1

Проект

нормативов предельно-допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы по утилизации отходов по адресу: Западно-Казахстанская область, город Уральск, улица Саратовская трасса (в районе мусоросортировочного комплекса) на 2026-2035 гг.

(Tom II)

ТОО «ЭКО-Запад»

Ташпенов Г.Ж.

Директор TOO «Audit Ecology»

Алманиязов Г.И.

г. Актобе, 2025 г.

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной болго ТОО «ЭКО-Запал»

СОДЕРЖАНИЕ

Том І

3. Аннотация 4. Содержание 5. Ведение 6. Общие сведения о предприятии	2 стр. 3 стр. 6 стр. 8 стр.
4. Содержание 5. Ведение 6. Общие сведения о предприятии	6 стр. 8 стр. 10 стр.
5.Ведение 6. Общие сведения о предприятии	8 стр. 10 стр.
6. Общие сведения о предприятии	10 стр.
1 1	
	16 стр.
	16 стр.
оборудования	1
± *	24 стр.
	27 стр.
укрупненный анализ их технического состояния и эффективности работы	1
	27 стр.
пылегазоочистного оборудования передовому научно-техническому уровню в	1
± 7	28 стр.
7.4. Перспектива развития, учитывающая данные об изменениях	1
производительности оператора, реконструкции, сведения о ликвидации	
производства, источников выброса, строительство новых технологических	
линий и агрегатов, общие сведения об основных перспективных направлениях	
воздухоохранных мероприятий, сроки проведения реконструкции, расширения	
	28 стр.
7.5. Параметры выбросов загрязняющих веществ в атмосферу для расчета	1
	28 стр.
	28 стр.
	29 стр.
	48 стр.
расчета НДВ	- 1
<u> </u>	49 стр.
8.1. Метеорологические характеристики и коюффициенты, определяющие	<u>t</u>
	49 стр.
8.2. Результаты расчетов уровня загрязнения атмосферы на соответствующее	
положение и с учетом перспективы развития; ситуационные карты-схемы с	
нанесенными на них изолиниями расчетных концентраций; максимальные	
приземные концентрации в жилой зоне и перечень источников, дающих	
	50 стр.
8.3. Предложения по нормативам допустимых выбросов по каждому	t
	62 стр.
8.4. Обоснование возможности достижения нормативов с учетом	
использования малоотходной технологии и других планируемых	
мероприятий, в том числе перепрофилирования или сокращения объема	
	69 стр.
•	59 стр.
	30 стр.
	81 стр.
9. Мероприятия по регулированию выбросов при неблагоприятных	r-
	71 стр.

9.1. План мероприятий по сокращению выбросов загрязняющих веществ в	
атмосферу в периоды НМУ	72 стр.
9.2. Обобщенные данные о выбросах загрязняющих веществ в атмосферу в	
периоды НМУ	72 стр.
0.2 Kasayaa yaasayaayaayaa yayayaa yayaaaayaayaa yayaaya	72 crp.
9.3. Краткая характеристика каждого конкретного мероприятия с учетом	
реальных условий эксплуатации технологического оборудования (сущность	0.4
технологии. необходимые расчеты и обоснование мероприятий)	94 стр.
9.4. Обоснование возможного диапазона регулирования выбросов по каждому	
мероприятию	101 стр.
9. Контроль за соблюдением НДВ на предприятиии	102 стр.
Перечень используемой литературы и применяемых методик	110 стр.
Том II «Приложения к проекту НДВ»	
Приложение №1. Расчет валовых выбросов	4 стр.
Приложение №2. Расчет рассеивания	43 стр.
Приложение №3. Оценка экономического ущерба	44 стр.
Приложение №4. Инвентаризация выбросов	
загрязняющих веществ в атмосферу	48 стр.
Приложение №5 Документы (письма) для разработки и согласования проекта	_
ПДВ	62 стр.

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Источник загрязнения N 0001,Дымовая труба Источник выделения N 001, Деструктор ДС 4000

Расчет выбросов 3B в атмосферу по данному источнику проводился инструментальным методом

(согласно инструкции по инвентаризации выбросов вредных веществ в атмосферу РНД 211.02.03-97).

Протокола испытаний для расчета выбросов по данному источнику взяты на основе аналогов

Диаметр устья источника, м	D	0,3
Скорость выхода ГВС, м/с	\boldsymbol{v}	10,9
Время работы в кв., час/год	T	<i>8640</i>
Объем ГВС, м3/c, $V_{\Gamma BC} = (\pi * D^2) / 4 * v$	$V_{arGammaBC}$	0,7705
Примесь: 0301 Азота (IV) диоксид		
Концентрация загрязняющего вещества, мг/м ³	C_{3B}	208,8
Количество выбрасываемого 3В, г/с, $_G_ = (C3B / 1000) * V\Gamma BC$	\boldsymbol{G}	0,1609
Количество выбрасываемого 3В, т/год, $_M_=(G * T * 3600) / 1000000$	M	5,00402
Фактическое КПД очистки, %	KPD	29
Валовый выброс с учетом очистки, т/год, $M = M \cdot (1-KPD_{-}/100)$		3,552854
- '	M	2
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_ \cdot (1-$	a	0,114225
KPD / 100)	\boldsymbol{G}	08
<u>Примесь: 0304 Азота (II)</u> <u>оксид</u>		
Концентрация загрязняющего вещества, мг/м ³	C_{3B}	33,93
Количество выбрасываемого 3В, г/с, $_G_ = (C3B / 1000) * VГВС$	G	0,0261
Количество выбрасываемого 3В, т/год , $_M_ = (G * T * 3600) / 1000000$	M	0,81315
Фактическое КПД очистки, %	KPD	60,6
Валовый выброс с учетом очистки, т/год, $M = _M_ \cdot (1-_KPD_ / 100)$	<i>M</i>	0,320381 1
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_\cdot (1-$		0,010300
KPD/100)	\boldsymbol{G}	37
Примесь: 0337 Углерод оксид		
Концентрация загрязняющего вещества, мг/м ³	C_{3B}	367
Количество выбрасываемого 3B, г/с, $_G_ = (C3B / 1000) * V\Gamma BC$	\boldsymbol{G}	0,2828
Количество выбрасываемого 3В, т/год , $_M_$ = ($G * T * 3600$) / 1000000	M	8,79539
Фактическое КПД очистки, %	KPD	58,12
Валовый выброс с учетом очистки, т/год, $M = _M_ \cdot (1-_KPD_ / 100)$	M	3,683509 33

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы TOO «ЭКО-Запад»

Максимальный разовый выброс с учетом очистки, г/с, $G = _G_\cdot (1-$		0,118425
KPD/100)	\boldsymbol{G}	54

Примесь: 0330 Сера диоксид

Концентрация загрязняющего вещества, мг/м ³	C_{3B}	55
Количество выбрасываемого 3В, г/с, $_G_ = (C3B / 1000) * V\Gamma BC$	\boldsymbol{G}	0,0424
Количество выбрасываемого ЗВ, т/год , $_M_$ = ($G * T * 3600$) / 1000000	M	1,31811
Фактическое КПД очистки, %	KPD	57,5
Валовый выброс с учетом очистки, т/год, $M = _M_ \cdot (1-_KPD_ / 100)$	M	0,560196 65
Максимальный разовый выброс с учетом очистки, г/с, $G = _G$ · (1-		0,018010
KPD/100)	\boldsymbol{G}	44

Итого, без учета очистки в процесе сжигания отходов

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,1609	5,00402
304	Азота (II) оксид	0,0261	0,81315
337	Углерод оксид	0,2828	8,79539
330	Сера диоксид	0,0424	1,31811

Итого, с учетом очистки в процесе сжигания отходов

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,1142	3,55285
304	Азота (II) оксид	0,0103	0,32038
337	Углерод оксид	0,1184	3,68351
330	Сера диоксид	0,0180	0,56020

Вид топлива , K3 = Дрова

Расход топлива, т/год,	BT	100
Расход топлива, г/с		
,	BG	5,21
Марка топлива , $M = Д$ рова		
Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1),	QR	2446
Пересчет в МДж , $QR = QR * 0.004187$	QR	10,24

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Средняя зольность топлива, %(прил. 2.1), Предельная зольность топлива, % не более(прил. 2.1),	AR A1R	0,6 0,6
Среднее содержание серы в топливе, %(прил. 2.1),	SR	0
Предельное содержание серы в топливе, % не более(прил. 2.1),	S1R	0
РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА		
<u>Примесь: 0301 Азота (IV) диоксид (4)</u> Номинальная тепловая мощность котлоагрегата, кВт,	QN	16
Фактическая мощность котлоагрегата, кВт,	QF	16
Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2),	KNO	0,00286
Коэфф. снижения выбросов азота в рез-те техн. решений,	\boldsymbol{B}	0,00200
Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a) , $\textit{KNO} = \textit{KNO} * (\textit{QF} / \textit{A})$		
QN)0,25 Выброс окислов азота, т/год (ф-ла 2.7) , $MNOT = 0.001*BT*QR*KNO$	KNO	0,00286
* (1-B)	MNOT	0,002929
Выброс окислов азота, г/с (ф-ла 2.7) , $MNOG = 0.001 * BG * QR * KNO * (1-B)$	MNOG	0,000152 6
		0,002343
Выброс азота диоксида (0301), т/год , $_M_ = 0.8 * MNOT$	M	2
Выброс азота диоксида (0301), г/с , $_G_$ = 0.8 * MNOG	\boldsymbol{G}	0,000122
Фактическое КПД очистки, %	KPD	1 29
	MD	0,001663
Валовый выброс с учетом очистки, т/год, $M = M_{\cdot} (1-KPD_{\cdot} / 100)$	M	67
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_ \cdot (1-$	a	8,6679E-
KPD/100)	\boldsymbol{G}	05
<u>Примесь: 0304 Азот (II) оксид (6)</u>		
D 5	3.5	0,000380
Выброс азота оксида (0304), т/год , $_M_ = 0.13 * MNOT$	M	8 0,000019
Выброс азота оксида (0304), г/с , $_G_ = 0.13 * MNOG$	$oldsymbol{G}$	84
Фактическое КПД очистки, %	KPD	60,6
Валовый выброс с учетом очистки, т/год, $M = M_{\cdot} (1-KPD_{\cdot}/100)$		0,000150
	M	03
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_\cdot (1-_KPD_/100)$	\boldsymbol{G}	7,8163E- 06
РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА		
Примесь: 0337 Углерод оксид (594)		
Потери тепла от механической неполноты сгорания, %(табл. 2.2),	<i>Q4</i>	4
Тип топки: Камерная топка	χ'	-7
Потери тепла от химической неполноты сгорания, %(табл. 2.2),	Q3	1
Коэффициент, учитывающий долю потери тепла,	R	1
Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 * R$ * QR	CCO	10,24
Выбросы окиси углерода, т/год (ф-ла 2.4) , _ <i>M</i> _ = 0.001 * <i>BT</i> * <i>CCO</i> * (1-	M	0,983
1		0,200

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Q4/100)

KPD / 100)

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001*BG*CCO*(1-Q4)$		
/100)	\boldsymbol{G}	0,05122
Фактическое КПД очистки, %	KPD	58,12
Валовый выброс с учетом очистки, т/год, $M = _M_ \cdot (1-_KPD_/100)$	M	0,411697 15
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_\cdot (1-KPD_/100)$	\boldsymbol{G}	0,021449 42
РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ		
Примесь: 2902 Взвешенные частицы (116)		
Коэффициент(табл. 2.1)	$oldsymbol{F}$	0,005
Тип топки: Слоевые топки бытовых теплогенераторов		
Наименование ПГОУ: Фильтры грубой очистки		
Фактическое КПД очистки, %	KPD	53,8
Выброс твердых частиц, т/год (ф-ла 2.1), $_M_ = BT \cdot AR \cdot F$	M	0,3
Выброс твердых частиц, г/с (ф-ла 2.1), $_G_ = BG \cdot A1R \cdot F$	\boldsymbol{G}	0,01563
Валовый выброс с учетом очистки, т/год, $M = _M_ \cdot (1-_KPD_ / 100)$	M	0,1386

 \boldsymbol{G}

06

0,007221

Итого, при работе на дровах (без учета очистки):

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,000122	0,002343
304	Азот (II) оксид	0,000020	0,000381
337	Углерод оксид	0,05122	0,983040
2902	Взвешенн ые частицы	0,01563	0,30

Максимальный разовый выброс с учетом очистки, г/с, $G = _G$ · (1-

Итого, при работе на дрова (с учетом очистки):

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,000087	0,001664
304	Азот (II) оксид	0,000008	0,000150
337	Углерод оксид	0,02145	0,411697

2	2902	Взвешенн ые частицы	0,007221	0,1386	
---	------	---------------------------	----------	--------	--

ВСЕГО ОТ ИСТОЧНИКА (без учета очистки):

Код	Примесь	Выброс г/с	Выброс т/кв.
301	Азота (IV) диоксид	0,16102	5,006363
304	Азот (II) оксид	0,02612	0,813531
330	Сера диоксид	0,0424	1,31811
337	Углерод оксид	0,33402	9,778430
2902	Взвешенн ые частицы	0,01563	0,30

ВСЕГО ОТ ИСТОЧНИКА (с учетом очистки):

Код	Примесь	Выброс г/с	Выброс т/кв.
301	Азота (IV) диоксид	0,11429	3,55452
304	Азот (II) оксид	0,01031	0,32053
330	Сера диоксид	0,0180	0,5602
337	Углерод оксид	0,13985	4,09521
2902	Взвешенн ые частицы	0,007221	0,1386000

Источник загрязнения N 0002,Выхлопная труба

Источник выделения N 002, Установка термодеструкции Форсаж-2M

Расчет выбросов ЗВ в атмосферу по данному источнику проводился инструментальным методом

(согласно инструкции по инвентаризации выбросов вредных веществ в атмосферу РНД 211.02.03-97).

Протокола испытаний для расчета выбросов по данному источнику взяты на основе аналогов

 Диаметр устья источника, м
 D
 0,3

 Скорость выхода ГВС, м/с
 v
 0,244

Время работы в кв., час/год.	T	6700
Объем ГВС, м3/c, $V_{\Gamma BC}$ = ($\pi * D^2$) /4 * v	$V_{\Gamma BC}$	0,0172
Примесь: 0301 Азота (IV) диоксид		
Концентрация загрязняющего вещества,	~	100.0
$M\Gamma/M^3$	C_{3B}	108,8
Количество выбрасываемого 3В, г/с, $_G_=(C3B/1000)*VГВС$	G	0,0019
Количество выбрасываемого ЗВ, т/год, $_M_ = (G * T * 3600) / 1000000$ Фактическое КПД очистки, %	M	0,04514
Валовый выброс с учетом очистки, т/год, $M = M \cdot (1-KPD_{-}/100)$	KPD M	0 0 4 5 1 4
Максимальный разовый выброс с учетом очистки, г/с, $G = G \cdot (1-KPD_{-})$	M	0,04514 0,00187
100)	\boldsymbol{G}	136
<u>Примесь: 0304 Азота (II) оксид</u>		
Концентрация загрязняющего вещества,		
$M\Gamma/M^3$	C_{3B}	<i>17,68</i>
Количество выбрасываемого 3B, г/с, $_G_ = (C3B / 1000) * VГВС$	\boldsymbol{G}	0,0003
Количество выбрасываемого 3В, т/год , $_M_ = (G * T * 3600) / 1000000$	M	0,00733
Фактическое КПД очистки, %	KPD	0
Валовый выброс с учетом очистки, т/год, $M = M_{\cdot} (1-KPD_{\cdot}/100)$	M	0,00733
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_ \cdot (1-_KPD_/100)$	\boldsymbol{G}	0,00030 41
100)	G	41
Примесь: 0337 Углерод оксид		
Концентрация загрязняющего вещества,		
$M\Gamma/M^3$	C_{3B}	128
Количество выбрасываемого 3B, г/с, $_G_ = (C3B / 1000) * VГВС$	\boldsymbol{G}	0,0022
Количество выбрасываемого ЗВ, т/год , $_M_$ = ($G * T * 3600$) / 1000000	M	0,05310
Фактическое КПД очистки, %	KPD	0
Валовый выброс с учетом очистки, т/год, $M = M_{\cdot} (1-KPD_{\cdot} / 100)$	M	0,0531
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_ \cdot (1-_KPD_/100)$	a	0,00220
100)	\boldsymbol{G}	16
Примесь: 0330 Сера диоксид		
Концентрация загрязняющего вещества,		
$M\Gamma/M^3$	C_{3B}	8
Количество выбрасываемого ЗВ, г/с, $_G_=(C3B/1000)*V\Gamma BC$	\boldsymbol{G}	0,0001
Количество выбрасываемого ЗВ, т/год , $_M_$ = ($G * T * 3600$) / 1000000	M	0,00332
Фактическое КПД очистки, %	KPD	0
Валовый выброс с учетом очистки, т/год, $M = _M_ \cdot (1-_KPD_ / 100)$	3.5	0,00331
	M	891
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_ \cdot (1-_KPD_/100)$	\boldsymbol{G}	0,00013 76
	J	70

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Итого, без учета очистки в процесе

сжигания отходов

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,0019	0,04514
304	Азота (II) оксид	0,0003	0,00733
337	Углерод оксид	0,0022	0,05310
330	Сера диоксид	0,0001	0,00332

Итого, с учетом очистки в процесе сжигания отходов

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,0019	0,04514
304	Азота (II) оксид	0,0003	0,00733
337	Углерод оксид	0,0022	0,05310
330	Сера диоксид	0,0001	0,00332

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)		
Расход топлива,		
т/год,	BT	<i>100</i>
Время работы,		
ч/год		<i>6700</i>
Расход топлива,		
Γ/c ,	BG	4,15
Марка топлива , $M = Дизельное топливо$		
Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1),	QR	10210
Пересчет в МДж , $QR = QR * 0.004187$	QR	42,75
Средняя зольность топлива, %(прил. 2.1)		
,	AR	0,025
Предельная зольность топлива, % не		
более(прил. 2.1),	A1R	0,025
Среднее содержание серы в топливе,		
%(прил. 2.1),	SR	0,3
Предельное содержание серы в топливе, % не более(прил. 2.1),	S1R	0,3
DA CHET DI IEDOCOD ORGICILOD		
РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ		
A3OTA		
<u>Примесь: 0301 Азота (IV) диоксид (4)</u>		
Номинальная тепловая мощность	0.17	_
котлоагрегата, кВт,	QN	5

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Фактическая мощность котлоагрегата,	0.7	_
кВт,	QF	5
Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2),	KNO	0,0396
Коэфф. снижения выбросов азота в рез-те техн. решений,	B	0
Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7a) , $KNO = KNO * (QF / I)$	2	v
QN)0,25	KNO	0,03960
Выброс окислов азота, т/год (ф-ла 2.7) , $MNOT = 0.001 * BT * QR * KNO *$	MN	
	OT	0,1693
Выброс окислов азота, г/с (ф-ла 2.7) , $MNOG = 0.001 * BG * QR * KNO * (1-$	MN OG	0,007
B) Professional and the second of the seco		
Выброс азота диоксида (0301), т/год , $_M_ = 0.8 * MNOT$ Выброс азота диоксида (0301), г/с , $_G_ =$	M	0,13543
0.8 * MNOG	\boldsymbol{G}	0,0056
Фактическое КПД очистки, %	KPD	0
Валовый выброс с учетом очистки, т/год, $M = M \cdot (1-KPD_1/100)$	M	0,13543
Максимальный разовый выброс с учетом очистки, г/с, $G = _G$ · (1KPD_/		-,
100)	\boldsymbol{G}	0,0056
<u>Примесь: 0304 Азот (II) оксид (6)</u>		
Выброс азота оксида (0304), т/год , _ M _ =	3.5	0,02200
0.13 * MNOT	M	77
Выброс азота оксида (0304), г/с , $_G_=$ 0.13 * MNOG	\boldsymbol{G}	0,00091 243
Фактическое КПД очистки, %	KPD	0
	KI D	0,02200
Валовый выброс с учетом очистки, т/год, $M = _M_ \cdot (1-_KPD_/100)$	M	77
Максимальный разовый выброс с учетом очистки, г/с, $G = _G_ \cdot (1-_KPD_/$		0,00091
100)	\boldsymbol{G}	243
РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ		
Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера		
(IV) оксид) (516)	NSO	
Доля окислов серы, связываемых летучей золой топлива (п. 2.2)	2	0,02
Содержание сероводорода в топливе, %	-	0,02
(прил. 2.1)	H2S	0
Выбросы окислов серы, т/год (ф-ла 2.2), $_{\mathbf{M}}$ = 0.02 · BT · SR · (1-NSO2) +		
0.0188 · H2S · BT	M	0,588
Выбросы окислов серы, г/с (ф-ла 2.2), $_G_ = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG$	C	<i>0,02437 811</i>
Фактическое КПД очистки, %	G KPD	
Валовый выброс с учетом очистки, т/год, $M = M \cdot (1-KPD_{-}/100)$	KPD M	0,588
Максимальный разовый выброс с учетом очистки, г/с, $G = G \cdot (I-KPD_{-})$	1 VI	0,388
100)	\boldsymbol{G}	811

РАСЧЕТ ВЫБРОСОВ ОКИСИ

УГЛЕРОДА

Примесь: 0337 Углерод оксид (594)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Тип топки: Камерная топка	Q4	0
Потери тепла от химической неполноты сгорания, %(табл. 2.2),	Q3	0,5
Коэффициент, учитывающий долю потери тепла, Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), <i>CCO = Q3 * R *</i>	R	0,65
QR	CCO	13,9
Выбросы окиси углерода, т/год (ф-ла 2.4) , $_M_=0.001*BT*CCO*(1-Q4/100)$ Выбросы окиси углерода, г/с (ф-ла 2.4) , $_G_=0.001*BG*CCO*(1-Q4/100)$	M	1,390
100)	\boldsymbol{G}	0,05763
Фактическое КПД очистки, %	KPD	0
Валовый выброс с учетом очистки, т/год, $M = _M_\cdot (1-_KPD_/100)$ Максимальный разовый выброс с учетом очистки, г/с, $G = _G_\cdot (1-_KPD_/100)$	M	1,39 0,05762
100)	\boldsymbol{G}	852
РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ Примесь: 0328 Углерод (Сажа, Углерод черный) (583)		
Коэффициент (табл. 2.1)	\boldsymbol{F}	0,01
Тип топки: Камерная топка Наименование ПГОУ: Фильтры грубой очистки		
Фактическое КПД очистки, %	KPD	0
Выброс твердых частиц, т/год (ф-ла 2.1), $_M_ = BT \cdot AR \cdot F$	M	0,025
Выброс твердых частиц, г/с (ф-ла 2.1), $_G_ = BG \cdot A1R \cdot F$	a	0,00103
	G	648
Валовый выброс с учетом очистки, т/год, $M = M_{\cdot}(1-KPD_{\cdot}/100)$ Максимальный разовый выброс с учетом очистки, г/с, $G = G_{\cdot}(1-KPD_{\cdot}/100)$	M	0,025 0,00103
100)	\boldsymbol{G}	648

Итого, при работе на ДТ (без учета очистки):

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,005615	0,135432
304	Азот (II) оксид	0,000912	0,022008
337	Углерод оксид	0,05763	1,390000
330	Сера диоксид	0,02438	0,588000

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

(Сажа, Углерод черный) (583)	0,03
---------------------------------------	------

Итого, при работе на ДТ (с учетом очистки):

Код	Примесь	Выброс г/с	Выброс т/год
301	Азота (IV) диоксид	0,005615	0,135432
304	Азот (II) оксид	0,000912	0,022008
337	Углерод оксид	0,05763	1,390000
330	Сера диоксид	0,02438	0,588000
328	Углерод (Сажа, Углерод черный) (583)	0,0010365	0,0250

ВСЕГО ОТ ИСТОЧНИКА (без учета

очистки):

Код	Примесь	Выброс г/с	Выброс т/год.
301	Азота (IV) диоксид	0,00751	0,180572
304	Азот (II) оксид	0,00121	0,029338
330	Сера диоксид	0,0245	0,59132
337	Углерод оксид	0,05983	1,443100
328	Углерод (Сажа, Углерод черный) (583)	0,0010365	0,025

ВСЕГО ОТ ИСТОЧНИКА (с учетом

очистки):

Код	Примесь	Выброс г/с	Выброс т/год.	
301	Азота (IV)	0,00751	0,18057	

	диоксид		
304	Азот (II) оксид	0,00121	0,02934
330	Сера диоксид	0,0245	0,5913
337	Углерод оксид	0,05983	1,44310
328	Углерод (Сажа, Углерод черный) (583)	0,0010365	0,0250000

Источник загрязнения N 0003, Выхлопная труба Источник выделения N 003, Дробилка молотковая "Аэролит"

Список литературы:

1. Методика расчета выбросов вредных веществ в атмосферу при работе с пластмассовыми материалами

Приложение №5 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

- 2. Сборник "Нормативные показатели удельных выбросов вредных веществ в атмосферу от основных видов технологического оборудования отрасли". Харьков, 1991г.
- 3. "Удельные показатели образования вредных веществ от основных видов технологического оборудования...", М, 2006 г.

Технологическая операция: Дробление отходов на роторных измельчителях Перерабатываемый материал: Стеклобой, фарфоровые материалы, золошлаки, отходы шлакоблоков

шлакоолоков			
Время работы оборудования в год, час	T	2880	
Масса перерабатываемого материала, т/год	M	2880	
Удельный выброс ЗВ, г/кг обрабатываемого материала (табл.1) Максимальный разовый выброс ЗВ, г/с (1)	Q2	0,7	%
$G = Q2 \cdot M \cdot 1000 / (\underline{T} \cdot 3600)$	\boldsymbol{G}	0,194 44	100
Валовый выброс ЗВ, т/год (2) $M = _G_ \cdot 10-6 \cdot _T_ \cdot 3600$	M	2,016	100

Примерное содержание компонентов в отходах подвергаемых дроблению:

Бой стекла, лабораторная посуда и стекло тара, %	1,7
Зол шлаковые отходы, %	27,8
Фарфоровые изоляторы и др., %	13,9

Строительные отходы, отходы футеровки и теплоизоляции, %		50,3
Отходы шлакоблочного и кирпичного производства,		
%		4,5
Использованные шамотные тигли и капели		
магнезитовые, %		1,7
Примерное содержание ЗВ в выбросах:		
Взвешенные частицы, %	\boldsymbol{C}	48
Пыль неорганическая, содержащая двуокись кремния в %: 70-20, %	\boldsymbol{C}	<i>52</i>

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0,093333333	0,96768
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,101111111	1,04832

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение

пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Стеклобой, фарфоровые материалы, золошлаки, отходы шлако		
Весовая доля пылевой фракции в материале(табл.3.1.1),	<i>K1</i>	0,06
Доля пыли, переходящей в аэрозоль(табл.3.1.1),	<i>K</i> 2	0,04
Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется		
Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	<i>K4</i>	1
Скорость ветра (среднегодовая), м/с,	G3SR	4
Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная), м/с,	<i>G3</i>	20
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	<i>K</i> 3	3

Влажность материала, %,	VL	1	
Коэфф., учитывающий влажность материала(табл.3.1.4),	<i>K</i> 5	0,9	
Размер куска материала, мм,	<i>G</i> 7	1	
Коэффициент, учитывающий крупность материала(табл.3.1.5),	<i>K7</i>	0,8	
Высота падения материала, м,	GB	1	
Коэффициент, учитывающий высоту падения материала(табл.3.1.7),	\boldsymbol{B}	0,5	
	GMA	_	
Суммарное количество перерабатываемого материала, т/час,	X	1	
Суммарное количество перерабатываемого материала, т/год	GGO D	2880	
Эффективность средств пылеподавления, в долях единицы,	NJ	0	
Вид работ: Пересыпка	143	U	
Максимальный разовый выброс, г/с (3.1.1),			
$GC = K1 * K2 * K3 * K4 * K5 * K7 * K8 * K9 * KE * B * GMAX * 10 ^ 6$	/		
3600 * (1-NJ)	GC	0,72	
Продолжительность выброса составляет менее 20 мин согласно п.2.1 пр	рименяетс	я 20-ти	
минутное осреднение.			
Продолжительность пересыпки в минутах (не более 20),	TT	10	
Максимальный разовый выброс, с учетом 20-ти минутного осреднения	, Γ/c ,	0.260	%
GC = GC * TT * 60 / 1200	GC	0,360 00	100
Валовый выброс, т/кв (3.1.2),	GC	00	100
MC = K1 * K2 * K3SR * K4 * K5 * K7 * K8 * K9 * KE * B * GGOD * (1-		2,986	
NJ)	MC	0	<i>100</i>
Примерное содержание компонентов в отходах подвергаемых дроблен	ию:		
Бой стекла, лабораторная посуда и стекло тара, %		1,7	
Зол шлаковые отходы, %		27,8	
Фарфоровые изоляторы и др., %		13,9	
Строительные отходы, отходы футеровки и		13,7	
теплоизоляции, %		50,3	
Отходы шлакоблочного и кирпичного производства,		30,3	
%		4,5	
Использованные шамотные тигли и капели		4,5	
магнезитовые, %		1 7	
		1,7	
Примерное содержание ЗВ в выбросах::			
Взвешенные частицы, %	\boldsymbol{C}	48	
Пыль неорганическая, содержащая двуокись кремния в %: 70-20, %	C	52	
112212 Hoopf with Tooken, codephantan Abjornion Remittin B 70. 70 20, 70	\sim	32	

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0,1728	1,43327232

2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,1872	1,55271168
------	---	--------	------------

Итого выбросы общие:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0,266133333	2,40095232
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,288311111	2,60103168

Источник загрязнения N 0004, Выхлопная труба Источник выделения N 004, Двухвальная дробилка типа "Шредер ДШК 600"

Список литературы:

1. Методика расчета выбросов вредных веществ в атмосферу при работе с пластмассовыми материалами

Приложение №5 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

- 2. Сборник "Нормативные показатели удельных выбросов вредных веществ в атмосферу от основных видов технологического оборудования отрасли". Харьков, 1991г.
- 3. "Удельные показатели образования вредных веществ от основных видов технологического оборудования...", M, 2006 г.

Технологическая операция: Дробление отходов на роторных измельчителях

Перерабатываемый материал: Асбестосодержащие отходы, отходы минеральной ваты,

отходы полипропилена и пластика, резино-технические отходы

Время работы оборудования в кв., час/год	T	2880	
Масса перерабатываемого материала, т/год	M	2880	
Удельный выброс 3В, г/кг обрабатываемого материала (табл.1) Максимальный разовый выброс 3В, г/с (1)	<i>Q</i> 2	0,7	%
$G = Q2 \cdot M \cdot 1000 / (_T_ \cdot 3600)$ Валовый выброс ЗВ, т/кв. (2)	\boldsymbol{G}	0,19444	10 0
$M = _G_ \cdot 10-6 \cdot _T_ \cdot 3600$	M	2,016	10 0

Примерное содержание компонентов в отходах подвергаемых дроблению:

 Асбестсодержащие отходы,
 С
 26,0

%		
Отходы минеральной ваты,		
%	\boldsymbol{C}	26,0
Отходы полипропилена и пластика, %	\boldsymbol{C}	19,8
Резино-технические отходы,		
%	\boldsymbol{C}	12,2
Пластиковые отходы, Пэт тара., %	\boldsymbol{C}	9,0
Солевые, щелочные, воздушно-цинковые, ртутно-цинковые,		
серебряно-цинковые и литиевые батареи, %	\boldsymbol{C}	1,7
Упаковочные материалы, %	\boldsymbol{C}	1,7
Отходы труб ПВХ, %	\boldsymbol{C}	1,7
Стеклопластиковые изделия, %	\boldsymbol{C}	1,7
Примерное содержаниеЗВ в выбросах:		
Пыль асбестосодержащая (с содержанием хризотиласбеста до	C	26.0
10%)/по асбесту/, %	C	26,0
Взвешенные частицы, %	C	61,6
Пыль тонко измельченного резинового вулканизата, %	\boldsymbol{C}	12,2

Код	Наименование 3В	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0,119777778	1,241856
2931	Пыль асбестосодержа щая (с содержанием хризотиласбест а до 10%)/по асбесту/	0,050555556	0,52416
2978	Пыль тонко измельченного резинового вулканизата	0,023722222	0,245952

Список литературы:

Итого выбросы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный

метод определения выбросов в атмосферу от предприятий по производству строительных материалов

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от

18.04.2008 №100-п

10.04.2000 312100 11

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов			
Материал: Асбестосодержащие отходы, отходы минеральной			
ваты, отходы			
полипропилена и пластика, резино-технические отходы	77.1	0.06	
Весовая доля пылевой фракции в материале(табл.3.1.1),	<i>K1</i>	0,06	
Доля пыли, переходящей в аэрозоль(табл.3.1.1),	<i>K</i> 2	0,04	
аэрозоль(таол.э.т.т),	N2	0,04	
Материал негранулирован. Коэффициент Ке принимается равным 1			
Степень открытости: с 4-х сторон			
Загрузочный рукав не применяется			
Коэффициент, учитывающий степень защищенности			
узла(табл.3.1.3),	<i>K4</i>	1	
Скорость ветра (среднекв.овая), м/с,	G3SR	4	
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2	
Скорость ветра (максимальная), м/с,	<i>G3</i>	20	
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	<i>K3</i>	3	
Влажность материала, %,	VL	1	
Коэфф., учитывающий влажность материала(табл.3.1.4),	<i>K</i> 5	0,9	
Размер куска материала, мм,	<i>G7</i>	1	
Коэффициент, учитывающий крупность материала(табл.3.1.5),	<i>K7</i>	0,8	
Высота падения материала,			
M,	GB	1	
Коэффициент, учитывающий высоту падения	_		
материала(табл.3.1.7),	В	0,5	
Суммарное количество перерабатываемого материала, т/час,	<i>GMAX</i>	1	
Суммарное количество перерабатываемого материала, т/год,	GGOD	2880	
Эффективность средств пылеподавления, в долях единицы,	NJ	0	
Вид работ: Пересыпка			
Максимальный разовый выброс, г/с (3.1.1),			
GC = K1 * K2 * K3 * K4 * K5 * K7 * K8 * K9 * KE * B * GMAX *	~ ~		
10 ^ 6 / 3600 * (1-NJ)	GC	0,72	
Продолжительность выброса составляет менее 20 мин согласно п.2. ти минутное осреднение.	. г применя	ется 20-	
Продолжительность пересыпки в минутах (не более 20),	TT	10	
Максимальный разовый выброс, с учетом 20-ти минутного			
осреднения, г/с,			%
GC = GC * TT * 60 / 1200	GC	0,36000	100
Валовый выброс, т/кв. (3.1.2)			

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

MC = K1 * K2 * K35K * K4 * K5 * K/ * K8 * K9 * KE * B * GGOD * (1-NJ)	MC	2,9860	100
Примерное содержание 3В в выбросах:			
Пыль асбестосодержащая (с содержанием хризотиласбеста до			
10%)/по асбесту/, %	\boldsymbol{C}	26,0	
Взвешенные частицы, %	\boldsymbol{C}	61,6	
Пыль тонко измельченного резинового вулканизата, %	\boldsymbol{C}	12,2	

Итого выбросы:

Код	Наименование 3В	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0,22176	1,839366144
2931	Пыль асбестосодержа щая (с содержанием хризотиласбест а до 10%)/по асбесту/	0,0936	0,77635584
2978	Пыль тонко измельченного резинового вулканизата	0,04392	0,364290048

Итого выбросы общие:

Код	Наименование 3В	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0,341537778	3,081222144
2931	Пыль асбестосодержа щая (с содержанием хризотиласбест а до 10%)/по асбесту/	0,144155556	1,30051584
2978	Пыль тонко измельченного резинового вулканизата	0,067642222	0,610242048

Источник загрязнения N 6001-6002, Неорганизованный Источник выделения N 005-006, Машинка отрезная

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных

выбросов). РНД 211.2.02.03-2004. Астана, 2005

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка деталей из стали: Отрезные станки Фактический кв.овой фонд времени работы одной единицы оборудования,

4/10Д,	1	1000
	KOLI	
Число станков данного типа, шт.,	$oldsymbol{V}$	2
Число станков данного типа, работающих одновременно, шт.,	NS1	2

Примесь: 2902 Взвешенные частицы (116)

Удельный выброс, г/с (табл. 1),	GV	0,203
Коэффициент гравитационного оседания (п. 5.3.2),	KN	0,2
		0,5495
Валовый выброс, т/год (1), $_M_ = 3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 106$	M	6
Максимальный из разовых выброс, г/с (2), $_G_ = KN \cdot GV \cdot NS1$	$oldsymbol{G}$	0,0812

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2902	Взвешенны е частицы	0,0812	0,54956

Источник загрязнения N 6003, Неорганизованный Источник выделения N 007, Дрель

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Технология обработки: Механическая обработка

металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения Вид оборудования: Дрель

Фактический кв. овой фонд времени работы одной единицы оборудования,

ч/гол **Т 1480**

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

	KOLI	
Число станков данного типа, шт.,	$oldsymbol{V}$	1
Число станков данного типа, работающих одновременно,		
шт.,	NS1	1
Примесь: 2902 Взвешенные частицы		
$\overline{(116)}$		
Удельный выброс, г/с (табл.		
1),	GV	0,007
Коэффициент гравитационного оседания (п. 5.3.2),	KN	0,2
		0,0074
Валовый выброс, т/год (1), $_M_ = 3600 \cdot KN \cdot GV \cdot _T_ \cdot _KOLIV_ / 106$	M	6
Максимальный из разовых выброс, Γ/c (2), $G=$		
KN·GV·NS1	$oldsymbol{G}$	0,0014

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
2902	Взвешенные частицы	0,0014	0,00746

Источник загрязнения N 6004, Неорганизованный Источник выделения N 008, Газосварочный аппарат

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2,	KNO2	0,8
Коэффициент трансформации оксидов азота в NO,	KNO	0,13
РАСЧЕТ выбросов ЗВ от резки металлов		
Вид резки: Газовая		
Разрезаемый материал: Сталь углеродистая		
Толщина материала, мм (табл. 4),	$oldsymbol{L}$	5
Способ расчета выбросов: по времени работы оборудования		
Время работы одной единицы оборудования, час/год,	T	800
Удельное выделение сварочного аэрозоля, г/ч (табл. 4),	GT	74
в том числе:		
Примесь: 0143 Марганец и его соединения /в пересчете на	марганца (IV	V) оксид/ (327)
Удельное выделение, г/ч (табл. 4),	GT	1,1
Валовый выброс ЗВ, т/год (6.1),		
$\underline{M} = GT \cdot \underline{T} / 10^6$	M	0,00088
Максимальный разовый выброс ЗВ, г/с (6.2),		
$_G_ = GT / 3600$	\boldsymbol{G}	0,0003056

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в</u> пересчете

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

на железо/ (274)

Валовый выброс 3B, т/год (6.1),		
Удельное выделение, г/ч (табл. 4),	GT	72,9
$\underline{M} = GT \cdot \underline{T} / 10^6$	M	0,0583
Максимальный разовый выброс ЗВ, г/с (6.2),		
$_G_ = GT / 3600$	$oldsymbol{G}$	0,02025
Газы:		
Примесь: 0337 Углерод оксид (Окись углерода, Угарн	<u>ый газ) (584)</u>	
Удельное выделение, г/ч (табл. 4),	GT	49,5
Валовый выброс ЗВ, т/год (6.1),		
$_M_ = GT \cdot _T_ / 10^6$	M	0,0396
Максимальный разовый выброс ЗВ, г/с (6.2),		
$_G_ = GT / 3600$	\boldsymbol{G}	0,01375
Расчет выбросов оксидов азота:		
Удельное выделение, г/ч (табл. 4),	GT	39
С учетом трансформации оксидов азота получаем:		
Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (<u>(4)</u>	
Валовый выброс ЗВ, т/год (6.1),		
$\underline{M} = KNO2 \cdot GT \cdot \underline{T} / 10^{6}$	M	0,0250
Максимальный разовый выброс ЗВ, г/с (6.2),		
$_G_ = KNO2 \cdot GT / 3600$	\boldsymbol{G}	0,00867
<u>Примесь: 0304 Азот (II) оксид (Азота оксид) (6)</u>		
Валовый выброс ЗВ, т/год (6.1),		
$_M_ = KNO \cdot GT \cdot _T_ / 10^{6}$	M	0,00406
Максимальный разовый выброс ЗВ, г/с (6.2),		
$_G_ = KNO \cdot GT / 3600$	\boldsymbol{G}	0,001408

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
123	Железо (II, III) оксиды	0,02025	0,0583
143	Марганец и его соединения	0,0003056	0,00088
301	Азота (IV) диоксид	0,00867	0,02496
304	Азот (II) оксид	0,001408	0,00406
337	Углерод оксид	0,01375	0,0396

Источник загрязнения N 6005, Неорганизованный Источник выделения N 009, Пересыпка измельченного стекла

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Измельченное стекло

Весовая доля пылевой фракции в материале(табл.3.1.1), *K1 0,05* Доля пыли, переходящей в аэрозоль(табл.3.1.1), *K2 0,03*

<u>Примесь: 2907 Пыль неорганическая, содержащая двуокись кремния в %: более 70 (Динас)</u> (493)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	<i>K4</i>	1
Скорость ветра (среднекв.овая), м/с,	G3SR	4
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная), м/с,	G3	20
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	<i>K3</i>	3
Влажность материала, %,	VL	1
Коэфф., учитывающий влажность материала(табл.3.1.4),	<i>K</i> 5	0,9
Размер куска материала, мм,	<i>G7</i>	1
Коэффициент, учитывающий крупность материала(табл.3.1.5),	<i>K</i> 7	0,8
Высота падения материала, м,	GB	1
Коэффициент, учитывающий высоту падения материала(табл.3.1.7),	\boldsymbol{B}	0,5
Суммарное количество перерабатываемого материала, т/час,	GMAX	0,04
Суммарное количество перерабатываемого материала, т/год,	GGOD	345,6
Эффективность средств пылеподавления, в долях единицы,	NJ	0
Вид работ: Пересыпка		
Максимальный разовый выброс, г/с (3.1.1),		
$GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 106 / 3600 \cdot (1-NJ)$	GC	0,0180
Валовый выброс, т/кв. (3.1.2),		
$MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ)$	MC	0,22395

Итоговая таблица:

Код Примесь	Выброс г/с	Выброс т/год
-------------	------------	--------------

2907	Пыль неорганическая, содержащая двуокись кремния в %: более 70	0,018000	0,22395
------	--	----------	---------

Источник загрязнения N 6006, Неорганизованный Источник выделения N 010,Бетономешалка

Список литературы:

1. Методика расчета нормативов выбросов от неорганизованных источников п.4. Расчетный метод определения выбросов в атмосферу от предприятий по производству железобетона

Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Основные технологические переделы

при пр-ве ЖБИ

Источник выделения: Бетономешалка

Удельный показатель выделения, 1,3 кг/т(табл.4.5.2), 0

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль

цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,

зола, кремнезем, зола углей казахстанских месторождений) (494)

Продолжительность технологического процесса или "чистое" время работы технологического оборудования, час/год, Общее кол-во данного сырья или материалов, используемых в

1000

1250

 \boldsymbol{T}

технологическом процессе, т/год, B

Валовый выброс, τ/Γ од (4.5.4), M

M = Q * B / 10001,66

Максимальный разовый выброс, г/с, $_G_{-} = _M_{-} * 10 ^ 6 / (_T_{-} * 3600)$ G = 0.462

Итого:

Код Примесь	Выброс г/с	Выброс т/год
-------------	------------	-----------------

2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений)	0,462	1,66
------	--	-------	------

Источник загрязнения N 6007, Неорганизованный Источник выделения N 011, Склад строительных отходов

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Строительные отходы

Весовая доля пылевой фракции в материале(табл.3.1.1),	<i>K1</i>	0,05
Доля пыли, переходящей в аэрозоль(табл.3.1.1),	<i>K</i> 2	0,01

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	<i>K4</i>	1
Скорость ветра (среднекв.овая), м/с,	G3SR	3,1
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная), м/с,	<i>G3</i>	25

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	К3	3
Влажность материала, %,	VL	5
Коэфф., учитывающий влажность материала(табл.3.1.4),	K5	0,7
Размер куска материала, мм,	<i>G</i> 7	20
Коэффициент, учитывающий крупность материала(табл.3.1.5),	K7	0,5
Высота падения материала, м,	GB	1
Коэффициент, учитывающий высоту падения материала(табл.3.1.7),	В	0,5
Грузоподьемность одного автосамосвал до 10 т, коэффициент	K9	0,2
Суммарное количество перерабатываемого материала, т/час,	GMAX	10
Суммарное количество перерабатываемого материала, т/год,	GGOD	7500
Эффективность средств пылеподавления, в долях единицы,	NJ	0,8
Вид работ: Разгрузка	117	0,0
Максимальный разовый выброс, г/с (3.1.1),		
$GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 106 / 3600 \cdot (1-NJ)$	GC	0,02917
Валовый выброс, т/кв. (3.1.2),	UC	0,02717
$MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ)$	MC	0,0315
THE REAL MARKET HOLD HE DOGOD (1 110)	1710	0,0313
п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материало)R	
Материал: Строительные отходы	,,,	
Весовая доля пылевой фракции в материале(табл.3.1.1),	<i>K1</i>	0,05
		0.00
- , , , , , , , , , , , , , , , , , , ,		•
Доля пыли, переходящей в аэрозоль(табл.3.1.1),	K2	0,01
Доля пыли, переходящей в аэрозоль(табл.3.1.1),	K2	•
- , , , , , , , , , , , , , , , , , , ,	K2 6 %: 70-20	•
Доля пыли, переходящей в аэрозоль(табл.3.1.1), <i>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния</i>	K2 <u>в %: 70-20</u> <u>й сланец,</u>	•
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты	K2 <u>в %: 70-20</u> <u>й сланец,</u>	•
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахста	K2 <u>в %: 70-20</u> <u>й сланец,</u>	•
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494)	K2 <u>в %: 70-20</u> <u>й сланец,</u>	•
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1	K2 <u>в %: 70-20</u> <u>й сланец,</u>	•
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстоместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон	K2 <u>в %: 70-20</u> <u>й сланец,</u>	•
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется	К2 <u>в %: 70-20</u> й сланец, анских	0,01
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4	0,01 1 3,1
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с,	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR	0,01
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстоместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с,	K2 <u>в %: 70-20</u> <u>й сланец,</u> <u>анских</u> K4 G3SR K3SR	0,01 1 3,1 1,2
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3	0,01 1 3,1 1,2 25
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстоместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с,	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3	0,01 1 3,1 1,2 25 3 5
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4),	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3 VL	0,01 1 3,1 1,2 25 3 5 0,7
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4), Размер куска материала, мм,	K2 <u>в %: 70-20</u> <u>й сланец,</u> <u>анских</u> K4 G3SR K3SR G3 K3 VL K5 G7	0,01 1 3,1 1,2 25 3 5 0,7 20
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4), Размер куска материала, мм, Коэффициент, учитывающий крупность материала(табл.3.1.5),	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3 VL K5 G7 K7	0,01 1 3,1 1,2 25 3 5 0,7
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4), Размер куска материала, мм, Коэффициент, учитывающий крупность материала(табл.3.1.5), Высота падения материала, м,	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3 VL K5 G7 K7 GB	0,01 1 3,1 1,2 25 3 5 0,7 20 0,5 1
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4), Размер куска материала, мм, Коэффициент, учитывающий крупность материала(табл.3.1.5), Высота падения материала, м, Коэффициент, учитывающий высоту падения материала(табл.3.1.7),	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3 VL K5 G7 K7 GB B	0,01 1 3,1 1,2 25 3 5 0,7 20 0,5 1 0,5
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4), Размер куска материала, мм, Коэффициент, учитывающий крупность материала(табл.3.1.5), Высота падения материала, м, Коэффициент, учитывающий высоту падения материала(табл.3.1.7), Суммарное количество перерабатываемого материала, т/час,	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3 VL K5 G7 K7 GB B GMAX	0,01 1 3,1 1,2 25 3 5 0,7 20 0,5 1 0,5 10
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместворождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овяя), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4), Размер куска материала, мм, Коэффициент, учитывающий крупность материала(табл.3.1.5), Высота падения материала, м, Коэффициент, учитывающий высоту падения материала(табл.3.1.7), Суммарное количество перерабатываемого материала, т/час, Суммарное количество перерабатываемого материала, т/год,	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3 VL K5 G7 K7 GB B GMAX GGOD	0,01 1 3,1 1,2 25 3 5 0,7 20 0,5 1 0,5 10 7500
Доля пыли, переходящей в аэрозоль(табл.3.1.1), Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния (шамот, цемент, пыль цементного производства - глина, глинисты доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстиместорождений) (494) Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая), м/с, Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2), Скорость ветра (максимальная), м/с, Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала, %, Коэфф., учитывающий влажность материала(табл.3.1.4), Размер куска материала, мм, Коэффициент, учитывающий крупность материала(табл.3.1.5), Высота падения материала, м, Коэффициент, учитывающий высоту падения материала(табл.3.1.7), Суммарное количество перерабатываемого материала, т/час,	K2 <u>в %: 70-20</u> <u>й сланец,</u> анских K4 G3SR K3SR G3 K3 VL K5 G7 K7 GB B GMAX	0,01 1 3,1 1,2 25 3 5 0,7 20 0,5 1 0,5 10

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Максимальный разовый выброс, г/с (3.1.1),

 $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 106 / 3600 \cdot (1-NJ)$ GC 0,1458 Валовый выброс, т/год (3.1.2),

 $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ)$ $MC \qquad 0,1575$

п.3.2.Статическое хранение материала

Материал: Строительные отходы

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

V-11.	TZ 4	7
Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	<i>K4</i>	1
Скорость ветра (среднекв.овая), м/с,	G3SR	4
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная), м/с,	<i>G3</i>	20
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	<i>K3</i>	3
Влажность материала, %,	VL	5
Коэфф., учитывающий влажность материала(табл.3.1.4),	<i>K</i> 5	0,7
Размер куска материала, мм,	<i>G7</i>	20
Коэффициент, учитывающий крупность материала(табл.3.1.5),	<i>K</i> 7	0,5
Поверхность пыления в плане, м2	\boldsymbol{S}	100
Коэфф., учитывающий профиль поверхности складируемого материала	<i>K6</i>	1,45
Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1),	$\boldsymbol{\varrho}$	0,002
Количество дней с устойчивым снежным покровом	TSP	125
Продолжительность осадков в виде дождя, часов/год	TO	200
Количество дней с осадками в виде дождя в год, $TD = 2 \cdot TO / 24$	TD	16,666667
Эффективность средств пылеподавления, в долях единицы,	NJ	0,8
Максимальный разовый выброс, г/с (3.2.3),		
$GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ)$	GC	0,06090
Валовый выброс, т/год (3.2.5),		
$MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 - (TSP + TD)) \cdot (1 - NJ)$	MC	0,4701
Сумма выбросов, г/с (3.2.1, 3.2.2), $G = G + GC$	\boldsymbol{G}	0,2067
Сумма выбросов, т/год (3.2.4), $M = M + MC$	M	0,659

Итоговая таблица:

2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,2067	0,65905
------	---	--------	---------

Источник загрязнения N 6008-6027, Неорганизованный Источник выделения N 012-031, Емкости 1 м3 для временного хранения отработанного масла

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Нефтепродукт , $NP = \mathbf{Mac}_{\mathbf{A}\mathbf{a}}$		
Климатическая зона: вторая - северные области РК (прил. 17)		
Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12)	\boldsymbol{C}	0,324
Средний удельный выброс в осенне-зимний период, г/т(Прил. 12)	YY	0,2
Количество закачиваемой в резервуар жидкости в осенне-зимний период,		
Т	BOZ	250
Средний удельный выброс в весенне-летний период, г/т(Прил. 12) Количество закачиваемой в резервуар жидкости в весенне-летний период,	YYY	0,2
т	BVL	250
Объем паровоздушной смеси, вытесняемый из резервуара во время его	DIL	230
закачки, м3/ч,	VC	16
Коэффициент(Прил.		
12)	KNP	0,00027
Режим эксплуатации: "буферная емкость" (все типы резервуаров)		
Объем одного резервуара данного		_
типа, м3	VI	1
Количество резервуаров данного типа	NR	20
Количество групп одноцелевых резервуаров на предприятии	KNR	1
Категория веществ: А,		
Б, В		
Конструкция резервуаров: Наземный вертикальный		
Значение Кртах для этого типа резервуаров(Прил. 8)	KPM	0,1
Значение Kpsr для этого типа резервуаров(Прил. 8)	KPSR	0,1
Количество выделяющихся паров нефтепродуктов		
при хранении в одном резервуаре данного типа, т/год (Прил. 13),	GHRI	0,22
		0,00118
GHR = GHR + GHRI * KNP * NR	GHR	80
Коэффициент	KPSR	0,1
Коэффициент , $KPMAX = KPMAX$	KPMA	0,1

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

	\boldsymbol{X}	
Общий объем резервуаров, м3	$oldsymbol{V}$	20
		0,00118
Сумма Ghri*Knp*Nr	GHR	80
Максимальный из разовых выброс, г/с (6.2.1), $G = C * KPMAX * VC /$		0,00014
3600	\boldsymbol{G}	4
Среднекв.овые выбросы, т/год (6.2.2)		
		0,00119
$M = (YY * BOZ + YYY * BVL) * KPMAX * 10 ^ (-6) + GHR$	M	80
<u>Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое</u>		
и др.) (723*)		
Концентрация ЗВ в парах, %		
масс(Прил. 14),	CI	100
		0,00119
Валовый выброс, т/год (5.2.5), $_{-}M_{-}$ = $CI*M/100$	M	80
		0,00014
Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI * G / 100$	\boldsymbol{G}	4

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,000144	0,0011980

Источник загрязнения N 6028-6047, Неорганизованный Источник выделения N 032-051, Емкости 1 м3 для временного хранения маслянистой смеси, эмульсии, нефтезагрязненных стоков

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт, NP =

Масла

Климатическая зона: вторая - северные области РК (прил. 17)		
Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12)	\boldsymbol{C}	0,324
Средний удельный выброс в осенне-зимний период, г/т(Прил. 12) Количество закачиваемой в резервуар жидкости в осенне-зимний	YY	0,2
период, т	BOZ	<i>50</i>
Средний удельный выброс в весенне-летний период, г/т(Прил. 12) Количество закачиваемой в резервуар жидкости в весенне-летний	YYY	0,2
период, т	BVL	50
Объем паровоздушной смеси, вытесняемый из резервуара во время		
его закачки, м3/ч,	VC	16
Коэффициент(Прил. 12)	KNP	0,00027

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы TOO «ЭКО-Запад»

Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного		
типа, м3	VI	1
Количество резервуаров данного типа	NR	20
Количество групп одноцелевых резервуаров на предприятии	KNR	1
Категория веществ: A, Б, В		
Конструкция резервуаров: Наземный вертикальный		
Значение Кртах для этого типа резервуаров(Прил. 8)	KPM	0,1
Значение Kpsr для этого типа резервуаров(Прил. 8)	KPSR	0,1
Количество выделяющихся паров нефтепродуктов		·
при хранении в одном резервуаре данного типа, т/год (Прил. 13),	GHRI	0,22
GHR = GHR + GHRI * KNP * NR	GHR	0,0011880
Коэффициент	KPSR	0,1
Коэффициент , <i>КРМАХ = КРМАХ</i>	KPMAX	0,1
Общий объем		
резервуаров, м3	$oldsymbol{V}$	20
Сумма Ghri*Knp*Nr	GHR	0,0011880
Максимальный из разовых выброс, г/с (6.2.1) , $G = C * KPMAX * VC /$	C	0.000144
3600	\boldsymbol{G}	0,000144
Среднекв.овые выбросы, т/год (6.2.2)	3.6	0.0011000
$M = (YY * BOZ + YYY * BVL) * KPMAX * 10 ^ (-6) + GHR$	M	0,0011900
Примесь: 2735 Масло минеральное нефтяное (веретенное,		
машинное, цилиндровое		
<u>u òp.) (723*)</u>		
Концентрация ЗВ в парах, %	CT.	100
масс(Прил. 14),	CI	100
Валовый выброс, т/год (5.2.5), $_M_ = CI * M / 100$	M	0,0011900
Максимальный из разовых выброс, г/с (5.2.4) , $_G_ = CI * G / 100$	\boldsymbol{G}	0,000144

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,000144	0,0011900

Источник загрязнения N 6048-6097, Неорганизованный Источник выделения N 052-101, Емкости 200 л для временного хранения отработанного масла

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Нефтепродукт , NP = Масла		
Климатическая зона: вторая - северные области РК (прил. 17)		
Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12)	\boldsymbol{C}	0,324
Средний удельный выброс в осенне-зимний период, г/т(Прил. 12) Количество закачиваемой в резервуар жидкости в осенне-зимний период,	YY	0,2
T	BOZ	250
Средний удельный выброс в весенне-летний период, г/т(Прил. 12) Количество закачиваемой в резервуар жидкости в весенне-летний	YYY	0,2
период, т	BVL	250
Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч,	VC	16
Коэффициент(Прил. 12)	KNP	0,00027
Режим эксплуатации: "буферная емкость" (все типы резервуаров)	MIVI	0,00027
Объем одного резервуара данного типа, м3	VI	0,2
Количество резервуаров данного типа	NR	50
1 1 1 1		
Количество групп одноцелевых резервуаров на предприятии	KNR	1
Категория веществ: А, Б, В Конструкция резервуаров: Наземный вертикальный Значение Кртах для этого типа		
резервуаров(Прил. 8)	KPM	0,1
Значение Kpsr для этого типа		,
резервуаров(Прил. 8)	KPSR	0,1
Количество выделяющихся паров нефтепродуктов		
при хранении в одном резервуаре данного типа, т/год (Прил. 13), $GHR = GHR + GHRI * KNP$	GHRI	0,22 0,00297
* NR	GHR	00
Коэффициент	KPSR	0,1
Коэффициент, $KPMAX =$	VDMA V	0.1
КРМАХ Общий объем резервуаров,	KPMAX	0,1
м3	$oldsymbol{V}$	10
	•	0,00297
Сумма Ghri*Knp*Nr	GHR	00
Максимальный из разовых выброс, г/с (6.2.1) , $G = C * KPMAX * VC / 3600$	\boldsymbol{G}	0,00014 4
Среднекв.овые выбросы, т/год (6.2.2)		
		0,00298
$M = (YY * BOZ + YYY * BVL) * KPMAX * 10 ^ (-6) + GHR$	M	00
<u>Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое</u>		
<u>u dp.) (723*)</u>		
Концентрация ЗВ в парах, % масс(Прил. 14),	CI	100
Валовый выброс, т/год (5.2.5), $_{M}$ = $CI * M$	14	0,00298
/ 100	M	00

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

0,00014

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI * G / 100$

	_	

 \boldsymbol{G}

KPSR

0,1

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,000144	0,0029800

Источник выделения N 6098-6099, Неорганизованный источник Источник выделения N 102-103, Емкость для хранения дизельного топлива

Список литературы:

Методические указания расчета выбросов от предприятий,

осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других

жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011

№196

Нефтепродукт	NP =	Лизопьило	топпиво
псфіспродукі	1 V1 —	дизелопие	momuno

Климатическая зона: вторая - северные области

Значение Kpsr для этого типа резервуаров(Прил.

РК (прил. 17)		
Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12)	\boldsymbol{C}	3,14
Средний удельный выброс в осенне-зимний период, г/т(Прил. 12)	YY	1,9
Количество закачиваемой в резервуар жидкости в осенне-зимний		,
период, т	BOZ	25
Средний удельный выброс в весенне-летний период, г/т(Прил. 12)	YYY	2,6
Количество закачиваемой в резервуар жидкости в весенне-летний		
период, т	BVL	25
Объем паровоздушной смеси, вытесняемый из резервуара во время		
его закачки, м3/ч	VC	0,7
Коэффициент(Прил. 12),	KNP	0,0029
Объем одного резервуара данного типа, м3,		
Режим эксплуатации: "мерник", ССВ -		
отсутствуют		
Объем одного резервуара данного типа, м3	VI	1
Количество резервуаров данного типа,	NR	2
Количество групп одноцелевых резервуаров на		
предприятии,	KNR	1
Категория веществ: В - Узкие бензиновые фракции, ароматические		
углеводороды,		
керосин, топлива и др. при Т превышающей 30 гр.С по сравнению с		
окр. воздухом		
Конструкция резервуаров: Наземный		
вертикальный		
Значение Кртах для этого типа		0 -
резервуаров(Прил. 8)	<i>KPM</i>	0,1

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

8		
Количество выделяющихся паров		
нефтепродуктов		
при хранении в одном резервуаре данного типа, т/год (Прил. 13)	GHRI	0,22
GHR = GHR + GHRI * KNP		•
* NR	GHRI	0,002552
Коэффицие		
HT	KPSR	0,1
	KPM	
Коэффициент, <i>КРМАХ</i>	AX	0,1
Общий объем резервуаров,		
м3	$oldsymbol{V}$	2
Сумма <i>Ghri*Knp*Nr</i>	GHR	0,002552
Максимальный из разовых выброс, г/с (6.2.1), $G = C * KPMAX * VC$		
/ 3600	\boldsymbol{G}	0,000061
Среднекварт.выбросы, т/кв. (6.2.2), $M = (YY * BOZ + YYY * BVL) *$		
$KPMAX*10 \land (-6) + GHR$	M	0,002563
<u>Примесь: 2754 Алканы С12-19 /в пересчете на</u>		
C/(10)		
Концентрация ЗВ в парах, % масс(Прил. 14),	CI	99,72
Валовый выброс, т/год (5.2.5), $_{-}M_{-} = CI * M/$		
100	M	0,002556
		0,000060
Максимальный из разовых выброс, г/с (5.2.4) , $_G_ = CI * G / 100$	\boldsymbol{G}	8
Примесь: 0333 Сероводород (Дигидросульфид)		
<u>(528)</u>		
Концентрация ЗВ в парах, % масс(Прил. 14),	CI	0,28
Валовый выброс, т/год (5.2.5), $_{-}M_{-} = CI * M/$		0,000007
100	M	18
	~	0,000000
Максимальный из разовых выброс, г/с (5.2.4) , $_G_ = CI * G / 100$	\boldsymbol{G}	171

Итого выбросы:

Код	Примесь	Выброс г/с	Выброс т/кв.
333	Сероводород	0,000000171	0,00000718
2754	Алканы С12-19	0,0000608	0,002556

Источник загрязнения N 6100, Неорганизованный источник Источник выделения N 104, Насос для перекачки дизельного топлива НШ32

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004.

Астана, 2005

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы TOO «ЭКО-Запад»

Расчеты по п. 6-8

D ~	~	
PACUET BLIDDOCOR	от теппоооменных	аппаратов и средств
T de let bbiopocob	OI ICIIIIOOOMCIIIIDIA	аппаратов и средств

перекачки

Нефтепродукт: Дизельное

топливо

Тип нефтепродукта и средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос

НШ32

Удельный выброс, кг/час(табл.

8.1),	$oldsymbol{arrho}$	0,04
Общее количество аппаратуры или средств		
перекачки, шт.	<i>N1</i>	1
Одновременно работающее количество аппаратуры или средств		
перекачки, шт.	NN1	1
Время работы одной единицы оборудования,		
час/год	T	<i>300</i>
Максимальный из разовых выброс, г/с (8.1), $G = Q * NNI /$		
3.6	$oldsymbol{G}$	0,01111
Валовый выброс, т/год (8.2), $M = (Q * N1 *$		
T) / 1000	$oldsymbol{M}$	0,012
		•

Примесь: 2754 Алканы С12-19/в пересчете на

<i>C</i> /	(1	0)

Концентрация ЗВ в парах, % масс(Прил. 14),	CI	99,72
Валовый выброс, т/год. (5.2.5), $_{M}$ = $CI * M$ /		
100	M	0,01197
Максимальный из разовых выброс, г/с (5.2.4) , $_G_ = CI * G$ /		
100	\boldsymbol{G}	0,01108

Примесь: 0333 Сероводород (Дигидросульфид)

(′528)

Концентрация ЗВ в парах, % масс(Прил. 14),	CI	0,28
Валовый выброс, т/год (5.2.5), $_{M}$ = $CI * M$ /		
100	$oldsymbol{M}$	0,0000336
Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI * G$		
100	$oldsymbol{G}$	0,0000311

Итого

выбросы:

Код	Примесь	Выброс г/с	Выброс т/год
333	Сероводород	0,0000311	0,0000336
2754	Алканы С12-19	0,01108	0,01197

Источник загрязнения N 6101, Неорганизованный источник Источник выделения N 105, Насос для перекачки отработанного масла HIII32

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Масла

Тип нефтепродукта и средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос НШ32

Удельный выброс, кг/час (табл. 6.1)	$oldsymbol{arrho}$	0,02
Общее количество аппаратуры или средств перекачки, шт.	N1	1
Одновременно работающее количество аппаратуры или средств	NN1	1
перекачки, шт.	1 V1V1	1
Время работы одной единицы оборудования, час/год,	_ <i>T</i> _	300
Максимальный из разовых выброс, г/с (6.2.1), $G = Q \cdot NN1 / 3.6$	$oldsymbol{G}$	0,00556
Валовый выброс, т/год (6.2.2), $M = (Q \cdot N1 \cdot _T_) / 1000$	M	0,0060

<u>Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)</u>

Концентрация ЗВ в парах, % масс (Прил. 14)	CI	100
Валовый выброс, т/год (4.2.5), $_{\pmb{M}}$ = $\pmb{CI} \cdot \pmb{M} / \pmb{100}$	_ M _	0,006
Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100$	_ <i>G</i> _	0,00556

•	Код	Примесь	Выброс г/с	Выброс т/год
	2735	Масло минеральное нефтяное	0,00556	0,006000

Источник загрязнения N 6102, Неорганизованный

Источник выделения N 106, Склад готовой продукции (нейтральный грунт после обжига отходов в печи)

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов		
Материал: Готовая продукция		
Весовая доля пылевой фракции в материале(табл.3.1.1),	<i>K1</i>	0,1
Доля пыли, переходящей в аэрозоль(табл.3.1.1),	<i>K</i> 2	0,05

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	K4	1
Скорость ветра (среднекв.овая), м/с,	G3SR	4
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная), м/с,	<i>G3</i>	20
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	<i>K3</i>	3
Влажность материала, %,	VL	1
Коэфф., учитывающий влажность материала(табл.3.1.4),	K5	0,9
Размер куска материала, мм,	<i>G7</i>	70
Коэффициент, учитывающий крупность материала(табл.3.1.5),	<i>K</i> 7	0,4
Высота падения материала, м,	GB	1
Коэффициент, учитывающий высоту падения материала(табл.3.1.7),	\boldsymbol{B}	0,5
Грузоподьемность одного автосамосвал до 10 т, коэффициент	К9	0,1
Суммарное количество перерабатываемого материала, т/час,	GMAX	0,5
Суммарное количество перерабатываемого материала, т/год,	GGOD	<i>1500</i>
Эффективность средств пылеподавления, в долях единицы,	NJ	0
Вид работ: Разгрузка		
Максимальный разовый выброс, г/с (3.1.1),		
$GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 106 / 3600 \cdot (1-NJ)$	GC	0,03750
Валовый выброс, т/кв. (3.1.2),		
$MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ)$	MC	0,1620

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Готовая продукция Весовая доля пылевой фракции в материале(табл.3.1.1), Доля пыли, переходящей в аэрозоль(табл.3.1.1), К2

0,1

0.05

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1 Степень открытости: с 4-х сторон

загрузочный рукав не		
применяется		
Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	<i>K4</i>	1
Скорость ветра (среднекв.овая), м/с,	G3SR	4
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная), м/с,	<i>G3</i>	20
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	<i>K3</i>	3
Влажность материала, %,	VL	1
Коэфф., учитывающий влажность материала(табл.3.1.4),	K5	0,9
Размер куска материала, мм,	<i>G</i> 7	70
Коэффициент, учитывающий крупность материала(табл.3.1.5),	<i>K7</i>	0,4
Высота падения материала, м,	GB	1
Коэффициент, учитывающий высоту падения материала(табл.3.1.7),	\boldsymbol{B}	0,5
Суммарное количество перерабатываемого материала, т/час,	GMAX	0,5
Суммарное количество перерабатываемого материала, т/год,	GGOD	<i>1500</i>
Эффективность средств пылеподавления, в долях единицы,	NJ	0
Вид работ: Пересыпка		
Максимальный разовый выброс, г/с (3.1.1),		
$GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 106 / 3600 \cdot (1-NJ)$	GC	0,3750
Валовый выброс, т/год (3.1.2),		
$MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ)$	MC	1,6200

п.3.2.Статическое хранение материала

Материал: Готовая продукция

Загрузочный рукав не

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не

применяется

применяется		
Коэффициент, учитывающий степень защищенности узла(табл.3.1.3),	<i>K4</i>	1
Скорость ветра (среднекв.овая), м/с,	G3SR	4
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная), м/с,	<i>G3</i>	20
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2),	<i>K</i> 3	3
Влажность материала, %,	VL	1
Коэфф., учитывающий влажность материала(табл.3.1.4),	<i>K</i> 5	0,9
Размер куска материала, мм,	<i>G7</i>	70
Коэффициент, учитывающий крупность материала(табл.3.1.5),	<i>K7</i>	0,4
Поверхность пыления в плане, м2	\boldsymbol{S}	100
Коэфф., учитывающий профиль поверхности складируемого материала	<i>K6</i>	1,45
Унос материала с 1 м2 фактической поверхности, г/м2*с(табл.3.1.1),	$oldsymbol{arrho}$	0,002

Количество дней с устойчивым снежным покровом	TSP	125
Продолжительность осадков в виде дождя, часов/год	TO	200
Количество дней с осадками в виде дождя в год, $TD = 2 \cdot TO / 24$	TD	16,6667
Эффективность средств пылеподавления, в долях единицы,	NJ	0,95
Максимальный разовый выброс, г/с (3.2.3),		
$GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (1-NJ)$	GC	0,01566
Валовый выброс, т/год (3.2.5),		
$MC = 0.0864 \cdot K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot S \cdot (365 - (TSP + TD)) \cdot (1 - NJ)$	MC	0,1209
Сумма выбросов, г/с (3.2.1, 3.2.2), $G = G + GC$	\boldsymbol{G}	0,4282
Сумма выбросов, т/год(3.2.4), $M = M + MC$	M	1,903

Итоговая таблица:

Код	Примесь	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	0,4282	1,90287

Источник загрязнения N 6103, Неорганизованный Источник выделения N 107, Выгрузка золы

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4)

Коэффициент гравитационного осаждения твердых компонентов, п.2.3

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки,		
статическое		
хранение пылящих материалов		
п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов		
Материал: Зола		
Весовая доля пылевой фракции в материале(табл.3.1.1),	<i>K1</i>	0,06

KOC

*K*2

0,4

0.04

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20</u>

(шамот, цемент, пыль цементного производства - глина, глинистый сланец,

<u>доменный шлак, песок, клинкер, зола, кремнезем, зола углей</u>

Доля пыли, переходящей в аэрозоль(табл.3.1.1),

казахстанских

месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1		
Степень открытости: с 2-х сторон		
Загрузочный рукав не		
применяется		
Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), Скорость ветра (среднекв.овая),	<i>K4</i>	0,2
м/с,	G3SR	4
Коэфф., учитывающий среднекв.овую скорость ветра(табл.3.1.2),	K3SR	1,2
Скорость ветра (максимальная),		
M/c,	<i>G3</i>	20
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), Влажность материала,	<i>K</i> 3	3
%,	VL	1
Коэфф., учитывающий влажность материала(табл.3.1.4),	K5	0,9
Размер куска материала, мм,	<i>G7</i>	1
Коэффициент, учитывающий крупность материала(табл.3.1.5),	K7	0,8
Высота падения материала, м,	GB	0,5
Коэффициент, учитывающий высоту падения материала(табл.3.1.7),	B	0,3
тооффиционт, у интывающий высоту падения материала (таол. 5.11.7),	GMA	0,4
Суммарное количество перерабатываемого материала, т/час,	X	0,5
	GGO	,
Суммарное количество перерабатываемого материала, т/год,	D	<i>1800</i>
Эффективность средств пылеподавления, в долях единицы,	NJ	0
Вид работ: Пересыпка		
Максимальный разовый выброс, г/с (3.1.1),		
$GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 106 / 3600 \cdot (1-NJ)$	GC	0,0576
Продолжительность выброса составляет менее 20 мин согласно п.2.1		
применяется 20-ти минутное осреднение.		
Продолжительность пересыпки в минутах (не более 20),	TT	1
Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с		
		0,0028
$=GC \cdot TT \cdot 60 / 1200$	GC	8
Валовый выброс, т/год (3.1.2),		
$MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ)$	MC	0,2986
		0.0000
Marrows	C	0,0028
Максимальный разовый выброс, г/с (3.2.1), $G = MAX(G,GC)$	G	8
Сумма выбросов, т/год (3.2.4), $M = M + MC$	M	0,2986
С учетом коэффициента гравитационного осаждения		
		0,1194
Валовый выброс, т/год	M	4
	~	0,0011
Максимальный разовый выброс	\boldsymbol{G}	5

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Итоговая таблица:

Код	Примесь	Выбро с г/с	Выброс т/год
2908	Пыль неорганическая , содержащая двуокись кремния в %: 70-20	0,0012	0,11944

Источник загрязнения N 6104-6128, Неорганизованный Источник выделения N 108-132, Емкости для временного хранения жидких нефтяных отходов

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Нефтепродукт , NP = жидкие нефтяные

отходы

Климатическая зона: вторая - северные области РК (прил. 17)		
Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12)	\boldsymbol{C}	5,4
Средний удельный выброс в осенне-зимний период, г/т(Прил. 12)	YY	4
Количество закачиваемой в резервуар жидкости в осенне-зимний		
период, т	BOZ	2000
Средний удельный выброс в весенне-летний период, г/т(Прил. 12)	YYY	4
Количество закачиваемой в резервуар жидкости в весенне-летний		
период, т	BVL	2000
Объем паровоздушной смеси, вытесняемый из резервуара во время его		
закачки, м3/ч,	VC	16
Коэффициент(Прил. 12)	KNP	0,0043
Режим эксплуатации: "буферная емкость" (все типы резервуаров)		
Объем одного резервуара данного типа,		
м3	VI	2
Количество резервуаров данного типа	NR	25
Количество групп одноцелевых резервуаров на предприятии	KNR	1
Категория веществ: А		
Конструкция резервуаров: Наземный горизонтальный		
Значение Кртах для этого типа резервуаров(Прил. 8)	KPM	1
Значение Kpsr для этого типа резервуаров(Прил. 8)	KPSR	0,7
Количество выделяющихся паров		,
нефтепродуктов		

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

при хранении в одном резервуаре данного типа, т/год (Прил. 13),	GHRI	0,22
GHR = GHR + GHRI * KNP *		
NR	GHR	0,0236500
Коэффициент	KPSR	0,7
Коэффициент, <i>КРМАХ</i> =		
KPMAX	KPMAX	1
Общий объем резервуаров, м3	$oldsymbol{V}$	50
Сумма Ghri*Knp*Nr	GHR	0,0236500
Максимальный из разовых выброс, г/с (6.2.1), $G = C * KPMAX * VC /$		
3600	$oldsymbol{G}$	0,024
Среднегодовые выбросы, т/год (6.2.2)		
$M = (YY * BOZ + YYY * BVL) * KPMAX * 10 ^ (-6) + GHR$	M	0,0396500

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил.

14),	CI	99,52
Валовый выброс, т/год (5.2.5), $_M_ = CI * M / 100$	M	0,0394597
Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI * G / 100$	$oldsymbol{G}$	0,0238848

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил.

14),	CI	0,48
Валовый выброс, т/год (5.2.5) , $_M_$ = $CI*M/100$	M	0,0001903
Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI * G / 100$	\boldsymbol{G}	0,0001152

Код	Примесь	Выброс г/с	Выброс т/год
333	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,023884	0,0394597
2754	Сероводород	0,000115 2	0,0001903

Приложение	№ 2
------------	------------

РАСЧЕТ РАССЕИВАНИЯ

Расчет рассеивания представлен в приложении проекта

ОЦЕНКА ЭКОНОМИЧЕСКОГО УЩЕРБА

Плата за эмиссии в окружающую среду от стационарных источников выбросов загрязняющих веществ осуществляется согласно гл. 69. ст. 576 Кодекса Республики Казахстан от 10.12.2008 года № 99-IV «О налогах и других обязательных платежах в бюджет» (Налоговый кодекс).

Нормативная ежегодная плата за загрязнение атмосферного воздуха определяется из размера месячного расчетного показателя, установленного на соответствующий финансовый год помноженная на нормативную ставку вещества и на т/год.

Нормативная ежегодная плата = 3932 х ставка х т/год

Расчёт платы за выбросы вредных веществ в атмосферу от источников загрязнения на

участке работ представлен в таблице.

КОД 3В	Виды загрязняющих веществ	Выбросы загрязняющих веществ, т/год	Ставки платы, тг.	МРП	Сумма платежа, тг./год
1	2	3	4	5	6
0123	Железо (II, III) оксиды	0.0583	30	3932	6877,068
0143	Марганец и его				
	соединения	0.00088		3932	0
0301	Азота (IV) диоксид	3.76005	20	3932	295690,3
0304	Азот (II) оксид (Азота оксид) (6)	0.35393	20	3932	27833,06
0328	Углерод (Сажа, Углерод черный)	0.025	24	3932	2359,2
0330	Сера диоксид (Ангидрид сернистый,	1.1515	20	3932	90553,96
0333	Сероводород (Дигидросульфид)	0.03950048	124	3932	19259,17
0337	Углерод оксид	5.57791	0.32	3932	7018,349
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое)	0.011368	0,32	3932	14,30367
2754	Алканы С12-19	0.0147163	0,32	3932	18,51664
2902	Взвешенные частицы (116)	6.050282464	10	3932	237897,1
2907	Пыль неорганическая, содержащая двуокись				2227
	кремния в %: более 70	0.22395	10	3932	8805,714
2908	Пыль неорганическая, содержащая двуокись				
	кремния в %: 70-20	6.94239168	10	3932	272974,8
2931	Пыль асбестсодержащая	1.30051584	10	3932	51136,28

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы TOO «ЭКО-Запад»

измельченного				
резинового вулканизата				
из отходов подошвенных				
резин				
	0.610242048	10	3932	23994,72
ВСЕГО:	26.120536812			1044433

Таким образом, плата за выбросы от источников загрязнения по всему предприятию составляет: **1044433 тг/год.**

Прі	иложение	№ 4
-----	----------	------------

БЛАНКИ ИНВЕНТАРИЗАЦИИ

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ 1. Источники выделения вредных (загрязняющих) веществ

на 2026 -2035 года

Уральск, ТОО "Э	КОЗапад"			***	2020 200.	лоди			
Наименование производства номер цеха,	Номер источ- ника загряз	Номер источ- ника выде-	Наименование источника выделения загрязняющих	Наименование выпускаемой продукции	Время источ выделе	ника	Наименование загрязняющего вещества	Код вредного вещества (ЭНК,ПДК или ОБУВ) и	Количество загрязняющего вещества, отходящего
участка	нения атм-ры	ления	веществ		в сутки	за год		наименование	от источника выделения, т/год
A	1	2	3	4	5	6	7	8	9
					Площадка	ı 1			
01) роизводственн	0001	0001 01	Деструктор ДС 4000	Выхлопные газы		8640	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	3.55452
г база							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.32053
	=						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330(516)	0.5602
1.							Углерод оксид (Окись углерода, Угарный газ) (584)	0337(584)	4.09521
							Взвешенные частицы (116)	2902(116)	0.1386
	0002	0002 02	Форсаж - 2	Выхлопные газы		1206	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.18057
							Азот (II) оксид (Азота	0304(6)	0.02934

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

г. Уральск, ТОО "ЭКОЗапад"

Наименование производства	Номер источ- ника	Номер источ- ника	выделения	Наименование выпускаемой	источ	работы чника ния,час	Наименование загрязняющего	Код вредного вещества (ЭНК,ПДК	Количество загрязняющего вещества,
номер цеха, участка	загряз нения атм-ры	выде- ления	загрязняющих веществ	продукции	в сутки	за год	вещества	или ОБУВ) и наименование	отходящего от источника выделения, т/год
A	1	2	3	4	5	6	7	8	9
							оксид) (6) Углерод (Сажа, Углерод черный) (583)	0328(583)	0.025
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330(516)	0.5913
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337(584)	1.4431
	0003	0003 03	Дробилка молотковая " Аэролит"	Выхлопные газы		2880	Взвешенные частицы (116) Пыль неорганическая, содержащая двуокись	2902(116) 2908(494)	2.40095232 2.60103168
							кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный		
							шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		
	0004	0004 04	Двухвальная дробилка типа " Шредер ДШК 600"	Выхлопные газы		2880	Взвешенные частицы (116) Пыль асбестсодержащая (с содержанием хризотиласбеста до 10%) / по асбесту/ (485)	2902(116) 2931(485)	3.081222144 1.30051584
							Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (1090*)	2978(1090*)	0.610242048

г. Уральск, ТОО "ЭКОЗапад"

	Номер	Номер	Наименование			работы		Код вредного	Количество
Наименование	источ-	источ-		Наименование	источ	ника	Наименование	вещества	загрязняющего
производства	ника	ника	выделения	выпускаемой	выделе	ния,час	загрязняющего	(ЭНК,ПДК	вещества,
номер цеха,	загряз	выде-	загрязняющих	продукции			вещества	или ОБУВ) и	
участка	нения	ления	веществ		В	за		наименование	от источника
	атм-ры				сутки	год			выделения,
									т/год
A	1	2	3	4	5	6	7	8	9
	6001-	6001-6002		пыление		1880	Взвешенные частицы (116)	2902(116)	0.54956
	6002		отрезная						
	6003	6003 07	Дрель	пыление			Взвешенные частицы (116)	2902(116)	0.00746
	6004	6004 08	Газосварочный	пыление		800	Железо (II, III) оксиды (в	0123(274)	0.0583
			аппарат				пересчете на железо) (
							диЖелезо триоксид, Железа		
							оксид) (274)		
							Марганец и его соединения	0143(327)	0.00088
							(в пересчете на марганца (
							IV) оксид) (327)		
							Азота (IV) диоксид (Азота	0301(4)	0.02496
							диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.00406
							оксид) (6)		
							Углерод оксид (Окись	0337(584)	0.0396
							углерода, Угарный газ) (
							584)		
	6005	6005 09	Пересыпка	пыление		8640	Пыль неорганическая,	2907(493)	0.22395
			измельченного				содержащая двуокись		
			стекла				кремния в %: более 70 (
							Динас) (493)		
	6006	6006 10	Бетономешалка	пыление		1000	Пыль неорганическая,	2908(494)	1.66
							содержащая двуокись		
							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
						1	зола, кремнезем, зола		

г. Уральск, ТОО "ЭКОЗапад"

Наименование	Номер источ-	Номер источ-	Наименование источника	Наименование	-	работы нника	Наименование	Код вредного вещества	Количество загрязняющего
производства номер цеха,	ника загряз	ника выде-	выделения загрязняющих	выпускаемой продукции	выделе	ния,час	загрязняющего вещества	(ЭНК,ПДК или ОБУВ) и	вещества, отходящего
участка	нения атм-ры	ления	веществ		в сутки	за год		наименование	от источника выделения, т/год
A	1	2	3	4	5	6	7	8	9
	6007		Склад строительных отходов	пыление		700	углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908(494)	0.65905
	6008- 6027		Емкости 1 м3 для временного хранения отработанного масла	пыление		175200	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	2735(716*)	0.001198
	6028-6047	6047 32-51	Емкости 1 м3 для временного хранения маслянистой смеси, эмульсии, нефтезагрязненн ых стоков	пыление		175200	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	2735(716*)	0.00119
	6048- 6097	6048- 6097 52-101	Емкости 200 л для временного хранения отработанного	пыление		438000	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	2735(716*)	0.00298

г. Уральск, ТОО "ЭКОЗапад"

Наименование производства	Номер источ- ника загряз	Номер источ- ника выде-	Наименование источника выделения загрязняющих	Наименование выпускаемой продукции	исто	работы чника ния,час	Наименование загрязняющего вещества	Код вредного вещества (ЭНК,ПДК или ОБУВ) и	Количество загрязняющего вещества, отходящего
номер цеха, участка	нения атм-ры	ления	веществ	продукции	в сутки	за год	Бещества	наименование	от источника выделения, т/год
A	1	2	3	4	5	6	7	8	9
	6098-	6098- 6099 102-	масла Емкость для хранения	пыление		17520	Сероводород (Дигидросульфид) (518)	0333(518)	0.00000718
		103	дизельного топлива				Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (2754(10)	0.002556
	6100	6100 104	Насос для перекачки	пыление		300	Сероводород (Дигидросульфид) (518)	0333(518)	0.0000336
			дизельного топлива НШ32				Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	2754(10)	0.01197
	6101	6101 105	Насос для перекачки отработанного масла НШ32	пыление		300	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	2735(716*)	0.006
	6102	6102 106	Склад готовой продукции (нейтральный грунт после обжига отходов	пыление		3000	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина,	2908(494)	1.90287
			в печи)				глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола		

г. Уральск, ТОО "ЭКОЗапад"

	Номер	Номер	Наименование		_	работы	***	Код вредного	Количество
Наименование	источ-	источ-		Наименование		ника	Наименование	вещества	загрязняющего
производства	ника	ника	выделения	выпускаемой	выделе	ния,час	загрязняющего	(ЭНК,ПДК	вещества,
номер цеха,	загряз	выде-	загрязняющих	продукции			вещества	или ОБУВ) и	отходящего
участка	нения	ления	веществ		В	за		наименование	от источнин
	атм-ры				сутки	год			выделения,
									т/год
A	1	2	3	4	5	6	7	8	9
							углей казахстанских		
							месторождений) (494)		
	6103		Выгрузка золы	пыление		1800	Пыль неорганическая,	2908(494)	0.1194
		107					содержащая двуокись		
							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6104-	6104-	Емкости для	пыление		219000	Сероводород (0333(518)	0.039459
	6128	6128 108	временного				Дигидросульфид) (518)		
			хранения жидких				Алканы С12-19 /в пересчете	2754(10)	0.000190
			нефтяных				на С/ (Углеводороды		
			отходов				предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		

Примечание: В графе 8 в скобках (без "*") указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК), со "*" указан порядковый номер 3В в таблице 2 вышеуказанного Приложения (список ОБУВ).

г. Уральск, ТОО "ЭКОЗапад"

г. Ураль	ск, ТОО "	ЭКОЗапад"							
Номер		раметры	*	етры газовоздушной с		Код загряз-		Количество за	
	источн.за	грязнен.	I	на выходе источника з	агрязнения			веществ, выбр	
ника		1			1	вещества		в атмос	феру
заг-	Высота	Диаметр,	Скорость	Объемный	Темпе-	(ЭНК, ПДК	Наименование ЗВ		
ряз-	M	размер	м/с		ратура,	или ОБУВ)		Максимальное,	Суммарное,
нения		сечения		м3/с	С			г/с	т/год
		устья, м							
1	2	3	4	5	6	7	7a	8	9
					 Пı	 роизводственная ба	 3a		
0001	3	0.3	10.9	0.7704756		0301 (4)	Азота (IV) диоксид (Азота	0.11429	3.55452
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.01031	0.32053
							оксид) (6)		
						0330 (516)	Сера диоксид (Ангидрид	0.018	0.5602
							сернистый, Сернистый газ,		
						0227 (504)	Сера (IV) оксид) (516)	0.12005	4.00521
						0337 (584)	Углерод оксид (Окись	0.13985	4.09521
							углерода, Угарный газ) (584)		
						2902 (116)	Взвешенные частицы (116)	0.0005777	0.011088
0002	3	0.3	10.9	0.7704756		0301 (4)	Азота (IV) диоксид (Азота	0.0003777	0.18057
0002		0.5	10.5	0.770+750		0301 (4)	диоксид) (4)	0.00731	0.10037
						0304 (6)	Азот (II) оксид (Азота	0.00121	0.02934
							оксид) (6)	0.00121	0.0250
						0328 (583)	Углерод (Сажа, Углерод	0.0010365	0.025
						, ,	черный) (583)		
						0330 (516)	Сера диоксид (Ангидрид	0.0245	0.5913
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.05983	1.4431
1							углерода, Угарный газ) (
0002	_		40.0	0.000		2002 (116)	584)	0.044400000	2 4000 7200
0003	3	0.3	10.9	0.7704756		2902 (116)	Взвешенные частицы (116)	0.266133333	2.40095232

г. Уральск, ТОО "ЭКОЗапад"

1	ьск, ТОО "ЭК 2	3	4	5	6	7	7a	8	9
						2908 (494)	Пыль неорганическая,	0.288311111	2.60103168
							содержащая двуокись кремния		
							в %: 70-20 (шамот, цемент,		
							пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских		
							месторождений) (494)		
0004	3	0.1	3.8	0.0298451		2902 (116)	Взвешенные частицы (116)	0.341537778	3.081222144
						2931 (485)	Пыль асбестсодержащая (с	0.144155556	1.30051584
							содержанием хризотиласбеста		
							до 10%) /по асбесту/ (485)		
						2978 (1090*)	Пыль тонко измельченного	0.067642222	0.610242048
							резинового вулканизата из		
							отходов подошвенных резин (1090*)		
6001- 6002	2					2902 (116)	Взвешенные частицы (116)	0.0812	0.54956
6003	2					2902 (116)	Взвешенные частицы (116)	0.0014	0.00746
6004	2					0123 (274)	Железо (II, III) оксиды (в	0.02025	0.0583
							пересчете на железо) (
							диЖелезо триоксид, Железа		
							оксид) (274)		
						0143 (327)	Марганец и его соединения (0.0003056	0.00088
							в пересчете на марганца (
							IV) оксид) (327)		
						0301 (4)	Азота (IV) диоксид (Азота	0.00867	0.02496
							диоксид) (4)		
						0304 (6)	Азот (II) оксид (Азота	0.001408	0.00406
							оксид) (6)		
						0337 (584)	Углерод оксид (Окись	0.01375	0.0396
							углерода, Угарный газ) (584)		
6005	2					2907 (493)	Пыль неорганическая,	0.018	0.22395
							содержащая двуокись кремния		
							в %: более 70 (Динас) (493)		

г. Уральск, ТОО "ЭКОЗапад"

1	2	3	4	5	6	7	7a	8	9
6006	2					2908 (494)	Пыль неорганическая,	0.462	1.66
							содержащая двуокись кремния		
							в %: 70-20 (шамот, цемент,		
							пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских месторождений) (494)		
6007	2					2908 (494)	Пыль неорганическая,	0.2067	0.65905
							содержащая двуокись кремния		
							в %: 70-20 (шамот, цемент,		
							пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских		
							месторождений) (494)		
6008-	2					2735 (716*)	Масло минеральное нефтяное	0.000144	0.001198
6027							(веретенное, машинное,		
							цилиндровое и др.) (716*)		
6028-	2					2735 (716*)	Масло минеральное нефтяное	0.000144	0.00119
6047							(веретенное, машинное,		
							цилиндровое и др.) (716*)		
6048-	2					2735 (716*)	Масло минеральное нефтяное	0.000144	0.00298
6097							(веретенное, машинное,		
							цилиндровое и др.) (716*)		
6098-	2					0333 (518)	Сероводород (0.000000171	0.00000718
6099							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0000608	0.002556
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
6100	2					0333 (518)	Сероводород (0.0000311	0.0000336

г. ураль	ск, ТОО "ЭЬ								
1	2	3	4	5	6	7	7a	8	9
						2754 (10)	Дигидросульфид) (518) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);	0.01108	0.01197
6101	2					2735 (716*)	Растворитель РПК-265П) (10) Масло минеральное нефтяное (веретенное, машинное,	0.00556	0.006
6102	2					2908 (494)	цилиндровое и др.) (716*) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного	0.4282	1.90287
6103	2					2908 (494)	производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая,	0.0012	0.11944
							содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный		
6104						0222 (519)	шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.0228848	0.0204507
6104- 6128	2					0333 (518)	Сероводород (Дигидросульфид) (518)	0.0238848	0.0394597
3120						2754 (10)	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.0001152	0.0001903

г. Уральск, ТОО "ЭКОЗапад"

1 2 3 4 5 6 7 7 8 8									9
Примеч	ание: В гр	афе 7 в скобках	(без "*") уг	казан порядковый номе	ер ЗВ в табл	пице 1 Приложения	1 к Приказу Министра		
здравоо	хранения	Республики Каз	вахстан от 2 а	вгуста 2022 года № ЌI	РДСМ-70 (список ПДК), со "*	" указан порядковый номер ЗВ в		
таблине	2 вышеук	азанного Прил	эжения (спис	ок ОБУВ).					

3. Показатели работы пылегазоочистного оборудования (ПГО) на 2026 - 2035 года

г. Актау, ТОО "ЭКО-ЗАПАД "

Номер	Наименование и тип	КПД аппаратов, %		Код	Коэффициент	,
источника	пылегазоулавливающего			загрязняющего	обеспеченности	
выделения	оборудования	Проектный	Фактичес-	вещества по	K(1),%	
			кий	котор.проис-		
				ходит очистка		
1	2	3	4	5	6	
	Произв	одственная ба	за			
0001 01	Фильтр грубой очистки	92	92	2902	1	100

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026-2035 года

г. Уральск, ТОО "ЭКОЗапад"

Код	Наименование	Количество	В том ч	нисле	Из п	оступивших на очи	стку	Всего
заг- ряз- няющ	паименование загрязняющего вещества	загрязняющих веществ отходящих от	выбрасыва- ется без	поступает на	выброшено в	уловлено и с	безврежено	выброшено в атмосферу
веще		источника	очистки	очистку	атмосферу	фактически	из них ути-	
ства		выделения					лизировано	
1	2	3	4	5	6	7	8	9
	ВСЕГО:	26.248048812	26.109448812	0.1386	0.011088	0.127512	0	26.120536812
	в том числе:							
	Твердые:	15.339074032	15.200474032	0.1386	0.011088	0.127512	0	15.211562032
	из них:							
0123	Железо (II, III) оксиды (в	0.0583	0.0583	0	0	0	0	0.0583
	пересчете на железо) (
	диЖелезо триоксид, Железа							
	оксид) (274)							
	Марганец и его соединения (в	0.00088	0.00088	0	0	0	0	0.00088
	пересчете на марганца (IV)							
	оксид) (327)							
	Углерод (Сажа, Углерод	0.025	0.025	0	0	0	0	0.025
	черный) (583)							
	Взвешенные частицы (116)	6.177794464	6.039194464	0.1386	0.011088	0.127512	0	6.050282464
	Пыль неорганическая,	0.22395	0.22395	0	0	0	0	0.22395
	содержащая двуокись кремния в							
	%: более 70 (Динас) (493)					_	_	
1	Пыль неорганическая,	6.94239168	6.94239168	0	0	0	0	6.94239168
	содержащая двуокись кремния в							
	%: 70-20 (шамот, цемент, пыль							
	цементного производства -							
	глина, глинистый сланец,							
	доменный шлак, песок,							
	клинкер, зола, кремнезем,							
	зола углей казахстанских							
	месторождений) (494)							

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026-2035 года

г. Уральск, ТОО "ЭКОЗапад"

Код заг-	Наименование	Количество загрязняющих	В том	числе	Из 1	поступивших на очи	стку	Всего выброшено
ряз- няющ	загрязняющего вещества	веществ отходящих от	выбрасыва- ется без	поступает на	выброшено в	уловлено и с	обезврежено	в в атмосферу
веще ства		источника выделения	очистки	очистку	атмосферу	фактически	из них ути- лизировано	
1	2	3	4	5	6	7	8	9
2931	Пыль асбестсодержащая (с	1.30051584	1.30051584	0	0	0	0	1.30051584
2978	содержанием хризотиласбеста до 10%) /по асбесту/ (485) Пыль тонко измельченного	0.610242048	0.610242048	0	0	0	0	0.610242048
	резинового вулканизата из отходов подошвенных резин (1090*)							
	Газообразные, жидкие:	10.90897478	10.90897478	0	0	0	0	10.90897478
0301	из них: Азота (IV) диоксид (Азота диоксид) (4)	3.76005	3.76005	0	0	0	0	3.76005
0304	Азот (II) оксид (Азота оксид) (6)	0.35393	0.35393	0	0	0	0	0.35393
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1.1515	1.1515	0	0	0	0	1.1515
0333	Сероводород (Дигидросульфид) (518)	0.03950048	0.03950048	0	0	0	0	0.03950048
	Углерод оксид (Окись углерода, Угарный газ) (584)	5.57791	5.57791	0	0	0	0	5.57791
	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) (716*)	0.011368	0.011368	0	0	0	0	0.011368
2754	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.0147163	0.0147163	0	0	0	0	0.0147163

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

'	02	
		Приложение №5
Документы (письма) для разрабо	отки и согласования п	роекта НДВ

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу от источников производственной базы ТОО «ЭКО-Запад»

Товарищество с ограниченной ответственностью «ЭКО- ЗАПАД»

БИН: 240640002778

Юр. Адрес: Республика Казахстан,

Западно- Казахстанская область, город Уральск,

ул. Сундеткали Ескалиева, дом 58

Тел: +7 705 171 1888 E-mail: ekozapad@bk.ru

Шығыс/Исход.№ 9 « 15 » 05 2025 ж./г.

> Директору TOO «Audit Ecology» Алманиязову Г. И.

ТОО «ЭКО-ЗАПАД» направляет Вам исходные данные для разработки Отчета о возможных воздействиях на окружающую среду и проекта Обоснования (предварительного) размера СЗЗ.

Приложение: Исходные данные

Директор ТОО «ЭКО- ЗАПАД»

Ташпенов Г.Ж.

«ҚАЗГИДРОМЕТ» РМК

РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН
РЕСПУБЛИКАСЫ
ЭКОЛОГИЯ,
ЖӘНЕ ТАБИҒИ
РЕСУРСТАР
МИНИСТРЛІГІ

МИНИСТЕРСТВО ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН

16.05.2025

- 1. Город Уральск
- 2. Адрес Западно-Казахстанская область, Уральск
- 4. Организация, запрашивающая фон Too \"Audit-ecology\"
- 5. Объект, для которого устанавливается фон ТОО \"ЭКо-Запад\"
- 6. Разрабатываемый проект Отчет о возможны воздействиях
- 7. Перечень вредных веществ, по которым устанавливается фон: **Азота диоксид**, **Диоксид серы**, **Углерода оксид**, **Азота оксид**, **Углеводороды**,

Значения существующих фоновых концентраций

		Концентрация Сф - мг/м ³							
Номер поста	Примесь	Штиль 0-2	Скорость ветра (3 - U*) м/сек						
		м/сек	север	восток	юг	запад			
	Азота диоксид	0.0582	0.0517	0.0512	0.0393	0.035			
M-2 E	Диоксид серы	0.0079	0.0112	0.0117	0.0124	0.0115			
№3,5	Углерода оксид	5.6074	6.505	2.7503	5.8014	6.2571			
	Азота оксид	0.0187	0.0178	0.0174	0.0127	0.0109			

Вышеуказанные фоновые концентрации рассчитаны на основании данных наблюдений за 2022-2024 годы.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ «ҚАЗГИДРОМЕТ» шаруашылық жүргізу құқығындағы РЕСПУБЛИКАЛЫҚ МЕМЛЕКЕТТІК КӘСІПОРНЫНЫҢ БАТЫС ҚАЗАҚСТАН ОБЛЫСЫ БОЙЫНША ФИЛИАЛЫ

МИНИСТЕРСТВО ЭКОЛОГИИ
И ПРИРОДНЫХ РЕСУРСОВ
РЕСПУБЛИКИ КАЗАХСТАН
ФИЛИАЛ РЕСПУБЛИКАНСКОГО
ГОСУДАРСТВЕННОГО ПРЕДПРИЯТИЯ
на праве хозяйственного ведения
«КАЗГИДРОМЕТ»
ПО ЗАПАДНО-КАЗАХСТАНСКОЙ
ОБЛАСТИ

090009 Орал қ. Жәңгір хан к-сі, 61/1 тел: 8 (7112) 52-20-21; 52-19-95 e-mail: info_zko@meteo.kz 090009 г. Уральск, ул. Жангир хана, 61/1 тел: 8 (7112) 52-20-21, 52-19-95 e-mail: info_zko@meteo.kz

Исходящий номер:25-4-1-09/605 Уникальный код:E052319E526E4A5F

Исходящая дата:11.12.2024

Директору TOO «Audit Ecology» Алманиязову Г.И.

На Ваш запрос №272 от 05 декабря 2024 года предоставляет метеорологическую информацию по метеостанциям Уральск, Аксай за 2021-2023гг.

Приложение 2 листа.

Директор Т. Шапанов

Издатель ЭЦП - ҰЛТТЫҚ КУӘЛАНДЫРУШЫ ОРТАЛЫҚ (GOST) 2022, ШАПАНОВ ТІЛЕГЕН, Филиал Республиканского государственного предприятия на праве хозяйственного ведения "Казгидромет" Министерства экологии и природных ресурсов Республики Казахстан по Западно-Казахстанской области, ВІN120941001476

Исп: Г. Сидекова Тел: 52-20-21

https://seddoc.kazhydromet.kz/plfeF1

Данные по метеостанции Уральск за 2021-2023 год

Cpe,	дняя годовая повторяемость (в %) направления ветр	оа и штилей
5	С	11
6	СВ	13
7	В	11
8	ЮВ	17
9	Ю	14
10	Ю3	12
11	3	11
12	C3	11
13	штиль	14
14	Скорость ветра (И *) по средним многолетним	7
	данным,	
	Повторяемость превышения, которой составляет	
	5 %, м/сек	
15	Средняя годовая скорость ветра, м/с	2,4
16	Максимальная скорость ветра за год, м/с	19

Роза ветров. Повторяемость (%) направления ветра и штилей

Румб	С	СВ	В	ЮВ	Ю	Ю3	3	C3
Преобладающее	11	13	11	17	14	12	11	11
направление								

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

<u>03.10.2018 года</u> <u>02022Р</u>

Выдана Товарищество с ограниченной ответственностью "Audit Ecology"

030000, Республика Казахстан, Актюбинская область, Актобе Г.А., г.Актобе,

улица Жастар, дом№ 16., БИН: 180840031539

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес -идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия),

индивидуальный идентификационный номер физического лица)

на занятие Выдача лицензии на выполнение работ и оказание услуг в области

охраны окружающей среды

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

Примечание Неотчуждаемая, класс 1

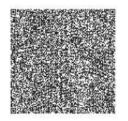
(отчуждаемость, класс разрешения)

Лицензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства

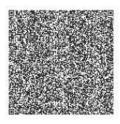
экологического регулирования и контроля министерства энергетики Республики Казахстан» . Министерство энергетики

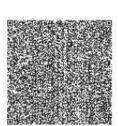
Республики Казахстан.

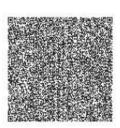
(полное наименование лицензиара)


Руководитель (уполномоченное лицо) АЛИМБАЕВ АЗАМАТ БАЙМУРЗИНОВИЧ


(фамилия, имя, отчество (в случае наличия)


Дата первичной выдачи


Срок действия лицензии


Место выдачи <u>г.Астана</u>

18018261 Страница 1 из 2

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии 02022Р

Дата выдачи лицензии 03.10.2018 год

Подвид(ы) лицензируемого вида деятельности:

- Экологический аудит для 1 категории хозяйственной и иной деятельности
- -Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казах стан «О разрешениях и уведомпениях»)

Лицензиат Товарищество с ограниченной ответственностью "Audit Ecology"

030000, Республика Казахстан, Актю бинская область, Актобе Г.А., г.Актобе, улица Жастар, дом № 16., БИН: 180840031539

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филмала или представительства иностранного юридического лица – в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в спучае напичия), индивидуальный идентификационный номер физического лица)

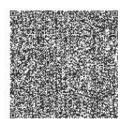
Производственная база г. Актобе, ул. Жастар, 16

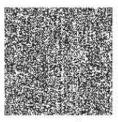
(местонахождение)

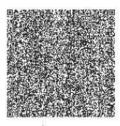
Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомпениях»)

Лицензиар

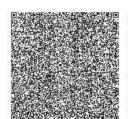

Республиканское государственное учреждение экологического регулирования и контроля Министерства энергетики Республики Казахстан» . Министерство энергетики Республики Казахстан.

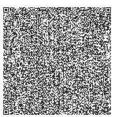

(попное наименование органа, выдавшего приложение к лицензии)

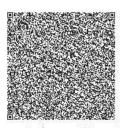

Руководитель (уполномоченное лицо)

АЛИМБАЕВ АЗАМАТ БАЙМУРЗИНОВИЧ

(фамилия, имя, отчество (в случае наличия)


Номер приложения 002


Срок действия


Дата выдачи приложения 03.10.2018

Место выдачи

г.Астана

Οτα νεχική αθαστρουμα κεχική κοιουκοτη στρασμέζηματο νοκτούς την επικ Κριωςτόν Ροτημανός από του 2003 πατεκα 7 μας ορχακα δώσα 7 δαίασταση 1 τροπακασια συθνού κατα με το πακαστάστα καταστάστα με το παραστάστα με το παραστάστα