | 0.131       | 0       | 0.04             | 0.131       |

|      | (IV) оксид) (516)                 |             |             |   |             |             |
|------|-----------------------------------|-------------|-------------|---|-------------|-------------|
|      |                                   |             |             |   |             |             |
| 0337 | Углерод оксид (Окись углерода,    | 0.103333333 | 0.3406      | 0 | 0.103333333 | 0.3406      |
|      | Угарный газ) (584)                |             |             |   |             |             |
| 0703 | Бенз/а/пирен (3,4-Бензпирен) (54) | 0.000000114 | 0.000000524 | 0 | 0.000000114 | 0.000000524 |
| 1325 | Формальдегид (Метаналь) (609)     | 0.001143    | 0.003742932 | 0 | 0.001143    | 0.003742932 |
| 2754 | Алканы С12-19 /в пересчете на С/  | 0.027619    | 0.089828534 | 0 | 0.027619    | 0.089828534 |
|      | (Углеводороды предельные С12-     |             |             |   |             |             |
|      | С19 (в пересчете на С);           |             |             |   |             |             |
|      | Растворитель РПК-265П) (10)       |             |             |   |             |             |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 0025, Дизельгенератор AKSA 170кВт Источник выделения N 001, Дизельгенератор AKSA 170кВт

Список литературы:

#### Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по СО в 2 раза; NO, NO в 2.5 раза; СН, С, СНО и БП в 3.5 раза.

Расход топлива стационарной дизельной установки за год  $\pmb{B}$ , т, 26.2 Эксплуатационная мощность стационарной дизельной установки  $\pmb{P}$ , кВт, 170 Удельный расход топлива на экспл./номин. режиме работы двигателя  $\pmb{b}$ , г/кВт\*ч, 180

Температура отработавших газов T, K, 450 Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов Расход отработавших газов G, кг/с: G = 8.72 \* 10 \* b \* P = 8.72 \* 10 \* 180 \* 170 = 0.266832 (A.3)

Удельный вес отработавших газов Ошибка! Закладка не определена., кг/м: Ошибка! Закладка не определена. = 1.31/(1+T/273) = 1.31/(1+450/273) = 0.494647303 (А.5) где 1.31 – удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м;

Объемный расход отработавших газов Q, м/с: Q = G/Oшибка! Закладка не определена. = 0.266832/0.494647303 = 0.539438906 (A.4)

2. Расчет максимального из разовых и валового выбросов

<sup>1. &</sup>quot;Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Таблица значений выбросов  $oldsymbol{e}$  г/кВт\*ч стационарной дизельной установки до капитального ремонта

| Группа | CO  | NOx  | СН      | С       | S02 | CH2O    | БП      |
|--------|-----|------|---------|---------|-----|---------|---------|
| Б      | 3.1 | 3.84 | 0.82857 | 0.14286 | 1.2 | 0.03429 | 3.42E-6 |

Таблица значений выбросов q г/кг.топл. стационарной дизельной установки до капитального ремонта

| Группа | СО | NOx | СН      | С       | SO2 | CH2O    | БП      |
|--------|----|-----|---------|---------|-----|---------|---------|
| Б      | 13 | 16  | 3.42857 | 0.57143 | 5   | 0.14286 | 0.00002 |

Расчет максимального из разовых выброса M, г/с:

M = e \* P / 3600 (1)

Расчет валового выброса W, т/год:

W = q \* B / 1000 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 – для NO и 0.13 – для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

M = e \* P / 3600 = 3.1 \* 170 / 3600 = 0.146388889

W = q \* B = 13 \* 26.2 / 1000 = 0.3406

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

M = (e \* P/3600) \* 0.8 = (3.84 \* 170/3600) \* 0.8 = 0.145066667

W = (q \* B / 1000) \* 0.8 = (16 \* 26.2 / 1000) \* 0.8 = 0.33536

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- $265\Pi$ ) (10)

M = e \* P / 3600 = 0.82857 \* 170 / 3600 = 0.039126917

W = q \* B / 1000 = 3.42857 \* 26.2 / 1000 = 0.089828534

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

M = e \* P / 3600 = 0.14286 \* 170 / 3600 = 0.006746167

W = q \* B / 1000 = 0.57143 \* 26.2 / 1000 = 0.014971466

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид (516)

M = e \* P / 3600 = 1.2 \* 170 / 3600 = 0.056666667

W = q \* B / 1000 = 5 \* 26.2 / 1000 = 0.131

Примесь:1325 Формальдегид (Метаналь) (609)

M = e \* P / 3600 = 0.03429 \* 170 / 3600 = 0.00161925

W = q \* B = 0.14286 \* 26.2 / 1000 = 0.003742932

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

M = e \* P / 3600 = 0.00000342 \* 170 / 3600 = 0.000000162

W = q \* B = 0.00002 \* 26.2 / 1000 = 0.000000524

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

M = (e \* P / 3600) \* 0.13 = (3.84 \* 170 / 3600) \* 0.13 = 0.023573333

W = (q \* B / 1000) \* 0.13 = (16 \* 26.2 / 1000) \* 0.13 = 0.054496

Итого выбросы по веществам:

| Код  | Примесь                                                                                                                     | г/сек       | т/год       | %       | г/сек       | т/год       |
|------|-----------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------|-------------|-------------|
|      |                                                                                                                             | без         | без         | очистки | c           | c           |
|      |                                                                                                                             | очистки     | очистки     |         | очисткой    | очисткой    |
| 0301 | Азота (IV) диоксид (Азота диоксид)<br>(4)                                                                                   | 0.145066667 | 0.33536     | 0       | 0.145066667 | 0.33536     |
| 0304 | Азот (II) оксид (Азота оксид) (6)                                                                                           | 0.023573333 | 0.054496    | 0       | 0.023573333 | 0.054496    |
|      | Углерод (Сажа, Углерод черный)<br>(583)                                                                                     | 0.006746167 | 0.014971466 | 0       | 0.006746167 | 0.014971466 |
|      | Сера диоксид (Ангидрид сернистый,<br>Сернистый газ, Сера (IV) оксид) (516)                                                  | 0.056666667 | 0.131       | 0       | 0.056666667 | 0.131       |
| l    | Углерод оксид (Окись углерода,<br>Угарный газ) (584)                                                                        | 0.146388889 | 0.3406      | 0       | 0.146388889 | 0.3406      |
| 0703 | Бенз/а/пирен (3,4-Бензпирен) (54)                                                                                           | 0.000000162 | 0.000000524 | 0       | 0.000000162 | 0.000000524 |
| 1325 | Формальдегид (Метаналь) (609)                                                                                               | 0.00161925  | 0.003742932 | 0       | 0.00161925  | 0.003742932 |
|      | Алканы С12-19 /в пересчете на С/<br>(Углеводороды предельные С12-С19<br>(в пересчете на С); Растворитель РПК-<br>265П) (10) |             | 0.089828534 | 0       | 0.039126917 | 0.089828534 |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 0026, Дизельгенератор AKSA 180кВт

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

#### Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по СО в 2 раза; NO, NO в 2.5 раза; СН, С, СНО и БП в 3.5 раза.

Расход топлива стационарной дизельной установки за год  $\pmb{B}$ , т, 26.2 Эксплуатационная мощность стационарной дизельной установки  $\pmb{P}$ , кВт, 180 Удельный расход топлива на экспл./номин. режиме работы двигателя  $\pmb{b}$ , г/кВт\*ч, 180

Температура отработавших газов T, K, 450 Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов Расход отработавших газов G, кг/с: G = 8.72 \* 10 \* b \* P = 8.72 \* 10 \* 180 \* 180 = 0.282528 (A.3)

Удельный вес отработавших газов Ошибка! Закладка не определена., кг/м:

Ошибка! Закладка не определена. = 1.31/(1 + T/273) = 1.31/(1 + 450/273) = 0.494647303 (A.5) где 1.31 – удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м;

Объемный расход отработавших газов Q, м/с:

Q = G/Ошибка! Закладка не определена. = 0.282528/0.494647303 = 0.571170606 (A. 4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов  $\boldsymbol{e}$  г/кВт\*ч стационарной дизельной установки до капитального ремонта

| Группа | CO  | NOx  | СН      | С       | S02 | CH2O    | БП      |
|--------|-----|------|---------|---------|-----|---------|---------|
| Б      | 3.1 | 3.84 | 0.82857 | 0.14286 | 1.2 | 0.03429 | 3.42E-6 |

Таблица значений выбросов q г/кг.топл. стационарной дизельной установки до капитального ремонта

| Группа | СО | NOx | СН      | С       | SO2 | CH2O    | БП      |
|--------|----|-----|---------|---------|-----|---------|---------|
| Б      | 13 | 16  | 3.42857 | 0.57143 | 5   | 0.14286 | 0.00002 |

Расчет максимального из разовых выброса M, г/с:

M = e \* P/3600 (1)

Расчет валового выброса W, т/год:

W = q \* B / 1000 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 – для NO и 0.13 – для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

M = e \* P / 3600 = 3.1 \* 180 / 3600 = 0.155

W = q \* B = 13 \* 26.2 / 1000 = 0.3406

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

M = (e \* P / 3600) \* 0.8 = (3.84 \* 180 / 3600) \* 0.8 = 0.1536

W = (q \* B / 1000) \* 0.8 = (16 \* 26.2 / 1000) \* 0.8 = 0.33536

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

M = e \* P / 3600 = 0.82857 \* 180 / 3600 = 0.0414285

W = q \* B / 1000 = 3.42857 \* 26.2 / 1000 = 0.089828534

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

M = e \* P / 3600 = 0.14286 \* 180 / 3600 = 0.007143

W = q \* B / 1000 = 0.57143 \* 26.2 / 1000 = 0.014971466

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид (516)

M = e \* P / 3600 = 1.2 \* 180 / 3600 = 0.06

W = q \* B / 1000 = 5 \* 26.2 / 1000 = 0.131

Примесь:1325 Формальдегид (Метаналь) (609)

M = e \* P / 3600 = 0.03429 \* 180 / 3600 = 0.0017145

## W = q \* B = 0.14286 \* 26.2 / 1000 = 0.003742932

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

M = e \* P / 3600 = 0.00000342 \* 180 / 3600 = 0.000000171

W = q \* B = 0.00002 \* 26.2 / 1000 = 0.000000524

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

M = (e \* P/3600) \* 0.13 = (3.84 \* 180/3600) \* 0.13 = 0.02496

W = (q \* B / 1000) \* 0.13 = (16 \* 26.2 / 1000) \* 0.13 = 0.054496

Итого выбросы по веществам:

| Код  | Примесь                                                                                                           | г/сек<br>без<br>очистки | т/год<br>без<br>очистки | %<br>очистки | г/сек<br>с<br>очисткой | т/год<br>с<br>очисткой |
|------|-------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|--------------|------------------------|------------------------|
|      | Азота (IV) диоксид (Азота<br>диоксид) (4)                                                                         | 0.1536                  | 0.33536                 | 0            | 0.1536                 | 0.33536                |
| 0304 | Азот (II) оксид (Азота оксид)<br>(6)                                                                              | 0.02496                 | 0.054496                | 0            | 0.02496                | 0.054496               |
| 1    | Углерод (Сажа, Углерод<br>черный) (583)                                                                           | 0.007143                | 0.014971466             | 0            | 0.007143               | 0.014971466            |
|      | Сера диоксид (Ангидрид<br>сернистый, Сернистый газ,<br>Сера (IV) оксид) (516)                                     | 0.06                    | 0.131                   | 0            | 0.06                   | 0.131                  |
| 1    | Углерод оксид (Окись углерода, Угарный газ) (584)                                                                 | 0.155                   | 0.3406                  | 0            | 0.155                  | 0.3406                 |
| 0703 | Бенз/а/пирен (3,4-Бензпирен)<br>(54)                                                                              | 0.000000171             | 0.000000524             | 0            | 0.000000171            | 0.000000524            |
| 1325 | Формальдегид (Метаналь) (609)                                                                                     | 0.0017145               | 0.003742932             | 0            | 0.0017145              | 0.003742932            |
|      | Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10) | 0.0414285               | 0.089828534             | 0            | 0.0414285              | 0.089828534            |

# РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1424, Дизельгенератор AKSA 200кВт Источник выделения N 001, Дизельгенератор AKSA 200кВт

Список литературы:

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

<sup>1. &</sup>quot;Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по СО в 2 раза; NO, NO в 2.5 раза; СН, С, СНО и БП в 3.5 раза.

Расход топлива стационарной дизельной установки за год  $\pmb{B}$ , т, 26.2 Эксплуатационная мощность стационарной дизельной установки  $\pmb{P}$ , кВт, 200 Удельный расход топлива на экспл./номин. режиме работы двигателя  $\pmb{b}$ , г/кВт\*ч, 180

Температура отработавших газов T, K, 450 Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов Расход отработавших газов  ${\it G}$ , кг/с:

$$G = 8.72 * 10 * b * P = 8.72 * 10 * 180 * 200 = 0.31392$$
 (A.3)

Удельный вес отработавших газов Ошибка! Закладка не определена., кг/м: Ошибка! Закладка не определена. = 1.31/(1+T/273) = 1.31/(1+450/273) = 0.494647303 (А.5) где 1.31 – удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м;

Объемный расход отработавших газов Q, м/с: Q = G/Ошибка! Закладка не определена. = 0.31392 / 0.494647303 = 0.634634007 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов  $oldsymbol{\ell}$  г/кВт\*ч стационарной дизельной установки до капитального ремонта

| Группа | СО  | NOx  | СН      | С       | SO2 | CH2O    | БП      |
|--------|-----|------|---------|---------|-----|---------|---------|
| Б      | 3.1 | 3.84 | 0.82857 | 0.14286 | 1.2 | 0.03429 | 3.42E-6 |

Таблица значений выбросов q г/кг.топл. стационарной дизельной установки до капитального ремонта

| Группа | СО | NOx | СН      | С       | S02 | CH2O    | БП      |
|--------|----|-----|---------|---------|-----|---------|---------|
| Б      | 13 | 16  | 3.42857 | 0.57143 | 5   | 0.14286 | 0.00002 |

Расчет максимального из разовых выброса M, г/с:

$$M = e * P / 3600$$
 (1)

Расчет валового выброса W, т/год:

$$W = q * B / 1000$$
 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 – для NO и 0.13 – для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M = e * P / 3600 = 3.1 * 200 / 3600 = 0.172222222$$

$$W = q * B = 13 * 26.2 / 1000 = 0.3406$$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

$$M = (e * P / 3600) * 0.8 = (3.84 * 200 / 3600) * 0.8 = 0.170666667$$

$$W = (q * B / 1000) * 0.8 = (16 * 26.2 / 1000) * 0.8 = 0.33536$$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- $265\Pi$ ) (10)

M = e \* P / 3600 = 0.82857 \* 200 / 3600 = 0.046031667

W = q \* B / 1000 = 3.42857 \* 26.2 / 1000 = 0.089828534

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

M = e \* P / 3600 = 0.14286 \* 200 / 3600 = 0.007936667

W = q \* B / 1000 = 0.57143 \* 26.2 / 1000 = 0.014971466

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид (516)

M = e \* P / 3600 = 1.2 \* 200 / 3600 = 0.066666667

W = q \* B / 1000 = 5 \* 26.2 / 1000 = 0.131

Примесь: 1325 Формальдегид (Метаналь) (609)

M = e \* P / 3600 = 0.03429 \* 200 / 3600 = 0.001905

W = q \* B = 0.14286 \* 26.2 / 1000 = 0.003742932

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

M = e \* P / 3600 = 0.00000342 \* 200 / 3600 = 0.00000019

W = q \* B = 0.00002 \* 26.2 / 1000 = 0.000000524

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

M = (e \* P / 3600) \* 0.13 = (3.84 \* 200 / 3600) \* 0.13 = 0.027733333

W = (q \* B / 1000) \* 0.13 = (16 \* 26.2 / 1000) \* 0.13 = 0.054496

#### Итого выбросы по вешествам:

| Код  | Примесь                            | г/сек       | т/год       | %       | г/сек       | т/год       |
|------|------------------------------------|-------------|-------------|---------|-------------|-------------|
|      |                                    | без         | без         | очистки | c           | c           |
|      |                                    | очистки     | очистки     |         | очисткой    | очисткой    |
| 0301 | Азота (IV) диоксид (Азота диоксид) | 0.170666667 | 0.33536     | 0       | 0.170666667 | 0.33536     |
|      | (4)                                |             |             |         |             |             |
| 0304 | Азот (II) оксид (Азота оксид) (6)  | 0.027733333 | 0.054496    | 0       | 0.027733333 | 0.054496    |
| 0328 | Углерод (Сажа, Углерод черный)     | 0.007936667 | 0.014971466 | 0       | 0.007936667 | 0.014971466 |
|      | (583)                              |             |             |         |             |             |
|      | Сера диоксид (Ангидрид сернистый,  |             | 0.131       | 0       | 0.066666667 | 0.131       |
|      | Сернистый газ, Сера (IV) оксид)    |             |             |         |             |             |
|      | (516)                              |             |             |         |             |             |
| 0337 | Углерод оксид (Окись углерода,     | 0.172222222 | 0.3406      | 0       | 0.172222222 | 0.3406      |
|      | Угарный газ) (584)                 |             |             |         |             |             |
| 0703 | Бенз/а/пирен (3,4-Бензпирен) (54)  | 0.00000019  | 0.000000524 | 0       | 0.00000019  | 0.000000524 |
| 1325 | Формальдегид (Метаналь) (609)      | 0.001905    | 0.003742932 | 0       | 0.001905    | 0.003742932 |
| 2754 | Алканы С12-19 /в пересчете на С/   | 0.046031667 | 0.089828534 | 0       | 0.046031667 | 0.089828534 |
|      | (Углеводороды предельные С12-      |             |             |         |             |             |
|      | С19 (в пересчете на С);            |             |             |         |             |             |
|      | Растворитель РПК-265П) (10)        |             |             |         |             |             |

# РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год

# Источник загрязнения N 1412, 100 м3 дренажная емкость (для приема нефти) Источник выделения N 001, 100 м3 дренажная емкость (для приема нефти)

Список литературы:

1. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п 5.

вид выброса, VV =Выбросы паров нефти и бензинов

Нефтепродукт, *NPNAME* = Сырая нефть

Минимальная температура смеси, гр.С, TMIN = 30

Коэффициент Кt (Прил.7), KT = 0.74

#### KTMIN = 0.74

Максимальная температура смеси, гр.С, TMAX = 40

Коэффициент Кt (Прил.7), KT = 0.92

## KTMAX = 0.92

Режим эксплуатации,  $_{NAME}$  = "буферная емкость" (все типы резервуаров)

Конструкция резервуаров, \_NAME\_ = Наземный вертикальный

Объем одного резервуара данного типа, м3,  $V\!I = 100$ 

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров, KNR = 1

Категория веществ, NAME = A, B, B

Значение Kpsr(Прил.8), KPSR = 0.1

Значение Кртах (Прил. 8), KPM = 0.1

Коэффициент , KPSR = 0.1

Производительность закачки, м3/час, QZ = 20

Производительность откачки, м3/час, QOT = 20

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=100

Количество жидкости закачиваемое в резервуар в течение года, т/год, B=60250

Плотность смеси, т/м3, RO = 0.82

Годовая оборачиваемость резервуара (5.1.8),  $NN = B/(RO \cdot V) = 60250/(0.82 \cdot 100) = 734.8$ 

Коэффициент (Прил. 10), KOB = 1.35

Максимальный объем паровоздушной смеси, вытесняемой

из резервуара во время его закачки, м3/час, VCMAX = 20

Расчет для летнего сорта нефти (бензина)

Давление паров летнего сорта, мм.рт.ст., PL = 206

Температура начала кипения смеси, гр.С, TKIP = 206

Молекулярная масса паров смеси, кг/кмоль,  $MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 206 + 45 = 168.6$ 

Молекулярная масса паров летнего сорта, кг/кмоль, MRL = 168.6

Расчет для зимнего сорта нефти (бензина)

Давление паров зимнего сорта, мм.рт.ст., PZ = 206

Температура начала кипения смеси, гр.С, TKIP = 206

Молекулярная масса паров смеси, кг/кмоль,  $MRS = 0.6 \cdot TKIP + 45 = 0.6 \cdot 206 + 45 = 168.6$ 

Молекулярная масса паров зимнего сорта, кг/кмоль, MRZ = 168.6

Коэффициент, KB = 1

 $M = (PL \cdot KTMAX \cdot KB \cdot MRL) + (PZ \cdot KTMIN \cdot MRZ) = (206 \cdot 0.92 \cdot 1 \cdot 168.6) + (206 \cdot 0.74 \cdot 168.6) = 57654.5$ 

Среднегодовые выбросы, т/год (5.2.3),  $M = M \cdot 0.294 \cdot KPSR \cdot KOB \cdot B / (10 \cdot RO) = 57654.5 \cdot 0.294 \cdot 0.1 \cdot 1.35 \cdot 60250 / (10 \cdot 0.82) = 16.8$  Максимальный из разовых выброс, г/с (5.2.1),  $G = 0.163 \cdot PL \cdot MRL \cdot KTMAX \cdot KPMAX \cdot KB \cdot VCMAX / 10 = 0.163 \cdot 206 \cdot 168.6 \cdot 0.92 \cdot 0.1 \cdot 1 \cdot 20 / 10 = 1.042$ 

# Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46 Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 72.46 \cdot 16.8 / 100 = 12.17$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 72.46 \cdot 1.042 / 100 = 0.755$ 

# Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 26.8 Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M/100 = 26.8 \cdot 16.8/100 = 4.5$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G/100 = 26.8 \cdot 1.042/100 = 0.279$ 

## Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35 Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.35 \cdot 16.8 / 100 = 0.0588$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 1.042 / 100 = 0.00365$ 

# Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.22 Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.22 \cdot 16.8 / 100 = 0.03696$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 1.042 / 100 = 0.002292$ 

#### Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 16.8 / 100 = 0.01848$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 1.042 / 100 = 0.001146$ 

#### Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.06 Среднегодовые выбросы, т/год (5.2.5),  $\_M\_ = CI \cdot M/100 = 0.06 \cdot 16.8/100 = 0.01008$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G/100 = 0.06 \cdot 1.042/100 = 0.000625$ 

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.000625   | 0.01008      |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.755      | 12.17        |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.279      | 4.5          |
| 0602 | Бензол (64)                                     | 0.00365    | 0.0588       |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.001146   | 0.01848      |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 1413 12м3 дренажная емкость (для нефти)

Источник выделения N 001, 12м3 дренажная емкость (для нефти)

Список литературы:

Источник выделения N 1413, 12 м3 дренажная емкость (для нефти) Источник выделения N 1413 01, 12 м3 дренажная емкость (для нефти)

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ =

10.0

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY = 620 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 10.0

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=6

Коэффициент (Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 12

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии,  $KNR = \mathbf{0}$ 

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI = 0.081

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = \mathbf{0}$ 

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=12

Сумма Ghri\*Knp\*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1),  $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 6 / 600 = 665 \cdot 0.1 \cdot$ 

3600 = 0.1108

Среднегодовые выбросы, т/год (6.2.2),  $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR = (571 \cdot 10 + 620 \cdot 10) \cdot 0.1 \cdot 10 + 0 = 0.00119$ 

## Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46 Валовый выброс, т/год (5.2.5),  $M = CI \cdot M / 100 = 72.46 \cdot 0.00119 / 100 = 0.000862$ 

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 72.46 \cdot 0.1108 / 100 = 0.0803$ 

# Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 26.8 \cdot 0.00119 / 100 = 0.000319$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 26.8 \cdot 0.1108 / 100 = 0.0297$ 

# Примесь: 0602 Бензол (64)

0.0000665

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.35 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.35 \cdot 0.00119 / 100 = 0.000004165$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 0.1108 / 100 = 0.000388$ 

# Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.22 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.22 \cdot 0.00119 / 100 = 0.00000262$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 0.1108 / 100 = 0.000244$ 

# Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 0.00119 / 100 = 0.00000131$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 0.1108 / 100 = 0.000122$ 

#### Примесь: 0333 Сероводород (Дигидросульфид) (518)

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.0000665  | 0.000000714  |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.0803     | 0.000862     |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.0297     | 0.000319     |
| 0602 | Бензол (64)                                     | 0.000388   | 0.000004165  |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.000122   | 0.00000131   |
| 0621 | Метилбензол (349)                               | 0.000244   | 0.00000262   |

## РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1439, Печь JM-CH-J400-Q15.0

Источник выделения N 001, Печь JM-CH-J400-Q15.0

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1Количество одновременно работающих топок, шт., NI=1

Время работы одной топки, час/год, T=4392

Максимальный расход топлива одной топкой, кг/час, B = 22.627

Массовая доля жидкого топлива, в долях единицы,  $BB = \mathbf{0}$ 

# Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.627 \cdot 10 = 0.03394$ Валовый выброс, т/год,  $_{M} = N \cdot M \cdot _{T} \cdot 10 = 1 \cdot 0.03394 \cdot 4392 \cdot 10 = 0.149$ Максимальный из разовых выброс,  $\Gamma/C$ ,  $G = N1 \cdot M/3.6 = 1 \cdot 0.03394/3.6 = 0.00943$ 

# Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.627 \cdot 10 = 0.03394$ Валовый выброс, т/год,  $M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.03394 \cdot 4392 \cdot 10 = 0.149$ Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.03394/3.6=0.00943$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл.5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1= 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 22.627 / 1 = 1000$ 997.9

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10$ 

 $= 1.073 \cdot (180 + 60 \cdot 0) \cdot 997.9 / 1714.6 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0001205$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 22.627 \cdot 1.5 = 399.1$ 

Объем продуктов сгорания, м3/с, VO = VR/3600 = 399.1/3600 = 0.1109

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 399.1 \cdot 0.0001205 = 0.0481$ Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.0481 \cdot 4392 \cdot 10 = 0.2113$  Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 = 1 \cdot 0.0481/3.6 = 0.01336$ 

Коэффициент трансформации для NO2, KNO2 = 0.8Коэффициент трансформации для NO, KNO = 0.13Коэффициенты приняты на уровне максимально установленной трансформации

# Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2\cdot M1=0.8\cdot 0.2113=0.169$  Максимальный из разовых выброс, г/с,  $G=KNO2\cdot G1=0.8\cdot 0.01336=0.01069$ 

# Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot MI=0.13\cdot 0.2113=0.02747$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot GI=0.13\cdot 0.01336=0.001737$ 

# Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.01069    | 0.169        |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.001737   | 0.02747      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00943    | 0.149        |
| 0410 | Метан (727*)                                      | 0.00943    | 0.149        |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1440, Печь JM-CH-J400-Q15.0

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год,  $\_T\_=4368$  Максимальный расход топлива одной топкой, кг/час, B=22.627 Массовая доля жидкого топлива, в долях единицы, BB=0

## Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.627 \cdot 10 = 0.03394$  Валовый выброс, т/год,  $\_M\_=N \cdot M \cdot \_T\_ \cdot 10 = 1 \cdot 0.03394 \cdot 4368 \cdot 10 = 0.1482$  Максимальный из разовых выброс, г/с,  $\_G\_=N1 \cdot M/3.6 = 1 \cdot 0.03394/3.6 = 0.00943$ 

#### Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.627 \cdot 10 = 0.03394$ 

Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot\_T\_\cdot 10=1\cdot 0.03394\cdot 4368\cdot 10=0.1482$  Максимальный из разовых выброс, г/с,  $G=N1\cdot M/3.6=1\cdot 0.03394/3.6=0.00943$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл.5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1 = 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 22.627 / 1 = 997.9$ 

Коэффициент избытка воздуха в уходящих дымовых газах, A = 1.5

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1),  $V = \mathbf{0.875}$ 

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10$ 

 $= 1.073 \cdot (180 + 60 \cdot 0) \cdot 997.9 / 1714.6 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0001205$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 22.627 \cdot 1.5 = 399.1$ 

Объем продуктов сгорания, м3/с, VO = VR/3600 = 399.1/3600 = 0.1109

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 399.1 \cdot 0.0001205 = 0.0481$  Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot \_T \cdot 10 = 1 \cdot 0.0481 \cdot 4368 \cdot 10 = 0.21$  Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 = 1 \cdot 0.0481/3.6 = 0.01336$ 

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

#### Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2 \cdot M1 = 0.8 \cdot 0.21 = 0.168$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2 \cdot G1 = 0.8 \cdot 0.01336 = 0.01069$ 

#### Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot MI=0.13\cdot 0.21=0.0273$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot GI=0.13\cdot 0.01336=0.001737$ 

#### Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.01069    | 0.168        |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.001737   | 0.0273       |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00943    | 0.1482       |
| 0410 | Метан (727*)                                      | 0.00943    | 0.1482       |

# РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник

# загрязнения N 1441, Печь HJ-200-H/10-O Источник выделения N 001, Печь HJ-200-H/10-Q

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1Количество одновременно работающих топок, шт., NI = 1Время работы одной топки, час/год, T=4392Максимальный расход топлива одной топкой, кг/час, B = 9.317Массовая доля жидкого топлива, в долях единицы,  $BB = \mathbf{0}$ 

## Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 9.317 \cdot 10 = 0.01398$ Валовый выброс, т/год,  $M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.01398 \cdot 4392 \cdot 10 = 0.0614$ Максимальный из разовых выброс, г/с,  $G = N1 \cdot M/3.6 = 1 \cdot 0.01398/3.6 = 0.00388$ 

# Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 9.317 \cdot 10 = 0.01398$ Валовый выброс, т/год,  $M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.01398 \cdot 4392 \cdot 10 = 0.0614$ Максимальный из разовых выброс, г/с,  $G = N1 \cdot M/3.6 = 1 \cdot 0.01398/3.6 = 0.00388$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1= 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 9.317 / 1 = 1000$ 410.9

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1),  $V = \mathbf{0.875}$ 

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10$ 

 $= 1.073 \cdot (180 + 60 \cdot 0) \cdot 410.9 / 1714.6 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000496$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 9.317 \cdot 1.5 = 164.4$ 

Объем продуктов сгорания, м3/с, VO = VR/3600 = 164.4/3600 = 0.0457

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 164.4 \cdot 0.0000496 = 0.00815$ Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.00815 \cdot 4392 \cdot 10 = 0.0358$ Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 = 1 \cdot 0.00815/3.6 =$ 0.002264

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

## Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2 \cdot M1 = 0.8 \cdot 0.0358 = 0.02864$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2 \cdot G1 = 0.8 \cdot 0.002264 = 0.00181$ 

# Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.0358=0.00465$  Максимальный из разовых выброс, г/с,  $G=KNO\cdot GI=0.13\cdot 0.002264=0.0002943$ 

## Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.00181    | 0.02864      |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.0002943  | 0.00465      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00388    | 0.0614       |
| 0410 | Метан (727*)                                      | 0.00388    | 0.0614       |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1442, Печь HJ-200-H/10-Q Источник выделения N 001, Печь HJ-200-H/10-Q

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год,  $_T=4368$  Максимальный расход топлива одной топкой, кг/час, B=9.317 Массовая доля жидкого топлива, в долях единицы, BB=0

#### Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M=1.5\cdot B\cdot 10=1.5\cdot 9.317\cdot 10=0.01398$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.01398\cdot 4368\cdot 10=0.0611$  Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.01398/3.6=0.00388$ 

## <u>Примесь: 0410 Метан (727\*)</u>

Количество выбросов, кг/час (5.2б),  $M=1.5\cdot B\cdot 10=1.5\cdot 9.317\cdot 10=0.01398$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.01398\cdot 4368\cdot 10=0.0611$  Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.01398/3.6=0.00388$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, OP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1 = 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 9.317 / 1 = 410.9$ 

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10$ 

 $= 1.073 \cdot (180 + 60 \cdot 0) \cdot 410.9 / 1714.6 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000496$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 9.317 \cdot 1.5 = 164.4$ 

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 164.4 \cdot 0.0000496 = 0.00815$ Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot \_T\_ \cdot 10 = 1 \cdot 0.00815 \cdot 4368 \cdot 10 = 0.0356$ Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 = 1 \cdot 0.00815/3.6 = 0.002264$ 

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

# Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2 \cdot M1 = 0.8 \cdot 0.0356 = 0.0285$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2 \cdot G1 = 0.8 \cdot 0.002264 = 0.00181$ 

## Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

- Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.0356=0.00463$  Максимальный из разовых выброс, г/с,  $G=KNO\cdot G1=0.13\cdot 0.002264=0.0002943$ 

#### Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.00181    | 0.0285       |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.0002943  | 0.00463      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00388    | 0.0611       |
| 0410 | Метан (727*)                                      | 0.00388    | 0.0611       |

Источник загрязнения N 0900-0928, 0932,0933, 0937-0941 Дренажная емкость - 12  $\mathrm{m}^3$  по исходным данным с 3У-1 по 3У-6Б, ГУ Бектас

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья — южные области РК (прил. 17) Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C=665 Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY=571 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ=2.50

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY = 620 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 2.50

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=1

Коэффициент (Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 12

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа,  $\tau/$ год(Прил. 13), **GHRI** = **0.081** 

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = \mathbf{0}$ 

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=12

Сумма Ghri\*Knp\*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1),  $G = C \cdot KPMAX \cdot VC/3600 = 665 \cdot 0.1 \cdot 1/3600 = 0.01847$ 

Среднегодовые выбросы, т/год (6.2.2),  $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR = (571 \cdot 2.5 + 620 \cdot 2.5) \cdot 0.1 \cdot 10 + 0 = 0.000298$ 

#### Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = **72.46** Валовый выброс, т/год (5.2.5),  $\_M\_=CI\cdot M/100$  = **72.46** · **0.000298** / **100** = **0.000216** Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_=CI\cdot G/100$  = **72.46** · **0.01847** / **100** = **0.01338** 

# Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 26.8 \cdot 0.000298 / 100 = 0.0000799$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 26.8 \cdot 0.01847 / 100 = 0.00495$ 

# Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.35 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.35 \cdot 0.000298 / 100 = 0.000001043$ 

Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 0.01847 / 100 = 0.0000646$ 

# Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.22 \cdot 0.000298 / 100 = 0.000000656$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 0.01847 / 100 = 0.0000406$ 

# Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 0.000298 / 100 = 0.000000328$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 0.01847 / 100 = 0.0000203$ 

## Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.06 \cdot 0.000298 / 100 = 0.0000001788$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.06 \cdot 0.01847 / 100 = 0.00001108$ 

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.00001108 | 0.0000001788 |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.01338    | 0.000216     |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.00495    | 0.0000799    |
| 0602 | Бензол (64)                                     | 0.0000646  | 0.000001043  |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.0000203  | 0.000000328  |
| 0621 | Метилбензол (349)                               | 0.0000406  | 0.000000656  |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1117, 0709 Устьевой нагреватель ПП-0,63 Источник выделения N 001, Устьевой нагреватель ПП-0,63

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, Каз9КО9КС $\Pi$ , 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год,  $\_T\_=8664$  Максимальный расход топлива одной топкой, кг/час, B=18.557 Массовая доля жидкого топлива, в долях единицы, BB=0

#### Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M=1.5\cdot B\cdot 10=1.5\cdot 18.557\cdot 10=0.02784$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.02784\cdot 8664\cdot 10=0.241$  Максимальный из разовых выброс, г/с,  $G=N1\cdot M/3.6=1\cdot 0.02784/3.6=0.00773$ 

# Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M=1.5\cdot B\cdot 10=1.5\cdot 18.557\cdot 10=0.02784$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.02784\cdot 8664\cdot 10=0.241$  Максимальный из разовых выброс, г/с,  $G=N1\cdot M/3.6=1\cdot 0.02784/3.6=0.00773$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл.5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1 = 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 18.557 / 1 = 818.4$ 

Коэффициент избытка воздуха в уходящих дымовых газах,  $A=\mathbf{1}$ 

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1),  $V = \mathbf{0.83}$ 

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 818.4 / 1714.6 \cdot 1 \cdot 0.83 \cdot 10 = 0.0000765$ 

 $= 1.0/3 \cdot (180 + 60 \cdot 0) \cdot 818.4 / 1/14.6 \cdot 1 \cdot 0.83 \cdot 10 = 0.0000/65$ 

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 218.2 \cdot 0.0000765 = 0.0167$  Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot \_T \cdot 10 = 1 \cdot 0.0167 \cdot 8664 \cdot 10 = 0.1447$  Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 = 1 \cdot 0.0167/3.6 = 0.00464$ 

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

#### Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2\cdot M1=0.8\cdot 0.1447=0.1158$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2\cdot G1=0.8\cdot 0.00464=0.00371$ 

#### Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.1447=0.0188$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot G1=0.13\cdot 0.00464=0.000603$ 

#### Итого выбросы:

| L | Код  | Наименование ЗВ                        | Выброс г/с | Выброс т/год |
|---|------|----------------------------------------|------------|--------------|
| ( | 0301 | Азота (IV) диоксид (Азота диоксид) (4) | 0.00371    | 0.1158       |
| ( | )304 | Азот (II) оксид (Азота оксид) (6)      | 0.000603   | 0.0188       |

| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00773 | 0.241 |
|------|---------------------------------------------------|---------|-------|
| 0410 | Метан (727*)                                      | 0.00773 | 0.241 |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район

Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

#### Источник загрязнения N 0003, 0231 Устьевой нагреватель Hanover

Источник выделения N 001, Устьевой нагреватель Hanover Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый

Общее количество топок, шт., N=1

Количество одновременно работающих топок, шт., N1 = 1

Время работы одной топки, час/год, T = 4392

Максимальный расход топлива одной топкой, кг/час, B = 22.269

Массовая доля жидкого топлива, в долях единицы, BB = 0

# Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.269 \cdot 10 = 0.0334$  Валовый выброс, т/год,  $M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.0334 \cdot 4392 \cdot 10 = 0.1467$  Максимальный из разовых выброс, г/с,  $G = N1 \cdot M / 3.6 = 1 \cdot 0.0334 / 3.6 = 0.00928$ 

#### Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 22.269 \cdot 10 = 0.0334$  Валовый выброс, т/год,  $M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.0334 \cdot 4392 \cdot 10 = 0.1467$  Максимальный из разовых выброс, г/с,  $G = N1 \cdot M / 3.6 = 1 \cdot 0.0334 / 3.6 = 0.00928$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл.5.1), E = 1.5

Число форсунок на одну топку, шт., NN = 1

Расчетная теплопроизводительность топки, МДж/час, QP = 2639.7

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP / NN = 2639.7 / 1 = 2639.7

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN =$ 

# $29.4 \cdot 1.5 \cdot 22.269 / 1 = 982.1$

Коэффициент избытка воздуха в уходящих дымовых газах, A = 1

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1),  $\mathbf{v} = \mathbf{0.83}$ 

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF$  /

 $QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 982.1 / 2639.7 \cdot 1 \cdot 0.83 \cdot 10 = 0.0000596$  Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E =$ 

 $7.84 \cdot 1 \cdot 22.269 \cdot 1.5 = 261.9$ 

Объем продуктов сгорания, м3/с,  $_{_{}}$ VO $_{_{}}$  = VR / 3600 = 261.9 / 3600 = 0.0728

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 261.9 \cdot 0.0000596 = 0.0156$  Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot __T \cdot 10 = 1 \cdot 0.0156 \cdot 4392 \cdot 10 = 0.0685$ 

Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M / 3.6 = 1 \cdot 0.0156 / 3.6 = 0.00433$ 

Коэффициент трансформации для NO2, KNO2 = 0.8 Коэффициент трансформации для NO, KNO = 0.13 Коэффициенты приняты на уровне максимально установленной трансформации

# Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

— Валовый выброс, т/год,  $_{\underline{M}}$  =  $KNO2 \cdot M1 = 0.8 \cdot 0.0685 = 0.0548$  Максимальный из разовых выброс, г/с,  $_{\underline{G}}$  =  $KNO2 \cdot G1 = 0.8 \cdot 0.00433 = 0.003464$ 

#### Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

— Валовый выброс, т/год, <u>м</u> =  $KNO \cdot M1 = 0.13 \cdot 0.0685 = 0.0089$  Максимальный из разовых выброс, г/с, <u>G</u> =  $KNO \cdot G1 = 0.13 \cdot 0.00433 = 0.000563$ 

#### Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.003464   | 0.0548       |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.000563   | 0.0089       |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00928    | 0.1467       |
| 0410 | Метан (727*)                                      | 0.00928    | 0.1467       |

## РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год Источник загрязнения N 1109, 1124, 1123, 1127, 0097, 1311, 1315, 1331, 1128, 1333, 1167, 1330, 1338, 1339, 1336, Устьевой нагреватель ППТМ-0,2Г Источник выделения N 001, Устьевой нагреватель ППТМ-0,2Г Список литературы:

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

#### Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M=1.5 \cdot B \cdot 10=1.5 \cdot 4.37 \cdot 10=0.00656$  Валовый выброс, т/год,  $\underline{M}=N \cdot M \cdot \underline{T} \cdot 10=1 \cdot 0.00656 \cdot 8664 \cdot 10=0.0568$  Максимальный из разовых выброс, г/с,  $\underline{G}=N1 \cdot M$  /  $3.6=1 \cdot 0.00656$  / 3.6=0.001822

Примесь: 0410 Метан (727\*)

238

Количество выбросов, кг/час (5.26),  $M=1.5\cdot B\cdot 10=1.5\cdot 4.37\cdot 10=0.00656$  Валовый выброс, т/год,  $\underline{M}=N\cdot M\cdot \underline{T}\cdot 10=1\cdot 0.00656\cdot 8664\cdot 10=0.0568$  Максимальный из разовых выброс, г/с,  $\underline{G}=N1\cdot M/3.6=1\cdot 0.00656/3.6=0.001822$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

Число форсунок на одну топку, шт., NN = 1

Расчетная теплопроизводительность топки, МДж/час, QP = 278.7

Расчетная теплопроизводительность одной форсунки, МДж/час,  $QP = QP \ / \ NN = 278.7 \ / \ 1 = 278.7$ 

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN =$ 

## $29.4 \cdot 1.5 \cdot 4.37 / 1 = 192.7$

Коэффициент избытка воздуха в уходящих дымовых газах, A = 1.5

Отношение Vcг/Vr при заданном коэфф. избытка воздуха (табл.5.1),  ${m v}={m 0.875}$ 

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF$  /  $QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 192.7 / 278.7 \cdot 1.5 \cdot 0.875 \cdot 10 =$ 

0.000143

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E =$ 

#### $7.84 \cdot 1.5 \cdot 4.37 \cdot 1.5 = 77.1$

Объем продуктов сгорания, м3/с, VO = VR / 3600 = 77.1 / 3600 = 0.0214

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 77.1 \cdot 0.000143 = 0.01103$ Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot _T \cdot 10 = 1 \cdot 0.01103 \cdot 8664 \cdot 10 = 0.0956$ 

Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M / 3.6 = 1 \cdot 0.01103 / 3.6 = 0.003064$ 

Коэффициент трансформации для NO2,  ${\it KNO2}$  = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

#### Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

— Валовый выброс, т/год,  $_{\underline{M}}$  =  $KNO2 \cdot M1 = 0.8 \cdot 0.0956 = 0.0765$  Максимальный из разовых выброс, г/с,  $_{\underline{G}}$  =  $KNO2 \cdot G1 = 0.8 \cdot 0.003064 = 0.00245$ 

#### Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $_{M}$  =  $KNO \cdot M1 = 0.13 \cdot 0.0956 = 0.01243$  Максимальный из разовых выброс, г/с,  $_{G}$  =  $KNO \cdot G1 = 0.13 \cdot 0.003064 = 0.000398$ 

#### Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.00245    | 0.0765       |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.000398   | 0.01243      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.001822   | 0.0568       |
| 0410 | Метан (727*)                                      | 0.001822   | 0.0568       |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год

Источник загрязнения N 0520, 0522, 0525, 0712, 1243, 1250, 1251, 1255, 1445

#### Устьевой нагреватель ППТМ-0,2Г

Источник выделения N 001, Устьевой нагреватель ППТМ-0,2Г

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый

Общее количество топок, шт., N=1

Количество одновременно работающих топок, шт., N1 = 1

Время работы одной топки, час/год, T = 8664

Максимальный расход топлива одной топкой, кг/час, B = 4.152

Массовая доля жидкого топлива, в долях единицы,  $BB = \mathbf{0}$ 

#### Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

#### Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.26),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 4.152 \cdot 10 = 0.00623$ Валовый выброс, т/год,  $M = N \cdot M \cdot T \cdot 10 = 1 \cdot 0.00623 \cdot 8664 \cdot 10 = 0.054$ Максимальный из разовых выброс, г/с,  $G = N1 \cdot M / 3.6 = 1 \cdot 0.00623 / 3.6 = 0.00173$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл.5.1), E = 1.5

Число форсунок на одну топку, шт., NN = 1

Расчетная теплопроизводительность топки, МДж/час, QP = 278.7

Расчетная теплопроизводительность одной форсунки, МДж/час,  $QP = QP \ / \ NN = 278.7 \ / \ 1 = 278.7$ 

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $\mathit{QF} = 29.4 \cdot \mathit{E} \cdot \mathit{B} / \mathit{NN} =$ 

# $29.4 \cdot 1.5 \cdot 4.152 / 1 = 183.1$

Коэффициент избытка воздуха в уходящих дымовых газах, А = 1.5

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875 Концентрация оксидов азота, кг/м3 (5.6),  $CNOX=1.073\cdot(180+60\cdot BB)\cdot QF/QP\cdot A\cdot V\cdot 10=1.073\cdot(180+60\cdot 0)\cdot 183.1/278.7\cdot 1.5\cdot 0.875\cdot 10=0.000136$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E =$ 

 $7.84 \cdot 1.5 \cdot 4.152 \cdot 1.5 = 73.2$ 

Объем продуктов сгорания, м3/с,  $_{_{}}$ VO $_{_{}}$  = VR / 3600 = 73.2 / 3600 = 0.02033

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 73.2 \cdot 0.000136 = 0.00996$ Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot __T \cdot 10 = 1 \cdot 0.00996 \cdot 8664 \cdot 10 = 0.0863$ 

= 0.0863 Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M / 3.6 = 1 \cdot 0.00996 / 3.6 = <math>0.002767$ 

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

#### Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $_{M_{-}}$  = KNO2 · M1 = 0.8 · 0.0863 = 0.069 Максимальный из разовых выброс, г/с,  $_{G_{-}}$  = KNO2 · G1 = 0.8 · 0.002767 = 0.002214

## Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

— Валовый выброс, т/год,  $_{\underline{M}}$  =  $KNO \cdot M1 = 0.13 \cdot 0.0863 = 0.01122$  Максимальный из разовых выброс, г/с,  $_{\underline{G}}$  =  $KNO \cdot G1 = 0.13 \cdot 0.002767 = 0.00036$ 

Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.002214   | 0.069        |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.00036    | 0.01122      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00173    | 0.054        |
| 0410 | Метан (727*)                                      | 0.00173    | 0.054        |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год

Источник загрязнения N 0708, 1249, 1253, 1254,1256, 0072,0073,0074, 1252,0075,0076 Печь подогрева ПП-0,63

Источник выделения N 001, Печь подогрева ПП-0,63

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год,  $_T=8664$  Максимальный расход топлива одной топкой, кг/час, B=17.632 Массовая доля жидкого топлива, в долях единицы, BB=0

## Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M=1.5\cdot B\cdot 10=1.5\cdot 17.632\cdot 10=0.02645$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.02645\cdot 8664\cdot 10=0.229$  Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.02645/3.6=0.00735$ 

#### Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.2б),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 17.632 \cdot 10 = 0.02645$  Валовый выброс, т/год,  $\_M\_=N \cdot M \cdot \_T\_ \cdot 10 = 1 \cdot 0.02645 \cdot 8664 \cdot 10 = 0.229$  Максимальный из разовых выброс, г/с,  $\_G\_=N1 \cdot M/3.6 = 1 \cdot 0.02645/3.6 = 0.00735$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл.5.1), E=1.5 Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1 = 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 17.632 / 1 = 777.6$ 

Коэффициент избытка воздуха в уходящих дымовых газах, A=1

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.83

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10$ 

 $= 1.073 \cdot (180 + 60 \cdot 0) \cdot 777.6 / 1714.6 \cdot 1 \cdot 0.83 \cdot 10 = 0.0000727$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1 \cdot 17.632 \cdot 1.5 = 207.4$ 

Объем продуктов сгорания, м3/с, VO = VR/3600 = 207.4/3600 = 0.0576

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 207.4 \cdot 0.0000727 = 0.01508$  Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot \_T\_ \cdot 10 = 1 \cdot 0.01508 \cdot 8664 \cdot 10 = 0.1307$  Максимальный из разовых выброс окислов азота, г/с,  $G1 = N1 \cdot M/3.6 = 1 \cdot 0.01508/3.6 = 0.00419$ 

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

# Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2\cdot M1=0.8\cdot 0.1307=0.1046$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2\cdot G1=0.8\cdot 0.00419=0.00335$ 

## Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.1307=0.017$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot G1=0.13\cdot 0.00419=0.000545$ 

Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.00335    | 0.1046       |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.000545   | 0.017        |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00735    | 0.229        |
| 0410 | Метан (727*)                                      | 0.00735    | 0.229        |

9PA v3.0.395

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 0929, 0931,0932,0930 Дренажная емкость 12м3

Источник выделения N 001, Дренажная емкость 12м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

```
Нефтепродукт, NP = Сырая нефть
```

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 665

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 2.50

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 620 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 620

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=1

Коэффициент (Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3,  $V\!I = 12$ 

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа,  $\tau/$ год(Прил. 13), GHRI = 0.081

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = \mathbf{0}$ 

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=12

Сумма Ghri\*Knp\*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1),  $G = C \cdot KPMAX \cdot VC/3600 = 665 \cdot 0.1 \cdot 1/3600 = 0.01847$ 

Среднегодовые выбросы, т/год (6.2.2),  $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR = (571 \cdot 2.5 + 620 \cdot 2.5) \cdot 0.1 \cdot 10 + 0 = 0.000298$ 

#### Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 72.46 \cdot 0.000298 / 100 = 0.000216$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 72.46 \cdot 0.01847 / 100 = 0.01338$ 

# Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5),  $\_M\_=CI\cdot M/100$  = 26.8  $\cdot$  0.000298 / 100 = 0.0000799 Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_=CI\cdot G/100$  = 26.8  $\cdot$  0.01847 / 100 = 0.00495

#### Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5),  $\_M\_=CI\cdot M/100=0.35\cdot 0.000298/100=0.000001043$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_=CI\cdot G/100=0.35\cdot 0.01847/100=0.0000646$ 

## Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.22 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.22 \cdot 0.000298 / 100 = 0.000000656$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 0.01847 / 100 = 0.0000406$ 

# Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 0.000298 / 100 = 0.000000328$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 0.01847 / 100 = 0.0000203$ 

# Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.06 \cdot 0.000298 / 100 = 0.0000001788$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.06 \cdot 0.01847 / 100 = 0.00001108$ 

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.00001108 | 0.0000001788 |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.01338    | 0.000216     |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.00495    | 0.0000799    |
| 0602 | Бензол (64)                                     | 0.0000646  | 0.000001043  |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.0000203  | 0.000000328  |
| 0621 | Метилбензол (349)                               | 0.0000406  | 0.000000656  |

# РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 0936, Дренажная емкость 20 м3 Источник выделения N 0936 01, Дренажная емкость 20 м3

#### Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

# Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья — южные области РК (прил. 17) Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C=665 Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=571 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ=3.0 Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY = 620 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 3.00

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=1

Коэффициент (Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 20

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI = 0.081

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = \mathbf{0}$ 

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=20

Сумма Ghri\*Knp\*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1),  $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 1 /$ 

3600 = 0.01847

Среднегодовые выбросы, т/год (6.2.2),  $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR = (571 \cdot 3 + 620 \cdot 3) \cdot 0.1 \cdot 10 + 0 = 0.000357$ 

# Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 72.46 \cdot 0.000357 / 100 = 0.0002587$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 72.46 \cdot 0.01847 / 100 = 0.01338$ 

# Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 26.8 \cdot 0.000357 / 100 = 0.0000957$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 26.8 \cdot 0.01847 / 100 = 0.00495$ 

#### Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.35 \cdot 0.000357 / 100 = 0.00000125$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 0.01847 / 100 = 0.0000646$ 

## Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (5.2.5),  $\_M\_=CI\cdot M/100=0.22\cdot 0.000357/100=0.000000785$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_=CI\cdot G/100=0.22\cdot 0.01847/100=0.0000406$ 

# Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 0.000357 / 100 = 0.000000393$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 0.01847 / 100 = 0.0000203$ 

# Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.06 \cdot 0.000357 / 100 = 0.000000214$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.06 \cdot 0.01847 / 100 = 0.00001108$ 

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.00001108 | 0.000000214  |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.01338    | 0.0002587    |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.00495    | 0.0000957    |
| 0602 | Бензол (64)                                     | 0.0000646  | 0.00000125   |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.0000203  | 0.000000393  |
| 0621 | Метилбензол (349)                               | 0.0000406  | 0.000000785  |

## РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 0937,0938 Дренажная емкость 12м3 Источник выделения N 001, Дренажная емкость 12м3 Список литературы: Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8 Нефтепродукт, NP =Сырая нефть Климатическая зона: третья - южные области РК (прил. 17) Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 571Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ =2.50 Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 620Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL =2.50 Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 1Коэффициент (Прил. 12), KNP = 0Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного типа, м3, VI = 12Количество резервуаров данного типа, NR = 1Количество групп одноцелевых резервуаров на предприятии, KNR = 1Категория веществ: А, Б, В Конструкция резервуаров: Заглубленный Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1Количество выделяющихся паров нефтепродуктов при хранении в одном резервуаре данного типа,  $\tau/$ год (Прил. 13), GHRI = 0.081 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = \mathbf{0}$ Коэффициент , KPSR = 0.1Коэффициент, KPMAX = 0.1Общий объем резервуаров, м3, V=12Сумма Ghri\*Knp\*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1),  $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 1 / 1$ 

3600 = 0.01847

Среднегодовые выбросы, т/год (6.2.2),  $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR =$  $(571 \cdot 2.5 + 620 \cdot 2.5) \cdot 0.1 \cdot 10 + 0 = 0.000298$ 

#### Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46Валовый выброс, т/год (5.2.5),  $_{M_{-}}$  =  $CI \cdot M / 100 = 72.46 \cdot 0.000298 / <math>100 = 0.000216$ Максимальный из разовых выброс, г/с (5.2.4),  $G = CI \cdot G / 100 = 72.46 \cdot 0.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 = 60.01847 / 100 =$ 0.01338

## Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 26.8 \cdot 0.000298 / 100 = 0.0000799$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 26.8 \cdot 0.01847 / 100 = 0.00495$ 

## Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.35 \cdot 0.000298 / 100 = 0.000001043$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 0.01847 / 100 = 0.0000646$ 

## Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.22 \cdot 0.000298 / 100 = 0.000000656$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 0.01847 / 100 = 0.0000406$ 

# Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 0.000298 / 100 = 0.000000328$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 0.01847 / 100 = 0.0000203$ 

# Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.06 \cdot 0.000298 / 100 = 0.0000001788$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.06 \cdot 0.01847 / 100 = 0.00001108$ 

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.00001108 | 0.0000001788 |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.01338    | 0.000216     |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.00495    | 0.0000799    |
| 0602 | Бензол (64)                                     | 0.0000646  | 0.000001043  |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.0000203  | 0.000000328  |
| 0621 | Метилбензол (349)                               | 0.0000406  | 0.000000656  |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 0934, 0935 Дренажная емкость 10 м3 Источник выделения N 001, Дренажная емкость 10 м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

# Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 665

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ =

#### 2.0

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т,  $\mathit{BVL}$  =

# 2.0

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=10

Коэффициент (Прил. 12),  $KNP = \mathbf{0}$ 

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 10

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI = 0.081

# $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = \mathbf{0}$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=10

Сумма Ghri\*Knp\*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1),  $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 10 / 0.1 \cdot$ 

#### 3600 = 0.1847

Среднегодовые выбросы, т/год (6.2.2),  $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR = (571 \cdot 2 + 620 \cdot 2) \cdot 0.1 \cdot 10 + 0 = 0.000238$ 

#### Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 72.46 \cdot 0.000238 / 100 = 0.0001725$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 72.46 \cdot 0.1847 / 100 = 0.1338$ 

#### Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 26.8 \cdot 0.000238 / 100 = 0.0000638$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 26.8 \cdot 0.1847 / 100 = 0.0495$ 

#### Примесь: 0602 Бензол (64)

- Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.35 \cdot 0.000238 / 100 = 0.000000833$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.35 \cdot 0.1847 / 100 = 0.000646$ 

# Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.22 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.22 \cdot 0.000238 / 100 = 0.000000524$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.22 \cdot 0.1847 / 100 = 0.000406$ 

## Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.11 \cdot 0.000238 / 100 = 0.000000262$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.11 \cdot 0.1847 / 100 = 0.000203$ 

## Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M / 100 = 0.06 \cdot 0.000238 / 100 = 0.0000001428$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G / 100 = 0.06 \cdot 0.1847 / 100 = 0.0001108$ 

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.0001108  | 0.0000001428 |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.1338     | 0.0001725    |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.0495     | 0.0000638    |
| 0602 | Бензол (64)                                     | 0.000646   | 0.000000833  |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.000203   | 0.000000262  |
| 0621 | Метилбензол (349)                               | 0.000406   | 0.000000524  |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год Источник загрязнения N 1334, 1419 Печь подогрева ПП-0,63 №1,3 Источник выделения N 001, Печь подогрева ПП-0,63 №1 Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, Каз9КО9КСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год,  $\_T\_=4392$  Максимальный расход топлива одной топкой, кг/час, B=18.557 Массовая доля жидкого топлива, в долях единицы, BB=0

## Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 18.557 \cdot 10 = 0.02784$  Валовый выброс, т/год,  $\_M\_=N \cdot M \cdot \_T\_ \cdot 10 = 1 \cdot 0.02784 \cdot 4392 \cdot 10 = 0.1223$  Максимальный из разовых выброс, г/с,  $G = N1 \cdot M/3.6 = 1 \cdot 0.02784/3.6 = 0.00773$ 

## Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.2б),  $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 18.557 \cdot 10 = 0.02784$  Валовый выброс, т/год,  $\_M\_=N \cdot M \cdot \_T\_ \cdot 10 = 1 \cdot 0.02784 \cdot 4392 \cdot 10 = 0.1223$  Максимальный из разовых выброс, г/с,  $\_G\_=N1 \cdot M/3.6 = 1 \cdot 0.02784/3.6 = 0.00773$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1 = 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 18.557 / 1 = 818.4$ 

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10$ 

 $= 1.073 \cdot (180 + 60 \cdot 0) \cdot 818.4 / 1714.6 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000988$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 18.557 \cdot 1.5 = 327.3$ 

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 327.3 \cdot 0.0000988 = 0.03234$  Валовый выброс окислов азота, т/год,  $MI = N \cdot M \cdot \_T\_ \cdot I0 = 1 \cdot 0.03234 \cdot 4392 \cdot 10 = 0.142$  Максимальный из разовых выброс окислов азота, г/с,  $GI = NI \cdot M/3.6 = 1 \cdot 0.03234/3.6 = 0.00898$ 

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

## Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2\cdot M1=0.8\cdot 0.142=0.1136$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2\cdot G1=0.8\cdot 0.00898=0.00718$ 

#### Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

- Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.142=0.01846$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot G1=0.13\cdot 0.00898=0.001167$ 

Итого выбросы:

Код Наименование ЗВ Выброс г/с Выброс т/год

| 0301 Азота (IV) диоксид (Азота диоксид) (4)            | 0.00718  | 0.1136  |
|--------------------------------------------------------|----------|---------|
| 0304 Азот (II) оксид (Азота оксид) (6)                 | 0.001167 | 0.01846 |
| 0337 Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00773  | 0.1223  |
| 0410 Метан (727*)                                      | 0.00773  | 0.1223  |

## РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004,Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год Источник загрязнения N 1335, 1446 Печь подогрева ПП-0,63 №2

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый

Общее количество топок, шт., N=1

Количество одновременно работающих топок, шт., NI = 1

Время работы одной топки, час/год,  $_{T}$  = 4368

Максимальный расход топлива одной топкой, кг/час, B=18.557

Массовая доля жидкого топлива, в долях единицы,  $BB = \mathbf{0}$ 

## Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a),  $M=1.5\cdot B\cdot 10=1.5\cdot 18.557\cdot 10=0.02784$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.02784\cdot 4368\cdot 10=0.1216$  Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.02784/3.6=0.00773$ 

#### Примесь: 0410 Метан (727\*)

Количество выбросов, кг/час (5.2б),  $M=1.5\cdot B\cdot 10=1.5\cdot 18.557\cdot 10=0.02784$  Валовый выброс, т/год,  $\_M\_=N\cdot M\cdot \_T\_\cdot 10=1\cdot 0.02784\cdot 4368\cdot 10=0.1216$  Максимальный из разовых выброс, г/с,  $\_G\_=N1\cdot M/3.6=1\cdot 0.02784/3.6=0.00773$ 

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP/NN = 1714.6/1 = 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105),  $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 18.557 / 1 = 818.4$ 

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875

Концентрация оксидов азота, кг/м3 (5.6),  $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10$ 

 $= 1.073 \cdot (180 + 60 \cdot 0) \cdot 818.4 / 1714.6 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000988$ 

Объем продуктов сгорания, м3/ч (5.4),  $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 18.557 \cdot 1.5 = 327.3$ 

Объем продуктов сгорания, м3/с,  $_{_{}}VO_{_{}}=VR/3600=327.3/3600=0.091$ 

Количество выбросов, кг/час (5.3),  $M = VR \cdot CNOX = 327.3 \cdot 0.0000988 = 0.03234$  Валовый выброс окислов азота, т/год,  $M1 = N \cdot M \cdot \_T\_ \cdot 10 = 1 \cdot 0.03234 \cdot 4368 \cdot 10 = 0.1413$  Максимальный из разовых выброс окислов азота, г/с,  $G1 = NI \cdot M/3.6 = 1 \cdot 0.03234/3.6 = 0.00898$ 

Коэффициент трансформации для NO2, KNO2 = 0.8Коэффициент трансформации для NO, KNO = 0.13Коэффициенты приняты на уровне максимально установленной трансформации

## Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год,  $\_M\_=KNO2\cdot M1=0.8\cdot 0.1413=0.113$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO2\cdot G1=0.8\cdot 0.00898=0.00718$ 

## Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год,  $\_M\_=KNO\cdot M1=0.13\cdot 0.1413=0.01837$  Максимальный из разовых выброс, г/с,  $\_G\_=KNO\cdot G1=0.13\cdot 0.00898=0.001167$ 

#### Итого выбросы:

| Код  | Наименование ЗВ                                   | Выброс г/с | Выброс т/год |
|------|---------------------------------------------------|------------|--------------|
| 0301 | Азота (IV) диоксид (Азота диоксид) (4)            | 0.00718    | 0.113        |
| 0304 | Азот (II) оксид (Азота оксид) (6)                 | 0.001167   | 0.01837      |
| 0337 | Углерод оксид (Окись углерода, Угарный газ) (584) | 0.00773    | 0.1216       |
| 0410 | Метан (727*)                                      | 0.00773    | 0.1216       |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник выделения N 1421, Дренажная емкость 63 м3 Источник выделения N 1421 01, Дренажная емкость 63 м3 Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

#### Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья – южные области РК (прил. 17) Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C=665 Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY=571 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ=

#### 13695

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY = 620 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 13695

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=15

Коэффициент (Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного типа, м3, VI = 63Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа,  $\tau/\text{год}(\text{Прил. 13})$ , **GHRI = 0.081** 

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = 0$ 

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=63

Сумма Ghri\*Knp\*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1),  $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 15 / 0.1 \cdot$ 

3600 = 0.277

Среднегодовые выбросы, т/год (6.2.2),  $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR =$  $(571 \cdot 13695 + 620 \cdot 13695) \cdot 0.1 \cdot 10 + 0 = 1.63$ 

## Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46Валовый выброс, т/год (5.2.5),  $M = CI \cdot M/100 = 72.46 \cdot 1.63/100 = 1.18$ Максимальный из разовых выброс, г/с (5.2.4),  $G = CI \cdot G/100 = 72.46 \cdot 0.277/100 =$ 0.2007

#### Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503\*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 26.8Валовый выброс, т/год (5.2.5),  $M_{-} = CI \cdot M / 100 = 26.8 \cdot 1.63 / 100 = 0.437$ Максимальный из разовых выброс, г/с (5.2.4),  $G = CI \cdot G/100 = 26.8 \cdot 0.277/100 =$ 0.0742

#### Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.35Валовый выброс, т/год (5.2.5),  $M_{-} = CI \cdot M / 100 = 0.35 \cdot 1.63 / 100 = 0.0057$ Максимальный из разовых выброс, г/с (5.2.4),  $G = CI \cdot G/100 = 0.35 \cdot 0.277/100 =$ 0.00097

#### Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.22Валовый выброс, т/год (5.2.5),  $_{M}$  =  $CI \cdot M / 100 = 0.22 \cdot 1.63 / 100 = 0.003586$ Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G/100 = 0.22 \cdot 0.277/100 = 0.277/100 = 0.277/100 = 0.277/100 = 0.277$ 0.00061

#### Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5),  $\_M\_=CI\cdot M/100=0.11\cdot 1.63/100=0.001793$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_=CI\cdot G/100=0.11\cdot 0.277/100=0.000305$ 

## Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5),  $\_M\_ = CI \cdot M/100 = 0.06 \cdot 1.63/100 = 0.000978$  Максимальный из разовых выброс, г/с (5.2.4),  $\_G\_ = CI \cdot G/100 = 0.06 \cdot 0.277/100 = 0.0001662$ 

| Код  | Наименование ЗВ                                 | Выброс г/с | Выброс т/год |
|------|-------------------------------------------------|------------|--------------|
| 0333 | Сероводород (Дигидросульфид) (518)              | 0.0001662  | 0.000978     |
| 0415 | Смесь углеводородов предельных С1-С5 (1502*)    | 0.2007     | 1.18         |
| 0416 | Смесь углеводородов предельных С6-С10 (1503*)   | 0.0742     | 0.437        |
| 0602 | Бензол (64)                                     | 0.00097    | 0.0057       |
| 0616 | Диметилбензол (смесь о-, м-, п- изомеров) (203) | 0.000305   | 0.001793     |
| 0621 | Метилбензол (349)                               | 0.00061    | 0.003586     |

## РАСЧЕТ ВЫБРОСОВ ПСН КУМКОЛЬ

# Расчет выбросов углеводородов от емкостей хранения дизельного топлива

## Источники выбросов №0237.0238 (вахтовый поселок).0100 ПСН Кумколь

Выбросы паров нефтепродуктов рассчитываются по ф-лам 6.2.1, 6.2.2, 6.2.3 и прил 8,12-14,17/7 /:

 $^{1}M^{p}$   $^{4}$  , z/c 3600

 $G_{p} = \bigcap_{XP}^{(V_{O3}} \bigcap_{B_{O3}} B_{O3} = \bigcap_{B_{ex}} B_{ex} ) \bigcap_{B_{ex}} K^{\max} \bigcap_{B_{ex}} \bigcap_{B_{ex}} G \cap_{B_{ex}} G$ 

 $(\Pi.12)$ 

Кр - опытный коэффициент (П.8)

Vmax - максимальный объем газовоздушной смеси, вытесняемой из резервуара во время его закачки, куб.м/час

Уоз, Увл - средние удельные выбросы из резервуара соответственно в осенне-зимний ивесенне- летний периоды года, г/т (П.12 / 15 /)

Воз, Ввл - количество жидкости, закачиваемое в резервуар в течение оответственно восенне- зимний и весенне-летний периоды года, т/год

**Gxp** - выбросы паров нефтепродукта при хранении в одном резервуаре, т/год (П.13)

Кнп - опытный коэффициент (П.12)

**Np** - кол-во резервуаров, шт.при этом Кнп = C20н / C20ба

 $\mathbf{K}\mathbf{H}\mathbf{\Pi} = 0.0029 / 1 = 0.0029$ 

Предприятие находится в южной климатической зоне (П.17)

| _         |        |      | _      |               | Ввл   | Gxp  |        |     |          |
|-----------|--------|------|--------|---------------|-------|------|--------|-----|----------|
| Годовой в | ыброс  | Уоз, | Bos,   | Увл,          | ,     | ,    | Кнп    | Np, | G, т/год |
|           |        | r/T  | т/год  | r/T           | T/r   | T/T  |        | шт. |          |
|           |        |      |        |               | од    | ОД   |        |     |          |
| 2026 г.   |        |      |        |               |       |      |        |     |          |
| Вахт.пос. | №0237  | 2,36 | 359,6  | 3,15          | 359,6 | 0,27 | 0,0029 | 1   | 0,00272  |
| Вахт.пос. | №0238  | 2,36 | 359,6  | 3 <b>,</b> 15 | 359,6 | 0,27 | 0,0029 | 1   | 0,00272  |
| ПСН       | Nº0100 | 2,36 | 539,7  | 3,15          | 539,7 | 0,27 | 0,0029 | 1   | 0,0041   |
| Кумколь   |        |      |        |               |       |      |        |     |          |
| Максималь | ный вы | Sogo | MCT.   | С1, г/м3      | 3     | max  | Vmax,  | N   | 1, r/c   |
|           |        | -    |        | ,             |       | Kp   | м3/ч   |     |          |
| 2024 г.   |        |      |        |               |       |      |        | ·   |          |
| Вахт.пос. |        |      | №0237  | 3,92          |       | 1    | 10     | C   | ,0109    |
| Вахт.пос. |        |      | №0238  | 3,92          |       | 1    | 10     | C   | ,0109    |
| ПСН Кумко | ЛЬ     |      | Nº0100 | 3,92          |       | 1    | 150    | C   | ,16333   |

#### Всего эмиссия на каждый источник

| кол-во углеводородов С12-С19, | r/c     | т/год   | № NCT. |
|-------------------------------|---------|---------|--------|
| всего                         | 2026 г. |         |        |
|                               | 0,0109  | 0,00272 | 0237   |
|                               | 0,0109  | 0,00272 | 0238   |
|                               | 0,16333 | 0,0041  | 0100   |

#### РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1422, ДЭС 400 кВт Источник выделения N 001,ДЭС 400 кВт

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

~~~

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по СО в 2 раза; NO, NO в 2.5 раза; СН, С, СНО и БП в 3.5 раза.

Расход топлива стационарной дизельной установки за год \boldsymbol{B} , т, 34 Эксплуатационная мощность стационарной дизельной установки \boldsymbol{P} , кВт, 400

Удельный расход топлива на экспл./номин. режиме работы двигателя \boldsymbol{b} , г/кВт*ч, 213

Температура отработавших газов T, K, 450

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов Расход отработавших газов G, кг/с: G = 8.72 * 10 * b * P = 8.72 * 10 * 213 * 400 = 0.742944 (A.3)

Удельный вес отработавших газов Ошибка! Закладка не определена., кг/м: Ошибка! Закладка не определена. = 1.31/(1 + T/273) = 1.31/(1 + 450/273) = 0.494647303 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м;

Объемный расход отработавших газов Q, м/с: Q = G / Ошибка! Закладка не определена. = 0.742944 / 0.494647303 = 1.50196715 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2O	БП
Б	3.1	3.84	0.82857	0.14286	1.2	0.03429	3.42E-6

Таблица значений выбросов q г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	13	16	3.42857	0.57143	5	0.14286	0.00002

Расчет максимального из разовых выброса M_{\star} г/с:

M = e * P/3600 (1)

Расчет валового выброса W, т/год: W = q * B / 1000 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

M = e * P / 3600 = 3.1 * 400 / 3600 = 0.344444444W = q * B = 13 * 34 / 1000 = 0.442

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

M = (e * P/3600) * 0.8 = (3.84 * 400 / 3600) * 0.8 = 0.341333333

W = (q * B / 1000) * 0.8 = (16 * 34 / 1000) * 0.8 = 0.4352

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

M = e * P / 3600 = 0.82857 * 400 / 3600 = 0.092063333W = q * B / 1000 = 3.42857 * 34 / 1000 = 0.11657138

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

M = e * P / 3600 = 0.14286 * 400 / 3600 = 0.015873333W = q * B / 1000 = 0.57143 * 34 / 1000 = 0.01942862

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

M = e * P/3600 = 1.2 * 400 / 3600 = 0.133333333

W = q * B / 1000 = 5 * 34 / 1000 = 0.17

Примесь:1325 Формальдегид (Метаналь) (609)

M = e * P / 3600 = 0.03429 * 400 / 3600 = 0.00381

W = q * B = 0.14286 * 34 / 1000 = 0.00485724

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

M = e * P / 3600 = 0.00000342 * 400 / 3600 = 0.00000038

W = q * B = 0.00002 * 34 / 1000 = 0.00000068

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

M = (e * P/3600) * 0.13 = (3.84 * 400 / 3600) * 0.13 = 0.055466667

W = (q * B / 1000) * 0.13 = (16 * 34 / 1000) * 0.13 = 0.07072

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота	0.341333333	0.4352	0	0.341333333	0.4352
	диоксид) (4)					
0304	Азот (II) оксид (Азота оксид) (6)	0.055466667	0.07072	0	0.055466667	0.07072
0328	Углерод (Сажа, Углерод	0.015873333	0.01942862	0	0.015873333	0.01942862
	черный) (583)					
0330	Сера диоксид (Ангидрид	0.133333333	0.17	0	0.133333333	0.17
	сернистый, Сернистый газ, Сера					
	(IV) оксид) (516)					

0337	Углерод оксид (Окись углерода,	0.344444444	0.442	0	0.344444444	0.442
	Угарный газ) (584)					
0703	Бенз/а/пирен (3,4-Бензпирен)	0.00000038	0.00000068	0	0.00000038	0.00000068
	(54)					
1325	Формальдегид (Метаналь) (609)	0.00381	0.00485724	0	0.00381	0.00485724
2754	Алканы С12-19 /в пересчете на	0.092063333	0.11657138	0	0.092063333	0.11657138
	С/ (Углеводороды предельные					
	С12-С19 (в пересчете на С);					
	Растворитель РПК-265П) (10)					

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 0767, 0768 Печь подогрева ПП-0,63 (Китай) Источник выделения N 001, Печь подогрева ПП-0,63 (Китай)

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год, $_T_=8760$ Максимальный расход топлива одной топкой, кг/час, B=19.106 Массовая доля жидкого топлива, в долях единицы, BB=0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a), $M=1.5\cdot B\cdot 10=1.5\cdot 19.106\cdot 10=0.02866$ Валовый выброс, т/год, $_M_=N\cdot M\cdot _T_\cdot 10=1\cdot 0.02866\cdot 8760\cdot 10=0.251$ Максимальный из разовых выброс, г/с, $_G_=N1\cdot M/3.6=1\cdot 0.02866/3.6=0.00796$

<u>Примесь: 0410 Метан (727*)</u>

Количество выбросов, кг/час (5.2б), $M=1.5\cdot B\cdot 10=1.5\cdot 19.106\cdot 10=0.02866$ Валовый выброс, т/год, $_M_=N\cdot M\cdot _T_\cdot 10=1\cdot 0.02866\cdot 8760\cdot 10=0.251$ Максимальный из разовых выброс, г/с, $_G_=N1\cdot M/3.6=1\cdot 0.02866/3.6=0.00796$

Расчет выбросов окислов азота: Энергетический эквивалент топлива(табл.5.1), E=1.5 Число форсунок на одну топку, шт., NN=1

Расчетная теплопроизводительность топки, МДж/час, QP = 1399.3 Расчетная теплопроизводительность одной форсунки, МДж/час, QP = QP / NN = 1399.3 / 1 = 1399.3

Фактическая средняя теплопроизводительность одной форсунки (МДж/ч) (по ф-ле на с. 105), $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 19.106 / 1 = 842.6$

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5 Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875

Концентрация оксидов азота, кг/м3 (5.6), $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 842.6 / 1399.3 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0001246$ Объем продуктов сгорания, м3/ч (5.4), $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 19.106 \cdot 1.5 = 337$

Объем продуктов сгорания, м3/с, $_{_{}}VO_{_{}}=VR/3600=337/3600=0.0936$

Количество выбросов, кг/час (5.3), $M = VR \cdot CNOX = 337 \cdot 0.0001246 = 0.042$ Валовый выброс окислов азота, т/год, $M1 = N \cdot M \cdot _T \cdot 10 = 1 \cdot 0.042 \cdot 8760 \cdot 10 = 0.368$

Максимальный из разовых выброс окислов азота, г/с, $G1 = N1 \cdot M/3.6 = 1 \cdot 0.042/3.6 = 0.01167$

Коэффициент трансформации для NO2, KNO2 = 0.8 Коэффициент трансформации для NO, KNO = 0.13 Коэффициенты приняты на уровне максимально установленной трансформации

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_=KNO2\cdot M1=0.8\cdot 0.368=0.2944$ Максимальный из разовых выброс, г/с, $_G_=KNO2\cdot G1=0.8\cdot 0.01167=0.00934$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=KNO\cdot MI=0.13\cdot 0.368=0.0478$ Максимальный из разовых выброс, г/с, $_G_=KNO\cdot GI=0.13\cdot 0.01167=0.001517$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00934	0.2944
0304	Азот (II) оксид (Азота оксид) (6)	0.001517	0.0478
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00796	0.251
0410	Метан (727*)	0.00796	0.251

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1423, 1425 Дренажная емкость 8 м3 Источник выделения N 001,

Дренажная емкость 8 м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), $\boldsymbol{C} = \boldsymbol{\kappa} \boldsymbol{\kappa} \boldsymbol{\kappa}$

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, $BOZ = \mathbf{0.72}$

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 0.72

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=1

Коэффициент (Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, $V\!I\!=\!8$

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI = 0.081

$GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = \mathbf{0}$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=8

Cymma Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 =$

 $665 \cdot 0.1 \cdot 1 / 3600 = 0.01847$

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ +$

 $YYY \cdot BVL \cdot KPMAX \cdot 10 + GHR = (571 \cdot 0.72 + 620 \cdot 0.72) \cdot 0.1 \cdot 10 + 0 = 0.0000858$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.0000858 / 100 =$

0.0000622

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 72.46 \cdot 0.01847/100 = 0.01338$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.0000858 / 100 = 0.000023$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.01847 / 100 = 0.00495$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.0000858 / 100 = 0.0000003$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.01847 / 100 = 0.0000646$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0000858 / 100 = 0.0000001888$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 0.22 \cdot 0.01847/100 = 0.0000406$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

- Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0000858 / 100 = 0.0000000944$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 0.11 \cdot 0.01847/100 = 0.0000203$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.0000858 / 100 = 0.0000000515$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 0.06 \cdot 0.01847/100 = 0.00001108$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00001108	0.0000000515
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.01338	0.0000622
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.00495	0.000023
0602	Бензол (64)	0.0000646	0.0000003
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0000203	0.0000000944
0621	Метилбензол (349)	0.0000406	0.0000001888

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 6228, сварочный пост Источник выделения N 6228 01, сварочный пост

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов Вид сварки: Ручная дуговая сварка сталей штучными электродами Электрод (сварочный материал): MP-4 Расход сварочных материалов, кг/год, B=4000 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=5

Удельное выделение сварочного аэрозоля, $r/\kappa r$ расходуемого материала (табл. 1, 3), GIS=11 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 9.9 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10 = 9.9 \cdot 4000 / 10 = 0.0396$ Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 9.9 \cdot 5 / 3600 = 0.01375$

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1.1 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10 = 1.1 \cdot 4000 / 10 = 0.0044$ Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1.1 \cdot 5 / 3600 = 0.001528$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

-Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.4Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10 = 0.4 \cdot 4000 / 10 = 0.0016$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 0.4 \cdot 5$ / 3600 = 0.000556

MTOFO:

Код	Наименование ЗВ		Выброс т/год
	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.01375	0.0396
	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.001528	0.0044
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.000556	0.0016

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год

Источник вагрязнения N 6229, A3C Источник выделения N 6229 01, A3C

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт: Дизельное топливо Расчет

выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, $\Gamma/M3$ (Прил. 15), *CMAX* = **2.25**

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3,

00Z = 690

Концентрация паров нефтепродуктов при заполнении резервуаров в осеннезимний период, $\Gamma/M3$ (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 690

Концентрация паров нефтепродуктов при заполнении резервуаров в весеннелетний период, $\Gamma/M3$ (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час,

VSL = 20

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL)/3600 =$

 $(2.25 \cdot 20) / 3600 = 0.0125$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ +$

$$CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 690 + 1.6 \cdot 690) \cdot 10^{-6} = 0.001925$$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), MPRR =

$$0.4 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (690 + 690) \cdot 10^{-6} = 0.0345$$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.001925 + 0.0345 = 0.0364

<u>Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=99.72\cdot 0.0364/100=0.0363$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=$

$99.72 \cdot 0.0125 / 100 = 0.01247$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 0.28 \cdot 0.0364/100 = 0.000102$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 = 0.28 \cdot 0.0125$

/100 = 0.000035

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
033	Сероводород (Дигидросульфид) (518)	0.000035	0.000102
3			
275	Алканы С12-19 /в пересчете на С/	0.01247	0.0363
4	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-		
	265Π) (10)		

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9 Нефтепродукт:Бензины автомобильные высокооктановые (90 и более)

Климатическая зона: третья - южные области РК (прил. 17) Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнении баков автомашин, г/м3 (Прил. 12), $\pmb{CMAX} = \textbf{1176.12}$

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ =

170

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), CAMOZ = 520

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 170

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, $\Gamma/M3$ (Прил. 15), CAMVL = 623.1

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 3

Количество одновременно работающих рукавов ТРК, отпускающих выбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, Γ /с (9.2.2), GB =

$$NN \cdot CMAX \cdot VTRK / 3600 = 1 \cdot 1176.12 \cdot 3 / 3600 = 0.98$$

Выбросы при закачке в баки автомобилей, $\tau/\text{год}$ (9.2.7), MBA =

$$(CAMOZ \cdot QOZ + CAMVL \cdot QVL) \cdot 10^{-6} = (520 \cdot 170 + 623.1 \cdot 170) \cdot 10^{-6} = 0.1943$$

Удельный выброс при проливах, г/м3, J = 125

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), MPRA =

$$0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 125 \cdot (170 + 170) \cdot 10^{-6} = 0.02125$$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.1943 + 0.02125 = 0.2156

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 67.67

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100=67.67 \cdot 0.2156/100=0.146$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100=67.67 \cdot 0.98/100=0.663$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 25.01

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=25.01\cdot 0.2156/100=0.0539$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=25.01\cdot 0.98/100=0.245$

Примесь: 0501 Пентилены (амилены - смесь изомеров) (460)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 2.5

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=2.5\cdot 0.2156/100=0.00539$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=2.5\cdot 0.98/100=0.0245$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 2.3

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100=2.3 \cdot 0.2156/100=0.00496$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100=2.3 \cdot 0.98/100=0.02254$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 2.17

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=2.17\cdot 0.2156/100=0.00468$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=2.17\cdot 0.98/100=0.02127$

Примесь: 0627 Этилбензол (675)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.06 \cdot 0.2156 / 100 =$

0.0001294

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.06 \cdot 0.98/100 = 0.000588$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.29

Валовый выброс, т/год (5.2.5), $\underline{M} = CI \cdot M / 100 = 0.29 \cdot 0.2156 / 100 = 0.000625$ Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 0.29 \cdot 0.98 / 0.000625$

100 = 0.00284

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
033	Сероводород (Дигидросульфид) (518)	0.000035	0.000102
3			
041	Смесь углеводородов предельных С1-С5	0.663	0.146
5	(1502*)		
041	Смесь углеводородов предельных С6-	0.245	0.0539
6	C10 (1503*)		
050	Пентилены (амилены - смесь изомеров)	0.0245	0.00539
1	(460)		
060	Бензол (64)	0.02254	0.00496
2			
061	Диметилбензол (смесь о-, м-, п-	0.00284	0.000625
6	изомеров) (203)		
062	Метилбензол (349)	0.02127	0.00468
1			
062	Этилбензол (675)	0.000588	0.0001294
7			
275	Алканы С12-19 /в пересчете на С/	0.01247	0.0363
4	(Углеводороды предельные С12-С19 (в		
	пересчете на С);		
	Растворитель РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 1405, PBC №1 3000 м3 (отстаивание пластовой воды)

Источник выделения N 1405 01, PBC №1 3000 м3 (отстаивание пластовой воды)

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8 нефтепродукт, NP = Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665 Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 571 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 22200

Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY =

620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 22200

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 20

Коэффициент (Прил. 12), $KNP = \mathbf{0}$

Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного типа, м3, VI = 3000

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1 Значение Крхг для этого типа резервуаров (Прил. 8), KPSR = 0.1 Количество

выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* =

4.6

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 4.6 \cdot 0 \cdot 1 = \mathbf{0}$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 3000

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 =$

$665 \cdot 0.1 \cdot 20 / 3600 = 0.3694$

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ +$

 $YYY \cdot BVL$) · $KPMAX \cdot 10^{-6} + GHR = (571 \cdot 31250 + 620 \cdot 31250) \cdot 0.1 \cdot 10^{-6} + 0 = 3.72$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=72.46\cdot 3.72/100=2.696$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=$

$72.46 \cdot 0.3694 / 100 = 0.2677$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 26.8 \cdot 3.72/100 = 0.997$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 26.8 \cdot 0.3694$

/100 = 0.099

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 0.35 \cdot 3.72/100 = 0.01302$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 = 0.35 \cdot 0.3694$

/100 = 0.001293

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.22 \cdot 3.72/100 = 0.00818$ Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G/100 = 0.22 \cdot 0.3694$

/100 = 0.000813

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 0.11 \cdot 3.72/100 = 0.00409$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 = 0.11 \cdot 0.3694$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 0.06 \cdot 3.72 / 100 = 0.00223$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G/100 = 0.06 \cdot 0.3694$

/100 = 0.0002216

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
033	Сероводород (Дигидросульфид) (518)	0.0002216	0.00223
3			
041	Смесь углеводородов предельных С1-С5	0.2677	2.696
5	(1502*)		
041	Смесь углеводородов предельных С6-	0.099	0.997
6	C10 (1503*)		
060	Бензол (64)	0.001293	0.01302
2			
061	Диметилбензол (смесь о-, м-, п-	0.000406	0.00409
6	изомеров) (203)		
062	Метилбензол (349)	0.000813	0.00818
1			

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1426, 1427 PBC-1000 м3

Источник выделения N 001, PBC-1000 м3 Список

литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8 Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665 Средний удельный выброс в осенне-зимний период, $\Gamma/T(\Pi$ рил. 12), YY = 571 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 50000

Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY =

620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 50000Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 20

Коэффициент (Прил. 12), $KNP = \mathbf{0}$

Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного типа, м3, VI = 1000

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1 Значение

Крѕг для этого типа резервуаров(Прил. 8), **КРЅР** = **0.1** Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* =

1.83

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 1.83 \cdot 0 \cdot 1 = 0$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 1000

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC/3600 =$

$665 \cdot 0.1 \cdot 20 / 3600 = 0.3694$

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ +$

 $YYY \cdot BVL$) · $KPMAX \cdot 10^{-6} + GHR = (571 \cdot 50000 + 620 \cdot 50000) \cdot 0.1 \cdot 10^{-6} + 0 = 5.96$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 72.46 \cdot 5.96/100 = 4.32$ Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G/100 = 4.32$

$72.46 \cdot 0.3694 / 100 = 0.2677$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 26.8 \cdot 5.96/100 = 1.597$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 26.8 \cdot 0.3694$

/100 = 0.099

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 0.35 \cdot 5.96/100 = 0.02086$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 = 0.35 \cdot 0.3694$

/100 = 0.001293

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.22 \cdot 5.96/100 = 0.0131$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.22 \cdot 0.3694$

/100 = 0.000813

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 0.11 \cdot 5.96/100 = 0.00656$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 = 0.11 \cdot 0.3694$

/100 = 0.000406

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.06 \cdot 5.96/100 = 0.003576$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.06 \cdot 0.3694$

/100 = 0.0002216

, = 0 0	0.000=10			
Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
033	Сероводород (Дигидросульфид) (518)	0.0002216	0.003576	
3				
041	Смесь углеводородов предельных С1-С5	0.2677	4.32	
5	(1502*)			
041	Смесь углеводородов предельных С6-	0.099	1.597	
6	C10 (1503*)			
060	Бензол (64)	0.001293	0.02086	
2				
061	Диметилбензол (смесь о-, м-, п-	0.000406	0.00656	
6	изомеров) (203)			
062	Метилбензол (349)	0.000813	0.0131	

1

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1428, PBC-700 м3 Источник выделения N 1428 01, PBC-700 м3 Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8 нефтепродукт, *NP* = Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17) Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665 Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 35000

Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY =

620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 35000 Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 20

Коэффициент (Прил. 12), $KNP = \mathbf{0}$

Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного типа, м3, VI = 700

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), **КРМ** = **0.1** Значение Крзг для этого типа резервуаров (Прил. 8), **КРSR** = **0.1** Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* =

1.35

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 1.35 \cdot 0 \cdot 1 = 0$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 700

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC/3600 =$

$665 \cdot 0.1 \cdot 20 / 3600 = 0.3694$

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (571 \cdot 35000 + 620 \cdot 35000) \cdot 0.1 \cdot 10^{-6} + 0 = 4.17$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 72.46 \cdot 4.17/100 = 3.02$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 =$

$72.46 \cdot 0.3694 / 100 = 0.2677$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 26.8 \cdot 4.17/100 = 1.118$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 = 26.8 \cdot 0.3694$

/100 = 0.099

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.35\cdot 4.17/100=0.0146$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.35\cdot 0.3694$

/100 = 0.001293

Примесь: 0621 Метилбензол (349)

```
Концентрация ЗВ в парах, \% масс(Прил. 14), CI = 0.22
```

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.22 \cdot 4.17/100 = 0.00917$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.22 \cdot 0.3694$

/100 = 0.000813

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.11 \cdot 4.17/100 = 0.00459$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.11 \cdot 0.3694$

/100 = 0.000406

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.06\cdot 4.17/100=0.0025$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.06\cdot 0.3694/100=0.0002216$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год	
033	Сероводород (Дигидросульфид) (518)	0.0002216	0.0025	
3				
041	Смесь углеводородов предельных С1-С5	0.2677	3.02	
5	(1502*)			
041	Смесь углеводородов предельных С6-	0.099	1.118	
6	C10 (1503*)			
060	Бензол (64)	0.001293	0.0146	
2				
061	Диметилбензол (смесь о-, м-, п-	0.000406	0.00459	
6	изомеров) (203)			
062	Метилбензол (349)	0.000813	0.00917	
1				

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1429, 1430 РВС-200 м3

Источник выделения N 001, PBC-200 м3 Список

литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8 нефтепродукт, NP = Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665 Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 571 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 15000

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY =

620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 15000 Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 20

Коэффициент (Прил. 12), $KNP = \mathbf{0}$

Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного типа, м3, VI = 200

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1 Категория веществ: A, Б, В Конструкция резервуаров: Наземный вертикальный Значение Кртах для этого типа резервуаров(Прил. 8), KPM = 0.1 Значение Крsr для этого типа резервуаров(Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* =

0.47

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.47 \cdot 0 \cdot 1 = 0$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 200

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC/3600 =$

$665 \cdot 0.1 \cdot 20 / 3600 = 0.3694$

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ +$

 $YYY \cdot BVL$) · $KPMAX \cdot 10^{-6} + GHR = (571 \cdot 15000 + 620 \cdot 15000) \cdot 0.1 \cdot 10^{-6} + 0 = 1.787$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=72.46\cdot 1.787/100=1.295$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=$

 $72.46 \cdot 0.3694 / 100 = 0.2677$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=26.8\cdot 1.787/100=0.479$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=26.8\cdot 0.3694$ / 100=0.099

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.35\cdot 1.787/100=0.00625$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.35\cdot 0.3694$ / 100=0.001293

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.22 \cdot 1.787/100 = 0.00393$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.22 \cdot 0.3694$

/100 = 0.000813

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 0.11 \cdot 1.787 / 100 = 0.001966$

/100 = 0.000406

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.06\cdot 1.787/100=0.001072$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.06\cdot 0.3694/100=0.0002216$

0333	Сероводород (Дигидросульфид) (518)	0.0002216	0.001072
0415	Смесь углеводородов предельных С1-С5	0.2677	1.295
	(1502*)		
0416	Смесь углеводородов предельных С6-	0.099	0.479
	C10 (1503*)		
0602	Бензол (64)	0.001293	0.00625
0616	Диметилбензол (смесь о-, м-, п-	0.000406	0.001966
	изомеров) (203)		
0621	Метилбензол (349)	0.000813	0.00393

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год

Источник загрязнения N 1431, Печь подогрева ПП-0,63 Источник выделения

N 1431 01, Печь подогрева ПП-0,63

Источник загрязнения N 1431, Печь подогрева ПП-0,63

Источник выделения N 1431 01, Печь подогрева ПП-0,63

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКС Π , 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый

Общее количество топок, шт., N=1

Количество одновременно работающих топок, шт., N1 = 1

Время работы одной топки, час/год, $_{\bf T}$ = 3600

Максимальный расход топлива одной топкой, кг/час, B = 18.557

Массовая доля жидкого топлива, в долях единицы, $BB = \mathbf{0}$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a), $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 18.557 \cdot 10 = 0.02784$

Валовый выброс, т/год, $_{\underline{M}}$ = $N \cdot M \cdot _{\underline{T}} \cdot 10 = 1 \cdot 0.02784 \cdot 3600 \cdot 10 = 0.1002$

Максимальный из разовых выброс, г/с, $_G_=N1 \cdot M / 3.6 = 1 \cdot 0.02784 / 3.6 = 0.00773$

Примесь: 0410 Метан (727*)

Количество выбросов, кг/час (5.26), $M = 1.5 \cdot B \cdot 10 = 1.5 \cdot 18.557 \cdot 10 = 0.02784$

Валовый выброс, т/год, $_{M}$ = $N \cdot M \cdot _{T}$ $\cdot 10 = 1 \cdot 0.02784 \cdot 3600 \cdot 10 = 0.1002$

Максимальный из разовых выброс, г/с, $_G_=N1 \cdot M / 3.6 = 1 \cdot 0.02784 / 3.6 = 0.00773$

Расчет выбросов окислов азота:

Энергетический эквивалент топлива (табл. 5.1), E = 1.5

Число форсунок на одну топку, шт., NN = 1

Расчетная теплопроизводительность топки, МДж/час, QP = 1714.6

Расчетная теплопроизводительность одной форсунки, МДж/час, $\mathit{QP} = \mathit{QP} \ / \ \mathit{NN} =$

1714.6 / 1 = 1714.6

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105), $\mathit{QF} = 29.4 \cdot \mathit{E} \cdot \mathit{B} / \mathit{NN} =$

$29.4 \cdot 1.5 \cdot 18.557 / 1 = 818.4$

Коэффициент избытка воздуха в уходящих дымовых газах, $\mathbf{A} = \mathbf{1}$

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.83 Концентрация оксидов азота, кг/м3 (5.6), CNOX=1.073 · (180 +

 $60 \cdot BB) \cdot QF / QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 818.4 /$

 $1714.6 \cdot 1 \cdot 0.83 \cdot 10 = 0.0000765$

Объем продуктов сгорания, м3/ч (5.4), $VR = 7.84 \cdot A \cdot B \cdot E =$

 $7.84 \cdot 1 \cdot 18.557 \cdot 1.5 = 218.2$

Количество выбросов, кг/час (5.3), $M = VR \cdot CNOX = 218.2 \cdot 0.0000765 = 0.0167$

Валовый выброс окислов азота, т/год, M1 = N · M · $_T$ _ · 10 =

 $1 \cdot 0.0167 \cdot 3600 \cdot 10 = 0.0601$

Максимальный из разовых выброс окислов азота, г/с, $G1 = N1 \cdot M / 3.6 = 1 \cdot 0.0167 / 3.6 = 0.00464$

Коэффициент трансформации для NO2, ${\it KNO2}$ = 0.8

Коэффициент трансформации для NO, κ NO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

— Валовый выброс, т/год, $_{\underline{M}}$ = $KNO2 \cdot M1 = 0.8 \cdot 0.0601 = 0.0481$ Максимальный из разовых выброс, г/с, $_{\underline{G}}$ = $KNO2 \cdot G1 = 0.8 \cdot 0.00464 = 0.00371$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

— Валовый выброс, т/год, $_{\underline{M}}$ = $KNO \cdot M1 = 0.13 \cdot 0.0601 = 0.00781$ Максимальный из разовых выброс, г/с, $_{\underline{G}}$ = $KNO \cdot G1 = 0.13 \cdot 0.00464 = 0.000603$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00371	0.0481
0304	Азот (II) оксид (Азота оксид) (6)	0.000603	0.00781
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00773	0.1002
0410	Метан (727*)	0.00773	0.1002

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1432, 1433, 1434, 1435 PBC - 300 м3 (отстаивание пластовой воды) Источник выделения N 001, PBC - 300 м3 (отстаивание пластовой воды) Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8 нефтепродукт, *NP* = Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665 Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 571 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 77250Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY =

620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 77250Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 20

Коэффициент (Прил. 12), $KNP = \mathbf{0}$

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 300

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1 Значение Крѕг для этого типа резервуаров(Прил. 8), **КРЅР** = **0.1** Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* =

0.68

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.68 \cdot 0 \cdot 1 = \mathbf{0}$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 300

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (6.2.1), $G = C \cdot KPMAX \cdot VC / 3600 =$

$665 \cdot 0.1 \cdot 20 / 3600 = 0.3694$

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ +$

 $YYY \cdot BVL$) · $KPMAX \cdot 10^{-6} + GHR = (571 \cdot 77250 + 620 \cdot 77250) \cdot 0.1 \cdot 10^{-6} + 0 = 9.2$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 72.46 \cdot 9.2 / 100 = 6.67$ Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G/100 =$

$72.46 \cdot 0.3694 / 100 = 0.2677$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M / 100 = 26.8 \cdot 9.2 / 100 = 2.466$ Максимальный из разовых выброс, г/с (5.2.4), $_{G} = CI \cdot G/100 = 26.8 \cdot 0.3694$ /100 = 0.099

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5), $M = CI \cdot M/100 = 0.35 \cdot 9.2/100 = 0.0322$ Максимальный из разовых выброс, г/с (5.2.4), $_{G} = CI \cdot G/100 = 0.35 \cdot 0.3694$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.22\cdot 9.2/100=0.02024$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.22\cdot 0.3694$ / 100=0.000813

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5), $_M = CI \cdot M/100 = 0.11 \cdot 9.2/100 = 0.01012$ Максимальный из разовых выброс, г/с (5.2.4), $_G = CI \cdot G/100 = 0.11 \cdot 0.3694$

/100 = 0.000406

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (5.2.5), $_M_=CI \cdot M/100 = 0.06 \cdot 9.2/100 = 0.00552$ Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI \cdot G/100 = 0.06 \cdot 0.3694/100 = 0.0002216$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
033	Сероводород (Дигидросульфид) (518)	0.0002216	0.00552
3			
041	Смесь углеводородов предельных С1-С5	0.2677	6.67
5	(1502*)		
041	Смесь углеводородов предельных С6-	0.099	2.466
6	C10 (1503*)		
060	Бензол (64)	0.001293	0.0322
2			
061	Диметилбензол (смесь о-, м-, п-	0.000406	0.01012
6	изомеров) (203)		
062	Метилбензол (349)	0.000813	0.02024
1			

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1436, Дренажная емкость 8 м3 Источник выделения N 1436 01, Дренажная емкость 8 м3

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт, NP =Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3 (Прил. 12), C = 665

Средний удельный выброс в осенне-зимний период, г/т (Прил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, BOZ=0.72

Средний удельный выброс в весенне-летний период, г/т (Прил. 12), YYY = 620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 0.72

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC=1

Коэффициент (Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, $V\!I\!=\!8$

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А, Б, В

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров нефтепродуктов

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI = 0.081

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.081 \cdot 0 \cdot 1 = 0$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V=8

Cymma Ghri*Knp*Nr, GHR = 0

 $665 \cdot 0.1 \cdot 1 / 3600 = 0.01847$

Среднегодовые выбросы, т/год (6.2.2), $M = (YY \cdot BOZ +$

 $YYY \cdot BVL) \cdot KPMAX \cdot 10 + GHR = (571 \cdot 0.72 + 620 \cdot 0.72) \cdot 0.1 \cdot 10 + 0 = 0.0000858$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс (Прил. 14), CI = 72.46 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.0000858 / 100 = 0.0000622$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 72.46 \cdot 0.01847/100 = 0.01338$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.0000858 / 100 = 0.000023$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 26.8 \cdot 0.01847/100 = 0.00495$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.0000858 / 100 = 0.0000003$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 0.35 \cdot 0.01847/100 = 0.0000646$

Примесь: 0621 Метилбензол (349)

- Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0000858 / 100 = 0.0000001888$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 0.22 \cdot 0.01847/100 = 0.0000406$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0000858 / 100 = 0.0000000944$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 0.11 \cdot 0.01847/100 = 0.0000203$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

- Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.0000858 / 100 = 0.0000000515$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G/100 = 0.06 \cdot 0.01847/100 = 0.00001108$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00001108	0.0000000515
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.01338	0.0000622
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.00495	0.000023
0602	Бензол (64)	0.0000646	0.0000003
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0000203	0.0000000944
0621	Метилбензол (349)	0.0000406	0.0000001888

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 1438, Печь подогрева ПП-0,63 Источник выделения N 1438 01, Печь подогрева ПП-0,63

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый Общее количество топок, шт., N=1 Количество одновременно работающих топок, шт., NI=1 Время работы одной топки, час/год, $_T_=5160$ Максимальный расход топлива одной топкой, кг/час, B=18.557 Массовая доля жидкого топлива, в долях единицы, BB=0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a), $M=1.5\cdot B\cdot 10=1.5\cdot 18.557\cdot 10=0.02784$ Валовый выброс, т/год, $_M_=N\cdot M\cdot _T_\cdot 10=1\cdot 0.02784\cdot 5160\cdot 10=0.1437$ Максимальный из разовых выброс, г/с, $_G_=N1\cdot M/3.6=1\cdot 0.02784/3.6=0.00773$

Примесь: 0410 Метан (727*)

Количество выбросов, кг/час (5.2б), $M=1.5\cdot B\cdot 10=1.5\cdot 18.557\cdot 10=0.02784$ Валовый выброс, т/год, $_M_=N\cdot M\cdot _T_\cdot 10=1\cdot 0.02784\cdot 5160\cdot 10=0.1437$ Максимальный из разовых выброс, г/с, $_G_=N1\cdot M/3.6=1\cdot 0.02784/3.6=0.00773$

Расчет выбросов окислов азота: Энергетический эквивалент топлива (табл.5.1), E=1.5 Число форсунок на одну топку, шт., NN=1 Расчетная теплопроизводительность топки, МДж/час, QP=1714.6 Расчетная теплопроизводительность одной форсунки, МДж/час, QP=QP/NN=1714.6/1=1714.6

Фактическая средняя теплопроизводительность одной форсунки (МДж/ч) (по ф-ле на с. 105), $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 18.557 / 1 = 818.4$

Коэффициент избытка воздуха в уходящих дымовых газах, A=1.5 Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V=0.875

Концентрация оксидов азота, кг/м3 (5.6), $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF/QP \cdot A \cdot V \cdot 10 = 1.073 \cdot (180 + 60 \cdot 0) \cdot 818.4 / 1714.6 \cdot 1.5 \cdot 0.875 \cdot 10 = 0.0000988$ Объем продуктов сгорания, м3/ч (5.4), $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1.5 \cdot 18.557 \cdot 1.5 = 327.3$

Количество выбросов, кг/час (5.3), $M = VR \cdot CNOX = 327.3 \cdot 0.0000988 = 0.03234$

Валовый выброс окислов азота, т/год, $M1 = N \cdot M \cdot _T_ \cdot 10 = 1 \cdot 0.03234 \cdot 5160 \cdot 10 = 0.167$

Максимальный из разовых выброс окислов азота, г/с, $G1 = N1 \cdot M/3.6 = 1 \cdot 0.03234/3.6 = 0.00898$

Коэффициент трансформации для NO2, KNO2 = 0.8 Коэффициент трансформации для NO, KNO = 0.13 Коэффициенты приняты на уровне максимально установленной трансформации

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

- Валовый выброс, т/год, $_M_=KNO2\cdot M1=0.8\cdot 0.167=0.1336$ Максимальный из разовых выброс, г/с, $G=KNO2\cdot G1=0.8\cdot 0.00898=0.00718$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=KNO\cdot M1=0.13\cdot 0.167=0.0217$ Максимальный из разовых выброс, г/с, $_G_=KNO\cdot G1=0.13\cdot 0.00898=0.001167$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00718	0.1336
0304	Азот (II) оксид (Азота оксид) (6)	0.001167	0.0217
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.00773	0.1437
0410	Метан (727*)	0.00773	0.1437

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3001, УПА-60A 60/80 Источник выделения N 3001 01, УПА-60A 60/80 Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Максимальный расход диз. топлива установкой, кг/час, G=7 Годовой расход дизельного топлива, т/год, G=30.0

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E}=\mathbf{30}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 7 \cdot 30 / 3600 = 0.0583$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 30 \cdot 30 / 10 = 0.9$

Примесь: 1325 Формальдегид (Метаналь) (609)

-

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 7 \cdot 1.2 / 3600 = 0.002333$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 30 \cdot 1.2 / 10 = 0.036$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{39}$

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=7\cdot 39/3600=0.0758$ Валовый выброс, т/год, $M=G\cdot E/10=30\cdot 39/10=1.17$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{10}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 7 \cdot 10 / 3600 = 0.01944$ Валовый выброс, т/год, $M = G \cdot E / 10 = 30 \cdot 10 / 10 = 0.3$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=7\cdot 25/3600=0.0486$ Валовый выброс, т/год, $M=G\cdot E/10=30\cdot 25/10=0.75$

<u>Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{12}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 7 \cdot 12 / 3600 = 0.02333$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 30 \cdot 12 / 10 = 0.36$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{1.2}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 7 \cdot 1.2 / 3600 = 0.002333$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 30 \cdot 1.2 / 10 = 0.036$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\boldsymbol{E}=\mathbf{5}$

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=7\cdot 5/3600=0.00972$ Валовый выброс, т/год, $_M_=G\cdot E/10=30\cdot 5/10=0.15$

Итоговая таблица:

Код	Наименование ЗВ	Выброс	Выброс	
-----	-----------------	--------	--------	--

		г/c	т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0583	0.9
0304	Азот (II) оксид (Азота оксид) (6)	0.0758	1.17
0328	Углерод (Сажа, Углерод черный) (583)	0.00972	0.15
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0.01944	0.3
	(516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0486	0.75
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.002333	0.036
1325	Формальдегид (Метаналь) (609)	0.002333	0.036
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-	0.02333	0.36
	С19 (в пересчете на С); Растворитель РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник выделения N 3002, АПРС-40 (Урал-4320) Источник выделения N 3002 01, АПРС-40 (Урал-4320) Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G=5.7 Годовой расход дизельного топлива, т/год, G=25.00

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{30}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 5.7 \cdot 30 / 3600 = 0.0475$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 25 \cdot 30 / 10 = 0.75$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=5.7\cdot 1.2/3600=0.0019$ Валовый выброс, т/год, $M=G\cdot E/10=25\cdot 1.2/10=0.03$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{39}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 5.7 \cdot 39 / 3600 = 0.0618$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 25 \cdot 39 / 10 = 0.975$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{10}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 5.7 \cdot 10 / 3600 = 0.01583$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 25 \cdot 10 / 10 = 0.25$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{25}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 5.7 \cdot 25 / 3600 = 0.0396$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 25 \cdot 25 / 10 = 0.625$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \mathbf{12}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 5.7 \cdot 12 / 3600 = 0.019$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 25 \cdot 12 / 10 = 0.3$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 5.7 \cdot 1.2 / 3600 = 0.0019$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 25 \cdot 1.2 / 10 = 0.03$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 5.7 \cdot 5 / 3600 = 0.00792$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 25 \cdot 5 / 10 = 0.125$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0475	0.75
0304	Азот (II) оксид (Азота оксид) (6)	0.0618	0.975
0328	Углерод (Сажа, Углерод черный) (583)	0.00792	0.125
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.01583	0.25
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0396	0.625
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.0019	0.03
1325	Формальдегид (Метаналь) (609)	0.0019	0.03
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.019	0.3

Город N 724, Сырдарьинский район Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3003,3004 ACЦ-320 Источник выделения N 001, ACЦ-320 Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G=9.15 Годовой расход дизельного топлива, т/год, G=20.00

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{30}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 30 / 3600 = 0.0763$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 30 / 10 = 0.6$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 1.2 / 3600 = 0.00305$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{39}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 39 / 3600 = 0.0991$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 39 / 10 = 0.78$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\boldsymbol{E}=\mathbf{10}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 10 / 3600 = 0.0254$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 10 / 10 = 0.2$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 25 / 3600 = 0.0635$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 25 / 10 = 0.5$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \mathbf{12}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 12 / 3600 = 0.0305$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 12 / 10 = 0.24$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{1.2}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 1.2 / 3600 = 0.00305$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 5 / 3600 = 0.0127$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 5 / 10 = 0.1$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0763	0.6
0304	Азот (II) оксид (Азота оксид) (6)	0.0991	0.78
0328	Углерод (Сажа, Углерод черный) (583)	0.0127	0.1
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0.0254	0.2
	(516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0635	0.5
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.00305	0.024
1325	Формальдегид (Метаналь) (609)	0.00305	0.024
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-	0.0305	0.24
	С19 (в пересчете на С); Растворитель РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район

Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3005-3009, ППУА

Источник выделения N 001, ППУА

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, K3 =Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, $\tau/$ год, BT = 60.0

Расход топлива, г/с, BG = 7.630

```
Марка топлива, M = Дизельное топливо
```

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, % (прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более (прил. 2.1), A1R = 0.025

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более (прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, $\mathit{QN} = 1.6$

Фактическая мощность котлоагрегата, кВт, QF = 1.2

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0176

Коэфф. снижения выбросов азота в рез-те техн. решений, B=0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a), $KNO = KNO \cdot (QF/QN)$ = $0.0176 \cdot (1.2/1.6) = 0.01638$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B)$ = $0.001 \cdot 60 \cdot 42.75 \cdot 0.01638 \cdot (1-0) = 0.042$

Выброс окислов азота, r/c (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 7.63 \cdot 42.75 \cdot 0.01638 \cdot (1-0) = 0.00534$

Выброс азота диоксида (0301), т/год, $_M_=0.8\cdot MNOT=0.8\cdot 0.042=0.0336$ Выброс азота диоксида (0301), г/с, $_G_=0.8\cdot MNOG=0.8\cdot 0.00534=0.00427$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13\cdot MNOT=0.13\cdot 0.042=0.00546$ Выброс азота оксида (0304), г/с, $_G_=0.13\cdot MNOG=0.13\cdot 0.00534=0.000694$ РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)</u> Доля окислов серы, связываемых летучей золой топлива (п. 2.2), **NSO2** = **0.02**

Содержание сероводорода в топливе, % (прил. 2.1), H2S=0

Выбросы окислов серы, т/год (ф-ла 2.2), $_{-}M_{-}=0.02 \cdot BT \cdot SR \cdot (1-NSO2) +$

 $0.0188 \cdot H2S \cdot BT = 0.02 \cdot 60 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 60 = 0.353$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) +$

 $0.0188 \cdot H2S \cdot BG = 0.02 \cdot 7.63 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 7.63 = 0.0449$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), $Q4=\mathbf{0}$ Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 0.5 Коэффициент, учитывающий долю потери тепла, R = 0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), CCO =

 $Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4/100)$ = $0.001 \cdot 60 \cdot 13.9 \cdot (1-0/100) = 0.834$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_ = 0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 7.63 \cdot 13.9 \cdot (1-0/100) = 0.106$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент (табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 60 \cdot 0.025 \cdot 0.01$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG\cdot A1R\cdot F=7.63\cdot 0.025\cdot 0.01=0.001908$

MTOPO:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00427	0.0336
0304	Азот (II) оксид (Азота оксид) (6)	0.000694	0.00546
0328	Углерод (Сажа, Углерод черный) (583)	0.001908	0.015
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV)	0.0449	0.353
	оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.106	0.834

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат
Амлон Мунай" на 2026 год Источник загрязнения N 3010,
3011,3012

Источник выделения N 001, АДПМ

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G=4.56 Годовой расход дизельного топлива, т/год, G=20.00

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{F} = \pmb{30}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 30 / 3600 = 0.038$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 30 / 10 = 0.6$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 1.2 / 3600 = 0.00152$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

_

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\mathbf{F} = \mathbf{39}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 39 / 3600 = 0.0494$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 39 / 10 = 0.78$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{10}$

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=4.56\cdot 10/3600=0.01267$ Валовый выброс, т/год, $_M_=G\cdot E/10=20\cdot 10/10=0.2$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 25 / 3600 = 0.03167$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 25 / 10 = 0.5$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \mathbf{12}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 12 / 3600 = 0.0152$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 12 / 10 = 0.24$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 1.2 / 3600 = 0.00152$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\boldsymbol{E}=\mathbf{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 5 / 3600 = 0.00633$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 5 / 10 = 0.1$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.038	0.6
0304	Азот (II) оксид (Азота оксид) (6)	0.0494	0.78
0328	Углерод (Сажа, Углерод черный) (583)	0.00633	0.1
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0.01267	0.2
	(516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.03167	0.5

1301 Проп-2-ен-1-аль (Акролеин, А	крилальдегид) (474)	0.00152	0.024
1325 Формальдегид (Метаналь) (60	9)	0.00152	0.024
2754 Алканы С12-19 /в пересчете	на С/ (Углеводороды предельные С12-	0.0152	0.24
С19 (в пересчете на С); Раство	ритель РПК-265П) (10)		1

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 3013, 3014

Источник выделения N 001, APOK AZN

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Максимальный расход диз. топлива установкой, кг/час, G=4.560 Годовой расход дизельного топлива, т/год, G=20.00

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 30 / 3600 = 0.038$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 30 / 10 = 0.6$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 1.2 / 3600 = 0.00152$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\mathbf{F} = \mathbf{20}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 39 / 3600 = 0.0494$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 39 / 10 = 0.78$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)</u> Оценочное значение среднециклового выброса, r/кr топлива (табл.4), E=10

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 10 / 3600 = 0.01267$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 10 / 10 = 0.2$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=4.56\cdot 25/3600=0.03167$ Валовый выброс, т/год, $_M_=G\cdot E/10=20\cdot 25/10=0.5$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\mathbf{r} = \mathbf{42}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 12 / 3600 = 0.0152$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 12 / 10 = 0.24$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 1.2 / 3600 = 0.00152$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 4.56 \cdot 5 / 3600 = 0.00633$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 5 / 10 = 0.1$ Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.038	0.6
0304	Азот (II) оксид (Азота оксид) (6)	0.0494	0.78
0328	Углерод (Сажа, Углерод черный) (583)	0.00633	0.1
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV)	0.01267	0.2
	оксид) (516)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 3015

Источник выделения N 3015 01, AP 32/40 Урал-4320 Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G=9.15 Годовой расход дизельного топлива, т/год, G=20.00

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 30 / 3600 = 0.0763$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 30 / 10 = 0.6$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{1.2}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 1.2 / 3600 = 0.00305$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{39}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 39 / 3600 = 0.0991$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 39 / 10 = 0.78$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{10}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 10 / 3600 = 0.0254$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 10 / 10 = 0.2$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{25}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 25 / 3600 = 0.0635$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 25 / 10 = 0.5$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{12}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 12 / 3600 = 0.0305$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 12 / 10 = 0.24$

<u> Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{1.2}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 1.2 / 3600 = 0.00305$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 9.15 \cdot 5 / 3600 = 0.0127$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 5 / 10 = 0.1$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0763	0.6

0304 Азот (II) оксид (Азота оксид) (6)	0.0991	0.78
0328 Углерод (Сажа, Углерод черный) (583)	0.0127	0.1
0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0254	0.2

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарынский район

Объект N 0004, Вариант 5 ТОО СП "Куат Амлон Мунай" на 2026 год Источник загрязнения N 3016

Источник выделения N 3016 01, ЦА-320 Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Максимальный расход диз. топлива установкой, кг/час, G = 9.61

Годовой расход дизельного топлива, $\tau/$ год, G=15.0

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=9.61\cdot 30$ / 3600=0.0801

Валовый выброс, т/год, $_{\underline{M}}$ = $_{\underline{G}}$ · $_{\underline{E}}$ / 10 = 15 · 30 / 10 = $_{\underline{0.45}}$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=9.61\cdot 1.2/3600=0.003203$

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 15 \cdot 1.2 / 10 = 0.018$ Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=39 Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=9.61\cdot 39/3600=$

Валовый выброс, т/год, $_{\underline{M}}$ = $_{\underline{G}}$ · $_{\underline{E}}$ / 10 = 15 · 39 / 10 = 0.585

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=10 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=9.61\cdot 10$ / 3600=0.0267

Валовый выброс, т/год, $M = G \cdot E / 10 = 15 \cdot 10 / 10 = 0.15$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=9.61\cdot 25$ / 3600=0.0667

Валовый выброс, т/год, $_{\underline{M}}$ = $_{\underline{G}}$ · $_{\underline{E}}$ / 10 = 15 · 25 / 10 = 0.375

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=12 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=9.61\cdot 12$ / 3600=0.03203

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 15 \cdot 12 / 10 = 0.18$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E/3600=9.61\cdot 1.2/3600=$

0.003203

Валовый выброс, т/год, $M = G \cdot E / 10 = 15 \cdot 1.2 / 10 = 0.018$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{5}$ Максимальный разовый выброс, г/с, $_{\it G}_={\it G}\cdot{\it E}$ / 3600 = 9.61 · 5 / 3600 = 0.01335

Валовый выброс, т/год, $M = G \cdot E / 10 = 15 \cdot 5 / 10 = 0.075$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0801	0.45
0304	Азот (II) оксид (Азота оксид) (6)	0.1041	0.585
0328	Углерод (Сажа, Углерод черный) (583)	0.01335	0.075
l l	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0267	0.15
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0667	0.375
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.003203	0.018
1325	Формальдегид (Метаналь) (609)	0.003203	0.018
1	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.03203	0.18

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район

Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3017, Shanxi ZYT5200TCY Источник выделения N 3017 01, Shanxi ZYT5200TCY Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Максимальный расход диз. топлива установкой, кг/час, G = 9.15Годовой расход дизельного топлива, т/год, G = 20.00

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\boldsymbol{E}=30$ Максимальный разовый выброс, г/с, $_G_=G \cdot E \ / \ 3600 = 9.15 \cdot 30 \ / \ 3600 =$

Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 30 / 10 = 0.6$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, r/kr топлива (табл.4), E = 1.2Максимальный разовый выброс, г/с, $_G_=G \cdot E \ / \ 3600 = 9.15 \cdot 1.2 \ / \ 3600 =$

Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\mathbf{E} = \mathbf{39}$ Максимальный разовый выброс, г/с, $_G_=G \cdot E \ / \ 3600 = 9.15 \cdot 39 \ / \ 3600 =$ 0.0991

Валовый выброс, т/год, $_{\bf M}$ = $_{\bf G}$ · $_{\bf E}$ / 10 = 20 · 39 / 10 = 0.78

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

— Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=10 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=9.15\cdot 10$ / 3600=0.0254

Валовый выброс, т/год, $_{\underline{M}}$ = $_{\underline{G}}$ · $_{\underline{E}}$ / $_{\underline{10}}$ = 20 · 10 / 10 = $_{\underline{0.2}}$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E$ / $3600=9.15\cdot 25$ / 3600=0.0635

Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 25 / 10 = 0.5$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=12 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E$ / $3600=9.15\cdot 12$ / 3600=0.0305

Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 12 / 10 = 0.24$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

— Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=9.15\cdot 1.2$ / 3600=0.00305

Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=5 Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=9.15\cdot 5/3600=0.0127$

Валовый выброс, т/год, $_{\underline{M}}$ = $_{\underline{G}}$ · $_{\underline{E}}$ / 10 = 20 · 5 / 10 = 0.1

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0763	0.6
0304	Азот (II) оксид (Азота оксид) (6)	0.0991	0.78
0328	Углерод (Сажа, Углерод черный) (583)	0.0127	0.1
1	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0254	0.2
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0635	0.5
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.00305	0.024
1325	Формальдегид (Метаналь) (609)	0.00305	0.024
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.0305	0.24

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3018, ZYT TXY-250 Источник выделения N 3018 01, ZYT TXY-250

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ

Максимальный расход диз. топлива установкой, кг/час, G=4.57 Годовой расход дизельного топлива, т/год, G=10

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

— Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=4.57\cdot 30$ / 3600=0.0381

Валовый выброс, т/год, $M = G \cdot E / 10 = 10 \cdot 30 / 10 = 0.3$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=4.57\cdot 1.2$ / 3600=0.001523

Валовый выброс, т/год, $_{_}M_{_}$ = $_{G}$ · $_{E}$ / $_{10}$ = $_{10}$ · $_{1.2}$ / $_{10}$ = $_{0.012}$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

— Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=39 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=4.57\cdot 39$ / 3600=0.0495

Валовый выброс, т/год, $M = G \cdot E / 10 = 10 \cdot 39 / 10 = 0.39$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

— Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=10 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=4.57\cdot 10$ / 3600=0.0127

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 10 \cdot 10 / 10 = 0.1$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E/3600=4.57\cdot 25/3600=0.03174$

Валовый выброс, т/год, $M = G \cdot E / 10 = 10 \cdot 25 / 10 = 0.25$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=12 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E/3600=4.57\cdot 12/3600=0.01523$

Валовый выброс, т/год, $M = G \cdot E / 10 = 10 \cdot 12 / 10 = 0.12$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=4.57\cdot 1.2$ / 3600=0.001523

Валовый выброс, т/год, $_{_}M_{_}$ = $_{G}$ \cdot $_{E}$ / 10 = 10 \cdot 1.2 / 10 = 0.012

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=5 Максимальный разовый выброс, г/с, $_G_=G\cdot E \ / \ 3600=4.57\cdot 5 \ / \ 3600=0.00635$

Валовый выброс, т/год, $_{_}M_{_}$ = $_{G}$ · $_{E}$ / $_{10}$ = $_{10}$ · $_{5}$ / $_{10}$ = $_{0.05}$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0381	0.3
0304	Азот (II) оксид (Азота оксид) (6)	0.0495	0.39
0328	Углерод (Сажа, Углерод черный) (583)	0.00635	0.05
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0127	0.1
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.03174	0.25
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.001523	0.012
1325	Формальдегид (Метаналь) (609)	0.001523	0.012
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.01523	0.12

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район

Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3019,3020 GEABOX for SLUPRY PUMP

Источник выделения N 001, GEABOX for SLUPRY PUMP

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G = 6.250

Годовой расход дизельного топлива, т/год, G = 3.0

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E/3600=6.25\cdot 30/3600=0.0521$

Валовый выброс, т/год, $M = G \cdot E / 10 = 3 \cdot 30 / 10 = 0.09$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G$ · E / 3600=6.25 · 1.2 / 3600=6.25 · 1.2 / 3600=6.25

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 3 \cdot 1.2 / 10 = 0.0036$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\boldsymbol{E}=\mathbf{39}$

Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=6.25\cdot 39$ / 3600=0.0677

Валовый выброс, т/год, $M = G \cdot E / 10 = 3 \cdot 39 / 10 = 0.117$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=10 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=6.25\cdot 10$ / 3600=0.01736

Валовый выброс, т/год, $_{\underline{M}}$ = $_{\underline{G}}$ · $_{\underline{E}}$ / 10 = 3 · 10 / 10 = $_{\underline{0.03}}$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=6.25\cdot 25$ / 3600=0.0434

Валовый выброс, т/год, $M = G \cdot E / 10 = 3 \cdot 25 / 10 = 0.075$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=12 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E/3600=6.25\cdot 12/3600=0.02083$

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 3 \cdot 12 / 10 = 0.036$ Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=6.25\cdot 1.2$ / 3600=0.002083

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 3 \cdot 1.2 / 10 = 0.0036$ Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=5 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E/3600=6.25\cdot 5/3600=0.00868$

Валовый выброс, т/год, $_{M}_$ = $G \cdot E$ / 10 = $3 \cdot 5$ / 10 = 0.015 Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0521	0.09
0304	Азот (II) оксид (Азота оксид) (6)	0.0677	0.117
0328	Углерод (Сажа, Углерод черный) (583)	0.00868	0.015
1	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.01736	0.03
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0434	0.075
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.002083	0.0036
1325	Формальдегид (Метаналь) (609)	0.002083	0.0036
1	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.02083	0.036

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район

Объект N 0012, Вариант 1 ТОО СП "Куат ${\rm Ам}$ лон ${\rm М}$ унай" на 2026 год

Источник загрязнения N 3021,3022 XJ250

Источник выделения N 001, XJ250

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G = 19.53

Годовой расход дизельного топлива, $\tau/$ год, G = 60.00

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30 Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=19.53\cdot 30/3600=0.1628$

Валовый выброс, т/год, $_{\bf M}$ = $_{\bf G}$ · $_{\bf E}$ / 10 = 60 · 30 / 10 = 1.8

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=19.53\cdot 1.2$ / 3600=0.00651

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 60 \cdot 1.2 / 10 = 0.072$ Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=39 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=19.53\cdot 39$ / 3600=0.2116

Валовый выброс, т/год, $M = G \cdot E / 10 = 60 \cdot 39 / 10 = 2.34$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=10 Максимальный разовый выброс, г/с, $\underline{G}=G\cdot E/3600=19.53\cdot 10/3600=0.0543$

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 60 \cdot 10 / 10 = 0.6$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=19.53\cdot 25$ / 3600=0.1356

Валовый выброс, т/год, $_{\bf M}$ = $_{\bf G}$ · $_{\bf E}$ / 10 = 60 · 25 / 10 = 1.5

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265Π) (10)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=12 Максимальный разовый выброс, г/с, $_G_=G\cdot E$ / $3600=19.53\cdot 12$ / 3600=0.0651

Валовый выброс, т/год, $_{_M_} = G \cdot E / 10 = 60 \cdot 12 / 10 = 0.72$ Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2 Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=19.53\cdot 1.2/3600$

= 0.00651

Валовый выброс, т/год, $\underline{M} = G \cdot E / 10 = 60 \cdot 1.2 / 10 = 0.072$ Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=5 Максимальный разовый выброс, г/с, $\underline{G}=G \cdot E / 3600 = 19.53 \cdot 5 / 3600 = 0.0274$

Валовый выброс, т/год, $_{\underline{M}}$ = $_{\underline{G}}$ · $_{\underline{E}}$ / $_{\underline{10}}$ = 60 · 5 / 10 = 0.3 Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.1628	1.8
0304	Азот (II) оксид (Азота оксид) (6)	0.2116	2.34
0328	Углерод (Сажа, Углерод черный) (583)	0.0271	0.3
l l	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0543	0.6
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1356	1.5
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.00651	0.072
1325	Формальдегид (Метаналь) (609)	0.00651	0.072
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные	0.0651	0.72

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3023, УПА-60А Источник выделения N 3023 01, УПА-60А Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Максимальный расход диз. топлива установкой, кг/час, G=16.27 Годовой расход дизельного топлива, т/год, G=50.0

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{30}$

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=16.27\cdot 30/3600=0.1356$ Валовый выброс, т/год, $_M_=G\cdot E/10=50\cdot 30/10=1.5$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 16.27 \cdot 1.2 / 3600 = 0.00542$

Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 50 \cdot 1.2 / 10 = 0.06$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{39}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 16.27 \cdot 39 / 3600 = 0.1763$ Валовый выброс, т/год, $M = G \cdot E / 10 = 50 \cdot 39 / 10 = 1.95$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=10

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 16.27 \cdot 10 / 3600 = 0.0452$ Валовый выброс, т/год, $M = G \cdot E / 10 = 50 \cdot 10 / 10 = 0.5$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 16.27 \cdot 25 / 3600 = 0.113$ Валовый выброс, т/год, $M = G \cdot E / 10 = 50 \cdot 25 / 10 = 1.25$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

-Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{12}$

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=16.27\cdot 12/3600=0.0542$ Валовый выброс, т/год, $_M_=G\cdot E/10=50\cdot 12/10=0.6$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 16.27 \cdot 1.2 / 3600 = 0.00542$

Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 50 \cdot 1.2 / 10 = 0.06$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\pmb{E} = \pmb{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 16.27 \cdot 5 / 3600 = 0.0226$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 50 \cdot 5 / 10 = 0.25$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.1356	1.5
0304	Азот (II) оксид (Азота оксид) (6)	0.1763	1.95
0328	Углерод (Сажа, Углерод черный) (583)	0.0226	0.25
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0452	0.5

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район

Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3024,3025 DK 100 GFC (ДЭС)

Источник выделения N 3001, DK 100 GFC (ДЭС)

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, G=13.02

Годовой расход дизельного топлива, т/год, G=40.0

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4),

E = 30

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 13.02 \cdot 30 / 3600 = 0.1085$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 40 \cdot 30 / 10 = 1.2$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\mathbf{r} = \mathbf{1.2}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 13.02 \cdot 1.2 / 3600 =$

0.00434

Валовый выброс, т/год, $M = G \cdot E / 10 = 40 \cdot 1.2 / 10 = 0.048$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=39

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 13.02 \cdot 39 / 3600 = 0.141$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 40 \cdot 39 / 10 = 1.56$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)</u> Оценочное значение среднециклового выброса, r/кr топлива (табл.4), F = 10

Максимальный разовый выброс, г/с, $_G_=G\cdot E/3600=13.02\cdot 10/3600=0.0362$ Валовый выброс, т/год, $M=G\cdot E/10=40\cdot 10/10=0.4$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=25

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 13.02 \cdot 25 / 3600 = 0.0904$ Валовый выброс, т/год, $M = G \cdot E / 10 = 40 \cdot 25 / 10 = 1$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4),

E = 12

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 13.02 \cdot 12 / 3600 = 0.0434$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 40 \cdot 12 / 10 = 0.48$

<u>Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 13.02 \cdot 1.2 / 3600 = 0.00434$

Валовый выброс, т/год, $M = G \cdot E / 10 = 40 \cdot 1.2 / 10 = 0.048$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\mathbf{F} = \mathbf{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 13.02 \cdot 5 / 3600 = 0.0181$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 40 \cdot 5 / 10 = 0.2$ Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.1085	1.2
0304	Азот (II) оксид (Азота оксид) (6)	0.141	1.56
0328	Углерод (Сажа, Углерод черный) (583)	0.0181	0.2
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0.0362	0.4
	(516)		

0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0904	1
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.00434	0.048
1325	Формальдегид (Метаналь) (609)	0.00434	0.048
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-	0.0434	0.48
	С19 (в пересчете на С); Растворитель РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Город N 724, Сырдарьинский район

Объект N 0012, Вариант 1 ТОО СП "КуатАмлонМунай" на 2026 год

Источник загрязнения N 3026, AD-48 (ДЭС)

Источник выделения N 3026 01, AD-48 (ДЭС)

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей

среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № $221-\Gamma$

Максимальный расход диз. топлива установкой, кг/час, G=6.510 Годовой расход дизельного топлива, т/год, G=20.0

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=30

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 6.51 \cdot 30 / 3600 = 0.0543$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 30 / 10 = 0.6$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4),

E = 1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 6.51 \cdot 1.2 / 3600 = 0.00217$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=39

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 6.51 \cdot 39 / 3600 = 0.0705$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 39 / 10 = 0.78$

<u>Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)</u> Оценочное значение среднециклового выброса, r/кr топлива (табл.4), r-10

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 6.51 \cdot 10 / 3600 = 0.0181$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 10 / 10 = 0.2$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $\mathbf{F} = \mathbf{25}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 6.51 \cdot 25 / 3600 = 0.0452$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 25 / 10 = 0.5$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=12

Максимальный разовый выброс, г/с, $G = G \cdot E / 3600 = 6.51 \cdot 12 / 3600 = 0.0217$

Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 12 / 10 = 0.24$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), E=1.2

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 6.51 \cdot 1.2 / 3600 = 0.00217$ Валовый выброс, т/год, $M = G \cdot E / 10 = 20 \cdot 1.2 / 10 = 0.024$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E=\mathbf{5}$

Максимальный разовый выброс, г/с, $_G_ = G \cdot E / 3600 = 6.51 \cdot 5 / 3600 = 0.00904$ Валовый выброс, т/год, $_M_ = G \cdot E / 10 = 20 \cdot 5 / 10 = 0.1$ Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0543	0.6
0304	Азот (II) оксид (Азота оксид) (6)	0.0705	0.78
0328	Углерод (Сажа, Углерод черный) (583)	0.00904	0.1
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0.0181	0.2
	(516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0452	0.5
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.00217	0.024
1325	Формальдегид (Метаналь) (609)	0.00217	0.024
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-	0.0217	0.24
	С19 (в пересчете на С); Растворитель РПК-265П) (10)		

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

м/р Северный Коныс

Источник загрязнения N 1447-1450 Газопоршневая установка

Источник выделения N 001, Дымовая труба

Время работы –8472 часов в году.

Расчет выбросов загрязняющих веществ в атмосферу от газопоршневых установок Список литературы:

- 1. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2) Приложение № 4 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п
- 2. Методика определения валовых выбросов ЗВ в атмосферу от котельных установок ТЭС. РД34.02.305-98, М., 1998 г.

Расход топлива при максимальной нагрузке, τ/τ (тыс.нм3/ч), **BG** = **0.03**

Среднегодовой расход топлива, т/г (тыс.м3/г), $\mathbf{BM} = 207.564$

Теоретический объем дымовых газов, нм3/кг (нм3/нм3), V0R = 24.92

Теоретический объем воздуха, $HM3/K\Gamma$, V0 = 0.175

Теоретический объем водяных паров, нм3/кг (нм3/нм3), VH2O = 2.056

Коэффициент избытка воздуха в отработавших газах за турбиной (табл.2), АОТ = 4.6

Объем сухих дымовых газов за турбиной, нм3/кг (нм3/нм3) (28), VCR = (V0R-VH2O) +

 $(AOT-1) \cdot V0 = (24.92-2.056) + (4.6-1) \cdot 0.175 = 23.5$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3(табл.2), CNOX = 225

Расход влаги при подаче в зону горения, τ/τ , G = 0.03

Отношение кол-ва вводимой влаги к расходу топлива, X = G / BG = 0.03 / 0.03 = 1

Коэффициент, учитывающий влияние расхода влаги по рис. Д4 приложения Д KVL = 1.585

Концентрация оксидов азота при подаче влаги в зону горения, r/m3 (31) **CNOX** = **CNOX** / **KVL** = **225** / **1.585** = **142**

Общий выброс оксида и диоксида азота составляет по формуле(27)

Максимально-разовый выброс, г/с, $GNOX = CNOX \cdot VCR \cdot BG \cdot 0.278 \cdot 10^{-3} = 142 \cdot 23.5 \cdot 10^{-3}$

$0.03 \cdot 0.278 \cdot 10^{-3} = 0.0278$

Годовой выброс, т/год, MNOX = CNOX · VCR · BM · 10^{-6} = $142 \cdot 23.5 \cdot 207,56 \cdot 10^{-6}$ = 0.71618694

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с (12), $G = 0.8 \cdot GNOX = 0.8 \cdot 0.0278 = 0.02224$

Годовой выброс, т/год (12), $\mathbf{M} = \mathbf{0.8} \cdot \mathbf{MNOX} = \mathbf{0.8} \cdot \mathbf{0.71618694} = \mathbf{0.572949}$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, Γ/c (13), $G = 0.13 \cdot GNOX = 0.13 \cdot 0.0278 = 0.003614$

Годовой выброс, т/год (13), $\mathbf{M} = 0.13 \cdot \mathbf{MNOX} = 0.13 \cdot 0.71618694 = 0.0931$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ

УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Расход топлива в кг/с, $\mathbf{B} = \mathbf{BG} / 3.6 = 0.030 / 3.6 = 0.0083$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.3

Коэффициенты, определяемый видом сжигания

топлива АСО = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого

топлива NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.3^{0.6} = 9.12$

Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с $_G_=JCO\cdot B=9.12\cdot 0.0083=0.0757$

Валовый выброс, т/год, $_{\rm M}$ = JCO · BM / 1000 = 9.12 · 207,56 / 1000 = 1.9573344 Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{NCH4} = 5.01 \cdot 0.3^{1.2} = 2.004$

Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/с, $_G_=JCH4 \cdot B=2.004 \cdot 0.0083=0.01663$ Валовый выброс, т/год, $_M_=JCH4 \cdot BM / 1000=2.004 \cdot 207,56 / 1000=0.430098$ Итого выбросы от 1 ед. $\Gamma\Pi Y$:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.572949
0304	Азот (II) оксид (Азота оксид) (6)	0.003614	0.0931
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0757	1.9573344
0410	Метан (727*)	0.01663	0.430098
Итого		0.118184	3.0534814

Итого выбросы от 4 ед. ГПУ:

0410	Метан (727*)	0,06652 0.472736	
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,3028	7 , 829338
0304	Азот (II) оксид (Азота оксид) (6)	0,014456	0,3724
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,08896	2 , 291796
Код	Примесь	Выброс г/с	Выброс т/год

Источник загрязнения N 1451-1454 Газопоршневая установка

Источник выделения N 001, Дымовая труба

Время работы – 2232 часов в году.

Расчет выбросов загрязняющих веществ в атмосферу от газопоршневых установок Список литературы:

- 3. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2) Приложение № 4 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п
- 4. Методика определения валовых выбросов ЗВ в атмосферу от котельных установок ТЭС. РД34.02.305-98, М., 1998 г.

Расход топлива при максимальной нагрузке, τ/τ (тыс.нм3/ τ), **BG** = **0.03**

Среднегодовой расход топлива, τ/Γ (тыс.м3/ Γ), **BM** = **54,684**

Теоретический объем дымовых газов, $HM3/K\Gamma$ (HM3/HM3), V0R = 24.92

Теоретический объем воздуха, $HM3/K\Gamma$, V0 = 0.175

Теоретический объем водяных паров, нм3/кг (нм3/нм3), VH2O = 2.056

Коэффициент избытка воздуха в отработавших газах за турбиной (табл.2), АОТ = 4.6

Объем сухих дымовых газов за турбиной, нм3/кг (нм3/нм3) (28), $\text{VCR} = (\text{V0R-VH2O}) + (\text{AOT-1}) \cdot \text{V0} = (24.92 - 2.056) + (4.6-1) \cdot 0.175 = 23.5$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3(табл.2), $\mathbf{CNOX} = \mathbf{225}$

Расход влаги при подаче в зону горения, $\tau/4$, G = 0.03

Отношение кол-ва вводимой влаги к расходу топлива, X = G / BG = 0.03 / 0.03 = 1

Коэффициент, учитывающий влияние расхода влаги по рис. Д4 приложения Д KVL = 1.585

Концентрация оксидов азота при подаче влаги в зону горения, r/m3 (31) CNOX = CNOX / KVL = 225 / 1.585 = 142

Общий выброс оксида и диоксида азота составляет по формуле(27)

Максимально-разовый выброс, г/c, $GNOX = CNOX \cdot VCR \cdot BG \cdot 0.278 \cdot 10^{-3} = 142 \cdot 23.5 \cdot 10^{-3}$

$0.03 \cdot 0.278 \cdot 10^{-3} = 0.0278$

Годовой выброс, т/год, MNOX = CNOX · VCR · BM · 10^{-6} = $142 \cdot 23.5 \cdot 54,684 \cdot 10^{-6}$ = 0.359074

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4) Максимально-разовый выброс, г/с (12), _G_ = 0.8 · GNOX = 0.8 · 0.0278 = 0.02224 Годовой выброс, т/содовой выброс, т/содовой выброс, т/содовой выброс, т/содовой выброс, г/содовой выброс, г/содовой выброс, г/содовой выброс, т/содовой видеовой выброс, т/содовой видеовой видео

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ

УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Расход топлива в кг/с, $\mathbf{B} = \mathbf{BG} / 3.6 = 0.030 / 3.6 = 0.0083$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.3

Коэффициенты, определяемый видом сжигания

топлива АСО = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого

топлива NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.3^{0.6} = 9.12$ Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с $_G_ = JCO \cdot B = 9.12 \cdot 0.0083 = 0.0757$

Валовый выброс, т/год, $_{\rm M}$ = JCO \cdot BM / 1000 = 9.12 \cdot 54,684 / 1000 = 0.981348 Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{NCH4} = 5.01 \cdot 0.3^{1.2} = 2.004$ Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/с, $G = JCH4 \cdot B = 2.004 \cdot 0.0083 = 0.01663$

Валовый выброс, т/год, $_M_=$ JCH4 \cdot BM / 1000 = 2.004 \cdot 54,684 / 1000 = 0.215638 Итого выбросы от 1 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.2872592
0304	Азот (II) оксид (Азота оксид) (6)	0.003614	0.04667962
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0757	0.981348
0410	Метан (727*)	0.01663	0.215638
Итого		0.118184	1.53092482

Итого выбросы от 4 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,08896	1 , 149037
0304	Азот (II) оксид (Азота оксид) (6)	0,014456	0 , 186718
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,3028	3 , 925392
0410	Метан (727*)	0,06652	0,862552
Итого		0,472736	6,123699

Источник загрязнения N 1455-1462 Газопоршневая установка

Источник выделения N 001, Дымовая труба

Время работы – 1248 часов в году.

Расчет выбросов загрязняющих веществ в атмосферу от газопоршневых установок Список литературы:

- 5. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2) Приложение № 4 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п
- 6. Методика определения валовых выбросов ЗВ в атмосферуот котельных установок ТЭС. РД34.02.305-98, М., 1998 г.

Расход топлива при максимальной нагрузке, т/ч (тыс.нм3/ч), **BG** = 0.03 Среднегодовой расход топлива, т/г (тыс.м3/г), **BM** = 30,576

Теоретический объем дымовых газов, Hm3/kr (Hm3/hm3), V0R = 24.92 Теоретический объем воздуха, Hm3/kr, V0 = 0.175 Теоретический объем водяных паров, Hm3/kr (Hm3/hm3), VH2O = 2.056 Коэффициент избытка воздуха в отработавших газах за турбиной(табл.2), AOT = 4.6 Объем сухих дымовых газов за турбиной, Hm3/kr (Hm3/hm3) (28), $\text{VCR} = (\text{V0R-VH2O}) + (\text{AOT-1}) \cdot \text{V0} = (24.92-2.056) + (4.6-1) \cdot 0.175 = 23.5$ Концентрация оксидов азота (в пересчете на NO2), Mr/hm3(табл.2), CNOX = 225 Расход влаги при подаче в зону горения, т/ч, G = 0.03

Отношение кол-ва вводимой влаги к расходу топлива, X = G / BG = 0.03 / 0.03 = 1 Коэффициент, учитывающий влияние расхода влаги по рис. Д4 приложения Д KVL = 1.585 Концентрация оксидов азота при подачевлаги в зону горения, г/м3 (31) CNOX = CNOX / KVL = 225 / 1.585 = 142

Общий выброс оксида и диоксида азота составляет по формуле(27)

Максимально-разовый выброс, r/c, $GNOX = CNOX \cdot VCR \cdot BG \cdot 0.278 \cdot 10^{-3} = 112 \cdot 22.7 \cdot 10^{-3}$

 $142 \cdot 23.5 \cdot 0.03 \cdot 0.278 \cdot 10^{-3} = 0.0278$

Годовой выброс, т/год, MNOX = CNOX · VCR · BM · 10^{-6} = $142 \cdot 23.5 \cdot 30,576 \cdot 10^{-6}$ = 0.178556

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с (12), $_{\mathbf{G}} = \mathbf{0.8} \cdot \mathbf{GNOX} = \mathbf{0.8} \cdot \mathbf{0.0278} = \mathbf{0.02224}$

Годовой выброс, m/год (12), _M_ = 0.8 · MNOX = 0.8 · 0.178556 = 0.1428448 Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, г/с (13), $_G_=0.13 \cdot GNOX=0.13 \cdot 0.0278=0.003614$ Годовой выброс, т/год (13), $_M_=0.13 \cdot MNOX=0.13 \cdot 0.178556=0.02321228$ РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Расход топлива в кг/с, $\mathbf{B} = \mathbf{BG} / 3.6 = 0.03 / 3.6 = 0.0083$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.3

Коэффициенты, определяемый видом сжигания

топлива АСО = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого

топлива NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.3^{0.6} = 9.12$ Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с $_G_ = JCO \cdot B = 9.12 \cdot 0.0083 = 0.075696$

Валовый выброс, т/год, $_{\rm M}$ = JCO · BM / 1000 = 9.12 · 53.508 / 1000 = 0.48799296 Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{NCH4} = 5.01 \cdot 0.3^{1.2} = 2.004$ Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/с, $_G_ = JCH4 \cdot B = 2.004 \cdot 0.0083 = 0.01663$

Валовый выброс, т/год, $_{\mathbf{M}}$ = JCH4 \cdot BM / 1000 = 2.004 \cdot 30,576/ 1000 = 0.107230032

Итого выбросы от 1 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.1428448
	Азот (II) оксид (Азота оксид) (6)	0.003614	0.02321228
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.075696	0.48799296
0410	Метан (727*)	0.01663	0.107230032
Итого		0.11818	0.761280072

Итого выбросы от 8 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.17792	1.142758
0304	Азот (II) оксид (Азота оксид) (6)	0.028912	0.185698
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.605568	3.903944

Итого	0.94544	6.090241
0410 Метан (727*)	0.13304	0.85784

м/р Южный Коныс Источник загрязнения N 1463-1482 Газопоршневая установка Источник выделения N 001, Дымовая труба Время работы –8472 часов в году.

Расчет выбросов загрязняющих веществ в атмосферу от газопоршневых установок Список литературы:

- 7. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2) Приложение № 4 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п
- 8. Методика определения валовых выбросов ЗВ в атмосферу от котельных установок ТЭС. РД34.02.305-98, М., 1998 г.

Расход топлива при максимальной нагрузке, T/Y (тыс.нм3/Y), BG = 0.03

Среднегодовой расход топлива, T/Γ (тыс.м3/ Γ), **BM** = 207,564

Теоретический объем дымовых газов, нм3/кг (нм3/нм3), V0R = 24.92

Теоретический объем воздуха, $HM3/K\Gamma$, V0 = 0.175

Теоретический объем водяных паров, $\frac{1}{1}$ ($\frac{1}{1}$ ($\frac{1}{1}$), $\frac{1}{1}$ VH2O = 2.056

Коэффициент избытка воздуха в отработавших газах за турбиной (табл.2), АОТ = 4.6

Объем сухих дымовых газов за турбиной, нм3/кг (нм3/нм3) (28), VCR = (V0R- VH2O) +

 $(AOT-1) \cdot V0 = (24.92-2.056) + (4.6-1) \cdot 0.175 = 23.5$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3(табл.2), CNOX = 225

Расход влаги при подаче в зону горения, $\tau/4$, G = 0.03

Отношение кол-ва вводимой влаги к расходу топлива, X = G / BG = 0.03 / 0.03 = 1

Коэффициент, учитывающий влияние расхода влаги по рис. Д4 приложения Д KVL = 1.585

Концентрация оксидов азота при подаче влаги в зону горения, r/m3 (31) **CNOX = CNOX / KVL = 225** / **1.585 = 142**

Общий выброс оксида и диоксида азота составляет по формуле(27)

Максимально-разовый выброс, г/с, GNOX = CNOX · VCR · BG · $0.278 \cdot 10^{-3} = 142 \cdot 23.5$ ·

$0.03 \cdot 0.278 \cdot 10^{-3} = 0.0278$

Годовой выброс, т/год, MNOX = CNOX · VCR · BM · 10^{-6} = $142 \cdot 23.5 \cdot 207,564 \cdot 10^{-6}$ = 0.71618694

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с (12), $G = 0.8 \cdot GNOX = 0.8 \cdot 0.0278 = 0.02224$

Годовой выброс, т/год (12), $\mathbf{M} = \mathbf{0.8} \cdot \mathbf{MNOX} = \mathbf{0.8} \cdot \mathbf{0.71618694} = \mathbf{0.572949}$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, г/с (13), $_{\mathbf{G}} = 0.13 \cdot \mathbf{GNOX} = 0.13 \cdot 0.0278 = 0.003614$

Годовой выброс, т/год (13), $\mathbf{M} = 0.13 \cdot \mathbf{MNOX} = 0.13 \cdot 0.71618694 = 0.0931$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ

УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Расход топлива в кг/с, $\mathbf{B} = \mathbf{BG} / 3.6 = 0.030 / 3.6 = 0.0083$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.3

Коэффициенты, определяемый видом сжигания

топлива АСО = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого

топлива NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.3^{0.6} = 9.12$

Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с $_{\mathbf{G}}$ = $_{\mathbf{JCO}}$ · $_{\mathbf{B}}$ =

$9.12 \cdot 0.0083 = 0.0757$

Валовый выброс, т/год, $\mathbf{M} = \mathbf{JCO} \cdot \mathbf{BM} / 1000 = 9.12 \cdot 207,564 / 1000 = 1.9573344$

Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{NCH4} = 5.01 \cdot 0.3^{1.2} = 2.004$

Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в

атмосферу, г/с, _G_ = JCH4 \cdot B = 2.004 \cdot 0.0083 = 0.01663 Валовый выброс, т/год, _M_ = JCH4 \cdot BM / 1000 = 2.004 \cdot 207,564 / 1000 = 0.430098 Итого выбросы от 1 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.572949
0304	Азот (II) оксид (Азота оксид) (6)	0.003614	0.0931

0410 Итого	Метан (727*)	0.01663 0.118184	0.430098 3.0534814
	газ) (584)		
0337	Углерод оксид (Окись углерода, Угарный	0.0757	1.9573344

Итого выбросы от 20 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,4448	11,45898
0304	Азот (II) оксид (Азота оксид) (6)	0,07228	1,862
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1,514	39,14669
0410	Метан (727*)	0,3326	8 , 60196
Итого		2,36368	61,06963

Источник загрязнения N 1483-1486 Газопоршневая установка

Источник выделения N 001, Дымовая труба

Время работы –1488 часов в году.

Расчет выбросов загрязняющих веществ в атмосферу от газопоршневых установок Список литературы:

9. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2) Приложение № 4 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п

10. Методика определения валовых выбросов ЗВ в атмосферу от котельных установок ТЭС. РД34.02.305-98, М., 1998 г.

Расход топлива при максимальной нагрузке, T/Y (тыс.нм3/ч), BG = 0.03

Среднегодовой расход топлива, τ/Γ (тыс.м3/ Γ), **BM** = 36,456

Теоретический объем дымовых газов, нм3/кг (нм3/нм3), V0R = 24.92

Теоретический объем воздуха, нм3/кг, V0 = 0.175

Теоретический объем водяных паров, $\frac{1}{1}$ ($\frac{1}{1}$ ($\frac{1}{1}$), $\frac{1}{1}$ VH2O = 2.056

Коэффициент избытка воздуха в отработавших газах за турбиной (табл.2), АОТ = 4.6

Объем сухих дымовых газов за турбиной, нм3/кг (нм3/нм3) (28), VCR = (V0R-VH2O) +

 $(AOT-1) \cdot V0 = (24.92-2.056) + (4.6-1) \cdot 0.175 = 23.5$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3(табл.2), CNOX = 225

Расход влаги при подаче в зону горения, $\tau/4$, G = 0.03

Отношение кол-ва вводимой влаги к расходу топлива, X = G / BG = 0.03 / 0.03 = 1

Коэффициент, учитывающий влияние расхода влаги по рис. Д4 приложения Д KVL = 1.585

Концентрация оксидов азота при подаче влаги в зону горения, r/m3 (31) CNOX = CNOX / KVL = 225 / 1.585 = 142

Общий выброс оксида и диоксида азота составляет по формуле(27)

Максимально-разовый выброс, г/с, GNOX = CNOX · VCR · BG · 0.278 · 10^{-3} = $142 \cdot 23.5$ ·

 $0.03 \cdot 0.278 \cdot 10^{-3} = 0.0278$

Годовой выброс, т/год, MNOX = CNOX · VCR · BM · 10^{-6} = $142 \cdot 23.5 \cdot 36,456 \cdot 10^{-6}$ = 0.35711

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с (12), $G = 0.8 \cdot GNOX = 0.8 \cdot 0.0278 = 0.02224$

Годовой выброс, т/год (12), $M = 0.8 \cdot MNOX = 0.8 \cdot 0.35711 = 0.285688$ Примесь:

0304 Азот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, Γ/C (13), $G = 0.13 \cdot GNOX = 0.13 \cdot 0.0278 = 0.003614$

Годовой выброс, т/год (13), $\mathbf{M} = 0.13 \cdot \mathbf{MNOX} = 0.13 \cdot 0.35711 = 0.04642$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ

УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Расход топлива в кг/с, $\mathbf{B} = \mathbf{BG} / 3.6 = 0.030 / 3.6 = 0.0083$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.3

Коэффициенты, определяемый видом сжигания

топлива АСО = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого

топлива NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.3^{0.6} = 9.12$

Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с $_{\mathbf{G}}$ = $_{\mathbf{JCO}}$ · $_{\mathbf{B}}$ =

$9.12 \cdot 0.0083 = 0.0757$

Валовый выброс, т/год, $\mathbf{M} = \mathbf{JCO} \cdot \mathbf{BM} / 1000 = 9.12 \cdot 36,456 / 1000 = 0.97598$

Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, JCH4 = ACH4 · Q3 $^{\rm NCH4}$ = 5.01 · 0.3 $^{\rm 1.2}$ = 2.004 Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/c, _G_ = JCH4 · B = 2.004 · 0.0083 = 0.01663 Валовый выброс, т/год, _M_ = JCH4 · BM / 1000 = 2.004 · 36,456/ 1000 = 0.21446 Итого выбросы от 1 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.285688
0304	Азот (II) оксид (Азота оксид) (6)	0.003614	0.04642
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0757	0.97598
0410	Метан (727*)	0.01663	0.21446
Итого		0.118184	1.522548

Итого выбросы от 4 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,08896	1,142752
0304	Азот (II) оксид (Азота оксид) (6)	0,014456	0,18568
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,3028	3 , 90392
0410	Метан (727*)	0,06652	0,85784
Итого		0,472736	6 , 090192

Источник загрязнения N 1487-1490 Газопоршневая установка

Источник выделения N 001, Дымовая труба

Время работы – 1488 часов в году.

Расчет выбросов загрязняющих веществ в атмосферу от газопоршневых установок Список литературы:

11. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2) Приложение № 4 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п 12. Методика определения валовых выбросов ЗВ в атмосферуот котельных

12. Методика определения валовых выбросов ЗВ в атмосферуот котельных установок ТЭС. РД34.02.305-98, М., 1998 г.

Расход топлива при максимальной нагрузке, T/y (тыс.нм3/y), BG = 0.03

Среднегодовой расход топлива, T/Γ (тыс.м3/ Γ), **BM** = 36,456

Теоретический объем дымовых газов, нм3/кг (нм3/нм3), V0R = 24.92

Теоретический объем воздуха, $HM3/K\Gamma$, V0 = 0.175

Теоретический объем водяных паров, $\frac{1}{1}$ ($\frac{1}{1}$ ($\frac{1}{1}$), $\frac{1}{1}$ VH2O = 2.056

Коэффициент избытка воздуха в отработавших газах за турбиной (табл.2), AOT = 4.6

Объем сухих дымовых газов за турбиной, $\frac{1}{1}$ (18), $\frac{1}{1}$ (28), $\frac{1}$

 $+ (AOT-1) \cdot V0 = (24.92-2.056) + (4.6-1) \cdot 0.175 = 23.5$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3(табл.2), CNOX = 225

Расход влаги при подаче в зону горения, T/4, G = 0.03

Отношение кол-ва вводимой влаги к расходу топлива, X = G / BG = 0.03 / 0.03 = 1

Коэффициент, учитывающий влияние расхода влаги по рис. Д4 приложения Д KVL

= 1.585

Концентрация оксидов азота при подачевлаги в зону горения, r/m3 (31) CNOX = CNOX / KVL = 225 / 1.585 = 142

Общий выброс оксида и диоксида азота составляет по формуле(27)

Максимально-разовый выброс, г/с, $GNOX = CNOX \cdot VCR \cdot BG \cdot 0.278 \cdot 10^{-3} = 142 \cdot 23.5 \cdot 10^{-3}$

$0.03 \cdot 0.278 \cdot 10^{-3} = 0.0278$

Годовой выброс, т/год, MNOX = CNOX · VCR · BM · 10^{-6} = $142 \cdot 36,456 \cdot 6.5015 \cdot 10^{-6}$ = 0.12754

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с (12), $_G_=0.8 \cdot \text{GNOX} = 0.8 \cdot 0.0278 = 0.02224$ Годовой выброс, т/год (12), $M=0.8 \cdot \text{MNOX} = 0.8 \cdot 0.12754 = 0.102032$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, г/с (13), $_{\mathbf{G}}$ = **0.13** · **GNOX** = **0.13** · **0.0278**= **0.003614**

Годовой выброс, т/год (13), $\mathbf{M} = \mathbf{0.13} \cdot \mathbf{MNOX} = \mathbf{0.13} \cdot \mathbf{0.12754} = \mathbf{0.01658}$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ УГЛЕВОДОРОДОВ по РЛ 34.02.305-90

Вид топлива - газ

Расход топлива в кг/с, $\mathbf{B} = \mathbf{BG} / 3.6 = 0.03 / 3.6 = 0.0083$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.3

Коэффициенты, определяемый видом сжигания

топлива АСО = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого топлива NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.3^{0.6} = 9.12$ Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с $_G_ = JCO \cdot B = 9.12 \cdot 0.0083 = 0.075696$

Валовый выброс, т/год, $_{\rm M}$ = JCO · BM / 1000 = 9.12 · 36,456 / 1000 = 0.34856 Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{\text{NCH4}} = 5.01 \cdot 0.3^{1.2} = 2.004$ Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/с, $_G_ = JCH4 \cdot B = 2.004 \cdot 0.0083 = 0.01663$ Валовый выброс, т/год, $_M_ = JCH4 \cdot BM / 1000 = 2.004 \cdot 36,456 / 1000 =$

0.07659 Итого выбросы от 1 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.102032
0304	Азот (II) оксид (Азота оксид) (6)	0.003614	0.01658
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.075696	0.34856
0410	Метан (727*)	0.01663	0.07659
Итого		0.11818	0.543762

Итого выбросы от 4 ед. ГПУ:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.08896	0,408128
0304	Азот (II) оксид (Азота оксид) (6)	0.014456	0,06632
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.302784	1 , 39424
0410	Метан (727*)	0.06652	0,30636
Итого		0.47272	2.175048

Источник загрязнения N 1491-1498 Газопоршневая установка

Источник выделения N 001, Дымовая труба

Время работы – 1440 часов в году.

Расчет выбросов загрязняющих веществ в атмосферу от газопоршневыхустановок

Список литературы:

13. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2) Приложение № 4 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п

14. Методика определения валовых выбросов ЗВ в атмосферу от котельных установок ТЭС. РД34.02.305-98, М., 1998 г.

Расход топлива при максимальной нагрузке, τ/τ (тыс.нм3/ч), **BG** = **0.03**

Среднегодовой расход топлива, T/Γ (тыс.м $3/\Gamma$), **BM** = **35,28**

Теоретический объем дымовых газов, нм3/кг (нм3/нм3), V0R = 24.92

Теоретический объем воздуха, $HM3/K\Gamma$, V0 = 0.175

Теоретический объем водяных паров, $\frac{\text{Hm}3}{\text{Kr}}$ ($\frac{\text{Hm}3}{\text{Hm}3}$), $\frac{\text{VH2O}}{\text{C}} = 2.056$

Коэффициент избытка воздуха в отработавших газах за турбиной(табл.2), АОТ = 4.6

Объем сухих дымовых газов за турбиной, нм3/кг (нм3/нм3) (28), VCR = (V0R-VH2O)

 $+ (AOT-1) \cdot V0 = (24.92-2.056) + (4.6-1) \cdot 0.175 = 23.5$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3(табл.2), $\mathbf{CNOX} = \mathbf{225}$

Расход влаги при подаче в зону горения, $\tau/4$, G = 0.03

Отношение кол-ва вводимой влаги к расходу топлива, X = G / BG = 0.03 / 0.03 = 1 Коэффициент, учитывающий влияние расхода влаги по рис. Д4 приложения Д KVL = 1.585 Концентрация оксидов азота при подаче влаги в зону горения, r/m3 (31) CNOX = CNOX / KVL = 225 / 1.585 = 142

Общий выброс оксида и диоксида азота составляет по формуле(27)

Максимально-разовый выброс, г/c, GNOX = CNOX · VCR · BG · 0.278 · 10^{-3} = $142 \cdot 23.5$ ·

$0.03 \cdot 0.278 \cdot 10^{-3} = 0.0278$

Годовой выброс, т/год, MNOX = CNOX · VCR · BM · 10^{-6} = $142 \cdot 23.5 \cdot 35,28 \cdot 10^{-6}$ = 0.1216536

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с (12), $_{\mathbf{G}} = \mathbf{0.8} \cdot \mathbf{GNOX} = \mathbf{0.8} \cdot \mathbf{0.0278} = \mathbf{0.02224}$

Годовой выброс, m/год (12), $_M_ = 0.8 \cdot MNOX = 0.8 \cdot 0.1216536 = 0.0973228$ Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, г/с (13), $_G_=0.13 \cdot GNOX=0.13 \cdot 0.0278=0.003614$ Годовой выброс, т/год (13), $_M_=0.13 \cdot MNOX=0.13 \cdot 0.1216536=0.0158149$ РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Расход топлива в кг/с, $\mathbf{B} = \mathbf{BG} / 3.6 = 0.03 / 3.6 = 0.0083$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.3

Коэффициенты, определяемый видом сжигания

топлива АСО = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого топлива NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.3^{0.6} = 9.12$ Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с $_G_ = JCO \cdot B = 9.12 \cdot 0.0083 = 0.075696$

Валовый выброс, т/год, $M = JCO \cdot BM / 1000 = 9.12 \cdot 35,28 / 1000 = 0.3324$

Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{NCH4} = 5.01 \cdot 0.3^{1.2} = 2.004$ Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/с, $_G_ = JCH4 \cdot B = 2.004 \cdot 0.0083 = 0.01663$ Валовый выброс, т/год, $_M_ = JCH4 \cdot BM$ / $1000 = 2.004 \cdot 35,28$ / 1000 = 0.073057 Итого выбросы от 1 ед. $\Gamma\Pi Y$:

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.0973228
0304	Азот (II) оксид (Азота оксид) (6)	0.003614	0.0158149
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.075696	0.3324
0410	Метан (727*)	0.01663	0.073057
Итого		0.11818	0.5185947

Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2026 год

Таблица 3.3

Сырдар				"КуатАмлонМун											1					1	T			
	Источни выделени		Чи сл о	Наименование	ме	вы	Ди a-		метры возд.смес	N	Koor	рдинать	источн	ика	Наименован ие	Вещес тво	Ко Эф Ф	Средн яя	Код		Выбро	с загрязня вещества	нощего	
П р о	загрязняющ веществ	NX	ча co в	источника выброса	р ис то ч	та	ме тр	на в	ыходе из :	грубы	на	карте	-схеме,	М	газоочистн ых	по кото-	Ф об ес п	экспл уат	ве -	Наименование				
и Ц з е в х			ра бо -	вредных веществ	ни ка	ИС TO	ус ть я	М	аксимальн разовой	ой					установок,	рому	га 30	степе нь	ще -	вещества				
0 Д	Наименова ние	Ко ли	ты		вы бр	ни ка	тр уб		нагрузке		точечн		2-го	конца	тип и	произ	OЧ ИС	очист ки/	ст ва		r/c	мг/нм3	т/год	Год
C T B		- че ст	В		O CO B	вы бр о	ы				/1-го	конца	/длина ширина		мероприяти я	дится	т ко й,	max.с теп						до c-
		во , шт	го ду			CO B, M	М	CK o- po cT	объем на 1 трубу, м3/с	тем - пер	/центр площал ного источн	<u>-</u>	площа		по сокращению выбросов	газо- очист ка	olo	очист ки%						ти же ни я
								ь м/	M37 C	oC	Jiero in	Jiria .				, Ka								нд
					<u> </u>			С			X1	Y1	X2	Y2										В
1 2 0 0	3 Устьевой	1	5 43 92	6	00 03	8	9	10	11 0.0728	12	13	14	15	16	17	18	19	20	21 03 01	22 Азота (IV) диоксид (23 0.00346 4	24 47.582	25 0.0548	26 20 26
3	нагревате ль Hanover																		03	Азота диоксид) (4) Азот (II) оксид (0.00056	7.734	0.0089	20
																			03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00928	127.473	0.1467	
																			04	газ) (584) Метан (727*)	0.00928	127.473	0.1467	20 26
0 4 0	Печь подогрева	1		Печь подогрева	00 19	6	0.	0. 79	0.0988	250	0	0								Азота (IV) диоксид (0.2259	4380.24	7.2069	
	нефти (Китай)			нефти (Китай)															03	Азота диоксид) (4) Углерод (Сажа,	0.0491	952.058	1.552	20 26
																			03	Углерод черный) (583) Углерод оксид (Окись углерода,	0.0898	1741.23	2.835	20 26
																			04	Угарный газ) (584) Метан (727*)	0.0898	1741.23	2.835	20 26
0 4	Печь подогрева	1	1	Печь подогрева	00 20	6	0.	0. 79	0.0988	250	0	0							03	Азота (IV) диоксид (0.2259	4380.24	7.2069	
0	нефти (Китай)			нефти (Китай)																Азота диоксид) (4)				

																03 28	Углерод (Сажа,	0.0491	952.058	1.552	20 26
																03 37	Углерод черный) (583) Углерод оксид (Окись	0.0898	1741.23	2.835	20 26
																04	углерода, Угарный газ) (584) Метан (727*)	0.0898	1741.23	2.835	20 26
0 4 0	Дизельген ерато	1	21 90	Дизельгенера тор	00 24	5	0.	4. 85	0.38078	177	C) ()			03	Азота (IV) диоксид (0.1024	443.277	0.33536	
	р AKSA 120кВт			AKSA 120ĸBτ												03	Азота диоксид) (4) Азот (II) оксид (0.01664	72.033	0.054496	20 26
																03 28	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.00476	20.614	0.014971 466	
																03	(583) Сера диоксид (Ангидрид	0.04	173.155	0.131	20 26
																	сернистый, Сернистый газ, Сера (
																03 37	IV) оксид) (516) Углерод оксид (Окись углерода,	0.10333	447.317	0.3406	20 26
																	Угарный газ) (584) Бенз/а/пирен (3,4-	0.00000	0.0005	0.000000 524	
																13 25	Бензпирен) (54) Формальдегид (Метаналь) (609)	0.00114	4.948	0.003742	20 26
																27 54	Алканы C12-19 /в пересчете на C/ (Углеводороды	0.02761	119.559	0.089828 534	
																	предельные C12-C19 (в пересчете на C);				
						_											Растворитель РПК- 265П) (10)				
0 4 0	Дизельген ерато	1		Дизельгенера тор	00 25	5	0.	6. 87	0.53943	177	() (Азота (IV) диоксид (0.14506 6667	443.277	0.33536	26
	р AKSA 170кВт			AKSA 170kBt												03	Азота диоксид) (4) Азот (II) оксид (0.02357	72.033	0.054496	20 26
																	Азота оксид) (6) Углерод (Сажа,	0.00674	20.614	0.014971	20
																03	Углерод черный) (583) Сера диоксид (0.05666 6667	173.155	0.131	20 26
																50	Ангидрид				

															сернистый, Сернистый газ,			
														03	Сера (IV) оксид) (516) Углерод оксид (Окись	0.14638 8889	447.317	0.340
														07	углерода, Угарный газ) (584) Бенз/а/пирен	0.00000	0.0005	
														03	(3,4- Бензпирен) (54) Формальдегид (0162	4.948	0.00374
														25	Метаналь) (609)	925		93
														27 54	Алканы C12-19 /в пересчете на C/ (0.03912 6917	119.559	0.08982
															Углеводороды предельные C12-C19 (в пересчете на C);			
0	Дизельген	1	21	Дизельгенера	00	5	1	7.	0.57117	177	0			03	Растворитель РПК- 265П) (10) Азота (IV)	0.1536	443.277	0.3353
4 0	ерато р AKSA		90	TOP AKSA 180kBT	26		1	27	06					01	диоксид (Азота диоксид)			
	180кВт			IMON TOURD										03	(4) Азот (II) оксид (0.02496	72.033	0.05449
														03	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.00714	20.614	0.0149
														03	(583) Сера диоксид (0.06	173.155	0.1
														30	Ангидрид сернистый, Сернистый газ, Сера (
														03	IV) оксид) (516) Углерод оксид (Окись	0.155	447.317	0.34
														07	углерода, Угарный газ) (584) Бенз/а/пирен	0.00000	0.0005	0.00000
														03	Бензпирен) (54)	0171	4 040	52
														25	Формальдегид (Метаналь) (609)	0.00171 45	4.948	0.00374
														27 54	Алканы C12-19 /в пересчете на C/ (0.04142	119.559	0.08982
															Углеводороды предельные C12-C19 (в пересчете на C); Растворитель			
i 1												1			РПК-			

0		нЈ-2500		92	Nº1		51		3	93				0	01	диоксид (26
		№1														Азота диоксид)				
															03	(4) Азот (II) оксид (0.00484	33.840	0.0766	20 26
															03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.0233	162.909	0.3685	
															04	газ) (584)	0.0233	162.909	0.3685	
	1 1	Печь НЈ-2500	1		Печь №2	нЈ-2500		6		3. 93	0.274	250	4740	2470	10 03	Asora (IV)	0.02976	208.076	0.471	26 20 26
1		HJ-2500 №2		92	Nº∠		52		3	93				0	01	диоксид (Азота диоксид)				26
							-								0.3	(4) Азот (II) оксид (0.00484	33.840	0.0766	20
															04	Азота оксид) (6)		00.010	0.00	26
															03 37	Углерод оксид (Окись углерода,	0.0233	162.909	0.3685	20 26
															04	Угарный газ) (584) Метан (727*)	0.0233	162.909	0.3685	
		Печь НЈ-2500	1		Печь №3	нЈ-2500	00	6	0.	3. 93	0.274	250	4740	2470	10 03	Asora (IV)	0.02976	208.076	0.468	26 20 26
1		Nº3		00	N, ⊃		33		3	93				0	01	диоксид (Азота диоксид)				20
															03	(4) Азот (II) оксид (0.00484	33.840	0.076	
															04	Азота оксид) (6) Углерод оксид	0.0233	162.909	0.3665	26
															37	(Окись углерода, Угарный	0.0233	102.303	0.3003	26
															04	газ) (584) Метан (727*)	0.0233	162.909	0.3665	20
		Печь	1			пп-0,63		6		1.	0.1118	250	4740	2470	10	Азота (IV)	0.00496	84.992	0.0523	26 20
1		ПП-0,63 №5		28	Nº5		54		3	38				0	01	диоксид (Азота диоксид)				26
		N-O													03	(4)	0.00080	13.811	0.0085	20
															04	Азота оксид) (6)	6			26
															37	Углерод оксид (Окись углерода,	0.0095	162.787	0.1001	20 26
															04	Угарный газ) (584) Метан (727*)	0.0095	162.787	0.1001	20
		дежурная	1		дежу		00	20	0.	2.	1.02253	331	4848	2458	10 03	Азота (IV)				26 20
1		Hono Tue		60	горе	лка	56	.5	77 7	15	52	3.5		2	01	диоксид (26
		горелка													03	Азота диоксид) (4) Азот (II) оксид (20
															04	(==, 53.53.4)				20 26

														28	Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Углерод оксид (Окись углерода,				20 26 20 26
0 0 1	Печь УН-02	1	21 84	Печь УН-02	00 57	5	0.	3. 02	0.0447	250	4735	2478		10 03 01	Угарный газ) (584) Метан (727*) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (0.00356	152.574 24.815	0.028	26
0	Печь УН-02	1	21 84	Печь УН-02	00 58	5	0.	3. 02	0.0447	250	4735	2478		04	углерода, Угарный газ) (584) Метан (727*)	0.00380 6 0.00380 6 0.00356	163.117 163.117 152.574	0.0299	26 20 26
1			0 4					02						03	Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид (Окись углерода,	0.00057 9 0.00380 6	24.815 163.117	0.00455	20 26
0 1 6	Устьевой нагревате ль ПП-0,63 А	1	43 92		00				0.0606		0	0		10 03 01	Угарный газ) (584) Метан (727*) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (0.00380 6 0.00371	163.117 61.221 9.950	0.0299 0.0586 0.00953	26 20 26
		1	0.6	Horri				15	0.0576	250	7502	2054		04	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*)	0.00773	127.558	0.1223	26 20 26
0 3 7	Печь подогрева ПП-0,63	1		Печь подогрева ПП-0,63	72	6	0.	15 .2 9	0.0576	250	7502	2054		01	Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод оксид	0.00335 0.00054 5 0.00735	111.420 18.126 244.458	0.1046	26

								1			l		 	37 (Oĸ	ИСЬ	1			26
0 3 7	Печь подогрева	1		Печь подогрева	00 73	6	0.	15 .2 9	0.0576	250	7502	2054		угл Уга газ 04 Мет	ерода, рный) (584) ан (727*)	0.00735		0.229	26
	пп-0,63			пп-0,63										(4) 03 Aso 04	т (II) оксид (0.00054	18.126	0.017	20 26
														03 Угл 37 (Ок угл	та оксид) (6) ерод оксид ись ерода, рный	0.00735	244.458	0.229	20 26
0 3	Печь подогрева	1		Печь подогрева	00	6	0.	15	0.0576	250	7502	2054		04 Met 10	.) (584) ан (727*) та (IV)	0.00735		0.229	26
7	пп-0,63			пп-0,63				9						Азо (4) 03 Азо	та диоксид) т (II) оксид (0.00054	18.126	0.017	
														03 Угл 37 (Ок угл	ерода,	0.00735	244.458	0.229	26 20 26
0	Печь	1	86	Печь	00	6	0.	15	0.0691	250	7502	2054		04 Met 10 03 Aso	рный) (584) ан (727*) та (IV)	0.00735		0.229	26
3 7	подогрева		64	подогрева ПП-0,63	75		1	.2				5		(4)	та диоксид)				26
	промежуто чная на 9 км)													04 Азо 03 Угл	т (II) оксид (та оксид) (6) ерод оксид	0.00078 4 0.00882	21.736	0.02444	26
														угл Уга газ	серода, рный) (584) ан (727*)	0.00882	244.529	0.275	
0 3 7	Печь подогрева	1		Печь подогрева	00 76	6	0.	15 .2 9	0.0691	250	7502	2054		01 дио		0.00482	133.631	0.1504	26 20 26
	пп-0,86 (резервная			пп-0,63										(4) 03 Aso 04	та диоксид) т (II) оксид (та оксид) (6)	0.00078	21.736	0.02444	20 26
														03 Угл 37 (Ок угл Уга	ерод оксид ись ерода, рный	0.00882	244.529	0.275	20 26
) (584) чан (727*)	0.00882	244.529	0.275	20 26

1 0 3	Устьевой		86 3	Устьевой	00 97	6	0.	3. 43	0.0214	250	7478	2628	03		0.00245	219.327	0.0765	20 26
3	нагревате ль ППТМ-0,2Г]]	нагреватель ППТМ- 0,2Г									03	Азота диоксид) (4) Азот (II) оксид (0.00039	35.629	0.01243	20
	11111M-0,21			0,21									04	Азота оксид) (6)	8			26
													37	Углерод оксид (Окись углерода, Угарный	0.00182	163.107	0.0568	20 26
													04	газ) (584) Метан (727*)	0.00182	163.107	0.0568	20 26
0 3	резервуар для			резервуар для диз	01	3	0.	0.	0.0016	27	10470	1263	27 54	Алканы С12-19 /в	0.16333	112177. 198	0.0041	
	диз топлива		,	топлива										пересчете на С/ (
														Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-				
0 1	Устьевой		43 92		01 10				0.0606		0	0	03	265П) (10) Азота (IV) диоксид (0.00371	61.221	0.0586	20 26
8	нагревате													Азота диоксид) (4)				
	пп-0,63 А												03 04	1 ' '	0.00060	9.950	0.00953	20 26
													03 37	Углерод оксид (Окись	0.00773	127.558	0.1223	20 26
														углерода, Угарный газ) (584)				
0	Устьевой	1 4	43		01				0.0606		0	0	04 10 03	Метан (727*) Азота (IV)	0.00773	127.558	0.1223	26
2 1			92		24				0.0000		· ·		01	диоксид (0.00371	01.221	0.0000	26
	нагревате ль ПП-0,63 А													Азота диоксид) (4) Азот (II) оксид (0.00060	9.950	0.00953	
													04	Азота оксид) (6) Углерод оксид	0.00773	127.558	0.1223	26
													37	(Окись углерода, Угарный				26
														газ) (584) Метан (727*)	0.00773	127.558	0.1223	
1 9	Устьевой		43 3 92	Устьевой	01 70	6	0.	12	0.0606	250	7515	2054		Азота (IV) диоксид (0.00371	117.284	0.0586	26 20 26
9	нагревате ль			нагреватель ПП-0,				2						Азота диоксид) (4)				
	пп-0,63А			63									03	Азот (II) оксид (Азота оксид) (6)	0.00060	19.063	0.00953	20 26
													03	Углерод оксид	0.00773	244.369	0.1223	20

1												I	37	(Окись				26
													04	углерода, Угарный газ) (584) Метан (727*)	0.00773	244.369	0.1223	20
0 0	Устьевой	1	43 92		02 31				0.0728		0	0	10 03 01		0.00346	47.582	0.0548	26 20 26
4	нагревате ль													Азота диоксид) (4)	0.00056		0.0000	
	Hanover												03	Азота оксид) (6)	0.00056	7.734	0.0089	20 26
													37	углерода, Угарный	0.00928	127.473	0.1467	20 26
													04		0.00928	127.473	0.1467	20 26
0 4	резервуар для	1	87 60	резервуар для диз	02 37	3	0.	0.	0.0016	27	5849	2394	27 54	Алканы С12-19 /в	0.0109	7486.26 4	0.00272	20 26
	диз топлива			топлива										пересчете на С/ (
0	резервуар	1	87	резервуар	02	3	0.	0.	0.0016	27	5850	2394	27	Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) Алканы C12-19 /в	0.0109	7486.26	0.00272	20
1	для		60	для диз топлива	38		1	2				9	54	пересчете на С/ (4		26
0	топлива	1	21	Печь марки	04	6	0.	2.	0.01976	250	0	0	03	Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10) Азота (IV)	0.2201	21338.9	6.942	20
4 0	ПТ-			ПТ-1,6	78	0	1	52	0.01976	230			01	диоксид (0.2201	06	0.942	26
	1,6 AЖ			АЖ									03		0.0589	5710.41	1.8622	20 26
													03	Углерод черный) (583) Углерод оксид	0.0889	8618.94	2.8038	20
													37	(Окись углерода, Угарный газ) (584)		0		26
	Tanas Tr	1	20	Tapaway = -	0.4			, l	0 020	250	2/010		04	Метан (727*)	0.0889	0	2.8038 0.37253	26
0 0 1	Газовый	1		op	90	6	0.	4. 97	0.039	250	24819	0	03	диоксид (0.01181	580.227	0.3/253	20 26
	генератор			Waukesha/Ari el №1										Азота диоксид) (4)				

Waukesha/ Ariel №1													03 37	Углерод оксид (Окись углерода,	0.0618	3035.72	1.9492	20 26
												I I	04 15	предельных	0.0089	437.184	0.2825	20 26
Устьевой	1 86	Устьевой	05 20				0.02033		0	0			03 01	1502*) Азота (IV)	0.00221	108.903	0.069	20 26
нагревате ль ППТМ-0,2Г		нагреватель ППТМ- 0,2Г										I I	03	Азота диоксид) (4) Азот (II) оксид (0.00036	17.708	0.01122	20 26
													03 37	Углерод оксид (Окись углерода,	0.00173	85.096	0.054	20 26
Устьевой	1 86	Устьевой	0.5	6	0.	3.	0.02033	250	7478	2628			04 10 03	газ) (584) Метан (727*)	0.00173	85.096 208.631		26
нагревате		нагреватель	22		1	07				8			01	диоксид (Азота диоксид)	4			26
ППТМ-0,2Г		0,2F											04	Азот (II) оксид (Азота оксид) (6)	0.00036	33.924		26
													03 37	(Окись углерода, Угарный	0.00173	163.023	0.054	26
Устьевой	1 86	Устьевой	05	6	0.	3.	0.02033	250	7478	2628			10	Метан (727*)	0.00173	163.023 208.631		26
нагревате	64	нагреватель	23		1	43				8			01	диоксид (Азота диоксид)	4			26
ППТМ-0,2Г		0,2F											04	Азот (II) оксид (Азота оксид) (6)	0.00036	33.924		26
													03 37	(Окись углерода, Угарный	0.00173	163.023	0.054	20 26
Устьевой	1 86	Устьевой	0.5	6	0.	3.	0.02033	250	7478	2628			10	Метан (727*)				26
нагревате	l l	нагреватель	25		1	07	3.32333	200	. 170	8				диоксид (Азота диоксид)	4	200.001	J. 003	26
ль ППТМ-0,2Г		ППТМ- 0,2Г											03	, , ,	0.00036	33.924	0.01122	20 26
													03 37	Углерод оксид	0.00173	163.023	0.054	20 26
	Агіе1 №1 Устьевой Нагревате ль ППТМ-0,2Г Устьевой Нагревате ль ППТМ-0,2Г Устьевой Нагревате ль ППТМ-0,2Г	Агіе1 №1 Устьевой 1 86 64 Нагревате ль ППТМ-0,2Г Устьевой 1 86 64 Нагревате ль ППТМ-0,2Г Устьевой 1 86 64 Нагревате ль ППТМ-0,2Г	Ariel M1 Устьевой 1 86 Устьевой нагревате ль ППТМ-0,2Г Нагреватель ППТМ-0,2Г Устьевой 1 86 Устьевой нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г Устьевой 1 86 Устьевой нагревате ль ППТМ-0,2Г 0,2Г Устьевой 1 86 Устьевой нагреватель ППТМ-0,2Г нагреватель ППТМ- пПТМ- пПТМ- нагревате ль ППТМ- нагреватель ППТМ- пПТМ- пПТМ-	Ariel N1 86 Устьевой 05 20 нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г нагреватель ППТМ-0,2Г 0,2Г Устьевой 1 86 Устьевой 22 нагреватель ППТМ-0,2Г Устьевой 1 86 Устьевой 0,2Г 05 23 нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г нагреватель ППТМ-0,2Г 0,2Г 05 25 Устьевой 1 86 4 Устьевой 0,2Г 05 25 нагревате ль пПТМ- нагреватель ППТМ- ППТМ- 0,2Г 05 25 нагреватель ль ППТМ- ППТМ- 0,25 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05	Ariel N1 86 Устьевой 05 20 нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г нагреватель ППТМ-0,2Г 0,2Г 64 устьевой 1 86 Устьевой 05 6 нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г 0,2Г 6 устьевой 1 86 Устьевой 05 6 нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г 0,2Г 6 устьевой 1 86 Устьевой 05 6 нагреватель пПТМ-0,2Г нагреватель ППТМ-0,2Г 0,2Г 6	Устьевой 1 86 инагреватель питм- одг Нагревате ль питм- одг 1 86 инагреватель питм- одг Устьевой 1 86 инагреватель питм- одг Устьевой 1 86 инагреватель питм- одг Нагревате ль питм- одг 1 1 Устьевой 1 1 Нагревате ль питм- одг 1 1 Инагревате ль питм- одг 1 1 Истьевой 1 1 Истьевой 0 0 Одг 0 <td>Устьевой 1 86 Устьевой 05 20 Нагревате пы питм- 0,2г Нагреватель питм- 0,2г 1 86 Устьевой 05 6 0. 3. 1 07 Нагревате ль питм- 0,2г Нагреватель питм- 0,2г 1 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07<</td> <td>Устьевой 1 86 мотьевой 05 20 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г птм- 0,2г ль пптм- 0,2г Устьевой 1 86 мотьевой 05 6 0. 3. 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г ль птм- 0,2г Устьевой 1 86 мотьевой 05 6 0. 3. 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г ль птм- 0,2г Устьевой 1 86 мотьевой 05 6 0. 3. 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г ль потье при мотье при мо</td> <td>Устьевой 1 86 устьевой 05 20 0.02033 Нагревате ль ППТМ-0,2Г Нагреватель ППТМ-0,2Г ППТМ-0,2Г 0.02033 250 Устьевой 1 86 4 Устьевой 05 22 6 0. 3. 0.02033 250 нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г 1 43 1 43 1 43 Устьевой 1 86 4 4 Нагреватель ППТМ-0,2Г 1 43 1 43 Устьевой 1 86 64 Нагреватель ППТМ-0,2Г 1 43 1 43 Устьевой 1 86 64 Нагреватель ППТМ-0,2Г 1 43 1 43 Нагревате ль ППТМ-0,2Г 1 1 1 1 1 Нагревате ль ППТМ-0,2Г 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<td>Устьевой 1 86 Устьевой 05 0.02033 0 Натревате ив пптм-0,2г натреватель пптм-0,2г 0.20 0.02033 0 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 нагревате ив пптм-0,2г нагреватель пптм-0,2г 0.5 6 0.3 0.02033 250 7478 Устьевой 1 86 Устьевой 0.5 6 0.3 0.02033 250 7478 Нагревате ив пптм-0,2г нагреватель пптм-0,2г 0.27 0.02033 250 7478 нагревате ив нагреватель пптм-0,2г 1 86 Устьевой 0.5 6 0.3 0.02033 250 7478 Натревате ив нагреватель пптм- нагреватель пптм- нагреватель пптм- 1 0.02033 250 7478</td><td>Агієї №1 1 86 Устьевой 05 0.02033 0 0 Изгревате ль ППТМ-0,2Г Матреватель ППТМ-0,2Г Матреватель ППТМ-0,2Г 0,2Г 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Нагревате ль ППТМ-0,2Г Нагреватель ППТМ-0,2Г 1 40 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Нагревате ль 1 1 0.02033 250 7478 2628 1 0.02033 250 7478 2628 8 8</td><td> Younger 1 86 Younger 20 </td><td> Vorwemon</td><td>ALPHANE </td><td>## ## ## ## ## ## ## ##</td><td> 200 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201</td><td>Access 1</td><td> Part</td></td>	Устьевой 1 86 Устьевой 05 20 Нагревате пы питм- 0,2г Нагреватель питм- 0,2г 1 86 Устьевой 05 6 0. 3. 1 07 Нагревате ль питм- 0,2г Нагреватель питм- 0,2г 1 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07<	Устьевой 1 86 мотьевой 05 20 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г птм- 0,2г ль пптм- 0,2г Устьевой 1 86 мотьевой 05 6 0. 3. 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г ль птм- 0,2г Устьевой 1 86 мотьевой 05 6 0. 3. 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г ль птм- 0,2г Устьевой 1 86 мотьевой 05 6 0. 3. 0.02033 нагревате ль пптм- 0,2г нагреватель пптм- 0,2г ль потье при мотье при мо	Устьевой 1 86 устьевой 05 20 0.02033 Нагревате ль ППТМ-0,2Г Нагреватель ППТМ-0,2Г ППТМ-0,2Г 0.02033 250 Устьевой 1 86 4 Устьевой 05 22 6 0. 3. 0.02033 250 нагревате ль ППТМ-0,2Г нагреватель ППТМ-0,2Г 1 43 1 43 1 43 Устьевой 1 86 4 4 Нагреватель ППТМ-0,2Г 1 43 1 43 Устьевой 1 86 64 Нагреватель ППТМ-0,2Г 1 43 1 43 Устьевой 1 86 64 Нагреватель ППТМ-0,2Г 1 43 1 43 Нагревате ль ППТМ-0,2Г 1 1 1 1 1 Нагревате ль ППТМ-0,2Г 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Устьевой 1 86 Устьевой 05 0.02033 0 Натревате ив пптм-0,2г натреватель пптм-0,2г 0.20 0.02033 0 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 нагревате ив пптм-0,2г нагреватель пптм-0,2г 0.5 6 0.3 0.02033 250 7478 Устьевой 1 86 Устьевой 0.5 6 0.3 0.02033 250 7478 Нагревате ив пптм-0,2г нагреватель пптм-0,2г 0.27 0.02033 250 7478 нагревате ив нагреватель пптм-0,2г 1 86 Устьевой 0.5 6 0.3 0.02033 250 7478 Натревате ив нагреватель пптм- нагреватель пптм- нагреватель пптм- 1 0.02033 250 7478</td> <td>Агієї №1 1 86 Устьевой 05 0.02033 0 0 Изгревате ль ППТМ-0,2Г Матреватель ППТМ-0,2Г Матреватель ППТМ-0,2Г 0,2Г 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Нагревате ль ППТМ-0,2Г Нагреватель ППТМ-0,2Г 1 40 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Нагревате ль 1 1 0.02033 250 7478 2628 1 0.02033 250 7478 2628 8 8</td> <td> Younger 1 86 Younger 20 </td> <td> Vorwemon</td> <td>ALPHANE </td> <td>## ## ## ## ## ## ## ##</td> <td> 200 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201</td> <td>Access 1</td> <td> Part</td>	Устьевой 1 86 Устьевой 05 0.02033 0 Натревате ив пптм-0,2г натреватель пптм-0,2г 0.20 0.02033 0 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 нагревате ив пптм-0,2г нагреватель пптм-0,2г 0.5 6 0.3 0.02033 250 7478 Устьевой 1 86 Устьевой 0.5 6 0.3 0.02033 250 7478 Нагревате ив пптм-0,2г нагреватель пптм-0,2г 0.27 0.02033 250 7478 нагревате ив нагреватель пптм-0,2г 1 86 Устьевой 0.5 6 0.3 0.02033 250 7478 Натревате ив нагреватель пптм- нагреватель пптм- нагреватель пптм- 1 0.02033 250 7478	Агієї №1 1 86 Устьевой 05 0.02033 0 0 Изгревате ль ППТМ-0,2Г Матреватель ППТМ-0,2Г Матреватель ППТМ-0,2Г 0,2Г 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Нагревате ль ППТМ-0,2Г Нагреватель ППТМ-0,2Г 1 40 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Устьевой 1 86 Устьевой 05 6 0.3 0.02033 250 7478 2628 Нагревате ль 1 1 0.02033 250 7478 2628 1 0.02033 250 7478 2628 8 8	Younger 1 86 Younger 20	Vorwemon	ALPHANE	## ## ## ## ## ## ## ##	200 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201	Access 1	Part

									I								Угарный				
																04	газ) (584) Метан (727*)	0.00173	163.023	0.054	20
	Газовый	1	29	Газокомпресс	06	6	0.	4.	0.039	250	24820	0				10	Asora (IV)	0.01181	580.227	0.37253	26
0	1 400 2221		28	op	44		1	97	0.003	200	21020					01	диоксид (2	0001227	0.07200	26
	генератор			Waukesha/Ari													Азота диоксид)				
	Waukesha/			el №2												03	(4) Углерод оксид	0.0618	3035.72	1.9492	20
	Ariel Nº2															37	(Окись углерода,		8		26
	N-Z																Угарный				
																04	газ) (584) Смесь	0.0089	437.184	0.2825	
																15	углеводородов предельных				26
																	C1-C5 (1502*)				
0	Печь	1		Печь	07	6	0.	16	0.0576	250	7510	2054					1502^) Asora (IV)	0.00335	111.420	0.1046	
3 2	подогрева		64	подогрева	08		1	1 .1				5				01	диоксид (26
	пп-0,63			пп-0,63													Азота диоксид) (4)				
																	Азот (II) оксид (0.00054	18.126	0.017	20
																04	Азота оксид) (6)	5			26
																03	Углерод оксид (Окись	0.00735	244.458	0.229	20 26
																	углерода,				
																	Угарный газ) (584)				
																04	Метан (727*)	0.00735	244.458	0.229	20 26
0	Устьевой	1	86	Устьевой	07	6	0.	12	0.0606	250	7515	1				03	Азота (IV)	0.00371	117.284	0.1158	20
9			64		09			.1				5				01	диоксид (26
	нагревате ль			нагреватель ПП-0,													Азота диоксид) (4)				
	пп-0,63А			63												03	Азот (II) оксид (0.00060	19.063	0.0188	20 26
																	Азота оксид) (6)	3			
																03	Углерод оксид (Окись	0.00773	244.369	0.241	20
																	углерода, Угарный				
																	газ) (584)	0 00000	0.4.4.0.60	0 0 4 1	
																10	Метан (727*)	0.00773		0.241	26
1 5	Устьевой	1	86 64	Устьевой	07 12				0.02033		0	0				03	Азота (IV) диоксид (0.00221	108.903	0.069	20 26
9	из продаже			W27700727071																	
	нагревате ль			нагреватель ППТМ-													Азота диоксид) (4)				
	ППТМ-0,2Г			0,2Γ												03	Азот (II) оксид (0.00036	17.708	0.01122	20 26
																0.3	Азота оксид) (6) Углерод оксид	0.00173	85.096	0.054	
																37	(Окись	0.001/3	03.096	0.034	26
																	углерода, Угарный				
																04	газ) (584) Метан (727*)	0.00173	85.096	0.054	20
				_												10					26
3	Печь подогрева	1		Печь подогрева	07 67	6	0.	13	0.0936	250	7512	2054					Азота (IV) диоксид (0.00934	191.166	0.2944	20 26
	, - 1	. '	'	-	. '	. '		. '	'		•	•	. '	'	'		•	•			

9								9										
	пп-0,63 (ПП-0,63 (Китай)									As (4	зота диоксид) 4)				
	Китай)			, ,										зот (II) оксид (0.00151	31.049	0.0478	20 26
													03 yr 37 (0 yr yr	зота оксид) (6) глерод оксид Окись глерода, гарный аз) (584)	0.00796	162.921	0.251	
														етан (727*)	0.00796	162.921	0.251	20 26
0 3 9	Печь подогрева	1	87 60	Печь подогрева	07 68	6	0.	13	0.0936	250	7520	2054	03 As	зота (IV) иоксид (0.00934	191.166	0.2944	
	пп-0,63 (ПП-0,63 (Китай)				9							0 00151	21 040	0 0470	20
	Китай)												04	зот (II) оксид (0.00151	31.049	0.0478	26
													03 yr 37 (0 yr yr	зота оксид) (6) глерод оксид Окись глерода, гарный	0.00796	162.921	0.251	20 26
													04 Me	аз) (584) етан (727*)	0.00796	162.921	0.251	20
0 3	Резервуар 75	1	87 60	Резервуар 75 м3	08 16						0	C		месь глеводородов	0.33508		3.07	26 20 26
7	мЗ												пр	редельных				
0 3	Резервуар 75	1	87 60	Резервуар 75 м3	08 17						0	C	04 CM	1-C5 (502*) месь глеводородов	0.33508		3.07	20 26
	мЗ												C1	редельных 1-C5 (502*)				
0 3 7	Резервуар 75	1	87 60	Резервуар 75 м3	08 18						0	C	04 CM	месь глеводородов	0.33508		3.07	20 26
0	м3	1	87 60	Резервуар 75	08						0	C	C1 15 04 CM	редельных 1-C5 (502*) месь	0.33508		3.07	20 26
3 7	75 м3		60	мЗ	19								пр	глеводородов редельных				26
0 0 2	Дренажная	1	87 60	Дренажная емкость	09						0	C		1-C5 (502*) ероводород (0.00001		0.000000 1788	
	емкость 12м3			12м3									04 CM 15 yr	игидросульфид) 518) месь глеводородов редельных	0.01338		0.000216	20 26
													C1 15 04 CM 16 yr	1-C5 (502*) месь глеводородов редельных 6-C10 (0.00495		0.000079	20 26

									06 02 06 16	1503*) Бензол (64) Диметилбензол (смесь о-, м-, п-	0.00006 46 0.00002 03		0.000001 043 0.000000 328	
0	Дренажная	87 Дренажна 60 емкость	я 09 01		0	0			21	изомеров) (203) Метилбензол (349) Сероводород (0.00004 06 0.00001 108		.000000 656 .000000 1788	26 20
3	емкость 12м3	12м3							04	Дигидросульфид) (518) Смесь углеводородов предельных C1-C5 (0.01338	0	.000216	20 26
										1502*) Смесь углеводородов предельных C6-C10 (0.00495	0	.000079	20 26
									02	Диметилбензол (смесь о-, м-, п- изомеров)	0.00006 46 0.00002 03			20 26 20 26
0	Дренажная	87 Дренажна 60 емкость	я 09		0	0			06 21 03 33	(203) Метилбензол (349) Сероводород (0.00004 06 0.00001 108		0.000000 656 0.000000 1788	26 20
4	емкость 12м3	12м3							04	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (0.01338	0	0.000216	
										1502*) Смесь углеводородов предельных С6-С10 (0.00495	0	.000079	20 26
									02	1503*) Бензол (64) Диметилбензол	0.00006 46 0.00002 03		0.000001 043 0.000000 328	26 20
0 0 5	Дренажная	87 Дренажна 60 емкость	.я 09		0	0			21	(203) Метилбензол	0.00004 06 0.00001 108		.000000 656 .000000 1788	26 20
	емкость 12м3	12м3							04	Дигидросульфид) (518) Смесь углеводородов предельных	0.01338	0	.000216	20 26

	1									C1-C5 (
									04	1502*) Смесь углеводородов предельных С6-С10 (0.00495	0.000079 9 26
									06 02	1503*) Бензол (64)	0.00006	0.000001 20 043 26
									06 16	о-, м-, п-	0.00002	0.000000 20 328 26
									06	изомеров) (203) Метилбензол (349)	0.00004	0.000000 20 656 26
0 0 6	Дренажная	1	87 60	Дренажная емкость	09 04	C	0		03	Сероводород (0.00001	0.000000 20 1788 26
	емкость 12м3			12м3					04	предельных C1-C5 (0.01338	0.000216 20 26
									04	1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.000079 20 9 26
									06 02 06 16	1503*) Бензол (64) Диметилбензол (смесь	0.00006 46 0.00002 03	0.000001 20 043 26 0.000000 20 328 26
1	Дренажная	1	1	Дренажная	09		0		21	о-, м-, п- изомеров) (203) Метилбензол (349) Сероводород (0.00004 06 0.00001	0.000000 20 656 26 0.000000 20
8 9	емкость		60	емкость 12м3	05				33	Дигидросульфид)	108	1788 26
	12м3								04	(518) Смесь	0.01338	0.000216 20 26
									04	1502*) Смесь углеводородов предельных	0.00495	0.000079 20 9 26
									06 02 06		0.00006 46 0.00002	0.000001 20 043 26 0.000000 20
									16	(смесь о-, м-, п- изомеров)	03	328 26
0	Дренажная	1	87	Дренажная	09		0		06 21 03	(203)	0.00004 06 0.00001	0.000000 20 656 26 0.000000 20
0	1.4			емкость	06				33		108	1788 26

8	емкость 12м3	12м3					04	углеводородов	0.01338	0.000216 20 26
								предельных C1-C5 (1502*) Смесь углеводородов предельных	0.00495	0.000079 20 9 26
							06 02 06 16	C6-C10 (1503*) Бензол (64) Диметилбензол	0.00006 46 0.00002 03	0.000001 20 043 26 0.000000 20 328 26
0	Дренажная	1 87 Дренажная 60 емкость	09	0	0		06 21 03 33	(349) Сероводород (0.00004 06 0.00001 108	0.000000 20 656 26 0.000000 20 1788 26
9	емкость 12м3	12м3					0.4	Дигидросульфид) (518)	0.01338	0.000216 20 26
							04	1502*) Смесь	0.00495	0.000079 20 9 26
							06 02 06 16	Бензол (64) Диметилбензол	0.00006 46 0.00002 03	0.000001 20 043 26 0.000000 20 328 26
0 1	Дренажная	1 87 Дренажная 60 емкость	09	0	0		06 21 03 33	(203) Метилбензол (349) Сероводород (0.00004 06 0.00001 108	0.000000 20 656 26 0.000000 20 1788 26
0	емкость 12м3	12м3					04	Дигидросульфид) (518) Смесь углеводородов предельных C1-C5 (0.01338	0.000216 20 26
							04	1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.000079 20 9 26
							06 02 06 16	Диметилбензол	0.00006 46 0.00002 03	0.000001 20 043 26 0.000000 20 328 26

	1		ı		ı		1 1				1					изомеров)	<u> </u>		ı	
0 1 1	Дренажная	1	87	Дренажная емкость	09				0	0					06 21 03 33	(203) Метилбензол (349) Сероводород (0.00004 06 0.00001 108		.000000 656 .000000 1788	26 20
	емкость 12м3			12м3												Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (0.01338	0.	.000216	20 26
															04	1502*) Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.	.000079	20 26
															02	Бензол (64) Диметилбензол (смесь о-, м-, п-изомеров)	0.00006 46 0.00002 03		.000001 043 .000000 328	26 20
0 1 2	Дренажная	1	87 60	Дренажная емкость	09				0	0					21	(203) Метилбензол (349) Сероводород (0.00004 06 0.00001 108		.000000 656 .000000 1788	26 20
	емкость 12м3			12м3												Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (0.01338	0.	.000216	20 26
															04 16	1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.	.000079	20 26
															02 06	1503*) Бензол (64) Диметилбензол (смесь о-, м-, п- изомеров)	0.00006 46 0.00002 03		.000001 043 .000000 328	26 20
0 1 3	Дренажная	1		Дренажная емкость	09				0	0					21	(203) Метилбензол (349) Сероводород (0.00004 06 0.00001 108		.000000 656 .000000 1788	26 20
	емкость 12м3			12м3												Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (0.01338	0.	.000216	20 26
																1502*) Смесь углеводородов предельных С6-C10 (0.00495	0.	.000079 9	20 26

ı	ĺ	I	ı	I	I	1 1		l I			1 1	1	1 1	ı	1503*)] 1	1	1 1
														06	Бензол (64)	0.00006	0.000001	
														02		46	043	26
														06 16	Диметилбензол (смесь	0.00002	0.000000	
															о-, м-, п-			
															изомеров) (203)			
														06	Метилбензол	0.00004	0.000000	
0		Дренажная	1	87	Дренажная	09			0	0				21 03	(349) Сероводород (0.00001	0.000000	
1				60	емкость	12								33		108	1788	
4		емкость			12м3										Дигидросульфид)			
		12м3													(518)	0.01220	0.000016	
														04 15	Смесь углеводородов	0.01338	0.000216	20 26
															предельных			
															C1-C5 (1502*)			
														04	Смесь	0.00495	0.000079	
														16	углеводородов предельных		9	26
															C6-C10 (
														06	1503*) Бензол (64)	0.00006	0.000001	20
														02	Диметилбензол	46 0.00002	0.000000	26 20
														16	(смесь	0.00002	328	26
															0-, м-, п-			
															изомеров) (203)			
														06	Метилбензол (349)	0.00004	0.000000	
0		Дренажная	1	87	Дренажная	09			0	0				03	Сероводород (0.00001	0.000000	20
1 5				60	емкость	13								33		108	1788	26
		емкость			12м3										Дигидросульфид)			
		12м3												04	(518) Смесь	0.01338	0.000216	20
														15	углеводородов			26
															предельных C1-C5 (
															1502*)	0.00405	0 000070	
														04	Смесь углеводородов	0.00495	0.000079	
															предельных С6-С10 (
															1503*)			
														06	Бензол (64)	0.00006	0.000001	
														06	Диметилбензол	0.00002	0.000000	20
														16	(смесь о-, м-, п-	03	328	26
															изомеров)			
														06	(203) Метилбензол	0.00004	0.000000	20
														21	(349)	06	656	26
0		Дренажная	1	87 60	Дренажная емкость	09			0	0				03	Сероводород (0.00001	0.000000	20 26
6																-13		
		емкость 12м3			12м3										Дигидросульфид) (518)			
														04	Смесь	0.01338	0.000216	20 26
														15	углеводородов предельных			20
•	•	•		-	•			. '	. '		' '	'		•	•	. '	•	

I	l l		1		1 1	1			[I	I		1	I	C1-C5 (1	I	
														04	1502*) Смесь углеводородов предельных С6-С10 (0.00495	0.0	00079	20 26
														06 02 06	1503*) Бензол (64) Диметилбензол	0.00006 46 0.00002		00001 043 00000	
														16	(смесь о-, м-, п- изомеров)	03		328	26
0 1	Дренажная	1 8	7 Дренажная 0 емкость	09				0	0					06 21 03 33	(203) Метилбензол (349) Сероводород (0.00004 06 0.00001 108	0.0	00000 656 00000 1788	26 20
7	емкость 12м3		12м3											04	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (0.01338	0.0	00216	20 26
														04 16	1502*) Смесь	0.00495	0.0	00079	
														06 02 06 16	1503*)	0.00006 46 0.00002 03		00001 043 00000 328	26
0 1 8	Дренажная		7 Дренажная 0 емкость	09				0	0					06 21 03 33		0.00004 06 0.00001 108	0.0	00000 656 00000 1788	26 20
	емкость 12м3		12м3											04	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (0.01338	0.0	00216	20 26
														04	1502*) Смесь углеводородов предельных С6-C10 (0.00495	0.0	00079	20 26
														02	1503*) Бензол (64) Диметилбензол (смесь	0.00006 46 0.00002 03		00001 043 00000 328	26 20
														06	о-, м-, п- изомеров) (203) Метилбензол (349)	0.00004	0.0	00000 656	
0 1	Дренажная	1 8	7 Дренажная 0 емкость	09 17				0	0					03	Сероводород (0.00001	0.0	00000	20

емкость 12м3		12м3								Дигидросульфид) (518)			
IZMS									04		0.01338	0.000378	8
									04	1502*) Смесь углеводородов предельных С6-С10 (0.00495	0.000139	9
										1503*) Бензол (64)	0.00006	0.000001	
									02 06 16	(смесь о-, м-, п- изомеров)	46 0.00002 03	0.000000 5744	0
									06	(203) Метилбензол	0.00004	0.000001	
Дренажная	1	87 Дренажная 60 емкость	09		0	0			21 03 33	(349) Сероводород (06 0.00001 108	0.000000 1788	(
емкость 12м3		12м3							04	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (1502*)	0.01338	0.000216	6
									04	Смесь углеводородов предельных C6-C10 (0.00495	0.000079	
									06 02	1503*) Бензол (64)	0.00006	0.000003	
									06	Диметилбензол	0.00002	0.000000	(
										(203) Метилбензол	0.00004	0.00000	
Дренажная	1	87 Дренажная 60 емкость	09 19		0	0			21 03 33	(349) Сероводород (06 0.00001 108	0.00000 178	1
емкость 12м3		12м3							04		0.01338	0.000216	(
										углеводородов предельных C1-C5 (1502*)			
									04	Смесь углеводородов предельных С6-С10 (0.00495	0.000079	
									06 02	1503*) Бензол (64)	0.00006	0.000001	
									06	Диметилбензол	0.00002	0.000000	(

											, , ,				,	
													изомеров) (203)			
												06	(203) Метилбензол	0.00004	0.000000	20
												21	(349)	06	656	26
0	Дренажная	1	87	Дренажная	09		0	0				03	Сероводород (0.00001	0.000000	
2 3			60	емкость	20							33		108	1788	26
	емкость			12м3									Дигидросульфид)			
	12м3												(518)			
												04 15	Смесь углеводородов	0.01338	0.000216	20
												1 1 3	предельных			2.0
													C1-C5 (
													1502*)	0 00405		
												04 16	Смесь углеводородов	0.00495	0.000079	26
													предельных			
													C6-C10 (
													1503*)	0.00006	0 000001	
												06	Бензол (64)	0.00006 46	0.000001	26
												06	Диметилбензол	0.00002	0.000000	
												16	(смесь	03	328	26
													0-, м-, п-			
													изомеров) (203)			
												06	Метилбензол	0.00004	0.000000	
			0.7	_								21	(349)	06		26
0 2	Дренажная	1	87 60	Дренажная емкость	09		0	0				03	Сероводород (0.00001	0.000000	
4				EMROCIB										100	1700	20
	емкость			12м3									Дигидросульфид)			
	12м3											04	(518)	0.01338	0 000016	20
												15	Смесь углеводородов	0.01336	0.000216	26
													предельных			
													C1-C5 (
												0.4	1502*)	0.00495	0 000070	20
												16	Смесь углеводородов	0.00493	0.000079	26
													предельных			
													C6-C10 (
												06	1503*) Бензол (64)	0.00006	0.000001	20
												02	Deli3031 (01)	46		26
													Диметилбензол	0.00002	0.000000	
												16	(смесь	03	328	26
													о-, м-, п- изомеров)			
													(203)			
													Метилбензол	0.00004	0.000000	
0	Дренажная	1	87	Дренажная	09			0				21 03	(349) Сероводород (06	0.000000	26 20
2 5	Aponomica		60	емкость	22							33	, Tedoberades	108	1788	
5																
	емкость 12м3			12м3									Дигидросульфид) (518)			
	1250											04	Смесь	0.01338	0.000216	
													углеводородов			26
													предельных C1-C5 (
													1502*)			
													Смесь	0.00495	0.000079	20
												16	углеводородов		9	26
													предельных С6-С10 (
1	1	I	i	I	1 1	1 1 1	ı I	I	ı l	1	1 1	I	00 010 (1 1	ı I	1

									I			1		1503*)			
													06 02	Бензол (64)	0.00006 46	0.000001	
													06	Диметилбензол	0.00002	0.000000	20
													16	(смесь о-, м-, п- изомеров)	03	328	26
														(203) Метилбензол	0.00004	0.000000	
0	Дренажная	1	87	Дренажная	09			0	0				21	(349) Сероводород (0.00001	656 0.000000	
2 6			60	емкость	23								33		108	1788	
	емкость 12м3			12м3										Дигидросульфид) (518)			
													04 15	Смесь углеводородов	0.01338	0.000216	20 26
														предельных C1-C5 (
														1502*) Смесь	0.00495	0.000079	20
													16	углеводородов предельных		9	26
														C6-C10 (1503*)			
													06 02	Бензол (64)	0.00006		20 26
													06	Диметилбензол	0.00002	0.000000	20
													16	(смесь о-, м-, п- изомеров)	03	328	26
													06	(203) Метилбензол	0.00004	0.000000	20
0	Дренажная		87	Дренажная	09			0	0				21 03	(349) Сероводород (06	656 0.000000	26
2	дренамная		60	емкость	24								33	у дододород (108	1788	
	емкость			12м3										Дигидросульфид)			
	12м3												04	(518) Смесь	0.01338	0.000216	
													15	углеводородов предельных			26
														C1-C5 (1502*)			
													04	Смесь	0.00495	0.000079	20 26
													16	углеводородов предельных C6-C10 (9	26
													0.6	1503*) Бензол (64)	0.00006	0.000001	20
													02	Диметилбензол	46	043	26
													16	(смесь	0.00002	328	
														о-, м-, п- изомеров) (203)			
														Метилбензол	0.00004	0.000000	
0	Дренажная	1		Дренажная	09			0	0				21 03	(349) Сероводород (0.00001	656 0.000000	20
8			60		25								33		108	1788	26
	емкость 12м3			12м3										Дигидросульфид) (518)			
													04 15	Смесь углеводородов	0.01338	0.000216	20 26
														предельных			

0 3			0 3 0			9	0 2 9		
Дренажная		емкость 12м3	Дренажная			емкость 12м3	Дренажная		
1			1				1		
87 60			87 60			00	87 60		
Дренажная емкость		12м3				12м3			
09			09			20	09		
0			0				0		
0			0				0		
21	06		21	06 02 06 16	04	04	06 21 03 33	02	04
о-, м-, п- изомеров) (203) Метилбензол (349) Сероводород (Диметилбензол (смесь	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (изомеров) (203) Метилбензол (349) Сероводород (Диметилбензол (смесь о-, м-, п-	углеводородов предельных C1-C5 (1502*) Смесь углеводородов предельных	Дигидросульфид) (518) Смесь	о-, м-, п- изомеров) (203) Метилбензол (349) Сероводород (1	C1-C5 (1502*) Смесь углеводородов предельных C6-C10 (
0.00004 06 0.00001 108	0.00495 0.00006 46 0.00002 03	0.01338	0.00004 06 0.00001 108	0.00006 46 0.00002 03	0.00495	0.01338	0.00004 06 0.00001 108	0.00006 46 0.00002 03	0.00495
0.000000 656 0.000000 1788	0.000079 9 0.000001 043 0.000000 328	0.000216	0.000000 656 0.000000 1788	0.000001 043 0.000000 328	0.000079	0.000216	0.000000 656 0.000000 1788	0.000001 043 0.000000 328	0.000079
26 20	26 20 26 20	20 26	26 20	26 20		20	26 20	26 20	

1										I		
	емкость 12м3	12м3							04		0.01338	0.000216 20 26
									04	C1-C5 (1502*)	0.00495	0.000079 20 9 26
									06	1503*) Бензол (64)	0.00006	0.000001 20 043 26
									06	Диметилбензол (смесь о-, м-, п- изомеров)	0.00002	0.000000 20 328 26
									06	(349)	0.00004	0.000000 20 656 26
0 3 2	Дренажная	1 87 Дренажная 60 емкость	09 29		0	0			03		0.00001	0.000000 20 1788 26
	емкость 12м3	12м3							04 15	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (1502*)	0.01338	0.000216 20 26
									04	Смесь	0.00495	0.000079 20 9 26
									02	Бензол (64)	0.00006	0.000001 20 043 26
									06	(смесь о-, м-, п- изомеров)	0.00002	0.000000 20 328 26
									06 21		0.00004	0.000000 20 656 26
0 3	Дренажная	1 87 Дренажная 60 емкость	09 30		0	0			03	Сероводород (0.00001	0.000000 20 1788 26
	емкость 12м3	12м3							04	углеводородов предельных	0.01338	0.000216 20 26
									04	углеводородов предельных C6-C10 (0.00495	0.000079 20 9 26
									06 02		0.00006	0.000001 20 043 26
										Диметилбензол (смесь	0.00002	0.000000 20 328 26
		1 1 1	1 1 1 1	I I		I	1 1	1 1 1	I	○-, м-, п-	1	1 1

												изомеров) (203)				
											06 21	Метилбензол (349)	0.00004	0.0	00000 656	
0 3	Дренажная	1	87 60	Дренажная емкость	09 31		0	0			03	Сероводород (0.00001	0.0	00000	20
4	емкость 12м3			12м3							04	Дигидросульфид) (518) Смесь	0.01338		00216	20
												углеводородов предельных C1-C5 (0.01336	0.0	00210	26
											04 16	1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.0	00079	20 26
												1503*) Бензол (64)	0.00006	0.0	00001	
											02 06 16	Диметилбензол (смесь о-, м-, п-	46 0.00002 03	0.0	043 00000 328	20
												изомеров) (203)				l
											06 21	Метилбензол (349)	0.00004	0.0	00000 656	
0 3 5	Дренажная	1	87 60	Дренажная емкость	09 32		0	0				Сероводород (0.00001	0.0	00000 1788	20
	емкость 12м3			12м3								Дигидросульфид) (518)				l
	1233											Смесь углеводородов предельных	0.01338	0.0	00216	20 26
											04 16	C1-C5 (1502*) Смесь углеводородов предельных	0.00495	0.0	00079	20
											0.6	C6-C10 (1503*)	0.00006		00001	20
											02	Бензол (64)	0.00006		00001	26
												Диметилбензол (смесь о-, м-, п- изомеров)	0.00002	0.0	328	26
											06	(203) Метилбензол	0.00004	0.0	00000	20
0	Дренажная	1	87	Дренажная	09		0	0			21 03	(349) Сероводород (0.00001	0.0	656 00000	
2 2			60	емкость	33						33		108		1788	
	емкость 12м3			12м3								Дигидросульфид) (518)				
												Смесь углеводородов предельных C1-C5 (0.01338	0.0	00216	20 26
												1502*) Смесь углеводородов	0.00495	0.0	00079	20 26
											10	предельных С6-С10 (J	

		1503*)
		06 Бензол (64) 0.00006 0.000001 20
		02 46 043 26 06 Диметилбензол 0.00002 0.000000 20
		16 (смесь 03 328 26 о-, м-, п-
		изомеров)
		06 Метилбензол 0.00004 0.000000 20
	Table 1	21 (349) 06 656 26
	Дренажная 09 емкость 34	03 Сероводород (0.00011 0.000000 20 33 08 1428 26
	10 м3	Дигидросульфид)
м3		(518)
		04 Смесь 0.1338 15 углеводородов 0.000172 26
		предельных C1-C5 (
		1502*)
		04 Смесь 0.0495 16 углеводородов 0.0495
		предельных С6-C10 (
		1503*)
		06 Бензол (64) 0.00064 0.000000 20 02 6 833 26
		06 Диметилбензол 0.00020 0.000000 20 16 (смесь 3 262 26
		О-, м-, п-
		изомеров) (203)
		06 Метилбензол 0.00040 0.000000 20 21 (349) 6 524 26
	Дренажная 09	03 Сероводород (20
3 60	емкость 35	33 26
емкость 10 м3	10 м3	Дигидросульфид)
M3		(518) 04 Смесь 15 углеводородов 26
		15 углеводородов 26 предельных
		C1-C5 (
		1502*) 04 Смесь 20 16 углеводородов 26
		16 углеводородов дебетите и предельных дебетите
		C6-C10 (
		1503*) 06 Бензол (64)
		02 06 Диметилбензол 26 20
		16 (смесь 26
		о-, м-, п- изомеров)
		06 Метилбензол 20
		21 (349)
3 60	Дренажная 09 емкость 36	03 Сероводород (0.00001 0.000000 20 33 108 214 26
	20 м3	Дигидросульфид)
M3		(518)
		04 Смесь 0.01338 0.000258 20 15 углеводородов 7 26
		предельных

1 1	I	1 1	I	1 1	1 1	1		l	I	1	1 1	1	1	l c1_c5 /	1	ı	ı	í I
													04	C1-C5 (1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.00	0095 7	20 26
													06 02 06	1503*) Бензол (64) Диметилбензол	0.00006 46 0.00002		0001 25 0000	20 26 20
													16		03		393	
0 3	Дренажная	1 87 60	Дренажная емкость	09			0	0					06 21 03 33	Метилбензол (349) Сероводород (0.00004 06 0.00001 108	0.00	0000 785 0000 1788	26 20
6	емкость 12м3		12м3										04	Дигидросульфид) (518) Смесь углеводородов	0.01338		0216	
													04	предельных C1-C5 (1502*) Смесь углеводородов	0.00495	0.00	0079	20
														предельных C6-C10 (1503*)				
													06 02 06 16	Бензол (64) Диметилбензол (смесь о-, м-, п- изомеров)	0.00006 46 0.00002 03		0001 043 0000 328	
1 8 6	Дренажная	1 87 60		09			0	0					06 21 03 33		0.00004 06 0.00001 108		0000 656 0000 1788	26 20
	емкость 12м3		12м3										04	углеводородов предельных	0.01338	0.00	0216	20 26
													04	C1-C5 (1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.00	0079 9	20 26
													02	1503*) Бензол (64) Диметилбензол (смесь	0.00006 46 0.00002 03		0001 043 0000 328	26 20
														о-, м-, п- изомеров) (203)				
1 8	Дренажная	1 87	Дренажная емкость	09			0	0					06 21 03 33		0.00004 06 0.00001 108	0.00	0000 656 0000 1788	26 20

7										1				
	емкость 12м3		12м3								04 15	Дигидросульфид) (518) Смесь углеводородов	0.01338	0.000216 20 26
											04	предельных C1-C5 (1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.000079 20 9 26
											06 02 06	1503*) Бензол (64) Диметилбензол	0.00006 46 0.00002	0.000001 20 043 26 0.000000 20
											16	(смесь о-, м-, п- изомеров)	03	328 26
1	Дренажная	1 87	Дренажная	09		0	0				06 21 03	(203) Метилбензол (349) Сероводород (0.00004 06 0.00001	0.000000 20 656 26 0.000000 20
9 0	емкость 12м3	60	емкость 12м3	40							33	Дигидросульфид) (518)	108	1788 26
	1233										04 15	Смесь углеводородов предельных C1-C5 (0.01338	0.000216 20 26
											04	предельных С6-С10 (0.00495	0.000079 20 9 26
												1503*) Бензол (64)	0.00006	0.000001 20
											02 06 16	(смесь о-, м-, п- изомеров)	46 0.00002 03	0.000000 20 328 26
											06		0.00004	0.000000 20
1 9	Дренажная	1 87 60	Дренажная емкость	09		0	0				21 03 33		0.00001 0.00001	656 26 0.000000 20 1788 26
	емкость 12м3		12м3								04	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (0.01338	0.000216 20 26
											04	1502*) Смесь углеводородов предельных C6-C10 (0.00495	0.000079 20 9 26
												1503*) Бензол (64)	0.00006	0.000001 20
											02 06 16	Диметилбензол (смесь	46 0.00002 03	043 26 0.000000 20 328 26
												О-, м-, п-		

0 5 7	Устьевой	1	86 64	Устьевой	11 09				0.0214		0	0		06 21 03 01	изомеров) (203) Метилбензол (349) Азота (IV) диоксид (0.00004 06 0.00245	114.486	0.000000 656 0.0765	26
	нагревате ль ППТМ-0,2Г			нагреватель ППТМ- 0,2Г										03		0.00039	18.598	0.01243	20 26
														03 37	Углерод оксид (Окись углерода, Угарный	0.00182	85.140	0.0568	20 26
0	Устьевой	1	86 64	Устьевой	11 17				0.0606		0	0		04 10 03 01	1	0.00182 2 0.00371	85.140 61.221	0.0568	26
8	нагревате ль ПП-0,63A			нагреватель ПП-0, 63										03		0.00060	9.950	0.0188	20 26
														03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00773	127.558	0.241	20 26
0 6	Устьевой	1	65 28	Устьевой	11 22	6	0.	3. 43	0.02617	250	7478	2628		04 10 03 01	газ) (584) Метан (727*)	0.00773		0.241	26
0	нагревате ль ППТМ-0,2Г			нагреватель ППТМ- 0,2Г										03	Азота диоксид) (4) Азот (II) оксид (0.00059	43.556	0.01398	
															Азота оксид) (6) Углерод оксид (Окись углерода,	0.00222	162.879	0.0523	
0	Устьевой	1		Устьевой	11				0.0214		0	0		10 03	Азота (IV)	0.00222 5 0.00245	162.879 114.486	0.0523	26 20
5	нагревате ль ППТМ-0,2Г			нагреватель ППТМ- 0,2Г	23										Азота диоксид) (4) Азот (II) оксид (0.00039	18.598	0.01243	
														04	Азота оксид) (6) Углерод оксид	0.00182	85.140	0.0568	26 20 26
0	Устьевой	1	86	Устьевой	11				0.0214		0	0		04 10 03	Угарный газ) (584) Метан (727*)	0.00182 2 0.00245	85.140 114.486	0.0568	26
7		-	64		24										диоксид (26

4										
	нагревате ль ППТМ-0,2Г	нагреватель ППТМ- 0,2Г					Азота диоксид) (4) 03 Азот (II) оксид (0.00039	18.598	0.01243 20 26
							Азота оксид) (6) 03 Углерод оксид 37 (Окись углерода,	0.00182	85.140	0.0568 20 26
0	Устьевой	1 65 Устьевой	11	0.02617	0	0	Угарный газ) (584) 04 Метан (727*) 10 03 Азота (IV)	0.00182 2 0.00366	85.140 139.855	0.0568 20 26 0.086 20
9 2	нагревате ль ППТМ-0,2Г	28 нагреватель ППТМ- 0,2Г	25				01 диоксид (Азота диоксид) (4) 03 Азот (II) оксид (0.00059	22.736	0.01398 20
							04 Азота оксид) (6) 03 Углерод оксид 37 (Окись углерода,	0.00222	85.021	0.0523 20 26
	W	1 (5) Various as	11	0.02617	0	0	Угарный газ) (584) 04 Метан (727*) 10	0.00222 5 0.00366		0.0523 20 26
0 8 5	Устьевой нагревате ль	1 65 Устьевой 28 нагреватель ППТМ-	11 26	0.02617		0	03 Азота (IV) 01 диоксид (Азота диоксид) (4)	0.00366	139.833	0.086 20 26
	ППТМ-0,2Г	0,2F					03 Азот (II) оксид (04 Азота оксид) (6) 03 Углерод оксид	0.00059 5	22.736 85.021	0.01398 20 26 0.0523 20
							37 (Окись углерода, Угарный газ) (584)	5		26
0 8	Устьевой	1 86 Устьевой 64	11 27	0.0214	0	0	04 Метан (727*) 10 03 Азота (IV) 01 диоксид (0.00222 5 0.00245		0.0523 20 26 0.0765 20 26
6	нагревате ль ППТМ-0,2Г	нагреватель ППТМ- 0,2Г					Азота диоксид) (4) 03 Азот (II) оксид (0.00039	18.598	0.01243 20
							04 Азота оксид) (6) 03 Углерод оксид 37 (Окись углерода,	0.00182	85.140	0.0568 20 26
							Угарный газ) (584) 04 Метан (727*)	0.00182		0.0568 20 26
1 8 2	Устьевой нагревате	1 86 Устьевой 64 нагреватель	11 6 28	0. 3. 0.0214 1 43	250 7478	2628	03 Азота (IV) 01 диоксид (Азота диоксид)	0.00245	219.327	0.0765 20 26
	ль ППТМ-0,2Г	ППТМ- 0,2Г					(4) 03 Азот (II) оксид (04 Азота оксид) (6)	0.00039	35.629	0.01243 20 26

Part																				
Pack (1987) C. 1.00 C. 1.0 C. 1															03	(Окись углерода,		163.107	0.0568	
Private Priv																				
Company															04		0.00182	163.107	0.0568	20
Part		1	,,	1	0.6	,,	11				0 0014	050	7470	0.000		, , , , , , , , , , , , , , , , , , , ,	_	010 007	0 0765	
## Property (Control of Control o			Устьевой	1		Устьевой	1	6	1		0.0214	250	7478	1		1	0.00245	219.327	0.0765	
Description Control					, ,				-						-					
March C.21			I - I																	
Park															03	1 ' '	0.00039	35.629	0.01243	20
1															04		8			26
The control of the															0.3		0.00182	163.107	0.0568	20
Description																	2	100,107	0.0000	
Tell																				
Bear 1 23 Verseach 12 22 0.0506 0 0 0 0 0 0 0 0 0																I -				
Name 1 1 1 1 1 1 1 2 2 2																	l _	163.107	0.0568	
3 MADISTREAM 92 92 92 92 92 92 92 9		0	Печь	1	43	Устьевой	12				0.0606		0	0		Aзота (IV)	1	61.221	0.0586	26
Margearens Margearens		3	1	_		0 01202031					0.000		· ·				0.00071	01,221	0.0000	
Company Comp		0	пп-0 63			uannabamant										увоша пиомени)				
Tech 1 Asora accumal (6) 3 Asora accumal (7) 0.00773 127.556 0.1223 20 26 26 27 27 27 27 27 27			1111 0,05													1				
Devis 1 43 Vetrebook 1 1 1 1 1 1 1 1 1						63											I	9.950	0.00953	
Beth 1 43 Verbeack 1 2 2 0.0606 0 0 0 0 0 0 0 0 0															04		3			26
Teva															03	Углерод оксид	0.00773	127.558	0.1223	
Hetth 1 43 Yorkehoff 12 13 14 14 14 14 14 14 14															37	1 '				26
1 1 1 1 2 2 2 2 2 2																				
1 1 1 1 1 2 2 2 2 2																	0 00770	107 550	0 1000	
Печь 1 43 Устьевой 12 0.0606 0 0 0 0 0 0 0 0 0																Метан (/2/*)	0.00773	127.558	0.1223	
ПП-0,63	- 1	l l		1		Устьевой					0.0606		0	0	03		0.00371	61.221	0.0586	20
ПП-0,63			подогрева		92		33								01	диоксид (26
1			пп-0,63													1				
1 Печь 1 43 Печь 12 12 12 14 12 15 14 15 14 15 15 15 15						63											1	9.950	0.00953	
1															04		3			26
ПП-0,63 ПП-0,																Углерод оксид	0.00773	127.558	0.1223	
Печь 1 43 Печь 12 0.0606 0 0 0 0 0 0 0 0 0															37	1 '				26
ПП-0,63 Печь подогрева 1 43 печь подогрева 20 подогрева 38 ппп-0,63 ппп-0,																Угарный				
1 Печь подогрева подогрев															0.4		0 00773	107 550	0 1222	20
8 подогрева 92 подогрева 38 ПП-0,63 П																	0.00773	127.330	0.1223	
7 ПП-0,63 ПП-			1	1							0.0606		0	0			0.00371	61.221	0.0586	20
ПП-0,63 ПП-0,			подогрева		92	подогрева	38								01	диоксид (26
03 Азот (II) оксид (0.00060 9.950 0.00953 20 26 Азота оксид) (6) 03 Углерод оксид 0.00773 127.558 0.1223 20 26 Углерода, Угарный Газ) (584)			пп-0,63			пп-0,63														
04 Ваота оксид) (6) 0.00773 127.558 0.1223 26 26 3 7 перода оксид (Окись углерода, Угарный газ) (584) 26 26 26 37 37 37 37 37 37 37 3															0.2		0 00000	0 050	0 00053	20
Азота оксид) (6) Углерод оксид Обись Углерода, Угарный Газ) (584)																	3	9.950	0.00953	
37 (Окись углерода, Угарный газ) (584)																				
углерода, Угарный газ) (584)																	0.00773	127.558	0.1223	
Угарный газ) (584)																1 '				20
																Угарный				
															04		0.00773	127.558	0.1223	20
																· , ,	ĺ			

1	1				I	1		 	1		I		I	ı	I	I	1	1 1	ı	10		I	l I		26
1 5		Устьевой	1	86 64	Устьевой	12 43				0.02033		0	C								Азота (IV) диоксид (0.00221	108.903	0.069	
4		нагревате ль			нагреватель ППТМ-																Азота диоксид) (4)				
		ППТМ-0,2Г			0,2Γ															03 04	Азот (II) оксид (Азота оксид) (6)	0.00036	17.708	0.01122	20 26
																				03 37	Углерод оксид (Окись углерода,	0.00173	85.096	0.054	20 26
																					Угарный газ) (584) Метан (727*)	0.00173	85.096	0.054	
0 3		Печь подогрева	1		Печь подогрева	12 49				0.0576		0	C							10 03 01	Азота (IV) диоксид (0.00335	58.160	0.1046	26 20 26
4		пп-0,63			пп-0,63															0.2	Азота диоксид) (4)	0 00054	9.462	0 017	20
																				03	Азот (II) оксид (Азота оксид) (6)	0.00054	9.462	0.017	26
																				03 37	Углерод оксид (Окись	0.00735	127.604	0.229	20 26
																					углерода, Угарный газ) (584)		107 604		
1		Устьевой	1	86	Устьевой	12				0.02033		0								10	Метан (727*) Азота (IV)	0.00735	127.604 108.903	0.229	26
7 2				64		50															диоксид (4			26
		нагревате ль ППТМ-0,2Г			нагреватель ППТМ- 0,2Г																Азота диоксид) (4) Азот (II) оксид (0.00036	17.708	0.01122	20
																				04	Азота оксид) (6) Углерод оксид	0.00173	85.096	0.054	
																				37	(Окись углерода, Угарный газ) (584)				26
																				10	Метан (727*)	0.00173	85.096	0.054	26
1 7 3		Устьевой	1	86 64	Устьевой	12 51				0.02033		0	C							03 01	Азота (IV) диоксид (0.00221	108.903	0.069	20 26
		нагревате ль			нагреватель ППТМ-																Азота диоксид) (4)				
		ППТМ-0,2Г			0,2F															03 04	Азот (II) оксид (0.00036	17.708	0.01122	20 26
																				03 37	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00173	85.096	0.054	20 26
																				0.4	Угарный газ) (584)	0.00173	85.096	0.054	20
0		Печь	1		Печь	12	6	0.	15	0.0576	250	7502	2054							10	Метан (727*) Азота (IV)	0.00173	111.420	0.034	26 20
3 7		подогрева			подогрева	52		1	.2				5							01	диоксид (26
		ПП-0,63 (ГУ-			пп-0,63																Азота диоксид) (4)				

Бектас							Азот (II) оксид (18.126	0.017 20
ЗУ-62)									244 458	0.229 20
						37	(Окись углерода,	0.00755	241.100	26
							ras) (584)	0 00735	244 458	0.229 20
	1 06 11000		0.0576			10				0.229 20 26 0.1046 20
подогрева	64 подогре	ва 53	0.0576			01	диоксид (0.00335	58.160	0.1046 20 26
пп-0,63	пп-0,63						(4)			
						04		0.00054 5	9.462	0.017 20 26
						03	Углерод оксид	0.00735	127.604	0.229 20
							углерода, Угарный			26
						04		0.00735	127.604	0.229 20 26
Печь подогрева	1 86 Печь 64 подогре	12 54	0.0576	0 0		03		0.00335	58.160	0.1046 20 26
пп-0,63	пп-0,63									
						03	Азот (II) оксид (0.00054	9.462	0.017 20 26
						03	Углерод оксид (Окись углерода,	0.00735	127.604	0.229 20 26
						04		0.00735	127.604	0.229 20 26
Устьевой	1 86 Устьево	й 12 55	0.02033	0 0		03		0.00221	108.903	0.069 20 26
нагревате		гель								
пптм-0,2г	0,27					03	Азот (II) оксид (0.00036	17.708	0.01122 20 26
						03	Углерод оксид (Окись углерода,	0.00173	85.096	0.054 20 26
							ras) (584)	0.00173	85.096	0.054 20
Печь	1 86 Печь	12	0.0576			10				26 0.1046 20
подогрева	64 подогре	ва 56				01	диоксид (26
1111-0,63	1111-0,03						(4)			
						04		0.00054	9.462	0.017 20 26
						03	Углерод оксид	0.00735	127.604	0.229 20 26
	Печь подогрева ПП-0,63 Печь подогрева ПП-0,63 Устьевой нагревате ль ППТМ-0,2Г	Печь подогрева 1 86 Печь подогрева ПП-0,63 ПП-0,63 ПП-0,63 ПП-0,63 ПП-0,63 ПП-0,63 ПП-0,63 ПП-0,63 ПП-0,63 ПП-0,2т ППТМ-0,2т ППТМ-0,2т ППТМ-0,2т	Печь подогрева 1 86 Печь 12 подогрева 53 ПП-0,63 ПП-0,21 ППТМ-0,2Г ПП	Печь подогрева 1 86 Печь 12 подогрева 53 ПП-0,63 ПП-0,27 ППТМ-0,2Т ППТМ-0,2Т ППТМ-0,2Т ППТМ-0,2Т ППТМ-0,2Т ППТМ-0,2Т ПЕЧЬ 12 0.0576 ППТМ-0,2Т ППТМ-0,	Печь 1 86 Печь 12 0.0576 0 0 0 0 0 0 0 0 0	Herts 1 86 Herts 12 0.0576 0 0	Description 1 St Device 12 0.0576 0 0 0 0 0 0 0 0 0	Manual M	Section Sect	1

															Угарный газ) (584)				
														04	Метан (727*)	0.00735	127.604	0.229	20 26
0 0 1	Печь НЈ-2500		43 68		НЈ-2500	12 57				0.274		0	0	03	1	0.02976	108.613	0.468	20 26
	Nº 4														Азота диоксид) (4)				
														03		0.00484	17.664	0.076	20 26
														03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.0233	85.036	0.3665	20 26
														04	газ) (584) Метан (727*)	0.0233	85.036	0.3665	20
0 0	Печь ПП-0,63		22 08		пп-0,63	12 60	6	0.	1. 38	0.111	250	4740	2470	10 03 01		0.00491	84.742	0.03904	26 20 26
1	№6														Азота диоксид)				
														03	(4) Азот (II) оксид (0.00079	13.773	0.00634	20 26
														03	Азота оксид) (6) Углерод оксид (Окись	0.00944	162.925	0.075	20 26
															углерода, Угарный газ) (584)				
														04	1	0.00944	162.925	0.075	20 26
0 0 1	Печь ПП-0,63			Печь №7	пп-0,63	12 61	6	0.	1. 38	0.111	250	4740	2470	03 01	Азота (IV) диоксид (0.00491	84.742	0.03864	
	№7														Азота диоксид) (4)				
														03 04	Азот (II) оксид (0.00079	13.773	0.00628	20 26
														03 37	Азота оксид) (6) Углерод оксид (Окись	0.00944	162.925	0.0743	20 26
															углерода, Угарный газ) (584)				
														10	Метан (727*)	0.00944		0.0743	26
1 0 5	Устьевой	1	86 64	Усть€	евой	13 11				0.0214		0	0	03		0.00245	114.486	0.0765	20 26
	нагревате ль			ППТМ-	еватель										Азота диоксид) (4)				
	ППТМ-0,2Г			0,2F										03		0.00039	18.598	0.01243	20 26
														03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00182	85.140	0.0568	20 26
														04	газ) (584) Метан (727*)	0.00182	85.140	0.0568	
1	Устьевой	1		Устье	евой	13				0.0214		0	0		Азота (IV)	2 0.00245	114.486	0.0765	26 20
2	l l		64			15				l				01	диоксид (l		26

2															
	нагревате ль ППТМ-0,2Г		нагреватель ППТМ- 0,2Г							03	Азота диоксид) (4) Азот (II) оксид (0.00039	18.598	0.01243	20 26
										03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00182	85.140	0.0568	20 26
										04	газ) (584) Метан (727*)	0.00182	85.140	0.0568	20 26
1 9 3	Устьевой	1 1	86 Устьевой 64	13 24	6	0. 3. 1 43	250	7478	2628 8	03	Азота (IV) диоксид (0.00221	208.631	0.069	
	нагревате ль ППТМ-0,2Г		нагреватель ППТМ- 0,2Г							03	Азота диоксид) (4) Азот (II) оксид (0.00036	33.924	0.01122	20 26
										03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00173	163.023	0.054	20 26
										04	газ) (584) Метан (727*)	0.00173	163.023	0.054	20 26
1 8 5	Устьевой	1 1	86 Устьевой 64	13 30	6	0. 3. 1 43	250	7478	2628 8		Азота (IV) диоксид (0.00245	219.327	0.0765	
	нагревате ль ППТМ-0,2Г		нагреватель ППТМ- 0,2Г							03	Азота диоксид) (4) Азот (II) оксид (0.00039	35.629	0.01243	20
											Азота оксид) (6) Углерод оксид (Окись углерода,	0.00182	163.107	0.0568	
										10	Угарный газ) (584) Метан (727*)	0.00182		0.0568	26
1 8 1	Устьевой		65 Устьевой 28	13 31	6	0. 3. 1 43	250	7478	2628 8	03	Азота (IV) диоксид (0.00366	267.927	0.086	20
	нагревате ль ППТМ-0,2Г		нагреватель ППТМ- 0,2Г							03	Азота диоксид) (4) Азот (II) оксид (0.00059	43.556	0.01398	20 26
										03	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00222	162.879	0.0523	20 26
											Угарный газ) (584) Метан (727*)	0.00222	162.879	0.0523	
1 8 3	Устьевой	1 1	86 Устьевой 64	13 33	6	0. 3. 1 43	250	7478	2628 8	10 03 01		0.00245	219.327	0.0765	26 20 26
3	нагревате ль ППТМ-0,2Г		нагреватель ППТМ- 0,2Г								Азота диоксид) (4) Азот (II) оксид (0.00039	35.629	0.01243	
										04	Азота оксид) (6)	8			26

										03	Углерод оксид (Окись углерода, Угарный	0.00182	163.107	0.0568	20 26
										04	газ) (584) Метан (727*)	0.00182		0.0568	26
0 3 8	Печь подогрева	1		Печь подогрева	13 34	0.091	0	0		03		0.00718	78.901	0.1136	20 26
	пп-0,63 №1			пп-0,63 №1						03	Азота диоксид) (4) Азот (II) оксид (0.00116	12.824	0.01846	20 26
											Азота оксид) (6) Углерод оксид	0.00773	84.945	0.1223	
											Угарный газ) (584) Метан (727*)	0.00773	84.945	0.1223	
0 3 8	Печь подогрева	1	43 68	Печь подогрева	13 35	0.091	0	0		10 03 01		0.00718	78.901	0.113	26 20 26
	пп-0,63 №2			пп-0,63 №2							Азота диоксид) (4) Азот (II) оксид (0.00116	12.824	0.01837	
										04 03 37	,	0.00773	84.945	0.1216	26 20 26
										04	углерода, Угарный газ) (584) Метан (727*)	0.00773	84.945	0.1216	20
1 0	Устьевой	1	8 6 6 4	Устьевой	13 36	0.0214	0	0			Азота (IV) диоксид (0.00245	114.486	0.0765	26
4	нагревате			нагреватель ППТМ-							Азота диоксид) (4)		10.500	0.01040	
	ППТМ-0,2Г			0,2F						04	Азота оксид) (6)	0.00039		0.01243	26
										03	Углерод оксид (Окись углерода, Угарный	0.00182	85.140	0.0568	20 26
										10	газ) (584) Метан (727*)	0.00182		0.0568	26
0 7 6	Устьевой	1	86 64	Устьевой	13 38	0.0214	0	0			Азота (IV) диоксид (0.00245	114.486	0.0765	20 26
	нагревате ль ППТМ-0,2Г			нагреватель ППТМ- 0,2Г						03	Азота диоксид) (4) Азот (II) оксид (0.00039	18.598	0.01243	20 26
											Азота оксид) (6) Углерод оксид	0.00182	85.140	0.0568	
											углерода, Угарный газ) (584)	0.00100	05 140	0 0500	
										04	Метан (727*)	0.00182	85.140	0.0568	20

1 1	1 1	ı		1	1 1	I I	1 1	1	1		1	I	I	1 1	1	10	1	2			26
0 7	Устьевой	1	86 64	Устьевой	13 39			0.0214		0	0						Азота (IV) диоксид (0.00245	114.486	0.0765	
7	нагревате			нагреватель ППТМ-													Азота диоксид) (4)				
	ППТМ-0,2Г			0,2Г												03	Азот (II) оксид (0.00039	18.598	0.01243	20 26
																03	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00182	85.140	0.0568	20 26
																	Угарный газ) (584) Метан (727*)	0.00182	85.140	0.0568	
2 0	Устьевой	1	36 00	Устьевой	13 40			0.0214		0	0					10 03 01	Азота (IV) диоксид (0.00245	114.486	0.03176	26 20 26
0	нагревате			нагреватель ППТМ-												0.2	Азота диоксид) (4)	0 00020	10 500	0.00516	
	ППТМ-0,2Г			0,2F												03	Азот (II) оксид (0.00039	18.598	0.00516	26
																03	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00182	85.140	0.0236	20 26
																	Угарный газ) (584) Метан (727*)	0.00182	85.140	0.0236	
0 0	Газовый	1	29 04	Газокомпресс ор	14 01					0	0					10 03 01	Азота (IV) диоксид (0.01181 2		0.37253	26 20 26
	генератор			Waukesha/Ari													Азота диоксид)				
	Waukesha/ Ariel N:4			el Nº4												03 37	(4) Углерод оксид (Окись углерода,	0.0618		1.9492	20 26
																	Угарный газ) (584) Смесь углеводородов предельных	0.0089		0.2825	20 26
0	PBC №2	1	87	PBC №2 3000	14					0	0					04	C1-C5 (1502*) Смесь	2.068		4.268	20
0 1	3000 м3		60	M3 (03					O	U						углеводородов	2.000		4.200	26
	(для нефти)			для нефти)													предельных C1-C5 (1502*)				
0 0	PBC №3 3000 м3	1		РВС №3 3000 м3 (14 04					0	0					04	Смесь углеводородов	2.068		4.268	20 26
	(для нефти)			для нефти)													предельных C1-C5 (
0 4 2	PBC №1 3000 м3	1		PBC №1 3000 м3 (14 05					0	0					03	1502*) Сероводород (0.00022		0.001682	20 26
	(отстаива ние			отстаивание													Дигидросульфид) (518)				
	пластовой воды)			пластовой воды)												04	Смесь углеводородов предельных	0.2677		2.03	20 26

1	1			1 1	1 1	1 1	1	1		l I	1	ı	ı	1	1	LC1-C5 ([1 1	1	1
															04	1502*) Смесь	0.099	0.7	751	20
															16	углеводородов предельных C6-C10 (26
															06	1503*) Бензол (64)	0.00129	0.009	981	20 26
															06	Диметилбензол (смесь	0.00040	0.0030	84	20 26
																о-, м-, п- изомеров) (203)				
																Метилбензол (349)	0.00081	0.006	517	20 26
РВС №4 3000 м3	1		PBC №4 3000 м3 (14 06				0	0						04	Смесь	2.068	4.2	268	20 26
(для нефти)			для нефти)													предельных C1-C5 (
PBC №5 5000 м3	1		PBC №5 3000 м3 (14 07				0	0						04	1502*) Смесь углеводородов	6.204	12.8	303	20 26
(для нефти)			для нефти)													предельных C1-C5 (
PBC №6	1			14				0	0						04	1502*) Смесь	6.204	12.8	303	20
		60		08											15					26
нефти)			для нефти)													C1-C5 (
РВС 400 м3	1	87 60	РВС 400 м3	14 09				0	0						03	Сероводород (0.00062	0.005	528	20 26
пластовая			пластовая													Дигидросульфид)				
вода			вода												04	Смесь	0.755	6.	.38	20 26
															15	предельных C1-C5 (20
															04	Смесь	0.279	2.	.36	20 26
																предельных С6-С10 (
															06	Бензол (64)	0.00365	0.03	308	20 26
															06	Диметилбензол (смесь	0.00114	0.009	968	20
																о-, м-, п- изомеров)				
															21	Метилбензол (349)	0.00229			26
РВС 1000 м3	1	87 60	РВС 1000 м3	14				0	0						03	Сероводород (0.00062	0.013	358	20 26
пластовая вода			пластовая вода													Дигидросульфид) (518)				
															04	Смесь углеводородов	0.755	16	5.4	20 26
	ДЛЯ НеФТИ) РВС №5 5000 м3 (ДЛЯ НеФТИ) РВС №6 5000 м3 (ДЛЯ НеФТИ) РВС 400 м3 ПЛАСТОВАЯ ВОДА РВС 1000 м3	3000 м3 (для нефти) РВС №5 15000 м3 (для нефти) РВС №6 15000 м3 (для нефти) РВС 400 м3 1 Пластовая вода РВС 1000 1 м3 пластовая	3000 м3	3000 м3	3000 м3	3000 м3	ЗООО МЗ	3000 м3	ЗЗОО мЗ	3000 м3	1	December December	PRO DESCRIPTION 1	100 100	1 10 10 10 10 10 10 10					

0 Сливо-на. 0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	Сливо-наливн ая эстакада	14						06	углеводородов предельных C6-C10 (1503*) Бензол (64) Диметилбензол	0.279 0.00365 0.00114 6	0.0792 0.0249	26
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							16 06 02 06	Смесь углеводородов предельных С6-С10 (1503*) Бензол (64) Диметилбензол (смесь о-, м-, п-	0.00365	0.0792	26 20 26 20
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							16 06 02 06	углеводородов предельных C6-C10 (1503*) Бензол (64) Диметилбензол (смесь о-, м-, п-	0.00365	0.0792	26 20 26 20
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							06 02 06	предельных C6-C10 (1503*) Бензол (64) Диметилбензол (смесь о-, м-, п-	0.00114		20 26 20
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							02 06	C6-C10 (1503*) Бензол (64) Диметилбензол (смесь о-, м-, п-	0.00114		26 20
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							02 06	1503*) Бензол (64) Диметилбензол (смесь о-, м-, п-	0.00114		2.6 2.0
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							02 06	Бензол (64) Диметилбензол (смесь о-, м-, п-	0.00114		2.6 2.0
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							02 06	Диметилбензол (смесь о-, м-, п-	0.00114		2.6 2.0
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							06	(смесь о-, м-, п-	I I	0.0249	20
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая								(смесь о-, м-, п-	I I	0.0249	26
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							16	о-, м-, п-	6		26
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая											
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая								изомеров)	1 1		
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая									1 1	1	
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая					1			(203)			i 1
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая								Метилбензол	0.00229	0.0498	
0 ивная 1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	a 1	60	ая							21	(349)	2		26
1 эстакада 0 100 м3 0 1 дренажна емкость (для приема	1			11	1 1 1 1	0				04	Смесь	10.0848	36.639	20
0 100 м3 0 1 дренажна емкость (для приема	1									15	углеводородов			26
0 100 м3 0 1 дренажна емкость (для приема	1		эстакада								1			
0 100 м3 0 1 дренажна емкость (для приема	1		оотанада								предельных			
0 1 дренажна емкость (для приема											C1-C5 (
0 1 дренажна емкость (для приема											1502*)			
0 1 дренажна емкость (для приема		9.7	100 м3	14) 0				0.3	Сероводород (0.00062	0.01008	20
1 дренажна емкость (для приема		- I ~ ′ I		12		, I				33	Сероводород (5	0.01008	26
емкость (для приема		60	дренажная	12						33	'	5		20
емкость (для приема			,								1 –			
(для приема	ая		емкость (для								Дигидросульфид)			
(для приема											(518)			
приема			приема								Смесь	0.755	12.17	
			нефти)							15	углеводородов			26
1 \											предельных			
нефти)											C1-C5 (
											1502*)			
										04	Смесь	0.279	4.5	20
											углеводородов			26
											предельных			
											C6-C10 (
											1503*)			
										0.6	Бензол (64)	0.00365	0.0588	20
										02	Benson (04)	0.00363	0.0388	26
											ا ۔ ۔	0 00114	0.01040	26
											Диметилбензол	0.00114	0.01848	20
										16		6		26
											О-, М-, П-			
											изомеров)			
											(203)			
										06	Метилбензол	0.00229	0.03696	20
										21	(349)	2		26
0 12 м3	1	87	12 м3	14		0				03	Сероводород (0.00006	0.000000	20
			дренажная	13						33	1	65		26
			1.12								'			
дренажна	ая		емкость (для								Дигидросульфид)			
	~~~		011110012 (Д0111								(518)			
			rrodmre)							04	Смесь	0.0803	0.000862	20
емкость			нефти)								Смесь	0.0003	0.000862	26
(для										12	углеводородов			26
нефти)											предельных			
											C1-C5 (			
											1502*)			
										04	Смесь	0.0297	0.000319	
										16	углеводородов			26
											предельных			
											C6-C10 (			
											1503*)			
										0.6	Бензол (64)	0.00038	0.000004	20
										02	20110001 (01)	8		26
											Диметилбензол	0.00012	0.000001	
								1				U.UUU14	1 0.000001	_ ∠∪
										1 .			71	26
										16		2	31	26

1 1	1 1	 		I	ı	1 1 1	ı			I	ı	ı	ı	1	1	1 1	1	ı	изомеров)	I	]	1	1 1
0 3 8	РВС-2000м 3	1	87 60	РВС-2000м3	14					C	)	0						21 04	(203) Метилбензол (349) Смесь углеводородов	0.00024 4 1.861		0.000002 62 3.841	20 26 20 26
0 3 8	Печь подогрева ПП-0,63 №3	1		Печь подогрева ПП-0,63 №3	14 19			0.091		C	)	0							предельных C1-C5 ( 1502*) Азота (IV) диоксид ( Азота диоксид)	0.00718	78.901	0.1136	20 26
	III 0,03 k3			III 0,03 N-3														03	(4) Азот (II) оксид (	0.00116	12.824	0.01846	20 26
																		03 37	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00773	84.945	0.1223	20 26
																		10	Угарный газ) (584) Метан (727*)	0.00773	84.945	0.1223	26
0 3 8	РВС-2000м 3	1	87 60	РВС-2000м3	14 20					C	)	0							Смесь углеводородов предельных	1.861		3.841	26
0 3	Дренажная	1	87 60	Дренажная емкость	14 21					C	)	0						03	C1-C5 ( 1502*) Сероводород (	0.00016		0.000978	20 26
8	емкость 63 м3			63 м3															Дигидросульфид) (518) Смесь	0.2007		1.18	
																			углеводородов предельных C1-C5 ( 1502*)				26
																			Смесь углеводородов предельных C6-C10 (	0.0742		0.437	20
																		02	1503*) Бензол (64) Диметилбензол	0.00097		0.0057	26
																		16		5		0.001733	26
0	ДЭС 400	1		ДЭС 400 кВт	14		1.	.50196	177	C	)	0						21 03	Метилбензол (349) Азота (IV)	0.00061	374.600	0.003586	26 20
9	кВт		80		22			72											диоксид ( Азота диоксид) (4)	3333			26
																		04	Азот (II) оксид ( Азота оксид) (6) Углерод (Сажа,	0.05546 6667 0.01587	60.873 17.420	0.07072	26
																		28	Углерод черный)	3333		62	26

															l	(583)				
															03	Сера диоксид (	0.13333 3333	146.328	0.17	20 26
																Ангидрид сернистый,				
																Сернистый газ, Сера (				
																IV) оксид) (516)	0.34444	378.015	0.442	
															03	Углерод оксид (Окись	4444	370.013	0.442	20 26
																углерода, Угарный				
															07	газ) (584) Бенз/а/пирен	0.00000	0.0004	0.000000	20
															03	(3,4- Бензпирен) (54)	038		68	26
															13 25	Формальдегид (	0.00381	4.181	0.004857	20 26
																Метаналь) (609)				
															27 54	Алканы С12-19 /в	0.09206	101.036	0.116571	20 26
																пересчете на С/ ( Углеводороды				
																предельные C12-C19 (в				
																пересчете на C); Растворитель				
																РПК- 265П) (10)				
	0	Дренажная	1	87	I -	14				0	0				03	Сероводород (	0.00001		0.000000	20
	3 9			60	емкость	23									33		108		0515	26
		емкость 8 м3			8 м3											Дигидросульфид) (518)				
															04 15	Смесь углеводородов	0.01338		0.000062	20 26
																предельных C1-C5 (				
															04	1502*) Смесь	0.00495		0.000023	20
															16	углеводородов	0.00493		0.000023	26
																предельных C6-C10 (				
																1503*) Бензол (64)	0.00006		0.000000	20
															02	Диметилбензол	46 0.00002		0.000000	
															16	(смесь о-, м-, п-	03		0944	
																изомеров) (203)				
															06 21	Метилбензол (349)	0.00004		0.000000	
	0	Дизельген	1		Дизельгенера	14		0.63463	177	0	0				03	Азота (IV)	0.17066	443.277	0.33536	20
	4 0	ерато		90	тор	24		4							01	диоксид (	6667			26
		р AKSA 200кВт			AKSA 200kBt											Азота диоксид) (4)				
															03	Азот (II) оксид (	0.02773 3333	72.033	0.054496	20 26
															03	Азота оксид) (6) Углерод (Сажа,	0.00793	20.614	0.014971	20
															28	Углерод черный)	6667		466	
															U3	(583) Сера диоксид (	0 06666	173.155	0.131	20
I	I	1 1	1	I	I	ı I	ı I	I	ı	I		ı I İ	ı	I I	100	I сећа чискоми (	0.00000	1 110.100	1 0.131	20

							- 1				I	I	1	30		6667			26
														03	-	0.17222	447.317	0.3406	20 26
														07	углерода, Угарный газ) (584) Бенз/а/пирен (3,4-	0.00000	0.0005		20 26
														13 25	Бензпирен) (54) Формальдегид ( Метаналь) (609)	0.00190	4.948		20 26
														27 54	Алканы C12-19 /в пересчете на C/ (	0.04603 1667	119.559		20 26
															Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-				
0 4 0	Дренажная		Дренажная емкость	14 25				0	0					03	265П) (10) Сероводород (	0.00001		0.000000 0515	
	емкость 8 м3		8 м3												Дигидросульфид) (518) Смесь углеводородов	0.01338		0.000062	20 26
															предельных C1-C5 ( 1502*) Смесь углеводородов предельных C6-C10 (	0.00495		0.000023	20 26
														02	1503*) Бензол (64)	0.00006 46			26
															Диметилбензол (смесь о-, м-, п- изомеров)	0.00002		0.000000	
0 4 2	РВС-1000 м3	87 60	РВС-1000 м3	14 26				0	0					06 21 03 33	(203) Метилбензол (349) Сероводород (	0.00004 06 0.00022 16		0.000000 1888 0.002694	26
2															Дигидросульфид) (518) Смесь углеводородов предельных	0.2677		3.253	20 26
															С1-С5 ( 1502*) Смесь углеводородов предельных С6-С10 ( 1503*)	0.099		1.203	20 26

1						1						1			Бензол (64)	0.00129	0.015	7   20
														02 06 16	Диметилбензол (смесь	3 0.00040 6	0.0049	26 4 20 26
															о-, м-, п- изомеров)			
														06 21	(203) Метилбензол (349)	0.00081	0.0098	8 20 26
	0	РВС-1000 м3	1	87 60	РВС-1000 м3	14 27			0	0				03	Сероводород (	0.00022 16	0.00269	
	2														Дигидросульфид) (518)			
														04 15	Смесь углеводородов предельных	0.2677	3.25	3 20 26
															C1-C5 ( 1502*)		1 00	
														04 16	Смесь углеводородов предельных С6-С10 (	0.099	1.20	3 20 26
															1503*) Бензол (64)	0.00129	0.015	
														02 06 16	Диметилбензол (смесь	3 0.00040 6	0.0049	26 4 20 26
															о-, м-, п- изомеров) (203)			
														21	(203) Метилбензол (349)	0.00081	0.0098	26
	0 4 2	РВС-700 м3	1	87 60	РВС-700 м3	14 28			0	0				03	Сероводород (	0.00022 16	0.00188	4 20 26
	2														Дигидросульфид) (518)			
														04 15	Смесь углеводородов предельных C1-C5 (	0.2677	2.27	5 20 26
														04	1502*) Смесь	0.099	0.84	
														16	углеводородов предельных C6-C10 (			26
														06 02	1503*) Бензол (64)	0.00129	0.01	1 20 26
														06	Диметилбензол (смесь	0.00040	0.00345	
															о-, м-, п- изомеров) (203)			
				. –					_	_				21	Метилбензол (349)	0.00081	0.0069	26
	0 4 2	РВС-200 м3	1	87 60	РВС-200 м3	14 29			0	0				33	Сероводород (	0.00022	0.00080	8 20 26
															Дигидросульфид) (518)			
														04 15	Смесь углеводородов предельных	0.2677	0.97	5 20 26
															C1-C5 (			

											04	1502*) Смесь углеводородов предельных C6-C10 ( 1503*)	0.099		0.361	20 26
											06 02 06 16	Бензол (64)  Диметилбензол (смесь о-, м-, п- изомеров)	0.00129 3 0.00040 6		0.00471	26
0 4	РВС-200 м3	1	87 60	РВС-200 м3	14 30		0	0			06 21 03 33	(203) Метилбензол (349) Сероводород (	0.00081 3 0.00022 16		0.00296	26
2											04 15	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (	0.2677		0.975	20 26
											04 16	1502*) Смесь углеводородов предельных C6-C10 ( 1503*)	0.099		0.361	20 26
											06 02	Бензол (64)	0.00129		0.00471	26
											06 16	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00040		0.00148	26
0 4 2	Печь подогрева	1	36 00	Печь подогрева	14 31	0.0606	0	0			06 21 03 01	Метилбензол (349) Азота (IV) диоксид (	0.00081 3 0.00371	61.221	0.00296	26
	пп-0,63			пп-0,63							03	Азота диоксид) (4) Азот (II) оксид (	0.00060	9.950	0.00781	20 26
											03 37	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00773	127.558	0.1002	20 26
											04	газ) (584) Метан (727*)	0.00773	127.558	0.1002	
0 4	РВС - 300 м3 (	1	87 60	РВС - 300 м3 (	14 32		0	0			10 03 33	Сероводород (	0.00022		0.00416	26 20 26
3	отстаиван ие пластовой воды)			отстаивание пластовой воды)							04 15	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (	0.2677		5.02	20 26
											04	1502*) Смесь углеводородов	0.099		1.857	20 26

6	0 6	0 6	0	6	0 6	6	0 6 0 6	0 6 0 6	0
0.00762 2 2 0.01525 2 0.00416 2	5.02	0.02426 2	0.00762 2	0.00416 2	5.02		0.00762 2	0.01525	5.02
0.00129 3 0.00040 6 0.00081 3 0.00022	0.2677	0.00129	0.00040	0.00081 3 0.00022 16	0.2677	0.099	0.00129 3 0.00040 6	0.00081 3 0.00022 16	0.2677
предельных C6-C10 ( 1503*) Бензол (64) Диметилбензол (смесь о-, м-, п- изомеров) (203) Метилбензол (349) Сероводород (	Дигидросульфид) (518) Смесь углеводородов предельных C1-C5 ( 1502*)	углеводородов предельных C6-C10 ( 1503*) Бензол (64)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	Метилбензол (349) Сероводород ( Дигидросульфид)	(518) Смесь углеводородов предельных C1-C5 ( 1502*)	Смесь углеводородов предельных C6-C10 ( 1503*)		(203) Метилбензол (349) Сероводород (	Дигидросульфид) (518) Смесь
06 02 06 16	04	16	06 16	06 21 03 33	04	04	06 02 06 16	06 21 03 33	04
0				0				0	
0				0				0	
L4	33			L 4 3 4				L 4 3 5	
C - 30				C - 30				C - 30	
87 PB	60			87 PB				87 PB	
1				1				1	
- 300				- 300				- 300	
	м3			РВС м3				РВС м3	
0	4 3			0 4 3				0 4 3	

						1 1	1 1			1		1		1 1	1	углеводородов				26
															0.1	углеводородов предельных C6-C10 (	0.099		1.857	20 26
															0		0.00129		0.02426	
															0.01	Диметилбензол (смесь о-, м-, п- изомеров)	3 0.00040 6		0.00762	26 20 26
															0		0.00081		0.01525	
		Дренажная	1	87	Дренажная	14				0	0				0.	В Сероводород (	0.00001		0.000000	
3		емкость 8 м3		60	емкость 8 м3	36									0.1	Дигидросульфид) (518) Смесь углеводородов предельных С1-С5 (	0.01338		0.000062	
															0	углеводородов предельных С6-C10 (	0.00495		0.000023	20 26
															0		0.00006		0.000000	20
															0.01	Б Диметилбензол (смесь о-, м-, п- изомеров)	46 0.00002 03		0.000000 0944	
																(203) Метилбензол	0.00004		0.000000	
(	)	Печь	1	51		14 38		0.091		0	0				0.0	Asora (IV)	06 0.00718	78.901	1888 0.1336	
3	3	подогрева ПП-0,63		60	подогрева ПП-0,63	38									0	Диоксид ( Азота диоксид) (4)				26
															0:	В Азот (II) оксид (	0.00116	12.824	0.0217	20 26
																Азота оксид) (6) Углерод оксид	0.00773	84.945	0.1437	
															0	газ) (584)	0.00773	84.945	0.1437	20
		Печь ЈМ-СН-	1	43 92	Печь ЈМ-СН-Ј400-	14 39		0.1109		0	0				1	) 	0.01069	96.393	0.169	26
		J400-Q15.			Q15.0										0	Азота диоксид) (4) В Азот (II) оксид (	0.00173	15.663	0.02747	20
															0	Азота оксид) (6)	7	10.000	0.02/17	26
1	ı	'	ı I	ı I	1	1 1	1 1	' '	1	'		 1	1	1 1	ı	1 / (3/	ı I		ı	1

											03	Углерод оксид (Окись	0.00943	85.032	0.149	20   26
											04	углерода, Угарный газ) (584) Метан (727*)	0.00943	85.032	0.149	20
0 0	Печь ЈМ-СН-	1		Печь JM-CH-J400-	14 40	0.1109	0	0			10 03 01	Азота (IV) диоксид (	0.01069	96.393	0.168	26
<u> </u>	J400-Q15.			Q15.0							03	Азота диоксид) (4) Азот (II) оксид (	0.00173	15.663	0.0273	
											04 03 37	Азота оксид) (6) Углерод оксид (Окись	0.00943	85.032	0.1482	26 20 26
											04	углерода, Угарный газ) (584) Метан (727*)	0.00943	85.032	0.1482	20
0 0 1	Печь НЈ-200-Н/	1		Печь НЈ-200-Н/10-	14 41	0.0457	0	0			10 03 01	Азота (IV) диоксид (	0.00181	39.606	0.02864	26
	10-Q			Q							03	Азота диоксид) (4) Азот (II) оксид (	0.00029 43	6.440	0.00465	20 26
											03	Азота оксид) (6) Углерод оксид (Окись	0.00388	84.902	0.0614	
											04	углерода, Угарный газ) (584) Метан (727*)	0.00388	84.902	0.0614	
0 0 1	Печь НЈ-200-Н/			Печь НЈ-200-Н/10-	14 42	0.0457	0	0			10 03 01	диоксид (	0.00181	39.606	0.0285	26 20 26
	10-Q			Q							03	Азота диоксид) (4) Азот (II) оксид (	0.00029 43	6.440	0.00463	20 26
											03 37	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00388	84.902	0.0611	20 26
											04	Угарный газ) (584) Метан (727*)	0.00388	84.902	0.0611	20 26
1 6 9	Устьевой	1	64	Устьевой	14 45	0.02033	0	0			03	Азота (IV) диоксид (	0.00221	108.903	0.069	
	нагревате ль ППТМ-0,2Г			нагреватель ППТМ- 0,2Г							03		0.00036	17.708	0.01122	20 26
											03 37	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00173	85.096	0.054	20 26
											04	Угарный газ) (584) Метан (727*)	0.00173	85.096	0.054	20

1 1	1 1			I	I	1	I	I		I	I	I	1 1	10	I		<u> </u>		26
0 3	Печь подогрева	1		Печь подогрева	14 46	0.091	0	0							Азота (IV) диоксид (	0.00718	78.901	0.113	
8	пп-0,63 №4			пп-0,63 №4											Азота диоксид)				
														03	(4) Азот (II) оксид (	0.00116	12.824	0.01837	20 26
															Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00773	84.945	0.1216	
															газ) (584) Метан (727*)	0.00773	84.945	0.1216	
1 8	Газопоршн евая	1	84 72	Газопоршнева я	14 47		0	0						10 03 01	Азота (IV) диоксид (	0.02224		0.432	26 20 26
0	установка			установка (ГПУ)											Азота диоксид) (4)				
	ГПУ)			(1110)										03 04	Азот (II) оксид (	0.00361		0.0702	20 26
														03 37	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.0757		1.474	20 26
														04	газ) (584) Метан (727*)	0.01663		0.324	20 26
1 8	Газопоршн евая	1	84 72	Газопоршнева я	14 48		0	0						03	Азота (IV) диоксид (	0.02224		0.432	
0	установка			установка											Азота диоксид)				
	TUA)			(ГПУ)										03	(4) Азот (II) оксид (	0.00361		0.0702	20 26
														03 37	Азота оксид) (6) Углерод оксид (Окись	0.0757		1.474	20 26
															углерода, Угарный газ) (584)				
														04	Метан (727*)	0.01663		0.324	20 26
1 8	Газопоршн евая	1	84 72	Газопоршнева я	14 49		0	0						03	Азота (IV) диоксид (	0.02224		0.432	20 26
0	установка			установка											Азота диоксид)				
	TUA)			(ГПУ)										03	(4) Азот (II) оксид (	0.00361		0.0702	20 26
														03 37	Азота оксид) (6) Углерод оксид (Окись углерода,	0.0757		1.474	20 26
														0.4	Угарный газ) (584) Метан (727*)	0.01663		0.324	20
1	Газопоршн	1		Газопоршнева	14		0	0						10 03	Азота (IV)	0.02224		0.324	26 20
8 0	евая		72	я	50									01	диоксид (				26
	установка (			установка (ГПУ)											Азота диоксид) (4)				

I	ГПУ)	I	I	1 1 1	1 1 1	I	I	1 1 1	1 10	3   Азот (II) оксид (	0.00361	0.0702   20
	1113 /								0	4	4	26
										Азота оксид) (6) 3 Углерод оксид	0.0757	1.474 20
									3		0.0757	26
										углерода,		
										Угарный газ) (584)		
									0	4 Метан (727*)	0.01663	0.324 20
1	Парадории	1 22	2 Газопоршнева	14		0	0		1 0		0.02224	0.432   26
1 8	Газопоршн евая	1 22	2 я	51							0.02224	0.432   20   26
0												
	установка (		установка (ГПУ)							Азота диоксид) (4)		
	ГПУ)		(=====,						0	3 Азот (II) оксид (	0.00361	0.0702 20
									0	4     Азота оксид) (6)	4	26
									0	З Углерод оксид	0.0757	1.474 20
									3	7 (Окись		26
										углерода, Угарный		
										газ) (584)		
									0 1		0.01663	0.324 20
1	Газопоршн	1 22	? Газопоршнева	14		0	0				0.02224	0.432 20
8	евая	32	я -	52					0			26
0	установка		установка							Азота диоксид)		
	(		(ГПУ)							(4)		
	ГПУ)								0 0	1	0.00361	0.0702 20 26
										Азота оксид) (6)	1	
									0		0.0757	1.474   20
									3	7 (Окись углерода,		26
										Угарный		
										газ) (584) 4 Метан (727*)	0.01663	0.324 20
									1	0		26
1	Газопоршн	1 22	? Газопоршнева	14 53		0	0			3 Азота (IV)	0.02224	0.432   20
8	евая	32	2   я	53						1 диоксид (		26
	установка		установка							Азота диоксид)		
	(   ГПУ)		(ГПУ)							(4) 3 Азот (II) оксид (	0.00361	0.0702 20
	1110 /								0		4	26
										Азота оксид) (6)	0.0757	1.474 20
									3	3 Углерод оксид 7 (Окись	0.0757	1.474 20 26
										углерода,		
										Угарный газ) (584)		
										4 Метан (727*)	0.01663	0.324 20
1	Тарала	1 20	) Tanonomica			0	0		1	O   3   Asota (IV)	0.02224	0.432 20
1 8	Газопоршн евая		? Газопоршнева ? я	14 54					1 1	3   АЗОТА (IV) 1   диоксид (	0.02224	26
0												
	установка (		установка (ГПУ)							Азота диоксид) (4)		
	ГПУ)		()							3 Азот (II) оксид (	1	0.0702 20
									0	4   Азота оксид) (6)	4	26
										3 Углерод оксид	0.0757	1.474 20
										7 (Окись		26
- 1	1 1	I	I	1 1	1 1	I	l		1 1	углерода,	I I	1 1 1

1 1	I	1	ı	I	ı	1 1 1 1	1	1	ı	ı	1	1	1 1	I	V	1 1	l I	1 1
															Угарный газ) (584)			
															Метан (727*)	0.01663	0.324	
		1	10		1 1				0					10	Азота (IV)	0.02224	0 07016	26
8	Газопоршн евая	1	48	Газопоршнева	14 55			0						03	диоксид (	0.02224	0.07216	26
0														-	H			
	установка			установка											Азота диоксид)			
	(   ГПУ)			(ГПУ)										03	(4) Азот (II) оксид (	0.00361	0.011726	20
														04	11301 (11) ОКСИД (	4	0.011720	26
															Азота оксид) (6)			
														03	Углерод оксид (Окись	0.0757	0.2466	20
														] ] /	углерода,			
															Угарный			
														04	газ) (584) Метан (727*)	0.01663	0.0542	20
														10	Merah (/2/")	0.01003	0.0342	26
1	Газопоршн	1	12	Газопоршнева	14			0	0					03	Азота (IV)	0.02224	0.07216	20
8	евая		48	я	56									01	диоксид (			26
	установка			установка											Азота диоксид)			
	(			(ГПУ)											(4)			
	ГПУ)														Азот (II) оксид (	0.00361	0.011726	
														04	Азота оксид) (6)	4		26
														03	Углерод оксид	0.0757	0.2466	20
														37	(Окись			26
															углерода, Угарный			
															газ) (584)			
															Метан (727*)	0.01663	0.0542	
	Газопоршн	1	1.0	Таропорицора	1 /			0	0					10	Asora (IV)	0.02224	0.07216	26
8	евая	1	48	Газопоршнева	14 57									01	диоксид (	0.02224	0.07210	26
0																		
	установка			установка (ГПУ)											Азота диоксид) (4)			
	(   ГПУ)			(1119)											(4) Азот (II) оксид (	0.00361	0.011726	20
														04		4		26
														^2	Азота оксид) (6)	0 0757	0.2466	
														37	Углерод оксид (Окись	0.0757	0.2400	26
															углерода,			
															Угарный			
														0.4	газ) (584) Метан (727*)	0.01663	0.0542	20
														10				26
	Газопоршн	1		Газопоршнева	14 58			0	0						Aзота (IV)	0.02224	0.07216	
8 0	евая		48	Я	38									01	диоксид (			26
	установка			установка											Азота диоксид)			
	(			(ГПУ)										0.2	(4)	0 00261	0 011706	
	ГПУ)													03	Азот (II) оксид (	0.00361	0.011726	26
															Азота оксид) (6)	_		
														03	Углерод оксид	0.0757	0.2466	
														37	(Окись углерода,			26
															углерода <b>,</b> Угарный			
															ras) (584)			
														04 10	Метан (727*)	0.01663	0.0542	20 26
	Газопоршн	1	12	Газопоршнева	14			0	0					03	Азота (IV)	0.02224	0.07216	20
8	евая		24	я	59										диоксид (		0.07216	26

								02
.01172	0.0542 0.0721	0.246	0.054	.0117	0.05	0.246	0.054	0.07
0.00361 4 0.0757	0.01663	0.00361 4	0.01663	0.00361 4 0.0757	0.01663	0.00361 4 0.0757	0.01663	0.00361
(Окись	углерода, Угарный газ) (584) Метан (727*) Азота (IV) диоксид ( Азота диоксид)	Азот (II) оксид ( Азота оксид) (6) Углерод оксид (Окись углерода,	Угарный газ) (584) Метан (727*) Азота (IV)	Азота оксид) (6) Углерод оксид	Угарный газ) (584) Метан (727*)	Азота диоксид) (4) Азот (II) оксид ( Азота оксид) (6) Углерод оксид (Окись углерода,	Угарный газ) (584) Метан (727*) Азота (IV)	Азота диоксид) (4) Азот (II) оксид ( Азота оксид) (6)
03	04 10 03 01	04 03 37	04 10 03	03 04 03 37	04 10 03	03 04 03 37	04 10 03	03 04
	0		0		0		0	
	14		14 61		14 62		14 63	
установка (ГПУ)	Газопоршнева я установка (ГПУ)	(1110)	Газопоршнева я	установка (ГПУ)	Газопоршнева я	установка (ГПУ)	Газопоршнева я	установка (ГПУ)
	24		12 24		12 24		84 72	
	1		1		1		1	
установка ( ГПУ)	Газопоршн евая установка	ГПУ)	Газопоршн евая	установка ( ГПУ)	Газопоршн евая	установка ( ГПУ)	Газопоршн евая	установка ( ГПУ)
0	1 8 0							

											03	Углерод оксид (Окись углерода,	0.0757	1.474	20 26
1	Газопоршн	1	84	Газопоршнева	14		0	0			10	Угарный газ) (584) Метан (727*) Азота (IV)	0.01663	0.324	26
9	евая установка		72		64									.,	26
	, , , ,			(1110)							03 04	Азот (II) оксид ( Азота оксид) (6)	0.00361	0.0702	20 26
											03 37	Углерод оксид (Окись углерода, Угарный	0.0757	1.474	20 26
											04	газ) (584) Метан (727*)	0.01663	0.324	20 26
1 7 9	Газопоршн евая	1	84 72	Газопоршнева я	14 65		0	0			03	Азота (IV) диоксид (	0.02224	0.432	
	установка ( ГПУ)			установка (ГПУ)							03	Азота диоксид) (4) Азот (II) оксид (	0.00361	0.0702	20 26
											37	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.0757	1.474	20 26
											04	газ) (584) Метан (727*)	0.01663	0.324	20 26
1 7 9	Газопоршн евая	1		Газопоршнева я	14 66		0	0			03	Азота (IV) диоксид (	0.02224	0.432	
	установка ( ГПУ)			установка (ГПУ)							03	Азота диоксид) (4) Азот (II) оксид (	0.00361	0.0702	20
												Азота оксид) (6) Углерод оксид	0.0757	1.474	26
											37	(Окись углерода, Угарный			26
											04	газ) (584) Метан (727*)	0.01663	0.324	20 26
1 7 9	Газопоршн евая	1	84 72	Газопоршнева я	14 67		0	0			03	Азота (IV) диоксид (	0.02224	0.432	20 26
	установка (			установка (ГПУ)								Азота диоксид) (4)			
	ГПУ)										04	Азот (II) оксид ( Азота оксид) (6)	0.00361	0.0702	20 26
											03 37	Углерод оксид (Окись углерода, Угарный	0.0757	1.474	20 26
												газ) (584) Метан (727*)	0.01663	0.324	20

1 1				1		1	ı	1	1	1 1	1 1	1	0	I	1 1	ı	26
1 7 9	Газопоршн евая	1	84 72	Газопоршнева	14 68		0	0				(	3 Азота (IV) 1 диоксид (	0.02224	0.	. 432	
9	установка ( ГПУ)			установка (ГПУ)									Азота диоксид) (4) 3 Азот (II) оксид (	0.00361	0.0	702	
												(	4 Азота оксид) (6) 3 Углерод оксид 7 (Окись углерода,	0.0757	1.	. 474	26 20 26
													Угарный газ) (584) 4 Метан (727*)	0.01663	0.	.324	20 26
1 7 9	Газопоршн евая	1	84 72	Газопоршнева я	14 69		0	0					3 Азота (IV) 1 диоксид (	0.02224	0.	. 432	
	установка ( ГПУ)			установка (ГПУ)									Азота диоксид) (4) 3 Азот (II) оксид ( 4	0.00361	0.0	702	20 26
												3	Азота оксид) (6) 3 Углерод оксид 7 (Окись углерода, Угарный	0.0757	1.	. 474	20 26
												1	газ) (584) 4 Метан (727*)	0.01663		.324	26
1 7 9	Газопоршн евая	1	84 72	Газопоршнева я	14 70		0	0					3 Азота (IV) 1 диоксид (	0.02224	0.	.432	20 26
	установка ( ГПУ)			установка (ГПУ)									Азота диоксид) (4) 3 Азот (II) оксид ( 4	0.00361	0.0	702	20 26
													Азота оксид) (6) 3 Углерод оксид 7 (Окись	0.0757	1.	. 474	
												1	углерода, Угарный газ) (584) 4 Метан (727*)	0.01663		. 324	26
1 7 9	Газопоршн евая	1	84 72	Газопоршнева я	14 71		0	0					3 Азота (IV) 1 диоксид (	0.02224	0.	.432	20 26
	установка ( ГПУ)			установка (ГПУ)									Азота диоксид) (4) 3 Азот (II) оксид (	0.00361	0.0	702	20 26
													Азота оксид) (6) Углерод оксид 7 (Окись углерода, Угарный	0.0757	1.	. 474	20 26
	Газопоршн	1	QΛ	Газопоршнева	11		0	0				1	газ) (584) 4 Метан (727*) 0 3 Азота (IV)	0.01663		.324	26
7 9	евая	Τ	72	я	14 72								1 диоксид (	0.02224		.434	26
	установка (			установка (ГПУ)									Азота диоксид) (4)				

1 ]	ГПУ)	I	I	1 1	i I I I	1	I	 1 1	N3	Азот (II) оксид (	0.00361	0.0702	20 l
	1113 /								04		4		26
									U3	Азота оксид) (6) Углерод оксид	0.0757	1.474	20
									37	углерод оксид (Окись	0.0757	I	26
										углерода,			
										Угарный газ) (584)			
									04	Метан (727*)	0.01663	0.324	20
									10				26
1 7	Газопоршн евая	1 84	1 Газопоршнева 2 я	14 73		0	0			Азота (IV) диоксид (	0.02224	0.432	20   26
9	EDAA	, ,	2   A	'					01	диоксид (			20
	установка		установка							Азота диоксид)			
	(   ГПУ)		(ГПУ)						03	(4) Азот (II) оксид (	0.00361	0.0702	20
	1110 /								04		4		26
									_	Азота оксид) (6)	0.0757	1 474	
									37	Углерод оксид (Окись	0.0757	1.474	26
									Ĭ,	углерода,			20
										Угарный			
									04	газ) (584) Метан (727*)	0.01663	0.324	20
									10				26
1	Газопоршн		1 Газопоршнева 2 я	14 74		0	0			Asora (IV)	0.02224	0.432	
7 9	евая	1 2	2   H	/4					01	диоксид (			26
	установка		установка							Азота диоксид)			
	(   ГПУ)		(ГПУ)						03	(4) Азот (II) оксид (	0.00361	0.0702	20
	1113,							I I	03	ASOT (II) ORONA (	4		26
										Азота оксид) (6)			
									03 37	Углерод оксид (Окись	0.0757	1.474	20   26
									۱	углерода,			20
										Угарный			
									0.4	газ) (584) Метан (727*)	0.01663	0.324	20
									10	Meran (/Z/")	0.01003		26
L	Газопоршн		1 Газопоршнева			0	0		03	Азота (IV)	0.02224	0.432	20
7 9	евая	72	2 я	75					01	диоксид (			26
,	установка		установка							Азота диоксид)			
	(		(ГПУ)							(4)			
	ГПУ)								03	Азот (II) оксид (	0.00361	0.0702	20   26
										Азота оксид) (6)			
									03	Углерод оксид	0.0757	1.474	<b>I</b>
									37	(Окись углерода,			26
										углерода <b>,</b> Угарный			
										газ) (584)			
									04	Метан (727*)	0.01663	0.324	20   26
1	Газопоршн		Газопоршнева			0	0			Asora (IV)	0.02224	0.432	
7	евая	72	2 я	76					01	диоксид (			26
9	установка		установка							Азота диоксид)			
	(		(ГПУ)							(4)			
	ГПУ)									Азот (II) оксид (	1	0.0702	
									04	Азота оксид) (6)	4		26
									03	Углерод оксид	0.0757	1.474	
									37				26
	1	l			. 1 1	I	1	1 1	I	углерода,	l i	1	

1 7 9	Газопоршн евая	1 84 72	Газопоршнева я	14 77	0	0		04 10 03 01	Угарный газ) (584) Метан (727*) Азота (IV) диоксид (	0.01663	0.324	26
	установка ( ГПУ)		установка (ГПУ)					03 04 03 37	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00361 4 0.0757	0.0702	26
1 7 9	Газопоршн евая	1 84	Газопоршнева	14 78	0	0		04 10 03 01		0.01663	0.324	26
	установка ( ГПУ)		установка (ГПУ)					03 04 03 37	Азота диоксид) (4) Азот (II) оксид ( Азота оксид) (6) Углерод оксид (Окись	0.00361 4 0.0757	0.0702	26
1	Газопоршн	1 84	Газопоршнева	14	0	0		04 10 03	углерода, Угарный газ) (584) Метан (727*)	0.01663	0.324	20 26 20 20
7 9	евая установка ( ГПУ)	72	я установка (ГПУ)	79					диоксид ( Азота диоксид) (4) Азот (II) оксид ( Азота оксид) (6)	0.00361	0.0702	26
								37	Углерод оксид (Окись углерода, Угарный газ) (584) Метан (727*)	0.0757	0.324	26
1 7 9	Газопоршн евая установка	1 84 72	Газопоршнева я установка (ГПУ)	14 80	0	0		10 03 01	Азота (IV) диоксид ( Азота диоксид) (4)	0.02224	0.432	26 20 26
	ГПУ)							04	Азот (II) оксид ( Азота оксид) (6) Углерод оксид (Окись углерода,	0.00361 4 0.0757	1.474	26
1 7	Газопоршн евая	1 84 72	Газопоршнева я	14 81	0	0			Угарный газ) (584) Метан (727*) Азота (IV) диоксид (	0.01663	0.324	20 26 2 20 26

( ГПУ) Газопоршн евая	1		(ГПУ)								1 1					(4)			
	1														03	Азот (II) оксид (	0.00361	0.07	02
	1														03 37	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.0757	1.4	74
	1 1															газ) (584) Метан (727*)	0.01663	0.33	24
		84 72	Газопоршнева я	14 82				0	0						10 03 01	Asora (IV)	0.02224	0.43	32
установка ( ГПУ)			установка (ГПУ)												03	Азота диоксид) (4) Азот (II) оксид (	0.00361	0.07	02
															03	Азота оксид) (6) Углерод оксид (Окись	0.0757	1.4	74
																Угарный газ) (584) Метан (727*)	0.01663	0.33	24
Газопоршн евая	1			14 83				0	0						03	Азота (IV)	0.02224	0.14	44
установка ( ГПУ)			установка (ГПУ)													Азота диоксид) (4) Азот (II) оксид (	0.00361	0.023	46
															03	(Окись	0.0757	0.49	33
																Угарный газ) (584) Метан (727*)	0.01663	0.10	8 4
Газопоршн евая	1	14 88	Газопоршнева я	14 84				0	0						03	Asora (IV)	0.02224	0.14	44
установка ( гпу)			установка (ГПУ)												03	Азота диоксид) (4)	0 00361	0.023	4 6
1110 /															04	Азота оксид) (6)	4		
															37	(Окись углерода, Угарный	0.0707		
																Метан (727*)	0.01663	0.10	84
Газопоршн евая	1			14 85				0	0								0.02224	0.14	14
установка ( ГПУ)			установка (ГПУ)												03	Азота диоксид) (4) Азот (II) оксид (		0.023	4 (
I e	Газопоршн евая (ПУ) Газопоршн евая (ПУ)	Газопоршн 1 евая (ПУ) 1 евая	Газопоршн 1 14 88 7СТАНОВКА (ПУ)	Газопоршн 1 14 Газопоршнева я установка (ГПУ)  Газопоршн 2 1 14 Газопоршнева я установка (ГПУ)  Газопоршн 2 1 14 Газопоршнева я установка (ГПУ)  Газопоршн 3 1 14 Газопоршнева я установка (ГПУ)	Газопоршн 1 14 Газопоршнева 14 83 Установка (ГПУ)  Газопоршн 1 14 Газопоршнева 14 88 я я я я я я я я я я я я я я я я я я	Сазопоршн 1 14 Газопоршнева 14 83 Установка (ГПУ)  Сазопоршн 1 14 Газопоршнева 14 84 Установка (ГПУ)  Сазопоршн 2 1 14 Газопоршнева 14 84 Установка (ГПУ)  Сазопоршн 1 14 Газопоршнева 14 84 Установка (ГПУ)	Сазопоршн 1 14 Газопоршнева 14 83 Установка (ГПУ)  Сазопоршн 1 14 Газопоршнева 14 84 Установка (ГПУ)  Сазопоршн 2 1 14 Газопоршнева 84 Установка (ГПУ)  Сазопоршн 1 14 Газопоршнева (ГПУ)	Газопоршн 1 14 Газопоршнева 14 83 Установка (ГПУ)  Газопоршн 1 14 88 я 84 Установка (ГПУ)  Газопоршн 1 14 7азопоршнева 14 84 Установка (ГПУ)  Газопоршн 1 14 Газопоршнева 14 85 я 85 Ягазопоршнева 14 85 Ягаз	Разопоршн 1 14 Газопоршнева 14 83	азопоршн 1 14 Газопоршнева 14 83 7 0 0 0 от тру 1 14 Газопоршнева 14 84 7 0 0 от тру 1 14 Газопоршнева 14 84 7 0 от тру 1 14 Газопоршнева 14 84 7 0 от тру 1 14 Газопоршнева 14 84 7 0 от тру 1 14 Газопоршнева 14 85 0 от тру 1 14 6 от тру 1 1	Становка (ГПУ)  Тазопоршн 1 14 Газопоршнева 14 88 7  Становка (ГПУ)  Тазопоршн 1 14 Газопоршнева 14 84 98 7  Тазопоршн (ГПУ)  Тазопоршн 1 14 Газопоршнева 14 84 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Становка (ППУ)   Газопоршн 1 14 Газопоршнева 14 83	Сазопоршн 1 14 Газопоршнева 14 83	Газопорши 1 14 Газопоршиева 14 88 л 0 0 0 П 14 Газопоршиева 14 88 л 0 0 0 П 14 Газопоршиева 14 88 л 14 П 14 Газопоршиева 14 П 14 Газопоршиева 14 П 14 Газопоршиева 14 П 15 П	1	1	Table	A	

										03	углерода,	0.0757	0.493	3   20   26
1	Парадории	1	1 /	Tanaganggan	1.4					10		0.01663	0.108	26
1 7 9	Газопоршн евая установка	1	88	установка	14 86		0	0		01	Азота (IV) диоксид ( Азота диоксид)	0.02224	0.144	4 20 26
	( ГПУ)			(ГПУ)						03	(4) Азот (II) оксид ( Азота оксид) (6)	0.00361	0.0234	6 20 26
										03	Углерод оксид (Окись углерода, Угарный	0.0757	0.493	3 20 26
										04	газ) (584) Метан (727*)	0.01663	0.108	4 20 26
1 7 9	Газопоршн евая	1	14 88	Газопоршнева я	14 87		0	0		03	Asora (IV)	0.02224	0.048	
	установка (			установка (ГПУ)							Азота диоксид) (4)			
	ГПУ)									03	Азот (II) оксид ( Азота оксид) (6)	0.00361	0.007	9 20 26
										03	Углерод оксид (Окись углерода, Угарный	0.0757	0.166	2 20 26
										04	газ) (584) Метан (727*)	0.01663	0.036	5 20 26
1 7 9	Газопоршн евая	1		Газопоршнева я	14 88		0	0		03	Азота (IV) диоксид (	0.02224	0.048	6 20 26
	установка (			установка (ГПУ)							Азота диоксид) (4)			
	ГПУ)									03	1	0.00361	0.007	9 20 26
										03	углерода,	0.0757	0.166	2 20 26
										0.4	Угарный газ) (584) Метан (727*)	0.01663	0 036	5 20
1	Газопоршн	1		Газопоршнева			0	0		10	Asora (IV)	0.02224		26 6 20
7 9	евая установка		88	я установка	89					01	диоксид ( Азота диоксид)			26
	( LUA)			(ГПУ)						03	(4) Азот (II) оксид (	0.00361	0.007	9 20 26
										03	углерода,	0.0757	0.166	2 20 26
										0.4	Угарный газ) (584) Метан (727*)	0.01663	0.036	5 20

1 1	1	1 1		I	I	I	ı		1 1	ı	I	1	1	10	 		I I		26
1 7 9	Газопоршн евая	1	14 88	Газопоршнева я	14 90		0	0							Азота (IV) диоксид (	0.02224		0.0486	
	установка ( ГПУ)			установка (ГПУ)										03	Азота диоксид) (4) Азот (II) оксид (	0.00361		0.0079	20
	1110 /													04	Азота оксид) (6) Углерод оксид	0.0757		0.1662	26
														37	(Окись углерода, Угарный газ) (584)				26
														04	Метан (727*)	0.01663		0.0365	20 26
1 7 9	Газопоршн евая	1	14 40	Газопоршнева я	14 91		0	0							Азота (IV) диоксид (	0.02224		0.0486	
	установка ( ГПУ)			установка (ГПУ)										0.3	Азота диоксид) (4) Азот (II) оксид (	0.00361		0.0079	20
	1110 /													04	Азота оксид) (6)	4		0.0073	26
														03 37	Углерод оксид (Окись углерода,	0.0757		0.1662	20 26
														04	Угарный газ) (584) Метан (727*)	0.01663		0.0365	20 26
1 7 9	Газопоршн евая	1	14 40	Газопоршнева я	14 92		0	0							Азота (IV) диоксид (	0.02224		0.0486	
	установка			установка (ГПУ)											Азота диоксид) (4)				
	ГПУ)			(1110)										03 04	Азот (II) оксид (	0.00361		0.0079	20 26
														03		0.0757		0.1662	20 26
															углерода, Угарный газ) (584)	0.01662		0.0265	
	To 10 0 7 0 10 10 10 10 10 10 10 10 10 10 10 10 1	1	1 /	По	1 /		0	0						10	Метан (727*)	0.01663		0.0365	26
7 9	Газопоршн евая	1	40		93		0	U						01	Азота (IV) диоксид (	0.02224		0.0486	26
	установка			установка (ГПУ)											Азота диоксид) (4)	0.00061		0 0070	
	ГПУ)													03	Азот (II) оксид (	0.00361		0.0079	26
														03	Азота оксид) (6) Углерод оксид (Окись	0.0757		0.1662	20 26
															углерода, Угарный газ) (584)				
														04	Метан (727*)	0.01663		0.0365	20 26
	Газопоршн евая	1	14 40	Газопоршнева я	14 94		0	0							Азота (IV) диоксид (	0.02224		0.0486	
9	установка			установка											Азота диоксид)				
1 1	1 (	i i		(ГПУ)	I	I	١		ı l	I	ı	I	I	I	(4)		I I		I

I	ГПУ)	I	1	 	1 1 1	1	l	1 (	03   As	зот (II) оксид (	0.00361	0.0079	20 I
	1110,								04		4		26
									03   Уз	зота оксид) (6) глерод оксид Окись	0.0757		20 26
									у	глерода, гарный			20
									04 Me	аз) (584) етан (727*)	0.01663	0.0365	
1	Газопоршн		Газопоршнева	14		0	0			зота (IV)	0.02224	0.04704	
9	евая установка	40	я установка	95						иоксид ( вота диоксид)			26
	( гпу)		(ГПУ)						(4	3014 длокелд) 4) 30т (II) оксид (	0.00361	0.007644	20
	1110 /								04	зота оксид) (6)	4		26
									03   Уз	глерод оксид Окись	0.0757	0.1608	20 26
									у:	глерода, гарный			20
									04 Me	аз) (584) етан (727*)	0.01663	0.03535	
1 7	Газопоршн	1 14 40	Газопоршнева	14 96		0	0			зота (IV)	0.02224	0.04704	
9	евая установка	40	я установка	96						иоксид ( вота диоксид)			26
	( ГПУ)		(ГПУ)						(4	4) зот (II) оксид (	0.00361	0.007644	20
	1 110 /								04	зота оксид) (6)	4		26
									03 Уі 37 (С уі	глерод оксид Окись глерода, гарный	0.0757	0.1608	20 26
									04 Me	аз) (584) етан (727*)	0.01663	0.03535	
1 7	Газопоршн евая		Газопоршнева	14 97		0	0			зота (IV) иоксид (	0.02224	0.04704	26 20 26
9	установка		установка							зота диоксид)			
	(   ГПУ)		(ГПУ)							4) зот (II) оксид (	0.00361	0.007644	20 26
									As	зота оксид) (6) глерод оксид	0.0757	0.1608	
									уз Уз	Окись глерода, гарный			26
									04 Me	аз) (584) етан (727*)	0.01663	0.03535	20
1	Газопоршн		Газопоршнева	14		0	0			зота (IV)	0.02224	0.04704	l l
9	евая установка	40	я установка	98						иоксид ( вота диоксид)			26
	установка ( ГПУ)		(ГПУ)						(4	зота диоксид) 4) зот (II) оксид (	0.00361	0.007644	20
	1 110 /								04	зот (II) оксид ( зота оксид) (6)	4		26
									03 Уз 37 (С	глерод оксид Окись	0.0757	0.1608	20 26
			1						у	глерода,			l

8 8 60/80 80 60/80 01 01 01 диоксид ( Азота диоксид) (4) 03 Азот (II) оксид ( 0.0758 1.1 03 Углерод (Сажа, 0.00972 0.1 0583) 04 0583) 04 0583 0583 0583 0583 0583 0583 0583 0583	1
1	26 20
9 предельных с1-с5 ( 1 УПА-60А 1 43 УПА-60А 30 01 0 0 0 8 60/80 80 60/80 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26
1	20
(4) Азот (II) оксид ( 0.0758 1.1 Азота оксид) (6) Углерод (Сажа, 0.00972 0.1 28 Углерод черный) (583) ОЗ Сера диоксид ( 0.01944 0.30 Ангидрид сернистый, Сернистый, Сернистый, Сернистый,	20 26
0.10 Оли образования и предоставля и предоставления и предоставля и предоставления и предоставления и предоставления и предоставления и предо	20 26
0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.01944 0.019	20 26
сернистый,	20 26
03 Углерод оксид 0.0486 0.74 37 (Окись углерода, Угарный	20 26
13   Проп-2-ен-1-аль   0.00233   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0	20 26
Акролеин, Акрилальдегид) (474) 13 Формальдегид ( 0.00233 0.03	
	26 20 26
пересчете на С/ ( Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10)	
1     АПРС-40     1     43     АПРС-40     30       8     (Урал-       4320)     4320)         0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0	20 26
4320) (4) (3) Азот (II) оксид ( 0.0618 0.97.	20 26

													03	Углерод (Сажа,	0.00792	0.125   20	0 6
														Углерод черный) (583)			
													03 30	Сера диоксид (	0.01583	0.25 20	0
													03	Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный	0.0396	0.625 20	0 6
													13 01	газ) (584) Проп-2-ен-1-аль ( Акролеин, Акрилальдегид)	0.0019	0.03 20	
													13 25	(474) Формальдегид (	0.0019	0.03 20	0
													25 27 54	Метаналь) (609) Алканы C12-19 /в	0.019	0.3 20	0
 1 8 8	АСЦ-320	1	21 84	АСЦ-320	30 03				0	0			03	пересчете на С/ ( Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (	0.0763	0.6 20	0 6
													03	Азота диоксид) (4) Азот (II) оксид (	0.0991	0.78 20	0
														Азота оксид) (6) Углерод (Сажа,	0.0127	0.1 20	0
													03	Углерод черный) (583) Сера диоксид (	0.0254	0.2 20	0
													37	углерода, Угарный газ) (584)	0.0635	0.5 20	6
													13 01	Проп-2-ен-1-аль ( Акролеин, Акрилальдегид) (474)	0.00305	0.024 20	6
													13 25	Формальдегид (	0.00305	0.024 20	0 6
1							I		1					Метаналь) (609)			

												2 5	7   Алканы С12-19 /в	0.0305	0.2	4   20	
													пересчете на С/ ( Углеводороды			26	
													предельные C12-C19 (в пересчете на C);				
													Растворитель РПК- 265П) (10)				
1 8		1	21 84	АСЦ-320	0	30		0	0			0 0		0.0763	0.	6 20 26	
												0	Азота диоксид) (4) 3 Азот (II) оксид (	0.0991	0.7	8 20	
												0	4 Азота оксид) (6) 3 Углерод (Сажа,	0.0127	0.	26	
												2	Углерод черный)	0.0127		26	
												0 3	0	0.0254	0.	2 20 26	
													Ангидрид сернистый, Сернистый газ,				
												0	Сера ( IV) оксид) (516) 3 Углерод оксид	0.0635	0.	5 20	
												3	7 (Окись углерода, Угарный			26	
												1 0	газ) (584) 3 Проп-2-ен-1-аль	0.00305	0.02	4 20 26	
													Акролеин, Акрилальдегид) (474)				
												1 2	3 Формальдегид ( 5	0.00305	0.02	4 20 26	
												2 5	4	0.0305	0.2	4 20 26	
													пересчете на С/ ( Углеводороды предельные				
													C12-C19 (в пересчете на С); Растворитель				
1	ппуа	1		ппуа		30		0	0			0		0.00427	0.033		
8			84			05						0	1 диоксид ( Азота диоксид)			26	
												0 0	(4) 3 Азот (II) оксид (	0.00069	0.0054	6 20 26	
													Азота оксид) (6) 3 Углерод (Сажа,	0.00190	0.01	5 20 26	
													Углерод черный) (583)	0.0449	0.25		
												3	3 Сера диоксид (	0.0449	0.33	3 20 26	

1 8 8	ппу	УA	1	21 84	ППУА	30 06			0	0			37	Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Азота (IV) диоксид ( Азота диоксид) (4)	0.106		0.834	26
													03 04	Азот (II) оксид (	0.00069	0.0	00546	20 26
													03 28	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.00190		0.015	20 26
													03	(583) Сера диоксид (	0.0449	(	0.353	20 26
1 8 8	ппу	УA	1	21 84	ППУА	30 07			0	0			03	Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Азота (IV) диоксид (	0.106		0.834	26
													03	Азота диоксид) (4) Азот (II) оксид (	0.00069 4	0.0	00546	20 26
													03 28	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.00190		0.015	20 26
													03	(583) Сера диоксид ( Ангидрид сернистый, Сернистый газ,	0.0449		0.353	20 26
													03	углерода, Угарный	0.106		0.834	20 26
1 8 8	ппъ	УА	1	21 84	ППУА	30 08			0	0				газ) (584) Азота (IV) диоксид (	0.00427	0	.0336	20 26
														Азота диоксид) (4)			0.05.4.5	
													03	Азот (II) оксид ( Азота оксид) (6)	0.00069 4	0.0	00546	20 26

										03	Углерод (Сажа,	0.00190	0.	015	20 26
										03	Углерод черный) (583) Сера диоксид (	0.0449	0.	353	20 26
										03	Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.106	0.	834	20 26
1 8 8	1 2:		30 09			0	0			03 01	Азота (IV) диоксид (	0.00427	0.0	336	20 26
										03	Азота диоксид) (4) Азот (II) оксид ( Азота оксид) (6)	0.00069	0.00	546	20 26
										03 28		0.00190	0.	015	20 26
										03	(583) Сера диоксид ( Ангидрид	0.0449	0.	353	20 26
										03	сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.106	0.	834	20 26
1 8 8	1 4:	3 АДПМ	30 10			0	0			03 01	Азота (IV) диоксид (	0.038		0.6	20 26
										03	Азота диоксид) (4) Азот (II) оксид ( Азота оксид) (6)	0.0494	0	.78	20 26
										03 28	Углерод (Сажа, Углерод черный)	0.00633		0.1	20 26
										03	(583) Сера диоксид ( Ангидрид	0.01267		0.2	20 26
										03	сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный	0.03167		0.5	20 26
										13	газ) (584) Проп-2-ен-1-аль	0.00152	0.	024	20 26

						Акролеин, Акрилальдегид) (474)			
						13 Формальдегид ( 25	0.00152	0.024	20 26
						Метаналь) (609) 27 Алканы С12-19 /в 54	0.0152	0.24	20 26
						пересчете на С/ ( Углеводороды предельные			
						С12-С19 (в пересчете на С); Растворитель РПК-			
3	АДПМ	1 43 АДПМ	30	0	0	265П) (10) 03 Азота (IV) 01 диоксид (	0.038	0.6	20 26
						Азота диоксид) (4) 03 Азот (II) оксид (	0.0494	0.78	20
						04 Азота оксид) (6)			26
						03 Углерод (Сажа, 28 Углерод черный)	0.00633	0.1	20 26
						(583) 03 Сера диоксид ( 30	0.01267	0.2	20 26
						Ангидрид сернистый, Сернистый газ, Сера (			
						IV) оксид) (516) Углерод оксид 37 (Окись углерода,	0.03167	0.5	20 26
						Угарный газ) (584) 13 Проп-2-ен-1-аль	0.00152	0.024	20
						01 ( Акролеин, Акрилальдегид)			26
						(474) 13 Формальдегид ( 25	0.00152	0.024	20 26
						Метаналь) (609) 27 Алканы С12-19 /в 54	0.0152	0.24	20 26
						пересчете на С/ ( Углеводороды предельные C12-C19 (в пересчете на С);			
						Растворитель РПК-			
	АДПМ	1 43 АДПМ	30 12	0	0	265П) (10) 03 Азота (IV) 01 диоксид (	0.038	0.6	20 26
						Азота диоксид)			
						03 Азот (II) оксид ( 04 Азота оксид) (6)	0.0494	0.78	20

													03	Углерод (Сажа,	0.00633	0.1   20   26
														Углерод черный) (583) Сера диоксид (	0.01267	0.2 20
													30	Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода,	0.03167	0.5 20 26
													13 01	Угарный газ) (584) Проп-2-ен-1-аль ( Акролеин, Акрилальдегид) (474)	0.00152	0.024 20 26
ı													13 25	Формальдегид (	0.00152	0.024 20 26
													27	Метаналь) (609) Алканы C12-19 /в	0.0152	0.24 20 26
	1 8 8	APOK AZN	1	43 80	APOK AZN	30 13			0	0			03	пересчете на С/ ( Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (	0.038	0.6 20 26
													03	Азота диоксид) (4) Азот (II) оксид (	0.0494	0.78 20
													04	Азота оксид) (6) Углерод (Сажа,	0.00633	0.1 20
													28	Углерод черный) (583)		26
													03	Сера диоксид ( Ангидрид сернистый, Сернистый газ,	0.01267	0.2 20 26
													03	Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный	0.03167	0.5 20 26
													13	Акролеин, Акрилальдегид)	0.00152	0.024 20 26
													13 25	(474) Формальдегид (	0.00152	0.024 20
													25	Метаналь) (609)		26

												27 54	Алканы С12-19 /в	0.0152	0.2	4	20
1 8 8	APOK AZN	1	43	APOK AZN	30 14			0	0			03	пересчете на С/ ( Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (	0.038	0.	6	
°													Азота диоксид) (4)				
												03 04	Азот (II) оксид (	0.0494	0.7		20 26
												03	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.00633	0.		20 26
												03	(583) Сера диоксид (	0.01267	0.	2	20 26
													Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516)				
												03 37	Углерод оксид (Окись углерода, Угарный	0.03167	0.	5	20 26
												13 01	газ) (584) Проп-2-ен-1-аль ( Акролеин, Акрилальдегид) (474)	0.00152	0.02		20 26
												13 25	Формальдегид (	0.00152	0.02	4	20 26
												27 54	Метаналь) (609) Алканы C12-19 /в пересчете на С/ ( Углеводороды	0.0152	0.2	4	20 26
													предельные C12-C19 (в пересчете на C); Растворитель РПК-				
1 8 8	АР 32/40 Урал-	1		АР 32/40 Урал-	30 15			0	0				265П) (10) Азота (IV) диоксид (	0.0763	0.	6	20 26
	4320			4320								03	Азота диоксид) (4) Азот (II) оксид (	0.0991	0.7		20 26
													Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.0127	0.	1	20 26
												03	(583) Сера диоксид (	0.0254	0.	2	20 26

ı	1 1		1		ı	1	1		, ,	ĺ	ı	1	1	I.	ĺ	1 1	1	l a	, ,	 	
																		Ангидрид сернистый,			
																		Сернистый газ,			
																		Cepa (			
																		IV) оксид) (516)	0 0605	0.5	
																	37	Углерод оксид (Окись	0.0635	0.5	26
																		углерода,			20
																		Угарный			
																		газ) (584)			
																	13	Проп-2-ен-1-аль	0.00305	0.024	20
																	01	( Акролеин,			26
																		Акрилальдегид)			
																		(474)			
																	13	Формальдегид (	0.00305	0.024	20
																	25	Метаналь) (609)			26
																	27	Алканы С12-19 /в	0.0305	0.24	20
																	54				26
																		пересчете на С/ (			
																		Углеводороды			
																		предельные C12-C19 (в			
																		пересчете на С);			
																		Растворитель			
																		РПК- 265П) (10)			
1	ЦА-320	1	15	ЦA-320	30					0		,					03	20011) (10) ABOTA (IV)	0.0801	0.45	20
1 8 8		-	60	411 020	16												01	диоксид (	0.0001		26
8																					
																		Азота диоксид)			
																	03	(4) Азот (II) оксид (	0.1041	0.585	20
																	0.3		0.1041	0.363	26
																		Азота оксид) (6)			
																	03	Углерод (Сажа,	0.01335	0.075	20
																	28	\\\			26
																		Углерод черный) (583)			
																	03	Сера диоксид (	0.0267	0.15	20
																	30				26
																		Ангидрид			
																		сернистый, Сернистый газ,			
																		Cepa (			
																		IV) оксид) (516)			
																	03	Углерод оксид	0.0667	0.375	20
																	37	(Окись углерода,			26
																		Угарный			
																		газ) (584)			
																	13	Проп-2-ен-1-аль	0.00320	0.018	20
																	01	( Акролеин,	3		26
																		Акролеин, Акрилальдегид)			
																		(474)			
																	13	Формальдегид (	0.00320	0.018	20
																	25		3		26
																	27	Метаналь) (609) Алканы C12-19 /в	0.03203	0.18	20
																	54		3.33233		26
																		пересчете на С/ (			
																		Углеводороды			
																		предельные C12-C19 (в			
ı	I I	1	ı		ı	1	1	ı 1	ı I	I	ı	I	I	1	ı	1 1	I	1 212 213 /12	1 1	1 1	ı İ

1 8 8	Shanxi	1		Shanxi ZYT5200TCY	30 17		0	0			03	пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (	0.0763	0.	. 6
	ZYT5200TC Y										03	Азота диоксид) (4) Азот (II) оксид (	0.0991	0.7	78
												Азота оксид) (6) Углерод (Сажа,	0.0127	0.	, 1
											03	Углерод черный) (583) Сера диоксид (	0.0254	0.	, 2
												Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода,	0.0635	0.	. 5
											13 01	Угарный газ) (584) Проп-2-ен-1-аль ( Акролеин, Акрилальдегид)	0.00305	0.02	24
											13 25	(474) Формальдегид ( Метаналь) (609)	0.00305	0.02	24
1 8 8	ZYT TXY-250	1	21 84	ZYT TXY-250	30		0	0			27 54 03 01	Алканы C12-19 /в пересчете на C/ ( Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) Азота (IV) диоксид (	0.0305	0.2	
											03	Азота диоксид) (4) Азот (II) оксид (	0.0495	0.3	39
											03 28	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.00635	0.0	)5
											03	(583) Сера диоксид ( Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516)	0.0127	0.	.1
											03	Углерод оксид	0.03174	0.2	25

1 1		l I	1		1		1 1	1				l I	I	37	(Окись			2	26
															углерода, Угарный				
														13 01	газ) (584) Проп-2-ен-1-аль ( Акролеин,	0.00152	0.01	.2 2	20 26
														13	Акрилальдегид) (474) Формальдегид (	0.00152	0.01	.2 2	20
														25 27	Метаналь) (609) Алканы C12-19 /в	3 0.01523		.2 2	26   20
														54	пересчете на С/ ( Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-				26
1 8 8	GEABOX for	1		GEABOX for SLUPRY	30 19				0	0				03 01	265П) (10) Азота (IV) диоксид (	0.0521	0.0	19 2	20
	SLUPRY PUMP			PUMP											Азота диоксид) (4)				
														03	Азот (II) оксид (	0.0677	0.11	.7   2	20 26
														03 28	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.00868	0.01	.5 2	20
														03	(583) Сера диоксид (	0.01736	0.0	)3 2	20
															Ангидрид сернистый, Сернистый газ, Сера (				
														03 37	углерода,	0.0434	0.07	75 2	20 26
														13	Угарный газ) (584) Проп-2-ен-1-аль (	0.00208	0.003		20
			+												Акролеин, Акрилальдегид)				$\dashv$
														13 25	(474) Формальдегид (	0.00208	0.003	36 2	20
														27 54	Метаналь) (609) Алканы С12-19 /в	0.02083	0.03		20
															пересчете на С/ ( Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10)				
1 8	GEABOX for	1	48 0	GEABOX for SLUPRY	30 20				0	0				03	265П) (10) Азота (IV) диоксид (	0.0521	0.0	9 2	20

							- 1	1			1			1	
SLUPRY		PUMP										Азота диоксид)			
PUMP											03	Азот (II) оксид (	0.0677	0.117	7 20 26
											03	Азота оксид) (6) Углерод (Сажа,	0.00868	0.015	5 20
											28	Углерод черный)			26
											03	Сера диоксид (	0.01736	0.03	3 20 26
											30	Ангидрид сернистый, Сернистый газ,			26
											03	IV) оксид) (516) Углерод оксид	0.0434	0.075	5 20
											37	углерода, Угарный			26
											13 01	Проп-2-ен-1-аль	0.00208	0.0036	6 20 26
												Акролеин, Акрилальдегид)			
											13 25	Формальдегид (	0.00208	0.0036	6 20 26
											27	Метаналь) (609) Алканы С12-19 /в		0.036	6 20
											54	пересчете на С/ ( Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-			26
XJ250	1 30 72	XJ250	30 21			0	0				03	Азота (IV) диоксид (	0.1628	1.8	8 20 26
												Азота диоксид) (4)	0.0116	2 24	4 20
													0.2116	2.34	4 20 26
											03 28	Углерод (Сажа,	0.0271	0.3	3 20 26
											03	(583)	0.0543	0.6	6 20
											30	Ангидрид сернистый,			26
												Сера ( IV) оксид) (516)	0.1056	4.5	
											37	(Окись углерода, Угарный	0.1356	1.5	5   20   26
											13	газ) (584) Проп-2-ен-1-аль	0.00651	0.072	2 20
	PUMP	YJ250 1 30	XJ250 1 30 XJ250	XJ250 1 30 XJ250 30 0	XJ250 1 30 XJ250 30 0 0 0	NJ250 1 30 NJ250 30 0 0 0 0	PUMP	XJ250 1 30 XJ250 30 0 0 0	X3250 1 72	### Appendence of 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 October 17 O	# Applied	40   20   20   20   20   20   20   20			

										13 25 27 54	Акролеин, Акрилальдегид) (474) Формальдегид ( Метаналь) (609) Алканы C12-19 /в пересчете на С/ ( Углеводороды предельные	0.00651	0.07	26
											C12-C19 (в пересчете на С); Растворитель			
1 8 8	хJ250	1 30	XJ250	30 22		0	0			03	РПК- 265П) (10) Азота (IV) диоксид (	0.1628	1.	8 20 26
											Азота диоксид) (4) Азот (II) оксид (	0.2116	2.3	4 20 26
										03	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.0271	0.	
										03	(583) Сера диоксид ( Ангидрид сернистый, Сернистый газ,	0.0543	0.	6 20 26
										03	Сера ( IV) оксид) (516) Углерод оксид (Окись углерода,	0.1356	1.	5 20 26
										13	Угарный газ) (584) Проп-2-ен-1-аль ( Акролеин, Акрилальдегид)	0.00651	0.07	2 20 26
											(474) Формальдегид (	0.00651	0.07	2 20 26
										27 54	Метаналь) (609) Алканы C12-19 /в пересчете на C/ (	0.0651	0.7	
											Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-			
1 8 8	УПА-60А	1 30 72	УПА-60А	30 23		0	0			03	265П) (10) Азота (IV) диоксид (	0.1356	1.	5 20 26
										03	Азота диоксид) (4) Азот (II) оксид ( Азота оксид) (6)	0.1763	1.9	5 20 26

														03	Углерод (Сажа,	0.0226	0.2	25	20   26
														03	Углерод черный) (583) Сера диоксид (	0.0452	0.	.5	20 26
															Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный	0.113	1.2		20 26
														13 01	газ) (584) Проп-2-ен-1-аль ( Акролеин, Акрилальдегид)	0.00542	0.0	06	20 26
														13 25	(474) Формальдегид (	0.00542	0.0	06	20 26
														27 54	Метаналь) (609) Алканы C12-19 /в пересчете на C/ ( Углеводороды	0.0542	0.	.6	20 26
1 8 8	DK 100 GFC	1	30 72	DK 100 GFC (ДЭС)	30 24				0	0				03	предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10) Азота (IV) диоксид (	0.1085	1.	.2	20 26
	дэс)													03	Азота диоксид) (4) Азот (II) оксид (	0.141	1.5	56	20 26
														03 28	Азота оксид) (6) Углерод (Сажа, Углерод черный)	0.0181	0.	.2	20 26
														03		0.0362	0.	. 4	20 26
														03	Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный	0.0904		1	20 26
														13	газ) (584) Проп-2-ен-1-аль ( Акролеин, Акрилальдегид)	0.00434	0.04		20 26
														13 25	(474) Формальдегид (	0.00434	0.04	48	20 26
				l		1	I				I			1	Метаналь) (609)		1		

	27   Алканы C12-19 /в   0.0434   0.48	20   26
	пересчете на С/ ( Углеводороды предельные C12-C19 (в	
	пересчете на C); Растворитель РПК- 265П) (10)	
1 DK 100 GFC 1 30 DK 100 GFC 30 (ДЭС) 25 П П П П П П П П П П П П П П П П П П	03 Азота (IV) 0.1085 1.2 Диоксид (	20 26
	Азота диоксид) (4) 03 Азот (II) оксид ( 0.141 1.56	20
	Азота оксид) (6)	26
		26
	03 Сера диоксид ( 0.0362 0.4 30	20 26
	Ангидрид сернистый, Сернистый газ, Сера (	
	IV) оксид) (516) 03 Углерод оксид 0.0904 37 (Окись углерода,	20 26
	Угарный газ) (584)	20
	01 ( Акролеин, Акрилальдегид)	26
	25	20 26
	54	20 26
	пересчете на С/ ( Углеводороды предельные C12-C19 (в	
	пересчете на C); Растворитель РПК- 265П) (10)	
1     AD-48     1     30     AD-48 (ДЭС)     30       8     (ДЭС)     72     AD-48 (ДЭС)     26	03 Азота (IV) 0.0543 0.6 01 диоксид (	20 26
	Азота диоксид) (4) 03 Азот (II) оксид ( 0.0705 0.78	20 26
	Азота оксид) (6) 03 Углерод (Сажа, 0.00904 0.1	20 26
	Углерод черный) (583) 03 Сера диоксид ( 0.0181 0.2	20 26

														03 37 13 01	Ангидрид сернистый, Сернистый газ, Сера ( IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584) Проп-2-ен-1-аль	0.0452		0.5	26
														13 25 27 54	Акролеин, Акрилальдегид) (474) Формальдегид ( Метаналь) (609) Алканы C12-19 /в пересчете на С/ ( Углеводороды	0.00217		0.024	26
1 9 4	Устьевой нагревате	1	86 64	Устьевой нагреватель	30 27	6	0.	3. 43	0.02033	250	7478	2628		03	предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10) Азота (IV) диоксид ( Азота диоксид)	0.00221	208.631	0.069	20 26
	ль			ППТМ- 0,2Г										03 04 03 37	(4) Азот (II) оксид ( Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00036	33.924 163.023	0.01122	26
1 9 5	Устьевой нагревате ль	1	64	Устьевой нагреватель ППТМ-	30 28	6	0.	3. 43	0.02033	250	7478	2628		04 10 03 01	газ) (584) Метан (727*) Азота (IV) диоксид ( Азота диоксид) (4)	0.00173 0.00221 4	208.631	0.054	26 20 26
	ППТМ-0,2Г			0,2Γ										03 04 03 37	Азот (II) оксид ( Азота оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (584)	0.00036		0.01122	26
0 3 7	Печь подогрева ПП-0,63	1	92	Печь подогрева ПП-0,63	30 29	6	0.	15 .2 9	0.0576	250	7502	2054		04 10 03 01	Метан (727*) Азота (IV) диоксид ( Азота диоксид) (4)	0.00173		0.054	26 20 26
														03 04		0.00054	18.126	0.0086	20 26

																		03	углерода, Угарный	0.00735	244.458	0.1162	20 26
																		04	газ) (584) Метан (727*)	0.00735	244.458	0.1162	20 26
0 3 7	подо	огрева	1		Печь подогрева	30 30	6	0.	15 .2 9	0.0576	250	7502	2054					03	Азота (IV) диоксид (	0.00335	111.420	0.0527	20 26
	пп-0	,63			ПП-0,63														Азота диоксид) (4)				
																		03	Азот (II) оксид (	0.00054	18.126	0.00857	20 26
																		03	Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00735	244.458	0.1155	20 26
																		04	газ) (584) Метан (727*)	0.00735	244.458	0.1155	20
0 3	500	ервуар	1	87 60		30 31						0	0					10 04 15	Смесь	2.2007		20.32	26 20 26
7	мЗ																		предельных C1-C5 (				
0		ервуар	1			30						0	0					04	1502*) Смесь	2.207		20.32	20
7				60		32												15	углеводородов предельных				26
																			C1-C5 ( 1502*)				
3		канжы	1		Дренажная емкость	30						0	0					03	Сероводород (				20 26
		ость 10			10 м3														Дигидросульфид) (518)				
																		04 15	Смесь углеводородов предельных				20 26
																			C1-C5 ( 1502*)				
																		16	Смесь углеводородов предельных				20 26
																		06	С6-С10 ( 1503*) Бензол (64)				20
																		02	Диметилбензол				26
																		16	о-, м-, п- изомеров)				26
																		06 21	(203) Метилбензол (349)				20 26
0 4	подс	огрева	1		Печь подогрева	30 34				0.091		0	0					03 01	Азота (IV) диоксид (	0.00718	78.901	0.0931	20 26
3	пп-с	,63			пп-0,63														Азота диоксид) (4)				
																		03 04	Азот (II) оксид (	7	12.824	0.01513	20 26
																			Азота оксид) (6)				

							1				03	Углерод оксид	0.00773	84.945	0.1002	
												(Окись углерода, Угарный				26
											04	газ) (584) Метан (727*)	0.00773	84.945	0.1002	
1 9 6	Устьевой	1	86 64		30 35	0	.0214	0	0			Азота (IV) диоксид (	0.00245	114.486	0.0765	26 20 26
	нагревате											Азота диоксид)				
	ль ППТМ-0,2Г										04	(4) Азот (II) оксид (	0.00039	18.598	0.01243	20 26
											03 37	Азота оксид) (6) Углерод оксид (Окись углерода,	0.00182	85.140	0.0568	20 26
											04	Угарный газ) (584) Метан (727*)	0.00182	85.140	0.0568	
1 9	Устьевой	1	36 00	Устьевой	30 36	0	.0214	0	0			Азота (IV) диоксид (	0.00245	114.486	0.03176	26 20 26
7	нагревате			нагреватель ППТМ-								Азота диоксид) (4)				
	ППТМ-0,2Г			0,2F							04	Азот (II) оксид (	0.00039	18.598	0.00516	20 26
												Азота оксид) (6) Углерод оксид (Окись углерода, Угарный	0.00182	85.140	0.0236	20 26
												газ) (584) Метан (727*)	0.00182	85.140	0.0236	20 26
1 9	Устьевой	1	36 00	Устьевой	30 37	0	.0214	0	0		03	Азота (IV) диоксид (	0.00245	114.486	0.03176	
8	нагревате			нагреватель								Азота диоксид)				
	ль ППТМ-0,2Г			ППТМ- 0,2Г							03	(4) Азот (II) оксид (	0.00039	18.598	0.00516	20 26
												Азота оксид) (6) Углерод оксид (Окись	0.00182	85.140	0.0236	20 26
												углерода, Угарный газ) (584)				
												Метан (727*)	0.00182	85.140	0.0236	20 26
0 0 2	Техблок	1	87 60	Техблок	60 01			0	0		04	Смесь углеводородов	0.03085		0.973057 296	
												предельных C1-C5 ( 1502*)				
0	Техблок	1	87 60	Техблок	60 02			0	0		04	Смесь углеводородов	0.03333		1.051185 984	20 26
3												предельных C1-C5 (				
0 0	Техблок	1	87 60	Техблок	60 03			0	0			1502*) Смесь углеводородов	0.04076		1.285572	20 26

4	I		1		1 1	I I	1 1				l	I	1	ı	1	1	1		l I		1 1
0 0 5	Техблок	1	87 60	Техблок	60				0	0							предельных C1-C5 ( 1502*) Смесь углеводородов предельных	0.03333		1.051185	
0 0 6	Техблок	1	87 60	Техблок	60 05				0	0						04	C1-C5 ( 1502*) Смесь	0.03828		1.207443	20 26
1 8 9	Техблок	1	87 60	Техблок	60 06				0	0						04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333		1.051185	20 26
0 0 8	Техблок	1	87 60	Техблок	60 07				0	0							предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333		1.051185 984	
0 0 9	Техблок	1	87 60	Техблок	60				0	0						04		0.03828		1.207443	20 26
0 1 0	Техблок	1	87 60	Техблок	60 09				0	0						04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.04324		1.363700 736	20 26
0 1	Техблок	1	87 60	Техблок	60 10				0	0							предельных C1-C5 ( 1502*) Смесь углеводородов	0.05563		1.754344 176	20 26
0 1	Техблок	1	87 60	Техблок	60 11				0	0						04		0.05067		1.598086	20 26
0 1	Техблок	1	87 60	Техблок	60 14				0	0						04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03581		1.129314 67	20 26
0 1	Техблок	1	87 60	Техблок	60 15				0	0							предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333		1.051185 984	20 26
0 1	Техблок	1	87 60	Техблок	60 16				0	0						04		0.03581		1.129314 67	20 26

5				1	1 1	1 1	I			I	1	1	1 1	1		
0 3 2	Техблок	1	87 60	Техблок	60 17				0	0		предельных C1-C5 ( 1502*) Смесь углеводородов	0.04076	1.2	285572 048	20
0 3 7	Техблок	1	87 60	Техблок	60 18				0	0	04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333	1.0	)51185 984	20
0 3 8	Техблок	1	87 60	Техблок	60				0	0	04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.05068	1.5	598086 8	20
0 3 9	Техблок	1	87 60	Техблок	60 23				0	0		предельных C1-C5 ( 1502*) Смесь углеводородов	0.01779	0.5	661106 032	20
0 1 6	Техблок	1	87 60	Техблок	60 24				0	0	04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333	1.0	)51185 984	20
0 1 7	Техблок	1	87 60	Техблок	60 25				0	0	04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03085	0.9	973057 296	
0 1 8	Техблок	1	87 60	Техблок	60 27				0	0	04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03828	1.2	207443	
0	Техблок	1	87 60	Техблок	60 29				0	0	04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03828	1.2	207443	
9 0 3	Техблок	1	87 60	Техблок	60				0	0		предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333	1.0	)51185 984	20 26
7 0 3	Техблок	1	87 60	Техблок	60 34				0	0		предельных C1-C5 ( 1502*) Смесь углеводородов	0.03581	1.1	.29314 672	20 26
0 4	Техблок	1	87 60	Техблок	60 35				0	0	04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.00743	0.2	234386	20

0 4		0 4 1	1 8 6	0 3 6	0 3 5	0 0 1	0 2 1	0 0 2 0	
A3C		сварочный пост	Техблок	Техблок	Техблок	Техблок	Техблок	Техблок	
1		1	1	1	1	1	1	1	
87 60		16	87 60	87 60	87 60	87 60	87 60	87 60	
АЗС		сварочный пост	Техблок	Техблок	Техблок	Техблок	Техблок	Техблок	
62 29		62 28	60 49	60 48	60 47	60 42	60	60	
0		0	0	0	0	0	0	0	
0		0	0	0	0	0	0	0	
03	43			04 15	04 15	04 15	04 15	04 15	
газоооразные соединения /в пересчете на фтор/ ( 617) Сероводород (	(дижелезо триоксид, железа оксид) /в пересчете на железо/ (274) Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327) Фтористые газообразные	предельных C1-C5 ( 1502*) Железо (II, III)	предельных C1-C5 ( 1502*) Смесь углеводородов	предельных C1-C5 ( 1502*) Смесь углеводородов	предельных C1-C5 ( 1502*) Смесь углеводородов	1502*) Смесь углеводородов	предельных C1-C5 ( 1502*) Смесь углеводородов предельных C1-C5 (	предельных C1-C5 ( 1502*) Смесь углеводородов	
0.00003	0.00152 8 0.00055 6	0.01375	0.03085	0.03333	0.03085	0.17725	0.04076	0.03536	
0.000102	0.0016	0.0396	0.973057 296				1.285572	1.115109 456	
20 26	26	20 26		20 26	20 26		20 26		

1							1							1					1
														0.4	Дигидросульфид) (518) Смесь	0 ((3		146	20
															углеводородов предельных C1-C5 (	0.663	0.	.146	26
														04	1502*) Смесь углеводородов предельных C6-C10 ( 1503*)	0.245	0.0	)539	20 26
														05 01	Пентилены (амилены - смесь изомеров) (460)	0.0245	0.00	)539	20 26
														06 02	Бензол (64)	0.02254	0.00	0496	20 26
														06 16	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00284	0.000	0625	20 26
														06 21	Метилбензол (349)	0.02127	0.00	0468	20 26
														06 27		0.00058	0.000	)129 4	
														27 54	Алканы С12-19 /в	0.01247	0.0	363	20 26
0 2	Техблок	1	87 60	Техблок	62				0	0				04	пересчете на С/ ( Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Смесь углеводородов	0.03085	0.973	3057 296	20
0 2	Техблок	1	87 60	Техблок	62 83				0	0				04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03288	1.036	5980	
0	Техблок	1	87	Техблок	62				0	0				04	предельных C1-C5 ( 1502*) Смесь	0.02545	0.802		
5			60		84									15	углеводородов предельных C1-C5 ( 1502*)			704	26
0 2 6	Техблок	1	87 60	Техблок	62 85				0	0					1502°) Смесь углеводородов предельных	0.03536	1.115	5109 456	
0 2 7	Техблок	1	87 60	Техблок	62 86				0	0				04	C1-C5 ( 1502*) Смесь углеводородов	0.03783	1.193	3238 144	
	1					1 1	- 1								предельных		I I		

0 2 8	Техблок	1	87 60	Техблок	62 89		0	0		04 15	C1-C5 ( 1502*) Смесь углеводородов	0.03783	1.19323	
0 2 9	Техблок	1	87 60	Техблок	62 90		0	0		04 15	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03536	1.1151( 45	
0 3 0	Техблок	1	87 60	Техблок	62 92		0	0		04	предельных C1-C5 ( 1502*) Смесь углеводородов	0.05518	1.74013	8 20 6 26
0 3 1	Техблок	1	87 60	Техблок	63 00		0	0		04 15	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03783	1.19323	
1 8 7	Техблок	1	87 60	Техблок	63 01		0	0		04 15	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03085	0.97305	
0 2	Техблок	1	87 60	Техблок	63 02		0	0		04 15	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333	1.05118	
1 9	Техблок	1	87 60	Техблок	63 04		0	0		04 15	предельных C1-C5 ( 1502*) Смесь углеводородов	0.03333	1.05118	5 20 4 26
1 9	Техблок	1	87 60	Техблок	63 05		0	0		04	предельных C1-C5 ( 1502*) Смесь	0.03333	1.05118	
1											предельных C1-C5 ( 1502*)			

## «УТВЕРЖДАЮ»

Генеральный директор

ТОО СП «Куатамлонмунай»

Янь Сяоцзюнь

2025 год

### БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

ЭРА v3.0 ИП "ЭКО-ОРДА"

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

Наименование производства номер цеха,	Номер источ- ника загряз	Номер источ- ника выде-	Наименование источника выделения загрязняющих	Наименование выпускаемой продукции	исто	работы иника ния, час	Наименование загрязняющего вещества	Код вредного вещества (ЭНК,ПДК или ОБУВ) и	Количество загрязняющего вещества, отходящего
участка	нения атм-ры	ления	веществ		в сутки	за год		наименование	от источника выделения, т/год
A	1	2	3	4	5	6	7	8	9
(001) ЦППН	0051	0051 01	Печь НЈ-2500 №1	подогрев нефти	24	4392	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.471
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0766
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.3685
							Метан (727*)	0410(727*)	0.3685
	0052	0052 01	Печь НЈ-2500 №2	подогрев нефти	24	4392	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.471
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0766
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.3685

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Метан (727*)	0410(727*)	0.3685
	0053	0053 01	Печь НЈ-2500 №3	подогрев	24	4368	Азота (IV) диоксид (Азота	0301(4)	0.468
				нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.076
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.3665
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.3665
	0054	0054 01	Печь ПП-0,63 №5	подогрев	24	2928	Азота (IV) диоксид (Азота	0301(4)	0.0523
				нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.0085
							оксид) (6)		1
							Углерод оксид (Окись	0337 (584)	0.1001
							углерода, Угарный газ) (		
							584)		1
							Метан (727*)	0410(727*)	0.1001
	0056	0056 01	дежурная	сжигание	24	8760	Азота (IV) диоксид (Азота	0301(4)	1
			горелка	газа			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	1
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	1
							черный) (583)		1
							Углерод оксид (Окись	0337 (584)	1
							углерода, Угарный газ) (		
							584)		1
							Метан (727*)	0410(727*)	1
	0057	0057 01	Печь УН-02	подогрев	24	2184	Азота (IV) диоксид (Азота	0301(4)	0.028
				нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00455
							оксид) (6)		1
							Углерод оксид (Окись	0337 (584)	0.0299
							углерода, Угарный газ) (		
1							584)		
1							Метан (727*)	0410(727*)	0.0299
1	0058	0058 01	Печь УН-02	подогрев	24	2184	Азота (IV) диоксид (Азота	0301(4)	0.028
				нефти			диоксид) (4)		1

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Азот (II) оксид (Азота	0304(6)	0.00455
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0299
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0299
	0490	0490 01	Газовый	Компрессорна	24	2928	Азота (IV) диоксид (Азота	0301(4)	0.37253
			генератор	я станция			диоксид) (4)		
			Waukesha/Ariel				Углерод оксид (Окись	0337 (584)	1.9492
			Nº 1				углерода, Угарный газ) (		
							584)		
							Смесь углеводородов	0415(1502*)	0.2825
							предельных С1-С5 (1502*)		
	0644	0644 01	Газовый	Компрессорна	24	2928	Азота (IV) диоксид (Азота	0301(4)	0.37253
			генератор	я станция			диоксид) (4)		
			Waukesha/Ariel				Углерод оксид (Окись	0337 (584)	1.9492
			Nº 2				углерода, Угарный газ) (		
							584)		
							Смесь углеводородов	0415(1502*)	0.2825
							предельных С1-С5 (1502*)		
	1257	1257 01	Печь НЈ-2500 №4	подогрев	24	4368	Азота (IV) диоксид (Азота	0301(4)	0.468
				нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.076
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.3665
							углерода, Угарный газ) (		
							584)		
	1000	1,000,01			0.4	0000	Метан (727*)	0410(727*)	0.3665
	1260	1260 01	Печь ПП-0,63 №6	подогрев	24	2208	Азота (IV) диоксид (Азота	0301(4)	0.03904
				нефти			диоксид) (4)	000476	0.00004
							Азот (II) оксид (Азота	0304(6)	0.00634
							оксид) (6)	00054504	0 075
							Углерод оксид (Окись	0337 (584)	0.075
			1				углерода, Угарный газ) (		
			1				584)	0410 (707+)	0 075
	1001	1,001,00			0.4	0104	Метан (727*)	0410 (727*)	0.075
	1261	1261 02	Печь ПП-0,63 №7	подогрев	24	2184	Азота (IV) диоксид (Азота	0301(4)	0.03864

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
				нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00628
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0743
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0743
	1401	1401 01	Газовый	Компрессорна	24	2904	Азота (IV) диоксид (Азота	0301(4)	0.37253
			генератор	я станция			диоксид) (4)		
			Waukesha/Ariel				Углерод оксид (Окись	0337 (584)	1.9492
			Nº 4				углерода, Угарный газ) (		
							584)		
							Смесь углеводородов	0415(1502*)	0.2825
							предельных С1-С5 (1502*)		
	1403	1403 01	РВС №2 3000 м3	Хранение	24	8760	Смесь углеводородов	0415(1502*)	4.268
		1	(для нефти)				предельных C1-C5 (1502*)		
	1404	1404 01	РВС №3 3000 м3	Хранение	24	8760	Смесь углеводородов	0415(1502*)	4.268
	1.00	1	(для нефти)	1	0.4	07.00	предельных C1-C5 (1502*)	0.415.415.00.13	
	1406	1406 01	РВС №4 3000 м3	Хранение	24	8760	Смесь углеводородов	0415(1502*)	4.268
	1.405	1	(для нефти)	1	0.4	07.00	предельных C1-C5 (1502*)	0.415.415.00.13	1000
	1407	1407 01	PBC №5 5000 м3	Хранение	24	8760	Смесь углеводородов	0415(1502*)	12.803
	1400	1400 01	(для нефти)		0.4	0760	предельных С1-С5 (1502*)	0.415 (1500+)	10 000
	1408	1408 01	PBC №6 5000 м3	Хранение	24	8760	Смесь углеводородов	0415(1502*)	12.803
	1409	1409 01	(для нефти) PBC 400 м3	37	24	8760	предельных С1-С5 (1502*)	0333 (518)	0.00528
	1409	1409 01	пластовая вода	Углеводороды	24	8760	Сероводород ( Дигидросульфид) (518)	0333 (318)	0.00528
			пластовая вода				дигидросульфид) (316) Смесь углеводородов	0415(1502*)	6.38
							предельных С1-С5 (1502*)	0413(1302")	0.30
							Предельных СТ-СЗ (1302") Смесь углеводородов	0416(1503*)	2.36
							предельных С6-С10 (1503*)	0410(1303*)	2.30
							Бензол (64)	0602(64)	0.0308
							Диметилбензол (смесь о-,	0616 (203)	0.00968
							м-, п- изомеров) (203)	0010(203)	0.00000
							м-, п- изомеров) (203) Метилбензол (349)	0621 (349)	0.01936
	1410	1410 01	РВС 1000 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.01358
	1 1110	1 0	пластовая вода	у тисьодороды		0700	Дигидросульфид) (518)	3333 (310)	0.01330
			пластовал вода				Смесь углеводородов	0415(1502*)	16.4

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	6.06
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.0792
							Диметилбензол (смесь о-,	0616(203)	0.0249
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.0498
	1411	1411 01	Сливо-наливная	Углеводороды	24	8760	Смесь углеводородов	0415(1502*)	36.639
			эстакада				предельных C1-C5 (1502*)		
	1412	1412 01	100 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.01008
			дренажная				Дигидросульфид) (518)		
			емкость (для				Смесь углеводородов	0415(1502*)	12.17
			приема нефти)				предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	4.5
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.0588
							Диметилбензол (смесь о-,	0616(203)	0.01848
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.03696
	1413	1413 01	12 м3 дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000000714
			емкость (для				Дигидросульфид) (518)		
			нефти)				Смесь углеводородов	0415(1502*)	0.000862
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.000319
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000004165
							Диметилбензол (смесь о-,	0616(203)	0.00000131
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.00000262
	1439	1439 01	Печь ЈМ-СН-	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.169
			J400-Q15.0	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.02747
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.149
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.149

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	1440	1440 01	Печь ЈМ-СН-	подогрев	24	4368	Азота (IV) диоксид (Азота	0301(4)	0.168
			J400-Q15.0	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.0273
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1482
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1482
	1441	1441 01	Печь НЈ-200-Н/	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.02864
			10-Q	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00465
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0614
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.0614
	1442	1442 01	Печь НЈ-200-Н/	подогрев	24	4368	Азота (IV) диоксид (Азота	0301(4)	0.0285
			10-Q	нефти			диоксид) (4)	000446	0.00460
							Азот (II) оксид (Азота	0304(6)	0.00463
							оксид) (6)	0005 (504)	0.0011
							Углерод оксид (Окись	0337 (584)	0.0611
							углерода, Угарный газ) (		
							584) Metah (727*)	0410(727*)	0.0611
	6042	6042 01	Техблок	ЗРА и ФС	24	8760	, , , ,	0410 (727*)	5.589752496
	6042	0042 01	Texolor	зра и ФС	24	8/60	Смесь углеводородов предельных C1-C5 (1502*)	0415(1502^)	5.589/52496
(002) 3У-1	0900	0900 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
(002) 33-1	1 0 9 0 0	0900 01	емкость 12м3	3131еводороды	24	0700	Дигидросульфид) (518)	0333 (310)	0.0000001788
			EMROCIB IZMS				Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)	0413(1302)	0.000210
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)	0410(1303)	0.0000799
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616 (203)	0.000001043
							м-, п- изомеров) (203)	0010(203)	1 0.000000320
							Метилбензол (349)	0621 (349)	0.000000656
	6001	6001 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415 (1502*)	0.973057296

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							предельных C1-C5 (1502*)		
(003) 3У-2	0003	0003 01	Устьевой	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0548
			нагреватель	нефти			диоксид) (4)		
			Hanover				Азот (II) оксид (Азота	0304(6)	0.0089
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1467
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1467
	0901	0901 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3	_			Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6002	6002 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
(004) 3Y-3	0231	0231 01	Устьевой	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0548
			нагреватель	нефти			диоксид) (4)		
			Hanover				Азот (II) оксид (Азота	0304(6)	0.0089
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1467
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1467
	0902	0902 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
			1	1			Диметилбензол (смесь о-,	0616(203)	0.000000328

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000000656
	6003	6003 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.285572048
							предельных С1-С5 (1502*)		
(005) 3У-4	0903	0903 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6004	6004 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных C1-C5 (1502*)		
(006) 3У-5	0904	0904 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415 (1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных C6-C10 (1503*)		
							Бензол (64)	0602 (64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)	0621 (349)	0.000000656
	6005	6005 01	Техблок	ЗРА и ФС	24	8760	Метилбензол (349)	0621 (349)	1.20744336
	6005	6005 01	техолок	ЗРА И ФС	24	8/60	Смесь углеводородов	0415(1502*)	1.20/44336
(008) 3У-7	0906	0906 01	T		2.4	8760	предельных С1-С5 (1502*)	0333 (518)	0.000001788
(008) 39-7	0906	0900 01	Дренажная емкость 12м3	Углеводороды	24	8/60	Сероводород ( Дигидросульфид) (518)	0333 (318)	0.0000001788
			emkoctb 12M3				дигидросульфид) (518) Смесь углеводородов	0415 (1502*)	0.000216
							предельных С1-С5 (1502*)	0413(1302")	0.000216
								0416(1503*)	0.0000799
							Смесь углеводородов предельных C6-C10 (1503*)	0416(1303^)	0.0000799
							предельных С6-С10 (1503^) Бензол (64)	0602(64)	0.000001043
1							Бензол (64) Диметилбензол (смесь о-,	0616(203)	0.000001043
							· · · · · · · · · · · · · · · · · · ·	0010(203)	0.000000328
l	1		1		1	I	м-, п- изомеров) (203)		1

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Метилбензол (349)	0621 (349)	0.00000656
	1117	1117 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1158
			нагреватель ПП-	нефти			диоксид) (4)		
			0,63A				Азот (II) оксид (Азота	0304(6)	0.0188
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.241
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.241
	6007	6007 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
(009) 3У-8	0709	0709 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1158
			нагреватель ПП-	нефти			диоксид) (4)		
			0,63A				Азот (II) оксид (Азота	0304(6)	0.0188
							оксид) (6)		
1							Углерод оксид (Окись	0337 (584)	0.241
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.241
	0907	0907 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616 (203)	0.00000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00000656
	6008	6008 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.20744336
							предельных С1-С5 (1502*)		
(010) 3Y-9	0908	0908 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
	I	1	1				предельных С6-С10 (1503*)		1

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000000656
	6009	6009 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.363700736
							предельных С1-С5 (1502*)		
(011) ЗУ-10	0909	0909 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
1							Метилбензол (349)	0621(349)	0.000000656
1	6010	6010 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415 (1502*)	1.754344176
							предельных C1-C5 (1502*)		
(012) 3Y-11	0910	0910 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3	_			Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)	i i	
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)	i i	
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)	, , , , , ,	
							Метилбензол (349)	0621 (349)	0.000000656
1	6011	6011 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.5980868
	***	*** *-					предельных С1-С5 (1502*)	,	
(013) 3У-14	0911	0911 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
(****)	***	***	емкость 12м3	111111111111111111111111111111111111111			Дигидросульфид) (518)	1 2 2 2 4 2 2 7	
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)	1111 (1002 )	
							Смесь углеводородов	0416(1503*)	0.0000799
				1			предельных С6-С10 (1503*)	0110(1000 /	
							Бензол (64)	0602(64)	0.000001043

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6014	6014 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.12931467
							предельных С1-С5 (1502*)		
(014) ЗУ-15	0912	0912 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.00000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00000656
	6015	6015 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
(015) 3У-16	0913	0913 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
ı							Бензол (64)	0602(64)	0.00001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6016	6016 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415 (1502*)	1.12931467
							предельных С1-С5 (1502*)		
(016) 3У-17	0060	0060 01	Устьевой	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0586
l			нагреватель ПП-	нефти			диоксид) (4)		
			0,63 A				Азот (II) оксид (Азота	0304(6)	0.00953
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)		
		1				1	Метан (727*)	0410(727*)	0.1223

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	0914	0914 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.00000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000000656
	6024	6024 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
(017) 3Y-18	0915	0915 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00000656
	6025	6025 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415 (1502*)	0.973057296
							предельных С1-С5 (1502*)		
(018) ЗУ-19	0110	0110 01	Устьевой	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0586
			нагреватель ПП-	нефти			диоксид) (4)		
			0,63 A				Азот (II) оксид (Азота	0304(6)	0.00953
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.1223
	0916	0916 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)	0.415 (15001)	
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)	0.41.6.(1.500.1.)	
		1	1		1		Смесь углеводородов	0416(1503*)	0.0000799

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000000656
ı	6027	6027 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.20744336
ı							предельных C1-C5 (1502*)		
(019) ЗУ-21	0917	0917 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000003132
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.0003783
ı							предельных C1-C5 (1502*)		
ı							Смесь углеводородов	0416(1503*)	0.0001399
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001827
							Диметилбензол (смесь о-,	0616(203)	0.0000005744
							м-, п- изомеров) (203)		
ı							Метилбензол (349)	0621(349)	0.000001149
	6029	6029 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.20744336
							предельных C1-C5 (1502*)		
(020) 3У-23	0918	0918 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3	_			Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
ı							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
ı							Диметилбензол (смесь о-,	0616(203)	0.000000328
ı							м-, п- изомеров) (203)		
l							Метилбензол (349)	0621(349)	0.000000656
l	6038	6038 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.115109456
							предельных C1-C5 (1502*)		
(021) 3У-24	0124	0124 01	Устьевой	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0586
			нагреватель ПП-	нефти			диоксид) (4)		
			0,63 A	1 -			Азот (II) оксид (Азота	0304(6)	0.00953
			<u> </u>				оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		1

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							584)		
							Метан (727*)	0410(727*)	0.1223
	0919	0919 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.00000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00000656
	6039	6039 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.285572048
							предельных С1-С5 (1502*)		
(022) ЗУ-25	0933	0933 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.00001043
							Диметилбензол (смесь о-,	0616(203)	0.00000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00000656
i	6302	6302 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
(023) 3У-29	0920	0920 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.00001043
							Диметилбензол (смесь о-,	0616(203)	0.00000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00000656
	6281	6281 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	0.973057296

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							предельных С1-С5 (1502*)		
(024) 3У-31	0921	0921 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6283	6283 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.036980768
							предельных С1-С5 (1502*)		
(025) ЗУ-32	0922	0922 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6284	6284 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	0.802594704
							предельных С1-С5 (1502*)		
(026) 3У-33	0923	0923 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
					1		Метилбензол (349)	0621 (349)	0.000000656
	6285	6285 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.115109456
		1	1				предельных C1-C5 (1502*)		

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
(027) ЗУ-34	0924	0924 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
1			емкость 12м3				Дигидросульфид) (518)		
1							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
1							предельных С6-С10 (1503*)		
1							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6286	6286 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.193238144
							предельных С1-С5 (1502*)		
(028) 3У-37	0925	0925 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
1							предельных С6-С10 (1503*)		
1							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6289	6289 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.193238144
							предельных С1-С5 (1502*)		
(029) 3Y-38	0926	0926 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6290	6290 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.115109456
							предельных С1-С5 (1502*)		
(030) 3У-40	0927	0927 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000000656
	1221	1221 01	Печь подогрева	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0586
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00953
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1223
	6292	6292 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.74013896
							предельных С1-С5 (1502*)		
(031) 3У-43	0928	0928 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000000656
	6300	6300 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.193238144
							предельных С1-С5 (1502*)		
(032) ЗУ-Б1	0708	0708 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
			пп-0,63	нефти			диоксид) (4)		
			1				Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)		1
							Углерод оксид (Окись	0337 (584)	0.229
			1		1		углерода, Угарный газ) (		1

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							584)		
							Метан (727*)	0410(727*)	0.229
	0929	0929 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616 (203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6017	6017 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.285572048
							предельных С1-С5 (1502*)		
(034) ЗУ-БЗ	0931	0931 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	1249	1249 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
			ПП-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.229
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.229
	6034	6034 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415 (1502*)	1.129314672
							предельных C1-C5 (1502*)		
(035) 3Y-4E	0932	0932 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
1			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	1254	1254 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.229
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.229
	6047	6047 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	0.973057296
							предельных С1-С5 (1502*)		
(036) ЗУ-Б5	0937	0937 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)	0.001 (0.40)	
	1050	1050 01	l _			0.004	Метилбензол (349)	0621 (349)	0.000000656
	1253	1253 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
			пп-0,63	нефти			диоксид) (4)	020476)	0.017
							Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)	0007 (504)	
							Углерод оксид (Окись	0337 (584)	0.229
							углерода, Угарный газ) (		
							584) Метан (727*)	0410(727*)	0.229
	6048	6048 01	Техблок	202 40	24	8760	, , , ,	0410 (727*) 0415 (1502*)	1.051185984
	0048	0048 01	Texollok	ЗРА и ФС	∠4	8/60	Смесь углеводородов	0413(1302^)	1.031183984
1	1	1		1	1		предельных С1-С5 (1502*)		l l

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
(037) ГУ	0072	0072 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
Бектас			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.229
							углерода, Угарный газ) (		
							584)	0410 (707+)	0 000
	0070	0072 01			0.4	8664	Метан (727*)	0410 (727*)	0.229
	0073	0073 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
			ПП-0,63	нефти			диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)	0304(6)	0.017
							Углерод оксид (Окись	0337 (584)	0.229
							углерод оксид (окись	0337 (364)	0.229
							584)		
							Метан (727*)	0410(727*)	0.229
	0074	0074 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
	****	****	пп-0,63	нефти			диоксид) (4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
							Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)	, ,	
							Углерод оксид (Окись	0337 (584)	0.229
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.229
	0075	0075 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1504
			ПП-0,86 (	нефти			диоксид) (4)		
			промежуточная				Азот (II) оксид (Азота	0304(6)	0.02444
			на 9 км)				оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.275
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.275
	0076	0076 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1504
			пп-0,86 (	нефти			диоксид) (4)	020476	
			резервная)				Азот (II) оксид (Азота	0304(6)	0.02444
							оксид) (6)	0337 (584)	0.275
1	1	I	1	1	1	I	Углерод оксид (Окись	U33/(384)	0.2/5

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							углерода, Угарный газ) ( 584)		
							Метан (727*)	0410(727*)	0.275
	0816	0816 01	Резервуар 75 м3	хранение	24	8760	Смесь углеводородов	0415(1502*)	3.07
				нефти			предельных C1-C5 (1502*)	, , , , ,	
	0817	0817 01	Резервуар 75 м3	хранение	24	8760	Смесь углеводородов	0415(1502*)	3.07
				нефти			предельных C1-C5 (1502*)		
	0818	0818 01	Резервуар 75 м3	хранение	24	8760	Смесь углеводородов	0415(1502*)	3.07
				нефти			предельных C1-C5 (1502*)		
	0819	0819 01	Резервуар 75 м3	хранение	24	8760	Смесь углеводородов	0415 (1502*)	3.07
				нефти			предельных C1-C5 (1502*)		
	0930	0930 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных C6-C10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	0934	0934 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001428
			емкость 10 м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.0001725
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000638
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000000833
							Диметилбензол (смесь о-,	0616(203)	0.000000262
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000524
	0935	0935 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	
			емкость 10 м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	
1							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	
							предельных С6-С10 (1503*)		

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Бензол (64)	0602(64)	
							Диметилбензол (смесь о-,	0616(203)	
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	
	0936	0936 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000000214
			емкость 20 м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.0002587
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000957
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.00000125
							Диметилбензол (смесь о-,	0616(203)	0.000000393
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000785
	1252	1252 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
			ПП-0,63 (ГУ-	нефти			диоксид) (4)		
			Бектас ЗУ-Б2)				Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.229
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.229
	3029	3029 01	Печь подогрева	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.053
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.0086
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1162
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1162
	3030	3030 02	Печь подогрева	подогрев	24	4368	Азота (IV) диоксид (Азота	0301(4)	0.0527
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00857
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1155
							углерода, Угарный газ) (		
					1		584)		

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Метан (727*)	0410 (727*)	0.1155
	3031	3031 01	Резервуар 500	Хранение	24	8760	Смесь углеводородов	0415(1502*)	20.32
			мЗ				предельных С1-С5 (1502*)		
	3032	3032 01	Резервуар 500	Хранение	24	8760	Смесь углеводородов	0415(1502*)	20.32
			м3				предельных С1-С5 (1502*)		
	3033	3033 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	
			емкость 10 м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	
							Диметилбензол (смесь о-,	0616(203)	
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	
	6018	6018 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
	6030	6030 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
(038) ГУ Южный	1334	1334 01	Печь подогрева	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.1136
Коныс			ПП-0,63 Nº1	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.01846
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1223
	1335	1335 01	Печь подогрева	подогрев	24	4368	Азота (IV) диоксид (Азота	0301(4)	0.113
			ПП-0,63 №2	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.01837
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1216
							углерода, Угарный газ) (		
							584)		
1							Метан (727*)	0410(727*)	0.1216
1	1414	1414 01	РВС-2000м3	хранение	24	8760	Смесь углеводородов	0415(1502*)	3.841
				нефти			предельных C1-C5 (1502*)	1	

### эра v3.0 ип "эко-орда"

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	1419	1419 01	Печь подогрева	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.1136
			ПП-0,63 №3	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.01846
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1223
	1420	1420 01	РВС-2000м3	хранение	24	8760	Смесь углеводородов	0415(1502*)	3.841
				нефти			предельных С1-С5 (1502*)		
	1421	1421 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000978
			емкость 63 м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	1.18
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.437
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.0057
							Диметилбензол (смесь о-,	0616(203)	0.001793
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.003586
	1446	1446 01	Печь подогрева	подогрев	24	4368	Азота (IV) диоксид (Азота	0301(4)	0.113
			ПП-0,63 №4	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.01837
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1216
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1216
	6019	6019 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415 (1502*)	1.5980868
							предельных С1-С5 (1502*)		
(039) ПСН	0100	0100 01	резервуар для	хранение	24	6600	Алканы С12-19 /в пересчете	2754(10)	0.0041
Кумколь			диз топлива				на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	0767	0767 01	Печь подогрева	подогрев	24	8760	Азота (IV) диоксид (Азота	0301(4)	0.2944

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
			ПП-0,63 (Китай)	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.0478
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.251
							углерода, Угарный газ) ( 584)		
							Метан (727*)	0410(727*)	0.251
	0768	0768 01	Печь подогрева	подогрев	24	8760	Азота (IV) диоксид (Азота	0301(4)	0.2944
			ПП-0,63 (Китай)	нефти			диоксид) (4)		
				1 -			Азот (II) оксид (Азота	0304(6)	0.0478
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.251
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.251
	1422	1422 01	ДЭС 400 кВт	выроботка	24	4380	Азота (IV) диоксид (Азота	0301(4)	0.4352
				энергии			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.07072
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.01942862
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.17
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.442
							углерода, Угарный газ) (		
							584)		
							Бенз/а/пирен (3,4-	0703 (54)	0.0000068
							Бензпирен) (54)		
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.00485724
							Алканы С12-19 /в пересчете	2754(10)	0.11657138
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
					ĺ		10)		

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	1423	1423 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000000515
			емкость 8 м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.0000622
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.000023
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.0000003
							Диметилбензол (смесь о-,	0616(203)	0.000000944
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000001888
1	1500	1500 01	РВС-3000м3	хранение	24	8760	Смесь углеводородов	0415(1502*)	6.401
1				нефти			предельных С1-С5 (1502*)		
	1501	1501 01	РВС-3000м3	хранение	24	8760	Смесь углеводородов	0415(1502*)	6.401
				нефти			предельных С1-С5 (1502*)		
	6023	6023 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	0.561106032
							предельных С1-С5 (1502*)		
(040) 45 км	0019	0019 01	Печь подогрева	подогрев	24	8760	Азота (IV) диоксид (Азота	0301(4)	7.2069
нефтепровода			нефти (Китай)	нефти			диоксид) (4)		
							Углерод (Сажа, Углерод	0328 (583)	1.552
							черный) (583)		
							Углерод оксид (Окись	0337 (584)	2.835
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	2.835
1	0020	0020 01	Печь подогрева	подогрев	24	8760	Азота (IV) диоксид (Азота	0301(4)	7.2069
			нефти (Китай)	нефти			диоксид) (4)		
							Углерод (Сажа, Углерод	0328 (583)	1.552
							черный) (583)		
							Углерод оксид (Окись	0337 (584)	2.835
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	2.835
	0024	0024 01	Дизельгенератор	выроботка	8	2190	Азота (IV) диоксид (Азота	0301(4)	0.33536
			AKSA 120kBt	энергии			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.054496
							оксид) (6)		
					1		Углерод (Сажа, Углерод	0328 (583)	0.014971466

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.131
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.3406
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.000000524
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.003742932
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	2754(10)	0.089828534
							пересчете на С); Растворитель РПК-265П) ( 10)		
	0025	0025 01	Дизельгенератор АКSA 170кВт	выроботка энергии	8	2190	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.33536
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.054496
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.014971466
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.131
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.3406
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.000000524
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.003742932
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С);	2754(10)	0.089828534

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Растворитель РПК-265П) ( 10)		
	0026	0026 01	Дизельгенератор	выроботка	8	2190	Азота (IV) диоксид (Азота	0301(4)	0.33536
			AKSA 180kBT	энергии			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.054496
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.014971466
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.131
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.3406
							углерода, Угарный газ) (		
							584)		1
							Бенз/а/пирен (3,4-	0703 (54)	0.000000524
							Бензпирен) (54)		
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.003742932
							Алканы С12-19 /в пересчете	2754(10)	0.089828534
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	0478	0478 01	Печь марки ПТ-	подогрев	24	2190	Азота (IV) диоксид (Азота	0301(4)	6.942
			1,6 AЖ	нефти			диоксид) (4)		
							Углерод (Сажа, Углерод	0328 (583)	1.8622
							черный) (583)		
							Углерод оксид (Окись	0337 (584)	2.8038
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	2.8038
	1424	1424 01	Дизельгенератор	выроботка	8	2190	Азота (IV) диоксид (Азота	0301(4)	0.33536
			AKSA 200kBT	энергии			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.054496
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.014971466

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.131
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.3406
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.000000524
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.003742932
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (	2754 (10)	0.089828534
	1425	1425 01	Дренажная емкость 8 м3	Углеводороды	24	8760	10) Сероводород ( Дигидросульфид) (518)	0333 (518)	0.000000515
							Смесь углеводородов предельных С1-С5 (1502*)	0415(1502*)	0.0000622
							Смесь углеводородов предельных С6-С10 (1503*)	0416(1503*)	0.000023
							Бензол (64) Диметилбензол (смесь о-, м-, п- изомеров) (203)	0602(64) 0616(203)	0.0000003 0.000000944
							Метилбензол (349)	0621(349)	0.0000001888
	6035	6035 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0.234386064
(041) Вахтовый поселок	0237	0237 01	резервуар для диз топлива	хранение	24	8760	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (	2754(10)	0.00272
	0238	0238 01	резервуар для диз топлива	хранение	24	8760	Алканы C12-19 /в пересчете на C/ (Углеводороды	2754(10)	0.00272

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	6228	6228 01	сварочный пост	сварочные	4	160	Железо (II, III) оксиды (	0123(274)	0.0396
				работы			диЖелезо триоксид, Железа		
							оксид) /в пересчете на		
							железо/ (274)		
							Марганец и его соединения	0143(327)	0.0044
							/в пересчете на марганца (		
							IV) оксид/ (327)		
							Фтористые газообразные	0342(617)	0.0016
							соединения /в пересчете на		
							фтор/ (617)		
	6229	6229 01	A3C	заправка	24	8760	Сероводород (	0333 (518)	0.000102
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.146
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0539
							предельных С6-С10 (1503*)		
							Пентилены (амилены - смесь	0501 (460)	0.00539
							изомеров) (460)		
							Бензол (64)	0602(64)	0.00496
							Диметилбензол (смесь о-,	0616(203)	0.000625
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00468
							Этилбензол (675)	0627 (675)	0.0001294
							Алканы С12-19 /в пересчете	2754(10)	0.0363
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
	1	1					Растворитель РПК-265П) (		
	1	1	1				10)	1	
(042) BKHC	1405	1405 01	РВС №1 3000 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.001682
Северный Коныс	1		(отстаивание				Дигидросульфид) (518)		
1	1		пластовой воды)				Смесь углеводородов	0415(1502*)	2.03
							предельных С1-С5 (1502*)		1

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Смесь углеводородов	0416(1503*)	0.751
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.00981
							Диметилбензол (смесь о-,	0616(203)	0.003084
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.00617
	1426	1426 01	РВС-1000 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.002694
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	3.253
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	1.203
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.0157
							Диметилбензол (смесь о-,	0616(203)	0.00494
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.00988
	1427	1427 01	РВС-1000 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.002694
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	3.253
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	1.203
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.0157
							Диметилбензол (смесь о-,	0616(203)	0.00494
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00988
	1428	1428 01	РВС-700 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.001884
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	2.275
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.842
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.011
							Диметилбензол (смесь о-,	0616(203)	0.003454
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00691
	1429	1429 01	РВС-200 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000808

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.975
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.361
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.00471
							Диметилбензол (смесь о-,	0616(203)	0.00148
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.00296
	1430	1430 01	РВС-200 м3	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000808
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.975
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.361
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.00471
							Диметилбензол (смесь о-,	0616(203)	0.00148
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.00296
	1431	1431 01	Печь подогрева	подогрев	24	3600	Азота (IV) диоксид (Азота	0301(4)	0.0481
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00781
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1002
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1002
(043) BKHC	1432	1432 01	РВС - 300 м3 (	Хранение	24	8760	Сероводород (	0333 (518)	0.00416
Южный Коныс			отстаивание				Дигидросульфид) (518)		
			пластовой воды)				Смесь углеводородов	0415(1502*)	5.02
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	1.857
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.02426
							Диметилбензол (смесь о-,	0616(203)	0.00762
							м-, п- изомеров) (203)		
1				1		1	Метилбензол (349)	0621(349)	0.01525

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	1433	1433 01	РВС - 300 м3	Хранение	24	8760	Сероводород (	0333 (518)	0.00416
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	5.02
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	1.857
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.02426
							Диметилбензол (смесь о-,	0616(203)	0.00762
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.01525
	1434	1434 01	РВС - 300 м3	Хранение	24	8760	Сероводород (	0333 (518)	0.00416
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	5.02
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	1.857
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.02426
							Диметилбензол (смесь о-,	0616(203)	0.00762
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.01525
	1435	1435 01	РВС - 300 м3	Хранение	24	8760	Сероводород (	0333 (518)	0.00416
							Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	5.02
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	1.857
							предельных С6-С10 (1503*)	0.000.4641	0 00406
							Бензол (64)	0602 (64)	0.02426
							Диметилбензол (смесь о-,	0616(203)	0.00762
							м-, п- изомеров) (203)	0.001 (0.40)	0.01505
	1.40.6	1 400 01	_		0.4	07.60	Метилбензол (349)	0621 (349)	0.01525
	1436	1436 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000000515
			емкость 8 м3				Дигидросульфид) (518)	0.415 (1.500 )	0 000000
							Смесь углеводородов	0415 (1502*)	0.0000622
							предельных C1-C5 (1502*)	0.41.6 (1.503+)	0 000000
							Смесь углеводородов	0416(1503*)	0.000023
1							предельных С6-С10 (1503*)	0000404	0 0000000
	1						Бензол (64)	0602(64)	0.0000003

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Диметилбензол (смесь о-,	0616 (203)	0.000000944
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000001888
	1438	1438 01	Печь подогрева	подогрев	24	5160	Азота (IV) диоксид (Азота	0301(4)	0.1336
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.0217
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1437
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1437
	3034	3034 01	Печь подогрева	подогрев	24	3600	Азота (IV) диоксид (Азота	0301(4)	0.0931
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.01513
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1002
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.1002
(057) скв.	1109	1109 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº230			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.0568
(060) скв.	1122	1122 01	Устьевой	подогрев	24	6528	Азота (IV) диоксид (Азота	0301(4)	0.086
Nº240			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01398
							оксид) (6)	0005/504	0.0500
							Углерод оксид (Окись	0337 (584)	0.0523
							углерода, Угарный газ) (		
							584)	0410 (707+)	0.0500
(074)	1104	1104 01				0664	Метан (727*)	0410 (727*)	0.0523
(074) CKB.	1124	1124 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº573	1	1	нагреватель	нефти	İ		диоксид) (4)		l

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0568
(075) скв.	1123	1123 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº574			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0568
(076) скв.	1338	1338 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº 7 0 7			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0568
(077) скв.	1339	1339 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº708			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.0568
(085) CKB.	1126	1126 01	Устьевой	подогрев	24	6528	Азота (IV) диоксид (Азота	0301(4)	0.086
Nº299			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01398
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0523
							углерода, Угарный газ) (		
1	1	I	1	1	1		584)		

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Метан (727*)	0410 (727*)	0.0523
(086) скв.	1127	1127 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº300			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0568
(092) скв.	1125	1125 01	Устьевой	подогрев	24	6528	Азота (IV) диоксид (Азота	0301(4)	0.086
№285			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01398
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0523
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0523
(103) CKB.	0097	0097 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº315			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0568
(104) скв.	1336	1336 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
N:482			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
1							Метан (727*)	0410(727*)	0.0568
(105) скв.	1311	1311 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
N:538			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
	1				1		оксид) (6)	1	

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.0568
							Метан (727*)	0410(727*)	0.0568
(122) CKB. N:352	1315	1315 01	Устьевой нагреватель	подогрев нефти	24	8664	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0765
			ППТМ-0,2Г				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.01243
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.0568
							Метан (727*)	0410(727*)	0.0568
(154) CKB. №5- 4	1243	1243 01	Устьевой нагреватель	подогрев нефти	24	8664	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.069
			пптм-0,2г				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.01122
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.054
							Метан (727*)	0410(727*)	0.054
(159) скв. №Б- 17	0712	0712 01	Устьевой нагреватель	подогрев нефти	24	8664	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.069
			пптм-0,2г				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.01122
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.054
							Метан (727*)	0410(727*)	0.054
(167) ckb. №5- 20	0520	0520 01	Устьевой нагреватель	подогрев нефти	24	8664	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.069
			пптм-0,2г				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.01122
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.054
							Метан (727*)	0410(727*)	0.054
(169) CKB. №5-	1445	1445 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
79			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) ( 584)		
							Метан (727*)	0410(727*)	0.054
(170) CKB. №5-	0522	0522 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069
89			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.054
(171) ckb. №5-	0525	0525 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069
29			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) (		
							584)	0410(303+)	0.054
(172) CKB. №5-	1250	1250 01	Устьевой		24	0.664	Метан (727*)	0410(727*)	0.054 0.069
(1/2) CRB. Nº6-	1250	1250 01		подогрев	24	8664	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.069
23			нагреватель ППТМ-0,2Г	нефти			диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.01122
			IIIITM-0,21				АЗОТ (II) ОКСИД (АЗОТА ОКСИД) (6)	0304(6)	0.01122
							ОКСИД) (0) Углерод оксид (Окись	0337 (584)	0.054
							углерод оксид (окись углерода, Угарный газ) (	0337 (364)	0.034
							584)		
							Метан (727*)	0410(727*)	0.054
(173) CKB. №5-	1251	1251 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069
50 SAB. MB	****	1 -23- 3-	нагреватель	нефти		2004	диоксид) (4)	0001(1/	0.005
1 ""			пптм-0,2Г	1104111			Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)	0001(0)	0.01122
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) (	(001/	".051

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							584)		
							Метан (727*)	0410(727*)	0.054
(175) CKB. №B-	1255	1255 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069
78			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.054
(179) м/р	1463	1463 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
Южный Коныс			установка (ГПУ)	электроэнерг			диоксид) (4)	1	
				NN			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		0 204
	1464	1464 01			0.4	0.470	Метан (727*)	0410 (727*)	0.324
	1464	1464 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)		0 0700
				NN			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0702
							оксид) (6) Углерод оксид (Окись	0337 (584)	1.474
							углерод оксид (окись углерода, Угарный газ) (	0337(364)	1.4/4
							584)	1	
							Metah (727*)	0410 (727*)	0.324
	1465	1465 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
	1 100	1100 01	установка (ГПУ)	электроэнерг	2.1	0172	диоксид) (4)	0301(1)	0.132
			yeranobka (ini)	ии			Азот (II) оксид (Азота	0304(6)	0.0702
				733			оксид) (6)	0001(0)	0.0702
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.324
	1466	1466 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)	] ` '	.,
			1	NN			Азот (II) оксид (Азота	0304(6)	0.0702

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							оксид) (6) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	1.474
	1467	1467 01	Газопоршневая установка (ГПУ)	выроботка электроэнерг	24	8472	Метан (727*) Азота (IV) диоксид (Азота диоксид) (4)	0410(727*) 0301(4)	0.324 0.432
			, , , , , , , , , , , , , , , , , , , ,	ии			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0702
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	1.474
							Метан (727*)	0410(727*)	0.324
	1468	1468 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)	,	
			, , , , , , , , , , , , , , , , , , , ,	ии			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0702
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	1.474
							Метан (727*)	0410(727*)	0.324
	1469	1469 01	Газопоршневая установка (ГПУ)	выроботка электроэнерг	24	8472	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.432
				nn			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0702
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	1.474
							Метан (727*)	0410(727*)	0.324
	1470	1470 01	Газопоршневая установка (ГПУ)	выроботка электроэнерг	24	8472	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.432
				NN			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0702
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	1.474
							Метан (727*)	0410(727*)	0.324

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	1471	1471 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.324
	1472	1472 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
	1		l _				Метан (727*)	0410 (727*)	0.324
	1473	1473 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)	000446	0.0700
				NN			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)	0007 (504)	1 474
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) ( 584)		
							384)   Метан (727*)	0410(727*)	0.324
	1474	1474 01	Газопоршневая	выроботка	24	8472	метан (727^) Азота (IV) диоксид (Азота	0301(4)	0.324
	14/4	14/4 01	установка (ГПУ)	электроэнерг	24	04/2	диоксид) (4)	0301(4)	0.432
			yCTAHOBRA (III)	ии			диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.0702
				NIN			оксид) (6)	0304(0)	0.0702
							Углерод оксид (Окись	0337 (584)	1.474
							углерод оксид (окись углерода, Угарный газ) (	0337 (304)	1.1/1
							584)		
							Метан (727*)	0410(727*)	0.324
	1475	1475 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
	1	1 -1.0 01	установка (ГПУ)	электроэнерг		0172	диоксид) (4)	0001(1)	0.132
			"   "   "   "   "   "   "   "   "   "	ии			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		*****
							Углерод оксид (Окись	0337 (584)	1.474

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

						углерода, Угарный газ) ( 584)		
						Метан (727*)	0410(727*)	0.324
1476	1476 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
		установка (ГПУ)	электроэнерг			диоксид) (4)		
			ии			Азот (II) оксид (Азота	0304(6)	0.0702
						оксид) (6)		
						Углерод оксид (Окись	0337 (584)	1.474
						углерода, Угарный газ) ( 584)		
						Метан (727*)	0410(727*)	0.324
1477	1477 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
		установка (ГПУ)	электроэнерг			диоксид) (4)		
			ии			Азот (II) оксид (Азота	0304(6)	0.0702
						оксид) (6)		
						Углерод оксид (Окись	0337 (584)	1.474
						углерода, Угарный газ) (		
						584)		
						Метан (727*)	0410(727*)	0.324
1478	1478 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
		установка (ГПУ)	электроэнерг			диоксид) (4)		
			ии			Азот (II) оксид (Азота	0304(6)	0.0702
						оксид) (6)		
						Углерод оксид (Окись	0337 (584)	1.474
						углерода, Угарный газ) (		
						584)	0410 (707+)	0.304
1 4 7 0	1.450.01	_	_	0.4	0.450	Метан (727*)	0410 (727*)	0.324
1479	1479 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
		установка (ГПУ)	электроэнерг			диоксид) (4)	0304(6)	0.0702
			ии			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0702
						ОКСИД) (0) Углерод оксид (Окись	0337 (584)	1.474
						углерод оксид (окись углерода, Угарный газ) (	0337(364)	1.4/4
						углерода, угарный газ) ( 584)		
						Метан (727*)	0410(727*)	0.324
1480	1480 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.324
1100	1100 01	установка (ГПУ)	электроэнерг	23	04/2	диоксид) (4)	0001(4)	0.432

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
				NN			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.324
	1481	1481 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.324
	1482	1482 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				NN			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.324
	1483	1483 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.1444
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.02346
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.4933
							углерода, Угарный газ) (		
							584)		
	1						Метан (727*)	0410 (727*)	0.1084
	1484	1484 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.1444
			установка (ГПУ)	электроэнерг			диоксид) (4)		
	1			ии			Азот (II) оксид (Азота	0304(6)	0.02346
	1						оксид) (6)		
	1			1			Углерод оксид (Окись	0337 (584)	0.4933
	1			1			углерода, Угарный газ) (		
	1	1	1				584)		

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Метан (727*)	0410 (727*)	0.1084
	1485	1485 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.1444
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.02346
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.4933
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1084
	1486	1486 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.1444
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.02346
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.4933
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1084
	1487	1487 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.0486
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1662
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0365
	1488	1488 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.0486
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1662
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0365
	1489	1489 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.0486
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)		

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.1662
							Metah (727*)	0410(727*)	0.0365
	1490	1490 01	Газопоршневая	выроботка	24	1488	Азота (IV) диоксид (Азота	0301(4)	0.0486
			установка (ГПУ)	электроэнерг			диоксид) (4)	,	
				NN			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1662
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0365
	1491	1491 01	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	0301(4)	0.0486
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)	0227 (504)	0.1662
							Углерод оксид (Окись	0337 (584)	0.1662
							углерода, Угарный газ) ( 584)		
							Metah (727*)	0410(727*)	0.0365
	1492	1492 01	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	0301(4)	0.0486
	1 - 1 - 2	1	установка (ГПУ)	электроэнерг			диоксид) (4)	0001(1)	
			, , , , , , , , , , , , , , , , , , , ,	NN			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)	, , ,	
							Углерод оксид (Окись	0337 (584)	0.1662
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0365
	1493	1493 01	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	0301(4)	0.0486
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				NN			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1662
							углерода, Угарный газ) (		1
							584) Метан (727*)	0410(707+)	0.0365
	1494	1494 01	Tanagan wang	D. 100 6 0 100 100	24	1440	,	0410 (727*) 0301 (4)	0.0365 0.0486
1	1494	1494 UI	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	U3U1(4)	0.0486

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0079
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1662
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0365
	1495	1495 01	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	0301(4)	0.04704
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.007644
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1608
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.03535
	1496	1496 01	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	0301(4)	0.04704
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.007644
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1608
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.03535
	1497	1497 01	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	0301(4)	0.04704
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.007644
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1608
							углерода, Угарный газ) (		
							584)	0410 (707+)	0 02525
	1,400	1400 01			0.4	1 4 4 0	Метан (727*)	0410 (727*)	0.03535
	1498	1498 01	Газопоршневая	выроботка	24	1440	Азота (IV) диоксид (Азота	0301(4)	0.04704
	1		установка (ГПУ)	электроэнерг			диоксид) (4)	030476	0.007644
	1			NN			Aзот (II) оксид (Aзота	0304(6)	0.00/644
	1						оксид) (6)	0337 (584)	0.1608
	1						Углерод оксид (Окись	0337(384)	0.1608
	1	1	1	1	1	l	углерода, Угарный газ) (		I

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							584)		
							Метан (727*)	0410(727*)	0.03535
(180) м/р	1447	1447 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
Северный Коныс			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.324
	1448	1448 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				NN			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)		
	1						Метан (727*)	0410 (727*)	0.324
	1449	1449 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)	0.410.4707.13	
	1450	1450 01			0.4	0.470	Метан (727*)	0410 (727*)	0.324
	1450	1450 01	Газопоршневая	выроботка	24	8472	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)	00004461	
				NN			Азот (II) оксид (Азота	0304(6)	0.0702
							оксид) (6)	0227 (504)	1 474
							Углерод оксид (Окись	0337 (584)	1.474
							углерода, Угарный газ) (		
							584)	0410(303+)	0.324
	1451	1451 01			2.4	2222	Merah (727*)	0410 (727*)	
	1451	1451 01	Газопоршневая	выроботка	24	2232	Азота (IV) диоксид (Азота	0301(4)	0.432
			установка (ГПУ)	электроэнерг			диоксид) (4)	030476)	0 0700
				ии			Азот (II) оксид (Азота	0304(6)	0.0702

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.47
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.32
	1452	1452 01	Газопоршневая	выроботка	24	2232	Азота (IV) диоксид (Азота	0301(4)	0.43
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.070
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.47
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.32
	1453	1453 01	Газопоршневая	выроботка	24	2232	Азота (IV) диоксид (Азота	0301(4)	0.43
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.07
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.4
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.32
	1454	1454 01	Газопоршневая	выроботка	24	2232	Азота (IV) диоксид (Азота	0301(4)	0.43
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.07
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	1.4
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.3
	1455	1455 01	Газопоршневая	выроботка	24	1248	Азота (IV) диоксид (Азота	0301(4)	0.072
			установка (ГПУ)	электроэнерг			диоксид) (4)	` '	
				ии			Азот (II) оксид (Азота	0304(6)	0.0117
							оксид) (6)	. ,	
		1					Углерод оксид (Окись	0337 (584)	0.24
							углерода, Угарный газ) (		**
		1					584)		
		1					Метан (727*)	0410(727*)	0.05

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	1456	1456 01	Газопоршневая	выроботка	24	1248	Азота (IV) диоксид (Азота	0301(4)	0.07216
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.011726
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.2466
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0542
	1457	1457 01	Газопоршневая	выроботка	24	1248	Азота (IV) диоксид (Азота	0301(4)	0.07216
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				NN			Азот (II) оксид (Азота	0304(6)	0.011726
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.2466
							углерода, Угарный газ) (		
							584)		
	1.450	1.450.01	_	_	0.4	1040	Метан (727*)	0410 (727*)	0.0542
	1458	1458 01	Газопоршневая	выроботка	24	1248	Азота (IV) диоксид (Азота	0301(4)	0.07216
			установка (ГПУ)	электроэнерг			диоксид) (4) Азот (II) оксид (Азота	030476)	0.011726
				NN			, , , , , , , , , , , , , , , , , , , ,	0304(6)	0.011/26
							оксид) (6)	0337 (584)	0.2466
							Углерод оксид (Окись	0337(384)	0.2400
							углерода, Угарный газ) ( 584)		
							Метан (727*)	0410(727*)	0.0542
	1459	1459 01	Газопоршневая	выроботка	24	1224	Азота (IV) диоксид (Азота	0301(4)	0.07216
	1433	1433 01	установка (ГПУ)	электроэнерг	23	1224	диоксид) (4)	0301(4)	0.07210
			yeranozka (rii)	ии			Азот (II) оксид (Азота	0304(6)	0.011726
				722			оксид) (6)	5551(5)	0.011,20
							Углерод оксид (Окись	0337 (584)	0.2466
							углерода, Угарный газ) (	0007 (001)	0.2100
							584)		
							Метан (727*)	0410(727*)	0.0542
	1460	1460 01	Газопоршневая	выроботка	24	1224	Азота (IV) диоксид (Азота	0301(4)	0.07216
			установка (ГПУ)	электроэнерг			диоксид) (4)	` ′	
			) '	ии			Азот (II) оксид (Азота	0304(6)	0.011726
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.2466

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							углерода, Угарный газ) ( 584)		
							Метан (727*)	0410(727*)	0.0542
	1461	1461 01	Газопоршневая	выроботка	24	1224	Азота (IV) диоксид (Азота	0301(4)	0.07216
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				ии			Азот (II) оксид (Азота	0304(6)	0.011726
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.2466
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0542
	1462	1462 01	Газопоршневая	выроботка	24	1224	Азота (IV) диоксид (Азота	0301(4)	0.07216
			установка (ГПУ)	электроэнерг			диоксид) (4)		
				NN			Азот (II) оксид (Азота	0304(6)	0.011726
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.2466
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.0542
(181) CKB.	1331	1331 01	Устьевой	подогрев	24	6528	Азота (IV) диоксид (Азота	0301(4)	0.086
Nº599			нагреватель	нефти			диоксид) (4)	0304763	0.01200
			ППТМ-0,2Г				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.01398
							оксид) (б) Углерод оксид (Окись	0337 (584)	0.0523
							углерод оксид (окись углерода, Угарный газ) (	0337 (364)	0.0323
							584)		
							Метан (727*)	0410(727*)	0.0523
(182) скв.	1128	1128 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
N:349	1	1120 01	нагреватель	нефти		0001	диоксид) (4)	0001(1)	
			ППТМ-0,2Г	1.0 4 2.1			Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)	, , ,	
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (	1 ' '	
							584)		
							Метан (727*)	0410(727*)	0.0568
(183) скв.	1333	1333 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº580			нагреватель	нефти			диоксид) (4)		

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0568
(184) скв.	1167	1167 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
Nº373			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0568
(185) скв.	1330	1330 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
№577			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410 (727*)	0.0568
(186) ЗУ-6Б	0938	0938 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)	0.41.6.41.500.13	
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)	0.001 (0.40)	
	1056	1,056,01	I _			0.004	Метилбензол (349)	0621 (349)	0.000000656
	1256	1256 01	Печь подогрева	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.1046
			пп-0,63	нефти			диоксид) (4)	030476	0 017
		1					Азот (II) оксид (Азота	0304(6)	0.017
							оксид) (6)	0005 (504)	
1						İ	Углерод оксид (Окись	0337 (584)	0.229

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							углерода, Угарный газ) ( 584)		
							Метан (727*)	0410(727*)	0.229
	6049	6049 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	0.973057296
							предельных C1-C5 (1502*)		
(187) 3Y-44	0939	0939 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.0000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	1238	1238 02	Печь подогрева	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0586
			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00953
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1223
	6301	6301 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	0.973057296
							предельных С1-С5 (1502*)		
(188) КПРС	3001	3001 01	УПА-60А 60/80	выхлопная	12	4380	Азота (IV) диоксид (Азота	0301(4)	0.9
				труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	1.17
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.15
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.3
							сернистый, Сернистый газ,		1
							Сера (IV) оксид) (516)		1
							Углерод оксид (Окись	0337 (584)	0.75
							углерода, Угарный газ) (		1
							584)		

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.036
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325(609)	0.036
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.36
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3002	3002 01	АПРС-40 (Урал-	выхлопная	12	4380	Азота (IV) диоксид (Азота	0301(4)	0.75
			4320)	труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.975
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.125
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.25
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.625
							углерода, Угарный газ) (		
							584)	1001 (474)	0.00
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.03
							Акрилальдегид) (474)	1335 (600)	0.03
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.03
							Митерия (12-19 / в пересчете)	2754(10)	0.3
							на С/ (Углеводороды	2/34(10)	0.3
							предельные С12-С19 (в		
							предельные С12-С19 (в		
							Растворитель РПК-265П) (		
							10)		
	3003	3003 01	ACU-320	выхлопная	12	2184	Азота (IV) диоксид (Азота	0301(4)	0.6
	3003	3003 01	ACH-320	труба	12	2104	диоксид) (4)	0301(4)	0.0
				12,000			Азот (II) оксид (Азота	0304(6)	0.78
							оксид) (6)	0304(0)	0.78
							Углерод (Сажа, Углерод	0328 (583)	0.1

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.2
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.5
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.024
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.024
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);	2754(10)	0.24
							Растворитель РПК-265П) ( 10)		
	3004	3004 01	АСЦ-320	выхлопная труба	12	2184	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.6
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.78
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.1
							Сера диоксид (Ангидрид сернистый, Сернистый, Газ, Сера (IV) оксид) (516)	0330 (516)	0.2
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.5
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.024
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.024
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на C);	2754(10)	0.24

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Растворитель РПК-265П) (		
	3005	3005 01	ппуа	выхлопная	12	2184	10) Азота (IV) диоксид (Азота	0301(4)	0.0336
	1 3003	3003 01	IIII/A	труба	12	2104	диоксид) (4)	0301(4)	0.0330
				ipyoa			Азот (II) оксид (Азота	0304(6)	0.00546
							оксид) (6)	0001(0)	0.00010
							Углерод (Сажа, Углерод	0328 (583)	0.015
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.353
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.834
							углерода, Угарный газ) (		
							584)		
	3006	3006 01	ППУА	выхлопная	12	2184	Азота (IV) диоксид (Азота	0301(4)	0.0336
				труба			диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.00546
							оксид) (6)	0304(6)	0.00346
							Углерод (Сажа, Углерод	0328 (583)	0.015
							черный) (583)	0020 (000)	0.010
							Сера диоксид (Ангидрид	0330 (516)	0.353
							сернистый, Сернистый газ,	1	
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.834
							углерода, Угарный газ) (		
							584)		
	3007	3007 01	ППУА	выхлопная	12	2184	Азота (IV) диоксид (Азота	0301(4)	0.0336
				труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00546
							оксид) (6)	0339 (593)	0.015
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.015
							Сера диоксид (Ангидрид	0330 (516)	0.353
							сера дисксид (кнгидрид сернистый, Сернистый,	0330 (310)	0.333
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.834
							углерода, Угарный газ) (	1 ' '	

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	3008	3008 01	ппуа	выхлопная	12	2184	584) Азота (IV) диоксид (Азота	0301(4)	0.0336
				труба			диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0304(6)	0.00546
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.015
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.353
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.834
	3009	3009 01	ппуа	выхлопная труба	12	2184	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0336
				TPYCA			диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0304(6)	0.00546
							оксид) (6) Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.015
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.353
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.834
	3010	3010 01	АДПМ	выхлопная труба	12	4380	лота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.6
				19,00			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.78
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.1
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.2
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.5

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.024
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.024
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3011	3011 01	АДПМ	выхлопная	12	4380	Азота (IV) диоксид (Азота	0301(4)	0.6
				труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.78
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.1
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.2
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.5
							углерода, Угарный газ) (		
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.024
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.024
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
	1	1			1.0	4000	10)	0001/4	
	3012	3012 01	АДПМ	выхлопная	12	4380	Азота (IV) диоксид (Азота	0301(4)	0.6
				труба			диоксид) (4)	000446	
							Азот (II) оксид (Азота	0304(6)	0.78
							оксид) (6)	0200 (502)	
	1	1	1		1	İ	Углерод (Сажа, Углерод	0328 (583)	0.1

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.2
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (	0337 (584)	0.5
							584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.024
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.024
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	2754 (10)	0.24
							пересчете на C); Растворитель РПК-265П) ( 10)		
	3013	3013 01	APOK AZN	выхлопная труба	12	4380	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.6
				12,00			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.78
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.1
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.2
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.5
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.024
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.024
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);	2754(10)	0.24

### эра v3.0 ип "эко-орда"

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Растворитель РПК-265П) (		
	3014	3014 01	APOK AZN	выхлопная	12	4380	10) Азота (IV) диоксид (Азота	0301(4)	0.6
	3014	3014 01	ATOK AZIV	труба	12	4300	диоксид) (4)	0301(4)	1
				12,00			Азот (II) оксид (Азота	0304(6)	0.78
							оксид) (6)	, , ,	
							Углерод (Сажа, Углерод	0328 (583)	0.1
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.2
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.5
							углерода, Угарный газ) ( 584)		
							Проп-2-ен-1-аль (Акролеин,	1301(474)	0.02
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.02
							Алканы C12-19 /в пересчете	2754(10)	0.2
							на С/ (Углеводороды	2701(20)	
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3015	3015 01	АР 32/40 Урал- 4320	выхлопная труба	12	2184	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.6
			1320	ipyod			Азот (II) оксид (Азота	0304(6)	0.78
							оксид) (6)	0001(0)	
							Углерод (Сажа, Углерод	0328 (583)	0.
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.:
							сернистый, Сернистый газ,		
				1			Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.
				1			углерода, Угарный газ) (		
				1			584)		
		1					Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.02

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.024
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
I	3016	3016 01	ЦА-320	выхлопная	12	1560	Азота (IV) диоксид (Азота	0301(4)	0.45
1				труба			диоксид) (4)		
1							Азот (II) оксид (Азота	0304(6)	0.585
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.075
							черный) (583)		
1							Сера диоксид (Ангидрид	0330 (516)	0.15
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.375
							углерода, Угарный газ) (		
							584)	1	
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.018
							Акрилальдегид) (474)	1305 (600)	0.010
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.018
							Алканы С12-19 /в пересчете	2754(10)	0.18
1							на С/ (Углеводороды	2/54(10)	0.18
							предельные C12-C19 (в		
1							предельные С12-С19 (в		
1							Растворитель РПК-265П) (		
							10)		
	3017	3017 01	Shanxi	выхлопная	12	2184	Азота (IV) диоксид (Азота	0301(4)	0.6
	1 301/	] 301, 01	ZYT5200TCY	труба	12	2104	диоксид) (4)	0001(4)	
			2113200101	12,00			ДИОКСИД) (4) АЗОТ (II) ОКСИД (АЗОТА	0304(6)	0.78
		1			ĺ		оксид) (6)	0004(0)	1
							Углерод (Сажа, Углерод	0328 (583)	0.1
		1			ĺ		черный) (583)	5525(555)	

# 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.2
							Углерод оксид (Окись углерода, Угарный газ) ( 584)	0337 (584)	0.5
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.024
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.024
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (	2754 (10)	0.24
	3018	3018 01	ZYT TXY-250	выхлопная труба	12	2184	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.3
				12,500			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.39
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.05
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.1
							Углерод оксид (Окись углерода, Угарный газ) (	0337 (584)	0.25
							Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.012
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.012
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (	2754 (10)	0.12

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							10)		
	3019	3019 01	GEABOX for	выхлопная	12	480	Азота (IV) диоксид (Азота	0301(4)	0.09
			SLUPRY PUMP	труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.117
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.015
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.03
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.075
							углерода, Угарный газ) (		
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.0036
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.0036
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.036
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3020	3020 01	GEABOX for	выхлопная	12	480	Азота (IV) диоксид (Азота	0301(4)	0.09
			SLUPRY PUMP	труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.117
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.015
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.03
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.075
							углерода, Угарный газ) (		
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.0036
				1		I	Акрилальдегид) (474)		

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.0036
							Алканы С12-19 /в пересчете	2754(10)	0.036
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3021	3021 01	XJ250	выхлопная	12	3072	Азота (IV) диоксид (Азота	0301(4)	1.8
				труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	2.34
							оксид) (6)	0220 (502)	
							Углерод (Сажа, Углерод	0328 (583)	0.3
							черный) (583) Сера диоксид (Ангидрид	0220 (516)	0.6
							сера диоксид (Ангидрид сернистый, Сернистый,	0330 (516)	0.0
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	1.5
							углерод оксид (окись	0337 (304)	1.5
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.072
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.072
							609)	, ,	
							Алканы С12-19 /в пересчете	2754(10)	0.72
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3022	3022 01	XJ250	выхлопная	12	3072	Азота (IV) диоксид (Азота	0301(4)	1.8
				труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	2.34
							оксид) (6)	0220 (502)	
							Углерод (Сажа, Углерод	0328 (583)	0.3
							черный) (583)	0330 (516)	0.6
1	1	1		1	1	I	Сера диоксид (Ангидрид	0330 (516)	0.6

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							сернистый, Сернистый газ, Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	1.5
							углерода, Угарный газ) (		
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.072
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.072
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.72
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3023	3023 01	УПА-60А	выхлопная	12	3072	Азота (IV) диоксид (Азота	0301(4)	1.5
				труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	1.95
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.25
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.5
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	1.25
							углерода, Угарный газ) (		
							584)		1
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.06
							Акрилальдегид) (474)	1005 (600)	
							Формальдегид (Метаналь) ( 609)	1325 (609)	0.06
								2754 (10)	
							Алканы С12-19 /в пересчете	2754(10)	0.6
							на С/ (Углеводороды		
							предельные C12-C19 (в пересчете на C);		1
							Растворитель РПК-265П) (		
							10)		

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
	3024	3024 01	DK 100 GFC (	выхлопная	12	3072	Азота (IV) диоксид (Азота	0301(4)	1.2
			дэс)	труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	1.56
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.2
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.4
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	1
							углерода, Угарный газ) (		
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.048
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.048
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.48
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3025	3025 01	DK 100 GFC (	выхлопная	12	3072	Азота (IV) диоксид (Азота	0301(4)	1.2
			ДЭС)	труба			диоксид) (4)	000476	1.50
							Азот (II) оксид (Азота	0304(6)	1.56
							оксид) (6)	0000 (500)	
							Углерод (Сажа, Углерод	0328 (583)	0.2
							черный) (583)	0000 (510)	
							Сера диоксид (Ангидрид	0330 (516)	0.4
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)	0005 (504)	_
							Углерод оксид (Окись	0337 (584)	1
							углерода, Угарный газ) (		
				1			584)	1001 (454)	
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.048
				1			Акрилальдегид) (474)	1005 (600)	
	- 1	1	1	1	1	I	Формальдегид (Метаналь) (	1325 (609)	0.048

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.48
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
	3026	3026 01	AD-48 (ДЭС)	выхлопная	12	3072	Азота (IV) диоксид (Азота	0301(4)	0.6
				труба			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.78
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.1
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.2
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.5
							углерода, Угарный газ) (		
							584)		
							Проп-2-ен-1-аль (Акролеин,	1301 (474)	0.024
							Акрилальдегид) (474)		
							Формальдегид (Метаналь) (	1325 (609)	0.024
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (		
							10)		
(189) 3У-6	0905	0905 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602 (64)	0.000001043
			1		i		Диметилбензол (смесь о-,	0616 (203)	0.000000328

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000000656
	6006	6006 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
							предельных С1-С5 (1502*)		
(190) 3У-27	0940	0940 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000001043
							Диметилбензол (смесь о-,	0616(203)	0.000000328
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000000656
	6304	6304 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
1							предельных С1-С5 (1502*)		
(191) 3У-41	0941	0941 01	Дренажная	Углеводороды	24	8760	Сероводород (	0333 (518)	0.000001788
			емкость 12м3				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.000216
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0000799
							предельных С6-С10 (1503*)		
							Бензол (64)	0602 (64)	0.00001043
							Диметилбензол (смесь о-,	0616(203)	0.00000328
							м-, п- изомеров) (203)		
	1	1					Метилбензол (349)	0621 (349)	0.000000656
1	1233	1233 01	Печь подогрева	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0586
1			пп-0,63	нефти			диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00953
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)	04104707+1	0.1000
	6205	6205 01	m. c.	222 40	0.4	07.00	Метан (727*)	0410 (727*)	0.1223
	6305	6305 01	Техблок	ЗРА и ФС	24	8760	Смесь углеводородов	0415(1502*)	1.051185984
(100)	0500	0500 01	I		0.4	0.664	предельных C1-C5 (1502*)	020174	0.000
(192) ckb. №5-	0523	0523 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
92			нагреватель	нефти		_	диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) ( 584)		
							Метан (727*)	0410(727*)	0.054
(193) CKB. №5-	1324	1324 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069
85			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.054
(194) CKB. NºB-	3027	3027 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.069
93			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01122
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.054
							углерода, Угарный газ) (		
							584)	0410(303+)	0.054
(195) CKB. №5-	3028	3028 01	Устьевой		24	0.004	Метан (727*)	0410(727*)	0.054 0.069
(195) CKB. Nº5-	3028	3028 01		подогрев	24	8664	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.069
94			нагреватель ППТМ-0,2Г	нефти			диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.01122
			IIIITM-0,21				АЗОТ (II) ОКСИД (АЗОТА ОКСИД) (6)	0304(6)	0.01122
							Углерод оксид (Окись	0337 (584)	0.054
							углерод оксид (окись	0337 (304)	0.054
							584)		
							Метан (727*)	0410(727*)	0.054
(196) скв.	3035	3035 01	Устьевой	подогрев	24	8664	Азота (IV) диоксид (Азота	0301(4)	0.0765
N:556		"""	нагреватель	нефти		0001	диоксид) (4)	0001(1)	0.0703
			пптм-0,2Г				Азот (II) оксид (Азота	0304(6)	0.01243
							оксид) (6)	(0)	]
							Углерод оксид (Окись	0337 (584)	0.0568
							углерода, Угарный газ) (		

## 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

Сырдарьинский район, ТОО СП "КуатАмлонМунай" на 2026 год

A	1	2	3	4	5	6	7	8	9
							584)		
							Метан (727*)	0410(727*)	0.0568
(197) CKB.	3036	3036 01	Устьевой	подогрев	24	3600	Азота (IV) диоксид (Азота	0301(4)	0.03176
N:371			нагреватель	нефти			диоксид) (4)		
			ППТМ-0,2Г				Азот (II) оксид (Азота	0304(6)	0.00516
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0236
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.0236
(198) скв.	3037	3037 01	Устьевой	подогрев	24	3600	Азота (IV) диоксид (Азота	0301(4)	0.03176
N:388			нагреватель	нефти			диоксид) (4)	, ,	
			пптм-0,2г	1 -			Азот (II) оксид (Азота	0304(6)	0.00516
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0236
							углерода, Угарный газ) (	, ,	
							584)		
							Метан (727*)	0410(727*)	0.0236
(199) 3Y-22	0170	0170 01	Устьевой	подогрев	24	4392	Азота (IV) диоксид (Азота	0301(4)	0.0586
			нагреватель ПП-	нефти			диоксид) (4)		
			0,63A	1			Азот (II) оксид (Азота	0304(6)	0.00953
			1				оксид) (6)	, ,	
							Углерод оксид (Окись	0337 (584)	0.1223
							углерода, Угарный газ) (		
							584)		
							Метан (727*)	0410(727*)	0.1223
(200) CKB.	1340	1340 01	Устьевой	подогрев	24	3600	Азота (IV) диоксид (Азота	0301(4)	0.03176
Nº706			нагреватель	нефти			диоксид) (4)		
			пптм-0,2г	1			Азот (II) оксид (Азота	0304(6)	0.00516
			· ·				оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.0236
							углерода, Угарный газ) (		
							584)		
			1				Метан (727*)	0410(727*)	0.0236

Примечание: В графе 8 в скобках ( без "*") указан код 3В из таблицы 1 Приложения 1 к Приказу Министерства национальной экономики РК от 28.02.2015 г. №168 (список ПДК), со "*" указан код 3В из таблицы 2 вышеуказанного Приложения (список ОБУВ).

#### БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

ЭРА v3.0 ИП "ЭКО-ОРДА"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

Сырдарьинский район, ТОО СП "КуатАмлонМунай" на 2026 год
Номер Параметры Параметры газовоздушной

й смеси	Код загряз-		Количество загрязняющих
ка загрязнения	няющего		веществ, выбрасываемых
	вещества		в атмосферу
Темпе-	(ЭНК, ПДК	Наименование ЗВ	

номер источ ника	источн.за			метры газовоздушнои см на выходе источника з	загрязнения	Код загряз- няющего вещества		количество з веществ, выб в атмо	брасываемых
заг- ряз- нения	Высота м	Диаметр, размер сечения устья, м	Скорость м/с	Объемный расход, м3/с	Темпе- ратура, С	( ЭНК, ПДК или ОБУВ)	Наименование ЗВ	Максимальное, г/с	Суммарное, т/год
1	2	3	4	5	6	7	7a	8	9
						цппн			
0051	6	0.3	3.93	0.274	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.02976	0.471
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00484	0.0766
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.0233	0.3685
						0410 (727*)	Метан (727*)	0.0233	0.3685
0052	6	0.3	3.93	0.274	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.02976	0.471
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00484	0.0766
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.0233	0.3685
						0410 (727*)	Метан (727*)	0.0233	0.3685
0053	6	0.3	3.93	0.274	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.02976	0.468
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00484	0.076
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.0233	0.3665
						0410 (727*)	Метан (727*)	0.0233	0.3665

ЭРА v3.0 ИП "ЭКО-ОРДА"

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6		7	7a	8	9
0054	6	0.3	1.38	0.1118	250	0301 (	4)	Азота (IV) диоксид (Азота	0.00496	0.0523
								диоксид) (4)		
						0304 (	6)	Азот (II) оксид (Азота	0.000806	0.0085
								оксид) (6)		
						0337 (	584)	Углерод оксид (Окись	0.0095	0.1001
								углерода, Угарный газ) (		
								584)		
						0410 (		Метан (727*)	0.0095	0.1001
0056	20.5	0.777	2.15	1.0225352	3313.5	0301 (	4)	Азота (IV) диоксид (Азота		
								диоксид) (4)		
						0304 (	6)	Азот (II) оксид (Азота		
								оксид) (6)		
						0328 (	583)	Углерод (Сажа, Углерод		
							= 0.4.	черный) (583)		
						0337 (	584)	Углерод оксид (Окись		
								углерода, Угарный газ) (		
						0410 (	707+1	584) Метан (727*)		
0057	5	0.1	3.02	0.0447	250	0301 (		метан (/2/") Азота (IV) диоксид (Азота	0.00356	0.028
1 0037	]	0.1	3.02	0.0447	250	0301 (	4)	диоксид) (4)	0.00336	0.028
						0304 (	6)	диоксид) (4) Азот (II) оксид (Азота	0.000579	0.00455
						0504 (	0)	оксид) (6)	0.000373	0.00455
						0337 (	584)	Углерод оксид (Окись	0.003806	0.0299
						0337 (	301)	углерода, Угарный газ) (	0.003000	0.0233
								584)		
						0410 (	727*)	Метан (727*)	0.003806	0.0299
0058	5	0.1	3.02	0.0447	250	0301 (	4)	Азота (IV) диоксид (Азота	0.00356	0.028
								диоксид) (4)		
						0304 (	6)	Азот (II) оксид (Азота	0.000579	0.00455
								оксид) (6)		
						0337 (	584)	Углерод оксид (Окись	0.003806	0.0299
								углерода, Угарный газ) (		
								584)		
1						0410 (	727*)	Метан (727*)	0.003806	0.0299
0490	6	0.1	4.97	0.039	250	0301 (	4)	Азота (IV) диоксид (Азота	0.011812	0.37253
								диоксид) (4)		
						0337 (	584)	Углерод оксид (Окись	0.0618	1.9492

ЭРА v3.0 ИП "ЭКО-ОРДА"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							углерода, Угарный газ) (		
							584)		
						0415 (1502*)	Смесь углеводородов	0.0089	0.2825
							предельных C1-C5 (1502*)		
0644	6	0.1	4.97	0.039	250	0301 (4)	Азота (IV) диоксид (Азота	0.011812	0.37253
							диоксид) (4)		
						0337 (584)	Углерод оксид (Окись	0.0618	1.9492
							углерода, Угарный газ) (		
						0.415 (1500+)	584)	2 2222	0 0005
						0415 (1502*)	Смесь углеводородов	0.0089	0.2825
1257				0.274		0301 (4)	предельных C1-C5 (1502*) Азота (IV) диоксид (Азота	0.02976	0.468
125/				0.274		0301 (4)	диоксид) (4)	0.02976	0.408
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.00484	0.076
						0304 (0)	оксид) (6)	0.00404	0.070
						0337 (584)	Углерод оксид (Окись	0.0233	0.3665
						0337 (301)	углерода, Угарный газ) (	0.0233	0.3003
							584)		
						0410 (727*)	Метан (727*)	0.0233	0.3665
1260	6	0.3	1.38	0.111	250	0301 (4)	Азота (IV) диоксид (Азота	0.00491	0.03904
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000798	0.00634
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00944	0.075
							углерода, Угарный газ) (		
							584)		
1	_					0410 (727*)	Метан (727*)	0.00944	0.075
1261	6	0.3	1.38	0.111	250	0301 (4)	Азота (IV) диоксид (Азота	0.00491	0.03864
						0004 (6)	диоксид) (4)		0 0000
						0304 (6)	Азот (II) оксид (Азота	0.000798	0.00628
						0337 (504)	оксид) (6)	0 00044	0 0743
						0337 (584)	Углерод оксид (Окись	0.00944	0.0743
1							углерода, Угарный газ) ( 584)		
1						0410 (727*)	Metan (727*)	0.00944	0.0743
1401						0301 (4)	Азота (IV) диоксид (Азота	0.00344	0.37253
1 - 101						0001 (1)	диоксид) (4)	0.011012	0.37233

ЭРА v3.0 ИП "ЭКО-ОРДА"

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0337 (584)	Углерод оксид (Окись	0.0618	1.9492
							углерода, Угарный газ) (		
							584)		
						0415 (1502*)	Смесь углеводородов	0.0089	0.2825
							предельных C1-C5 (1502*)		
1403						0415 (1502*)	Смесь углеводородов	2.068	4.268
							предельных C1-C5 (1502*)		
1404						0415 (1502*)	Смесь углеводородов	2.068	4.268
							предельных C1-C5 (1502*)		
1406						0415 (1502*)	Смесь углеводородов	2.068	4.268
							предельных C1-C5 (1502*)		
1407						0415 (1502*)	Смесь углеводородов	6.204	12.803
							предельных C1-C5 (1502*)		
1408						0415 (1502*)	Смесь углеводородов	6.204	12.803
							предельных C1-C5 (1502*)		
1409						0333 (518)	Сероводород (	0.000625	0.00528
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.755	6.38
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.279	2.36
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.00365	0.0308
						0616 (203)	Диметилбензол (смесь о-, м-	0.001146	0.00968
							, п- изомеров) (203)		
1						0621 (349)	Метилбензол (349)	0.002292	0.01936
1410						0333 (518)	Сероводород (	0.000625	0.01358
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.755	16.4
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.279	6.06
						0.000 (.04)	предельных С6-С10 (1503*)	0 00005	0 0700
						0602 (64)	Бензол (64)	0.00365	0.0792
						0616 (203)	Диметилбензол (смесь о-, м-	0.001146	0.0249
						0.601 (2.40)	, п- изомеров) (203)	0 000000	
1 4 1 1						0621 (349)	Метилбензол (349)	0.002292	0.0498
1411						0415 (1502*)	Смесь углеводородов	10.0848	36.639
1		1	I	l		1	предельных C1-C5 (1502*)	1	

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
1412						0333 (518)	Сероводород (	0.000625	0.01008
							Дигидросульфид) (518)		1
						0415 (1502*)	Смесь углеводородов	0.755	12.17
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.279	4.5
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.00365	0.0588
						0616 (203)	Диметилбензол (смесь о-, м-	0.001146	0.01848
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.002292	0.03696
1413						0333 (518)	Сероводород (	0.0000665	0.000000714
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.0803	0.000862
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.0297	0.000319
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.000388	0.000004165
						0616 (203)	Диметилбензол (смесь о-, м-	0.000122	0.00000131
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000244	0.00000262
1439				0.1109		0301 (4)	Азота (IV) диоксид (Азота	0.01069	0.169
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.001737	0.02747
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00943	0.149
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00943	0.149
1440				0.1109		0301 (4)	Азота (IV) диоксид (Азота	0.01069	0.168
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.001737	0.0273
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00943	0.1482
							углерода, Угарный газ) (		1
							584)		
1						0410 (727*)	Метан (727*)	0.00943	0.1482
1441	1		I	0.0457		0301 (4)	Азота (IV) диоксид (Азота	0.00181	0.02864

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	эн, тоо сп "куат 3	4	5	6	7	7a	8	9
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0002943	0.00465
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00388	0.0614
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00388	0.0614
1442				0.0457		0301 (4)	Азота (IV) диоксид (Азота	0.00181	0.0285
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0002943	0.00463
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00388	0.0611
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00388	0.0611
6042						0415 (1502*)	Смесь углеводородов	0.17725	5.589752496
							предельных C1-C5 (1502*)		
						зу-1			
0900						0333 (518)	Сероводород (	0.00001108	0.000001788
						, , ,	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6001						0415 (1502*)	Смесь углеводородов	0.03085	0.973057296
							предельных C1-C5 (1502*)		I
						3y-2			
						3, 2			
0003				0.0728		0301 (4)	Азота (IV) диоксид (Азота	0.003464	0.0548
						, ,	диоксид) (4)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
					•	0304 (6)	Азот (II) оксид (Азота	0.000563	0.0089
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00928	0.1467
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00928	0.1467
0901						0333 (518)	Сероводород (	0.00001108	0.000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6002						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
							предельных С1-С5 (1502*)		
						3A-3			
0231				0.0728		0301 (4)	Азота (IV) диоксид (Азота	0.003464	0.0548
1 0231				0.0720		0301 (1)	диоксид) (4)	0.003101	0.0310
						0304 (6)	Азот (II) оксид (Азота	0.000563	0.0089
						****	оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00928	0.1467
						, , ,	углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00928	0.1467
0902						0333 (518)	Сероводород (	0.00001108	0.000001788
						, , ,	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
						1	предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
						, ,	предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6003						0415 (1502*)	Смесь углеводородов	0.04076	1.285572048
							предельных C1-C5 (1502*)		
						3y-4			
0903						0333 (518)	Сероводород (	0.00001108	0.0000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
						0621 (349)	, п- изомеров) (203) Метилбензол (349)	0.0000406	0.000000656
6004						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
0001						0113 (1302 )	предельных С1-С5 (1502*)	0.03333	1.001100501
						3Y-5			
0904						0333 (518)	Сероводород (	0.00001108	0.000001788
						(1.11)	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
1						0621 (349)	, п- изомеров) (203) Метилбензол (349)	0.0000406	0.00000656
6005						0415 (1502*)	Метилоензол (349) Смесь углеводородов	0.0000406	1.20744336
0005						0413 (1307)	предельных С1-С5 (1502*)	0.03020	1.20/44330
						зу-7			

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
0906						0333 (518)	Сероводород (	0.00001108	0.000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.00000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.00000656
1117				0.0606		0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.1158
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000603	0.0188
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00773	0.241
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.00773	0.241
6007						0410 (727*)		0.00773	1.051185984
8007						0413 (1302")	Смесь углеводородов предельных C1-C5 (1502*)	0.03333	1.031103904
							предельных СТ-СЗ (1302")		
						37-8			
0709	6	0.1	12.12	0.0606	250	0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.1158
0709	0	0.1	12.12	0.0606	250	0301 (4)	диоксид) (4)	0.003/1	0.1138
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.000603	0.0188
						0304 (0)	оксид) (6)	0.000003	0.0100
						0337 (584)	Углерод оксид (Окись	0.00773	0.241
						0337 (301)	углерода, Угарный газ) (	0.00773	0.211
							584)		
						0410 (727*)	Метан (727*)	0.00773	0.241
0907						0333 (518)	Сероводород (	0.00001108	0.000001788
						, , ,	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
						, , , , ,	предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6		7	7a	8	9
					_	0602 (64)	)	Бензол (64)	0.0000646	0.000001043
						0616 (203	3)	Диметилбензол (смесь о-, м-	0.0000203	0.00000328
								, п- изомеров) (203)		
						0621 (349		Метилбензол (349)	0.0000406	0.000000656
6008						0415 (150	02*)	Смесь углеводородов	0.03828	1.20744336
								предельных С1-С5 (1502*)		
						, n	y-9			
						3)	y-9			
0908						0333 (518	.8)	Сероводород (	0.00001108	0.000001788
								Дигидросульфид) (518)		
						0415 (150	02*)	Смесь углеводородов	0.01338	0.000216
								предельных С1-С5 (1502*)		
						0416 (150	03*)	Смесь углеводородов	0.00495	0.0000799
								предельных С6-С10 (1503*)		
						0602 (64)		Бензол (64)	0.0000646	0.00001043
						0616 (203	3)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
						0.601 (0.4)	0.1	, п- изомеров) (203)		0 00000055
						0621 (349		Метилбензол (349)	0.0000406	0.000000656
6009						0415 (150	02*)	Смесь углеводородов	0.04324	1.363700736
								предельных С1-С5 (1502*)		
						ЗУ	7-10			
0909						0333 (518	.8)	Сероводород (	0.00001108	0.000001788
						,	•	Дигидросульфид) (518)		
						0415 (150	02*)	Смесь углеводородов	0.01338	0.000216
								предельных C1-C5 (1502*)		
						0416 (150	03*)	Смесь углеводородов	0.00495	0.0000799
								предельных С6-С10 (1503*)		
						0602 (64)		Бензол (64)	0.0000646	0.000001043
						0616 (203	3)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
								, п- изомеров) (203)		
6010						0621 (349		Метилбензол (349)	0.0000406	0.000000656
6010						0415 (150	02*)	Смесь углеводородов	0.05563	1.754344176
								предельных С1-С5 (1502*)		
	I	1	I		ı	1			I	

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

11	2	3	4	5	6	7	7a	8	9
					_	ЗУ-11			
0910						0333 (518)	Сероводород ( Дигидросульфид) (518)	0.00001108	0.000001788
						0415 (1502*)	Смесь углеводородов предельных С1-С5 (1502*)	0.01338	0.000216
						0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0.00495	0.0000799
i						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0.0000203	0.000000328
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6011						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.05067	1.5980868
						ЗУ-14			
0911						0333 (518)	Сероводород (	0.00001108	0.0000001788
						0415 (1502*)	Дигидросульфид) (518) Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.000216
						0416 (1503*)	предельных C1-C3 (1302-) Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.0000799
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0.0000203	0.000000328
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6014						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.03581	1.12931467
						зу-15			
0912						0333 (518)	Сероводород ( Дигидросульфид) (518)	0.00001108	0.0000001788
						0415 (1502*)	дигидросульфиду (316) Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.000216
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.00000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.00000656
6015						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
							предельных C1-C5 (1502*)		
						ЗУ-16			
0913						0333 (518)	Сероводород (	0.00001108	0.0000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.00000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.00000656
6016						0415 (1502*)	Смесь углеводородов	0.03581	1.12931467
							предельных C1-C5 (1502*)		
						зу-17			
0060				0.0606		0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.0586
0000				0.0000		0301 (4)	диоксид) (4)	0.003/1	0.0386
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.000603	0.00953
						0304 (0)	оксид) (6)	0.000003	0.00933
						0337 (584)	Углерод оксид (Окись	0.00773	0.1223
						0337 (304)	углерод оксид (окись	0.00773	0.1223
							584)		
	1					0410 (727*)	Метан (727*)	0.00773	0.1223
0914	1					0333 (518)	Сероводород (	0.00001108	0.000001788
	1					, ,	Дигидросульфид) (518)		
	1					0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных С1-С5 (1502*)		

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
1							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6024						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
							предельных С1-С5 (1502*)		
						зу-18			
0915						0333 (518)	Сероводород (	0.00001108	0.0000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6025						0415 (1502*)	Смесь углеводородов	0.03085	0.973057296
							предельных C1-C5 (1502*)		
						зу-19			
0110				0.0606		0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.0586
						, ,	диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000603	0.00953
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00773	0.1223
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00773	0.1223
0916						0333 (518)	Сероводород (	0.00001108	0.000001788
							Дигидросульфид) (518)		
	1	I				0415 (1502*)	Смесь углеводородов	0.01338	0.000216

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	он, тоо сп "куал 3	4	5	6	7	7a	8	9
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6027						0415 (1502*)	Смесь углеводородов	0.03828	1.20744336
							предельных С1-С5 (1502*)		
						зу-21			
0917						0333 (518)	Сероводород (	0.00001108	0.0000003132
						, , ,	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.0003783
						1	предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0001399
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001827
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.0000005744
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000001149
6029						0415 (1502*)	Смесь углеводородов	0.03828	1.20744336
							предельных C1-C5 (1502*)		
						зу-23			
0918						0333 (518)	Сероводород (	0.00001108	0.0000001788
						(****	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
						, , , , ,	предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
6038						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.03536	1.115109456
						ЗУ-24			
0124				0.0606		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00371	0.0586
						0304 (6)	АЗОТ (II) ОКСИД (АЗОТА ОКСИД) (6)	0.000603	0.00953
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.00773	0.1223
						0410 (727*)	Метан (727*)	0.00773	0.1223
0919						0333 (518)	Сероводород (	0.00001108	0.000001788
						, ,	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.000216
						0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.0000799
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0.0000203	0.00000328
						0621 (349)	Метилбензол (349)	0.0000406	0.00000656
6039						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.04076	1.285572048
						зу-25			
0933						0333 (518)	Сероводород ( Дигидросульфид) (518)	0.00001108	0.000001788
						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.000216
						0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.0000799
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0.0000203	0.000000328

эра v3.0 ип "эко-орда"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6302						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
							предельных С1-С5 (1502*)		
						зу-29			
0920						0333 (518)	Сероводород (	0.00001108	0.000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.000216
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
						0621 (349)	, п- изомеров) (203) Метилбензол (349)	0.0000406	0.00000656
6281						0415 (1502*)	Смесь углеводородов	0.000406	0.973057296
0201						0413 (1302 )	предельных С1-С5 (1502*)	0.03003	0.973037290
						зу-31			
0921						0333 (518)	Сероводород (	0.00001108	0.000001788
						0415 (1502*)	Дигидросульфид) (518) Смесь углеводородов	0.01338	0.000216
						0110 (1002 )	предельных С1-С5 (1502*)		0.000210
						0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.0000799
						0602 (64)	предельных со-сто (1303^) Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000001043
						, , , , ,	, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.00000656
6283						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.03288	1.036980768
							inpedesibilities of co (1902)		
						зу-32			
0922						0333 (518)	Сероводород (	0.00001108	0.000001788

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.00000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6284						0415 (1502*)	Смесь углеводородов	0.02545	0.802594704
							предельных С1-С5 (1502*)		
						37-33			
0923						0333 (518)	Сероводород (	0.00001108	0.0000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6285						0415 (1502*)	Смесь углеводородов	0.03536	1.115109456
							предельных С1-С5 (1502*)		
						3y-34			
0924						0333 (518)	Сероводород (	0.00001108	0.0000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
		1				0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6286						0415 (1502*)	Смесь углеводородов	0.03783	1.193238144
							предельных C1-C5 (1502*)		
						зу-37			
0925						0333 (518)	Сероводород (	0.00001108	0.000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
						0.601 (0.40)	, п- изомеров) (203)	0.0000406	0 000000656
6289						0621 (349) 0415 (1502*)	Метилбензол (349) Смесь углеводородов	0.0000406 0.03783	0.000000656 1.193238144
0209						0413 (1302")	предельных С1-С5 (1502*)	0.03783	1.193236144
							предельных ст со (1502)		
						3y-38			
0926						0333 (518)	Сероводород (	0.00001108	0.000001788
**-*						(323,	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
						0601 (240)	, п- изомеров) (203)	0.0000101	0 0000000
1						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6290						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.03536	1.115109456
							inposedibilities of GO (1902)		
1						3У-40			
1									

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
0927						0333 (518)	Сероводород (	0.00001108	0.000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.00000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
1221				0.0606		0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.0586
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000603	0.00953
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00773	0.1223
1							углерода, Угарный газ) (		
						0410 (7071)	584)	0 00770	0 1000
6000						0410 (727*)	Метан (727*)	0.00773	0.1223
6292						0415 (1502*)	Смесь углеводородов	0.05518	1.74013896
							предельных C1-C5 (1502*)		
						зу-43			
0928						0333 (518)	Сероводород (	0.00001108	0.000001788
0320						0555 (510)	Дигидросульфид) (518)	0.00001100	0.0000001700
1						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
						0110 (1002 )	предельных С1-С5 (1502*)	0.01000	0.000210
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
						0110 (1000 )	предельных С6-С10 (1503*)	0.00130	0.0000733
						0602 (64)	Бензол (64)	0.0000646	0.000001043
i						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.00000328
						, , , , ,	, п- изомеров) (203)		
1						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6300						0415 (1502*)	Смесь углеводородов	0.03783	1.193238144
						, , , , ,	предельных С1-С5 (1502*)		
						зу-Б1			

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	он, тоо си "куат 3	4	5	6	7	7a	8	9
0708	6	0.1	16.17	0.0576	250	0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.1046
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.000545	0.017
						0304 (0)	оксид) (6)	0.000343	0.017
						0337 (584)	Углерод оксид (Окись	0.00735	0.229
						, ,	углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00735	0.229
0929						0333 (518)	Сероводород (	0.00001108	0.000001788
						0415 (1502*)	Дигидросульфид) (518)	0.01338	0.000216
						0413 (1302")	Смесь углеводородов предельных C1-C5 (1502*)	0.01336	0.000216
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
						0.001 (0.40)	, п- изомеров) (203)	0 0000106	0.00000055
6017						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6017						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.04076	1.285572048
							предельных ст-сэ (1302-)		
						3Y-E3			
						0000 (510)			
0931						0333 (518)	Сероводород ( Дигидросульфид) (518)	0.00001108	0.0000001788
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
						0110 (1002 )	предельных С1-С5 (1502*)	0.01000	0.000210
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
						0.621 (240)	, п- изомеров) (203)	0.0000406	0.000000656
1249				0.0576		0621 (349) 0301 (4)	Метилбензол (349) Азота (IV) диоксид (Азота	0.0000406 0.00335	0.000000656
1249				0.0376		0301 (1)	диоксид) (4)	0.00333	0.1040
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.017

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0337 (584)	оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (	0.00735	0.229
6034						0410 (727*) 0415 (1502*)	584) Метан (727*) Смесь углеводородов предельных C1-C5 (1502*)	0.00735 0.03581	0.229 1.129314672
						ЗУ-4Б			
0932						0333 (518)	Сероводород ( Дигидросульфид) (518)	0.00001108	0.000001788
						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.000216
						0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.0000799
						0602 (64) 0616 (203)	Бензол (64) Диметилбензол (смесь о-, м- , п- изомеров) (203)	0.0000646 0.0000203	0.000001043 0.000000328
1254				0.0576		0621 (349) 0301 (4)	Метилбензол (349) Азота (IV) диоксид (Азота	0.0000406 0.00335	0.000000656 0.1046
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0.000545	0.017
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.00735	0.229
6047						0410 (727*) 0415 (1502*)	Метан (727*) Смесь углеводородов предельных C1-C5 (1502*)	0.00735 0.03085	0.229 0.973057296
						3Y-B5			
0937						0333 (518)	Сероводород ( Дигидросульфид) (518)	0.00001108	0.000001788
						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.000216

эра v3.0 ип "эко-орда"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
1253				0.0576		0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.1046
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.017
						0007 (504)	оксид) (6)	0 00005	
						0337 (584)	Углерод оксид (Окись	0.00735	0.229
							углерода, Угарный газ) ( 584)		
						0410 (727*)	584) Метан (727*)	0.00735	0.229
6048						0410 (727^)		0.00733	1.051185984
0048						0415 (1502^)	Смесь углеводородов предельных C1-C5 (1502*)	0.03333	1.051185984
							предельных ст-сэ (1302")		
						ГУ Бектас			
0072	6	0.1	15.29	0.0576	250	0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.1046
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.017
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00735	0.229
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00735	0.229
0073	6	0.1	15.29	0.0576	250	0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.1046
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.017
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00735	0.229
							углерода, Угарный газ) (		
1						0410 (7071)	584)	0 00705	
1 0074		0.1	15.00	0.0576	0.50	0410 (727*)	Метан (727*)	0.00735	0.229
0074	6	0.1	15.29	0.0576	250	0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.1046
1	1		ı				диоксид) (4)	1	I

ЭРА v3.0 ИП "ЭКО-ОРДА"

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.017
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00735	0.229
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00735	0.229
0075	6	0.1	15.29	0.0691	250	0301 (4)	Азота (IV) диоксид (Азота	0.00482	0.1504
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000784	0.02444
						0000 4504	оксид) (6)		0 075
						0337 (584)	Углерод оксид (Окись	0.00882	0.275
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.00882	0.275
0076	6	0.1	15.29	0.0691	250	0301 (4)		0.00882	0.275
0076	0	0.1	15.29	0.0691	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00482	0.1504
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.000784	0.02444
						0304 (0)	оксид) (6)	0.000764	0.02444
						0337 (584)	Углерод оксид (Окись	0.00882	0.275
						0007 (001)	углерода, Угарный газ) (	0.00002	0.270
							584)		
						0410 (727*)	Метан (727*)	0.00882	0.275
0816						0415 (1502*)	Смесь углеводородов	0.33508	3.07
							предельных С1-С5 (1502*)		
0817						0415 (1502*)	Смесь углеводородов	0.33508	3.07
							предельных C1-C5 (1502*)		
0818						0415 (1502*)	Смесь углеводородов	0.33508	3.07
							предельных C1-C5 (1502*)		
0819						0415 (1502*)	Смесь углеводородов	0.33508	3.07
							предельных C1-C5 (1502*)		
0930						0333 (518)	Сероводород (	0.00001108	0.0000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
1						0602 (64)	Бензол (64)	0.0000646	0.000001043

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
0934						0333 (518)	Сероводород (	0.0001108	0.0000001428
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.1338	0.0001725
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.0495	0.0000638
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.000646	0.000000833
						0616 (203)	Диметилбензол (смесь о-, м-	0.000203	0.000000262
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000406	0.000000524
0935						0333 (518)	Сероводород (		
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов		
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов		
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)		
						0616 (203)	Диметилбензол (смесь о-, м-		
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)		
0936						0333 (518)	Сероводород (	0.00001108	0.000000214
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.0002587
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000957
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00000125
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000393
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000785
1252	6	0.1	15.29	0.0576	250	0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.1046
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.017
1	1						оксид) (6)		

эра v3.0 ип "эко-орда"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0337 (584)	Углерод оксид (Окись	0.00735	0.229
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00735	0.229
3029	6	0.1	15.29	0.0576	250	0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.053
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.0086
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00735	0.1162
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00735	0.1162
3030	6	0.1	15.29	0.0576	250	0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.0527
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.00857
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00735	0.1155
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00735	0.1155
3031						0415 (1502*)	Смесь углеводородов	2.2007	20.32
							предельных C1-C5 (1502*)		
3032						0415 (1502*)	Смесь углеводородов	2.207	20.32
							предельных C1-C5 (1502*)		
3033						0333 (518)	Сероводород (		
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов		
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов		
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)		
1						0616 (203)	Диметилбензол (смесь о-, м-	j	I
1	1						, п- изомеров) (203)	1	
1	1					0621 (349)	Метилбензол (349)		
6018						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
						0.415 (1.500)	предельных C1-C5 (1502*)		1 05110500
6030	1		l			0415 (1502*)	Смесь углеводородов	0.03333	1.051185984

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							предельных C1-C5 (1502*)		
			l		ı	ГУ Южный Коныс			
	1	1	I	l I	1	10 10/11221 11011220		1	
1334				0.091		0301 (4)	Азота (IV) диоксид (Азота	0.00718	0.1136
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.001167	0.01846
							оксид) (6)		
1						0337 (584)	Углерод оксид (Окись	0.00773	0.1223
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.00773	0.1223
1335				0.091		0301 (4)	метан (/2/*) Азота (IV) диоксид (Азота	0.00773	0.1223
1333				0.091		0301 (4)	диоксид) (4)	0.00718	0.113
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.001167	0.01837
						0304 (0)	оксид) (6)	0.001167	0.01637
l .						0337 (584)	Углерод оксид (Окись	0.00773	0.1216
						0007 (001)	углерода, Угарный газ) (		0.1210
							584)		
						0410 (727*)	Метан (727*)	0.00773	0.1216
1414						0415 (1502*)	Смесь углеводородов	1.861	3.841
							предельных C1-C5 (1502*)		
1419				0.091		0301 (4)	Азота (IV) диоксид (Азота	0.00718	0.1136
l							диоксид) (4)		
l .						0304 (6)	Азот (II) оксид (Азота	0.001167	0.01846
							оксид) (6)		
l .						0337 (584)	Углерод оксид (Окись	0.00773	0.1223
							углерода, Угарный газ) (		· ·
						0.44.0 (2021)	584)		0 1000
1420						0410 (727*)	Метан (727*)	0.00773 1.861	0.1223 3.841
1420						0415 (1502*)	Смесь углеводородов	1.861	3.841
1421						0333 (518)	предельных C1-C5 (1502*)	0.0001662	0.000978
1421						UJJJ (JIB)	Сероводород ( Дигидросульфид) (518)	0.0001662	0.000978
						0415 (1502*)	Смесь углеводородов	0.2007	1.18
						0110 (1002 )	предельных С1-С5 (1502*)	0.2007	1.10
						0416 (1503*)	Смесь углеводородов	0.0742	0.437

эра v3.0 ип "эко-орда"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.00097	0.0057
						0616 (203)	Диметилбензол (смесь о-, м-	0.000305	0.001793
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.00061	0.003586
1446				0.091		0301 (4)	Азота (IV) диоксид (Азота	0.00718	0.113
l .							диоксид) (4)		
l .						0304 (6)	Азот (II) оксид (Азота	0.001167	0.01837
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00773	0.1216
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00773	0.1216
6019						0415 (1502*)	Смесь углеводородов	0.05068	1.5980868
							предельных С1-С5 (1502*)		
						ПСН Кумколь			
0100	3	0.1	0.2	0.0016	27	2754 (10)	Алканы С12-19 /в пересчете	0.16333	0.0041
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0767	6	0.1	13.19	0.0936	250	0301 (4)	Азота (IV) диоксид (Азота	0.00934	0.2944
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.001517	0.0478
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00796	0.251
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00796	0.251
0768	6	0.1	13.19	0.0936	250	0301 (4)	Азота (IV) диоксид (Азота	0.00934	0.2944
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.001517	0.0478
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00796	0.251
	1		l				углерода, Угарный газ) (	1	

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							584)		
						0410 (727*)	Метан (727*)	0.00796	0.251
1422				1.5019672	177	0301 (4)	Азота (IV) диоксид (Азота	0.341333333	0.4352
							диоксид) (4)		
i						0304 (6)	Азот (II) оксид (Азота	0.055466667	0.07072
1							оксид) (6)		
1423						0328 (583)	Углерод (Сажа, Углерод	0.015873333	0.01942862
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.133333333	0.17
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.34444444	0.442
							углерода, Угарный газ) (		
							584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.00000038	0.00000068
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (	0.00381	0.00485724
							609)		
						2754 (10)	Алканы C12-19 /в пересчете	0.092063333	0.11657138
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
						0000 (510)	Растворитель РПК-265П) (10)	0.00001108	0 0000000515
						0333 (518)	Сероводород (	0.00001108	0.000000515
						0415 (1502*)	Дигидросульфид) (518)	0.01338	0.0000622
						0415 (1502^)	Смесь углеводородов предельных С1-С5 (1502*)	0.01338	0.0000622
						0416 (1503*)	Смесь углеводородов	0.00495	0.000023
						0416 (1303")	предельных С6-С10 (1503*)	0.00493	0.000023
						0602 (64)	Бензол (64)	0.0000646	0.0000003
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000040	0.0000003
						0010 (203)	, п- изомеров) (203)	0.0000203	0.000000944
						0621 (349)	метилбензол (349)	0.0000406	0.0000001888
1500						0415 (1502*)	Смесь углеводородов	3.102	6.401
1000						0410 (1005)	предельных С1-С5 (1502*)	3.102	0.401
1501						0415 (1502*)	Смесь углеводородов	3.102	6.401
T 0 0 T						0410 (1005)	предельных С1-С5 (1502*)	3.102	0.401

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
6023						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.01779	0.561106032
				 		45 км нефтепровода	 	l	
0019	6	0.4	0.79	0.0988	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.2259	7.2069
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.0491	1.552
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.0898	2.835
						0410 (727*)	Метан (727*)	0.0898	2.835
0020	6	0.4	0.79	0.0988	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.2259	7.2069
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.0491	1.552
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.0898	2.835
						0410 (727*)	Метан (727*)	0.0898	2.835
0024	5	0.1	4.85	0.3807804	177	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.1024	0.33536
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.01664	0.054496
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.004762	0.014971466
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.04	0.131
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.103333333	0.3406
						0703 (54)	584) Бенз/а/пирен (3,4- Бензпирен) (54)	0.00000114	0.000000524
						1325 (609)	Формальдегид (Метаналь) ( 609)	0.001143	0.003742932

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						2754 (10)	Алканы С12-19 /в пересчете	0.027619	0.089828534
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0025	5	0.1	6.87	0.5394389	177	0301 (4)	Азота (IV) диоксид (Азота	0.145066667	0.33536
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.023573333	0.054496
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.006746167	0.014971466
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.056666667	0.131
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.146388889	0.3406
							углерода, Угарный газ) (		
							584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.000000162	0.000000524
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (	0.00161925	0.003742932
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.039126917	0.089828534
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
	_						Растворитель РПК-265П) (10)		
0026	5	0.1	7.27	0.5711706	177	0301 (4)	Азота (IV) диоксид (Азота	0.1536	0.33536
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.02496	0.054496
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.007143	0.014971466
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.06	0.131
							сернистый, Сернистый газ,		
						0000 4504	Сера (IV) оксид) (516)	0.155	0.0406
						0337 (584)	Углерод оксид (Окись	0.155	0.3406
	1 1		1			1	углерода, Угарный газ) (	1	

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.00000171	0.00000524
							Бензпирен) (54)		
						1325 (609)	Формальдегид (Метаналь) (	0.0017145	0.003742932
						2754 (10)	609) Алканы C12-19 /в пересчете	0.0414285	0.089828534
						2/34 (10)	на С/ (Углеводороды	0.0414285	0.089828534
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
0478	6	0.1	2.52	0.01976	250	0301 (4)	Азота (IV) диоксид (Азота	0.2201	6.942
							диоксид) (4)		
						0328 (583)	Углерод (Сажа, Углерод	0.0589	1.8622
							черный) (583)		
						0337 (584)	Углерод оксид (Окись	0.0889	2.8038
							углерода, Угарный газ) (		
						0.410 (5051)	584)	0.000	
1424				0 624624	177	0410 (727*)	Метан (727*)	0.0889	2.8038
1424				0.634634	1//	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.170666667	0.33536
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.027733333	0.054496
						0304 (0)	оксид) (6)	0.027733333	0.034490
						0328 (583)	Углерод (Сажа, Углерод	0.007936667	0.014971466
						( , , , , , , , , , , , , , , , , , , ,	черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.06666667	0.131
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.172222222	0.3406
							углерода, Угарный газ) (		
							584)		
						0703 (54)	Бенз/а/пирен (3,4-	0.00000019	0.000000524
						1225 (600)	Бензпирен) (54)	0 001005	0 002740000
						1325 (609)	Формальдегид (Метаналь) ( 609)	0.001905	0.003742932
						2754 (10)	Алканы С12-19 /в пересчете	0.046031667	0.089828534
						2/34 (10)	на С/ (Углеводороды	0.040031007	0.009020334
							предельные С12-С19 (в		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							пересчете на С);		
							Растворитель РПК-265П) (10)		
425						0333 (518)	Сероводород (	0.00001108	0.000000051
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000062
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.00002
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.00000
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000094
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.00000018
35						0415 (1502*)	Смесь углеводородов	0.00743	0.2343860
							предельных C1-C5 (1502*)		
	1	1	l	l		Вахтовый поселок			
7	3	0.1	0.2	0.0016	27	2754 (10)	Алканы С12-19 /в пересчете	0.0109	0.00
						1	на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
8	3	0.1	0.2	0.0016	27	2754 (10)	Алканы C12-19 /в пересчете	0.0109	0.00
						1	на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
8						0123 (274)	Железо (II, III) оксиды (	0.01375	0.0
							диЖелезо триоксид, Железа		
							оксид) /в пересчете на		
							железо/ (274)		
						0143 (327)	Марганец и его соединения /	0.001528	0.00
							в пересчете на марганца (		
							IV) оксид/ (327)		
						0342 (617)	Фтористые газообразные	0.000556	0.00
							соединения /в пересчете на		
		1					фтор/ (617)		

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
6229						0333 (518)	Сероводород (	0.000035	0.000102
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.663	0.146
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.245	0.0539
							предельных С6-С10 (1503*)		
1						0501 (460)	Пентилены (амилены - смесь	0.0245	0.00539
							изомеров) (460)		
						0602 (64)	Бензол (64)	0.02254	0.00496
						0616 (203)	Диметилбензол (смесь о-, м-	0.00284	0.000625
							, п- изомеров) (203)		
1						0621 (349)	Метилбензол (349)	0.02127	0.00468
						0627 (675)	Этилбензол (675)	0.000588	0.0001294
						2754 (10)	Алканы С12-19 /в пересчете	0.01247	0.0363
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПK-265П) (10)		
	I .	I I	l i			I БКНС Северный Коныс		! !	
1405						0333 (518)	Сероводород (	0.0002216	0.001682
						, ,	Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.2677	2.03
						, , ,	предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	0.751
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.001293	0.00981
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.003084
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000813	0.00617
1426						0333 (518)	Сероводород (	0.0002216	0.002694
1							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.2677	3.253
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	1.203
							предельных С6-С10 (1503*)		

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0602 (64)	Бензол (64)	0.001293	0.0157
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00494
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000813	0.00988
1427						0333 (518)	Сероводород (	0.0002216	0.002694
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.2677	3.253
							предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	1.203
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.001293	0.0157
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00494
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000813	0.00988
1428						0333 (518)	Сероводород (	0.0002216	0.001884
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.2677	2.275
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	0.842
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.001293	0.011
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.003454
							, п- изомеров) (203)		
1						0621 (349)	Метилбензол (349)	0.000813	0.00691
1429						0333 (518)	Сероводород (	0.0002216	0.000808
						0.415 (1500+)	Дигидросульфид) (518)	0 0677	0 075
						0415 (1502*)	Смесь углеводородов	0.2677	0.975
						0416 4150011	предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	0.361
						0.600 (64)	предельных С6-С10 (1503*)	0 001000	0 00471
						0602 (64)	Бензол (64)	0.001293	0.00471
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00148
						0.601 (240)	, п- изомеров) (203)	0 000010	0 00000
1420						0621 (349)	Метилбензол (349)	0.000813	0.00296
1430						0333 (518)	Сероводород (	0.0002216	0.000808
						0415 (1500+)	Дигидросульфид) (518)	0 2677	0 075
		1	l			0415 (1502*)	Смесь углеводородов	0.2677	0.975

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	0.361
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.001293	0.00471
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00148
							, п- изомеров) (203)		
1						0621 (349)	Метилбензол (349)	0.000813	0.00296
1431				0.0606		0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.0481
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000603	0.00781
						0005 4504)	оксид) (6)	0 00000	0.1000
						0337 (584)	Углерод оксид (Окись	0.00773	0.1002
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.00773	0.1002
						0410 (/2/^)	Metan (/2/^)	0.00773	0.1002
						БКНС Южный Коныс	1	! 	
1432						0333 (518)	Сероводород (	0.0002216	0.00416
1 102						(010)	Дигидросульфид) (518)	0.0002210	0.00110
						0415 (1502*)	Смесь углеводородов	0.2677	5.02
						( ,	предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	1.857
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.001293	0.02426
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00762
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000813	0.01525
1433						0333 (518)	Сероводород (	0.0002216	0.00416
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.2677	5.02
							предельных C1-C5 (1502*)		
1						0416 (1503*)	Смесь углеводородов	0.099	1.857
1							предельных С6-С10 (1503*)		
1						0602 (64)	Бензол (64)	0.001293	0.02426
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00762
1	1						, п- изомеров) (203)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0621 (349)	Метилбензол (349)	0.000813	0.01525
1434						0333 (518)	Сероводород (	0.0002216	0.00416
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.2677	5.02
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	1.857
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.001293	0.02426
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00762
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000813	0.01525
1435						0333 (518)	Сероводород (	0.0002216	0.00416
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.2677	5.02
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.099	1.857
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.001293	0.02426
						0616 (203)	Диметилбензол (смесь о-, м-	0.000406	0.00762
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.000813	0.01525
1436						0333 (518)	Сероводород (	0.00001108	0.000000515
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.0000622
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.000023
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.0000003
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000944
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000001888
1438				0.091		0301 (4)	Азота (IV) диоксид (Азота	0.00718	0.1336
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.001167	0.0217
1							оксид) (6)		
1						0337 (584)	Углерод оксид (Окись	0.00773	0.1437
1	1						углерода, Угарный газ) (		

ЭРА v3.0 ИП "ЭКО-ОРДА"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							584)		
						0410 (727*)	Метан (727*)	0.00773	0.1437
3034				0.091		0301 (4)	Азота (IV) диоксид (Азота	0.00718	0.0931
						0004 (6)	диоксид) (4)	0 001167	0.01510
						0304 (6)	Азот (II) оксид (Азота	0.001167	0.01513
						0337 (584)	оксид) (6) Углерод оксид (Окись	0.00773	0.1002
						0337 (304)	углерод оксид (окись углерода, Угарный газ) (	0.00773	0.1002
							584)		
						0410 (727*)	Метан (727*)	0.00773	0.1002
						ckb. №230			
1109				0.0214		0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
						( )	диоксид) (4)	*****	
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.001822	0.0568
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.001822	0.0568
						скв. №240			
1122	6	0.1	3.43	0.02617	250	0301 (4)	Азота (IV) диоксид (Азота	0.00366	0.086
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000595	0.01398
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.002225	0.0523
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.002225	0.0523
						0410 (727")	Meran (727")	0.002223	0.0323
						скв. №573			
1124				0.0214		0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
				*****		, ,	диоксид) (4)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.001822	0.0568
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.001822	0.0568
						ckb. №574			
						CKB. NO /4			
1123				0.0214		0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.001822	0.0568
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.001822	0.0568
						ckb. №707			
1338				0.0214		0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.001822	0.0568
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.001822	0.0568
						ckb. №708			
1339				0.0214		0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.001822	0.0568
	1	I	1	1		1	углерода, Угарный газ) (	1	

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0410 (727*)	584) Метан (727*)	0.001822	0.0568
						скв. №299			
1126				0.02617		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00366	0.086
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000595	0.01398
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.002225	0.0523
						0410 (727*)	Метан (727*)	0.002225	0.0523
						ckb. №300			
1127				0.0214		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.0765
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000398	0.01243
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.001822	0.0568
						0410 (727*)	Метан (727*)	0.001822	0.0568
						скв. №285			
1125				0.02617		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00366	0.086
						0304 (6)	Азот (II) оксид (Азота	0.000595	0.01398
						0337 (584)	оксид) (6) Углерод оксид (Окись углерода, Угарный газ) (	0.002225	0.0523
						0410 (727*)	584) Метан (727*)	0.002225	0.0523
						ckb. №315			

ЭРА v3.0 ИП "ЭКО-ОРДА"

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
0097	6	0.1	3.43	0.0214	250	0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0.000398	0.01243
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.001822	0.0568
						0410 (727*)	584) Метан (727*)	0.001822	0.0568
						скв. №482			
1336				0.0214		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.0765
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000398	0.01243
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.001822	0.0568
						0410 (727*)	Метан (727*)	0.001822	0.0568
						скв. №538			
1311				0.0214		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.0765
						0304 (6)	АЗОТ (II) ОКСИД (АЗОТА ОКСИД) (6)	0.000398	0.01243
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.001822	0.0568
						0410 (727*)	Merah (727*)	0.001822	0.0568
						скв. №352			
1315				0.0214		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.0765
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	он, тоо сп "куат 3	4	5	6	7	7a	8	9
						0337 (584)	оксид) (6) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.001822	0.0568
						0410 (727*)	Metah (727*)	0.001822	0.0568
						скв. №Б-4			
1243				0.02033		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.002214	0.069
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00036	0.01122
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.00173	0.054
						0410 (727*)	Метан (727*)	0.00173	0.054
						скв. №Б-17			
0712				0.02033		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.002214	0.069
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00036	0.01122
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.00173	0.054
						0410 (727*)	584) Metah (727*)	0.00173	0.054
						CKB. №5-20			
0520				0.02033		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.002214	0.069
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00036	0.01122
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.00173	0.054

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0410 (727*)	Метан (727*)	0.00173	0.054
						скв. №Б-79			
1445				0.02033		0301 (4)	Азота (IV) диоксид (Азота	0.002214	0.069
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.00036	0.01122
						0304 (0)	оксид) (6)	0.00030	0.01122
						0337 (584)	Углерод оксид (Окись	0.00173	0.054
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Метан (727*)	0.00173	0.054
						скв. №Б-89			
0522	6	0.1	3.07	0.02033	250	0301 (4)	Азота (IV) диоксид (Азота	0.002214	0.069
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00036	0.01122
						0337 (584)	Углерод оксид (Окись	0.00173	0.054
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.00173	0.054
						0110 (727 )	neran (/2/)	0.00173	0.001
						скв. №Б-29			
0525	6	0.1	3.07	0.02033	250	0301 (4)	Азота (IV) диоксид (Азота	0.002214	0.069
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.00036	0.01122
						0337 (584)	оксид) (6) Углерод оксид (Окись	0.00173	0.054
						,	углерода, Угарный газ) (		
						0.410 (5051)	584)	0.00170	0.054
i						0410 (727*)	Метан (727*)	0.00173	0.054
i						скв. №Б-23			

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
1250				0.02033		0301 (4)	Азота (IV) диоксид (Азота	0.002214	0.069
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.00036	0.01122
						0337 (584)	оксид) (6) Углерод оксид (Окись	0.00173	0.054
						0337 (304)	углерод оксид (окись	0.00173	0.034
							584)		
						0410 (727*)	Метан (727*)	0.00173	0.054
						ckb. №5-50			
						CKB. MD 50			
1251				0.02033		0301 (4)	Азота (IV) диоксид (Азота	0.002214	0.069
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.00036	0.01122
						0007 (504)	оксид) (6)		0.054
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.00173	0.054
							углерода, угарным газ) ( 584)		
						0410 (727*)	Метан (727*)	0.00173	0.054
						скв. №Б-78			
1255				0.02033		0301 (4)	Азота (IV) диоксид (Азота	0.002214	0.069
						, ,	диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.00036	0.01122
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00173	0.054
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Metah (727*)	0.00173	0.054
						0410 (727)	Helah (727)	0.00173	0.054
			<u>'</u> I	· ·		м/р Южный Коныс	1	·	
1463						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
1 1700						0001 (1)	диоксид) (4)	0.02224	0.432
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1464						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1465						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1466						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1467						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
						0000 (504)	оксид) (6)		1 474
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
						0410 (707+)	584)	0.01.550	0 004
1 4 6 0						0410 (727*)	Метан (727*)	0.01663	0.324
1468	1	I	I	l .	I	0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1469						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1470						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1471						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1472						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
						1	диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)	0 0757	
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
	I	1	ı		1		углерода, Угарный газ) (		

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1473						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1474						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
						0004 (6)	диоксид) (4)		0.0700
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
						0000 (504)	оксид) (6)	0 0757	1 454
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.01663	0.324
1475						0301 (4)	метан (727^) Азота (IV) диоксид (Азота	0.01003	0.324
14/3						0301 (4)	диоксид) (4)	0.02224	0.432
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.003614	0.0702
						0304 (0)	оксид) (6)	0.003014	0.0702
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
						0337 (304)	углерода, Угарный газ) (	0.0757	1.1/1
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1476						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
						, ,	диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
						, , ,	оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1477						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1478						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1479						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1480						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1481						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
						0004 (6)	диоксид) (4)	0 000014	0.0700
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
						0000 (504)	оксид) (6)	0.0757	1 454
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
						0410 (707+)	584)	0.01663	0 204
1	1	1	1		l	0410 (727*)	Метан (727*)	0.01663	0.324

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
1482						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1483						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.1444
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.02346
						0000 4504)	оксид) (6)	0.0757	0 4000
						0337 (584)	Углерод оксид (Окись	0.0757	0.4933
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.01663	0.1084
1484						0301 (4)	метан (727°) Азота (IV) диоксид (Азота	0.01663	0.1444
1404						0301 (4)	диоксид) (4)	0.02224	0.1444
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.02346
						0301 (0)	оксид) (6)	0.003011	0.02310
						0337 (584)	Углерод оксид (Окись	0.0757	0.4933
						0007 (0017	углерода, Угарный газ) (		0.1300
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.1084
1485						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.1444
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.02346
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.4933
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.1084
1486						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.1444
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.02346
							оксид) (6)		
1					l	0337 (584)	Углерод оксид (Окись	0.0757	0.4933

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.1084
1487						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.0486
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0079
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
							углерода, Угарный газ) (		
						0410 450511	584)	0.01.660	0.0055
1 400						0410 (727*)	Метан (727*)	0.01663	0.0365
1488						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.0486
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.003614	0.0079
						0304 (0)	оксид) (6)	0.003614	0.0079
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
						0337 (304)	углерод оксид (окись	0.0757	0.1002
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0365
1489						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.0486
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0079
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0365
1490						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.0486
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0079
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
							углерода, Угарный газ) (		
						0410 (707+)	584)	0.01663	0.0365
1401						0410 (727*)	Metah (727*)	0.01663 0.02224	0.0365
1491						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.0486
I	ı	l			I	I	диоксид) (4)	l l	

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0079
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0365
1492						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.0486
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0079
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
							углерода, Угарный газ) (		
							584)		
1						0410 (727*)	Метан (727*)	0.01663	0.0365
1493						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.0486
						0204 (6)	диоксид) (4)	0 003614	0.0070
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0079
						0337 (584)	оксид) (6)	0.0757	0.1662
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Merah (727*)	0.01663	0.0365
1494						0301 (4)	метан (727°) Азота (IV) диоксид (Азота	0.02224	0.0363
1434						0301 (4)	диоксид) (4)	0.02224	0.0400
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.003614	0.0079
						0304 (0)	оксид) (6)	0.003014	0.0079
						0337 (584)	Углерод оксид (Окись	0.0757	0.1662
						0337 (301)	углерода, Угарный газ) (	0.0737	0.1002
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0365
1495						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.04704
						(-/	диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.007644
							оксид) (6)		2.22.011
						0337 (584)	Углерод оксид (Окись	0.0757	0.1608
1							углерода, Угарный газ) (		
							584)		

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1496  1496  1496  0301 (4)  0304 (6)  0304 (6)  0337 (584)  0410 (727*)  0304 (6)  0337 (584)  0410 (727*)  0410 (727*)  0584)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (727*)  0410 (	0.01663 0.02224 0.003614 0.0757 0.01663 0.02224 0.003614	0.03535 0.04704 0.007644 0.1608 0.03535 0.04704
1497 Помесид (4)  1497 Помесид (4)  1497 Помесид (6)  1497 Помесид (6)  1497 Помесид (6)  1497 Помесид (6)  1497 Помесид (6)  1497 Помесид (6)  1497 Помесид (6)  1497 Помесид (727*)  1497 Помесид (727*)  1497 Помесид (10 метан диоксид (10 метан диоксид) (4)  1497 Помесид (11 оксид (14 метан диоксид) (6)  1497 Помесид (6)  1497 Помесид (15 метан диоксид) (6)  1497 Помесид (15 метан диоксид) (6)  1497 Помесид (15 метан диоксид) (6)  1497 Помесид (15 метан диоксид) (6)  1497 Помесид (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (15 метан диоксид) (1	0.003614 0.0757 0.01663 0.02224 0.003614	0.007644 0.1608 0.03535 0.04704
1497  1497  1497  1497  1497  1497  1497  1497  1497	0.0757 0.01663 0.02224 0.003614	0.1608 0.03535 0.04704
оксид) (6)  0337 (584)  0337 (584)  0410 (727*)  0410 (727*)  0410 (727*)  Метан (727*)  0301 (4)  Азота (IV) диоксид (Азота диоксид) (4)  0304 (6)  О337 (584)  0337 (584)  О337 (584)  Оксид) (6)  Углерод оксид (Окись углерода, Угарный газ) (	0.0757 0.01663 0.02224 0.003614	0.1608 0.03535 0.04704
1497	0.01663 0.02224 0.003614	0.03535 0.04704
углерода, Угарный газ) ( 584)  0410 (727*) Метан (727*)  0301 (4) Азота (IV) диоксид (Азота диоксид) (4)  0304 (6) Азот (II) оксид (Азота оксид) (6)  Углерод оксид (Окись углерода, Угарный газ) (	0.01663 0.02224 0.003614	0.03535 0.04704
1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497  1497	0.02224	0.04704
1497  1497  0301 (4) Метан (727*)  0301 (4) Азота (IV) диоксид (Азота диоксид) (4)  0304 (6) Азот (II) оксид (Азота оксид) (6)  0337 (584) Углерод оксид (Окись углерода, Угарный газ) (	0.02224	0.04704
1497	0.02224	0.04704
диоксид) (4) 0304 (6) Азот (II) оксид (Азота оксид) (6) 0337 (584) Углерод оксид (Окись углерода, Угарный газ) (	0.003614	
0304 (6) Азот (II) оксид (Азота оксид) (6) 0337 (584) Углерод оксид (Окись углерода, Угарный газ) (		0.007644
оксид) (6) 0337 (584) Углерод оксид (Окись углерода, Угарный газ) (		0.007644
0337 (584) Углерод оксид (Окись углерода, Угарный газ) (	0 0757	
углерода, Угарный газ) (	0 0757	
	0.0737	0.1608
584)		
0410 (727*) Metah (727*)	0.01663	0.03535
1498     0301 (4)   Азота (IV) диоксид (Азота	0.02224	0.04704
диоксид) (4)		
0304 (6) Азот (II) оксид (Азота	0.003614	0.007644
оксид) (6)		
0337 (584) Углерод оксид (Окись	0.0757	0.1608
углерода, Угарный газ) (		
584)		
0410 (727*) Metah (727*)	0.01663	0.03535
		l
м/р Северный Коныс	ı	I
1447 0301 (4) Азота (IV) диоксид (Азота	0.02224	0.432
диоксид (4) диоксид (Азота	0.02224	0.432
0304 (б) Азот (II) оксид (Азота	0.003614	0.0702
0304 (0)   ASOT (11) ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA (ASOTA   ORCHA   ORCHA ) ORCHA (ASOTA   ORCHA   ORCHA   ORCHA (ASOTA   ORCHA ) ORCHA (ASOTA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCHA   ORCH	0.003014	0.0702
0337 (584) Углерод оксид (Окись	0.0757	1.474
углерод оксид (окись углерода, Угарный газ) (	0.0737	1.4/4
улиерода, зтарный газ) ( 584)	'	
0410 (727*) Metah (727*)	0.01663	0.324
1448	0.01003	0.432

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1449						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
						, ,	диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
1						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1450						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) ( 584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1451						0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.02224	0.432
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.003614	0.0702
						0304 (0)	оксид) (6)	0.003014	0.0702
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
						0337 (301)	углерода, Угарный газ) (	0.0737	1.1/1
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1452						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
1						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
						1	углерода, Угарный газ) (		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1453						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.324
1454						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.432
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.0702
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	1.474
							углерода, Угарный газ) (		
						0410 (5051)	584)	0.01660	
1 4 5 5						0410 (727*)	Метан (727*)	0.01663	0.324
1455						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
						0204 (6)	диоксид) (4)	0 000014	0 01170
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.011726
						0337 (584)	оксид) (6) Углерод оксид (Окись	0.0757	0.2466
						0337 (384)	углерод оксид (окись углерода, Угарный газ) (	0.0757	0.2466
							углерода, угарный газ) ( 584)		
						0410 (727*)	Метан (727*)	0.01663	0.0542
1456						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
1430						0301 (4)	диоксид) (4)	0.02224	0.07210
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.011726
						0301 (0)	оксид) (6)	0.003011	0.011720
						0337 (584)	Углерод оксид (Окись	0.0757	0.2466
						0007 (001)	углерода, Угарный газ) (		0.2100
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0542
1457						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
							диоксид) (4)		1.3,210
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.011726

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.2466
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0542
1458						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.011726
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.2466
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0542
1459						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.011726
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.2466
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0542
1460						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.011726
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.2466
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0542
1461						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.003614	0.011726
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.0757	0.2466
							углерода, Угарный газ) (		I
							584)		I
1			l			0410 (727*)	Метан (727*)	0.01663	0.0542

ЭРА v3.0 ИП "ЭКО-ОРДА"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	эн, тоо сп "куат 3	4	5	6	7	7a	8	9
1462						0301 (4)	Азота (IV) диоксид (Азота	0.02224	0.07216
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.003614	0.011726
						0337 (584)	Углерод оксид (Окись	0.0757	0.2466
						,	углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.01663	0.0542
						скв. №599			
1331	6	0.1	3.43	0.02617	250	0301 (4)	Азота (IV) диоксид (Азота	0.00366	0.086
1 2002	ľ	0.1	0.10	0.02017	200	0001 (1)	диоксид) (4)	0.00000	0.000
						0304 (6)	Азот (II) оксид (Азота	0.000595	0.01398
						0005 (504)	оксид) (6)		0.0500
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.002225	0.0523
							584)		
						0410 (727*)	Метан (727*)	0.002225	0.0523
						скв. №349			
1128	6	0.1	3.43	0.0214	250	0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
1120	Ĭ	0.1	3.13	0.0211	230	0301 (1)	диоксид) (4)	0.00213	0.0703
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
						0227 (504)	оксид) (6)	0.001000	0.0560
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.001822	0.0568
							584)		
						0410 (727*)	Метан (727*)	0.001822	0.0568
						ckb. №580			
1333	6	0.1	3.43	0.0214	250	0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.0765
1333	l °	0.1	3.43	0.0214	250	U3U1 (4)	диоксид) (4)	0.00245	0.0765
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
							оксид) (6)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.001822	0.0568
						0410 (727*)	584) Метан (727*)	0.001822	0.0568
						скв. №373			
.67	6	0.1	3.43	0.0214	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.076
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000398	0.0124
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.001822	0.056
						0410 (727*)	Метан (727*)	0.001822	0.056
						скв. №577			
30	6	0.1	3.43	0.0214	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.076
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000398	0.0124
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.001822	0.056
						0410 (727*)	Метан (727*)	0.001822	0.056
						ЗУ-6Б			
38						0333 (518)	Сероводород ( Дигидросульфид) (518)	0.00001108	0.00000178
						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.01338	0.00021
						0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.000079
						0602 (64) 0616 (203)	Бензол (64) Лиметилбензол (смесь о-, м-	0.0000646 0.0000203	0.00000104

ЭРА v3.0 ИП "ЭКО-ОРДА"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
1256				0.0576		0301 (4)	Азота (IV) диоксид (Азота	0.00335	0.1046
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000545	0.017
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00735	0.229
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Meran (727*)	0.00735	0.229
6049						0415 (1502*)	Смесь углеводородов	0.03085	0.973057296
							предельных C1-C5 (1502*)		
						3y-44			
						37-44			
0939						0333 (518)	Сероводород (	0.00001108	0.0000001788
							Дигидросульфид) (518)		
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
							предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
1238				0.0606		0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.0586
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000603	0.00953
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00773	0.1223
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.00773	0.1223
6301						0415 (1502*)	Смесь углеводородов	0.03085	0.973057296
							предельных C1-C5 (1502*)		
						КПРС			
I	1	ı		i		MILC	i e		1

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
2001						0201 (4)	777	0.0500	0.9
3001						0301 (4)	Азота (IV) диоксид (Азота	0.0583	0.9
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.0758	1.17
						0304 (6)	оксид) (6)	0.0738	1.17
						0328 (583)	Углерод (Сажа, Углерод	0.00972	0.15
						0320 (303)	черный) (583)	0.00372	0.13
						0330 (516)	Сера диоксид (Ангидрид	0.01944	0.3
						0330 (310)	сернистый, Сернистый газ,	0.01311	0.9
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0486	0.75
						, ,	углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.002333	0.036
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.002333	0.036
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.02333	0.36
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3002						0301 (4)	Азота (IV) диоксид (Азота	0.0475	0.75
						0204 (6)	диоксид) (4)	0.0610	0 075
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0618	0.975
						0328 (583)	оксид) (б) Углерод (Сажа, Углерод	0.00792	0.125
						0320 (303)	черный) (583)	0.00792	0.123
						0330 (516)	Сера диоксид (Ангидрид	0.01583	0.25
						0330 (310)	сери диоксид (кигидрид	0.01303	0.23
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0396	0.625
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.0019	0.03
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.0019	0.03

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.019	0.3
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3003						0301 (4)	Азота (IV) диоксид (Азота	0.0763	0.6
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0991	0.78
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.0127	0.1
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0254	0.2
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0635	0.5
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00305	0.024
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.00305	0.024
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0305	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3004						0301 (4)	Азота (IV) диоксид (Азота	0.0763	0.6
						0004 (6)	диоксид) (4)	0 0001	0.70
						0304 (6)	Азот (II) оксид (Азота	0.0991	0.78
						0000 (500)	оксид) (6)	0.0107	0.1
						0328 (583)	Углерод (Сажа, Углерод	0.0127	0.1
						0000 (516)	черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0254	0.2
							сернистый, Сернистый газ,		
						0000 (504)	Сера (IV) оксид) (516)		
	I	ı	I		I	0337 (584)	Углерод оксид (Окись	0.0635	0.5

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00305	0.024
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.00305	0.024
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0305	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							nepecvere Ha C);		
3005						0301 (4)	Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота	0.00427	0.0336
1 3003						0301 (4)	диоксид) (4)	0.00427	0.0330
						0304 (6)	Азот (II) оксид (Азота	0.000694	0.00546
						0001 (0)	оксид) (6)	0.000031	0.00010
						0328 (583)	Углерод (Сажа, Углерод	0.001908	0.015
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0449	0.353
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.106	0.834
							углерода, Угарный газ) (		
							584)		
3006						0301 (4)	Азота (IV) диоксид (Азота	0.00427	0.0336
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000694	0.00546
						0200 (502)	оксид) (6)	0 001000	0.015
						0328 (583)	Углерод (Сажа, Углерод	0.001908	0.015
						0330 (516)	черный) (583) Сера диоксид (Ангидрид	0.0449	0.353
						0330 (316)	сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0449	0.333
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.106	0.834
						0337 (301)	углерода, Угарный газ) (	0.100	0.001
							584)		
3007						0301 (4)	Азота (IV) диоксид (Азота	0.00427	0.0336
							диоксид) (4)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0304 (6)	Азот (II) оксид (Азота	0.000694	0.00546
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.001908	0.015
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0449	0.353
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.106	0.834
							углерода, Угарный газ) (		
2000						0201 (4)	584)	0 00407	0.0226
3008						0301 (4)	Азота (IV) диоксид (Азота	0.00427	0.0336
						0304 (6)	диоксид) (4)	0.000694	0.00546
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000694	0.00546
						0328 (583)	оксид) (6) Углерод (Сажа, Углерод	0.001908	0.015
						0320 (303)	черный) (583)	0.001908	0.015
						0330 (516)	Сера диоксид (Ангидрид	0.0449	0.353
						0000 (010)	сернистый, Сернистый газ,	0.0449	0.333
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.106	0.834
							углерода, Угарный газ) (		
							584)		
3009						0301 (4)	Азота (IV) диоксид (Азота	0.00427	0.0336
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000694	0.00546
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.001908	0.015
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0449	0.353
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.106	0.834
							углерода, Угарный газ) (		
							584)		
3010						0301 (4)	Азота (IV) диоксид (Азота	0.038	0.6
							диоксид) (4)		
1	1		l			0304 (6)	Азот (II) оксид (Азота	0.0494	0.78

# 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
		_					оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.00633	0.1
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.01267	0.2
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.03167	0.5
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00152	0.024
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.00152	0.024
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0152	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3011						0301 (4)	Азота (IV) диоксид (Азота	0.038	0.6
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0494	0.78
						0000 (500)	оксид) (6)	0 0000	0.1
						0328 (583)	Углерод (Сажа, Углерод	0.00633	0.1
						0330 (516)	черный) (583)	0.01067	0.2
						0330 (516)	Сера диоксид (Ангидрид	0.01267	0.2
							сернистый, Сернистый газ,		
						0337 (584)	Сера (IV) оксид) (516)	0.03167	0.5
						0337 (384)	Углерод оксид (Окись	0.03167	0.5
							углерода, Угарный газ) ( 584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00152	0.024
						1301 (4/4)	Акрилальдегид) (474)	0.00132	0.024
						1325 (609)	Формальдегид (Метаналь) (	0.00152	0.024
						1323 (009)	формальдегид (метаналь) ( 609)	0.00132	0.024
						2754 (10)	Алканы С12-19 /в пересчете	0.0152	0.24
						2,34 (10)	на С/ (Углеводороды	0.0132	0.24
							предельные С12-С19 (в		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	эн, тоо сп "куат 3	4	5	6	7	7a	8	9
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3012						0301 (4)	Азота (IV) диоксид (Азота	0.038	0.6
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0494	0.78
						0300 (503)	оксид) (6)	0 00622	0 1
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.00633	0.1
						0330 (516)	Сера диоксид (Ангидрид	0.01267	0.2
						0330 (310)	сернистый, Сернистый газ,	0.01207	0.2
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.03167	0.5
						(332,	углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00152	0.024
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.00152	0.024
1							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0152	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
3013						0201 (4)	Растворитель РПК-265П) (10)	0.038	0.6
3013						0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.038	0.6
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.0494	0.78
						0304 (0)	оксид) (6)	0.0454	0.70
						0328 (583)	Углерод (Сажа, Углерод	0.00633	0.1
						0020 (000)	черный) (583)	0.0000	0.1
						0330 (516)	Сера диоксид (Ангидрид	0.01267	0.2
						, ,	сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.03167	0.5
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00152	0.024
							Акрилальдегид) (474)		

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						1325 (609)	Формальдегид (Метаналь) (	0.00152	0.024
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0152	0.24
							на С/ (Углеводороды		
							предельные C12-C19 (в		
							пересчете на С);		
							Растворитель РПK-265П) (10)		
3014						0301 (4)	Азота (IV) диоксид (Азота	0.038	0.6
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0494	0.78
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.00633	0.1
						0000 (516)	черный) (583)	0.01067	
						0330 (516)	Сера диоксид (Ангидрид	0.01267	0.2
							сернистый, Сернистый газ,		
						0227 (504)	Сера (IV) оксид) (516)	0 02167	0.5
						0337 (584)	Углерод оксид (Окись	0.03167	0.5
							углерода, Угарный газ) ( 584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00152	0.024
						1301 (1/1/	Акрилальдегид) (474)	0.00132	0.021
						1325 (609)	Формальдегид (Метаналь) (	0.00152	0.024
						, , , , ,	609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0152	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3015						0301 (4)	Азота (IV) диоксид (Азота	0.0763	0.6
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0991	0.78
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.0127	0.1
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0254	0.2
							сернистый, Сернистый газ,		
	1	I			l		Сера (IV) оксид) (516)	1	

#### 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0337 (584)	Углерод оксид (Окись	0.0635	0.5
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00305	0.024
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.00305	0.024
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0305	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3016						0301 (4)	Азота (IV) диоксид (Азота	0.0801	0.45
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.1041	0.585
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.01335	0.075
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0267	0.15
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0667	0.375
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.003203	0.018
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.003203	0.018
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.03203	0.18
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3017						0301 (4)	Азота (IV) диоксид (Азота	0.0763	0.6
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0991	0.78
1	1		I			1	оксид) (6)	1	

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0328 (583)	Углерод (Сажа, Углерод	0.0127	0.1
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0254	0.2
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0635	0.5
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00305	0.024
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) ( 609)	0.00305	0.024
						2754 (10)	Алканы С12-19 /в пересчете	0.0305	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3018						0301 (4)	Азота (IV) диоксид (Азота	0.0381	0.3
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0495	0.39
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.00635	0.05
						0000 (516)	черный) (583)	0 0107	0 1
						0330 (516)	Сера диоксид (Ангидрид	0.0127	0.1
							сернистый, Сернистый газ, Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.03174	0.25
						0337 (304)	углерода, Угарный газ) (	0.031/4	0.23
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.001523	0.012
						1331 (1/1)	Акрилальдегид) (474)	0.001020	0.012
						1325 (609)	Формальдегид (Метаналь) (	0.001523	0.012
						(/	609)		3,012
1						2754 (10)	Алканы С12-19 /в пересчете	0.01523	0.12
1						,	на С/ (Углеводороды		
1							предельные С12-С19 (в		
							пересчете на С);		

#### 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							Растворитель РПК-265П) (10)		
3019						0301 (4)	Азота (IV) диоксид (Азота	0.0521	0.09
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0677	0.117
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.00868	0.015
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.01736	0.03
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0434	0.075
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.002083	0.0036
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.002083	0.0036
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.02083	0.036
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
2000						0201 (4)	Растворитель РПК-265П) (10)	0.0501	0.00
3020						0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0521	0.09
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.0677	0.117
						0304 (6)	оксид) (6)	0.06//	0.11/
						0328 (583)	Углерод (Сажа, Углерод	0.00868	0.015
						0320 (303)	черный) (583)	0.00000	0.013
						0330 (516)	Сера диоксид (Ангидрид	0.01736	0.03
						0330 (310)	сера диоксид (Ангидрид	0.01730	0.03
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0434	0.075
						5557 (561)	углерод, Угарный газ) (		0.075
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.002083	0.0036
						1001 (1/1/	Акрилальдегид) (474)	0.002003	0.0030
						1325 (609)	Формальдегид (Метаналь) (	0.002083	0.0036

#### 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							609)		
						2754 (10)	Алканы С12-19 /в пересчете	0.02083	0.036
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3021						0301 (4)	Азота (IV) диоксид (Азота	0.1628	1.8
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.2116	2.34
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.0271	0.3
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0543	0.6
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.1356	1.5
							углерода, Угарный газ) (		
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00651	0.072
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.00651	0.072
							609)		
						2754 (10)	Алканы C12-19 /в пересчете	0.0651	0.72
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
2000						0001 (4)	Растворитель РПК-265П) (10)	0.1600	1.0
3022						0301 (4)	Азота (IV) диоксид (Азота	0.1628	1.8
						0004 (6)	диоксид) (4)	0.0116	0.04
						0304 (6)	Азот (II) оксид (Азота	0.2116	2.34
						0000 (500)	оксид) (6)	0 0071	0.0
						0328 (583)	Углерод (Сажа, Углерод	0.0271	0.3
						0000 (516)	черный) (583)	0.0540	0.0
						0330 (516)	Сера диоксид (Ангидрид	0.0543	0.6
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
	1	ı	I	I	I	0337 (584)	Углерод оксид (Окись	0.1356	1.5

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							углерода, Угарный газ) ( 584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00651	0.072
						1325 (609)	Акрилальдегид) (474) Формальдегид (Метаналь) (	0.00651	0.072
							609)		
						2754 (10)	Алканы C12-19 /в пересчете на С/ (Углеводороды	0.0651	0.72
							предельные С12-С19 (в		
							пересчете на C); Растворитель РПК-265П) (10)		
3023						0301 (4)	Азота (IV) диоксид (Азота	0.1356	1.5
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.1763	1.95
						0328 (583)	Углерод (Сажа, Углерод	0.0226	0.25
							черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0452	0.5
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.113	1.25
							углерода, Угарный газ) ( 584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00542	0.06
						1225 (600)	Акрилальдегид) (474)	0.00540	0.06
						1325 (609)	Формальдегид (Метаналь) ( 609)	0.00542	0.06
						2754 (10)	Алканы С12-19 /в пересчете	0.0542	0.6
							на С/ (Углеводороды предельные C12-C19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
3024						0301 (4)	Азота (IV) диоксид (Азота	0.1085	1.2
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.141	1.56
							оксид) (6)		
1						0328 (583)	Углерод (Сажа, Углерод	0.0181	0.2

#### 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3 3	4	5	6	7	7a	8	9
						0330 (516)	черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0362	0.4
						0337 (584)	Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (	0.0904	1
						1301 (474)	584) Проп-2-ен-1-аль (Акролеин,	0.00434	0.048
						1325 (609)	Акрилальдегид) (474) Формальдегид (Метаналь) ( 609)	0.00434	0.048
						2754 (10)	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в	0.0434	0.48
3025						0301 (4)	пересчете на С); Растворитель РПК-265П) (10) Азота (IV) диоксид (Азота	0.1085	1.2
						0304 (6)	диоксид) (4) Азот (II) оксид (Азота	0.141	1.56
						0328 (583)	оксид) (6) Углерод (Сажа, Углерод черный) (583)	0.0181	0.2
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0362	0.4
						0337 (584)	Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (	0.0904	1
						1301 (474)	584) Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.00434	0.048
						1325 (609)	Формальдегид (Метаналь) ( 609)	0.00434	0.048
						2754 (10)	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в	0.0434	0.48
							пересчете на C); Растворитель РПК-265П) (10)		

#### 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
3026						0301 (4)	Азота (IV) диоксид (Азота	0.0543	0.6
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.0705	0.78
							оксид) (6)		
						0328 (583)	Углерод (Сажа, Углерод	0.00904	0.1
						0220 (516)	черный) (583)	0.0181	0.2
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый,	0.0181	0.2
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.0452	0.5
						0007 (0017	углерода, Угарный газ) (	0.0102	
							584)		
						1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.00217	0.024
							Акрилальдегид) (474)		
						1325 (609)	Формальдегид (Метаналь) (	0.00217	0.024
							609)		
						2754 (10)	Алканы C12-19 /в пересчете	0.0217	0.24
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на C); Растворитель РПК-265П) (10)		
							racraopurena rnk-2001) (10)		
						37-6			
0905						0333 (518)	Сероводород (	0.00001108	0.000001788
0505						0333 (310)	Дигидросульфид) (518)	0.00001100	0.0000001700
						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
						, ,	предельных C1-C5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
							предельных C6-C10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
6006						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
							предельных С1-С5 (1502*)		
1	I	I	l	i		i		I	1

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	он, тоо сп "куат 3	4	5	6	7	7a	8	9
						зу-27			
0940						0333 (518)	Сероводород (	0.00001108	0.000001788
						0415 (1502*)	Дигидросульфид) (518) Смесь углеводородов	0.01338	0.000216
						0413 (1302 )	предельных С1-С5 (1502*)	0.01330	0.000210
						0416 (1503*)	Смесь углеводородов	0.00495	0.0000799
						, ,	предельных С6-С10 (1503*)		
						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
							, п- изомеров) (203)		
6304						0621 (349)	Метилбензол (349)	0.0000406 0.03333	0.000000656
6304						0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0.03333	1.051185984
1							предельных ст-сэ (1302-)		
						3Y-41			
0941						0333 (518)	Сероводород (	0.00001108	0.0000001788
1							Дигидросульфид) (518)		
1						0415 (1502*)	Смесь углеводородов	0.01338	0.000216
1						0.41.6 (1.500.)	предельных C1-C5 (1502*)	0.00405	
1						0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0.00495	0.0000799
1						0602 (64)	Бензол (64)	0.0000646	0.000001043
						0616 (203)	Диметилбензол (смесь о-, м-	0.0000203	0.000000328
1							, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.0000406	0.000000656
1233				0.0606		0301 (4)	Азота (IV) диоксид (Азота	0.00371	0.0586
1							диоксид) (4)		
1						0304 (6)	Азот (II) оксид (Азота	0.000603	0.00953
1						0337 (584)	оксид) (6) Углерод оксид (Окись	0.00773	0.1223
1						0337 (384)	углерод оксид (окись углерода, Угарный газ) (	0.007/3	0.1223
1							углерода, угарным газ) (		
1				[		0410 (727*)	Метан (727*)	0.00773	0.1223
6305						0415 (1502*)	Смесь углеводородов	0.03333	1.051185984
1							предельных С1-С5 (1502*)		

эра v3.0 ип "эко-орда"

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
						ckb. №5-92			
0523	6	0.1	3.43	0.02033	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.002214	0.069
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00036	0.01122
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.00173	0.054
						0410 (727*)	Метан (727*)	0.00173	0.054
						скв. №Б-85			
1324	6	0.1	3.43	0.02033	250	0301 (4)	Азота (IV) диоксид (Азота лиоксид) (4)	0.002214	0.069
						0304 (6)	дюксид) (4) Азот (II) оксид (Азота оксид) (6)	0.00036	0.01122
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.00173	0.054
						0410 (727*)	584) Merah (727*)	0.00173	0.054
						CKB. №5-93	Merah (727%)	0.00173	0.034
						CRB. Nº5-93			
3027	6	0.1	3.43	0.02033	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.002214	0.069
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00036	0.01122
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.00173	0.054
						0410 (727*)	Метан (727*)	0.00173	0.054
						скв. №Б-94			
3028	6	0.1	3.43	0.02033	250	0301 (4)	Азота (IV) диоксид (Азота	0.002214	0.069

## 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

1	2	3	4	5	6	7	7a	8	9
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.00036	0.01122
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.00173	0.054
							углерода, Угарный газ) (		
						0410 (727*)	584) Метан (727*)	0.00173	0.054
						0410 (727")	Meran (/2/")	0.001/3	0.034
						скв. №556			
3035	1			0.0214		0301 (4)	7 / 7.7.\	0.00245	0.0765
3033				0.0214		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.0763
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.01243
							оксид) (6)		***************************************
						0337 (584)	Углерод оксид (Окись	0.001822	0.0568
							углерода, Угарный газ) (		
							584)		
						0410 (727*)	Метан (727*)	0.001822	0.0568
						ckb. №371			
3036				0.0214		0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.03176
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.00516
						0337 (584)	оксид) (6) Углерод оксид (Окись	0.001822	0.0236
						0337 (364)	углерод оксид (окись углерода, Угарный газ) (	0.001022	0.0236
							584)		
						0410 (727*)	Метан (727*)	0.001822	0.0236
						скв. №388			
3037				0.0214		0301 (4)	Азота (IV) диоксид (Азота	0.00245	0.03176
3037				0.0214		0001 (1)	диоксид) (4)	0.00243	0.03170
						0304 (6)	Азот (II) оксид (Азота	0.000398	0.00516
						. ,	оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.001822	0.0236

ЭРА v3.0 ИП "ЭКО-ОРДА"

#### 2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

Сырдарьинский район, ТОО СП "КуатАмлонМунай" на 2026 год

1	2	3	4	5	6	7	7a	8	9
						0410 (727*)	углерода, Угарный газ) ( 584) Метан (727*)	0.001822	0.0236
						зу-22			
170	6	0.1	12.12	0.0606	250	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00371	0.058
						0304 (6)	Азот (II) оксид (Азота	0.000603	0.0095
						0337 (584)	оксид) (6) Углерод оксид (Окись углерода, Угарный газ) ( 584)	0.00773	0.1223
						0410 (727*)	Метан (727*)	0.00773	0.1223
						ckb. №706			
.340				0.0214		0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.00245	0.0317
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.000398	0.00516
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (	0.001822	0.0236
						0410 (727*)	584) Metah (727*)	0.001822	0.0236

Примечание: В графе 7 в скобках ( без "*") указан код 3В из таблицы 1 Приложения 1 к Приказу Министерства национальной экономики РК от 28.02.2015 г. №168 (список ПДК), со "*" указан код 3В из таблицы 2 вышеуказанного Приложения (список ОБУВ).

# БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

ЭРА v3.0 ИП "ЭКО-ОРДА"

## 3. Показатели работы пылегазоочистного оборудования (ПГО) на 2026 год

Номер	Наименование и тип	КПД аппа	ратов, %	Код	Коэффициент						
источника	пылегазоулавливающего			загрязняющего	обеспеченности						
выделения	оборудования	Проектный	Фактичес- кий	вещества по котор.проис- ходит очистка	K(1),%						
1	2	3	4	5	6						
	Пылегазоочистное оборудование отсутствует!										

# 4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026 год

Код заг-	Наименование загрязняющего вещества	Количество загрязняющих веществ отходящих от	В том числе		Из поступивших на очистку			Всего выброшено
ряз- шакн			выбрасыва- ется без	поступает на	выброшено в	уловлено и обезврежено		в атмосферу
веще ства		источника выделения	ОЧИСТКИ	очистку	атмосферу	фактически	из них ути- лизировано	1 10
1	2	3	4	5	6	7	8	9
	всего:	529.292093161	529.292093161	0	0	0	0	529.292093161
	в том числе:							
	Твердые:	7.84451726	7.84451726	0	0	0	0	7.84451726
	из них:							
0123	Железо (II, III) оксиды (	0.0396	0.0396	0	0	0	0	0.0396
	диЖелезо триоксид, Железа							
	оксид) /в пересчете на							
	железо/ (274)							
0143	Марганец и его соединения /в	0.0044	0.0044	0	0	0	0	0.0044
	пересчете на марганца (IV)							
	оксид/ (327)							
0328	Углерод (Сажа, Углерод	7.800514484	7.800514484	0	0	0	0	7.800514484
	черный) (583)					_	_	
0703	Бенз/а/пирен (3,4-Бензпирен)	0.000002776	0.000002776	0	0	0	0	0.000002776
	(54)	501 447575001	501 447575001					521.447575901
	Газообразные, жидкие:	521.447575901	521.447575901	0	0	0	0	521.44/5/5901
0201	NS HUX:	60 60207	60 60207	0	0	0	0	60 60207
0301	Азота (IV) диоксид (Азота диоксид) (4)	62.68387	62.68387	0	U	0	U	62.68387
0304	диоксид) (4) Азот (II) оксид (Азота оксид)	24.825268	24.825268	0	0	0	0	24.825268
0304	(6)	24.023200	24.823200	0	0	0	0	24.023200
0330	Сера диоксид (Ангидрид	7.819	7.819	0	0	0	0	7.819
	сернистый, Сернистый газ,	1	, , 013	ŭ	· ·	ĺ	9	,,,,,,,
	Сера (IV) оксид) (516)							
0333	Сероводород (Дигидросульфид)	0.0572383329	0.0572383329	0	0	0	0	0.0572383329
	(518)							
0337	Углерод оксид (Окись	90.7276	90.7276	0	0	0	0	90.7276
	углерода, Угарный газ) (584)							
0342	Фтористые газообразные	0.0016	0.0016	0	0	0	0	0.0016
	соединения /в пересчете на							
	фтор/ (617)							
0410	Метан (727*)	28.6874	28.6874	0	0	0	0	28.6874
0415	Смесь углеводородов	272.158795616	272.158795616	0	0	0	0	272.158795616
0416	предельных С1-С5 (1502*)	25.5636236	25.5636236	0	0	0	0	25.5636236
0416	Смесь углеводородов предельных С6-С10 (1503*)	25.5636236	25.5636236	0	U	0	0	25.5636236
0501	Пентилены (амилены - смесь	0.00539	0.00539	0	0	0	0	0.00539
0301	изомеров) (460)	0.00339	0.00539	0	0	0	0	0.00339
0602	Бензол (64)	0.338178609	0.338178609	0	0	0	0	0.338178609
0616	Диметилбензол (смесь о-, м-,	0.1053512866	0.1053512866	0	0	0	0	0.1053512866
"""	п- изомеров) (203)	0.1000012000	3.1333312333		0	Ĭ		
0621	Метилбензол (349)	0.2141765724	0.2141765724	0	0	0	0	0.2141765724
0627	Этилбензол (675)	0.0001294	0.0001294	0	0	0	0	0.0001294
1301	Проп-2-ен-1-аль (Акролеин,	0.6432	0.6432	0	0	0	0	0.6432
	Акрилальдегид) (474)							
1325	Формальдегид (Метаналь) (609)	0.663028968	0.663028968	0	0	0	0	0.663028968
2754	Алканы С12-19 /в пересчете на	6.953725516	6.953725516	0	0	0	0	6.953725516
	С/ (Углеводороды предельные							
ĺ	С12-С19 (в пересчете на С);							

Растворитель РПК-265П) (10)