АО «ПЕТРО КАЗАХСТАН КУМКОЛЬ РЕСОРСИЗ»

ПРОЕКТ

НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ ДЛЯ МЕСТОРОЖДЕНИЯ МАЙБУЛАК АО «ПЕТРО КАЗАХСТАН КУМКОЛЬ РЕСОРСИЗ» НА 2026 ГОД

СПИСОК ИСПОЛНИТЕЛЕЙ

Исполнители	Должность			
Бердиева Ж. Ж.	Директор ТОО «Сыр-Арал сараптама»			
Георгица О.В. Инженер-эколог				
Местонахождение - г. Кызылорда, ул. Желтоксан, 120				
Государственная лицензия 01402Р выдана МООС РК 08.07.2011 года на выполнение				
работ и услуги в области охраны окружающей среды, приложение к лицензии № 0074777				
на природоохранное нормирование и проект	ирование.			

АННОТАЦИЯ

Корректировка проекта нормативов допустимых выбросов (НДВ) вредных веществ в атмосферу разработан для месторождения Майбулак. Акционерное общество «Петро Казахстан Кумколь Ресорсиз» (далее АО «ПККР»), осуществляет промышленную разработку месторождений нефти и газ на основании соответствующей лицензии на недропользование.

Проект на 2026 год разработан в связи с истечением срока действия предыдущего проекта НДВ за 2025 год.

В проект НДВ также будут включены нормативы месторождения Майбулак, источники при капитальном ремонте скважин, также переходящий проект раздела ООС на период строительство и эксплуатации на 2026 год (так как в 2025 г строительство еще не начались): РООС «Модернизация ПСН на месторождении Майбулак. Улытауская область, Улытауский район».

По степени воздействия на окружающую среду Месторождение Майбулак АО «Петро Казахстан Кумколь Ресорсиз» относится к I категории. Аварийные и залповые выбросы отсутствуют.

Расчеты величин приземных концентраций вредных веществ в атмосферном воздухе, разработка и формирование таблиц проекта нормативов допустимых выбросов предприятия выполнены с использованием ПК «Эра» версии 3.0 (ООО НПП «Логос Плюс», г. Новосибирск, РФ), согласованной Министерством охраны окружающей среды Республики Казахстан.

В соответствии с пунктом 3 статьи 147 Кодекса РК «О недрах и недропользовании», Приказом Министра энергетики РК от 5 мая 2018 года №165 «Об утверждении формы программы развития переработки сырого газа» и на основании Проекта разработки месторождения Майбулак недропользователем АО «ПетроКазахстан Кумколь Ресорсиз» разработана «Корректировка программы развития переработки сырого газа по месторождению Майбулак АО «ПетроКазахстанКумкольРесорсиз». Действующая Программа развития переработки сырого газа на месторождении Майбулак на 01.07-31.12.2026 г. утверждена Рабочей группой МЭ РК №13-1-0/3463-вн от 25.06.2024 г Протокол №8/5-1.

Исходными данными для разработки проекта нормативов допустимых выбросов (НДВ) на 2026 год для месторождения Майбулак являются сведения, отраженные «Программа развития переработки сырого газа по месторождению Майбулак АО «ПетроКазахстанКумкольРесорсиз» и исходные данные месторождения Майбулак, утвержденный заказчиком.

Проект НДВ включает в себя общие сведения о предприятии и характеристику применяемого оборудования, расчет количественных характеристик выбросов загрязняющих веществ, обоснование санитарно-защитной зоны, а также нормативы выбросов загрязняющих веществ. Итого на 2026 год в месторождении Майбулак насчитывается всего:

- 1. На месторождении Майбулак всего 63 источников, из которых 14 организованных источников и 49 неорганизованных (из них 35 неорганизованный источник ЗРА и ФС не нормируется);
- 2. При капитальном ремонте скважин всего 7 источников, из которых 6 организованных и 1 неорганизованный.
- 3. РООС «Модернизация ПСН на месторождении Майбулак» всего 9 источников ЗВ, из них 3 организованных и 6 источников неорганизованных.

Итого на 2026 год источниками предприятия от эксплуатации на месторождении Майбулак составит – 4,28707487 г/с, 18,060089608m/год;

При капитальном ремонте скважин (KPC 2 скважин) – 3,671 г/с, 5,051 m/год.

Выбросы при СМР по проекту«Модернизация ПСН на месторождении Майбулак»-0.269882396г/с; 0,047102576 m/nepuoд.

Сравнительный анализ по выбросам ЗВ по действующему и новому ПРПСГ на 2024 и 2026

год							
2024 год	01.07-31.12.2024 год	2025 год (корректировка)	2026 год				
	(корректировка)						
21,922 т/год	14,607 т/год	22,3311 т/год	23,1581 т/год				
Из них:							
Выбросы при КРС (1 скважина) – 2,523 т	Выбросы при КРС (1 скважина) – 2,523 т	Выбросы при КРС и ПРС (2 скважины) – 5,046 т Выбросы при СМР- 0,047102576 т/период	Выбросы при КРС и ПРС (2 скважины) — 5,046 т Выбросы при СМР- 0,047102576 т/период				
Эксплуатация – 19,399	Эксплуатация –	Эксплуатация –	Эксплуатация –				
m/20d	12,084 т/год	17,25954т/год	18,060089608т/год				
Из них:	Из них:	Из них:	Из них:				
Выбросы от печи — 0,61896 т (от расхода газа на 2024 год — 0,218 млн м3 при <i>плотности</i> 0,7878 кг/м3)	Выбросы от печи — 0,333 т (от расхода газа на 01.07-31.12.2024 год — 0,116 млн м3)	Выбросы от печи — 0,775 т (от расхода газа на 2025 год — 0,204 млн м3 при плотности 1,017 кг/м3)	Выбросы от печи — 0,391372 т (от расхода газа на 2025 год — 0,1136 млн м3 при плотности 0,9618 кг/м3)				
Выбросы от факела — 0,1407 т (от расхода газа на 2024 год — 0,007 млн м3)	Выбросы от факела – 0,00087 т (от расхода газа на 01.07-31.12.2024 год – 0,00004 млн м3)	Выбросы от факела – 0, т (от расхода факела на 2025 год – 0, млн м3)	Выбросы от факела — 0,00294 т (от расхода газа на 2026 год — 0,0001 млн м3 при плотности 0,9618 кг/м3)				
Выбросы от резервуара – 1,053 т (от добычи нефти на 2024 год – 17,7 тыс м3)	Выбросы от резервуара — 0,179 т (от добычи нефти на 2024 год — 2,888 тыс м3)	Выбросы от резервуара – 0,305 т (от добычи нефти на 2025 год – 5,118 тыс м3)	Выбросы от резервуара – 0,390 т (от добычи нефти на 2026 год – 4,558 тыс м3)				
Выбросы от ДЭС – 4,04 т (от расхода д/топлива по факту на 2024 год – 120,73 т)	Выбросы от ДЭС – 4,04 т (от расхода д/топлива по факту на 2024 год – 120,73 т)	Выбросы от резервуара – 0,305 т (от добычи нефти на 2025 год – 5,118 тыс м3)	Выбросы от ДЭС – 1,689 т (от расхода д/топлива по факту на 2026 год – 50,5 т)				
Выбросы от ГПУ – 12,3192 т (от расхода газа на 2024 год – 0,475 млн м3)	Выбросы от ГПУ – 6,3044 т (от расхода газа на 01.07-31.12.2024 год – 0,24296 млн м3)	Выбросы от ГПУ – 13,14312 т (от расхода газа на 2025 год – 0,458 млн м3. Теоретические объемы газа рассчитаны согласно нового анализа компонентного состава	Выбросы от ГПУ — 14,3572 т (от расхода газа на 2026 год — 0,500 млн м3. Теоретические объемы газа рассчитаны согласно нового анализа				

Примечание: Согласно анализа компонентного состава газа (на 2026 год) плотность газа составляет 0,9618 кг/м3.

На 2026 год расчеты выбросов при КРС и ПРС выполнен на 2 скважины (согласно исходных данных Заказчика), в 2025 году расчет был выполнен на 2 скважины.

Фактические, нормативные и исходные показатели по месторождению Майбулак 2022 г. по $2026~\mathrm{r}.$

Проектные и фактические технологические показатели

№п/п	Наименование						
		Количество					
		2022г.	2023 г.	2024 г. (полный год)	01.07- 31.12.2024	2025 г.	2026
					г.		
1	Добыча нефти, тыс. т	3,3	2,7	17,7	2,888	5,118	4,558
2	Добыча газа, млн. м3	0,205	0,17	0,7	0,359	0,662	0,614
	Из них:						
	На печи подогрева		0,041	0,218	0,116	0,204	0,113
	На сжигание		0,0112	0,007	0,00004	0	0,0001
	На ГПУ		0,1178	0,475	0,243	0,457	0,500
3	Фактические	10,77	11,896	1 полуг - 11,328	-	-	-
	выбросы, т						
4	Нормативные	13,864	15,276	19,399	12,084	17,119	18,059
	выбросы при						
	эксплуатации, т						

Разделом ООС к рабочему проекту «Модернизация ПСН на месторождении Майбулак» предусмотрено введение в эксплуатацию нового истосточника 3B - резервуар хранения нефти $V=100~\mathrm{m}$ 3, который является организованным.

При расчете нормативов валовых выбросов предприятия на 2026 год наряду с утвержденными технологическими показателями также учитывалась фактическая максимальная нагрузка оборудования за последние 2-3 года.

Срок действия установленных допустимых выбросов определяется сроком действия заключений государственной экологической экспертизы, выданных на содержащие нормативы проекты.

СОЛЕРЖАНИЕ

СОДЕГЖАППЕ	
СПИСОК ИСПОЛНИТЕЛЕЙ Error! Bookmark not	
АННОТАЦИЯ	
СОДЕРЖАНИЕ	
ВВЕДЕНИЕ	
1. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ	
1.1. Краткая характеристика расположения	
1.2. Карта-схема	
1.3. Ситуационная карта-схема района размещения объекта	
	ЗНЕНИЯ 10
АТМОСФЕРЫ	10
2.1. Краткая характеристика технологии производства и технологического оборудо	
точки загрязнения атмосферы	
 2.1.1 Расход газа 2.2. Краткая характеристика существующих установок очистки газа, укрупненный а 	
технического состояния и эффективности работы	
2.3.Оценка степени применяемой технологии, технического и пылегазоо	
оборудования передовому научно-техническому уровню в стране и мировому опыту	
2.4. Перспектива развития	
2.5. Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ	
2.6. Характеристика аварийных и залповых выбросов	
2.7. Перечень загрязняющих веществ, выбрасываемых в атмосферу	
2.8. Обоснование полноты и достоверности исходных данных, принятых для расчета Н	
2.9. Определение категории предприятия	
3. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ	
3.1. Программы автоматизированного расчета загрязнения атмосферы	42
3.2.Метеорологические характеристики и коэффициенты, определяющие условия рас	сеивания
загрязняющих веществ в атмосфере города	
3.3. Результаты расчетов уровня загрязнения атмосферы на существующее полож	ение и с
учетом перспективы развития	43
3.4. Предложения по нормативам допустимых выбросов по каждому источ	•
ингредиенту	
3.5. Уточнение границ области воздействия объекта	
3.5.1. Данные о пределах области воздействия	
3.5.2.Обоснование размера зоны воздействия по факторам физического воздействия	
 3.5.3. Обоснование зоны воздействия по совокупности показателей МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИ 	
МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХМЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ	
5. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ	64
6. ОЦЕНКА НЕИЗБЕЖНОГО УЩЕРБА, НАНОСИМОГО ОКРУЖАЮЩЕЙ СРЕДЕ	
СПИСОК ЛИТЕРАТУРЫ	
Приложение 1 – Исходные данные	
Приложение 2 – Бланки инвентаризации	
Приложение 3 – Расчеты валовых выбросов	
Приложение 4 – Карта-схема предприятия	
Приложение 5 – Ситуационная карта-схема расположения предприятия	
Приложение 6 - Протоколы расчетов величин выбросов	
Приложение 7 – Лицензия на природоохранное приоектирование	

ВВЕДЕНИЕ

Проект нормативов допустимых выбросов в атмосферу для АО «Петро Казахстан Кумколь Ресорсиз» (далее - проект нормативов НДВ) разработан на основании Экологического кодекса Республики Казахстан, ГОСТ 17.2.3.02-78 «Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями», РНД 211.2.02.01-97 «Инструкция по нормированию выбросов загрязняющих веществ в атмосферу». Алматы, 1997 и других законодательных актов Республики Казахстан, а также письма-запроса руководителя предприятия.

Корректировка проекта нормативов НДВ разработан в соответствии с Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 Об утверждении Методики определения нормативов эмиссий в окружающую среду.

1. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ

1.1. Краткая характеристика расположения

Наименование предприятия: AO «Петро Казахстан Кумколь Ресорсиз».

Юридический адрес: Республика Казахстан, г. Кызылорда, ул. Казыбек би, 13.

Наименование объекта: месторождение Майбулак

Вид деятельности: промышленная разработка месторождений.

Месторождение Майбулак расположено в северной части Арыскумского прогиба Южно-Тургайской впадины, являющейся северо-восточной частью Туранской плиты и приуро- ченой к сводовой части удлиненной полуантиклинали субмеридианального простирания, примыкающей на северо-востоке к Главному Каратаускому разлому.

В административном отношении месторождение Майбулак расположено на территории Улытауской области на землях, находящейся в долгосрочной аренде Кызылординской области.

Ближайшим населенным пунктом является пос. Жалагаш расположен 115 км от месторождения, ж/д станция Жосалы расположенная в более 120 км от месторождения, областной центр г. Кызылорда расположен в 190 км к югу. На юго-востоке в 100 км расположено месторождение Кумколь, промышленное освоение которого начато в 1990 году.

В орографическом отношении район работ представляет собой низменную равнину с отметками рельефа от 60 до 130 м, осложненную возвышенным плато с отметками 200-230 м над уровнем моря.

Месторождение открыто в 1988 г. Недропользователем является АО «ПетроКазахстан Кумколь Ресорсиз» (ПККР), на основании Лицензии серии МГ № 48-D (нефть) от 04.12.1997 г. на право пользования недрами для добычи углеводородного сырья на месторождении Майбулак и Контракта № 278 от 03.12.1988 г. на проведение добычи углеводородного сырья на нефтяном месторождении Майбулак. На основании дополнения к Контракту № 278 срок действия контракта до 2041 года.

Согласно Решения по определению категории объекта, оказывающего негативное воздействие на окружающую среду, выданного 31.08.2021 г. РГУ «Департамент экологии по Кызылординской области» Комитета экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов РК месторождение Майбулак АО «ПетроКа- захстан Кумколь Ресорсиз» относится к I категории опасности.

В соответствии с требованиями Кодекса РК «О недрах и недропользовании» № 125-VI ЗРК от 27.12.2017 г. недропользователь обязан разрабатывать программы развития переработки сырого газа, которые должны обновляться каждые три года.

Месторождение эксплуатируется в соответствии с документом «Анализ разработки месторождения Майбулак» (Протокол ЦКРР РК № 12/8 от 31.03.2021 г.).

На месторождении выделено два эксплуатационных объекта:

- I объект Ю-IVa, Ю-IVб горизонты;
- IIобъект Ю-V, Ю-VI, Ю-VII, Ю-VIII, Ю-IXa, Ю-IXб, Ю-X горизонты.

Месторождение разрабатывается с 2001 г, характеризуется снижением уровня годовых отборов нефти и нарастанием обводненности продукции. В целом по месторождению обводненность составляет 92.3 %.

В 2010 г. был выполнен пересчет запасов нефти и растворенного газа месторождения Майбулак по состоянию изученности на 01.01.2010 г. (Протокол ГКЗ РК № 969-10-У от $30.09.2010\,\Gamma$.).

Запасы нефти составляют:

- категория В+С1 – геологические 5217 тыс. тонн, извлекаемые 1045 тыс. т.

Запасы растворенного газа в нефти составляют:

- категория B+C1 – геологические 392 млн. M^3 , извлекаемые 86 млн. M^3 .

На месторождении Майбулак в соответствии с проектными решениями добываемый газ используется качестве топлива в печах подогрева и на выработку электроэнергии на газопоршневой электростанции (ГПЭС).

Газопоршневая установка по выработке электроэнергии с объемом потребления газа до 7,2 тыс. м³ в сутки введена в эксплуатацию в 2009 году. Весь объем добытого газа направляется на выработку электроэнергии, в качестве топлива для печей подогрева нефти газ используется в незначительных количествах, в целях поддержания необходимой температуры нефти для дальнейшей перекачки в магистральный нефтепровод.

Режим работы месторождения: 24 часа в сутки, 365 дней в год. Скважины обслуживаются согласно утвержденного графика вахтовым методом. Для обслуживания используется персонал, проживающий в существующем вахтовом поселке.

Электроснабжение участков — электроснабжение участков месторождения осуществляется от $\Gamma\Pi$ ЭС, на которой установлено 2 блока $\Gamma\Pi$ У, мощностью по 1 МВт, а также от 2 дизель-генератора АКСА 375 кВА и САТ С-32 1100 кВА.

Теплоснабжение административно-бытовых помещений на участках месторождения производится от электрокалориферов.

1.2. Карта-схема

Карта-схема расположения источников с нанесенными источниками выбросов загрязняющих веществ в атмосферу представлена в приложении 4.

1.3. Ситуационная карта-схема района размещения объекта

Обзорная карта расположения месторождения Майбулак представлена в приложении 5.

2. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

2.1. Краткая характеристика технологии производства и технологического оборудования с точки загрязнения атмосферы

Основной вид деятельности – промышленная разработка месторождения Майбулак.

Источниками загрязнения атмосферного воздуха являются: факельная установка, трубы печей подогрева нефти, дизель-генераторы, дыхательные клапаны резервуаров для хранения нефтепродуктов, фланцевые соединения и запорно-регулирующая аппаратура скважин, сепараторов и буровых насосов.

Количество выбросов загрязняющих веществ в атмосферу на предприятии зависит от количества действующих скважин, объемов добычи нефти и газа, а соответственно и от количества действующего на объектах оборудования, в основном печей подогрева нефти. В связи с изменением данных показателей, изменяются и ежегодные выбросы ЗВ в атмосферу.

Показатели распределения добычи сырого газа по месторождению Майбулак на 2025 год представлены в таблице 2.1.1.

Таблица 2.1.1 – Показатели использования газа м/р Майбу	лак
---	-----

№	Наименование	м/р Майбулак
1	Добыча газа, млн. м ³	0,614
2	Расход газа на нужды печей подогрева, млн. м ³	0,113568
3	Газ на выработку электроэнергии, млн. м ³	0,500312
4	Технологически неизбежное сжигание газа, млн. м ³	0,0001
5	Технологические потери, млн. м ³	0,0

Месторождение разрабатывается с 2001 г, характеризуется снижением уровня годовых отборов нефти и нарастанием обводненности продукции. В целом по месторождению обводненность составляет 92,3 %.

На месторождении выделено два эксплуатационных объекта:

- I объект Ю-IVa, Ю-IVб горизонты;
- IIобъект Ю-V, Ю-VI, Ю-VII, Ю-VIII, Ю-IXa, Ю-IXб, Ю-X горизонты.

Система внутрипромыслового сбора и подготовки добываемой продукции месторождения предназначена для сбора, поскважинного замера и промыслового транспорта добываемой продукции к объекту подготовки для доведения промыслового потока нефти до товарной кондиции и сдачи потребителю.

В основу технологической схемы сбора нефти заложена однотрубная лучевая герметизированная напорная система сбора продукции скважин, которая до минимума сокращает потери нефти и газа при внутрипромысловом сборе и подготовке нефти по месторождению и при транспортировке ее по трубопроводу.

Газожидкостная смесь со скважин проходит через гребенки систем, типа «Спутник» (2 ед.), где производится поочередный замер продукции скважин тестовым сепаратором типа «НГМ» и, при этом продукция остальных скважин поступает на трехфазную сепараторную установку первой ступени С-1 (V = 12,5 м³). На Спутнике № 2 имеется печь подогрева (1 ед.), которая служит для нагрева сборной нефти. Перед сепаратором в поток газожидкостной смеси подается из БР-1, 2, 3, 4 ингибитор солеотложений, деэмульгатор обезвоживания и обессоливания, замедления коррозии для химической обработки.

После сепаратора газожидкостная смесь проходит через печь подогрева BROMLEY (1 ед.), где подогревается до температуры 90 °C и поступает в сепаратор второй ступени C-3 ($V=6.3 \text{ m}^3$).

Процесс подготовки осуществляется в сепараторе второй ступени С-3 (V = 6.3 м³). Обезвоженная нефть собирается в нефтесборнике и выводится из аппарата через штуцер выхода нефти. Нефтяная эмульсия после сепаратора направляется в концевую сепарационную установку С-4 (V = 19.6 м³) для окончательной дегазации нефти при давлении 2,5 атм., температуре 60 °C. Дегазированная нефть из С-4 естественным давлением поступает в резервуарный парк, состоящий из 3 товарных резервуаров хранения нефти РВС-1000 м³. После отстоя подтоварная вода насосам X80-65 откачивается в резервуар пластовой воды. Далее, нефть из резервуаров товарной нефти насосами НБ-125 и НБ-32 перекачивается через узлы учета нефти СИКН (МС-300) в нефтепровод Майбулак-Арыскум при давлении – 5.6 атм., температуре 60 °C.

Газ, выходящий из сепараторов С-1, 3, 4 направляется на ГПУ (газопоршневая установка) «Ямбахер», далее частичный объем газа обратно возвращается в сепаратор С-2 (V = $4.0~{\rm M}^3$), где отделяются капельная жидкость и образованный конденсат. Газ из сепаратора С-2 будет использован как топливный газ для собственных нужд. Подготовленный газ направляется на печь подогрева нефти, а остальные излишки газа под собственным давлением направляются через конденсатосборник ДЕ-8 ${\rm M}^3$ и сбрасывается на факел низкого давления.

В случае остановки ПСН на площадке предусмотрена наливная установка, которая предусматривает вывоз нефти в автоцистернах на месторождение Арыскум.

В 2018 году при добыче газа 0,651 млн. м^3 , использование на собственные нужды составило 0,018 млн. м^3 , на выработку электроэнергии использовано 0,631 млн. м^3 (97 % от общей добычи газа), объем технологически неизбежного сжигания 1,860 тыс. м^3 .

В 2019 году использование газа составило: добыча газа -0,667 млн. M^3 , на собственные нужды -0,041 млн. M^3 , на выработку электроэнергии -0,626 млн. M^3 .

В 2020 году использование газа составило: добыча газа -0,407 млн. m^3 , на печи подогрева 0,08 млн. m^3 , на выработку электроэнергии 0,326 млн. m^3 , технологически неизбежного сжигания газа не производилось.

Свойства нефти в пластовых условиях

Всего физико-химические свойства пластовой нефти представлены результатами исследований 20 проб нефти, отобранных с горизонтов Ю-IVa (блоки VII, VIII, X), Ю-IVб (блок VIII), Ю-IVa+б (блок IX), Ю-VI (блоки VIII, X), Ю-VIII (блок IX), Ю-IXa (блок IX),Ю-IXб (блок X), в том числе 2 пробы из скважин 26 и 32, отобранные совместно с горизонтовЮ-VI+VII+VIII+IXa+X (блок X), 2 пробы со скважины 17 (горизонт VII блок IX), 2 пробы со скважины 45 (горизонт VI блок IX), четыре пробы со скважины 46 (совместно горизонты VIII+IX блок X). Из 26 исследованных проб 3 признаны некондиционными (скв.9,17).

І объект разработки

Среднее значение газосодержания составляет 65,48 мз/т, давления насыщения - 8,14 МПа, объёмного коэффициента - 1,177 д.ед., плотности пластовой нефти - 0,728 г/см3, вязкости пластовой нефти - 0,95 мПа*с.

II объект разработки

Среднее значение газосодержания составляет 69,67 м $_3$ /т, давления насыщения — 6,76\ МПа, объёмного коэффициента — 1,180 д.ед., плотности пластовой нефти — 0,740 г/см $_3$,вязкости пластовой нефти — 1,76 мПа*с.

Свойства нефти в поверхностных условиях

Всего физико-химические свойства дегазированной нефти представлены результатами исследований 25 проб нефти, отобранных с горизонтов Ю-IVa (блоки VII, VIII, X), Ю-IVб (блок VIII), Ю-VI (блоки VIII, IX, X), Ю-VII (блок IX, X), Ю-VIII (блоки IX, X), Ю-IXa (блок IX), Ю-IXб (X), Ю-IXa+IXб (блок IX), в том числе 3 пробы, отобранные совместно с

горизонтов Ю-VII+VIII+IXа+X (блоки IX, X). При расчете средних значений параметров дегазированной нефти были отбракованы завышенные значения кинематической вязкости пробы нефти из скважины 40 (горизонт Ю- IXб, блок X), отобранной 12.04.2014 г. и содержание асфальтенов в пробе нефти из скважины 9 (Ю-VIII, блок X), завышенное в несколько раз. Дегазированная нефть месторождения Майбулак является особо легкой, невязкой малосмолистой, малосернистой, высокопарафинистой и застывающей при положительных температурах.

І объект разработки

Дегазированную нефть по типу можно охарактеризовать, как особо легкую с плотностью при температуре 20°С 0,7893 г/см3. Кинематическая вязкость при температуре 20 °С составляет 3,64 мм2/с. Массовое содержание общей серы составляет 0,23 %, высокомолекулярных парафинов — 10,67 %, асфальтенов — 0,10 %, смол силикагелевых — 2,24 %. Температура застывания дегазированной нефти составляет плюс 10 °С. Температура начала кипения дегазированной нефти составляет плюс 51 °С. Объемный выход светлых фракций, выкипающих при атмосферном давлении, составляет до температуры 100 °С –9 %, до 200°С (бензиновые фракции) —35 %, до 300 °С (керосиновые фракции) —67 %.

II объект разработки

Дегазированную нефть по типу можно охарактеризовать, как особо легкую с плотностью при температуре 20 °C 0,8116 г/см3. Кинематическая вязкость при температуре 20 °C составляет 5,71 мм2/с. Массовое содержание общей серы составляет 0,16 %, высокомолекулярных парафинов – 12,0 %, асфальтенов – 0,44 %, смол силикагелевых – 3,30 %. Температура застывания дегазированной нефти составляет плюс 8,42 °C. Температура начала кипения дегазированной нефти составляет плюс 53 °C. Объемный выход светлых фракций, выкипающих при атмосферном давлении, составляет до температуры 100 °C – 8 %, до 200 °C (бензиновые фракции) – 31 %, до 300 °C (керосиновые фракции) – 56 %__

Физико-химические свойства газа, по данным анализа компонентного состава газа представлены в Анализе компонентного состава газа (приложении 9).

На балансе предприятия имеется передвижная техника. Согласно п. 17 ст. 202 Экологического Кодекса РК нормативы допустимых выбросов для передвижных источников не устанавливаются.

В целом на площадке имеются следующие источники:

Номер источ-	Источник выделения за веществ	агрязняющих	Число часов	Науптамаранна ранка атра
ника выбросов на карте-схеме	Наименование	Количество, шт.	работы в году	Наименование вещества
1	2	3	4	5
0001	Печь для подогрева	1	8664	Азота (IV) диоксид
	нефти			Азот (II) оксид
				Углерод оксид
				Метан
0008	Печь для подогрева	1	8664	Азота (IV) диоксид
	нефти			Азот (II) оксид
				Углерод оксид
				Метан
0016	Факел (при экспл V7)	-	-	Азота (IV) диоксид
	Факел (при ППР V8)	1	16	Сажа
				Углерод оксид
				Метан
0019	Печь для подогрева	1	8664	Азота (IV) диоксид
	нефти			Азот (II) оксид
				Углерод оксид
				Метан

0020	DELY 1	4	07.50	A /TV D
0020	ГПУ-1	1	8760	Азота (IV) диоксид
				Азот (II) оксид
				Углерод оксид
				Метан
0021	ГПУ-2	1	8760	Азота (IV) диоксид
				Азот (II) оксид
				Углерод оксид
				Метан
0022	PBC V-1000 м3	1	8760	Сероводород
0022	1 BC V 1000 M3	•	0700	Смесь углеводородов предельных С1-
				C5
				Смесь углеводородов предельных С6-С10
				Бензол
				Ксилол
				Толуол
0023	PBC V-1000 m3	1	8760	Сероводород
0023	PBC V-1000 M3	1	8700	1 1
				Смесь углеводородов предельных C1- C5
				Смесь углеводородов предельных С6-
				C10
				Бензол
				Ксилол
				Толуол
0024	PBC V-1000 m3	1	8760	Сероводород
0024	FBC V-1000 M3	1	8700	1 1
				Смесь углеводородов предельных C1- C5
				Смесь углеводородов предельных С6-
				C10
				Бензол
				Ксилол
				Толуол
0025	ДЭС ASKA 300	1	720	Азота (IV) диоксид
0023	ДЭС ASKA 300	1	720	Азот (IV) диоксид Азот (II) оксид
				Сажа
				Сера диоксид
				Бенз/а/пирен
				Формальдегид
				Углеводороды С12-19
				Углерод оксид
0026	Емкость для д/т V- 4.5	1	8760	Сероводород
	, , , , , , ,			Углеводороды С12-19
0036	ДЭС САТ С-32 -	1	5000	Азота (IV) диоксид
0030	1100кBA	1	2000	Азот (IV) диоксид Азот (II) оксид
	11000011			Сажа
				Сера диоксид
				Углерод оксид
				Бенз/а/пирен
				Формальдегид
				Углеводороды С12-19
0037	Емкость для д/т V- 4.5	1	8760	Сероводород
				Углеводороды С12-19
0038	Резервуар хранения	1	8760	Сероводород
	нефти V=100 м3.(Раздел	-	0.50	Смесь углеводородов предельных С1-
	«Охрана окружающей			Смесь углеводородов предельных С6-
	«Охрана окружающей среды» к рабочему			Бензол
	проекту «Модернизация			
1	проект у «модернизация			Ксилол

	ПСН на месторождении Майбулак»)			Толуол
6002	Сепаратор НГМ	1	8760	Смесь углеводородов предельных C1- C5
6003	Камера запуска и при- ема скреба	1	8760	Смесь углеводородов предельных C1- C5
6004	Манифольд	1	8760	Смесь углеводородов предельных C1- C5
6005	Спутник -1	1	8760	Смесь углеводородов предельных С1-С5
6006	Скруббер топливного газа	1	8760	Смесь углеводородов предельных C1- C5
6007	ЗРА и ФС	1	8760	Смесь углеводородов предельных С1-С5
6009	Сепаратор НГМ	1	8760	Смесь углеводородов предельных С1-С5
6010	Сепаратор Bromley	1	8760	Смесь углеводородов предельных С1-С5
6011	Камера запуска и при- ема скреба	1	8760	Смесь углеводородов предельных С1-С5
6012	Спутник -2	1	8760	Смесь углеводородов предельных С1-С5
6013	ЗРА и ФС	1	8760	Смесь углеводородов предельных С1-С5
6015	Скруббер топливного газа	1	8760	Смесь углеводородов предельных С1-С5
6027	Сепаратор 1-стадий	1	8760	Смесь углеводородов предельных С1-С5
6028	Сепаратор газоочисти-	1	8760	Смесь углеводородов предельных С1-С5
6029	Сепаратор 2-стадий	1	8760	Смесь углеводородов предельных С1-С5
6030	ЗРА и ФС	1	8760	Смесь углеводородов предельных С1-
6031	ЗРА и ФС	1	8760	Смесь углеводородов предельных С1-
6032	ЗРА и ФС	1	8760	Смесь углеводородов предельных С1-
6033	Насос ЦНС 1370	1	8760	Сероводород
0033	Писос ЦПС 1370	1	0,00	Смесь углеводородов предельных С1-
				Смесь углеводородов предельных С6-
				Бензол
				Ксилол
6034	Here IIIIC 2044	1	8760	Толуол
0034	Насос ЦНС 3844	1	8760	Сероводород
				Смесь углеводородов предельных С1-
				Смесь углеводородов предельных С6-
				Бензол
				Ксилол
				Толуол
6035	Камера запуска и при- ема скреба	1	8760	Смесь углеводородов предельных C1- C5
6041	Тех.блок скважины 9	1	8760	Смесь углеводородов предельных С1-С5
6043	Тех.блок скважины 17	1	8760	Смесь углеводородов предельных C1-C5
6044	Насос 79ГЗ-1200	1	8760	Сероводород
				Смесь углеводородов предельных С1-
				Смесь углеводородов предельных С6-

l	1		I	Бензол
				Ксилол
				Толуол
6045	Тех.блок скважины 21	1	8760	Смесь углеводородов предельных С1- С5
6046	Hacoc QYB30/1200	1	8760	Сероводород
0010	11000 Q1200/1200		0,00	Смесь углеводородов предельных С1-
				Смесь углеводородов предельных С6-
				C10
				Бензол
				Ксилол
				Толуол
6047	Тех.блок скважины 27	1	8760	Смесь углеводородов предельных С1-С5
6048	Насос 59ГЗ-1300	1	8760	Сероводород
				Смесь углеводородов предельных С1- С5
				Смесь углеводородов предельных С6-
				С10
				Бензол
				Ксилол
				Толуол
6050	Тех.блок скважины 26	1	8760	Смесь углеводородов предельных С1-С5
6051	Hacoc QYB30/1200	1	8760	Сероводород
				Смесь углеводородов предельных С1-
				C5
				Смесь углеводородов предельных С6-
				C10
				Бензол
				Ксилол
				Толуол
6052	Тех.блок скважины 30	1	8760	Смесь углеводородов предельных С1-С5
6054	Тех.блок скважины 31	1	8760	Смесь углеводородов предельных С1-
6055	H DHDM 14 4 2 2	1	07.60	C5
6055	Hacoc RHBM 14-4-2-2	1	8760	Сероводород
				Смесь углеводородов предельных С1-
				C5
				Смесь углеводородов предельных С6-
				Бензол
				Ксилол
6056	Тех.блок скважины 34	1	9760	Толуол
0030	тех.олок скважины 34	1	8760	Смесь углеводородов предельных C1- C5
6057	Hacoc 30Γ3-1400	1	8760	Сероводород
				Смесь углеводородов предельных С1-
				C5
				Смесь углеводородов предельных С6-С10
				Бензол
				Ксилол
(050	H20FD 1200	1	07.00	Толуол
6059	Hacoc 30Γ3-1200	1	8760	Сероводород
				Смесь углеводородов предельных С1-
				C5
				Смесь углеводородов предельных С6-С10
I	I	1	1	Бензол

I	1		i	Ксилол
(0(0	T 6	1	9760	Толуол
6060	Тех.блок скважины 36	1	8760	Смесь углеводородов предельных C1- C5
6061	Hacoc 25-150 RHBM	1	8760	Сероводород
	14-4-2-2			Смесь углеводородов предельных C1- C5
				Смесь углеводородов предельных C6- C10 Бензол
				Ксилол
				Толуол
6062	Тех.блок скважины 40	1	8760	Смесь углеводородов предельных С1-
				C5
6063	Hacoc 25-150 RHBM	1	8760	Сероводород
	14-4-2-2			Смесь углеводородов предельных C1- C5
				Смесь углеводородов предельных C6- C10
				Бензол
				Ксилол
				Толуол
6064	Тех.блок скважины 41	1	8760	Смесь углеводородов предельных C1- C5
6065	Hacoc 25-150 RHBM	1	8760	Сероводород
	14-4-2-2			Смесь углеводородов предельных С1-С5
				Смесь углеводородов предельных С6-С10
				Бензол
				Ксилол
				Толуол
6066	Тех.блок скважины 42	1	8760	Смесь углеводородов предельных С1-
6067	Тех.блок скважины 43	1	8760	Смесь углеводородов предельных С1-С5
6068	Тех.блок скважины 44	1	8760	Смесь углеводородов предельных С1-С5
6069	Тех.блок скважины	1	8760	Смесь углеводородов предельных C1- C5
6070	Насос	1	8760	Сероводород
				Смесь углеводородов предельных С1-
				Смесь углеводородов предельных С6-
				C10 Бензол
				Ксилол
6071	Toy Shay avpayer	1	0760	Толуол
00/1	Тех.блок скважины УН1	1	8760	Смесь углеводородов предельных С1-С5
6072	Насос ННШ-70-60-15-	1	8760	Сэ
0072	2ГР скв. УН1	1	8700	Смесь углеводородов предельных С1-
				С5 Смесь углеводородов предельных С6-
				С10
				Бензол
				Ксилол
				Толуол

При разработке проекта нормативов НДВ установлено, что в 2026 году на период эксплуатации будет работать 63 источника, сорок девять из которых с неорганизованным выбросом.

При капитальном ремонте скважин

	11ри канитальном ремонте скважин					
Номер источника	Источник выделения загряз	вняющих веществ	Число часов			
выбросов на карте- схеме	Наименование	Количество, шт.	работыв году	Наименование вещества		
1	2	3	4	5		
1000	УПА	1	300	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19		
1001	ЦА	1	400	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид		
1002	АДПМ	1	300	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19		
1003	ДЭС	1	400	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19		
1004	САГ	1	200	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19		
1005	Емкость для д/т	1	400	Сероводород, Алканы С12-19		
7000	Сварочные работы	1	200	Железо (II, III) оксиды, марганец и его соединения, азота (IV) диоксид, углерод оксид, фтористый водород, фториды неорганические плохо растворимые, пыль неорганическая, содержащая двуокись кремния в %: 70-20		

При разработке проекта нормативов НДВ установлено, что при капитальном ремонте скважин будет работать 7 источников, один из которых с неорганизованным выбросом.

2.1.1 Расход газа

На месторождении основное и вспомогательное оборудование, связанное с подготовкой и транспортировкой газа, требует периодического технического обслуживания (очистка, смазка, замена масла и охлаждающей жидкости) с остановкой на время технического обслуживания, устранения выявленных дефектов, ремонта и ревизии. В соответствии с этим во всех про мысловых объектах разрабатывается график плановопредупредительных ремонтов (ППР), технического ремонта (ТО), капитальных ремонтов (КР), графики пуско-наладки вновь вводимого оборудования.

Наличие в технологической системе объектов системы сбора, подготовки, групповых установок (ГУ), внутрипромысловых и межпромысловых газосборных сетей, Центрального

пункта подготовки нефти (ЦППН), газокомпрессорных станций (ГКС), межплощадочных соединений газопроводов и оборудования, участков магистральных газопроводов и т.д. обуславливает необходимость установления расчетных нормативов объемов технологически неизбежного сжигания газа.

Объем газа технологически неизбежного сжигания рассчитан в соответствии с «Методикой расчетов нормативов и объемов сжигания попутного и (или) природного газа при проведении нефтяных операции» утвержденной приказом № 164 от 05.05.2018 г. Министром энергетики РК.

Объем неизбежного сжигания определяется по формуле:

Vv = V6 + V7 + V8 + V9 (1)

где Vv – объем технологически неизбежного сжигания газа, м3;

V6 – объем сжигаемого газа при пуско-наладке технологического оборудования (определяется паспортными данными, техническими характеристиками оборудования и планом пуско-наладочных работ), м3;

V7 – объем сжигаемого газа при эксплуатации технологического оборудования (определяется техническими документациями по режиму эксплуатации, паспортными характеристиками оборудования), м3;

V8 – объем сжигаемого газа при техническом обслуживании и ремонтных работах технологического оборудования (определяется техническими документациями при эксплуатации оборудования и графиками текущего, капитального ремонтов), м3;

V9- объем сжигаемого газа при технологических сбоях, м3.

На месторождении Майбулак объем технологически неизбежного сжигания газа складывается из объемов сжигания при эксплуатации нефтегазового оборудования (дежурная горелка) (V7) и при проведении ремонтных работ (V8) основного технологического оборудования.

Исходными данными для разработки проекта нормативов эмиссий, в т.ч., являются сведения, отраженные в «Корректировка программы развития переработки сырого газа по месторождениям АО «ПетроКазахстанКумкольРесорсиз».

Согласно данным «Корректировка №2 программы развития переработки сырого газа» на 2026 год, протокола согласования рабочей группы при Министерстве энергетики РК (протокол № 6/4-2 от 23.05.2025 г.) на месторождении Майбулак запланированный на 2026 г. объем технологически неизбежного сжигания газа (V8) – 0,0001 млн м3.

Расчет объема сжигаемого газа при пуско-наладке оборудования (V6)

На месторождении Майбулак в течение рассматриваемого периода ввод нового оборудования не планируется, таким образом, объем сжигаемого газа при пуско-наладке (V6) на месторождении Майбулак

Расчет объема сжигаемого газа при эксплуатации технологического оборудования (V7)

По месторождению Майбулак не планируется сжигание газа при эксплуатации технологического оборудования (V7) = 0.

Расчет объема сжигаемого газа при техническом обслуживании и при плановопредупредительных ремонтах (ППР) (V8)

По месторождению Майбулак планируется сжигание газа при ППР (V8) = 0.0001 млн м3.

Расход газа на собственные нужды месторождения Майбулак на 2026 г.

На месторождении газ на собственные нужды используется в качестве: топлива в печах подогрева нефти и на ГПЭС для выработки электроэнергии.

На производственном объекте пункт сбора нефти (ППН) расположены печи типа: «Арго» - 1 ед. (42,5 м3/ч), «Бромлей» - 1 ед. (42,5 м3/час), печь подогрева нефти типа PNK073 - 1 ед. (90 м3/час). На замерной установке 3У-2 установлена печь подогрева нефти ПП-0,63 с потреблением газа 100 м3/час.

Расход газа на собственные нужды месторождения Майбулак

Годы	Марка печей подогрева нефти	Продолжительность, (сут)	Количество печей	Среднесуточный расход газа на печи, м ³ /час	Всего потребление газа, м ³
2026г.	Bromley, APFO	364	2	6,5	113 568

Объем газа на выработку электроэнергии

В целях рационального использования сырого газа часть добываемого газа используется для выработки электроэнергии. Выработанная электроэнергия потребляется на нужды месторождения.

Потребление газа на выработку электроэнергии

Годы	Наименование оборудования	Продолжительность , (час)	Расход газа , м³/час	Всего использовано, м ³
2026г.	ГПУ-1,2	8 760	57,1132	500 312

Объемы технологически неизбежного сжигания газа на месторождении Майбулак на 2026 г.

			рвание газа на собс Ужды, млн. м ³ . в т.ч		Техі		ки неизбеж го газа, мли		пгание	Объем	
Период	Добыча газа, млн. м ^з	На печи подогрева нефти, млн. м ³	На выработку электроэнергии, млн. м ³	Всего	V_6	V ₇	V_8	V ₉	Vv	поставки газа на УКПГ / ГПЗ, млн. м ³	Ути-лиза- ция газа в %
2026г	0,614	0,1136	0,5003	0,6139	0	0	0,0001	0	0,0001	-	99,98

В целях рационального использования сырого газа часть добываемого газа используется для выработки электроэнергии. Выработанная электроэнергия потребляется на нужды месторождения.

2.2. Краткая характеристика существующих установок очистки газа, укрупненный анализ их технического состояния и эффективности работы На источниках выбросов оператора не имеется газопылеулавливающих установок.

2.3. Оценка степени применяемой технологии, технического и пылегазоочистного оборудования передовому научно-техническому уровню в стране и мировому опыту

Под наилучшими доступными технологиями понимаются технологии и организационные мероприятия, которые позволяют свести к минимуму воздействие на окружающую среду, в целом, и осуществление которых не требует затрат.

Понятие технология – включает в себя как саму используемую технологию, так и ее разработку, строительство, введение в эксплуатацию, работу и вывод из эксплуатации.

Технологии являются доступными, если они разработаны в масштабе, необходимом для реализации в соответствующих промышленных секторах, с экономически приемлемыми условиями, на основе выгод и затрат, приемлемого для предприятия.

Технология являются наилучшими, если они наиболее эффективны в достижении высокого общего уровня охраны окружающей среды, в целом.

Разработка технологических процессов осуществлялась также с учетом мероприятий по обеспечению безопасности производства в области охраны окружающей среды.

К таким мероприятиям относятся следующие:

- Резервуарный парк ЦКППН оснащен современной системой автоматики. Система автоматики обеспечивает поддержание технологического режима налива и откачки из резервуаров в заданных пределах. В случае отклонений, срабатывает сигнализация, и оператор с помощью средств дистанционного управления может своевременно отрегулировать процесс;
- Предусмотрена защита оборудования от превышения давления с помощью предохранительных клапанов.

Сокращение объемов выбросов и, вследствие этого, снижение приземных концентраций, обеспечивается комплексом технологических, специальных и планировочных мероприятий.

Основными мероприятиями, направленными на предотвращение выделения вредных веществ и обеспечение безопасных условий труда, являются:

- обеспечение прочности и герметичности технологических аппаратов, трубопроводов и их соединений;
- размещение вредных и взрывопожароопасных процессов на отдельных открытых площадках;
 - защита от повышения давления на напоре насосов;
- аварийное автоматическое закрытие отсекающих задвижек на технологических трубопроводах прекращение всех технологических процессов;
- антикоррозионное покрытие наружных поверхностей всех технологических трубопроводов.

Применяемое оборудование, арматура и трубопроводы по техническим характеристикам обеспечивают безопасную эксплуатацию в соответствии со стандартами. Все технологические трубопроводы после монтажа или замены подвергаются контролю сварных стыков и гидравлическому испытанию.

Резервуары вертикальные РВС, используемые в АО «Петро Казахстан Кумколь Ресорсиз» изготовлены с плавающей крышей. Плавающие крыши, находящиеся внутри резервуара РВС на поверхности жидкости, предназначены для сокращения потерь ее от испарения. Использование данной технологии существенно снижает выбросы углеводородов и исключают возможность возникновения аварийных ситуаций с негативными экологическими последствиями.

При бурении скважин используется промывка буровых растворов на основе пресноводных гелей, не используются буровые растворы на нефтяной основе, использование буровых растворов на дизельной основе с повторным их использованием.

В компании широко используется химизация технологических процессов, на которые ежегодно затрачивается порядка 4 млн. долларов США. В том числе, используются ингибиторы коррозии, бактерициды — для уничтожения, контроля популяций аэробных и анаэробных бактерий. Применение бактерицидов, также направлено на предотвращение образования и выбросов сероводорода.

Реализация указанных мероприятий и конструкций соответствует разделу 3 Перечня наилучших доступных технологий, утвержденных приказом МЭ РК от 28 ноября 2014 года № 155.

В 2026 году для обеспечения основных технологических процессов и борьбы с осложнениями, сопутствующими добыче на месторождениях АО «ПетроКазахстан КумкольРесорсиз» будут широко применяться химические реагенты.

УН-11 — деэмульгатор. Предназначен для разрушения водонефтяных эмульсий.
 Обеспечивает обезвоживание и обессоливание нефти путем отделения воды от нефти.
 Данный реагент предназначен для разрушения водонефтяной эмульсий перед поступлением с
 ЦППН, УПСВ. Обеспечивает отделение воды от нефти в сепараторах, отстойниках. В ЦППН – обеспечивает окончательную подготовку товарной нефти до 1 группы. В УПСВ – обеспечивает предварительный сброс пластовой воды с трехфазного сепаратора.

Ингибитор солеотложения YH-301 и диспергатор минеральных отложений Рандим-4021. Закупка ингибиторов солеотложения производиться у ТОО «Хуа Ю Интернационал в Кызылорде» и ТОО «Рауан Налко». Ингибиторы солеотложения будут применяться на м/р Кумколь ЮГ, Южный Кумколь, Восточный Кумколь, Карабулак, Кызылкия, Майбулак. Предназначен для предотвращения выпадения солевых отложений внутри трубопроводов нефтесборных, водосборных коллекторов, оборудования. Реагент подается непрерывно в скважины, коллектора системы сбора нефти с ГУ, ЗУ, выкидные линии скважины, УПСВ, ПППН.

Ингибитор коррозии YH-201 и Ранкор-1101. Закуп ингибитора коррозии производится у ТОО «Хуа Ю Интернационал в Кызылорде» и ТОО «РауанНалко», которые будут применяться на м/р Кумколь ЮГ, Южный Кумколь, Восточный Кумколь, Карабулак, Кызылкия, Майбулак. Реагенты предназначены для предотвращения коррозии трубопроводов, оборудования в системе сбора и подготовки нефти. Реагент подаётся непрерывно в коллекторную систему, на выкидные линии скважин, в затрубное пространство скважин, в коллекторе на прием сепараторов, на ГУ, ЗУ, УПСВ, ЦППН.

Бактерицид YH-501, Бактерицид Ранцид-7004. Бактерицид применяется для уничтожения и контроля популяций аэробных и анаэробных бактерий. Бактерицид подаётся периодически на вход в резервуар пластовой воды 1 раз в неделю в течении 4-х часов, с ударной дозировкой. На м/р Кумколь закачивается периодический, в резервуары пластовой воды в связи актуальностью проблем коррозий. На м/р КАМ ведется обработка резервуаров пластовой воды. Отдел Химических систем рекомендует, по согласованию с Директорами по эксплуатации месторождений, смену типа применяемого бактерицида через каждые шесть месяцев применения с целью недопущения адаптации бактерий.

РАНДАП –6021 диспергатор асфальто-смолистых парафиновых отложений. Данный тип реагента используется для предотвращения повторного отложения парафина при снижении температуры несущей жидкости после проведения ОГН или ОГВ. Реагентом обрабатывается объём нефти используемой в качестве теплоносителя для проведения ОГН или ОГВ в системе добычи и нефтесбора. Реагент добавляется в автоцистерну в процессе её заполнения нефтью из расчёта 1л/1тн. нефти. Также, данный реагент успешно применяется для контроля парафина в системе добычи м/р Майбулак, Карабулак, Юго-Восточный Кызылкия, реагент закачивается в трубопроводы непрерывно.

Рауан-141 - Ингибитор гидратнообразования. Данный реагент предназначен для предотвращения образования гидратных пробок в газовых линиях и установках. Также применяется для снятия осложнений связанных с образованием гидратных пробок в скважинах по закачке газа в пласт. Данный реагент применяется в газовых линиях ЦУГ, полевых компрессорах, газокомпрессорной станций м/р Кумколь, КАМ. Закачка на м/р Кумколь в основном ведется осенью, весной, зимой. В летнее время закачка ингибитора гидратов останавливается в связи отсутствием проблем гидратных пробок. На м/р Майбулак в

ЦУГ, ГКС закачка ведется непрерывно круглый год в связи с проблемами гидратных пробок. Расход реагента регулируется в зависимости от режима работы установки по закачке газа.

Депрессорная присадка Рандеп-5102. Депрессорная присадка, предназначена для транспортировки товарной нефти по магистральным трубопроводам путем снижения точки застывания в холодное время года. Применение данного типа реагента, одно из обязательных условий, при сдаче товарной нефти в систему магистрального трубопровода АО «КТО». Добавление реагента закачки в сдаваемую товарную нефть с дозировкой 200 гр/тн.

В качестве топлива для горелок печей подогрева нефти, для выработки электроэнергии на ГПУ, а также факельной установке используется добытый на месторождении очищенный нефтяной газ.

В резервуарах с плавающей крышей используются высокоэффективные уплотнители. На шлангах используются самоуплотняющиеся соединительные муфты.

Установлены приборы для предупреждения переполнения емкостей и аварийные датчики уровня, работающие независимо от измерительной системы резервуаров.

2.4. Перспектива развития

Проект нормативов эмиссий разработан на один год – на 2026 год.

На месторождении Майбулак в соответствии с проектными решениями добываемый газ используется для выработки электроэнергии для нужд производства добычи нефти, на печах подогрева.

На месторождениии Майбулак продукция добывающих скважин транспортируется по нефтегазосборному коллектору на замерные установки (ЗУ). С замерных установок газожидкостная смесь по нефтесборным коллекторам поступает на ПСН Майбулак, где происходит разделение на нефть, газ, воду.

Подготовленная до товарной кондиции нефть откачивается с ПСН м/р Майбулак на м/р Арыскум (43,8 км) и далее на ЦППН м/р Кумколь.

Выделенный сырой газ месторождения Майбулак используется на печах подогрева нефти, а также для выработки электроэнергии на собственные нужды газопоршневыми электростанциями.

Факельная система ПСН включает в себя факел низкого давления.

Факельные стволы оснащены огнепреградителями, запальниками, системой автоматического розжига, факельными горелками.

На факел поступают потоки газа при срабатывании предохранительных клапанов газосепараторов С-1, 3, 4, а также излишки газа, предназначенные на собственные нужды из С-2 через дренажную емкость объемом 8 m^3 .

Уровень скопившегося конденсата замеряется вручную и по мере заполнения емкости откачивается насосами НВ-50/50 в начало технологического процесса.

В целях соблюдения мер промышленной безопасности при подготовке сырой нефти факельная система будет работать в дежурном режиме.

В таблице 2.4.1 приведен прогноз добычи нефти и газа на 2026 год.

Таблица 2.4.1 – Добыча нефти и газа на 2026 год.

Майбулак	Добыча нефти, тыс. т	Добыча газа, млн. м ³	Бурение
2026 г.	4,558	0,614	0

2.5. Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ

Согласно «Указаниям по проектированию котельных установок», Госстрой. Москва, 1964 г., скорость газов на выходе из трубы, при минимальной нагрузке котельной, из условий предупреждения задувания должна быть не менее 2,5 м/сек при естественной тяге.

Параметры источников выбросов загрязняющих веществ в атмосферу представлены в таблице 2.5.1.

Таблица 2.5.1. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2026

												_		источни	іка на										
Произ- водств о	Це х	Источник ві загрязняющи	х веществ	Число часов работ ы в году	Наименовани е источника выброса вредных веществ	Номер источник а выбросов на карте- схеме	Высота источник а выбросов, м	Диамет р устья трубы, м	смеси на в	ры газовозду выходе из тру вно разовой в	убы при	го ко линеі источ /цен площа	ст, /1- онца йного нника чтра адного нника	лине источ дли шир плош	ника / ина, оина адног	Наименовани е газоочистных установок, тип и мероприятия по сокращению	Вещество, по которому производитс я газоочистка	Коэффи- циент обеспечен -ности газо- очисткой, %	Среднеэксплуа -тационная степень очистки/ максимальная степень очистки, %	Код веществ а	Наименование вещества	Выбросы з	агрязняющего) вещества	Год дости - жения НДВ
		Наименование	Количество , шт.						Скорость , м/с	Объем смеси, м3/с	Темпе - ратура смеси, оС	X1	Y1	X2	Y2	выбросов						г/с	мг/нм3	т/год	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
														щадка 1											
004		Печь для подогрева нефти	1	8736	Дымовая труба	0001	3	0,2	1,46	0,0261	240	293 9	532							0301	диоксид (Азота диоксид) (4)	0,000864	101,372	0,027256	
		(Bromley)																			Азот (II) оксид (Азота оксид) (6)	0,00014	16,487	0,00443	
																				0337	(Окись углерода, Угарный газ) (584)	0,002605	239,39	0,082	
000				0.72		0000			0.05	0.024	210										Метан (727*)	0,002605	239,39	0,082	
003		Печь для подогрева нефти (АРГО)	I	8/36	Дымовая труба	0008	3	0,2	0,97	0,0261	240	255 8	565 4							0301	диоксид (Азота диоксид) (4)	0,000864	101,372	0,027256	
																				0304	Азот (II) оксид (Азота оксид) (6)	0,00014	16,487	0,00443	2026
																				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,002605	239,39	0,082	2026
																				0410	Метан (727*)	0,002605	239,39	0,082	
004		Факельная установка (при эксплуатации)	1		Труба	0016	26,5	0,777	0,26	0,124308 7	1685,5	226 3	592 4							0301	Азота (IV) диоксид (Азота диоксид) (4)	0.006010288	1227,589	0.000346193	2026
		Факельная установка (при ППР)																		0328	Углерод (Сажа, Углерод черный) (583)	0.004006859	818,393	0.000230795	2026
																					Углерод оксид (Окись углерода, Угарный газ) (584)	0,040068588		0,002307951	
20:				075	7	201-				0.05											Метан (727*)	0,001001715	204,598	0,000057699	2026
004		Печь для подогрева нефти (АРГО)	1	8736	Дымовая труба	0019	3	0,2	0,97	0,0261	240	196 8	601								Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид				
																					(Азота оксид) (6) Углерод оксид (Окись углерода,				
																				0410	Угарный газ) (584) Метан (727*)				
004		ГПУ-1	1	8760	Дымовая труба	0020	6	0,6	0,3	0,084823	290	152 5	593 6							0301	Азота (IV) диоксид (Азота диоксид) (4)	0,0784	3659,487	2,4696	2026
																					Азот (II) оксид (Азота оксид) (6)	0,01274	594,667	0,40131	
																				0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,1191168	5568,656	3,762356	2026

			1		1											0410	Метан (727*)	0,0172656	807,159	0,54534	2026
004	ГПУ-2	1	8760	Дымовая труба	0021	6	0,6	0,3	0,084823	290	135	565 4				0301	Азота (IV) диоксид (Азота диоксид) (4)	0,0784	3659,487	2,4696	2026
																0304	Азот (II) оксид (Азота оксид) (6)	0,01274	594,667	0,40131	2026
																0337	Углерод оксид (Окись углерода, Угарный газ)	0,1191168	5568,656	3,762356	2026
																0410	(584)	0.0172656	907.150	0.54524	2026
004	PBC V-1000	1	8760	Дыхательный	0022	10	0,1	0,21	0,001649	15	_	523				0333	Метан (727*) Сероводород	0,0172656 0,000133	807,159 144,022	0,54534	
004	м3		0700	клапан	0022	10	0,1	0,21	3	13	124 2	6					(Дигидросульфид) (518)				
																	Смесь углеводородов предельных С1- C5 (1502*)	0,1606	173909,79 9	0,06556	
																0416	Смесь углеводородов предельных С6- С10 (1503*)	0,0594	64322,802	0,02425	2026
																0602	Бензол (64)	0,000776	840,311	0,00031668	2026
																	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,000244	264,222	0,0000995	
																0621	Метилбензол (349)	0,000488	528,443	0,000199	2026
004	РВС V-1000 м3	1	8760	Дыхательный клапан	0023	10	0,1	0,21	0,001649	15	131 6	470 7				0333	Сероводород (Дигидросульфид) (518)	0,000133	144,022	0,000054	2026
																0415	Смесь углеводородов предельных С1- С5 (1502*)	0,1606	173909,79 9	0,06556	2026
																0416	Смесь углеводородов предельных С6- С10 (1503*)	0,0594	64322,802	0,02425	2026
																0602		0,000776	840,311	0,00031668	2026
																0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,000244	264,222	0,0000995	2026
																0621		0,000488	528,443	0,000199	2026
004	РВС V-1000 м3	1	8760	Дыхательный клапан	0024	10	0,1	0,21	0,001649	15	199	490 4				0333	Сероводород (Дигидросульфид	0,000133	144,022	0,000054	2026
											2					0415) (518) Смесь углеводородов предельных С1- C5 (1502*)	0,1606	173909,79 9	0,06556	2026
																0416	Смесь углеводородов предельных С6-	0,0594	64322,802	0,02425	2026
																0602	С10 (1503*) Бензол (64)	0,000776	840,311	0,00031668	2026
																	Диметилбензол (смесь о-, м-, п-	0,000244	264,222	0,0000995	
																0621	изомеров) (203) Метилбензол (349)	0,000488	528,443	0,000199	2026
004	ДЭС AKSA 375 кВА	1	720	Дымовая труба	0025	4	0,1	3,71	0,016902 5	450	- 166 0	481 8				0301	Азота (IV) диоксид (Азота диоксид) (4)	0,256	40111,109	0,0064	2026
																	Азот (II) оксид (Азота оксид) (6)	0,0416	6518,055	0,00104	
																0328	Углерод (Сажа, Углерод черный) (583)	0,011905	1865,323	0,00028572	2026

															0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,1	15668,402	0,0025	2026
															0337		0,2583333	40476,705	0,0065	2026
															0703	Бенз/а/пирен (3,4- Бензпирен) (54)	2,85E-07	0,045	1,00E-08	2026
																Формальдегид (Метаналь) (609)	0,0028575	447,725	0,00007143	
																Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,0690475	10818,64	0,00171429	
004	Емкость для д/т 4,5 м3	1	8760	Дыхательный клапан	0026	2	0,05	0,81	0,0016	15	336 9	468 2				Сероводород (Дигидросульфид) (518)	3,66E-06	2,413	2,195E-06	2026
															2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,001303	859,121	0,000782	2026
005	ДЭС САТ С- 32 - 1100 кВА	1	8760	Дымовая труба	0036	10	0,1	125,17	0,243629	450	357 8	428 9			0301	Азота (IV) диоксид (Азота диоксид) (4)	0,6570667	7142,59	0,56	2026
															0304	Азот (II) оксид (Азота оксид) (6)	0,1067733	1160,671	0,091	
															0328	Углерод (Сажа, Углерод черный) (583)	0,0244444	265,721	0,0214285	2026
															0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,3422222	3720,099	0,3	2026
																Углерод оксид (Окись углерода, Угарный газ) (584)	0,6477778	7041,616	0,55	
															0703	Бенз/а/пирен (3,4- Бензпирен) (54)	7,68E-07	0,008	0,0000005	
																Формальдегид (Метаналь) (609)	0,0069838	75,917	0,0057145	
															2/54	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель	0,167618	1822,078	0,142857	2026
005	Емкость для 1 д/т 4,5 м3	1	8760	Дыхательный клапан	0037	2	0,05	0,81	0,0016	15	366	387 1			0333	РПК-265П) (10) Сероводород (Дигидросульфид	3,66E-06	2,413	2,195E-06	2026
											4				2754) (518) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,001303	859,121	0,000782	2026

004	PBC V-100 m3	1	8760	Дыхательный клапан	0038	2	0,05	0,81	0,0016	200							0333	Сероводород (Дигидросульфид) (518)	0,0002216	239,965	0,0000714	2026
																	0415	Смесь углеводородов предельных С1- C5 (1502*)	0,2677	289885,76	0,0862	2026
																	0416	` /	0,099	107204,67	0,0319	2026
																	0602	Бензол (64)	0,001293	1400,158	0,0004165	2026
																	0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,000406	439,647	0,000131	2026
																	0621	Метилбензол (349)	0,000813	880,378	0,000262	2026
001	Сепаратор НГМ	1	8760	Сепаратор	6002	2				15	254 5	290	1	1			0415	Смесь углеводородов предельных С1-				2026
001	Камера	1	8760	Камера	6003	2				15	-	263	1	1		_	0/15	С5 (1502*) Смесь				2026
001	запуска и приема скребка	1	8700	запуска и приема скребка	0003	2				13	212	0		1			0413	углеводородов предельных С1- С5 (1502*)				2020
001	Манифольд	1	8760	Манифольд	6004	2				15	204 1	217 5	1	1			0415	Смесь углеводородов предельных С1- C5 (1502*)				2026
001	Спутник -1	1	8760	Спутник -1	6005	2				15	279 1	749	1	1			0415	Смесь углеводородов предельных С1- С5 (1502*)				2026
001	Скруббер топливного газа	1	8760	Скруббер	6006	2				15	233 6	736	1	1			0415					2026
001	ЗРА и ФС	1	8760	Дренажная емкость	6007	2				15	361 5	108	1	1			0415					2026
003	Сепаратор НГМ	1	8760	Сепаратор	6009	2				15	278 0	123	1	1			0415					2026
003	Сепаратор Bromley	1	8760	Сепаратор	6010	2				15	- 403 9	159 4	1	1			0415	Смесь углеводородов предельных С1-				2026
003	Камера запуска и приема	1	8760	запуска и приема	6011	2				15	201	139	1	1			0415	С5 (1502*) Смесь углеводородов предельных С1- C5 (1502*)				2026
003	скребка Спутник -2	1	8760	скребка Спутник -2	6012	2				15	410 6	190 7	1	1			0415	Смесь углеводородов предельных С1-				2026
003	ЗРА и ФС	1	8760	Дренажная емкость	6013	2				15	409 5	161 7	1	1			0415	углеводородов предельных С1-				2026
003	Скруббер топливного газа	1	8760	Скруббер	6015	2				15	- 422 9	106 9	1	1			0415	углеводородов предельных С1-				2026
004	Сепаратор 1- стадий	1	8760	Сепаратор	6027	2				15	408 6	796	1	1			0415	С5 (1502*) Смесь углеводородов предельных С1-				2025
004	Сепаратор газоочистител ь	1	8760	Сепаратор	6028	2				15	351 4	478	1	1			0415	С5 (1502*) Смесь углеводородов предельных С1- C5 (1502*)				2026

004 Сепаратор 2-8760 Сепаратор 6029 0415 Смесь 2026 326 стадий углеводородов предельных C1-C5 (1502*) 004 ЗРА и ФС 0415 2026 8760 Дренажная 6030 15 150 Смесь 326 емкость углеводородов предельных С1-C5 (1502*) 0415 Смесь 004 ЗРА и ФС 8760 6031 2026 1 Дренажная 2 15 813 408 углеводородов предельных С1-C5 (1502*) 0415 2026 004 ЗРА и ФС 8760 Дренажная 6032 191 Смесь 311 емкость углеводородов предельных С1-C5 (1502*) 004 8760 6033 0333 1,668E-06 0,0000526 2026 Насос ЦНС Hacoc 15 275 Сероводород 1370 305 (Дигидросульфид) (518) 0415 Смесь 0,002014 0,0635 2026 углеводородов предельных С1-C5 (1502*) 0416 0,000745 0,0235 2026 Смесь углеводородов предельных С6-C10 (1503*) 0602 9,73E-06 2026 Бензол (64) 0,0003066 0616 Диметилбензол 3,06E-06 0,0000964 2026 (смесь о-, м-, пизомеров) (203) 0621 6,12E-06 2026 0,0001927 Метилбензол (349)Насос ЦНС 3844 0333 1,668E-06 004 8760 Hacoc 6034 15 342 0,0000526 2026 Сероводород 272 (Дигидросульфид) (518) 0415 Смесь 0,002014 0,0635 2026 углеводородов предельных С1-C5 (1502*) 0416 Смесь 0,000745 0,0235 2026 углеводородов предельных С6-C10 (1503*) 0602 9,73E-06 Бензол (64) 0,0003066 0616 3,06E-06 2026 Диметилбензол 0,0000964 (смесь о-, м-, пизомеров) (203) 0621 Метилбензол 6,12E-06 0,0001927 2026 (349) 004 0415 Смесь 2026 Камера 8760 Камера 6035 15 340 228 запуска и запуска и углеводородов приема приема предельных С1-C5 (1502*) скребка скребка 006 Тех.блок 8760 Тех блок 6041 15 386 0415 Смесь 2026 275 скважины 9 углеводородов предельных С1-C5 (1502*) 007 8760 0415 2026 Тех.блок Тех блок 6043 2 15 287 Смесь 323 скважины 17 углеводородов предельных С1-C5 (1502*) 007 8760 Hacoc 6044 0333 Сероводород 1,668E-06 0,0000526 2026 Насос 79Г3-15 235 320 1200 (Дигидросульфид) (518) 0415 Смесь 0,002014 0,0635 2026 углеводородов предельных С1-C5 (1502*) 0416 2026 Смесь 0,000745 0,0235 углеводородов предельных С6-C10 (1503*) 0602 Бензол (64) 9,73E-06 0,0003066

															0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	2026
															0621	Метилбензол (349)	6,12E-06	0,0001927	2026
008	Тех.блок скважины 21	1	8760	Тех блок	6045	2		15	225 3	215	1	1			0415				2026
008	Hacoc QYB30/1200	1	8760	Насос	6046	2		15	225 3	444	1	1			0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	
															0415	Смесь углеводородов предельных С1- C5 (1502*)	0,002014	0,0635	
															0416	Смесь углеводородов предельных С6- С10 (1503*)	0,000745	0,0235	2026
															0602	Бензол (64)	9,73E-06	0,0003066	2026
															0616	(смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	
															0621	Метилбензол (349)	6,12E-06	0,0001927	2026
009	Тех.блок скважины 27	1	8760	Тех блок	6047	2		15	323 5	439 7	1	1			0415	Смесь углеводородов предельных С1- С5 (1502*)			2026
009	Hacoc 59Γ3- 1300	1	8760	Насос	6048	2		15	271 0	342 6	1	1			0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	2026
															0415	Смесь углеводородов предельных С1- С5 (1502*)	0,002014	0,0635	2026
															0416		0,000745	0,0235	2026
															0602	Бензол (64)	9,73E-06	0,0003066	5 2026
																Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	
															0621	Метилбензол (349)	6,12E-06	0,0001927	2026
010	Тех.блок скважины 26	1	8760	Тех блок	6050	2		15	326 9	220 8	1	1			0415	Смесь углеводородов предельных С1- C5 (1502*)			2026
010	Hacoc QYB30/1200	1	8760	Насос	6051	2		15	- 277 7	192 9	1	1			0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	5 2026
															0415	Смесь углеводородов предельных С1- С5 (1502*)	0,002014	0,0635	2026
															0416	Смесь углеводородов предельных С6- С10 (1503*)	0,000745	0,0235	2026
															0602		9,73E-06	0,0003066	5 2026
															0616	(смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	
													 		0621	(349)	6,12E-06	0,0001927	
011	Тех.блок скважины 30	1	8760	Тех блок	6052	2		15	226 4	190 7	1	1			0415	Смесь углеводородов предельных С1- C5 (1502*)			2026

012	Тех.блок скважины 31	1	8760	Тех блок	6054	2		15	317 9	161 7	1	1			0415	Смесь углеводородов предельных С1-			2026
																C5 (1502*)			
012	Hacoc RHBM 14-4-2-2	1	8760	Насос	6055	2		15	185 0	186 7	1	1			0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	2026
															0415	Смесь углеводородов	0,002014	0,0635	2026
															0416	предельных С1- С5 (1502*) Смесь	0,000745	0,0235	2026
															0416	углеводородов предельных С6- С10 (1503*)	0,000743	0,0233	2026
															0602	Бензол (64)	9,73E-06	0,0003066	2026
															0616	Диметилбензол (смесь о-, м-, п-	3,06E-06	0,0000964	2026
															0621	изомеров) (203) Метилбензол (349)	6,12E-06	0,0001927	2026
013	Тех.блок	1	8760	Тех блок	6056	2		15	-	375	1	1			0415	Смесь			2026
	скважины 34								362 6	0						углеводородов предельных С1- C5 (1502*)			
013	Hacoc 30Γ3- 1400	1	8760	Насос	6057	2		15	- 198 4	407	1	1			0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	2026
															0415	Смесь	0,002014	0,0635	2026
																углеводородов предельных С1- C5 (1502*)			
															0416	Смесь	0,000745	0,0235	2026
																углеводородов предельных С6- С10 (1503*)			
															0602	Бензол (64)	9,73E-06	0,0003066	2026
															0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	2026
															0621	Метилбензол (349)	6,12E-06	0,0001927	2026
014	Hacoc 30Γ3- 1200	1	8760	Насос	6059	2		15	296 7	463	1	1			0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	2026
															0415	Смесь углеводородов предельных С1-	0,002014	0,0635	2026
															0416	C5 (1502*)	0,000745	0,0235	2026
															0416	Смесь углеводородов предельных С6- С10 (1503*)	0,000745	0,0233	2026
															0602		9,73E-06	0,0003066	2026
															0616	Диметилбензол (смесь о-, м-, п-	3,06E-06	0,0000964	2026
															0621	изомеров) (203) Метилбензол (349)	6,12E-06	0,0001927	2026
015	Тех.блок	1	8760	Тех блок	6060	2		15		210	1	1			0415	Смесь			2026
	скважины 36								302	8						углеводородов предельных С1- C5 (1502*)			
015	Hacoc 25-150 RHBM 14-4-2- 2	1	8760	Насос	6061	2		15	376 0	379 4	1	1			0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	2026
															0415	Смесь	0,002014	0,0635	2026
																углеводородов предельных С1- C5 (1502*)			
															0416	Смесь углеводородов предельных С6-	0,000745	0,0235	2026

																C10 (1503*)			
															0602	Бензол (64)	9,73E-06	0,0003066	6 2026
																Диметилбензол	3,06E-06	0,0003000	
															0010	(смесь о-, м-, п- изомеров) (203)	3,002 00	0,000070	2020
															0621	Метилбензол (349)	6,12E-06	0,0001927	7 2026
016	Тех.блок скважины 40	1	8760	Тех блок	6062	2		15	- 398 3	281	1	1			0415	Смесь углеводородов предельных С1-			2026
016	Hacoc 25-150 RHBM 14-4-2-	1	8760	Насос	6063	2		15		246	1	1			0333	C5 (1502*)	1,668E-06	0,0000526	6 2026
	2								5						0415) (518) Смесь	0,002014	0,0635	5 2026
																углеводородов предельных С1- C5 (1502*)			
															0416	Смесь углеводородов предельных С6- С10 (1503*)	0,000745	0,023	5 2026
															0602		9,73E-06	0,0003066	
															0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	4 2026
															0621	Метилбензол (349)	6,12E-06	0,0001927	7 2026
017	Тех.блок скважины 41	1	8760	Тех блок	6064	2		15	234 2	206	1	1			0415	Смесь углеводородов предельных С1- C5 (1502*)			2026
017	Hacoc 25-150 RHBM 14-4-2-	1	8760	Насос	6065	2		15	300 1	158 3	1	1			0333		1,668E-06	0,0000520	6 2026
															0415	Смесь углеводородов предельных С1- C5 (1502*)	0,002014	0,0633	5 2026
															0416		0,000745	0,0235	5 2026
															0602		9,73E-06	0,0003066	6 2026
																Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	4 2026
															0621	Метилбензол (349)	6,12E-06	0,0001927	7 2026
018	Тех.блок скважины 42	1	8760	Тех блок	6066	2		15	414 0	138	1	1			0415	Смесь углеводородов предельных С1-			2026
019	Тех.блок скважины 43	1	8760	Тех блок	6067	2		15	- 374 9	224	1	1			0415	С5 (1502*) Смесь углеводородов предельных С1-			2026
025													 			C5 (1502*)			
020	Тех.блок скважины 44	1	8760	Тех блок	6068	2		15	288 9	242 1	1	1			0415	Смесь углеводородов предельных С1- C5 (1502*)			2026
021	Тех.блок скважины	1	8760	Тех блок	6069	2		15	321 3	316 9	1	1			0415	Смесь углеводородов предельных С1-			2026
021	Насос	1	8760	Насос	6070	2		15	280	315 8	1	1			0333	С5 (1502*) Сероводород (Дигидросульфид	1,668E-06	0,0000520	6 2026
									0						0415) (518) Смесь углеводородов предельных С1- C5 (1502*)	0,002014	0,0633	5 2026

														0416	Смесь углеводородов предельных С6- С10 (1503*)	0,000745	0,0235	2026
														0602	Бензол (64)	9,73E-06	0,0003066	5 2026
														0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	2026
														0621	Метилбензол (349)	6,12E-06	0,0001927	2026
002	Тех.блок скважины УН1	1	8760	Тех блок	6071	2		1	32	316	1	1		0415	Смесь углеводородов предельных С1- C5 (1502*)			2026
002	Насос ННШ- 70-60-15-2ГР	1	8760	Насос	6072	2		1	280	0	1	1		0333	Сероводород (Дигидросульфид) (518)	1,668E-06	0,0000526	5 2026
														0415	Смесь углеводородов предельных С1- C5 (1502*)	0,002014	0,0635	2026
														0416	Смесь углеводородов предельных С6- С10 (1503*)	0,000745	0,0235	2026
														0602		9,73E-06	0,0003066	5 2026
														0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	3,06E-06	0,0000964	2026
														0621	Метилбензол (349)	6,12E-06	0,0001927	2026

Таблица 2.5.1. Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов НДВ на 2026 при проведении КРС

Произ-	Це	Источник выделения	Число	Наименовани		Высота	Диамет		газовоздуш		Координаты источника на карте-						Коэффи-	Среднеэксплуа	1 Код	Наименование	Выбросы загрязняющего вещества			Год
водств	x	загрязняющих вещест	тв часов работы в году	е источника выброса вредных веществ	источник а выбросов на карте- схеме	источник а выбросов , м	р устья трубы, м	смеси на в	ыходе из тру но разовой н	бы при	схеме,м точ.ист, /1-го конца линейного источника /центра площадного источника		2-го конца линейного источника / длина, ширина площадного источника		е газоочистных установок, тип и мероприятия по сокращению выбросов	по которому производитс я газоочистка	циент обеспечен -ности газо- очисткой, %	-тационная степень очистки/ максимальная степень очистки, %	веществ а	вещества				дости - жени я НДВ
		Наименовани с , шт.	ичество					Скорость , м/с	Объем смеси, м3/с	Темпе - ратура смеси, оС	X1	Y1	X2	Y2							г/с	мг/нм3	т/год	
1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
												Плоп	цадка 1											
004		УПА 1	150	Дымовая труба	1000	2	0,15	13,9	0,245558 6	200	10000	300 0							0301	Азота (IV) диоксид (Азота диоксид) (4)	0,256	7225,091	0,512	2026
																			0304	Азот (II) оксид (Азота оксид) (6)	0,0416	1174,077	0,0832	2026
																			0328	Углерод (Сажа, Углерод черный) (583)	0,011905	335,995	0,022858	2026
																			0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,1	2822,301	0,2	2026
																			0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,258333334	7290,944	0,52	2026
																			0703	Бенз/а/пирен (3,4- Бензпирен) (54)	2,86E-07	0,008	0,0000008	2026
																			1325	Формальдегид (Метаналь) (609)	0,0028575	80,647	0,005714	2026
																			2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,0690475	1948,728	0,137142	2026
004		ЦА 1	200	Дымовая труба	1001	2	0,15	13,9	0,245633 9	200	10000	300 0							0301	Азота (IV) диоксид (Азота диоксид) (4)	0,1548	4367,583	0,1114	2026
																			0304	Азот (II) оксид (Азота оксид) (6)	0,02514	709,309	0,0181	2026
																			0328	Углерод (Сажа, Углерод черный) (583)	0,0139	392,18	0,01	2026
																			0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,327	9226,095	0,2352	2026
																			0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,7728	21804,05 6	0,556	2026
004		АДПМ 1	150	Дымовая труба	1002	2	0,15	13,9	0,245558	200	10000	300							0301		0,256	7225,091	0,512	2026
				19,00															0304	Азот (II) оксид (Азота оксид) (6)	0,0416	1174,077	0,0832	2026
																			0328	Углерод (Сажа, Углерод черный) (583)	0,011905	335,995	0,022858	2026

					1								_				ı	1		T		1	1
																		0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид)	0,1	2822,301	0,2	2026
																		0337	(516) Углерод оксид	0,258333	7290,944	0.52	2026
																			(Окись углерода, Угарный газ) (584)	0,20000	,2,0,,,	0,62	2020
																		0703	Бенз/а/пирен (3,4- Бензпирен) (54)	2,86E-07	0,008	0,000008	2026
																		1325	Формальдегид (Метаналь) (609)	0,002858	80,647	0,005714	2026
																		2754	Алканы C12-19 /в	0,069048	1948,728	0,137142	2026
																		пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)					
004	004 ДЭС	ЭС	1	200	Дымовая труба	1003	2	0,15	10,29	0,181895 3	200	10000	300 0					0301		0,170667	6502,58	0,256	2026
															1			0304	Азот (II) оксид (Азота оксид) (6)	0,027733	1056,669	0,0416	2026
																		0328	Углерод (Сажа, Углерод черный) (583)	0,007937	302,395	0,011429	2026
																		0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,066667	2540,07	0,1	2026
																		0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,172222	6561,848	0,26	2026
																		0703	Бенз/а/пирен (3,4- Бензпирен) (54)	1,9E-07	0,007	0,0000004	2026
																		1325	Формальдегид (Метаналь) (609)	0,001905	72,583	0,002857	2026
																		2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,046032	1753,855	0,068571	2026
004	CA	АΓ	1	100	Дымовая труба	1004	2	0,15	3,6	0,063663	200	10000	300					0301	Азота (IV) диоксид (Азота диоксид) (4)	0,128178	13953,46 5	0,1376	2026
																		0304	Азот (II) оксид (Азота оксид) (6)	0,020829	2267,438	0,02236	2026
																		0328	(Азота оксид) (б) Углерод (Сажа, Углерод черный) (583)	0,007778	846,691	0,008572	2026
																		0330	(383) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,042778	4656,8	0,045	2026
																		0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,14	15240,43 5	0,15	2026
																		0703	Бенз/а/пирен (3,4- Бензпирен) (54)	1,44E-07	0,016	0,0000002	2026
																		1325	Формальдегид (Метаналь) (609)	0,001667	181,446	0,00714	2026
																		2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-	0,04	4354,404	0,042858	2026
																			С19 (в пересчете на С); Растворитель РПК-265П) (10)				

004	Емкость для дизтоплива	1	200	Дымовая труба	1005	2	0,05	0,81	0,0016	15	10000	300				0333	Сероводород (Дигидросульфид) (518)	0,000014	36,923	0,0000035 5	2026
																2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,004986	13149,89	0,001264	2026
004	Сварочные работы	1	100	Сварка	6500	2				15	10000	300	1	1		0123	Железо (ІІ, ІІІ) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0,00772		0,00139	2026
																0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0,000606		0,000109	2026
																0301	Азота (IV) диоксид (Азота диоксид) (4)	0,0015		0,00027	2026
																0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,007388		0,00133	2026
																0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,000517		0,000093	2026
																0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюмина т) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,000556		0,0001	2026
																2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений)	0,000556		0,0001	2026

2.6. Характеристика аварийных и залповых выбросов

Анализ аварийных ситуаций

При штатной эксплуатации производственные объекты не представляют опасности для населения и окружающей среды. Учитывая специфику производства, технологически процессы и проектные решения обеспечат высокую надежность и экологическую безопасность.

Потенциальные причины аварий

Возможные причины возникновения аварийных ситуаций при проведении проектируемых работ условно разделяются на три взаимосвязанные группы:

- отказы оборудования;
- ошибочные действия персонала;
- внешние воздействия природного и техногенного характера.

Аварийные ситуации могут быть вызваны как природными, так и антропогенными факторами.

К природным факторам на рассматриваемой территории могут быть отнесены:

- землетрясения;
- ураганные ветры;
- повышенные атмосферные осадки и грозовые явления;

Антропогенные факторы включают в себя целый перечень причин аварий, связанных с техническими и организационными мероприятиями, в частности, внешними силовыми воздействиями, браком при монтаже и ремонте оборудования, ошибочными действиями обслуживающего персонала.

Опыт эксплуатации подобных объектов показывает, что вероятность возникновения аварий от внешних источников незначительна.

Причина аварийности из-за ошибочных действий персонала практически полностью связана с неэффективной организацией эксплуатации объектов, недостатками правового обеспечения промышленной безопасности и «человеческим фактором».

Планируемая деятельность в запланированных объемах и при выполнении технологических требований и требований по ТБ и ОЗ не должна приводить к возникновению аварийных ситуаций, и представлять опасности для населения ближайших жилых массивов и окружающей среды. Однако не исключена возможность их возникновения.

Возникновение аварий может привести как к прямому, так и к косвенному воздействию на окружающую природную среду. Прямой вид воздействий является наиболее опасным по непосредственному влиянию на окружающую среду, который может сопровождаться загрязнением атмосферного воздуха.

2.7. Перечень загрязняющих веществ, выбрасываемых в атмосферу

Перечень загрязняющих веществ, выбрасываемых в атмосферу, и соответствующие им величины выбросов по предприятию в целом представлены в таблице 2.7.1

Таблица 2.7.1. Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Проект НДВ м/р Майбулак на 2026 год

Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности 3В	Выброс вещества с учетом очистки, г/с	Выброс вещества с учетом очистки, т/год, (М)	Значение М/ЭНК
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	1.077604955	5.560458193	139.000655
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0.174077333	0.90352	15.0576667
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0.040356303	0.02194501	0.4389002
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0.442222222	0.3025	6.05
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0.000651272	0.00097419	0.12177375
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	1.189663299	8.247507951	2.74916932
0410	Метан (727*)				50		0.040782915	1.254737699	0.02509475
0415	Смесь углеводородов предельных С1-С5 (1502*)				50		0.777696	1.17188	0.0234376
0416	Смесь углеводородов предельных С6-С10 (1503*)				30		0.28763	0.43365	0.014455
0602	Бензол (64)		0,3	0,1		2	0.00375722	0.00565894	0.0565894
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0.00118084	0.0017791	0.0088955
0621	Метилбензол (349)		0,6			3	0.00236268	0.0035568	0.005928
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0.000001053	0.00000051	0.51
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0.009841278	0.00578593	0.578593
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)		1			4	0.2392715	0.146135285	0.14613529
	ВСЕГО:						4,28707487	18,060089608	164,787294

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица 2.7.1. Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение крс м/р майбулак на 2026 г (2 скважины)

RPC M,	/р Майбулак на 2026 г (2 скважины)						Выброс	Выброс	Значение
Код 3В	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опаснос ти ЗВ	вещества с учетом очистки, г/с	вещества с учетом очистки, т/год, (М)	М/ЭНК
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)			0,04		3	0,00772	0,00139	0,03475
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)		0,01	0,001		2	0,000606	0,000109	0,109
0301	Азота (IV) диоксид (Азота диоксид) (4)		0,2	0,04		2	0,967175	1,52927	38,23175
0304	Азот (II) оксид (Азота оксид) (6)		0,4	0,06		3	0,156902	0,24846	4,141
0328	Углерод (Сажа, Углерод черный) (583)		0,15	0,05		3	0,053425	0,075717	1,51434
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0,5	0,05		3	0,636445	0,7802	15,604
0333	Сероводород (Дигидросульфид) (518)		0,008			2	0,000014	0,00000356	0,000445
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	1,609076334	2,00733	0,66911
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,000517	0,000093	0,0186
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		0,2	0,03		2	0,000556	0,0001	0,00333333
0703	Бенз/а/пирен (3,4-Бензпирен) (54)			0,000001		1	0,000000906	0,0000022	2,2
1325	Формальдегид (Метаналь) (609)		0,05	0,01		2	0,0092875	0,015999	1,5999

2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1		4	0,2291135	0,386977	0,386977
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1	3	0,000556	0,0001	0,001
	ВСЕГО:				3,67136424	5,05117675	65,0568041

Примечания: 1. В колонке 9: "М" - выброс 3В,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

2.8. Обоснование полноты и достоверности исходных данных, принятых для расчета НДВ

Определение величин выбросов загрязняющих веществ от оборудования проведено расчетными методами в соответствии с со следующими методическими документами:

- «Методика расчета валовых выбросов вредных веществ в атмосферу для предприятий нефтепереработки и нефтехимии». Приложение 2 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221–Ө.
- Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005.
- "Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008 г.
- Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок. Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ө.

Расчет выбросов вредных веществ в атмосферу выполнен по максимуму возможной работы производства. Фактические выбросы будут значительно меньше. Протоколы расчетов представлены в приложении 6.

2.9. Определение категории предприятия

Согласно статьи 12 Экологического кодекса Республики Казахстан, объекты, оказывающие негативное воздействие на окружающую среду, в зависимости от уровня и риска такого воздействия подразделяются на четыре категории:

- 1) объекты, оказывающие значительное негативное воздействие на окружающую среду (объекты I категории);
- 2) объекты, оказывающие умеренное негативное воздействие на окружающую среду (объекты II категории);
- 3) объекты, оказывающие незначительное негативное воздействие на окружающую среду (объекты III категории);
- 4) объекты, оказывающие минимальное негативное воздействие на окружающую среду (объекты IV категории).

Согласно санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденные Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 для объектов, являющихся источниками воздействия на среду обитания и здоровье человека устанавливаются следующие размеры СЗЗ в зависимости от классов опасности предприятия:

- 1) объекты I класса опасности с C33 1000 м и более;
- 2) объекты II класса опасности с C33 от 500 м до 999 м;
- 3) объекты III класса опасности с C33 от 300 м до 499 м;
- 4) объекты IV класса опасности с C33 от 100 м до 299 м;
- 5) объекты V класса опасности с C33 от 0 м до 99 м.

Месторождение Майбулак АО «Петро Казахстан Кумколь Ресорсиз» Согласно санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным з нам объектов, являющихся объектами воздействия на среду обитания и здоровье

человека», утвержденные Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 относится к 1 классу опасности.

Согласно Приказа Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246 «Об утверждении Инструкции по определению категории объекта, оказывающего негативное воздействие на окружающую среду» объекты, оказывающие минимальное негативное воздействие на окружающую среду, относится к **I категории**.

3. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ

3.1. Программы автоматизированного расчета загрязнения атмосферы

Математическое моделирование рассеивания загрязняющих веществ в атмосфере и расчет величин приземных концентраций выполнено по программному комплексу «Эра», версия 3.0, разработчик фирма «Логос-Плюс» (г. Новосибирск). Программа согласована с ГГО им. А.И. Воейкова и в соответствии с «Инструкцией по нормированию выбросов загрязняющих веществ в атмосферу» разрешена Министерством природных ресурсов и охраны окружающей среды к применению в Республике Казахстан.

3.2.Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города

Расчеты величин концентраций вредных веществ в приземном слое атмосферы на существующее положение; метеорологические характеристики, определяющие условия рассеивания загрязняющих веществ (3В) в атмосфере, карты-схемы с изолиниями расчетных концентраций (максимальных, на границе области воздействия) всех вредных веществ; нормативы НДВ для всех ингредиентов, загрязняющих атмосферу и другие разделы, соответствующие требуемому объему тома НДВ для всех ингредиентов, загрязняющих атмосферу, сроки их достижения и другие требуемые разделы, выполнены с использованием программы «Эра», версия 3.0.

Район несейсмичен. Рельеф местности ровный с перепадом высот не более 50 м на 1 км, следовательно, согласно [11] безразмерный коэффициент, учитывающий влияние рельефа местности - 1.

Значение коэффициента температурной стратификации А, соответствующее неблагоприятным метеорологическим условиям, при которых концентрация вредных веществ в атмосферном воздухе максимальна, принимается равным 200 [11].

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере представлены в таблице 3.1.

Таблица 3.1 - Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности в городе	1.00
Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, T, °C	25.9
Средняя температура наружного воздуха наиболее холодного месяца (для котельных, работающих по отопительному графику), T, °C	-22.6
Среднегодовая роза ветров, %	
С	9.0
CB	16.0
В	9.0
ЮВ	12.0
Ю	10.0
ЮЗ	24.0
3	13.0
C3	7.0
Среднегодовая скорость ветра, м/с	3.0
Скорость ветра (по средним многолетним данным), повторяемость превышения которой составляет 5 %, м/с	7.0

3.3. Результаты расчетов уровня загрязнения атмосферы на существующее положение и с учетом перспективы развития

Расчет величин приземных концентраций загрязняющих веществ в атмосферном воздухе (ПДК) проведен в соответствии с РНД 211.2.01.01-97 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий». Алматы, 1997 г. (реализованного в ПК «Эра») в условиях реально возможного совпадения по времени операций с учетом периода года (зима, лето).

Расчет уровня загрязнения проводился на границе области воздействия. Расчеты концентраций ЗВ были проведены для основного технологического оборудования на теплый период года, когда наблюдается наибольшая его нагрузка с учетом источников строительства и эксплуатации объекта.

Селитебная зона вблизи территории месторождения отсутствует, постов наблюдения за загрязнением атмосферного воздуха в районе расположения месторождения нет, в связи с этим расчет рассеивания производился без учета фоновых концентраций.

Селитебная зона вблизи территории месторождения отсутствует, в связи с этим расчет рассеивания на границе жилой зоны не проводился.

Результаты расчета величин приземных концентраций представлены в таблице 3.3, таблица 2.2 необходимости расчета рассеивания предоставлена ниже. Протоколы расчетов рассеивания ЗВ в приземном слое атмосферного воздуха представлены в приложении 7.

Таблица 3.3 - Сводная таблица результатов расчетов величин приземных концентраций на сущ. положение

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ ПК ЭРА v3.0. Модель: MPK-2014

Объект :0003 НДВ для м/р Майбулак. Вар.расч. :1 2026 год

(сформирована 17.09.2025 15:43)

Код ЗВ	Наименование загрязняющих веществ и состав групп суммаций	Cm	РП 	C33	ЖЗ 	ФТ 	Колич ИЗА	ПДК (ОБУВ) мг/м3	Класс опасн
0301	Азота (IV) диоксид (Азота	22.3370	1.167279	0.129645	нет расч.	нет расч.	7	0.2000000	2
	диоксид) (4) Азот (II) оксид (Азота оксид) (6)	1.8117	 0.094841	0.010533	нет расч.	 нет расч.	6	0.400000	3
0328		3.4881	0.088224	0.006866	нет расч.	 нет расч. 	3	0.1500000	3
0330 	Сера диоксид (Ангидрид Сера диоксид (Ангидрид Сернистый, Сернистый газ, Сера (IV) оксид) (516)	3.0325	0.184013	0.026414	нет расч. 	нет расч. 	2 1	0.5000000	; 3 ; 1
0333	Сероводород (Дигидросульфид) (518)	9.2121	4.105649	0.005590	нет расч. 	нет расч.	20	0.0080000	2 1
0337 	Углерод оксид (Окись углерода, Угарный газ) (584)	0.9805	0.047117	0.005519	нет расч. 	нет расч. 	7 1	5.0000000	4
0410	Метан (727*)	0.0050	Cm<0.05	Cm<0.05	нет расч.	нет расч.	j 5 i	50.0000000	i - i
	Смесь углеводородов предельных C1-C5 (1502*)	1.7758	0.793561		нет расч. 			50.0000000	-
0416 	Смесь углеводородов предельных C6-C10 (1503*)	1.0946	0.489120	0.000666 	нет расч. 	нет расч. 	18	30.0000000	-
0602	Бензол (64)	1.4298	0.638821	0.000869	нет расч.	нет расч.	18	0.3000000	2 1
0616 	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.6739	0.300883	0.000410	нет расч.	нет расч.	18	0.2000000	3
0621	Метилбензол (349)	0.4495	0.200836	0.000273	нет расч.	нет расч.	18	0.6000000	3
0703 	Бенз/а/пирен (3,4-Бензпирен) (54)	1.2717	0.031681 	0.003236	нет расч. 	нет расч. 	2	0.0000100*	1 1
1325	Формальдегид (Метаналь) (609)	0.8444	0.052117	0.005494	нет расч.	нет расч.	2	0.0500000	2
2754 	(Углеводороды предельные С12-С19		0.064155	0.006681	нет расч.	нет расч. 	3	1.0000000	4
1	(в пересчете на С); Растворитель РПК-265П) (10)				1	1			1 1
1 07	PHK-265H) (10) 0301 + 0330	25 3605	I I 1.349667	I I N 156037	 нет расч.	luom pagu	7 1		1 1
1 37	0333 + 1325		4.106030		нет расч.				1 1
37	0330 + 0333		4.107399						1 1

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 1. Таблида отсортирована по увеличению значении по коду загрязняющих веществ
 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК-2014
 3. "Звездочка" (*) в графе "ПДКмр (ОБУВ)" означает, что соответствующее значение взято как 10ПДКсс.
 4. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику),
 "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек) приведены в долях ПДКмр.

Таблица 2.2

Определение необходимости расчетов приземных концентраций по веществам на существующее положение

Проект НДВ м/р Майбулак на 2026 год

Код	Наименование	пдк	пдк	ОБУВ	Выброс	Средневзве	М/(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	димость
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ,мг/м3	(M)	(H)	для H<10	RNH
								расчетов
1	2	3	4	5	6	7	8	9
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		0.174077333	7.97	0.4352	Да
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.040356303		0.269	Да
0337	Углерод оксид (Окись углерода, Угаый	5	3		1.189663299	8.42	0.2379	Да
	ras) (584)							
0410	Метан (727*)			50	0.040782915		0.0008	
0415	Смесь углеводородов предельных C1-C5			50	0.777696	2	0.0156	Нет
0416	1502*) Смесь углеводородов предельных С6-			30	0.28763	2	0.0096	Нет
0416	СМЕСЬ УГЛЕВОДОРОДОВ ПРЕДЕЛЬНЫХ СО- C10 (1503*)			30	0.28763	2	0.0096	нет
0602	Бензол (64)	0.3	0.1		0.00375722	2	0.0125	Нет
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.2			0.00118084		0.0059	
0621	Метилбензол (349)	0.6			0.00236268	2	0.0039	Нет
0703	Бенз/а/пирен (3,4-Бензпирен) (54)		0.000001		0.000001053		0.1053	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1			0.2392715		0.2393	
	Вещества,				вредного воздейс			
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2	0.04		1.077604955	8.07	5.388	Да
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.5	0.05		0.442222222	8.64	0.8844	Да
0333	Сероводород (Дигидросульфид) (518)	0.008			0.000651272	2.01	0.0814	Нет
1325	Формальдегид (Метаналь) (609)	0.05	0.01	<u> </u>	0.009841278	8.26	0.1968	Да

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно

быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с

сумма(ні~мі)/сумма(мі), где ні - фактическая высота иза, мі - выорос з 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

По всем веществам и суммациям на границе зоны воздействия (1000 м) не оказывается существенного влияния (не превышают 1.0 ПДК), следовательно, величина выбросов этих веществ может быть принята в качестве НДВ. Перечень источников, дающих наибольшие вклады в уровень загрязнения, предоставлен в таблице 3.5.

Оператором разработан план технических мероприятий по снижению выбросов загрязняющих веществ в атмосферу, включающий в себя мероприятия по обеспечению прочности и герметичности технических аппаратов, запорно-регулирующей арматуры (3PA), фланцевых соединений (Φ C) и соединений трубопроводов. Данные мероприятия позволят снизить выбросы смеси углеводородов предельных C1-C5 от запорно- регулирующей арматуры (3PA) и фланцевых соединений (Φ C) на 100 %. План технических мероприятий по снижению выбросов загрязняющих веществ в атмосферу представлен в таблице 3.4.

Таблица 3.4 - ПЛАН технических мероприятий по снижению выбросов загрязняющих ве-

ществ в атмосферу с целью достижения нормативов допустимых выбросов

Наименование	Наименование	N Значение выбросов источ выбро		Сроки нения прия кв.,1	меро- тий,	Затраты на реали- зацию мероприя- тий, тыс.тенге				
мероприятий	вещества	са на карте	до реализации мероприятия		после зации прияти	меро-	начало	окон-	капи- тало-	основ- ная дея-
		схеме	г/сек	т/год	г/сек	т/год		чание	влож.	тель- ность
1	2	3	4	5	6	7	8	9	10	11

Обеспечение	(0415) Смесь	6002	0,01209	0,393	01.01	31.12	
прочности и	углеводородов		,	ŕ			
герметичности	предельных						
техн. аппара-	C1-C5						
тов. ЗРА. ФС и		6003	0,00201	0,0786			
соед. трубо-		6004	0,01108	0,343			
проводов		6005	0,01209	0,393			
		6006	0,007474	0,2323			
		6007	0,00604	0,1815			
		6009	0,01209	0,393			
		6010	0,01209	0,393			
		6011	0,00201	0,0786			
		6012	0,01209	0,393			
		6013	0,00604	0,1815			
		6015	0,007474	0,2323			
		6027	0,01209	0,393			
		6028	0,007474	0,2323			
		6029	0,01209	0,393			
		6030	0,00604	0,1815			
		6031	0,00604	0,1815			
		6032	0,00604	0,1815			
		6035	0,00201	0,0786			
		6041	0,011089	0,3258			
		6043	0,011089	0,3258			
		6045	0,011089	0,3258			
		6047	0,011089	0,3258			
		6050	0,011089	0,3258			
		6052	0,011089	0,3258			
		6054	0,011089	0,3258			
		6056	0,011089	0,3258			
		6060	0,011089	0,3258			
	_	6062	0,011089	0,3258			
		6064	0,011089	0,3258			
		6066	0,011089	0,3258			
		6067	0,011089	0,3258			
		6068	0,011089	0,3258			
		6069	0,011089	0,3258			
		6071	0,011089	0,3258			
В целом по пре,	дприятию в резул	ьтате	0,331786	10,147			
реализации все	х мероприятий:						

3.4. Предложения по нормативам допустимых выбросов по каждому источнику и ингредиенту

Выполненные расчеты уровня загрязнения атмосферного воздуха показали возможность принятия выбросов и параметров источников выбросов в качестве предельно допустимых выбросов, на срок действия разработанного проекта или до ближайшего изменения технологического режима работы, переоснащения производства, увеличения объемов работ, строительство и эксплуатация новых объектов, в результате которых произойдет изменение количественного и качественного состава выбросов, увеличение источников загрязнения и как следствие изменение нормативов.

Нормативы выбросов предложены для каждого вредного вещества, загрязняющего окружающую среду. Предложения по нормативам выбросов по каждому загрязняющему веществу и источникам выбросов приведены в таблицах 3.4.2.

По ингредиентам, приземная концентрация которых не превышает значения ПДК, а также для ингредиентов, расчет приземных концентраций которых не целесообразен, предлагается установить нормативы на уровне фактических выбросов.

Таблица 3.4.1. Перечень источников, дающих наибольшие вклады в уровень загрязнения проект ндв м/р Майбулак на 2026 гол

Проект НДВ	м/р Майбулак на 2026 год								
Код		Расчетная максим	альная приземная		аты точек				Принадлежность
вещества	Наименование	концентрация (общая	я и без учета фона)		мальной				источника
/	вещества	доля ПДК	: / мг/м3	приземн	ой конц.	макс.	концентрацию		(производство,
группы									
суммации		в жилой	на границе	в жилой	на грани	N	% BF	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
		Суі	цествующее положение						
		Загрязн	яющие веще	ества	:				
0301	Азота (IV) диоксид (1.645314/0.329063		-1600/	0036		100	Вахтовый пос.
	Азота диоксид) (4)				4995				
0304	Азот (II) оксид (Азота		0.133682/0.053473		-1600/	0036		100	Вахтовый пос.
	оксид) (6)				4995				
0328	Углерод (Сажа, Углерод		0.127982/0.019197		-1600/	0036		100	
	черный) (583)				4995				
0330	Сера диоксид (Ангидрид		0.25708/ 0.12854		-1600/	0036		100	
	сернистый, Сернистый				4995				
	газ, Сера (IV) оксид) (
	516)								
0337	Углерод оксид (Окись		0.066412/0.332062		-1600/	0036		100	Вахтовый пос.
	углерода, Угарный газ)				4995				
	(584)								
1325	Формальдегид (Метаналь)		0.073461/0.003673		-1600/	0036		100	Вахтовый пос.
	(609)				4995				
2754	Алканы С12-19 /в		0.090429/0.090429		-1600/	0036		100	Вахтовый пос.
	пересчете на С/ (4995				
	Углеводороды предельные								
	С12-С19 (в пересчете на								
	С); Растворитель РПК-								
	265Π) (10)								
			ппы суммаци	и:	1		1	1	1
07(31) 0301	Азота (IV) диоксид (1.902395		-1600/	0036		100	Вахтовый пос.
	Азота диоксид) (4)				4995				
0330	Сера диоксид (Ангидрид								
	сернистый, Сернистый								
1	газ, Сера (IV) оксид) (

Проект нормативов допустимых выбросов вредных веществ в атмосферу для месторождения Майбулак на 2026 год

	516)			ĺ	ĺ			
37 (39) 0333	Сероводород (0.07408	-1600/	0036		100	Вахтовый пос.	
	Дигидросульфид) (518)		4995					
1325	Формальдегид (Метаналь)							
	(609)							
44(30) 0330	Сера диоксид (Ангидрид	0.257699	-1600/	0036		100	Вахтовый пос.	
	сернистый, Сернистый		4995					
	газ, Сера (IV) оксид) (
	516)							
0333	Сероводород (
	Дигидросульфид) (518)							

Таблица 3.4.2. Нормативы выбросов загрязняющих веществ в атмосферу по объекту

	Ho-		Ног	рмативы выбросов	загрязняющих ве	ществ		
Производство цех, участок	мер ис- точ- ника	существующее	положение	Ha 2026	5 год	нді	3	год дос
Код и наименование		r/c	т/год	r/c	т/год	r/c	т/год	ния
загрязняющего вещества								НДВ
1	2	3	4	5	6	7	8	9
**0301, Азота (IV) диок								
Организованн		сточники						
ЗУ Спутник-2	0008	0.001408	0.0438	0.000864	0.027256	0.000864	0.027256	
ПСН	0001	0.001408	0.0438	0.000864	0.027256	0.000864	0.027256	5 20
ПСН	0019	0.001408	0.0438	-	-	-	_	20
ПСН	0020	0.07136	2.2608	0.0784	2.4696	0.0784	2.4696	5 20
ПСН	0021	0.07136	2.2608	0.0784	2.4696	0.0784	2.4696	5 20
ПСН	0025	0.256	0.0064	0.256	0.0064	0.256	0.0064	1 20
Вахтовый поселок	0036	0.657066667	0.56	0.657066667	0.56	0.657066667	0.56	5 20
	0069	_	_	_	_	_	_	20
Итого:		1.060010667	5.21952	1.071594667	5.560112	1.071594667	5.560112	
Всего по		1.060010667	5.21952	1.071594667	5.560112	1.071594667	5.560112	2
загрязняющему								
веществу:								
**0304, Азот (II) оксид	(Азота	оксид) (6)	Į		l	I		l .
Организованн		сточники						
ЗУ Спутник-2	0008	0.000229	0.00712	0.00014	0.00443	0.00014	0.00443	3 202
ПСН	0001	0.000229	0.00712	0.00014	0.00443	0.00014	0.00443	3 202
ПСН	0019	0.000229	0.00712	_	_	_	_	- 202
ПСН	0020	0.011596	0.36738	0.01274	0.40131	0.01274	0.40131	
ПСН	0021	0.011596	0.36738	0.01274	0.40131	0.01274	0.40131	
ПСН	0025	0.0416	0.00104	0.0416	0.00104	0.0416	0.00104	1 202
Вахтовый поселок	0036	0.106773333	0.091	0.106773333	0.091	0.106773333	0.091	
	0069	_	_	_	_	_	_	202
Итого:		0.172251733	0.848172	0.174133333	0.90352	0.174177333	0.90352	
Bcero no		0.172251733	0.848172	0.174177333	0.90352	0.174177333	0.90352	
загрязняющему			_					
веществу:								
**0328, Углерод (Сажа, X	Углерол	черный) (583)						1
Организованн								
NCH	0025	0.011905	0.000285715	0.011905	0.000285715	0.011905	0.000285715	5 202
нен Вахтовый поселок	0025	0.02444444	0.0214285	0.02444444	0.0214285	0.02444444	0.0214285	
DOVIORDINI HOCCHOK	0069	0.02111111	0.0214203	0.02111111	0.0217203	0.0277777	0.0214200	202

Итого:		0.036349444	0.021714215	0.036349444	0.021714215	0.036349444	0.021714215
Всего по		0.036349444	0.021714215	0.036349444	0.021714215	0.036349444	0.021714215
загрязняющему							
веществу:							
**0330 , Сера диоксид (<i>F</i>	Ангидрид с	ернистый, Сернис	тый газ, Сера (1	V) оксид)			
Организовань		сточники					
ПСН	0025	0.1	0.0025	0.1	0.0025	0.1	0.0025 202
Вахтовый поселок	0036	0.342222222	0.3	0.342222222	0.3	0.342222222	0.3 202
	0069	_	-	-	-	-	- 202
MTOPO:		0.442222	0.3025	0.442222	0.3025	0.442222	0.3025
Всего по		0.442222	0.3025	0.442222	0.3025	0.442222	0.3025
загрязняющему							
веществу:							
**0333 , Сероводород (Ди	тидросуль (фид) (518)					
Организовань							
ПСН	0022	0.000133	0.000061	0.000133	0.000054	0.000133	0.000054 202
ПСН	0023	0.000133	0.000061	0.000133	0.000054	0.000133	0.000054 202
ПСН	0024	0.000133	0.000061	0.000133	0.000054	0.000133	0.000054 202
ПСН	0026	0.00000366	0.000002195	0.00000366	0.000002195	0.00000366	0.000002195 202
Вахтовый поселок	0037	0.00000366	0.000002195	0.00000366	0.000002195	0.00000366	0.000002195 202
	0070	_	_	_	-	-	- 202
ПСН	0038	0,0002216	0,0000714	0.0002216	0.0000714	0.0002216	0.0000714 202
MTOPO:		0,000651272	0,00099519	0.00062792	0.00023779	0.00062792	0.00023779
Неорганизова	анные	источни	ки	·	·	·	·
Скважина УН1	6072	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 2026
ПСН	6033	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
ПСН	6034	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 17	6044	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 21	6046	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 27	6048	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 26	6051	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 31	6055	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 34	6057	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 35	6059	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 36	6061	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 40	6063	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина 41	6065	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Скважина	6070	0.000001668	0.0000526	0.000001668	0.0000526	0.000001668	0.0000526 202
Итого:		0.000023352	0.0007364	0.000023352	0.0007364	0.000023352	0.0007364
Всего по		0.000429672	0.00092379	0.000651272	0.00097419	0.000651272	0.00097419
загрязняющему							
веществу:							
**0337 , Углерод оксид	/^		as) (584)	L		L .	<u> </u>

⁴⁹

ЗУ Спутник-2 ПСН ПСН ПСН ПСН ПСН Вахтовый поселок Итого: Всего по загрязняющему	0008 0001 0019 0020 0021 0025 0036 0069	0.003325 0.003325 0.003325 0.1085888 0.1085888 0.258333333 0.647777778 - 1.133263711	0.1037 0.1037 0.1037 3.44416 3.44416 0.0065 0.55 - 7.75594424 7.75594424	0.002605 0.002605 - 0.1191168 0.1191168 0.258333333 0.647777778 - 1.149554711 1.149554711	0.082 0.082 - 3.76235 3.76235 0.0065 0.55 - 8.2452 8.2452	0.002605 0.002605 - 0.1191168 0.1191168 0.258333333 0.647777778 - 1.149554711 1.149554711	0.082 2026 0.082 2026 - 2026 3.76235 2026 3.76235 2026 0.0065 2026 0.55 2026 - 8.2452 8.2452
веществу:							
**0410, Metah (727*)	1				<u> </u>		<u> </u>
Организованны	е и	сточники	1				
ЗУ Спутник-2	0008	0.003325	0.1037	0.002605		0.002605	0.082 2026
ПСН	0001	0.003325	0.1037	0.002605	0.082	0.002605	0.082 2026
ПСН	0019	0.003325	0.1037	-	-	-	- 2026
ПСН	0020	0.0157396	0.49922	0.0172656		0.0172656	0.54534 2026
ПСН	0021	0.0157396	0.49922	0.0172656		0.0172656	0.54534 2026
MTOPO:		0.0414542	1.30956424	0.03973216		0.03973216	1.25468
Всего по		0.0414542	1.30956424	0.03973216	1.25468	0.03973216	1.25468
загрязняющему							
веществу:		21 25 /1	15001)				
**0415, Смесь углеводород Организованны							
Организованны ПСН	е и	оточники 0.1606		0.1606	0.06556	0.1606	0.06556 2026
ПСН	0022	0.1606	0.0736	0.1606		0.1606	0.06556 2026
ПСН	0023	0.1606	0.0736	0.1606		0.1606	0.06556 2026
псн	0038		0,0862	0,2677		0,2677	0,0862 2026
Итого:	0000	0.7495		0.7495		0.7495	0.28288
Неорганизован	ные						
Скважина УН1	6072	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
ПСН	6033	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
ПСН	6034	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
Скважина 17	6044	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
Скважина 21	6046	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
Скважина 27	6048	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
Скважина 26	6051	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
Скважина 31	6055	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
Скважина 34	6057	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026
Скважина 35	6059 6061	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 2026 0.0635 2026
Скважина 36	6063	0.002014 0.002014	0.0635 0.0635	0.002014 0.002014	0.0635	0.002014 0.002014	0.0635 2026
Скважина 40 Скважина 41	6065		0.0635	0.002014	0.0635 0.0635	0.002014	0.0635 2026
Сирамина эт	0000	0.002014	0.0033	0.002014	0.0033	0.002014	0.0035 2020

Скважина	6070	0.002014	0.0635	0.002014	0.0635	0.002014	0.0635 202
Итого:		0.028196	0.889	0.028196	0.889	0.028196	0.889
Всего по		0,777696	1,196	0 , 777696	1,196	0 , 777696	1,196
загрязняющему							
веществу:							
**0416, Смесь углеводород	ов пре	дельных С6-С10 (1	503*)	<u>.</u>		<u> </u>	·
Организованны	е и	сточники					
ПСН	0022	0.0594	0.02723	0.0594	0.01597	0.0594	0.01597 2026
ПСН	0023	0.0594	0.02723	0.0594	0.01597	0.0594	0.01597 2026
ПСН	0024	0.0594	0.02723	0.0594	0.01597	0.0594	0.01597 2026
ПСН	0038	0,099	0,0319	0.099	0,0319	0.099	0,0319 2026
Итого:		0.04791	0.2772	0.2772	0.07981	0.2772	0.07981
неорганизован	ные	источни	к и	,		·	·
Скважина УН1	6072	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
ПСН	6033	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
ПСН	6034	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 17	6044	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 21	6046	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 27	6048	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 26	6051	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 31	6055	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 34	6057	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 35	6059	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 36	6061	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 40	6063	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина 41	6065	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Скважина	6070	0.000745	0.0235	0.000745	0.0235	0.000745	0.0235 2026
Итого:		0.01043	0.329	0.01043	0.329	0.01043	0.329
Всего по		0,28763	0,44259	0,28763	0,44259	0 , 28763	0,44259
загрязняющему							
веществу:							
**0602, Бензол (64)							
Организованны		сточники		•		,	
ПСН	0022	0.000776	0.0003556	0.000776	0.00031668	0.000776	0.00031668 2026
ПСН	0023	0.000776	0.0003556	0.000776	0.00031668	0.000776	0.00031668 2026
ПСН	0024	0.000776	0.0003556	0.000776	0.00031668	0.000776	0.00031668 2026
ПСН	0038	0,001293	0,0004165	0,001293	0,0004165	0,001293	0,0004165 2026
Итого:		0.003621	0.0014833	0.003621	0.00136654	0.003621	0.00136654
Неорганизован				•		•	
Скважина УН1	6072	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
ПСН	6033	0.0000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
ПСН	6034	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 17	6044	0.0000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 21	6046	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026

Скважина 27	6048		0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 26	6051	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 31	6055	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 34	6057	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 35	6059	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 36	6061	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 40	6063	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина 41	6065		0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Скважина	6070	0.00000973	0.0003066	0.00000973	0.0003074	0.00000973	0.0003074 2026
Итого:		0.00013622	0.0042924	0.00013622	0.0043036	0.00013622	0.0043036
Всего по		0,00375722	0,0057757	0.00375722	0.00567014	0.00375722	0.00567014
загрязняющему							
веществу:							
**0616 , Диметилбензол (см	есь о-	-, м-, п- изомеров)	(203)	1	•	•	•
Организованны		1СТОЧНИКИ					
псн	0022	0.000244	0.0001118	0.000244	0.0000995	0.000244	0.0000995 2026
ПСН	0023	0.000244	0.0001118	0.000244	0.0000995	0.000244	0.0000995 2026
ПСН	0024	0.000244	0.0001118	0.000244	0.0000995	0.000244	0.0000995 2026
ПСН	0038	0,000406	0,000131	0,000406	0,000131	0,000406	0,000131 2026
Итого:		0.001138	0.0004664	0.001138	0.0004295	0.001138	0.0004295
Неорганизован	ны е	е источнив	з и	ų.	,	•	•
Скважина УН1	6072	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
ПСН	6033	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
ПСН	6034	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина 17	6044	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина 21	6046	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина 27	6048	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина 26	6051	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина 31	6055	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина 34	6057	0.00000306	0.0000964	0.0000306	0.0000966	0.00000306	0.0000966 2026
Скважина 35	6059	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина 36	6061	0.00000306	0.0000964	0.0000306	0.0000966	0.00000306	0.0000966 2026
Скважина 40	6063	0.00000306	0.0000964	0.0000306	0.0000966	0.00000306	0.0000966 2026
Скважина 41	6065	0.00000306	0.0000964	0.00000306	0.0000966	0.00000306	0.0000966 2026
Скважина	6070	0.00000306	0.0000964	0.0000306	0.0000966	0.00000306	0.0000966 2026
Итого:		0.00004284	0.0013496	0.00004284	0.0013524	0.00004284	0.0013524
Всего по		0,000406	0,000131	0.00118084	0.0017819	0.00118084	0.0017819
загрязняющему							
веществу:							
**0621, Метилбензол (349)							
Организованны	е и	1СТОЧНИКИ					
ПСН	0022	0.000488	0.0002235	0.000488	0.000199	0.000488	0.000199 2026
ПСН	0023		0.0002235	0.000488	0.000199	0.000488	0.000199 2026
псн	0024	0.000488	0.0002235	0.000488	0.000199	0.000488	0.000199 2026

ПСН	0038	0,000813	0,000262	0,000813		0,000813	0,000262 2026
Итого:		0.002277	0.0009325	0.002277	0.000859	0.002277	0.000859
Неорганизован	ные	источни	к и	•	·	·	·
Скважина УН1	6072	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
ПСН	6033	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
ПСН	6034	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 17	6044	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 21	6046	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 27	6048	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 26	6051	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 31	6055	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 34	6057	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 35	6059	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 36	6061	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 40	6063	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина 41	6065	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Скважина	6070	0.00000612	0.0001927	0.00000612	0.000193	0.00000612	0.000193 2026
Итого:		0.00008568	0.0026978	0.00008568	0.002702	0.00008568	0.002702
Всего по		0,00236268	0,0036303	0.00236268	0.003561	0.00236268	0.003561
загрязняющему		0,00200200	0,000000	0.00200200	0.000001	0.00200200	0.00001
веществу:							
**0703, Бенз/а/пирен (3,4	-Бензг	ирен) (54)			l_		<u>'</u>
Организованны							
псн	0025		1e-8	0.000000285	1e-8	0.000000285	1e-8 2026
Вахтовый поселок	0036	0.000000768	0.0000005	0.000000768	0.0000005	0.000000768	0.0000005 2026
	0069	-	-	_	=	=	- 2026
Итого:		0.000001053	0.00000051	0.000001053	0.00000051	0.000001053	0.00000051
Всего по		0.000001053	0.00000051	0.000001053	0.00000051	0.000001053	0.00000051
загрязняющему							
веществу:							
**1325 , Формальдегид (Мет	анапь)	(609)					l
Организованны							
псн	0025		0.00007143	0.0028575	0.00007143	0.0028575	0.00007143 2026
Вахтовый поселок	0036	0.006983778	0.0057145	0.006983778	0.0057145	0.006983778	0.0057145 2026
Banrobbi nocesion	0069	-	-	-	-	-	- 2026
Итого:		0.009841278	0.00578593	0.009841278	0.00578593	0.009841278	0.00578593
Всего по		0.009841278	0.00578593	0.009841278	0.00578593	0.009841278	0.00578593
загрязняющему		0.000011270	0.00370333	0.003011270	0.00370333	0.009011270	0.00370333
веществу:							
**2754, Алканы C12-19 /в	перест	ете на С/ (Утпев		LTE C12-C19	<u>t_</u>		L L
Организованны				DIC 012 019			
ПСН	0025		0.001714285	0.0690475	0.002496285	0.0690475	0.002496285 2026
псн	0025		0.001714203	0.001303	0.002430283	0.001303	0.002430203 2020
Вахтовый поселок	0026		0.142857	0.167618		0.167618	0.142857 2026
Dayrobmy Hocenok	1 0036	0.10,010	0.14203/	0.10,010	0.14203/	0.10,010	0.14203/2020

Проект нормативов допустимых выбросов вредных веществ в атмосферу для месторождения Майбулак на 2026 год

Вахтовый поселок	0037	0.001303	0.000782	0.001303	0.000782	0.001303	0.000782	
	0069 0070	_	_	_	-	_		2026 2026
Итого:	0070	0.2392715	0.146135285	0.2392715	0.146917285	0.2392715	0.146917285	2026
Всего по		0.2392715	0.146135285	0.2392715	0.146917285	0.2392715	0.146917285	
загрязняющему		0.2332710	0.110130200	0.2332710	0.110317200	0.2332710	0.110317200	
веществу:								
Всего по объекту:		4.208093808	17.25954042	4.28707487	18.060089608	4.28707487	18.060089608	
Из них:								
Итого по организованным источн	икам:	4.169173808	16.03314042	4.248160778	16.833013408	4.248160778	16.833013408	
			В том чі	исле факелы				
			V7 при э	ксплуатации				
**0301, Азота (IV) диоксид (Азота д	циоксид) (4)						
		-	-	-	-	-	-	2026
**0328, Углерод (Сажа, Углерод чер	эный) (:	583)						
		-	-	-	-	-	-	2026
**0337, Углерод оксид (Окись углер	ода, Уг	гарный газ) (584)						
		-	-	-	-	-	-	2026
**0410, Метан (727*)								
		-	-	-	-	-	-	2026
			при планово-предуп	редительном ремон	ге (ППР)			
**0301, Азота (IV) диоксид (Азота д	циоксид) (4)						
		-	-	0.006010288	0.000346193	0.006010288	0.000346193	2026
**0328, Углерод (Сажа, Углерод чер	эный) (583)						
		-	-	0.004006859	0.000230795	0.004006859	0.000230795	2026
**0337, Углерод оксид (Окись углер	ода, Уг	гарный газ) (584)						
		-	-	0.040068588	0.002307951	0.040068588	0.002307951	2026
**0410, Метан (727*)								
		-	-	0.001001715	0.000057699	0.001001715	0.000057699	2026
Итого по неорганизованным		0.03892	1.2264	0.038914092	1.2270762	0.038914092	1.2270762	
источникам:								

Таблица 3.4.2. Нормативы выбросов загрязняющих веществ в атмосферу по объекту

КРС м/р Майбулак на 2026 г (2 скважины)

Но- мер Производство ис- существующее положение на 2026 год цех, участок точ- ника Но- мер ис- существующее положение на 2026 год (2 скважины)	н д	год В дос-
Производство ис- существующее положение на 2026 год цех, участок точ- (1 скважина) (2 скважины)	нд	· ·
цех, участок точ- (1 скважина) (2 скважины)	нд	· ·
	нд	в пос-
ника		дос
		тиже
Код и наименование г/с т/год г/с т/год	г/с	т/год ния
загрязняющего вещества		ндв
1 2 3 4 5 6	7	8 9
**0123, Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид	1	•
Неорганизованные источники		
KPC 6100 0.00386 0.000695 0.00772 0.00139	0.00772	0.00139 2020
Итого: 0.00386 0.000695 0.00772 0.00139	0.00772	0.00139
Bcero no 0.00386 0.000695 0.00772 0.00139	0.00772	0.00139
загрязняющему веществу:		
**0143, Марганец и его соединения (в пересчете на марганца (IV) оксид)	1	•
Неорганизованные источники		
KPC 6100 0.000303 0.0000545 0.000606 0.000109	0.000606	0.000109 202
Итого: 0.000303 0.0000545 0.000606 0.000109	0.000606	0.000109
Bcero no 0.000303 0.0000545 0.000606 0.000109	0.000606	0.000109
загрязняющему веществу:		
**0301, Азота (IV) диоксид (Азота диоксид) (4)		
Организованные источники		
KPC 1000 0.128 0.256 0.256 0.512	0.256	0.512 2026
KPC 1001 0.0774 0.0557 0.1548 0.1114	0.1548	0.1114 2026
KPC 1002 0.128 0.256 0.256 0.512	0.256	0.512 2026
KPC 1003 0.085333333 0.128 0.170667 0.256	0.170667	0.256 2026
KPC 1004 0.064088889 0.0688 0.128178 0.1376	0.128178	0.1376 2026
Итого: 0.482822222 0.7645 0.965645 1.529	0.965645	1.529
Неорганизованные источники		
KPC 6100 0.00075 0.000135 0.0015 0.00027	0.0015	0.00027 202
Итого: 0.00075 0.000135 0.0015 0.00027	0.0015	0.00027
Всего по 0.483572222 0.764635 0.967145 1.52927	0.967145	1.52927
загрязняющему веществу:		
**0304, Азот (II) оксид (Азота оксид) (6)		
Организованные источники		
KPC 1000 0.0208 0.0416 0.0416 0.0832	0.0416	0.0832 2026
KPC 1001 0.01257 0.00905 0.02514 0.0181	0.02514	0.0181 2026
KPC 1002 0.0208 0.0416 0.0416 0.0832	0.0416	0.0832 2026
KPC 1003 0.013866667 0.0208 0.027733 0.0416	0.027733	0.0416 2026

KPC	1004	0.010414444	0.01118	0.020829	0.02236	0.020829	0.02236	2026
Итого:		0.078451111	0.12423	0.156902	0.24846	0.156902	0.24846	
Всего по		0.078451111	0.12423	0.156902	0.24846	0.156902	0.24846	
загрязняющему веществу:								
**0328, Углерод (Сажа, Углерод	черный	(583)						l.
		чники						
KPC	1000	0.0059525	0.0114286	0.011905	0.022858	0.011905	0.022858	2026
KPC	1001	0.00695	0.005	0.0139	0.01	0.0139		2026
KPC	1002	0.0059525	0.0114286	0.011905	0.022858	0.011905	0.022858	
KPC	1003	0.003968333	0.0057143	0.007937	0.011429	0.007937	0.011429	1
KPC	1004	0.003888889	0.0042857	0.007778	0,008572	0.007778	0,008572	
Итого:		0.026712222	0.0378572	0.053425	0,075717	0.053425	0,075717	
Всего по		0.026712222	0.0378572	0.053425	0,075717	0.053425	0,075717	
загрязняющему веществу:					.,		.,	
**0330, Сера диоксид (Ангидрид	сернис	тый, Сернистый г	аз, Сера (IV) ок	ссид)		L		1
Организованные и	_	=	, , , , ,	- 117				
KPC	1000	0.05	0.1	0.1	0.2	0.1	0.2	2026
KPC	1001	0.1635	0.1176	0.327	0.2352	0.327	0.2352	
KPC	1002	0.05	0.1	0.1	0.2	0.1		2026
KPC	1003	0.033333333	0.05	0.066667	0.1	0.066667	0.1	2026
KPC	1004	0.021388889	0.0225	0.042778	0.045	0.042778	0.045	2026
Итого:		0.318222222	0.3901	0.636445	0.7802	0.636445	0.7802	
Всего по		0.318222222	0.3901	0.636445	0.7802	0.636445	0.7802	
загрязняющему веществу:								
**0333, Сероводород (Дигидросу)	іьфид)	(518)	<u>'</u>		<u>'</u>	<u> </u>		
		чники						
KPC	1005	0.000007	0.000001775	0.000014	0.00000355	0.000014	0.00000355	2026
Итого:		0.000007	0.000001775	0.000014	0.00000355	0.000014	0.00000355	
Всего по		0.000007	0.000001775	0.000014	0.00000355	0.000014	0.00000355	
загрязняющему веществу:								
**0337, Углерод оксид (Окись уг	лерода	, Угарный газ) (584)					
_	_	чники						
KPC	1000	0.129166667	0.26	0.258333334	0.52	0.258333334	0.52	2026
KPC	1001	0.3864	0.278	0.7728	0.556	0.7728	0.556	2026
KPC	1002	0.129166667	0.26	0.258333	0.52	0.258333	0.52	2026
KPC	1003	0.086111111	0.13	0.172222	0.26	0.172222	0.26	2026
KPC	1004	0.07	0.075	0.14	0.15	0.14	0.15	2026
MTOPO:		0.800844445	1.003	1.601688334	2.006	1.601688334	2.006	
Неорганизованны є	е ис	точники	·	·	•	·		-
KPC	6100	0.003694	0.000665	0.007388	0.00133	0.007388	0.00133	2026
Итого:		0.003694	0.000665	0.007388	0.00133	0.007388	0.00133	
Всего по		0.804538445	1.003665	1.609076334	2.00733	1.609076334	2.00733	
загрязняющему веществу:								
**0342, Фтористые газообразные	соедин	ения /в пересчет	е на фтор/ (617)		<u>. </u>			-

Неорганизовання		точники						
KPC	6100	0.0002583	0.0000465	0.0005166	0.000093	0.0005166		2026
Итого:		0.0002583	0.0000465	0.0005166	0.000093	0.0005166	0.000093	
Всего по		0.0002583	0.0000465	0.0005166	0.000093	0.0005166	0.000093	
загрязняющему веществу:								
**0344, Фториды неорганическ			юминия фторид,					
Неорганизованні		точники					1	
KPC	6100	0.000278	0.00005	0.000556	0.0001	0.000556		202
MTOPO:		0.000278	0.00005	0.000556	0.0001	0.000556	0.0001	
Всего по		0.000278	0.00005	0.000556	0.0001	0.000556	0.0001	
загрязняющему веществу:								
**0703, Бенз/а/пирен (3,4-Бе	_							
Организованные		чники	1	1	1	•	ı	
KPC	1000	0.00000143	0.0000004	0.000000286	0.0000008	0.000000286		2026
KPC	1002	0.00000143	0.0000004	0.000000286	0.0000008	0.000000286	0.0000008	
KPC	1003	9.5e-8	0.0000002	0.0000019	0.0000004	0.0000019	0.000004	
KPC	1004	7.2e-8	0.000001	0.00000144	0.0000002	0.000000144		202
MTOPO:		0.00000453	0.000011	0.000000906	0.0000022	0.000000906	0.0000022	
Всего по		0.000000453	0.0000011	0.000000906	0.0000022	0.000000906	0.0000022	
загрязняющему веществу:								
**1325, Формальдегид (Метана:								
Организованные		чники						
KPC	1000	0.00142875	0.0028572	0 , 0028575	0,005714	0 , 0028575	0,0057142	
KPC	1002	0.00142875	0.0028572	0 , 0028575	0,005714	0 , 0028575	0,0057142	
KPC	1003	0.0009525	0.0014286	0,001905	0 , 002857	0,001905	0,0028572	
KPC	1004	0.000833389	0.00085715	0,001666778	0,001714	0,001666778	0,0017142	2026
MTOFO:		0.004643389	0.00800015	0 , 009286778	0,015999	0 , 009286778	0,015999	
Всего по		0.004643389	0.00800015	0,009286778	0,015999	0,009286778	0,015999	
загрязняющему веществу:								
**2754 , Алканы C12-19 /в пере		_	предельные С12	-C19				
Организованные		чники						
KPC	1000	0.03452375	0.0685714	0,0690475	0,137142	0,0690475	0,137142 2	
KPC	1002	0.03452375	0.0685714	0,0690475	0,137142	0,0690475	0,137142 2	
KPC	1003	0.023015833	0.0342857	0,046031666	0,068571	0,046031666	0,068571 2	
KPC	1004	0.019999972	0.02142855	0,039999944	0,042858	0,039999944	0,0428582	
KPC	1005	0.002493	0.000632	0,004986	0,001264	0,004986	0,0012642	2026
MTOPO:		0.114556305	0.19348905	0,22911261	0,386977	0,22911261	0,386977	
Всего по		0.114556305	0.19348905	0,22911261	0,386977	0,22911261	0,386977	
загрязняющему веществу:								
**2908, Пыль неорганическая,	-		ия в %: 70-20 (1	шамот				
Неорганизовання		точники						
KPC	6100	0.000278	0.00005	0.000556	0.0001	0.000556		202
NTOPO:		0.000278	0.00005	0.000556	0.0001	0.000556	0.0001	
Всего по		0.000278	0.00005	0.000556	0.0001	0.000556	0.0001	

Проект нормативов допустимых выбросов вредных веществ в атмосферу для месторождения Майбулак на 2026 год

загрязняющему веществу:						
Всего по объекту:	1.835680669	2.522875275	3,67136424	5,05117675	3,67136424	5 , 05117675
кин см						
Итого по организованным	1.826259369	2.521179275	3 , 65252124	5,04778475	3,65252124	5 , 04778475
источникам:						
Итого по неорганизованным	0.0094213	0.001696	0,018843	0,003392	0,018843	0,003392
источникам:						

3.5. Уточнение границ области воздействия объекта

3.5.1. Данные о пределах области воздействия

Областью воздействия является территория, подверженная антропогенной нагрузке и определенная путем моделирования рассеивания приземных концентраций загрязняющих вешеств.

Месторождение располагается в Карагандинской области. Функциональное использование территории в районе расположения предприятия вполне рационально, соответствует специфике предприятия и позволяет осуществлять поставленные производственные и технологические задачи на должном уровне.

Математическое моделирование рассеивания загрязняющих веществ в атмосфере и расчет величин приземных концентрации были выполнены по программному комплексу «Эра», версия 3.0, разработчик фирма «Логос-Плюс» (г. Новосибирск).

В ПК «Эра» реализована «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий», РНД 211.2.01.01- 97 (ОНД-86).

При расчетах уровня загрязнения были приняты следующие критерии качества атмосферного воздуха:

- максимально-разовые предельно допустимые концентрации (ПДК м.р.);
- ориентировочные безопасные уровни воздействия ОБУВ.

При моделировании рассеивания приняты расчетные прямоугольники со следующими параметрами:

No	Произродетромное и домодие	Параметры прямоугольника					
745	Производственная площадка	ширина (м)	высота (м)	шаг (м)			
1	Месторождение Майбулак	10000	10000	500			

Расчетные прямоугольники выбраны таким образом, чтобы охватить единым расчетом район расположения производственной площадки.

Расчеты выполнены по всем загрязняющим веществам и группам веществ, обладающих при совместном присутствии суммирующим вредным действием, с учетом одновременности работы оборудования, на более худшие условия для рассеивания загрязняющих веществ холодный и теплый периоды года.

Наибольший вклад в значение приземных концентраций этих веществ вносят основные источники скважины.

Расчет рассеивания загрязняющих веществ отходящих от источников выбросов предприятия представлен в приложении 6.

Анализ результатов расчетов рассеивания загрязняющих веществ, отходящих от источников АО «Петро Казахстан Кумколь Ресорсиз» в атмосферный воздух, показал, что на границе зоны воздействия по всем загрязняющим веществам приземные концентрации, не превышают предельно допустимых значений (ПДК), установленных санитарными нормами.

3.5.2.Обоснование размера зоны воздействия по факторам физического воздействия

Наиболее распространенными факторами физического воздействия на атмосферный воздух, являются шум, вибрация и электромагнитное излучение.

В период работы предприятия кратковременное шумовое и вибрационное воздействие на окружающую среду будет только от работ механизмов и машин.

Шумовое и вибрационное воздействие будет минимальным для окружающей среды и отсутствует для населения.

Работа производится на существующей площадке и проходит вне населенных пунктов, по открытой местности.

Так как все оборудование и техника проходит ежегодный технический контроль, и допускается к работе в случае положительного результата контроля, следовательно, уровни шума и вибрации на рабочих местах не превысят допустимые значения.

Дорожные машины и оборудование должны находиться на объекте только на протяжении периода производства соответствующих работ. Параметры применяемых машин и оборудование в части отработанных газов, шума, вибрации должны соответствовать установленным стандартам и техническим условиям предприятия изготовителя.

3.5.3. Обоснование зоны воздействия по совокупности показателей

Ситуационная карта-схема расположения предприятия с обозначенной на ней санитарно-защитной зоной по совокупности факторов представлена в приложении 4.

Результаты расчета рассеяния вредных веществ в атмосфере, уровня шумового воздействия, а также определение степени влияния других физических воздействий, позволяют сделать вывод о достаточности существующей нормативной санитарно-защитной зоны.

4. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ

Неблагоприятные метеоусловия (НМУ) представляют собой краткосрочное особое сочетание метеорологических факторов, обусловливающее ухудшение качества воздуха в приземном слое.

Предотвращению опасного загрязнения воздуха в периоды неблагоприятных метеоусловий способствует регулирование выбросов или их кратковременное снижение. В периоды НМУ максимальная приземная концентрация примеси может увеличиться в 1,5-2,0 раза.

Мероприятия по регулированию выбросов при неблагоприятных метеоусловиях разработаны в соответствии с Приложением 40 к приказу Министра ООС РК от 29 ноября 2010 года № 298 и предусматривают кратковременное сокращение выбросов в атмосферу в периоды НМУ.

Неблагоприятными метеорологическими условиями являются:

- пыльные бури;
- штиль;
- температурная инверсия;
- высокая относительная влажность.

Под регулированием выбросов загрязняющих веществ в атмосферу понимается их кратковременное сокращение в периоды НМУ, когда формируется высокий уровень загрязнения атмосферы.

Регулирование выбросов осуществляется с учетом прогноза НМУ на основе предупреждений со стороны Гидрометцентра о возможном опасном росте концентраций примесей в воздухе вредных химических веществ в связи с формированием неблагоприятных метеоусловий.

Прогноз наступления НМУ и регулирование выбросов являются составной частью комплекса мероприятий по обеспечению чистоты воздушного бассейна.

Оперативное прогнозирование высоких уровней загрязнения воздуха осуществляет Филиал Казгидромета. Контроль за выполнением мероприятий по сокращению выбросов в периоды НМУ проводит областное управление экологии.

Контроль степени эффективности сокращения выбросов загрязняющих веществ в атмосферу осуществляется с помощью инструментального мониторинга, балансовых и других методов. Настоящим проектом предусматривается разработка мероприятий для источников, дающих наибольший вклад в общую сумму загрязнения атмосферы.

С учетом прогноза НМУ предприятия разрабатывают мероприятия по трем режимам работы:

- организационно-технические, которые могут быть быстро осуществлены, не требуют существенных затрат и не приводят к снижению производительности предприятия (первый режим);
- мероприятия, связанные с временным сокращением производительности предприятия, прекращением отдельных операций и работ (второй, третий режимы).

Согласно «Методики по регулированию выбросов при неблагоприятных метеорологических условиях» мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в периоды НМУ разрабатывают предприятия, имеющие стационарные источники выбросов, расположенные в населенных пунктах, где подразделениями «Казгидромета» проводятся прогнозирования НМУ.

В связи с отсутствием постов «Казгидромета» по прогнозированию НМУ в зоне воздействия объекта (приложение 8), разработка мероприятий по кратковременному

снижению выбросов на период наступления НМУ в районе размещения месторождения нецелесообразна.

5. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ

Согласно РНД 211.3.01.06-97 «Временное руководство по контролю источников загрязнения атмосферы». Алматы, 1997 [11] контроль за соблюдением нормативов НДВ включает определение массы выбросов вредных веществ в единицу времени от данного источника загрязнения и сравнение этих показателей с установленными величинами норматива, проверку плана мероприятий по достижению НДВ и эффективности эксплуатации очистных установок.

План-график контроля за соблюдением нормативов НДВ на источниках выбросов представлен в таблице 5.1.

Контроль за соблюдением нормативов НДВ осуществляется силами предприятия либо сторонней организацией, привлекаемой на договорных началах, и проводится на специально оборудованных точках контроля на источниках выбросов.

Ответственность за организацию контроля и своевременную отчетность по результатам возлагается на главного инженера предприятия. Результаты контроля включаются в технические отчеты предприятия, ежеквартальные отчеты по производственному экологическому котролю и учитываются при оценке его деятельности.

Таблица 5.1.1. План-график контроля на предприятии за соблюдением нормативов ПДВ на источниках выбросов и на контрольных точках (постах) на существующее положение

ЭРА v3.0

План - график

контроля на предприятии за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение Проект НДВ м/р Майбулак на 2026 год

N исто чника	Производство, цех, участок.	Контролируемое вещество	Периоди чность	Норматив выбросов ПДВ		Кем осуществляет	Методика проведения
	4, 7		контроля	г/с	мг/м3	ся контроль	контроля
1	2	3	4	5	6	7	8
0001	ПСН	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,000864	101,371732	Аккредитованная лаборатория	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,00014	16,4873058	Аккредитованная лаборатория	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,002605	239,38992	Аккредитованная лаборатория	0002
		Метан (727*)	1 раз/ кварт	0,002605	239,38992	Аккредитованная лаборатория	0002
0008	ЗУ Спутник-2	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,000864	101,371732	Аккредитованная лаборатория	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,00014	16,4873058	Аккредитованная лаборатория	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,002605	239,38992	Аккредитованная лаборатория	0002
		Метан (727*)	1 раз/ кварт	0,002605	239,38992	Аккредитованная лаборатория	0002
	Факельная	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.006010288	1227,589	Силами предприятия	0001
0018	установка	Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.004006859	818,393	Силами предприятия	0001

		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.040068588	8183,926	Силами предприятия	0001
		Метан (727*)	1 раз/ кварт	0.001001715	204,598	Силами предприятия	0001
0019	ПСН	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	-	-	Аккредитованная лаборатория	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	-	-	Аккредитованная лаборатория	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	-	-	Аккредитованная лаборатория	0002
		Метан (727*)	1 раз/ кварт	-	-	Аккредитованная лаборатория	0002
0020	ПСН	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,0784	3659,487	Аккредитованная лаборатория	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,01274	594,667	Аккредитованная лаборатория	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,1191168	5568,656	Аккредитованная лаборатория	0002
		Метан (727*)	1 раз/ кварт	0,0172656	807,159	Аккредитованная лаборатория	0002
0021	ПСН	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,0784	3659,487	Аккредитованная лаборатория	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,01274	594,667	Аккредитованная лаборатория	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,1191168	5568,656	Аккредитованная лаборатория	0002
		Метан (727*)	1 раз/ кварт	0,0172656	807,159	Аккредитованная лаборатория	0002
0022	ПСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000133	85,0710558	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,1606	102724,899	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,0594	37994,1407	Аккредитованная лаборатория	0002

		Бензол (64)	1 раз/ кварт	0,000776	496,354431	Аккредитованная лаборатория	0002
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,000244	156,070208	Аккредитованная лаборатория	0002
		Метилбензол (349)	1 раз/ кварт	0,000488	312,140415	Аккредитованная лаборатория	0002
0023	ПСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000133	85,0710558	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных С1-С5 (1502*)	1 раз/ кварт	0,1606	102724,899	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,0594	37994,1407	Аккредитованная лаборатория	0002
		Бензол (64)	1 раз/ кварт	0,000776	496,354431	Аккредитованная лаборатория	0002
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,000244	156,070208	Аккредитованная лаборатория	0002
		Метилбензол (349)	1 раз/ кварт	0,000488	312,140415	Аккредитованная лаборатория	0002
0024	ПСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000133	85,0710558	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных С1-С5 (1502*)	1 раз/ кварт	0,1606	102724,899	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,0594	37994,1407	Аккредитованная лаборатория	0002
		Бензол (64)	1 раз/ кварт	0,000776	496,354431	Аккредитованная лаборатория	0002
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,000244	156,070208	Аккредитованная лаборатория	0002
		Метилбензол (349)	1 раз/ кварт	0,000488	312,140415	Аккредитованная лаборатория	0002
0025	ПСН	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,256	40111,11	Аккредитованная лаборатория	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,0416	6518,055	Аккредитованная лаборатория	0002

		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,011905	1865,323	Аккредитованная лаборатория	0002
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,1	15668,4	Аккредитованная лаборатория	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,258333	40476,71	Аккредитованная лаборатория	0002
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	2,85E-07	0,044655	Аккредитованная лаборатория	0002
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0,002858	447,7246	Аккредитованная лаборатория	0002
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,069048	10818,64	Аккредитованная лаборатория	0002
0026	ПСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,00000366	2,41318681	Аккредитованная лаборатория	0002
		Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	1 раз/ кварт	0,001303	859,120879	Аккредитованная лаборатория	0002
0036	Вахтовый поселок	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,657067	7142,59	Аккредитованная лаборатория	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,106773	1160,671	Аккредитованная лаборатория	0002
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,024444	265,7214	Аккредитованная лаборатория	0002
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,342222	3720,099	Аккредитованная лаборатория	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,647778	7041,616	Аккредитованная лаборатория	0002
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	7,68E-07	0,008348	Аккредитованная лаборатория	0002

		Формальдегид (Метаналь) (609)	1 раз/ кварт	0,006984	75,9166	Аккредитованная лаборатория	0002
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,167618	1822,078	Аккредитованная лаборатория	0002
0037	Вахтовый поселок	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,00000366	2,41318681	Аккредитованная лаборатория	0002
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,001303	859,120879	Аккредитованная лаборатория	0002
0038	ПСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,0002216	239,965	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,2677	289885,76	Аккредитованная лаборатория	0002
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,099	107204,67	Аккредитованная лаборатория	0002
		Бензол (64)	1 раз/ кварт	0,001293	1400,158	Аккредитованная лаборатория	0002
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,000406	439,647	Аккредитованная лаборатория	0002
		Метилбензол (349)	1 раз/ кварт	0,000813	880,378	Аккредитованная лаборатория	0002
6002	ЗУ Спутник-1	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт			Силами предприятия	0001
6003	ЗУ Спутник-1	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт			Силами предприятия	0001
6004	ЗУ Спутник-1	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт			Силами предприятия	0001
6005	ЗУ Спутник-1	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт			Силами предприятия	0001
6006	ЗУ Спутник-1	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт			Силами предприятия	0001

6007	ЗУ Спутник-1	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6009	ЗУ Спутник-2	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6010	ЗУ Спутник-2	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6011	ЗУ Спутник-2	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6012	ЗУ Спутник-2	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6013	ЗУ Спутник-2	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6015	ЗУ Спутник-2	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6027	ПСН	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6028	ПСН	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6029	ПСН	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6030	ПСН	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6031	ПСН	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6032	ПСН	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6033	ПСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001

		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6034	ПСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,0000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6035	ПСН	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6041	Скважина 9	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6043	Скважина 17	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6044	Скважина 17	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,00001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001

6045	Скважина 21	Смесь углеводородов предельных С1-С5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6046	Скважина 21	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6047	Скважина 27	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6048	Скважина 27	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6050	Скважина 26	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6051	Скважина 26	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001

		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6052	Скважина 30	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6054	Скважина 31	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6055	Скважина 31	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6056	Скважина 34	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6057	Скважина 34	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001

		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6059	Скважина 35	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6060	Скважина 36	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6061	Скважина 36	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6062	Скважина 40	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6063	Скважина 40	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001

		Смесь углеводородов предельных С1-С5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6064	Скважина 41	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6065	Скважина 41	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6066	Скважина 42	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6067	Скважина 43	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6068	Скважина 44	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6069	Скважина	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6070	Скважина	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001

		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных С6-С10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001
6071	Скважина УН1	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт		Силами предприятия	0001
6072	Скважина УН1	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000001668	Силами предприятия	0001
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0,002014	Силами предприятия	0001
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0,000745	Силами предприятия	0001
		Бензол (64)	1 раз/ кварт	0,00000973	Силами предприятия	0001
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0,00000306	Силами предприятия	0001
		Метилбензол (349)	1 раз/ кварт	0,00000612	Силами предприятия	0001

ПРИМЕЧАНИЕ:

Методики проведения контроля:

^{0001 -} Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.

^{0002 -} Инструментальным методом, согласно Перечню методик, действующему на момент проведения мероприятий по контролю.

Таблица 5.1.1. П л а н - г р а ф и к контроля на предприятии за соблюдением нормативов ПДВ на источниках выбросов и на контрольных точках (постах) на существующее положение

КРС м/р Майбулак на 2026 г (2 скважины)

-	Производство,	роизводство, Контролируемое вещество	Периоди чность	Норматив выбросов ПДВ		Кем осуществляет ся контроль	Методика проведения
mma	igon, y naoron		контроля	г/с	мг/м3	ся контроль	контроля
1	2	3	4	5	6	7	8
1000	KPC	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,256	1806,27267	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,0416	293,519309	Силами предприятия	0001
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,011905	83,9987348	Силами предприятия	0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,1	705,575261	Силами предприятия	0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,25833333	1822,7361	Силами предприятия	0001
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0,000000286	0,00201795	Силами предприятия	0001
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0,0028575	20,1618131	Силами предприятия	0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,0690475	487,182078	Силами предприятия	0001
1001	KPC	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,1548	1092,2305	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,02514	177,381621	Силами предприятия	0001

		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,0139	98,0749613	Силами предприятия	0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,327	2307,2311	Силами предприятия	0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,7728	5452,68562	Силами предприятия	0001
1002	KPC	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,256	1806,27267	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,0416	293,519309	Силами предприятия	0001
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,011905	83,9987348	Силами предприятия	0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,1	705,575261	Силами предприятия	0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,258333	1822,7361	Силами предприятия	0001
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0,000000286	0,00201795	Силами предприятия	0001
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0,0028575	20,1618131	Силами предприятия	0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,0690475	487,182078	Силами предприятия	0001
1003	KPC	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,170666666	1625,64503	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,027733334	264,167325	Силами предприятия	0001
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,007936666	75,598838	Силами предприятия	0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,066666666	635,017586	Силами предприятия	0001

		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,172222222	1640,46211	Силами предприятия	0001
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0,00000019	0,0018098	Силами предприятия	0001
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0,001905	18,1456277	Силами предприятия	0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,046031666	438,463766	Силами предприятия	0001
1004	KPC	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,128177778	3488,36633	Силами предприятия	0001
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0,020828888	566,859503	Силами предприятия	0001
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0,007777778	211,67272	Силами предприятия	0001
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0,042777778	1164,19993	Силами предприятия	0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,14	3810,10885	Силами предприятия	0001
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0,00000144	0,00391897	Силами предприятия	0001
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0,001666778	45,3614686	Силами предприятия	0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,039999944	1088,601	Силами предприятия	0001
1005	KPC	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0,000014		Силами предприятия	0001
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1 раз/ кварт	0,004986		Силами предприятия	0001

6100	KPC	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	1 раз/ кварт	0,00772	Силами предприятия	0001
		Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	1 раз/ кварт	0,000606	Силами предприятия	0001
		Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0,0015	Силами предприятия	0001
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0,007388	Силами предприятия	0001
		Фтористые газообразные соединения /в пересчете на фтор/ (617)	1 раз/ кварт	0,0005166	Силами предприятия	0001
		Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	1 раз/ кварт	0,000556	Силами предприятия	0001
		Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1 раз/ кварт	0,000556	Силами предприятия	0001

ПРИМЕЧАНИЕ:

Методики проведения контроля:

0001 - Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.

6. ОЦЕНКА НЕИЗБЕЖНОГО УЩЕРБА, НАНОСИМОГО ОКРУЖАЮЩЕЙ СРЕДЕ

Согласно Экологическому Кодексу РК для каждого предприятия органами охраны природы устанавливаются лимиты выбросов загрязняющих веществ в атмосферу на основе нормативов НДВ.

На период достижения нормативов НДВ устанавливаются лимиты природопользования с учетом экологической обстановки в регионе, видов используемого сырья, технического уровня, применяемого природоохранного оборудования, проектных показателей и особенностей технологического режима работы предприятия, а также уровня фонового загрязнения окружающей среды. В случае достижения предприятием норм НДВ, лимит выбросов загрязняющих веществ на последующие годы устанавливаются на уровне НДВ и не меняется до их очередного пересмотра.

Согласно п. 1 ст. 573 Налогового Кодекса РК «Плата за негативное воздействие на окружающую среду (далее по тексту настоящего параграфа — плата) взимается за выбросы и сбросы загрязняющих веществ (эмиссии в окружающую среду), размещение серы в открытом виде на серных картах и захоронение отходов, осуществляемые на основании соответствующего экологического разрешения и декларации о воздействии на окружающую среду в соответствии с экологическим законодательством Республики Казахстан».

СПИСОК ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан.
- 2. ГОСТ 17.2.3.02-2014 «Правила установления допустимых выбросов загрязняющих веществ промышленными предприятиями».
- 3. СНиП РК 2.04-01-2010 Строительная климатология. Астана, 2010.
- 4. Санитарные правила «Санитарно-эпидемиологические требования к санитарнозащитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденные Приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2.
- 5. « Гигиенические нормативы к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций », утверждены Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № КР ДСМ-70.
- 6. Методика определения нормативов эмиссий в окружающую среду, утверждена Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.
- 7. «Методика расчета валовых выбросов вредных веществ в атмосферу для предприятий нефтепереработки и нефтехимии». Приложение 2 к приказу Министра окружающей среды и водных ресурсов РК от 12.06.2014 г. № 221—Ө.
- 8. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005.
- 9. "Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008 г.

приложения

Приложение 1 – Исходные данные

Исходные данные

для разработки проекта нормативов допустимых выбросов (НДВ) загрязняющих веществ в атмосферу для месторождения Майбулак АО «Петро Казахстан Кумколь Ресорсиз» на 2026 год

Наименование предприятия: АО «Петро Казахстан Кумколь Ресорсиз». Юридический адрес: Республика Казахстан, г. Кызылорда, ул. Казыбек би, 13. Наименование объекта: месторождение Юго-Западный Карабулак. Вид деятельности: промышленная разработка месторождения.

Месторождение Майбулак расположено в северной части Арыскумского прогиба Южно-Тургайской впадины, являющейся северо-восточной частью Туранской плиты и приуро- ченой к сводовой части удлиненной полуантиклинали субмеридианального простирания, примыкающей на северо-востоке к Главному Каратаускому разлому.

В административном отношении месторождение Майбулак расположено на территории Улыта уской области на землях, находящейся в долгосрочной аренде Кызылординской области. Ближайшим населенным пунктом является пос. Жалагаш расположен 115 км от месторождения, ж/д станция Жосалы расположенная в более 120 км от месторождения, областной центр г. Кызылорда расположен в 190 км к югу. На юго-востоке в 100 км расположено месторождение Кумколь, промышленное освоение которого начато в 1990 году.

Режим работы месторождения: 24 часа в сутки, 365 дней в год. Скважины обслуживаются согласно утвержденного графика вахтовым методом. Для обслуживания используется персонал, проживающий в существующем вахтовом поселке.

Электроснабжение участков —электроснабжение участков месторождения осуществляется от ГПЭС, на которой установлено 2 блока ГПУ, мощностью по 1 МВт, а также от 3 дизель- генератора АКСА 300, мощностью по 240 кВт и 1 дизель-генератора, мощностью 850 кВт.

Теплоснабжение административно-бытовых помещений на участках месторождения производится от электрокалориферов.

Согласно плана по капитальному ремонту скважин в 2026 г. По месторождению Майбулак предусмотрено 2 ед. скважин.

При капитальном и подземном ремонте скважин (КРС и ПРС) будут работать следующие источники:

- УПА (ИЗА 1000);
- ЦА (ИЗА 1001);
- АДПМ (ИЗА 1002);
- ДЭС 100 кВт (ИЗА 1003);
- САГ (ИЗА 1004);
- Емкость для дизтоплива (ИЗА 1005);
- Сварочные работы (ИЗА 6500).

Баланс газа согласно Программы переработки сырого газа месторождения Майбулак АО «Петро Казахстан Кумколь Ресорсиз» на 2026 год

No	Наименование	м/р Майбулак
1	Добыча газа, млн. м ³	0,614
2	Расход газа на нужды печей подогрева, млн. м ³	0,113568
3	Газ на выработку электроэнергии, млн. м ³	0,500312
4	Технологически неизбежное сжигание газа, млн. м ³	0,0001
5	Технологические потери, млн. м ³	0,0

Источниками загрязнения атмосферы на период эксплуатации являются:

	Источний видатом	· · ·	II	1
Номер	Источник выделени		Числ	
источ- ника	дагрязн	яюших Количеств	0	Наименование вещества
выбросов	Наименование		часов	
1	2	3 UIT.	4	5
0001	Печь для	1	8664	Азота (IV) диоксид
	подогрева			Азот (II) оксид
	нефти			Углерод оксид
	нефти			Метан
0008	Печь для	1	8664	Азота (IV) диоксид
	подогрева			Азот (II) оксид
	нефти			Углерод оксид
0011	•			Метан
0016	Факел (при экспл	-	-	Азота (IV) диоксид
	V7)	1	16	Сажа
	Факел (при ППР V8)			Углерод оксид
0010		1	0664	Метан
0019	Печь для	1	8664	Азота (IV) диоксид
	подогрева			Азот (II) оксид
	нефти			Углерод оксид Метан
0020	ГПУ-1	1	8760	
0020	1113-1	1	8700	Азота (IV) диоксид Азот (II) оксид
				Углерод оксид
				Метан — — — — — — — — — — — — — — — — — — —
0021	ГПУ-2	1	8760	Азота (IV) диоксид
0021		1	0700	Азот (II) оксид
				Углерод оксид
				Метан
0022	PBC V-1000 м3	1	8760	Сероводород
				Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных С6- С10 Бензол
				Ксилол
				Толуол
0023	PBC V-1000 m3	1	8760	Сероводород
				Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных С6- С10 Бензол
				Ксилол
				Толуол
0024	PBC V-1000 m3	1	8760	Сероводород
0024	1 DC 4-1000 M3	1	0/00	Сероводород

			i	
				Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных C6- C10 Бензол
				Ксилол
				Толуол
0025	ДЭС ASKA 300	1	720	Азота (IV) диоксид
				Азот (II) оксид
				Сажа
				Сера диоксид
				Бенз/а/пирен
				Формальдегид
				Углеводороды С12-19
				Углерод оксид
0026	Емкость для д/т V-	1	8760	Сероводород
	4.5			Углеводороды С12-19
0036	ДЭС САТ С-32 -	1	5000	Азота (IV) диоксид
	1100κΒΑ			Азот (II) оксид
				Сажа
				Сера диоксид
				Углерод оксид
				Бенз/а/пирен
				Формальдегид
				Углеводороды С12-19
0037	Емкость для д/т V-	1	8760	Сероводород
	4.5			Углеводороды С12-19
0038	Резервуар хранения	1	8760	Сероводород
	нефти V=100 м3.(Смесь углеводородов предельных
	Раздел «Охрана			Смесь углеводородов предельных
	_			Бензол
	окружающей среды»			Ксилол
	к рабочему проекту			Толуол
	«Модернизация ПСН			-
6002	Сепаратор НГМ	1	8760	Смесь углеводородов
				преледьных С1- С5
6003	Камера запуска и	1	8760	Смесь углеводородов
1004	при- ема скреба			прелепьных С1- С5
6004	Манифольд	1	8760	Смесь углеводородов
6005			07.60	прелепьных С1- С5
6005	Спутник -1	1	8760	Смесь углеводородов
6006		1	0760	предельных С1- С5
6006	Скруббер	1	8760	Смесь углеводородов
6007	топливного газа	1	07.50	предельных С1- С5
6007	ЗРА и ФС	1	8760	Смесь углеводородов
6000	Соможет ПЕМ	1	9760	предельных С1- С5
6009	Сепаратор НГМ	1	8760	Смесь углеводородов
6010	Соположе Виста	1	9760	предельных С1- С5
0010	Сепаратор Bromley	1	8760	Смесь углеводородов
6011	TC.	1	07.00	предельных С1- С5
0011	Камера запуска и	1	8760	Смесь углеводородов
6012	при- ема скреба Спутник -2	1	8760	предельных С1_ С5
0012	Спутник -2	1	0/00	Смесь углеводородов
6013	DDA &C	1	8760	предельных С1- С5
0013	ЗРА и ФС	1	8/60	Смесь углеводородов
6015	C-w-ccc	1	07.60	предельных С1- С5
0013	Скруббер	1	8760	Смесь углеводородов
	топпивного газа			предельных С1- С5

6027	Сепаратор 1-стадий	1	8760	Смесь углеводородов
6028	Соположов	1	8760	предельных С1- С5
0020	Сепаратор	1	0700	Смесь углеводородов
6029	газоочисти- тель Сепаратор 2-стадий	1	8760	предельных С1- С5
002)	Сепаратор 2 стадии	1	8700	Смесь углеводородов
6030	ЗРА и ФС	1	8760	предельных С1- С5 Смесь углеводородов предельных
6031	ЗРА и ФС	1	8760	Смесь углеводородов предельных
6032	ЗРА и ФС	1	8760	
		1	8760	Смесь углеводородов предельных
6033	Насос ЦНС 1370	1	8/60	Сероводород
				Смесь углеводородов предельных
				Смесь углеводородов предельных
				Бензол
				Ксилол
				Толуол
6034	Насос ЦНС 3844	1	8760	Сероводород
	,			Смесь углеводородов предельных
				Смесь углеводородов предельных
				Бензол
				Ксилол
				Толуол
6035	10	1	07.60	
0033	Камера запуска и	1	8760	Смесь углеводородов
6041	при- ема скреба Тех.блок скважины	1	0=10	преледыных С1- С5
6041		1	8760	Смесь углеводородов
60.12	9	1		преледьных С1- С5
6043	Тех.блок скважины	1	8760	Смесь углеводородов
	17			предельных С1- С5
6044	Насос 79Г3-1200	1	8760	Сероводород
				Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных C6- C10 Бензол
				Бензол
				Ксилол
				Толуол
6045	Тех.блок скважины	1	8760	Смесь углеводородов предельных
6046	Hacoc QYB30/1200	1	8760	Сероводород
00+0	11acoc O 1 B 30/1200	1	0700	Смесь углеводородов предельных
				Смесь углеводородов предельных С6- С10
				Бензол
				Ксилол
				Толуол
6047	Тех.блок скважины	1	8760	Смесь углеводородов предельных
	27			C1- C5
6048	Насос 59ГЗ-1300	1	8760	Сероводород
0040	114606 371 3-1300	1	0,00	1 1
				Смесь углеводородов предельных
				Смесь углеводородов предельных С6- С10
				<u>C6- C10</u>
				Бензол
				Ксилол
				Толуол
6050	Том блом отполите	1	9760	Смесь углеводородов предельных
6050	Тех.блок скважины	1 1	8760	C1 C5
6051	Hacoc QYB30/1200	1	8760	Сероводород
				Смесь углеводородов
1	I	1	I	прелепьных С1- С5

ı	1		1	
				Смесь углеводородов
				предельных С6- С10 Бензол
				Ксилол
6052	T 6	1	07.60	Толуол
6052	Тех.блок скважины 30	1	8760	Смесь углеводородов
6054	Тех.блок скважины	1	9760	предельных С1- С5
0034	31	1	8760	Смесь углеводородов
6055	Hacoc RHBM 14-4-2-	1	8760	предельных С1- С5 Сероводород
0033	2	1	8700	Смесь углеводородов
	-			предельных С1- С5
				Смесь углеводородов
				предельных С6- С10
				Бензол
				Ксилол
				Толуол
6056	Тех.блок скважины	1	8760	Смесь углеводородов
	34			предельных С1- С5
6057	Насос 30Г3-1400	1	8760	Сероводород
				Смесь углеводородов
				преледьных С1- С5
				Смесь углеводородов
				предельных С6- С10
				Бензол Ксилол
				Толуол
6059	Насос 30Г3-1200	1	9760	Сероводород
0039	11acoc 301 3-1200	1	8760	
				Смесь углеводородов
				Смесь углеводородов
				предельных С6- С10
				Бензол
				Ксилол
				Толуол
6060	Тех.блок скважины	1	8760	Смесь углеводородов
	36			предельных С1- С5
6061	Hacoc 25-150 RHBM	1	8760	Сероводород
	14-4-2-2			Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных С6- С10
				Бензол <i>V</i> оуго г
				Ксилол
6062	Тех.блок скважины	1	07.60	Толуол
0002	1 ех.олок скважины 40	1	8760	Смесь углеводородов
6063	Hacoc 25-150 RHBM	1	8760	предельных С1- С5 Сероводород
0003	14-4-2-2	1	3700	Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных С6- С10
				Бензол
				Ксилол
				Толуол
6064	Тех.блок скважины	1	8760	Смесь углеводородов
	41			предельных С1- С5
6065	Hacoc 25-150 RHBM	1	8760	Сероводород

	14-4-2-2			Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных С6- С10
				Бензол
				Ксилол
				Толуол
6066	Тех.блок скважины	1	8760	Смесь углеводородов
10.15	42			предельных С1- С5
6067	Тех.блок скважины	1	8760	Смесь углеводородов
	43			предельных С1- С5
6068	Тех.блок скважины	1	8760	Смесь углеводородов
60.60	44			предельных С1- С5
6069	Тех.блок скважины	1	8760	Смесь углеводородов
6050	**			преледьных С1- С5
6070	Hacoc	1	8760	Сероводород
				Смесь углеводородов
				предельных С1- С5
				Смесь углеводородов
				предельных С6- С10 Бензол
				Ксилол
				Толуол
6071	Тех.блок	1	8760	Смесь углеводородов
6053	скважины VH1			предельных С1- С5
6072	Насос ННШ-70-	1	8760	Сероводород
	60-15- 2ГР скв.			Смесь углеводородов
	УН1			предельных С1- С5
				Смесь углеводородов
				предельных С6- С10 Бензол
				Ксилол
				Толуол

При разработке проекта нормативов НДВ установлено, что в 2026 году на период эксплуатации будет работать 63 источника, сорок девять из которых с неорганизованным выбросом.

При капитальном ремонте скважин

Номер источник а выбросов на картесхеме	Источник выделения загрязняющих вещес Наименование		Число часов работыв году	Наименование вещества
1	2	3	4	5
1000	УПА	1	300	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19
1001	ЦА	1	400	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид
1002	АДПМ	1	300	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19
1003	ДЭС	1	400	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19
1004	САГ	1	200	Азота (IV) диоксид, Азот (II) оксид, Углерод оксид, Углерод, Сера диоксид, Бенз/а/пирен, Формальдегид, Алканы С12-19
1005	Емкость для д/т	1	400	Сероводород, Алканы С12-19
7000	Сварочные работы	1	200	Железо (II, III) оксиды, марганец и его соединения, азота (IV) диоксид, углерод оксид, фтористый водород, фториды неорганические плохо растворимые, пыль неорганическая, содержащая двуокись кремния в %: 70-20

Ответственный представитель ФИО

Дата подписания М.П.

Исходные данные для разработки «Программы управления отходами» м/р Майбулак АО «Петро Казахстан Кумколь Ресорсиз» на 2026

год

№ п/п	Планируемые показатели	Колич	ество				
1	2						
1	План бурения скважин на 2026 год	В 2026 г не п	предусмотрено				
2	Замена масляных фильтров	2	2 шт.				
3	Отработанное масла за год	26	66,161				
4	Люминесцентные лампы	8	ШТ				
5	Аккумуляторные батареи	8	ШТ				
6	Использованная ветошь	10	0 кг				
7	Металлическая тара из под хим.реагентов	70 6	бочек				
8	Сварочные электроды	13	3 кг				
9	Для расчет медицинских отходов и твердых бытовых отходов - количество работников - площадь участка смета		еловек 00 м2				
10	Для расчета нефтешлама - объем резервуара, м3 - количество резервуаров - радиус резервуара, м - высота стенки, м	1000 3 5,2 12					
11	Замазученный грунт*	пескогрун используется нефти от твер	агрязненного та, который и для удаления одых покрытий Ом3				

Ответственный		представитель
	ФИО	

Дата подписания М.П.

Приложение 2 – Бланки инвентаризации

«Утверждаю»:

АО «Петро Казахстан Кумколь Ресорсиз»

ИО Начальника отдела ООС

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

ЭPA v3.0

1. Источники выделения (вредных) загрязняющих веществ

Проект НДВ м/р Майбулак 2026

	Номер	Номер	Наименование	Наимено-	Время ј	работы		Код	Количество
	источ-ника	источника	источника	вание	источ			вред-	загрязняю-щего
	загряз-	выделения	выделения	выпускае	выделе	ения,		ного	вещества,
	нения		хишикнгкдльг	-мой	ча	ıc.		вещества	отходящего от
Наименование	атмос-феры		веществ	продукци				(ЭНК,	источника
производства, номер				N			Наименование	ПДК или	выделения,
цеха, участка и т.п.							загрязняющего вещества	ОБУВ)	т/год
					_	за			
					В				
					сутки	год			
А	1	2	3	4	5	6	7	8	9
			I	Ілощадка 1	•	•		•	
(001) ЗУ Спутник-1	6002	6002 02	Сепаратор НГМ	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6003	6003 03	Камера запуска и приема скребка	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6004	6004 04	Манифольд	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5	0415 (1502*)	

							(1502*)		
	6005	6005 05	Спутник-1	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6006	6006 06	Скруббер топливного газа	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6007	6007 07	ЗРА и ФС	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
(002) Скважина УН1	6071	6071 40	Технические блоки скважины УН1	ЗРА и ФС		8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6072	6072 16	Насос ННШ 70-60- 15-1ГР , скв. УН1	Насос		8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256
			YHI				Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06347496
							Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
							Бензол (64)	0602 (64)	0,0003066
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,00009636
							Метилбензол (349)	0621 (349)	0,00019272
(003) ЗУ Спутник-2	0008	0008 02	Печь для подогрева нефти (АРГО)	Подогрев нефти	24	8736	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0 , 027256
			(11110)				Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,00443
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,082
							Метан (727*)	0410 (727*)	0,082

	6009	6009 08	Сепаратор НГМ	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6010	6010 09	Сепаратор Bromley	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6011	6011 10	Камера запуска и приема скребка	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6012	6012 11	Спутник-2	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6013	6013 12	ЗРА и ФС	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6015	6015 13	Скруббер топливного газа	ЗРА и ФС	24	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
(004) ПСН	0001	0001 01	Печь для подогрева нефти (Bromley)	Подогрев нефти	24	24 8736	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,027256
							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,00443
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,082
							Метан (727*)	0410 (727*)	0,082
	0016	0016 02	Факельная установка (при ППР V8)	Сжигание газа	16		Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,000346193
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,000230795
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,002307951
							Метан (727*)	0410 (727*)	0,000057699
	0016	0016 03	Факельная установка (при	Сжигание газа			Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	

эксплуатации) Углерод (Сажа, Углерод 0328 черный) (583) (583)Углерод оксид (Окись 0337 углерода, Угарный газ) (584)(584)0410 Метан (727*) (727*)0019 0019 03 24 0301 (4) Подогрев 8664 Азота (IV) диоксид Печь для подогрева нефти (Азота диоксид) (4) нефти (APTO) Азот (II) оксид (Азота 0304 (6) оксид) (6) Углерод оксид (Окись 0337 углерода, Угарный газ) (584)(584)Метан (727*) 0410 (727*)0020 0020 06 8760 0301 (4) гпу 1 выработк Азота (IV) диоксид 2,4696 а э/э (Азота диоксид) (4) 0,40131 Азот (II) оксид (Азота 0304 (6) оксид) (6) Углерод оксид (Окись 0337 3,76235 углерода, Угарный газ) (584)(584)Метан (727*) 0,54534 0410 (727*)0021 0021 07 ГПУ 2 24 8760 Азота (IV) диоксид 0301 (4) 2,4696 выработк а э/э (Азота диоксид) (4) Азот (II) оксид (Азота 0304 (6) 0,40131 оксид) (6) Углерод оксид (Окись 0337 3,76235 углерода, Угарный газ) (584)(584)0,54534 Метан (727*) 0410 (727*)

	0022	0022 03	РВС 1000м3	Хранение	24	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,000054
							Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06556
							Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,02425
							Бензол (64)	0602 (64)	0,00031668
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0000995
							Метилбензол (349)	0621 (349)	0,000199
	0023	0023 04	РВС 1000м3	Хранение	24	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,000054
							Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06556
							Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,02425
							Бензол (64)	0602 (64)	0,00031668
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0000995
							Метилбензол (349)	0621 (349)	0,000199
	0024	0024 05	РВС 1000м3	Хранение	24	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,000054
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06556	
							Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,02425
							Бензол (64)	0602 (64)	0,00031668

					Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0000995
					Метилбензол (349)	0621 (349)	0,000199
0025	0025 02	ДЭС АКЅА 375 кВА	выработк а э/э	8760	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0064
					Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,00104
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,000285715
					Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0025
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,0065
					Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	1,0000000E-08
					Формальдегид (Метаналь) (609)	1325 (609)	0,00007143
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,001714285
0026	0026 17	Емкость для д/т 4,5 м3	Хранение	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,0000021952
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0007818048

6027	6027 19	Сепаратор 1-й стадий	ЗРА и ФС	3	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
6028	6028 20	Сепаратор Газоочиститель	ЗРА и ФС	3	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
6029	6029 21	Сепаратор 2-й стадий	ЗРА и ФС	3	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
6030	6030 22	ЗРА и ФС	ЗРА и ФС	3	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
6032	6032 23	ЗРА и ФС	ЗРА и ФС	3	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
6033	6033 03	Насос ЦНС 1370	Насос	3	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06347496
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
						Бензол (64)	0602 (64)	0,0003066
						Диметилбензол (смесь о- , м-, п- изомеров) (203)	0616 (203)	0,00009636
						Метилбензол (349)	0621 (349)	0,00019272
6034	6034 04	Насос ЦНС 3844	Насос	3	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06347496
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
						Бензол (64)	0602 (64)	0,0003066

Диметилбензол (смесь о-0616 0,00009636 , м-, п- изомеров) (203)(203) 0621 Метилбензол (349) 0,00019272 (349)0415 6035 6035 24 Камера запуска и ЗРА и ФС 8760 Смесь углеводородов приема скребка предельных С1-С5 (1502*)(1502*)0036 0036 18 ДЭС САТ С-32 -8760 Азота (IV) диоксид 0301 (4) 0,56 (005) Вахтовый поселок выработк 1100 кВА а э/э (Азота диоксид) (4) Азот (II) оксид (Азота 0304 (6) 0,091 оксид) (6) Углерод (Сажа, Углерод 0,0214285 0328 черный) (583) (583)Сера диоксид (Ангидрид 0330 0,3 сернистый, Сернистый (516)газ, Сера (IV) оксид) (516)Углерод оксид (Окись 0337 0,55 углерода, Угарный газ) (584)(584)Бенз/а/пирен (3,4-0703 0,0000005 Бензпирен) (54) (54)Формальдегид (Метаналь) 1325 0,0057145 (609)(609)Алканы С12-19 /в 2754 0,142857 пересчете на С/ (10)(Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)0037 Сероводород 0037 18 Емкость для д/т Хранение 8760 0333 0,0000021952 4,5 м3 (Дигидросульфид) (518) (518)

(0.0.6)	60.41	60.44.05				Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	0,0007818048
(006) Скважина 9	6041	6041 25	Технические блоки скважины 9	ЗРА и ФС	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
(007) Скважина17	6043	6043 26	Технические блоки скважины 17	ЗРА и ФС	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6044	6044 05	Насос 79Г3-1200	Насос	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06347496
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
						Бензол (64)	0602 (64)	0,0003066
						Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,00009636
						Метилбензол (349)	0621 (349)	0,00019272
(008) Скважина21	6045	6045 27	Технические блоки скважины 21	ЗРА и ФС	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6046	6046 06	Hacoc QYB30/1200	Hacoc	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06347496
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
						Бензол (64)	0602 (64)	0,0003066

Диметилбензол (смесь о-0616 0,00009636 , м-, п- изомеров) (203)(203)0621 Метилбензол (349) 0,00019272 (349)0415 (009) Скважина 27 6047 6047 28 Технические ЗРА и ФС 8760 Смесь углеводородов блоки скважины предельных С1-С5 (1502*)(1502*)Насос 59ГЗ-1300 6048 6048 07 Hacoc 8760 Сероводород 0333 0,00005256 (Дигидросульфид) (518) (518)0415 0,06347496 Смесь углеводородов предельных С1-С5 (1502*)(1502*)Смесь углеводородов 0416 0,0234768 предельных С6-С10 (1503*)(1503*)Бензол (64) 0602 0,0003066 (64) 0616 0,00009636 Диметилбензол (смесь о-, м-, п- изомеров) (203)(203)Метилбензол (349) 0621 0,00019272 (349)6050 29 0415 (010) Скважина 26 6050 Технические ЗРА и ФС 8760 Смесь углеводородов предельных С1-С5 блоки скважины (1502*)(1502*)6051 08 6051 Hacoc OYB30/1200 Hacoc 8760 Сероводород 0333 0,00005256 (Дигидросульфид) (518) (518)0415 0,06347496 Смесь углеводородов предельных С1-С5 (1502*)(1502*)0416 0,0234768 Смесь углеводородов предельных С6-С10 (1503*)(1503*)0602 Бензол (64) 0,0003066 (64) Диметилбензол (смесь о-0616 0,00009636 (203), м-, п- изомеров) (203)Метилбензол (349) 0621 0,00019272 (349)

(011) Скважина 30	6052	6052 30	Технические блоки скважины 30	ЗРА и ФС	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
(012) Скважина 31	6054	6054 31	Технические блоки скважины 31	ЗРА и ФС	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6055	6055 09	Hacoc RHBM-14-4- 2-2	Hacoc	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06347496
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
						Бензол (64)	0602 (64)	0,0003066
						Диметилбензол (смесь о- , м-, п- изомеров) (203)	0616 (203)	0,00009636
						Метилбензол (349)	0621 (349)	0,00019272
(013) Скважина 34	6056	6056 32	Технические блоки скважины 34	ЗРА и ФС	8760	Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	
	6057	6057 10	Насос 30Г3-1400	Насос	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,06347496
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
						Бензол (64)	0602 (64)	0,0003066
						Диметилбензол (смесь о- , м-, п- изомеров) (203)	0616 (203)	0,00009636
						Метилбензол (349)	0621 (349)	0,00019272
(014) Скважина 35	6059	6059 11	Насос 30Г3-1200	Насос	8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00005256

Смесь углеводородов 0415 0.06347496 предельных С1-С5 (1502*)(1502*)0416 0,0234768 Смесь углеводородов предельных С6-С10 (1503*)(1503*)Бензол (64) 0602 0,0003066 (64) 0616 Диметилбензол (смесь о-0,00009636 , м-, п- изомеров) (203)(203)Метилбензол (349) 0621 0,00019272 (349)(015) Скважина 36 6060 6060 33 Технические ЗРА и ФС 8760 Смесь углеводородов 0415 блоки скважины предельных С1-С5 (1502*)36 (1502*)6061 6061 12 Hacoc 25-150-8760 0333 Сероводород 0,00005256 Hacoc RHBM-14-4-2-2 (Дигидросульфид) (518) (518)0415 0,06347496 Смесь углеводородов предельных С1-С5 (1502*)(1502*)Смесь углеводородов 0416 0,0234768 предельных С6-С10 (1503*)(1503*)0,0003066 Бензол (64) 0602 (64)Диметилбензол (смесь о-0616 0,00009636 , м-, п- изомеров) (203)(203)Метилбензол (349) 0621 0,00019272 (349)(016) Скважина 40 6062 6062 34 Технические ЗРА и ФС 8760 Смесь углеводородов 0415 предельных С1-С5 (1502*)блоки скважины 40 (1502*)Hacoc 25-150-6063 6063 13 Насос 8760 Сероводород 0333 0,00005256 RHBM-14-4-2-2 (Дигидросульфид) (518) (518)0415 0,06347496 Смесь углеводородов предельных С1-С5 (1502*)(1502*)0,0234768 Смесь углеводородов 0416 предельных С6-С10 (1503*)(1503*)

Бензол (64) 0602 0,0003066 (64)Диметилбензол (смесь о-0616 0,00009636 , м-, п- изомеров) (203)(203)Метилбензол (349) 0621 0,00019272 (349)(017) Скважина 41 6064 6064 35 Технические ЗРА и ФС 8760 Смесь углеводородов 0415 блоки скважины предельных С1-С5 (1502*)(1502*)6065 14 Hacoc 25-150-6065 Hacoc 8760 0333 0,00005256 Сероводород RHBM-14-4-2-2 (Дигидросульфид) (518) (518)Смесь углеводородов 0415 0,06347496 предельных С1-С5 (1502*)(1502*)Смесь углеводородов 0416 0,0234768 предельных С6-С10 (1503*)(1503*)Бензол (64) 0602 0,0003066 (64)Диметилбензол (смесь о-0616 0,00009636 , м-, п- изомеров) (203)(203)0621 Метилбензол (349) 0,00019272 (349)(018) Скважина 42 6066 6066 36 8760 Смесь углеводородов 0415 Технические ЗРА и ФС блоки скважины предельных С1-С5 (1502*)42 (1502*)(019) Скважина 43 6067 6067 37 Технические ЗРА и ФС 8760 Смесь углеводородов 0415 предельных С1-С5 блоки скважины (1502*)43 (1502*)(020) Скважина 44 6068 6068 38 Технические ЗРА и ФС 8760 Смесь углеводородов 0415 предельных С1-С5 (1502*)блоки скважины 44 (1502*)(021) Скважина 6069 6069 39 Технические ЗРА и ФС 8760 Смесь углеводородов 0415 блоки скважины предельных С1-С5 (1502*)(1502*)6070 0,00005256 6070 15 8760 Сероводород 0333 Hacoc Hacoc (Дигидросульфид) (518) (518)0,06347496 0415 Смесь углеводородов предельных С1-С5 (1502*)(1502*)

						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,0234768
						Бензол (64)	0602 (64)	0,0003066
						Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,00009636
						Метилбензол (349)	0621 (349)	0,00019272
(022) РООС "Модернизация ПСН на месторождении Майбулак"	0038	0038 19	Резервуар нефти 100 м3	Хранение	876	О Сероводород (Дигидросульфид) (518)	0333 (518)	0,0000714
						Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0,0862274
						Смесь углеводородов предельных C6-C10 (1503*)	0416 (1503*)	0,031892
						Бензол (64)	0602 (64)	0,0004165
						Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616 (203)	0,0001309
						Метилбензол (349)	0621 (349)	0,0002618

Примечание: В графе 8 в скобках (без "*") указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер ЗВ в таблице 2 вышеуказанного Приложения (список ОБУВ).

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ 1. Источники выделения вредных (загрязняющих) веществ на 2026 год

КРС м/р Майбулак на 2026 г (2 скважины)

Наименование производства, номер цеха, участка и т.п.	Номер источ- ника загряз- нения атмос- феры	Номер источни ка выделен ия	Наименование источника выделения загрязняющих веществ	Наимен о- вание выпуск ае-мой продук ции	Вре раб источ выдел ча в сутк и	оты иника ения, ас за год	Наименование загрязняющего вещества	Код вред- ного вещест ва (ЭНК, ПДК или ОБУВ)	Количество загрязняю- щего вещества, отходящего от источника выделения, т/год
A	1	2	3	4	5	6	7	8	9
				I	Ілощадк	a 1			
(001) KPC	1000	1000 01	УПА			150	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,256
							Азот (II) оксид (Азота оксид) (6)	0304	0,0416
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,011429
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,26
							Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000004
							Формальдегид (Метаналь) (609)	1325 (609)	0,002857

					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,068571
1000	1000 02	УПА		150	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,256
					Азот (II) оксид (Азота оксид) (6)	0304	0,0416
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,011429
					Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,26
					Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000004
					Формальдегид (Метаналь) (609)	1325 (609)	0,002857
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,068571
1001	1001 03	ДА		200	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0557
					Азот (II) оксид (Азота оксид) (6)	0304	0,00905

	I		1	Ĩ		Углерод (Сажа, Углерод черный) (583)	0328	0,005
							(583)	
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1176
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,278
1001	1001 04	ЦА			200	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0557
						Азот (II) оксид (Азота оксид) (6)	0304	0,00905
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,005
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1176
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,278
1002	1002 03	АДПМ			150	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,256
						Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,0416
						Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,011429
						Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,26

					Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000004
					Формальдегид (Метаналь) (609)	1325 (609)	0,002857
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,068571
1002	1002 04	АДПМ		150	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,256
					Азот (II) оксид (Азота оксид) (6)	0304	0,0416
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,011429
				Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,1	
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,26
					Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000004
					Формальдегид (Метаналь) (609)	1325 (609)	0,002857
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,068571
1003	1003 05	дэс		200	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,128
			Азот (II) оксид (Азота оксид) (6)	0304	0,0208		
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,0057145

					Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,05
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,13
					Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000002
					Формальдегид (Метаналь) (609)	1325 (609)	0,0014285
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,0342855
1003	1003 06	дэс		200	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,128
					Азот (II) оксид (Азота оксид) (6)	0304	0,0208
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,0057145
					Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,05
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,13
					Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000002
					Формальдегид (Метаналь) (609)	1325 (609)	0,0014285
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,0342855

1004	1004 07	САГ		100	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0688
					Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,01118
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,004286
					Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0225
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,075
					Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000001
					Формальдегид (Метаналь) (609)	1325 (609)	0,000857
					Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,021429
1004	1004 08	САГ		100	Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,0688
					Азот (II) оксид (Азота оксид) (6)	0304 (6)	0,01118
					Углерод (Сажа, Углерод черный) (583)	0328 (583)	0,004286
					Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0,0225
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,075
					Бенз/а/пирен (3,4-Бензпирен) (54)	0703 (54)	0,0000001

						Формальдегид (Метаналь) (609)	1325 (609)	0,000857
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,021429
1005	1005 09	Емкость для дизтоплива			200	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00000178
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,000632
1005	1005 10	Емкость для дизтоплива			200	Сероводород (Дигидросульфид) (518)	0333 (518)	0,00000178
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	2754 (10)	0,000632
6100	6100 11	Сврочные работы			100	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,000695
						Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0,0000545
						Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,000135
						Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,000665
						Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	0,0000465
	1005	1005 1005 10	дизтоплива 1005 1005 10 Емкость для дизтоплива 6100 6100 11 Сврочные	дизтоплива 1005 1005 10 Емкость для дизтоплива 6100 6100 11 Сврочные	дизтоплива 1005 1005 10 Емкость для дизтоплива 6100 6100 11 Сврочные	дизтоплива 1005 1005 10 Емкость для дизтоплива 6100 6100 11 Сврочные 100	Алканы C12-19 /в пересчете на С/ (Углеволороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) 1005 09 Емкость для диэтоплива 200 Сероводород (Дигидросульфид) (518) Алканы C12-19 /в пересчете на С/ (Углеволороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) 1005 10 Емкость для диэтоплива 200 Сероводород (Дигидросульфид) (518) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10) Железо (ТІ, ТІТ) оксиды (в пересчете на железо) (дижелезо триоксид, Железа оксид) (274) Марганец и его соединения (в пересчете на марганца (ТV) оксид) (327) Азота (ТV) диоксид (Азота диоксид) (4) Углерод оксид (Окись углерода, Угарный газ) (584) Фтористые газообразыме соединения /в	(609) (609) (609) (700) (70

					Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	0,00005
					Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,00005
6100	6100 12	Сврочные работы		100	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0,000695
					Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0,0000545
					Азота (IV) диоксид (Азота диоксид) (4)	0301 (4)	0,000135
					Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0,000665
					Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	0,0000465
					Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0344 (615)	0,00005
					Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0,00005

Примечание: В графе 8 в скобках указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК)

3PA v3.0

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ 2. Характеристика источников загрязнения атмосферного воздуха

НДВ 2026, НДВ Майбулак 2026

Номер	источни	метры ка загряз- атмосферы	выходе с ис	азовоздушной см точника загрязн атмосферы		Код загряз- няющего вещества (ЭНК, ПДК или ОБУВ)		веществ, вы	загрязняющих брасываемых в эсферу
источ-ника загряз- нения атмос-феры	Высота,	Диаметр, размер сечения устья, м	Скорость, м/с	Объемный расход, м3/с	Температура, С		Наименование загрязняющего вещества	Максимальное, г/с	Суммарное, т/год
1	2	3	4	5	6	7	8	9	10
					ЗУ	Спутник-1			
6002				0,00578		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6003				0,00578		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6004				0,00578		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6005				0,00578		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6006				0,00578		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6007				0,00578		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
					Скв	ажина УН1			

6071		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6072		0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
		0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
		0602 (64)	Бензол (64)	0,00000973	0,0003066
		0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
		0621 (349)	Метилбензол (349)	0,000006116	0,00019272
·	· · · · · · · · · · · · · · · · · · ·	ЗУ Спутник-2		•	
0008	0,0261	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,000864	0,027256
		0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,00014	0,00443
		0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,002605	0,082
		0410 (727*)	Метан (727*)	0,002605	0,082
6009	0,00578	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6010	0,00578	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6011	0,00578	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6012	0,00578	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6013	0,00578	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6015	0,00578	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		

		псн			
0001	0,0261	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,000864	0 , 027256
		0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,00014	0,00443
		0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,002605	0,082
		0410 (727*)	Метан (727*)	0,002605	0,082
0016	0,0261	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,006010288	0,000346193
		0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,004006859	0,000230795
		0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,040068588	0,002307951
		0410 (727*)	Метан (727*)	0,001001715	0,000057699
0019	0,0261	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)		
		0304 (6)	Азот (II) оксид (Азота оксид) (6)		
		0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)		
		0410 (727*)	Метан (727*)		
0020	0,0195	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0784	2,4696
		0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,01274	0,40131
		0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,1191168	3 , 76235
		0410 (727*)	Метан (727*)	0,0172656	0,54534

0021	0,0195	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,0784	2,4696
		0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,01274	0,40131
		0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,1191168	3,76235
		0410 (727*)	Метан (727*)	0,0172656	0,54534
0022		0333 (518)	Сероводород (Дигидросульфид) (518)	0,00013302	0,000054
		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,16064382	0,06556
		0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,0594156	0,02425
		0602 (64)	Бензол (64)	0,00077595	0,00031668
		0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,00024387	0,0000995
		0621 (349)	Метилбензол (349)	0,00048774	0,000199
0023		0333 (518)	Сероводород (Дигидросульфид) (518)	0,00013302	0,000054
		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,16064382	0,06556
		0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,0594156	0,02425
		0602 (64)	Бензол (64)	0,00077595	0,00031668
		0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,00024387	0,0000995
		0621 (349)	Метилбензол (349)	0,00048774	0,000199
0024		0333 (518)	Сероводород (Дигидросульфид) (518)	0,00013302	0,000054
		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,16064382	0,06556

					0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,0594156	0,02425
					0602 (64)	Бензол (64)	0,00077595	0,00031668
					0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,00024387	0,0000995
					0621 (349)	Метилбензол (349)	0,00048774	0,000199
0025			0,0169025	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,256	0,0064
					0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,0416	0,00104
					0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,011905	0,000285715
				0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,1	0,0025	
				0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,258333333	0,0065	
					0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000000285	1,0000000E-08
					1325 (609)	Формальдегид (Метаналь) (609)	0,0028575	0,00007143
					2754 (10)	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0,0690475	0,001714285
0026					0333 (518)	Сероводород (Дигидросульфид) (518)	0,0000036596	0,0000021952
					2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,0013033404	0,0007818048
6027					0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		

6028	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6029	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6030	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6032	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6033	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066
	0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
6034	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных С6-С10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,000306
	0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,0001927
6035	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		

0036	0,2436292	450	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0,657066667	0,56
			0304 (6)	Азот (II) оксид (Азота оксид) (6)	0,106773333	0,091
			0328 (583)	Углерод (Сажа, Углерод черный) (583)	0,02444444	0,0214285
			0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,342222222	0,3
			0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0,647777778	0,55
			0703 (54)	Бенз/а/пирен (3,4- Бензпирен) (54)	0,000000768	0,0000005
			1325 (609)	Формальдегид (Метаналь) (609)	0,006983778	0,0057145
			2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,167618	0,142857
0037			0333 (518)	Сероводород (Дигидросульфид) (518)	0,00000366	0,000002195
			2754 (10)	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,001303	0,000782
		Ск	важина 9			
6041			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
		Ск	важина17			
6043			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6044			0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256

1 1	 1			
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066
	0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	Скважина21			
6045	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6046	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066
	0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	Скважина 27		•	
6047	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6048	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066

	0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	Скважина 26			
6050	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6051	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066
	0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	Скважина 30			
6052	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
•	 Скважина 31		•	
6054	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6055	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066
	0616 (203)	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,000003058	0,00009636

	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	Скважина 34			
6056	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6057	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066
	0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
· · · · · · · · · · · · · · · · · · ·	Скважина 35	·	•	
6059	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
	0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
	0602 (64)	Бензол (64)	0,00000973	0,0003066
	0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
	0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	Скважина 36			
6060	0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6061	0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256

		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
		0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
		0602 (64)	Бензол (64)	0,00000973	0,0003066
		0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
		0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	· ·	Скважина 40		_	
6062		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6063		0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
		0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
		0602 (64)	Бензол (64)	0,00000973	0,0003066
		0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
		0621 (349)	Метилбензол (349)	0,000006116	0,00019272
	<u> </u>	Скважина 41		•	
6064		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6065		0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
		0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
		0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
		0602 (64)	Бензол (64)	0,00000973	0,0003066

			0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
			0621 (349)	Метилбензол (349)	0,000006116	0,00019272
•		Ск	важина 42		•	
6066			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
	<u>, </u>	Ск	важина 43		<u>l</u>	
6067			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
		Ск	важина 44		•	
6068			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
•		(Скважина		•	
6069			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)		
6070			0333 (518)	Сероводород (Дигидросульфид) (518)	0,000001668	0,00005256
			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,002014388	0,06347496
			0416 (1503*)	Смесь углеводородов предельных C6-C10 (1503*)	0,00074504	0,0234768
			0602 (64)	Бензол (64)	0,00000973	0,0003066
			0616 (203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0,000003058	0,00009636
			0621 (349)	Метилбензол (349)	0,000006116	0,00019272
•	<u>.</u>	РООС "Модернизация ПО	Н на месторож	дении Майбулак"	_	
0038			0333 (518)	Сероводород (Дигидросульфид) (518)	0,00022164	0,0000714
			0415 (1502*)	Смесь углеводородов предельных C1-C5 (1502*)	0,26766724	0,0862274

0416 (1503*)
0602 (64
0616 (20
21 (34

Примечание: В графе 7 в скобках (без "*") указан порядковый номер 3В в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК) , со "*" указан порядковый номер 3В в таблице 2 вышеуказанного Приложения (список ОБУВ).

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

ЭРА v3.0 ИП "Казинжэкопроект"

2. Характеристика источников загрязнения атмосферного воздуха на 2026 год

КРС м/р Майбулак на 2026 г (2 скважины)

Номер	Пај	раметры	Парамет	гры газовоздушной	смеси	Код загряз-			Количество з	загрязняющих
источ	источн.	загрязнен.	на вы	ыходе источника за	прязнения	няюще	ΓO		веществ, выб	расываемых
ника						вещест	гва		в атмосферу	
заг-	Высота	Диаметр,	Скорость	Объемный	Темпе-	(ЭНК,	ПДК	Наименование ЗВ		
-гкд	M	размер	м/с	расход,	ратура,	или ОБ	УВ)		Максимальное,	Суммарное,
нения		сечения		м3/с	С				r/c	т/год
		устья, м								
1	2	3	4	5	6	7		7a	8	9
						KPC				
1000				0.2455586	200	0301 (4)		Азота (IV) диоксид (Азота	0.256	0.512
1000				0.2433300	200	0301 (4)		диоксид) (4)	0.230	0.312
						0304 (6)		Азот (II) оксид (Азота	0.0416	0.0832
						0001 (0)		оксид) (6)	0.0110	0.0002
						0328 (583)		Углерод (Сажа, Углерод	0.011905	0.022858
								черный) (583)		
						0330 (516))	Сера диоксид (Ангидрид	0.1	0.2
								сернистый, Сернистый газ,		
								Сера (IV) оксид) (516)		
						0337 (584)	<i>'</i>	Углерод оксид (Окись	0.258333334	0.52
								углерода, Угарный газ) (
								584)		
						0703 (54)		Бенз/а/пирен (3,4-	0.000000286	0.0000008
						1005 (600)		Бензпирен) (54)	0 0000575	0 005714
						1325 (609)		Формальдегид (Метаналь) (609)	0.0028575	0.005714
						2754 (10)		Алканы C12-19 /в пересчете	0.0690475	0.137142
						2/34 (10)		на С/ (Углеводороды	0.0090473	0.13/142
								предельные С12-С19 (в		
								nepecuere ha C);		
								Растворитель РПК-265П) (10)		
1001				0.2455586	200	0301 (4)		Азота (IV) диоксид (Азота	0.15472	0.1114
						. ,		диоксид) (4)		
						0304 (6)		Азот (II) оксид (Азота	0.025142	0.0181
								оксид) (6)		

				0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.0139	0.01
				0330	(516)	черным) (303) Сера диоксид (Ангидрид	0.326928	0.2352
				0330	(310)	сернистый, Сернистый газ,	0.320320	0.2332
						Сера (IV) оксид) (516)		
				0337	(584)	Углерод оксид (Окись	0.77284	0.556
						углерода, Угарный газ) (
						584)		
1002		0.2455586	200	0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.256	0.512
				0304	(6)	Азот (II) оксид (Азота	0.0416	0.0832
						оксид) (6)		
				0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.011905	0.022858
				0330	(516)	Сера диоксид (Ангидрид	0.1	0.2
						сернистый, Сернистый газ,		
				0007	(504)	Сера (IV) оксид) (516)	0.05022224	0 50
				0337	(584)	Углерод оксид (Окись	0.258333334	0.52
						углерода, Угарный газ) (584)		
				0703	(54)	Бенз/а/пирен (3,4-	0.000000286	0.0000008
				1005	(600)	Бензпирен) (54)	0.000575	0 005514
				1325	(609)	Формальдегид (Метаналь) (609)	0.0028575	0.005714
				2754	(10)	Алканы С12-19 /в пересчете	0.0690475	0.137142
						на С/ (Углеводороды		
						предельные С12-С19 (в		
						пересчете на C); Растворитель РПК-265П) (10)		
1003		0.1818953	200	0301	(4)	Азота (IV) диоксид (Азота	0.170666666	0.256
1005		0.1010333	200	0301	(1)	диоксид) (4)	0.17000000	0.250
				0304	(6)	Азот (II) оксид (Азота	0.027733334	0.0416
						оксид) (6)		
				0328	(583)	Углерод (Сажа, Углерод	0.007936666	0.011429
						черный) (583)		
				0330	(516)	Сера диоксид (Ангидрид	0.066666666	0.1
						сернистый, Сернистый газ,		
				0337	(584)	Сера (IV) оксид) (516) Углерод оксид (Окись	0.172222222	0.26
				0337	(304)	углерод оксид (окись углерода, Угарный газ) (0.1/222222	0.20
1						584)		
				0703	(54)	Бенз/а/пирен (3,4-	0.00000019	0.000004
1						Бензпирен) (54)		
				1325	(609)	Формальдегид (Метаналь) (0.001905	0.002857

					609)		
			2754	(10)	Алканы С12-19 /в пересчете	0.046031666	0.068571
					на С/ (Углеводороды		
					предельные С12-С19 (в		
					пересчете на С);		
					Растворитель РПК-265П) (10)		
1004	0.0636633	200	0301	(4)	Азота (IV) диоксид (Азота	0.128177778	0.1376
					диоксид) (4)		
			0304	(6)	Азот (II) оксид (Азота	0.020828888	0.02236
				.=	оксид) (6)		
			0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.007777778	0.008572
			0330	(516)	Сера диоксид (Ангидрид	0.042777778	0.045
					сернистый, Сернистый газ,		
					Сера (IV) оксид) (516)		
			0337	(584)	Углерод оксид (Окись	0.14	0.15
					углерода, Угарный газ) (584)		
			0703	(54)	Бенз/а/пирен (3,4-	0.000000144	0.0000002
				(- /	Бензпирен) (54)		
			1325	(609)	Формальдегид (Метаналь) (609)	0.001666778	0.001714
			2754	(10)	Алканы С12-19 /в пересчете	0.039999944	0.042858
			2,01	(20)	на С/ (Углеводороды	0.00333311	0.012000
					предельные С12-С19 (в		
					пересчете на С);		
					Растворитель РПК-265П) (10)		
1005			0333	(518)	Сероводород (0.000014	0.00000356
					Дигидросульфид) (518)		
			2754	(10)	Алканы С12-19 /в пересчете	0.004986	0.001264
					на С/ (Углеводороды		
					предельные С12-С19 (в		
					пересчете на С);		
					Растворитель РПК-265П) (10)		
6100			0123	(274)	Железо (II, III) оксиды (в	0.00772	0.00139
					пересчете на железо) (
					диЖелезо триоксид, Железа		
					оксид) (274)		
			0143	(327)	Марганец и его соединения (0.000606	0.000109
					в пересчете на марганца (
					IV) оксид) (327)		
			0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0015	0.00027
			0337	(584)	Углерод оксид (Окись	0.007388	0.00133

		0342 (617)	углерода, Угарный газ) (584) Фтористые газообразные	0.0005166	0.000093
			соединения /в пересчете на фтор/ (617)		
		0344 (615)	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0.000556	0.0001
		2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских	0.000556	0.0001
		İ	месторождений) (494)		

Примечание: В графе 7 в скобках указан порядковый номер ЗВ в таблице 1 Приложения 1 к Приказу Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ЌР ДСМ-70 (список ПДК)

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

ЭРА v3.0

3. Показатели работы пылегазоочистного оборудования (ПГО) на 2026 год

Номер	Наименование и тип	КПД аппа	ратов, %	Код	Коэффициент				
источника	пылегазоулавливающего			загрязняющего	обеспеченности				
выделения	оборудования	Проектный	Фактичес-	вещества по	K(1),%				
			кий	котор.проис-					
				ходит очистка					
1	2	3	4	5	6				
	Пылегазоочистное оборудование отсутствует!								

3PA v3.0

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация , т/год

НДВ для м/р Майбулак

Код	ля м/р маноулак	Количество	В том	числе	Из по	оступивших на о	УЧИСТКУ	Всего
заг-	Наименование	загрязняющих	_ 1011			- ,		выброшено
ряз-	загрязняющего	веществ	выбрасыва-	поступает	выброшено	уловлено и	обезврежено	В
няющ	вещества	отходящих от	ется без	на	В		-	атмосферу
веще		источников	очистки	очистку	атмосферу	фактически	из них ути-	
ства		выделения					лизовано	
1	2	3	4	5	6	7	8	9
Площадка:01								
	В С Е Г О по площадке:01	18.060089608	18.060089608					18.060089608
	в том числе:							
	Твердых:	0.02194552	0.02194552					0.02194552
	:XNH EN							
0328	Углерод (Сажа, Углерод	0.02194501	0.02194501					0.02194501
	черный) (583)							
0703	Бенз/а/пирен (3,4-Бензпирен)	0.00000051	0.00000051					0.00000051
	(54)							
	Газообразных и жидких:	18.038144088	18.038144088					18.038144088
	N3 HNX:							
	Азота (IV) диоксид (Азота	5.560458193	5.560458193					5.560458193
	диоксид) (4)							
0304	Азот (II) оксид (Азота оксид) (6)	0.90352	0.90352					0.90352
0330	Сера диоксид (Ангидрид	0.3025	0.3025					0.3025
	сернистый, Сернистый газ,							
	Сера (IV) оксид) (516)							
0333	Сероводород (Дигидросульфид) (518)	0.00097419	0.00097419					0.00097419
0337	Углерод оксид (Окись	8.247507951	8.247507951					8.247507951
	углерода, Угарный газ) (584)							
0410	Метан (727*)	1.254737699	1.254737699					1.254737699
0415	Смесь углеводородов	1.17188	1.17188					1.17188

Проект нормативов допустимых выбросов вредных веществ в атмосферу для месторождения Майбулак на 2026 год

	предельных С1-С5 (1502*)					
0416	Смесь углеводородов	0.43365	0.43365			0.43365
	предельных С6-С10 (1503*)					
0602	Бензол (64)	0.00565894	0.00565894			0.00565894
0616	Диметилбензол (смесь о-, м-,	0.0017791	0.0017791			0.0017791
	п- изомеров) (203)					
0621	Метилбензол (349)	0.0035568	0.0035568			0.0035568
1325	Формальдегид (Метаналь) (609)	0.00578593	0.00578593			0.00578593
2754	Алканы С12-19 /в пересчете на	0.146135285	0.146135285			0.146135285
	С/ (Углеводороды предельные					
	С12-С19 (в пересчете на С);					
	Растворитель РПК-265П) (10)					

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

3PA v3.0

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год на 2026 год

КРС м/р Майбулак на 2026 г (2 скважины)

Код	Наименование	Количество загрязняющих	В том	числе	On EN	оступивших на о	учистку	Всего выброшено
тьс — свед шовн	загрязняющего вещества	веществ отходящих от	выбрасыва- ется без	поступает на	выброшено в	уловлено и	уловлено и обезврежено	
веще Ства		источников выделения	ОЧИСТКИ	очистку	атмосферу	фактически	из них ути- лизовано	
1	2	3	4	5	6	7	8	9
			Пло	ощадка:01				
	В С Е Г О по площадке:01 в том числе:	5.05117675	5.05117675					5.05117675
	Твердых:	0.0774182	0.0774182					0.0774182
	из них: Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0.00139	0.00139					0.00139
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0.000109	0.000109					0.000109
0328	Углерод (Сажа, Углерод черный) (583)	0.075717	0.075717					0.075717
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0.0001	0.0001					0.0001
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	0.0000022	0.0000022					0.0000022
2908	Пыль неорганическая,	0.0001	0.0001					0.0001

	,	ſ	į	Ī	Ī	
содержащая двуокись кремния в						
%: 70-20 (шамот, цемент, пыль						
цементного производства -						
глина, глинистый сланец,						
доменный шлак, песок,						
клинкер, зола, кремнезем,						
зола углей казахстанских						
месторождений) (494)						
Газообразных и жидких:	4.97375855	4.97375855				4.97375855
N3 HNX:						
0301 Азота (IV) диоксид (Азота	1.52927	1.52927				1.52927
диоксид) (4)						
0304 Азот (II) оксид (Азота оксид)	0.24846	0.24846				0.24846
(6)						
0330 Сера диоксид (Ангидрид	0.7802	0.7802				0.7802
сернистый, Сернистый газ,						
Cepa (IV) оксид) (516)						
0333 Сероводород (Дигидросульфид)	0.00000355	0.00000355				0.00000355
(518)						
0337 Углерод оксид (Окись	2.00733	2.00733				2.00733
углерода, Угарный газ) (584)						
0342 Фтористые газообразные	0.000093	0.000093				0.000093
соединения /в пересчете на						
Фтор/ (617)						
1325 Формальдегид (Метаналь) (609)	0.021425	0.021425				0.021425
2754 Алканы С12-19 /в пересчете на	0.386977	0.386977				0.386977
С/ (Углеводороды предельные						
С12-С19 (в пересчете на С);						
Растворитель РПК-265П) (10)						

Приложение 3 – Расчеты валовых выбросов

ЗУ Спутник-1

Источник загрязнения N 6002. Сепаратор НГМ

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

 $M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	певодородов (C1-C5				
3PA	0.013	10	0.365	0.94	0.012	0.39
Фланцы	0.00038	20	0.05	0.94	0.00009	0.003
Итого:			·		0.01209	0.393

Источник загрязнения N 6003. Камера запуска и приема скребка

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \gamma i * Ci) / 3.6$$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	іеводородов (C1-C5				
3PA	0.013	2	0.365	0.94	0.002	0.078
Фланцы	0.00038	4	0.05	0.94	0.00001	0.0006

Итого:	0.00201	0.0786

Источник загрязнения N 6004. Манифольд

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	певодородов (C1-C5				
3PA	0.013	9	0.365	0.94	0.011	0.34
Фланцы	0.00038	18	0.05	0.94	0.00008	0.003
Итого:					0.01108	0.343

Источник загрязнения N 6005. Спутник-1

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	певодородов (C1-C5				
3PA	0.013	10	0.365	0.94	0.012	0.39
Фланцы	0.00038	20	0.05	0.94	0.00009	0.003

Итого:	0.01209	0.393

Источник загрязнения N 6006, Скруббер топливного газа

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

пі – число неподвижных уплотнений на потоке і-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях единицы	единицы		
	уплотнени					
	е, кг/час					
0		71.05				
Смесь угл	теводородов (21-C5	T			
3PA	0.013	6	0.365	0.94	0.0074	0.23
Фланцы	0.00038	15	0.05	0.94	0.000074	0.0023
Итого:					0.007474	0.2323

Источник загрязнения N 6007, 3PA и ФС

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый	
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,	
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год	
	потока і-го	уплотнений	потеряв-ших	компонента	г/с		
	вида через	на потоке і-	герметичность,	в долях			
	одно	го вида, шт.	в долях	единицы			
	уплотнени		единицы				
	е, кг/час						
Смесь углеводородов С1-С5							
3PA	0.013	5	0.365	0.94	0.006	0.18	

Фланцы	0.00038	10	0.05	0.94	0.00004	0.0015
Итого:				0.00604	0.1815	

ЗУ Спутник-2

Источник загрязнения N 0008, Дымовая труба

Источник выделения N 0008 01, Печь для подогрева нефти (АРГО)

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу

различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый

Общее количество топок, шт., N = 1

Количество одновременно работающих топок, шт., NI = 1

Максимальный расход топлива одной топкой, кг/час, B = 6.2517

Массовая доля жидкого топлива, в долях единицы, BB = 0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a), $M = 1.5 \cdot B \cdot 10^{-3} = 1.5 \cdot 6.2517 \cdot 10^{-3} = 0.00938$

Валовый выброс, т/год, $_M_=N\cdot M\cdot _T_\cdot 10^{-3}=1\cdot 0.00938\cdot 8736\cdot 10^{-3}=0.082$

Максимальный из разовых выброс, г/с, $_G_=NI\cdot M/3.6=1\cdot 0.00938/3.6=0.002605$

Примесь: 0410 Метан (727*)

Валовый выброс, т/год, $M = N \cdot M \cdot T \cdot 10^{-3} = 1 \cdot 0.00938 \cdot 8736 \cdot 10^{-3} = 0.082$

Максимальный из разовых выброс, г/с, $_G_=N1 \cdot M / 3.6 = 1 \cdot 0.00938 / 3.6 = 0.002605$

Расчет выбросов окислов азота:

Энергетический эквивалент топлива(табл.5.1), E = 1.5

Число форсунок на одну топку, шт., NN = 1

Теплопроизводительность одной топки, Гкал/час, GK = 0.2

Расчетная теплопроизводительность одной форсунки, МДж/час, $QP = GK \cdot 4.1868 \cdot 10^3 / NN = 0.2 \cdot 10^3 \cdot 1$

 $4.1868 \cdot 10^3 / 1 = 837.4$

где $4.1868*10^3$ - переводной коэффициент из Гкал/час в МДж/час

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105), $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 6.2517 / 1 = 275.7$

Коэффициент избытка воздуха в уходящих дымовых газах, A = 1

Отношение Vcг/Vr при заданном коэфф. избытка воздуха (табл.5.1), V = 0.83

 $1.073 \cdot (180 + 60 \cdot 0) \cdot 275.7 / 837.4 \cdot 1^{0.5} \cdot 0.83 \cdot 10^{-6} = 0.0000528$

Объем продуктов сгорания, м3/ч (5.4), $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1 \cdot 6.2517 \cdot 1.5 = 73.52$

Объем продуктов сгорания, M3/c, $VO_{-} = VR / 3600 = 73.52 / 3600 = 0.02$

Количество выбросов, кг/час (5.3), $M = VR \cdot CNOX = 73.52 \cdot 0.0000528 = 0.0039$

Валовый выброс окислов азота, т/год, $M1 = N \cdot M \cdot T \cdot 10^{-3} = 1 \cdot 0.0039 \cdot 8736 \cdot 10^{-3} = 0.03407$

Максимальный из разовых выброс окислов азота, г/c, $G1 = N1 \cdot M / 3.6 = 1 \cdot 0.0039 / 3.6 = 0.00108$

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, KNO = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_ = KNO2 \cdot M1 = 0.8 \cdot 0.03407 = 0.027256$

Максимальный из разовых выброс, г/с, $G = KNO2 \cdot G1 = 0.8 \cdot 0.00108 = 0.000864$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_ = KNO \cdot M1 = 0.13 \cdot 0.03407 = 0.00443$

Максимальный из разовых выброс, Γ/c , $_G_ = KNO \cdot GI = 0.13 \cdot 0.00108 = 0.00014$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000864	0.027256
0304	Азот (II) оксид (Азота оксид) (6)	0.00014	0.00443
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.002605	0.082
0410	Метан (727*)	0.002605	0.082

<u>Источник загрязнения N 6009, Сепаратор НГМ</u>

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый		
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,		
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год		
	потока і-го	уплотнений	потеряв-ших	компонента	г/с			
	вида через	на потоке і-	герметичность,	в долях				
	одно	го вида, шт.	в долях	единицы				
	уплотнени		единицы					
	е, кг/час							
Смесь угл	Смесь углеводородов С1-С5							
3PA	0.013	10	0.365	0.94	0.012	0.39		
Фланцы	0.00038	20	0.05	0.94	0.00009	0.003		
Итого:					0.01209	0.393		

Источник загрязнения N 6010. Cenapamop Bromley

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый		
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,		
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год		
	потока і-го	уплотнений	потеряв-ших	компонента	г/с			
	вида через	на потоке і-	герметичность,	в долях				
	одно	го вида, шт.	в долях	единицы				
	уплотнени		единицы					
	е, кг/час							
Смесь угл	Смесь углеводородов С1-С5							
3PA	0.013	10	0.365	0.94	0.012	0.39		
Фланцы	0.00038	20	0.05	0.94	0.00009	0.003		
Итого:					0.01209	0.393		

Источник загрязнения N 6011, Камера запуска и приема скребка

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый		
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,		
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год		
	потока і-го	уплотнений	потеряв-ших	компонента	г/с			
	вида через	на потоке і-	герметичность,	в долях				
	одно	го вида, шт.	в долях	единицы				
	уплотнени		единицы					
	е, кг/час							
Смесь угл	Смесь углеводородов С1-С5							
3PA	0.013	2	0.365	0.94	0.002	0.078		
Фланцы	0.00038	4	0.05	0.94	0.00001	0.0006		
Итого:			·	·	0.00201	0.0786		

Источник загрязнения N 6012. Спутник-2

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \gamma i * Ci) / 3.6$$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

Наиме	н gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вани	е величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вила через	на потоке і-	герметичность.	в лолях		

о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выорос,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	певодородов (C1-C5				
3PA	0.013	10	0.365	0.94	0.012	0.39
Фланцы	0.00038	20	0.05	0.94	0.00009	0.003
Итого:					0.01209	0.393

<u>Источник загрязнения N 6013, 3PA и ФС</u>

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi_i = (\sum g_i * n_i * \chi_i * C_i) / 3.6$$

где g_i – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке i-го вида, шт.;

 γ_{i} – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; С_і – массовая концентрация вредного компонента і-го вида в потоке в долях единицы

Наимен	g _i -	n _i -число	χ₁ −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	Γ/c	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	5	0.365	0.94	0.006	0.18
Фланцы	0.00038	10	0.05	0.94	0.00004	0.0015
Итого:			·		0.00604	0.1815

<u>Источник загрязнения N 6015, Скруббер топливного газа</u>

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

 $M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$

где gi – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

уі – доля уплотнений на потоке і-го вида, потерявших герметичность, в долях единицы; Сі – массовая концентрация вредного компонента і-го вида в потоке в долях единицы

Наимен о-вание	gi - величина утечки потока i-го вида через одно уплотнени е, кг/час	пі -число неподвижны х уплотнений на потоке іго вида, шт.	χі –доля уплотнений на потоке і-го вида, потеряв-ших герметичность, в долях единицы	Сі- массовая концентраци я вредного компонента в долях единицы	Максимальн о-разовый выброс, г/с	Валовый выброс, т/год
Смесь угл	теводородов (C1-C5				
3PA	0.013	6	0.365	0.94	0.0074	0.23
Фланцы	0.00038	15	0.05	0.94	0.000074	0.0023
Итого:					0.007474	0.2323

ПСН

Источник загрязнения N 0001, Дымовая труба

Источник выделения N 0001 01, Печь для подогрева нефти (Bromley)

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу

различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Вид топлива: Газ нефтепромысловый

Общее количество топок, шт., N = 1

Количество одновременно работающих топок, шт., NI = 1

Время работы одной топки, час/год, $_{T}$ = 8736

Максимальный расход топлива одной топкой, кг/час, B = 6.2517

Массовая доля жидкого топлива, в долях единицы, BB = 0

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество выбросов, кг/час (5.2a), $M = 1.5 \cdot B \cdot 10^{-3} = 1.5 \cdot 6.2517 \cdot 10^{-3} = 0.00938$

Валовый выброс, т/год, $_{M}$ = $N \cdot M \cdot _{T} \cdot 10^{-3} = 1 \cdot 0.00938 \cdot 8736 \cdot 10^{-3} = 0.082$

Максимальный из разовых выброс, г/c, $_G_=NI\cdot M/3.6=1\cdot 0.00938/3.6=0.002605$

Примесь: 0410 Метан (727*)

Валовый выброс, т/год, $M = N \cdot M \cdot T \cdot 10^{-3} = 1 \cdot 0.00938 \cdot 8736 \cdot 10^{-3} = 0.082$

Максимальный из разовых выброс, г/c, $_G_=NI\cdot M/3.6=1\cdot 0.00938/3.6=0.002605$

Расчет выбросов окислов азота:

Энергетический эквивалент топлива(табл.5.1), E = 1.5

Число форсунок на одну топку, шт., NN = 1

Теплопроизводительность одной топки, Гкал/час, GK = 0.2

Расчетная теплопроизводительность одной форсунки, МДж/час, $QP = GK \cdot 4.1868 \cdot 10^3 / NN = 0.2 \cdot 10^3 \cdot 1$

$4.1868 \cdot 10^3 / 1 = 837.4$

где 4.1868*10³ - переводной коэффициент из Гкал/час в МДж/час

Фактическая средняя теплопроизводительность

одной форсунки (МДж/ч) (по ф-ле на с. 105), $QF = 29.4 \cdot E \cdot B / NN = 29.4 \cdot 1.5 \cdot 6.2517 / 1 = 275.7$

Коэффициент избытка воздуха в уходящих дымовых газах, A = 1

Отношение Vcr/Vr при заданном коэфф. избытка воздуха (табл.5.1), V = 0.83

Концентрация оксидов азота, кг/м3 (5.6), $CNOX = 1.073 \cdot (180 + 60 \cdot BB) \cdot QF / QP \cdot A^{0.5} \cdot V \cdot 10^{-6} = 0.000 \cdot P$

 $1.073 \cdot (180 + 60 \cdot 0) \cdot 275.7 / 837.4 \cdot 1^{0.5} \cdot 0.83 \cdot 10^{-6} = 0.0000528$

Объем продуктов сгорания, м3/ч (5.4), $VR = 7.84 \cdot A \cdot B \cdot E = 7.84 \cdot 1 \cdot 6.2517 \cdot 1.5 = 73.52$

Объем продуктов сгорания, M3/c, $VO_{-} = VR / 3600 = 73.52 / 3600 = 0.02$

Количество выбросов, кг/час (5.3), $M = VR \cdot CNOX = 73.52 \cdot 0.0000528 = 0.0039$

Валовый выброс окислов азота, т/год, $M1 = N \cdot M \cdot _T _ \cdot 10^{-3} = 1 \cdot 0.0039 \cdot 8736 \cdot 10^{-3} = 0.03407$

Максимальный из разовых выброс окислов азота, г/с, $G1 = N1 \cdot M / 3.6 = 1 \cdot 0.0039 / 3.6 = 0.00108$

Коэффициент трансформации для NO2, KNO2 = 0.8

Коэффициент трансформации для NO, *KNO* = 0.13

Коэффициенты приняты на уровне максимально установленной трансформации

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год, $_M_ = KNO2 \cdot M1 = 0.8 \cdot 0.03407 = 0.027256$

Максимальный из разовых выброс, г/с, $_G_ = KNO2 \cdot G1 = 0.8 \cdot 0.00108 = 0.000864$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год, $_M_=KNO\cdot M1=0.13\cdot 0.03407=0.00443$

Максимальный из разовых выброс, Γ/c , $_G_ = KNO \cdot GI = 0.13 \cdot 0.00108 = 0.00014$

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000864	0.027256
0304	Азот (II) оксид (Азота оксид) (6)	0.00014	0.00443
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.002605	0.082
0410	Метан (727*)	0.002605	0.082

РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ

Список литературы:

1. "Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008г.

Площадка: Майбулак

Цех: Майбулак Источник: 0018

Наименование: Факел

Тип: Высотная

Тип сжигаемой смеси: Некондиционная газовая и газоконденсатная смесь

Тип месторождения: бессернистое

1. РАСЧЕТ ВСПОМОГАТЕЛЬНЫХ ПАРАМЕТРОВ

Таблица процентного содержания составляющих смеси.

Состав смеси задавался в объемных долях.

Компонент	[%]об.	[%]мас.	Молек.мас.	Плотность
Метан(СН4)	73.9289	54.3811235	16.043	0.7162
Этан(С2Н6)	11.4758	15.8221226	30.07	1.3424
Пропан(СЗН8)	8.0271	16.2299083	44.097	1.9686
Бутан(С4Н10)	3.6008	9.59627848	58.124	2.5948
Пентан(С5Н12)	0.7853	2.59792315	72.151	3.2210268
Азот(N2)	0.7115	0.91396461	28.016	1.2507
Диоксид углерода(СО2)	0.2273	0.45867917	44.011	1.9648

Молярная масса смеси M, кг/моль (прил.3, (5)): 21.80979841

Плотность сжигаемой смеси R_o , кг/м 3 : 0.9618

Показатель адиабаты K (23):

$$K = \sum_{i=1}^{N} (K_i * [i]_o) = 1.24612204$$

где (K_i) - показатель адиабаты для индивидуальных углеводородов;

 $[i]_o$ - объемные единицы составляющих смеси, %;

Скорость распространения звука в смеси W_{36} , м/с (прил.6):

 $W_{36} = 91.5 * (K * (T_0 + 273) / M)^{0.5} = 91.5 * (1.24612204 * (15 + 273) / 21.80979841)^{0.5} = 371.169089$

где T_o - температура смеси, град.С;

Объемный расход B, м³/с: **0.002083**

Скорость истечения смеси W_{ucm} , м/с (20):

 $W_{ucm} = 4 * B / (pi * d^2) = 4 * 0.002083 / (3.141592654 * 0.3^2) = 0.029468422$

Массовый расход G, г/с (2):

 $G = 1000 * B * R_o = 1000 * 0.002083 * 0.9618 = 2.0034294$

Проверка условия бессажевого горения, т.к. $W_{ucm} / W_{36} = 0.000079394 < 0.2$, горение сажевое.

2. РАСЧЕТ МОЩНОСТИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Полнота сгорания углеводородной смеси n: 0.9984

Массовое содержание углерода $[C]_{M}$, % (прил.3,(8)):

$$[C]_{M} = 100 * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - [\text{Hez}]_{o}) * M) = 100 * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) * 12 * \underset{i = 1}{:} \sum; \overset{N}{(x_{i} * [i]_{o})} / ((100 - 0) *$$

21.8097984) = **76.76483608**

где x_i - число атомов углерода;

[нег] - общее содержание негорючих примесей, %: 1.243;

величиной [нег] можно пренебречь, т.к. ее значение не превышает 3%;

Расчет мощности выброса метана, оксида углерода, диоксида азота, сажи M_i , г/с: (1)

 $M_i = yB_i * G$

где YB_i - удельные выбросы вредных веществ, г/г;

Код	Примесь	УВ г/г	М г/с
0337	Углерод оксид (Окись углерода, Угарный	0.02	0.040068588
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.003	0.006010288
0410	Метан (727*)	0.0005	0.001001715
0328	Углерод (Сажа, Углерод черный) (583)	0.002	0.004006859

Мощность выброса диоксида углерода M_{co2} , г/с (6):

 $M_{co2} = 0.01 * G * (3.67 * n * [C]_M + [CO2]_M) - M_{co} - M_{ch4} - M_c = 0.01 * 2.0034294 * (3.67 * 0.9984000 * 0.004204 * 0.0$

76.7648361 + 0.4586792) - 0.0400686 - 0.0010017 - 0.0040069 = 5.599281943

где $[CO2]_{M}$ - массовое содержание диоксида углерода, %; M_{co} - мощность выброса оксида углерода, г/с;

 M_{ch4} - мощность выброса метана, г/с;

 M_c - мощность выброса сажи, г/с;

3.РАСЧЕТ ТЕМПЕРАТУРЫ ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Низшая теплота сгорания Q_{nz} , ккал/м 3 : 11381.48

Доля энергии теряемая за счет излучения ${\pmb E}$ (11):

 $E = 0.048 * (M)^{0.5} = 0.048 * (21.80979841)^{0.5} = 0.224$

Объемное содержание кислорода $[02]_o$, %:

$$[O2]_o = \sum_{i=1}^{N} \sum_{i=1}^{N} ([i]_o * A_o * x_i / M_o) = \sum_{i=1}^{N} \sum_{i=1}^{N} ([i]_o * 16 * x_i / M_o) = 0.165267774$$

где A_o - атомная масса кислорода;

 x_i - количество атомов кислорода;

 M_o – молярная масса составляющей смеси содержащая атомы кислорода; Стехиометрическое количество воздуха для сжигания 1 м³ углеводородной смеси и природного газа V_o , м³/м³ (13):

$$V_{o} = 0.0476 * (1.5 * [H2S]_{o} + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) - [O2]_{o}) = 0.0476 * (1.5 * 0 + ; \Sigma; N ((x + y / 4) * [CxHy]_{o}) -$$

 $+ y / 4) * [CxHy]_0)-0.165267774) = 12.26561237$

где x - число атомов углерода;

y - число атомов водорода;

Количество газовоздушной смеси, полученное при сжигании 1 м 3 углеводородной смеси и природного газа V_{nc} , м $^3/$ м 3 (12):

$$V_{nc} = 1 + V_o = 1 + 12.26561237 = 13.26561237$$

Предварительная теплоемкость газовоздушной смеси C_{nc} , ккал/(м³*град.С): **0.4** Ориентировочное значение температуры горения T_{c} , град.С (10):

$$T_z = T_o + (Q_{nz} * (1-E) * n) / (V_{nc} * C_{nc}) = 15 + (11381.48 * (1-0.224) * 0.9984) / (13.26561237 * 0.4) = 1676.796113$$

где T_o - температура смеси или газа, град.С;

при условие, что 1500< = T_o <1800 , C_{nc} = **0.39**

Температура горения T_{ϵ} , град.С (10):

$$T_c = T_o + (Q_{HC} * (1-E) * n) / (V_{nc} * C_{nc}) = 15 + (11381.48 * (1-0.224) * 0.9984) / (13.26561237 * 0.39) = 1719.40627$$

4. РАСЧЕТ РАСХОДА ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Расход выбрасываемой в атмосферу газовоздушной смеси V_{I} , м 3 /с (14):

 $V_1 = B * V_{nc} * (273 + T_c) / 273 = 0.002083 * 13.26561237 * (273 + 1719.40627) / 273 = 0.201665601$ Длина факела $L_{\phi\mu}$, м:

$$L_{\phi H} = 15 * d = 15 * 0.3 = 4.5$$

Высота источника выброса вредных веществ H, м (16):

$$H = L_{\phi H} + h_{\theta} = 4.5 + 22 = 26.5$$

где h_{ϵ} - высота факельной установки от уровня земли, м;

5. РАСЧЕТ СРЕДНЕЙ СКОРОСТИ ПОСТУПЛЕНИЯ В АТМОСФЕРУ ГАЗОВОЗДУШНОЙ СМЕСИ ИЗ ИСТОЧНИКА ВЫБРОСА (W_{\circ})

Диаметр факела D_{ϕ} , м (29):

$$D_{\phi} = 0.14 * L_{\phi_H} + 0.49 * d = 0.14 * 4.5 + 0.49 * 0.3 = 0.777$$

Средняя скорость поступления в атмосферу газовоздушной смеси (W_o), (м/с):

$$W_o = 1.27 * V_I / D_{\phi}^2 = 1.27 * 0.201665601 / 0.777^2 = 0.424222314$$

6.РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Валовый выброс i-ого вредного вещества рассчитывается по формуле Π_i , т/год (30):

 $\Pi_i = 0.0036 * \tau * M_i$

где τ - продолжительность работы факельной установки, ч/год: 16;

Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный	0.040068588	0.002307951
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.006010288	0.000346193
0410	Метан (727*)	0.001001715	0.000057699
0328	Углерод (Сажа, Углерод черный) (583)	0.004006859	0.000230795

Источник загрязнения N 0019, Дымовая труба

Источник выделения N 0019 01, Печь для подогрева нефти (АРГО)

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.5.1.1. Расчет выбросов вредных веществ при сжигании топлива в трубчатых печах

Итого выбросы:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)		
0304	Азот (II) оксид (Азота оксид) (6)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		
0410	Метан (727*)		

Источник загрязнения N 0020, Дымовая труба

Источник выделения N 0020 01, ГПУ-1

Расчет выбросов загрязняющих веществ в атмосферу от газотурбинных установок Список литературы:

- 1. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2)Приложение № 3 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г
- 2. Методика определения валовых выбросов ЗВ в атмосферу от котельных установок ТЭС. РД 34.02.305-98, М., 1998 г.

Тип ГТУ, тип камеры сгорания и вид топлива: ГТЭ-150 ЛМЗ; высокофорсированная, блочная; топливо - газотурбинное

Расход топлива при максимальной нагрузке, т/ч (тыс.нм3/ч), BG = 0.0285

Среднегодовой расход топлива, т/г (тыс.м3/г), BM = 250.156

Теоретический объем дымовых газов, нм3/кг (нм3/нм3), V0R = 13.943

Теоретический объем воздуха, нм3/кг, V0 = 13.38

Теоретический объем водяных паров, нм3/кг (нм3/нм3), VH2O = 1.657

Коэффициент избытка воздуха в отработавших газах за турбиной (табл.2), AOT = 3.5

Объем сухих дымовых газов за турбиной, $\text{нм}3/\text{к}\Gamma$ (нм3/нм3) (17), $VCR = (V0R-VH2O) + (AOT-1) \cdot V0 = (13.943-1.657) + (3.5-1) \cdot 13.38 = 45.7$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3 (табл.2), CNOX = 270

Общий выброс оксида и диоксида азота составляет по формуле (16)

Максимально-разовый выброс, г/с, $GNOX = CNOX \cdot VCR \cdot BG \cdot 0.278 \cdot 10^{-3} = 270 \cdot 45.7 \cdot 0.0285 \cdot 0.278 \cdot 10^{-3} = 0.098$

Годовой выброс, т/год, $MNOX = CNOX \cdot VCR \cdot BM \cdot 10^{-6} = 270 \cdot 45.7 \cdot 250.156 \cdot 10^{-6} = 3.087$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с, $_G_=0.8 \cdot GNOX=0.8 \cdot 0.098=0.0784$ Годовой выброс, т/год, $_M_=0.8 \cdot MNOX=0.8 \cdot 3.087=2.4696$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, г/с, $_G_=0.13 \cdot GNOX=0.13 \cdot 0.098=0.01274$ Годовой выброс, т/год, $_M_=0.13 \cdot MNOX=0.13 \cdot 3.087=0.40131$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Плотность топлива, $\kappa \Gamma / M3$, PO = 1

Расход топлива в кг/с, $B = BG \cdot PO / 3.6 = 0.0285 \cdot 1 / 3.6 = 0.00792$

Расход топлива, т/год, $BMT = BM \cdot PO = 250.156 \cdot 1 = 250.156$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.5

Коэффициенты, определяемый видом сжигания топлива (табл.3 из РД 34.02.305-90)

ACO = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого топлива(табл.3 из РД 34.02.305-90)

NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.5^{0.6} = 15.04$ Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с

 $_G_ = JCO \cdot B = 15.04 \cdot 0.00792 = 0.1191168$

Валовый выброс, т/год, $_M_=JCO\cdot BMT/1000=15.04\cdot 250.156/1000=3.76235$

Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{NCH4} = 5.01 \cdot 0.5^{1.2} = 2.18$ Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/с, $_G_ = JCH4 \cdot B = 2.18 \cdot 0.00792 = 0.0172656$ Валовый выброс, т/год, $_M_ = JCH4 \cdot BMT / 1000 = 2.18 \cdot 250.156 / 1000 = 0.54534$

Итого выбросы

1110101	There bis poets					
Код	Наименование ЗВ	Выброс г/с	Выброс т/год			
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0784	2.4696			
0304	Азот (II) оксид (Азота оксид) (6)	0.01274	0.40131			
0337	Углерод оксид (Окись углерода, Угарный газ)	0.1191168	3.76235			
	(584)					
0410	Метан (727*)	0.0172656	0.54534			

Источник загрязнения N 0021, Дымовая труба

Источник выделения N 0021 01, ГПУ-2

Расчет выбросов загрязняющих веществ в атмосферу от газотурбинных установок

Список литературы:

- 1. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных (п.3.1.2)Приложение № 3 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика определения валовых выбросов ЗВ в атмосферу от котельных установок ТЭС. РД 34.02.305-98, М., 1998 г.

Тип ГТУ, тип камеры сгорания и вид топлива: ГТЭ-150 ЛМЗ; высокофорсированная, блочная; топливо - газотурбинное

Расход топлива при максимальной нагрузке, т/ч (тыс.нм3/ч), BG = 0.0285

Среднегодовой расход топлива, т/г (тыс.м3/г), BM = 250.156

Теоретический объем дымовых газов, нм3/кг (нм3/нм3), V0R = 13.943

Теоретический объем воздуха, $HM3/K\Gamma$, V0 = 13.38

Теоретический объем водяных паров, нм3/кг (нм3/нм3), VH2O = 1.657

Коэффициент избытка воздуха в отработавших газах за турбиной (табл.2), AOT = 3.5

Объем сухих дымовых газов за турбиной, $\text{нм}3/\text{к}\Gamma$ (нм3/нм3) (17), $VCR = (V0R-VH2O) + (AOT-1) \cdot V0 = (13.943-1.657) + (3.5-1) \cdot 13.38 = 45.7$

Концентрация оксидов азота (в пересчете на NO2), мг/нм3 (табл.2), CNOX = 270

Общий выброс оксида и диоксида азота составляет по формуле (16)

Максимально-разовый выброс, г/с, $GNOX = CNOX \cdot VCR \cdot BG \cdot 0.278 \cdot 10^{-3} = 270 \cdot 45.7 \cdot 0.0285 \cdot 0.278 \cdot 10^{-3} = 0.098$

Годовой выброс, т/год, $MNOX = CNOX \cdot VCR \cdot BM \cdot 10^{-6} = 270 \cdot 45.7 \cdot 250.156 \cdot 10^{-6} = 3.087$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимально-разовый выброс, г/с, $_G_=0.8 \cdot GNOX=0.8 \cdot 0.098=0.0784$ Годовой выброс, т/год, $_M_=0.8 \cdot MNOX=0.8 \cdot 3.087=2.4696$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Максимально-разовый выброс, г/с, $_G_=0.13 \cdot GNOX=0.13 \cdot 0.098=0.01274$ Годовой выброс, т/год, $_M_=0.13 \cdot MNOX=0.13 \cdot 3.087=0.40131$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА И НЕСГОРЕВШИХ УГЛЕВОДОРОДОВ по РД 34.02.305-90

Вид топлива - газ

Плотность топлива, $\kappa \Gamma / M3$, PO = 1

Расход топлива в кг/с, $B = BG \cdot PO / 3.6 = 0.0285 \cdot 1 / 3.6 = 0.00792$

Расход топлива, т/год, $BMT = BM \cdot PO = 250.156 \cdot 1 = 250.156$

Потери теплоты от химической неполноты сгорания топлива, %, Q3 = 0.5

Коэффициенты, определяемый видом сжигания топлива (табл.3 из РД 34.02.305-90)

ACO = 22.8

ACH4 = 5.01

Показатели степени, определяемые видом сжигаемого топлива(табл.3 из РД 34.02.305-90)

NCO = 0.6

NCH4 = 1.2

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельный выброс оксида углерода, г/кг топлива, $JCO = ACO \cdot Q3^{NCO} = 22.8 \cdot 0.5^{0.6} = 15.04$ Суммарное кол-во окиси углерода, выбрасываемое в атмосферу, г/с

 $_G_ = JCO \cdot B = 15.04 \cdot 0.00792 = 0.1191168$

Валовый выброс, т/год, $_M_ = JCO \cdot BMT / 1000 = 15.04 \cdot 250.156 / 1000 = 3.76235$

Примесь: 0410 Метан (727*)

Удельный выброс углеводородов, г/кг топлива, $JCH4 = ACH4 \cdot Q3^{NCH4} = 5.01 \cdot 0.5^{1.2} = 2.18$ Суммарное кол-во несгоревших углеводородов в пересчете на метан, выбрасываемое в атмосферу, г/с, $_G_ = JCH4 \cdot B = 2.18 \cdot 0.00792 = 0.0172656$ Валовый выброс, т/год, $_M_ = JCH4 \cdot BMT / 1000 = 2.18 \cdot 250.156 / 1000 = 0.54534$

Итого выбросы

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0784	2.4696
0304	Азот (II) оксид (Азота оксид) (6)	0.01274	0.40131
0337	Углерод оксид (Окись углерода, Угарный газ)	0.1191168	3.76235
	(584)		
0410	Метан (727*)	0.0172656	0.54534

Источник загрязнения N 0022, Дыхательный клапан

Источник выделения N 0022 01, PBC V-1000 м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Нефтепродукт, *NP* = Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 759.67

Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY = 620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 759.67

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/4, VC = 12

Коэффициент(Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 1000

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR = 0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* = 1.83

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 1.83 \cdot 0 \cdot 1 = 0$

Коэффициент , KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 1000

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 12 / 3600 = 0.2217$

Среднегодовые выбросы, т/год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (571 \cdot 759.67 + 620 \cdot 759.67) \cdot 0.1 \cdot 10^{-6} + 0 = 0.09048$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.09048 / <math>100 = 0.06556$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.2217 / 100 = 0.1606$

<u>Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)</u>

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.09048 / 100 = 0.02425$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.2217 / 100 = 0.0594$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.35**

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.09048 / 100 = 0.00031668$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.2217 / 100 = 0.000776$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.09048 / 100 = 0.000199$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.2217 / 100 = 0.000488$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.09048 / 100 = 0.0000995$

Максимальный из разовых выброс, г/с (4.2.4), $G_{-} = CI \cdot G / 100 = 0.11 \cdot 0.2217 / 100 = 0.000244$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.09048 / 100 = 0.000054$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.2217 / 100 = 0.000133$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000133	0.000054
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.1606	0.06556
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.0594	0.02425
0602	Бензол (64)	0.000776	0.00031668
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.000244	0.0000995
0621	Метилбензол (349)	0.000488	0.000199

Источник загрязнения N 0023, Дыхательный клапан

Источник выделения N 0023 01, PBC V-1000 м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Нефтепродукт, *NP* = Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665

Средний удельный выброс в осенне-зимний период, $\Gamma/T(\Pi$ рил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 759.67

Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY = 620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 759.67

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/4, VC = 12

Коэффициент(Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 1000

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при

температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, τ/Γ од(Прил. 13), *GHRI* = 1.83

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 1.83 \cdot 0 \cdot 1 = 0$

Коэффициент, KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 1000

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 12 / 3600 = 0.2217$

Среднегодовые выбросы, т/год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (571 \cdot PVL)$

 $759.67 + 620 \cdot 759.67 \cdot 0.1 \cdot 10^{-6} + 0 = 0.09048$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.09048 / <math>100 = 0.06556$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.2217 / 100 = 0.1606$

<u>Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)</u>

Концентрация 3B в парах, % масс(Прил. 14), *CI* = 26.8

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.09048 / 100 = 0.02425$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.2217 / 100 = 0.0594$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (4.2.5), $M_{-} = CI \cdot M / 100 = 0.35 \cdot 0.09048 / 100 = 0.00031668$

Максимальный из разовых выброс, г/с (4.2.4), $G = CI \cdot G / 100 = 0.35 \cdot 0.2217 / 100 = 0.000776$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.09048 / 100 = 0.000199$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.2217 / 100 = 0.000488$ Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.09048 / 100 = 0.0000995$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.2217 / 100 = 0.000244$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (4.2.5), $\underline{M} = CI \cdot M / 100 = 0.06 \cdot 0.09048 / 100 = 0.000054$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.2217 / 100 = 0.000133$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000133	0.000054
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.1606	0.06556
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.0594	0.02425
0602	Бензол (64)	0.000776	0.00031668
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.000244	0.0000995
0621	Метилбензол (349)	0.000488	0.000199

Источник загрязнения N 0024, Дыхательный клапан

Источник выделения N 0024 01, PBC V-1000 м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Нефтепродукт, *NP* = Сырая нефть

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665

Средний удельный выброс в осенне-зимний период, $\Gamma/T(\Pi$ рил. 12), YY = 571

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 759.67

Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY = 620

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 759.67

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/4, VC = 12

Коэффициент(Прил. 12), KNP = 0

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 1000

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при

температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* = 1.83

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 1.83 \cdot 0 \cdot 1 = 0$

Коэффициент, KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 1000

Сумма Ghri*Knp*Nr, GHR = 0

Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 12 / 3600 = 0.2217$

Среднегодовые выбросы, т/год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (571 \cdot 759.67 + 620 \cdot 759.67) \cdot 0.1 \cdot 10^{-6} + 0 = 0.09048$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **72.46**

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 72.46 \cdot 0.09048 / 100 = 0.06556$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.2217 / 100 = 0.1606$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), *CI* = 26.8

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.09048 / 100 = 0.02425$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.2217 / 100 = 0.0594$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.35**

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.09048 / 100 = 0.00031668$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.2217 / 100 = 0.000776$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.09048 / 100 = 0.000199$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.2217 / 100 = 0.000488$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.09048 / 100 = 0.0000995$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.2217 / 100 = 0.000244$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.06 \cdot 0.09048 / 100 = 0.000054$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.2217 / 100 = 0.000133$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000133	0.000054
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.1606	0.06556
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.0594	0.02425
0602	Бензол (64)	0.000776	0.00031668
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.000244	0.0000995
0621	Метилбензол (349)	0.000488	0.000199

Источник загрязнения N 0025

Источник выделения N 001,ДЭС AKSA 375 кВА

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO₂, NO в 2.5 раза; CH, C, CH₂O и БП в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{200} , т, 0.5

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 300

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 2.32

Температура отработавших газов T_{o2} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 2.32 * 300 = 0.00606912$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 723 / 273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{o2} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.00606912 / 0.359066265 = 0.016902507$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	3.1	3.84	0.82857	0.14286	1.2	0.03429	3.42E-6

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	13	16	3.42857	0.57143	5	0.14286	0.00002

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M_i = e_{Mi} * P_2 / 3600 = 3.1 * 300 / 3600 = 0.258333333$$

$$W_i = q_{Mi} * B_{200} = 13 * 0.5 / 1000 = 0.0065$$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

$$M_i = (e_{Mi} * P_2 / 3600) * 0.8 = (3.84 * 300 / 3600) * 0.8 = 0.256$$

$$W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (16 * 0.5 / 1000) * 0.8 = 0.0064$$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

$$M_i = e_{Mi} * P_3 / 3600 = 0.82857 * 300 / 3600 = 0.0690475$$

$$W_i = q_{Mi} * B_{200} / 1000 = 3.42857 * 0.5 / 1000 = 0.001714285$$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

$$M_i = e_{Mi} * P_3 / 3600 = 0.14286 * 300 / 3600 = 0.011905$$

$$W_i = q_{Mi} * B_{200} / 1000 = 0.57143 * 0.5 / 1000 = 0.000285715$$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

$$M_i = e_{Mi} * P_2 / 3600 = 1.2 * 300 / 3600 = 0.1$$

$$W_i = q_{Mi} * B_{200} / 1000 = 5 * 0.5 / 1000 = 0.0025$$

Примесь: 1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_3 / 3600 = 0.03429 * 300 / 3600 = 0.0028575$

 $W_i = q_{Mi} * B_{200} = 0.14286 * 0.5 / 1000 = 0.00007143$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_2 / 3600 = 0.00000342 * 300 / 3600 = 0.000000285$

 $W_i = q_{Mi} * B_{200} = 0.00002 * 0.5 / 1000 = 0.00000001$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.13 = (3.84 * 300 / 3600) * 0.13 = 0.0416$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (16 * 0.5 / 1000) * 0.13 = 0.00104$

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.256	0.0064	0	0.256	0.0064
0304	Азот (II) оксид (Азота оксид) (6)	0.0416	0.00104	0	0.0416	0.00104
0328	Углерод (Сажа, Углерод черный) (583)	0.011905	0.000285715	0	0.011905	0.000285715
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.1	0.0025	0	0.1	0.0025
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.258333333	0.0065	0	0.258333333	0.0065
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000285	0.00000001	0	0.000000285	0.00000001
1325	Формальдегид (Метаналь) (609)	0.0028575	0.00007143	0	0.0028575	0.00007143
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.0690475	0.001714285	0	0.0690475	0.001714285

Источник загрязнения N 0026

Источник выделения N 0026 01, Емкость для д/т 4,5 м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Нефтепродукт, *NP* = Дизельное топливо

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 3.92

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 2.36

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, **BOZ** = 1

Средний удельный выброс в весенне-летний период, $\Gamma/T(\Pi$ рил. 12), YYY = 3.15

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 1

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч, VC = 12

Коэффициент(Прил. 12), KNP = 0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 4.5

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный горизонтальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR = 0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), *GHRI* = **0.27**

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0.0029 \cdot 1 = 0.000783$

Коэффициент, KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 4.5

Сумма Ghri*Knp*Nr, *GHR* = **0.000783**

Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.92 \cdot 0.1 \cdot 12 / 3600 = 0.001307$

Среднегодовые выбросы, т/год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (2.36 \cdot 1 + 3.15 \cdot 1) \cdot 0.1 \cdot 10^{-6} + 0.000783 = 0.000784$

<u>Примесь: 2754 Алканы C12-19/в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 99.72 \cdot 0.000784 / <math>100 = 0.000782$

Максимальный из разовых выброс, г/с (4.2.4), $G = CI \cdot G / 100 = 99.72 \cdot 0.001307 / 100 = 0.001303$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.000784 / 100 = 0.000002195$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.001307 / 100 = 0.00000366$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000366	0.000002195
2754	Алканы С12-19 /в пересчете на С/	0.001303	0.000782
	(Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)		

Источник загрязнения N 0036, Дымовая труба

Источник выделения N 001,ДЭС САТ C-32 - 1100 кВА

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $Б\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{cod} , т, 50

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 880

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 11.4

Температура отработавших газов T_{o2} , K, 723

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 11.4 * 880 = 0.08747904$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{o2} = 1.31/(1 + T_{o2}/273) = 1.31/(1 + 723/273) = 0.359066265$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{o2} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.08747904 / 0.359066265 = 0.243629236$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
В	2.65	3.36	0.68571	0.1	1.4	0.02857	3.14E-6

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
В	11	14	2.85714	0.42857	6	0.11429	0.00001

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000$$
 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M_i = e_{Mi} * P_9 / 3600 = 2.65 * 880 / 3600 = 0.647777778$$

$$W_i = q_{Mi} * B_{200} = 11 * 50 / 1000 = 0.55$$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

$$M_i = (e_{Mi} * P_3 / 3600) * 0.8 = (3.36 * 880 / 3600) * 0.8 = 0.657066667$$

$$W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (14 * 50 / 1000) * 0.8 = 0.56$$

Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)

$$M_i = e_{Mi} * P_2 / 3600 = 0.68571 * 880 / 3600 = 0.167618$$

$$W_i = q_{Mi} * B_{200} / 1000 = 2.85714 * 50 / 1000 = 0.142857$$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

$$M_i = e_{Mi} * P_{9} / 3600 = 0.1 * 880 / 3600 = 0.024444444$$

$$W_i = q_{Mi} * B_{200} / 1000 = 0.42857 * 50 / 1000 = 0.0214285$$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_{9} / 3600 = 1.4 * 880 / 3600 = 0.342222222$

 $W_i = q_{Mi} * B_{200} / 1000 = 6 * 50 / 1000 = 0.3$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_9 / 3600 = 0.02857 * 880 / 3600 = 0.006983778$

 $W_i = q_{Mi} * B_{200} = 0.11429 * 50 / 1000 = 0.0057145$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_3 / 3600 = 0.00000314 * 880 / 3600 = 0.000000768$

 $W_i = q_{Mi} * B_{coo} = 0.00001 * 50 / 1000 = 0.0000005$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.13 = (3.36 * 880 / 3600) * 0.13 = 0.106773333$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (14 * 50 / 1000) * 0.13 = 0.091$

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
	-	без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.657066667	0.56	0	0.657066667	0.56
0304	Азот (II) оксид (Азота оксид) (6)	0.106773333	0.091	0	0.106773333	0.091
0328	Углерод (Сажа, Углерод черный) (583)	0.024444444	0.0214285	0	0.024444444	0.0214285
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.342222222	0.3	0	0.342222222	0.3
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.647777778	0.55	0	0.647777778	0.55
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000768	0.0000005	0	0.000000768	0.0000005
1325	Формальдегид (Метаналь) (609)	0.006983778	0.0057145	0	0.006983778	0.0057145
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.167618	0.142857	0	0.167618	0.142857

Источник загрязнения N 0037, Дыхательный клапан

Источник выделения N 0037 01, Емкость для д/т 4,5 м3

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Нефтепродукт, **NP** = Дизельное топливо

Климатическая зона: третья - южные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 3.92

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 2.36

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ = 1

Средний удельный выброс в весенне-летний период, Γ/T (Прил. 12), YYY = 3.15

Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL = 1

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/4, VC = 12

Коэффициент(Прил. 12), KNP = 0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI = 4.5

Количество резервуаров данного типа, NR = 1

Количество групп одноцелевых резервуаров на предприятии, KNR = 1

Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при

температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный горизонтальный

Значение Кртах для этого типа резервуаров (Прил. 8), KPM = 0.1

Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, τ/Γ од(Прил. 13), *GHRI* = **0.27**

 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0.0029 \cdot 1 = 0.000783$

Коэффициент, KPSR = 0.1

Коэффициент, KPMAX = 0.1

Общий объем резервуаров, м3, V = 4.5

Сумма Ghri*Knp*Nr, *GHR* = **0.000783**

Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 3.92 \cdot 0.1 \cdot 12 / 3600 = 0.001307$

Среднегодовые выбросы, т/год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10^{-6} + GHR = (2.36 \cdot 1 + 3.15 \cdot 1) \cdot 0.1 \cdot 10^{-6} + 0.000783 = 0.000784$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10</u>

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.000784 / 100 = 0.000782$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.001307 / 100 = 0.001303$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.000784 / 100 = 0.000002195$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.001307 / 100 = 0.00000366$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000366	0.000002195
2754	Алканы С12-19 /в пересчете на С/	0.001303	0.000782
	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения N 6027, Cenapamop 1-й стадий

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

 $M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi - величина	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	утечки	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	потока і-го	X	потоке і-го вида,	я вредного	выброс,	т/год
	вида через	уплотнений	потеряв-ших	компонента	г/с	
	одно	на потоке і-	герметичность,	в долях		
	уплотнение,	го вида, шт.	в долях	единицы		
	кг/час		единицы			
Смесь угл	певодородов С1	-C5				
3PA	0.013	10	0.365	0.94	0.012	0.39
Фланцы	0.00038	20	0.05	0.94	0.00009	0.003
Итого:					0.01209	0.393

Источник загрязнения N 6028. Сепаратор Газоочиститель

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi - величина	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	утечки потока	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	і-го вида	X	потоке і-го вида,	я вредного	выброс,	т/год
	через одно	уплотнений	потеряв-ших	компонента	г/с	
	уплотнение,	на потоке і-	герметичность,	в долях		
	кг/час	го вида, шт.	в долях единицы	единицы		
Смесь угл	иеводородов C1-0	C 5				
3PA	0.013	6	0.365	0.94	0.0074	0.23
Фланцы	0.00038	15	0.05	0.94	0.000074	0.0023
Итого:					0.007474	0.2323

<u>Источник загрязнения N 6029, Сепаратор 2-й стадий</u>

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi — величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

пі – число неподвижных уплотнений на потоке і-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	теводородов (C1-C5				
3PA	0.013	10	0.365	0.94	0.012	0.39
Фланцы	0.00038	20	0.05	0.94	0.00009	0.003
Итого:				·	0.01209	0.393

Источник загрязнения N 6030, 3PA и ФС

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке і-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	певодородов (C1-C5				
3PA	0.013	5	0.365	0.94	0.006	0.18
Фланцы	0.00038	10	0.05	0.94	0.00004	0.0015
Итого:	·	·	·		0.00604	0.1815

Источник загрязнения N 6032, 3PA и ФС

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

 $M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$

где gi — величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
Смесь угл	теводородов (C1-C5				
3PA	0.013	5	0.365	0.94	0.006	0.18
Фланцы	0.00038	10	0.05	0.94	0.00004	0.0015
Итого:			_		0.00604	0.1815

Источник загрязнения N 6033, Hacoc

Источник выделения N 6033 01, Hacoc ЦНС 1370

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_$ = $CI \cdot G / 100$ = $26.8 \cdot 0.00278 / 100$ = 0.000745

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$ Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$ Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

<u>Источник загрязнения N 6034, н/о источник</u> <u>Источник выделения N 001. Насос IIHC 3844</u>

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, T = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $\underline{G} = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$ Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$ Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источник загрязнения N 6035. Камера запуска и приема скребка

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi i = (\sum gi * ni * \chi i * Ci) / 3,6$$

где gi – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

ni – число неподвижных уплотнений на потоке i-го вида, шт.;

 χi – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; Ci – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	gi -	ni -число	χі –доля	Сі- массовая	Максимальн	Валовый		
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,		
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год		
	потока і-го	уплотнений	потеряв-ших	компонента	г/с			
	вида через	на потоке і-	герметичность,	в долях				
	одно	го вида, шт.	в долях	единицы				
	уплотнени		единицы					
	е, кг/час							
Смесь угл	Смесь углеводородов С1-С5							
3PA	0.013	2	0.365	0.94	0.002	0.078		

Фланцы 0.0	00038	4	0.05	0.94	0.00001	0.0006
Итого:					0.00201	0.0786

Скважины

Источники выбросов 6041. Технические блоки скважины 9

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum_{i} \prod_{i} \prod_{i} \prod_{j} \prod_{i} \sum_{j} (\sum_{i} g_{i} * n_{i} * \chi_{i} * C_{i}) / 3,6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ₁ −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов 6043. Технические блоки скважины 17

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \Pi_i = (\sum g_i * n_i * \chi_i * C_i) / 3.6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке i-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ₁ −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		

3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:	Итого:					0.3258

<u>Источник загрязнения N 6044.н/о источник</u> Источник выделения N 001, Hacoc 79Г3-1200

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (O \cdot N \cdot T) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $M_{-} = CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация 3B в парах, % масс(Прил. 14), *CI* = **0.35**

Максимальный из разовых выброс, г/с (4.2.4), $G_{-} = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $G = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_M_$ = $CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00001668	0.0000526
0415	Смесь углеводородов предельных C1-C5 (1502*)	0.002014	0.0635

0416	Смесь углеводородов предельных С6-С10	0.000745	0.0235
	(1503*)		
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6045. Технические блоки скважины 21

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum_{i=1}^{n} \prod_{i=1}^{n} (\sum_{i=1}^{n} g_{i} * n_{i} * \chi_{i} * C_{i}) / 3.6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χі −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источник загрязнения N 6046, н/о источник Источник выделения N 001. Насос ОУВЗ0/1200

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_{-}M_{-} = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6047, Технические блоки скважины 27

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \prod_{i} \prod_{i} = (\sum g_i * n_i * \chi_i * C_i) / 3,6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ _і —доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	Γ/c	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов № 6048.

Насос 59Г3-1300

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_T_$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $G = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_{-}M_{-} = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных C1-C5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6050, Технические блоки скважины 26

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum_{i} \prod_{i} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} $

где g_i – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 γ_{i} – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; С_і – массовая концентрация вредного компонента і-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ _і −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	Γ/c	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:			_		0.011089	0.3258

Источники выбросов № 6051.

Hacoc OYB30/1200

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_T_$ = **8760**

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$ Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_{-}M_{-} = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $G_{-} = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5	0.002014	0.0635
	(1502*)		
0416	Смесь углеводородов предельных С6-С10	0.000745	0.0235
	(1503*)		
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6052, Технические блоки скважины 30

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \prod_{i} = (\sum g_i * n_i * \chi_i * C_i) / 3,6$$

запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_{i} – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; С_і – массовая концентрация вредного компонента і-го вида в потоке в долях единицы

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение

Наимен	g_i —	n _i —число	χ₁ −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов 6054. Технические блоки скважины 31

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле: $M = \sum \Pi_i = (\sum g_i * n_i * \chi_i * C_i) \ / \\ 3,6$

$$M = \sum \prod_{i} = (\sum g_{i} * n_{i} * \chi_{i} * C_{i}) / 3,6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_{i} – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; С_і – массовая концентрация вредного компонента і-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ₁ −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

<u>Источники выбросов №6055,</u>

Hacoc RHBM-14-4-2-2

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $G_{-} = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $G = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6056, Технические блоки скважины 34

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \prod_{i} \prod_{i} = (\sum g_{i} * n_{i} * \chi_{i} * C_{i}) / 3,6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ _і —доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов №6057.

Hacoc 30Γ3-1400

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI\cdot G/100=72.46\cdot 0.00278/100=0.002014$ Валовый выброс, т/год (4.2.5), $_M_=CI\cdot M/100=72.46\cdot 0.0876/100=0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_=CI\cdot G/100=26.8\cdot 0.00278/100=0.000745$ Валовый выброс, т/год (4.2.5), $_M_=CI\cdot M/100=26.8\cdot 0.0876/100=0.0235$

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

<u>Источники выбросов №6059</u>,

Насос 30Г3-1200

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, A3C) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, T = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$ Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6060, Технические блоки скважины 36

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum_{i} \prod_{i} \prod_{i} \prod_{j} $

где g_i – величина утечки потока i-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ _і —доля	Сі- массовая	Максимальн	Валовый		
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,		
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год		
	потока і-го	уплотнений	потеряв-ших	компонента	г/с			
	вида через	на потоке і-	герметичность,	в долях				
	одно	го вида, шт.	в долях	единицы				
	уплотнени		единицы					
	е, кг/час							
Смесь углеводородов С1-С5								
3PA	0.013	9	0.365	0.94	0.011	0.323		

Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов №6061. Насос

25-150-RHBM-14-4-2-2

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{T}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10	0.000745	0.0235

	(1503*)		
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

<u>Источники выбросов №6062, Технические блоки скважины 40</u>

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \prod_{i} = (\sum g_i * n_i * \chi_i * C_i) / 3.6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наиме	g_i —	n _i —число	χ _і −доля	Сі- массовая	Максимальн	Валовый
но-	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
вание	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		C	месь углеводородог	в C ₁ -C ₅		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланц	0.00038	18	0.05	0.94	0.000089	0.0028
Ы					0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов №6063.

Hacoc 25-150-RHBM-14-4-2-2

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot _T_) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $\underline{G} = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6064, Технические блоки скважины 41

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \prod_{i} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j$$

где g_i — величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

		1		1		
Наиме	g_i —	n _i —число	χ₁ −доля	Сі- массовая	Максимальн	Валовый
но-	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
вание	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		C	месь углеводородог	в C ₁ -С ₅		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланц	0.00038	18	0.05	0.94	0.000089	0.0028
Ы					0.000089	0.0028
Итого:		•		•	0.011089	0.3258

<u>Источники выбросов №6065.</u> Насос

25-150-RHBM-14-4-2-2

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_T_$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_{-}M_{-} = CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных C1-C5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6066. Технические блоки скважины 42

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum_{i} \prod_{i} \prod_{i} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} $

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i число	χ₁ −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	Γ/c	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:	·	·	·	·	0.011089	0.3258

Источники выбросов 6067, Технические блоки скважины 43

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum_{i} \prod_{i} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{j} \prod_{i} \prod_{j} $

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

 n_i – число неподвижных уплотнений на потоке $\,$ i-го вида, $\,$ шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ _і —доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов 6068. Технические блоки скважины 44

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \prod_{i} \prod_{i} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорнорегулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ _і —доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:				_	0.011089	0.3258

Источники выбросов 6069. Технические блоки скважины

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum \prod_{i} = (\sum g_i * n_i * \chi_i * C_i) / 3,6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i -число	χі −доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	Γ/c	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов №6070, Hacoc

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих

хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (O \cdot N \cdot T) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $G_{-} = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$ Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.06

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000001668	0.0000526
0415	Смесь углеводородов предельных C1-C5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

Источники выбросов 6071.

Технические блоки скважины УН1

Вредные вещества поступают в атмосферный воздух через неплотности фланцевых соединений и запорно- регулирующей арматуры.

Расчет выбросов вредных веществ в атмосферу через неплотности фланцевых соединений и соединения запорно-регулирующей арматуры произведен по следующей формуле:

$$M = \sum_{i} \prod_{i} \prod_{j} \prod_{i} \sum_{j} (\sum_{i} g_{i} * n_{i} * \chi_{i} * C_{i}) / 3,6$$

где g_i – величина утечки потока і-го вида через одно фланцевое уплотнение, соединение запорно- регулирующей арматуры, кг/час;

n_i – число неподвижных уплотнений на потоке і-го вида, шт.;

 χ_i – доля уплотнений на потоке i-го вида, потерявших герметичность, в долях единицы; C_i – массовая концентрация вредного компонента i-го вида в потоке в долях единицы

Наимен	g_i —	n _i —число	χ _і –доля	Сі- массовая	Максимальн	Валовый
о-вание	величина	неподвижны	уплотнений на	концентраци	о-разовый	выброс,
	утечки	X	потоке і-го вида,	я вредного	выброс,	т/год
	потока і-го	уплотнений	потеряв-ших	компонента	г/с	
	вида через	на потоке і-	герметичность,	в долях		
	одно	го вида, шт.	в долях	единицы		
	уплотнени		единицы			
	е, кг/час					
		Cı	месь углеводородов	C_1 - C_5		
3PA	0.013	9	0.365	0.94	0.011	0.323
Фланцы	0.00038	18	0.05	0.94	0.000089	0.0028
Итого:					0.011089	0.3258

Источники выбросов №6072.

Насос ННШ 70-60-15-1ГР, скв. УН1

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Наименование оборудования: Насос центробежный с двумя торцевыми уплотнениями или

бессальниковый типа ЦНГ

Время работы одной единицы оборудования, час/год, $_{-}T_{-}$ = 8760

Общее количество оборудования данного типа, шт., N = 1

Количество одновременно работающего оборудования, шт., NI = 1

GNV = 3

Удельный выброс, кг/час(табл. 6.1), Q = 0.01

Максимальный разовый выброс, г/с (6.2.1), $G = Q \cdot NI / 3.6 = 0.01 \cdot 1 / 3.6 = 0.00278$

Валовый выброс, т/год (6.2.2), $M = (Q \cdot N \cdot T) / 1000 = (0.01 \cdot 1 \cdot 8760) / 1000 = 0.0876$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 72.46 \cdot 0.00278 / 100 = 0.002014$

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 72.46 \cdot 0.0876 / 100 = 0.0635$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 26.8

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.00278 / 100 = 0.000745$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 26.8 \cdot 0.0876 / 100 = 0.0235$

<u>Примесь: 0602 Бензол (64)</u>

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.35

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.00278 / 100 = 0.00000973$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.0876 / 100 = 0.0003066$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.00278 / 100 = 0.00000612$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.22 \cdot 0.0876 / 100 = 0.0001927$

Примесь: 0616 Диметилбензол (смесь о-, м-, n- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.00278 / 100 = 0.00000306$

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.11 \cdot 0.0876 / 100 = 0.0000964$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3B в парах, % масс(Прил. 14), *CI* = **0.06**

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.00278 / 100 = 0.000001668$

Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.06 \cdot 0.0876 / 100 = 0.0000526$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00001668	0.0000526
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.002014	0.0635
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000745	0.0235
0602	Бензол (64)	0.00000973	0.0003066
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.00000306	0.0000964
0621	Метилбензол (349)	0.00000612	0.0001927

КРС на 2026 год

Источник загрязнения N 1000, Дымовая труба Источник выделения N 001,УПА

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $E\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{cod} , т, 20

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 150

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 90

Температура отработавших газов T_{oz} , K, 473

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 90 * 150 = 0.11772$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 473 / 273) = 0.479396783$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.11772 / 0.479396783 = 0.245558594$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NO x	СН	С	SO2	CH 2O	БП
Б	3.1	3.84	0.82	0.14	1.2	0.03	3.42
			857	286		429	E-6

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	C O	NO x	СН		SO2	CH 2O	БП
Б	1 3	16	3.42 857	0.57 143	5	0.14 286	0.000

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600 \quad (1)$$

Расчет валового выброса W_i , т/год:

$$W_i = q_{i} * B_{ioo} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $M_i = e_{Mi} * P_2 / 3600 = 3.1 * 150 / 3600 = 0.129166667$

 $W_i = q_{Mi} * B_{coo} = 13 * 20 / 1000 = 0.26$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.8 = (3.84 * 150 / 3600) * 0.8 = 0.128$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (16 * 20 / 1000) * 0.8 = 0.256$

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)

 $M_i = e_{Mi} * P_{2} / 3600 = 0.82857 * 150 / 3600 = 0.03452375$

 $W_i = q_{Mi} * B_{200} / 1000 = 3.42857 * 20 / 1000 = 0.0685714$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_2 / 3600 = 0.14286 * 150 / 3600 = 0.0059525$

 $W_i = q_{Mi} * B_{200} / 1000 = 0.57143 * 20 / 1000 = 0.0114286$

Примесь:0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_9 / 3600 = 1.2 * 150 / 3600 = 0.05$

 $W_i = q_{Mi} * B_{200} / 1000 = 5 * 20 / 1000 = 0.1$

Примесь: 1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_{\sigma} / 3600 = 0.03429 * 150 / 3600 = 0.00142875$

 $W_i = q_{Mi} * B_{coo} = 0.14286 * 20 / 1000 = 0.0028572$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_2 / 3600 = 0.00000342 * 150 / 3600 = 0.000000143$

 $W_i = q_{Mi} * B_{200} = 0.00002 * 20 / 1000 = 0.0000004$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.13 = (3.84 * 150 / 3600) * 0.13 = 0.0208$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (16 * 20 / 1000) * 0.13 = 0.0416$

Итого выбросы по веществам (на 1 скважину):

Код	Примесь	г/сек без очистки	т/год без очистки	% очистки	г/сек с очисткой	т/год с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,128	0,256	0	0,128	0,256
0304	Азот (II) оксид (Азота оксид) (6)	0,0208	0,0416	0	0,0208	0,0416
0328	Углерод (Сажа, Углерод черный) (583)	0,005953	0,011429	0	0,005953	0,011429
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05	0,1	0	0,05	0,1
0337	Углерод оксид (Окись углерода, Угарный газ)	0,129167	0,26	0	0,129167	0,26

	(584)					
0703	Бенз/а/пирен (3,4-Бензпирен)	1,43E-07	4E-07	0	1,43E-07	4E-07
1325	(54) Формальдегид (Метаналь) (609)	0,001429	0,002857	0	0,001429	0,002857
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,034524	0,068571	0	0,034524	0,068571

Итого выбросы по веществам (на 2 скважин):

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,256	0,512	0	0,256	0,512
0304	Азот (II) оксид (Азота оксид) (6)	0,0416	0,0832	0	0,0416	0,0832
0328	Углерод (Сажа, Углерод черный) (583)	0,011905	0,022858		0,011905	0,022858
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,1	0,2	0	0,1	0,2
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,258333334	0,52	0	0,258333334	0,52
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	0,000000286	0,0000008	0	0,000000286	0,0000008
1325	Формальдегид (Метаналь) (609)	0,0028575	0,005714	0	0,0028575	0,005714
2754	Алканы С12-19 /в пересчете на С/	0,0690475	0,137142	0	0,0690475	0,137142

(Углеводороды		
предельные		
С12-С19 (в		
пересчете на		
C);		
Растворитель		
РПК-265П) (10)		

Источник загрязнения N 1001

Источник выделения N 1001 01, ЦА

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, т/год, BT = 20

Расход топлива, г/с, BG = 27.8

Марка топлива, M = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более(прил. 2.1), AIR = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 200

Фактическая мощность котлоагрегата, кВт, QF = 180

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0836

Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0836 \cdot (180/200)^{0.25} = 0.0814$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 20 \cdot$

 $42.75 \cdot 0.0814 \cdot (1-0) = 0.0696$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 27.8 \cdot$

 $42.75 \cdot 0.0814 \cdot (1-0) = 0.0967$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.0696 = 0.0557$

Выброс азота диоксида (0301), г/с, $_G_ = 0.8 \cdot MNOG = 0.8 \cdot 0.0967 = 0.0774$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.0696=0.00905$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.0967=0.01257$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), $NSO2 = \overline{0.02}$

Содержание сероводорода в топливе, %(прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 20 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 20 = 0.1176$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_ = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 27.8 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 27.8 = 0.1635$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R = 0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_$ = $0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 20 \cdot$

 $13.9 \cdot (1-0 / 100) = 0.278$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_ = 0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 27.8 \cdot$

 $13.9 \cdot (1-0 / 100) = 0.3864$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT\cdot AR\cdot F=20\cdot 0.025\cdot 0.01=0.005$

Выброс твердых частиц, г/с (ф-ла 2.1), $_G_ = BG \cdot A1R \cdot F = 27.8 \cdot 0.025 \cdot 0.01 = 0.00695$

Итого (на 1 скважину):

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,0774	0,0557
0304	Азот (II) оксид (Азота оксид) (6)	0,01257	0,00905
0328	Углерод (Сажа, Углерод черный) (583)	0,00695	0,005
0330	Сера диоксид (Ангидрид сернистый,	0,1635	0,1176
	Сернистый газ, Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ)	0,3864	0,278
	(584)		

Итого (на 2 скважин):

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,1548	0,1114
0304	Азот (II) оксид (Азота оксид) (6)	0,02514	0,0181
0328	Углерод (Сажа, Углерод черный) (583)	0,0139	0,01
0330	Сера диоксид (Ангидрид сернистый,	0,327	0,2352
	Сернистый газ, Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,7728	0,556

Источник загрязнения N 1002

Источник выделения N 001,АДПМ

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $B\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{coo} , т, 20

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 150

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 90

Температура отработавших газов T_{02} , K, 473

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 90 * 150 = 0.11772$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 473 / 273) = 0.479396783$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.11772 / 0.479396783 = 0.245558594$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

I							
Группа	СО	NOx	СН	С	SO2	CH2 O	БП
Б	3.1	3.84	0.828	0.142	1.2	0.034	3.42E-
			57	86		29	6

Таблица значений выбросов q_{i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2 O	БП
Б	13	16	3.428 57	0.571 43	5	0.142 86	0.0000

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_2 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M_i = e_{Mi} * P_2 / 3600 = 3.1 * 150 / 3600 = 0.129166667$$

$$W_i = q_{Mi} * B_{200} = 13 * 20 / 1000 = 0.26$$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

$$M_i = (e_{Mi} * P_2 / 3600) * 0.8 = (3.84 * 150 / 3600) * 0.8 = 0.128$$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (16 * 20 / 1000) * 0.8 = 0.256$

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в

пересчете на С); Растворитель РПК-265П) (10)

 $M_i = e_{Mi} * P_3 / 3600 = 0.82857 * 150 / 3600 = 0.03452375$

 $W_i = q_{Mi} * B_{200} / 1000 = 3.42857 * 20 / 1000 = 0.0685714$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_2 / 3600 = 0.14286 * 150 / 3600 = 0.0059525$

 $W_i = q_{Mi} * B_{200} / 1000 = 0.57143 * 20 / 1000 = 0.0114286$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_2 / 3600 = 1.2 * 150 / 3600 = 0.05$

 $W_i = q_{Mi} * B_{200} / 1000 = 5 * 20 / 1000 = 0.1$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_3 / 3600 = 0.03429 * 150 / 3600 = 0.00142875$

 $W_i = q_{Mi} * B_{200} = 0.14286 * 20 / 1000 = 0.0028572$

Примесь:0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_3 / 3600 = 0.00000342 * 150 / 3600 = 0.000000143$

 $W_i = q_{Mi} * B_{200} = 0.00002 * 20 / 1000 = 0.0000004$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.13 = (3.84 * 150 / 3600) * 0.13 = 0.0208$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (16 * 20 / 1000) * 0.13 = 0.0416$

Итого выбросы по веществам (на 1 скважину):

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,128	0,256	0	0,128	0,256
0304	Азот (II) оксид (Азота оксид) (6)	0,0208	0,0416	0	0,0208	0,0416
0328	Углерод (Сажа, Углерод черный) (583)	0,005953	0,011429	0	0,005953	0,011429
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,05	0,1	0	0,05	0,1
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,129167	0,26	0	0,129167	0,26
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	1,43E-07	4E-07	0	1,43E-07	4E-07
1325	Формальдегид (Метаналь) (609)	0,001429	0,002857	0	0,001429	0,002857
2754	Алканы С12-19	0,034524	0,068571	0	0,034524	0,068571

/в пересчете на			
C/			
(Углеводороды			
предельные С12-			
С19 (в пересчете			
на С);			
Растворитель			
РПК-265П) (10)			

Итого выбросы по веществам (на 2 скважин):

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV)	0,256	0,512	0	0,256	0,512
	диоксид (Азота					
	диоксид) (4)					
0304	Азот (II) оксид	0,0416	0,0832	0	0,0416	0,0832
	(Азота оксид) (6)					
0328	Углерод (Сажа,	0,011905	0,022858	0	0,011905	0,022858
	Углерод черный)					
	(583)					
0330	Сера диоксид	0,1	0,2	0	0,1	0,2
	(Ангидрид					
	сернистый,					
	Сернистый газ,					
	Сера (IV) оксид)					
	(516)					
0337	Углерод оксид	0,258333	0,52	0	0,258333	0,52
	(Окись углерода,					
	Угарный газ)					
0702	(584)	2.065.07	0.000000		2.065.07	0.000000
0703	Бенз/а/пирен	2,86E-07	0,0000008	0	2,86E-07	0,0000008
	(3,4-Бензпирен)					
1225	(54)	0.002050	0,005714	0	0.002050	0.005714
1325	Формальдегид	0,002858	0,005/14	0	0,002858	0,005714
2754	(Метаналь) (609) Алканы С12-19	0,069048	0,137142	0	0,069048	0,137142
2134		0,009048	0,13/142	U	0,009048	0,13/142
	/в пересчете на С/					
	(Углеводороды					
	предельные С12-					
	С19 (в пересчете					
	на С);					
	Растворитель					
	РПК-265П) (10)					
	p 111X-20311) (10)	1				

Источник выделения N 001,ДЭС

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и EH в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{200} , т, 10

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 100

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 100

Температура отработавших газов T_{o2} , K, 473

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 100 * 100 = 0.0872$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 473 / 273) = 0.479396783$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.0872 / 0.479396783 = 0.181895255$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2 O	БП
Б	3.1	3.84	0.828	0.142	1.2	0.034	3.42E-
			57	86		29	6

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального

ремонта

Группа	СО	NOx	СН	С	SO2	CH2 O	БП
Б	13	16	3.428 57	0.571 43	5	0.142 86	0.0000

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_{2} / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь:0337 Углерод оксид (Окись углерода, Угарный газ) (584)

$$M_i = e_{Mi} * P_{2} / 3600 = 3.1 * 100 / 3600 = 0.086111111$$

$$W_i = q_{Mi} * B_{200} = 13 * 10 / 1000 = 0.13$$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.8 = (3.84 * 100 / 3600) * 0.8 = 0.085333333$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (16 * 10 / 1000) * 0.8 = 0.128$

Примесь:2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в

пересчете на С); Растворитель РПК-265П) (10)

 $M_i = e_{Mi} * P_2 / 3600 = 0.82857 * 100 / 3600 = 0.023015833$

 $W_i = q_{Mi} * B_{200} / 1000 = 3.42857 * 10 / 1000 = 0.0342857$

Примесь:0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_2 / 3600 = 0.14286 * 100 / 3600 = 0.003968333$

 $W_i = q_{Mi} * B_{200} / 1000 = 0.57143 * 10 / 1000 = 0.0057143$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_9 / 3600 = 1.2 * 100 / 3600 = 0.033333333$

 $W_i = q_{Mi} * B_{200} / 1000 = 5 * 10 / 1000 = 0.05$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_9 / 3600 = 0.03429 * 100 / 3600 = 0.0009525$

 $W_i = q_{Mi} * B_{coo} = 0.14286 * 10 / 1000 = 0.0014286$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_3 / 3600 = 0.00000342 * 100 / 3600 = 0.000000095$

 $W_i = q_{Mi} * B_{200} = 0.00002 * 10 / 1000 = 0.0000002$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_3 / 3600) * 0.13 = (3.84 * 100 / 3600) * 0.13 = 0.013866667$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (16 * 10 / 1000) * 0.13 = 0.0208$

Итого выбросы по веществам (на 1 скважину):

Код	Примесь	г/сек	т/год	%	г/сек	т/год
	_	без	без	очистки	\boldsymbol{c}	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,085333	0,128	0	0,085333	0,128
0304	Азот (II) оксид (Азота оксид) (6)	0,013867	0,0208	0	0,013867	0,0208
0328	Углерод (Сажа, Углерод черный) (583)	0,003968	0,005714	0	0,003968	0,005714
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,033333	0,05	0	0,033333	0,05
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,086111	0,13	0	0,086111	0,13
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	9,5E-08	2E-07	0	9,5E-08	2E-07
1325	Формальдегид	0,000953	0,001429	0	0,000953	0,001429

	(Метаналь) (609)					
2754	Алканы С12-19	0,023016	0,034286	0	0,023016	0,034286
	/в пересчете на					
	C/					
	(Углеводороды					
	предельные С12-					
	С19 (в пересчете					
	на С);					
	Растворитель					
	РПК-265П) (10)					

Итого выбросы по веществам (на 2 скважин):

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,170667	0,256	0	0,170667	0,256
0304	Азот (II) оксид (Азота оксид) (6)	0,027733	0,0416	0	0,027733	0,0416
0328	Углерод (Сажа, Углерод черный) (583)	0,007937	0,011429	0	0,007937	0,011429
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,066667	0,1	0	0,066667	0,1
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,172222	0,26	0	0,172222	0,26
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	1,9E-07	0,0000004	0	1,9E-07	0,0000004
1325	Формальдегид (Метаналь) (609)	0,001905	0,002857	0	0,001905	0,002857
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С);	0,046032	0,068571	0	0,046032	0,068571

Растворит	ель		
РПК-265П	(10)		

Источник загрязнения N 1004 Источник выделения N 001, САГ

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исхолные ланные:

Производитель стационарной дизельной установки (СДУ): зарубежный

Значения выбросов по табл. 1, 2, 3, 4 методики соответственно уменьшены по CO в 2 раза; NO_2 , NO в 2.5 раза; CH, C, CH_2O и $E\Pi$ в 3.5 раза.

Расход топлива стационарной дизельной установки за год B_{200} , т, 5

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 70

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{2} , г/кBт*ч, 50

Температура отработавших газов T_{oz} , K, 473

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_9 * P_9 = 8.72 * 10^{-6} * 50 * 70 = 0.03052$$
 (A.3)

Удельный вес отработавших газов у₀₂, кг/м³:

$$\gamma_{02} = 1.31 / (1 + T_{02} / 273) = 1.31 / (1 + 473 / 273) = 0.479396783$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.03052 / 0.479396783 = 0.063663339$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	3.6	4.12	1.0285	0.2	1.1	0.0428	3.71E-
			7			6	6

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	СО	NOx	СН	С	SO2	CH2 O	БП
A	15	17.2	4.285	0.857	4.5	0.171 43	0.0000

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

 $M_i = e_{Mi} * P_2 / 3600 = 3.6 * 70 / 3600 = 0.07$

 $W_i = q_{Mi} * B_{200} = 15 * 5 / 1000 = 0.075$

Примесь:0301 Азота (IV) диоксид (Азота диоксид) (4)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.8 = (4.12 * 70 / 3600) * 0.8 = 0.064088889$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.8 = (17.2 * 5 / 1000) * 0.8 = 0.0688$

Примесь: 2754 Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)

 $M_i = e_{Mi} * P_3 / 3600 = 1.02857 * 70 / 3600 = 0.019999972$

 $W_i = q_{Mi} * B_{200} / 1000 = 4.28571 * 5 / 1000 = 0.02142855$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

 $M_i = e_{Mi} * P_2 / 3600 = 0.2 * 70 / 3600 = 0.003888889$

 $W_i = q_{Mi} * B_{200} / 1000 = 0.85714 * 5 / 1000 = 0.0042857$

Примесь:0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

 $M_i = e_{Mi} * P_2 / 3600 = 1.1 * 70 / 3600 = 0.021388889$

 $W_i = q_{Mi} * B_{200} / 1000 = 4.5 * 5 / 1000 = 0.0225$

Примесь:1325 Формальдегид (Метаналь) (609)

 $M_i = e_{Mi} * P_2 / 3600 = 0.04286 * 70 / 3600 = 0.000833389$

 $W_i = q_{Mi} * B_{200} = 0.17143 * 5 / 1000 = 0.00085715$

Примесь: 0703 Бенз/а/пирен (3,4-Бензпирен) (54)

 $M_i = e_{Mi} * P_2 / 3600 = 0.00000371 * 70 / 3600 = 0.000000072$

 $W_i = q_{Mi} * B_{200} = 0.00002 * 5 / 1000 = 0.0000001$

Примесь:0304 Азот (II) оксид (Азота оксид) (6)

 $M_i = (e_{Mi} * P_2 / 3600) * 0.13 = (4.12 * 70 / 3600) * 0.13 = 0.010414444$

 $W_i = (q_{Mi} * B_{200} / 1000) * 0.13 = (17.2 * 5 / 1000) * 0.13 = 0.01118$

Итого выбросы по веществам (на 1 скважину):

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV)	0,064089	0,0688	0	0,064089	0,0688
	диоксид					
	(Азота					
	диоксид) (4)					
0304	Азот (II) оксид	0,010414	0,01118	0	0,010414	0,01118
	(Азота оксид)					
	(6)					
0328	Углерод	0,003889	0,004286	0	0,003889	0,004286
	(Сажа,					
	Углерод					
	черный) (583)					
0330	Сера диоксид	0,021389	0,0225	0	0,021389	0,0225
	(Ангидрид					
	сернистый,					
	Сернистый газ,					
	Cepa (IV)					
	оксид) (516)					

0337	Углерод оксид (Окись	0,07	0,075	0	0,07	0,075
	углерода, Угарный газ) (584)					
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	7,2E-08	1E-07	0	7,2E-08	1E-07
1325	Формальдегид (Метаналь) (609)	0,000833	0,000857	0	0,000833	0,000857
2754	Алканы С12- 19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,02	0,021429	0	0,02	0,021429

Итого выбросы по веществам (на 2 скважин):

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,128178	0,1376	0	0,128178	0,1376
0304	Азот (II) оксид (Азота оксид) (6)	0,020829	0,02236	0	0,020829	0,02236
0328	Углерод (Сажа, Углерод черный) (583)	0,007778	0,008572	0	0,007778	0,008572
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,042778	0,045	0	0,042778	0,045
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,14	0,15	0	0,14	0,15
0703	Бенз/а/пирен	1,44E-07	0,0000002	0	1,44E-07	0,0000002

	(3,4- Бензпирен) (54)					
1325	Формальдегид (Метаналь) (609)	0,001667	0,001714	0	0,001667	0,001714
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0,04	0,042858	0	0,04	0,042858

Источник загрязнения N 1005

Источник выделения N 1005 01, Емкость для дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт: Дизельное топливо Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: третья - южные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 2.25

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 12

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 1.19

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 12

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, $\Gamma/M3$ (Прил. 15), CVL = 1.6

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 4

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (2.25 \cdot 4) / 3600 = 0.0025$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (1.19 \cdot 12 + 10^{-6})$

 $1.6 \cdot 12) \cdot 10^{-6} = 0.0000335$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (12 + 12) \cdot 10^{-6} = 0.0006$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.0000335 + 0.0006 = 0.000634

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 99.72 \cdot 0.000634 / 100 = 0.000632$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.0025 / 100 = 0.002493$ Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M$ / $100=0.28\cdot 0.000634$ / 100=0.000001775

Максимальный из разовых выброс, г/с (5.2.4), $G_{-} = CI \cdot G / 100 = 0.28 \cdot 0.0025 / 100 = 0.000007$

Итого (на 1 скважину):

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,000007	1,78E-06
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,002493	0,000632
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

Итого (на 2 скважин):

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0,000014	0,00000355
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0,004986	0,001264
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

Источник загрязнения N 6100

Источник выделения N 6100 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу

при сварочных работах (по величинам удельных

выбросов). РНД 211.2.02.03-2004. Астана, 2005

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/55

Расход сварочных материалов, кг/год, B = 50

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 1

Удельное выделение сварочного аэрозоля,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **16.99**

в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **13.9**

Валовый выброс, т/год (5.1), $_{M}$ = $GIS \cdot B / 10^6 = 13.9 \cdot 50 / 10^6 = 0.0006950$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 13.9 \cdot 1 / 3600 = 0.0038600$

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **1.09**

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 1.09 \cdot 50 / 10^6 = 0.0000545$

Максимальный из разовых выброс, г/с (5.2), $G = GIS \cdot BMAX / 3600 = 1.09 \cdot 1 / 3600 = 0.0003030$

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 1

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 1 \cdot 50 / 10^6 = 0.0000500$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1 \cdot 1 / 3600 = 0.0002780$

<u>Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)</u>

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 1

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 1 \cdot 50 / 10^6 = 0.0000500$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 1 \cdot 1 / 3600 = 0.0002780$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **0.93**

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 0.93 \cdot 50 / 10^6 = 0.0000465$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 0.93 \cdot 1 / 3600 = 0.0002583$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 2.7

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 2.7 \cdot 50 / 10^6 = 0.0001350$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 2.7 \cdot 1 / 3600 = 0.0007500$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = 13.3

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 13.3 \cdot 50 / 10^6 = 0.0006650$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 13.3 \cdot 1 / 3600 = 0.0036940$

ИТОГО (на 1 скважину):

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид,	0,00386	0,000695
	Железа оксид) /в пересчете на железо/ (274)		
0143	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0,000303	5,45E-05
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,00075	0,000135
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,003694	0,000665
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,000258	4,65E-05
0344	Фториды неорганические плохо растворимые -	0,000278	0,00005

	(алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,000278	0,00005

ИТОГО (на 2 скважин):

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид,	0,00772	0,00139
	Железа оксид) /в пересчете на железо/ (274)		
0143	Марганец и его соединения /в пересчете на	0,000606	0,000109
	марганца (IV) оксид/ (327)		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,0015	0,00027
0337	Углерод оксид (Окись углерода, Угарный газ)	0,007388	0,00133
	(584)		
0342	Фтористые газообразные соединения /в пересчете	0,000517	0,000093
	на фтор/ (617)		
0344	Фториды неорганические плохо растворимые -	0,000556	0,0001
	(алюминия фторид, кальция фторид, натрия		
	гексафторалюминат) (Фториды неорганические		
	плохо растворимые /в пересчете на фтор/) (615)		
2908	Пыль неорганическая, содержащая двуокись	0,000556	0,0001
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

РООС "Модернизация ПСН на месторождении Майбулак" Источник загрязнения: 0038, Дыхательный клапан Источник выделения: 0038 01, Резервуар нефти 100 м3 Список литературы: Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196 Нефтепродукт, *NP* = Сырая нефть Климатическая зона: третья - южные области РК (прил. 17) Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C = 665Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY = 571 Количество закачиваемой в резервуар жидкости в осенне-зимний период. т. BOZ = 1000Средний удельный выброс в весенне-летний период. r/r(Прил. 12). **YYY = 620** Количество закачиваемой в резервуар жидкости в весенне-летний период, т. BVL = 1000Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч. **УС** Коэффициент (Прил. 12), *KNP* = 0 Режим эксплуатации: "буферная емкость" (все типы резервуаров) Объем одного резервуара данного типа, м3, VI = 100Количество резервуаров данного типа, NR = 1Количество групп одноцелевых резервуаров на предприятии, KNR = 1 Категория веществ: А - Нефть из магистрального трубопровода и др. нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха Конструкция резервуаров: Наземный горизонтальный Значение Кртах для этого типа резервуаров (Прил. 8), **КРМ = 0.1** Значение Kpsr для этого типа резервуаров (Прил. 8), KPSR = 0.1Количество выделяющихся паров бензинов автомобильных при хранении в одном резервуаре данного типа, т/год (Прил. 13), GHRI = 0.27 $GHR = GHR + GHRI \cdot KNP \cdot NR = 0 + 0.27 \cdot 0 \cdot 1 = 0$ Коэффициент, KPSR = 0.1Коэффициент, КРМАХ = 0.1 Общий объем резервуаров, м3, V = 100Сумма Ghri*Knp*Nr, GHR = 0 Максимальный из разовых выброс, г/с (5.2.1), $G = C \cdot KPMAX \cdot VC / 3600 = 665 \cdot 0.1 \cdot 20 /$ 3600 = 0.3694Среднегодовые выбросы. τ /год (5.2.2), $M = (YY \cdot BOZ + YYY \cdot BVL) \cdot KPMAX \cdot 10$ -6 + GHR = $(571 \cdot 1000 + 620 \cdot 1000) \cdot 0.1 \cdot 10 \cdot 6 + 0 = 0.119$ Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*) Концентрация 3B в парах, % масс (Прил. 14), *CI* = **72.46** Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.119 / 100 = 0.0862$ Максимальный из разовых выброс, г/с (4.2.4), $_{\mathbf{G}} = \mathbf{C}I \cdot \mathbf{G} / 100 = 72.46 \cdot 0.3694 / 100 =$ 0.2677 Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*) Концентрация 3В в парах. % масс (Прил. 14). CI = 26.8Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 26.8 \cdot 0.119 / 100 = 0.0319$ Максимальный из разовых выброс, г/с (4.2.4), $\underline{G} = CI \cdot G / 100 = 26.8 \cdot 0.3694 / 100 =$ 0.099 Примесь: 0602 Бензол (64) Концентрация 3В в парах, % масс (Прил. 14), *CI* = **0.35** Валовый выброс, т/год (4.2.5), $_{M}$ = $CI \cdot M / 100 = 0.35 \cdot 0.119 / 100 = 0.0004165$ Максимальный из разовых выброс, г/с (4.2.4), $_{\mathbf{G}} = \mathbf{CI} \cdot \mathbf{G} / 100 = \mathbf{0.35} \cdot \mathbf{0.3694} / 100 =$ 0.001293 Примесь: 0621 Метилбензол (349) Концентрация 3В в парах, % масс (Прил. 14), *CI* = **0.22** Валовый выброс, т/год (4.2.5), $_{\it M}$ = $\it Cl \cdot \it M / 100$ = 0.22 \cdot 0.119 / 100 = 0.000262 Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.3694 / 100 =$

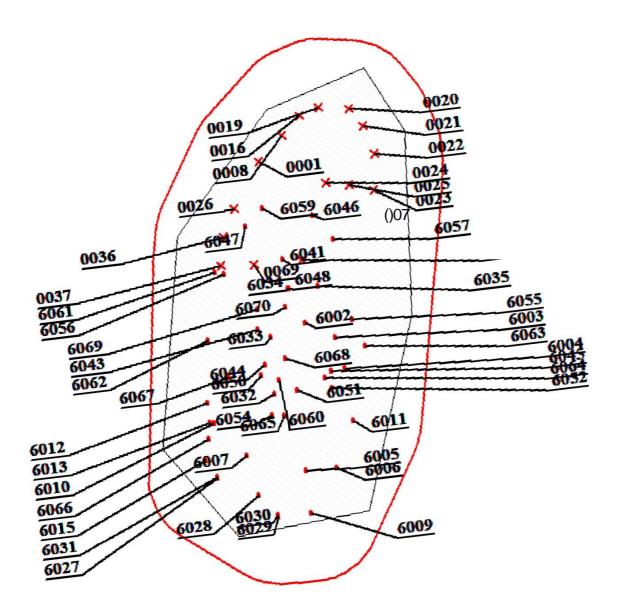
Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.119 / 100 = 0.000131$

Концентрация 3В в парах, % масс (Прил. 14), *CI* = **0.11**

0.000813

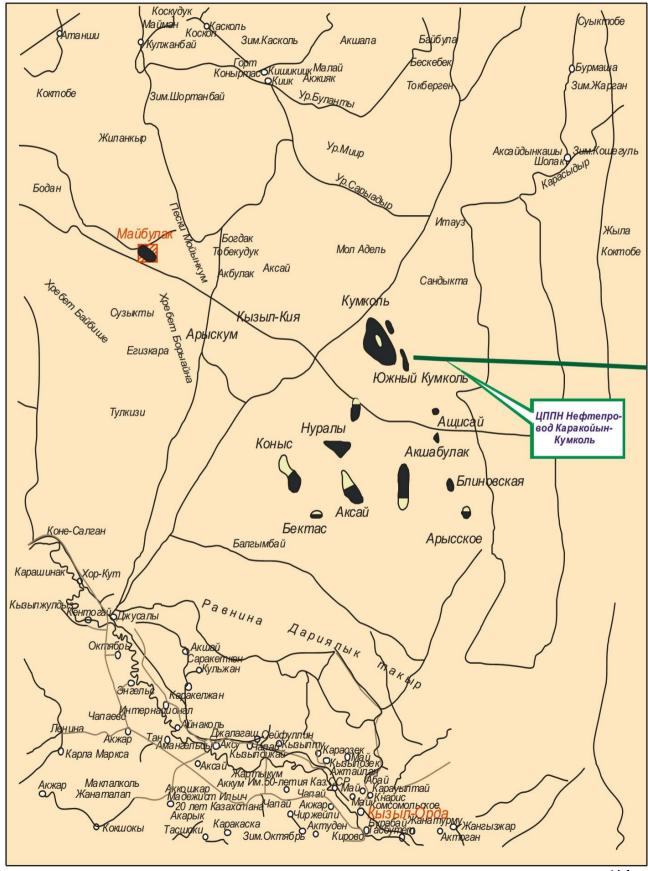
208


Максимальный из разовых выброс, г/с (4.2.4), $_{\mathbf{G}} = \mathbf{CI} \cdot \mathbf{G} / 100 = \mathbf{0.11} \cdot \mathbf{0.3694} / 100 =$ 0.000406

Примесь: 0333 Сероводород (Дигидросульфид) (518)
Концентрация ЗВ в парах, % масс (Прил. 14), СІ = 0.06
Валовый выброс, т/год (4.2.5), _M_ = СІ ⋅ М / 100 = 0.06 ⋅ 0.119 / 100 = 0.0000714

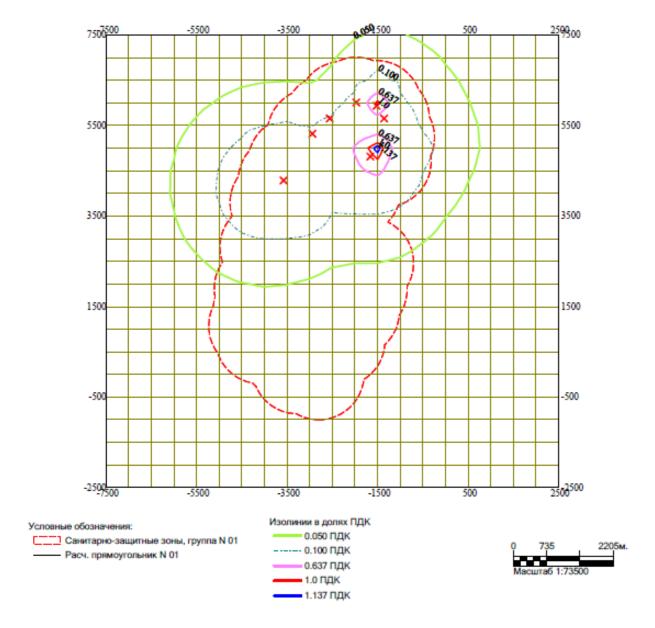
Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.3694 / 100 = 0.0002216$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.0002216	0.0000714
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.2677	0.0862
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.099	0.0319
0602	Бензол (64)	0.001293	0.0004165
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.000406	0.000131
0621	Метилбензол (349)	0.000813	0.000262


Приложение 4 – Карта-схема предприятия

	Организованные источники		Неорганизованные источники
0001	Печь для подогрева нефти	6002	Сепаратор НГМ
0008	Печь для подогрева нефти	6003	Камера запуска и приема скреба
0016	Факел	6004	Манифольд
	Факел		
0019	Печь для подогрева нефти	6005	Спутник -1
0020	ГПУ-1	6006	Скруббер топливного газа
0021	ГПУ-2	6007	ЗРА и ФС
0022	PBC V-1000 m3	6009	Сепаратор НГМ
0023	PBC V-1000 m3	6010	Сепаратор Bromley
0024	PBC V-1000 m3	6011	Камера запуска и приема скреба
0025	ДЭС ASKA 300	6012	Спутник -2
0026	Емкость для д/т V- 4.5	6013	ЗРА и ФС
0036	ДЭС ASKA 300	6015	Скруббер топливного газа
0037	Емкость для д/т V- 4.5	6027	Сепаратор 1-стадий
0038	Резервуар нефти 100 м3	6028	Сепаратор газоочиститель
		6029	Сепаратор 2-стадий
		6030	ЗРА и ФС
		6031	ЗРА и ФС
		6032	ЗРА и ФС
		6033	Насос ЦНС 1370
		6034	Насос ЦНС 3844
		6035	Камера запуска и приема скреба
		6041	Тех.блок скважины 9
		6043	Тех.блок скважины 17
		6044	Hacoc 79Γ3-1200
		6045	Тех.блок скважины 21
		6046	Hacoc QYB30/1200
		6047	Тех.блок скважины 27
		6048	Hacoc 59Γ3-1300
		6050	Тех.блок скважины 26
		6051	Hacoc QYB30/1200
		6052	Тех.блок скважины 30
		6054	Тех.блок скважины 31
		6055	Hacoc RHBM 14-4-2-2
		6056	Тех.блок скважины 34
		6057	Hacoc 30Γ3-1400
		6059	Hacoc 30Γ3-1200
		6060	Тех.блок скважины 36
		6061	Hacoc 25-150 RHBM 14-4-2-2
		6062	Тех.блок скважины 40
		6063	Hacoc 25-150 RHBM 14-4-2-2
		6064	Тех.блок скважины 41
		6065	Hacoc 25-150 RHBM 14-4-2-2
		6066	Тех.блок скважины 42
		6067	Тех.блок скважины 43
		6068	Тех.блок скважины 44
		6069	Тех.блок скважины
		6070	Насос
		6071	Тех.блок скважины УН1
		6072	Насос ННШ-70-60-15-2ГР скв. УН1

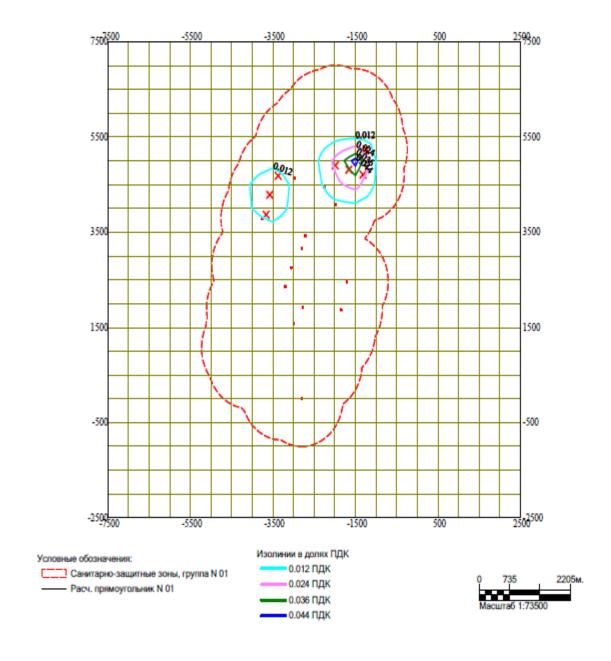
0178	Дренажная емкость V-2 м3 (скв. 114ш)	6070	Скважина
0179	Дренажная емкость V-2 м3 (скв. 229э)	6071	Скважина
0180	Дренажная емкость V-2 м3 (скв. 230э)	6086	Технический блок замерных уста-
			новок
0181	Дренажная емкость V-2 м3 (скв. 231э)	6087	Технический блок замерных уста-
			новок
0183	Дренажная емкость V-2 м3 (скв. 235э)	6088	ЗРА и ФС
0184	Дренажная емкость V-2 м3 (скв. 236э)	6089	Скважина
0185	Дренажная емкость V-2 м3 (скв. 252)	6090	Скважина
0186	Дренажная емкость V-2 м3 (скв. 127)	6091	Скважина
0187	Дренажная емкость V-2 м3 (скв. 130)	6092	Скважина
0188	Дренажная емкость V-2 м3 (скв. 237э)	6093	Скважина
0189	Дренажная емкость V-2 м3 (скв. 238э)	6094	Скважина
0190	Дренажная емкость V-63 м3	6095	Сепаратор 100 м3
0191	Дренажная емкость V-2 м3 (скв. 103ш)	6096	Сепаратор 25 м3
0192	Дренажная емкость V-2 м3 (скв. 104ш)	6097	ЗРА и ФС
0193	Дренажная емкость V-2 м3 (скв. 105э)	6101	ЗРА и ФС
0194	Дренажная емкость V-2 м3 (скв. 239)	6102	ЗРА и ФС
0195	Дренажная емкость V-2 м3 (скв. 113)	6103	ЗРА и ФС
0196	Дренажная емкость V-2 м3 (скв. 33)	6104	ЗРА и ФС
0197	Дренажная емкость V-2 м3 (скв. 228)	6105	ЗРА и ФС
0198	Дренажная емкость V-2 м3 (скв. 218)	6106	ЗРА и ФС
0199	Дренажная емкость V-2 м3 (скв. 240)	6107	ЗРА и ФС
0200	Дренажная емкость	6108	ЗРА и ФС
0201	Дренажная емкость	6109	ЗРА и ФС
0202	Дренажная емкость	6110	ЗРА и ФС
0203	Дренажная емкость		
0204	Дренажная емкость		
0205	Дренажная емкость		


Приложение 5 — Ситуационная карта-схема расположения предприятия

на 2026 год
Приложение 6 - Протоколы расчетов величин выбросов

Объект: 0019 Проект НДВ м/р Майбулак на 2025 год Вар.№ 1 ПК ЭРА v3.0 Модель: MPK-2014

6007 0301+0330



Макс концентрация 1.2328098 ПДК достигается в точке x=-1500 y= 5000 При опасном направлении 221° и опасной скорости ветра 5.92 м/с Расчетный прямоугольник № 1, ширина 10000 м, высота 10000 м, шаг расчетной сетки 500 м, количество расчетных точек 21*21 Расчёт на существующее положение.

Объект: 0019 Проект НДВ м/р Майбулак на 2025 год Вар.№ 1

ПК ЭРА v3.0 Модель: MPK-2014

6037 0333+1325

Макс концентрация 0.0476338 ПДК достигается в точке х= -1500 у= 5000 При опасном направлении 221° и опасной скорости ветра 5.92 м/с Расчетный прямоугольник № 1, ширина 10000 м, высота 10000 м, шаг расчетной сетки 500 м, количество расчетных точек 21°21 Расчёт на существующее положение.

Приложение 7 – Лицензия на природоохранное приоектирование

