ТОО «ТАСБУЛАТ ОЙЛ КОРПОРЭЙШН»

УТВЕРЖДАЮ
Генеральный директор
ТОО «ТасбулатОйлКорпорэйшн»
Байманов О.Т.
2025г.

ПРОЕКТ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В НЕДРА

для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год

Индивидуальный предприниматель

Пушинка Т.Г.

г. Актау

2025 г.

ИСПОЛНИТЕЛИ

АННОТАЦИЯ

В процессе работы собраны общие данные о районе размещения месторождений Тасбулат, Актас, Туркменой, представлены сведения о Компании, дана краткая характеристика технологии производства по всем производственным площадкам, как источникам образования сточных вод.

Обследована система водохозяйственной деятельности Компании в целом и отдельных производственных площадок. Проведено визуальное обследование приемника сточных вод закачки вод для поддержания пластового давления.

Получены инженерно-геологические и гидрогеологические параметры участка размещения приемников сточных вод.

Выполнены расчеты водопотребления и водоотведения, а также составлены водохозяйственные балансы по месторождениям и в целом для Компании ТОО «Табулат Ойл Корпорэйшн» на с учётом перспективы развития производства на 2026 г.

Проведена инвентаризация выпусков сточных вод ТОО «Табулат Ойл Корпорэйшн» на существующее положение 2025 г и представлена ниже в таблице 1.

Таблица 1 - Инвентаризация выпусков сточных вод ТОО «Табулат Ойл Корпорэйшн»

год	Наименование выпуска	Наличие и метод очистки перед сбросом	Объем отводимых сточных вод, тыс. м ³ /год	НДС загрязняющих веществ, отводимых со сточными водами т/год
2023	Система ППД месторождения Тасбулат	Блок подготовки воды БПВ 2.00.00.00	18.25	1641,6529
2024	Система ППД месторождения Тасбулат	Блок подготовки воды БПВ 2.00.00.00	18,30	1619.098
2025	Система ППД месторождения Тасбулат	Блок подготовки воды БПВ 2.00.00.00	18,25	1614.778
2026	Система ППД месторождения Тасбулат	Блок подготовки воды БПВ 2.00.00.00	18.25	1590.652

Определено качество производственных сточных вод, закачиваемых в подземные горизонты, для нормирования сбросов.

Разработаны предложения / рекомендации по установлению нормативов на закачиваемую сточную воду в подземные горизонты и произведены расчёты определения норматив

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

допустимых сбросов (НДС) загрязняющих веществ, закачиваемых с производственными сточными водами в подземные горизонты на 2026 г.

Рассмотрены вероятные аварийные ситуации и их воздействие на окружающую среду, описаны существующие решения на объектах ТОО «Табулат Ойл Корпорэйшн» для защиты от загрязнения подземных вод сточными водами, предложены мероприятия по предупреждению аварийных сбросов, по снижению содержания загрязняющих веществ в отводимых сточных водах.

Предложены методы контроля за соблюдением установленных нормативов ПДС, составлен График контроля за соблюдением нормативов ПДС на 2026 гг. и предложены мероприятия по достижению нормативов ПДС.

Описана существующая система производственного мониторинга грунтовых и сточных вод и представлен анализ влияния сточных вод на качественное состояние грунтовых вод по результатам отчета Производственного мониторинга за период 2022–2025 гг.

СОДЕРЖАНИЕ

Исполнители	ſ	2
Аннотация		3
Содержание.		5
1. Введени	e	6
Общие с	ведения об объекте	6
3. Характе	ристика объекта как источника загрязнения окружающей среды	19
3.1. Kpa	ткая характеристика технологии производства, технологического	оборудования,
используемо	го сырья и материалов, влияющих на качество и состав сточных вод	19
3.1.1. Систем	па водоснабжения	19
3.1.2. Систем	а водоотведения	19
4. Характе	ристика приемника сточных вод	26
4.1. Xap	актеристика современного состояния подземных вод	26
5. Расчет д	опустимых сбросов	29
5.1.1. Расчет	нормативов ПДС загрязняющих веществ, отводимых со сточными водам:	и в подземные
горизонты		31
5.1.2. Опреде	еление понятия нормативов ПДС загрязняющих веществ, отводимых со сто	чными водами
	ование перечня нормируемых показателей качества сточных вод	
	ания и рекомендации к системе ППД и качеству воды, используемой для за	
5.1.5. Обосно	ование величины нормируемых показателей качества сточных вод	35
5.1.6. Предел	ьно-допустимый сброс загрязняющих веществ, отводимых со сточнь	іми водами в
	рризонты	
	кения по предупреждению аварийных сбросов	
	ь за соблюдением нормативов допустимых сбросов	
	аемые мероприятия по достижению нормативов допустимых сбросов	
Список в	использованной литературы	50

1. ВВЕДЕНИЕ

Основанием для разработки «Проекта нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год» являются:

- Экологический кодекс Республики Казахстан;
- Налоговый кодекс Республики Казахстан;
- Экологическое разрешение № KZ94VCZ04874501 от 11.03.25

Проект выполнен в соответствии с нормативно-методическими документами, которые приведены в Списке использованной литературы.

2. ОБЩИЕ СВЕДЕНИЯ ОБ ОБЪЕКТЕ

ТОО «Тасбулат Ойл Корпорэйшн» является юридическим лицом, зарегистрированным на территории Республики Казахстан, имеет государственную лицензию на право пользования недрами, добычу углеводородного сырья на месторождениях Тасбулат, Туркменой и Актас.

Юридический и фактический адрес: РК, 130000, г. Актау, микрорайон 4A, здание 18, e-mail: <u>Balaussa.Akbayeva@magnetic.kz</u>, тел.: 8 (7292) 20-14-01

Банковские реквизиты: БИН 060840001641, АО «Народный Банк Казахстана» БИК HSBKKZKX, ИИК KZ346010231000495581 (KZT)

Основной вид деятельности: недропользование на основании контракта №ГКИ169 на проведение добычи углеводородного сырья нефтегазоконденсатного месторождения Тасбулат заключенным 28.01.98 г., между Государственным Комитетом РК по инвестициям и ТОО «Тасбулат Ойл Корпорэйшн». Согласно Приложению 2 к Экологическому кодексу оператор относится с объекту I категории.

Форма собственности: Частная.

Количество промплощадок: В состав объектов лицензионной блоков ТОО «Тасбулат Ойл Корпорэйшн» входят:

- нефтяное месторождение Тасбулат;
- нефтяное месторождение Туркменой;
- нефтяное месторождение Актас.

На месторождении Молдыбай добыча нефти в настоящее время не ведется.

Общая площадь контрактной территории - месторождений Тасбулат - Туркменой - Актас составляет 19820,4 га.

В состав лицензионных блоков ТОО «Тасбулат Ойл Корпорэйшн» входят месторождения Тасбулат, Актас, Туркменой, которые располагаются в районе активной нефте-газодобычи.

Добываемая на этих месторождениях нефть поступает по трубопроводу в магистральный нефтепровод Жана-Озен-Самара.

Руководство деятельностью ТОО «Тасбулат Ойл Корпорэйшн» осуществляется из головного офиса в г. Актау. Вахтовый лагерь и производственный офис располагаются на месторождении Тасбулат.

Вахтовый поселок и офис в г. Актау соединены между собой и производственными объектами посредством радио-, телефонной, спутниковой и компьютерной связи.

Персонал месторождений, в количестве 200 человек, проживает в утепленных модульных блоках в вахтовом городке. На территории месторождения персонал работает вахтовым методом (15х15, 28х28); время работы в офисе составляет 8 часов. На территории вахтового городка находятся: административный блок - 2-х этажное здание (сборный дом), пожарное депо, столовая, мастерские, жилые и складские помещения. Все объекты обеспечены противопожарной сигнализацией.

В вахтовом поселке имеется медпункт, машина скорой помощи и квалифицированный медперсонал с круглосуточным дежурством, а также устойчивая радиотелекоммуникационная, факсимильная, спутниковая и интернет связь.

Согласно карте административно-территориального деления месторождения Тасбулат, Актас, Туркменой, Молдыбай располагаются в Каракиянском и Мангистауском районах Мангистауской области, районными центрами которых являются рабочие поселки Курык и Шетпе.

Ближайшая к месторождениям железнодорожная ветка проходит по линии Актау- Жанаозен. Вдоль железной дороги проходит автомобильная дорога республиканского значения, ЛЭП, линия телефонной связи. От автомобильной дороги Актау-Жанаозен проложена асфальтированная автодорога до вахтового лагеря Тасбулат.

Через территорию блока месторождений проходят 3 высоковольтные линии (2 ЛЭП- 220 кВ и 1 ЛЭП-110 кВ). Также имеются ЛЭП напряжением 35 кВ, связывающие газовые промыслы.

Обзорная карта-схема расположения месторождений ТОО «Тасбулат Ойл Корпорэйшн» приведена на рисунке 2.1.

Социально-экономическое развитие данного региона происходит в жестких природноклиматических условиях. Дефицит пресной воды и низкое плодородие почв обуславливают неравномерность распределения населения по территориям областей и приуроченность населенных пунктов к нефтегазодобывающим месторождениям.

Все месторождения ТОО «Тасбулат Ойл Корпорэйшн» располагаются в районе активной нефте-, газодобычи. В непосредственной близости находятся месторождения Жетыбай, Восточный Жетыбай, Южный Жетыбай, Каменистое, Бектурлы, Юго-Восточное, Асар.

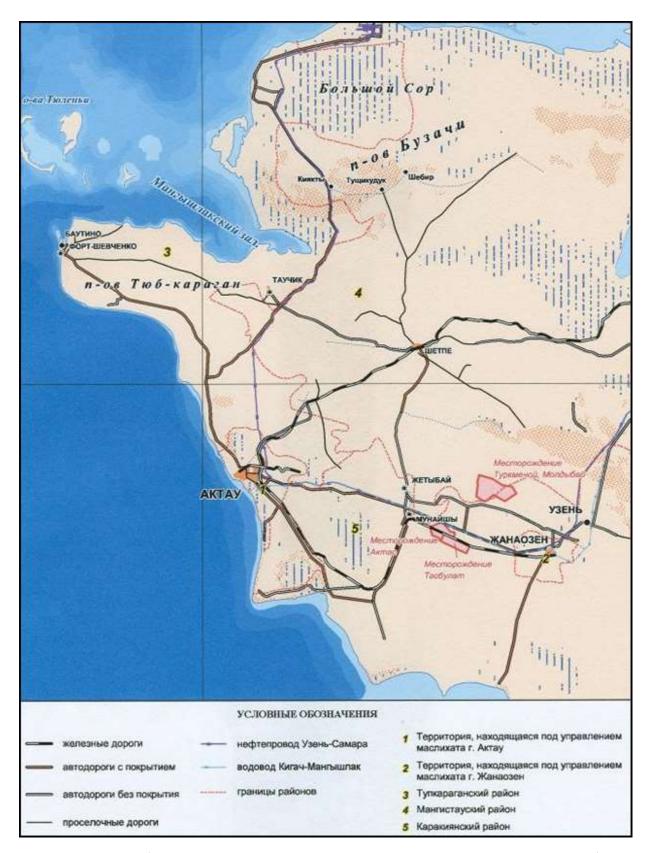


Рисунок 2.1 — Обзорная карта-схема расположения месторождений ТОО «Тасбулат Ойл Корпорэйшн»

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

Координаты угловых точек месторождений на топографическом плане и площади приедены ниже

№ точки	Широта (с.ш.)	Долгота (в.д.)					
_	Месторождение Тасбулат (пло	ощадь 4026,4 га)					
1	43 ⁰ 23'28.64"	52 ⁰ 18'2348"					
2	43 ⁰ 23'53.97"	52 ⁰ 18'41.53"					
3	43 ⁰ 23'50.34"	52 ⁰ 19'31.52"					
4	43 ⁰ 16'13.02"	45 ⁰ 42'03.27"					
5	43 ⁰ 22'42.07"	52 ⁰ 21'32.96"					
6	43 ⁰ 21'57.81"	52 ⁰ 23'59.15"					
7	43 ⁰ 21'38.38"	52 ⁰ 23'50.49"					
8	43 ⁰ 22'10.93"	52 ⁰ 21'10.80"					
9	43 ⁰ 22'27.77"	52 ⁰ 20'13.49"					
•	Месторождение Туркменой (пл	ющадь 11842 га)					
1	43° 33' 55"	52° 27' 55"					
2	43° 33' 50"	52° 28' 34.99"					
3	43° 33' 29.99"	52° 30' 15.00"					
4	43° 32' 57.99"	52° 31' 14.99"					
5	43° 32' 39.99"	52° 31' 19.99"					
6	43° 32' 34.99"	52° 30' 49.99"					
7	43° 32' 45.00"	52° 29' 50.00"					
8	43° 33' 35.00"	52° 28' 09.99"					
	Месторождение Актас (плог	цадь 39,52 га)					
1	43° 27' 05"	52° 14' 50"					
2	43° 27' 15"	52° 15' 25"					
3	43° 26' 45"	52° 17' 05"					
4	43° 25' 50"	52° 17' 45"					
5	43° 25' 40"	52° 17' 25"					
6	43° 25' 50"	52° 16' 30"					
7	43° 26' 40"	52° 15' 00"					

Район расположения месторождений характеризуется отсутствием пресных вод. Снабжение технической водой осуществляется из водовода волжской воды Астрахань-Мангистау. Доставка бутилированной питьевой воды осуществляется автомобильным транспортом из г. Актау до вахтового лагеря.

В систему поддержания пластового давления (ППД) каждого из трех месторождений для закачки воды в продуктивные пласты используется:

- попутно-добываемая пластовая вода, после отделения на ЦУПН от нефти.

Сточная вода, которая образуется в процессе при подготовке нефти в технологических процессах по обессоливанию из технической воды (волжской) закачивается в пласт месторождения Тасбулат с целью поддержания пластового давления.

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

Сведения о фонде скважин в системе поддержания пластового давления (ППД) ТОО «Тасбулат Ойл Корпорэйшн» приведены в таблице 1.

Таблица 1 - Сведения о фонде скважин в системе поддержания пластового давления (ППД) ТОО «Тасбулат Ойл Корпорэйшн»

	Q	Ронд скважин, ш	г.
	м/р Тасбулат	м/р Актас	м/р Туркменой
Нагнетательные	7	5	3
В работе	2	2	2
В простое	5	3	1
Наблюдательные	16	-	3
Водозаборные	2	-	-

Рисунок 2.2 - Карта- схема системы ППД (закачка сточных вод) месторождения Тасбулат

2.1 Гидрографическая характеристика

Поверхностные воды на территории месторождения Тасбулат ТОО «Тасбулат Ойл Корпорэйшн» отсутствуют. Временные водотоки возникают только во время ливневых дождей.

2.2 Гидрогеологическая характеристика

Месторождения расположены в пределах Жетыбай-Узеньской тектонической зоны. Район месторождения является частью водонапорной системы Южно-Мангышлакского артезианского бассейна, распространенного в пределах Южно-Мангышлакского прогиба. В разрезе месторождения, как и в пределах всей Мангышлакской нефтегазоносной области, выделены три гидрогеологических этажа — меловой, юрский и триасовый.

Продуктивные горизонты рассматриваемых месторождений входят в единый юрский гидрогеологический комплекс, сложенный чередованием песчаников, алевритов и глин. Последние слагают достаточно мощные пачки, служащие водно-нефтегазоупорами. Следует подчеркнуть, что пачки глин, разделяющие юрский водоносный комплекс и отдельные пластовые резервуары не препятствуют установлению гидродинамической связи внутри юрского водоносного комплекса в целом. Такая связь обеспечивается многочисленными фациальными переходами между глинами, песчаниками и алевролитами за приделами контуров нефтегазоносности. Наличие взаимосвязанной системы водоносных горизонтов внутри юрского комплекса подтверждается данными по гидродинамике и гидрохимии юрских горизонтов.

Подземные воды продуктивных горизонтов представлены крепкими хлоркальциевыми рассолами, минерализация которых колеблется в не очень широком диапазоне – от 145 до 176 г/л, что в эквивалентной форме составляет 5000 – 5300 мг-экв/л. Воды довольно специфического облика, значительно обогащенные бромом (400-460 мг/л). К типичным микрокомпонентам относятся: йод (6-8 мг/л), аммоний (90-100 мг/л) и бор (порядка 20 мг/л).

Существенной особенностью вод является также весьма низкое содержание в них сульфатиона, как правило, не превышающее десятых долей мг-экв/л. Плотность пластовых вод составляет 1,11-1,117 г/см³ (при температуре 20° C). При этом намечается слабо выраженная тенденция к нарастанию плотности с глубиной.

К другим специфическим показателям вод продуктивных горизонтов относятся наличие в них нафтеновых кислот (несколько мг/л) и бензола (обычно от десятых долей до 1 мг/л). Величина рН составляет 5.0 -5.5 в качестве важного корреляционного показателя следует указать на калий, концентрация которого с глубиной возрастает от 1336 до 1500 мг/л.

Одной из наиболее важных особенностей растворенных газов пластовых вод продуктивных горизонтов является сравнительно высокое их газонасыщение, при резком преобладании газов. По данным глубинных проб, газонасыщенность варьирует в пределах 0,5-1,5 л/л. Среди растворенных газов основным компонентом является метан (80-89%).

Состав подземных вод месторождения Тасбулат

Свойства и состав пластовых вод юрских и триасовых продуктивных горизонтов месторождения изучены по исследованиям, проведенным с 1977 года по текущий момент в соответствии с «Проектом разработки нефтяных залежей месторождения Тасбулат».

Результаты проведенных исследований приведены в сводной таблице 2.

Таблица 2 - Месторождение Тасбулат. Физические свойства и химический состав вод

Показатели	Диапазон значений	Среднее значение	Диапазон значений	Среднее значение	Диапазон значений	Среднее значение		
Год исследований	И	сследовани	я 1977-2006 год	юв	Исследования годо			
	Юро	жий	Три	iac	Юрск	нй		
Горизонт	Ю-	10Б	T	2	Ю-10Б2, Ю-10Б1, Ю-2А, Ю-1			
1 Газосодержание, м ³ /м ³	-					3.55		
2 Плотность воды в стандартных условиях, кг/м ³	1083- 1113	1103	1012-1044	1020	1081-1117	1100		
3 Вязкость в нормальных условиях, мм ² /с	19	*		*	1,070-1,6600	1,3006		
4 Коэффициент сжимаемости, 10 ⁻⁴ МПа ⁻¹		==	15	ā	1) \$ 1 39		
5 Объемный коэффициент, единиц	10	20	62	室	-	828		
		Содера	кание в мг/л		<u> </u>			
- Na ⁺ +K ⁺	42081- 57502	51132,6	6691- 24416,1	11676,1	33739-68153	43875		
- Ca ⁺²	7264,5- 10800	8495	80-1200	365,74	7014-12224,4	8991,5		
- Mg ⁺²	1740- 2128	1926	12-402	125,2	972,8-2310,4	1815,5		
- CI	84668- 107167	98412,6	10157- 40336,1	18102,5	59923,7- 124472	87265,9		
- HCO ₃ °	117,1- 268,5	183	439,2-1407,1	775,65	63,4-835,7	309,5		
- CO ₃ -2	-	23	2	2		125		
- CO ²			()	+	123,2-968	562		
- SO ₄ 2	0-249,5	62,38	99,75-1524	519,14	0-34,8	5		
- J	Отс.	Отс.	0,85-159	28,4		836		
- Br	0-341	163,4	3,7-81	43,4		22-3		
- B ⁺³	13-16		-	+	-	273		
- Li	10-12,5	-				0.50		
- Sr ⁺²	362-550			2		-		
-Ba ⁺²	630,7- 853,2	742	#	¥	-	323		
-Геобщ	-	*		*	20-288,4	116,14		
7 Общая минерализация, г/дм ³	137,4-174	160,7	19,7-66,4	31,6	113-203	142,4		
8 Водородный показатель, pH	4-6,1	5,28	6,0-8,6	7,24	4,21-6,01	5,58		
9 Химический тип воды по Сулину В.А.	CL	-Ca	Разный;CL-0 НСО ₃ -Nа,		CL-C	200		
10 Количество исследованных проб (скважии)	4 пр (скважинг 213 и	ы 26, 209,	10 пр (скважины 9 305 и	роб , 16, 26, 27,	25 проб (скважины (9, 21, 28, 108, 213, 218, 305, 306, 308, 319, 321, 326, 328)			

Ранние исследования (1977-2006 гг.). Воды юрского продуктивного горизонта представляют собой хлоркальциевые рассолы с суммарным солесодержанием 137 - 174 г/л.

Воды слабокислые, очень жесткие. По содержанию сульфат-ионов, в среднем, воды относятся к малосульфатным. Содержание кальция находится в диапазоне 7,3 - 11

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

г/л, магния 1,7 - 2 г/л, натрия и калия 42,1 – 57,5 г/л, хлоридов 85 - 107 г/л, а гидрокарбонатов 117 - 269 мг/л. По микрокомпонентам данные есть только по брому 149 - 341 мг/л, барию 630,7 -853 мг/л, стронцию 362 - 550 мг/л, литию 10 - 12,5 мг/л и бору 13 - 16 мг/л. Пластовые воды триаса очень отличаются от вод юрского горизонта. Тип вод очень разнообразен и изменяется от гидрокарбонат-натриевого до хлоркальциевого, что подтверждается содержанием компонентного состава вод. Суммарная минерализация находится в пределах 20 - 66 г/л, при этом во всех водах присутствуют сульфаты в количестве 100 - 1524 мг/л. Воды в среднем нейтральные, жесткие. Микрокомпонентный состав изучен только по содержанию йода 0,85 - 159 мг/л и содержанию брома 3,7 - 81 мг/л.

Исследования 2008-2017 годов. Результаты проведенных химанализов с 2008 года показывают, что воды юрских горизонтов относятся к малосульфатным хлоркальциевым рассолам с суммарным содержанием растворенных солей 113 - 203 г/л (в среднем 142,4 г/л) и плотностью 1,081 - 1,117 г/см 3 . Воды слабокислые, очень жесткие, что подтверждается высоким содержанием ионов кальция 7 - 12,2 г/л. Микрокомпонентный состав вод не изучался. Выявлено только общее железо в количестве 20 - 288,4 мг/л.

Таким образом, по проведенным исследованиям установлено, что воды юрского продуктивного горизонта являются крепкими рассолами хлоркальциевого типа с низким содержанием сульфатов. Воды триасового горизонта имеют очень разнообразный состав и требуют уточнения их состава.

Состав подземных вод месторождения Актас

Изучение свойств и состава попутных вод месторождения Актас проведено порезультатам анализа 32-х проб воды, отобранных с 12-ти добывающих скважин в 1968-2020 годах. Часть исследований выполнены во время проведения разведочных работ в 1968-1973 годах. Исследования с 2004 года проведены в аккредитованном лабораторном центре АО «НИПИнефтегаз» и содержат результаты по основному компонентному составу, данные по плотности, вязкости, показателю рН. Также имеются частичные результаты исследований по микрокомпонентному составу вод и свободной двуокиси углерода.

Юрские отложения

Как показывают результаты, воды юрских продуктивных горизонтов относятся к крепким рассолам хлориднокальциевого типа с суммарным содержанием растворенных солей 98,2-173,3 г/дм 3 и плотностью 1,072-1,118 г/см 3. Основная часть исследований показывает, что солесодержание вод находится в пределах 150-160 г/дм 3. Воды очень жесткие, по степени рН слабокислые, с низким (в большинстве случает отсутствием) содержанием сульфат-ионов. Основными составляющими компонентами являются хлориды, количественное содержание которых в среднем составляет 94,8 г/дм 3 и натрий в сумме с калием – 44,6 г/дм 3. Концентрация ионов кальция в водах изменяется от 6 до 12,6 г/дм 3, магния от 1,2 до 3,3 г/дм 3, гидрокарбонатов от 30,5 до 873 мг/дм 3. Содержание растворенной углекислоты В водах среднем горизонту составляет 440 мг/дм 3.

Свойства и состав вод юрских отложений приведены в таблице 3 в соответствии с «Проектом разработки нефтяных залежей месторождения Актас».

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

Таблица 3 - Свойства и состав вод юрских отложений месторождения Актас

	Дага	нерфакависм		Romeco.		ar 3	Компонентны	йі состав, мг/дм		:	Суммернея	Thermoter				Компи	нетный соста	B, MII/JING				Bruskin, mun, meže
Оснавани	опбора	Интрис	На	rien	Na ⁺ +K ⁺	Cat	Mg ²⁺	a	SO ₂ ²	нсос	ctar ²	юВАСуливу	CO ₂	нѕ	î	Br	В	æ	Ba	Fe	NH.	Benach
1	2	3	4	5	6	7	8 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
										Ю	Эрские отложен	061		-	_			-				
2	07.05.1968	2467-2484		1,111	47601,5	12252,5	2005	102255	6,58	30,5	164,2	XK	45	- 5	6,35	460,09	21,43				106,5	
	0.000.000	1962-1965		20000	200000				100000	****	17000	****	#20 W	0.000	SIEC .	200				****		ACRES C
5	01.08.2006 22.08.2008	2013-2009 1962-2013	5,5 5,28	1,1096	51071 42569.8	6263 11723,4	3344 2219.2	98069 92766,7	HO	131,8 95,2	158,9 149,4	XK XK	560,7 343,2	-	ню 1,06	362,3	-	-	212	119 80	-	1,46
	_	1902-2013						98452.8	BO 24.60				343,2	-	_	-		-				
6	28/05/1973	leanna l	5,1	1,117	46737,8	11186,7	1945,1	175.000	24,69	244	158,6	XK		_	8,46	440,05	21,38	-	-	-	104,3	-
6	05.05,1973	2486-2492 2467.5-2459	5,3	1,115	47121,9 28529.4	12128,7	1930,7	100938,4	6,58	201,3 872.9	162,3	XK	1023		7,4 3,36	456,76	21,43		-	102	106,5	1.14
9	01.10.2008	2467,5-2459	62 597	1,0718	28529,4 47418,2	7464,9 12024	1185,6 2432	60126,6 101291	Ho Ho	267,2	98,2 163	XK XK	1052	-	3,36	-		-	20	403		1,14
9	09.09.2020	1865-1967	5.85	1,107	47390	11623	2554	100262	80	244	162	XK	439.6	-		-	-	372	47.4	101,9	82	
12	14.10.2015	2465-2483	5,7	1,112	36951.8	12525	2249.6	85611,75	ню	97.6	137.4	XK	71.000	- 1	1,69	229.1			455,6	138.1	- 15	
12	01.08.2006	2483-2465	5,85	1,1066	48311	6012	3192	92411,1	но	190,3	150,1	XK	186,9		423	404	-		356	165	-	1,45
20	14.10.2005		5,54	1,106	34485,3	11632,2	2310,4	80400,6	ню	82,96	129	XK			1,69	272,8	, San	Ÿ	490,3	85,6	, S	
20	01.08.2006		5,3	1,1106	52440	6513	3344	100899	но	122	163,3	XK	436,1	- 24	но	63,9	- 4	-	423	131	-	1,68
20	01.08.2010	2486-2475	52	1,118	52298,6	11623	2067,2	107092		178,1	173,3	XK	294,8	-	4,6	-				12,4	-	1,48
20	06.11.2018		5,49	1,115	49744,2	12224,4	2553,6	104209,5	HO	131,2	168,9	XK		- 69					360	59.0	-	- 89
20	05.02.2020	2475-2486	5,87 5,21	1,11	45040,7 47307,8	12024 126252	2796,8 2432	98782,8 101287,7	HO HO	170,8	158,8 163,8	XK XK	1227,6	-		-		288	484	102	110	- 1
30	01.10.2008	2458-2788	5,21	1,11	40774,4	11573.1	22192	89668,4	но	209,9	144,4	XK	352		1,38	-		200	100	112	- 10	139
100	01.09.2014	25.02.00	5,99	1,0971	42244	10220,4	2188,8	88625	32	219,6	143,5	XK	258,7	Bo	80	18.62	16.2	369,9	1803	73,36	-	1,1796
100	25.03.2018	1982,6-1988,5;	5,7	1,108	43282,7	11423	2188,8	92205,8	9,67	195,2	149,3	XK	-	- 22	-	-		-	174	-	8	
100	05.02.2020	2025-2034	5,81	1,107	45771,8	11823,6	2796,8	98782,8	10,56	268,4	159,5	XK	322,1	-	V ×		-	183	55	111	93,5	-
100	13.06.2020		5,76	1,103	44571,3	11222	2918	96223	17,7	207,4	155,2	XK	488		-			473	184,4	67,2	80,5	
		2023,5-																				
0.00		2018; 1984-	75.50	1929201	223.877	17883	3000	933037	200	7,550	200	92000	100000		3.1					900		2000
101	01.08,2010	1978,5	5,5	1,096	37494	11222	1824	82719	12,5	396,5	134	XK	265,8	138	4,2	- 40	26.1	205	122	50	-	2,36
101	08.10.2014 25.03.2018	1890-1897; 1926,8-	5,68	1,109	45275,8 43053,9	11623,2 11523	2432 2249,6	97267,7 92205,8	4,57 9,05	244	156,9 149,3	XK XK	287,3	H/O	4,02	40	25,3	205	134	116		1,22
101	05.02.2020	1929,5;	5,71	1,106	47355,7	11623,2	2067,2	98782,8	H/O	137,3	160	XK	304,9	-	-	-	7.	218	76.2	85,4	76,5	-
	10.04.40	1931,5- 1934; 1978,5- 1984; 2018-	2,11	1,100	4733351	11040,4	2107,2	3010230	100	1500	700	740						210	(Max.	02,4	70,5	
101	13.06.2020	2023,5	6,04	1,104	45225,6	11824	2797	97911,5	11/0	253,2	158	XK	575,1					252	156	131,6	88	
102	25.03.2018	1870-1872;	5,86	1,106	43294,2	11523	2128	92205,8	н/о	256,2	149,4	XK		i,	2	7.3	्र	-	133		-	- 2
102	05.02.2020	1873-	5,78	1,106	45741,2	12224,4	2310,4	97950,8	H/O	237,9	158,5	XK	147,8	- 12	-	-	-	215	53	77	76,5	
11945		1875,5; 1876,5- 1881,5;		COLOMBA	52 w 3 w 3 m	000000		*********	2040002	Parkeran		19660	- 1440V					(and a		- and	77.000	
102	13.06.2020	1911,5-1916	5,93	1,102	45665	11423	2797	97911,5	16,46	231,8	158	XK	501,6	- 12		-	- 12	327	158	72,7	92	1.0
201	22.08.2008	1964-1966,5 2464-2488	5,45	1,1083	43803,3 45023	11923,8 12525	2401,6	94578,5 98201,8	H/o	119,8	152,8 158,2	XK XK	396 350,7		1,16	-	- 2-	-	-	82,4 218	-	1,3
	ное значение		5,1	1,0718	28529,4	6012	1185,6	60126,6	3,2	30,5	98,2	XK	147,8	H/o	1,06	18,62	16,2	183	47,4	12,4	76,5	1,14
	ное значение	$\overline{}$	6,2	1,118	52440	12625,2	3344	107092	24.69	872,9	173.3	XK	1227.6	H/O	8,46	460.09	25,3	473	490.3	403	110	2,36
реднее зна			5,65	1,1071	44632,1	11082	2393,24	94841,81	11,05	209,4	153,17	XK	439,55	11/0	3,79	274,76	21,15	290,3	226,17	115,2	92,39	1,4425
to the second	CONTROL CONTRO				*********	7 77 100 7	- 10000110	to considerat			совые отлож		- constant	· (0%)	M 2000	n anninino		(- constituti	0 15000 H	
722		3234-3237		70/2537		2222	2223	*******	VIZZE		0.32	1221			223	63343		0			k i	
20	02.04.2004	3244-3253	5.6	1.058	17555.9	11222	1824	50888,5	229		83,7	XK			2,54	118,6	- 74	4		-	4	

Сероводород не обнаружен. В целом, воды стабильны по карбонату и сульфату кальция. Микрокомпонентный состав вод представлен содержанием йода от отсутствия до 8,46 мг/дм 3 , брома 18,62-460 мг/дм 3 , бора 16,2-25,3 мг/дм 3 , стронция 183-473 мг/дм 3 , бария 47,4-490,3 мг/дм 3 , железа 12,4-403 мг/дм 3 , аммония 76,5-110 мг/дм 3 . Кинематическая вязкость вод в среднем составляет 1,4425 мм 2 /с.

Триасовые отложения

Единственный анализ воды триасовых отложений показывает, что ее солесодержание составило 84 г/дм 3. Вода очень жесткая, слабокислая с содержанием сульфат-ионов в количестве 229 мг/дм 3. Основными компонентами являются натрий 17,6 г/дм 3 и хлориды 50,9 г/дм3. Из микрокомпонентов определены только йод 2,54 мг/дм 3 и бром 118,6 мг/дм3. По исследованиям вод триасовых отложений близлежащих месторождений (м.Тасбулат) известно. что ИΧ ТИП очень разнообразен И изменяется гидрокарбонатнатриевого до хлориднокальциевого. Суммарная минерализация находится в пределах 20 - 66 г/дм 3, при этом во всех водах присутствуют сульфаты в среднем количестве 100 -1524 $M\Gamma/дM$ 3. Воды В нейтральные, Микрокомпонентный состав изучен только по содержанию йода 0,85 - 159 мг/дм 3 и содержанию брома 3,7 - 81 мг/дм 3.

Таким образом, проведенные исследования показали, что воды юрских продуктивных горизонтов месторождения Актас являются крепкими рассолами хлориднокальциевого типа с суммарной минерализацией 150-160 г/дм 3. Воды очень жесткие, слабокислые, с низким содержанием сульфатов. Воды триасовых отложений имеют очень разнообразный состав и требуют более полного изучения их состава.

Состав подземных вод месторождения Туркменой

На месторождении Туркменой в 2014-2015 году в скважинах 48 и 50 отобраны пробы воды для проведения анализа по определению физико-химических свойств пластовой воды из юрских отложений.

Гидрохимические особенности пластовых вод месторождения Туркменой представлены в таблице 4, в которой приведены данные анализов на основании глубинных опробований среднеюрских и нижнеюрских горизонтов согласно «Проекту разработки нефтяных и нефтегазовых месторождений Туркменой».

Пластовые воды среднеюрских отложений относятся к хлоркальциевым и хлормагниевым рассолам с минерализацией, варьирующей в пределах 99,2-223,0 г/л при плотности 1,073-1,1445 г/см 3 . Содержание сульфатов низкое - 0,72-45,8 мг-экв/л и до полного отсутствия. Для вод юрских отложений месторождения Туркменой характерно преобладание хлоридов (до 3904 мг-экв/л) над щелочными металлами (2860 мг-экв/л), а также отмечается высокое содержание кальция (до 551 мг-экв/л) и магния (до 954 мг-экв/л).

Среди микрокомпонентов выделяется йод и бром (совместно), до 605 мг/л, бор 27,1 мг/л и аммоний 280,6 мг/л.

Таблица 4 – Физико-химические свойства подземных вод юрских отложений месторождения Туркменой

	Интервал	Дата		Плот-		Компонен	тный сос	тав, мг/л /	мг-экв/л	4			Микро	компоне	нтный со	став, мг	л	8	Мине-	Тип	Коэф.	250000
Скв.	опроб. Глубина отбор, проб	отбора пробы	pН	ность г/см3 при 20°C	Na++K+	Ca2+	Mg2+	Cl-	SO42-	нсоз-	Геобщ	В	Br	J	NH4	Ba	NO3	CO2	рали- зация, г/л	по В.А. Сулину	мето- морф. мг-экв/л	Жесткость, мг-экв/л
										Средн	еюрский і	горизон	r									
2	1545-1549 1554-1557	23.12.2004	6,42	1,0912	38959 1693,9	9218,4 460,9	2432 202,7	83155,1 2342,4	261 5,4	91,5 1,5	283.24	ю	40	13,3	н/о	9,72	ню	44,4	134,1	XK	0,72	664
6	2013-2015 2017-2020 2000	26.12.1973	6,2	1,047	20860,5 907	500 25	3201,9 266,8	38181,04 1075,5	679,9 14,1	2597,39 42,58	но	10,82	15	1,94	280,6	ню	34	ню́	66,0	XM	0,84	291
9	1598-1614	04.08.2006	5,78	1,0885	38132 1657,91	5010 250,5	2280 190	73551,66 2071,9	н/о	58,6 1,0	100,65	·*	266,4	9,3	70	116,64	-	249,22	119,0	ХК	0,80	441
9	1598-1614	23.12.2004	5,91	1,0661	30230 1314,3	6412,8 320,6	1216 101,3	61376,4 1728,9	-	183 3	110,58	0.20	27	15,5	23	121		40,04	99,4	ХК	0,76	422
	1968-1975 1950	30.07.1975	5,4	1,1004	39259 1706,1	653,1 32,7	10960,4 913,4	86930,9 2448	2216,7 45,8	16,5 0,3	но	16,23	365,8	4,11	61	ню	57,48	ю о	140,0	XM	0,69	946
12	1982-1989 1960	31.01.1975	5,2	1,0978	38264,4 1663,7	668,8 33,4	11206,7 933,9	85139,3 2398,3	1995,0 41,2	11,5 0,2	H/O	27,05	391,7	5,13	170,8	ню	58,87	ню	137,3	XM	0,69	967
	2001-2005 1990	28.11.1974	5,2	1,102	40722,2 1770	812,5 40,6	11453 954,4	89966,8 2534,3	2142,8 44,3	9,9 0,2	ню	21,64	391,7	5,13	103,7	ню	57,36	но	145,1	XM	0,69	995
	1636-1641 1620	22.05.1975	4,8	1,0887	36003,5 1565,3	525 26,3	8989,9 749,2	77463,2 2182,1	1921,1 39,7	1,7 0,03	но	21,6	34	16,3	4,23	13,42	52,2	21,6	124,9	XM	0,72	776
13	1636-1641	22.08.2008	6,09	1,0882	34016,8 1479	9168,3 458,4	2036,8 169,7	74467 2097,7	ню	205,8 3,4	87,5	-		-	3,17		-	(. * .)	119,9	ХК	0,71	728
	2019-2029	23.12.2004	4,97	1,1445	65774 2859,8	15030 751,5	3648 304	138591,8 3904	्	15,3 0,3	177,7	но	60	15,8	но	ню	но	но	223,0	ХК	0,73	1055
22	1997-2002	23.12.2004	5,98	1,073	29776 1294,6	6212,4 160,6	1580,8 131,7	61376,4 1728,9	19-	198,3 3,3	11,3	mer.	29	1,44	8	271	-	88,88	99,2	ХК	0,75	292
34	2189-2588	12.08.2010	5,4	1,098	36948,2 1606,4	11022 551,1	1945,6 162,1	81980,6 2309,3	35 0,72	192,1 3,2	82,5	-	-	8,4	78		-	396	132,1	ХК	0,69	713
-40	1/12.1/21	22.08,2008	6,02	1,0862	35833,9 1558	9468,9 473,4	2855,7 238	77003,67 2169,1	спеды	50,22 0,8	47,42	520	22	сле-ды	26	9	2	158,4	125,2	ХК	0,72	711
48	1613-1624	09.09,2014	5,64	1,092	39784,6 1729,8	9218,4 460,9	2188,8 182,4	83307,5 2346,7	но	134,2 2,2	61,04	14,1	15,16	1,27	23	175,9	-	258,72	134,6	ХК	0,74	643
49	1579-1581 1595-1597 1604-1605.5	28.07.2008	5,7	1,080	30745,3 1336,75	8792,6 439,63	2082,4 173,53	68845 1939,29	ню	289,6 4,75	7,6		ню	4,65	8 9	120,4		176,0	110,8	XK	0,69	613
50	1517-1596	28,07,2008	5,69	1,081	30193,7 1312,77	8692,4 434,62	1991,2 165,93	67621,68 1904,84	но	167,9 2,75	15,96	200	ню	ню	25	68,52	-	140,8	108,7	XK	0,69	601
50	1607,5-1615	10.01.2015	6,35	1,072	31700,9 1378,3	6412,8 320,6	1702,4 141,9	64761,8 1824,3	но	122 2	30,8	17,5	9,97	12,7	85	105	-	193,8	104,7	XK	0,76	463
										Нимнею	ский горизо	нг										
21	2367-2383	23.12.2004	5,52	1,0782	34109 1483	7615,2 380,8	1824 152	71275,8 2007,8	85	144,9 2,4	224,5	824	30	12,1	58	227	В	(3.5%)	114,9	XK	0,74	533

Общая жесткость пластовых вод, обусловленная суммарным содержанием Ca 2+ Mg2+, составляет от 291 мг-экв/л до 1055 мг-экв/л, что соответствует пятой группе жесткости, т.е. является очень жесткой. По отношению содержания ионов натрия к ионам хлора (коэффициент метаморфизации), определяется метаморфическая обстановка формирования и залегания подземных вод. Так в водах месторождения Туркменой коэффициент метаморфизации не превышает единицы, что характеризует эти воды как морские и глубинные.

Пластовые воды из скважин 48 и 50 месторождения Туркменой представляют собой рассолы хлоркальциевого типа. Минерализация воды из скважины 48- 134,6 г/л (плотность -1,092 г/см 3), из скважины 50 -104,7 г/л (плотность - 1,072 г/см 3). Кислотно-щелочной показатель находится в пределах 5,64-6,35, что характеризует воду, как слабокислая, коэффициент метаморфизации менее единицы, что свидетельствует о седиментационном генезисе. Общая жесткость данных вод обусловлена суммарным содержанием Са 2+ и Mg2+ и исходя из значений данных компонентов, является очень жесткой.

Анализируя результаты скважин 48 и 50 нынешнее и 2008 года минерализация, плотность, физико-химический состав воды не претерпели заметных изменений.

Состав воднорастворимых газов вод среднеюрских отложений месторождения Туркменой, представлен в основном углеводородными, среди которых преобладают метан (87,9 %), а также заметны тяжелые, а именно этан (0,9-8,4 %), пропан (0,16-2,92%), бутан (0,09-1,83 %). По процентному содержанию метана (более 80% или около), пластовые воды можно отнести к группе метановых.

Наряду с углеводородными газами воды юрских горизонтов содержат углекислоту, азот, а также редкие газы. Так гелия содержание доходит до $0,19\,\%$, а аргона $-0,391\,\%$. Кроме того, в водах установлен водород - до $2,82\,\%$. Геотермическая ступень изменяется в пределах $25,3-31,3\,$ м/ $0\,$ С. При этом до глубины $1500\,$ м наблюдается снижение величины геотермической ступени до $25,3\,$ м/ $0\,$ С, затем происходит увеличение до $31,3\,$ м/ $0\,$ С на глубине $2000\,$ м. В связи с этим на глубине $500\,$ м температура составляет $30,8^{0}$ С, а на глубине $2000\,$ м $-80,9^{0}$ С.

3. ХАРАКТЕРИСТИКА ОБЪЕКТА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

3.1. КРАТКАЯ ХАРАКТЕРИСТИКА ТЕХНОЛОГИИ ПРОИЗВОДСТВА, ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ, ИСПОЛЬЗУЕМОГО СЫРЬЯ И МАТЕРИАЛОВ, ВЛИЯЮЩИХ НА КАЧЕСТВО И СОСТАВ СТОЧНЫХ ВОД

3.1.1. Система водоснабжения

Источниками водоснабжения месторождения Тасбулат являются питьевая вода и техническая (волжская) вода, поставляемые на договорной основе и питьевая привозная бутилированная вода.

Водозабор технической воды расположен на р. Волга в районе с. Ганюшкино. Подача технической воды производится в стальные резервуары, расположенные на площадке, где происходит ее предварительное отстаивание. Часть технической воды после подготовки на блоках типа Юнит-10 используется для хозяйственно-бытовых нужд. Указанные блоки позволяют очистить воду до необходимого уровня.

Подпитка технической (пресной) водой

От площадок сепарации нефть перед подачей на буферные емкости 40-V-104 A и 40-V-104 В, поступает на установку подогрева нефти 40-H-101 А/В. Установка подогрева нефти состоит из двух печей косвенного нагрева. Нефть подогревается до температуры 65-70°С. Для увеличения эффективности обессоливания нефти, в поток нефти на входе печей подогрева добавляется волжская вода и деэмульгатор. Для осуществления технологического процесса на ЦУПН, для подпитки используется техническая (пресная) вода, которая поступает в резервуары 40-ТК-701 А/В/С.

С площадок сепарации обессоленная и обезвоженная нефть поступает в товарные резервуары 40-ТК-201 A/B/C где происходит отстой, сброс подтоварной воды (на установку) и определение качества товарной нефти при отборе ГОСТ пробы.

Водооборотные системы на производственных объектах отсутствуют.

3.1.2. Система водоотведения

На месторождениях ТОО «Тасбулат Ойл Корпорэйшн» образуются следующие сточные воды:

- хозяйственно-бытовые сточные воды;
- производственные сточные воды;
- попутная пластовая вода;

Сточные воды после обессоливания нефти образуются на месторождении Тасбулат.

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

Образующиеся хозяйственно-бытовые сточные воды собираются в септике и по мере накопления вывозятся специализированным предприятием на договорной основе.

Производственные стоки на месторождении собираются в дренажную емкость и вывозятся по мере необходимости сторонней организацией на договорной основе.

В связи с вывозом очищенных хозяйственно-бытовых и производственных сточных вод для утилизации сторонними предприятиями нормативы эмиссий для данных категорий сточных вод не устанавливаются. В настоящем проекте рассмотрены нормативы предельно-допустимых сбросов (ПДС) загрязняющих веществ, закачиваемых со сточными водами в подземные водоносные горизонты.

На месторождениях используется полностью замкнутая система отбора и закачки воды в пласт для ППД, и, таким образом, свежая вода, так же, как и попутно-добываемая, в полном объеме закачивается в нагнетательные скважины без потерь. Качество воды соответствует требованиям, установленных СТ РК 1662-2007 «Вода для заводнения нефтяных пластов. Требования к качеству». Допустимое содержание механических примесей и нефти в закачиваемой воде с целью поддержания пластового давления находится в пределах допустимых концентраций: механические примеси – до 50 мг/л, нефтепродукты – до 50 мг/л.

В системе поддержания пластового давления (ППД) для закачки воды в продуктивные пласты месторождения Тасбулат используется сточная вода: попутно-пластовая вода, отделяющаяся на ЦУПН от нефти и волжская (техническая вода, которая используется при подготовке нефти в технологических процессах по обессоливанию).

Принципиальная схема ППД месторождения Тасбулат

Нагнетательный фонд месторождения Тасбулат составляет 7 скважин: 216, 5, 15, 209, 213, 221 и 323.

Пластовая вода, отделившаяся от нефти из нефтегазового сепаратора первой ступени сепарации (V-201) и блока электродегидратации (S-301) и товарных резервуаров (T-301A,B), при температуре 45–50 °C подается в водяной резервуар-отстойник объемом 200 м3. После отстоя и отделения эмульгированной нефти с помощью насосных агрегатов высокого давления вода в объеме до 38 м3/час через водораспредительные блоки (ВРБ) в нагнетательные скважины закачивается в продуктивные пласты месторождения для поддержания пластового давления (ППД).

Площадка насосов ППД. Площадка насосов закачки пластовой воды поставляется на объект автоматикой. эксплуатации комплектно co своей Для контроля за работоспособностью насосов закачки пластовой воды на выходе насоса устанавливается датчик абсолютного давления модели Cerabar S PMC71. Реализуется также контроль состояния насосных агрегатов снятием сигнала состояния дополнительных контактов магнитных пускателей.

Блок гребенки ВРП-1. Объем автоматизации блока гребенок ВРП-1 подачи пластовой воды к поглощающим скважинам ограничивается установкой на каждом из 4-х отводов по датчику расхода жидкости ДРС-М с импульсным выходом.

Резервуар пластовой воды 40-ТК-601. В резервуаре пластовой воды 40-ТК-601 производится замена сигнализаторов минимального и максимального уровня Моbrey M310-1на Liquicap M FTI51. Для непрерывного измерения уровня применен радиоизмеритель уровня «Місгоріlot FMR- 231».

Резервуар осветленной воды 40-ТК-602 оснащается по аналогии с резервуаром 40-ТК-601 сигнализаторами максимального и минимального уровня Liquicap M FTI51, а так же радарный уровнемер OPTIWAVE 7300C.

Принципиальная схема ППД месторождений Актас

Нагнетательный фонд месторождения Актас составляет 5 скважин: Ak5, Ak6, Ak12, Ak201, Ak202.

На ПСН Актас предусматривается прием поступающей воды с ЦУПН Тасбулат, подъем давления до необходимого для закачки насосами высокого давления, распределение и регулирование расхода по нагнетательным скважинам и транспортировка до самих скважин.

Насосы нагнетания воды 50-P-602A/B (2 x 100%) обеспечиваются пластовой водой через 4" трубопровод из эпоксидной смолы с усиленным стекловолокном протяженностью 10 км.

Нагнетательный модуль установлен c оборудованными на улице рядом работа нагнетательными скважинами, его почти полностью автоматизирована, производится обратная закачка пластовой воды на протяжении 24 часов в сутки.

Установочные скорость потока и давление могут быть введены отдельно. Для того, чтобы обеспечить безаварийную эксплуатацию и чтобы получать сигналы об ошибках для устранения поломок, создана концепция технической безопасности. Проектом предусмотрено предотвращение ошибок, которые могут подвергнуть человека или окружающую среду опасности.

контейнерах нагнетания устроены В двух один ДЛЯ 20-футового гидравлического помещения и один для 10-футового поста управления и контроля. Оба контейнера приспособлены к эксплуатации в зимних условиях и обеспечены необходимой системой терморегулирования, чтобы проводить работы при обычной температуре. Все технологическое оборудование и трубные соединения находятся в контейнере гидравлического помещения. Там два главных насоса. Главный насос представляет из себя 5-поршневой насос, номер модели HDP-252. Производитель – «Hammelmann».

Максимальный номинальный расход 23 м/ч при 160 бар изб. Каждый насос снабжен электрическим двигателем с мощностью 180 кВт. В гидравлическом помещении есть вспомогательные системы для безопасной эксплуатации главных насосов.

Принципиальная схема ППД месторождений Туркменой

Нагнетательный фонд месторождения Туркменой составляет 3 скважины: 41, 52,3.

На ПСН Туркменой предусматривается прием поступающей воды с ЦУПН Тасбулат, подъем давления до необходимого для закачки насосами высокого давления, распределение и регулирование расхода по нагнетательным скважинам и транспортировка до самих скважин.

Насосы нагнетания воды Ритрѕ 60-Р-603А/В (2 х 100%) обеспечиваются пластовой водой трубопровод ИЗ эпоксидной смолы усиленным c стекловолокном протяженностью 25 км. Нагнетательный модуль установлен улице рядом оборудованными нагнетательными скважинами, его работа почти полностью автоматизирована, производится обратная закачка пластовой воды на протяжении 24 часов в сутки.

Установочные скорость потока и давление могут быть введены отдельно. Для того, чтобы обеспечить безаварийную эксплуатацию и чтобы получать сигналы об ошибках для устранения поломок, создана концепция технической безопасности. Проектом предусмотрено предотвращение ошибок, которые могут подвергнуть человека или окружающую среду опасности.

Насосы нагнетания устроены в двух контейнерах — один для 20-футового гидравлического помещения и один для 10-футового поста управления и контроля. Оба контейнера приспособлены к эксплуатации в зимних условиях и обеспечены необходимой системой терморегулирования, чтобы проводить работы при обычной температуре. Все технологическое оборудование и трубные соединения находятся в контейнере гидравлического помещения. Там два главных насоса. Главный насос представляет из себя 5-поршневой насос, номер модели HDP-252. Производитель — «Наттейнапп».

Максимальный номинальный расход 23 м/ч при 160 бар изб. Каждый насос снабжен электрическим двигателем с мощностью 180 кВт. В гидравлическом помещении есть вспомогательные системы для безопасной эксплуатации главных насосов.

Установочные скорость потока или давление могут быть предварительно выбраны путем ввода на контрольной панели. ПЛК будет контролировать процесс через ЧПС чтобы достигнуть заданных значений, насколько это технически возможно.

Скорость потока может быть задана предварительно в пределах от 3,2 м³/ч и 23 м³/ч с коэффициентом загрузки 1:10. Если при работе в режиме постоянной скорости потока рабоче давление достигнет 160 бар изб., управление будет переключено с контроля потока на контроль давления.

Система контроля давления будет стараться поддерживать постоянное давление в $160\,$ бар. Если во время работы системы контроля давления измеряемая скорость потока упадет до $3,1\,$ м 3 /ч, система автоматически отключится. Снижение давления на выходе ниже $5\,$ бар также приведет к останову.

Нагнетательный трубопровод насосов нагнетания воды подсоединен к манифольду распределения воды (MPB). MPB установлен на открытом воздухе на вымощенной площадке размером 10,4м х 6,0м. Там находится четыре нагнетательные линии, идущие от MPB к скважинам Туркменой-3/39/41/52. На каждой такой линии установлен

расходомер для учета нагнетания воды и регулирующий клапан для контроля количества нагнетаемой воды. Каждая нагнетательная линия соединена с 3-дюймовыми линиями нагнетания ВД, каждая из которых может пропускать максимум 350 м3/день.

Схема системы поддержания пластового давления (ППД) месторождений ТОО «Тасбулат Ойл Корпорэйшн» приведена на рисунке 3.1

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

СХЕМА системы поддержания пластового давления на м/р Актас, Тасбулат и Туркменой

Рисунок 3.1 - Схема системы поддержания пластового давления (ППД) ТОО «Тасбулат Ойл Корпорэйшн»

Баланс водопотребления и водоотведения

				Водоп	отребление, тыс.	м ³ /год				Водоотведение, тыс.м	и ³ /год		
			На произ	водственные н	ужды	На							
Производство	Всего	Све	ежая вода		Повторно-	па хозяйственно -	Безвозвратное		Объем сточной	Производственные	Хозяйственно -		
110000000000000000000000000000000000000	20010	всего	в т.ч. питьевого качества	Оборотная вода	используемая вода	бытовые нужды	потребление	Всего	воды повторно используемой	сточные воды	бытовые сточные воды	Примечание	
1	2	3	4	5	6	7	8	9	10	11	12	13	
							6 год						
Месторождение Тасбулат		14.4	0.08856	0	18.25	10.79	1		18.25		9		
Месторождение Актас		0	0.005124	0	0	0.06	0.006		0		0.055		
Месторождение Туркменой		0	0.009516	0	0	0.10	0.002		0		0.118		
ИТОГО:													

4. ХАРАКТЕРИСТИКА ПРИЕМНИКА СТОЧНЫХ ВОД

4.1. ХАРАКТЕРИСТИКА СОВРЕМЕННОГО СОСТОЯНИЯ ПОДЗЕМНЫХ ВОД

Мониторинг состояния подземных вод первого от поверхности водоносного горизонта представляет собой наблюдение, результаты которого должны определить соответствие осуществляемой деятельности предприятия нормам и требованиям Республики Казахстан в части охраны окружающей среды.

Целевым назначением мониторинга подземных вод, проводимого на территории месторождения, является изучение степени влияния производственно-хозяйственной деятельности ТОО «Тасбулат Ойл Корпорэйшн» на подземные воды.

Мониторингу подлежит первый от поверхности водоносный комплекс четвертичных отложений, характеризующийся низкой естественной защищенностью, отсутствием перетока грунтовых вод в нижележащие водоносные горизонты, что определяет основное отрицательное техногенное воздействие именно на данный горизонт.

Мониторинговые наблюдения за состоянием подземных вод на месторождении Тасбулат осуществляются в соответствии с Программой ПЭК. Мониторинговые наблюдения за изменением глубины залегания подземных вод, а также общего химического состава подземных вод и содержания в них загрязняющих веществ выполняются 1 раз в квартал. В настоящее время существующая мониторинговая сеть состоит из 13 скважин:

- территория месторождения 5 скважин (№№1, 10, 11, 12,13);
- полигон складирования нефтешлама и замазученного грунта − 8 скважин (№№2-9) (в рамках ПДС не приводятся результаты).

Для характеристики современного состояния подземных вод на территории месторождения Тасбулат ТОО «Тасбулат Ойл Корпорэйшн» были использованы данные мониторинговых исследований за период 2022-2025 год, которые были выполнены аккредитованной лабораторией, оснащенной всем необходимым оборудованием для проведения исследований в области охраны окружающей среды и привлеченный на договорной основе.

Пробы подземной воды из гидрогеологических скважин были исследованы на определение следующих показателей: pH, кальций, магний, натрий, калий, фенолы, СПАВ, сухой остаток, хлориды, сульфаты, нефтепродукты, азот аммонийный, взвешенные вещества, нитраты, нитриты, железо общее, БПК, ХПК.

Проведенный мониторинг состояния подземных вод на месторождении Тасбулат показал, что состав подземных вод месторождения сульфатно-хлоридный, что обусловлено природным состоянием подземных вод.

Оценка качества подземных вод осуществляется путем сравнения результатов анализов химического состава проб воды, с предельно допустимыми концентрациями (ПДК) загрязняющих веществ в воде в соответствии с Гигиеническими нормативами показателей безопасности хозяйственно-питьевого и культурно-бытового водопользования» № ҚР ДСМ-

138 от 24.11.22. части которая целесообразна для сравнения. Результаты анализа химического состава подземных вод на месторождении Тасбулат в период 2022-2025 гг представлены в таблице 4.1.

В целом, комплексный анализ данных, полученных в результате мониторинга подземных вод в период 2022-2025 году, позволяет сделать вывод, что содержание загрязняющих веществ в подземных водах месторождения не превышает нормативы ПДК. Следовательно, деятельность ТОО «Тасбулат Ойл Корпорэйшн» за рассматриваемый период не оказала отрицательного воздействия на состояние подземных вод исследуемых скважин.

Таблица 4.1 – Динамика средних фоновых концентраций загрязняющих веществ м/р Тасбулат

			Конц	ентрация загр	эязняющего в	ещества в мон	иторинговых	скважинах/ пе	ериод	
Наименование загрязняющих	ед.изм.	2021*	2021	2022	2022	2023	2023	2024	2024	2025
веществ		1	2	1	2	1	2	1	2	1
		полугодие	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие
pН		-	6.7216	7.458	7.498	7.52	7.498	7.718	7.634	7.65
Кальций	мг/дм3	-	158.8786	118.4	122.34	0.718	0.652	390	342	310.8
Магний	мг/дм3	-	88.6066	96.36	72.92	0.438	0.444	1032.448	970.784	925.76
Натрий	мг/дм3	-	-	-	-	0.292	-	-	-	-
Калий	мг/дм3	-	-	-	-	0.216	-	-	-	-
Фенолы	мг/дм3	-	0.00028	0	0	0.043	0.0492	0	0	0
СПАВ	мг/дм3	-	0.4152	0.046	0.064	0	0	0.0188	0.0146	0.0114
Сухой остаток	мг/дм3	-	878.3204	974.14	966.54	1374.8	1456.6	5993.86	5825.576	5621.426
Хлориды	мгО2/дм3	1	255.6266	326.84	324.3	1346.52	1511.12	3224.73	3054.506	2951.206
Сульфаты	мгО2/дм3	-	458.6848	366.2	359.4	502.7708	615.1574	1037.198	991.474	957.698
Нефтепродукты	мг/дм3	-	2.51	0.1058	0.1208	0.188	0.204	0.066	0.038	0.026
Натрий+калий	мг/дм3	-	169.779	66.36	66.8	-	-	296.714	266.828	238.692

[•] Исследования не проводились

5. РАСЧЕТ ДОПУСТИМЫХ СБРОСОВ

В соответствии с Экологическим кодексом Республики Казахстан нормативы предельно допустимых сбросов загрязняющих веществ являются величинами эмиссий, которые устанавливаются на основе расчетов для каждого выпуска и предприятия в целом и разработаны в соответствии с «Методикой определения нормативов эмиссий в окружающую среду».

Нормативы норматив допустимых сбросов (НДС) загрязняющих веществ используются при выдаче разрешений на эмиссии в окружающую среду.

Нормирование сбросов загрязняющих веществ производится путем установления нормативов **норматив допустимых сбросов (НДС)** веществ со сточными водами в водные объекты, далее – Π ДС.

Норматив ПДС — это масса вещества в сточных водах, максимально допустимая к отведению с установленным режимом в данном пункте водного объекта в единицу времени с целью обеспечения норм качества воды в контрольном пункте.

В связи с тем, что образующиеся хозяйственно-бытовые сточные воды собираются в септике и по мере накопления вывозятся специализированным предприятием на договорной основе нормативы ПДС для хоз-бытовых сточных вод не разрабатываются.

Разработка проекта предельно-допустимых сбросов загрязняющих веществ для сброса производственных сточных вод на месторождении Тасбулат выполнена в соответствии с природоохранным законодательством РК в целях:

- определения условий сброса загрязняющих веществ исходя из существующей схемы системы ППД;
- обеспечения норм качества воды системы ППД, поступающей в недра.

ПДС рассчитан для сброса производственных сточных вод в подземные горизонты на каждый год нормирования.

Перечень загрязняющих веществ, отводимых со сточными водами в подземные горизонты, для которых устанавливаются нормативы эмиссии, принят в соответствии с «Перечнем загрязняющих веществ и видов отходов, для которых устанавливаются нормативы эмиссий».

Расчет нормативного качества вод, поступающих по системе ППД в недра, произведен с учётом:

- качественных фактических и количественных характеристик сточных вод;
- нормируемых показателей качества вод, направляемых в систему поддержания пластового давления в соответствии с СТ РК 1662-2007 «Вода для заводнения нефтяных пластов. Требования к качеству».

Результаты инвентаризации выпусков сточных вод приведен в таблице 5.1

Таблица 5.1 - Результаты инвентаризации выпусков сточных вод

Наименование объекта (участка, цеха)	Номер выпуска сточных вод	Диаметр выпуска, м	Категория сбрасываемых сточных вод		Режим отведения сточных вод		асход ываемых ных вод	Место сброса (приемник сточных вод)	загрязняющих загрязн веществ веществ		нтрация няющих в за 2022- ы, мг/дм3
				ч/сут.	сут./год	м3/ч	м3/год			макс.	средн.
									Взвешенные вещества	50.00	37.99
									БПК	3.50	2.56
	Deserver No. 1 Coverno								ХПК	1822.50	1634.82
	Выпуск № 1 Система								Сухой остаток	930.00	820.72
w/n Toobygon	ППД месторождения Тасбулат		Производственные	24	362	2.10	18250	Подземные	Азот аммонийный	11.00	8.81
м/р Тасбулат	Тасоулат		сточные воды	24	302	2.10	16230	горизонты	Нитраты	3.10	1.35
									Нитриты	0.50	0.18
									Хлориды	84249.80	69765.94
									Сульфаты	4.10	3.68
									Железо общее	34.50	32.25
									Нефтепродукты	50.00	27.44

5.1.1. Расчет нормативов ПДС загрязняющих веществ, отводимых со сточными водами в подземные горизонты

В соответствии с п.443 «Единые правила по рациональному и комплексному использованию недр» подземное захоронение очищенных промышленных стоков на месторождениях Тасбулат, Актас, Туркменой осуществляется путем их закачки в нагнетательные скважины в надежно изолированные поглощающие горизонты, не содержащие подземных вод, которые используются или могут быть использованы для хозяйственно-питьевых, бальнеологических целей.

5.1.2. Определение понятия нормативов ПДС загрязняющих веществ, отводимых со сточными водами в недра

В течение периода необходимой консервации сточных вод в недрах должно быть обеспечено отсутствие или сохранение в допустимых пределах всех видов возможного воздействия сброса (захоронения) на окружающую природную среду:

- сточные воды не должны распространяться в пласте-коллекторе и перекрывающих буферных горизонтах за пределы, определенные горным отводом;
- вытесняемые по пласту-коллектору при захоронении сточных вод высокоминерализованные пластовые воды не должны поступать в содержащие пресные воды водоносные горизонты верхней гидродинамической зоны или поверхностные водотоки;
- в процессе подземного захоронения не должно создаваться предпосылок для гидравлического разрыва перекрывающей пласт-коллектор водоупорной кровли и контролируемой вертикальной миграции сточных вод.

Процесс закачки ведется с соблюдением технологического регламента, который обеспечивает рациональное использование недр:

- закачка должна производиться с устьевым давлением не выше 15 МПа (150 бар) по месторождению Тасбулат;
- концентрация загрязняющих веществ (нефтепродукты, взвешенные вещества, сульфиды) в сточных водах, направляемых на закачку, не должна превышать показателей СТ РК 1662-2007 «Вода для заводнения нефтяных пластов. Требования к качеству».

В соответствии с Экологическим Кодексом Республики Казахстан величины нормативов эмиссий являются основой для выдачи экологических разрешений и принятия решений о необходимости проведения технических мероприятий в целях снижения негативного воздействия хозяйственной деятельности на окружающую среду и здоровье населения.

Нормативы предельно допустимых сбросов загрязняющих веществ являются величинами эмиссий, которые устанавливаются на основе расчетов для каждого выпуска и предприятия в целом.

В соответствии с п.43. «Методики определения нормативов эмиссий в окружающую среду» закачка пластовых вод, добытых попутно с углеводородами не является сбросом.

5.1.3. Обоснование перечня нормируемых показателей качества сточных вод

На основании расчетных условий (исходных данных) для определения величины НДС выбираются по данным за предыдущие три года или же перспективным, менее благоприятным значениям, если они достоверно известны по ранее согласованным проектам расширения, реконструкции.

Перечень веществ, включаемых в расчет нормативов НДС для каждого водопользователя, зависит от специфических условий водопользования хозяйствующего субъекта и утверждается в составе материалов по расчету нормативов ПДС.

Производственные сточные воды, направляемые по системе ППД для закачки в недра, образуются при использовании волжской воды в технологических циклах добычи и подготовки нефти совместно с пластовыми водами. Состав производственных сточных вод сточных вод близок к пластовым водам.

Настоящим проектом НДС предлагается установить перечень загрязняющих веществ, подлежащих нормированию в производственных сточных водах месторождения Тасбулат в соответствии с «Перечнем загрязняющих веществ и видов отходов, для которых устанавливаются нормативы эмиссий». На месторождения Актас, Туркменой производственные сточные воды не закачиваются.

На предприятии ведется систематический контроль за содержанием загрязняющих веществ в производственных сточных водах и водах, поступающих на закачку в подземные горизонты.

Сводная характеристика производственных сточных вод до водоподготовки на УППВ по данным предприятия приведена в таблице 5.1.

Таблица 5. 1 - Перечень и средняя концентрация загрязняющих веществ в производственных сточных водах месторождения Тасбулат (до очистки)

Наименование		Ранее	Конц	ентрация за	трязняюще	его веществ	а в произво	дственных	стоках/ пеј	риод
загрязняющего	ед.изм.	установ-	2022	2022	2023	2023	2024	2024	2025	2025
вещества	сд.нэм.	ленный	1	2	1	2	1	2	1	2
Бещеетва		Спдк	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие
Взвешенные вещества	мг/дм3	45.89	104.2	124.9	47.345	86.37	36.8	44.43	61.55	72.97
БПК	$M\Gamma O_2/дM^3$	3.6	3.81	3.87	3.56	3.46	1.6	3.77	187.00	187.60
ХПК	$M\Gamma O_2/дM^3$	1822.5	1964.9	1986.55	1479.295	1445.25	2136	2022.60	4063.85	4333.33
Сухой остаток	мг/дм3	938.3	1425.1	1327.4	1073.91	957	1584.1	1536.83	28443.80	1070.87
Азот аммонийный	мг/дм3	11.2	12.03	13.75	10.45	17.2	68.54	56.90	118.71	144.21
Нитраты	мг/дм3	3.1	3.4	3.85	10.4	14.3	0.16	0.26	0.10	0.10
Нитриты	мг/дм3	0.5	0.73	0.73	1.3965	2.6	0.007	0.12	0.01	0.04
Хлориды	мг/дм3	85563.2	89136.1	89260	40763.45	78547	85263.4	84325.07	73794.83	86515.30
Сульфаты	мг/дм3	4.1	5.1	6.4	579.11	5.72	139.7	130.00	76.90	68.98
Железо общее	мг/дм3	34.3	51.6	53.8	44	42	72.01	61.31	74.68	66.69
Нефтепродукты	мг/дм3	46.7	202.5	185.7	25.29	145.3	12.51	32.23	23.06	70.00

5.1.4. Требования и рекомендации к системе ППД и качеству воды, используемой для заводнения

Для того чтобы избежать осложнений при закачке воды в пласт, закачиваемая вода должна соответствовать установленным требованиям на основании СТ РК 1662-2007, приведённым в таблине 5.2.

Таблица 5.2 - Требования к закачиваемой воде

Стабильность	стабильна					
Совместимость с пластовыми водами	снижение приемистости не более 20%					
Содержание кислорода	менее 0.5мг/л					
Содержание сульфатвосстанавливающих	отсутствие					
бактерий (СВБ)						
Содержание сероводорода	отсутствие					
Количество мехпримесей	по коллекторным свойствам					
Содержание нефтепродуктов	по коллекторным свойствам					
Размер взвешенных частиц	90% менее 2 мкм					

Карбонатная стабильность является одним основных критериев оценки пригодности воды для заводнения нефтяных пластов, поскольку в процессах образования нерастворимых солей карбонаты занимают первое место. Их образование будет происходить как в объеме воды с образованием дополнительного количества механических примесей, так и на поверхностях породы, водоводов и оборудования.

Сульфатная стабильность рассчитывается при наличии достаточного количества сульфатов в воде.

Совместимость закачиваемой воды с пластовой водой и породой заключается в том, что при взаимодействии с пластовой водой и породой коллектора продуктивного пласта не образуется нерастворимых соединений. СТ РК 1662-2007 предусматривает снижение приемистости не более 20% с начала закачки с учетом последующего восстановления приемистости до ее первоначальной величины.

Недопустимо производить закачку несовместимой воды.

Содержание кислорода нормируется величиной менее 0,5 мг/л. Такой предел установлен исходя из минимальных коррозионных повреждений промыслового оборудования.

Содержание сульфатвосстанавливающих бактерий и сероводорода в воде не допускается. Бактерии данного вида продуцируют сероводород. Сероводород резко увеличивает скорость коррозии металла и снижает срок службы наземного и подземного оборудования. При появлении в воде СВБ рекомендуется обработка ее бактерицидами.

Содержание механических примесей и нефтепродуктов является определяющей нормой качества воды. Данные требования к качеству закачиваемых вод формулируются исходя из коллекторных свойств породы. По содержанию механических примесей и нефтепродуктов в

соответствии с СТ РК 1662-2007 определены следующие нормы качества, которые приведены в таблице 5.3.

Таблица 5.3 - Нормы содержания механических примесей и нефтепродуктов в воде

Проницаемость	Коэффициент	Допустимое содержание в воде, мг/л	
пористой среды коллектора, мкм²	трещиноватости коллектора	Механических примесей	Нефти
До 0,1	_	до 3	до 5
Свыше 0,1	_	до 5	до 10
До 0,35	от 6,5 до 2	до 15	до 15
Свыше 0,35	менее 2	до 30	до 30
До 0,6	от 35 до 3,6	до 40	до 40
Свыше 0,6	менее 3,6	до 50	до 50

5.1.5. Обоснование величины нормируемых показателей качества сточных вод

На ЦУПН осуществляется подготовка нефти с месторождений Тасбулат и поступивший на ЦУПН по трубопроводу флюид с месторождений Актас и Туркменой и воды для закачки в пласт.

Производственные сточные воды, образуются на месторождении Тасбулат вследствие использования волжской воды технической (пресной) воды в технологических циклах добычи и подготовки нефти на центральный узел подготовки нефти (ЦУПН).

Производственные сточные воды, направляемые по системе ППД для закачки в недра, образуются при использовании волжской воды для обессоливания нефти совместно с пластовыми водами. Состав производственных сточных вод близок к пластовым водам.

В ходе водоподготовки производится дегазация и механическая очистка сточных вод от взвешенных частиц и нефти. Итоговые концентрации в закачиваемых по системе ППД водах (после водоподготовки) не превышают, по данным предприятия, удельных технологических нормативов.

Согласно требованиям нормативно-правовых актов РК сброс сточных вод в недра не допускается, за исключением случаев закачки очищенных сточных вод в изолированные необводненные подземные горизонты и подземные водоносные горизонты, подземные воды которых не используются для питьевых, бальнеологических, технических нужд, нужд ирригации и животноводства.

Очистка сточных вод в случаях, указанных в части первой настоящего пункта, осуществляется в соответствии с утвержденными проектными решениями по нефтепродуктам, взвешенным веществам и сероводороду.

• согласно п.80 «Методики определения нормативов эмиссий в окружающую среду» сброс иных загрязняющих веществ, не указанных в части второй данного пункта Методики, при закачке сточных вод в недра нормируется по максимальным показателям концентраций загрязняющих веществ. Максимальные показатели концентраций загрязняющих веществ обосновываются при проведении оценки

воздействия на окружающую среду или в проекте нормативов допустимых сбросов загрязняющих веществ. Сброс таких веществ с превышением установленных максимальных показателей концентраций загрязняющих веществ не является сверхнормативной эмиссией.

• не допускается закачка в подземные горизонты сточных вод, не очищенных по нефтепродуктам, взвешенным веществам и сероводороду в соответствии с частью второй настоящего пункта.

Исходя из этих условий, в таблице 5.4 представлены максимальные показатели концентрации 3В.

Проект НДС разработан для месторождения Тасбулат ТОО «Тасбулат Ойл Корпорэйшн» на 2026 г.

В соответствии с п. 81 «Методики определения нормативов эмиссий в окружающую среду» № 63 от 10.03.21г. не нормируются закачка вод в недра, извлеченных из обводненных участков, если качественный состав извлеченных вод не изменяется при закачке и воды не участвовали в технологическом процессе, позволяющем изменить его качественный состав. Процесс закачки пластовой воды на месторождении Туркменой и Актас имеет положительное заключение ГЭЭ №4/3742 от 23.10.13г. на рабочий проект «Закачка пластовой воды на месторождении Туркменой и Актас».

Так как процессы по подготовке и очистке сточной воды осуществляется на месторождении Тасбулат, а далее направляются в систему ППД месторождения Тасбулат, соответственно установлены нормативы и осуществляется контроль за сточными водами только на месторождении Тасбулат.

Динамика концентрации загрязняющих веществ и максимальное концентрации загрязняющих веществ в производственных сточных водах в системе ППД для их нормирования к сбросу в подземные горизонты представлено в таблице 5.4.

Таблица 5.4 — Динамика изменения средних концентраций загрязняющих веществ в сточных водах ППД м/р Тасбулат (после очистки)

Наименование		Ранее установ-	Концентрация загрязняющего вещества в производственных стоках/ период									
загрязняющего	ед.изм.	ленный	2022	2022	2023	2023	2024	2024	2025	2025		
вещества		Спдк	1	2	1	2	1	2	1	2		
		011,711	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие	полугодие		
Взвешенные вещества	мг/дм3	50	33.6	42.4	44.56	45.89	26.5	14.60	43	49.00		
БПК	$M\Gamma O_2/дM^3$	3.6	3.61	3.445	2.785	2.45	1	1.57	3.275	3.37		
ХПК	$M\Gamma O_2/дM^3$	1822.5	1801.5	1822.5	1399.785	1332.15	1693.4	1632.40	1766.05	1797.47		
Сухой остаток	мг/дм3	930	921.9	904.55	676.545	502	930	924.50	720.724	912.17		
Азот аммонийный	мг/дм3	11.2	11.21	10.96	2.23	2.23	10.2	8.20	10.3375	10.93		
Нитраты	мг/дм3	3.1	3	3.05	2.8	3.1	0.13	0.17	0.1	0.10		
Нитриты	мг/дм3	0.5	0.44	0.495	0.20275	0.5	0.004	0.01	0.03925	0.01		
Хлориды	мг/дм3	84326.9	84326.9	84005	38444	74116	83859.1	82517.63	82533.625	78558.23		
Сульфаты	мг/дм3	4.1	3.7	4.05	3.655	3.8	3.74	3.00	3.91	3.77		
Железо общее	мг/дм3	34.5	29.7	34.25	32.25	33.4	33.89	26.87	31.21	33.90		
Нефтепродукты	мг/дм3	50	43.4	42.15	16.765	46.7	11.63	11.33	13.6875	49.20		

Таблица 5.5 – Эффективность работы очистных сооружений

		Мощность очистных сооружений						Эффективность работы					
Состав	Наименование показателей, по				фактическая			Проектные показатели			Фактические показатели (средние за 3 года.)		средние за 3
очистных сооружений	которым		mpooninus			1			ция, мг/дм ³	Статачч	Концентрация, мг/дм ³		
сооружении	производится очистка	м ³ /ч	м ³ /сут	тыс.м ³ /год	м ³ /ч	м ³ /сут	тыс.м ³ /год	до	после	Степень очистки, %	до	после	- Степень очистки, %
		M / 4	M /Cy1	тыс.м-/год	М /Ч		тыс.м /год	очи	стки		очио		
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Взвешенные вещества					50.41			-	_	71.83	37.99	47.1%
	БПК										55.85	2.56	95.4%
	ХПК										2500.13	1634.82	34.6%
Блока	Сухой остаток										5141.99	820.72	84.0%
подготовки	Азот аммонийный										60.43	8.81	85.4%
воды БПВ	Нитраты	75	1800	651,6	2.1		18.25	-			3.61	1.35	62.6%
2.00.00.00	Нитриты						!				0.53	0.18	66.1%
	Хлориды										76924.15	69765.94	9.3%
	Сульфаты										143.83	3.68	97.4%
	Железо общее										59.50	32.25	45.8%
	Нефтепродукты										73.90	27.44	62.9%

5.1.6. Предельно-допустимый сброс загрязняющих веществ, отводимых со сточными водами в подземные горизонты

Величина предельно допустимого сброса загрязняющих веществ, отводимых со сточными водами в подземные горизонты, определяется как произведение максимального часового сточных вод (q) на допустимую к сбросу концентрацию загрязняющего вещества $(C_{\Pi JC})$:

$$\Pi$$
Д C = $q\cdot C_{\Pi$ Д $C}$ (Γ /час)

Расчет предельно-допустимого сброса (ПДС) загрязняющих веществ, закачиваемых с производственными сточными водами в подземные горизонты приведен в таблице 5.7-5.10:

Прогнозируемые объемы закачки производственных сточных вод приведены в таблице 5 5

Таблица 5.5 - Прогнозируемые объемы закачки производственных сточных вод ТОО «Тасбулат Ойл Корпорэйшн»

Год	Месторождение	Объем закачки					
		м ³ /сут	м ³ /час	тыс. м ³ /год			
2026	Тасбулат	50.41	2,11	18,25			

Согласно п. 83 «Методики определения нормативов эмиссий в окружающую среду» сброс иных загрязняющих веществ, не указанных в части второй пункта, при закачке сточных вод в недра нормируется по максимальным показателям концентраций загрязняющих веществ за предыдущие три года.

Согласно п 57. «Методики определения нормативов эмиссий в окружающую среду» от 10 марта 2021 года № 63 величины допустимых сбросов проектируемых объектов определяются в составе проектной документации.

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

Таблица 5.6 Расчет предлагаемый допустимый сброс загрязняющих веществ, закачиваемых с производственными сточными водами в недра на 2026 г ТОО «Тасбулат Ойл Корпорэйшн»

Показатели	фактическая концентрация	фоновые концент-	расчетные концент-	нормы ПДС	утверждені 2025		утвержденный ПДС 2026 г		
загрязнения	мг/ дм3	рации мг/ дм3	рации мг/ дм3	мг/ дм3	г/час	т/год	г/час	т/год	
Взвешенные вещества	37.993	7.93	50.0	50.0	105.0299	0.9125	105.0000	0.9125	
БПК	2.555	500	3.5	3.5	7.5832	0.0659	7.3500	0.0639	
ХПК	1634.822	1154.61	1822.5	1822.5	3828.3408	33.2606	3827.2500	33.2606	
Сухой остаток	820.719	0.52	930.0	930.0	1970.9916	17.1240	1953.0000	16.9725	
Азот аммонийный	8.810	0.46	11.0	11.0	23.5477	0.2046	23.1000	0.2008	
Нитраты	1.350	0.059	3.1	3.1	6.5119	0.0566	6.5100	0.0566	
Нитриты	0.179	0.09	0.5	0.5	1.0713	0.0093	1.0500	0.0091	
Хлориды	69765.942	6296.15	84249.8	84249.8	179733.8898	1561.5280	176924.5800	1537.5589	
Сульфаты	3.683	3465	4.1	4.1	8.5074	0.0739	8.6100	0.0748	
Железо общее	32.253	1104.78	34.5	34.5	72.4706	0.6296	72.4500	0.6296	
Нефтепродукты	27.437	0.261	50.0	50.0	105.0299	0.9125	105.0000	0.9125	

Примечание*

- 1. Согласно Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 Методики определения нормативов эмиссий в окружающую среду пункт 83 Сброс иных загрязняющих веществ, не указанных в части второй настоящего пункта, при закачке сточных вод в недра нормируется по максимальным показателям концентраций загрязняющих веществ за предыдущие три года.
- 2. Согласно п 57. «Методики определения нормативов эмиссий в окружающую среду» от 10 марта 2021 года № 63 величины допустимых сбросов проектируемых объектов определяются в составе проектной документации.

Таблица 5.7 - Нормативы сбросов загрязняющих веществ по предприятию

		Существующее положение 2025 г.						Нормативы сбросов, г/ч, и лимиты сбросов, т/год, загрязняющих веществ на перспективу				
Номер	Наименование	Расход сточных вод		Концентрация	Сброс		на 2026 г.					Год достижения ДС
выпуска	показателя	м3/ч	тыс.	на выпуске, мг/дм3	r/m	T/501	Расход сточных вод		Допустимая концентрация	Сброс		
		М3/Ч	м3/год		г/ч	т/год	м3/ч	тыс. м3/год	на выпуске, мг/дм3	г/ч	т/год	
1	2	3	4	5	6	7	8	9	10	11	12	18
	Взвешенные в-			50.00	105.0299	0.9125			50.0	105.0000	0.9125	2026
	БПК5			3.6	7.5832	0.0659			3.5	7.3500	0.0639	2026
	ХПК			1822.5	3828.3408	33.2606			1822.5	3827.2500	33.2606	2026
	Сухой остаток			930.0	1970.9916	17.1240			930.0	1953.0000	16.9725	2026
Выпуск № 1	Азот аммонийный			11.2	23.5477	0.2046			11.0	23.1000	0.2008	2026
Система ППД месторождения	Азот нитратный	2,1	18,25	3.1	6.5119	0.0566	2,1	18,25	3.1	6.5100	0.0566	2026
Тасбулат	Азот нитритный			0.5	1.0713	0.0093			0.5	1.0500	0.0091	2026
	Хлориды			84326.9	179733.8898	1561.5280			84249.8	176924.5800	1537.5589	2026
	Сульфаты			4.1	8.5074	0.0739			4.1	8.6100	0.0748	2026
	Железо общее			34.5 72.4706 0.6296		34.5	72.4500	0.6296	2026			
	Нефтепродукты			50.0	105.0299	0.9125			50.0	105.0000	0.9125	2026
	Всего:				185862.974	1614.778	1			183033.900	1590.652	

6. ПРЕДЛОЖЕНИЯ ПО ПРЕДУПРЕЖДЕНИЮ АВАРИЙНЫХ СБРОСОВ

К возможным аварийным ситуациям при осуществлении водохозяйственной деятельности ТОО «Тасбулат Ойл Корпорэйшн» следует отнести:

- утечка или повреждение трубопровода, через который происходит сброс сточных вод, в результате чего сточные воды не попадают непосредственно в пласт.
- сбой или неисправность системы контроля и мониторинга сточных вод, что может привести к неконтролируемому сбросу без обнаружения и предупреждения;
- переполнение резервуара или отстойника, в результате чего сточные воды могут автоматически сбрасываются в пласт;
- неправильная эксплуатация и обслуживание оборудования, отвечающего за обработку сточных вод, что может привести к аварийному сбросу из-за неисправностей или некачественной очистки;
- пожар или взрыв на месторождении, что может повлечь аварийный сброс сточных вод из-за разрушения системы обращения с ними;
- неадекватное управление и контроль уровня сточных вод в резервуарах, что может привести к их переполнению и аварийному сбросу;
- системная ошибка или сбой автоматической системы управления, что может привести к непреднамеренному сбросу сточных вод в пласт;
- нарушение процедур обращения со сточными водами со стороны персонала, включая неправильное использование оборудования или игнорирование предупреждений и инструкций;
- внешние воздействия, такие как землетрясения или обрушения грунта, приводящие к повреждению системы обращения со сточными водами и аварийному сбросу в пласт;
- неправильное хранение или обращение с химическими веществами на месторождении, что может привести к загрязнению производственных стоков и созданию опасности при их сбросе или утилизации;
- сбой в системы мониторинга и контроля сточных вод, что может привести к неправильной оценке уровня и состава сточных вод, а также к задержкам в обнаружении аварийных ситуаций и принятии соответствующих мер по их предотвращению;
- нарушение процесса сбора и вывоза хозяйственно-бытовых сточных вод из септика, что может привести к его переполнению и аварийному сбросу сточных вод в окружающую среду.

- сбой или неполадки в системе дренажной емкости, используемой для сбора производственных стоков, что может привести к переливу или разливу сточных вод и аварийному сбросу;
- нарушение договорных отношений, отказ транспортной организации, ответственной за вывоз производственных сточных вод, что может привести к задержкам в вывозе и, в результате, к переполнению дренажной емкости и аварийному сбросу или возникновению аварийной ситуации;
- непреднамеренное или неправильное обращение с хозяйственно-бытовыми или производственными сточными водами со стороны персонала, включая неправильное смешивание разных категорий сточных вод или неправильную утилизацию;
- утечка или повреждение септика или дренажной емкости, что может привести к неконтролируемому выходу сточных вод в окружающую среду и загрязнению ее;
- отказ оборудования, используемого для сбора или обработки сточных вод, что может привести к нарушению нормального функционирования системы и возникновению аварийного сброса;
- неблагоприятные погодные условия, такие как сильные дожди или наводнения, которые могут вызвать переполнение септика или дренажной емкости и привести к аварийному сбросу сточных вод.

Предупреждение аварийных ситуаций обеспечивается, прежде всего, соблюдением технологического регламента производственных и вспомогательных объектов и сооружений в т.ч. проведение следующих мероприятий:

- реализация процедур в области обращения со сточными водами на месторождении, включая установление требований к сбору, хранению, транспортировке и утилизации каждой категории сточных вод (хозяйственно-бытовые, производственные, попутная пластовая);
- регулярное обслуживание и проверка состояния септика, используемого для сбора хозяйственно-бытовых сточных вод, а также дренажной емкости для производственных стоков, с целью обнаружения возможных утечек, повреждений или неполадок;
- установка надежных датчиков уровня в септике и дренажной емкости, а также ввод системы мониторинга и автоматического оповещения при достижении предельных уровней сточных вод, что позволит оперативно реагировать и предотвращать их переполнение и аварийный сброс;
- регулярная проверка работоспособности и обслуживание оборудования, используемого для сбора, хранения и транспортировки сточных вод, включая септик, дренажную емкость, системы сбора и транспортировки, насосы, трубопроводы и другие компоненты, с целью выявления потенциальных уязвимостей, нарушений или

несоответствий требованиям и предотвращения возможных сбоев или неисправностей;

- контроль и мониторинг параметров сточных вод, таких как содержание нефтепродуктов, взвешенных веществ, железо и других параметров в соответствии с требованиями экологической безопасности;
- регулярное обучение и тренинг персонала, работающего с обращением со сточными водами, включая ознакомление с правильными процедурами и мерами безопасности, а также важность соблюдения всех требований и инструкций;
- контроль и отслеживание выполнения договорных отношений с внешними предприятиями, ответственными за вывоз и утилизацию сточных вод, с целью обеспечения своевременного и правильного выполнения всех операций;

В случае возникновения аварийных ситуаций необходимо принять меры по локализации аварийных сбросов, ликвидации последствий в соответствии с планом ликвидационных мероприятий. Провести оповещение ответственных лиц, природоохранные органы, органы Госсанэпиднадзора и МЧС. Организовать подсчет объемов аварийного сброса, оценить его продолжительность:

- срочно прекратить аварийный сброс сточных вод в пласт, отключив все системы и оборудование, отвечающие за сброс;
- оповестить ответственные службы и персонал о возникшей аварии и активировать планы аварийного реагирования;
- принять меры по локализации утечки и предотвращению дальнейшего сброса сточных вод. Это может включать закрытие или перекрытие поврежденных трубопроводов, установку преград или пробок для остановки потока сточных вод;
- обеспечить безопасность персонала и окружающей среды, выполнив необходимые меры по предотвращению распространения загрязнения. Это может включать эвакуацию персонала, установку преград или барьеров для предотвращения распространения сточных вод, а также использование средств индивидуальной защиты;
- при необходимости, привлечь специализированные бригады или команды для ликвидации аварии и очистки загрязненных участков. Эти команды должны обладать необходимым оборудованием, материалами и навыками для проведения оперативных мероприятий по очистке и восстановлению;
- собрать и обезвредить загрязненные сточные воды в соответствии с установленными правилами и нормами. Это может включать сбор сточных вод в контейнеры или резервуары для дальнейшей утилизации или обработки;
- провести расследование причин и обстоятельств аварии с целью предотвращения повторного возникновения подобных ситуаций. Это поможет выявить недостатки в системе обращения со сточными водами и принять меры по их устранению;

- своевременно информировать компетентные органы и власти о случившейся аварии, соблюдая требования отчетности и нормативные требования в отношении аварийного сброса сточных вод.
- восстановить нормальное функционирование системы обращения со сточными водами после ликвидации аварии. Это может включать ремонт поврежденного оборудования, восстановление трубопроводов и системы мониторинга, а также проведение тестирования и проверки работоспособности системы;п
- провести анализ произошедшей аварии и выработать план мер по предотвращению подобных ситуаций в будущем. Это может включать внесение изменений в процедуры, обновление оборудования, проведение дополнительного обучения персонала и улучшение системы контроля и мониторинга.

7. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ

Согласно требованиям Экологического Кодекса Республики Казахстан, ТОО «ТасбулатОйл Корпорэйшн» проводит производственный экологический контроль, выполняемый для получения объективных данных с установленной периодичностью.

В рамках осуществления производственного экологического контроля выполняется мониторинг эмиссий за сточными водами.

Контроль за соблюдением установленных нормативов ДС включает:

- определение фактической массы сброса загрязняющих веществ в единицу времени и сравнение этих показателей с установленными нормативами ДС;
- проверку плана выполнения природоохранных мероприятий по достижению нормативов ДС;
- проверку по эффективности эксплуатации очистных сооружений сточных вод и других природоохранных сооружений, а также производственных факторов, влияющих на величину НДС;
- учет потребления и отведения сточной воды.

Контроль за соблюдением нормативов ДС осуществляется с привлечением специализированной организации, имеющей аккредитованную лабораторию.

Контроль соблюдения нормативов ДС на ТОО «Тасбулат Ойл Корпорэйшн» осуществляется: до и после водоподготовки.

Контроль за качеством сточных вод осуществляется в соответствии с графиком контроля в рамках Программы производственного экологического контроля.

Согласно графику для контроля установлены:

• - 1 точка отбора проб сточных вод до водоподготовки;

• 1 точка отбора проб сточных вод после водоподготовки.

Отбор проб на анализ производится регулярно с периодичностью 4 раза в год.

Согласно графику лабораторного контроля за качеством сточных вод на 2025 год предприятием определяются следующие показатели: сухой остаток, хлориды, сульфаты, нефтепродукты, азот аммонийный, взвешенные вещества, нитраты, нитриты, железо общее, БПК, ХПК.

График лабораторного контроля соблюдения НДС приведен в таблице 7.1.

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

Таблица 7.1 - План-график контроля на объекте за соблюдением нормативов допустимых сбросов на 2026 г

	Координатные данные			Норма допустимы			
Номер выпуска	контрольных створов, наблюдательных скважин в том числе фоновой скважины	Контролируемое вещество	Перио- дичность	мг/дм3	т/год	Кем осуществляет ся контроль	Метод проведения контроля
1	2	3	4	5	6	7	8
	Производс	твенные сточные в	оды системы П	ПД ТОО «Та	асбулатОйл	тКорпорэйшн»	
		Взвешенные в-ва	1 раз квартал	50.0	0.9125	Аккредитованная лаборатория	инструментальный
	43°22'56.98"C/ 52°21'3.41"B	БПК₅	1 раз квартал	3.5	0.0639	Аккредитованная лаборатория	инструментальный
		ХПК	1 раз квартал	1822.5	33.2606	Аккредитованная лаборатория	инструментальный
		Сухой остаток	1 раз квартал	930.0	16.9725	Аккредитованная лаборатория	инструментальный
Выпуск № 1 Система		Азот аммонийный	1 раз квартал	11.0	0.2008	Аккредитованная лаборатория	инструментальный
ППД месторожд		Азот нитратный	1 раз квартал	3.1	0.0566	Аккредитованная лаборатория	инструментальный
ения Тасбулат		Азот нитритный	1 раз квартал	0.5	0.0091	Аккредитованная лаборатория	инструментальный
		Хлориды	1 раз квартал	84249.8	1537.5589	Аккредитованная лаборатория	инструментальный
		Сульфаты	1 раз квартал	4.1	0.0748	Аккредитованная лаборатория	инструментальный
		Железо общее	1 раз квартал	34.5	0.6296	Аккредитованная лаборатория	инструментальный
		Нефтепродукты	1 раз квартал	50.0	0.9125	Аккредитованная лаборатория	инструментальный

Таблица 7.3 - График мониторинга воздействия

Nº	Контрольный створ	рафик мониторинта воздеиствия - Наименование контрольных показателей	 Предельно-допустимая концентрация, миллиграмм на кубический дециметр (мг/дм3) 	Периодичность	Метод анализа
		Мониторинговые скв	ажины месторождения Тасбула	ım	
1.	T-1 43°22'50,3" N 52°21'11,4"E	рН, сухой остаток, нефтепродукты, сульфаты, хлориды, кальций, магний, натрий, калий, фенолы, СПАВ	Не нормируется	1 раз в квартал	Согласно области аккредитации лаборатории
2.	T-10 43°22'54,5"N 52°21'02,7"E	рН, сухой остаток, нефтепродукты, сульфаты, хлориды, кальций, магний, натрий, калий, фенолы, СПАВ	Не нормируется	1 раз в квартал	Согласно области аккредитации лаборатории
3.	T-11 43°22'03,4"N 52°21'30,1"E	рН, сухой остаток, нефтепродукты, сульфаты, хлориды, кальций, магний, натрий, калий, фенолы, СПАВ	Не нормируется	1 раз в квартал	Согласно области аккредитации лаборатории
4.	T-12 43°22'55,0"N 52°21'39,8"E	рН, сухой остаток, нефтепродукты, сульфаты, хлориды, кальций, магний, натрий, калий, фенолы, СПАВ	Не нормируется	1 раз в квартал	Согласно области аккредитации лаборатории
5.	T-13 43°22'07,2"N 52°21'05,0"E	рН, сухой остаток, нефтепродукты, сульфаты, хлориды, кальций, магний, натрий, калий, фенолы, СПАВ	Не нормируется	1 раз в квартал	Согласно области аккредитации лаборатории

8. ПРЕДЛАГАЕМЫЕ МЕРОПРИЯТИЯ ПО ДОСТИЖЕНИЮ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ

В целях соответствия природоохранному законодательству, рациональному использованию природных ресурсов, предупреждению негативного воздействия хозяйственной и производственной деятельности производства на окружающую природную среду на ТОО «Тасбулат Ойл Корпорэйшн» в настоящее время выполняются мероприятия по улучшению существующей системы сточных вод, а также намечены цели по дальнейшему усовершенствованию системы сточных вод в перспективе.

На основании проведенного визуального обследования, выполненных расчетов по объемам водопотребления и водоотведения и анализа проектной документации можно сделать следующий вывод, что принятая ТОО «Тасбулат Ойл Корпорэйшн» на месторождениях Тасбулат, Актас, Туркменой система водохозяйственной деятельности обеспечивает рациональное использование свежей воды.

В целях соответствия природоохранному законодательству, рациональному использованию природных ресурсов, предупреждению негативного воздействия хозяйственной и производственной деятельности ТОО «Тасбулат Ойл Корпорэйшн» на окружающую природную среду предусмотрены природоохранные мероприятия по улучшению существующей системы сточных вод, а также по дальнейшему усовершенствованию системы сточных вод в перспективе.

На месторождении предусматривается организация контроля за качеством производственных сточных вод, направляемых в систему поддержания пластового давления. В соответствии с расчетом объемов водоотведения, на закачку в подземные горизонты будет направляться 2,1 м³/час производственных сточных вод после предварительной водоподготовки.

На территории ТОО «Тасбулат Ойл Корпорэйшн» действует система контроля за состоянием окружающей среды и природных ресурсов месторождения путем динамического наблюдения — производственного мониторинга в соответствии с программой производственного мониторинга предприятия.

Для выявления влияния сточных вод на подземные воды проводится химический анализ проб отобранных из гидронаблюдательных скважин с периодичностью 1 раз в квартал.

Ежеквартально аккредитованной лабораторией проводится производственный контроль за качеством сточных вод, путём отбора проб до и после очистки. Перечень контролируемых ингредиентов определяется в соответствии с нормативами ПДС: взвешенные вещества, БПК5, ХПК, сухой остаток, азот аммонийный, нитраты, нитриты, хлориды, сульфаты, железо общее, нефтепродукты.

На основании вышеизложенного можно сделать следующий вывод, что на ТОО «Тасбулат Ойл Корпорэйшн» с учетом постоянного внедрения природоохранных мероприятий по усовершенствованию системы сточных вод принята рациональная система водохозяйственной деятельности.

[«]Проект нормативов допустимых сбросов загрязняющих веществ в недра для ТОО «Тасбулат Ойл Корпорэйшн» на 2026 год»

9. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан.
- 2. «Методика определения нормативов эмиссий в окружающую среду» № 63 от 10.03.21;
- 3. «Перечень загрязняющих веществ и видов отходов, для которых устанавливаются нормативы эмиссий» № 212 от 25.06.21;
- 4. СТ РК 1662-2007 «Вода для заводнения нефтяных пластов. Требования к качеству»;
- 5. «Единые правила по рациональному и комплексному использованию недр» № 239от 15.06.2018 г.
- 6. «Гигиенические нормативы показателей безопасности хозяйственно-питьевого и культурно-бытового водопользования» № ҚР ДСМ-138 от 24.11.22г.