РЕСПУБЛИКА КАЗАХСТАН ТОО «КАРАГАНДАГИПРОШАХТ»

АО «ЕВРОАЗИАТСКАЯ ЭНЕРГЕТИЧЕСКАЯ КОРПОРАЦИЯ»

ПРОЕКТ

«План горных работ разработки Экибастузского месторождения каменного угля в границах разреза «Восточный» на период 2020-2044г.г. Корректировка схемы вскрытия. Дополнение»

Том II. Экологическая часть

Книга 2. Проект нормативов эмиссий загрязняющих веществ в атмосферу для разреза «Восточный» на период с 2025 по 2027 г.г.

Расчеты эмиссий загрязняющих веществ в атмосферу от объектов разреза «Восточный» на период с 2025 по 2027 г.г. Расчетные приложения

П7670дк-II-2.4ПЗ Часть 2

"Карагандагипрошах"

Генеральный директор

Заместитель генерально и пректора

по производству

Главный инженер проекта

А.С.Тихонов

Э.Т. Имранов

А.Н. Горбунов

СОСТАВ ПРОЕКТА

№	$N_{\underline{0}}$	Наименование томов, книг	Институт
Томов	Книг	паименование томов, книг	исполнитель
	«План	н горных работ разработки Экибастузского месторож угля в границах разреза «Восточный» на период 202 Корректировка схемы вскрытия. Дополнені	20-2044 г.г.
I		Пояснительная записка	
	1	Книга 1. Дополнение к разделам 7. «Система разработки». 8. «Отвалообразование» П7670дк-I-1П3	
		Экологическая часть	
		Отчет о возможных воздействиях к проекту «План горных работ разработки Экибастузского месторождения каменного угля в границах разреза «Восточный» на период 2020-2044 гг. Корректировка схемы вскрытия. Дополнение»	
	1	Пояснительная записка П7670дк-II-1.1ПЗ Табличные приложения к книге 1 П7670дк-II-1.2ПЗ Расчетные приложения П7670дк-II-1.3ПЗ Часть 1 Расчетные приложения П7670дк-II-1.4ПЗ	
II	2	Часть 2 «Проект нормативов эмиссий загрязняющих веществ в атмосферу для разреза «Восточный» на период с 2025 по 2027 г.г.» Пояснительная записка П7670дк-II-2.1ПЗ Табличные приложения к книге 2.1 П7670дк-II-2.2ПЗ Расчеты эмиссий загрязняющих веществ в атмосферу от объектов разреза «Восточный» Расчетные приложения П7670дк-II-2.3ПЗ Часть 1 Расчетные приложения П7670дк-II-2.4ПЗ Часть 2	
		Бланки инвентаризации источников выбросов вредных веществ предприятия по состоянию на 01.01.2024 г. П7670дк-II-2.5П3	

№ Томов	№ Книг	Наименование томов, книг	Институт исполнитель
		Расчеты рассеивания загрязняющих веществ в	
		атмосфере на проектное положение	
		П7670дк-II-2.6РР	
		Часть 1	
		П7670дк-II-2.7РР	
		Часть 2	
		Проект нормативов допустимых сбросов	
		загрязняющих веществ со сточными и карьерными	
	3	водами в накопитель Акбидаик и пруд-накопитель	
		щебеночного карьера «Балластный» разреза	
		«Восточный» АО АЭК на 2025-2027 г.г.	
		П7670дк-II-3П3	
	4	Программа управления отходами разреза	
		«Восточный» на период с 2025 по 2027 г.г.	
		П7670дк-II-4П3	
		Программа производственного экологического	
	5	контроля АО «Евроазиатская энергетическая	
		корпорация» разрез «Восточный» на период с 2025	
		по 2027 г.г.	
		П7670дк-II-5П3	

ПЕРЕЧЕНЬ ПРИЛОЖЕНИЙ

Номер прил.	Наименование приложения	Стр.
165	Разрез «Восточный». Станция Восточная. Транспортный цех. ТЦ. Тракторно-бульдозерный участок (ТБУ). Расчет выбросов вредных веществ от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6123	17
166	Разрез «Восточный». Станция Восточная. Транспортный цех. ТЦ. Тракторно-бульдозерный участок (ТБУ). Расчет выбросов вредных веществ при пайке электропаяльником припоем ПОС-30 на 2025-2027 г.г. Неорганизованный источник выбросов №6123	18
167	Разрез «Восточный». Станция Восточная. Транспортный цех. ТЦ. Тракторно-бульдозерный участок (ТБУ). Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 г.г. Неорганизованный источник выбросов №6123	19
168	Разрез «Восточный». Станция. Фестивальная. ЦРЖДО. ДПС Восточное. Расчет выбросов вредных веществ при проведении сварочных работ и резке металла на 2025-2027 г.г. Неорганизованный источник выбросов №6127-01	21
169	Разрез «Восточный». Станция Восточная. ЖДЦ. Участок путевых работ (УПР). Расчет выбросов вредных веществ при газовой резке металла на 2025-2027 г.г. Неорганизованный источник выбросов №6130	23
170	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС «Восточное». Цех по наладке электроаппаратов. Расчет эмиссий загрязняющих веществ в атмосферу при пайке припоем ПСР15 и ПСР45 паяльником с косвенным нагревом на 2025-2027 г.г. Неорганизованный источник №6126	24
171	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС «Восточное». Расчет эмиссий загрязняющих веществ в атмосферу при наплавочных работах на 2025-2027 г.г. Неорганизованный источник №6128	25
172	Разрез «Восточный». Станция Восточная. Энергоцех. Участок теплоснабжения и сетей (УТС). Котельная. Расчет выбросов вредных веществ при пайке электропаяльником припоем ПОС-30 на 2025-2027 г.г. Неорганизованный источник №6137	26
173	Разрез «Восточный». Станция Фестивальная. ЖДЦ. Участок сигнализации, централизации и блокировки (УСЦБ). Расчет выбросов вредных веществ при пайке электропаяльника с припоем ПОС-30. Неорганизованный источник №6131 на 2025-2027 г.г.	27
174	Разрез «Восточный». Станция Восточная. ЦРГО. Участок по ремонту конвейерных лент (УРКЛ). Расчет выбросов вредных веществ при пайке электропаяльником припоем ПОС-30 на 2025-2027 г.г. Неорганизованный источник №6135	28
175	Разрез «Восточный». Станция Восточная. Добычной цех. Участок водоотлива и профилактики (УВПЭП) эндогенных пожаров (УВПЭП). Расчет выбросов вредных веществ при пайке электропаяльника с припоем ПОС-60 на 2025-2027 г.г. Неорганизованный источник №6136	29
176	Разрез «Восточный». Станция Фестивальная. Энергоцех. Участок электроснабжения (УЭС). Участок сетей и подстанций (УСиП). Расчет выбросов вредных веществ при пайке электропаяльника с припоем ПОС-30 на 2025-2027 г.г. Неорганизованный источник №6138	30
177	Разрез «Восточный». Станция Восточная. ЦПВК. Участок колонны автомобильного транспорта (УКТТ). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки на 2025-2027 г.г.	31

Номер	Наименование приложения	Стр.
прил.	11 × M (140	
170	Неорганизованный источник №6142	22
178	Разрез «Восточный». Станция Фестивальная. Участок сетей подстанций	33
	(УСиП). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Неорганизованный источник №6139	
179	Разрез «Восточный». Станция Фестивальная. Вскрышной участок (ВУ).	34
179	Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и	34
	газовой резки на 2025-2027 г.г. Неорганизованный источник №6140	
180	Разрез «Восточный». Станция Восточная. ЦПВК-1. Расчет эмиссий	38
100	загрязняющих веществ в атмосферу от сварочных работ и газовой резки на	30
	2025-2027 г.г. Неорганизованный источник №6141	
181	Разрез «Восточный». Станция Фестивальная. ЦАТП. Участок наладки и	41
	обслуживания приводов средств автоматизации (УНОПСА). Расчет эмиссий	
	загрязняющих веществ в атмосферу при пайке электропаяльником припоем	
	ПОС-60 на 2025-2027 г.г. Неорганизованный источник №6145	
182	Разрез «Восточный». Станция Восточная. ЦПВК. Участок колонны	42
	автомобильного транспорта (УКТТ). Расчет выбросов вредных веществ при	
	проведении лакокрасочных работ на 2025-2027 г.г. Неорганизованный	
	источник №6142	
183	Разрез «Восточный». Станция Восточная. ЦРГО. Участок по ремонту	44
	электрических машин (УРЭМ). Расчет эмиссий загрязняющих веществ в	
	атмосферу при пайке электропаяльником припоем ПОС-40 на 2025-2027 г.г.	
	Неорганизованный источник №6143	
184	Разрез «Восточный». Станция Фестивальная. ЦАТП. Участок	45
	автоматизации систем управления технологическими процессами	
	(УАСУТП). Расчет эмиссий загрязняющих веществ в атмосферу при пайке	
	электропаяльником припоем ПОС-40 на 2025-2027 г.г. Неорганизованный	
105	источник №6144	4.5
185	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС «Восточное».	46
	Вспомогательный токарный цех. Расчет эмиссий загрязняющих веществ в	
	атмосферу от механической обработки металла на 2025-2027 г.г.	
106	Неорганизованный источник №6151	47
186	Разрез «Восточный». Станция Фестивальная. ЦАТП. Местная служба средств диспетчерского технологического управления (МССДТУ). Расчет	47
	выбросов вредных веществ при пайке электропаяльника с припоем ПОС-60 на 2025-2027 г.г. Неорганизованный источник №6146	
187	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС «Восточное».	48
107	Тазрез «Восточный». Станция фестивальная. Цт ждо. дте «Восточное». Токарный цех. Расчет эмиссий загрязняющих веществ в атмосферу от	70
	механической обработки металла на 2025-2027 г.г. Неорганизованный	
	источник №6150	
188	Разрез «Восточный». Станция Восточная. Добычной цех. Участок	49
100	технологического комплекса разреза (УТКР). Расчет эмиссий загрязняющих	
	веществ в атмосферу от механической обработки металла.	
	Неорганизованный источник №6156 на 2025-2027 г.г.	
189	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС «Восточное».	50
	Цех по ремонту вспомогательных машин №1,2. Расчет эмиссий	
	загрязняющих веществ в атмосферу от механической обработки металла на	
	2025-2027 г.г. Неорганизованный источник №6153	
190	Разрез «Восточный». Станция Фестивальная. РСУ. Расчет эмиссий	51
	загрязняющих веществ в атмосферу от механической обработки металла на	
	2025-2027 г.г. Неорганизованный источник 6154	

Номер	Наименование приложения	Стр.
прил.		
191	Разрез «Восточный». Станция Восточная. ЦРГО. УКРЛ. Участок ремонта конвейерных лент. Расчет эмиссий загрязняющих веществ в атмосферу при изготовлении формовых изделий на шприцмашине МЧТ-90 на 2025-2027 г.г. Неорганизованный источник №6167	52
192	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу от горячей вулканизации конвейерных лент на вулканизаторе Nilos на 2025-2027 г.г. Неорганизованный источник №6168	54
193	Разрез «Восточный». Станция Фестивальная. АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от резервуара отработанных масел в период с 2025 по 2027 г.г. Неорганизованный источник №6170	56
194	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу при ремонте резинотехнических изделий на разделочном столе на 2025-2027 г.г. Неорганизованный источник №6169	57
195	Разрез «Восточный». Станция Восточная. УКТК. ТО автосамосвалов. ЦПВК. Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров маслораздаточного пункта в период с 2025 по 2027 г.г. Неорганизованный источник №6172	58
196	Разрез «Восточный». Станция Фестивальная. ДПС «Фестивальная». Заправка локомотивов дизельным топливом. Идентификация состава выбросов от колонки дизельного топлива на 2025-2027 г.г. Неорганизованный источник №6173	59
197	Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС «Фестивальная». Экипировка локомотивов. Расчет эмиссий загрязняющих веществ в атмосферу от колонки дизельного топлива ТРК-1, ТРК-2 на 2025-2027 г.г. Неорганизованный источник №6173	60
198	Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС «Фестивальная». Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров и колонок масла маслораздаточного пункта в период с 2025 по 2027 г.г. Неорганизованный источник №6173	61
199	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС Восточное. Расчет эмиссий загрязняющих веществ от открытого огня на 2025-2027 г.г. Неорганизованный источник №6175	62
200	Разрез «Восточный». Станция Восточная. ЖДЦ. УПР. Расчет эмиссий загрязняющих веществ в атмосферу при окраске столбиков на жд. станциях на 2025-2027 г.г. Неорганизованный источник №6180	63
201	Разрез «Восточный». Станция Фестивальная. Вскрышной цех. Участок путеукладочных работ (УППР). Расчет эмиссий загрязняющих веществ в атмосферу от лакокрасочных работ на 2025-2027 г.г. Неорганизованный источник №6181	64
202	Разрез «Восточный». Станция Фестивальная. Вскрышной цех. Участок звеносборочных работ (УЗР). Расчет эмиссий загрязняющих веществ в атмосферу от лакокрасочных работ на 2025-2027 г.г. Неорганизованный источник №6182	66
203	Разрез «Восточный». Станция Фестивальная. ЖДЦ. Участок сигнализации, централизации и блокировки (УСЦБ). Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 г.г. Неорганизованный источник №6183	68
204	Разрез «Восточный». Станция Восточная. Цех буровзрывных работ (УБР).	70

Номер	Наименование приложения	Стр.
прил.	Расчет эмиссий загрязняющих веществ в атмосферу при окраске буровых станков при капитальном ремонте на 2025-2027 г.г. Неорганизованный	
	источник №6185	
205	Разрез «Восточный». Станция Восточная. Энергоцех. Участок	71
	теплоснабжения и сетей (УТС). Расчет эмиссий загрязняющих веществ в	
	атмосферу при окраске деталей на 2025-2027 г.г. Неорганизованный	
	источник №6186	
206	Разрез «Восточный». Станция Фестивальная. Энергоцех. Участок	72
	электроснабжения (УЭС). Расчет эмиссий загрязняющих веществ в	
	атмосферу при выполнении лакокрасочных работ на 2025-2027 г.г.	
	Неорганизованный источник №6187	
207	Разрез «Восточный». Станция Восточная. Добычной цех. Участок	73
	технологического комплекса разреза (УТКР). Расчет эмиссий загрязняющих	
	веществ в атмосферу при окраске деталей на 2025-2027 г.г.	
	Неорганизованный источник №6188	
208	Разрез «Восточный». Станция Восточная. ЦПВК. ЦПВК-1. Расчет выбросов	75
	вредных веществ при проведении лакокрасочных работ на 2025-2027 г.г.	
	Неорганизованный источник №6189	
209	Разрез «Восточный». Станция Фестивальная. Железнодорожный цех.	78
	(ЖДЦ). Участок контактной сети (УКС). Расчет эмиссий загрязняющих	
	веществ в атмосферу при окраске опор передвижной контактной сети на	
	2025-2027 г.г. Неорганизованный источник №6190	
210	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС Восточная.	79
	Расчет эмиссий загрязняющих веществ в атмосферу при окраске	
	токоведущих частей новой изоляции на 2025-2027 г.г. Неорганизованный	
	источник №6192	
211	Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС Фестивальная.	81
	Экипировка локомотивов. Расчет эмиссий загрязняющих веществ в	
	атмосферу от лакокрасочных работ на 2025-2027 г.г. Неорганизованный	
212	источник №6193	0.2
212	Разрез «Восточный». Станция Восточная. ЦРГО. Ремонтно-механический	83
	участок (РМУ). Расчет выбросов вредных веществ при проведении	
212	лакокрасочных работ на 2025-2027 г.г. Неорганизованный источник №6194	0.6
213	Разрез «Восточный». Станция Фестивальная. Транспортный цех (ТЦ). АТУ.	86
	Расчет выбросов вредных веществ при проведении лакокрасочных работ на	
214	2025-2027 г.г. Неорганизованный источник №6195 Разрез «Восточный». Станция Фестивальная. РСУ. Расчет выбросов	89
214	вредных веществ при проведении лакокрасочных работ на 2025-2027 г.г.	09
	Неорганизованный источник №6196	
215	Разрез «Восточный». Станция Фестивальная. ЖДЦ. УПР. Расчет эмиссий	91
213	загрязняющих веществ в атмосферу при окраске столбиков на жд.	71
	станциях на 2025-2027 г.г. Неорганизованный источник №6197	
216	Разрез «Восточный». Циклично-поточный вскрышной комплекс №2	92
210	т аэрсэ «Восточный». Циклично-поточный вскрышной комплекс №2 (ЦПВК-2). Расчет эмиссий загрязняющих веществ в атмосферу при окраске	12
	деталей на 2025 по 2027 г.г. Неорганизованный источник №6289	
217	Разрез «Восточный». Станция Восточная. ЖДЦ. УПР. Расчет эмиссий	94
∠ 1 /	загрязняющих веществ в атмосферу при окраске столбиков на жд.) T
	станциях на 2025-2027 г.г. Неорганизованный источник №6198	
218	Разрез «Восточный». Станция Восточная. АХО. Расчет эмиссий	95
218		

прил.		
210		
210	2025-2027 г.г. Неорганизованный источник №6199	
219	Разрез «Восточный». Станция Балластная. Щебёночный карьер. Дробильно-	96
	сортировочный комплекс (ДСК). Мастерская. Расчет эмиссий загрязняющих	
	веществ в атмосферу при окраске деталей на 2025-2027 г.г.	
	Неорганизованный источник №6201	0.0
220	Разрез «Восточный». Станция Восточная. АТУ. Ремонтный бокс. Расчет	98
	эмиссий загрязняющих веществ в атмосферу от резервуара машинных масел	
	в период с 2025 по 2027 г.г. Неорганизованный источник №6202	
221	Разрез «Восточный». Станция Восточная. Цех буровзрывных работ. Участок	99
	буровых работ (УБР). Ремонтные работы. Расчет эмиссий загрязняющих	
	веществ в атмосферу при пайке электропаяльником припоем ПОС-60 на	
	2025-2027 г.г. Неорганизованный источник №6204	
222	Разрез «Восточный». Станция Восточная. Добычной цех. Участки	100
	добычных работ №1 и №2 (УДР-1 УДР-2). Ремонтные работы. Расчет	
	эмиссий загрязняющих веществ в атмосферу при пайке электропаяль-ником	
	припоем ПОС-60, 40 на 2025-2027 г.г. Неорганизованный источник №6207	
223	Разрез «Восточный». Комплексы по выдаче вскрышных пород ЦПВК №1 и	101
	ЦПВК №2. Расчет выбросов пыли при работе гидромолотов ЦПВК 1 и	
	ЦПВК 2 (№ ист. 6214, 6215, 6231) на 2025-2027 г.г.	
224	Разрез «Восточный». Станция Фестивальная. Вскрышной цех. Участок	102
	путепеукладочных работ (УППР). Расчет эмиссий загрязняющих веществ в	
	атмосферу от сварочных работ на 2025-2027 г.г. Неорганизованный	
	источник №6227	
225	Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2.	103
	Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных	
	конвейеров в 2023 г.г. (№ ист. 6231)	
226	Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2.	104
	Расчёт эмиссий пыли в атмосферу при перегрузке вскрыши с разгрузочных	
	конвейеров ДУ №3, ДУ №4 на конвейер ВКС 1 (С1) в период с 2025 по	
	2027 г.г.	
227	Разрез «Восточный». Станция Восточная. ЖДЦ. УПР. Идентификация	106
	состава выбросов от керосина в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6249	
228	Разрез «Восточный». Станция Восточная. ЖДЦ. УПР. Идентификация	107
	состава выбросов от дизельного топлива в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6249	
229	Разрез «Восточный». Станция Восточная. Железнодорожный цех (ЖДЦ).	108
	Участок путевых работ (УПР). Расчет эмиссий загрязняющих веществ в	
	Неорганизованный источник №6249	
230	Разрез «Восточный». Станция Фестивальная. Железнодорожный цех (ЖДЦ).	109
231		110
	источник № 6308	
232	Разрез «Восточный». Строительство базы ремонта технологического	111
	атмосферу от смазки стрелочных переводов в период с 2025 по 2027 г.г. Неорганизованный источник №6249 Разрез «Восточный». Станция Фестивальная. Железнодорожный цех (ЖДЦ). Участок вспомогательной железнодорожной техники (УВЖТ). Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей в дизельном топливе на 2025-2027 г.г. Неорганизованный источник №6252 Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Помещение с емкостями для хранения ГСМ. Идентификация состава выбросов от резервуаров с дизельным топливом. Период с 2025 по 2027 г.г. Неорганизованный	

Номер	Наименование приложения	Стр.
прил.		
	автотранспорта. Производственный корпус. Помещение с емкостями для	
	хранения ГСМ. Расчет эмиссий загрязняющих веществ в атмосферу от	
	бочек с дизельным топливом. Неорганизованный источник № 6308 на 2025-2027 г.г.	
233	Разрез «Восточный». Расчет объемов эмиссий пыли, сдуваемой с	112
	поверхности ленточных конвейеров при транспортировке внутренней	
	вскрыши в 2025-2027 г.г. (№ ист.6027)	
234	Разрез «Восточный». Участок 8,12. Расчет объемов эмиссий пыли в	114
	атмосферу при перегрузках внутренней вскрыши на ленточных конвейерах	
	в период с 2025 по 2027 г.г.	
235	Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС «Фестивальная».	115
	Склад сухого песка. Расчет эмиссий загрязняющих веществ в атмосферу от	
	сушки и транспортировки песка на 2025-2027 г.г. Неорганизованный	
	источник №6074	
236	Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС «Фестивальная».	116
	Заправка путевых машин дизельным топливом на пути №17. Расчет	
	эмиссий загрязняющих веществ в атмосферу от колонки дизельного топлива	
	на 2025-2027 г.г. Неорганизованный источник №6075	–
237	Разрез «Восточный». Станция Фестивальная. ДПС «Фестивальная».	117
	Заправка путевых машин дизельным топливом. Идентификация состава	
	выбросов от колонки дизельного топлива на 2025-2027 г.г.	
220	Неорганизованный источник №6075	110
238	Разрез «Восточный». Станция Восточная. Добычной цех. Участок	118
	технологического комплекса разреза (УТКР). Расчет эмиссий загрязняющих	
	веществ в атмосферу от резервуаров отработанных масел в период с 2025	
239	по 2027 г.г. Неорганизованный источник №6217	119
239	Разрез «Восточный». Станция Восточная. Добычной цех. Участок водоотлива и профилактики эндогенных пожаров (УВПЭП). Расчет эмиссий	119
	загрязняющих веществ в атмосферу от заточного станка на 2025-2027 г.г.	
	Неорганизованный источник №6218	
240	Разрез «Восточный». Станция Восточная. Добычной цех. Участок	120
240	водоотлива и профилактики эндогенных пожаров (УВПЭП). Расчет эмиссий	120
	загрязняющих веществ в атмосферу от резервуаров отработанных масел в	
	период с 2025 по 2027 г.г. Неорганизованный источник №6219	
241	Разрез «Восточный». Станция Восточная. Добычной цех. Участок	121
211	водоотлива и профилактики эндогенных пожаров ((УВПЭП). Расчет	121
	эмиссий загрязняющих веществ в атмосферу от резервуаров отработанных	
	масел и мешалки в период с 2025 по 2027 г.г. Неорганизованный источник	
	№6220	
242	Разрез «Восточный». Станция Балластная. Вскрышной цех. Щебеночный	122
	карьер. Дробильно-сортировочный комплекс (ДСК). Расчет эмиссий	
	загрязняющих веществ в атмосферу от бочек с маслами в период с 2025 по	
	2027 г.г. Неорганизованный источник №6225	
243	Разрез «Восточный». Станция Фестивальная. Вскрышной цех. Участок	123
	путепеукладочных работ (УППР). Расчет эмиссий загрязняющих в	
	атмосферу от закрытой емкости для хранения угля бытовок на 2025-2027 г.г.	
	Неорганизованный источник №6226	
244	Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2.	124
	Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных	
	конвейеров за 2024 г.	

П№2. 125 П№2. 126 П№2. 127 ПРВ
26) при 126 очных 127 очных 128 ольной ировке 130 ощих в
П№2. 126 Очных 127 Очных 128 Ольной ировке 129 Ощих в 130
очных 127 очных 128 ольной 128 ировке 129 ощих в 130
очных 127 очных 128 ольной 128 ировке 129 ощих в 130
 П№2. П№2. Пиных
очных 128 ировке 129 ощих в
очных 128 ировке 129 ощих в
ольной 128 ировке 129 130 ощих в
ировке пли 129 ощих в
ировке пли 129 ощих в
лли 129 ощих в
0щих в
0щих в
0щих в
ощих в
ощих в
l
ей и 132
реру от
№6245
йи 134
реру от
16
ДЦ). 135
ВВ
(ЖДЦ). 136
Γ
ериод с
r -/(-
(ЖДЦ). 137
пливе
138
ет
ия угля
№6256
139
M).
на
144
pe. 140
. 170
ный
11/11/1

Номер	Наименование приложения	Стр.
прил.		I.
259	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС Восточное.	141
	Расчет эмиссий загрязняющих веществ в атмосферу от резервуара	
	машинных масел в период с 2025 по 2027 г.г. Неорганизованный источник	
	№6261	
260	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. ДПС Восточное.	143
	Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки	
	деталей в каустической соде на 2025-2027 г.г. Неорганизованный источник	
	№6262	
261	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. Вагоноремонтное	144
	депо (ВРД). Расчет эмиссий загрязняющих веществ в атмосферу от бочек с	
	маслами в период с 2025 по 2027 г.г. Неорганизованный источник №6263	
262	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. Ремонтно-	145
	строительный участок (РСУ). Расчет эмиссий загрязняющих в атмосферу от	
	бетономешалки и склада временного хранения песка и щебня на 2025-2027	
	г.г. Неорганизованный источник №6264	
263	Разрез «Восточный. Станция Восточная. Административно-хозяйственный	147
	отдел (АХО). Здание АБК (ст. Фестивальная). Расчет эмиссий загрязняющих	
	веществ в атмосферу от заточного станка на 2025-2027 г.г.	
264	Неорганизованный источник №6265	1.40
264	Разрез «Восточный. Станция Восточная. Административно-хозяйственный	148
	отдел (AXO). Мастерская охранной фирмы «Тарлан секьюрити». Расчет	
	эмиссий загрязняющих веществ в атмосферу от заточного станка на 2025-	
265	2027 г.г. Неорганизованный источник №6266	1.40
265	Разрез «Восточный». Станция Фестивальная. Участок складского хозяйства	149
	(УСХ). Склад селитры. Расчет эмиссий загрязняющих веществ в атмосферу от сжигания полипропиленовой тары из-под селитры на 2025-2027 г.г.	
	Неорганизованный источник №6269	
266	Разрез «Восточный». Станция Фестивальная. АХО. Бытовой корпус. Расчет	150
200	эмиссий загрязняющих веществ в атмосферу от станка шлифовально-	130
	обувной мастерской на 2025-2027 г.г. Неорганизованный источник №6271	
267	Разрез «Восточный. Станция Фестивальная. АХО. Бытовой корпус. Расчет	151
207	эмиссий загрязняющих веществ в атмосферу от станка шлифовального	131
	обувной мастерской на 2025-2027 г.г. Неорганизованный источник №6272	
268	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. Смеситель для	152
_00	производства холодного асфальта. Расчет эмиссий загрязняющих веществ в	102
	атмосферу при изготовлении холодного асфальта в период с 2025 по 2027	
	г.г. Неорганизованный источник №6282	
269	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. Смеситель для	153
	производства холодного асфальта. Расчет эмиссий загрязняющих веществ в	
	атмосферу от складов временного хранения песка и щебня на 2025-2027 г.г.	
	Неорганизованный источник №6282	
270	Разрез «Восточный». Станция Фестивальная. ЦРЖДО. Смеситель для	155
	производства холодного асфальта. Расчет эмиссий загрязняющих веществ в	
	атмосферу от транспортирования песка и щебня на склады на 2025-2027 г.г.	
	Неорганизованный источник №6283	
271	Разрез «Восточный». Станция Восточная. Добычной цех. Участок	156
	добычных работ №2 (УДР 2). Расчет эмиссий загрязняющих веществ в	
	атмосферу от бочек с маслами в период с 2025 по 2027 г.г.	
	Неорганизованный источник №6285	
272	Разрез «Восточный». Станция Восточная. Добычной цех (УДР-1). Расчет	157

Номер прил.	Наименование приложения	Стр.
•	эмиссий загрязняющих веществ в атмосферу при сжигании самоспасателей на 2025-2027 г.г. Неорганизованный источник №6287	
273	Разрез «Восточный». Отвал конвейерный №1. Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6288	158
274	Разрез «Восточный». Отвал конвейерный №1. Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла на 2025-2027 г.г. Неорганизованный источник №6288	160
275	Разрез «Восточный». Отвал конвейерный №1. Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025-2027 г.г. Неорганизованный источник №6288	161
276	Разрез «Восточный». Конвейерный отвал №1. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-40. Неорганизованный источник № 6288 на 2025-2027 г.г.	163
277	Разрез «Восточный». Циклично-поточный вскрышной комплекс №2 (ЦПВК-2). Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ. Неорганизованный источник №6289 на 2025-2027 г.г.	164
278	Разрез «Восточный». Циклично-поточный вскрышной комплекс №2 (ЦПВК-2). Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла в период с 2025 по 2027 г.г. Неорганизованный источник №6289	167
279	Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Помещение с емкостями для хранения ГСМ. Расчет эмиссий загрязняющих веществ в атмосферу от бочек с бензинами. Неорганизованный источник № 6308 на 2025-2027 г.г.	168
280	Разрез «Восточный». Станция Восточная. ЖДЦ. УСЦБ. Идентификация состава выбросов от керосина в период с 2025 по 2027 г.г. Неорганизованный источник №6250	169
281	Разрез «Восточный». Станция Восточная. Железнодорожный цех (ЖДЦ). Участок сигнализации, централизации и блокировки (УСЦБ). Расчет эмиссий загрязняющих веществ в атмосферу от чистки электрооборудования в период с 2025 по 2027 г.г. Неорганизованный источник №6250	170
282	Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛМ-5 на конвейер КЛМ-4. Расчет выбросов твердых частиц от аспирационной установки А1 (уголь) на 2025-2027 г.г. (ист.0293)	171
283	Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛМ-5 на конвейер КЛМ-4. Расчет выбросов твердых частиц от аспирационной установки А1 (вскрыша внутренняя) на 2025-2027 г.г. (ист.0293)	172
284	Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛЗ-7 на конвейер КЛП-5. Расчет выбросов твердых частиц от аспирационной установки А2 (уголь) на 2025-2027 г.г. (ист.0294)	173
285	Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛЗ-7 на конвейер КЛП-5. Расчет выбросов	174

Номер прил.	Наименование приложения	Стр.
	твердых частиц от аспирационной установки A2 (вскрыша внутренняя) на 2025-2027 г.г. (ист.0294)	
286	Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛП-5 на конвейер КЛМ-5. Расчет выбросов твердых частиц от аспирационной установки АЗ (уголь) на 2025-2027 г.г. (ист.0295)	175
287	Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛП-5 на конвейер КЛМ-5. Расчет выбросов твердых частиц от аспирационной установки АЗ (вскрыша внутренняя) на 2025-2027 г.г. (ист.0295)	176
288	Разрез «Восточный» АО «ЕЭК». УДР-2. Центральная конвейерная линия. Установка пневматического обогащения угля FGX-12 №2, №3. Расчет выбросов твердых частиц от аспирационных систем A2, A3 на грохоте и перегрузке на конвейеры в период с 2025 по 2027 г.г. (ист.0298, 0299)	177
289	Разрез «Восточный» АО «ЕЭК». УДР-2, Восточный -2. Участок 8,12. Установка пневматического обогащения угля FGX-12 №4. Расчет выбросов твердых частиц от аспирационной системы А4 на грохоте и перегрузка на конвейеры в период с 2025 по 2027 г.г. (ист.0300)	178
290	Разрез «Восточный» АО «ЕЭК». УТКР на ст. Восточная. Сортировочная линия угля на складе №4. Пересыпка угля с грохота на конвейеры. Расчет выбросов твердых частиц от аспирационной системы А1 в период с 2025 по 2027 г.г. (ист.0297)	179
291	Разрез «Восточный» АО «ЕЭК». УТКР. Установка пневматического обогащения угля FGX-12. Расчет выбросов твердых частиц от аспирационной системы А1 на грохоте и перегрузка на конвейеры в период с 2025 по 2027 г.г. (ист.0296)	180
292	Разрез «Восточный». Пункт технического обслуживания автосамосвалов «Пит-Стоп» на гор.+25. Открытая площадка. Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла на 2025-2027 г.г. Организованный источник № 0309	181
293	Разрез «Восточный». Пункт технического обслуживания автосамосвалов «Пит-Стоп» на гор.+25. Открытая площадка. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 г.г. Организованный источник № 0309	182
294	Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет количества пыли, выделяющейся при сдувании с поверхности первичных конусов в период с 2025 по 2027 г.г.	183
295	Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет эмиссий пыли в атмосферу при транспортировании угля конвейерами в период с 2025 по 2027 г.г.	184
296	Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет эмиссий пыли в атмосферу от работы автопогрузчика в период с 2025 по 2027 г.г.	186
297	Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет количества пыли, образующейся при грохоте, дроблении и обогащении угля в период с 2025 по 2027 г.г.	187
298	Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС Ф. Экипировка локомотивов. Склад экипировочного песка. Расчет выбросов эмиссий загрязняющего воздуха в атмосферу от хранения песка на 2025-2027 г.г. Неорганизованный источник №6094.01	188

Номер	Наименование приложения	Стр.
прил.		
299	Разрез «Восточный». Участок 8,12. Расчёт объёмов эмиссий пыли в	189
	атмосферу при перегрузках внутренней вскрыши на ленточных конвейерах	
	в период 2025-2027 г.г. Неорганизованный источник выбросов №6027	
300	Разрез «Восточный». УПК на ст. Восточная. Комплекс по обогащению угля.	190
	Расчет эмиссий пыли в атмосферу при пересыпке угля в период с 2025 по	
	2027 г.г.	
301	Разрез «Восточный». УПК на ст. Восточная. Комплекс по обогащению угля.	192
	Расчет эмиссий пыли в атмосферу при пересыпке концентрата и породы в	
	период с 2025 по 2027 г.г.	
302	Разрез «Восточный». УТКР на ст. Восточная. Угольный склад №5. Расчет	194
	количества пыли, выделяющейся при сдувании в период с 2025 по 2027 г.г.	
303	Разрез «Восточный». УТКР на ст. Восточная. Угольный склад №5. Расчет	195
	количества пыли, выделяющейся при погрузочно-разгрузочных работах в	
	период с 2025 по 2027 г.г.	
304	Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий пыли в	196
	атмосферу от уборки просыпей угля в 2025-2027 г.г.	
305	Разрез «Восточный». Отвал конвейерный №2. Передвижной сварочный	198
	пост. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных	
	работ. Неорганизованный источник № 6301 с 2025 по 2027 г.г.	
306	Разрез «Восточный». Отвал конвейерный №2. Расчет эмиссий	201
	загрязняющих веществ в атмосферу при пайке электропаяльником припоем	
	ПОС-40. Неорганизованный источник № 6301	
	с 2025 по 2027 г.г.	
307	Разрез «Восточный». Отвал конвейерный №2. Передвижной сварочный	202
	пост. Расчет эмиссий загрязняющих веществ в атмосферу при газовой	
	резке металла. Неорганизованный источник №6301 с 2025 по 2027 г.г.	
308	Разрез «Восточный». Отвал конвейерный №2. Расчет эмиссий	203
	загрязняющих веществ в атмосферу при окраске деталей.	
	Неорганизованный источник №6301 с 2025 по 2027 г.г.	
309	Разрез «Восточный». Строительство базы ремонта технологического	205
	автотранспорта. Производственный корпус. Участок ремонта ДВС	
	топливной аппаратуры и узлов трансмиссии. Расчет эмиссий	
	загрязняющих веществ в атмосферу от стенда для испытания и регулировки	
	топливной аппаратуры. Неорганизованный источник № 6304 в период с	
	2025 по 2027 г.г.	
309a	Разрез "Восточный". Цех сервисного обслуживания (ЦСО). Расчет эмиссий	206
200	загрязняющих веществ в атмосферу от мойки автомобилей на 2024-2027 гг.	
	Неорганизованный источник №6304	
310	Разрез «Восточный». Строительство базы ремонта технологического	208
510	автотранспорта. Производственный корпус. Пост сварки. Расчет эмиссий	200
	загрязняющих веществ в атмосферу при сварочных и наплавочных	
	работах. Неорганизованный источник № 6302 на 2025-2027 г.г.	
311	Разрез «Восточный». Строительство базы ремонта технологического	210
511	автотранспорта. Производственный корпус. Пост сварки. Расчет эмиссий	
	загрязняющих веществ в атмосферу при механической обработке металла.	
	Организованный источник № 0303 на 2025-2027 г.г.	
312	Разрез «Восточный». Строительство базы ремонта технологического	211
314	автотранспорта. Производственный корпус. Помещение с емкостями для	211
	хранения ГСМ. Идентификация состава выбросов от резервуаров с	
	бензином. Неорганизованный источник №6308 в период 2025-2027 г.г.	
	осполном. пеорганизованный источник леозоо в период 2023-2027 Г.Г.	<u> </u>

Номер	Наименование приложения	Стр.
прил.		
313	Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Участок ремонта ДВС, топливной аппаратуры и узлов трансмиссии. Расчет эмиссий загрязняющих веществ в атмосферу от установки для мойки деталей в каустической соде. Неорганизованный источник № 6305 в период с 2025 по 2027 г.г.	212
314	Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Склад масел. Расчет эмиссий загрязняющих веществ в атмосферу от бочек с маслами. Неорганизованный источник № 6306 на 2025-2027 г.г.	213
315	Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Склад масел. Расчет эмиссий загрязняющих веществ в атмосферу от бочек с отработанными маслами. Неорганизованный источник № 6307 на 2025-2027 г.г.	214
316	Разрез «Восточный». УПК на ст. Восточная. Расчет объемов пыли, сдуваемой при перегрузке породы внутренней вскрыши ленточными конвейерами (поз. 1, 3, 4) и на перегрузочном пункте 1-6 (поз. 5, 7, 8 и 25) в 2025-2027 г.г.	215
317	Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий пыли в атмосферу при перегрузках угля на площадках складов №№1, 2, 3 и 4 в 2025-2027 г.г.	217
318	Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий в атмосферу при работе усреднительно-погрузочной машины на площадках складов №№1, 2, 3 и 4 и сдувании пыли с их поверхности в 2025-2027 г.г.	219
319	Разрез «Восточный». УПК на ст. Восточная. Расчет объемов пыли, сдуваемой при перегрузке угля ленточными конвейерами (поз. 1, 3, 4) и на перегрузочном пункте 1-6 (поз. 5, 7, 8 и 24, 25, 26,27) в 2025-2027 г.г.	221
320	Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий пыли в атмосферу при сдувании угля с поверхности ленточных конвейеров на площадках складов №№1, 2, 3 и 4 в 2025-2027 г.г.	223
321	Разрез «Восточный». УПК на ст. Восточная. Расчет объемов пыли, образующейся при транспортировке породы внутренней вскрыши ленточными конвейерами на площадке склада №2 в 2025-2027 г.г.	224
322	Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1. Расчёт эмиссий пыли в атмосферу с ленточных конвейеров при перегрузках вскрыши на 2023 г.	225
323	Разрез «Восточный». УПК на ст. Восточная. Склад угля №2. Расчет объемов пыли, образующейся от склада внутренней вскрыши при сдувании со штабеля и погрузке вскрыши в жд. вагоны в 2025-2027 г.г.	227
324	Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий пыли в атмосферу при перегрузках внутренней вскрыши на площадке склада №2 в 2025-2027 г.г. Источник №6009	229
325	Разрез «Восточный». УТКР на ст. Восточная. Расчет объемов эмиссий пыли в атмосферу при транспортировке угля на пункты погрузки №1 и 2 в 2025-2027 г.г.	230
326	Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных конвейеров с 2025 по 2027 г.г. (№ ист. 6214, 6215, 6087)	231
327	Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных	233

Номер	Наименование приложения	Стр.
прил.		
	конвейеров на 2023 г. (№ ист. 6215, 6087)	
328	Разрез «Восточный». Станция Восточная. Склад ГСМ-1. Идентификация	235
	состава выбросов от резервуаров с дизельным топливом. Неорганизованный	
	источник №6037 в период с 2025 по 2027 г.г.	
329	Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1.	236
	Расчёт эмиссий пыли в атмосферу с ленточных конвейеров при	
	перегрузках вскрыши в период с 2025 по 2027 г.г.	

Разрез "Восточный". Станция Восточная. Транспортный цех. ТЦ.Тракторнобульдозерный участок (ТБУ). Расчет выбросов вредных веществ от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6123

Наименование показателей	Показатели	
Исходные данные		
Механическая обработка без охлаждения		
Угловая шлифовальная машина " болгарка" УШМ-230/2300М Фкруга		
1.Количество станков,п, шт	1	
2. Количество часов работы в год одного станка, Т, ч	120	
3.к-коэф.гравитац.оседания для абразивной пыли и взвешенных		
веществ	0,2	
4.Удельный выброс на единицу оборудования, г/с		
q -абразивная пыль	0,043	
q1-взвешенные вещества	0,043	
Результаты		
5.Валовый выброс за год взвешенных веществ, т/год		
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00372	
6.Максимальный разовый выброс взвешенных веществ, г/с		
П=k*q1*n -без пылеотсасывающих агрегатов	0,0086	
7.Валовый выброс за год абразивной пыли, т/год		
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00372	
8.Максимальный разовый выброс абразивной пыли, г/с		
П=k*q*n -без пылеотсасывающих агрегатов	0,0086	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Восточная. Транспортный цех. ТЦ.Тракторнобульдозерный участок (ТБУ). Расчет выбросов вредных веществ при пайке электропаяльникос припоем ПОС-30 на 2025-2027 гг. Неорганизованный источник выбросов №6123

Наименование показателей	Показатели	
Исходные данные		
1.Количество паек в год, п, шт	13	
2. Чистое в ремя работы паяльником в год ,t,ч	13	
3.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,0000075	
q2- олова оксид	0,0000033	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,0000075	
Мс=q2 * - олова оксид	0,0000033	
5.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,0000004	
Мгод=(q2*t*3600)*0,000001- олова оксид	0,00000002	

Разрез "Восточный". Станция Восточная. Транспортный цех. ТЦ.Тракторнобульдозерный участок (ТБУ). Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник выбросов №6123

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль НЦ-132	0,019
тф1-растворитель 646	0,01
2. Максимальный часовой расход, кг	
тм-эмаль НЦ-132	1
тм1-растворитель 646	0,7
3.Состав эмали НЦ-132, %	
q1-ацетон	8
q2-спирт н-бутиловый	15
q3-спирт этиловый	20
q4-бутилацетат	8
q5-этилцеллозольв	8
q6-толуол	41
fp-доля летучей части	80
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q7-ацетон	7
q8-спирт н-бутиловый	15
q9-спирт этиловый	10
q10-бутилацетат	10
q11-этилцеллозольв	8
q12-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q2+ mф1*fp1*rp2*q8)/106*(1-n) -спирт н-	
бутиловый	0,00106
М2окр.=(mф*fp*rp*q4+mф1*fp1*rp2*q10)/106*(1-n)-бутилацетат	0,00062
М3окр.=(mф*fp*rp*q1+mф1*fp1*rp2*q7)/106*(1-n)-ацетон	0,00054
М4окр.=(mф*fp*rp*q6+mф1*fp1*rp2*q12) /106*(1-n)-толуол	0,00314
М5окр.=(mф*fp*rp*q5+mф1*fp1*rp2*q11) /106*(1-n)-этилцеллозольв	0,00056
М6окр.=(mф*fp*rp*q3+mф1*fp1*rp2*q9) /106*(1-n)-спирт этиловый	0,00056
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,12096
$\Pi 2 = (m M1 * fp1 * rp2 * q10) / 106 * 3,6 * (1-n) - бутилацетат$	0,07056

Окончание приложения 167

1	2
П3=(mм*fp*rp*q1)/106*3,6*(1-n)-ацетон	0,06451
П4=(mм1*fp1*rp2*q12)/106*3,6*(1-n)-толуол	0,3528
П5=(mм*fp*rp*q5)/106*3,6*(1-n)-этилцеллозольв	0,06451
$\Pi 6 = (m M f p r p q 2)/106 3,6 (1-n)$ -спирт этиловый	0,16128
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q2 +mф1*fp1*rp3*q8)/106*(1-n)-спирт н-	
бутиловый	0,00272
M2c=(mф*fp*rp1*q4+mф1*fp1*rp3*q10)/106*(1-n)-бутилацетат	0,00247
$M3c = (m\phi * fp * rp1 * q1 + m\phi 1 * fp1 * rp3 * q7)/106 * (1-n)$ -ацетон	0,00138
M4c=(mф*fp*rp1*q6+mф1*fp1*rp3*q12) /106*(1-n)-толуол	0,00809
M5c=(mф*fp*rp1*q5+mф1*fp1*rp3*q11)/106*(1-n)-этилцеллозольв	0,00145
М6c=(mф*fp*rp1*q3+mф1*fp1*rp3*q9)/106*(1-n)-спирт этиловый	0,00291
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
$\Pi 1 = (mm/24*fp*rp1*q2)/106*3,6*(1-n)$ -спирт н-бутиловый	0,01296
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q610/106 * 3,6 * (1-n) - бутилацетат$	0,00756
$\Pi 3 = (m M/24 * fp * rp1 * q1)/106 * 3,6 * (1-n)$ -ацетон	0,00691
П4=(mм1/24*fp1*rp3*q12)/106*3,6*(1-n)-толуол	0,0378
$\Pi 5 = (m_M/24 * fp * rp1 * q5)/106 * 3,6 * (1-n) - этилцеллозольв$	0,00691
$\Pi 6 = (m M 1/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n)$ -спирт этиловый	0,01296
Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,00378
М2=М2окр.+М2с-бутилацетат	0,00309
М3=М3окр.+М3с-ацетон	0,00192
М4=М4окр.+М4с)-толуол	0,01123
М5=М5окр.+М5с-этилцеллозольв	0,00201
М6=М6окр.+М6с-спирт этиловый	0,00347

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004

Разрез "Восточный". Станция. Фестивальная. ЦРЖДО. ДПС Восточное. Расчет выбросов вредных веществ при проведении сварочных работ и резке металла на 2025-2027 гг. Неорганизованный источник выбросов №6127-01

Наименование показателей	Показатели
1	2
Исходные данные по сварочным работам	
Сварочные работы электродами марки УОНИ 13/45	
1.Годовой расход электродов типа УОНИ 13/45, Вгод.1, кг	600
2. Максимальный часовой расход электродов типа УОНИ 13/45, В1, кг	0,5
3. Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	1200
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его оксиды	0,51
К2- кремния диоксид	1,4
К3-фториды	1,4
К4-фтористыей водород	1
Сварочные работы электродами марки УОНИ 13/55	
6. Годовой расход электродов типа УОНИ 13/55, Вгод. 2, кг	610
7. Максимальный часовой расход электродов типа УОНИ 13/55, В2, кг	0,5
8. Количество постов, t2, ч	1
9. Количество часов работы в год всех постов, Т2, ч	1220
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его оксиды	1,09
К6-кремния диоксид	1
К7-фториды	1
К8-фтористыей водород	1,26
К9-оксиды азота	2,7
К10-оксид углерода	13,3
Результаты	
11.Валовый выброс за год, т/год	
М1=(Вгод.1*К1+Вгод.2*К5)/1000000-марганец и его соединен.	0,00097
М2=(Вгод.1*К4+Вгод.2*К8)/1000000 -фтористый водород	0,00137
М3=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К12)/1000000 -кремния диоксид	0,00145
М4= (Вгод.1*К3+Вгод.2*К7)/1000000-фториды	0,00145
М5=(Вгод.2*К9)/1000000 -азот оксид	0,00165
М6=Вгод.2*К10/1000000 -углерод оксид	0,00811
12.Максимальный разовый выброс, г/с	
П1=К5*В2/3600-марганец и его соед.	0,00015
П2=К8*В2/3600-фтористый водород	0,00018
П3=(К2*В1/3600)-кремния диоксид	0,00019
П4=(К3*В1/3600)-фториды	0,00019
П5=К9*В2/3600-азот оксид	0,00038
П6=К10*В2/3600-углерод оксид	0,00185
Исходные данные по газовой резке	
13. Количество часов работы в год, Т1, ч	300

Окончание приложения 168

1	2	
14. Удельное выделение загрязняющих веществ при газовой резке стали		
углеродистой толщиной 20мм, г/с		
К1-марганец и его соединения	0,017	
К2-оксид углерода	0,018	
К3-диоксид азота	0,015	
Результаты		
15.Валовый выброс за год,т/год		
М7=Т1*3600*К1/1000000 -марганец и его соединения	0,01836	
М8=Т1*3600*К2/1000000 -оксид углерода	0,01944	
М9=(Т1*3600*К3/1000000 -диоксид азота	0,0162	
16.Максимальный разовый выброс,г/с		
П1=К1 -марганец и его соединения	0,017	
П2=К2 -оксид углерода	0,018	
П3=К3 -диоксид азота	0,015	
Итого		
17.Валовый выброс за год,т/год		
M=M1+M7 - марганец и его соединен.	0,01933	
М=М2 -фтористый водород	0,00137	
М=М3- кремния диоксид	0,00145	
М=М4-фториды	0,00145	
М=М5 -азот оксид	0,00165	
М=М6+М8-углерод оксид	0,02755	
М=М9 -диоксид азота	0,0162	
18.Максимальный разовый выброс,г/с		
П1=К1-марганец и его соед.	0,017	
П2=К8*В2/3600-фтористый водород	0,00018	
П3=(K2*B1/3600)-пыль неоргSiO2	0,00019	
П4=(К3*В1/3600)-фториды	0,00019	
П5=К9*В2/3600-азот оксид	0,00038	
П6=К10*В2/3600-углерод оксид	0,018	

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Восточная. ЖДЦ. Участок путевых работ (УПР). Расчет выбросов вредных веществ при газовой резке металла на 2025-2027 гг. Неорганизованный источник выбросов №6130

Наименование показателей	Показатели	
1	2	
Исходные данные по газовой резке		
1.Количество часов работы в год,Т1,ч	450	
2.Удельное выделение загрязняющих веществ при газовой резке стали углеродистой толщиной 20мм, г/с		
К1-оксиды марганца	0,017	
К2-оксид углерода	0,018	
К3-диоксид азота	0,015	
Результаты		
3.Валовый выброс за год,т/год		
М1=Т1*3600*К1/1000000 -оксиды марганца	0,02754	
М2=Т1*3600*К2/1000000 -оксид углерода	0,02916	
М3=(Т1*3600*К3/1000000 -диоксид азота	0,0243	
4.Максимальный разовый выброс,г/с		
П1=К1 -оксиды марганца	0,017	
П3=К2 -оксид углерода	0,018	
П4=К3 -диоксид азота	0,015	

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221-Ө".

Разрез "Восточный". Станция Фестивальная.ЦРЖДО. ДПС "Восточное". Цех по наладке электроаппаратов. Расчет эмиссий загрязняющих веществ в атмосферу при пайке припоем ПСР15 и ПСР45 паяльником с косвенным нагревом на 2025-2027 гг. Неорганизованный источник №6126

Наименование показателей	Показатели	
Исходные данные		
1. Чистое время пайки в год ,t,ч	100	
2.Годовой расход,т,кг:		
- m1-ПСР-45, ПСР-15	9	
- m2-кислота паяльная ПК-0	4,5	
3.Удельное выделение загрязняющих ,веществ, q, г/кг		
q1-меди оксид	0,072	
q2- цинка оксид	6,4	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=Mгод1*1000000/(t*3600) - меди оксид	0,000003	
Мс=Мгод2*1000000/(t*3600) -оксид цинка	0,00025	
5.Валовый выброс за год, т/год		
Мгод1=q1*(m1+m2)*0,000001-меди оксид	0,000001	
Мгод2=q2*(m1+m2)*0,000001-оксид цинка	0,00009	

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. ДПС "Восточное". Расчет эмиссий загрязняющих веществ в атмосферу при наплавочных работах на 2025-2027 гг. Неорганизованный источник №6128

Наименование показателей	Показатели
Исходные данные	
Наплавочные работы под флюсом АН-348А порошковой проволокой П	П-АН-1
1.Годовой расход АН-348А, Вгод.1, кг	580
2. Максимальный часовой расход АН 348А, В1, кг	1,6
3.Количество часов работы в год, Т1, ч	363
4.Годовой расход ПП-АН-1, Вгод.2, кг	295
5. Количество часов работы в год, Т2, ч	369
6. Максимальный часовой расход ПП-АН-1, В2, кг	0,8
7.Удельное выделение загрязняющих веществ при АН-348А, г/кг	
К1-марганец и его соединения	0,024
К2-пыль неорганическая	0,05
К3-фтористыегазообразные соединения	0,086
К4- азот оксид	0,001
К5-углерод оксид	0,71
8.Удельное выделение загрязняющих веществ при ПП-АН-1, г/кг	
К6-марганец и его соединения	0,77
Результаты	_
8.Валовый выброс за год, т/год	
М1=(Вгод.1*К1+Вгод.2*К6)/1000000-марганец и его соединен.	0,00001
М2=(Вгод.1*К2)/1000000пыль неорганическая	0,00003
М3=Вгод.1*К3/1000000 -фтористые газообр. соед.	0,00005
М4=Вгод.1*К4/1000000 -азот диоксид	0,0000006
М5=Вгод.1*К5/1000000 -оксид углерод	0,000412
9.Максимальный разовый выброс, г/с	
П1=(К1*В1+К6*В2)/3600-марганец и его соед.	0,00001
П2=К2*В1/3600-пыль неорганическая	0,00002
П3=К3*В1/3600-фтористые газообр. соединен.	0,00004
П4=К4*В1/3600-азот диоксид	0,0000004
П5=К5*В1/3600-углерод оксид	0,0003156

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө".

Разрез "Восточный". Станция Восточная . Энергоцех. Участок теплоснабжения и сетей (УТС). Котельная. Расчет выбросов вредных веществ при пайке электропаяльникос припоем ПОС-30 на 2025-2027 гг. Неорганизованный источник №6137

Наименование показателей	Показатели	
Исходные данные		
1.Количество паек в год, п, шт	13	
2. Чистое в ремя работы паяльником в год ,t,ч	13	
3.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,0000075	
q2- олова оксид	0,0000033	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,000008	
Mc=q2 * - олова оксид 0,000003		
5.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,0000004	
Мгод=(q2*t*3600)*0,000001- олова оксид	0,0000002	

Разрез "Восточный". Станция Фестивальная . ЖДЦ. Участок сигнализации, централизации и блокировки (УСЦБ). Расчет выбросов вредных веществ при пайке электропаяльника с припоем ПОС-30. Неорганизованный источник №6131 на 2025-2027 гг.

Наименование показателей	Показатели
Исходные данные	
1.Количество паек в год, п, шт	300
2. Чистое в ремя работы паяльником в год ,t,ч	300
3.Удельное выделение загрязняющих веществ, q, г/с м2	
q1-свинец и его соединения	0,000075
q2- олова оксид	0,0000033
Результаты	
4.Максимальный разовый выброс, г/с	
Mc=q1 - свинец и его соединения	0,000008
Мс=q2 * - олова оксид	0,000003
5.Валовый выброс за год, т/год	
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,00008
Мгод=(q2*t*3600)*0,000001- олова оксид	0,000004

Разрез "Восточный". Станция Восточная . ЦРГО.Участок по ремонту конвейеерных лент (УРКЛ). Расчет выбросов вредных веществ при пайке электропаяльникос припоем ПОС-30 на 2025-2027 гг. Неорганизованный источник №6135

Наименование показателей	Показатели	
Исходные данные		
1.Количество паек в год, п, шт	50	
2. Чистое в ремя работы паяльником в год ,t,ч	50	
3.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,000075	
q2- олова оксид	0,0000033	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,000008	
Mc=q2 * - олова оксид	0,000003	
5.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,00001	
Мгод=(q2*t*3600)*0,000001- олова оксид	0,000001	

Разрез "Восточный". Станция Восточная .Добычной цех. Участок водоотлива и профилактики (УВПЭП) эндогенных пжаров (УВПЭП). Расчет выбросов вредных веществ при пайке электропаяльника с припоем ПОС-60 на 2025-2027 гг. Неорганизованный источник №6136

Наименование показателей	Показатели	
Исходные данные		
1.Количество паек в год, п, шт	200	
2. Чистое в ремя работы паяльником в год ,t,ч	200	
3.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,0000044	
q2- олова оксид	0,0000031	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,00004	
Мс=q2 * - олова оксид	0,000003	
5.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,00003	
Мгод=(q2*t*3600)*0,000001- олова оксид	0,0000002	

Разрез "Восточный". Станция Фестивальная. Энергоцех. Участок электроснабжения (УЭС). Участок сетей и подстанций (УСиП). Расчет выбросов вредных веществ при пайке электропаяльника с припоем ПОС-30 на 2025-2027 гг. Неорганизованный источник №6138

Наименование показателей	Показатели	
Исходные данные		
1.Количество паек в год, п, шт	500	
2. Чистое в ремя работы паяльником в год ,t,ч	500	
3.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,0000075	
q2- олова оксид	0,0000033	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,000008	
Мс=q2 * - олова оксид	0,000003	
5.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,000014	
Мгод=(q2*t*3600)*0,000001- олова оксид	0,000001	

Разрез "Восточный". Станция Восточная. ЦПВК. Участок колонны автомобильного транспорта (УКТТ). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки на 2025-2027 гг. Неорганизованный источник №6142

Наименование показателей	Показатели
1	2
Исходные данные	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	300
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5
3. Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	600
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,8
Сварочные работы электродами марки УОНИ 13/65	
6.Годовой расход электродов типа УОНИ 13/55, Вгод.2, кг	170
7. Максимальный часовой расход электродов типа УОНИ 13/65, В2, кг	0,5
8.Количество постов, t2, ч	1
9.Количество часов работы в год всех постов, Т2, ч	340
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-марганец и его соединения	1,41
К6-кремния диоксид	0,8
К7-фториды	0,8
К8-фтористыегазообразные соединения	1,17
Результаты	
11.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К5)/1000000-марганец и его соединен.	0,00078
М3=(Вгод.2*К8)/1000000 -фтористые газообр. Соед.	0,0002
М4=(Вгод.2*К6)/1000000кремния диоксид	0,00014
М5=(Вгод.2*К7)/1000000 -фториды	0,00014
12.Максимальный разовый выброс, г/с	
П2=(К2*В1)/3600-марганец и его соед.	0,0005
П3=(К8*В2)/3600-фтористые газообр. соединен.	0,00016
П4=(K6*B2)/3600)кремния диоксид	0,00011
П5=(К7*В2)/3600)-фториды	0,00011
Исходные данные по газовой резке	
9.Количество часов работы в год,Т1,ч	150
10.Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	
К1-марганец и его соединения	0,017
К2-оксид углерода	0,018
К3-диоксид азота	0,015
Результаты	
11.Валовый выброс за год,т/год	
М6=Т1*3600*К1/1000000 -марганец и его соединения	0,00918
М7=Т1*3600*К3/1000000 -оксид углерода	0,00972
М8=(Т1*3600*К4/1000000 -диоксид азота	0,0081
12.Максимальный разовый выброс,г/с	,

Окончание приложения 177

1	2
П6=К1 -марганец и его соединения	0,017
П7=К3 -оксид углерода	0,018
П8=К4 -диоксид азота	0,015
Итого	
13.Валовый выброс за год,т/год	
М=М2+М6-марганец и его соединен.	0,00932
М=М3 -фтористый газообр. Соед.	0,00972
М=М8 -азот диоксид	0,0081
М=М7 -углерод оксид	0,00972
М=М4-кремния диоксид	0,00014
М=М5-фториды	0,00014
14.Максимальный разовый выброс, г/с	
П=П2-марганец и его соед.	0,017
П=П3-фтористые газообр. Соедин.	0,00016
П=П4-азот диоксид	0,015
П=П3-углерод оксид	0,018

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ ".

Разрез "Восточный". Станция Фестивальная. Участок сетей подстанций (УСиП) . Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6139

Наименование показателей	Показатели	
Исходные данные		
Сварочные работы электродами марки МР-3		
1.Годовой расход электродов типа МР-3, Вгод.1, кг	40	
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5	
3.Количество постов, t1, ч	1	
4. Количество часов работы в год всех постов, Т1, ч	80	
5.Удельное выделение загрязняющих веществ при сварке, г/кг		
К2-марганец и его соединения	1,8	
Результаты		
6.Валовый выброс марганец и его соед. за год, т/год		
М2=Вгод.1*К2/1000000	0,00007	
7. Максимальный разовый выброс марганец и его соед., г/с		
М2=К2*Вчас1/3600	0,00025	

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г.

Разрез "Восточный". Станция Фестивальная . Вскрышной участок (ВУ). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки на 2025-2027 гг. Неорганизованный источник №6140

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки НИИ48Г (ОЗЛ-14)	
1.Годовой расход электродов типа НИИ48Г, Вгод.1,кг	445
2. Максимальный часовой расход электродов типа НИИ48Г, В1, кг	2
3.Количество постов, n1, шт	7
4. Количество часов работы в год всех постов, Т1, ч	223
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,41
К3-хрома (VI) оксид	0,46
К4-фтористые газообр.соед.	0,1
Сварочные работы электродами марки УОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	3025
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	4
8. Количество постов, n2, шт.	7
9. Количество часов работы в год всех постов, Т2, ч	756
10. Удельное выделение загрязняющих веществ при сварке, г/кг	
К6-марганец и его соединения	1,09
К7-кремния диоксид	1
К8-фториды	1
К9-фтористые газообр.соед.	1,26
К10-диоксид азота	2,7
К11-оксид углерода	13,3
Сварочные работы электродами марки Комсомолец-100	
11.Годовой расход электродов Комсомолец-100, Вгод.3, кг	26
12. Максимальный часовой расход электродов Комсомолец-100, В3, кг	0,5
13.Количество постов, n3, шт.	7
14. Количество часов работы в год всех постов, Т3, ч	52
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К13-марганец и его соединения	0,27
К15-медь (II) оксид	9,8
К16-фтористые газообр.соед.	1,11
К17-диоксид азота	0,76
Сварочные работы электродами марки Т-590	
16.Годовой расход электродов типа Т-590, Вгод.4, кг	195
17. Максимальный часовой расход электродов типа Т- 590, В4, кг	0,5
18.Количество постов, п4, шт.	7
19.Количество часов работы в год всех постов, Т4, ч	390
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К18-фтористые газообр.соед.	6,05
К19-хрома (VI) оксид	3,7
Сварочные работы электродами марки УОНИ-13/65	

Продолжение приложения 179

1	
1 VOLUM 12/65 D 5	2 205
21. Годовой расход электродов типа УОНИ-13/65, Вгод.5, кг	285
22. Максимальный часовой расход электродов типа УОНИ-13/65, В5, кг	<u>1</u> 7
23.Количество постов, п5, шт.	•
24. Количество часов работы в год всех постов, Т5, ч	285
25. Удельное выделение загрязняющих веществ при сварке, г/кг	1 41
К21-марганец и его соединения	1,41
К22- диоксид кремния	0,8
К23-фториды	0,8
К24-фтористые газообр.соед.	1,17
Сварочные работы электродами марки НЖ-13	2115
26.Годовой расход электродов типа НЖ-13, Вгод.6,кг	3445
27. Максимальный часовой расход электродов типа НЖ-13, В6, кг	2
28. Количество постов, n6, шт	7
29.Количество часов работы в год всех постов, Т6, ч	1723
30.Удельное выделение загрязняющих веществ при сварке, г/кг	
К26-марганец и его соединения	0,53
К27-хрома (VI) оксид	0,24
Сварочные работы электродами марки МНЧ-2	
31.Годовой расход электродов МНЧ-2, Вгод.7, кг	6
32. Максимальный часовой расход электродов МЧН-2, В7, кг	0,5
33. Количество постов, n7, шт.	7
34. Количество часов работы в год всех постов, Т7, ч	12
35. Удельное выделение загрязняющих веществ при сварке, г/кг	
К30-марганец и его соединения	0,92
К33-фтористые газообр.соед.	1,34
К35-никель оксид	2,73
Результаты	
36.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К13+Вгод.5*К21+Вгод.6*К26+Вгод.7*К30	
)/1000000-марганец и его соединен.	0,00616
М3=(Вгод.1*К4+Вгод.2*К9+Вгод.3*К16+Вгод.4*К18+Вгод.5*К24+Вгод.7*	
К33)/1000000-фтористые газообр.соед.	0,00541
М4=(Вгод2*К7+Вгод5*К22)/1000000 -диоксид кремния	0,00325
М5=(Вгод.2*К8+Вгод.5*К23)/1000000 -фториды	0,00325
М6=(Вгод.2*К10+Вгод.3*К17)/1000000 -диоксид азота	0,00819
М7=Вгод.2*К11/1000000 -оксид углерода	0,04023
М8=(Вгод.3*К15)/1000000 -медь (II) оксид	0,00025
М9=(Вгод.1*К3+Вгод.4*К19)/1000000 - хрома (VI) оксид	0,00093
М10=Вгод.7*К35/1000000 -никель оксид	0,00002
37. Максимальный разовый выброс, г/с	
П2=(К2*В1+К6*В5)/3600-марганец и его соед.	0,00109
П3=(К18*В4+К9*В2)/3600-фтористые газообр. Соединен.	0,00224
П4=(К7*В2*+К22*В5) /3600-кремния диоксид	0,00133
П5=(К8*В2+К23*В5)/3600-фториды	0,00133
П6=(К10*В2+К17*В3)/3600-диоксид азота	0,00311
П7=К11*В2/3600-оксид углерода	0,00185

Продолжение приложения 179

1	2
П8=(К15*В3/3600-медь (II) оксид	0,00136
П9=(К19*В4+К27*В6)/3600- хрома (VI) оксид	0,00065
П10=К35*В7/3600-никель оксид	0,00038
Исходные данные по газовой резке	0,00050
1.Количество часов работы в год,Т1,ч	280
2.Удельное выделение загрязняющих веществ	200
при газовой резке стали углеродистой толщиной до 5мм, г/ч	
К1-марганец и его соединения	0,00064
К3-оксид углерода	0,004
К3-оксид углерода К4-диоксид азота	0,0136
3.Количество часов работы в год, Т2, ч	540
4.Удельное выделение загрязняющих веществ	340
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К5-марганец и его соединения	0,001
К3-марганец и его соединения К7-оксид углерода	0,001
К8-диоксид азота	0,02
5.Количество часов работы в год, Т3, ч	540
± ' '	340
6.Удельное выделение загрязняющих веществ при газовой резке стали углеродистой толщиной до 20 мм,г/с	
	0.017
К9-марганец и его соединения	0,017
К11-оксид углерода	· · · · · · · · · · · · · · · · · · ·
К12-диоксид азота	0,015 550
5.Количество часов работы в год,Т4,ч	330
6.Удельное выделение загрязняющих веществ при газовой резке стали легированной толщиной до 20 мм,г/с	
	0.015
К13-марганец и его соединения	0,015
К14-оксид углерода	0,017
К15-диоксид азота	0,0136
Результаты	1
7.Валовый выброс за год,т/год М11=(T1*3600*K1+T2*3600*K5+T3*3600*K9+T4*3600*K13)/1000000 -	
	0,06534
марганец и его соединения M12=(T1*3600K3+T2*3600*K7+T3*3600*K11+T4*3600*K14)/1000000 -	
	0,11768
оксид углерода M13=(T1*3600*K4+T2*3600*K8+T3*3600*K12+T4*3600*K15)/1000000 -	
диоксид азота	0,10479
8.Максимальный разовый выброс,г/с	
П11=К13+К9 -марганец и его соединения	0,032
П12=К14+К11-оксид углерода	0,035
П13=К15+К12 -диоксид азота	0,0286
Итого	0,0200
9.Валовый выброс за год,т/год	
м=M2+M11марганец и его соединения	0,0715
М=М3-фтористые газообр.соед.	0,00541
М=М4-диоксид кремния	0,00341
М=М5-фториды	0,00325
ит из-фториды	0,00343

1	2
М=М6+М13-диоксид азота	0,11298
М=М7+М12-оксид углерода	0,15791
10.Максимальный разовый выброс, г/с	
П=П2+П11-марганец и его соединения	0,03309
П=П3-фтористые газообр.соед.	0,00224
П=П4-диоксид кремния	0,00133
П=П5-фториды	0,00133
П=П6+П13-диоксид азота	0,03171
П=П7+П12-оксид углерода	0,03685
П=П8-медь(II) оксид	0,00136
П=П9-хрома (VI)	0,00065
П=П10-никель оксид	0,00038

Разрез "Восточный". Станция Восточная. ЦПВК-1. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ и газовой резки на 2025-2027 гг. Неорганизованный источник №6141

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки НИИ48Г (ОЗЛ-14)	
1.Годовой расход электродов типа НИИ48Г, Вгод.1,кг	210
2. Максимальный часовой расход электродов типа НИИ48Г, В1, кг	0,5
3.Количество постов, n1, шт	4
4. Количество часов работы в год всех постов, Т1, ч	420
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,41
К3-хрома (VI) оксид	0,46
К4-фтористые газообр.соед.	0,1
Сварочные работы электродами марки УОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	2130
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	0,5
8.Количество постов, п, шт.	4
9.Количество часов работы в год всех постов, Т2, ч	4260
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К6-марганец и его соединения	1,09
К7-кремния диоксид	1
К8-фториды	1
К9-фтористые газообр.соед.	1,26
К10-диоксид азота	2,7
К11-оксид углерода	13,3
Сварочные работы электродами марки Т-590	
16.Годовой расход электродов типа Т-590, Вгод.3, кг	195
17. Максимальный часовой расход электродов типа Т- 590, В3, кг	0,5
18.Количество постов, п, шт.	4
19. Количество часов работы в год всех постов, Т3, ч	390
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К18-фтористые газообр.соед.	6,05
К19-хрома (VI) оксид	3,7
Сварочные работы электродами марки УОНИ-13/65	
21.Годовой расход электродов типа УОНИ-13/65, Вгод.4, кг	295
22. Максимальный часовой расход электродов типа УОНИ-13/65, В4,	
КГ	0,5
23. Количество постов, п, шт.	4
24. Количество часов работы в год всех постов, Т4, ч	590
25.Удельное выделение загрязняющих веществ при сварке, г/кг	
К21-марганец и его соединения	1,41
К22- диоксид кремния	0,8
К23-фториды	0,8
К24-фтористые газообр.соед.	1,17

Продолжение приложения 180

1	2
Сварочные работы электродами марки НЖ-13	
26.Годовой расход электродов типа НЖ-13, Вгод.5,кг	330
27. Максимальный часовой расход электродов типа НЖ-13, В5, кг	0,5
28.Количество постов, п, шт	4
29. Количество часов работы в год всех постов, Т5, ч	660
30.Удельное выделение загрязняющих веществ при сварке, г/кг	
К26-марганец и его соединения	0,53
К27-хрома (VI) оксид	0,24
Результаты	
36.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К6+Вгод.4*К21+Вгод.5*К26)/1000000-	0.04642
марганец и его соединен.	0,04642
М3=(Вгод.1*К4+Вгод.2*К9+Вгод.3*К18+Вгод.4*К24)/1000000-	0.00422
фтористые газообр.соед.	0,00423
M4=(Вгод2*К7+Вгод4*К22)/1000000 -диоксид кремния	0,00237
M5=(Вгод.2*К8+Вгод.4*К23)/1000000 -фториды М6=(Вгод.2*К10)/1000000 -диоксид азота	0,00237
	0,00575
M7=Вгод.2*К11/1000000 -оксид углерода	0,02833
М9=(Вгод.1*К3+Вгод.3*К19)/1000000 - хрома (VI) оксид	0,00082
37. Максимальный разовый выброс, г/с	0.00062
П2=(K2*B1+K6*B5+K21*B4+K26*B5)/3600-марганец и его соед.	0,00062
П3=(K4*B1+K18*B3+K9*B2+K24*B4)/3600-фтористые газообр. Соединен.	0,00119
П4=(К7*В2*+К22*В5) /3600-кремния диоксид	0,00025
П5=(К8*В2+К23*В5)/3600-фториды	0,00025
П6=(К10*В2)/3600-диоксид азота	0,00038
П7=К11*В2/3600-оксид углерода	0,00185
П9=(K3*B1+K19*B3+K27*B5)/3600- хрома (VI) оксид	0,00061
Исходные данные по газовой резке	,
1.Количество часов работы в год,Т1,ч	100
2. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 5мм, г/ч	
К1-марганец и его соединения	0,00064
К3-оксид углерода	0,014
К4-диоксид азота	0,0136
3. Количество часов работы в год, Т2, ч	480
4. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К5-марганец и его соединения	0,001
К7-оксид углерода	0,02
К8-диоксид азота	0,018
5.Количество часов работы в год,Т3,ч	1500
6.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 20 мм,г/с	
К9-марганец и его соединения	0,017
К11-оксид углерода	0,018

1	2
К12-диоксид азота	0,015
Результаты	
7.Валовый выброс за год,т/год	
М11=(Т1*3600*К1+Т2*3600*К5+Т3*3600*К9)/1000000 -марганец и его	
соединения	0,09376
М12=(Т1*3600К3+Т2*3600*К7+Т3*3600*К11)/1000000 -оксид	
углерода	0,1368
М13=(Т1*3600*К4+Т2*3600*К8+Т3*3600*К12)/1000000 -диоксид	
азота	0,1368
8.Максимальный разовый выброс,г/с	
П11=К1+К5+К9 -марганец и его соединения	0,01864
П12=К3+К7+К11-оксид углерода	0,052
П13=К4+К18+К12 -диоксид азота	0,0466
Итого	
9.Валовый выброс за год,т/год	
М=М2+М11марганец и его соединения	0,14018
М=М3-фтористые газообр.соед.	0,00423
М=М4-диоксид кремния	0,00237
М=М5-фториды	0,00237
М=М6+М13-диоксид азота	0,14255
М=М7+М12-оксид углерода	0,16513
M=M9-	0,00082
10.Максимальный разовый выброс,г/с	
П=П2+П11-марганец и его соединения	0,00297
П=П3-фтористые газообр.соед.	0,00102
П=П4-диоксид кремния	0,00025
П=П5-фториды	0,00025
П=П6+П13-диоксид азота	0,04698
П=П7+П12-оксид углерода	0,05385
П=П9-хрома (VI)	0,00055

Разрез "Восточный". Станция Фестивальная.ЦАТП. Участок наладки и обслуживания приводои средств автматизации (УНОПСА). Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-60 на 2025-2027 гг. Неорганизованный источник №6145

Наименование показателей	Показатели	
Исходные данные		
1. Чистое в ремя работы паяльником в год ,t,ч	950	
2.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,0000044	
q2- олова оксид	0,0000003	
Результаты		
3.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,0000044	
Мс=q2 * - олова оксид	0,0000003	
4.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)/1000000- свинец и его соединения	0,000015	
Мгод=(q2*t*3600)/1000000- олова оксид	0,000001	

Разрез "Восточный". Станция Восточная. ЦПВК. Участок колонны автомобильного транспорта (УКТТ). Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6142

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,1
mф1-растворитель 646	0,015
тф2-эмаль НЦ-132	0,01
2. Максимальный часовой расход, кг	,
тм-эмаль ПФ-115	0,5
тм1-растворитель 646	0,5
тм2-эмаль НЦ-132	0,5
3.Состав эмали ПФ-115, %	,
q1-ксилол	50
q2-уайт-спирит	50
fр-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
д3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
5.Состав эмали НЦ-132, %	
q9-ацетон	8
q10-спирт н-бутиловый	15
q11-спирт этиловый	20
q12-бутилацетат	8
q13-этилцеллозольв	8
q14-толуол	41
fp2-доля летучей части	80
гр4-доля растворителя в ЛКМпри окраске	28
гр5-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	<u> </u>
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4+mф2*fp2*rp4*q10)/106*(1-n)-спирт н-бутиловый	0,00097
$M2$ окр.= $(m\phi 1*fp 1*rp 2*q6+m\phi 2*fp 2*rp 4*q12)/106*(1-n)$ -бутилацетат	0,0006
$M3$ окр.= $(m\phi 1*fp 1*rp 2*q 3+m\phi 2*fp 2*rp 4*q 9)/106*(1-n)$ -ацетон	0,00021

1	2
М4окр.=(mф1*fp1*rp2*q8+mф2*fp2*rp4*q14)/106*(1-n)-толуол	0,00302
М5окр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n)-этилцеллозольв	0,00052
М6окр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт этиловый	0,00087
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,0063
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,0063
6. Максимальный разовый выброс летучих веществ при окраске, г/с	- 7
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0756
$\Pi 2 = (m\phi 1 * fp 1 * rp 2 * q6)/106 * 3,6 * (1-n)$ -бутилацетат	0,0504
$\Pi 3 = (m M 2 * fp 2 * rp 4 * q 9) / 106 * 3,6 * (1-n) - ацетон$	0,03226
$\Pi 4 = (m_M 1 * fp 1 * rp 2 * q 8) / 106 * 3,6 * (1-n)$ -толуол	0,252
$\Pi 5 = (m_M 1 * fp 1 * rp 2 * q7) / 106 * 3,6 * (1-n) - этилцеллозольв$	0,04032
П6=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый	0,1008
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,1134
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,1134
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый	0,00248
M2c=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат	0,00154
M3c=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон	0,00122
M4c=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол	0,00776
M5c=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв	0,00086
М6c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый	0,00223
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,0162
М8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,0162
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0081
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q6)/106 * 3,6 * (1-n)$ -бутилацетат	0,0054
$\Pi 3 = (m M 1/24 * fp1 * rp3 * q3)/106 * 3,6 * (1-n)$ -ацетон	0,00378
$\Pi 4=(m M 1/24*fp1*rp3*q8)/106*3,6*(1-n)$ -толуол	0,027
$\Pi 5 = (m M 1/24 * fp1 * rp3 * q7)/106 * 3,6 * (1-n)$ -этилцеллозольв	0,00432
$\Pi 6 = (m M 1/24 * fp1 * rp3 * q5)/106 * 3,6 * (1-n)$ -спирт этиловый	0,0108
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,01215
$\Pi 8 = (m_M/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)$ -уайт-спирит	0,01215
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с)-спирт н-бутиловый	0,00345
М2=М2окр.+М2с)-бутилацетат	0,00214
М3=М3окр.+М3с-ацетон	0,00143
М4=М4окр.+М4с-толуол	0,01078
М5=М5окр.+М5с-этилцеллозольв	0,00138
М6=М6окр.+М6с-спирт этиловый	0,0031
М7=М7окр.+М7с-ксилол	0,0225
М8=М8окр.+М8с-уайт-спирит	0,0225

Разрез "Восточный". Станция Восточная.ЦРГО. Участок по ремонту электрических машин (УРЭМ). Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-40 на 2025-2027 гг. Неорганизованный источник N06143

Наименование показателей	Показатели	
Исходные данные		
1. Чистое в ремя работы паяльником в год ,t,ч	1800	
2.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,000005	
q2- олова оксид	0,0000033	
Результаты		
3.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,000005	
Мс=q2 * - олова оксид	0,000003	
4.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)/1000000- свинец и его соединения	0,00003	
Мгод=(q2*t*3600)/1000000- олова оксид	0,00002	

Разрез "Восточный". Станция Фестивальная.ЦАТП. Участок автоматизации систем управления технологическими процессами (УАСУТП). Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-40 на 2025-2027 гг. Неорганизованный источник №6144

Наименование показателей	Показатели	
Исходные данные		
1. Чистое в ремя работы паяльником в год ,t,ч	380	
2.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,000005	
q2- олова оксид	0,000033	
Результаты		
3.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,000005	
Mc=q2 * - олова оксид	0,000003	
4.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)/1000000- свинец и его соединения	0,00007	
Мгод=(q2*t*3600)/1000000- олова оксид	0,000005	

Разрез "Восточный". Станция Фестивальная. ЦРЖДО.ДПС "Восточное".Вспомогательный токарный цех. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6151

Наименование показателей	Показатели	
Исходные данные		
Механическая обработка с охлаждением СОЖ		
1.Количество станков,п, шт	2	
2.Количество часов работы в год одного станка, Т,ч	2190	
3.Удельный выброс на единицу оборудования, г/с на 1кВт		
мощности		
Q-эмульсия	0,000002	
4. Установленная мощность 1 станка, N,кВт	10	
Результаты		
5.Валовый выброс за год аэрозоли, т/год		
M = 3600*Q*N*T*n /1000000	0,00032	
6Максимальный разовый выброс аэрозоли, г/с		
П=Q*N*п	0,00004	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-θ) и РНД 211.2.02.06-2004 г.

Разрез "Восточный". Станция Фестивальная.ЦАТП.Местная служба средств диспетчерского технологического управления (МССДТУ). Расчет выбросов вредных веществ при пайке электропаяльника с припоем ПОС-60 на 2025-2027 гг. Неорганизованный источник №6146

Наименование показателей	Показатели	
Исходные данные		
1. Чистое в ремя работы паяльником в год ,t,ч	370	
2.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,0000044	
q2- олова оксид	0,0000031	
Результаты		
3.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,0000044	
Mc=q2 * - олова оксид	0,0000031	
4.Валовый выброс за год, т/год		
Мгод=(q1*t*3600)*0,000001- свинец и его соединения	0,0000059	
Мгод=(q2*t*3600)*0,000001- олова оксид	0,0000041	

Разрез "Восточный". Станция Фестивальная. ЦРЖДО.ДПС "Восточное" . Токарный цех. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6150

Наименование показателей	2023-2027 гг.
Исходные данные	
Механическая обработка без охлаждения	
Заточные станки с диаметром круга 400мм	•
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т, ч	600
3. Коэффициент эффективности пылеотсасывающего агрегата, k1	0,95
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
5. Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,0475
q1-взвешенные вещества	0,0475
Результаты	
6.Валовый выброс за год взвешенных веществ, т/год	
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,02052
M1 =3600*0,9*q1*T*n*(1-k1) /1000000 -с пылеотсас. агрегатами	0,00092
7. Максимальный разовый выброс взвешенных веществ, г/с	
П=k*q1*n -без пылеотсасывающих агрегатов	0,0095
П1=0,9*q1*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,00214
8.Валовый выброс за год абразивной пыли, т/год	
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,02052
M1 =3600*k*q*T*n*(1-k1) /1000000 -с пылеотсас. агрегатами	0,00092
9.Максимальный разовый выброс абразивной пыли, г/с	
П=k*q*n -без пылеотсасывающих агрегатов	0,0095
П1=0,9*q*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,00214
2. Обработка цветных металлов на токарных, фрезерных и сверлильных станка	ax
1.Количество станков,п, шт	5
2.Количество часов работы в год одного станка, Т,ч (обработка бронзы)	700
3. Количество часов работы в год одного станка, Т,ч (обработка чугуна)	200
4. Коэффициент эффективности пылеотсасывающего агрегата, k1	0
5.k-коэф.гравитац.оседания для металлическ. пыли	0,2
6.Удельный выброс на единицу оборудования, г/с	
q -оксид меди	0,0025
q1-чугунная пыль	0,008
Результаты	-
7.Валовый выброс за год оксидов меди, т/год	
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,0063
8.Максимальный разовый выброс оксидов меди, г/с	
П=k*q -без пылеотсасывающих агрегатов	0,0005
9.Валовый выброс за год РМ10, т/год	
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00576
10.Максимальный разовый выброс РМ10, г/с	
П=k*q1 -без пылеотсасывающих агрегатов	0,0016

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014г № 221-θ) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Восточная. Добычной цех. Участок технологического комплекса разреза (УТКР). Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла. Неорганизованный источник №6156 на 2025-2027 гг.

Наименование показателей	Показатели	
Исходные данные		
1. Механическая обработка с охлаждением СОЖ (станки токарный, фрезерный		
сверлильный)		
1.Количество станков,п, шт	3	
2.Количество часов работы в год одного станка, Т, ч	800	
3.Удельный выброс на единицу оборудования, г/с на 1кВт		
мощности		
Q-эмульсия	0,000002	
4. Установленная мощность 1 станка, N,кВт	10	
Результаты		
5.Валовый выброс за год аэрозоли, т/год		
M = 3600 * Q * N * T * n / 1000000	0,00017	
6Максимальный разовый выброс аэрозоли, г/с		
$\Pi=Q*N*\Pi$	0,00006	
2.Заточные станки с диаметром круга 400мм и 220мм		
1.Количество станков,п, шт	2	
2. Количество часов работы в год одного станка, Т, ч	480	
3.k-коэф.гравитац.оседания для абразивной пыли и взвешенных		
веществ	0,2	
4.Удельный выброс на единицу оборудования, г/с		
q -абразивная пыль	0,03725	
q1-взвешенные вещества	0,03725	
Результаты		
5.Валовый выброс за год взвешенных веществ, т/год		
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,02575	
6.Максимальный разовый выброс взвешенных веществ, г/с		
П=k*q1*n -без пылеотсасывающих агрегатов	0,0149	
8.Валовый выброс за год абразивной пыли, т/год		
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,02575	
9.Максимальный разовый выброс абразивной пыли, г/с		
П=k*q*n -без пылеотсасывающих агрегатов	0,0149	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-θ) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Фестивальная. ЦРЖДО.ДПС "Восточное".Цех по ремонту вспомогательных машин №1,2. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник №6153

Наименование показателей	Показатели
Исходные данные	
1. Механическая обработка с охлаждением СОЖ	
1.Количество станков,п, шт	8
2. Количество часов работы в год одного станка, Т, ч	1635
3.Удельный выброс на единицу оборудования, г/с на 1кВт	
мощности	
Q-эмульсия	0,000002
4. Установленная мощность 1 станка, N,кВт	22
Результаты	
5.Валовый выброс за год аэрозоли, т/год	
M = 3600 * Q*N*T*n / 1000000	0,00207
6Максимальный разовый выброс аэрозоли, г/с	
$\Pi=Q*N*_{\Pi}$	0,00035
2.Заточные станки с диаметром круга 400мм	
1.Количество станков,п, шт	3
2.Количество часов работы в год одного станка, Т, ч	730
3. Коэффициент эффективности пылеотсасывающего aгрегата, k1	0,95
4.к-коэф.гравитац.оседания для абразивной пыли и взвешенных	0.2
веществ	0,2
5.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,0475
q1-взвешенные вещества	0,0475
Результаты	
6.Валовый выброс за год взвешенных веществ, т/год	
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,0749
M1 =3600*0,9*q1*T*n*(1-k1) /1000000 -с пылеотсас. агрегатами	0,00337
7. Максимальный разовый выброс взвешенных веществ, г/с	
П=k*q1*n -без пылеотсасывающих агрегатов	0,0285
П1=0,9*q1*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,00641
8.Валовый выброс за год абразивной пыли, т/год	
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,0749
M1 =3600*k*q*T*n*(1-k1) /1000000 -с пылеотсас. агрегатами	0,00337
9.Максимальный разовый выброс абразивной пыли, г/с	
П=k*q*n -без пылеотсасывающих агрегатов	0,0285
П1=0,9*q*n*(1-k1) -с учетом пылеотсасывающих агрегатов	0,00641

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-0) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Фестивальная. РСУ. Расчет эмиссий загрязняющих веществ в атмосферу от механической обработки металла на 2025-2027 гг. Неорганизованный источник 6154

Наименование показателей	Показатели
Исходные данные	
Механическая обработка без охлаждения	
Заточной станок ТЧН 6-5 для ножей	
1.Количество станков,п, шт	2
2. Количество часов работы в год одного станка, Т, ч	25
3.к-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
4.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,0039
q1-взвешенные вещества	0,0092
Заточной станок ЗА64Д для дисковых пил	
5.Количество станков, n1, шт	1
6.Количество часов работы в год одного станка, Т1, ч	250
7.к-коэф.гравитац.оседания для абразивной пыли и взвешенных веществ	0,2
8.Удельный выброс на единицу оборудования, г/с	
q2 -абразивная пыль	0,027
q3-взвешенные вещества	0,027
Результаты	
9.Валовый выброс за год взвешенных веществ, т/год	
M =3600*k*(q1*T*n1 +q2*T1*n2 /1000000 -без пылеотсасывающих	
агрегатов	0,00519
10.Максимальный разовый выброс взвешенных веществ, г/с	
П=k*q2*n1 -без пылеотсасывающих агрегатов	0,0054
11.Валовый выброс за год абразивной пыли, т/год	
M = 3600*k*(q1*T1*n1 + q2*T2*n2)/1000000 -без пылеотсасывающих	
агрегатов	0,005
12.Максимальный разовый выброс абразивной пыли, г/с	
П=k*q2*n1 -без пылеотсасывающих агрегатов	0,0054

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-0) и РНД 211.2.02.06-2004

Разрез "Восточный". Станция Восточная.ЦРГО.УКРЛ. Участок ремонта конвейерных лент. Расчет эмиссий загрязняющих веществ в атмосферу при изготовлении формовых изделий на шприцмашине МЧТ-90 на 2025-2027 гг. Неорганизованный источник №6167

Наименование показателей	Показатели
1	2
Исходные данные	
1.Годовой расход смеси, R, кг	1520
2.Количество часов работы в год ,Т,ч	106
3.Удельное выделение загрязняющих веществ, мг/кг	
q1-дивинил	7,8
q2-изопрен	7,08
q3-нитрил акриловой кислоты	11,62
q4-стирол	4,43
q5-α-метилстирол	4,43
q6-хлоропрен	6,4
q7этилена пропилена оксид	1,73
q8-этилен	2,53
q9-изобутилен	6,81
q10-водород хлористый	7,93
q11-дибутилфталат	6,93
q12-серы диоксид	1,35
q13-углерода оксид	4,03
q14-алифатические предельные углеводороды С12-С19	8,01
4.Количество машин, п, шт	1
Результаты	
5.Валовый выброс за год,т/год	
M1=R*q1/1000000000 -дивинил	0,00001
M2=R*q2/1000000000 -изопрен	0,00001
M3=R*q3/1000000000 -нитрил акриловой кислоты	0,00002
М4=R*q4/1000000000 -стирол	0,00001
M5=R*q5/1000000000 -α-метилстирол	0,0000005
М6=R*q6/1000000000 -хлоропрен	0,00001
M7=R*q7/1000000000- этилена пропилена оксид	0,000003
M8=R*q8/1000000000 -этилен	0,000004
M9=R*q9/1000000000 -изобутилен	0,00001
M10=R*q10/1000000000 -водород хлористый	0,00001
M11=R*q11/1000000000 -дибутилфталат	0,00001
M12=R*q12/1000000000 -серы диоксид	0,000002
M13=R*q13/1000000000 -углерода оксид	0,00001
M14=R*q14/1000000000-алифатические предельные	0,00001
6.Максимальный разовый выброс,г/с	
П1=M1*1000000/(Т*3600) -дивинил	0,00003
П2=M2*1000000/(Т*3600)-изопрен	0,00003
П3=М3*1000000/(Т*3600)-нитрил акриловой кислоты	0,00005
П4=М4*1000000/(Т*3600)-стирол	0,00003
П5=М5*1000000/(Т*3600) -α-метилстирол	0,000001

1	2
П6=М6*1000000/(Т*3600)-хлоропрен	0,00003
П7=М7*1000000/(Т*3600) -этилена пропилена оксид	0,00001
$\Pi 8=M8*1000000/(T*3600)$ -этилен	0,00001
П9=М9*1000000/(Т*3600) -изобутилен	0,00003
П10=М10*1000000/(Т*3600) -водород хлористый	0,00003
П11=М11*1000000/(Т*3600)-дибутилфталат	0,00003
П12=М12*1000000/(Т*3600)-серы диоксид	0,000005
П13=М13*1000000/(Т*3600)-углерода оксид	0,00003
П14=М14*1000000/(Т*3600) -алифатические предельные	0,00003

Расчет выполнен по "Сборнику методик по расчету выбросов вредных веществ в атмосферу различными производствами", Алматы, 1996 г.

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу от горячей вулканизации конвейерных лент на вулканизаторе Nilos на 2025-2027 гг. Неорганизованный источник №6168

Наименование показателей	Показатели
1	2
Исходные данные	
1.Годовой расход смеси, R, кг	1770
2.Количество часов работы в год ,Т,ч	3690
3.Удельное выделение загрязняющих веществ, мг/кг	
q1-дивинил	25
q2-изопрен	22,6
q3-нитрил акриловой кислоты	37,2
q4-стирол	14,2
q5-α-метилстирол	14,2
q6-хлоропрен	20,5
q7этилена пропилена оксид	5,54
q8-этилен	261
q9-изобутилен	118
q10-водород хлористый	25
q11-дибутилфталат	22,2
q12-серы (IV) оксид	3,88
q13-пропилен	1,5
q14-углерода оксид	5,3
q15-алифатические предельные углеводороды C12-C19	287,5
4. Количество прессов, n, шт	2
Результаты	
5.Валовый выброс за год,т/год	
M1=R*q1/1000000000 -дивинил	0,00004
M2=R*q2/1000000000 -изопрен	0,00004
M3=R*q3/1000000000 -нитрил акриловой кислоты	0,00007
М4=R*q4/1000000000 -стирол	0,00003
$M5=R*q5/10000000000 - \alpha$ -метилстирол	0,00005
М6=R*q6/1000000000 -хлоропрен	0,00004
M7=R*q7/1000000000- этилена пропилена оксид	0,00001
M8=R*q8/1000000000 -этилен	0,00046
M9=R*q9/1000000000 -изобутилен	0,00021
M10=R*q10/1000000000 -водород хлористый	0,00004
M11=R*q11/1000000000 -дибутилфталат	0,00004
M12=R*q12/1000000000 -серы (IV) оксид	0,000007
M13=R*q13/1000000000 -пропилен	0,000003
M14=R*q14/1000000000 -углерода оксид	0,00001
M15=R*q15/1000000000-алифатические предельные углеводороды C12-C19	0,000509
6.Максимальный разовый выброс,г/с	
П1=М1*1000000/(Т*3600) -дивинил	0,000002

1	2
П2=M2*1000000/(Т*3600) -изопрен	0,000002
П3=М3*1000000/(Т*3600) -нитрил акриловой кислоты	0,000003
П4=М4*1000000/(Т*3600) -стирол	0,000001
П5=М5*1000000/(Т*3600)-α-метилстирол	0,000002
П6=М6*1000000/(Т*3600) -хлоропрен	0,000002
П7=М7*1000000/(Т*3600) -этилена пропилена оксид	0,0000004
П8=М8*1000000/(Т*3600) -этилен	0,00002
П9=М9*1000000/(Т*3600) -изобутилен	0,000008
$\Pi10=M10*1000000/(T*3600)$ -водород хлористый	0,000002
$\Pi 11 = M11*1000000/(T*3600)$ -дибутилфталат	0,000002
П12=M12*1000000/(Т*3600) -серы (IV) оксид	0,0000003
П13=М13*1000000/(Т*3600) -пропилен	0,00000011
П14=М14*1000000/(Т*3600) -углерода оксид	0,0000004
П15=M15*1000000/(Т*3600) -алифатические предельные углеводороды С12-С19	0,00002

Расчет выполнен по "Сборнику методик по расчету выбросов вредных веществ в атмосферу различными производствами", Алматы, 1996 г.

Разрез "Восточный". Станция Фестивальная.АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от резервуара отработанных масел в период с 2025 по 2027 гг. Неорганизованный источник №6170

Наименование показателей	Показатели	
Исходные данные		
1.Общая емкость резервуаров, Vp, м3	3	
2.Количество резервуаров, Np,шт.	1	
3.Плотность жидкости, р,т/м3	0,935	
4.Объем жидкости налив. в резервуар в течение года, Q,м3/год	2,7	
I) Закачивание и хранение		
1.Производительность слива, Vсл, м3/ч	0,5	
2.Годовые выбросы,т/год		
G=Gсл+Gпр.п, т/год		
Gсл=(СрозхQоз+СрвлхQвл)/1000000	0,0000003	
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной		
смеси осенне-зимний период,г/м3 (прил.15)	0,12	
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной		
смеси весенне-летний период,г/м3 (прил.15)	0,12	
Смах-максимальная концентрация паров нефтепродуктов в выбросах		
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324	
Qвл-кол.жидкости закач. в весенлетн. период,м3	1,35	
Qоз-кол.жидкости закач. в осензимн. период,м3	1,35	
Gпр.п=0,5*J*Qгод/1000000	0,000017	
Ј-удельные выбросы при проливах,г/м3	12,5	
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,000045	

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Восточная.ЦРГО. Ремонт конвейерных лент (УРКЛ). Расчет эмиссий загрязняющих веществ в атмосферу при ремонте резинотехнических изделий на разделочном столе на 2025-2027 гг. Неорганизованный источник №6169

Наименование показателей	Показатели	
Исходные данные		
1.Удельные выделения пыли резиновой в процессе	0,0226	
шероховки ,q,г/с		
2.Количество часов шероховки в год,Т1,ч	730	
Результаты		
3.Валовый выброс за год,т/год		
M16=q*T1*3600*10-6-пыль резиновая	0,05939	
4.Максимальный разовый выброс,г/с		
П16=М16*1000000/(Т1*3600) -пыль резиновая	0,0226	

Разрез "Восточный". Станция Восточная. УКТК. ТО автосамосвалов.ЦПВК. Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров маслораздаточного пункта в период с 2025 по 2027 гг. Неорганизованный источник №6172

Наименование показателей	Показатели	
Исходные данные		
1.Общая емкость резервуаров, Vp, м3	15	
2.Количество резервуаров, Np,шт.	5	
3.Плотность жидкости, р,т/м3	0,935	
4.Объем жидкости налив. в резервуар в течение года, Q,м3/год	240	
I) Закачивание и хранение		
1.Производительность слива, Vсл, м3/ч	1,8	
2.Годовые выбросы,т/год		
G=Gсл+Gпр.п, т/год	0,00153	
Gсл=(СрозхQоз+СрвлхQвл)/1000000	0,000029	
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной		
смеси осенне-зимний период,г/м3 (прил.15)	0,12	
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной		
смеси весенне-летний период,г/м3 (прил.15)	0,12	
Смах-максимальная концентрация паров нефтепродуктов в выбросах		
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324	
Овл-кол.жидкости закач. в весенлетн. период,м3	120	
Qоз-кол.жидкости закач. в осензимн. период,м3	120	
Gпр.п=0,5*J*Qгод/1000000	0,0015	
Ј-удельные выбросы при проливах,г/м3	12,5	
3.Максимальн. разовый выброс М=Vсл*Смах/3600,г/с	0,00016	

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Фестивальная. ДПС "Фестивальная". Заправка локомотивов дизельным топливом. Идентификация состава выбросов от колонки дизельного топлива на 2025-2027 гг. Неорганизованный источник №6173

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
Исходные д	анные		
1. Валовые выбросы углеводородов:	т/год	Gдиз	0,02158
2. Максимально-разовые выбросы:	г/с	Мдиз	0,02791
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (C12-C19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,021487206
- максимально-разовый выброс	г/с	Mi	0,027789987
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,000060424
- максимально-разовый выброс	г/с	Mi	0,000078148

Разрез "Восточный". Станция Фестивальная. ЖДЦ. ДПС "Фестивальная" . Экипировка локомотивов. Расчет эмиссий загрязняющих веществ в атмосферу от колонки дизельного топлива ТРК-1, ТРК-2 на 2025-2027 гг. Неорганизованный источник №6173

Наименование показателей	Показатели	
Исходные данные		
Выдача топлива через колонку		
Плотность жидкости, р,т/м3	0,86	
Объем жидкости выдаваемый через колонку в течение года,В,т/год	700	
Производительность колонки, Vсл, м3/ч	32	
Годовые выбросы Gp=Gзак.+Gпр.р,т/год	0,02158	
Сзак.=(СрозхQоз+СрвлхQвл)х10-6,т/год	0,00158	
Сроз-концентр. Паровоздуш. смеси в осензимн.период.,г/м3	1,6	
(прил.15)		
Срвл-концентр. Паровоздуш. смеси в весенлетнпериод.,г/м3	2,2	
(прил.15)		
Овл-кол.жидкости закач. в весенлетн. период,м3	500	
Ооз-кол.жидкости закач. в осензимн. период,м3	300	
Результаты		
Gпр.p=0,5xJx(Ооз+Овл)х10-6,т/год	0,02	
Максимальн. разовый выброс M=(C1xVсл)/3600,г/с	0,02791	
С1-концентрация паров нефтепродукта в резервуаре (прил.12),г/м3	3,14	
Ј-уд.выбросы при проливах,г/м3	50	

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004

Разрез "Восточный". Станция Фестивальная. ЖДЦ. ДПС "Фестивальная". Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров и колонок масла маслораздаточного пункта в период с 2025 по 2027 гг. Неорганизованный источник №6173

Наименование показателей	Показатели
Исходные данные	
1.Общая емкость резервуаров, Vp, м3	10
2. Количество резервуаров, Np,шт.	2
3.Плотность жидкости, р,т/м3	0,935
4.Объем жидкости налив. в резервуар в течение года, Q,м3/год	75
I) Закачивание и хранение	
1.Производительность слива, Vсл, м3/ч	4
2.Годовые выбросы,т/год	
G=Gсл+Gпр.п, т/год	0,00051
Gсл=(СрозхQоз+СрвлхQвл)/1000000	0,000009
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной	0,12
смеси осенне-зимний период,г/м3 (прил.15)	- ,
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной смеси весенне-летний период,г/м3 (прил.15)	0,12
Смах-максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при сливе,г/м3 (прил.12)	0,324
Qвл-кол.жидкости закач. в весенлетн. период,м3	37,5
Qоз-кол.жидкости закач. в осензимн. период,м3	37,5
Gпр.п=0,5*J*Qгод/1000000	0,0005
J-удельные выбросы при проливах,г/м3	12,5
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,0004

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Фесивальная. ЦРЖДО. ДПС Восточное. Расчет эмиссий загрязняющих веществ от открытого огня на 2025-2027 гг. Неорганизованный источник №6175

Наименование показателей	Показатели
Исходные данные	
1.Процентное содержание (на рабочую массу)	
в топливе, %	
- влаги	
- золы, Ar	0,25
- серы, Sr	0,3
2.Безразмерный коэффициент, f, (табл 4.2)	0,01
3.Эффективность золоуловителя, п, %	0
4.Доля ангидрида сернистого,n'so2	0,02
5.Доля ангидрида сернистого, улавливаемого в золоуловителе, ,n"so2	0
6.Потери тепла от химической неполноты сгорания топлива, q2,%	0,5
7. Коэффициент, учитывающий долю потери тепла от химической	•
неполноты сгорания топлива, обусловленную наличием	
в продуктах сгорания CO, R	0,65
8.Низшая теплота сгорания натурального топлива, Qri, МДж / кг	42,75
9.Выход оксида углерода при сжигании топлива	
Ссо=q2 * R * Qri, кг / т	13,89
10.Потери тепла от механической неполноты сгорания топлива, q1, %	0
11. Количество азота оксидов, выделяющего при сжигании	
топлива, q3,кг/т	2,57
12.Количество часов работы в год, t, ч	30
13. Расход топлива в год ,В, т/год	0,25
Bg=Bt*10 -6/ (3600 *T), г/с	2,31
Результаты	
14. Количество веществ, выбрасываемых в атмосферу:	
а)Пыль неорг. 20% <sio2<70%< td=""><td></td></sio2<70%<>	
Мгод=В*Ar*f*(1-n/100), т/год	0,00063
Mсек = Mгод*106/t*3600, г/с	0,00583
б) сера диоксид	
KK=(1-n'so2) * (1-n''so2)	0,98
Мгод=0,02*B*Sr*KK, т/год	0,00147
Мсек=Мгод*106/t*3600 г/с	0,01361
в) углерод оксид	
Мгод=Cco*B*(1-q1/100)*10-3, т/год	0,00347
Мсек=Мгод*106/t*3600 г/с	0,03213
г) азота оксид	
Мгод =q3*B*10-3, т/год	0,00064
Мсек=Мгод*106/t*3600 г/с	0,00593

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу МООС РК от 18.04.08г. № 100-п)

Разрез "Восточный". Станция Восточная. ЖДЦ.УПР. Расчет эмиссий загрязняющих веществ в атмосферу при окраске столбиков на ж.-д. станциях на 2025-2027 гг. Неорганизованный источник №6180

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
mф-эмаль ПФ-115)	0,06
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00378
M2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00378
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
П2=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00972
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00972
8.Максимальный разовый выброс летучих веществ при сушке, г/с	
$\Pi1=(mm/24*fp*rp1*q1)/106*3,6*(1-n))$ -ксилол	0,0243
$\Pi 2 = (m M/24 * fp * rp1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n)-уайт-спирит$	0,0243
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-ксилол	0,0135
М2=М2окр.+М2с-уайт-спирит	0,0135

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004

Разрез "Восточный". Станция Фестивальная. Вскрышной цех. Участок путеукладочных работ (УППР). Расчет эмиссий загрязняющих веществ в атмосферу от лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6181

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль НЦ-132	0,012
тф1-растворитель 646	0,001
2.Максимальный часовой расход, кг	
тм-эмаль НЦ-132	0,5
тм1-растворитель 646	0,033
3.Состав эмали НЦ-132, %	
q1-ацетон	8
q2-спирт н-бутиловый	15
q3-спирт этиловый	20
q4-бутилацетат	8
q5-этилцеллозольв	8
q6-толуол	41
fp-доля летучей части	80
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q7-ацетон	7
q8-спирт н-бутиловый	15
q9-спирт этиловый	10
q10-бутилацетат	10
q11-этилцеллозольв	8
q12-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q2+ mф1*fp1*rp2*q8)/106*(1-n) -спирт н-бутиловый	0,00045
М2окр.=(mф*fp*rp*q4+mф1*fp1*rp2*q10)/106*(1-n)-бутилацетат	0,00024
М3окр.=(mф*fp*rp*q1+mф1*fp1*rp2*q7)/106*(1-n)-ацетон	0,00023
М4окр.=(mф*fp*rp*q6+mф1*fp1*rp2*q12) /106*(1-n)-толуол	0,00003
М5окр.=(mф*fp*rp*q5+mф1*fp1*rp2*q11) /106*(1-n)-этилцеллозольв	0,00024
М6окр.=(mф*fp*rp*q3+mф1*fp1*rp2*q9) /106*(1-n)-спирт этиловый	0,00057
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,06048
П2=(mм1*fp1*rp2*q10)/106*3,6*(1-n)-бутилацетат	0,00333
П3=(mм*fp*rp*q1)/106*3,6*(1-n)-ацетон	0,03226

1	2
П4=(mм1*fp1*rp2*q12)/106*3,6*(1-n)-толуол	0,01663
П5=(mм*fp*rp*q5)/106*3,6*(1-n)-этилцеллозольв	0,03226
П6=(mм*fp*rp*q3)/106*3,6*(1-n)-спирт этиловый	0,08064
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q2 +mф1*fp1*rp3*q8)/106*(1-n)-спирт н-бутиловый	0,00114
M2c=(mф*fp*rp1*q4+mф1*fp1*rp3*q10)/106*(1-n)-бутилацетат	0,00141
М3с=(mф*fp*rp1*q1+ mф1*fp1*rp3*q7)/106*(1-n)-ацетон	0,0006
М4c=(mф*fp*rp1*q6+mф1*fp1*rp3*q12) /106*(1-n)-толуол	0,00319
М5c=(mф*fp*rp1*q5+mф1*fp1*rp3*q11)/106*(1-n)-этилцеллозольв	0,00061
М6c=(mф*fp*rp1*q3+mф1*fp1*rp3*q9)/106*(1-n)-спирт этиловый	0,00145
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
П1=(mм/24*fp*rp1*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,00648
П2=(mм1/24*fp1*rp3*q610/106*3,6*(1-n)-бутилацетат	0,00036
$\Pi 3 = (m M/24 * fp * rp 1 * q 1)/106 * 3,6 * (1-n)$ -ацетон	0,00346
П4=(mм1/24*fp1*rp3*q12)/106*3,6*(1-n)-толуол	0,00178
П5=(mм/24*fp*rp1*q5)/106*3,6*(1-n)-этилцеллозольв	0,00346
$\Pi 6 = (m M 1/24 * fp * rp 1 * q3)/106 * 3,6 * (1-n)$ -спирт этиловый	0,00648
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,00159
М2=М2окр.+М2с-бутилацетат	0,00165
М3=М3окр.+М3с-ацетон	0,00083
М4=М4окр.+М4с)-толуол	0,00322
М5=М5окр.+М5с-этилцеллозольв	0,00085
М6=М6окр.+М6с-спирт этиловый	0,00202

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004

Разрез "Восточный". Станция Фестивальная. Вскрышной цех. Участок звеносборочных работ (УЗР). Расчет эмиссий загрязняющих веществ в атмосферу от лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6182

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль НЦ-132	0,006
тф1-растворитель 646	0,0018
2.Максимальный часовой расход, кг	·
тм-эмаль НЦ-132	0,5
тм1-растворитель 646	0,5
3.Состав эмали НЦ-132, %	
q1-ацетон	8
q2-спирт н-бутиловый	15
q3-спирт этиловый	20
q4-бутилацетат	8
q5-этилцеллозольв	8
q6-толуол	41
fp-доля летучей части	80
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q7-ацетон	7
q8-спирт н-бутиловый	15
q9-спирт этиловый	10
q10-бутилацетат	10
q11-этилцеллозольв	8
q12-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q2+ mф1*fp1*rp2*q8)/106*(1-n) -спирт н-	
бутиловый	0,00028
М2окр.=(mф*fp*rp*q4+mф1*fp1*rp2*q10)/106*(1-n)-бутилацетат	0,00016
М3окр.=(mф*fp*rp*q1+mф1*fp1*rp2*q7)/106*(1-n)-ацетон	0,00014
М4окр.=(mф*fp*rp*q6+mф1*fp1*rp2*q12) /106*(1-n)-толуол	0,00005
М5окр.=(mф*fp*rp*q5+mф1*fp1*rp2*q11) /106*(1-n)-этилцеллозольв	0,00016
М6окр.=(mф*fp*rp*q3+mф1*fp1*rp2*q9) /106*(1-n)-спирт этиловый	0,00032
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,06048
$\Pi 2 = (m M1 * fp1 * rp2 * q10)/106 * 3,6 * (1-n)$ -бутилацетат	0,0504

1	2
	2
$\Pi 3 = (m M * fp * rp * q1)/106 * 3,6 * (1-n)$ -ацетон	0,03226
$\Pi 4 = (m M1 * fp1 * rp2 * q12)/106 * 3,6 * (1-n)$ -толуол	0,252
$\Pi 5 = (m \text{м*fp*rp*q5})/106 \text{*}3,6 \text{*}(1-\text{n})$ -этилцеллозольв	0,03226
$\Pi 6 = (m \text{м*fp*rp*q3})/106 \text{*3}, 6 \text{*}(1-\text{n})$ -спирт этиловый	0,08064
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q2 +mф1*fp1*rp3*q8)/106*(1-n)-спирт н-бутиловый	0,00071
M2c=(mф*fp*rp1*q4+mф1*fp1*rp3*q10)/106*(1-n)-бутилацетат	0,00074
$M3c = (m\phi * fp * rp1 * q1 + m\phi1 * fp1 * rp3 * q7)/106 * (1-n)$ -ацетон	0,00037
M4c=(mф*fp*rp1*q6+mф1*fp1*rp3*q12) /106*(1-n)-толуол	0,00206
М5c=(mф*fp*rp1*q5+mф1*fp1*rp3*q11)/106*(1-n)-этилцеллозольв	0,00038
М6c=(mф*fp*rp1*q3+mф1*fp1*rp3*q9)/106*(1-n)-спирт этиловый	0,00082
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
П1=(mм/24*fp*rp1*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,00648
П2=(mм1/24*fp1*rp3*q610/106*3,6*(1-n)-бутилацетат	0,0054
$\Pi 3 = (m M/24 * fp * rp 1 * q 1)/106 * 3,6 * (1-n)$ -ацетон	0,00346
П4=(mм1/24*fp1*rp3*q12)/106*3,6*(1-n)-толуол	0,027
$\Pi 5 = (m_M/24 * fp * rp1 * q5)/106 * 3,6 * (1-n)$ -этилцеллозольв	0,00346
$\Pi 6 = (m M 1/24 * fp * rp 1 * q3)/106 * 3,6 * (1-n)$ -спирт этиловый	0,00648
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,00099
М2=М2окр.+М2с-бутилацетат	0,0009
М3=М3окр.+М3с-ацетон	0,00051
М4=М4окр.+М4с)-толуол	0,00211
М5=М5окр.+М5с-этилцеллозольв	0,00054
М6=М6окр.+М6с-спирт этиловый	0,00114

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004

Разрез "Восточный". Станция Фестивальная. ЖДЦ. Участок сигнализации, централизации и блокировки (УСЦБ). Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6183

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,6
тф1-растворитель 646	0,01
тф2-эмаль НЦ-132	0,4
2. Максимальный часовой расход, кг	
тм-эмаль ПФ-115	0,5
тм1-растворитель 646	0,5
тм2-эмаль НЦ-132	0,5
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
д3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
 5.Состав эмали НЦ-132, % 	
q9-ацетон	8
q10-спирт н-бутиловый	15
q11-спирт этиловый	20
q12-бутилацетат	8
q13-этилцеллозольв	8
q14-толуол	41
fp2-доля летучей части	80
гр4-доля растворителя в ЛКМпри окраске	28
гр5-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
$M1$ окр.= $(m\phi1*fp1*rp2*q4+m\phi2*fp2*rp4*q10)/106*(1-n)$ -спирт н-бутило	овый 0,01386
$M2$ окр.= $(m\phi1*fp1*rp2*q6+m\phi2*fp2*rp4*q12)/106*(1-n)$ -бутилацетат	0,00745
$M3$ окр.= $(m\phi1*fp1*rp2*q3+m\phi2*fp2*rp4*q9)/106*(1-n)$ -ацетон	0,00014

1	2
М4окр.=(mф1*fp1*rp2*q8+mф2*fp2*rp4*q14)/106*(1-n)-толуол	0,03814
М5окр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n)-этилцеллозольв	0,00739
М6окр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт этиловый	0,0182
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,0378
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,0378
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0756
П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	0,0504
П3=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-ацетон	0,03226
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,252
$\Pi 5 = (m_1 * fp1 * rp2 * q7)/106 * 3,6 * (1-n) - этилцеллозольв$	0,04032
$\Pi6=(m_2*fp1*rp2*q11)/106*3,6*(1-n)$ -спирт этиловый	0,1008
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,1134
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,1134
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый	0,03564
M2c=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат	0,01915
М3c=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон	0,01894
М4c=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол	0,09806
M5c=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв	0,00058
М6c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый	0,0468
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,0972
М8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,0972
8.Максимальный разовый выброс летучих веществ при сушке, г / с	
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0081
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q6)/106 * 3,6 * (1-n) - бутилацетат$	0,0054
$\Pi 3 = (m M 1/24 * fp1 * rp3 * q3)/106 * 3,6 * (1-n)$ -ацетон	0,00378
$\Pi 4 = (m M 1/24 * fp1 * rp3 * q8)/106 * 3,6 * (1-n)$ -толуол	0,027
$\Pi 5 = (m M 1/24 * fp1 * rp3 * q7)/106 * 3,6 * (1-n)$ -этилцеллозольв	0,00432
$\Pi 6 = (m M 1/24 * fp1 * rp3 * q5)/106 * 3,6 * (1-n)$ -спирт этиловый	0,0108
Π 7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,01215
$\Pi 8 = (m M/24 * fp * rp1 * q2)/106 * 3,6 * (1-n)/106 * 3,6 * (1-n)-уайт-спирит$	0,01215
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с)-спирт н-бутиловый	0,0495
М2=М2окр.+М2с)-бутилацетат	0,0266
М3=М3окр.+М3с-ацетон	0,01908
М4=М4окр.+М4с-толуол	0,1362
М5=М5окр.+М5с-этилцеллозольв	0,00797
М6=М6окр.+М6с-спирт этиловый	0,065
М7=М7окр.+М7с-ксилол	0,135
М8=М8окр.+М8с-уайт-спирит	0,135

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)",РНД 211.2.02.05-2004

Разрез "Восточный". Станция Восточная. Цех буровзрывных работ (УБР). Расчет эмиссий загрязняющих веществ в атмосферу при окраске буровых станков при капитальном ремонте на 2025-2027 гг. Неорганизованный источник №6185

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115)	0,2
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1,2
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fр-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,0126
М2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,0126
6. Максимальный разовый выброс летучих веществ при окраске, г	/ c
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,27216
П2=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,27216
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,0324
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,0324
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
П1=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,02916
Π 2=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит	0,02916
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-ксилол	0,045
М2=М2окр.+М2с-уайт-спирит	0,045
10. Максимальный разовый выброс летучих веществ при сушке и окраски, г/с	
П1=П1окр.+П1с-ксилол	0,30132
П2=П2окр.+П2с-уайт-спирит	0,30132

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)",РНД 211.2.02.05-2004

Разрез "Восточный". Станция Восточная. Энергоцех. Участок теплоснабжения и сетей (УТС). Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025-2027 гг. Неорганизованный источник №6186

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115)	0,03
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00189
M2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00189
6.Максимальный разовый выброс летучих веществ при окраске, г /	c
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
$\Pi 2 = (m \text{м*fp*rp*q2})/106 \text{*3,6*(1-n)-уайт-спирит}$	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00486
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00486
8. Максимальный разовый выброс летучих веществ при сушке, т/г	
П1=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0243
$\Pi 2 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n)-уайт-спирит$	0,0243
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-ксилол	0,00675
М2=М2окр.+М2с-уайт-спирит	0,00675
10.Максимальный разовый выброс летучих веществ при сушке и окраски, г/с	
П1=П1окр.+П1с-ксилол	0,2511
П2=П2окр.+П2с-уайт-спирит	0,2511

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004

Разрез "Восточный". Станция Фестивальная. Энергоцех. Участок электроснабжения (УЭС). Расчет эмиссий загрязняющих веществ в атмосферу при выполнении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6187

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
mф-эмаль ПФ-115)	0,03
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00189
М2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00189
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
$\Pi 2 = (m M * fp * rp * q2)/106 * 3,6 * (1-n) - уайт-спирит$	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00486
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00486
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
П1=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0243
$\Pi 2 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n)-уайт-спирит$	0,0243
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-ксилол	0,00675
М2=М2окр.+М2с-уайт-спирит	0,00675
10. Максимальный разовый выброс летучих веществ при сушке и окраски, г	
П1=П1окр.+П1с-ксилол	0,2511
П2=П2окр.+П2с-уайт-спирит	0,2511

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004

Разрез "Восточный". Станция Восточная. Добычной цех. Участок технологического комплекса разреза (УТКР). Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025-2027 гг. Неорганизованный источник №6188

Наименование показателей	Показатели
1	2
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-нефрас 80/120 (бензин калоша)	0,63
тф1-растворитель 646	0,004
2.Максимальный часовой расход, кг	·
тм-нефрас 80/120	0,5
тм1-растворитель 646	0,5
3.Состав растворителя нефрас 80/120, %	
q 2-бензин (2704)	100
fp-доля летучей части	100
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4)/106*(1-n)-спирт н-бутиловый	0,00017
М2окр.=(mф1*fp1*rp2*q6)/106*(1-n)-бутилацетат	0,00011
М3окр.=(mф1*fp1*rp2*q3)/106*(1-n)-ацетон	0,00008
М4окр.=(mф1*fp1*rp2*q8)/106*(1-n)-толуол	0,00056
М5окр.=(mф1*fp1*rp2*q7)/106*(1-n)-этилцеллозольв	0,00009
М6окр.=(mф1*fp1*rp2*q5)/106*(1-n)-спирт этиловый	0,00011
М7окр.=(mф*fp*rp*q2)/106*(1-n)-бензин калоша	0,1764
6.Максимальный разовый выброс летучих веществ при окраске, г/	c
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0756
П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	0,0504
$\Pi 3 = (m_M 1 * fp 1 * rp 2 * q 3) / 106 * 3,6 * (1-n)$ -ацетон	0,03528
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,252
$\Pi 5 = (m_1 * fp1 * rp2 * q7)/106 * 3,6 * (1-n)$ -этилцеллозольв	0,04032
П6=(mм1*fp1*rp2*q5)/106*3,6*(1-n)-спирт этиловый	0,0504
П7=(mм*fp*rp*q2)/106*3,6*(1-n)-бензин	0,504
7.Валовый выброс летучих веществ за год при сушке, т / год	

M1c=(mф1*fp1*rp3*q4)/106*(1-n)-спирт н-бутиловый	0,00043
M2c=(mф1*fp1*rp3*q6)/106*(1-n)-бутилацетат	0,00029
M3c=(mф1*fp1*rp3*q3)/106*(1-n)-ацетон	0,0002
M4c=(mф1*fp1*rp3*q8)/106*(1-n)-толуол	0,00144
M5c=(mф1*fp1*rp3*q7)/106*(1-n)-этилцеллозольв	0,00023
M6c=(mф1*fp1*rp3*q5)/106*(1-n)-спирт этиловый	0,00029
M7c=(mф*fp*rp1*q2)/106*(1-n)-бензин	0,4536
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0081
П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат	0,0054
П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон	0,00378
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол	0,027
П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв	0,00432
П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый	0,0054
Π 7=(mм/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-бензин	0,054
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,0006
М2=М2окр.+М2сбутилацетат	0,0004
М3=М3окр.+М3с-ацетон	0,00028
М4=М4окр.+М4с-толуол	0,002
М5=М5окр.+М5с-этилцеллозольв	0,00032
М6=М6окр.+М6с-спирт этиловый	0,0004
М7=М7окр.+М7с-бензин	0,63
10.Максимальный разовый выброс летучих веществ, г / с	
П1=П1окр.+П1с)-спирт н-бутиловый	0,04338
П2=П2окр.+П2с)-бутилацетат	0,2574
П3=П3окр.+П3с-ацетон	0,0441
П4=П4окр.+П4с-толуол	0,0774
П5=П5окр.+П5с-этилцеллозольв	0,04464
П6=П6окр.+П6с-спирт этиловый	0,5094
П8=П8окр.+П8с-уайт-спирит	0,05443

Разрез "Восточный". Станция Восточная. ЦПВК.ЦПВК-1 Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6189

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,026
тф1-растворитель 646	0,041
тф2-эмаль НЦ-132	0,21
2. Максимальный часовой расход, кг	
тм-эмаль ПФ-115	0,17
тм1-растворитель 646	0,68
тм2-эмаль НЦ-132	1,09
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
д3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
5.Состав эмали НЦ-132, %	
q9-ацетон	8
q10-спирт н-бутиловый	15
q11-спирт этиловый	20
q12-бутилацетат	8
q13-этилцеллозольв	8
q14-толуол	41
fp2-доля летучей части	80
гр4-доля растворителя в ЛКМпри окраске	28
гр5-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0

Продолжение приложения 208

1	2
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4+mф2*fp2*rp4*q10)/106*(1-n)-спирт н-	
бутиловый	0,00878
M2окр.=(mф1*fp1*rp2*q6+mф2*fp2*rp4*q12)/106*(1-n)-бутилацетат	0,00491
М3окр.=(mф1*fp1*rp2*q3+mф2*fp2*rp4*q9)/106*(1-n)-ацетон	0,00058
$M4$ окр.= $(m\phi1*fp1*rp2*q8+m\phi2*fp2*rp4*q14)/106*(1-n)$ -толуол	0,02503
$M5$ окр.= $(m\phi1*fp1*rp2*q7+m\phi2*fp2*rp4*q13)/106*(1-n)-$	0.00460
ЭТИЛЦЕЛЛОЗОЛЬВ	0,00468
М6окр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт	0.01056
ЭТИЛОВЫЙ M7orn = (md*fn*rn*a1)/106*(1 n) компон	0,01056 0,00164
M7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол M8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00164
6. Максимальный разовый выброс летучих веществ при окраске, г / с	0,00104
Π 1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,10282
П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	0,06854
П3=(mм2*fp2*rp4*q9)/106*3,6*(1-n)-ацетон	0,07032
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,34272
$\Pi 5 = (m_1 * fp1 * rp2 * q7)/106 * 3,6 * (1-n) - этилцеллозольв$	0,05484
П6=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый	0,21974
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,03856
$\Pi 8 = (m \text{м*fp*rp*q2})/106 \text{*3,6*(1-n)}$ -уайт-спирит	0,03856
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-	
бутиловый	0,02257
M2c=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат	0,01263
М3c=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон	0,01174
$M4c = (m\phi 1*fp 1*rp 3*q8+m\phi 2*fp 2*rp 5*q14)/106*(1-n)$ -толуол	0,06435
М5c=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв М6c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый	0,00236 0,02714
Мос-(пф1 тр1 тр3 тд3+пф2 тр2 тр3 тд11)/100 (1-п)-спирт этиловый М7с=(пф*fp*rp1*q1)/106*(1-п)-ксилол	0,02714
М8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00421
8. Максимальный разовый выброс летучих веществ при сушке, г/с	0,00+21
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,01102
П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат	0,00734
П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон	0,00514
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол	0,03672
$\Pi 5 = (mM1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв$	0,00588
П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый	0,01469
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,00413
$\Pi 8 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n)-уайт-спирит$	0,00413
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с)-спирт н-бутиловый	0,03135
М2=М2окр.+М2с)-бутилацетат	0,01754
М3=М3окр.+М3с-ацетон	0,01232
М4=М4окр.+М4с-толуол	0,08938

1	2
М5=М5окр.+М5с-этилцеллозольв	0,00704
М6=М6окр.+М6с-спирт этиловый	0,0377
М7=М7окр.+М7с-ксилол	0,00585
М8=М8окр.+М8с-уайт-спирит	0,00585
10.Максимальный разовый выброс летучих веществ, г / с	
П1=П1окр.+П1с)-спирт н-бутиловый	0,11384
П2=П2окр.+П2с)-бутилацетат	0,07588
П3=П3окр.+П3с-ацетон	0,07546
П4=П4окр.+П4с-толуол	0,37944
П5=П5окр.+П5с-этилцеллозольв	0,06072
П6=П6окр.+П6с-спирт этиловый	0,23443
П7=П7окр.+П7с-ксилол	0,04269
П8=П8окр.+П8с-уайт-спирит	0,04269

Разрез "Восточный". Станция Фестивальная. Железнодорожный цех. (ЖДЦ). Участок контактной сети (УКС). Расчет эмиссий загрязняющих веществ в атмосферу при окраске опор передвижной контактной сети на 2025-2027 гг. Неорганизованный источник №6190

Наименование показателей	2022 г.	2023-2027 гг.
Исходные данные		
1. Масса расходуемых лакокрасочных материалов в год, т		
тф-эмаль ПФ-115)	0,01	0,005
2.Максимальный часовой расход, кг		
тм-эмаль ПФ-115	1	1
3.Состав эмали ПФ-115, %		
q1-ксилол	50	50
q2-уайт-спирит	50	50
fp-доля летучей части	45	45
гр-доля растворителя в ЛКМпри окраске	28	28
гр1-доля растворителя в ЛКМпри сушке	72	72
п-степень очистки воздуха	0	0
РЕЗУЛЬТАТЫ		
5.Валовый выброс летучих веществ за год при окраске, т / год		
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00063	0,00032
M2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00063	0,00032
6. Максимальный разовый выброс летучих веществ при окраске,		
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268	0,2268
П2=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,2268	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год		
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00162	0,00081
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00162	0,00081
8. Максимальный разовый выброс летучих веществ при сушке,		
г/с		
П1=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0243	0,0243
$\Pi 2 = (m_M/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-$		
спирит	0,0243	0,0243
9.Итого валовый выброс за год, т/год		
М1=М1окр.+М1с-ксилол	0,00225	0,00113
М2=М2окр.+М2с-уайт-спирит	0,00225	0,00113

Разрез "Восточный". Станция Фестивальная. ЦРЖДО.ДПС Восточная. Расчет эмиссий загрязняющих веществ в атмосферу при окраске токоведущих частей новой изоляции на 2025-2027 гг. Неорганизованный источник №6192

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ГФ-92	0,1
mф1-эмаль ГФ-92ГС	0,06
2. Максимальный часовой расход, кг	
тм-эмаль ГФ-92	0,5
тм1-эмальГФ-92ГС	0,5
3.Состав эмали ГФ-92, %	
q1-ксилол	90
q2-уайт-спирит	8
q3-спирт н-бутиловый	2
fр-доля летучей части	51
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав эмали ГФ-92ГС, %	
q4-сольвент нафта	100
fp1-доля летучей части	43
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q3)/106*(1-n)-спирт н-бутиловый	0,00029
M2окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,01285
М3окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00114
М4окр.=(mф1*fp1*rp2*q4)/106*(1-n)-сольвент нафта	0,00722
6. Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q3)/106*3,6*(1-n)-спирт н-бутиловый	0,00514
П2=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,23134
П3=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,02056
П4=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-сольвент нафта	0,21672
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q3)/106*(1-n)-спирт н-бутиловый	0,00073
M2c=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,03305
M3c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00294
М4с.=(mф1*fp1*rp3*q4)/106*(1-n)-сольвент нафта	0,01858
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
П1=(mм/24*fp*rp1*q3)/106*3,6*(1-n)-спирт н-бутиловый	0,00055
П2=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,02479
П3=(mм/24*fp*rp1*q2)/106*3,6*(1-n)*(1-n)-уайт-спирит	0,0022

1	2
П4=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-сольвент нафта	0,55728
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,00102
М2=М2окр.+М2с-ксилол	0,0459
М3=М3окр.+М3с-уайт-спирит	0,00408
М4=М4окр.+М4с-сольвент нафта	0,0258
10.Максимальный разовый выброс летучих веществ, г / с	
П1=П1окр.+П1с)-спирт н-бутиловый	0,00569
П2=П2окр.+П2-ксилол	0,02479
П3=П3окр.+П3с-уайт-спирит	0,00293
П4=П4окр.+П4с-сольвент нафта	0,774

Приложение 211

Разрез "Восточный". Станция Фестивальная. ЖДЦ.ДПС Фестивальная. Экипировка локомотивов. Расчет эмиссий загрязняющих веществ в атмосферу от лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6193

Наименование показателей	2022 г.	2023-2027 гг.
1	2	3
Исходные данные		
1. Масса расходуемых лакокрасочных материалов в год, т		
тф-эмаль НЦ-132	0,003	0,002
тф1-растворитель 646	0,001	0,0006
2. Максимальный часовой расход, кг		
тм-эмаль НЦ-132	0,5	0,5
тм1-растворитель 646	0,25	0,25
3.Состав эмали НЦ-132, %		
q1-ацетон	8	8
q2-спирт н-бутиловый	15	15
q3-спирт этиловый	20	20
q4-бутилацетат	8	8
q5-этилцеллозольв	8	8
q6-толуол	41	41
fр-доля летучей части	80	80
гр-доля растворителя в ЛКМ при окраске	28	28
rp1-доля растворителя в ЛКМ при сушке	72	72
п-степень очистки воздуха	0	0
4.Состав растворителя 646, %		
q7-ацетон	7	7
q8-спирт н-бутиловый	15	15
q9-спирт этиловый	10	10
q10-бутилацетат	10	10
q11-этилцеллозольв	8	8
q12-толуол	50	50
fp1-доля летучей части	100	100
гр2-доля растворителя в ЛКМпри окраске	28	28
гр3-доля растворителя в ЛКМпри сушке	72	72
п-степень очистки воздуха	0	0
Результаты		
5.Валовый выброс летучих веществ за год при окраске, т / год		
М1окр.=(mф*fp*rp*q2+ mф1*fp1*rp2*q8)/106*(1-n) -спирт н-		
бутиловый	0,00014	0,00009
$M2$ окр.= $(m\phi*fp*rp*q4+m\phi1*fp1*rp2*q10)/106*(1-n)-$		
бутилацетат	0,00008	0,00005
М3окр.=(mф*fp*rp*q1+mф1*fp1*rp2*q7)/106*(1-n)-ацетон	0,00007	0,00005
М4окр.=(mф*fp*rp*q6+mф1*fp1*rp2*q12) /106*(1-n)-толуол	0,00003	0,00002
$M5$ окр.= $(m\phi*fp*rp*q5+m\phi1*fp1*rp2*q11)/106*(1-n)-$		
этилцеллозольв	0,00008	0,00005
М6окр.=(mф*fp*rp*q3+mф1*fp1*rp2*q9) /106*(1-n)-спирт		
этиловый	0,00016	0,00011

1	2	3
6. Максимальный разовый выброс летучих веществ при окраске,	г/с	
П1=(mм*fp*rp*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,06048	0,06048
П2=(mм1*fp1*rp2*q10)/106*3,6*(1-n)-бутилацетат	0,0252	0,0252
П3=(mм*fp*rp*q1)/106*3,6*(1-n)-ацетон	0,03226	0,03226
П4=(mм1*fp1*rp2*q12)/106*3,6*(1-n)-толуол	0,126	0,126
П5=(mм*fp*rp*q5)/106*3,6*(1-n)-этилцеллозольв	0,03226	0,03226
П6=(mм*fp*rp*q3)/106*3,6*(1-n)-спирт этиловый	0,08064	0,08064
7.Валовый выброс летучих веществ за год при сушке, т / год		
М1с=(mф*fp*rp1*q2 +mф1*fp1*rp3*q8)/106*(1-n)-спирт н-		
бутиловый	0,00037	0,00024
$M2c=(m\phi*fp*rp1*q4+m\phi1*fp1*rp3*q10)/106*(1-n)$ -бутилацетат	0,00037	0,00025
$M3c = (m\phi * fp * rp1 * q1 + m\phi 1 * fp1 * rp3 * q7)/106 * (1-n)$ -ацетон	0,00019	0,00012
М4с=(mф*fp*rp1*q6+mф1*fp1*rp3*q12) /106*(1-n)-толуол	0,00107	0,00069
$M5c = (m\phi * fp * rp1 * q5 + m\phi1 * fp1 * rp3 * q11)/106 * (1-n)$		
этилцеллозольв	0,0002	0,00013
М6с=(mф*fp*rp1*q3+mф1*fp1*rp3*q9)/106*(1-n)-спирт		
этиловый	0,00042	0,00027
8. Максимальный разовый выброс летучих веществ при сушке,		
r/c		
$\Pi1=(mm/24*fp*rp1*q2)/106*3,6*(1-n)$ -спирт н-бутиловый	0,00648	0,00648
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q610/106 * 3,6 * (1-n) - бутилацетат$	0,0027	0,0027
$\Pi 3 = (mm/24*fp*rp1*q1)/106*3,6*(1-n)$ -ацетон	0,00346	0,00346
П4=(mм1/24*fp1*rp3*q12)/106*3,6*(1-n)-толуол	0,0135	0,0135
$\Pi 5 = (mm/24*fp*rp1*q5)/106*3,6*(1-n)$ -этилцеллозольв	0,00346	0,00346
Π 6=(mм1/24*fp*rp1*q3)/106*3,6*(1-n)-спирт этиловый	0,00648	0,00648
9.Итого валовый выброс за год, т/год		
М1=М1окр.+М1с-спирт н-бутиловый	0,00051	0,00033
М2=М2окр.+М2с-бутилацетат	0,00045	0,0003
М3=М3окр.+М3с-ацетон	0,00026	0,00017
М4=М4окр.+М4с)-толуол	0,0011	0,00071
М5=М5окр.+М5с-этилцеллозольв	0,00028	0,00018
М6=М6окр.+М6с-спирт этиловый	0,00058	0,00038

Разрез "Восточный". Станция Восточная. ЦРГО. Ремонтно-механический участок (РМУ). Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6194

Наименование показателей	Показатели
1	2
Исходные данные	·
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,003
тф1-растворитель 646	0,003
тф2-эмаль НЦ-132	0,003
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	0,5
тм1-растворитель 646	0,5
тм2-эмаль НЦ-132	0,5
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
5.Состав эмали НЦ-132, %	
q9-ацетон	8
q10-спирт н-бутиловый	15
q11-спирт этиловый	20
q12-бутилацетат	8
q13-этилцеллозольв	8
q14-толуол	41
fp2-доля летучей части	80
гр4-доля растворителя в ЛКМпри окраске	28
гр5-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0

Продолжение приложения 212

1	2
Результаты	<u>-</u>
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4+mф2*fp2*rp4*q10)/106*(1-n)-спирт н-	
бутиловый	0,00023
$M2$ окр.= $(m\phi1*fp1*rp2*q6+m\phi2*fp2*rp4*q12)/106*(1-n)$ -бутилацетат	0,00014
$M3$ окр.= $(m\phi1*fp1*rp2*q3+m\phi2*fp2*rp4*q9)/106*(1-n)$ -ацетон	0,00004
$M4$ окр.= $(m\phi1*fp1*rp2*q8+m\phi2*fp2*rp4*q14)/106*(1-n)$ -толуол	0,0007
$M5$ окр.= $(m\phi1*fp1*rp2*q7+m\phi2*fp2*rp4*q13)/106*(1-n)-$	0.00012
ЭТИЛЦЕЛЛОЗОЛЬВ	0,00012
М6окр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт	0.00022
ЭТИЛОВЫЙ M7ovp = (md*fp*rp*q1)/106*(1 p) усинон	0,00022
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00019 0,00019
6.Максимальный разовый выброс летучих веществ при окраске, г / с	0,00019
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0756
П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	0,0504
$\Pi 3 = (m M^2 + fp^2 + q^2)/106 + 3,6 + (1-n)$ - ацетон	0,03226
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,252
$\Pi 5 = (m_1 * fp1 * rp2 * q7)/106 * 3,6 * (1-n) - этилцеллозольв$	0,04032
П6=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый	0,1008
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,1134
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,1134
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-	
бутиловый	0,00058
$M2c=(m\phi1*fp1*rp3*q6+m\phi2*fp2*rp5*q12)/106*(1-n)$ -бутилацетат	0,00035
М3с=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон	0,00029
M4c=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол	0,00179
M5c=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв	0,00017
М6c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый	0,00056
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол M8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00049 0,00049
8.Максимальный разовый выброс летучих веществ при сушке, г / с	0,00049
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0081
П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат	0,0054
П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-п)-ацетон	0,00378
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол	0,027
П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв	0,00432
$\Pi6=(mM1/24*fp1*rp3*q5)/106*3,6*(1-n)$ -спирт этиловый	0,0108
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,01215
$\Pi 8 = (m_M/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит$	0,01215
9. Итого валовый выброс за год, т/год	
М1=М1окр.+М1с)-спирт н-бутиловый	0,00081
М2=М2окр.+М2с)-бутилацетат	0,00049
М3=М3окр.+М3с-ацетон	0,00033
М4=М4окр.+М4с-толуол	0,00249

1	2
М5=М5окр.+М5с-этилцеллозольв	0,00029
М6=М6окр.+М6с-спирт этиловый	0,00078
М7=М7окр.+М7с-ксилол	0,00068
М8=М8окр.+М8с-уайт-спирит	0,00068
10.Максимальный разовый выброс летучих веществ, г / с	
П1=П1окр.+П1с)-спирт н-бутиловый	0,0837
П2=П2окр.+П2с)-бутилацетат	0,0558
П3=П3окр.+П3с-ацетон	0,03604
П4=П4окр.+П4с-толуол	0,279
П5=П5окр.+П5с-этилцеллозольв	0,04464
П6=П6окр.+П6с-спирт этиловый	0,1116
П7=П7окр.+П7с-ксилол	0,12555
П8=П8окр.+П8с-уайт-спирит	0,12555

Разрез "Восточный". Станция Фестивальная. Транспортный цех (ТЦ). АТУ. Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6195

Наименование показателей	Показатели
1	2
Исходные данные	<u> </u>
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,009
тф1-растворитель 646	0,016
тф2-эмаль НЦ-132	0,1
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	0,5
тм1-растворитель 646	0,5
тм2-эмаль НЦ-132	0,5
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	25
гр1-доля растворителя в ЛКМпри сушке	75
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	25
гр3-доля растворителя в ЛКМпри сушке	75
п-степень очистки воздуха	0
5.Состав эмали НЦ-132, %	
q 9-ацетон	8
q10-спирт н-бутиловый	15
q11-спирт этиловый	20
q12-бутилацетат	8
q13-этилцеллозольв	8
q14-толуол	41
fp2-доля летучей части	80
гр4-доля растворителя в ЛКМпри окраске	25
гр5-доля растворителя в ЛКМпри сушке	75
п-степень очистки воздуха	0

Продолжение приложения 213

1	2
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4+mф2*fp2*rp4*q10)/106*(1-n)-спирт н-	
бутиловый	0,0036
$M2$ окр.= $(m\phi1*fp1*rp2*q6+m\phi2*fp2*rp4*q12)/106*(1-n)$ -бутилацетат	0,002
$M3$ окр.= $(m\phi1*fp1*rp2*q3+m\phi2*fp2*rp4*q9)/106*(1-n)$ -ацетон	0,00021
$M4$ окр.= $(m\phi1*fp1*rp2*q8+m\phi2*fp2*rp4*q14)/106*(1-n)$ -толуол	0,0102
$M5$ окр.= $(m\phi1*fp1*rp2*q7+m\phi2*fp2*rp4*q13)/106*(1-n)-$	
ЭТИЛЦЕЛЛОЗОЛЬВ	0,00192
М6окр.=(mф1*fp1*rp2*q5+mф2*fp2*rp4*q11)/106*(1-n)-спирт	0.0044
ЭТИЛОВЫЙ	0,0044
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00051
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00051
6.Максимальный разовый выброс летучих веществ при окраске, Γ / с $\Pi = (mM1*fp1*rp2*q4)/106*3,6*(1-n)$ -спирт н-бутиловый	0.0675
П2=(mф1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-оутиловый	0,0675 0,045
$\Pi 3 = (m M 2 * fp 2 * rp 4 * q 9)/106 * 3,6 * (1-n)-ацетон$	0,043
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-п)-толуол	0,225
П5=(mм1*fp1*rp2*q7)/106*3,6*(1-n)-этилцеллозольв	0,036
П6=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый	0,09
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,10125
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,10125
7.Валовый выброс летучих веществ за год при сушке, т / год	,
M1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-	
бутиловый	0,0108
M2c=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат	0,006
M3c=(mф1*fp1*rp3*q3+mф2*fp2*rp5*q9)/106*(1-n)-ацетон	0,00564
M4c=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол	0,0306
M5c=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв	0,00096
М6с=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый	0,0132
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00152
М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00152
8. Максимальный разовый выброс летучих веществ при сушке, г / с	0.00044
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,00844
П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат	0,00563
П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-п)-ацетон	0,00394
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв	0,02813 0,0045
П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый	0,0043
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n)-ксилол	0,01123
П8=(mм/24*fp*rp1*q2)/106*3,6*(1-n)/106*3,6*(1-n)-уайт-спирит	0,01266
9. Итого валовый выброс за год, т/год	0,01200
М1=М1окр.+М1с)-спирт н-бутиловый	0,0144
М2=М2окр.+М2с)-бутилацетат	0,008
1 / 5	0,00585
М3=М3окр.+М3с-ацетон	0,00383

1	2
М5=М5окр.+М5с-этилцеллозольв	0,00288
М6=М6окр.+М6с-спирт этиловый	0,0176
М7=М7окр.+М7с-ксилол	0,00203
М8=М8окр.+М8с-уайт-спирит	0,00203
10.Максимальный разовый выброс летучих веществ, г / с	
П1=П1окр.+П1с)-спирт н-бутиловый	0,07594
П2=П2окр.+П2с)-бутилацетат	0,05063
П3=П3окр.+П3с-ацетон	0,03274
П4=П4окр.+П4с-толуол	0,25313
П5=П5окр.+П5с-этилцеллозольв	0,0405
П6=П6окр.+П6с-спирт этиловый	0,10125
П7=П7окр.+П7с-ксилол	0,11391
П8=П8окр.+П8с-уайт-спирит	0,11391

Разрез "Восточный". Станция Фестивальная. РСУ. Расчет выбросов вредных веществ при проведении лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6196

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,1
тф1-растворитель 646	0,015
тф2-эмаль НЦ-132	0,01
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	0,5
тм1-растворитель 646	0,5
тм2-эмаль НЦ-132	0,5
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
5.Состав эмали НЦ-132, %	
q9-ацетон	8
q10-спирт н-бутиловый	15
q11-спирт этиловый	20
q12-бутилацетат	8
q13-этилцеллозольв	8
q14-толуол	41
fp2-доля летучей части	80
гр4-доля растворителя в ЛКМпри окраске	28
гр5-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0

Продолжение приложения 214

1	2
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4+mф2*fp2*rp4*q10)/106*(1-n)-спирт н-бутиловый	0,00097
M2окр.=(mф1*fp1*rp2*q6+mф2*fp2*rp4*q12)/106*(1-n)-бутилацетат	0,0006
$M3$ окр.= $(m\phi1*fp1*rp2*q3+m\phi2*fp2*rp4*q9)/106*(1-n)$ -ацетон	0,00021
$M4$ окр.= $(m\phi1*fp1*rp2*q8+m\phi2*fp2*rp4*q14)/106*(1-n)$ -толуол	0,00302
М5окр.=(mф1*fp1*rp2*q7+mф2*fp2*rp4*q13)/106*(1-n)-этилцеллозольв	0,00052
$M6$ окр.= $(m\phi1*fp1*rp2*q5+m\phi2*fp2*rp4*q11)/106*(1-n)$ -спирт этиловый	0,00087
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,0063
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,0063
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0756
$\Pi 2 = (m\phi 1 * fp 1 * rp 2 * q6)/106 * 3,6 * (1-n)$ -бутилацетат	0,0504
$\Pi 3 = (m M 2 * fp 2 * rp 4 * q 9) / 106 * 3,6 * (1-n)$ -ацетон	0,03226
$\Pi 4 = (m M 1 * fp 1 * rp 2 * q8) / 106 * 3,6 * (1-n)$ -толуол	0,252
$\Pi 5 = (m \times 1 + fp \times 1 + rp \times 2 + q \times 7)/106 + 3,6 + (1-n)$ -этилцеллозольв	0,04032
Π 6=(mм2*fp1*rp2*q11)/106*3,6*(1-n)-спирт этиловый	0,1008
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,1134
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,1134
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4+mф2*fp2*rp5*q10)/106*(1-n)-спирт н-бутиловый	0,00248
M2c=(mф1*fp1*rp3*q6+mф2*fp2*rp5*q12)/106*(1-n)-бутилацетат	0,00154
$M3c = (m\phi1*fp1*rp3*q3+m\phi2*fp2*rp5*q9)/106*(1-n)$ -ацетон	0,00122
M4c=(mф1*fp1*rp3*q8+mф2*fp2*rp5*q14)/106*(1-n)-толуол	0,00776
M5c=(mф1*fp1*rp3*q7+mф2*fp2*rp5*q13)/106*(1-n)-этилцеллозольв	0,00086
М6c=(mф1*fp1*rp3*q5+mф2*fp2*rp5*q11)/106*(1-n)-спирт этиловый	0,00223
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,0162
M8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,0162
8.Максимальный разовый выброс летучих веществ при сушке, г / с	
$\Pi 1 = (m M 1/24 * fp 1 * rp 3 * q 4)/106 * 3,6 * (1-n)$ -спирт н-бутиловый	0,0081
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q6)/106 * 3,6 * (1-n) - бутилацетат$	0,0054
$\Pi 3 = (m M 1/24 * fp1 * rp3 * q3)/106 * 3,6 * (1-n)$ -ацетон	0,00378
$\Pi 4 = (m M 1/24 * fp1 * rp3 * q8)/106 * 3,6 * (1-n) - толуол$	0,027
П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв	0,00432
$\Pi 6 = (m M 1/24 * fp1 * rp3 * q5)/106 * 3,6 * (1-n)$ -спирт этиловый	0,0108
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,01215
$\Pi 8 = (m_M/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит$	0,01215
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с)-спирт н-бутиловый	0,00345
М2=М2окр.+М2с)-бутилацетат	0,00214
М3=М3окр.+М3с-ацетон	0,00143
М4=М4окр.+М4с-толуол	0,01078
М5=М5окр.+М5с-этилцеллозольв	0,00138
М6=М6окр.+М6с-спирт этиловый	0,0031
М7=М7окр.+М7с-ксилол	0,0225
М8=М8окр.+М8с-уайт-спирит	0,0225

Разрез "Восточный". Станция Фестивальная. ЖДЦ.УПР. Расчет эмиссий загрязняющих веществ в атмосферу при окраске столбиков на ж.-д. станциях на 2025-2027 гг. Неорганизованный источник №6197

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115)	0,01
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fр-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00063
М2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00063
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
П2=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00162
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00162
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
$\Pi1=(mm/24*fp*rp1*q1)/106*3,6*(1-n))$ -ксилол	0,0243
$\Pi 2 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n) - уайт-спирит$	0,0243
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-ксилол	0,00225
М2=М2окр.+М2с-уайт-спирит	0,00225

Разрез "Восточный". Циклично-поточный вскрышной комплекс №2 (ЦПВК-2). Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025 по 2027 гг. Неорганизованный источник №6289

Наименование показателей	2025-2027 гг.
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,012
тф1-растворитель 646	0,006
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
тм1-растворитель 646	0,5
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fр-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4)/106*(1-n)-спирт н-бутиловый	0,00025
М2окр.=(mф1*fp1*rp2*q6)/106*(1-n)-бутилацетат	0,00017
М3окр.=(mф1*fp1*rp2*q3)/106*(1-n)-ацетон	0,00012
М4окр.=(mф1*fp1*rp2*q8)/106*(1-n)-толуол	0,00084
М5окр.=(mф1*fp1*rp2*q7)/106*(1-n)-этилцеллозольв	0,00013
М6окр.=(mф1*fp1*rp2*q5)/106*(1-n)-спирт этиловый	0,00017
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00076
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00076
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0756

1	2
П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	0,0504
П3=(mм1*fp1*rp2*q3)/106*3,6*(1-n)-ацетон	0,03528
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,252
П5=(mм1*fp1*rp2*q7)/106*3,6*(1-n)-этилцеллозольв	0,04032
П6=(mм1*fp1*rp2*q5)/106*3,6*(1-n)-спирт этиловый	0,0504
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4)/106*(1-n)-спирт н-бутиловый	0,00065
M2c=(mф1*fp1*rp3*q6)/106*(1-n)-бутилацетат	0,00043
М3с=(тф1*fp1*rp3*q3)/106*(1-п)-ацетон	0,0003
М4с=(mф1*fp1*rp3*q8)/106*(1-n)-толуол	0,00216
$M5c=(m\phi1*fp1*rp3*q7)/106*(1-n)$ -этилцеллозольв	0,00035
М6c=(mф1*fp1*rp3*q5)/106*(1-n)-спирт этиловый	0,00043
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00194
М8с=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00194
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0081
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q6)/106 * 3,6 * (1-n)$ -бутилацетат	0,0054
$\Pi 3 = (m M 1/24 * fp1 * rp3 * q3)/106 * 3,6 * (1-n)$ -ацетон	0,00378
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол	0,027
Π 5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв	0,00432
П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый	0,0054
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0243
$\Pi 8 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n)$ -уайт-спирит	0,0243
Итого валовый выброс за год, т/год	
М1=М1окр.+М1с	0,0009
М2=М2окр.+М2с	0,0006
М3=М3окр.+М3с	0,00042
М4=М4окр.+М4с	0,003
М5=М5окр.+М5с	0,00048
М6=М6окр.+М6с	0,0006
М7=М7окр.+М7с	0,0027
М8=М8окр.+М8с	0,0027

Разрез "Восточный". Станция Восточная. ЖДЦ.УПР. Расчет эмиссий загрязняющих веществ в атмосферу при окраске столбиков на ж.-д. станциях на 2025-2027 гг. Неорганизованный источник №6198

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
mф-эмаль ПФ-115)	0,01
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00063
М2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00063
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
$\Pi 2 = (m \text{м*fp*rp*q2})/106 \text{*3,6*(1-n)}$ -уайт-спирит	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00162
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00162
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
П1=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0243
$\Pi 2 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n) - уайт-спирит$	0,0243
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-ксилол	0,00225
М2=М2окр.+М2с-уайт-спирит	0,00225
10.Максимальный разовый выброс летучих веществ при сушке и окраски, г/с	
П1=П1окр.+П1с-ксилол	0,2511
П2=П2окр.+П2с-уайт-спирит	0,2511

Разрез "Восточный". Станция Восточная. АХО. Расчет эмиссий загрязняющих веществ в атмосферу при окраске на ремонтных работах на 2025-2027 гг. Неорганизованный источник №6199

Наименование показателей	Показатели
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
mф-эмаль ПФ-115)	0,005
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
РЕЗУЛЬТАТЫ	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00032
М2окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00032
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
$\Pi 2 = (m \text{м*fp*rp*q2})/106 \text{*3,6*(1-n)-уайт-спирит}$	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00081
M2c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00081
8. Максимальный разовый выброс летучих веществ при сушке, г/с	
П1=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0243
$\Pi 2 = (m M/24 * fp * rp 1 * q2)/106 * 3,6 * (1-n))/106 * 3,6 * (1-n)-уайт-спирит$	0,0243
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-ксилол	0,00113
М2=М2окр.+М2с-уайт-спирит	0,00113
10. Максимальный разовый выброс летучих веществ при сушке и окраски, г/с	
П1=П1окр.+П1с-ксилол	0,2511
П2=П2окр.+П2с-уайт-спирит	0,2511

Разрез "Восточный". Станция Балластная. Щебёночный карьер. Дробильносортировочный комплекс (ДСК). Мастерская. Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025-2027 гг. Неорганизованный источник №6201

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,03
тф1-растворитель 646	0,017
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
тм1-растворитель 646	1
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fp-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф1*fp1*rp2*q4)/106*(1-n)-спирт н-бутиловый	0,00071
М2окр.=(mф1*fp1*rp2*q6)/106*(1-n)-бутилацетат	0,00048
М3окр.=(mф1*fp1*rp2*q3)/106*(1-n)-ацетон	0,00033
М4окр.=(mф1*fp1*rp2*q8)/106*(1-n)-толуол	0,00238
М5окр.=(mф1*fp1*rp2*q7)/106*(1-n)-этилцеллозольв	0,00038
М6окр.=(mф1*fp1*rp2*q5)/106*(1-n)-спирт этиловый	0,00048
М7окр.=(mф*fp*rp*q1)/106*(1-n)-ксилол	0,00189
М8окр.=(mф*fp*rp*q2)/106*(1-n)-уайт-спирит	0,00189
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм1*fp1*rp2*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,1512
П2=(mф1*fp1*rp2*q6)/106*3,6*(1-n)-бутилацетат	0,1008
П3=(mм1*fp1*rp2*q3)/106*3,6*(1-n)-ацетон	0,07056
П4=(mм1*fp1*rp2*q8)/106*3,6*(1-n)-толуол	0,504
$\Pi 5 = (m_1 * fp1 * rp2 * q7)/106 * 3,6 * (1-n)$ -этилцеллозольв	0,08064

1	2
П6=(mм1*fp1*rp2*q5)/106*3,6*(1-n)-спирт этиловый	0,1008
П7=(mм*fp*rp*q1)/106*3,6*(1-n)-ксилол	0,2268
П8=(mм*fp*rp*q2)/106*3,6*(1-n)-уайт-спирит	0,2268
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4)/106*(1-n)-спирт н-бутиловый	0,00184
M2c=(mф1*fp1*rp3*q6)/106*(1-n)-бутилацетат	0,00122
М3с=(mф1*fp1*rp3*q3)/106*(1-п)-ацетон	0,00086
М4с=(mф1*fp1*rp3*q8)/106*(1-n)-толуол	0,00612
M5c=(mф1*fp1*rp3*q7)/106*(1-n)-этилцеллозольв	0,00098
М6c=(mф1*fp1*rp3*q5)/106*(1-n)-спирт этиловый	0,00122
M7c=(mф*fp*rp1*q1)/106*(1-n)-ксилол	0,00486
М8c=(mф*fp*rp1*q2)/106*(1-n)-уайт-спирит	0,00486
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
П1=(mм1/24*fp1*rp3*q4)/106*3,6*(1-n)-спирт н-бутиловый	0,0162
П2=(mм1/24*fp1*rp3*q6)/106*3,6*(1-n)-бутилацетат	0,0108
П3=(mм1/24*fp1*rp3*q3)/106*3,6*(1-n)-ацетон	0,00756
П4=(mм1/24*fp1*rp3*q8)/106*3,6*(1-n)-толуол	0,054
П5=(mм1/24*fp1*rp3*q7)/106*3,6*(1-n)-этилцеллозольв	0,00864
П6=(mм1/24*fp1*rp3*q5)/106*3,6*(1-n)-спирт этиловый	0,0108
П7=(mм/24*fp*rp1*q1)/106*3,6*(1-n))-ксилол	0,0243
$\Pi 8 = (m_M/24*fp*rp1*q2)/106*3,6*(1-n))/106*3,6*(1-n)-уайт-спирит$	0,0243
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,00255
М2=М2окр.+М2с-бутилацетат	0,0017
М3=М3окр.+М3сацетон	0,00119
М4=М4окр.+М4с-толуол	0,0085
М5=М5окр.+М5с-этилцеллозольв	0,00136
М6=М6окр.+М6с-спирт этиловый	0,0017
М7=М7окр.+М7с-ксилол	0,00675
М8=М8окр.+М8с-уайт-спирит	0,00675
10.Итого максимальный разовый выброс летучих веществ при окраске	и сушке, г / с
П1=П1окр.+П1с-спирт н-бутиловый	0,1674
П2=П2окр.+П2с-бутилацетат	0,1116
П3=П3окр.+П3сацетон	0,07812
П4=П4окр.+П4с-толуол	0,558
П5=П5окр.+П5с-этилцеллозольв	0,08928
П6=П6окр.+П6с-спирт этиловый	0,1116
П7=П7окр.+П7с-ксилол	0,2511
П8=П8окр.+П8с-уайт-спирит	0,2511

Разрез "Восточный". Станция Восточная. АТУ. Ремонтный бокс. Расчет эмиссий загрязняющих веществ в атмосферу от резервуара машинных масел в период с 2025 по 2027 гг. Неорганизованный источник №6202

Наименование показателей	Показатели			
Исходные данные				
1.Общая емкость резервуаров, Vp, м3	23,9			
2.Количество резервуаров, Np,шт.	5			
3.Плотность жидкости, р,т/м3	0,935			
4.Объем жидкости налив. в резервуар в течение года, Q,м3/год	24			
I) Закачивание и хранение				
1.Производительность слива, Vсл, м3/ч	0,5			
5.Годовые выбросы,т/год				
G=Gсл+Gпр.п, т/год	0,00015			
Gсл=(СрозхQоз+СрвлхQвл)/1000000	0,0000029			
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной				
смеси осенне-зимний период,г/м3 (прил.15)	0,12			
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной				
смеси весенне-летний период,г/м3 (прил.15)	0,12			
Смах-максимальная концентрация паров нефтепродуктов в выбросах				
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324			
Qвл-кол.жидкости закач. в весенлетн. период,м3	12			
Qоз-кол.жидкости закач. в осензимн. период,м3	12			
Gпр.п=0,5*J*Qгод/1000000	0,00015			
Ј-удельные выбросы при проливах,г/м3	12,5			
6.Максимальн. разовый выброс М=Vсл*Смах/3600,г/с	0,000045			

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Восточная. Цех буровзрывных работ. Участок буровых работ (УБР). Ремонтные работы. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-60 на 2025-2027 гг. Неорганизованный источник №6204

Наименование показателей	Показатели			
Исходные данные				
1. Чистое в ремя работы паяльником в год ,t,ч	12			
2.Удельное выделение загрязняющих веществ, q, г/с м2				
q1-свинец и его соединения	0,000044			
q2- олова оксид	0,0000031			
Результаты				
3.Максимальный разовый выброс, г/с				
Mc=q1 - свинец и его соединения	0,000044			
Мс=q2 * - олова оксид	0,0000031			
4.Валовый выброс за год, т/год				
Мгод=(q1*t*3600)/1000000- свинец и его соединения	0,000002			
Мгод=(q2*t*3600)/1000000- олова оксид	0,000001			

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08~г. № 100-п)

Разрез "Восточный". Станция Восточная. Добычной цех. Участки добычных работ №1 и №2 (УДР-1 УДР-2). Ремонтные работы. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-60, 40 на 2025-2027 гг. Неорганизованный источник №6207

Наименование показателей	Показатели
Исходные данные	•
1. Чистое в ремя работы паяльником в год ,t,ч:	
-пайка ПОС-40; t1,ч	20
-пайка ПОС-60; t2,ч	10
2.Удельное выделение загрязняющих веществ, q, г/с м2:	
- ПОС-40	
q1-свинец и его соединения	0,00005
q2- олова оксид	0,0000033
- Пос-60	
q3-свинец и его соединения	0,0000044
q4- олова оксид	0,0000031
Результаты	
3.Максимальный разовый выброс, г/с	
- ПОС-60	
Mc=q3 - свинец и его соединения	0,0000044
Mc=q4 - олова оксид	0,0000031
- ΠOC-40	
Mc=q1 - свинец и его соединения	0,00005
Mc=q2 - олова оксид	0,0000033
4.Валовый выброс за год, т/год	
- ПОС-40	
M1год=(q1*t1*3600)/1000000- свинец и его соединения	0,0000004
M2год=(q2*t1*3600)/1000000- олова оксид	0,0000002
- ПОС-60	
М3год=(q3*t2*3600)/1000000- свинец и его соединения	0,0000002
М4год=(q4*t2*3600)/1000000- олова оксид	0,000001
Итого	
5.Валовый выброс за год, т/год	
М=М1год+М3год- свинец и его соединения	0,0000006
М=М2год+М4год- олова оксид	0,0000003
6.Максимальный разовый выброс, г/с	
Mc=q1+q3 - свинец и его соединения	0,0000094
Mc=q2 +q4- олова оксид	0,000064

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от $18.04.08 \, \Gamma$. № 100-п)

Приложение 223

Разрез "Восточный". Комплексы по выдаче вскрышных пород ЦПВК №1 и ЦПВК №2. Расчет выбросов пыли при работе гидромолотов ЦПВК 1 и ЦПВК 2 (№ ист. 6214, 6215, 6231) на 2025-2027 гг.

					Показ		атели		
Источник	Технологический	/-	k5	Число часов работы гидро-	без у		с уче		
выброса (выде-	проносо	q, г/c		MOHOTO H/EOH	мероприятий		мероприятии		мероприятий
ления)	процесс			молота, ч/год	Мсек, г/с	Мгод,	Мсек, г/с	Мгод,	
					MICER, 17C	т/год	IVICER, 17C	т/год	
ЦПВК-1									
6214	Гидромолот ДУ-1	0,7	0,1	280	0,07	0,071	0,07	0,071	
6215	Гидромолот ДУ-2	0,7	0,1	280	0,07	0,071	0,07	0,071	
ЦПВК-2									
	Гидромолот ДУ-3	0,7	0,1	280	0,07	0,071	0,07	0,071	
6231	Гидромолот ДУ-4	0,7	0,1	280	0,07	0,071	0,07	0,071	

Выбросы пыли при дроблении крупногабаритных кусков вскрышной породы гидромолотом на ДУ-1 и на ДУ-2 рассчитываются по формулам:

Mм. $cek = q \times k5$, r/c,

Мм. $rog = Mm. cek \times Trog \times 3600 \times 10$ -6, т/rog, rge

q – удельное выделение твердых частиц при работе дробильных установок, q = 0.7 г/c (в связи с отсутствием удельных показателей по раздрабливанию крупногабаритных кусков породы гидромолотом интенсивность пылевыделения принята по пневматическому бурильному молотку);

k5 – коэффициент, учитывающий влажность материала;

Тгод – число часов работы гидромолота, ч/год.

Приложение 224

Разрез "Восточный". Станция Фестивальная. Вскрышной цех. Участок путепеукладочных работ (УППР). Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6227

Наименование показателей	Показатели
Исходные данные	
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	300
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	0,5
3. Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	600
5. Удельное выделение загрязняющих веществ при сварке, г/кг	
К1-марганец и его соединения	1,8
Результаты	
6.Валовый выброс марганец и его соед. за год, т/год	
М1=Вгод.1*К1/1000000	0,00054
7. Максимальный разовый выброс марганец и его соед., г/с	
П1=К1*Вчас1/3600	0,00025
Исходные данные по газовой резке	
8.Количество часов работы в год, Т2, ч	492
9. Удельное выделение загрязняющих веществ при газовой резке	
стали углеродистой толщиной 20мм, г/с	
К2-марганец и его соединения	0,017
К3-оксид углерода	0,018
К4-диоксид азота	0,015
Результаты	
10.Валовый выброс за год,т/год	
М2=Т2*3600*К2/1000000 -марганец и его соединения	0,03011
М3=Т2*3600*К3/1000000 -оксид углерода	0,03188
М4=(Т2*3600*К4/1000000 -диоксид азота	0,02657
11.Максимальный разовый выброс,г/с	
П2=К2 -марганец и его соединения	0,017
П3=К3 -оксид углерода	0,018
П4=К4 -диоксид азота	0,015
Итого	
12.Валовый выброс за год,т/год	
М=М1+М2-марганец и его соединен.	0,03065
М=М3 -углерод оксид	0,03188
М=М4 -диоксид азота	0,02657
13.Максимальный разовый выброс,г/с	
П=П2-марганец и его соед.	0,017
П=П4-азот диоксид	0,015
П=П3-углерод оксид	0,018

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221-Ө".

Разрез "Восточный". Комплекс по выдаче вскрышных пород. ЦПВК №2. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных конвейеров в 2023 г.г. (№ ист. 6231)

	Наименование и местонахождение конвейера			
Наименование показателей	B pas	зрезе		
Паименование показателей	Конвейер разгрузочный ДУ №3	BKC 1 (C1), BKC-2 (C2)		
1. Влажность угля, W,%	5	5		
2. Коэффициент, учитывающий влажность, К0	0,7	0,7		
3. Удельная сдуваемость твердых частиц с 1м2, q, г/м2*c	0,003	0,003		
4. Коэффициент, учитывающий скорость обдува материала,				
C5	1	1		
5. Эффективность применяемых средств пылеподавления η				
дол. ед.	0	0,9		
6. Склады,хранилища				
1.Откр. С 4 сторон	1	1		
2.Откр. с 3 сторон				
3.Откр. с 2 сторон полн.				
4.Откр. с 2 сторон част.				
5.Откр. с 1 стороны				
6.Загруз. рукав				
7.Закр. с 4 сторон				
7. Коэффициент, учитывающий местные условия, степень				
защищенности узла от внешних воздействий К4	1	1		
8. Коэффициент, учитывающий гравитационное осаждение				
твердых частиц, Кг	0,4	0,4		
9. Количество перегружаемой породы, Пг. т/год	10000000	10000000		
10.Максимальное количество перегружаемого угля, Пч,т/ч	6650	6650		
11. Годовое количество часов работы оборудования, Т, ч	1503,759398	1503,759398		
12. Суммарная длина конвейеров, L,м	25	2995		
13. Ширина ленты конвейера, В,м	1,8	1,8		
РЕЗУЛЬТАТЫ	· · · · · · · · · · · · · · · · · · ·			
Количество твердых частиц, сдуваемых при				
транспортировании открытым ленточным конвейером				
без учёта мероприятий:				
Мпыль= 3,6*q*B*L*T*K0*C5*K4*Кг*10-3, т/год	0,20463	24,51486		
Ппыль=q*B*L*K0*C5*K4*Кг, г/с	0,0378	4,52844		
С учетом мероприятий				
М'пыль=Мпыль*(1-η),т/год	0,20463	2,45149		
Π 'пыль= Π пыль* $(1-\eta)$, г/с	0,0378	0,45284		

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п №100-п

Приложение 226

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2. Расчёт эмиссий пыли в атмосферу при перегрузке вскрыши с разгрузочных конвейеров ДУ №3, ДУ №4 на конвейер ВКС 1 (С1) в период с 2025 по 2027 г.г.

Местоположение конвейера			
2023 гг.	2024 г.	2025-2026 гг.	2027г.
Конвейер разгрузоч- ный ДУ №3	Конвейе- ры разгру- зочные ДУ №3 и ДУ№4	Конвейе- ры разгру- зочные ДУ №3 и ДУ№4	Конвейеры разгрузочные ДУ №3 и ДУ№4
2	3	4	5
5	5	5	5
			0,7
<2			<3
1	1	1	1
3	3	3	3
0	0	0	0
3	3	3	3
0,3	0,3	0,3	0,3
2	2	2	2
0,7	0,7	0,7	0,7
0,4	0,4	0,4	0,4
1000000	5150000	7250000	7750000
10000000	2120000	1230000	7750000
6650	6651	6650	6650
1504	774	1090	1165
1	2	2	2
	2023 гг. Конвейер разгрузочный ДУ №3 2 5 0,7 < <2 1 3 0 3 0,3 2 0,7 0,4 10000000 6650 1504	В раз 2024 г. Конвейер разгрузочный ДУ №3 и ДУ№4 2 3 5 5 0,7 0,7 <2	В разрезе 2023 гг. 2024 г. 2025-2026 Конвейерразгрузочные ДУ №3 и ДУ№4 ный ДУ №3 и ДУ№4 ДУ №3 и ДУ №3

1	2	3	4	5
Результаты				
Количество твердых частиц, выделяющихся				
при перегрузках, без учета мероприятий				
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_r * g_{yx} * \Pi_r * 10^{-6} * N, т/год$	1,76400	1,81692	2,55780	2,73420
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{y,I} * \Pi_{\Psi} * N/3600, \Gamma/c$	0,32585	0,65180	0,65170	0,65170
С учетом мероприятий				
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{т/год}$	1,76400	1,81692	2,55780	2,73420
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1), \Gamma/c$	0,32585	0,65180	0,65170	0,65180

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г. Алматы, 1996 г.

Разрез «Восточный». Станция Восточная. ЖДЦ. УПР. Идентификация состава выбросов от керосина в период с 2025 по 2027 г.г. Неорганизованный источник №6249

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели				
Исходные данные							
1. Валовые выбросы углеводородов:	т/год	G _{диз}	0,30000				
2. Максимально-разовые выбросы:	г/с	М _{диз}	0,01700				
Идентификация состав	а выбросов						
Углеводороды: Керосин							
1. Предельные (C ₁₂ -C ₁₉), всего: - концентрация	%	C_{i}	99,84				
- валовый выброс	т/год	G_{i}	0,29952				
- максимально-разовый выброс	г/с	M_{i}	0,01697				
2. Сероводород - концентрация	%	C_{i}	0,06				
- валовый выброс	т/год	G_{i}	0,00018				
- максимально-разовый выброс	г/с	M_{i}	0,00001				

Приложение 228 эрез «Восточный» Станция Восточная ЖЛЦ VПР Илентификация состава выбросов с

Разрез «Восточный». Станция Восточная. ЖДЦ. УПР. Идентификация состава выбросов от дизельного топлива в период с 2025 по 2027 г.г. Неорганизованный источник №6249

Наименование показателей	Ед.	Усл.	Показатели			
	изм.	обозн.				
Исходные данные						
1. Валовые выбросы углеводородов:	т/год	$G_{\text{диз}}$	1,4100			
2. Максимально-разовые выбросы:	г/с	$M_{\text{диз}}$	0,0650			
Идентификация состава выбросов						
Углеводороды:						
	mo	пливо				
1. Предельные (C ₁₂ -C ₁₉), всего: - концентрация	%	C_{i}	99,57			
- валовый выброс	т/год	G_{i}	1,40394			
- максимально-разовый выброс	г/с	M_{i}	0,06472			
2. Сероводород - концентрация	%	C_{i}	0,28			
- валовый выброс	т/год	G_{i}	0,00395			
- максимально-разовый выброс	г/с	M_{i}	0,00018			

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004.

Разрез «Восточный». Станция Восточная. Железнодорожный цех (ЖДЦ). Участок путевых работ (УПР). Расчет эмиссий загрязняющих веществ в атмосферу от смазки стрелочных переводов в период с 2025 по 2027 г.г. Неорганизованный источник №6249

Наименование показателей	Показатели
Зимний период	
1. Расход керосина В1,т	0,3
2. Расход дизельного топлива, В2, т	0,51
3.Продолжительность периода керосина, Т1, ч	4920
4.Продолжительность периода дизельного топлива, Т2,ч	4920
5.Выбросы, G3,т	
- керосин=В1	0,3
дизельное топливо=В2	0,51
6.Максимальный разовый выброс Пз, г/с	
П1=G3*106/(Т1*3600)-керосин	0,017
П2=G3*106/(Т2*3600)-дизельное топливо	0,029
Летний период	
1. Расход дизельного топлива, В1, т	0,9
2.Продолжительность периода дизельного топлива, Т1,ч	3840
3.Выбросы, Gл,т	
дизельное топливо=В1	0,9
4. Максимальный разовый выброс Пл, г/с	
П1=Gл*106/(Т2*3600)-дизельное топливо	0,065

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004

Разрез "Восточный". Станция Фестивальная. Железнодорожный цех (ЖДЦ). Участок вспомогательной железнодорожной техники (УВЖТ). Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей в дизельном топливе на 2025-2027 гг. Неорганизованный источник №6252

Наименование показателей	Показатели			
Исходные данные				
1.Количество установок для мойки, п, шт	1			
2.Время работы установки в год ,t,ч	200			
3.Удельной выброс углеводородов предельных, q, г/с м2	0,138			
4.Площадь зеркала установки для мойки, S,м2	0,9			
Результаты				
5.Максимальный разовый выброс, г/с				
Π=q *S	0,1242			
6.Валовый выброс за год, т/год				
M _B =q*S*t*n*3600/1000000	0,08942			

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п).

Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Помещение с емкостями для хранения ГСМ. Идентификация состава выбросов от резервуаров с дизельным топливом. Период с 2025 по 2027 г.г. Неорганизованный источник $N \ge 6308$

Наименование показателей	Ед.	Усл.	2025-2027 гг.
	изм.	обозн.	
Исходные данны	ie		
1. Валовые выбросы углеводородов:	т/год	$G_{\text{диз}}$	0,00013
2. Максимально-разовые выбросы:	г/с	$M_{\text{диз}}$	0,00035
Идентификация состава выбросов			
Углеводороды:		Дизельное	г топливо
1. Предельные (C_{12} - C_{19}), всего: - концентрация	%	C_{i}	99,57
- валовый выброс	т/год	G_{i}	0,00013
- максимально-разовый выброс	г/с	M_{i}	0,00035
2. Сероводород - концентрация	%	C_{i}	0,2800
- валовый выброс	т/год	G_{i}	0,0000004
- максимально-разовый выброс	г/с	M_{i}	0,0000010

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004.

Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Помещение с емкостями для хранения ГСМ. Расчет эмиссий загрязняющих веществ в атмосферу от бочек с дизельным топливом. Неорганизованный источник № 6308 на 2025-2027 г.г.

Показатели	2025-2027 гг.				
Исходные данные					
1.Плотность бензина, р,т/м3	0,768				
2.Объем бензина в бочках в течение года, Q,м3/год	4,88				
3 Слив бензина из бочек через колонку					
I)Заправка автомобилей через колонку					
1.Годовые выбросы Стрк=Сб.а.+Спр.а	0,00013				
Gб.a=(СбозхQоз+СбвлхQвл)х10-6,т/год	0,0000093				
Сбоз-конц.паровозд.смеси при заполн. бака осензимн.	1,6				
период (прил.15)					
Сбвл-конц.паровозд. смеси при заполн.бака весен.	2,2				
Овл-кол.жидкости закач. в весенлетн. Период, м ³	2,440				
Qоз-кол.жидкости закач. в осензимн. Период, м ³	2,440				
Ввл-кол.жидкости закач. в весенлетн. период,т	1,875				
Воз-кол.жидкости закач. в осензимн. период,т	1,875				
Gпр.a=0,5хJх(Воз+Ввл)х10 ⁻⁶ ,т/год	0,000122				
J-уд.выбросы при проливах,г/м ³	50				
2.Максимальн. разовый выброс М=(Vсл х Сб.а х п)/3600,г/с	0,00035				
Vсл-фактический расход топлива через колонку,м3/ч	0,4				
Сб.а/ммах-макс. разовый выброс при заполнении бака,г/с	3,14				
(прил.12)					

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004

Приложение 233
Разрез «Восточный». Расчет объемов эмиссий пыли, сдуваемой с поверхности ленточных конвейеров при транспортировке внутренней вскрыши в 2025-2027 г.г. (№ ист.6027)

	Забойные конвейера							
Наименование показателей	` -	ая конвей- линия	Южная конвейер- ная линия	Северная конвейер- ная линия	Участок №8,12			
	КЛЗ 1	КЛЗ-2	КЛЗ-3	КЛЗ-4	КЛЗ-7	КЛЗ-8	КЛЗ-9	КЛЗ-10
1	2	3	4	5	6	7	8	9
1. Влажность угля, W,%	5	5	5	5	5	5	5	5
2. Коэффициент, учитывающий влажность, К ₅	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
3. Удельная сдуваемость твердых частиц с 1m^2 , q , $r/\text{m}^2*\text{c}$	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
4. Ширина ленты конвейера, В,м	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
5. Длина конвейеров, L,м	484	516	491	470	596,4	1053,8	750	1100
6. Годовое количество часов работы оборудова-	26	26	26	26	56	56	56	56
ния, Т, ч								
7. Коэффициент, учитывающий скорость обдува материала, С5	1,0	1,0	1,0	1,12	1,12	1,12	1,12	1,12
8. Склады,хранилища								
1.Откр. С 4 сторон								
2.Откр. с 3 сторон								
3.Откр. с 2 сторон полн.								
4.Откр. с 2 сторон част.								
5.Откр. с 1 стороны	5	5	5	5	5	5	5	5
6.Загруз. рукав								
7.Закр. с 4 сторон								
9. Коэффициент, учитывающий степень укрытия ленточного конвейера, К ₄	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1

Окончание приложения 233

1	2	3	4	5	6	7	8	9
10. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
11. Эффективность применяемых средств пылеподавления η дол. ед.	0	0	0	0	0	0	0	0
12. Количество перегружаемого угля, Пг. т/год	113 750	113 750	113 750	113 750	245 000	245 000	245 000	245 000
13.Максимальное количество перегружаемого угля, Пч,т/ч	4400	4400	4400	4400	4400	4400	4400	4400
	РЕЗУ	ЛЬТАТЫ						
Количество твердых частиц, сдуваемых при транспортировании открытым ленточным конвейером без учёта мероприятий: $M_{\text{пыль}} = 3.6*q*B*L*T*K_5*C_5*K_4*K_{\Gamma}*10^{-3}$, т/год	0,06850	0,07300	0,06950	0,07450	0,20360	0,35980	0,25600	0,37550
$\Pi_{\text{пыль}} = q*B*L*K_5*C_5*K_4*K_{\Gamma}, \Gamma/c$	0,73180	0,78020	0,74240	0,79590	1,01000	1,78450	0,25600	0,37550
C учетом мероприятий $M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \tau/\text{год}$	0,00685	0,00730	0,00695	0,00745	0,02036	0,03598	0,02560	0,03755
$\Pi'_{\Pi \sqcup \Pi \sqcup \Pi} = \Pi_{\Pi \sqcup \Pi \sqcup \Pi} * (1 - \eta), \Gamma/c$	0,07318	0,07802	0,07424	0,07959	0,10100	0,17845	0,12701	0,18628

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от $18.04.2008 \, \Gamma$. №100- Π .

Приложение 234

взрез «Восточный» Участок 8.12 Расчет объемов эмиссий пыли в атмосферу при

Разрез «Восточный». Участок 8,12. Расчет объемов эмиссий пыли в атмосферу при перегрузках внутренней вскрыши на ленточных конвейерах в период с 2025 по 2027 г.г.

	В разрезе
Наименование показателей	КЛЗ-7, КЛЗ-8,
	КЛЗ-9, КЛЗ-10
1. Влажность материала, W,%	5
2. Коэффициент, учитывающий влажность, К ₀	0,7
3. Скорость ветра, V, м/с	<2
4. Коэффициент, учитывающий скорость ветра, К ₁	1,0
5. Уд. выделение твердых частиц с тонны угля, $g_{yд}$,г/т	3
6. Эффективность применяемых средств пылеподавления η ₁	0
дол. ед.	U
7. Склады,хранилища	
1.Откр. С 4 сторон	1
2.Откр. с 3 сторон	
3.Откр. с 2 сторон полн.	
4.Откр. с 2 сторон част.	
5.Откр. с 1 стороны	
6.Загруз. рукав	
7.Закр. с 4 сторон	
8. Коэффициент, учитывающий местные условия, степень	1.0
защищенности узла от внешних воздействий К ₄	1,0
9. Высота пересыпки, h, м	2
10. Коэффициент, учитывающий высоту пересыпки, К5	0,7
11. Коэффициент, учитывающий гравитационное осаждение	0,4
твердых частиц, Кг	0,4
12. Количество перегружаемого угля, Пг. т/год	7 000 000
13. Максимальное количество перегружаемого угля, Пч,т/ч	4400
14. Годовое количество часов работы оборудования, Т, ч	1591
15. Количество оборудования (перегрузок), N,шт	3
Результаты	
Количество твердых частиц, выделяющихся при перегрузках,	
без учета мероприятий	12,34800
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{yA} * \Pi_{\Gamma} * 10^{-6} * N, \text{ т/год}$	
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{yx} * \Pi_{\Psi} * N/3600, \Gamma/c$	2,15600
С учетом мероприятий	12,34800
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{т/год}$	ŕ
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1)$, г/с	2,15600

Приложение 235

Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС «Фестивальная». Склад сухого песка. Расчет эмиссий загрязняющих веществ в атмосферу от сушки и транспортировки песка на 2025-2027 г.г. Неорганизованный источник №6074

Наименование показателей	Показатели
Исходные данные	
1.Годовой производительность печи по сухому песку .Т.т/год	375
2. Эффектитвность пылеочистного оборудования, η,ед	0
3. Максимальная часовая производительность техн. Узла в кг сухого	
песка,П,кг/ч:	
- П1-сушка песка в печи	1,2
- П2-загрузка песка в башенный склад	1,2
- П3-загрузка песка в раздаточный бункер	0,2
- П4-загрузка песка в локомотив	4,5
4. удельное выделение пыли на тонну сухого песка, q, кг/т:	
-q1-сушка песка в печи	2
-q2-загрузка песка в башенный склад	4
-q3-загрузка песка в раздаточный бункер	1,5
-q4загрузка песка в локомотив	7,5
Результаты	
5.Валовый выброс за год,т/год	
М1=Т*q1*(1- η)/1000-сушка песка в печи	0,75000
M2=T*q2*(1- η)/1000-загрузка песка в башенный склад	1,50000
M3=T*q3*(1- η)/1000загрузка песка в раздаточный бункер	0,56250
М4=Т*q4*(1- η)/1000- загрузка песка в локомотив	2,81250
6.Максимальный разовый выброс,г/с	
G1=П1*q1*(1-η)/3600-сушка песка в печи	0,00067
G2=П2*q2*(1-η)/3600- загрузка песка в башенный склад	0,00133
G3=П3*q3*(1-η)/3600загрузка песка в раздаточный бункер	0,00008
G4=П4*q4*(1-η)/3600- загрузка песка в локомотив	0,00938

Расчет выполнен по Методике расчета выбросов загрязняющих веществ в атмосферу на предприятиях железнодорожного транспорта, приложение 4 №21 к приказу Министра окружающей среды РК от 18 апреля 2008 г. №100-п.

Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС «Фестивальная». Заправка путевых машин дизельным топливом на пути №17. Расчет эмиссий загрязняющих веществ в атмосферу от колонки дизельного топлива на 2025-2027 г.г. Неорганизованный источник №6075

Наименование показателей	2025-2027 гг.
Исходные данные	
Выдача топлива через колонку	
Плотность жидкости, р,т/м3	0,86
Объем жидкости выдаваемый через колонку в течение года,В,т/год	800
Производительность колонки, Vсл, м3/ч	32
Годовые выбросы Gp=Gзак.+Gпр.р,т/год	0,02158
G зак.= $(Cp^{03}xQ_{03}+Cp^{вл}xQ_{BЛ})x10-6, т/год$	0,00158
Сроз-концентр. Паровоздуш. смеси в осензимн.период.,г/м3	1,6
(прил.15)	
Срвл-концентр. Паровоздуш. смеси в весенлетнпериод.,г/м3	2,2
(прил.15)	
Овл-кол.жидкости закач. в весенлетн. период,м ³	500
Ооз-кол.жидкости закач. в осензимн. период,м ³	300
Результаты	
Gпр.p=0,5хJх(Ооз+Овл)х10 ⁻⁶ ,т/год	0,02000
Максимальн. разовый выброс M=(C1xVсл)/3600,г/с	0,02791
С1-концентрация паров нефтепродукта в резервуаре (прил.12),г/м3	3,14
J-уд.выбросы при проливах,г/м ³	50

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004.

Разрез "Восточный". Станция Фестивальная. ДПС "Фестивальная". Заправка путевых машин дизельным топливом. Идентификация состава выбросов от колонки дизельного топлива на 2025-2027 гг. Неорганизованный источник №6075

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели				
Исходные данн	Исходные данные						
1. Валовые выбросы углеводородов:							
	т/год	Gдиз	0,02158				
2. Максимально-разовые выбросы:							
	г/с	Мдиз	0,02791				
Идентификация состава выбросов							
Углеводороды:	Дизельное	топливо					
1. Предельные (С12-С19), всего: - концентрация	%	Ci	99,57				
- валовый выброс	т/год	Gi	0,021487206				
- максимально-разовый выброс	г/с	Mi	0,027789987				
2. Сероводород - концентрация	%	Ci	0,28				
- валовый выброс	т/год	Gi	0,000060424				
- максимально-разовый выброс	г/с	Mi	0,000078148				

Разрез "Восточный". Станция Восточная. Добычной цех. Участок технологического комплекса разреза (УТКР). Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров отработанных масел в период с 2025 по 2027 гг. Неорганизованный источник №6217

Показатели	Показатели
Исходные данные	
1.Общая емкость резервуаров, Vp, м3	12,6
2.Количество резервуаров, Np,шт.	4
3.Плотность жидкости, р,т/м3	0,935
4.Объем жидкости налив. в резервуар в течение года, Q,м3/год	20
I) Закачивание и хранение	
1.Производительность слива, V сл, м3/ч	0,5
2.Годовые выбросы,т/год	
G=Gсл+Gпр.п, т/год	0,00013
Gсл=(СрозхQоз+СрвлхQвл)/1000000	0,0000024
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси осенне-зимний период,г/м3 (прил.15)	0,12
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси весенне-летний период,г/м3 (прил.15)	0,12
Смах-максимальная концентрация паров нефтепродуктов в выбросах	
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324
Qвл-кол.жидкости закач. в весенлетн. период,м3	10
Qоз-кол.жидкости закач. в осензимн. период,м3	10
Gпр.п=0,5*J*Qгод/1000000	0,000125
Ј-удельные выбросы при проливах,г/м3	12,5
3.Максимальн. разовый выброс М=Vсл*Смах/3600,г/с	0,000045

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный Станция Восточная. Добычной цех. Участок водоотлива и профилактики эндогенных пожаров (УВПЭП). Расчет эмиссий загрязняющих веществ в атмосферу от заточного станка на 2025-2027 гг. Неорганизованный источник №6218

Наименование показателей	Показатели			
Исходные данные				
Механическая обработка без охлаждения				
Заточной станок Окр.300мм				
1.Количество станков,п, шт	1			
2.Количество часов работы в год одного станка, Т, ч	2080			
3. Коэффициент эффективности пылеотсасывающего агрегата, k1	0			
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных				
веществ	0,2			
5.Удельный выброс на единицу оборудования, г/с				
q -абразивная пыль	0,034			
q1-взвешенные вещества	0,034			
Результаты				
6.Валовый выброс за год взвешенных веществ, т/год				
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,05092			
7. Максимальный разовый выброс взвешенных веществ, г/с				
П=k*q1*n -без пылеотсасывающих агрегатов	0,0068			
8.Валовый выброс за год абразивной пыли, т/год				
M = 3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,05092			
9.Максимальный разовый выброс абразивной пыли, г/с				
П=k*q*n -без пылеотсасывающих агрегатов	0,0068			

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-θ) и РНД 211.2.02.06-2004.

Разрез "Восточный". Станция Восточная. Добычной цех. Участок водоотлива и профилактики эндогенных пожаров (УВПЭП). Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров отработанных масел в период с 2025 по 2027 гг. Неорганизованный источник №6219

Показатели	Показатели			
Исходные данные				
1.Общая емкость резервуаров, Vp, м3	2			
2. Количество резервуаров, Np,шт.	1			
3.Плотность жидкости, р,т/м3	0,935			
4.Объем жидкости налив. в резервуар в течение года, Q,м3/год	0,08			
I) Закачивание и хранение				
1.Производительность слива, Vсл, м3/ч	0,5			
2.Годовые выбросы,т/год				
G=Gсл+Gпр.п, т/год	0,0000005			
Gсл=(СрозхQоз+СрвлхQвл)/1000000	0,00000001			
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной смеси осенне-зимний период,г/м3 (прил.15)	0,12			
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной смеси весенне-летний период,г/м3 (прил.15)	0,12			
Смах-максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при сливе,г/м3 (прил.12)	0,324			
Qвл-кол.жидкости закач. в весенлетн. период,м3	0,04			
Qоз-кол.жидкости закач. в осензимн. период,м3	0,04			
Gпр.п=0,5*J*Qгод/1000000	0,0000005			
Ј-удельные выбросы при проливах, г/м3	12,5			
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,000045			

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез «Восточный». Станция Восточная. Добычной цех. Участок водоотлива и профилактики эндогенных пожаров ((УВПЭП). Расчет эмиссий загрязняющих веществ в атмосферу от резервуаров отработанных масел и мешалки в период с 2025 по 2027 г.г. Неорганизованный источник №6220

Показатели	Показатели
Исходные данные	•
1.Общая емкость резервуаров, Vp, м3	54
2.Количество резервуаров, Np,шт.	3
3.Плотность жидкости, р,т/м3	0,935
4.Объем жидкости налив. в резервуар в течение года, Q,м3/год	320
I) Закачивание и хранение	
1.Производительность слива, Vсл, м3/ч	10
2.Годовые выбросы,т/год	
G=Gсл+Gпр.п, т/год	0,0020384
$Gcл=(Cp^{o3}xQo3+Cp^{вл}xQвл)/1000000$	0,0000384
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси осенне-зимний период, г/м3 (прил. 15)	0,12
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси весенне-летний период,г/м3 (прил.15)	0,12
Смах-максимальная концентрация паров нефтепродуктов в выбросах	
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324
Qвл-кол.жидкости закач. в весенлетн. период,м ³	160
Qоз-кол.жидкости закач. в осензимн. период,м3	160
Gпр.п=0,5*J*Qгод/1000000	0,0020
J-удельные выбросы при проливах,г/м ³	12,5
3.Максимальн. разовый выброс M=Vcл*C ^{мах} /3600,г/с	0,000900

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез «Восточный». Станция Балластная. Вскрышной цех. Щебеночный карьер. Дробильно-сортировочный комплекс (ДСК). Расчет эмиссий загрязняющих веществ в атмосферу от бочек с маслами в период с 2025 по 2027 г.г. Неорганизованный источник №6225

Показатели	Показатели						
Исходные данные							
1.Плотность жидкости, р, т/м3	0,935						
2.Объем масла в бочках в течение года, Q, м3/год	0,9						
I) Слив из бочек							
1.Производительность слива, Vсл, м3/ч	0,5						
2. Годовые выбросы, т/год							
G=Gсл+Gпр.п, т/год	0,0000101						
Gcл=(Cp ⁰³ xQo3+Cp ^{вл} xQвл)/1000000	0,0000001						
Ср⁰3-концентрация паров нефтепродуктов в выбросах паровоздушной							
смеси осенне-зимний период, г/м3 (прил.15)	0,12						
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной							
смеси весенне-летний период, г/м3 (прил.15)	0,12						
Смах-максимальная концентрация паров нефтепродуктов в выбросах							
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324						
Qвл-кол.жидкости закач. в весенлетн. период, м3	0,45						
Qоз-кол.жидкости закач. в осензимн. период, м3	0,45						
Gпр.п=0,5*J*Qгод/1000000	0,00001						
Ј-удельные выбросы при проливах,г/м3	12,5						
3.Максимальн. разовый выброс M=Vcл*C ^{мах} /3600,г/с	0,000045						

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез «Восточный». Станция Фестивальная. Вскрышной цех. Участок путепеукладочных работ (УППР). Расчет эмиссий загрязняющих в атмосферу от закрытой емкости для хранения угля бытовок на 2025-2027 г.г. Неорганизованный источник №6226

Наименование показателей	Показ	атели
	Разгрузка	Погрузка
	из автоса-	в авто-
	мосвала	транпорт
		погрузчи-
Исходные данные		КОМ
1. Весовая доля пылевой фракции в материале, К1,%	0,03	0,03
2. Доля пыли, переходящая в аэрозоль, К2	0,03	0,03
3. Скорость ветра, V, м/с	3,4	3,4
	·	
4. Коэффициент, учитывающий скорость ветра, КЗ	1,2	1,2
5. Местные условия, склады,хранилища(число от 1 до 7)		
1.Откр. с 4 сторон		
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны	5	5
6.Загруз. рукав		
7.Закр. с 4 сторон		
6. Коэффициент, учитывающий местные условия, степень защищен-	0,1	0,1
ности узла от внешних воздействий К4		
7. Влажность материала, W,%	5	5
8. Коэффициент, учитывающий влажность материала, К5	0,7	0,7
9. Коэффициент, учитывающий профиль поверхности складируемого	0	0
материала, К6		
10. Коэффициент, учитывающий крупность материала, К7	0,6	0,6
11. Коэффициент, учит. способ разгрузки, К8	1	1
12.Коэффициент при залповой разгрузке, К9	1	1
13. Высота пересыпки, h, м	1	1
14.Коэффициент учитывающий высоту пересыпки, В'	0,5	0,7
15. Количество перегружаемого угля, Пг. т/год	18	18
16. Количество перегружаемого угля, Пч. т/ч	0,083	0,05
17. Годовое количество часов работы оборудования, Т, ч	0,25	36
18. Количество оборудования (узлов пересыпки), N ,шт	1	1
19. Эффективность применяемых средств пылеподавления, η, дол.ед.	0	0
20.Коэфициент гравитационного осаждения, Кгр	0,4	0,4
Результаты	- ,	- ,
21. Количество твердых частиц, выделяющихся при перегрузках,	0,00035	0,00029
Мсек.пыль= К1*К2*К3*К4*К5*К7*К8*К9*В'*Пч*N*106/3600, г/с	2,23022	2,230=2
М1годпыль= K1*K2*K3*K4*K5*K7*K8*K9*В'*Пг*Кгр ,т/год	0,00011	0,00015
22.Годовой выброс пыли,т/год	0,00011	0,00015
M=M1+M2+M3		
H 1 D	<u> </u>	

Примечание. 1. Время разгрузки самосвала 5 мин.

2. Расчет выполнен по «Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов». Приложение №8 к Приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014 года №221-Ө.

Приложение 244

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных конвейеров за 2024 г.

	Наименование и местонахождение конвейера							
	В разрезе На поверхно							
		•	ВКС					
Have covered with the verse to **	Конвейеры		1(C1),	ВКМ 2				
Наименование показателей	разгрузоч-	ВКП 2-1	BKC-2	(C4),	ВКО 2			
	ные	(C3)	(C2),	ВКП 2-	(C6)			
	ДУ №3,	,	ВКМ2	2(C5)	()			
	ДУ4		(C4)	, ,				
1. Влажность угля, W,%	5	5	5	5	5			
2. Коэффициент, учитывающий влажность, К ₀	0,7	0,7	0,7	0,7	0,7			
3. Удельная сдуваемость твердых частиц с 1м ² ,	0,003	0,003	0,003	0,003	0,003			
q, г/м ² *c	0,003	0,003	0,003	0,003	0,003			
4. Коэффициент, учитывающий скорость обдува	1,0	1,0	1,0	1,2	1,2			
материала, С5	1,0	1,0	1,0	1,2	1,2			
5. Эффективность применяемых средств пыле-	0	0	0,9	0,9	0			
подавления η дол. ед.								
6. Склады,хранилища					4			
1.Откр. С 4 сторон	1	1	1	1	1			
2.Откр. с 3 сторон								
3.Откр. с 2 сторон полн.								
4.Откр. с 2 сторон част.								
5.Откр. с 1 стороны								
6.Загруз. рукав								
7.3акр. с 4 сторон								
7. Коэффициент, учитывающий местные усло-		1	1	1	1			
вия, степень защищенности узла от внешних	1	1	1	1	1			
воздействий К ₄								
8. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4	0,4			
9. Количество перегружаемой породы, Пг. т/год	10300000	10300000	10300000	10300000	10300000			
10. Максимальное количество перегружаемого								
угля, Пч,т/ч	6650	6650	6650	6650	6650			
11. Годовое количество часов работы оборудо-								
вания, Т, ч	1549	1549	1549	1549	1549			
12. Суммарная длина конвейеров, L,м	25	721	3870	3172,2	2000			
13. Ширина ленты конвейера, В,м	1,8	1,8	1,8	1,8	1,8			
	ЗУЛЬТАТЫ	//	//	,	,			
Количество твердых частиц, сдуваемых при								
транспортировании открытым ленточным кон-	0,21079	6,07912	32,62997	32,09575	20,23564			
вейером без учёта мероприятий:	0,21079	0,07912	32,02997	32,09373	20,23304			
$M_{\text{пыль}} = 3.6*q*B*L*T*K_0*C_5*K_4*K_{\Gamma}*10^{-3}, \text{ т/год}$								
$\Pi_{\text{пыль}} = q*B*L*K_0*C_5*K_4*K_r, r/c$	0,03780	1,09015	5,85144	5,75564	3,62880			
С учетом мероприятий	0,21079	6,07912	3,26300	3,20958	20,23564			
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \text{т/год}$								
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta) , \Gamma/c$	0,03780	1,09015	0,58514	0,57556	3,62880			

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п.

Приложение 245

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2. Расчёт эмиссий пыли в атмосферу с ленточного конвейера ВКО 2 (С6) при перегрузках вскрыши в период с 2025 по 2027 г.г. № ист. 6232

	Местоположение конвейера						
Наименование показателей	На поверхности						
		BKO 2 (C6)					
		2025-	2027г.				
		2026гг.	20271.				
1. Влажность угля, W,%	5	5	5				
2. Коэффициент, учитывающий влажность, К ₀	0,7	0,7	0,7				
3. Скорость ветра, V, м/с	4,5	4,5	4,5				
4. Коэффициент, учитывающий скорость ветра, К ₁	1,2	1,2	1,2				
5. Уд. выделение твердых частиц с тонны угля, $g_{yд}$ г/т	3	3	3				
6. Эффективность применяемых средств	0	0	0				
пылеподавления η_1 дол. ед.	U	U					
7. Склады,хранилища							
1.Откр. С 4 сторон							
2.Откр. с 3 сторон							
3.Откр. с 2 сторон полн.	3	3	3				
4.Откр. с 2 сторон част.							
5.Откр. с 1 стороны							
6.Загруз. рукав							
7.Закр. с 4 сторон							
8. Коэффициент, учитывающий местные условия,							
степень защищенности узла от внешних воздействий	0,3	0,3	0,3				
K_4							
9. Высота пересыпки, h, м	2	2	2				
10. Коэффициент, учитывающий высоту пересыпки,	0,7	0,7	0,7				
K ₅							
11. Коэффициент, учитывающий гравитационное	0,4	0,4	0,4				
осаждение твердых частиц, Кг		,	ŕ				
12. Количество перегружаемой породы, Пг. т/год	10300000	14500000	15500000				
13. Максимальное количество перегружаемого угля,	6650	6650	6650				
Пч,т/ч							
14. Годовое количество часов работы оборудования, Т,	1549	2180	2331				
Ч							
15. Количество оборудования (перегрузок), N,шт	1	1	1				
Результаты							
Количество твердых частиц, выделяющихся при							
перегрузках, без учета мероприятий							
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_r * g_{y,z} * \Pi_r * 10^{-6} * N, т/год$	2,18030	3,06936	3,28104				
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{VZ} * \Pi_{\Psi} * N/3600, \Gamma/C$	0,39102	0,39102	0,39102				
С учетом мероприятий	0.10000	2.05025	2.20104				
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{т/год}$	2,18030	3,06936	3,28104				
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta_1) , \Gamma/c$	0,39102	0,39102	0,39102				

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г. Алматы, 1996 г.

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных конвейеров в период с 2025 по 2026 г.г.

	Наименование и местонахождение конвейера						
		В разрезе			верхности		
Наименование показателей	Конвейеры разгру- зочные ДУ №3, ДУ4	ВКП 2-1 (С3)	BKC 1 (C1), BKC 2 (C2), BKM 2(C4)	ВКМ 2 (C4), ВКП 2-2 (C5)	ВКО 2 (С6)		
1. Влажность угля, W,%	5	5	5	5	5		
2. Коэффициент, учитывающий влажность, К ₀	0,7	0,7	0,7	0,7	0,7		
3. Удельная сдуваемость твердых частиц с 1м ² , q, г/м ² *c	0,003	0,003	0,003	0,003	0,003		
4. Коэффициент, учитывающий скорость обдува материала, C5	1,0	1,0	1,0	1,2	1,2		
5.Эффективность применяемых средств пылеподавления η дол. ед.	0	0	0,9	0,9	0		
6. Склады,хранилища							
1.Откр. С 4 сторон	1	1	1	1	1		
2.Откр. с 3 сторон							
3.Откр. с 2 сторон полн.							
4.Откр. с 2 сторон част.							
5.Откр. с 1 стороны							
6.Загруз. рукав							
7.Закр. с 4 сторон							
7. Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий K_4	1	1	1	1	1		
8. Коэффициент, учитывающий гравита- ционное осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4	0,4		
9. Количество перегружаемой породы, Пг. т/год	14500000	14500000	14500000	14500000	14500000		
10.Максимальное количество перегружаемого угля, Пч,т/ч	6650	6650	6650	6650	6650		
11. Годовое количество часов работы оборудования, Т, ч	2180	2180	2180	2180	2180		
12. Суммарная длина конвейеров, L,м	50	721	3870	3172,2	2000,0		
13. Ширина ленты конвейера, В,м	1,8	1,8	1,8	1,8	1,8		
	РЕЗУЛЬТА	АТЫ					
Количество твердых частиц, сдуваемых при транспортировании открытым ленточным конвейером без учёта мероприятий: $M_{\text{пыль}} = 3,6*q*B*L*T*K_0*C_5*K_4*K_{\scriptscriptstyle\Gamma}*10^{-3},$ т/год	0,59331	8,55551	45,92210	45,17026	28,47882		
$\Pi_{\text{пыль}} = q * B * L * K_0 * C_5 * K_4 * K_r, r/c$	0,07560	1,09015	5,85144	5,75564	3,62880		
C учетом мероприятий $M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \tau/\text{год}$	0,59331	8,55551	4,59221	4,51703	28,47882		
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta), \Gamma/c$	0,07560	1,09015	0,58514	0,57556	3,62880		
1 1/2		· · · · · · · · · · · · · · · · · · ·	·	·			

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №2. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных конвейеров в 2027 г.

	Наименование и местонахождение конвейера						
		В разрезе	·	На пове	•		
	Конвейе-		ВКС				
Наименование показателей	ры разгру-	DICH 2.1	1(C1),	BKM 2	DICO 2		
	зочные	ВКП 2-1	BKC 2	(C4),	BKO 2		
	ДУ №3,	(C3)	(C2), BKM	ВКП 2-2	(C6)		
	ДУ4		2(C4)	(C5)			
1. Влажность угля, W,%	5	5	5	5	5		
2. Коэффициент, учитывающий влажность, K_0	0,7	0,7	0,7	0,7	0,7		
3. Удельная сдуваемость твердых частиц с 1m^2 , q, г/m^2 *c	0,003	0,003	0,003	0,003	0,003		
4. Коэффициент, учитывающий скорость	1,0	1,0	1,0	1,2	1,2		
обдува материала, С5	7-	7-	, -	,	,		
5. Эффективность применяемых средств	0	0	0,9	0,9	0		
пылеподавления η дол. ед.			<u> </u>	,			
6. Склады,хранилища	1	1	1	1	1		
1.Откр. С 4 сторон	1	1	1	1	1		
2.Откр. с 3 сторон							
3.Откр. с 2 сторон полн.							
4.Откр. с 2 сторон част.							
5.Откр. с 1 стороны							
6.Загруз. рукав							
7.Закр. с 4 сторон							
7. Коэффициент, учитывающий местные							
условия, степень защищенности узла от	1	1	1	1	1		
внешних воздействий К ₄							
8. Коэффициент, учитывающий гравита-	0,4	0,4	0,4	0,4	0,4		
ционное осаждение твердых частиц, Кг	,	,	,	•	,		
9. Количество перегружаемой породы, Пг.	15500000	15500000	15500000	15500000	15500000		
т/год							
10.Максимальное количество перегружае-	6650	6650	6650	6650	6650		
мого угля, Пч,т/ч							
11. Годовое количество часов работы оборудования, Т, ч	2331	2331	2331	2331	2331		
12. Суммарная длина конвейеров, L,м	50	721	3870	3172,2	2000,0		
13. Ширина ленты конвейера, В,м	1,8	1,8	1,8	1,8	1,8		
The state of the s	РЕЗУЛЬТ А		7 -	, -	7-		
Количество твердых частиц, сдуваемых							
при транспортировании открытым ленточ-							
ным конвейером без учёта мероприя-	0.62440	0.14012	40.10204	40.20002	20.45144		
тий:	0,63440	9,14812	49,10294	48,29903	30,45144		
$M_{\text{пыль}} = 3.6*q*B*L*T*K_0*C_5*K_4*K_r*10^{-3},$							
т/год							
$\Pi_{\text{пыль}} = q*B*L*K_0*C_5*K_4*K_{\Gamma}, \Gamma/c$	0,07560	1,09015	5,85144	5,75564	3,62880		
С учетом мероприятий	0,63440	9,14812	4,91029	4,82990	30,45144		
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \text{т/год}$	·	·					
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta)$, г/с	0,07560	1,09015	0,58514	0,57556	3,62880		

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п

Приложение 248

Разрез «Восточный». Расчет объемов эмиссий в атмосферу пыли угольной при сдувании её с поверхности ленточных конвейеров при транспортировке угля в 2025-2027 г.г. (№ ист.6007)

	Подъемные конвейера												
Наименование показателей	Центральн	ая конвейер	ная линия	Ю	жная конве	йерная лини	Я	Северная конвейерная линия			Участок №8,12		
	КЛП 2-3	КЛП 2-2	КЛП-2-1	КЛП 3-3	КЛП 3-2	КЛП 3-1	КЛМ №3	КЛП 4-3	КЛП 4-2	КЛП 4-1	КЛМ-4	КЛМ-5	КЛП-5
1. Влажность угля, W,%	5	5	5	5	5	5	5	5	5	5	5	5	5
2. Коэффициент, учитывающий влажность, К₅	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
3. Удельная сдуваемость твердых частиц с 1м ² , q, г/м ² *с	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
4. Ширина ленты конвейера, В,м	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
5. Длина конвейеров, L,м	525	612	386	567	593	434	630	599	631	412	825	238,8	577,2
6. Годовое количество часов работы оборудования, Т, ч	1477	1477	1477	739	739	739	739	739	739	739	739	1591	1591
7. Коэффициент, учитывающий скорость обдува материа-	1,0	1,0	1,1	1,00	1,00	1,12	1,12	1,00	1,00	1,12	1,12	1,12	1,12
ла, С5	1,0	1,0	1,1	1,00	1,00	1,12	1,12	1,00	1,00	1,12	1,12	1,12	1,12
8. Склады,хранилища													
1.Откр. С 4 сторон													
2.Откр. с 3 сторон													
3.Откр. с 2 сторон полн.													
4.Откр. с 2 сторон част.													
5.Откр. с 1 стороны	5	5	5	5	5	5	5	5	5	5	5	5	5
6.Загруз. рукав													
7.Закр. с 4 сторон													
9. Коэффициент, учитывающий степень укрытия ленточного конвейера, K ₄	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
10. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
11. Эффективность применяемых средств пылеподавления	0	0	0	0	0	0	0	0	0	0	0	0	0
12. Количество перегружаемого угля, Пг. т/год	6500000	6500000	6500000	3250000	3250000	3250000	3250000	3250000	3250000	3250000	3250000	7000000	7000000
13. Максимальное количество перегружаемого угля, Пч,т/ч	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400
]	РЕЗУЛЬТА:	ГЫ								•
Количество твердых частиц, сдуваемых при транспортиро-													
вании открытым ленточным конвейером без учёта ме-	4,22080	4,92020	3,41360	2,28080	2,38540	1,95530	2,83830	2,40950	2,53820	1,85620	3,71680	2,068	2,5382
роприятий:	4,22000	4,72020	3,41300	2,20000	4,36340	1,73330	2,03030	2,40930	2,33020	1,03020	3,71000	2,000	2,3362
$M_{\text{пыль}} = 3,6*q*B*L*T*K_5*C_5*K_4*K_F*10^{-3}, \text{т/год}$													
$\Pi_{\text{пыль}} = q * B * L * K_5 * C_5 * K_4 * K_r, r/c$	0,79380	0,92530	0,64200	0,85730	0,89660	0,73500	1,06690	2,40950	2,53820	1,85620	1,39710	2,068	2,5382
С учетом мероприятий $M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \text{г/год}$	0,42208	0,49202	0,34136	0,22808	0,23854	0,19553	0,28383	0,24095	0,25382	0,18562	0,37168	0,2068	0,25382
$\Pi'_{\Pi \text{II} \Pi \text{II}} = \Pi_{\Pi \text{II} \Pi \text{II}} * (1-\eta) , r/c$	0,07938	0,09253	0,06420	0,08573	0,08966	0,07350	0,10669	0,09057	0,09541	0,06977	0,13971	0,04044	0,09775

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п.

Разрез «Восточный». УДР-2. Расчет объемов эмиссий в атмосферу пыли угольной при сдувании её с поверхности ленточных конвейеров при транспортировке внутренней вскрыши в 2025-2027 г.г. (№ ист.6007)

	Подъемные конвейера												
Наименование показателей	Централь	ная конвей ния	ерная ли-	Ю	жная конве	йерная лин	R ИІ	Сев	ерная коне	вейерная ли	Р В В В В В В В В В В В В В В В В В В В	Участок №8,12	
	КЛП 2- 3	КЛП 2-2	КЛП-2-1	КЛП 3-3	КЛП 3-2	КЛП 3-1	КЛМ №3	КЛП 4- 3	КЛП 4-2	КЛП 4-1	КЛМ-4 6026-01 (6018)	КЛМ-5	КЛП-5
1. Влажность угля, W, %	5	5	5	5	5	5	5	5	5	5	5	5	5
2. Коэффициент, учитывающий влажность, К ₅	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
3. Удельная сдуваемость твердых частиц с 1м ² , q, г/м ² *с	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
4. Ширина ленты конвейера, В,м	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
5. Суммарная длина конвейеров, L,м	484	516	491	470	596,4	1053,8	630	750	706	412	825	238,8	577,2
6. Годовое количество часов работы оборудования, Т, ч	52	52	52	26	26	26	26	26	26	26	26	56	55,6818182
7. Коэффициент, учитывающий скорость обдува материала, C5	1,0	1,0	1,1	1,00	1,00	1,12	1,12	1,00	1,00	1,12	1,12	1,12	1
8. Склады,хранилища													
1.Откр. С 4 сторон													
2.Откр. с 3 сторон													
3.Откр. с 2 сторон полн.													
4.Откр. с 2 сторон част.													
5.Откр. с 1 стороны	5	5	5	5	5	5	5	5	5	5	5	5	5
6.Загруз. рукав													
7.Закр. с 4 сторон													
9. Коэффициент, учитывающий степень укрытия ленточного конвейера, К ₄	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
10. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
11. Эффективность применяемых средств пылеподавления радол. ед.	0	0	0	0	0	0	0	0	0	0	0	0	0
12. Количество перегружаемого угля, Пг. т/год	227500	227500	227500	113750	113750	113750	113750	113750	113750	113750	113750	245000	245000
13. Максимальное количество перегружаемого угля, Пч,т/ч	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400
				РЕЗУЛЬТА	ТЫ					•			
Количество твердых частиц, сдуваемых при транспортиро-													
вании открытым ленточным конвейером без учёта мероприятий: $M_{\text{пыль}}=$ 3,6*q*B*L*T*K ₅ *C ₅ *K ₄ *K _Γ *10 ⁻³ , т/год	0,13700	0,14610	0,15290	0,06650	0,08440	0,16700	0,09990	0,10610	0,09990	0,06530	0,13080	0,0815	0,0999
$\Pi_{\text{пыль}} = q^* B^* L^* K_5^* C_5^* K_4^* K_{\Gamma}, \Gamma/c$	0,73180	0,78020	0,81660	0,71060	0,90180	1,78450	1,06690	0,10610	0,09990	0,06530	1,39710	0,0815	0,0999
С учетом мероприятий				,								,	
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \text{г/год}$	0,01370	0,01461	0,01529	0,00665	0,00844	0,01670	0,00999	0,01061	0,00999	0,00653	0,01308	0,00815	0,00999
$\Pi'_{\Pi b \Pi J b} = \Pi_{\Pi b \Pi J b} * (1-\eta), \Gamma/c$	0,07318	0,07802	0,08166	0,07106	0,09018	0,17845	0,10669	0,11340	0,10675	0,06977	0,13971	0,04044	0,08727

Расчет выполнен на основании методики расчета нормативов выбросов от неорганизованных источников, Приложение №11 к приказу Министра охраны окружающей среды РК от 18.04.2008 г. №100-п.

Разрез «Восточный». Станция Восточная. Энергоцех. Участок теплоснабжения и сетей (УТС). Котельная. Расчет эмиссий загрязняющих в атмосферу от закрытой емкости для хранения угля бытовок на 2025-2027 г.г. Неорганизованный источник №6241

Наименование показателей	Разгрузка в бункер с конвей- ера	Хранение золы	Погрузка в автотранпорт
1	2	3	4
Исходные данные			
1. Весовая доля пылевой фракции в материале,К1,%	0,06	-	0,06
2. Доля пыли, переходящая в аэрозоль, К2	0,04	-	0,04
3. Скорость ветра, V, м/с	3,4	3,4	3,4 1,2
4. Коэффициент, учитывающий скорость ветра, К3	1,2	1,2	1,2
5. Местные условия, склады,хранилища(число от 1 до 7)			
1.Откр. с 4 сторон			
2.Откр. с 3 сторон			
3.Откр. с 2 сторон полн.			
4.Откр. с 2 сторон част.			
5.Откр. с 1 стороны	5	5	5
6.Загруз. рукав			
7.Закр. с 4 сторон			
6. Коэффициент, учитывающий местные условия, сте-	0,1	0,1	0,1
пень защищенности узла от внешних воздействий К4			
7. Влажность материала, W,%	5	5	5
8. Коэффициент, учитывающий влажность материала, К5	1	1	1
9. Коэффициент, учитывающий профиль поверхности	0	1,2	0
складируемого материала, К6			
10. Коэффициент, учитывающий крупность материала, К7	1	1	1
11.Коэффициент, учит.способ разгрузки,К8	1	-	1
12.Коэффициент при залповой разгрузке,К9	1	-	1
13. Высота пересыпки, h, м	1	-	1
14.Коэффициент учитывающий высоту пересыпки,В'	0,5	-	0,4
15. Количество перегружаемой золы, Пг. т/год	3229	-	3229
16. Количество перегружаемой золы, Пч. т/ч	43,2	-	43,2
17. Годовое количество часов работы оборудования, Т, ч	8760	8760	60
18. Количество оборудования (узлов пересыпки), N, шт	1	1	1
19. Эффективность применяемых средств пылеподавле-	0	0	0
ния, п, дол.ед.			
20. Площадь основания штабеля, S,м2	0	72	0
21.Унос пыли с 1м ² фактической поверхности скла-		0,002	
да,q',г/м²хс 22. Количество дней с устойчивым снежным покровом и		209	
дождями, Тсп			

Окончание приложения 250

1	2	3	4
Результаты			
23. Количество твердых частиц, выделяющихся при пе-	1,72800		1,38240
регрузках,			
Мсек.пыль=			
К1*К2*К3*К4*К5*К7*К8*К9*В'*Пч*N*106/3600, г/с			
M1годпыль= K1*K2*K3*K4*K5*K7*K8*K9*В'*Пг/год	0,46498		0,37198
24. Количество твердых частиц, сдуваемых с поверхно-			
сти склада			
Мсек.пыль= K3*K4*K5*K6*K7*q'*S, г/с		0,02074	
М2годпыль=0,0864*К3*К4*К5*К6*К7*q'*S*(365-Тсп)		0,27949	
т/год			
25.Годовой выброс пыли,т/год			
М=М1+М2+Мпогрузка в автосам.		1,11645	
26.Максимально разовый выброс,г/с		1,72800	

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов». Приложение №8 к Приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014 года №221-Ө.

Разрез "Восточный". Станция Фестивальная. Энергоцех. Участок сетей и подстанций (УСиП). Расчет эмиссий загрязняющих веществ в атмосферу от лакокрасочных работ на 2025-2027 гг. Неорганизованный источник №6245

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль НЦ-132	0,068
тф1-растворитель 646	0,006
2.Максимальный часовой расход, кг	
тм-эмаль НЦ-132	0,5
тм1-растворитель 646	0,5
3.Состав эмали НЦ-132, %	
q1-ацетон	8
q2-спирт н-бутиловый	15
q3-спирт этиловый	20
q4-бутилацетат	8
q5-этилцеллозольв	8
q6-толуол	41
fр-доля летучей части	80
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q7-ацетон	7
q8-спирт н-бутиловый	15
q9-спирт этиловый	10
q10-бутилацетат	10
q11-этилцеллозольв	8
q12-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
М1окр.=(mф*fp*rp*q2+ mф1*fp1*rp2*q8)/106*(1-n) -спирт н-бутиловый	0,00254
М2окр.=(mф*fp*rp*q4+mф1*fp1*rp2*q10)/106*(1-n)-бутилацетат	0,00139
М3окр.=(mф*fp*rp*q1+mф1*fp1*rp2*q7)/106*(1-n)-ацетон	0,00134
М4окр.=(mф*fp*rp*q6+mф1*fp1*rp2*q12) /106*(1-n)-толуол	0,00018
М5окр.=(mф*fp*rp*q5+mф1*fp1*rp2*q11) /106*(1-n)-этилцеллозольв	0,00139
М6окр.=(mф*fp*rp*q3+mф1*fp1*rp2*q9) /106*(1-n)-спирт этиловый	0,00321
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
П1=(mм*fp*rp*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,06048
П2=(mм1*fp1*rp2*q10)/106*3,6*(1-n)-бутилацетат	0,0504
П3=(mм*fp*rp*q1)/106*3,6*(1-n)-ацетон	0,03226

Окончание приложения 251

1	2
П4=(mм1*fp1*rp2*q12)/106*3,6*(1-n)-толуол	0,252
П5=(mм*fp*rp*q5)/106*3,6*(1-n)-этилцеллозольв	0,03226
П6=(mм*fp*rp*q3)/106*3,6*(1-n)-спирт этиловый	0,08064
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф*fp*rp1*q2 +mф1*fp1*rp3*q8)/106*(1-n)-спирт н-бутиловый	0,00652
M2c=(mф*fp*rp1*q4+mф1*fp1*rp3*q10)/106*(1-n)-бутилацетат	0,008
$M3c = (m\phi * fp * rp1 * q1 + m\phi 1 * fp1 * rp3 * q7)/106 * (1-n)$ -ацетон	0,00344
М4c=(mф*fp*rp1*q6+mф1*fp1*rp3*q12) /106*(1-n)-толуол	0,01822
М5c=(mф*fp*rp1*q5+mф1*fp1*rp3*q11)/106*(1-n)-этилцеллозольв	0,00348
М6c=(mф*fp*rp1*q3+mф1*fp1*rp3*q9)/106*(1-n)-спирт этиловый	0,00827
8.Максимальный разовый выброс летучих веществ при сушке, г / с	
П1=(mм/24*fp*rp1*q2)/106*3,6*(1-n)-спирт н-бутиловый	0,00648
П2=(mм1/24*fp1*rp3*q610/106*3,6*(1-n)-бутилацетат	0,0054
$\Pi 3 = (m M/24 * fp * rp 1 * q 1)/106 * 3,6 * (1-n)$ -ацетон	0,00346
П4=(mм1/24*fp1*rp3*q12)/106*3,6*(1-n)-толуол	0,027
$\Pi 5 = (m M/24 * fp * rp1 * q5)/106 * 3,6 * (1-n) - этилцеллозольв$	0,00346
$\Pi 6 = (m M 1/24 * fp * rp 1 * q3)/106 * 3,6 * (1-n)$ -спирт этиловый	0,00648
9.Итого валовый выброс за год, т/год	
М1=М1окр.+М1с-спирт н-бутиловый	0,00906
М2=М2окр.+М2с-бутилацетат	0,00939
М3=М3окр.+М3с-ацетон	0,00478
М4=М4окр.+М4с)-толуол	0,0184
М5=М5окр.+М5с-этилцеллозольв	0,00487
М6=М6окр.+М6с-спирт этиловый	0,01148
10.Максимальный разовый выброс летучих веществ, г / с	
П1=П1окр.+П1с-спирт н-бутиловый	0,06696
П2=П2окр.+П2с-бутилацетат	0,03766
П3=П3окр.+П3с-ацетон	0,03572
П4=П4окр.+П4с)-толуол	0,279
П5=П5окр.+П5с-этилцеллозольв	0,03572
П6=П6окр.+П6с-спирт этиловый	0,08712

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)", РНД 211.2.02.05-2004.

Разрез "Восточный. Станция Фестивальная. Энергоцех. Участок сетей и подстанций (УСиП). Расчет эмиссий загрязняющих веществ в атмосферу от заточного станка на 2025-2027 гг. Неорганизованный источник №6246

Наименование показателей	Показатели	
Исходные данные		
Механическая обработка без охлаждения		
Заточной станок Окр.300мм		
1.Количество станков,п, шт	1	
2.Количество часов работы в год одного станка, Т, ч	20	
3. Коэффициент эффективности пылеотсасывающего агрегата, к1	0	
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных		
веществ	0,2	
5.Удельный выброс на единицу оборудования, г/с		
q -абразивная пыль	0,034	
q1-взвешенные вещества	0,034	
Результаты		
6.Валовый выброс за год взвешенных веществ, т/год		
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00049	
7. Максимальный разовый выброс взвешенных веществ, г/с		
П=k*q1*n -без пылеотсасывающих агрегатов	0,0068	
8.Валовый выброс за год абразивной пыли, т/год		
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00049	
9.Максимальный разовый выброс абразивной пыли, г/с		
П=k*q*n -без пылеотсасывающих агрегатов	0,0068	

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-θ) и РНД 211.2.02.06-2004.

Разрез "Восточный". Станция Восточная. Железнодорожный цех (ЖДЦ). Участок путевых работ (УПР). Расчет эмиссий загрязняющих веществ в атмосферу от деревообрабатывающих станков на 2025-2027 гг. Неорганизованный источник №6248

Наименование показателей	Показатели	
Станок фуговальный		
1.Количество часов работы в год одного станка,Т1,ч	1560	
2.Количество станков, n1, шт	1	
3.Удельное выделение пыли древесной, q1, г/с	1	
Пила циркулярная		
4.Количество часов работы в год одного станка, Т2, ч	1560	
5.Количество станков,n2, шт	1	
6.Удельное выделение пыли древесной, q2, г/с	1,31	
Результаты		
7.Валовый выброс количество пыли древесной размером менее 200 мкм за год без		
мероприятий, т/год		
M1=k*A*(q1*n1*T1+q2*n2*T2)*3600/1000000	2,59459	
8. Максимальный разовый выброс пыли древесной без учета мероприятий, г/с		
$\Pi 1 = k * A * (q 1 + q 4)$	0,462	
9. Коэффициент гравитационного оседания, к	0,2	
10. Коэффициент, учитывающий влажность древесины, А	1	

Расчет выполнен на основании следующих докуметов:

- 1. "Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности", РНД 211.2.02.08-2004.
- 2. "Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферу" (СПб., 2012 г.).

Разрез "Восточный". Станция Фестивальная. Железнодорожный цех (ЖДЦ). Участок вспомогательной железнодорожной техники (УВЖТ). Расчет эмиссий загрязняющих веществ в атмосферу от бочек с маслами в период с 2025 по 2027 гг. Неорганизованный источник №6251

Показатели	Показатели
Исходные данные	
1.Плотность масла, р,т/м3	0,935
2.Объем масла в бочках в течение года, Q,м3/год	3,422
I) Слив масел из бочек	
1.Производительность слива, V сл, м3/ч	0,5
2.Годовые выбросы,т/год	
G=Gсл+Gпр.п, т/год	0,00002
Gcл=(СрозхQоз+СрвлхQвл)/1000000	0,0000004
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси осенне-зимний период,г/м3 (прил.15)	0,12
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси весенне-летний период,г/м3 (прил.15)	0,12
Смах-максимальная концентрация паров нефтепродуктов в выбросах	
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324
Qвл-кол.жидкости закач. в весенлетн. период,м3	1,711
Qоз-кол.жидкости закач. в осензимн. период,м3	1,711
Gпр.п=0,5*J*Qгод/1000000	0,00002
Ј-удельные выбросы при проливах,г/м3	12,5
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,00005

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Фестивальная. Железнодорожный цех (ЖДЦ). Участок вспомогательной железнодорожной техники (УВЖТ). Идентификация состава выбросов от ванны моечной в дизельном топливе на 2025-2027 гг. Неорганизованный источник N06252

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
1. Валовые выбросы углеводородов:			
	т/год	Gдиз	0,08942
2. Максимально-разовые выбросы:			
	г/с	Мдиз	0,1242
Идентификация состава выбросов			
Углеводороды:	Дизельное топливо		
1. Предельные (С12-С19), всего: - концентрация	%	Ci	99,57
- валовый выброс	т/год	Gi	0,08903549
- максимально-разовый выброс	г/с	Mi	0,12366594
2. Сероводород - концентрация	%	Ci	0,28
- валовый выброс	т/год	Gi	0,00025038
			0,00034776

Разрез "Восточный". Станция Восточная. Цех ремонта горного оборудования (ЦРГО). Ремонтно-механический участок (РМУ). Расчет эмиссий вагрязняющих в атмосферу от закрытой емкости для хранения угля для горна кузнечного на 2025-2027 гг. Неорганизованный источник №6256

	Показат	ели
Наименование показателей	Разгрузка из	Выгруз-
	погрузчика	ка
Исходные данные		
1. Весовая доля пылевой фракции в материале,К1,%	0,03	0,03
2. Доля пыли, переходящая в аэрозоль, К2	0,02	0,02
3. Скорость ветра, V, м/с	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К3	1,2	1,2
5. Местные условия, склады,хранилища(число от 1 до 7)		
1.Откр. с 4 сторон		
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны	5	5
6.Загруз. рукав		
7.Закр. с 4 сторон		
6. Коэффициент, учитывающий местные условия, степень защи-		
щенности узла от внешних воздействий К4	0,1	0,1 5
7. Влажность материала, W,%	5	5
8. Коэффициент, учитывающий влажность материала, К5	0,7	0,7
9. Коэффициент, учитывающий профиль поверхности складируе-		
мого материала, К6	0	0
10. Коэффициент, учитывающий крупность материала, К7	0,6	0,6
11.Коэффициент, учит.способ разгрузки,К8	1	1
12.Коэффициент при залповой разгрузке,К9	1	1
13. Высота пересыпки, h, м	1	1
14. Коэффициент учитывающий высоту пересыпки,В'	0,7	0,7
15. Количество перегружаемого угля, Пг. т/год	24	24
16. Количество перегружаемого угля, Пч. т/ч	0,5	0,05
17. Годовое количество часов работы оборудования, Т, ч	48	480
18. Количество оборудования (узлов пересыпки), N, шт	1	1
19. Эффективность применяемых средств пылеподавления, п, дол.ед.	0	0
20. Коэфициент гравитационного осаждения, Кгр	0,4	0,4
Результаты		
21. Количество твердых частиц, выделяющихся при перегрузках,	0,00294	0,000294
Мсек.пыль= K1*K2*K3*K4*K5*K7*K8*K9*В'*Пч*N*106/3600, г/с		
22.Годовой выброс пыли,т/год М=М1+М2		
М1годпыль= K1*K2*K3*K4*K5*K7*K8*K9*B'*Пг*Кгр ,т/год	0,00020321	0,000203

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов". Приложение №8 к Приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014 года №221-Ө.

Приложение 257

Разрез "Восточный". Станция Восточная. Цех ремонта горного оборудования (ЦРГО). Участок ремонта электрических машин (УРЭМ). Расчет выбросов вредных веществ при проведении сварочных работ на 2025-2027 гг. Неорганизованный источник №6257

Наименование показателей	Показатели	
Исходные данные по сварочным работам		
Сварочные работы электродами марки УОНИ 13/45		
1.Годовой расход электродов типа УОНИ 13/45, Вгод.1, кг	91	
2. Максимальный часовой расход электродов типа УОНИ 13/45,		
В1, кг	0,5	
3.Количество постов, t1, ч	1	
4. Количество часов работы в год всех постов, Т1, ч	190	
5.Удельное выделение загрязняющих веществ при сварке, г/кг		
К1-марганец и его оксиды	0,51	
К2- кремния диоксид	1,4	
К3-фториды	1,4	
К4-фтористыей водород	1	
Сварочные работы электродами марки МНЧ-2		
6.Годовой расход электродов типа МНЧ-2, Вгод.2, кг	15	
7. Максимальный часовой расход электродов типа МНЧ-2, В2, кг	0,5	
8.Количество постов, t1, ч	1	
9.Количество часов работы в год всех постов, Т2, ч	30	
10. Удельное выделение загрязняющих веществ при сварке, г/кг		
К5-марганец и его оксиды	0,92	
К6-никель и его оксиды	2,73	
К7фтористыей водород	1,34	
Результаты		
11.Валовый выброс за год, т/год		
М1=(Вгод.1*К1+Вгод.2*К5)/1000000-марганец и его оксиды	0,00006	
М2=(Вгод.1*К4+Вгод.2*К7)/1000000 -фтористый водород	0,00011	
М3=(Вгод.1*К2)/1000000 -кремния диоксид	0,00013	
М4= (Вгод.1*К3)/1000000-фториды	0,00013	
М5=(Вгод.2*К9)/1000000 -никель и его оксиды	0,00004	
12.Максимальный разовый выброс, г/с		
П1=К5*В2/3600-марганец и его соед.	0,00013	
П2=К7*В2/3600-фтористый водород	0,00019	
П3=(К2*В1/3600)- кремния диоксид	0,00019	
П4=(К3*В1/3600)-фториды	0,00019	
П5=К6*В2/3600-никель оксид	0,00038	

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221-Ө".

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. ДПС Восточное. Расчет эмиссий вагрязняющих в атмосферу от закрытой емкости для хранения угля для горна кузнечного на 2025-2027 гг. Неорганизованный источник №6260

	Показат	гели
Наименование показателей	Разгрузка из погрузчика	Выгрузка
Исходные данные		•
1. Весовая доля пылевой фракции в материале,К1,%	0,03	0,03
2. Доля пыли, переходящая в аэрозоль, К2	0,02	0,02
3. Скорость ветра, V, м/с	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К3	1,2	1,2
5. Местные условия, склады, хранилища (число от 1 до 7)		
1.Откр. с 4 сторон		
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны	5	5
6.Загруз. рукав		
7.Закр. с 4 сторон		
6. Коэффициент, учитывающий местные условия, степень защи-		
щенности узла от внешних воздействий К4	0,1	0,1
7. Влажность материала, W,%	5	5
8. Коэффициент, учитывающий влажность материала, К5	0,7	0,7
9. Коэффициент, учитывающий профиль поверхности складируе-		
мого материала, К6	0	0
10. Коэффициент, учитывающий крупность материала, К7	0,6	0,6
11.Коэффициент, учит.способ разгрузки,К8	1	1
12.Коэффициент при залповой разгрузке,К9	1	1
13. Высота пересыпки, h, м	1	1
14. Коэффициент учитывающий высоту пересыпки,В'	0,7	0,7
15. Количество перегружаемого угля, Пг. т/год	9	9
16. Количество перегружаемого угля, Пч. т/ч	0,5	0,05
17. Годовое количество часов работы оборудования, Т, ч	18	180
18. Количество оборудования (узлов пересыпки), N, шт	1	1
19. Эффективность применяемых средств пылеподавления, п, дол.ед.	0	0
20. Коэфициент гравитационного осаждения, Кгр	0,4	0,4
Результаты		
21. Количество твердых частиц, выделяющихся при перегрузках,	0,00294	0,00029
Мсек.пыль= K1*K2*K3*K4*K5*K7*K8*K9*В'*Пч*N*106/3600, г/с		
M1годпыль= K1*K2*K3*K4*K5*K7*K8*K9*B'*Пг*Кгр ,т/год	0,00008	0,00008
22.Годовой выброс пыли,т/год		
M=M1+M2		

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов". Приложение №8 к Приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014 года №221- Θ .

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. ДПС Восточное. Расчет эмиссий загрязняющих веществ в атмосферу от резервуара машинных масел в период с 2025 по 2027 гг. Неорганизованный источник №6261

Наименование показателей	Показатели
1	2
Исходные данные по резервуарам	
1.Общая емкость резервуаров, Vp, м3	5,2
2. Количество резервуаров, Np,шт.	5
3.Плотность жидкости, р,т/м3	0,935
4. Объем жидкости налив. в резервуар в течение года, Q,м3/год	13
I) Закачивание и хранение	
1.Производительность слива, Vсл, м3/ч	0,3
2.Годовые выбросы,т/год	
G=Gсл+Gпр.п, т/год	0,00008
Gcл=(СрозхQоз+СрвлхQвл)/1000000	0,0000016
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси осенне-зимний период,г/м3 (прил.15)	0,12
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси весенне-летний период,г/м3 (прил.15)	0,12
Смах-максимальная концентрация паров нефтепродуктов в выбросах	
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324
Qвл-кол.жидкости закач. в весенлетн. период,м3	6,5
Qоз-кол.жидкости закач. в осензимн. период,м3	6,5
Gпр.п=0,5*J*Qгод/1000000	0,000081
J-удельные выбросы при проливах,г/м3	12,5
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,000027
Исходные данные по бочкам с маслами	-
1.Плотность масла, р,т/м3	0,935
2.Объем масла в бочках в течение года, Q,м3/год	12
I) Слив масел из бочек	
1.Производительность слива, Vсл, м3/ч	0,3
2.Годовые выбросы,т/год	,
G=Gсл+Gпр.п, т/год	0,0000814
Gcл=(СрозхQоз+СрвлхQвл)/1000000	0,0000014
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной	Í
смеси осенне-зимний период,г/м3 (прил.15)	0,12
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной	Í
смеси весенне-летний период, г/м3 (прил. 15)	0,12
Смах-максимальная концентрация паров нефтепродуктов в выбросах	,
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324
Qвл-кол.жидкости закач. в весенлетн. период,м3	6
Qоз-кол.жидкости закач. в осензимн. период,м3	6
Gпр.п=0,5*J*Qгод/1000000	0,00008
J-удельные выбросы при проливах, г/м3	12,5
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,000027

Окончание приложения 259

1	2	
Итого		
1. Валовый выброс,т/год		
G=Gрез+Gбочек	0,00016	
2.Максимально-разовый выброс ,г/с		
М=Мрез=Мбоч.	0,00003	

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. ДПС Восточное. Расчет эмиссий загрязняющих веществ в атмосферу от ванны для мойки деталей в каустической соде на 2025-2027 гг. Неорганизованный источник №6262

Наименование показателей	Показатели	
Исходные данные		
1.Количество установок для мойки, п, шт	1	
2.Время работы установки в год ,t,ч	150	
3.Удельной выброс углеводородов предельных, q, г/с м2	0,055	
4.Площадь зеркала установки для мойки, S,м2	0,9	
Результаты		
5.Максимальный разовый выброс, г/с		
$\Pi=q *S$	0,0495	
6.Валовый выброс за год, т/год		
M _B =q*S*t*n*3600/1000000	0,02673	

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от $18.04.08 \, \Gamma$. № 100-п).

Приложение 261

Разрез "Восточный". Станция Фестивальная.ЦРЖДО. Вагоноремонтное депо (ВРД). Расчет эмиссий загрязняющих веществ в атмосферу от бочек с маслами в период с 2025 по 2027 гг. Неорганизованный источник №6263

Показатели	Показатели
Исходные данные	
1.Плотность масла, р,т/м3	0,935
2.Объем масла в бочках в течение года, Q,м3/год	3,422
I) Слив масел из бочек	
1.Производительность слива, V сл, м3/ч	0,8
2.Годовые выбросы,т/год	
G=Gсл+Gпр.п, т/год	0,0000204
Gcл=(СрозхQоз+СрвлхQвл)/1000000	0,0000004
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси осенне-зимний период,г/м3 (прил.15)	0,12
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной	
смеси весенне-летний период,г/м3 (прил.15)	0,12
Смах-максимальная концентрация паров нефтепродуктов в выбросах	
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324
Qвл-кол.жидкости закач. в весенлетн. период,м3	1,711
Qоз-кол.жидкости закач. в осензимн. период,м3	1,711
Gпр.п=0,5*J*Qгод/1000000	0,00002
Ј-удельные выбросы при проливах,г/м3	12,5
3.Максимальн. разовый выброс M=Vcл*Смах/3600,г/с	0,000072

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Фестивальная.ЦРЖДО. Ремонтно-строительный участок (РСУ). Расчет эмиссий вагрязняющих в атмосферу от бетономешалки и склада временного хранения песка и щебня на 2025-2027 гг. Неорганизованный источник №6264

	Показатели				
		Пода-			Подача
Have saven avera wavenama wa	Разгрузка	ча пес-	Разгрузка	Подача	цемен-
Наименование показателей	песка на	ка в	щебня на	щебня	та в
	склад из ав-	ме-	склад из ав-	в ме-	мешал-
	тосамосвала	шалку	тосамосвала	шалку	ку
1	2	3	4	5	6
Исходные данные					
1. Весовая доля пылевой фрак-					
ции в материале,К1,%	0,05	0,05	0,04	0,04	0,04
2. Доля пыли, переходящая в					
аэрозоль, К2	0,03	0,03	0,02	0,02	0,03
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий					
скорость ветра, К3	1,2	1,2	1,2	1,2	1,2
5. Местные условия, склады,хран	илища(число				
от 1 до 7)	1				
1.Откр. с 4 сторон	1	1	1	1	1
2.Откр. с 3 сторон					
3.Откр. с 2 сторон полн.					
4.Откр. с 2 сторон част.					
5.Откр. с 1 стороны					
6.Загруз. рукав					
7.Закр. с 4 сторон					
6. Коэффициент, учитываю-					
щий местные условия, степень					
защищенности узла от внешних					
воздействий К4	1	1	1	1	1
7. Влажность материала, W,%	3	3	1	2	0,05
8. Коэффициент, учитывающий					
влажность материала, К5	0,8	0,8	1	1	1
9. Коэффициент, учитывающий					
профиль поверхности склади-					
руемого материала, К6	0	0	1	0	0
10. Коэффициент, учитываю-					
щий крупность материала, К7	1	1	1	1	1
11.Коэффициент, учит.способ					
разгрузки,К8	1	1	1	1	1
12.Коэффициент при залповой	0.2	4	0.2	4	
разгрузке,К9	0,2	1	0,2	1	1
13. Высота пересыпки, h, м	1	1	0	1	1

Окончание приложения 262

1	2	3	4	5	6
14.Коэффициент учитываю-					
щий высоту пересыпки,В'	0,7	0,6	0,7	0,6	0,6
15. Количество перегружае-					
мого песка, Пг. т/год	1,8	1,8	3	3	0,36
16. Количество перегружае-					
мого песка, Пч. т/ч	0,5	0,2	0,5	0,2	0,2
17. Годовое количество часов					
работы оборудования, Т, ч	1230	1230	1230	1230	1230
18. Количество оборудования					
(узлов пересыпки), N,шт	1	1	1	1	1
19. Эффективность применяе-					
мых средств пылеподавления,					
η, дол.ед.	0	0	0	0	0
20. Площадь основания шта-					
беля,Ѕ,м2	0	0	0	0	0
21. Коэффициент гравитаци-					
онного осаждения, Кгр	0,4	0,4	0,4	0,4	0,04
	Резули	ьтаты			
22. Количество твердых час-					
тиц, выделяющихся при пере-					
грузках,	0,0112	0,0192	0,0075	0,0128	0,00192
Мсек.пыль=					
K1*K2*K3*K4*K5*K7*K8*K9*	В'*Пч*N*Кгр				
*106/3600, г/с					
M1годпыль=K1*K2*K3*K4*K					
5*K7*K8*K9*В'*Пг*N*Кгр,					
т/год	0,00015	0,00062	0,00016	0,00069	0,00001
M=M1+M2+M3+M4+M5	0,00163				

Расчет выполнен по 1. "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов". Приложение 11 к приказу Министра охраны окружающей среды РК от 18.04.2008 года №100-п.

2. Приложение №8 к Приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014 года №221-Ө.

Разрез "Восточный. Станция Восточная. Административно-хозяйственный отдел (AXO). Здание АБК (ст. Фестивальная). Расчет эмиссий загрязняющих веществ в атмосферу от заточного станка на 2025-2027 гг. Неорганизованный источник №6265

Наименование показателей	Показатели			
Исходные данные				
Механическая обработка без охлаждения				
Заточной станок Øкр.300мм				
1.Количество станков,п, шт	1			
2.Количество часов работы в год одного станка, Т, ч	1560			
3.Коэффициент эффективности пылеотсасывающего агрегата, k1	0			
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных				
веществ	0,2			
5.Удельный выброс на единицу оборудования, г/с				
q -абразивная пыль	0,034			
q1-взвешенные вещества	0,034			
Результаты				
6.Валовый выброс за год взвешенных веществ, т/год				
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,03819			
7. Максимальный разовый выброс взвешенных веществ, г/с				
П=k*q1*n -без пылеотсасывающих агрегатов	0,0068			
8.Валовый выброс за год абразивной пыли, т/год				
M = 3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,03819			
9.Максимальный разовый выброс абразивной пыли, г/с				
П=k*q*n -без пылеотсасывающих агрегатов	0,0068			

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-θ) и РНД 211.2.02.06-2004.

Разрез "Восточный. Станция Восточная. Административно-хозяйственный отдел (АХО). Мастерская охранной фирмы"Тарлан секьюрити". Расчет эмиссий загрязняющих веществ в атмосферу от заточного станка на 2025-2027 гг. Неорганизованный источник №6266

Наименование показателей	Показатели			
Исходные данные				
Механическая обработка без охлаждения				
Заточной станок Óкр.250мм				
1.Количество станков,п, шт	1			
2.Количество часов работы в год одного станка, Т, ч	12			
3. Коэффициент эффективности пылеотсасывающего агрегата, к1	0			
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных				
веществ	0,2			
5.Удельный выброс на единицу оборудования, г/с				
q -абразивная пыль	0,027			
q1-взвешенные вещества	0,027			
Результаты				
6.Валовый выброс за год взвешенных веществ, т/год				
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00023			
7. Максимальный разовый выброс взвешенных веществ, г/с				
П=k*q1*n -без пылеотсасывающих агрегатов	0,0054			
8.Валовый выброс за год абразивной пыли, т/год				
M = 3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00023			
9.Максимальный разовый выброс абразивной пыли, г/с				
П=k*q*n -без пылеотсасывающих агрегатов	0,0054			

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №4 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-θ) и РНД 211.2.02.06-2004.

Разрез "Восточный". Станция Фестивальная. Участок складского хозяйства (УСХ). Склад селитры. Расчет эмиссий загрязняющих веществ в атмосферу от сжигания полипропиленовой тары из-под селитры на 2025-2027 гг. Неорганизованный источник Neq 6269

Наименование показателей	Показатели		
Исходные данные			
1.Годовое сжигание тары, В, кг	65000		
2. Количество часов сжигания в год, Т, ч	1290		
3. Максимально разовый выброс, г/с			
q1-азота диоксид	0,016		
q2- ацетальдегид	0,02		
q3-аммиак	0,025		
q4-углерод оксид	0,428		
q5-фенол	0,07		
q6-формальдегид	0,13		
q7- взвешенные вещества	1,27		
4.Валовый выброс за год, т/год			
M1=q1*T*3600*0 ,000001-азота диоксид	0,0743		
M2=q2*T*3600*0,000001- ацетальдегид	0,09288		
М3=q3*Т*3600*0,000001-аммиак	0,1161		
М4=q4*Т*3600*0,000001-углерод оксид	1,98763		
М5=q5*Т*3600*0,000001-фенол	0,32508		
M6=q6*T*3600*0,000001-формальдегид	0,60372		
М7=q6*Т*3600*0,000001-взвешенные вещества	5,89788		

Расчет выполнен по данным санитарно-профилактической лаборатории ТОО "Промсервис-Отан" (аттестат аккредитации №KZ.И.14.1105 от 2 февраля 2016 г.), полученным на основании эксперементального сжигания тары.

Разрез "Восточный". Станция Фестивальная. АХО. Бытовой корпус. Расчет эмиссий загрязняющих веществ в атмосферу от станка шлифовально обувной мастерской на 2025-2027 гг. Неорганизованный источник №6271

Наименование показателей	Показатели			
Исходные данные				
Стиральная машина				
1.Количество машин, n1, шт.	2			
2. Количество часов работы в год всех машин, Т1, ч	2920			
3.Удельное выделение загрязняющих веществ при стирке, г/с				
g1-динатрий карбонат	0,00002026			
g2-синтетическое моющее средство	0,0000471			
РЕЗУЛЬТАТЫ				
4.Валовый выброс За год, т/год				
G1=g1*T1*3600/1000000-динатрий карбонат	0,00021			
G2=g2*T1*3600/1000000 -синтетическое моющее средство	0,0005			
5.Максимальный разовый выброс, г/с				
M1=g1*n1	0,00004			
M2=g2*n1	0,00009			

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от объектов 4 категории" (Приложению 7 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221- Θ ").

Разрез "Восточный. Станция Фестивальная. АХО. Бытовой корпус. Расчет эмиссий загрязняющих веществ в атмосферут от станка шлифовального обувной мастерской на 2025-2027 гг. Неорганизованный источник №6272

Наименование показателей	Показатели			
Исходные данные				
Механическая обработка без охлаждения				
Полировально-шлифовальный станок				
1.Количество станков,п, шт	1			
2.Количество часов работы в год одного станка, Т, ч	800			
3.Коэффициент эффективности пылеотсасывающего агрегата, k1	0			
4.k-коэф.гравитац.оседания для абразивной пыли и взвешенных	0,2			
веществ	0,2			
5.Удельный выброс на единицу оборудования, г/с				
q -войлочная пыль	0,0003			
q1-взвешенные вещества	0,0127			
Результаты				
6.Валовый выброс за год взвешенных веществ, т/год				
M =3600*k*q1*T*n /1000000 -без пылеотсасывающих агрегатов	0,00732			
7. Максимальный разовый выброс взвешенных веществ, г/с				
П=k*q1*n -без пылеотсасывающих агрегатов	0,00254			
8.Валовый выброс за год войлочной пыли, т/год				
M =3600*k*q*T*n /1000000 -без пылеотсасывающих агрегатов	0,00017			
9.Максимальный разовый выброс абразивной пыли, г/с				
П=k*q*n -без пылеотсасывающих агрегатов	0,00006			

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу при механической обработке металлов РНД 211.2.02.06-2004.

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. Смеситель для производства холодного асфальта. Расчет эмиссий загрязняющих веществ в атмосферу при изготовлении холодного асфальта в период с 2025 по 2027 гг. Неорганизованный источник №6282

Наименование показателей	Показатели		
Исходные данные			
1.Емкость смесителя, Vc, м3	1		
2.Годовой расход битума, В,т	210		
3.Плотность битума, р,т/м3	0,95		
4. Максимальный объем паровоздушной смеси (как углеводороды			
предельные C12-C19), вытесняемй из смесителя во время его закачки, Vч			
тах, м3/ч	12		
5.Максимальные выбросы, г/с			
Mc=(0,445xPtxmxKp maxxКвxVч max)/(100x(273+tж max))	0,00438		
Pt, Ptmin, Pt max - давление паров нефтепродукта при температуре Т (град.	K):		
Ptmin	0,026		
Ptman	0,146		
Pt	0,15		
m-молекулярная масса битума	187		
Кр тах - опытный коэффициент (РНД211.2.02.09-2004прил.8)	0,9		
Кр ср - опытный коэффициент (РНД211.2.02.09-2004прил.8)	0,63		
Кв-коэффициент в зависимости от значениядавления насышенных паров			
над жидкостью, при Pt≤540мм.рт.ст. (РНД211.2.02-2004прил.9)	1		
tж min- минимальная температура жидкости, оС	10		
tжmax- максимальная температура жидкости, оС	35		
Коб -коэффициент принимается в зависимости от годовой			
оборачиваемости резервуаров (РНД211.2.02-2004прил.10)	1,35		
6.Валовый выброс, т/год			
Мгод=0,160x(PtmaxxКв+Ptmin)xmxКpcpxКобхВ)/(10000xpx(546+tж			
max+tж min)	0,00016		

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004 и "Методике расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от асфальтобетонных заводов".

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. Смеситель для производства холодного асфальта. Расчет эмиссий загрязняющих веществ в атмосферу от складов временного хранения песка и щебня на 2025-2027 гг. Неорганизованный источник №6282

	Показатели			
	Разгрузка	Подача	Разгрузка	Подача
Наименование показателей	песка на	песка в	щебня на	щебня в
	склад из авто-	смес-	склад из авто-	смеси-
	самосвала	мтель	самосвала	тель
1	2	3	4	5
		ые		
1. Весовая доля пылевой фракции				
в материале,К1,%	0,05	0,05	0,04	0,04
2. Доля пыли, переходящая в аэро-				
золь, К2	0,03	0,03	0,02	0,02
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий				
скорость ветра, КЗ	1,2	1,2	1,2	1,2
5. Местные условия, склады, хранил				
до 7)	`			
1.Откр. с 4 сторон	1	1	1	1
2.Откр. с 3 сторон				
3.Откр. с 2 сторон полн.				
4.Откр. с 2 сторон част.				
5.Откр. с 1 стороны				
6.Загруз. рукав				
7.Закр. с 4 сторон				
6. Коэффициент, учитывающий				
местные условия, степень защи-				
щенности узла от внешних воздей-				
ствий К4	1	1	1	1
7. Влажность материала, W,%	3	3	1	2
8. Коэффициент, учитывающий				
влажность материала, К5	0,8	0,8	1	1
9. Коэффициент, учитывающий				
профиль поверхности складируе-				
мого материала, К6	0	0	1	0
10. Коэффициент, учитывающий				
крупность материала, К7	1	1	1	1
11.Коэффициент, учит.способ раз-				
грузки,К8	1	1	1	1
12.Коэффициент при залповой				
разгрузке,К9	0,1	1	0,1	1
13. Высота пересыпки, h, м	1	1	0	1
14.Коэффициент учитывающий				
высоту пересыпки,В'	0,7	0,6	0,7	0,6

Окончание приложения 269

1	2	3	4	5
15. Количество перегружаемого				
песка, Пг. т/год	1500	1500	1290	1290
16. Количество перегружаемого				
песка, Пч. т/ч	2	2	2	2
17. Годовое количество часов ра-				
боты оборудования, Т, ч	750	750	645	645
18. Количество оборудования (уз-				
лов пересыпки), N, шт	1	1	1	1
19. Эффективность применяемых				
средств пылеподавления, η,				
дол.ед.	0	0	0	0
20. Площадь основания штабе-				
ля,Ѕ,м2	0	0	0	0
21. Коэффициент гравитационного				
осаждения,Кгр	0,4	0,4	0,4	0,4
	Результаты			
22. Количество твердых частиц,				
выделяющихся при перегрузках,	0,0224	0,192	0,0149	0,128
Мсек.пыль=				
К1*К2*К3*К4*К5*К7*К8*К9*В'*П	ч*N*Кгр*106/3			
600, r/c				
M1годпыль=К1*К2*К3*К4*К5*К				
7*K8*K9*B'*Пг*N*Кгр, т/год	0,06048	0,5184	0,03468	0,29722
М=М1+М2+М3+М4-общие годо-				
вые выбросы		0,91	1078	

Расчет выполнен по 1. "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов". Приложение 11 к приказу Министра охраны окружающей среды РК от 18.04.2008 года №100-п.

2. Приложение №8 к Приказу Министра охраны окружающей среды Республики Казахстан от 12.06.2014 года №221-Ө.

Разрез "Восточный". Станция Фестивальная. ЦРЖДО. Смеситель для производства холодного асфальта. Расчет эмиссий загрязняющих веществ в атмосферу от транспортирования песка и щебня на склады на 2025-2027 гг. Неорганизованный источник №6283

Наименование показателей	Транспортировка песка и щебня на склады временного хранения			
Исходные данные				
С1-коэф.,учит. Среднюю грузоподъемность автотранспорта				
(табл.3.3.1)	1,3			
С2-коэф., учит. среднююю скорость (таблю 3.3.2)	0,6			
С3-коэф.учит.состояние дорог (табл.3.3.3)	1			
С4-коэф.учит.профиль повехности материала	1,1			
С5-коэф.учит. Скорость обдува материала(табл.3.3.4)	1,26			
С7-коф.учит.долю уноса пыли уносимый в атмосфру	0,01			
N-число ходок (туда и обратно) всего транспорта в час	1			
L-средн.продолжительност ь одной ходки,км	7			
п-число автомашин,перевозящих материал	2			
S-открытой поверхности транспортируемого материала, м2	9,7			
k5-коэф.учит.влажность материала (табл.3.1.4)	1			
q1-пылевыделение в тмосферу на 1км пробега	1450			
q'-пылевыделение с единицы фактической площади,г/м2хс				
(табл.3.1.1)	0,002			
Тсп-кол.дней с устойчивым снежным покровом,дней/год	129			
Тд-кол. Дней с осадками в виде дождя, дней/году	80			
Результаты				
1. Максимальный разовый выброс, г/с				
Mc=C1xC2xC3xK5xC7xNxLxq1/3600+C4xC5xK5xq'xSxn	0,057			
2.Валовый выброс, т/год				
Мгод.=0,0864хМсх[365-(Тсп+Тд))]	0,7683			

Примечание. Время разгрузки самосвала 10 мин. В год разгружается 21 самосвал.

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов".

Разрез "Восточный". Станция Восточная. Добычной цех. Участок добычных работ №2 (УДР 2). Расчет эмиссий загрязняющих веществ в атмосферу от бочек с маслами в период с 2025 по 2027 гг. Неорганизованный источник №6285

Наименование показателей	Показатели			
Исходные данные				
1.Плотность масла, р,т/м3	0,935			
2.Объем масла в бочках в течение года, Q,м3/год	6,2			
I) Слив масел из бочек				
1.Производительность слива, V сл, м3/ч	0,8			
2.Годовые выбросы,т/год				
G=Gсл+Gпр.п, т/год	0,00004			
Gcл=(СрозхQоз+СрвлхQвл)/1000000	0,0000007			
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной				
смеси осенне-зимний период,г/м3 (прил.15)	0,12			
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной				
смеси весенне-летний период,г/м3 (прил.15)	0,12			
Смах-максимальная концентрация паров нефтепродуктов в выбросах				
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324			
Qвл-кол.жидкости закач. в весенлетн. период,м3	3,1			
Qоз-кол.жидкости закач. в осензимн. период,м3	3,1			
Gпр.п=0,5*J*Qгод/1000000	0,00004			
Ј-удельные выбросы при проливах, г/м3	12,5			
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,00007			

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана, 2005 г.

Разрез "Восточный". Станция Восточная. Добычной цех (УДР-1). Расчет эмиссий загрязняющих веществ в атмосферу при сжигании самоспасателей на 2025-2027 гг. Неорганизованный источник №6287

Наименование показателей	Показатели	
Исходные данные		
1.Годовое сжигание самоспасателей, В, кг	45	
2.Объем выброса газов, V,м³/с	0,35	
3.Производительность утилизатора,Вчас, кг/ч	15	
4. Количество часов сжигания в год, Т, ч	3	
5.Удельные нормативы выделений вредных веществ при сжигании,г/кг	•	
q1-азота диоксид	1,2692308	
q2- азот (II) оксид	0,2115385	
q3-сера диоксид	0,8653846	
q4-углерод оксид	9,3461538	
q5-углерод (сажа)	0,3269231	
q6-смесь углеводородов пред. C1-C5	0,2692308	
q7- смесь углеводородов пред. С6-С10	0,4807692	
Результаты		
6.Максимальный разовый выброс, г/с		
M1=q1*Вчас/3600-азота диоксид	0,0053	
M2=q2*Вчас/3600- азот (II) оксид	0,0009	
М3=q3*Вчас/3600-сера диоксид	0,0036	
М4=q4*Вчас/3600-углерод оксид	0,0389	
М5=q5*Вчас/3600-углерод (сажа)	0,0014	
М6=q6*Вчас/3600-смесь углеводородов пред. С1-С5	0,0011	
М7=q7*Вчас/3600- смесь углеводородов пред. С6-С10	0,002	
7.Валовый выброс за год, т/год		
M1=q1*B*0,000001-азота диоксид	0,00006	
M2=q2*B*0,000001- азот (II) оксид	0,00001	
М3=q3*В*0,000001-сера диоксид	0,00004	
М4=q4*В*0,000001-углерод оксид	0,00042	
М5=q5*В*0,000001-углерод (сажа)	0,00001	
M6=q6*B*0,000001-смесь углеводородов пред. C1-C5	0,00001	
М7=q7*В*0,000001- смесь углеводородов пред. С6-С10	0,00002	

Ввиду отсутствия методики для расчета выбросов вредных веществ при сжигании отходов такого вида расчет ведется как при сжигании суррогатов топлива

Разрез "Восточный". Отвал конвейерный №1. Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Неорганизованный источник №6288

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки НИИ48Г (ОЗЛ-14)	25
1.Годовой расход электродов типа НИИ48Г, Вгод.1,кг 2. Максимальный часовой расход электродов типа НИИ48Г, В1, кг	2,5
3. Количество постов, n1, шт	2,3
4.Количество часов работы в год всех постов, Т1, ч	10
5.Удельное выделение загрязняющих веществ при сварке, г/кг	10
К2-марганец и его соединения	1,41
К3-хрома (VI) оксид	0,46
К4-фтористые газообр.соед.	0,1
Сварочные работы электродами марки УОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	275
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	2,5
8.Количество постов, п2, шт.	110
9. Количество часов работы в год всех постов, Т2, ч 10. Удельное выделение загрязняющих веществ при сварке, г/кг	110
К6-марганец и его соединения	1,09
Ко-марганец и его соединения К7-кремния диоксид	1,09
К8-фториды	1
К9-фтористые газообр.соед.	1,26
К10-диоксид азота	2,7
К11-оксид углерода	13,3
Сварочные работы электродами марки Комсомолец-100	
11.Годовой расход электродов Комсомолец-100, Вгод.3, кг	50
12. Максимальный часовой расход электродов Комсомолец-100, ВЗ, кг	2,5
13.Количество постов, n3, шт.	1
14. Количество часов работы в год всех постов, Т3, ч	20
15. Удельное выделение загрязняющих веществ при сварке, г/кг	0.27
К13-марганец и его соединения К15-медь (II) оксид	0,27 9,8
К15-медь (п) оксид К16-фтористые газообр.соед.	1,11
К17-диоксид азота	0,76
Сварочные работы электродами марки Т-590	0,70
16. Годовой расход электродов типа Т-590, Вгод. 4, кг	125
17. Максимальный часовой расход электродов типа Т- 590, В4, кг	2,5
18.Количество постов, п4, шт.	1
19. Количество часов работы в год всех постов, Т4, ч	50
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К18-фтористые газообр.соед.	6,05
К19-хрома (VI) оксид	3,7
Сварочные работы электродами марки УОНИ-13/65	150
21. Годовой расход электродов типа УОНИ-13/65, Вгод.5, кг	150
22. Максимальный часовой расход электродов типа УОНИ-13/65, B5, кг 23. Количество постов, n5, шт.	2,5
24. Количество часов работы в год всех постов, Т5, ч	60
24. ROJIN 4001BU 4400B PAUOTBI B LOG BOCK HOCTOB, 13, 4	1 00

Окончание приложения 273

1	2
25.Удельное выделение загрязняющих веществ при сварке, г/кг	
К21-марганец и его соединения	1,41
К22-кремния диоксид	0,8
К23-фториды	0,8
К24-фтористые газообр.соед.	1,17
Сварочные работы электродами марки НЖ-13	
26.Годовой расход электродов типа НЖ-13, Вгод.6,кг	75
27. Максимальный часовой расход электродов типа НЖ-13, В6, кг	2,5
28.Количество постов, n6, шт	1
29.Количество часов работы в год всех постов, Т6, ч	30
30.Удельное выделение загрязняющих веществ при сварке, г/кг	
К26-марганец и его соединения	0,53
К27-хрома (VI) оксид	0,24
Сварочные работы электродами марки МНЧ-2	
31.Годовой расход электродов МНЧ-2, Вгод.7, кг	50
32. Максимальный часовой расход электродов МЧН-2, В7, кг	2,5
33.Количество постов, n7, шт.	1
34.Количество часов работы в год всех постов, Т7, ч	20
35.Удельное выделение загрязняющих веществ при сварке, г/кг	-
К30-марганец и его соединения	0,92
К33-фтористые газообр.соед.	1,34
К35-никель оксид	2,73
Результаты	
36.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К13+Вгод.5*К21+Вгод.6*К26+Вгод.7*К30)/1	1
000000-марганец и его соединен.	0,00065
М3=(Вгод.1*К4+Вгод.2*К9+Вгод.3*К16+Вгод.4*К18+Вгод.5*К24+Вгод.7*К33)/1	l
000000-фтористые газообр.соед.	0,0014
М4=(Вгод2*К7+Вгод5*К22)/1000000 -кремния диоксид	0,0004
М5=(Вгод.2*К8+Вгод.5*К23)/1000000 -фториды	0,0004
М6=(Вгод.2*К10+Вгод.3*К17)/1000000 -диоксид азота	0,00078
М7=Вгод.2*К11/1000000 -оксид углерода	0,00366
М8=(Вгод.3*К15)/1000000 -медь (II) оксид	0,00049
М9=(Вгод.1*К3+Вгод.4*К19)/1000000 - хрома (VI) оксид	0,00047
М10=Вгод.7*К35/1000000 -никель оксид	0,00014
37.Максимальный разовый выброс, г/с	<u> </u>
П2=K2*B1*n1/3600-марганец и его соед.	0,00098
П3=К18*В4*n4/3600-фтористые газообр. Соединен.	0,0042
П4=K7*B3*n3/3600-кремния диоксид	0,00069
П5=К8*В2*n2/3600-фториды	0,00069
П6=К10*В2/3600-диоксид азота	0,00188
П7=К11*В2/3600-оксид углерода	0,00924
П8=К15*В3/3600-медь (II) оксид	0,00681
П9=К19*В4/3600- хрома (VI) оксид	0,00257
П10=К35*В7/3600-никель оксид	0,0019

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221- Θ ".

Приложение 274

Разрез «Восточный». Отвал конвейерный №1. Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла на 2025-2027 г.г. Неорганизованный источник №6288

Наименование показателей	Показатели
Исходные данные	
1.Количество часов работы в год,Т1,ч	53
2.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
3. Количество часов работы в год, Т2, ч	15
4.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 50мм, г/с	
К5-марганец и его соединения	0,061
К7-оксид углерода	0,012
К8-диоксид азота	0,005
Результаты	
5.Валовый выброс за год,т/год	
М1=(Т1*К1+Т2*К5)*3600/1000000 -марганец и его соединения	0,00348
М3=(Т1*К3+Т2*К7)*3600/1000000 -оксид углерода	0,00446
М4=(Т1*К4+Т2*К8)*3600/1000000 -диоксид азота	0,00370
6.Максимальный разовый выброс,г/с	
П1=К5 -марганец и его соединения	0,06100
П3=К7 -оксид углерода	0,01200
П4=К8 -диоксид азота	0,00500

Расчет выполнен по «Приложение 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014 г. № 221- Θ ».

Приложение 275 чазрез «Восточный». Отвал конвейерный №1. Расчет эмиссий загрязняющих веществ

Разрез «Восточный». Отвал конвейерный №1. Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей на 2025-2027 г.г. Неорганизованный источник №6288

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,018
тф1-растворитель 646	0,009
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
тм1-растворитель 646	0,5
3.Состав эмали ПФ-115, %	
q1-ксилол	50
q2-уайт-спирит	50
fр-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
rp1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	
q3-ацетон	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
$M1$ окр.= $(m\phi1*fp1*rp2*q4)/10^6*(1-n)$ -спирт н-бутиловый	0,00038
$M2$ окр.= $(m\phi1*fp1*rp2*q6)/10^6*(1-n)$ -бутилацетат	0,00025
$M3$ окр.= $(m\phi1*fp1*rp2*q3)/10^6*(1-n)$ -ацетон	0,00018
$M4$ окр.= $(m\phi1*fp1*rp2*q8)/10^6*(1-n)$ -толуол	0,00126
$M5$ окр.= $(m\phi1*fp1*rp2*q7)/10^6*(1-n)$ -этилцеллозольв	0,00020
М6окр.= $(m\phi1*fp1*rp2*q5)/10^6*(1-n)$ -спирт этиловый	0,00025
М7окр.=(mф*fp*rp*q1)/10 ⁶ *(1-n)-ксилол	0,00113
М8окр.= $(m\phi*fp*rp*q2)/10^6*(1-n)$ -уайт-спирит	0,00113
6.Максимальный разовый выброс летучих веществ при окраске, г / с	
Π 1=(mм1*fp1*rp2*q4)/ 10^6 *3,6*(1-n)-спирт н-бутиловый	0,07560
$\Pi 2 = (m \phi 1 * f p 1 * r p 2 * q 6)/10^6 * 3,6 * (1-n)$ -бутилацетат	0,05040
$\Pi 3 = (m_M 1 * fp 1 * rp 2 * q 3) / 10^6 * 3,6 * (1-n)$ -ацетон	0,03528
$\Pi 4 = (m_M 1 * fp 1 * rp 2 * q8) / 10^6 * 3,6 * (1-n)$ -толуол	0,25200
$\Pi 5 = (m_1 * fp1 * rp2 * q7)/10^6 * 3,6 * (1-n) - этилцеллозольв$	0,04032

Окончание приложения 275

1	2
$\Pi 6 = (m M 1 * fp 1 * rp 2 * q 5) / 10^6 * 3,6 * (1-n)$ -спирт этиловый	0,05040
Π 7=(mм*fp*rp*q1)/ 10^6 *3,6*(1-n)-ксилол	0,22680
$\Pi 8 = (m M * fp * rp * q2)/10^6 * 3,6 * (1-n) - уайт-спирит$	0,22680
7.Валовый выброс летучих веществ за год при сушке, т / год	
M1c=(mф1*fp1*rp3*q4)/10 ⁶ *(1-n)-спирт н-бутиловый	0,00097
$M2c=(m\phi1*fp1*rp3*q6)/10^6*(1-n)$ -бутилацетат	0,00065
$M3c = (m\phi1*fp1*rp3*q3)/10^6*(1-n)$ -ацетон	0,00045
$M4c=(m\phi1*fp1*rp3*q8)/10^6*(1-n)$ -толуол	0,00324
$M5c=(m\phi1*fp1*rp3*q7)/10^6*(1-n)$ -этилцеллозольв	0,00052
$M6c=(m\phi1*fp1*rp3*q5)/10^6*(1-n)$ -спирт этиловый	0,00065
$M7c = (m\phi * fp * rp1 * q1)/10^6 * (1-n)$ -ксилол	0,00292
$M8c=(m\phi*fp*rp1*q2)/10^6*(1-n)-уайт-спирит$	0,00292
8. Максимальный разовый выброс летучих веществ при сушке, г / с	
$\Pi 1 = (m M 1/24 * fp 1 * rp 3 * q 4)/10^6 * 3,6 * (1-n)$ -спирт н-бутиловый	0,00810
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q6)/10^6 * 3,6 * (1-n) - бутилацетат$	0,00540
$\Pi 3 = (m M 1/24 * fp 1 * rp 3 * q 3)/10^6 * 3,6 * (1-n)$ -ацетон	0,00378
$\Pi 4 = (m M 1/24 * fp1 * rp3 * q8)/10^6 * 3,6 * (1-n)$ -толуол	0,02700
$\Pi 5 = (m M 1/24 * fp 1 * rp 3 * q7)/10^6 * 3,6 * (1-n) - этилцеллозольв$	0,00432
$\Pi 6 = (m M 1/24 * fp 1 * rp 3 * q 5)/10^6 * 3,6 * (1-n)$ -спирт этиловый	0,00540
$\Pi 7 = (m \text{м}/24 \text{ fp*rp1*q1})/10^{6*3,6} \text{*}(1-\text{n}))$ -ксилол	0,02430
$\Pi 8 = (m_M/24*fp*rp1*q2)/10^6*3,6*(1-n))/10^6*3,6*(1-n)-уайт-спирит$	0,02430
Итого валовый выброс за год, т/год	
М1=М1окр.+М1с	0,00135
М2=М2окр.+М2с	0,00090
М3=М3окр.+М3с	0,00063
М4=М4окр.+М4с	0,00450
М5=М5окр.+М5с	0,00072
М6=М6окр.+М6с	0,00090
М7=М7окр.+М7с	0,00405
М8=М8окр.+М8с	0,00405

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)», РНД 211.2.02.05-2004.

Разрез «Восточный». Конвейерный отвал №1. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-40. Неорганизованный источник № 6288 на 2025-2027 г.г.

Наименование показателей	Показатели	
Исходные данные		
1.Количество паек в год, п, шт	24	
2. Чистое в ремя работы паяльником в год ,t,ч	12	
3.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,000005	
q2- олова оксид	0,000003	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,00001	
Mc=q2 * - олова оксид	0,000003	
5.Валовый выброс за год, т/год		
Мгод=(q1*t*n*3600)/1000000- свинец и его соединения	0,000005	
Мгод=(q2*t*n*3600)/1000000- олова оксид	0,000003	

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий», (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08 г. № 100-п)

Приложение 277

Разрез «Восточный». Циклично-поточный вскрышной комплекс №2 (ЦПВК-2). Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ. Неорганизованный источник №6289 на 2025-2027 г.г.

Наименование показателей	2025-2027 гг.
1	2
Исходные данные	
Сварочные работы электродами марки НИИ48Г (ОЗЛ-14)	
1.Годовой расход электродов типа НИИ48Г, Вгод.1,кг	225
2. Максимальный часовой расход электродов типа НИИ48Г, В1, кг	2,5
3.Количество постов, n1, шт	1
4. Количество часов работы в год всех постов, Т1, ч	90
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,41
К3-хрома (VI) оксид	0,46
К4-фтористые газообр.соед.	0,1
Сварочные работы электродами марки УОНИ-13/55	•
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	1250
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2,	
КГ	2,5
8.Количество постов, n2, шт.	2,5
9.Количество часов работы в год всех постов, Т2, ч	500
10.Удельное выделение загрязняющих веществ при сварке, г/кг	
К6-марганец и его соединения	1,09
К7-кремния диоксид	1
К8-фториды	1
К9-фтористые газообр.соед.	1,26
К10-диоксид азота	2,7
К11-оксид углерода	13,3
Сварочные работы электродами марки Комсомолец-100	·
11.Годовой расход электродов Комсомолец-100, Вгод.3, кг	125
12. Максимальный часовой расход электродов Комсомолец-100, В3,	
КГ	2,5
13.Количество постов, n3, шт.	1
14. Количество часов работы в год всех постов, Т3, ч	50
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К13-марганец и его соединения	0,27
К15-медь (II) оксид	9,8
К16-фтористые газообр.соед.	1,11
К17-диоксид азота	0,76
Сварочные работы электродами марки Т-590	
16.Годовой расход электродов типа Т-590, Вгод.4, кг	500
17. Максимальный часовой расход электродов типа Т- 590, В4, кг	2,5
18.Количество постов, п4, шт.	1
19.Количество часов работы в год всех постов, Т4, ч	200
20.Удельное выделение загрязняющих веществ при сварке, г/кг	

Продолжение приложения 277

1	2
К18-фтористые газообр.соед.	6,05
К19-хрома (VI) оксид	3,7
Сварочные работы электродами марки УОНИ-13/65	
21.Годовой расход электродов типа УОНИ-13/65, Вгод.5, кг	750
22. Максимальный часовой расход электродов типа УОНИ-13/65,	
В5, кг	2,5
23.Количество постов, n5, шт.	2,5
24.Количество часов работы в год всех постов, Т5, ч	300
25.Удельное выделение загрязняющих веществ при сварке, г/кг	
К21-марганец и его соединения	1,41
К22-кремния диоксид	0,8
К23-фториды	0,8
К24-фтористые газообр.соед.	1,17
Сварочные работы электродами марки НЖ-13	,
26.Годовой расход электродов типа НЖ-13, Вгод.6,кг	20
27. Максимальный часовой расход электродов типа НЖ-13, В6, кг	2,5
28.Количество постов, n6, шт	1
29.Количество часов работы в год всех постов, Т6, ч	8
30. Удельное выделение загрязняющих веществ при сварке, г/кг	
К26-марганец и его соединения	0,53
К27-хрома (VI) оксид	0,24
Сварочные работы электродами марки МНЧ-2	- ,
31.Годовой расход электродов МНЧ-2, Вгод.7, кг	20
32. Максимальный часовой расход электродов МЧН-2, В7, кг	
33.Количество постов, n7, шт.	2,5 1
34.Количество часов работы в год всех постов, Т7, ч	8
35. Удельное выделение загрязняющих веществ при сварке, г/кг	
К30-марганец и его соединения	0,92
К33-фтористые газообр.соед.	1,34
К35-никель оксид	2,73
Результаты	2,73
36.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К13+Вгод.5*К21+Вгод.6*К26+	
Вгод.7*К30)/1000000-марганец и его соединен.	0,00280
М3=(Вгод.1*К4+Вгод.2*К9+Вгод.3*К16+Вгод.4*К18+Вгод.5*К24+	0,00200
Вгод.7*К33)/1000000-фтористые газообр.соед.	0,00567
M4=(Вгод2*K7+Вгод5*К22)/1000000 -кремния диоксид	0,00185
M5=(Вгод. 2*К8+Вгод. 5*К23)/1000000 -фториды	0,00185
М6=(Вгод.2*К10+Вгод.3*К17)/1000000 - диоксид азота	0,00347
M7=Вгод.2*К11/1000000 -оксид углерода	0,01663
М8=(Вгод.3*К15)/1000000 - медь (II) оксид	0,00123
М9=(Вгод.1*К3+Вгод.4*К19)/1000000 - хрома (VI) оксид	0,00123
М10=Вгод.7*К35/1000000 - никель оксид	0,0005
37.Максимальный разовый выброс, г/с	0,00003
П2=К2*В1*n1/3600-марганец и его соед.	0,00098
П3=К18*В4*п4/3600-фтористые газообр. Соединен.	0,00420
по-кто в на/зооо-фтористые газооор. Соединен.	0,00420

Окончание приложения 277

1	2
П4=K7*B3*n3/3600-кремния диоксид	2,50056
П5=К8*В2*п2/3600-фториды	0,00069
П6=К10*В2/3600-диоксид азота	0,00188
П7=К11*В2/3600-оксид углерода	0,00924
П8=К15*В3/3600-медь (II) оксид	0,00681
П9=К19*В4/3600- хрома (VI) оксид	0,00257
П10=К35*В7/3600-никель оксид	0,00190

Расчет выполнен по «Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221-Ө».

Разрез «Восточный». Циклично-поточный вскрышной комплекс №2 (ЦПВК-2). Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла в период с 2025 по 2027 г.г. Неорганизованный источник №6289

Наименование показателей	2025-2027 гг.
Исходные данные	
1.Количество часов работы в год,Т1,ч	100
2. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 5мм, г/ч	
К1-марганец и его соединения	0,00064
К3-оксид углерода	0,014
К4-диоксид азота	0,0136
3. Количество часов работы в год, Т2, ч	150
4. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К5-марганец и его соединения	0,001
К7-оксид углерода	0,020
К8-диоксид азота	0,018
5.Количество часов работы в год,Т3,ч	250
6.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 20 мм,г/с	
К9-марганец и его соединения	0,017
К11-оксид углерода	0,018
К12-диоксид азота	0,015
Результаты	
7.Валовый выброс за год,т/год	
М1=(Т1*3600*К1+Т2*3600*К5+Т3*3600*К9)/1000000 -марганец и его	0,01607
соединения	
М3=(Т1*К3+Т2*К7+Т3*К11)/1000000 -оксид углерода	0,03204
М4=(Т1*3600*К4+Т2*3600*К8+Т3*3600*К12)/1000000 -диоксид азота	0,02812
8.Максимальный разовый выброс,г/с	
П1=К9 -марганец и его соединения	0,01700
П3=К7-оксид углерода	0,02000
П4=К8 -диоксид азота	0,01800

Расчет выполнен по «Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221-Ө»

Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Помещение с емкостями для хранения ГСМ. Расчет эмиссий загрязняющих веществ в атмосферу от бочек с бензинами. Неорганизованный источник № 6308 на 2025-2027 г.г.

Показатели	2025-2027 гг
Исходные данные	
1.Плотность бензина, р, т/м3	0,735
2.Объем бензина в бочках в течение года, Q, м3/год	1,7
3 Слив бензина из бочек через колонку	
I)Заправка автомобилей через колонку	
1.Годовые выбросы Gтрк=Gб.a.+Gпр.a	0,00090
Gб.a=(СбозхQоз+СбвлхQвл)х10-6,т/год	0,0007948
Сбоз-конц.паровозд.смеси при заполн. бака осензимн. период	420
(прил.15) Сб ^{вл} -конц.паровозд. смеси при заполн.бака весен.	515
Со -конц.паровозд. смеси при заполн.оака весен. Овл-кол.жидкости закач. в весенлетн. Период, м ³	0,850
	0,850
Qоз-кол.жидкости закач. в осензимн. Период, м ³	,
Ввл-кол.жидкости закач. в весенлетн. период, т	0,625
Воз-кол.жидкости закач. в осензимн. период, т Gпр.a=0,5хJx(Воз+Ввл)х10 ⁻⁶ , т/год	0,625 0,000106
Ј-уд.выбросы при проливах, г/м ³	125
v 1 1 1	
2.Максимальн. разовый выброс М=(Vсл x Сб.а x n)/3600, г/с	0,10800
Vсл-фактический расход топлива через колонку, м3/ч	0,4
Сб.а/м ^{мах} -макс. разовый выброс при заполнении бака, г/с (прил.12)	972

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004

Приложение 280

Разрез «Восточный». Станция Восточная. ЖДЦ. УСЦБ. Идентификация состава выбросов от керосина в период с 2025 по 2027 г.г. Неорганизованный источник №6250

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
Исходные данн	ые		
1. Валовые выбросы углеводородов:	т/год	$\mathbf{G}_{диз}$	0,130
2. Максимально-разовые выбросы:	г/с	М _{диз}	0,058
Идентификация состава выбросов			
Углеводороды: Керосин			
1. Предельные (C ₁₂ -C ₁₉), всего: - концентрация	%	C_{i}	99,84
- валовый выброс	т/год	G_{i}	0,12979
- максимально-разовый выброс	г/с	M_{i}	0,05791
2. Сероводород - концентрация	%	C_{i}	0,06
- валовый выброс	т/год	G_{i}	0,00008
- максимально-разовый выброс	г/с	M_{i}	0,00003

Разрез «Восточный». Станция Восточная. Железнодорожный цех (ЖДЦ). Участок сигнализации, централизации и блокировки (УСЦБ). Расчет эмиссий загрязняющих веществ в атмосферу от чистки электрооборудования в период с 2025 по 2027 г.г. Неорганизованный источник №6250

Показатели	Показатели
Керосин	
1. Расход керосина В1,т	0,13
2.Продолжительность периода керосина, Т1, ч	620
3.Выбросы, G, т	
- керосин=В1	0,13
4.Максимальный разовый выброс Пз, г/с	
П1=G3*106/(Т1*3600)-керосин	0,058

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004.

Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛМ-5 на конвейер КЛМ-4. Расчет выбросов твердых частиц от аспирационной установки А1 (уголь) на 2025-2027 г.г. (ист.0293)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	3,120
2.Объем отходящих газов(производительность аспир.установки), V,	21685
$H.M^3/q$	
3. Годовое количество рабочих часов аспирационной установки, Т,	6090
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9361
установке, Н, дол.ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	20
6.Высота источника над уровнем земли, м	12
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	412,03235
$\Pi_0 = C*V/3600, \ r/c$	18,79367
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	385,70348
$\Pi y = \Pi o * H, \Gamma / c$	17,59275
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	26,32887
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	1,20092
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MG/M}^3$	199
10. Расчетный диаметр, Dp, м	0,6
11. Принятый диаметр, Dп, м	0,9
12. Фактическая скорость, wф, м/с	9,5

Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛМ-5 на конвейер КЛМ-4. Расчет выбросов твердых частиц от аспирационной установки А1 (вскрыша внутренняя) на 2025-2027 г.г. (ист.0293)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	3,120
2.Объем отходящих газов(производительность аспир.установки), V,	21685
$H.M^3/q$	
3. Годовое количество рабочих часов аспирационной установки, Т,	6090
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9361
установке, Н, дол. ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	20
6.Высота источника над уровнем земли, м	12
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	412,03235
$\Pi_0 = C*V/3600, r/c$	18,79367
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	385,70348
$\Pi y = \Pi o * H, r/c$	17,59275
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	26,32887
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	1,20092
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	199
10. Расчетный диаметр, Dp, м	0,6
11. Принятый диаметр, Dп, м	0,9
12. Фактическая скорость, wф, м/с	9,5

Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛЗ-7 на конвейер КЛП-5. Расчет выбросов твердых частиц от аспирационной установки А2 (уголь) на 2025-2027 г.г. (ист.0294)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	4,240
2.Объем отходящих газов(производительность аспир.установки),V, н.м ³ /ч	19860
3.Годовое количество рабочих часов аспирационной установки, Т, ч/год	6090
4.Степень улавливания твердых частиц в пылеулавливающей установке, Н,	0,9179
дол.ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	15
6.Высота источника над уровнем земли, м	12
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	512,81698
$\Pi_0 = C*V/3600, \ r/c$	23,39067
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	470,71471
$\Pi y = \Pi o * H, r/c$	21,47030
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	42,10227
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \Gamma/C$	1,92037
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_T / \text{M}^3$	348
10. Расчетный диаметр, Dp, м	0,7
11. Принятый диаметр, Dп, м	1,9
12. Фактическая скорость, wф, м/с	1,9

Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛЗ-7 на конвейер КЛП-5. Расчет выбросов твердых частиц от аспирационной установки А2 (вскрыша внутренняя) на 2025-2027 г.г. (ист.0294)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	4,240
2.Объем отходящих газов(производительность аспир.установки), V,	19860
$H.M^3/q$	
3. Годовое количество рабочих часов аспирационной установки, Т,	6090
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9179
установке, Н, дол. ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	15
6.Высота источника над уровнем земли, м	12
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	512,81698
$\Pi_0 = C*V/3600, \ r/c$	23,39067
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	470,71471
$\Pi y = \Pi o * H, r/c$	21,47030
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	42,10227
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \Gamma/C$	1,92037
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_T / \text{M}^3$	348
10. Расчетный диаметр, Dp, м	0,7
11. Принятый диаметр, Dп, м	1,9
12. Фактическая скорость, wф, м/с	1,9

Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛП-5 на конвейер КЛМ-5. Расчет выбросов твердых частиц от аспирационной установки АЗ (уголь) на 2025-2027 г.г. (ист.0295)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	10,140
2.Объем отходящих газов (производительность аспир.установки), V , $H.M^3/\Psi$	6253
3.Годовое количество рабочих часов аспирационной установки, T, ч/год	6090
4.Степень улавливания твердых частиц в пылеулавливающей установке, H, дол.ед.	0,9228
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	15
6.Высота источника над уровнем земли, м	6
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	386,13901
$\Pi_0 = C*V/3600, \ r/c$	17,61262
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	356,32908
$\Pi y = \Pi o * H, r/c$	16,25293
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	29,80993
Пв= По-Пу, г/с	1,35969
$C_B = \Pi_B * 1000 * 3600 / V, M \Gamma / M^3$	783
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Dп, м	1,9
12. Фактическая скорость, wф, м/с	0,6

Разрез «Восточный» АО «ЕЭК». Конвейерная линия с участков 8,12. Узел перегрузки с конвейера КЛП-5 на конвейер КЛМ-5. Расчет выбросов твердых частиц от аспирационной установки АЗ (вскрыша внутренняя) на 2025-2027 г.г. (ист.0295)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м3	10,140
2.Объем отходящих газов(производительность аспир.установки), V,	6253
н.м3/ч	
3. Годовое количество рабочих часов аспирационной установки, Т,	6090
ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,9228
установке, Н, дол.ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w, м/с	15
6.Высота источника над уровнем земли,м	6
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	386,13901
$\Pi_0 = C*V/3600, \ r/c$	17,61262
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	356,32908
$\Pi y = \Pi o * H, r/c$	16,25293
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	29,80993
$\Pi_{B}=\Pi_{O}-\Pi_{Y}, \ \Gamma/C$	1,35969
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MG/M}^3$	783
10. Расчетный диаметр, Dp, м	0,4
11. Принятый диаметр, Dп, м	1,9
12. Фактическая скорость, wф, м/с	0,6

Разрез «Восточный» АО «ЕЭК». УДР-2. Центральная конвейерная линия. Установка пневматического обогащения угля FGX-12 №2, №3. Расчет выбросов твердых частиц от аспирационных систем A2, A3 на грохоте и перегрузке на конвейеры в период с 2025 по 2027~г.г. (ист.0298, 0299)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность	
аспир.установки),V, н.м ³ /ч	13800
3. Годовое количество рабочих часов аспирационной установки, Т,	
ч/год	5556
4.Степень улавливания твердых частиц в пылеулавливающей	
установке, Н, дол.ед.	0,900
5. Скорость выхода газовоздушной смеси из устья источника, w,	
M/C	19,5
6.Высота источника над уровнем земли, м	10
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	76,67300
$\Pi_0 = C*V/3600, \ r/c$	3,83300
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	69,00600
$\Pi y = \Pi o * H, \Gamma / c$	3,45000
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	7,66700
Пв= По-Пу, г/с	0,38300
$C_B = \Pi_B * 1000 * 3600 / V, \text{ MT/M}^3$	100
10. Расчетный диаметр, Dp, м	0,500
11. Принятый диаметр, Оп, м	0,5
12. Фактическая скорость, wф, м/с	19,5

Примечание. Расчет произведен для одной установки.

Разрез «Восточный» АО «ЕЭК». УДР-2, Восточный -2. Участок 8,12. Установка пневматического обогащения угля FGX-12 №4. Расчет выбросов твердых частиц от аспирационной системы А4 на грохоте и перегрузка на конвейеры в период с 2025 по 2027 г.г. (ист.0300)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность	
аспир.установки),V, н.м ³ /ч	13800
3. Годовое количество рабочих часов аспирационной установки, Т,	
ч/год	5556
4.Степень улавливания твердых частиц в пылеулавливающей	
установке, Н, дол. ед.	0,900
5. Скорость выхода газовоздушной смеси из устья источника, w,	
M/C	19,5
6.Высота источника над уровнем земли, м	10
Результаты расчетов	
7. Количество отходящих твердых частиц	
Мо= C*V*T*10-6, т/год	76,67300
$\Pi_0 = C*V/3600, \ r/c$	3,83300
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	69,00600
$\Pi y = \Pi o * H, \Gamma / c$	3,45000
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	7,66700
Пв= По-Пу, г/с	0,38300
$C_B = \Pi_B * 1000 * 3600 / V, \text{ M}_T / \text{M}^3$	100
10. Расчетный диаметр, Dp, м	0,500
11. Принятый диаметр, Оп, м	0,5
12. Фактическая скорость, wф, м/с	19,5

Разрез «Восточный» АО «ЕЭК». УТКР на ст. Восточная. Сортировочная линия угля на складе №4 . Пересыпка угля с грохота на конвейеры. Расчет выбросов твердых частиц от аспирационной системы А1 в период с 2025 по 2027 г.г. (ист.0297)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	2,000
2.Объем отходящих газов(производительность	11700,000
аспир.установки), V , н.м 3 /ч	
3. Годовое количество рабочих часов аспирационной установки,	3705,0
Т, ч/год	
4.Степень улавливания твердых частиц в пылеулавливающей	0,960
установке, Н, дол.ед.	
5.Скорость выхода газовоздушной смеси из устья источника, w,	16,500
M/C	
6.Высота источника над уровнем земли, м	12,200
Результаты расчетов	
7. Количество отходящих твердых частиц	
Mo= C*V*T*10-6, т/год	86,69700
По= $C*V/3600$, г/с	6,50000
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	83,22912
Пу= По*Н, г/с	6,24000
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	3,46788
$\Pi_B = \Pi_O - \Pi_{y, \Gamma}/c$	0,26000
$C_B = \Pi_B * 1000 * 3600 / V, M_{\Gamma/M}^3$	80,0
10. Расчетный диаметр, Dp, м	0,50
11. Принятый диаметр, Dп, м	0,50
12. Фактическая скорость, wф, м/с	16,6

Разрез «Восточный» АО «ЕЭК». УТКР. Установка пневматического обогащения угля FGX-12. Расчет выбросов твердых частиц от аспирационной системы А1 на грохоте и перегрузка на конвейеры в период с 2025 по 2027 г.г. (ист.0296)

Наименование показателей	Показатели
Исходные данные	
1.Концентрация твердых частиц в отходящем воздухе, С, г/н.м ³	1,000
2.Объем отходящих газов(производительность	
аспир.установки),V, н.м ³ /ч	13800
3. Годовое количество рабочих часов аспирационной установки, Т,	
ч/год	5556
4.Степень улавливания твердых частиц в пылеулавливающей	
установке, Н, дол.ед.	0,900
5. Скорость выхода газовоздушной смеси из устья источника, w,	
M/C	19,5
6.Высота источника над уровнем земли, м	10
Результаты расчетов	
7. Количество отходящих твердых частиц	
Мо= C*V*T*10-6, т/год	76,67300
По= С*V/3600, г/с	3,83300
8. Количество уловленных твердых частиц	
Му= Мо*Н, т/год	69,00600
$\Pi y = \Pi o * H, \Gamma / c$	3,45000
9. Количество выбрасываемых твердых частиц	
Мв= Мо-Му, т/год	7,66700
Пв= По-Пу, г/с	0,38300
$C_B = \Pi_B * 1000 * 3600 / V, M\Gamma/M^3$	100
10. Расчетный диаметр, Dp, м	0,500
11. Принятый диаметр, Оп, м	0,5
12. Фактическая скорость, wф, м/с	19,5

Разрез "Восточный". Пункт технического обслуживания автосамосвалов «Пит-Стоп» на гор.+25. Открытая площадка. Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла на 2025-2027 гг. Организованный источник № 0309

Наименование показателей	Показатели
Исходные данные	
1.Количество часов работы в год,Т1,ч	100
2.Удельное выделение загрязняющих веществ	
при газовой резке стали легированной толщиной до 10мм, г/с	
К1-хрома (VI) оксид	0,002
К3-оксид углерода	0,015
К4-диоксид азота	0,012
3.Количество часов работы в год, Т2, ч	300
4.Удельное выделение загрязняющих веществ	
при газовой резке стали легированной толщиной до 20мм, г/с	
К5-хрома (VI) оксид	0,009
К7-оксид углерода	0,016
К8-диоксид азота	0,012
Результаты	
5.Валовый выброс хрома (VI) оксид за год,т/год	
M1=(T1*K1+T2*K5)*3600/1000000	0,00972
6.Валовый выброс оксид углерода за год,т/год	
M3=(T1*K3+T2*K7)*3600/1000000	0,01728
7.Валовый выброс диоксид азота за год,т/год	
M4=(T1*K4+T2*K8)*3600/1000000	0,01296
8.Максимальный разовый выброс хрома (VI) оксид ,г/с	
П1=К5	0,009
9.Максимальный разовый выброс оксид углерода ,г/с	
П3=К7	0,016
10.Максимальный разовый выброс диоксид азота ,г/с	
П4=К8	0,012

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221- Θ ".

Разрез "Восточный". Пункт технического обслуживания автосамосвалов «Пит-Стоп» на гор.+25. Открытая площадка. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ на 2025-2027 гг. Организованный источник № 0309

Наименование показателей	Показатели
Исходные данные	
Сварочные работы электродами марки УОНИ-13/45	
1.Годовой расход электродов типа УОНИ-13/45, Вгод.1, кг	432
2. Максимальный часовой расход электродов типа УОНИ-13/45, Вчас1, кг	1,6
3.Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	270
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	0,51
К3-кремния диоксид	1,4
К4-фториды	1,4
К5-фтористые газообр.соед.	1
Сварочные работы электродами марки УНОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	1600
7. Максимальный часовой расход электродов типа УОНИ-13/55, Вчас2, кг	1,6
8. Количество постов, t1, ч	1
9.Количество часов работы в год всех постов, Т2, ч	1000
10. Удельное выделение загрязняющих веществ при сварке, г/кг	
К9-марганец и его соединения	1,09
К10-кремния диоксид	1
К11-фториды	1
К12-фтористые газообр.соед.	1,26
К13-азота диоксид	2,7
К14-оксид углерода	13,3
Результаты	
11.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К9)/1000000-марганец и его соединен.	0,00866
М3=(Вгод.1*К3+Вгод2*К10)/1000000 -кремния диоксид	0,0022
М4=(Вгод.1*К4+Вгод2*К11)/1000000 -фториды	0,0022
M5=(Вгод.1*K5+Вгод.2*K12)/1000000 -фтористые газообр. Соед	0,00245
М6=(Вгод.2*К13)/1000000 -азота диоксид	0,00432
М7=(Вгод.2*К14)/1000000 -оксид углерода	0,02128
12.Максимальный разовый выброс, г/с	
М2=К9*Вчас2/3600-марганец и его соед.	0,00048
П3=К12*Вчас2/3600-фтористые газообр. соединен.	0,00056
М4=К3*Вчас1/3600-кремния диоксид	0,00062
М5=К4*Вчас1/3600-фториды	0,00062
М6=К13*Вчас2/3600-азота диоксид	0,0012
М7=К14*Вчас2/3600-оксид углерода	0,00591

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г. № 221- Θ ".

Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет количества пыли, выделяющейся при сдувании с поверхности первичных конусов в период с 2025 по 2027 г.г.

N_0N_0	Наименование показателей	Усл.	Ед.	Конус	Конус кон-	Конус					
п/п		обозн.	изм.	отсева	центрата	породы					
				угля							
				кл.0-10							
	Исходные данные										
1											
2	Коэффициент, учитывающий скорость ветра	К3	-	1,2	1,2	1,2					
3	Число открытых сторон места: 4; 3; 2,5;2;1,5;1	N	ШТ.	4	4	4					
4	Коэффициент, учитывающий местные условия	K_4		1,0	1,0	1,0					
5	Влажность материала	W	%	5,0	5,0	5,0					
6	Коэффициент, учитывающий влажность	K ₅	-	0,7	0,7	0,7					
7	Коэффициент, учитывающий профиль поверхности складируемого материала	K_6	-	1,5	1,5	1,5					
8	Коэффициент, учитывающий крупность материала	К ₇	-	0,6	0,4	0,4					
9	Удельная сдуваемость пыли с поверхности	q'	$\Gamma/M^2/c$	0,002	0,002	0,002					
10	Площадь пылящей поверхности:	S	м ²	50	160	160					
11	Количество дней с устойчивым снежным покровом	Тсп	сут.	155	155	155					
12	Количество дней с осадками в виде дождя	Тд	сут.	6	6	6					
13	Эффективность мероприятий по пылеподавлению	h	дол.ед.	0	0	0					
	Результаты расчета										
1.	Валовый выброс пыли за год:										
	$M_{\text{год}} = 0.0864 * M_{\text{сек}} * (365 - (T_{\text{сп}} + T_{\text{д}}))$	М _{год}	т/год	1,33250	2,84266	2,84266					
2.	Максимальная интенсивность пылевыделения										
	$M_{cek} = K_3 * K_4 * K_5 * K_6 * K_7 * q' * S$	Мсек	г/с	0,07560	0,16128	0,16128					

Настоящий расчет выполнен на основании пп. 3.2.3 и 3.2.5 «Методики расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов» Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. №100-п.

Приложение 295
Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет эмиссий пыли в атмосферу при транспортировании угля конвейерами в период с 2025 по 2027 г.г.

Показатели	Конвейер №1	Конвейер №2	Конвейер №3	Конвейер №4	Конвейер №5	Конвейер №6	ИТОГО
1	2	3	4	5	6	7	-
1. Влажность угля, W,%	5,0	5,0	5,0	5,0	5,0	5,0	-
2. Коэффициент, учитывающий влажность, КО	1,0	1,0	1,0	1,0	1,0	1,0	-
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4	3,4	-
4. Коэффициент, учитывающий скорость ветра, К1	1,2	1,2	1,2	1,2	1,2	1,2	-
5. Уд. выделение твердых частиц с тонны угля , gyд,г/т	3	3	3	3	3	3	-
6. Эффективность применяемых средств пылеподавления, η_1 , дол. ед.	0	0	0	0	0	0	-
7. Склады,хранилища 1.Откр. с 4 сторон	1	1	1	1	1	1	-
2.Откр. с 3 сторон							-
3.Откр. с 2 сторон полн.							-
4.Откр. с 2 сторон част.							-
5.Откр. с 1 стороны							-
6.Загруз. рукав							-
7.Закр. с 4 сторон							-
8. Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий К4	1,0	1,0	1,0	1,0	1,0	1,0	-
9. Высота пересыпки, h, м	0,0	0,0	0,0	0,0	0,0	0,0	-
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0	0	0	0	0	0	-
11. Количество перегружаемого угля, Пг. т/год	500000	100000	400000	295000	105000	105000	-
12. Максимальное количество перегружаемого угля (породы), Пч, т/ч	120	24	96	75,84	20,16	20,16	-

Окончание приложения 295

1	2	3	4	5	6	7	-
13. Годовое количество часов работы оборудования, Т, ч	5556	5556	5556	5556	5556	5556	-
14. Длина конвейера (общая длина конвейерной линии), L, м	22	25	58	45	13	35	-
15. Ширина ленты конвейера, В, м	0,5	0,8	0,8	0,8	0,8	0,8	-
	Po	езультаты					
16. Количество твердых частиц, сдуваемых при транспортировании открытым ленточным конвейером, без учёта мероприятий, Мпыль= 10,8*К0*К1*L*В*Т*10-6, т/год	0,79206	1,44012	3,34107	2,59221	0,74886	2,01616	10,93048
Ппыль= 3*K0*K1*L*B*10-3, г/с	0,03960	0,07200	0,16704	0,12960	0,03744	0,10080	0,54648
17. То же, с учетом мероприятий (укрытие рабочей ветви ленты) М'пыль=Мпыль*(1-η1),т/год	0,79206	1,44012	3,34107	2,59221	0,74886	2,01616	10,93048
П'пыль=Ппыль* $(1-\eta 1)$, г/с	0,03960	0,07200	0,16704	0,12960	0,03744	0,10080	0,54648

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами (гл.9, расчет выбросов вредных веществ в атмосферу предприятиями по добыче угля), Алматы, 1996 г.

Приложение 296

Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет эмиссий пыли в атмосферу от работы автопогрузчика в период с 2025 по 2027 г.г.

Наименование процесса Наименование процесса
КЛ.0-10
MM
1. Влажность угля, W,% 5,0 5,0
2. Коэффициент, учитывающий влажность, КО 1,0 1,0 1,0
3. Скорость ветра, V, м/с 4,5 4,5 4,5
4. Коэффициент, учитывающий скорость ветра, К1 1,2 1,2 1,2
5. Уд. выделение твердых частиц с тонны угля, 3 3
gуд,г/т
6. Эффективность применяемых средств пылепо-
давления, $\eta_{1,}$ дол. ед.
7. Склады,хранилища
1.Откр. с 4 сторон
2.Откр. с 3 сторон 2 2
3.Откр. с 2 сторон полн.
4.Откр. с 2 сторон част.
5.Откр. с 1 стороны
6.Загруз. рукав
7.Закр. с 4 сторон
8. Коэффициент, учитывающий местные усло-
вия, степень защищенности узла от внешних воз- 0,8 0,8 0,8
действий К4
9. Высота пересыпки, h, м 1,0 1,0 1,0
10. Коэффициент, учитывающий высоту пере- 0,5 0,5 0,5
сыпки, К ₅
11. Количество перегружаемого угля, Пг. т/год 100000 295000 10500
12. Максимальное количество перегружаемого 50 50
угля (породы), 11ч, т/ч
13. Годовое количество часов работы оборудова- 2000 5900 2100
ния, 1, ч
Результаты
14. Количество твердых частиц, выделяющихся
при перегрузках, без учета мероприятий 0,14400 0,42480 0,1512
$M_{\text{пыль}} = K0*K1*K4*K5*gyд*Пг*10^{-6*}, т/год$
$\Pi_{\text{пыль}}$ =K0*K1*K4*K5*gyд*Пч/3600, г/с 0,02000 0,02000 0,02000
15. Количество твердых частиц, выделяющихся
при перегрузках, с учетом мероприятий 0,14400 0,42480 0,1512
М'пыль=Мпыль*(1-η1),т/год
П'пыль=Ппыль*(1-η1) , г/с

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами (гл.9, расчет выбросов вредных веществ в атмосферу предприятиями по добыче угля), Алматы, 1996 г.

Приложение 297

Разрез «Восточный». УТКР на ст. Восточная. Комплекс по обогащению угля. Расчет количества пыли, образующейся при грохоте, дроблении и обогащении угля в период с 2025 по 2027 г.г.

Наименование показателей	Усл.	Ед.	Грохот	Дробилка
***	обозн.	ИЗМ.	ГВЧ-7Х2	ДШ3-500
	е данные		1	
1. Насыпной вес горной массы	К	T/M^3	1,64	1,64
2. Годовой объем исходной массы:				
	V _m	м ³	304878	243902
	$V_{\scriptscriptstyle T}$	T	500000	400000
3. Производительность	Q	м ³ /час	122	250
4. Количество агрегатов	N	ШТ.	1	1
5. Процент поступления исходной горной	X	%	100	100
массы				
6. Объем загрязненного воздуха	S	м ³ /час	5510	11290
7. Концентрация пыли	С	г/м ³	4,72	9,68
8. Коэффициент, учитывающий влажность	K ₅	-	0,7	0,7
материала				
9. Коэффициент оседания пыли в	K_0	-	0,3	0,3
технологическом оборудовании				
10. Эффективность применяемых средств в	h	дол. ед.	0	0
пылеподавлении				
Результат	ъ расчета	ì		
1. Время работы оборудования	T	Ч	2499	976
2. Количество твердых частиц, выделяющихс	я при дроб	блении		
- валовый выброс	Мгод	т/год	13,64832	22,39950
$M_{\text{год}} = S*C*T*K_5*K_0*(1-h)/10^6$				
- максимально-разовый выброс	Мсек	г/с	1,51709	6,37509
$M_{cek} = S*C*K_5*K_0*(1-h)/3600$				

Приложение 298

Разрез «Восточный». Станция Фестивальная. ЖДЦ. ДПС Ф.Экипировка локомотивов. Склад экипировочного песка. Расчет выбросов эмиссий загрязняющего воздуха в атмосферу от хранения песка на 2025-2027 г.г. Неорганизованный источник №6094.01

Характеристика	2025-2027 гг.
1.Годовой расход песка, Вгод, т	375
2. Время погрузки- разгрузки годовое, Т, с	10800
3.Производительность узла пересыпки, g, т/ч	14,7
4.Доля пылевой фракции, k1	0,05
5. Доля переходящей в аэрозоль летучей пыли, k2	0,03
6.Коэффициент, учитывающий скорость ветра, k3	1,2
7. Коэффициент, учитывающий влажность материала, k4	0,1
8.Коэффициент, учитывающий местные условия, k5	
1-откр. с 4 сторон	
2-откр. с 3 сторон	0,5
3-откр с 2 сторон полн.	
4-откр с 2 сторон част	
5-откр. с 1 стороны	
6-загруз.рукава	
7-закр. с 4 сторон	
9. Коэффициент, учитывающий высоту пересыпки, В	0,4
РЕЗУЛЬТАТЫ	
10. Количество твердых частиц, сдуваемых с поверхности	
открытого склада песка	
Ппыль=k1*k2*k3*k4*k5*g*B*10 ⁶ /3600, г/с	0,01470
Мпыль=Ппыль*T*10 ⁻⁶ ,т/г	0,03159

Расчет выполнен «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов" (приложение №8к Приказу от 12июня 2014г №221- θ .

Примечание. Время разгрузки одного вагона-10 мин.

Приложение 299

Разрез «Восточный». Участок 8,12. Расчёт объёмов эмиссий пыли в атмосферу при перегрузках внутренней вскрыши на ленточных конвейерах в период 2025-2027 г.г. Неорганизованный источник выбросов №6027

	В разрезе
Наименование показателей	КЛЗ-7, КЛЗ-8,
	КЛЗ-9, КЛЗ-10
1. Влажность материала, W,%	5
2. Коэффициент, учитывающий влажность, Ко	0,7
3. Скорость ветра, V, м/с	<2
4. Коэффициент, учитывающий скорость ветра, K ₁	1,0
5. Уд. выделение твердых частиц с тонны угля, $g_{yд}$ г/т	3
6. Эффективность применяемых средств пылеподавления η_1	0
дол. ед.	U
7. Склады,хранилища	
1.Откр. С 4 сторон	1
2.Откр. с 3 сторон	
3.Откр. с 2 сторон полн.	
4.Откр. с 2 сторон част.	
5.Откр. с 1 стороны	
6.Загруз. рукав	
7.Закр. с 4 сторон	
8. Коэффициент, учитывающий местные условия, степень	1.0
защищенности узла от внешних воздействий К ₄	1,0
9. Высота пересыпки, h, м	2
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0,7
11. Коэффициент, учитывающий гравитационное осаждение	0,4
твердых частиц, Кг	, , , , , , , , , , , , , , , , , , ,
12. Количество перегружаемого угля, Пг. т/год	245 000
13. Максимальное количество перегружаемого угля, Пч,т/ч	4400
14. Годовое количество часов работы оборудования, Т, ч	56
15. Количество оборудования (перегрузок), N,шт	3
Результаты	
Количество твердых частиц, выделяющихся при перегрузках,	
без учета мероприятий	0,43218
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{yA} * \Pi_{\Gamma} * 10^{-6} * N, \text{ т/год}$	
$\Pi_{\Pi \sqcup \Pi \sqcup \Gamma} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{y,T} * \Pi_{\Psi} * N/3600, \Gamma/c$	2,15600
С учетом мероприятий	0,43218
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{г/год}$	·
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1) , \Gamma/c$	2,15600

Приложение 300

Разрез «Восточный». УПК на ст. Восточная. Комплекс по обогащению угля. Расчет эмиссий пыли в атмосферу при пересыпке угля в период с 2025 по 2027 г.г.

Наименование процесса	Погрузка в загру- зочный бункер	Пересып- ка в пита- тель	Пересып- ка с пита- теля на конвейер №1	Пересып- ка с кон- вейера №1 в гро- хот	Пересып- ка с гро- хота на конвейер №6	Разгрузка в первич- ный конус	Пере- сыпка с дробил- ки на конвейер №2	Пере- сыпка с конвей- ера №2 в сепара- тор FGX-12	ИТОГО по углю
1	2	3	4	5	6	7	8	9	-
1. Влажность угля, W,%	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	_
2. Коэффициент, учитывающий влажность, К0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	-
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	-
4. Коэффициент, учитывающий скорость ветра, К1	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	-
5. Уд. выделение твердых частиц с тонны угля, gyд,г/т	3	3	3	3	3	3	3	3	-
6. Эффективность применяемых средств пылеподавления, η_1 , дол. ед.	0	0	0	0	0	0	0	0	-
7. Склады, хранилища 1. Откр. с 4 сторон			1	1	1	1	1	1	-
2.Откр. с 3 сторон									-
3.Откр. с 2 сторон полн.									-
4.Откр. с 2 сторон част.									-
5.Откр. с 1 стороны	5	5							-
6.Загруз. рукав									-
7.Закр. с 4 сторон									-
8. Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий К4	0,1	0,1	1,0	1,0	1,0	1,0	1,0	1,0	-
9. Высота пересыпки, h, м	1,5	1,5	1,0	2,0	2,0	3,0	2,0	2,0	-

Окончание приложения 300

1	2	3	4	5	6	7	8	9	-
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0,6	0,6	0,5	0,7	0,7	0,85	0,7	0,7	-
11. Количество перегружаемого угля , Пг. т/год	500000	500000	500000	500000	100000	100000	400000	400000	-
12. Максимальное количество перегружаемого угля (породы), Пч, т/ч	90	90	90	90	18	18	72	72	-
13. Годовое количество часов работы оборудования, Т, ч	5556	5556	5556	5556	5556	5556	5556	5556	-
		Pe	зультаты						
14. Количество твердых частиц, выделяющихся при перегрузках, без учета мероприятий $M_{\text{пыль}}=$ $K0*K1*K4*K5*gyд*Пг*10^{-6}*, т/год$	0,10800	0,10800	0,90000	1,26000	0,25200	0,30600	1,00800	1,00800	4,95000
$\Pi_{\text{пыль}}$ =K0*K1*K4*K5*gyд*Пч/3600, г/с	0,00540	0,00540	0,04500	0,06300	0,01260	0,01530	0,05040	0,05040	0,24750
15. Количество твердых частиц, выделяющихся при перегрузках, с учетом мероприятий М'пыль=Мпыль*(1-η1),т/год	0,10800	0,10800	0,90000	1,26000	0,25200	0,30600	1,00800	1,00800	4,95000
П'пыль=Ппыль*(1-η1), г/с	0,00540	0,00540	0,04500	0,06300	0,01260	0,01530	0,05040	0,05040	0,24750

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами (гл.9, расчет выбросов вредных веществ в атмосферу предприятиями по добыче угля), Алматы, 1996 г.

Приложение 301

Разрез «Восточный». УПК на ст. Восточная. Комплекс по обогащению угля. Расчет эмиссий пыли в атмосферу при пересыпке концентрата и породы в период с 2025 по 2027 г.г.

	Пересыпка	Разгрузка	ИТОГО по	Пересыпка	Пересып-	Разгруз-	ИТОГО
	концентрата	концентра-	концентра-	породы с	ка породы	ка поро-	по поро-
	с сепарато-	та в пер-	ту	дробилки на	с конвей-	ды с	де
Наименование процесса	pa FGX-12	вичный		конвейер	ера №4 на	конвей-	
	на конвейер	конус		№4	конвейер	ера №5 в	
	№3				№5	первич- ный ко-	
						ный ко-	
1	2	3	4	5	6	7	8
1. Влажность угля, W,%	5,0	5,0	-	5,0	5,0	5,0	-
2. Коэффициент, учитывающий влажность, К0	1,0	1,0	-	1,0	1,0	1,0	-
3. Скорость ветра, V, м/с	3,4	3,4	-	3,4	3,4	3,4	-
4. Коэффициент, учитывающий скорость ветра, К1	1,2	1,2	-	1,2	1,2	1,2	-
5. Уд. выделение твердых частиц с тонны угля, дуд,г/т	3	3	-	3	3	3	=
6. Эффективность применяемых средств пылеподавле-	0	0		0	0	0	
ния, η _{1,} дол. ед.	U	U	_	U	U	U	_
7. Склады,хранилища	1	1		1	1	1	
1.Откр. с 4 сторон	1	1	_	1	1	1	<u>-</u>
2.Откр. с 3 сторон			-				-
3.Откр. с 2 сторон полн.			-				-
4.Откр. с 2 сторон част.			-				-
5.Откр. с 1 стороны			-				-
6.Загруз. рукав			-				-
7.Закр. с 4 сторон			-				-
8. Коэффициент, учитывающий местные условия, сте-	1,0	1,0	_	1,0	1,0	1,0	_
пень защищенности узла от внешних воздействий К4	,	,	_	·	,	ŕ	-
9. Высота пересыпки, h, м	2,0	3,0	-	2,0	2,0	3,0	=
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0,7	0,85	-	0,7	0,7	0,85	-
11. Количество перегружаемого угля , Пг. т/год	295000	295000	-	105000	105000	105000	-

Окончание приложения 301

1	2	3	4	5	6	7	8
12. Максимальное количество перегружаемого угля (породы), Пч, т/ч	53	53	-	19	19	19	-
13. Годовое количество часов работы оборудования, Т, ч	5556	5556	-	5556	5556	5556	-
	Резуль	таты					
14. Количество твердых частиц, выделяющихся при перегрузках, без учета мероприятий $M_{\text{пыль}} = \text{K0*K1*K4*K5*gyz*}\Pi\text{r}*10^{-6*}$, т/год	0,74340	0,90270	1,64610	0,26460	0,26460	0,32130	0,85050
$\Pi_{\text{пыль}}$ =K0*K1*K4*K5*gyд*Пч/3600, г/с	0,03710	0,04505	0,08215	0,01330	0,01330	0,01615	0,04275
15. Количество твердых частиц, выделяющихся при перегрузках, с учетом мероприятий М'пыль=Мпыль*(1-η1),т/год	0,74340	0,90270	1,64610	0,26460	0,26460	0,32130	0,85050
П'пыль=Ппыль*(1-η1), г/с	0,03710	0,04505	0,08215	0,01330	0,01330	0,01615	0,04275

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами (гл.9, расчет выбросов вредных веществ в атмосферу предприятиями по добыче угля), Алматы, 1996 г.

Приложение 302

Разрез «Восточный». УТКР на ст. Восточная. Угольный склад №5. Расчет количества пыли, выделяющейся при сдувании в период с 2025 по 2027 г.г.

<u>№№</u> п/п	Наименование показателей	Усл. обозн.	Показатели
	Исходные данные		
1.	Поверхность пыления, м ²		11238,9
2.	Коэффициент, учитывающий местные метеоусловия	К3	1,2
3.	Коэффициент, учитывающий местные условия	К4	0,1
4.	Коэффициент, учитывающий влажность материала	К5	0,7
5.	Коэффициент, учитывающий профиль поверхности складируемого материала	К6	1,3
6.	Коэффициент, учитывающий крупность материала	К7	0,5
7.	Унос пыли с 1 м ² фактической поверхности	q'	0,005
8.	Эффективность мероприятий по пылеподавлению	h	0
	Результаты расчета		
1.	Валовый выброс пыли за год:		
	без учета мероприятий, $T/год$ $\Pi o = 150дн*24*3600*q_0/100000$	$\Pi_{\rm o}$	39,76413
	с учетом мероприятий $\Pi = \Pi_0 * (1-h)$	П	39,76413
2.	Максимальная интенсивность пылевыделения		
	без учета мероприятий, г/сек $q_0 = K3*K4*K5*K6*K7*q'*F$	q_0	3,06822
	- с учетом мероприятий $q = q_0 * (1-h)$	q	3,06822

Настоящий расчет выполнен на основании «Методики расчета нормативов выбросов от неорганизованных источников» (Приложение №8 к Приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № $221-\Theta$).

Приложение 303

Разрез «Восточный». УТКР на ст. Восточная. Угольный склад №5. Расчет количества пыли, выделяющейся при погрузочно-разгрузочных работах в период с 2025 по 2027 г.г.

Наименование показателей	Разгрузка	Погрузка угля
	угля на	со склада в
	склад	ж.д. вагоны
Исходные данные		
Количество перемещаемого материала за один год, Gг, т/год	160 000	160 000
Максимальное за один час, Gч, т/час	44,4	44,4
Весовая доля пылевой фракции в материале, К1	0,03	0,03
Доля пыли, переходящая в аэрозоль, К2	0,02	0,02
Скорость ветра, V, м/с	3,4	3,4
Коэффициент, учитывающий местные метеоусловия, К ₃	1,2	1,2
Число открытых сторон места, шт.	3	3
Коэффициент, учитывающий местные условия, К4	0,5	0,5
Влажность, W, %	5,0	5,0
Коэффициент, учитывающий влажность, К5	0,7	0,7
Коэффициент, учитывающий крупность материала, К7	0,5	0,5
Коэффициент, учитывающий высоту пересыпки, В	0,6	0,6
Эффективность мероприятий по пылеподавлению, fn,	0	0
дол.ед.	0	U
Результаты расчета		
Валовый выброс пыли за год:		
без учета мероприятий, т/год	12,09600	12,09600
$\Pi_0 = K1*K2*K3*K4*K5*K7*B*Gr$	12,0000	12,09000
- с учетом мероприятий, т/год	12,09600	12,09600
$\Pi = \Pi o * (1-fn)$	12,0000	12,0000
Максимальная интенсивность пылевыделения:		
- без учета мероприятий, г/с	0,93240	0,93240
Qo = K1*K2*K3*K4*K5*K7*B*10^6/3600		
- с учетом мероприятий, г/с	0,93240	0,93240
Q = Qo * (1-fn)		

Настоящий расчет выполнен на основании «Методики расчета нормативов выбросов от неорганизованных источников» (Приложение №8 к Приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221-Ө).

Наименование показателей	Перегрузочн	ный пункт 1-6	г 1-6 Погруз., стац.распр. конвейеры		Погрузочный пункт №1, №2		
	Перевалка	Погрузка в автотрансп.	Разгрузка на конус	Разгрузка на склад №2	Разгрузка на конус	Разгрузка на склад №4	
	Бульдозер	Авто-	Конв.	Авто-	Конв. лент.	Авто-	
	(=====================================	погрузчик	скребк.	погрузчик		погрузчик	
	(тр.ДТ-75)	(тр.МТЗ-80)	поз.147	(тр.МТЗ-80)	Поз.145	(тр.МТЗ-80)	
1	2	3	4	5	6	7	
1. Влажность угля, W,%	5	5	5	5	5	5	
2. Коэффициент, учитывающий влажность, К ₀	1	1	1	1	1	1	
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4	3,4	
4. Коэффициент, учитывающий скорость ветра, К ₁	1,2	1,2	1,2	1,2	1,2	1,2	
5. Уд. выделение твердых частиц с тонны угля,	3	3	3	3	3	3	
$g_{_{ m VJ},\Gamma}/_{ m T}$							
7. Склады,хранилища			1		1		
1.Откр. с 4 сторон							
2.Откр. с 3 сторон	2	2		2		2	
3.Откр. с 2 сторон полн.							
4.Откр. с 2 сторон част.							
5.Откр. с 1 стороны							
6.Загруз. рукав (закрыт с четырех сторон)							
8. Коэффициент, учитывающий местные условия,	0,8	0,8	1	0,8	1	0,8	
степень защищенности узла от внешних воздействий							
K_4							
9. Высота пересыпки (средняя), h, м	0,8	1	2,5	2	2,5	2	
10. Коэффициент, учитывающий высоту пересыпки,	0,45	0,5	0,8	0,7	0,8	0,7	
K ₅							
11. Коэффициент, учитывающий гравитационное	0,4	0,4	0,4	0,4	0,4	0,4	
осаждение твердых частиц, Кг	,	,	,	,	,	,	

Окончание приложения 304

1	2	3	4	5	6	7
12. Количество перегружаемого угля, Пг. т/год	2800	2800	5600	5600	570	570
13. Максимальное количество перегружаемого угля,	14	50	10,6	50	0,9	6
Пч, т/ч						
14. Годовое количество часов работы оборудования,	200	56	528	112	633	95
Т, ч						
		Результаты				
Количество твердых частиц, выделяющихся при пе-						
регрузках, без учета мероприятий						
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * g_{yx} * K_r * \Pi_r * 10^{-6}, \text{ т/год}$	0,00181	0,00201	0,00645	0,00565	0,00066	0,00058
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * g_{\text{уд}} * K_{\text{г}} * \Pi_{\text{ч}} / 3600, \ \Gamma/c$	0,00253	0,01000	0,00339	0,01400	0,00029	0,00168
С учетом мероприятий:						
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{т/год}$	0,00145	0,00161	0,00645	0,00452	0,00066	0,00046
$\Pi'_{\Pi \cup \Pi \cup L} = \Pi_{\Pi \cup \Pi \cup L} * (1 - \eta_1), \Gamma/c$	0,00202	0,00800	0,00339	0,01120	0,00029	0,00134

Разрез «Восточный». Отвал конвейерный №2. Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу от сварочных работ. Неорганизованный источник № 6301 с 2025 по 2027 г.г.

Наименование показателей	Показатели
1	2
Исходные данные	
Сварочные работы электродами марки НИИ48Г (ОЗЛ-14)	
1.Годовой расход электродов типа НИИ48Г, Вгод.1, кг	50
2. Максимальный часовой расход электродов типа НИИ48Г, В1, кг	2,5
3.Количество постов, n1, шт	1
4. Количество часов работы в год всех постов, Т1, ч	20
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	1,41
К3-хрома (VI) оксид	0,46
К4-фтористые газообр.соед.	0,1
Сварочные работы электродами марки УОНИ-13/55	
6.Годовой расход электродов типа УОНИ-13/55, Вгод.2, кг	300
7. Максимальный часовой расход электродов типа УОНИ-13/55, В2, кг	2,5
8.Количество постов, n2, шт.	1
9.Количество часов работы в год всех постов, Т2, ч	120
10. Удельное выделение загрязняющих веществ при сварке, г/кг	
К6-марганец и его соединения	1,09
К7-кремния диоксид	1
К8-фториды	1
К9-фтористые газообр.соед.	1,26
К10-диоксид азота	2,7
К11-оксид углерода	13,3
Сварочные работы электродами марки Комсомолец-100	
11.Годовой расход электродов Комсомолец-100, Вгод.3, кг	10
12. Максимальный часовой расход электродов Комсомолец-100, В3, кг	2,5
13.Количество постов, n3, шт.	1
14. Количество часов работы в год всех постов, Т3, ч	4
15.Удельное выделение загрязняющих веществ при сварке, г/кг	
К13-марганец и его соединения	0,27
К15-медь (II) оксид	9,8
К16-фтористые газообр.соед.	1,11
К17-диоксид азота	0,76
Сварочные работы электродами марки Т-590	
16.Годовой расход электродов типа Т-590, Вгод.4, кг	350
17. Максимальный часовой расход электродов типа Т- 590, В4, кг	2,5
18.Количество постов, n4, шт.	1
19. Количество часов работы в год всех постов, Т4, ч	140
20.Удельное выделение загрязняющих веществ при сварке, г/кг	
К18-фтористые газообр.соед.	6,05
К19-хрома (VI) оксид	3,7

Продолжение приложения 305

1	2
l VOIH 10/65	2
Сварочные работы электродами марки УОНИ-13/65	405
21.Годовой расход электродов типа УОНИ-13/65, Вгод.5, кг	425
22. Максимальный часовой расход электродов типа УОНИ-13/65, В5, кг	2,5
23.Количество постов, п5, шт.	170
24.Количество часов работы в год всех постов, Т5, ч	170
25.Удельное выделение загрязняющих веществ при сварке, г/кг	
К21-марганец и его соединения	1,41
К22-кремния диоксид	0,8
К23-фториды	0,8
К24-фтористые газообр.соед.	1,17
Сварочные работы электродами марки НЖ-13	
26.Годовой расход электродов типа НЖ-13, Вгод.6,кг	50
27. Максимальный часовой расход электродов типа НЖ-13, В6, кг	2,5
28.Количество постов, n6, шт	1
29. Количество часов работы в год всех постов, Т6, ч	20
30.Удельное выделение загрязняющих веществ при сварке, г/кг	
К26-марганец и его соединения	0,53
К27-хрома (VI) оксид	0,24
Сварочные работы электродами марки МНЧ-2	
31.Годовой расход электродов МНЧ-2, Вгод.7, кг	50
32. Максимальный часовой расход электродов МЧН-2, В7, кг	2,5
33.Количество постов, n7, шт.	1
34. Количество часов работы в год всех постов, Т7, ч	20
35.Удельное выделение загрязняющих веществ при сварке, г/кг	
К30-марганец и его соединения	0,92
К33-фтористые газообр.соед.	1,34
К35-никель оксид	2,73
Результаты	•
36.Валовый выброс за год, т/год	
М2=(Вгод.1*К2+Вгод.2*К6+Вгод.3*К13+Вгод.5*К21+Вгод.6*К26+Вгод.7*К	
30)/1000000-марганец и его соединен.	0,00107
М3=(Вгод.1*К4+Вгод.2*К9+Вгод.3*К16+Вгод.4*К18+Вгод.5*К24+Вгод.7*К	
33)/1000000-фтористые газообр.соед.	0,00308
М4=(Вгод2*К7+Вгод5*К22)/1000000 -кремния диоксид	0,00064
М5=(Вгод.2*К8+Вгод.5*К23)/1000000 -фториды	0,00064
М6=(Вгод.2*К10+Вгод.3*К17)/1000000 -диоксид азота	0,00082
М7=Вгод.2*К11/1000000 -оксид углерода	0,00399
М8=(Вгод.3*К15)/1000000 -медь (II) оксид	0,00010
M9=(Вгод.1*К3+Вгод.4*К19)/1000000 - хрома (VI) оксид	0,00132
М10=Вгод.7*К35/1000000 -никель оксид	0,00014
12.Максимальный разовый выброс, г/с	, · · -
П2=К2*В1*n1/3600-марганец и его соед.	0,00098
П3=К18*В4*п4/3600-фтористые газообр. Соединен.	0,00420
т т т	
П4=К7*В3*n3/3600-кремния диоксид	0,00069

Окончание приложения 305

1	2
П6=К10*В2/3600-диоксид азота	0,00188
П7=К11*В2/3600-оксид углерода	0,00924
П8=К15*В3/3600-медь (II) оксид	0,00681
П9=К19*В4/3600- хрома (VI) оксид	0,00257
П10=К35*В7/3600-никель оксид	0,00190

Расчет выполнен по «Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014г № 221- Θ »

Разрез «Восточный». Отвал конвейерный №2. Расчет эмиссий загрязняющих веществ в атмосферу при пайке электропаяльником припоем ПОС-40. Неорганизованный источник № 6301 с 2025 по 2027 г.г.

Наименование показателей	Показатели	
Исходные данные	- 1	
1.Количество паек в год, п, шт	40	
2. Чистое в ремя работы паяльником в год ,t,ч	20	
3.Удельное выделение загрязняющих веществ, q, г/с м2		
q1-свинец и его соединения	0,000005	
q2- олова оксид	0,000003	
Результаты		
4.Максимальный разовый выброс, г/с		
Mc=q1 - свинец и его соединения	0,000005	
Mc=q2 * - олова оксид	0,000003	
5.Валовый выброс за год, т/год		
Мгод=(q1*t*n*3600)/1000000- свинец и его соединения	0,000014	
Мгод=(q2*t*n*3600)/1000000- олова оксид	0,000009	

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий», (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Разрез «Восточный». Отвал конвейерный №2. Передвижной сварочный пост. Расчет эмиссий загрязняющих веществ в атмосферу при газовой резке металла. Неорганизованный источник №6301 с 2025 по 2027 г.г.

Наименование показателей	Показатели
Исходные данные	l
1.Количество часов работы в год,Т1,ч	100
2.Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 10мм, г/с	
К1-марганец и его соединения	0,001
К3-оксид углерода	0,02
К4-диоксид азота	0,018
3.Количество часов работы в год, Т2, ч	30
4. Удельное выделение загрязняющих веществ	
при газовой резке стали углеродистой толщиной до 50мм, г/с	
К5-марганец и его соединения	0,061
К7-оксид углерода	0,012
К8-диоксид азота	0,005
Результаты	
5.Валовый выброс за год,т/год	
М1=(Т1*К1+Т2*К5)*3600/1000000 -марганец и его соединения	0,00695
М3=(Т1*К3+Т2*К7)*3600/1000000 -оксид углерода	0,00850
М4=(Т1*К4+Т2*К8)*3600/1000000 -диоксид азота	0,00702
6.Максимальный разовый выброс,г/с	
П1=К5 -марганец и его соединения	0,06100
П3=К7 -оксид углерода	0,01200
П4=К8 -диоксид азота	0,00500

Расчет выполнен по «Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12июня 2014г № 221-Ө»

Приложение 308

Разрез «Восточный». Отвал конвейерный №2. Расчет эмиссий загрязняющих веществ в атмосферу при окраске деталей. Неорганизованный источник №6301 с 2025 по 2027 г.г.

Наименование показателей	Показатели
1	2
Исходные данные	
1. Масса расходуемых лакокрасочных материалов в год, т	
тф-эмаль ПФ-115	0,02
тф1-растворитель 646	0,01
2.Максимальный часовой расход, кг	
тм-эмаль ПФ-115	1
тм1-растворитель 646	0,5
3. Cостав эмали ПФ-115, %	<u> </u>
q1-ксилол	50
q2-уайт-спирит	50
fр-доля летучей части	45
гр-доля растворителя в ЛКМпри окраске	28
гр1-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
4.Состав растворителя 646, %	<u> </u>
q3-ацетон — — — — — — — — — — — — — — — — — — —	7
q4-спирт н-бутиловый	15
q5-спирт этиловый	10
q6-бутилацетат — — — — — — — — — — — — — — — — — —	10
q7-этилцеллозольв	8
q8-толуол	50
fp1-доля летучей части	100
гр2-доля растворителя в ЛКМпри окраске	28
гр3-доля растворителя в ЛКМпри сушке	72
п-степень очистки воздуха	0
Результаты	
5.Валовый выброс летучих веществ за год при окраске, т / год	
$M1$ окр.= $(m\phi1*fp1*rp2*q4)/10^6*(1-n)$ -спирт н-бутиловый	0,00042
$M2$ окр.= $(m\phi1*fp1*rp2*q6)/10^6*(1-n)$ -бутилацетат	0,00028
$M3$ окр.= $(m\phi 1*fp1*rp2*q3)/10^6*(1-n)$ -ацетон	0,00020
$M4$ окр.= $(m\phi 1*fp1*rp2*q8)/10^6*(1-n)$ -толуол	0,00140
$M5$ окр.= $(m\phi 1*fp1*rp2*q7)/10^6*(1-n)$ -этилцеллозольв	0,00022
$M6$ окр.= $(m\phi 1*fp 1*rp 2*q5)/10^6*(1-n)$ -спирт этиловый	0,00028
M7окр.=(mф*fp*rp*q1)/10 ⁶ *(1-n)-ксилол	0,00126
$M8$ окр.= $(m\phi * fp * rp * q2)/10^6 * (1-n)$ -уайт-спирит	0,00126
6. Максимальный разовый выброс летучих веществ при окраске, г/с	
$\Pi 1 = (\text{mм} 1 * \text{fp} 1 * \text{rp} 2 * \text{q4}) / 10^6 * 3,6 * (1-n)$ -спирт н-бутиловый	0,07560
$\Pi 2 = (m\phi 1 * fp 1 * rp 2 * q6)/10^6 * 3,6 * (1-n)$ -бутилацетат	0,05040
$\Pi 3 = (\text{mм1*fp1*rp2*q3})/10^6 \times 3,6 \times (1-\text{n})$ -ацетон	0,03528
$\Pi 4 = (\text{mм1 }^{\circ} \text{fp1 }^{\circ} \text{гр2 }^{\circ} \text{q8})/10^{6} \times 3,6^{\circ} (1 \text{-n})$ -толуол	0,25200
Π 5=(mм1*fp1*rp2*q7)/ 10^6 *3,6*(1-n)-этилцеллозольв	0,04032

Окончание приложения 308

1	2
$\Pi 6 = (m M 1 * fp 1 * rp 2 * q 5) / 10^6 * 3,6 * (1-n)$ -спирт этиловый	0,05040
Π 7=(mм*fp*rp*q1)/ 10^6 *3,6*(1-n)-ксилол	0,22680
$\Pi 8 = (m \text{м}^* \text{fp}^* \text{rp}^* \text{q2})/10^6 \text{*} 3,6^* (1-\text{n})$ -уайт-спирит	0,22680
7.Валовый выброс летучих веществ за год при сушке, т / год	,
M1c=(mф1*fp1*rp3*q4)/10 ⁶ *(1-n)-спирт н-бутиловый	0,00108
$M2c=(m\phi1*fp1*rp3*q6)/10^6*(1-n)$ -бутилацетат	0,00072
$M3c=(m\phi1*fp1*rp3*q3)/10^6*(1-n)$ -ацетон	0,00050
$M4c=(m\phi 1*fp1*rp3*q8)/10^6*(1-n)$ -толуол	0,00360
$M5c=(m\phi1*fp1*rp3*q7)/10^6*(1-n)$ -этилцеллозольв	0,00058
$M6c=(m\phi1*fp1*rp3*q5)/10^6*(1-n)$ -спирт этиловый	0,00072
$M7c=(m\phi*fp*rp1*q1)/10^6*(1-n)$ -ксилол	0,00324
$M8c=(m\phi*fp*rp1*q2)/10^6*(1-n)$ -уайт-спирит	0,00324
8.Максимальный разовый выброс летучих веществ при сушке, г / с	
$\Pi 1 = (m_M 1/24 * fp 1 * rp 3 * q 4)/10^6 * 3,6 * (1-n)$ -спирт н-бутиловый	0,00810
$\Pi 2 = (m M 1/24 * fp1 * rp3 * q6)/10^6 * 3,6 * (1-n)$ -бутилацетат	0,00540
$\Pi 3 = (m M 1/24 * fp1 * rp3 * q3)/10^6 * 3,6 * (1-n)$ -ацетон	0,00378
$\Pi 4 = (mM1/24*fp1*rp3*q8)/10^6*3,6*(1-n)$ -толуол	0,02700
$\Pi 5 = (m M 1/24 * fp 1 * rp 3 * q 7)/10^6 * 3,6 * (1-n) - этилцеллозольв$	0,00432
$\Pi6=(m_M1/24*fp1*rp3*q5)/10^6*3,6*(1-n)$ -спирт этиловый	0,00540
$\Pi 7 = (m_M/24 * fp * rp1 * q1)/10^{6*3,6} * (1-n))$ -ксилол	0,02430
$\Pi 8 = (m_M/24*fp*rp1*q2)/10^6*3,6*(1-n))/10^6*3,6*(1-n)$ -уайт-спирит	0,02430
Итого валовый выброс за год, т/год	
М1=М1окр.+М1с	0,00150
М2=М2окр.+М2с	0,00100
М3=М3окр.+М3с	0,00070
М4=М4окр.+М4с	0,00500
М5=М5окр.+М5с	0,00080
М6=М6окр.+М6с	0,00100
М7=М7окр.+М7с	0,00450
М8=М8окр.+М8с	0,00450

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов)», РНД 211.2.02.05-2004.

Разрез «Восточный». Строительство базы ремонта технологического автотранспорта. Производственный корпус. Участок ремонта ДВС топливной аппаратуры и узлов трансмиссии. Расчет эмиссий загрязняющих веществ в атмосферу от стенда для испытания и регулировки топливной аппаратуры.

Неорганизованный источник № 6304 в период с 2025 по 2027 г.г.

Наименование показателей	Показатели				
Исходные данные					
1.Количество постов, п, шт	1				
2.Время работы в сутки, Т,ч	4				
3.Количество рабочих дней в году, N, дней	365				
4. Удельное количество углеводородов,					
выделяющихся, q, г/кг	317				
5. Расход дизельного топлива в день, В1, кг	0,24				
6.Расход дизельного топлива в год,В,кг	88				
Результаты					
7.Максимальный разовый выброс, г/с					
$\Pi = (B1*q)/T*3600$	0,00528				
8.Валовый выброс за год, т/год					
M _B =n*B*q/1000000	0,02790				

Расчет выполнен по «Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий» (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г. № 100-п)

Приложение 309а

Разрез "Восточный". Цех сервисного обслуживания (ЦСО). Расчет эмиссий загрязняющих веществ в атмосферу от мойки автомобилей на 2024-2027 гг. Неорганизованный источник №6304

Наименование показателей	Параметры
1	2
Исходные данные	
БелАЗ-75131	
1. Расстояние от ворот помещения мойки моечной установки, St, км	0,005
2.Пробеговый выброс загрязняющих веществ, г/кг (табл. 3.8)	
ML1- углерода оксид	7,5
ML2- углеводороды предельные C12-C19	1,1
ML3- азота диоксид	4,5
ML4-сера диоксид	0,78
3.Удельное выброс загрязняющих веществ при прогреве, г/мин (табл. 3.7)	
Мрг5-углерода оксид	3
Мрг6-углеводороды предельные C12-C19	0,4
Мрг7-азота диоксид	1
Мрг8-сера диоксид	0,113
4.Трг9-время прогрева, мин	0,5
5.Nk10-количество авто, обслуженных мойкой в течении года	312
Результаты	
6.Максимальный разовый выброс, г/сек	
Мсек1=(2*ML1*St+Mpr5*Tpr9)*Nk10/3600 углерод оксид	0,1365
Мсек2=(2*ML2*St+Mpr6*Tpr9)*Nk10/3600 углеводороды предельные C12-	· · · · · ·
C19	0,01829
Мсек3=(2*ML3*St+Mpr7*Tpr9)*Nk10/3600 азота диоксид	0,04723
Мсек4=(2*ML4*St+Mpr8*Tpr9)*Nk10/3600 сера диоксид	0,00557
7.Валовый выброс за год, т/год	
Мгод5=(2*ML1*St+Mpr5*Tpr9)*Nk10*10-6 углерод оксид	0,00049
Мгод6=(2*ML2*St+Mpr6*Tpr9)*Nk10*10-6 углеводороды предельные С12-	
C19	0,00007
Мгод7=(2*ML3*St+Mpr7*Tpr9)*Nk10*10-6 азота диоксид	0,00017
Мгод8=(2*ML4*St+Mpr8*Tpr9)*Nk10*10-6 сера диоксид	0,00002
Cat785, KomatsuHD-1500	
8. Расстояние от ворот помещения мойки моечной установки, St, км	0,005
9.Пробеговый выброс загрязняющих веществ, г/кг (табл. 3.11)	
ML11-углерода оксид	6
ML12-углеводороды предельные C12-C19	0,8
ML13-азота диоксид	3,9
ML14-сера диоксид	0,69
10.Удельное выброс загрязняющих веществ при прогреве, г/мин (табл. 3.10)	
Мрг15-углерода оксид	1,65
Мрг16-углеводороды предельные С12-С19	0,8
Мрг17-азота диоксид	0,62
Мрг18-сера диоксид	0,112
11.Трг19-время прогрева, мин	0,5

Окончание приложения 309а

1	2
12.Nk20-количество авто, обслуженных мойкой в течении года	360
Результаты	
5.Максимальный разовый выброс, г/сек	
Мсек9=(2*ML11*St+Mpr15*Tpr19)*Nk20/3600 углерод оксид	0,0885
Мсек10=(2*ML12*St+Mpr16*Tpr19)*Nk20/3600 углеводороды предельные	
C12-C19	0,0408
Мсек11=(2*ML13*St+Mpr17*Tpr19)*Nk20/3600 азота диоксид	0,0349
Мсек12=(2*ML14*St+Mpr18*Tpr19)*Nk20/3600 сера диоксид	0,00629
6.Валовый выброс за год, т/год	
Мгод13=(2*ML11*St+Mpr15*Tpr19)*Nk20*10-6 углерод оксид	0,00032
Мгод14=(2*ML12*St+Mpr16*Tpr19)*Nk20*10-6 углеводороды предельные	
C12-C19	0,00015
Мгод15=(2*ML13*St+Mpr17*Tpr19)*Nk20*10-6 азота диоксид	0,00013
Мгод16=(2*ML14*St+Mpr18*Tpr19)*Nk20*10-6 сера диоксид	0,00002

Расчет выполнен по "Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий", (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г № 100-п)

Разрез "Восточный". Строительство базы ремонта технологического автотранспорта. Производственный корпус. Пост сварки. Расчет эмиссий загрязняющих веществ в атмосферу при сварочных и наплавочных работах. Неорганизованный источник N = 6302 на 2025-2027 гг.

Наименование показателей	Показатели
1	2
Исходные данные	1
Наплавочные работы электродами марки АН-30 под флюсами	
1.Годовой расход электродов типа АН-30, Вгод.1, кг	516
2. Максимальный часовой расход электродов типа АН- 30, В1, кг	0,7
3.Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	730
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К2-марганец и его соединения	0,033
К3-фтористые газообразные соединения	0,03
Результаты	
6.Валовый выброс за год, т/год	
М2=(Вгод.1*К2)/1000000-марганец и его соединен.	0,000017
М3=Вгод.1*К3/1000000 -фтористые газообр. соед.	0,00002
7.Максимальный разовый выброс, г/с	
П2=К2*В1/3600-марганец и его соед.	0,00001
П3=К3*В1/3600-фтористые газообр. соединен.	0,00001
Сварочные работы электродами марки МР-3	
1.Годовой расход электродов типа МР-3, Вгод.1, кг	6887
2. Максимальный часовой расход электродов типа МР-3, Вчас1, кг	9,42
3. Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	731
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К4-марганец и его соединения	1,8
Результаты	
6.Валовый выброс марганец и его соед. за год, т/год	
М4=Вгод.1*К4/1000000	0,0124
7. Максимальный разовый выброс марганец и его соед., г/с	
П4=К4*Вчас1/3600	0,00471
Сварка пропан-бутановой смесью	
1.Годовой расход электродов, Вгод.1, кг	1287
2. Максимальный часовой расход электродов, Вчас1, кг	1,76
3. Количество постов, t1, ч	1
4. Количество часов работы в год всех постов, Т1, ч	731
5.Удельное выделение загрязняющих веществ при сварке, г/кг	
К5-азота диоксид,г/кг	15
Результаты	
6.Валовый выброс азота диоксид за год, т/год	
М5=Вгод.1*К5/1000000	0,01931
7.Максимальный разовый выброс.азота диоксид, г/с	
П5=К5*Вчас1/3600	0,00733

Окончание приложения 310

1	2
Исходные данные по газовой резке	
1.Количество часов работы в год,Т1,ч	730
2.Удельное выделение загрязняющих веществ при газовой резке стали	
углеродистой толщиной 20мм, г/с	
К6-марганец и его соединения	0,017
К7-оксид углерода	0,018
К8-диоксид азота	0,015
Результаты	
3.Валовый выброс за год,т/год	
М6=Т1*3600*К6/1000000 -марганец и его соединения	0,04468
М7=Т1*3600*К7/1000000 -оксид углерода	0,0473
М8=Т1*3600*К8/1000000 -диоксид азота	0,03942
4.Максимальный разовый выброс,г/с	
П6=К6 -марганец и его соединения	0,017
П7=К7 -оксид углерода	0,018
П8=К8 -диоксид азота	0,015
Итого	
12.Валовый выброс за год,т/год	
M=M2+M4+M6	0,0571
М=М7 -углерод оксид	0,0473
М=М5+М8 -диоксид азота	0,05873
М=М3-фтористые газообр. соединен.	0,00002
13.Максимальный разовый выброс,г/с	
П=П2+П4+П6-марганец и его соед.	0,02172
П=П5+П8-азот диоксид	0,02233
П=П7-углерод оксид	0,018
П=П3фтористые газообр. соединен.	0,00001

Расчет выполнен по "Приложению 4 к приказу Министра окружающей среды и водных ресурсов РК от 12 июня 2014 г.

Разрез "Восточный". Строительство базы ремонта технологического автотранспорта. Производственный корпус. Пост сварки. Расчет эмиссий загрязняющих веществ в атмосферу при механической обработке металла. Организованный источник № 0303 на 2025-2027 гг.

Наименование показателей	Показатели
Исходные данные	
Механическая обработка без охлаждения	
Круглошлифовальные станки с диаметром круга до 150 мм	
1.Количество станков,п, шт	1
2.Количество часов работы в год одного станка, Т,ч	146
4.k-коэф.гравитац.оседания для абразивной пыли и взвешен. в-в	0,2
5.Удельный выброс на единицу оборудования, г/с	
q -абразивная пыль	0,0325
q1-взвешенные вещества	0,0325
Результаты	
6.Валовый выброс за год взвешенных веществ, т/год	
M = 3600 * k * q1 * T * n / 1000000	0,00342
7. Максимальный разовый выброс взвешенных веществ, г/с	
$\Pi=k*q1*n$	0,0065
8.Валовый выброс за год абразивной пыли, т/год	
M = 3600 * k * q * T * n / 1000000	0,00342
9.Максимальный разовый выброс абразивной пыли, г/с	
П=k*q*n -без пылеотсасывающих агрегатов	0,0065

Расчет выполнен по "Методике определения эмиссий вредных веществ в атмосферу основным технологическим оборудованием предприятий машиностроения" (приложение №8 к приказу Министра охраны окружающей среды РК от 12.06.2014г № 221-Ө) и РНД 211.2.02.06-2004.

Разрез "Восточный". Строительство базы ремонта технологического автотранспорта. Производственный корпус. Помещение с емкостями для хранения ГСМ. Идентификация состава выбросов от резервуаров с бензином. Неорганизованный источник №6308 в период 2025-2027 гг.

Наименование показателей	Ед. изм.	Усл. обозн.	Показатели
Исходные данные			
1. Валовые выбросы углеводородов		G	0,0009
в том числе: - от низкооктанового бензина	т/год	Gнбенз	0,0009
2. Максимально-разовые выбросы		M	0,108
в том числе: - от низкооктанового бензина	Γ/c	Мнбенз	0,108
Идентификация состава выбросов			
Углеводороды:	Б	ензин низк	ооктановый
1. Предельные, всего: - концентрация	%	Ci	93,85
- валовый выброс	т/год	Gi	0,00084465
- максимально-разовый выброс	г/с	Mi	0,101358
в том числе: С1-С5 - концентрация	%	Ci	75,47
- валовый выброс	т/год	Gi	0,00067923
- максимально-разовый выброс	г/с	Mi	0,0815076
С6-С10 - концентрация	%	Ci	18,38
- валовый выброс	т/год	Gi	0,00016542
- максимально-разовый выброс	г/с	Mi	0,0198504
2. Непредельные (по амиленам): -			
концентрация	%	Ci	2,5 0,0000225
- валовый выброс	т/год	Gi	0,0000225
- максимально-разовый выброс	г/с	Mi	0,0027
3. Ароматические, всего: - концентрация	%	Ci	3,65
- валовый выброс	т/год	Gi	0,00003285
- максимально-разовый выброс	г/с	Mi	0,003942
в том числе: бензол - концентрация	%	Ci	2
- валовый выброс	т/год	Gi	0,000018
- максимально-разовый выброс	г/с	Mi	0,00216
толуол - концентрация	%	Ci	1,45
- валовый выброс	т/год	Gi	0,00001305
- максимально-разовый выброс	г/с	Mi	0,001566
ксилол - концентрация	%	Ci	0,15
- валовый выброс	т/год	Gi	0,00000135
- максимально-разовый выброс	г/с	Mi	0,000162
этилбензол - концентрация	%	Ci	0,05
- валовый выброс	т/год	Gi	0,00000045
- максимально-разовый выброс	г/с	Mi	0,000054

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004.

Разрез "Восточный". Строительство базы ремонта технологического автотранспорта. Производственный корпус. Участок ремонта ДВС, топливной аппаратуры и узлов трансмиссии. Расчет эмиссий загрязняющих веществ в атмосферу от установки для мойки деталей в каустической соде. Неорганизованный источник N = 6305 в период с 2025 по 2027 гг.

Наименование показателей	Показатели		
Исходные данные			
1.Количество установок для мойки, п, шт	1		
2.Время работы установки в год ,t,ч	219		
3.Удельное выброс натрия карбоната, q, г/с м2	0,0016		
4.Площадь зеркала установки для мойки, S,м2	0,6		
Результаты			
5.Максимальный разовый выброс, г/с			
$\Pi=q *S$	0,00096		
6.Валовый выброс за год, т/год			
Мв=q*S*t*n*3600/1000000	0,00076		

Расчет выполнен по " Методике расчета выбросов загрязняющих веществ от автотранспортных предприятий" (приложение №3 к приказу Министра охраны окружающей среды РК от 18.04.08г. № 100-п)

Разрез "Восточный". Строительство базы ремонта технологического автотранспорта. Производственный корпус. Склад масел. Расчет эмиссий загрязняющих веществ в атмосферу от бочек с маслами. Неорганизованный источник № 6306 на 2025-2027 гг.

Показатели	Показатели			
Исходные данные				
1.Плотность масла, р,т/м3	0,935			
2.Объем масла в бочках в течение года, Q,м3/год	18,07			
3 Слив масел из бочек через колонку				
I)Заправка автомобилей через колонку				
1.Годовые выбросы Стрк=Сб.а.+Спр.а	0,00012			
Gб.a=(СбозхQоз+СбвлхQвл)х10-6,т/год	0,0000036			
Сбоз-конц.паровозд.смеси при заполн. бака осензимн.	0,2			
период (прил.15)				
Сбвл-конц.паровозд. смеси при заполн.бака весен.	0,2			
Овл-кол.жидкости закач. в весенлетн. Период, м ³	9,035			
Qоз-кол.жидкости закач. в осензимн. Период, м ³	9,035			
Ввл-кол.жидкости закач. в весенлетн. период,т	8,043			
Воз-кол.жидкости закач. в осензимн. период,т	8,043			
Gпр.a=0,5xJx(Воз+Ввл)х10-6,т/год	0,000113			
Ј-уд.выбросы при проливах,г/м3	12,5			
2.Максимальн. разовый выброс М=(Vсл х Сб.а х п)/3600,г/с	0,00004			
Vсл-фактический расход топлива через колонку,м3/ч	0,4			
Сб.а/ммах-макс. разовый выброс при заполнении бака,г/с	0,324			
(прил.12)				

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004

Разрез "Восточный". Строительство базы ремонта технологического автотранспорта. Производственный корпус. Склад масел. Расчет эмиссий загрязняющих веществ в атмосферу от бочек с отработанными маслами. Неорганизованный источник № 6307 на 2025-2027 гг.

Показатели	Показатели		
Исходные данные			
1.Плотность масла, р,т/м3	0,935		
2.Объем масла в бочках в течение года, Q,м3/год	4,49		
I) Слив масел из бочек			
1.Производительность слива, Vсл, м3/ч	0,4		
2.Годовые выбросы,т/год			
G=Gсл+Gпр.п, т/год	0,000031		
Gсл=(СрозхQоз+СрвлхQвл)/1000000	0,0000005		
Сроз-концентрация паров нефтепродуктов в выбросах паровоздушной			
смеси осенне-зимний период,г/м3 (прил.15)	0,12		
Срвл-концентрация паров нефтепродуктов в выбросах паровоздушной			
смеси весенне-летний период,г/м3 (прил.15)	0,12		
Смах-максимальная концентрация паров нефтепродуктов в выбросах			
паровоздушной смеси при сливе,г/м3 (прил.12)	0,324		
Qвл-кол.жидкости закач. в весенлетн. период,м3	2,245		
Qоз-кол.жидкости закач. в осензимн. период,м3	2,245		
Gпр.п=0,5*J*Qгод/1000000	0,00003		
Ј-удельные выбросы при проливах,г/м3	12,5		
3.Максимальн. разовый выброс M=Vсл*Смах/3600,г/с	0,000036		

Расчет выполнен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров", РНД 211.2.02.09-2004, Астана 2004г

Приложение 316
Разрез "Восточный". УПК на ст. Восточная. Расчет объемов пыли, сдуваемой при перегрузке породы внутренней вскрыши ленточными конвейерами (поз. 1, 3, 4) и на перегрузочном пункте 1-6 (поз. 5, 7, 8 и 25) в 2025-2027 гг.

Наименование показателей Стационарные распределительные конвейера		ительные	Пункт перегрузки 1-6			
	Поз. 1, 3	Поз. 4	Поз. 5, 7	Поз. 8	Поз. 24	
1	2	3	4	5	6	
1. Влажность вскрыши, W,%	5	5	5	5	5	
2. Коэффициент, учитывающий влажность, К0	0,7	0,7	0,7	0,7	0,7	
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4	
4. Коэффициент, учитывающий скорость ветра, К1	1,2	1,2	1,2	1,2	1,2	
5. Уд. выделение твердых частиц с тонны угля, дуд,г/т	3	3	3	3	3	
6. Эффективность применяемых средств пылеподавления η1 дол. ед.	0	0	0	0	0	
7. Склады,хранилища						
1.Откр. С 4 сторон						
2.Откр. с 3 сторон						
3.Откр. с 2 сторон полн.						
4.Откр. с 2 сторон част.						
5.Откр. с 1 стороны						
6.Загруз. рукав	6	6	6	6	6	
7.Закр. с 4 сторон						
8. Коэффициент, учитывающий местные условия, степень защищенности						
узла от внешних воздействий К4	0,1	0,1	0,1	0,1	0,1	
9. Высота пересыпки, h, м	2	2	2	2	2	
10. Коэффициент, учитывающий высоту пересыпки, К5	0,7	0,7	0,7	0,7	0,7	
11. Коэффициент, учитывающий гравитационное осаждение твердых час-						
тиц, Кг	0,4	0,4	0,4	0,4	0,4	
12. Количество перегружаемой вскрыши, Пг. т/год	245000	490000	245000	490000	980000	
13. Максимальное количество перегружаемой вскрыши, Пч,т/ч	600	600	600	600	600	

Окончание приложения 316

1	2	3	4	5	6
14. Годовое количество часов работы оборудования, Т, ч	408	817	408	817	1633
15. Количество оборудования (перегрузок), N, шт	2	1	2	1	4
Результаты					
Количество твердых частиц, выделяющихся при перегрузках, без учета					
мероприятий Мпыль=					
K0*K1*K4*K5*Kг*gуд*Пг *10-6*N, т/год	0,3457	0,3457	0,3457	0,3457	2,766
Ппыль=К0*К1*К4*К5*Кг*дуд*Пч *N/3600, г/с	0,2352	0,1176	0,2352	0,1176	0,4704
С учетом мероприятий					
М'пыль=Мпыль*(1-η1),т/год	0,03457	0,03457	0,03457	0,03457	0,2766
П'пыль=Ппыль* $(1-\eta 1)$, г/с	0,02352	0,01176	0,02352	0,01176	0,04704

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г. Алматы, 1996 г.

Приложение 317
Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий пыли в атмосферу при перегрузках угля на площадках складов №№1, 2, 3 и 4 в 2025-2027 г.г.

		Склад №1			Склад №2			Склад №3		Склад №4		
	Подача у	гля на склад	Подача угля со склада	Подача у	тля на склад	Подача угля со склада	Подача у	тля на склад	Подача угля со склада	Подача у	гля на склад	Подача угля со склада
Наименование показателей	Поз. 41	Конвейер стрелы штабеле- укладчика (поз. 49)	Поз. 58	Поз. 42	Конвейер стрелы штабеле- укладчика (поз. 50)	Поз. 59	Поз. 43	Конвейер стрелы штабеле- укладчика (поз. 51)	Поз. 60	Поз. 44	Конвейер стрелы штабеле- укладчика (поз. 52)	Поз. 61
1	2	3	4	5	6	7	8	9	10	11	12	13
1. Влажность угля, W,%	5	5	5	5	5	5	5	5	5	5	5	5
2. Коэффициент, учитывающий влажность, K ₀	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К ₁	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
5. Уд. выделение твердых частиц с тонны угля, $g_{v_{\pi}} \Gamma / T$	3	3	3	3	3	3	3	3	3	3	3	3
6. Эффективность применяемых средств пылеподавления η_1 дол. ед.	0	0,799	0	0	0,799	0	0	0,799	0	0	0,799	0
7. Склады,хранилища												
1.Откр. С 4 сторон 2.Откр. с 3 сторон		1			1			1			1	
3.Откр. с 2 сторон полн. 4.Откр. с 2 сторон част.												
5.Откр. с 1 стороны	5		5	5		5	5		5	5		5
6.Загруз. рукав 7.Закр. с 4 сторон												
8. Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий K_4	0,1	1	0,1	0,1	1	0,1	0,1	1	0,1	0,1	1	0,1

1	2	3	4	5	6	7	8	9	10	11	12	13
9. Высота пересыпки, h, м	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
10. Коэффициент, учиты-	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
вающий высоту пересыпки,												
K ₅												
11. Коэффициент, учиты-												
вающий гравитационное	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
осаждение твердых частиц,	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
Кг												
12. Количество перегружае-	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000
мого угля, Пг. т/год												
13. Максимальное количество	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400
перегружаемого угля, Пч,т/ч												
14. Годовое количество часов	1477	1477	1477	1477	1477	1477	1477	1477	1477	1477	1477	1477
работы оборудования, Т, ч												
15. Количество оборудования	1	1	1	1	1	1	1	1	1	1	1	1
(перегрузок), N,шт												
			I .	T	Результаты	I	I			1		1
Количество твердых частиц,												
выделяющихся при перегруз-												
ках, без учета мероприятий												
M _{IIIIII} =												
$K_{0*}K_{1}*K_{4}*K_{5}*K_{r}*g_{yz}*\Pi_{r}*10^{-}$	5 (1 (00	5 61 600	5 (1 (00	5 (1 (00)	5 c1 c00	5 (1 (00	5 (1 (00)	5 (1 (02	5 c1 c00	5 (1 (00	5 (1 (02	<i>5.61600</i>
6*N, т/год	5,61600	5,61602	5,61600	5,61600	5,61602	5,61600	5,61600	5,61602	5,61600	5,61600	5,61602	5,61600
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_r * g_{yz} * \Pi_q$	1.05.600	1.05.603	1.05.600	1.05600	1.05.600	1.05.000	1.05.000	1.05.00	1.05.000	1.05.000	1.05.603	1.05.000
*N/3600, г/с	1,05600	1,05602	1,05600	1,05600	1,05602	1,05600	1,05600	1,05602	1,05600	1,05600	1,05602	1,05600
С учетом мероприятий	0.56160	1 12002	0.56160	0.56160	1 12002	0.56160	0.56160	1 12002	0.56160	0.56160	1 12002	0.56160
М' _{пыль} =М _{пыль} *(1-η ₁),т/год	0,56160	1,12882	0,56160	0,56160	1,12882	0,56160	0,56160	1,12882	0,56160	0,56160	1,12882	0,56160
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1), \Gamma/c$	0,10560	0,21226	0,10560	0,10560	0,21226	0,10560	0,10560	0,21226	0,10560	0,10560	0,21226	0,10560

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г. Алматы, 1996 г.

Приложение 318
 Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий в атмосферу при работе усреднительно-погрузочной машины на площадках складов №№1, 2, 3 и 4 и сдувании пыли с их поверхности в 2025-2027 г.г.

		Склад Ј	N <u>0</u> 1			Склад	<u>№</u> 2			Склад	№ 3			Склад.	№ 4	
	Подач	на угля со скл			Пода	ча угля со ск			Пода	ча угля со ск			Пода	ча угля со скл		
		льно-погрузс		Сдувы		ельно-погруз		Сдувы		ельно-погруз		Сдувы		ельно-погрузо		
Наименование показателей	1 / /	шина		co	шина			co	1 / /	шина		co	шина			Сдувы
	работа	в укрытии	_	штабе-	работа	в укрытии	_	штабе-	работа	в укрытии		штабе-	работа	в укрытии	~	со шта-
	рыхлите-	перегруз-	в бара-	ЛЯ	рыхлите-	перегруз-	в бара-	ЛЯ	рыхлите-	перегруз-	в бара-	ЛЯ	рыхлите-	перегруз-	в бара-	беля
	лей	ки	бане		лей	ки	бане		лей	ки	бане		лей	ки	бане	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1. Влажность угля, W,%	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
2. Коэффициент, учитывающий	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
влажность, Ко																
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
скорость ветра, К1	,				,			,	,			Í	,		,	
5. Уд. выделение твердых частиц с	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
тонны угля, $g_{_{V\!A}}$ г/т																
6.1 Эффективность применяемых				0				0				0				0
средств пылеподавления (ороше-																
ние в летнее время), η_1 дол. ед.																
6.2 Эффективность применяемых	0,517	0	0		0,517	0	0		0,517	0	0		0,517	0	0	
средств пылеподавления (ороше-																
ние в летнее время), η_2 дол. ед.																
7. Склады,хранилища	1			1	1			1	1			1	1			1
1.Откр. с 4 сторон																
2.Откр. с 3 сторон																
3.Откр. с 2 сторон полн.																
4.Откр. с 2 сторон част.																
5.Откр. с 1 стороны																
6.Загруз. рукав																
7.Закр. с 4 сторон																
8. Коэффициент, учитывающий	1	0,1	0,1	1	1	0,1	0,1	1	1	0,1	0,1	1	1	0,1	0,1	1
местные условия, степень защи-																
щенности узла от внешних воздей-																
ствий К ₄																
9. Высота пересыпки, h, м	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
10. Коэффициент, учитывающий	0,5	0,5	0,5	0	0,5	0,5	0,5	0	0,5	0,5	0,5	0	0,5	0,5	0,5	0
высоту пересыпки, К5																
11. Коэффициент, учитывающий																
гравитационное осаждение твер-	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
дых частиц, Кг																
12. Количество перегружаемого	6500000	6500000	6500000	0	6500000	6500000	6500000	0	6500000	6500000	6500000	0	6500000	6500000	6500000	0
угля, Пг. т/год																_
13. Максимальное количество пе-	2320	2320	2320	0	2320	2320	2320	0	2320	2320	2320	0	2320	2320	2320	0
регружаемого угля, Пч, т/ч												0= :-				
14. Годовое количество часов ра-	2802	2802	2802	8760	2802	2802	2802	8760	2802	2802	2802	8760	2802	2802	2802	8760
боты оборудования, Т, ч																
15. Количество оборудования,	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0
N,шт																

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
16. Коэффициент, учитывающий	0	0	0	1,3	0	0	0	1,3	0	0	0	1,3	0	0	0	1,3
профиль поверхности складируе-																
мого угля, K_6																
17. Площадь основания штабеля	0	0	0	5000	0	0	0	6700	0	0	0	4800	0	0	0	8500
угля, S_{III} , M^2																
						Pe	зультаты									
1. Количество твердых частиц,																
сдуваемых с поверхности откры-																
тых складов, без учета мероприя-																
тий																
$M_{\text{пыль}}=$																
$31,5*K_0*K_1*K_4*K_{\Gamma}*K_6*S_{III}*10^{-4}$								13,1695								16,7076
т/год	0	0	0	9,82800	0	0	0	2	0	0	0	9,43488	0	0	0	0
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_{\Gamma} * K_6 * S_{\text{III}} * 10^{-4}, \Gamma/c$	0	0	0	0,31200	0	0	0	0,41808	0	0	0	0,29952	0	0	0	0,53040
С учетом мероприятий (в летнее																
время)																
$M'_{\text{пыль}} = M_{\text{пыль}}/2 + (M_{\text{пыль}}/2*(1-\eta_2)),$								13,1695								16,7076
т/год	0	0	0	9,82800	0	0	0	2	0	0	0	9,43488	0	0	0	0
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1)$, г/с, (в летнее																
время)	0	0	0	0,31200	0	0	0	0,41808	0	0	0	0,29952	0	0	0	0,53040
2. Количество твердых частиц, вы-																
деляющихся при перегрузках, без																
учета мероприятий:																
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_{\Gamma} * K_5 * g_{yx} * \Pi_{\Gamma} * 10^{-}$																
⁶ *N, т/год	4,68000	4,68000	4,68000	0	4,68000	4,68000	4,68000	0	4,68000	4,68000	4,68000	0	4,68000	4,68000	4,68000	0
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_{\Gamma} * K_5 * g_{y,\pi} * \Pi_{q} * N/36$																
00, г/с	0,46400	0,46400	0,46400	0	0,46400	0,46400	0,46400	0	0,46400	0,46400	0,46400	0	0,46400	0,46400	0,46400	0
С учетом мероприятий (орошение																
в летнее время)																
$M'_{\text{пыль}} = M_{\text{пыль}}/2 + (M_{\text{пыль}}/2*(1-\eta_2)),$																
т/год	3,47022	0,46800	0,46800	0	3,47022	0,46800	0,46800	0	3,47022	0,46800	0,46800	0	3,47022	0,46800	0,46800	0
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_2)$, Γ/c	0,22411	0,04640	0,04640	0	0,22411	0,04640	0,04640	0	0,22411	0,04640	0,04640	0	0,22411	0,04640	0,04640	0

Расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», г. Алматы, 1996 г.

Приложение 319

Разрез «Восточный». УПК на ст. Восточная. Расчет объемов пыли, сдуваемой при перегрузке угля ленточными конвейерами (поз. 1, 3, 4) и на перегрузочном пункте 1-6 (поз. 5, 7, 8 и 24, 25, 26,27) в 2025-2027 г.г.

Наименование показателей	Стационар пределител вейс	ьные кон-	Пуні	кт перегруз	вки 1-6
	Поз. 1, 3	Поз. 4	Поз. 5, 7	Поз. 8	Поз. 24, 25, 26,27
1	2	3	4	5	6
1. Влажность угля, W,%	5	5	5	5	5
2. Коэффициент, учитывающий влаж-	0,7	0,7	0,7	0,7	0,7
ность, Ко					
3. Скорость ветра, V, м/с	3,4	3,4	3,4	3,4	3,4
4. Коэффициент, учитывающий ско-					
рость ветра, К1	1,2	1,2	1,2	1,2	1,2
5. Уд. выделение твердых частиц с тон-	3	3	3	3	3
ны угля, $g_{\text{уд,}}$ г/т					
6. Эффективность применяемых средств	0	0	0	0	0
пылеподавления η_1 дол. ед.					
7. Склады,хранилища					
1.Откр. С 4 сторон					
2.Откр. с 3 сторон					
3.Откр. с 2 сторон полн.					
4.Откр. с 2 сторон част.					
5.Откр. с 1 стороны					
6.Загруз. рукав	6	6	6	6	6
7.Закр. с 4 сторон					
8. Коэффициент, учитывающий мест-	0,1	0,1	0,1	0,1	0,1
ные условия, степень защищенности	ŕ		,	,	Í
узла от внешних воздействий К ₄					
9. Высота пересыпки, h, м	2	2	2	2	2
10. Коэффициент, учитывающий высо-	0,7	0,7	0,7	0,7	0,7
ту пересыпки, К5	ŕ		ĺ	,	ŕ
11. Коэффициент, учитывающий грави-					
тационное осаждение твердых частиц,	0,4	0,4	0,4	0,4	0,4
Кг	ŕ		ĺ	,	ŕ
12. Количество перегружаемого угля,	6500000	9750000	6500000	9750000	6500000
Пг. т/год					
13. Максимальное количество перегру-	4400	4400	4400	4400	4400
жаемого угля, Пч,т/ч					
14. Годовое количество часов работы	1477	2216	1477	2216	1477
оборудования, Т, ч					
15. Количество оборудования (перегру-	2	1	2	1	4
зок), N, шт					
	Результаты	[•	•	•
Количество твердых частиц, выделяю-	•				
щихся при перегрузках, без учета меро-					
приятий					
$\hat{M}_{\text{пыль}} = K_{0*}K_{1}*K_{4}*K_{5}*K_{r}*g_{yx}*\Pi_{r}*10^{-6}*N,$					
т/год	9,17280	6,87960	9,17280	6,87960	18,34560

1	2	3	4	5	6
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_5 * K_r * g_{y,I} * \Pi_{q} * N/3600,$	1,72480	0,86240	1,72480	0,86240	3,44960
г/с					
С учетом мероприятий	0,91728	0,68796	0,91728	0,68796	1.83456
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta_1), \text{т/год}$	0,71720	0,00770	0,71720	0,00770	1,05450
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1) , \Gamma/c$	0,17248	0,08624	0,17248	0,08624	0,34496

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г. Алматы, 1996 г.

Приложение 320 Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий пыли в атмосферу при сдувании угля с поверхности ленточных конвейеров на площадках складов №№1, 2, 3 и 4 в 2025-2027 г.г.

		Склад №1			Склад №2			Склад №3			Склад №4	
	Подача угл	ія на склад	Подача угля со склада	Подача уг.	пя на склад	Подача угля со склада	Подача уг.	ія на склад	Подача угля со склада	Подача уг	ля на склад	Подача угля со склада
Наименование показателей		Конвейер			Конвейер			Конвейер			Конвейер	, ,
	Поз. 41	стрелы штабеле-	Поз. 58	Поз. 42	стрелы штабеле-	Поз. 59	Поз. 43	стрелы штабеле-	Поз. 60	Поз. 44	стрелы штабеле-	Поз. 61
	1100. 11	укладчика	1100.00	1100. 12	укладчика	1100.05	1100. 15	укладчика	1103. 00	1100	укладчика	1103. 01
		(поз. 49)	_		(поз. 50)	_		(поз. 51)	_	_	(поз. 52)	
1. Влажность угля, W,%	5	5	5	5	5	5	5	5	5	5	5	5
2. Коэффициент, учитывающий влажность, Ко	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
3. Удельная сдуваемость твердых частиц с 1 m^2 , q, $\text{г/m}^2 * \text{c}$	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
4. Коэффициент, учитывающий скорость обдува материа-	1,12	1,12	1,12	1,12	1,12	1,12	1,12	1,12	1,12	1,12	1,12	1,12
ла, C ₅	1,12	1,12	1,12	1,12	1,12	1,12		1,12	1,12	1,12	1,12	1,12
5. Эффективность применяемых средств пылеподавления												
η дол. ед.	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
6. Склады,хранилища												
1.Откр. С 4 сторон	1	1	1	1	1	1	1	1	1	1	1	1
2.Откр. с 3 сторон												
3.Откр. с 2 сторон полн.												
4.Откр. с 2 сторон част.												
5.Откр. с 1 стороны												
6.Загруз. рукав												
7.Закр. с 4 сторон												
7. Коэффициент, учитывающий местные условия, сте-	1	1	1	1	1	1	1	1	1	1	1	1
пень защищенности узла от внешних воздействий К ₄												
8. Коэффициент, учитывающий гравитационное осажде-	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
ние твердых частиц, K_{Γ}	,		,		ŕ	,		,	,	ŕ	Í	
9. Количество перегружаемого угля, Пг. т/год	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000	6500000
10. Максимальное количество перегружаемого угля,	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400	4400
Пч,т/ч												
11. Годовое количество часов работы оборудования, Т, ч	1477	1477	1477	1477	1477	1477	1477	1477	1477	1477	1477	1477
12. Суммарная длина конвейеров, L,м	645	16	637	535	16	427	495	16	487,6	495	16	487,6
13. Ширина ленты конвейера, В,м	2	2	1,8	2	2	1,8	2	2	1,8	2	2	1,8
			PE	ЕЗУЛЬТАТЬ	I							
Количество твердых частиц, сдуваемых при транспорти-												
ровании открытым ленточным конвейером без учёта												
мероприятий:												
$M_{\text{пыль}} = 3,6*q*B*L*T*K_0*C_5*K_4*K_{\Gamma}*10^{-3}, \text{ т/год}$	6,45312	0,16008	5,73578	5,35259	0,16008	3,84486	4,95240	0,16008	4,39053	4,95240	0,16008	4,39053
$\Pi_{\text{пыль}} = q*B*L*K_0*C_5*K_4*K_{\Gamma}, \Gamma/c$	1,21363	0,03011	1,07872	1,00666	0,03011	0,72310	0,93139	0,03011	0,82572	0,93139	0,03011	0,82572
С учетом мероприятий												
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta), \text{т/год}$	0,64531	0,01601	0,57358	0,53526	0,01601	0,38449	0,49524	0,01601	0,43905	0,49524	0,01601	0,43905
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta)$, Γ/c	0,12136	0,00301	0,10787	0,10067	0,00301	0,07231	0,09314	0,00301	0,08257	0,09314	0,00301	0,08257

Приложение 321

Разрез «Восточный». УПК на ст. Восточная. Расчет объемов пыли, образующейся при транспортировке породы внутренней вскрыши ленточными конвейерами на площадке склада №2 в 2025-2027 г.г.

	Скла	д №2
	Подача вскрі	ыши на склад
Наименование показателей		Конвейер
	Поз. 42	стрелы шта- белеуклад-
		чика (поз. 50)
1. Влажность угля, W,%	5	5
2. Коэффициент, учитывающий влажность, Ко	0,7	0,7
3. Удельная сдуваемость твердых частиц с 1м ² , q, г/м ² *с	0,003	0,003
4. Коэффициент, учитывающий скорость обдува материала, С5	1,12	1,12
5. Эффективность применяемых средств пылеподавления η		
дол. ед.	0,9	0,9
6. Склады,хранилища		
1.Откр. С 4 сторон	1	1
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны		
6.Загруз. рукав		
7.Закр. с 4 сторон		
7. Коэффициент, учитывающий местные условия, степень за-	1	1
щищенности узла от внешних воздействий К ₄		
8. Коэффициент, учитывающий гравитационное осаждение	0,4	0,4
твердых частиц, Кг	·	,
9. Количество перегружаемой вскрыши, Пг. т/год	980000	980000
10.Максимальное количество перегружаемой вскрыши, Пч,т/ч	600	600
11. Годовое количество часов работы оборудования, Т, ч	1633	1633
12. Суммарная длина конвейеров, L,м	645	16
13. Ширина ленты конвейера, В,м	2	2
РЕЗУЛЬТАТЫ		
Количество твердых частиц, сдуваемых при транспортирова-		
нии открытым ленточным конвейером без учёта мероприя-		
тий: $M_{\text{пыль}} =$		
3,6*q*B*L*T*K0*C5*K4*Kr*10-3, т/год	7,13470	0,17698
$\Pi_{\text{пыль}} = q^* B^* L^* K_0^* C_5^* K_4^* K_\Gamma, \Gamma/c$	1,21363	0,03011
С учетом мероприятий		
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \text{т/год}$	0,71347	0,01770
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta) , \Gamma/c$	0,12136	0,00301

Приложение 322

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1.

Расчёт эмиссий пыли в атмосферу с ленточных конвейеров при перегрузках вскрыши на 2023 г.

	Местоположение конвейера								
		В разрезе		На пове	эхности				
Наименование показателей	Конвейер разгрузоч- ный ДУ №2 6215(6063)	Перегрузка вскрыши с ДУ№2 на разгрузоч- ный кон- вейер	с КЛП-1 (ВКП-1) на КЛМ-1 (ВКМ-1)	с КЛМ-1 (ВКМ-1) на КЛП-1.1 (ВКП 1-2)	с КЛП-1.1 (ВКП 1-2) на КЛО3-1 (ВКО 1)				
1	2	3	4	5	6				
1. Влажность вскрыши, W,%	5	5	5	5	5				
2. Коэффициент, учитывающий влажность, К0	0,7	0,7	0,7	0,7	0,7				
3. Скорость ветра, V, м/с	<2	<2	<2	3,4	3,4				
4. Коэффициент, учитывающий скорость ветра, К1	1,0	1,0	1,0	1,2	1,2				
5. Уд. выделение твердых частиц с тонны вскрыши, $g_{yд}$, г/т	3	3	3	3	3				
6. Эффективность применяемых средств пылеподавления η1 дол. ед.	0	0	0	0	0				
7. Склады,хранилища									
1.Откр. С 4 сторон									
2.Откр. с 3 сторон									
3.Откр. с 2 сторон полн.	3	3	3	3	3				
4.Откр. с 2 сторон част.									
5.Откр. с 1 стороны									
6.Загруз. рукав									
7.Закр. с 4 сторон									
8. Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий К ₄	0,3	0,3	0,3	0,3	0,3				
9. Высота пересыпки, h, м	2	2	2	2	2				
10. Коэффициент, учитывающий высоту пересыпки, К5	0,7	0,7	0,7	0,7	0,7				
11. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4	0,4				

1	2	3	4	5	6
12. Количество перегружаемой вскрыши, Пг. т/год	3000000	3000000	3000000	3000000	3000000
13. Максимальное количество перегружаемой вскрыши, Пч,т/ч	4800	4 800	4800	4800	4800
14. Годовое количество часов работы оборудования, Т, ч	625	625	625	625	625
15. Количество оборудования (перегрузок), N, шт	1	1	1	1	1
Результаты					
Количество твердых частиц, выделяющихся при перегрузках, без учета					
мероприятий Мпыль=	0,52920	0,52920	0,52920	0,63504	0,63504
K0*K1*K4*K5*Kг*gуд*Пг *10-6*N, т/год					
Ппыль=К0*К1*К4*К5*Кг*дуд*Пч *N/3600, г/с	0,23520	0,23520	0,23520	0,28224	0,28224
С учетом мероприятий	0,52920	0,52920	0,52920	0,63504	0,63504
М'пыль=Мпыль*(1-η1),т/год	0,32920	0,32920	0,32920	0,03304	0,03304
П'пыль=Ппыль* $(1-\eta 1)$, г/с	0,23520	0,23520	0,23520	0,28224	0,28224

Расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», г. Алматы, 1996 г.

Приложение 323

Разрез «Восточный». УПК на ст. Восточная. Склад угля №2. Расчет объемов пыли, образующейся от склада внутренней вскрыши при сдувании со штабеля и погрузке вскрыши в ж.-д. вагоны в 2025-2027 г.г.

	Сдувание	Погрузка в
II	со штабеля	жд. вагоны
Наименование показателей		автопогруз-
	штабель	чик
1	2	3
1. Влажность вскрыши, W,%	5	5
2. Коэффициент, учитывающий влажность, Ко	1	1
3. Скорость ветра, V, м/с	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К ₁	1,2	1,2
5. Уд. выделение твердых частиц с тонны вскрыши, $g_{yд}$, г/т	3	3
6.1 Эффективность применяемых средств пылеподавления	0	
(орошение в летнее время), η_1 , дол. ед.		
6.2 Эффективность применяемых средств пылеподавления		0
(орошение в летнее время), η_2 , дол. ед.		
6.3 Эффективность применяемых средств пылеподавления η_3		
дол. ед.		
7. Склады,хранилища	1	
1.Откр. с 4 сторон		
2.Откр. с 3 сторон		2
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны		
6.Загруз. рукав		
7.Закр. с 4 сторон		
8. Коэффициент, учитывающий местные условия, степень	1	0,8
защищенности узла от внешних воздействий К ₄		- , -
9. Высота пересыпки, h, м	0	1,5
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0	0,6
11. Коэффициент, учитывающий гравитационное осаждение		,
твердых частиц, Кг	0,4	0,4
12. Количество перегружаемой вскрыши, Пг, т/год	0	980 000
13. Максимальное количество перегружаемой вскрыши, Пч,	0	400
т/ч		
14. Годовое количество часов работы оборудования, Т, ч	8760	2450
15. Длина конвейера (при перегрузке внутренней вкрыши на	0	0
штабелеукладчик), L,м		_
16. Ширина ленты конвейера, В,м	0	0
17. Количество оборудования, N, шт	0	1
18. Коэффициент, учитывающий профиль поверхности скла-	1,3	0
дируемой вскрыши, К ₆	,-	
19. Площадь основания штабеля вскрыши, S_{m} , M^{2}	4450	0

1	2	3
РЕЗУЛЬТАТЫ		
1. Количество твердых частиц, сдуваемых с поверхности от-		
крытых складов, без учета мероприятий:		
$M_{\text{пыль}} = 31,5*K_0*K_1*K_4*K_F*K_6*S_{III}*10^{-4}, \text{т/год}$	8,74692	0
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_r * K_6 * S_{\text{ш}} * 10^{-4}$, г/с (в зимнее время)	0,27768	0
С учетом мероприятий (орошение в летнее время) :		
$M'_{\text{пыль}} = M_{\text{пыль}}/2 + M_{\text{пыль}}/2 * (1-\eta_1), \text{т/год}$	8,74692	0
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1)$, г/с,(в летнее время)	0,27768	0
2. Количество твердых частиц, выделяющихся при перегруз-		
ках, без учета мероприятий		
$M_{\text{пыль}} = K_0 * K_1 * K_4 * K_{\Gamma} * K_5 * g_{yA} * \Pi_{\Gamma} * 10^{-6} * N, \text{ т/год}$	0	0,67738
$\Pi_{\text{пыль}} = K_0 * K_1 * K_4 * K_{\Gamma} * K_5 * g_{yx} * \Pi_{q} * N/3600, г/с (в зимнее время)$	0	0,07680
С учетом мероприятий:		
$M'_{\text{пыль}} = M_{\text{пыль}}/2 + M_{\text{пыль}}/2 * (1-\eta_2), $ т/год	0	0,67738
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_2)$, г/с	0	0,07680

Приложение 324

Разрез «Восточный». УПК на ст. Восточная. Расчёт эмиссий пыли в атмосферу при перегрузках внутренней вскрыши на площадке склада №2 в 2025-2027 г.г.

Источник №6009

	Склад	ı №2
	Подача вскрь	
Наименование показателей	Поз. 42	Конвейер стрелы шта- белеуклад- чика (поз. 50)
1. Влажность угля, W, %	5	5
2. Коэффициент, учитывающий влажность, К ₀	1	1
3. Скорость ветра, V, м/с	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К ₁	1,2	1,2
5. Уд. выделение твердых частиц с тонны угля, $g_{yд}$, г/т	3	3
6. Эффективность применяемых средств пылеподавления η_1	0	0,799
дол. ед.		
7. Склады,хранилища		
1.Откр. С 4 сторон		
2.Откр. с 3 сторон		
3.Откр. с 2 сторон полн.		
4.Откр. с 2 сторон част.		
5.Откр. с 1 стороны		5
6.Загруз. рукав	6	
7.Закр. с 4 сторон		
8. Коэффициент, учитывающий местные условия, степень	0,1	0,1
защищенности узла от внешних воздействий К ₄		
9. Высота пересыпки, h, м	1,5	1,5
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0,6	0,6
11. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4
12. Количество перегружаемого угля, Пг. т/год	980000	980000
13. Максимальное количество перегружаемого угля, Пч,т/ч	600	600
14. Годовое количество часов работы оборудования, Т, ч	1633	1633
15. Количество оборудования (перегрузок), N, шт	1	1
Результаты		•
Количество твердых частиц, выделяющихся при перегруз-		
ках, без учета мероприятий		
$M_{\text{пыль}} = K_{0} * K_{1} * K_{4} * K_{5} * K_{\Gamma} * g_{y, I} * \Pi_{\Gamma} * 10^{-6} * N, \text{ т/год}$	0,08467	0,08467
$\Pi_{\Pi \text{bljh}} = K_0 * K_1 * K_4 * K_5 * K_{\Gamma} * g_{yx} * \Pi_{q} * N/3600, \Gamma/c$	0,01440	0,01440
С учетом мероприятий		
$M'_{\text{пыль}} = M_{\text{пыль}} * (1 - \eta_1), \text{г/год}$	0,08467	0,01702
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1 - \eta_1) , \Gamma/c$	0,01440	0,00289

Расчет выполнен на основании «Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами», г. Алматы, 1996 г.

Приложение 325
Разрез «Восточный». УТКР на ст. Восточная. Расчет объемов эмиссий пыли в атмосферу при транспортировке угля на пункты погрузки №1 и 2 в 2025-2027 г.г.

Наименование показателей		огрузки о́1	Пункт п	огрузки №2
Наименование показателей	КЛ поз. 68	КЛ поз. 69	КЛ поз. 70	КЛ поз. 71
1. Влажность угля, W,%	5	5	5	5
2. Коэффициент, учитывающий влажность, К ₀	0,7	0,7	0,7	0,7
3. Удельная сдуваемость твердых частиц с $1m^2$, q, r/m^2*c	0,003	0,003	0,003	0,003
4. Коэффициент, учитывающий скорость обдува материала, C5	1,12	1,12	1,12	1,12
5. Эффективность применяемых средств пылеподавления η дол. ед.	0,9	0	0,9	0
6. Склады,хранилища				
1.Откр. С 4 сторон	1	1	1	1
2.Откр. с 3 сторон				
3.Откр. с 2 сторон полн.				
4.Откр. с 2 сторон част.				
5.Откр. с 1 стороны				
6.Загруз. рукав				
7.Закр. с 4 сторон				
7. Коэффициент, учитывающий местные условия,	1	1	1	1
степень защищенности узла от внешних воздейст-				
вий К ₄				
8. Коэффициент, учитывающий гравитационное	0,4	0,4	0,4	0,4
осаждение твердых частиц, Кг		·	•	·
9. Количество перегружаемого угля, Пг. т/год	4250000	4250000	4250000	4250000
10.Максимальное количество перегружаемого угля, Пч,т/ч	2320	2320	2320	2320
11. Годовое количество часов работы оборудования, T, ч	1832	1832	1832	1832
12. Суммарная длина конвейеров, L,м	368	368	391	391
13. Ширина ленты конвейера, В,м	1,8	1,8	1,8	1,8
14. Количество оборудования, N, шт	1	1	1	1
РЕЗУЛЬТА	ТЫ			
21. Количество твердых частиц, сдуваемых при				
транспортировании открытым ленточным конвейе-				
ром без учёта мероприятий:				
$M_{\text{пыль}} = 3.6*q*B*L*T*K_0*C_5*K_4*10^{-3}, \text{ т/год}$	4,11004	4,11004	4,36691	4,36691
$\Pi_{\text{пыль}} = N*q*B*L*K_0*C_5*K_4, г/с$	0,62319	0,62319	0,66214	0,66214
С учетом мероприятий				
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \text{т/год}$	0,41100	4,11004	0,43669	4,36691
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta)$, Γ/c	0,06232	0,62319	0,06621	0,66214

Приложение 326

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных конвейеров с 2025 по 2027 г.г. (№ ист. 6214, 6215, 6087)

			Наи	менованием	и местополох	кение конвейс	epa		
Наименование показателей	Конвейер КЛП-1 (ВКП-1) (№ ист.6087-03) зочный ДУ №1)	K	ЛМ-1 (ВКМ- № ист.6087-06	КЛП-1.1 (ВКП 1-2) (№ ист.6087)	КЛОЗ 1 (ВКО 1) (№ ист.6087- 07)	
	(6214) ДУ №2	В разрезе В разрезе На поверхности		Итого	На пове	ерхности			
	(6215)	Укрыто	Не укрыто	Итого	Укрыто	Укрыто		Укрыто	Не укры- то
1	2	3	4	5	6	7	8	9	10
1. Влажность материала, W,%	5	5	5	-	5	5	ı	5	5
2. Коэффициент, учитывающий влажность, К ₀	0,7	0,7	0,7	-	0,7	0,7	-	0,7	0,7
3. Удельная сдуваемость твердых частиц с 1м², q, г/м²*с	0,003	0,003	0,003	-	0,003	0,003	ı	0,003	0,003
4. Коэффициент, учитывающий скорость обдува материала, С5	1,0	1,0	1,0	-	1,0	1,12	ı	1,12	1,12
5.Эффективность применяемых средств пы- леподавления η дол. ед.	0	0,9	0	-	0,9	0,9	-	0,9	0
6. Склады,хранилища				-			П		
1.Откр. С 4 сторон	1	1	1	-	1	1	=	1	1
2.Откр. с 3 сторон				-			=		
3.Откр. с 2 сторон полн.				-			=		
4.Откр. с 2 сторон част.				-			=		
5.Откр. с 1 стороны				-			=		
6.Загруз. рукав				-			-		1
7.Закр. с 4 сторон				-			-		1
7. Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий K_4	1	1	1	-	1	1	-	1	1

1	2	3	4	5	6	7	8	9	10
8. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4	0,4	1	0,4	0,4	1	0,4	0,4
9. Количество транспортируемой породы, Пг. т/год	10000000	10000000	10000000	-	10000000	10000000	-	10000000	10000000
10.Максимальное количество перегружаемого материала,, Пч,т/ч	4800	4800	4800	-	4800	4800	-	4800	4800
11. Годовое количество часов работы оборудования, Т, ч	2083	2083	2083	-	2083	2083	-	2083	2083
12. Суммарная длина конвейеров, L,м	26	122	583	705	917	1737	2654	1050	1500
13. Ширина ленты конвейера, В,м	1,8	1,6	1,6	ı	1,6	1,6	1,6	1,6	1,6
			РЕЗУЛЬТА	ТЫ					
Количество твердых частиц, сдуваемых при транспортировании открытым ленточным конвейером без учёта мероприятий: $M_{\text{пыль}} = 3,6*q*B*L*T*K_0*C_5*K_4*K_r*10^{-3}$,									
т/год	0,29479	1,22956	5,87570	7,10526	9,24188	19,60690	28,84878	11,85218	16,93169
$\Pi_{\text{пыль}} = q*B*L*K_0*C_5*K_4*K_{\Gamma}, \Gamma/c$	0,03931	0,16397	0,78355	0,94752	1,23245	2,61467	3,84712	1,58054	2,25792
С учетом мероприятий									
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), \text{т/год}$	0,29479	0,12296	5,87570	5,99866	0,92419	1,96069	2,88488	1,18522	16,93169
$\Pi'_{\Pi b \Pi b} = \Pi_{\Pi b \Pi b} * (1-\eta), \Gamma/c$	0,03931	0,01640	0,78355	0,79995	0,12325	0,26147	0,38472	0,15805	2,25792

Приложение 327

Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1. Расчёт эмиссий пыли в атмосферу при сдувании с поверхности ленточных конвейеров на 2023 г. (№ ист. 6215, 6087)

	Наименованием и местоположение конвейера								
Наименование показателей	Конвейер разгру- зочный ДУ №2 (№	у- ій (№ ист.6087-03)				ЛМ-1 (ВКМ-1 № ист.6087-06	КЛП- 1.1 (ВКП 1-2) (№ ист.608 7-?)	КЛОЗ 1 (ВКО 1) (№ ист.6087- 07)	
	ист.6215)	В разрезе			В разрезе	На по- верхности	Итого	На по	верхности
		Укрыто	Не укрыто	Итого	Укрыто	Укрыто	ИТОГО	Укрыто	Не укры- то
1	2	3	4	5	6	7	8	9	0
1. Влажность материала, W,%	5	5	5	-	5	5	-	5	5
2. Коэффициент, учитывающий влажность, К ₀	0,7	0,7	0,7	-	0,7	0,7	-	0,7	0,7
3. Удельная сдуваемость твердых частиц с 1м², q, г/м²*с	0,003	0,003	0,003	-	0,003	0,003	-	0,003	0,003
4. Коэффициент, учитывающий скорость обдува материала, C5	1,0	1,0	1,0	-	1,0	1,12	-	1,12	1,12
5.Эффективность применяемых средств пы- леподавления η дол. ед.	0	0,9	0	-	0,9	0,9	-	0,9	0
6. Склады,хранилища				-			-		
1.Откр. С 4 сторон	1	1	1	-	1	1	ı	1	1
2.Откр. с 3 сторон				-			ı		
3.Откр. с 2 сторон полн.				-			-		
4.Откр. с 2 сторон част.				-			-		
5.Откр. с 1 стороны				-			-		
6.Загруз. рукав				-			-		
7.Закр. с 4 сторон				-			1		

1	2	3	4	5	6	7	8	9	0
7. Коэффициент, учитывающий местные	1	1	1	-	1	1	-	1	1
условия, степень защищенности узла от									
внешних воздействий K_4									
8. Коэффициент, учитывающий гравитаци-	0,4	0,4	0,4	-	0,4	0.4	-	0,4	0,4
онное осаждение твердых частиц, Кг		,			0,4	,		ŕ	ŕ
9. Количество транспортируемой породы, Пг.	3000000	3000000	3000000	-	3000000	3000000	-	3000000	3000000
т/год									
10.Максимальное количество перегружаемо-	4800	4800	4800	-	4800	4800	-	4800	4800
го материала,, Пч,т/ч									
11. Годовое количество часов работы обору-	625	625	625	-	625	625	-	625	625
дования, Т, ч									
12. Суммарная длина конвейеров, L,м	26	122	583	705	917	1737	2654	1050	1500
13. Ширина ленты конвейера, В,м	1,8	1,6	1,6	-	1,6	1,6	1,6	1,6	1,6
		P	ЕЗУЛЬТАТЬ	οI					
Количество твердых частиц, сдуваемых при									
транспортировании открытым ленточным									
конвейером без учёта мероприятий:									
$M_{\text{пыль}} = 3,6*q*B*L*T*K_0*C_5*K_4*K_r*10^{-3}, т/год$	0,08845	0,36893	1,76299	2,13192	2,77301	5,88301	8,65602	3,55622	5,08032
$\Pi_{\text{пыль}} = q^* B^* L^* K_0^* C_5^* K_4^* K_{\Gamma}, \Gamma/c$	0,03931	0,16397	0,78355	0,94752	1,23245	2,61467	3,84712	1,58054	2,25792
С учетом мероприятий									
$M'_{\text{пыль}} = M_{\text{пыль}} * (1-\eta), T/\Gamma O Д$	0,08845	0,03689	1,76299	1,79988	0,27730	0,58830	0,86560	0,35562	5,08032
$\Pi'_{\text{пыль}} = \Pi_{\text{пыль}} * (1-\eta), \Gamma/c$	0,03931	0,01640	0,78355	0,79995	0,12325	0,26147	0,38472	0,15805	2,25792

Приложение 328

Разрез «Восточный». Станция Восточная. Склад ГСМ-1. Идентификация состава выбросов от резервуаров с дизельным топливом.

Неорганизованный источник	№6037 в период с 202	25 по 2027 г.г.

Наименование показателей	Ед.	Усл.		2025-2027гг.
	изм.	обозн.		
Исходные данные				
1. Валовые выбросы углеводородов:	т/год	$G_{\text{диз}}$	0,00000	0,18483
2. Максимально-разовые выбросы:	г/с	$M_{\text{диз}}$	0,00000	0,15700
Идентификация состава выбросов				
Углеводороды:	Ді	изельное	топливо	
1. Предельные (C ₁₂ -C ₁₉), всего: -	%	C_{i}	99,57	99,57
концентрация				
- валовый выброс	т/год	G_{i}	0,00000	0,18404
- максимально-разовый	г/с	M_{i}	0,00000	0,15632
выброс				
2. Сероводород - концентрация	%	C_{i}	0,28	0,28
- валовый выброс	т/год	G_{i}	0,00000	0,00052
- максимально-разовый	г/с	M_{i}	0,00000	0,00044
выброс				

Расчет выполнен по «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров», РНД 211.2.02.09-2004. Примечание. 2021-2024 гг. склад не работает.

Приложение 329
Разрез «Восточный». Комплекс по выдаче вскрышных пород. ЦПВК №1. Расчёт эмиссий пыли в атмосферу с ленточных конвейеров при перегрузках вскрыши в период с 2025 по 2027 г.г.

		Местоп	оложение конв	вейера	
		В разрезе		На повер	хности
Наименование показателей	Конвейеры разгрузочные ДУ №1, ДУ №2	Перегрузка вскрыши с ДУ№1 и ДУ№2 на разгрузоч- ные кон- вейеры	с КЛП-1 (ВКП-1) на КЛМ-1 (ВКМ-1)	с КЛМ-1 (ВКМ-1) на КЛП-1.1 (ВКП 1-2)	с КЛП-1.1 (ВКП 1-2) на КЛО3-1 (КЛОЗ 1)
1	2	3	4	5	6
1. Влажность вскрыши, W,%	5	5	5	5	5
2. Коэффициент, учитывающий влажность, КО	0,7	0,7	0,7	0,7	0,7
3. Скорость ветра, V, м/с	<2	<2	<2	3,4	3,4
4. Коэффициент, учитывающий скорость ветра, К1	1,0	1,0	1,0	1,2	1,2
5. Уд. выделение твердых частиц с тонны вскрыши, $g_{vд}$, г/т	3	3	3	3	3
6. Эффективность применяемых средств пылеподавления $\eta 1$ дол. ед.	0	0	0	0	0
7. Склады,хранилища					
1.Откр. С 4 сторон					
2.Откр. с 3 сторон					
3.Откр. с 2 сторон полн.	3	3	3	3	3
4.Откр. с 2 сторон част.					
5.Откр. с 1 стороны					
6.Загруз. рукав					
7.3акр. с 4 сторон					
8. Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий К ₄	0,3	0,3	0,3	0,3	0,3
9. Высота пересыпки, h, м	2	2	2	2	2
10. Коэффициент, учитывающий высоту пересыпки, К ₅	0,7	0,7	0,7	0,7	0,7
11. Коэффициент, учитывающий гравитационное осаждение твердых частиц, Кг	0,4	0,4	0,4	0,4	0,4
12. Количество перегружаемой вскрыши, Пг. т/год	10000000	5000000	10000000	10000000	10000000

1	2	3	4	5	6
13. Максимальное количество перегружаемой вскрыши, Пч,т/ч	4800	2 400	4800	4800	4800
14. Годовое количество часов работы оборудования, Т, ч	2083	2 083	2083	2083	2083
15. Количество оборудования (перегрузок), N,шт	1	1	1	1	1
Результаты					
Количество твердых частиц, выделяющихся при перегрузках, без учета меро-					
приятий Мпыль=	1,76400	0,88200	1,76400	2,11680	2,11680
К0*К1*К4*К5*Кг*gуд*Пг *10-6*N, т/год					
Ппыль=К0*К1*К4*К5*Кг*дуд*Пч *N/3600, г/с	0,23520	0,11760	0,23520	0,28224	0,28224
С учетом мероприятий	1,76400	0,88200	1,76400	2,11680	2,11680
М'пыль=Мпыль*(1-η1),т/год	1,70400	0,00200	1,70400	2,11000	2,11000
Π 'пыль= Π пыль* $(1-\eta 1)$, г/ c	0,23520	0,11760	0,23520	0,28224	0,28224

Расчет выполнен на основании Сборника методик по расчету выбросов вредных веществ в атмосферу различными производствами, г. Алматы, 1996 г.