ПРОЕКТ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ (НДС) ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ СО СТОЧНЫМИ ВОДАМИ ФИЛЬТРАТА ДЛЯ ПОЛИГОНА ТБО В Г.КОНАЕВ АЛМАТИНСКОЙ ОБЛАСТИ

ИП «Ecoland»

Алимканова В.Ж.

АННОТАЦИЯ

В данной работе представлены нормативы сбросов загрязняющих веществ, поступающих в пруд-накопитель со сточными водами фильтрата от полигона ТБО в г.Конаев на период 2026-2035 гг., установленные в соответствии с рабочим проектом «Строительство полигона ТБО с сортировочной линией в г. Конаев Алматинской области».

Строительство полигона ТБО предусмотрено в 2026 году.

Ранее нормативы НДС для данного объекта не разрабатывались.

Данный проект нормативов ДС разработан для одного выпуска сточных вод:

-Выпуск сточных вод фильтрата №1. Предназначен для отведения сточных вод фильтрата от в пруд-накопитель после предварительной очистки.

Нормативы сброса установлены для 18 показателей: БПК5, ХПК, сульфаты, хлориды, железо, марганец, цинк, аммиак по азоту, мышьяк, свинец, кобальт, кадмий, никель, хром 3+, медь, ртуть, фенол, взвешенные вещества.

СОДЕРЖАНИЕ

	Cr_1	p.
	Введение	5
1	Общие сведения об объекте	6
2	Характеристика предприятия как источника загрязнения приемника	_
2.1	сточных вод	7
	состав сточных вод	7
2.2	Системы водоснабжения объекта	13
2.3	Системы водоотведения предприятия	16
2.4	Характеристика очистных сооружений объекта	19
2.5	Оценка степени соответствия применяемой технологии производства и методов очистки сточных вод передовому научно-техническому уровню в	
	стране и за рубежом	25
2.6	Перечень загрязняющих веществ в составе сточных вод объекта	26
2.7	Сведения о количестве сточных вод, сброшенных в водный объект или	
	переданные другим операторам	27
2.8	Баланс водопотребления и водоотведения	28
2.9	Сведения о конструкции водовыпускного устройства	30
3	Характеристика приемника сточных вод	31
3.1	Наименование и характеристика объекта - приемника сточных вод	31
3.2	Метеорологические характеристики района размещения объекта	31
3.3	Инженерно-геологические и гидрогеологические условия размещения пруда-накопителя	32
3.4	Данные о гидрологическом режиме водного объекта и по фоновому составу воды	33
4	Нормативы сбросов загрязняющих веществ по объекту	34
4.1	Общие зависимости для расчета нормативов ДС	34
5	Мероприятия по предупреждению аварийного сброса сточных вод	38
6	Контроль за соблюдением нормативов ДС	39
6.1	Методы учета потребления воды и отведения сточных вод	39
6.2	Методы контроля за качеством сточных вод предприятия	39
	Список литературы	42
	Приложения	43

ВВЕДЕНИЕ

В данной работе представлены нормативы сброса загрязняющих веществ со сточными водами фильтрата от полигона ТБО в г.Конаев на период 2026-2035гг.

Проект нормативов допустимых сбросов (далее по тексту проект НДС) разработан в связи с разработкой рабочего проекта «Строительство полигона ТБО с сортировочной линией в г. Конаев Алматинской области».

Основными нормативными документами для разработки проекта явились: «Экологический кодекс Республики Казахстан» [1], «Методика определения нормативов эмиссий в окружающую среду», утв. Приказом Министра экологии, геологии и природных ресурсов РК №63 от 10.03.2021 г. [2].

1. ОБЩИЕ СВЕДЕНИЯ ОБ ОБЪЕКТЕ

Участок расположения полигона ТБО расположен в Алматинской области в 25 км северо-восточнее от г.Конаев и в 11 км западнее от с.Шенгельды. Земельный участок с кадастровым номером №03-055-159-556, имеет площадь 30 га. В состав полигона входят: административно-бытовой корпус; КПП; навес с мастерской; насосная станция водоснабжения и пожаротушения; резервуары противопожарного запаса воды; локальные ливневые очистные сооружения; блочно-модульная трансформаторная подстанция; блочно-модульная котельная; автомобильные весы; контрольнодезинфицирующая ванна; площадка мойки спецтехники; площадка стоянки спецтехники; площадка для передвижной АЗС; траншеи захоронения ТБО; пруд-накопитель очищенных сточных вод (техническая вода); пруд-накопитель фильтрата; ограждение; прожекторная мачта; мониторинговая скважина; сортировочный комплекс; ДЭС; ГРПШ; подпорная стенка. Производительность полигона — $100\ 000\ \text{т/год}$.

После прохождения очистки сточные воды фильтрата поступают в пруднакопитель по выпуску №1, предназначенный для хранения очищенной воды, которая затем используется для увлажнения отходов в пожароопасные периоды.

Ситуационная карта-схема места расположения полигона ТБО представлена в приложении 1.

2. ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ ПРИЕМНИКА СТОЧНЫХ ВОД

2.1 Краткая характеристика технологии производства, технологического оборудования, используемого сырья и материалов, влияющих на качество и состав сточных вод

На проектируемом полигоне ТБО предусмотрен сбор, сортировка, хранение и изоляция твердых бытовых отходов.

Полигон ТБО - комплекс природоохранных зданий и сооружений, выполняющий функции централизованного приема, обезвреживания ТБО, утилизации препятствующий попаданию опасных веществ В окружающую природную среду, загрязнению почвы, атмосферы, грунтовых и поверхностных вод, препятствующие распространению болезнетворным организмам, грызунам и насекомым.

Класс проектируемого полигона 3 – полигон твердых бытовых отходов.

Схема полигона твердых бытовых согласно пункту 7.8 СН РК 1.04-15-2013 состоит из следующих элементов:

- подъездная дорога,
- участок складирования ТБО,
- административно-хозяйственная зона,
- участок для размещения производства по сортировке отходов,
- коммуникации,
- зона кавальер (отвал грунта для изоляции слоев),
- санитарно-защитная зона.

Участок складирования ТБО, в том числе кавальеры, очистные сооружения и подъездные дороги к зонам складирования занимает 70-75% площади полигона. Хранение предусмотрено картовым способом. Участок складирования планируется эксплуатировать в течении 15 лет.

Основными сооружениями на территории проектируемого полигона твердых бытовых отходов являются:

1. Административно-бытовой корпус;

- 2. КПП с участком радиационного контроля;
- 3. Навес с мастерской;
- 4. Насосная станция водоснабжения и пожаротушения;
- 5. Резервуары противопожарного запаса воды;
- 6. Локальные ливневые очистные сооружения;
- 7. Блочно-модульная трансформаторная подстанция;
- 8. Блочно-модульная котельная;
- 9. Автомобильные весы;
- 10. Контрольно-дезинфицирующая ванна;
- 11. Площадка мойки спецтехники;
- 12. Площадка стоянки спецтехники;
- 13. Площадка для передвижной АЗС;
- 14. Траншеи захоронения ТБО;
- 15. Пруд-накопитель очищенных сточных вод (техническая вода);
- 16. Пруд-накопитель фильтрата;
- 17. Ограждение;
- 18. Прожекторная мачта;
- 19. Мониторинговая скважина;
- 20. Сортировочный комплекс;
- 21. ДЭС;
- 22. ГРПШ.

Мусоровоз проезжает через контрольно-пропускной пункт с участком радиационного, где происходит визуальный и документальный контроль на предмет его пропуска на территорию мусоросортировочного комплекса. Радиационный контроль на превышение допустимых норм осуществляется на КПП оператором, путем проведения замера уровня радиационного фона отходов, с использованием стационарной системы радиационного контроля, а также ручного радиационного оборудования (в случае необходимости).

Стационарная система радиационного контроля состоит из стоек с детекторами и блоками электроники и пульта управления. Если уровень радиационного фона ТБО превышает допустимые значения, мусоровоз отправляется на площадку, где будет ожидать сотрудников специальных служб и эвакуации мусоровоза с территории.

Далее транспорт направляется на весовой контроль. Заезд автомобилей на весовой комплекс осуществляется, если уровень радиационного фона ТБО не превышает допустимые значения. Весы оснащены системой автоматического взвешивания и фиксации результатов взвешивания с дальнейшей передачей данных в систему учета предприятия.

Далее ТБО транспортируются в зону разгрузки сортировочного цеха. Где осуществляется сортировка и прессование сырья для вторичного применения. Оставшиеся «хвосты» подаются на площадки накопители откуда в дальнейшем транспортируются на площадку захоронения.

Согласно нормативным требованиям, В сортировочном цехе не связанные с утилизацией производятся работы, или использованием \mathbf{C} радиоактивных отходов. целью исключения попадания на мусоросортировочную станцию источников радиоактивного излучения на КПП намечено проводить дозиметрический контроль поступающих отходов.

На выезде из зоны складирования ТБО расположена контрольнодезинфицирующая зона с устройством железобетонной ванны для дезинфекции колес мусоровозов.

Выгрузка ТБО происходит рядом с приемным цепным конвейером на площадке возле приямка. Перед подачей ТБО на конвейер производится отбор крупногабаритных изделий (на пример: части диванов, холодильников и т.п.), которые могут затормозить работу самого конвейера или дальнейших участков линии сортировки ТБО, что может привести к временной остановке всего МСК. После отбраковки габаритных отходов, остальные подаются в приямок подающего цепного конвейера. Эта работа может выполняться техникой с

гидравлическим захватом, ковшовым погрузчиком или другими соответствующими машинами.

С приемного цепного конвейера ТБО подаются на предварительную сортировку в утепленную кабину на 6 постов, где установлен ленточный конвейер предварительной сортировки, где отбирают картон, стекло, ветошь.

С предварительной сортировки оставшееся на конвейере ТБО подаются во вращающийся сепаратор-грохот барабанного типа, установленного на платформе. В грохоте производится разрыв полиэтиленовых пакетов и через боковую стенку производится отсев мелкого органического мусора, который падает на перегрузочный конвейер и далее посредством хвостового перегрузочного конвейера отводятся в сторону к соответствующему бункеру в середине данного конвейера смонтирован магнитный сепаратор.

Остальной мусор выходит с торца грохота и попадает на утеплённую платформу основной сортировки 20 постов, смонтированную на эстакаде.

Внутри утеплённой платформы установлен ленточный конвейер основной сортировки в конце которого смонтирован магнитный сепаратор на эстакаде. Всё, что отловил магнитный сепаратор попадает в бункер для сбора металла.

Всё, что прошло мимо магнитного сепаратора попадает на хвостовой перегрузочный конвейер, а с него на реверсивный отводящий конвейер далее в бункера сброса неотсортированных хвостов.

Рабочие, стоя у ленточного конвейера основной сортировки, отбирают определённые материалы пригодные для вторичной переработки и сбрасывают через люки в соответствующие корзины. Далее отсортированное сырье попадает в приёмную часть цепного конвейера, подающего в пресс. С конвейера материалы поступают в установленный на эстакаде автоматический пресс компактор.

В этом прессе материалы пригодные для вторичной переработки (такие как: картон, макулатура, полистирол, алюминий, ПЭТ, ПНД, ПВД и т.д.)

спрессовывается и автоматически перевязывается проволокой в плотные кипы весом от 300 до 1000 кг.

В соответствии с пунктом 8.3 СН РК 1.04-15-2013*, для предохранения грунтов и грунтовых вод от вредного воздействия складируемых отходов предусмотрена гидроизоляция основания и откосов карт полигона, выполняемая в виде противофильтрационного экрана.

Для сбора вод атмосферных осадков, выпадающих в карты объекта размещения отходов при их эксплуатации и вымывающих из отходов вредные вещества, предусмотрена дренажная сеть K4.

Для обеспечения функционирования системы дренажа и удаления фильтрата запроектированы следующие инженерные сети и сооружения:

- перфорированные дренажные трубы (дрен), предназначенные для сбора фильтрата;
- смотровой колодец служит наблюдения ДЛЯ за работоспособностью дренажной системы, позволяет контролировать уровень И качество фильтрата, также обеспечивает направление потока в дренажный коллектор.
- самотечный дренажный коллектор для транспортировки фильтрата к насосной станции;
- насосная станция фильтрата для перекачки жидкости;
- подземный напорный фильтратопровод для транспортировки фильтрата в пруд-накопитель;
- пруд-накопитель (усреднитель) фильтрата для временного хранения и выравнивания состава фильтрата;
- локальные ливневые очистные сооружения для обработки стока;
- пруд-накопитель условно-очищенных сточных вод;
- канализационная насосная станция (КНС) для перекачки условноочищенных сточных вод на дальнейшую обработку.

Дно карты полигона устроено с уклоном 0,005 в сторону вспомогательной (хозяйственной) зоны, где предусмотрены дренажные системы. В данной зоне уложены перфорированные трубы диаметром DN200, обернутые геотекстилем и размещённые в дренажных канавах, полностью заполненных щебнем фракции 20–60 мм.

Для исключения попадания ила и мусора в трубу с перфорацией после укладки предусматривается обмотка в один слой ПЭ-микроволокном внахлест.

Дренажные трубы уложены в дренажных канавах, в восточном и западном направлениях, на расстоянии 30 м от нижней границы откоса. Расстояние между дренажными трубами составляет 52 м. Укладка труб выполняется с уклоном 0,005 в сторону сборных дренажных колодцев №1−7.

Фильтрат из колодца поступает по сборному коллектору DN300 (без перфорации), уложенному с уклоном 0,004 в канализационную насосную станцию, откуда перекачивается в регулирующий пруд, накопитель фильтрата (усреднитель).

На поворотах дренажного коллектора устанавливаются смотровые колодцы диаметром 1,5 м.

В канализационной насосной станции (КНС-3) установлено два погружных насоса (1 рабочий, 1 резервный), производительностью 30 м 3 /ч, при напоре 8 м.

Канализационная насосная станция №3 представляет собой стеклопластиковую емкость диаметром 1600 мм, со смонтированной системой трубопроводов, запорной арматурой и элементами обслуживания. Насосная станция комплектуется двумя (1 рабочий и 1 резервный) погружными насосами производительностью $30 \text{ м}^3/\text{ч}$ при развиваемом напоре 8 м.

Из КНС-3 фильтрат по напорному трубопроводу DN90 перекачивается в регулирующий пруд (усреднитель).

Напорный трубопровод выполнен из полиэтиленовых труб ПЭ 100 SDR 17 по ГОСТ 18599-2001 диаметром Ø90 мм. Длина напорной трассы составляет 15 м.

Максимальный суточный расчетный объем фильтрационных вод при ливневых осадках составляет 610,55 м³.

2.2 Системы водоснабжения объекта

Для обеспечения водой проектируемого объекта на площадке запроектированы следующие сети и сооружения водоснабжения:

- внеплощадочные сети водоснабжения (хозяйственно-питьевой) В1;
- внутриплощадочный хозяйственно-питьевой водопровод В1;
- внутриплощадочный противопожарный водопровод с пожарными гидрантами B2;
- резервуары противопожарного запаса воды, $V=170 \text{ м}^3 2 \text{ шт.}$;
- подземная прямоугольная железобетонная камера для насосной установки пожаротушения;
- колодцы водопроводные для установки в них задвижек и оборудования, обеспечивающего учет расхода потребляемой воды, выделение ремонтных участков водопроводной сети.

Источником проектируемого водоснабжения будут являться внешние водопроводные сети с рабочим давлением в точке врезки не менее 2,0 атм.

Подача питьевой воды на проектируемую площадку В 2×170 M^3 от источника противопожарные резервуары водоснабжения осуществляется по внеплощадочной сети длиной 1200 м, выполненной из напорных, полиэтиленовых труб PE100 SDR17 диаметром 63×3,8 мм по ГОСТ 18599-2001.

2.2.1 Хозпитьевое водоснабжение

В соответствии с техническими условиями на водоснабжение № 333 от 19.04.2025 г., источником водоснабжения для нужд объекта — противопожарных, производственных и хозяйственно-бытовых — принят

существующий хозяйственно-питьевой водопровод, расположенный за пределами проектируемой территории.

Для обеспечения горячего водоснабжения в зданиях предусмотрена установка автономных электроводонагревателей.

2.2.2 Противопожарное водоснабжение

На проектируемой площадке, в соответствии с требованиями нормативных документов РК и результатами расчётов, предусмотрено устройство наружного и внутреннего противопожарного водоснабжения.

Подача противопожарной воды осуществляется с помощью проектируемой системы пожаротушения, включающей в себя резервуары запаса воды и пожарную насосную станцию.

Для хранения необходимого неприкосновенного запаса противопожарной воды предусмотрено устройство двух подземных железобетонных резервуаров, каждый объёмом 170м³. Габаритные размеры одного резервуара: 8×6×4 м (высота).

Для обеспечения требуемого расхода и напора воды предусмотрена подземная насосная камера из железобетона прямоугольной формы, размерами 2,5×2,5 м, размещённая вблизи резервуаров.

В насосной камере установлена пожарная насосная станция типа GFSK20/V-24-15-0711.1.1, включающая в себя следующий комплект оборудования: два насоса (1 рабочий + 1 резервный); всасывающий и напорный коллекторы; расширительный бак; запорную арматуру; монтажную раму; шкаф управления с системой плавного пуска.

Технические характеристики насосной станции:

- производительность: 54 м³/ч;
- напор: 30 м;
- электропитание: $\sim 3 \times 400 B$;
- установленная мощность: 2 × 7,5 кВт.

2.2.3 Резервуары противопожарного запаса воды

В рабочем проекте предусмотрены два подземных железобетонных резервуара для воды - 2 шт.

Резервуары относятся: по степени обеспеченности подачи воды - I категории; класс ответственности - II; степень огнестойкости не нормируется.

Резервуары представляют собой монолитную железобетонную емкость прямоугольную в плане, заглубленную в грунт частично, с обваловкой грунтом, обеспечивающим теплоизоляцию.

Резервуары для воды из железобетона, объемом 170 м³, имеют размеры в плане 8×6 м каждый, высоту до низа балки перекрытия - 3,65 м. Максимальный уровень воды принят 3,5 м, полезный объем 168 м³. За относительную отметку 0,000 принята отметка верха днища резервуара. Днище резервуаров имеет наклонный участок в сторону приямка с уклоном 0,005.

В резервуаре хранится вода с температурой не боле 30 °C.

Заполнение и восстановление запаса воды в резервуарах предусмотрено от проектируемого колодца В1-2, в котором установлена запорная арматура DN 50 и головка соединительная муфтовая ГМ-50, для присоединения пожарного рукава для подачи воды в резервуары.

2.3 Системы водоотведения объекта

2.3.1 Хоз-бытовая канализация

Системы хозяйственно-бытовой канализации предназначены для отвода сточных вод от санитарно-технических приборов, установленных в зданиях.

Бытовые сточные воды отводятся по проектируемой наружной канализационной сети в колодец К1-5. В этот же колодец предусматривается поступление условно-очищенных сточных вод из пруда-накопителя, по мере его переполнения.

Далее совмещённый поток стоков поступает в канализационную насосную станцию (КНС), откуда перекачивается в существующую систему бытовой канализации, в соответствии с техническими условиями.

2.3.2 Дренажная сеть фильтрата К4

В соответствии с пунктом 8.3 СН РК 1.04-15-2013*, для предохранения грунтов и грунтовых вод от вредного воздействия складируемых отходов предусмотрена гидроизоляция основания и откосов карт полигона, выполняемая в виде противофильтрационного экрана.

Для сбора вод атмосферных осадков, выпадающих в карты объекта размещения отходов при их эксплуатации и вымывающих из отходов вредные вещества, предусмотрена дренажная сеть K4.

Для обеспечения функционирования системы дренажа и удаления фильтрата запроектированы следующие инженерные сети и сооружения:

- перфорированные дренажные трубы (дрен), предназначенные для сбора фильтрата;
- смотровой наблюдения служит колодец ДЛЯ за работоспособностью дренажной системы, позволяет уровень контролировать И качество фильтрата, a также обеспечивает направление потока в дренажный коллектор.
- самотечный дренажный коллектор для транспортировки фильтрата к насосной станции;
- насосная станция фильтрата для перекачки жидкости;
- подземный напорный фильтратопровод для транспортировки фильтрата в пруд-накопитель;
- пруд-накопитель (усреднитель) фильтрата для временного хранения и выравнивания состава фильтрата;
- локальные ливневые очистные сооружения для обработки стока;
- пруд-накопитель условно-очищенных сточных вод;

 канализационная насосная станция (КНС) для перекачки условноочищенных сточных вод на дальнейшую обработку.

Дно карты полигона устроено с уклоном 0,005 в сторону вспомогательной (хозяйственной) зоны, где предусмотрены дренажные системы. В данной зоне уложены перфорированные трубы диаметром DN200, обернутые геотекстилем и размещённые в дренажных канавах, полностью заполненных щебнем фракции 20–60 мм.

Для исключения попадания ила и мусора в трубу с перфорацией после укладки предусматривается обмотка в один слой ПЭ-микроволокном внахлест.

Дренажные трубы уложены в дренажных канавах, в восточном и западном направлениях, на расстоянии 30 м от нижней границы откоса. Расстояние между дренажными трубами составляет 52 м. Укладка труб выполняется с уклоном 0,005 в сторону сборных дренажных колодцев №1−7.

Фильтрат из колодца поступает по сборному коллектору DN300 (без перфорации), уложенному с уклоном 0,004 в канализационную насосную станцию, откуда перекачивается в регулирующий пруд- накопитель фильтрата (усреднитель).

На поворотах дренажного коллектора устанавливаются смотровые колодцы диаметром 1,5 м.

После прохождения очистки сточные воды поступают в пруд-накопитель, предназначенный для хранения очищенной воды, которая используется для увлажнения отходов в пожароопасные периоды.

Согласно п. 11.7 CH PK 1.04-15-2013, при температуре воздуха выше +30 °C участки хранения и захоронения отходов необходимо поливать водой.

На полигоне, в летнее время, в пожароопасные периоды, для предотвращения возгорания отходов, а также для снижения запылённости и предотвращения разноса частиц отходов ветром, предусмотрено увлажнение с помощью водовоза. Вода для полива отходов забирается из пруда-накопителя очищенных сточных вод фильтрата.

При обильных атмосферных осадках и по мере наполнения пруда-

накопителя, очищенные воды через переливную трубу поступают на канализационную насосную станцию (КНС-1). Далее, в соответствии с Техническими условиями № 35-02-21/539 от 07.04.2025, эти воды направляются в существующую сеть канализации.

2.3.3 Ливневая канализация

В соответствии с пунктом 5.3.4 СН РК 3.01-03-2011, на площадке запроектирована закрытая система ливневой канализации, обеспечивающая эффективный сбор, очистку и отвод поверхностных сточных вод.

Для обеспечения работы системы ливневой канализации проектируемого объекта на площадке запроектированы следующие сети и сооружения:

- водоотводные лотки;
- дождеприемники;
- подземные сети ливневой канализации;
- очистное сооружение поверхностного стока «БИОГАРД ПО+МБО+СБ»;
- подземная канализационная насосная станция (КНС);

С поверхностей, с учетом рельефа местности, атмосферные осадки самотеком поступают в водоотводные каналы. В их конечных точках установлены дождеприемники, через которые вода по подземному коллектору поступает в очистную установку (КПН).

Среднегодовой объем поверхностных сточных вод, согласно расчетам, составляет 9057,16 м³.

После очистки поверхностные стоки с помощью канализационной насосной станции КНС-1 направляются в существующую сеть ливневой канализации, расположенную в индустриальной зоне.

В канализационной насосной станции (КНС-1) установлено два погружных насоса (1 рабочий, 1 резервный), производительностью 30 м3/ч, при напоре 8 м.

Канализационная насосная станция №2 представляет собой стеклопластиковую емкость диаметром 2000 мм, со смонтированной системой трубопроводов, запорной арматурой и элементами обслуживания. Насосная станция комплектуется двумя (1 рабочий и 1 резервный) погружными насосами производительностью 140 м3/ч при развиваемом напоре 20 м.

Напорный трубопровод выполнен из полиэтиленовых труб ПЭ 100 SDR 17 по ГОСТ 18599-2001 диаметром Ø225 мм. Длина напорной трассы составляет 450 м.

Максимальный суточный расчетный объем дождевых вод составляет 209,58 м³.

2.4 Характеристика очистных сооружений объекта

2.4.1 Характеристика очистных сооружений фильтрата

Дренажные воды полигонов ТБО относятся к сильно загрязненным сточным водам и характеризуются высоким содержанием токсичных органических и неорганических веществ; содержат многочисленные компоненты распада органических соединений, что определяет их темнокоричневый цвет и неприятный запах.

Для очистки сточных вод полигона ТБО принято модульная станция БИОГАРД-Пром-100/ТБО.НМ-8274 представляет собой комплекс взаимосвязанного оборудования. Комплекс состоит из последовательно работающих блоков очистки загрязненных стоков.

Основные технические характеристики:

- производительность комплекса по загрязненным стокам не более
 100 м³/сут;
- среднечасовая производительность по исходному стоку 4,2 м³/ч;

- расход воды на собственные нужды до 3 m^3/q ;
- расход концентрата до 2,3 м 3 /сут;
- установленная мощность технологического оборудования 235 кВт;
- установленная мощность вспомогательного оборудования в блокбоксе - 54 кВт;
- габаритные размеры установки (ДхШхВ) 34,65×12×3,2 м;
- подвод холодной воды питьевого качества, не требуется;
- степень автоматизации работа станции в автоматическом режиме;
- размещение оборудования наземное на бетонной монтажной площадке;
- режим работы оборудования круглосуточный, круглогодичный.

Состав комплекса. Применена ступенчатая система очистки и обеззараживания:

После поступления в модульную станцию очистки воды БИОГАРД-Пром- 100/ТБО.НМ-16618 фильтрат направляется в узел грубой очистки, где освобождается от взвешенных веществ и далее в узел нейтрализации, где в зависимости от рН стока обрабатывается растворами едкого натра и кислоты.

Далее, осветленная вода обрабатывается раствором гипохлорита натрия и направляется на узел ультрафильтрации типа UF.3. Ультрафильтрационные мембраны позволяют удалить из воды мутность, а также нерастворенные нефтепродукты. Работа узла автоматизирована, промывка проводится осветленным фильтратом в автоматическом режиме.

Предварительно подготовленная вода обрабатывается раствором антискаланта, предназначенным для снижения скорости осадкообразования, а также кислотой и поступает на очистку в узел обратноосмотического обессоливания. В процессе обратноосмотического обессоливания сточная вода разделяется на поток концентрата (сток, содержащий все примеси, содержавшиеся в предварительно подготовленном стоке и не прошедшие через

обратноосмотическую мембрану) и поток пермеата (очищенного стока). В составе узла предусмотрена одноступенчатая очистка пермеата.

Концентрат направляется на утилизацию или возвращается в тело полигона, а пермеат направляется на дальнейшую очистку в узел катионообменных фильтров.

Далее очищенная вода, под остаточным напором, не превышающем 10 м вод.ст., может быть направлена на выпуск.

Шламосодержащие воды, формирующиеся при работе станции очистки направляются на узел обезвоживания.

Узел обезвоживания осадка представлен шнековым дегидратором в количестве 1шт. Корпус барабана состоит из двух участков: сгущения и обезвоживания. Отличаются они рабочим давлением и интервалом между кольцами.

Отделение фугата в зоне сгущения происходит под влиянием силы тяжести. Давление на участке обезвоживания нагнетается с помощью прижимной пластины, что установлена в конце цилиндра. Для удаления фугата предусмотрены специальные отверстия. После прохождения полного цикла влажность кека составляет менее 81 %.

Корпус барабана — цилиндрический, содержит плавающие и неподвижные кольца. Скорость вращения шнека — постоянная. Очистка внутренней части происходит за счет постоянного движения колец, лишь периодически необходимо смывать осадок с поверхности барабана

Сведения подробности о: технологической схеме; автоматизации процесса очистки; комплектации оборудования; условиях эксплуатации; монтажных и пусконаладочных работах; гарантийных обязательствах представлены в паспорте оборудования станции БИОГАРД-Пром-110/ТБО.НМ-8274 (приложение 3).

Поставка, монтаж и ввод в эксплуатацию очистных сооружений осуществляется в виде готового заводского комплекта, полностью укомплектованного и подготовленного к эксплуатации.

Проектная эффективность работы очистных сооружений фильтрата представлена в таблице 2.1.

2.4.2 Характеристика очистных сооружений поверхностного стока

В качестве очистных сооружений поверхностного стока приняты сооружения «БИОГАРД ПО+МБО+СБ» производительностью 45 л/с Паспорт на очистные сооружения представлен в приложении 2.

В состав сооружений входит:

- пескоотделитель. Выполняет функцию отстойника, в котором из сточных вод оседают на дно твердые частицы, плотность которых больше плотности воды;
- бензомаслоотделитель. Из сточных воды выделяются свободные, а также частично эмульгированные нефтепродукты. В бензомаслоотделители установлены самоочищающиеся коалесцентные модули;
- сорбционный фильтр тонкой очистки. В качестве первой супени очистки сточных вод используется нефтеулавливающий сорбент или активированный уголь;
- вторая ступень очистки с помощью фильтров для удаления взвешенных веществ;
 - сорбент. Фильтры тонкой очистки.

Проектная эффективность работы очистных сооружений поверхностного стока представлена в таблице 2.2.

Таблица 2.1 – Проектная эффективность работы очистных сооружений фильтрата

				ость очист		1,	1 1	Эффективность работы					
Состав	Наименование показателей, по которым]	Проектная			Рактическа	я	проен	тные показ	атели	фактические показатели		затели
сооружений	производится очистка							концентра	щии, мг/л		концентра	ации, мг/л	amarrary
		м ³ /час,	м ³ /сут	тыс. м ³ /год	м ³ /час	м ³ /сут	тыс. м ³ /год	до	после очистки	степень очистки, %	до	после	степень очистки, %
		мах	-				м ⁹ /ГОД	очистки			очи	стки	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
I IIDOM-	БПК5	4,20	100,0	36500,0				13000,0	500,0	96,15			
	ХПК							22000,0	900,0	95,9			
	Сульфаты							500,0	500,0				
	Хлориды							50,0	350,0				
	Железо							120,0	1,75	98,5			
	Марганец							25,0	2,0	92,0			
	Цинк							50,0	0,4	99,2			
	Азот общий							1250,0	30,0	97,6			
	Мышьяк							0,16	0,10	37,5			
	Свинец							0,09	0,10				
	Кобальт							0,055	0,1				
	Кадмий							0,006	0,01				
	Никель							0,2	0,5		-		
	Хром							0,3	2,6				
	Медь							0,08	0,1				
	Ртуть							0,01	0,002	80,0			
	Фенол							0,0052	0,01				
	Взвешенные вещества							300,0	500,0				

Таблица 2.2 – Проектная эффективность работы очистных сооружений поверхностного стока

	Наименование показателей, по которым производится очистка	Мощность очистных сооружений						Эффективность работы					
Состав		Проектная			Фактическая			проектные показатели			фактич	фактические показатели	
сооружений								концентрации, мг/л			концентра	щии, мг/л	
		м ³ /час,	м ³ /сут	тыс.	м ³ /час м ³	м ³ /сут	тыс. м ³ /год	до	после очистки	степень очистки, %	до	после	степень очистки, %
		мах		м ³ /год		·		очио	стки		очистки		
1	2	3	4	5	6	7	8	9	10	11	12	13	14
«БИОГАРД ПО+МБО+С	Взвешенные вещества							2000,0	3,0	98,5			
Б»	Нефть и нефтепродукты в растворенном и эмульгированном состоянии		209,58	9,058				200,0	0,05	98,5			
	БПК5							20,0	2,0	90,0			

2.5 Оценка степени соответствия применяемой технологии производства и методов очистки сточных вод передовому научно-техническому уровню в стране и за рубежом

Под наилучшими доступными технологиями понимаются технологии и организационные мероприятия, которые позволяют свести к минимуму воздействие на окружающую среду, в целом, и осуществление которых не требует затрат.

Понятие технология – включает в себя как саму используемую технологию, так и ее разработку, строительство, введение в эксплуатацию, работу и вывод из эксплуатации.

Технологии являются доступными, если они разработаны в масштабе, необходимом для реализации в соответствующих промышленных секторах, с экономически приемлемыми условиями, на основе выгод и затрат, приемлемого для предприятия.

Технологии являются наилучшими, если они наиболее эффективны в достижении высокого общего уровня охраны окружающей среды, в целом.

При подборе очистных сооружений основными критериями выбора технологий являлись:

- -обеспечение требуемого высокого качества очистки сточных вод;
- применение технологий очистки с минимальным использованием химических реагентов;
 - -обеспечение полной автоматизации технологического процесса очистки сточных вод;
 - -унификация конструктивных решений и технологического оборудования; взаимозаменяемость отдельных элементов, сооружений и технологического оборудования.

Применяемые очистные сооружения поставляются заводомизготовителем в составе законченного технологического комплекса, предназначенного для установки на строительной площадке. Технологическая схема, состав оборудования и применяемые материалы подобраны с учетом нормативных требований к качеству очистки сточных вод, действующих на территории РК. Комплекс обеспечивает необходимую степень очистки в соответствии с предъявляемыми санитарно-экологическими нормами.

2.6 Перечень загрязняющих веществ в составе сточных вод объекта

качество сточных вод после биологической Ожидаемое очистки соответствует «Гигиеническим нормативам показателей безопасности хозяйственно-питьевого И культурно-бытового водопользования», Приказ Министра здравоохранения Республики Казахстан от 24 ноября 2022 года № ҚР ДСМ-138 и принято по паспортным данным производителя.

Таблица 2.3 – Показатели качества исходной и очищенной сточной вод

№ пп	Показатель	Ед. изм.		ия показателей воды, не более
			Исходная	Очищенная
1	БПК5	мгО2/л	13000,0	500,0
2	ХПК	${ m MrO}_2/{ m Л}$	22000,0	900,0
3	Сульфаты	мг/л	500,0	500,0
4	Хлориды	мг/л	50,0	350,0
5	Железо	мг/л	120,0	1,75
6	Марганец	мг/л	25,0	2,0
7	Цинк	мг/л	50,0	0,4
8	Азот общий	мг/л	1250,0	30,0
9	Мышьяк	мг/л	0,16	0,10
10	Свинец	мг/л	0,09	0,10
11	Кобальт	мг/л	0,055	0,1
12	Кадмий	мг/л	0,006	0,01
13	Никель	мг/л	0,2	0,5
14	Хром	мг/л	0,3	2,6
15	Медь	мг/л	0,08	0,1
16	Ртуть	мг/л	0,01	0,002
17	Фенол	мг/л	0,0052	0,01
18	Взвешенные вещества	мг/л	300,0	500,0

2.7 Сведения о количестве сточных вод, сброшенных в водный объект или переданные другим операторам

Объем сточных вод объекта определен на основании расчетных расходов сточных вод, определенных в проекте «Строительство полигона ТБО с сортировочной линией в г. Конаев Алматинской области».

Поскольку очистные сооружения проектируемые, сведения о количестве сточных вод, сброшенных в водные объекты или переданные другим операторам отсутствуют.

Инвентаризация выпуска сточных вод представлена в таблице 2.4.

2.8 Баланс водопотребления и водоотведения

Объем сточных вод объекта определен на основании расчетных расходов сточных вод, определенных в проекте «Строительство полигона ТБО с сортировочной линией в г. Конаев Алматинской области».

Расчетные расходы сточных вод фильтрата, поступающих на очистные сооружения, приняты расчетных данных, представленных в проекте.

Баланс водопотребления и водоотведения представлен в таблице 2.5.

Таблица 2.4 - Результаты инвентаризации выпусков сточных вод (на основе проектной информации)

Наименование предприятия (участка, цеха)	Номер выпуска сточных вод	Диаметр выпуска, м	Категория сбрасываемых сточных вод	сточн	тведения ых вод	сбрасы сточні	ход ваемых ых вод	Место сброса (приемник сточных вод)	Наименование загрязняющих веществ	загрязн вещ (согласно і	нтрация ияющих еств проектным), мг/дм ³
		_		ч/сут.	сут./год	м ³ /ч	м ³ /год	-		макс.	средн.
1	2	3	4	5	6	7	8	9	10	11	12
									БПК5		500,0
									ХПК		900,0
									Сульфаты		500,0
			Очищенные						Хлориды		350,0
Полигон ТБО	Выпуск №1	0,1	сточные воды	24	365	4,20	36500,0	ттруд-	Железо		1,75
			фильтрата с						Марганец		2,0
			полигона ТБО					фидьтрата	Цинк		0,4
									Азот общий		30,0
									Мышьяк		0,10
									Свинец		0,10
									Кобальт		0,1
									Кадмий		0,01
									Никель		0,5
									Хром		2,6
									Медь		0,1
									Ртуть		0,002
									Фенол		0,01
									Взвешенные вещества		500,0

Таблица 2.5 – Баланс водопотребления и водоотведения для полигона ТБО в г.Конаев Алматинской области на 2026-2035 гг.

		Водоп	отреблени	не, м ³ /с	ут / тыс.м	3/год	Безвозв		Водоотво	едение, м ³ /су	т / тыс.м ³ /год	Į
		на пр	оизводств	енные	нужды		ратное		объем			
		свежа	ія вода	_	повтор	На	потребл ение,		сточной	производ	хозяйстве	
Потребители	Всего	всего	в том числе питье- вого качества	обо ротн ая вода	но- исполь зуемая вода	хозяйств енно- бытовые нужды	м ³ /сут / тыс. м ³ /год	Всего	воды повторно используе мой	ственные сточные воды	нно- бытовые сточные воды	Примеча ние
1	2	3	4	5	6	7	8	9	10	11	12	13
Работающ ие на полигоне	13,58 4,957	2,70 0,986	<u>2,70</u> 0,986	-	-	10,88 3,971	0,66 0,241	12,92 4,716	-	2,70 0,986	10,22 3,730	
Увлажнение поверхности полигона	13,70 2,082	-	1	-	13,70 2,082	-	13,70 2,082	-	-	-	-	
Система удаления фильтрата	610,55 26,386	-	-	-	610,55 26,386	-	<u>505,30</u> 21,375	105,25 5,011	-	105,25 5,011	-	В пруд- накопи- тель
Поверхност- ный сток	209,58 9,058	209,58 9,058	-	-	-	-	-	209,58 9,058	-	209,58 9,058	-	
итого:	847,81 42,483	212,28 10,044	2,70 0,986	-	624,25 28,468	10,88 3,971	519,66 23,698	327,75 18,785	-	317.53 15,055	10,22 3,730	

2.9 Сведения о конструкции водовыпускного устройства

Выпуск очищенных сточных вод фильтрата будет осуществляться в проектируемый пруд-накопитель, расположенный непосредственно на площадке ТБО. Сброс сточных вод в пруд-накопитель осуществляется по напорному трубопроводу диаметром 90 мм от насосов, установленных в КНС.

3 ХАРАКТЕРИСТИКА ПРИЕМНИКА СТОЧНЫХ ВОД

3.1 Наименование и характеристика объекта-приемника сточных вод

Приемником очищенных сточных вод фильтрата является проектируемый пруд-накопитель, который будет расположен на площадке полигона ТБО.

Очищенные стоки, после очистки, направляются в пруд-накопитель очищенных вод.

Параметры пруда-накопителя:

Накопитель с размерами по бровке 44,9х 44,9м. и глубиной 6,5м. По днищу и откосам уложена геомембрана с покрытием бентонитовыми матами для гидроизоляции наружных бетонных поверхностей.

Площадь пруда-накопителя 174479,2 м².

Объем пруда-накопителя предназначен для хранения расхода воды на увлажнение отходов в пожароопасные периоды. Учитывая сейсмичность площадки строительства 9 баллов, объем воды для увлажнения отходов в пруду принят в два раза больше необходимого.

Объем пруда-накопителя определяется по формулам:

$$W_{\Pi,H} = W_{\text{УВЛАЖНЕНИЕ}} \times 2 = 2082,4 \times 2 = 4164,8 \text{ м}^3$$

Объем воды, потребляемой в течение года из пруда-накопителя, составляет:

$$W_{B.H} = W_{И.\Pi} + W_{УВЛАЖНЕНИЕ} = 917,7+2082,4 = 3000 \text{ m}^3$$

Объем пруда-накопителя предназначен для хранения расхода воды на увлажнение отходов. По мере пополнения пруда-накопителя очищенные сточные воды направляются через канализационную насосную станцию в существующую систему бытовой канализации.

3.2 Метеорологическая характеристика района расположения объекта

Площадка изысканий расположена в 11 км к западу от с. Шенгельды Алматинской области, и в 25 км к северо-востоку от г. Конаев, на северном

побережье Капчагайского водохранилища. Г.Конаев (ранее Капшагай) с 2022 г. является административным центром Алматинской области.

Климат резко континентальный с большими суточными и годовыми амплитудами температур воздуха, холодной зимой и продолжительным жарким и сухим летом.

В соответствии со СП РК 2.04-01-2017 (Строительная климатология) район изысканий расположен в III климатическом районе, подрайон В.

Средняя температура самого холодного месяца — января -7,7 $^{\circ}$ С. Абсолютный минимум — -35 $^{\circ}$ С. Наиболее теплый месяц — июль со среднемесячной температурой +25 $^{\circ}$ С, средняя из максимальных температур достигает +30 $^{\circ}$ С. Абсолютный максимум температуры в июле - августе достигает +45 $^{\circ}$ С. Продолжительность теплого периода составляет 176 дней.

Среднее количество осадков, выпадающих за год, составляет 247,2 мм.

Наибольшая месячная сумма осадков приходится на весенне-летний период.

Минимальное количество осадков приходится на август-сентябрь.

Слой осадков за тёплый период года (за апрель-октябрь) – 128,9 мм;

Слой осадков за холодный период года (за ноябрь-март) – 93,4 мм;

В регионе наблюдаются сильные ветры. Средняя годовая скорость ветра 2,4 м/сек. Преобладающее направление ветра в течение всего года — северо-западное. Наибольшие скорости ветра, как правило, наблюдаются весной. Максимальная скорость ветра достигает 28 м/с, порыв — 40 м/с.

3.3 Инженерно-геологические и гидрогеологические условия размещения пруда-накопителя

В геологическом строении площадки работ до разведанной глубины 5,0-15, м принимают участие пылеватые пески с включениями мелкого гравия до 10% эоловых отложении верхнечетвертичного возраста, подстилаемые делювиальнопролювиальными отложениями средне четвертичного возраста, сложенные супесями и суглинками, твердой консистенции с включениями гравия 5-20%. С дневной поверхности грунты перекрыты почвенно-растительным слоем.

Сейсмичность площадки строительства в соответствии с СП РК 2.03-30-2017, таблице 6.1- площадка относиться к II типу грунтовых условий по сейсмическим свойствам. Согласно СП РК 2.03-30-2017. Таблица 6.2 — сейсмичность участка — 9 баллов.

Глубина промерзания грунтов составляет 1,50 м.

В пределах площадки изысканий грунтовые воды до глубины 15,0 м скважинами не вскрываются.

По классу рельефа исследуемая территория относится к полого наклонной равнине, которая развита в пределах северной наклонной предгорной равнине. Абсолютные отметки поверхности здесь достигают 608-620 м, а относительные превышения – 12 м.

3.4 Данные о гидрологическом режиме водного объекта и по фоновому составу воды

Наблюдения по фоновому составу подземных вод в районе размещения прудов-испарителей не проводились, поскольку очистные сооружения еще не поострены и не введены в эксплуатацию.

4 НОРМАТИВЫ СБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПО ОБЪЕКТУ

4.1 Общие зависимости для расчета нормативов ДС

Производится согласно методики [2].

$$ДС=q \times C_{ЛС}, \Gamma/\Psi$$

где q – максимальный часовой расход сточных вод, метр кубический в час (m^3/q) ;

 $C_{\text{ДС}}$ – допустимая к сбросу концентрация загрязняющего вещества, мг/дм³.

Согласно п.63 методики [2] « Для расчета нормативных объемов эмиссий - лимитов сбросов в качестве С допустимых сбросов используется концентрация, достигаемая при использовании реализуемой технологии проектной степени очистки сточных вод, грамм на метр кубический (г/м³)». Поскольку нормативы ДС устанавливаются для проектируемого объекта, в качестве Сдс принимаются проектные концентрации очистки, представленные в паспортных данных на очистные сооружения (приложение 3).

Результаты расчета нормативов ПДС после строительства новых очистных сооружений с учетом проектных показателей очистки представлены в таблице 4.1.

Таблица 4.1- Результаты расчета нормативов допустимых сбросов сточных вод

		Фоновые	Проект-	Расчетные		Утвержд	енный ДС
Показатели загрязнения	ПДК, мг/ дм ³	концентрации, $M\Gamma/дM^3$	ные концен- трации, мг/дм ³	концен- трации, мг/дм ³	Нормы ДС мг/ дм ³	г/час	т/год
1	2	3	4	5	6	7	8
БПК5	6,0		500,0	500,0	500,0	285,00	2,50550
хпк	30,0		900,0	900,0	900,0	513,00	4,50990
Сульфаты	500,0		500,0	500,0	500,0	285,00	2,50550
Хлориды	350,0		350,0	350,0	350,0	199,50	1,75385
Железо	0,30		1,75	1,75	1,75	1,00	0,00877
Марганец	0,10		2,0	2,0	2,0	1,14	0,01002
Цинк	1,0		0,4	0,4	0,4	0,23	0,00200
Азот общий	2,0		30,0	30,0	30,0	17,10	0,15033
Мышьяк	0,05		0,10	0,10	0,10	0,06	0,00050
Свинец	0,03		0,10	0,10	0,10	0,06	0,00050
Кобальт	0,10		0,1	0,1	0,1	0,06	0,00050
Кадмий	0,001		0,01	0,01	0,01	0,01	0,00005
Никель	0,10		0,5	0,5	0,5	0,29	0,00251
Хром 3+	0,5		2,6	2,6	2,6	1,48	0,01303
Медь	1,0		0,1	0,1	0,1	0,06	0,00050
Ртуть	0,0005		0,002	0,002	0,002	0,001	0,00001
Фенол	0,1		0,01	0,01	0,01	0,01	0,00005
Взвешенные вещества	+0,75 мг/дм ³ к фоновому содержа- нию		500,0	500,0	500,0	285,00	2,50550

При сравнении величин **проектных концентраций** и расчетных концентраций установлено, что по всем компонентам проектные концентрации не превышают расчетные. Следовательно, предлагается установить нормативы ПДС для данных веществ на уровне проектных концентраций, п. 56 [2] на 2026-2035 гг. Нормативы ДС представлены в таблице 4.2.

Таблица 4.2 – Нормативы сбросов сточных вод фильтрата от полигона ТБО в г.Конаев Алматинской области на 2026-2035 гг.

	Таолица 4.2 – Порма.			ицествующее по	•		Нормати	_																	
Номер выпуска	Наименование показателя	Расход ст	гочных вод	Кон-	Сбр	Сброс Расход ст		гочных вод	На 2026-203	Сбр	оос	Год дости- жения ДС													
		м ³ /ч	тыс. м ³ /год	центрация на выпуске, мг/дм ³	г/ч	т/год	м ³ /ч	тыс. м ³ /год	концентрац ия на выпуске, мг/дм ³	г/ч	т/год														
1	2	3	4	5	6	7	8	9	10	11	12	13													
Выпуск №1	БПК5	-	-	-	-	-	0,57	5,011	500,0	285,00	2,50550	2026													
DBIIIyek Ng1	ХПК			-	-	-			900,0	513,00	4,50990	2026													
	Сульфаты			-	-	-			500,0	285,00	2,50550	2026													
	Хлориды		- - -		-	-	-			350,0	199,50	1,75385	2026												
	Железо					_	-	-		-	-	-			1,75	1,00	0,00877	2026							
	Марганец					-	-	-			2,0	1,14	0,01002	2026											
	Цинк]		-	-	-		0,4	0,23	0,00200	2026														
	Азот общий			-	-	-			30,0	17,10	0,15033	2026													
	Мышьяк																-	-	-			0,10	0,06	0,00050	2026
	Свинец				1	-	1	-			-		-	-	-			0,10	0,06	0,00050	2026				
	Кобальт					-	-	-			0,1	0,06	0,00050	2026											
	Кадмий				-			-	-	-	-	-			0,01	0,01	0,00005	2026							
	Никель				-	-	-			0,5	0,29	0,00251	2026												
	Хром ³⁺				-			2,6	1,48	0,01303	2026														
<u> </u>	Медь		1	-		-	-	-			0,1	0,06	0,00050	2026											

Окончание таблицы 4.2

			Существующее положение						Нормативы сбросов, г/ч, и лимиты сбросов, т/год, загрязняющих веществ на перспективу					
							На 2026-2035 гг.							
Номер выпуска	Наименование показателя	Расход сточных вод		Kon-	Сбр	Сброс		гочных вод	Допустимая Сброс			Год дости- жения ДС		
		м ³ /ч	тыс. м ³ /год	центрация на выпуске, мг/дм ³	г/ч	т/год	M^{3}/q тыс. M^{3}/r од		концентрац ия на выпуске, мг/дм ³		т/год			
1	2	3	4	5	6	7	8	9	10	11	12	13		
	Ртуть			-	-	-			0,002	0,001	0,00001	2026		
	Фенол			-	-	-			0,01	0,01	0,00005	2026		
	Взвешенные вещества			-	-	-			500,0	285,00	2,50550	2026		
	итого:			-	-	-			2787,672	1588,973	13,96902			

5. МЕРОПРИЯТИЯ ПО ПРЕДУПРЕЖДЕНИЮ АВАРИЙНОГО СБРОСА СТОЧНЫХ ВОД

При нарушении технологического режима (отсутствие потока, выход из строя механизмов, падение температуры и пр.) на щите автоматики будет срабатывать аварийная сигнализация с указанием неисправного параметра и остановкой модуля в режим ожидания до устранения причины аварии. Снять аварию кнопкой «сброс аварии».

Устранение аварии, в зависимости от ее вида, производится согласно технологического регламента работы очистных сооружений.

6. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ

6.1 Методы учета потребления воды и отведения сточных вод

Количество потребляемой воды на -питьевые и технические нужды площадки очистных сооружений, будет осуществляется водомерными устройством, которые будут установлены на водохозяйственных переделах.

Для учета отведения очищенных стоков в пруд-накопитель предусматривается устройство водомерного устройства на сбросе сточных вод.

6.2 Методы контроля за качеством сточных вод

Контроль за качеством подземных вод предприятия в районе прудовнакопителей, и качеством сточных вод до и после очистки, будет производиться аккредитованной лабораторией по договору согласно Программы производственного экологического контроля.

План-график контроля за соблюдением нормативов НДС представлен в таблице 6.1.

Таблица 6.1 План-график контроля за соблюдением нормативов допустимых сбросов для полигона ТБО в г.Конаев

Номер	Координатные данные контрольных створов, наблюдательных скважин в	Контролируемое вещество	Периодичность		допустимых осов	Кем осуществляется контроль	Метод проведения контроля			
выпуска	том числе фоновой скважины	контролируемое вещеетво	периоди шость	мг/дм ³	т/год					
1	2	3	4	5	6	7	8			
		БПК5								
		ХПК								
		Сульфаты								
		Хлориды								
		Железо								
		Марганец								
		Цинк								
		Азот общий								
		Мышьяк					Согласно области аккредитации			
	Сточные воды фильтрата до	Свинец				Аккредитованная лаборатория				
		Кобальт	1 раз в квартал							
Builyek Na		Кадмий	т раз в квартал				аккредитации			
		Никель								
		Хром ³⁺								
		Медь								
		Ртуть								
		Фенол								
		Взвешенные вещества								

Окончание таблицы 6.1

Номер	Координатные данные контрольных створов, наблюдательных скважин в	Контролируемое вещество	Периодичность		допустимых	Кем осуществляется контроль	Метод проведения контроля
выпуска	том числе фоновой скважины			$M\Gamma/ДM^3$	т/год		
1	2	3	4	5	6	7	8
		БПК5		500,0	2,50550		
		ХПК		900,0	4,50990		
			Сульфаты		500,0	2,50550	
		Хлориды		350,0	1,75385		
		Железо]	1,75	0,00877		
		Марганец]	2,0	0,01002		
		Цинк		0,4	0,00200		
		Азот общий]	30,0	0,15033		
		Мышьяк]	0,10	0,00050		
	Сточные воды фильтрата после	Свинец		0,10	0,00050		
Выпуск №1	очистки (сброс в пруд-накопитель)		0,1	0,00050	Аккредитованная лаборатория	Согласно области аккредитации	
BBIIIy CK 3\21	144° 00° 11.87° C / /° 19° 20.03° B	Кадмий	т раз в квартал	0,01	0,00005		аккредитации
		Никель		0,5	0,00251		
		Хром 3+		2,6	0,01303		
		Медь		0,1	0,00050		
		Ртуть		0,002	0,00001		
		Фенол		0,01	0,00005		
		Взвешенные вещества		500,0	2,50550		

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1 Экологический кодекс Республики Казахстан от 2 января 2021 года, с доп. и изм. на 13.08.2025 г.
- 2 Методика определения нормативов эмиссий в окружающую среду, утв. Приказом Министра экологии, геологии и природных ресурсов РК №63 от 10.03.2021 г.
- 3 Рабочий проект «Строительство полигона ТБО с сортировочной линией в г. Конаев Алматинской области», ТОО «КИТНГ», 2025 г.
- 4 Предельно-допустимые концентрации вредных химических веществ в воде водных объектов хозяйственно-питьевого водоснабжения и мест культурно-бытового водопользования (приложение 4 к приказу Министра здравоохранения Республики Казахстан от 24 ноября 2022 года № КР ДСМ-138).