ПРОЕКТ

нормативов предельно допустимых выбросов вредных веществ в атмосферу ДЛЯ

ТОО «Строительная компания «Зайсан»

Площадки:

Производственная база в г. Зайсан АБЗ в г. Зайсан;

АБЗ в с. Сатпаево;

Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении;

Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района; Отработка строительного камня Зайсанского месторождения.

г. Усть-Каменогорск, 2025 г.

АННОТАЦИЯ

Проект нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу для ТОО «Строительная компания «Зайсан», разработан на основании инвентаризации источников выбросов вредных веществ в атмосферу, проведенной по состоянию на июнь 2025 года, а также в связи со сроками окончания предыдущего проекта НДВ, разработанного сроком на 2016-2025 гг.

Настоящий «Проект нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу» для ТОО «Строительная компания «Зайсан» разработан сроком на 2026-2035 гг.

Предыдущий «Проект нормативов предельно допустимых выбросов вредных веществ в атмосферу и инвентаризация источников выбросов» для ТОО «Строительная компания «Зайсан» был разработан в 2015 г., сроком на 2016-2025 гг. Заключение государственной экологической экспертизы № KZ39VCY00042838 от 21.10.2015 г представлено в приложении.

Проект нормативов НДВ разработан на основании договора, заключенного между ТОО «УК-ПРОЕКТ» и ТОО «Строительная компания «Зайсан».

Вид деятельности предприятия ТОО «Строительная компания «Зайсан»: строительство, ремонт и содержание автомобильных дорог, добыча и переработка песчаногравийной смеси, строительного камня, производство асфальтобетона.

На балансе предприятия имеются следующие площадки:

- 1. Производственная база в г. Зайсан;
- 2. АБЗ в г. Зайсан:
- 3. АБЗ в с. Сатпаево;
- 4. Уйденинское месторождение песчано-гравийных отложений;
- 5. Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении;
- 6. Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района;
- 7. Отработка строительного камня Зайсанского месторождения.

Предыдущая инвентаризация источников выбросов проведена в июне 2015 г.

На балансе предприятия имелись следующие промышленные площадки ТОО «Строительная компания «Зайсан»:

- АБЗ в г. Зайсан;
- АБЗ в с. Сатпаево;
- Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района;
- Отработка строительного камня Зайсанского месторождения.
- Производственная база в г. Зайсан;
- Уйденинское месторождение песчано-гравийных отложений;
- Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении.

На площадке <u>«АБЗ в г. Зайсан»</u> имелось 18 источников выбросов вредных веществ в атмосферу, из них — 4 организованных и 14 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ — 9. Суммарные выбросы загрязняющих веществ составляют: 1319.532737 т/год. Из них: твердые - 1311.040872 т/год, газообразные и жидкие — 8.4918645 т/год. Площадка относится к II категории опасности (КОП = 13236).

На площадке <u>«АБЗ в с. Сампаево»</u> имелось 18 источников выбросов вредных веществ в атмосферу, из них -5 организованных и 13 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -11. Суммарные выбросы загрязняющих веществ составляют: 940.9863485 т/год. Из них: твердые -923.0862128 т/год, газообразные и жидкие -17.9001357 т/год. Площадка относится к III категории опасности (КОП = 9535.3).

На площадке <u>«АБЗ в с. Сампаево»</u> без учета автотранспорта имелось 17 источников выбросов вредных веществ в атмосферу, из них -5 организованных и 12 – неорганизованных

источников выбросов. Количество выбрасываемых вредных веществ -9. Суммарные выбросы загрязняющих веществ от площадки составляют 940.9248027 т/год. Из них: твердые -923.0861588 т/год, газообразные и жидкие -17.83864394 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 0.0615458 т/год. Из них: твердые -0.000054 т/год, газообразные и жидкие -0.0614918 т/год.

На площадке <u>«Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе</u> <u>Жарминского района»</u> имелось 5 источников выбросов вредных веществ в атмосферу, из них -2 организованных и 3 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -6. Суммарные выбросы загрязняющих веществ составляли: 2.2441307 т/год. Из них: газообразные и жидкие -2.2441307 т/год. Площадка относится к IV категории опасности (КОП = 2).

На площадке <u>«Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе</u> <u>Жарминского района»</u> без учета автотранспорта имелось 4 источника выбросов вредных веществ в атмосферу, из них -2 организованных и 2 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -1. Суммарные выбросы загрязняющих веществ от площадки составляют 2.2077 т/год. Из них: твердые -0 т/год, газообразные и жидкие -2.2077 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 0.0364307 т/год. Из них: твердые - 0 т/год, газообразные и жидкие - 0.0364307 т/год.

На площадке <u>«Отработка строительного камня Зайсанского месторождения»</u> имелось 7 источников выбросов вредных веществ в атмосферу, из них 7 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ — 12. Суммарные выбросы загрязняющих веществ составляют: 7.4582574 т/год. Из них: твердые - 1.8235254 т/год, газообразные и жидкие — 5.634732 т/год. Площадка относится к IV категории опасности (КОП = 146.3).

На площадке <u>«Отработка строительного камня Зайсанского месторождения»</u> без <u>учета автотранспорта</u> имеется 7 неорганизованных источников выбросов вредных веществ в атмосферу. Количество выбрасываемых вредных веществ -5. Суммарные выбросы загрязняющих веществ от площадки составляют 1.5612862 т/год. Из них: твердые -1.3681862 т/год, газообразные и жидкие -0.1931 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 5.8969712 т/год. Из них: твердые -0.4553392 т/год, газообразные и жидкие -5.441632 т/год.

На площадке <u>«Производственная база»</u> имелось 16 источников выбросов вредных веществ в атмосферу, из них - 7 организованных и 9 - неорганизованных источников выбросов. Количество выбрасываемых вредных веществ - 24. Суммарные выбросы загрязняющих веществ составляют: 22.9025441 т/год. Из них: твердые - 5.0224671 т/год, газообразные и жидкие - 17.880077 т/год. Площадка относится к IV категории опасности (КОП = 171,5).

На площадке <u>«Производственная база»</u> без учета автотранспорта имелось 12 источников выбросов вредных веществ в атмосферу, из них - 7 организованных и 5 - неорганизованных источников выбросов. Количество выбрасываемых вредных веществ - 21. Суммарные выбросы загрязняющих веществ от площадки составляют 21.1160438 т/год. Из них: твердые - 5.0159787 т/год, газообразные и жидкие - 16.1000651 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляли 1.7865003 т/год. Из них: твердые -0.0064884 т/год, газообразные и жидкие -1.7800119 т/год.

На площадке <u>«Уйденинское месторождение песчано-гравийных отможений»</u> имелось 4 неорганизованных источника выбросов вредных веществ в атмосферу. Количество выбрасываемых вредных веществ – 8. Суммарные выбросы загрязняющих веществ

составляли: 6.2489782 т/год. Из них: твердые - 3.737503 т/год, газообразные и жидкие — 2.5114752 т/год. Площадка относится к IV категории опасности (КОП = 72.4).

На площадке <u>«Уйденинское месторождение песчано-гравийных отможений»</u> без <u>учета автотранспорта</u> имелось 4 неорганизованных источника выброса вредных веществ в атмосферу. Количество выбрасываемых вредных веществ — 1. Суммарные выбросы загрязняющих веществ от площадки составляют 3.5295507 т/год. Из них: твердые — 3.5295507 т/год, газообразные и жидкие — 0 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляли 2.7194275 т/год. Из них: твердые -0.2079523 т/год, газообразные и жидкие -2.5114752 т/год.

На площадке <u>«Карьер по добыче песчано-гравийной смеси на Сампаевском месторождении»</u> имелось 4 неорганизованных источника выбросов вредных веществ в атмосферу. Количество выбрасываемых вредных веществ — 8. Суммарные выбросы загрязняющих веществ составляли: 4.2399193 т/год. Из них: твердые - 3.0912601 т/год, газообразные и жидкие — 1.1486592 т/год. Площадка относится к IV категории опасности (КОП = 41.1).

На площадке <u>«Карьер по добыче песчано-гравийной смеси на Сампаевском месторождении»</u> без учета автотранспорта имелось 4 неорганизованных источника выброса вредных веществ в атмосферу. Количество выбрасываемых вредных веществ -1. Суммарные выбросы загрязняющих веществ от площадки составляли 2.9961501 т/год. Из них: твердые -2.9961501 т/год, газообразные и жидкие -0 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляли 1.2437692 т/год. Из них: твердые -0.09511 т/год, газообразные и жидкие -1.1486592 т/год.

В общем на семи площадках ТОО «Строительная компания «Зайсан» имелось 72 источника выбросов вредных веществ в атмосферу, из них -18 организованных и 54 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -25. Суммарные выбросы загрязняющих веществ от предприятия составляли: 2303,6129146 т/год. Из них: твердые -2247,8018402 т/год, газообразные и жидкие -55,81107434 т/год.

Работа по определению уровня воздействия выбросов вредных веществ на загрязнение атмосферного воздуха проводилась в два этапа:

- 1. Инвентаризация существующих источников выбросов.
- 2. Разработка проекта НДВ.

В соответствии с п.12 гл.2 Методики определения нормативов эмиссий в окружающую среду (утвержденная Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63) Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу для ТОО «Строительная компания «Зайсан» разработан на основании инвентаризации источников выбросов загрязняющих веществ в атмосферу, проведенной по состоянию на июнь 2025 года.

Настоящая инвентаризация источников выбросов проведена в июне 2025 г.

В настоящем проекте рассматриваются следующие промышленные площадки ТОО «Строительная компания «Зайсан»:

- 1. Производственная база в г. Зайсан;
- 2. Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении.
- 3. АБЗ в г. Зайсан;
- 4. АБЗ в с. Сатпаево;
- 5. Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении;
- 6. Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района;
 - 7. Отработка строительного камня Зайсанского месторождения.

Ha илощадке «**Производственная база**» имеется 16 источников выбросов вредных веществ в атмосферу, из них -7 организованных и 9 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -24. Суммарные выбросы загрязняющих веществ составляют: 22.9025441 т/год. Из них: твердые -5.0224671 т/год, газообразные и жидкие -17.880077 т/год. Площадка относится к IV категории опасности (КОП = 171.5).

Ha площадке «Производственная база» без учета автотранспорта имеется 12 источников выбросов вредных веществ в атмосферу, из них - 7 организованных и 5 - неорганизованных источников выбросов. Количество выбрасываемых вредных веществ - 21. Суммарные выбросы загрязняющих веществ от площадки составляют 21.1160438 т/год. Из них: твердые - 5.0159787 т/год, газообразные и жидкие - 16.1000651 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 1.7865003 т/год. Из них: твердые -0.0064884 т/год, газообразные и жидкие -1.7800119 т/год.

На площадке «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении» имеется 4 неорганизованных источника выбросов вредных веществ в атмосферу. Количество выбрасываемых вредных веществ — 8. Суммарные выбросы загрязняющих веществ составляют: 4.2399193 т/год. Из них: твердые - 3.0912601 т/год, газообразные и жидкие — 1.1486592 т/год. Площадка относится к IV категории опасности (КОП = 41.1).

Ha площадке «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении» без учета автотранспорта имеется 4 неорганизованных источника выброса вредных веществ в атмосферу. Количество выбрасываемых вредных веществ — 1. Суммарные выбросы загрязняющих веществ от площадки составляют 2.9961501 т/год. Из них: твердые — 2.9961501 т/год, газообразные и жидкие — 0 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 1.2437692 т/год. Из них: твердые -0.09511 т/год, газообразные и жидкие -1.1486592 т/год.

На площадке *«АБЗ в г. Зайсан»* имеется 18 источников выбросов вредных веществ в атмосферу, из них — 4 организованных и 14 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ — 9. Суммарные выбросы загрязняющих веществ составляют: 1306.2989427 т/год.

На площадке «АБЗ в с. Сатпаево» без учета автотранспорта имеется 17 источников выбросов вредных веществ в атмосферу, из них -5 организованных и 12 – неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -9. Суммарные выбросы загрязняющих веществ от площадки составляют 927.906239т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 0.0615458 т/год. Из них: твердые -0.000054 т/год, газообразные и жидкие -0.0614918 т/год.

На площадке «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района» без учета автотранспорта имеется 4 источника выбросов вредных веществ в атмосферу, из них -2 организованных и 2 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -1. Суммарные выбросы загрязняющих веществ от площадки составляют 2.2077 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 0.0364307 т/год. Из них: твердые - 0 т/год, газообразные и жидкие - 0.0364307 т/год.

На площадке «Отработка строительного камня Зайсанского месторождения» без учета автотранспорта имеется 7 неорганизованных источников выбросов вредных веществ в атмосферу. Количество выбрасываемых вредных веществ — 5. Суммарные выбросы загрязняющих веществ от площадки составляют 1.5612862 т/год. Из них: твердые — 1.3681862 т/год, газообразные и жидкие — 0.1931 т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорт) от площадки составляют 5.8969712 т/год. Из них: твердые -0.4553392 т/год, газообразные и жидкие -5.441632 т/год.

По состоянию на июнь 2025 года на семи площадках TOO «Строительная компания «Зайсан» имеется 68 источника выбросов вредных веществ в атмосферу, из них -18 организованных и 50 — неорганизованных источников выбросов. Количество выбрасываемых вредных веществ -25.

Нормированию подлежат суммарные выбросы загрязняющих веществ без учета автотранспорта и составляют 2262,0863618т/год.

Суммарные выбросы загрязняющих веществ от передвижных источников (автотранспорта) составляют 9,0252172 т/год. Выбросы загрязняющих веществ от передвижных источников не нормируются, так как платежи взимаются по фактически израсходованному топливу.

Свидетельство о государственной перерегистрации юридического лица представлено в приложении.

Перечень основных документов, на основании которых разработан проект нормативов допустимых выбросов:

- 1. Кодекс Республики Казахстан от 2 января 2021 года № 400-VI «Экологический кодекс Республики Казахстан».
- 2. «Методика определения нормативов эмиссий в окружающую среду», утверждённой приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года №63. Количественные и качественные характеристики выбросов от источников выбросов загрязняющих веществ определены теоретическим методом, согласно методик расчета выбросов вредных веществ в атмосферу, утвержденных в РК.

Суммарные выбросы вредных веществ от источников выбросов предприятия рассчитаны в зависимости от времени работы технологического оборудования.

При разработке проекта нормативов НДВ выявлены следующие изменения по сравнению с предыдущим ПДВ:

1. Нормативы выбросов для всех площадок остаются без изменений. На уровне действующих разрешений. Перечень загрязняющих веществ, выбрасываемых в атмосферу от источников выбросов на существующее положение в целом по предприятию и по площадкам, представлен в таблице 3.1.

Параметры выбросов загрязняющих веществ в атмосферу на существующее положение представлены в таблице 3.3.

Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на срок достижения НДВ представлены в таблице 3.6.

СОДЕРЖАНИЕ

АННОТАЦИЯ2
СОДЕРЖАНИЕ7
1. ВВЕДЕНИЕ8
2. ОБЩИЕ СВЕДЕНИЯ О ПРЕДПРИЯТИИ9
2.1. Месторасположение предприятия9
2.2. Карта-схема предприятия
2.3. Ситуационная карта-схема предприятия
3. КРАТКАЯ ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ11
3.1. Краткая характеристика технологии производства и технологического оборудования
3.2. Краткая характеристика существующих установок очистки газа, анализ их технического состояния и эффективность работы
3.3. Перспектива развития предприятия
3.4. Характеристика аварийных выбросов
3.5. Обоснование достоверности данных, полученных в результате проведенной инвентаризации
3.6 Сравнительная таблица нормативов выбросов вредных веществ по площадкам для ТОО «Строительная компания «Зайсан»»
4. ПРОВЕДЕНИЕ РАСЧЕТОВ И ОПРЕДЕЛЕНИЕ НДВ63
5. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ НА ПЕРИОД НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ115
6. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ НДВ115
7. СПИСОК ЛИТЕРАТУРЫ116

1. ВВЕДЕНИЕ

Предприятием разработчиком проекта нормативов допустимых выбросов вредных (загрязняющих) веществ в атмосферу (НДВ) для ТОО «Строительная компания «Зайсан» является ТОО ««УК-ПРОЕКТ» (ГСЛ №02813Р от 14.08.2024 года).

Основанием для выполнения настоящей работы является договор, заключенный между ТОО «Строительная компания «Зайсан» и ТОО «УК-ПРОЕКТ».

Целью работы является установление нормативов допустимых выбросов (НДВ) вредных веществ в атмосферу источниками выбросов предприятия.

При установлении нормативов допустимых выбросов (НДВ) учитывались физикогеографические и климатические условия местности, месторасположение обследуемого предприятия и окружающих его объектов.

Перечень основных документов, на основании которых разработан проект нормативов допустимых выбросов:

- 1. Кодекс Республики Казахстан от 2 января 2021 года № 400-VI «Экологический кодекс Республики Казахстан».
- 2. «Методика определения нормативов эмиссий в окружающую среду», утверждённой приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года №63.

Адрес заказчика: ТОО «Строительная компания «Зайсан»

493510, Республика Казахстан, Восточно-Казахстанская область, Зайсанский район, г. Зайсан, улица Жангельдина, 133

тел. факс. 8-(72340)-21-1-37, 26-8-06

Адрес исполнителя: ТОО «УК-ПРОЕКТ»,

Республика Казахстан,

Восточно-Казахстанская область,

г. Усть-Каменогорск,

ул. Севастопольская 16/2, кв 58

2. ОБЩИЕ СВЕДЕНИЯ О ПРЕДПРИЯТИИ

2.1. Месторасположение предприятия

Юридический адрес предприятия ТОО «Строительная компания «Зайсан»: Республика Казахстан, Восточно-Казахстанская область, Зайсанский район, город Зайсан, улица Жангельдина, 133.

В состав предприятия ТОО «Строительная компания «Зайсан» входят следующие площадки:

- 1. Производственная база в г. Зайсан;
- 2. АБЗ в г. Зайсан;
- 3. АБЗ в с. Сатпаево;
- 4. Уйденинское месторождение песчано-гравийных отложений;
- 5. Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении;
- 6. Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района,
- 7. Отработка строительного камня Зайсанского месторождения.

В данном проекте рассматриваются три площадки: «Производственная база в г. Зайсан»; «Уйденинское месторождение песчано-гравийных отложений»; «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении».

Площадка «*Производственная база*» находится в г. Зайсан Восточно-Казахстанской области по ул. Жангельдина. С юго-западной и юго-восточной сторон площадки на расстоянии соответственно 15 и 50 м от ее границы расположены жилая застройка, от крайних источников на расстоянии 40 и 72 м соответственно. В северо-восточном направлении вдоль границы площадки проходит ул. Гагарина. За улицей Гагарина находится территория «Теплоэнерго». В северо-западном направлении – пустырь, застройки нет.

Площадка «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении» расположена в Тарбагатайском районе Восточно-Казахстанской области. В северном направлении на расстоянии 130 м от границы карьера расположена площадка «АБЗ в с. Сатпаево». Ближайшая жилая застройка (с. Сатпаево) находится в северном направлении от границы карьера на расстоянии более 1.2 км. В юго-восточном направлении на расстоянии 22 км границы карьера расположено с. Аксуат.

Площадка *«АБЗ в г. Зайсан»* расположена в северо-восточном направлении на расстоянии 1500 м от границы площадки «Производственная база». Вокруг площадки застройки нет, пустырь. Ближайшая жилая застройка (г. Зайсан) расположена в юго-западном направлении на расстоянии 1.5 км от границы площадки.

Площадка *«АБЗ в с. Сатпаево»* находится в Тарбагатайском районе Восточно-Казахстанской области южнее с. Сатпаево, на расстоянии 1000 м от жилой застройки с. Сатпаево. В южном направлении на расстоянии 130 м от границы площадки «АБЗ в с. Сатпаево» находится площадка «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении». В остальных направлениях - пустырь.

Площадка «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района» расположена в северо-восточной части п. Жангиз-Тобе Жарминского района Восточно-Казахстанской области. В северном направлении на расстоянии 1,5 км участок граничит с территорией погранбазы. В южном направлении участок граничит с территорией предприятия «Вторчермет». В западном направлении участок граничит с землями ТОО «Каz Lime Industries». Ближайшая жилая застройка (п. Жангиз-Тобе) находится в южном направлении на расстоянии 1 км.

Площадка «Отработка строительного камня Зайсанского месторождения» расположена на левобережье р. Джеменей, в 4 км к югу от районного центра Зайсан в Зайсанском районе ВКО. Ближайшая застройка расположена находится в 4 км.

2.2. Карта-схема предприятия

В приложении приведены карты-схемы площадок предприятия с нанесенными на них источниками выбросов загрязняющих веществ в атмосферу.

Для каждого источника выбросов вредных веществ в атмосферу, определены координаты привязки на местности в принятой на карте-схеме системе координат и присвоен порядковый номер.

2.3. Ситуационная карта-схема предприятия

В приложении приведены ситуационные карты-схемы с нанесенными на них территорий площадок предприятия.

В зоне влияния источников выбросов предприятия нет курортов, зон отдыха и объектов с повышенными требованиями к санитарному состоянию атмосферного воздуха.

3. КРАТКАЯ ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

3.1. Краткая характеристика технологии производства и технологического оборудования

Вид деятельности предприятия ТОО «Строительная компания «Зайсан»: строительство, ремонт и содержание автомобильных дорог, добыча и переработка песчаногравийной смеси, строительного камня, производство асфальтобетона.

На балансе предприятия ТОО «Строительная компания «Зайсан» имеются следующие площадки:

- 1. Производственная база в г. Зайсан;
- 2. АБЗ в г. Зайсан;
- 3. АБЗ в с. Сатпаево;
- 4. Уйденинское месторождение песчано-гравийных отложений;
- 5. Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении;
- 6. Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района;
 - 7. Отработка строительного камня Зайсанского месторождения.

В настоящем проекте рассматриваются следующие промышленные площадки ТОО «Строительная компания «Зайсан»: «Производственная база в г. Зайсан»; «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении».

Источниками загрязнения атмосферного воздуха на предприятии являются:

- площадка «Производственная база в г. Зайсан» ремонтно-механическая мастерская (аккумуляторная, кузница, медницкий цех, токарный цех), АЗС, столярный цех, моторный цех, административно-бытовой корпус и гостиница (печь отопления), склад угля, площадка для временного хранения золы, стояночные боксы №1 и №2, открытые стоянки автотранспорта №1 и №2;
- площадка «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении» вскрышные работы, выемочно-погрузочные работы, автотранспортные работы, отвал вскрышной породы.

1. Площадка «Производственная база в г. Зайсан»

Ремонтно-механическая мастерская. Аккумуляторная.

В аккумуляторной производится зарядка аккумуляторов. Зарядное устройство -1 шт. Одновременно заряжается 7 аккумуляторов. Расход серной кислоты -150 кг/год. Количество заряжаемых аккумуляторов в год -63 шт. Электрическая емкость заряжаемых аккумуляторов -190 А/ч. Время зарядки аккумуляторов -10 ч/сутки. Время работы зарядного устройства -90 ч/год.

При зарядке аккумуляторов в атмосферу выделяются серная кислота.

Выброс загрязняющего вещества в атмосферу происходит через трубу диаметром 0.2 м на высоте 2.0 м (источник N = 0.001).

Ремонтно-механическая мастерская. Кузница.

Для изготовления деталей в кузнице установлен кузнечный горн -1 шт. Время работы -500 ч/год. Расход угля Кендерлыкского месторождения -2.0 т/год. Характеристика угля: зольность на сухое состояние -16.38%, 28.00% (не более); массовая доля общей серы на сухое состояние топлива -0.58%, 1% (не более); низшая теплота сгорания -20880 кДж/кг (4987 ккал/кг). Ручной заброс топлива.

При сжигании угля в атмосферу выделяются: азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.4 м на высоте 7.2 м (источник №0003).

Ремонтно-механическая мастерская. Медницкий цех.

В медницком цехе производится пайка радиаторов. Для этого имеется стол пайки радиаторов -1 шт. Время работы -500 ч/год. В качестве припоя используется свинцовооловянный припой ПОС-60. Расход припоя -40 кг/год.

При ведении работ в атмосферу выделяются олово оксид, свинец и его неорганические соединения.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.4 м на высоте 2 м (источник №0005).

В медницком цехе для ведения ремонтных работ установлены сверлильный станок -1 ед. (время работы -200 ч/год); заточной станок с диаметр абразивного круга 400 мм -1 ед. (время работы -500 ч/год). Одновременно в работе находятся 2 станка.

При работе на станках в атмосферу выделяются взвешенные частицы РМ10 и пыль абразивная (Корунд белый; Монокорунд).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно через дверной проем (источник №6006).

Ремонтно-механическая мастерская. Токарный цех.

Для ведения ремонтных работ в токарном цехе установлено следующее станочное оборудование: токарный станок -1 ед. (время работы -1000 ч/год); фрезерный станок -1 ед. (время работы -100 ч/год). Одновременно в работе находятся 2 станка.

При работе на станках в атмосферу выделяются взвешенные частицы РМ10.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно через дверной проем (источник №6008).

Для отопления ремонтно-механической мастерской имеется печь отопления. Время работы — 1440 ч/год. Расход угля Кендерлыкского месторождения — 100 т/год. Характеристика угля: зольность на сухое состояние — 16,38%, 28,00% (не более);
массовая доля общей серы на сухое состояние топлива — 0,58%, 1% (не более); низшая теплота сгорания - 20880 кДж/кг (4987 ккал/кг). Расход опилок — 0.7 т/год. Характеристика дров: зольность — 0.6%; низшая теплота сгорания топлива — 10.24 МДж/кг. Подача угля, опилок и золоудаление ручное.

При сжигании угля и дров в атмосферу выделяются: азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния, взвешенные частицы PM10.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.2 м на высоте 10 м (источник №0008).

A3C.

На площадке «Производственная база» автозаправочная станция (A3C) предназначена для приема, хранения и отпуска нефтепродуктов. Для хранения нефтепродуктов на A3C имеются: емкости для бензина -1 шт. х 7 м 3 , 1 шт. х 5 м 3 (наземные); емкость для дизельного топлива -1 шт. х 18 м 3 (наземная). Расход бензина низкооктанового (до 90) -80 т/год (108.108 м 3 /год); расход дизельного топлива -140 т/год (169.697 м 3 /год). Бензин и дизельное топливо доставляются на A3C бензовозом, производительность закачки 27 м 3 /час. Производительность топливозаправочной колонки -3 м 3 /час. Заправка автомобилей бензином и дизельным топливом производится через две топливораздаточные колонки. Время работы A3C -8760 ч/год.

При приеме, хранении и отпуске бензина и дизельного топлива в атмосферу выделяются следующие загрязняющие вещества: смесь углеводородов предельных С1-С5, смесь углеводородов предельных С6-С10, пентилены (амилены - смесь изомеров), бензол, ксилол (смесь изомеров о-, м-, п-), толуол, этилбензол, сероводород, углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/.

Выброс загрязняющих веществ в атмосферу происходит через дыхательные клапаны резервуаров диаметром 0.08 м на высоте 4 м (источник №0006).

Столярный цех.

В столярном цехе изготавливают оконные, дверные блоки, щиты, опалубки. Для этого устанвлено следующее оборудование: циркулярная пила Ц6-2 -1 ед. (время работы - 280 ч/год); фуговальный станок СФ-4 -1 ед. (время работы -240 ч/год). Одновременно в работе находится 2 станка. При ведении работ в атмосферу выделяется пыль древесная. Удаление загрязняющих веществ от станков происходит при помощи пылеулавливающего агрегата МF 9030 с КПД 95 %, установленном внутри цеха.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно через дверной проем (источник №6012).

Моторный цех.

В моторном цехе имеется печь отопления, предназначенная для отопления моторного цеха. Время работы — 1440 ч/год. Расход угля Кендерлыкского месторождения — 60 т/год. Характеристика угля: зольность на сухое состояние — 16,38%, 28,00% (не более); массовая доля общей серы на сухое состояние топлива — 0,58%, 1% (не более); низшая теплота сгорания - 20880 кДж/кг (4987 ккал/кг). Подача угля и золоудаление ручное.

При сжигании угля в атмосферу выделяются: азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.2 м на высоте 10 м (источник №0007).

Административно-бытовой корпус.

Для отопления АБК имеется печь отопления. Время работы — 4320 ч/год. Расход угля Кендерлыкского месторождения — 150 т/год. Характеристика угля: зольность на сухое состояние — 16,38%, 28,00 % (не более); массовая доля общей серы на сухое состояние топлива — 0,58%, 1% (не более); низшая теплота сгорания - 20880 кДж/кг (4987 ккал/кг). Топливоподача и золоудаление ручное.

При сжигании угля в атмосферу выделяются: азота диоксид, азота оксид, сера диоксид, углерод оксид, пыль неорганическая: 70-20% двуокиси кремния.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.2 м на высоте 10 м (источник №0009).

Склад угля.

Для хранения угля имеется склад площадью -100 м^2 . Склад угля закрыт с одной стороны. Количество угля, поступающего на склад в течение года -312 т/год. Время хранения -4320 ч/год.

Выбросы пыли неорганической ниже 20% в атмосферу происходит при формировании склада и при сдувании с его поверхности.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник N = 6013).

Площадка для временного хранения золы.

Для временного хранения золы имеется площадка площадью – 30 м². Площадка закрыта с двух сторон. Время хранения – 4320 ч/год. Количество золы – 87,36 т/год.

Выброс пыли неорганическая: 70-20% двуокиси кремния происходит при погрузочно-разгрузочных работах, при сдувании с поверхности и при ее формировании.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (**источник** №6016).

Стояночный бокс №1.

 $\overline{\mathrm{B}}$ стояночном боксе №1 осуществляют стоянку 12 ед. грузового (дизельные) автотранспорта.

Во время въезда-выезда автотранспорта со стояночного бокса и при движении по территории предприятия в атмосферу происходит выброс: азота диоксид; азота оксид; углерод черный; сера диоксид; углерод оксид; керосин.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно через ворота стояночного бокса (источник №6024).

Стояночный бокс№2.

В стояночном боксе №2 осуществляют стоянку 4 ед. автотранспорта, из них: легковые (бензиновые) - 3 ед.; автобус (бензиновый) - 1 ед.

Во время въезда-выезда автотранспорта со стояночного бокса и при движении по территории предприятия в атмосферу происходит выброс: азота диоксид; азота оксид; сера диоксид; углерод оксид; бензин (нефтяной, малосернистый) /в пересчете на углерод/.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно через ворота стояночного бокса (источник №6025).

Открытая стоянка автотранспорта №1.

На открытой стоянке №1 осуществляют стоянку 7 ед. автотранспорта, их них: грузовые (дизельные) - 4 ед.; автобус (бензиновый) — 3 ед.

Во время въезда-выезда автотранспорта с открытой стоянки и при движении по территории предприятия в атмосферу происходит выброс: азота диоксид; азота оксид; углерод черный; сера диоксид; углерод оксид; керосин, бензин (нефтяной, малосернистый) /в пересчете на углерод/.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник $N_{2}6026$).

Открытая стоянка автотранспорта №2.

На открытой стоянке №2 осуществляют стоянку 11 ед. грузового автотранспорта (бензиновые).

Во время въезда-выезда автотранспорта с открытой стоянки и при движении по территории предприятия в атмосферу происходит выброс: азота диоксид; азота оксид; сера диоксид; углерод оксид; бензин (нефтяной, малосернистый) /в пересчете на углерод/.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник №6027).

2. Площадка «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении»

На площадке «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении» ведется добыча песчано-гравийной смеси (ПГС) — 10000 м³/год.

При добыче песчано-гравийной смеси (10000 м^3) ведутся вскрышные работы пустой породы $(1200 \text{ м}^3/\text{год})$ и выемочно-погрузочные работы.

Режим работы сезонный. Продолжительность сезона - 60 дней, количество рабочих дней в неделю – 5, продолжительность смены – 8 часов/день.

Вскрышные работы.

Вскрышные работы на месторождении производятся при помощи бульдозера T-170-1 шт. Годовой объем вскрышной породы (суглинки) — 1200 м^3 /год (1752 т/год). Время работы бульдозера T-170-64 ч/год. Вскрышная порода снимается бульдозером и сгребается в бурты, а затем вывозится автосамосвалом в отвал.

Проведение вскрышных работ сопровождается выделением пыли неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (источник №6051).

Выемочно-погрузочные работы.

Выемочно-погрузочные работы песчано-гравийной смеси на месторождении производятся открытым способом без водопонижения при помощи экскаватора TC-4361 типа драглайн — дизельный на гусеничном ходу, с емкостью ковша $0,65 \, \text{м}^3$. Годовой объем песчаногравийной смеси — $10000 \, \text{м}^3$ /год. Время работы экскаватора $TC-4361 - 272 \, \text{ч/год}$. ПГС

вывозится во временный отвал для обезвоживания горной массы перед погрузкой. Погрузка ПГС осуществляется с помощью погрузчика Л-34. Время работы погрузчика Л-34 – 472 ч/год.

Проведение выемочно-погрузочных работ сопровождается выделением пыли неорганической: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (**источник** №6052).

Автотранспортные работы.

Для транспортировки песчано-гравийной смеси на площадку «АБЗ в с. Сатпаево» используется автосамосвал КамАЗ-5511. Время работы автосамосвал КамАЗ-5511 - 472 ч/год.

При движении автотранспорта в карьере в атмосферу выделяются следующие загрязняющие вещества: азота диоксид, азота оксид, углерод черный, сера диоксид, углерод оксид, бенз/а/пирен (3,4-Бензпирен), керосин, пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник N = 6053).

Отвал вскрышной породы.

Вскрышная порода складируется в отвал карьера. Площадь пылящей поверхности — 2500 м^2 . Количество вскрышной породы, поступающей в отвал — 1200 м^3 /год (1752 т/год). Плотность породы (суглинки) — $1,46 \text{ т/м}^3$.

При переработке и хранении вскрышных пород в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющего вещества происходит неорганизованно (источник №6054).

3. Плошадка «АБЗ в г. Зайсан»

На площадке «АБЗ в г. Зайсан» изготавливают асфальтобетонные смеси — 22400 т/год. Изготовление асфальтобетона производится стационарной установкой периодического действия в асфальтосмесителе ДС-158. Готовые асфальтобетонные смеси перегружаются в спецавтотранспорт и доставляются на строительные объекты.

Асфальтобетонный завод работает сезонно, в теплое время года с мая по октябрь, 5 дней в неделю, 8 часов в сутки.

Асфальтосмеситель ДС-158 предназначен для приготовления асфальтобетонной смеси. Производительность смесителя фактическая — 35 т/час (проектная часовая мощность ДС-158 — 50 т/час). Время работы — 640 ч/год. Количество приготавливаемой асфальтобетонной смеси — 22400 т/год. Установка была введена в эксплуатацию в 1991 году.

Технология приготовления асфальтобетонной смеси.

Для приготовления асфальтобетонной смеси применяется: битум — 1120 т/год; мазут — 192 т/год; песчано-гравийная смесь — 21280 т/год (щебень фракции 10-20 мм — 10640 т/год; щебень фракции 0-5 мм (песок) — 10640 т/год).

Перед подачей на установку приготовления асфальтобетонной смеси битум сначала предварительно подогревают в электрических битумных котлах (наземные, горизонтальные, металлические), а затем паром. Для разогрева битума имеются битумные (открытые) электрокотлы — 4 шт. Расход битума на каждый котел — $280\ \text{т/год}$. Время разогрева битума в каждом котле — $2112\ \text{ч/год}$. Плотность битума — $0.95\ \text{т/m}^3$. Хранение битума осуществляется в двух битумных ямах (открытые, бетонированные) объемом $25\ \text{m}^3$ каждая. Прием битума осуществляется в количестве $1120\ \text{т/год}$. Слив битума в яму производится автогудронатором. Производительность слива битума — $16\ \text{m}^3$ /час. Время слива — $70\ \text{ч/год}$.

Процесс обезвоживания битума в котлах происходит в тонком слое. Для предотвращения вспенивания битума в процессе выпаривания котлы заполняют не более чем

на 75-80 % их емкости. Приготовленный обезвоженный битум (температура 150-170 0 C) подается по паропроводу в асфальтосмеситель.

Для производства пара используется паровой котел E-1/9. Паровой котел предназначен для разогрева битума паром. В качестве топлива для котла используется дизельное топливо. Расход д/топлива — 25 т/год. Время работы — 2112 ч/год.

Для хранения д/топлива имеется наземная емкость (металлическая, горизонтальная) объемом 10 м^3 . Д/топливо доставляют бензовозом, производительностью закачки 27 м^3 /час. Время хранения д/топлива — 4320 ч/год. Расход д/топлива — 25 т/год. Емкость для дизельного топлива установлена на железобетонный поддон.

Мазут из емкостей для хранения мазута автогудронатором перевозится в пропарочные котлы, после чего также автогудронатором завозится на асфальтосмесительную установку. Для хранения мазута имеется наземная емкость (металлическая, горизонтальная) объемом 10 M^3 . Характеристика мазута: $A^r_i - 0.1\%$; $S^r_i - 1.9\%$; $Q^r_i - 39.85$ МДж/кг. Емкость для хранения мазута установлена на железобетонный поддон. Мазут доставляют бензовозом, производительностью закачки 27 м³/час. Время хранения мазута – 4320 ч/год. Расход мазута – 192 т/год. Мазутом производится нагрев инертных материалов (дробленный каменный барабане материал) В сушильном до нужной температуры ДЛЯ производства асфальтобетонных смесей.

Разогретый битум подается из емкостей в смеситель; дробленный каменный материал (инертный материал) нужной фракции с помощью погрузчика засыпается в приемник бункера и затем по транспортерам направляется в сушильный барабан. Топливом для сушильного барабана служит мазут. В барабане каменный материал сушится при температуре 120^{0} C, затем элеватором подается на грохот, разделяющий его на фракции и направляющий в отдельные отсеки бункера.

Из отсеков инертный материал (дробленный каменный материал) дозируется с помощью весов и направляется в мешалку. После сухого перемешивания материала вводится порция битума. Перемешивание производится до получения однородной массы — готовой асфальтобетонной смеси.

Щебень для асфальтобетонной смеси готовится из каменного материала (расход — $21280\ \text{т/год}$) на дробильно-сортировочной линии. В состав дробильно-сортировочной линии входит: щековая дробилка Д-739 (2 шт.), производительностью $10\ \text{м}^3$ /час; конусная дробилка Д-740 (2 шт.), производительностью $10\ \text{м}^3$ /час; ленточный конвейер (шириной — $0.5\ \text{м}$, длиной — $20\ \text{м}$) — 4 шт. Время работы оборудования — $1526\ \text{ч/год}$. Переработка каменного материала — $21280\ \text{т/год}$. В дробильно-сортировочной линии происходит переработка каменного материала, что обуславливает пыление при измельчении и транспортировке его ленточными транспортерами. Щебень фракции $10-20\ \text{мм}$. хранится на открытом со всех сторон складе щебня. Площадь склада — $2400\ \text{м}^2$. Хранение щебня фракции $0-5\ \text{мм}$ (песок) происходит на площадке склада — $2400\ \text{м}^2$. Склад открыт со всех сторон.

Для пересыпки инертных материалов (дробленный каменный материал) используется бульдозер Т-170 и погрузчик ПБ-1 Γ .

Для очистки пылегазового потока от асфальтосмесителя ДС-158 на площадке «АБЗ в г. Зайсан» установлена система очистки, состоящая из группового циклона СДК-ЦН-33 из 4-х элементов.

Асфальтосмеситель.

Асфальтосмеситель ДС-158 предназначен для приготовления асфальтобетонной смеси. Производительность смесителя — 35 т/час. Время работы — 640 ч/год. Количество приготавливаемой асфальтобетонной смеси — 22400 т/год. Для приготовления асфальтобетонной смеси применяется мазут — 192 т/год; песчано-гравийная смесь — 21280 т/год; битум — 1120 т/год. Характеристика мазута: A^{r}_{i} — 0,1%; S^{r}_{i} — 1,9%; Q^{r}_{i} — 39,85 МДж/кг. Для очистки пылегазового потока от асфальтосмесителя установлена система очистки, состоящая из группового циклона СДК-ЦН-33 из 4-х элементов с эффективностью очистки 82.1 %.

При ведении работ в атмосферу выбрасываются следующие загрязняющие вещества: азота диоксид, азота оксид, углерод черный, сера диоксид, углерод оксид, мазутная зола теплоэлектростанций /в пересчете на ванадий/, пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.), углеводороды предельные С12-19.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.7 м на высоте 20.0 м (источник №0013).

Дробильно-сортировочная линия.

В дробильно-сортировочной линии происходит переработка каменного материала (инертный материал), что обуславливает пыление при измельчении и транспортировке его ленточными транспортерами. В состав дробильно-сортировочной линии входит: щековая дробилка Д-739 (2 ед.), производительностью 10 м^3 /час; конусная дробилка Д-740 (2 ед.), производительностью 10 м^3 /час; грохот, производительностью 10 м^3 /час; ленточный конвейер (шириной – 0.5 м, длиной – 20 м) – 4 ед. Время работы оборудования – 1526 ч/год. Переработка каменного материала – 21280 т/год.

При переработке каменного материала в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источники N = 6014, N = 6017, N = 6018).

Паровой котел Е-1/9.

Паровой котел E-1/9 предназначен для разогрева битума паром. Котел работает на д/топливе. Расход д/топлива — 25 т/год. Время работы — 2112 ч/год. Характеристика топлива: зольность — 0.025 %; сернистость — 0.3 %, низшая теплота сгорания топлива — 42.75 МДж/кг.

При сжигании д/топлива в атмосферу выделяются углерод черный, серы диоксид, азота оксид, азота диоксид, углерод оксид.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.3 м на высоте 3 м (источник №0010).

Мазутохранилище.

Для хранения мазута имеется наземная емкость (вертикальный) объемом $10~{\rm M}^3$. Емкость для хранения мазута установлена на железобетонный поддон. Мазут доставляют бензовозом, производительностью закачки $27~{\rm M}^3$ /час. Время хранения мазута — $4320~{\rm Y/год}$. Расход мазута — $192~{\rm T/год}$.

При приеме и хранении мазута в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод), сероводород.

Выброс загрязняющих веществ в атмосферу происходит через дыхательный клапан диаметром 0.08 м на высоте 3 м (источник №0019).

Емкость для хранения д/топлива.

Для хранения д/топлива имеется наземная емкость объемом 10 м^3 . Дизельное топливо доставляют бензовозом, производительностью закачки 27 м^3 /час. Время хранения дизельного топлива — 4320 ч/год. Расход дизельного топлива — 25 т/год. Емкость для дизельного топлива установлена на железобетонный поддон.

При приеме и хранении д/топлива в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод), сероводород.

Выброс загрязняющих веществ в атмосферу происходит через дыхательный клапан диаметром 0.08 м на высоте 3 м (источник №0020).

Битумные котлы.

Для разогрева битума имеются битумные электрокотлы (электротены) — 4 шт. Расход битума на каждый котел — 280 т/год. Время разогрева битума в каждом котле — 2112 ч/год.

При разогреве битума в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источники N = 6028, N = 6039, N = 6030, N = 6031).

Склад щебня фракции 10-20 мм.

На складе происходит хранение щебня фракции 10-20 мм. Площадь склада — 2400 м 2 . Склад открыт со всех сторон. Время хранения — 4320 ч/год. Количество щебня, поступающего на склад — 10640 т/год.

При хранении щебня в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник N = 6019).

Склад щебня фракции 0-5 мм.

На складе происходит хранение щебня фракции 0-5 мм. Площадь склада $-2400~{\rm M}^2$. Склад открыт со всех сторон. Время хранения $-4320~{\rm ч/год}$. Количество щебня, поступающего на склад $-10640~{\rm т/год}$.

При хранении щебня в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник №6020).

Битумохранилище.

Хранение битума осуществляется в двух битумных ямах (бетонированная, открытая). В битумной яме (источник №6021) происходит хранение вязкого битума, в битумной яме (источник №6022) — жидкого. Расход битума на каждую яму — 560 т/год. Время хранения — 4320 ч/год.

При хранении битума в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источники N = 6021, N = 6022).

Прием битума осуществляется в количестве 1120 т/год. Слив битума в яму производится автогудронатором. Производительность слива битума — $16~{\rm m}^3$ /час. Время слива — $70~{\rm u}$ /год.

При сливе битума с автогудронатора в битумную яму в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник $N_{2}6023$).

Бульдозерные и погрузочные работы.

Для пересыпки инертных материалов используется бульдозер Т-170 и погрузчик ПБ-1 Γ . Время работы каждого 625 ч/год.

При выполнении бульдозерных и погрузочных работ в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник №6032).

Склад каменного материала.

Хранение каменного материала происходит на складе площадью — $700 \, \mathrm{m}^2$. Склад открыт со всех сторон. Время хранения — $6000 \, \mathrm{ч/год}$. Количество каменного материала, поступающего на склад — $21280 \, \mathrm{т/год}$.

При хранении каменного материала в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источники N = 6050).

4. Площадка «АБЗ в с. Сатпаево»

На площадке «АБЗ в с. Сатпаево» изготавливают асфальтобетонные смеси -43300 т/год.

Технология приготовления асфальтобетонной смеси.

Асфальтобетонный завод работает сезонно, в теплое время года с мая по октябрь, 5 дней в неделю, 8 часов в сутки.

Асфальтосмеситель Д-508 предназначен для приготовления асфальтобетонной смеси. Производительность смесителя -25 т/час. Время работы -1732 ч/год. Количество приготавливаемой асфальтобетонной смеси -43300 т/год. Установка была введена в эксплуатацию в 2004 году.

Для приготовления асфальтобетонной смеси применяется: битум - 1400 т/год; мазут - 350 т/год; песчано-гравийная смесь - 41900 т/год (щебень фракции 10-20 мм - 20950 т/год; щебень фракции 0-5 мм (песок)- 20950 т/год).

Перед подачей на установку приготовления асфальтобетонной смеси битум сначала предварительно подогревают в электрических битумных котлах (наземные, горизонтальные, металлические), а затем паром. Для разогрева битума имеются битумные электрокотлы – 4 шт. Расход битума на каждый котел — 350 т/год. Время разогрева битума в каждом котле — 2112 ч/год. Хранение битума осуществляется в двух наземных емкостях (металлические, горизонтальные) объемом по 50 м 3 каждая. Расход битума — 1400 т/год. Время хранения — 4000 ч/год. Слив битума в емкости производится автогудронатором. Производительность слива битума — 16 м 3 /час. Время слива — 89 ч/год.

Процесс обезвоживания битума в котлах происходит в тонком слое. Для предотвращения вспенивания битума в процессе выпаривания котлы заполняют не более чем на 75-80 % их емкости. Приготовленный обезвоженный битум (температура 150-170 0 C) подается по паропроводу в котлы.

Для производства пара используется паровой котел E-1/9. Паровой котел E-1/9 предназначен для разогрева битума паром. В качестве топлива для котла используется дизельное топливо. Расход д/топлива — 30 т/год. Время работы — 2112 ч/год.

Для хранения д/топлива имеется наземная емкость (металлическая, горизонтальная) объемом $10~{\rm m}^3$. Д/топливо доставляют бензовозом, производительностью закачки $27~{\rm m}^3$ /час. Время хранения д/топлива — $4320~{\rm ч/год}$. Расход д/топлива — $30~{\rm т/год}$. Емкость для хранения д/топлива установлена на железобетонный поддон.

Мазут из емкостей для хранения мазута автогудронатором перевозится в пропарочные котлы, после чего также автогудронатором завозится на асфальтосмесительную установку. Для хранения мазута имеются наземные емкости (металлические, горизонтальные,) - 2 шт., общим объемом 17 м³. Характеристика мазута: $A^r_i - 0.1\%$; $S^r_i - 1.9\%$; $Q^r_i - 39.85$ МДж/кг. Емкости для хранения мазута установлены на железобетонный поддон. Мазут доставляют бензовозом, производительностью закачки 27 м³/час. Время хранения мазута — 4000 ч/год. Расход мазута — 350 т/год. Мазутом производится нагрев инертных материалов (дробленный каменный материал) в сушильном барабане до нужной температуры для производства асфальтобетонных смесей.

Разогретый битум подается из емкостей в смеситель; дробленный каменный материал (инертный материал) нужной фракции с помощью погрузчика засыпается в приемник бункера и затем по двум транспортерам направляется в сушильный барабан. Топливом для сушильного барабана служит мазут. В барабане каменный материал сушится при температуре 120^{0} C, затем элеватором подается на грохот, разделяющий его на фракции и направляющий в отдельные отсеки бункера.

Из отсеков инертный материал (дробленный каменный материал) дозируется с помощью весов и направляется в мешалку. После сухого перемешивания материала вводится

порция битума. Перемешивание производится до получения однородной массы – готовой асфальтобетонной смеси.

Щебень для асфальтобетонной смеси готовится из каменного материала (расход — 41900 т/год) на дробильно-сортировочной линии. В состав дробильно-сортировочной линии входит: щековая дробилка СМД-186, производительностью 25 т/час; конусная дробилка СМД-187, производительностью 25 т/час; грохот, производительностью 25 т/час; ленточный конвейер (4 шт.), шириной каждый — 0,5 м, длиной — 11,5 м, 9 м, 10 м и 10 м соответственно. Время работы — 1762 ч/год. Переработка каменного материала — 41900 т/год. В дробильносортировочной линии происходит переработка каменного материала, что обуславливает пыление при измельчении и транспортировке его ленточными транспортерами. Щебень фракции 10-20 мм хранится на открытом со всех сторон складе щебня. Площадь склада — 259 м². Хранение щебня фракции 0-5 мм (песок) на складе. Площадь склада — 345 м². Склад открыт со всех сторон. Время хранения — 4320 ч/год.

Для пересыпки инертных материалов (дробленный каменный материал) используется бульдозер T-170 и погрузчик Л-34.

На площадке «АБЗ в с. Сатпаево» для очистки пылегазового потока от асфальтосмесителя Д-508 установлена система очистки, состоящая из группового циклона СДК-ЦН-33 из 4-х элементов.

Асфальтосмеситель.

Асфальтосмеситель Д-508 предназначен для приготовления асфальтобетонной смеси. Производительность смесителя — 25 т/час. Время работы — 1732 ч/год. Количество приготавливаемой асфальтобетонной смеси — 43300 т/год. Для сушки инертных материалов применяется мазут — 350 т/год; песчано-гравийная смесь — 41900 т/год; битум — 1400 т/год. Характеристика мазута: A^{r}_{i} — 0.1%; S^{r}_{i} — 1.9%; Q^{r}_{i} — 39.85 МДж/кг. На площадке «АБЗ в с. Сатпаево» для очистки пылегазового потока от асфальтосмесителя Д-508 установлена система очистки, состоящая из группового циклона СДК-ЦН-33 из 4-х элементов с эффективностью очистки 82,5 %.

При ведении работ в атмосферу выбрасываются следующие загрязняющие вещества: азота диоксид, азота оксид, углерод черный, сера диоксид, углерод оксид, мазутная зола теплоэлектростанций /в пересчете на ванадий/, пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.), углеводороды предельные C12-19.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.5 м на высоте 18.0 м (источник №0015).

<u>Дробильно-сортиров</u>очная линия.

В дробильно-сортировочной линии происходит переработка каменного материала (инертный материал), что обуславливает пыление при измельчении и транспортировке его ленточными транспортерами. В состав дробильно-сортировочной линии входит: щековая дробилка СМД-186, производительностью 25 т/час; конусная дробилка СМД-187, производительностью 25 т/час; грохот, производительностью 25 т/час (17.6 м³/час); ленточный конвейер (4 шт.), шириной каждый – 0.5 м, длиной – 11.5 м, 9 м, 10 м и 10 м соответственно. Время работы – 1762 ч/год. Переработка каменного материала – 41900 т/год.

При переработке каменного материала в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источники N_06033 , N_06034 , N_06035 , N_06036).

Склад каменного материала.

Хранение каменного материала происходит на складе площадью -1380 м^2 . Склад открыт со всех сторон. Время хранения -6000 ч/год. Количество каменного материала, поступающего на склад -41900 т/год.

При хранении каменного материала в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источники N = 6037).

Склад щебня фракции 10-20 мм.

На складе происходит хранение щебня фракции 10-20 мм. Площадь склада -259 м². Склад открыт со всех сторон. Время хранения -4000 ч/год. Количество щебня, поступающего на склад -20950 т/год.

При хранении щебня в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник №6038).

Склад щебня фракции 0-5 мм.

На складе происходит хранение щебня фракции 0-5 мм. Площадь склада -345 м 2 . Склад открыт со всех сторон. Время хранения -4000 ч/год. Количество щебня (песок), поступающего на склад -20950 т/год.

При хранении щебня в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник №6039).

Мазутохранилище.

Для хранения мазута имеются емкости (наземные вертикальные) - 2 шт., общим объемом $17~{\rm m}^3$. Мазут доставляют в мазутохранилище бензовозом, производительностью закачки $27~{\rm m}^3$ /час. Время хранения мазута – $4000~{\rm u/rog}$. Расход мазута – $350~{\rm t/rog}$. Емкости для хранения мазута установлены на железобетонный поддон.

При приеме и хранении мазута в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод), сероводород.

Выброс загрязняющих веществ в атмосферу происходит через дыхательный клапан диаметром 0.08 м на высоте 2 м (источник №0016).

Битумохранилище.

Хранение битума осуществляется в двух наземных емкостях объемом по 50 м³ каждая. Расход битума (жидкого и вязкого) — 1400 т/год. Время хранения — 4000 ч/год. Слив битума в емкости производится автогудронатором. Производительность слива битума — 16 м³/час. Время слива — 89 ч/год. Емкости для хранения битума установлены на железобетонные поддоны. В битумохранилище (источник №0017-001) хранится вязкий битум, в битумохранилище (источник №0017-002) — жидкий битум.

При приеме и хранении битума в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод).

Выброс загрязняющих веществ в атмосферу происходит через дыхательный клапан диаметром 0.08 м на высоте 3 м (источник №0017).

Паровой котел Е-1/9.

Паровой котел Е-1/9 предназначен для разогрева битума паром. Котел работает на дизельном топливе. Расход дизельном топлива — 30 т/год. Время работы — 2112 ч/год. Характеристика топлива: зольность — 0.025 %; сернистость — 0.3 %, низшая теплота сгорания топлива — 42.75 МДж/кг.

При сжигании дизельного топлива в атмосферу выделяются азота диоксид, азота оксид, углерод черный (сажа), сера диоксид (ангидрид сернистый), углерод оксид.

Выброс загрязняющих веществ в атмосферу происходит через трубу диаметром 0.3 м на высоте 3 м (источник №0018).

Емкость для хранения д/топлива.

Для хранения дизельного топлива имеется наземная емкость объемом 10 м^3 . Дизельное топливо доставляют бензовозом, производительностью закачки 27 м^3 /час. Время хранения — 4320 ч/год. Расход дизельного топлива — 30 т/год. Емкость установлена на железобетонный поддон.

При приеме и хранении д/топлива в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод), сероводород.

Выброс загрязняющих веществ в атмосферу происходит через дыхательный клапан диаметром 0.3 м на высоте 3 м (источник №0021).

Бульдозерные и погрузочные работы.

Для перегрузки инертных материалов используется бульдозер Т-170 и погрузчик Л-34. Время работы каждого - 1762 ч/год.

При выполнении бульдозерных и погрузочных работ в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник $N_{2}6040$).

Открытая стоянка автотранспорта.

 $\overline{\mbox{Ha}}$ площадке «АБЗ в с. Сатпаево» на открытой стоянке осуществляют стоянку 3 ед. автотранспорта, из них: грузовая бензиновая - 1 ед.; грузовая дизельная - 1 ед.; автобус бензиновый - 1 ед.

Во время въезда-выезда автотранспорта с открытой стоянки и при движении по территории предприятия в атмосферу происходит выброс следующих загрязняющих веществ: азот (IV) оксид (азота диоксид), азот (II) оксид (азота оксид), углерод черный, сера диоксид (ангидрид сернистый), углерод оксид, керосин, бензин (нефтяной, малосернистый) /в пересчете на углерод/.

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник №6041).

Битумные котлы.

Для разогрева битума имеются битумные (наземные) электрокотлы (электротены) -4 шт. Расход битума на каждый котел -350 т/год. Время разогрева битума в каждом котле -2112 ч/год.

При разогреве битума в атмосферу выделяются углеводороды предельные C_{12} - C_{19} (в пересчете на углерод).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источники N_06042 , N_06043 , N_06044 , N_06045).

5. Площадка «Битумное хозяйство, железнодорожный тупик в п. Жангиз - Тобе Жарминского района»

Вязкий битум марки «100/130» и жидкий битум марки «70/130» для хранения на площадку поступает по железнодорожному тупику, примыкающему к существующей железной дороге.

Выпаривание влаги из битума происходит при помощи пара, подаваемого от электрического парогенератора, расположенного в отдельном помещении для парогенератора.

Из резервуаров для хранения жидкого и вязкого битума после выпаривания влаги из него, по мере надобности, происходит его отпуск в битумовоз через люк резервуара для отправки на АБЗ.

В составе площадки: два битумохранилища (по 500 т), два резервуарных парка для хранения разогретого битума (каждый по 4 резервуара по 25 м³), помещение для электрического парогенератора, железнодорожный тупик, административно-бытовой комплекс, трансформаторная подстанция. Отопление АБК — от двух водогрейных электрических котлов, один из которых резервный.

Битумохранилище.

Хранение вязкого битума осуществляется в битумной яме (бетонированная, открытая) объемом 500 тонн. Расход вязкого битума - 1000 т/год. Время хранения - 3744 ч/год. Слив битума в ямы будет производиться самотеком из полувагонов-бункеров, поступающих на площадку по железнодорожному тупику. При сливе происходит нагрев битума до температуры 90-100°С. Производительность слива битума - 4 м³/час. Время слива - 255 ч/год.

При приеме, хранении и отпуске вязкого битума в атмосферу выделяются углеводороды предельные C_{12} - C_{19} .

Выброс загрязняющих вещества в атмосферу происходит неорганизованно (источник N = 6055).

<u>Битумохранилище.</u>

Хранение жидкого битума осуществляется в битумной яме (бетонированная, открытая) объемом 500 тонн. Расход жидкого битума - 1520 т/год. Время хранения - 3744 ч/год. Слив битума в ямы производится самотеком из ж/д цистерн, поступающих на площадку по ж/д тупику. При сливе происходит нагрев битума до температуры 90-100°С. Производительность слива битума -2м /час. Время слива - 775,5 ч/год.

При приеме, хранении и отпуске жидкого битума выделяются углеводороды предельные $C_{12}\text{-}C_{19}$.

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (источник N6056).

Резервуары для хранения разогретого битума.

Резервуары для хранения разогретого вязкого битума — 4 шт. объемом по $25~{\rm m}^3$ каждый. В резервуарах происходит выпаривание влаги из вязкого битума при нагревании его паром до температуры 160° C. Расход вязкого битума - $1000~{\rm T/rog}$. Время выпаривания - $800~{\rm y/rog}$.

При выпаривании влаги из вязкого битума выделяются углеводороды предельные C_{12} - C_{19} .

Выброс загрязняющих веществ в атмосферу происходит организованно через открытый люк резервуара 0.500 м на высоте 3.0 м (источник №0022).

Резервуары для хранения разогретого битума.

Резервуары для хранения разогретого жидкого битума - 4 шт. объемом по 25 м³ каждый. В резервуарах происходит выпаривание влаги из жидкого битума при нагревании его паром до температуры 160°C. Расход жидкого битума - 1520 т/год. Время выпаривания - 1261 ч/год.

При выпаривании влаги из жидкого битума выделяются углеводороды предельные C_{12} - C_{19} .

Выброс загрязняющего вещества в атмосферу происходит организованно через открытый люк резервуара 0.5 м на высоте 3.0 м (источник №0023).

Стоянка автотранспорта.

На стоянке автотранспорта осуществляют стоянку 3 ед. легкового (бензиновые) автотранспорта.

Во время въезда-выезда автомашин на стоянку и при движении по территории предприятия в атмосферу происходит выброс следующих загрязняющих веществ: азот (IV) оксид (азота диоксид), азот (II) оксид (азота оксид), сера диоксид (ангидрид сернистый), углерод оксид, бензин (нефтяной, малосернистый) /в пересчете на углерод/.

Выброс загрязняющих веществ происходит неорганизованно (ист. №6057).

6. Площадка «Отработка строительного камня Зайсанского месторождения»

Зайсанское месторождение представляет собой малую интрузию диоритовых порфиритов, относящуюся к субвулканическим телам турнейского возраста.

Площадь горного отвода 2.92 га. Глубина карьера -8.25 м. Отработка карьера производится двумя подступами высотой 4 и 4.5 м. Мощность полезной толщи карьера в среднем составит 8.25 м.

Отработка месторождения строительного камня осуществляется открытым способом до горизонта 861.8 м, с применением буровзрывных работ.

Строительный камень является пригодным в качестве щебня для приготовления гидробетона, строительных растворов, армированного и неармированного бетона.

Срок эксплуатации карьера -20 лет. Согласно Контрактных условий, добыча строительного камня будет осуществляться до 2028 г.

Режим работы карьера – 176 рабочих дней в году, 1 смена.

Технологические решения при разработке карьера заключаются в следующем:

- вскрышные работы;
- производство буровзрывных работ;
- погрузочные работы и транспортировки строительного камня на дробильно-сортировочный комплекс.

К горно-подготовительным работам при разработке месторождения относятся вскрышные работы и выездная траншея. Добычные работы начинаются с проходки разрезной траншеи, с применением буровых и взрывных работ.

В связи с принятой технологией разработки строительного камня Зайсанского месторождения в карьере применяются следующие технологические средства: бульдозера ДЗ-171.3-03-1 ед., экскаватор ЭО-4324A-1 ед., КамАЗ-5511-2 ед., буровой станок типа СБУ- 100Γ -35-1 ед., компрессорная установка ЗИФ-ПВ-5-1 ед.

Доставка взрывчатых материалов (аммонит 6 ЖВ - 12.2 кг) для проведения буровзрывных работ на карьере, осуществляются специализированной организацией согласно договора.

Вскрышные работы.

Вскрышные работы на месторождении производятся при помощи бульдозера ДЗ-171.3-03 -1 ед. Годовой объем вскрышной породы -900 м 3 /год (1305 т/год). Время работы бульдозера -33 ч/год.

Проведение вскрышных работ сопровождается выделением пыли неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (источник №6058).

Зачистка разрезной траншеи и зачистка подступов.

Зачистка разрезной траншеи и зачистка подступов производится также при помощи бульдозера ДЗ-171.3-03 - 1 ед. Годовой объем - 119 м³/год (172.55 т/год). Время работы бульдозера - 11 ч/год.

Проведение зачистки разрезной траншеи сопровождается выделением пыли неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (источник N=6059).

Буровые работы.

Бурение скважин в карьере производится буровым станком типа СБУ- 100Γ -35 (1 шт.). Диаметр буримых скважин -105 мм (0.105 м). Скорость бурения -5.8 м/час. Время работы станка -264 ч/год. Компрессорная установка $3И\Phi$ - Π B-5 с дизельным приводом предназначена для подачи сжатого воздуха к буровому станку. Количество компрессоров -1 шт. Время работы -264 ч/год. Расход д/топлива -1.6 т/год. Характеристика топлива: зольность -0.025 %; сернистость -0.3 %; низшая теплота сгорания топлива -42.75 МДж/кг.

При проведении буровых работ, а также при работе компрессорной установки в атмосферу выделяются следующие загрязняющие вещества: пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.), азот (IV) оксид (азота диоксид), азот (II) оксид (азота оксид), углерод черный, сера диоксид (ангидрид сернистый), углерод оксид,

бенз/а/пирен (3,4-Бензпирен), формальдегид, углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/.

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (источник №6060).

Взрывные работы.

Загрязнение атмосферного воздуха при взрывных работах в карьере происходит за счет мгновенного залпового выделения вредных веществ из пылегазового облака и выделение газов из взорванной горной массы. Пылегазовое облако — мгновенный залповый неорганизованный выброс твердых частиц и нагретых газов, включая оксид углерода и диоксид азота. В качестве взрывчатого вещества применяется аммонит 6ЖВ — 12.2 кг. Пылеподавление при взрывных работах не применяется. Взрывные работы в карьере предусмотрены методом скважинных зарядов с короткозамедленным способом взрывания. Скважины заряжаются взрывчатым веществом аммонит 6ЖВ. Объем взорванной рудной породы выбранным видом ВВ составляет 10000 м³/год.

Взрывные работы относятся к кратковременным залповым выбросам, поэтому расчеты Γ /сек не проводятся.

При проведении взрывных работ в атмосферу выделяются следующие загрязняющие вещества: азот (IV) оксид (азота диоксид), углерод оксид, взвешенные частицы РМ 10.

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (источник N = 6061).

Погрузочные работы.

Погрузочные работы строительного камня производится при помощи экскаватора ЭО-4324A типа «прямая лопата». Годовой объем строительного камня — $10000 \text{ м}^3/\text{год}$ (14500 т/год). Время работы экскаватора — 156 ч/год.

Проведение погрузочных работ сопровождается выделением пыли неорганической: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющего вещества в атмосферу происходит неорганизованно (источник N6062).

Транспортные работы.

Для транспортировки строительного камня (диоритовых порфиритов) используется автосамосвал КамАЗ-5511 – 2 ед. Время работы автосамосвалов КамАЗ-5511 - 1110 ч/год.

При движении автотранспорта в карьере в атмосферу выделяются следующие загрязняющие вещества: азот (IV) оксид (азота диоксид), азот (II) оксид (азота оксид), углерод черный, сера диоксид (ангидрид сернистый), углерод оксид, бенз/а/пирен (3,4-Бензпирен), керосин, пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющих веществ в атмосферу происходит неорганизованно (источник №6063).

Отвал вскрышной породы.

Площадь пылящей поверхности составляет 750 м 2 . Объем образования вскрышной породы – 900 м 3 /год (1305 т/год).

При переработке и хранении вскрышных пород в атмосферу выделяется пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.).

Выброс загрязняющего вещества происходит неорганизованно (источник №6064).

3.2. Краткая характеристика существующих установок очистки газа, анализ их технического состояния и эффективность работы

Для предотвращения загрязнения атмосферы на источнике №6012 (Столярный цех) установлен пылеулавливающий агрегат MF 9030 (страна производитель - Китай)с коэффициентом очистки 95%.

Пылеулавливающие агрегаты предназначены для удаления стружки и пыли, образованной при обработке изделий из древесины и древесных материалов, пластиковых и алюминиевых изделий на станках различного назначения.

Агрегат легко перемещается при помощи колес на опорной поверхности и может и может быть использован для уборки помещений и удаления пыли и отходов производства с поверхности оборудования.

Область применения - небольшие предприятия и цеха, а также мастерские по производству столярно-строительных изделий, погонажных изделий, клееной продукции, фанеры, производству мебели и другие деревообрабатывающие производства, где монтаж стационарных установок нецелесообразен или технически невозможен из-за условий эксплуатации.

Принцип работы пылеулавливающего агрегата заключается в улавливании пыли фильтрующей тканью при проходе через нее запыленного воздуха. Запыленный воздух попадает в мешок-накопитель по воздуховоду через патрубок, проходит через ткань, при этом элементы пыли и стружка задерживаются на их внутренней поверхности, а очищенный воздух проходит через ткань фильтра.

Для предотвращения загрязнения атмосферного воздуха на предприятии ТОО «Строительная компания «Зайсан» установлены следующие установки очистки газа:

- на источнике №0013 (асфальтосмеситель ДС-158) установлен групповой циклон СДК-ЦН-33 из 4-х элементов с коэффициентом очистки 82.1% (площадка «АБЗ в г. Зайсан»);
- на источнике №0015 (асфальтосмеситель Д-508) установлен групповой циклон СДК-ЦН-33 из 4-х элементов с коэффициентом очистки 82.5 % (площадка «АБЗ в с. Сатпаево»).

Циклон типа СДК-ЦН-33 относится к спирально-длинноконическим циклонам. Они отличаются удлиненной конической частью, спиральным входным патрубком и малым отношением диаметра трубы к диаметру цилиндрической части циклона, равным 0,33. Циклон предназначен для улавливания твердых частиц, размером более 5-6 мкм. Дымосос, примененный в системе пылеулавливания в качестве тягодутьевого устройства, засасывает газ с пылью в группу циклонов. На входе в циклон газ завихряется. Завихрение создает центробежные силы, которые сепарируют пыль в зависимости от веса пылинок. Более тяжелые частицы по стенкам циклонов ссыпаются в шнек и далее через лопастный затвор в элеватор смесительного агрегата.

Согласно технических характеристик, спирально-длинноконический циклон типа СДК-ЦН-33 является наиболее эффективным из серии конических циклонов. Данный циклон способен обеспечивать высокую степень очистки при сравнительно небольшой скорости газового потока на входе в циклон. Эффективность очистки для данного типа циклонов составляет 75-98 %.

Эффективность очистки циклонов зависит от их диаметра. Степень очистки можно повысить, увеличив центробежную силу за счет уменьшения диаметра циклона. При больших концентрациях пыли, возможно, забивание пылевыпускного отверстия, что приводит также к нарушению нормальной работы аппарата.

Проектная эффективность очистки для циклонов СДК-ЦН-33 из 4-ех элементов на предприятии ТОО «Строительная компания «Зайсан» составляет 85%, фактическая степень очистки на источнике №0013 (асфальтосмеситель ДС-158) составляет 82.1%, на источнике №0015 (асфальтосмеситель Π -508) — 82,5%.

Согласно главе 4 инвентаризации, количество уловленных твердых веществ в циклонах составит на источнике №0013 (асфальтосмеситель ДС-158) - 313.2013912 т/год, на источнике №0015 (асфальтосмеситель Д-508) - 403.5334286 т/год.

Фактическая эффективность работы очистного оборудования определена по Актам проверки эффективности работы пылеулавливающих установок. Акты приведены в Приложении 7.

На основании приведенных данных установлено, пылеулавливающие системы на предприятии ТОО «Строительная компания «Зайсан» находятся в удовлетворительном состоянии. Для эффективной работы оборудования необходимо своевременно проводить ремонт и наладку очистного оборудования.

3.3. Перспектива развития предприятия

На период нормирования ввод в эксплуатацию новых источников выбросов или ликвидация действующих источников выбросов не планируется.

3.4. Характеристика аварийных выбросов.

Загрязнение атмосферного воздуха при взрывных работах в карьере происходит за счет мгновенного залпового выделения вредных веществ из пылегазового облака и выделение газов из взорванной горной массы. Пылегазовое облако — мгновенный залповый неорганизованный выброс твердых частиц и нагретых газов, включая оксид углерода и диоксид азота. В качестве взрывчатого вещества применяется аммонит 6ЖВ — 12.2 кг. Пылеподавление при взрывных работах не применяется. Взрывные работы в карьере предусмотрены методом скважинных зарядов с короткозамедленным способом взрывания. Скважины заряжаются взрывчатым веществом аммонит 6ЖВ. Объем взорванной рудной породы выбранным видом ВВ составляет 10000 м³/год.

Взрывные работы относятся к кратковременным залповым выбросам, поэтому расчеты г/сек не проводятся, валовые выбросы т/год учтены при нормировании.

Источники химического и радиоактивного загрязнения на предприятии отсутствуют.

г. Зайсан, СК "Зайсан" - Производственая база транспорт

Код	Наименование	ПДК	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0304	Азот (II) оксид (6)	0.4	0.06		3	0.004082494	0.0132538	0	0.22089667
0328	Углерод (593)	0.15	0.05		3	0.002266	0.0064884	0	0.129768
0337	Углерод оксид (594)	5	3		4	0.399280488	1.4827319	0	0.49424397
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		4	0.036260555	0.1488452	0	0.09923013
	пересчете на углерод/ (60)								
2732	Керосин (660*)			1.2		0.0156	0.0454543	0	0.03787858
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.071699988	0.0815613	2.5249	2.0390325
0330	Сера диоксид (526)	0.5	0.05		3	0.002324784	0.0081654	0	0.163308
	всего:					0.531514309	1.7865003	2.5	3.18435785

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ М/ПДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

Эра v3.0 ТОО "УК-ПРОЕКТ"

т. заи	ісан, ск "заисан" - производственая о	аза оез тр	анспорта						
Код	Наименование	ПДК	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
8000	Взвешенные частицы РМ10 (116)	0.3	0.06			0.010465	0.0182384	0	0.30397333
0168	Олово оксид /в пересчете на олово/ (454)		0.02		3	0.0000000001	0.0000112	0	0.00056
0304	Азот (II) оксид (6)	0.4	0.06		3	0.0177607	0.1331084	2.2185	2.21847333
0415	Смесь углеводородов предельных C1-C5 (1531*, 1539*)			50		3.28	0.0712	0	0.001424
0416	Смесь углеводородов предельных C6-C10 (1532*, 1540*)			30		0.8	0.01735	0	0.00057833
	Пентилены (амилены - смесь изомеров) (468)	1.5			4	0.1088	0.00236	0	0.00157333
	Бензол (64)	0.3	0.1		2	0.087	0.001888	0	0.01888
	Ксилол (смесь изомеров о-, м-, п-) (327)	0.2			3	0.00653	0.0001416	0	0.000708
0621	Толуол (567)	0.6			3	0.0631	0.00137	0	0.00228333
	Этилбензол (687)	0.02			3	0.002175	0.0000472	0	0.00236
2754	Углеводороды предельные C12-19 /в пересчете на C/ (592)	1			4	0.0139	0.00896	0	0.00896
	Пыль неорганическая: ниже 20% двуокиси кремния (доломит, пыль цементного производства – известняк, мел, огарки, сырьевая	0.5	0.15		3	0.01566875	0.0683251	0	0.45550067
	смесь, пыль вращающихся печей, боксит и др.) (504)								
2930	Пыль абразивная (1046*)			0.04		0.0038	0.00684	0	0.171
2936	Пыль древесная (1058*)			0.1		0.1305	0.1165752	1.1658	1.165752
0184	Свинец и его неорганические соединения /в пересчете на свинец/ (523)	0.001	0.0003		1	0.000005666	0.0000204	0	0.068
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.109297	0.819129	50.6617	20.478225
	Серная кислота (527)	0.3	0.1		2	0.0000333	0.0000108	0	0.000108
0330	Сера диоксид (526)	0.5	0.05		3	0.561735	2.920512	58.4102	58.41024

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0333	Сероводород (Дигидросульфид) (528)	0.008			2	0.0000391	0.0000252	0	0.00315
0337	Углерод оксид (594)	5	3		4	1.6161623	12.1239629	3.5146	4.04132097
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	0.9655647	4.8059684	48.0597	48.059684
	двуокиси кремния (шамот, цемент,								
	пыль цементного производства -								
	глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола,								
	кремнезем, зола углей казахстанских								
	месторождений) (503)								
	всего:					7.7925365161	21.1160438	164	135.412754

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ M/Π ДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

г. Зайсан, СК "Зайсан" - Производственая база

Эра v3.0 ТОО "УК-ПРОЕКТ"

г. заи	сан, СК "Заисан" - Производственая б	аза							
Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
8000	Взвешенные частицы РМ10 (116)	0.3	0.06			0.010465	0.0182384	0	0.30397333
0168	Олово оксид /в пересчете на олово/		0.02		3	0.0000000001	0.0000112	0	0.00056
	(454)								
0304	Азот (II) оксид (6)	0.4	0.06		3	0.021843194	0.1463622	2.4394	2.43937
0328	Углерод (593)	0.15	0.05		3	0.002266	0.0064884	0	0.129768
0415	Смесь углеводородов предельных			50		3.28	0.0712	0	0.001424
	C1-C5 (1531*, 1539*)								
0416	Смесь углеводородов предельных			30		0.8	0.01735	0	0.00057833
	C6-C10 (1532*, 1540*)								
0501	Пентилены (амилены - смесь	1.5			4	0.1088	0.00236	0	0.00157333
	изомеров) (468)								
0602	Бензол (64)	0.3	0.1		2	0.087	0.001888	0	0.01888
0616	Ксилол (смесь изомеров о-, м-, п-)	0.2			3	0.00653	0.0001416	0	0.000708
	(327)								
	Толуол (567)	0.6			3	0.0631	0.00137		0.00228333
	Этилбензол (687)	0.02			3	0.002175	0.0000472	0	0.00236
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		4	0.036260555	0.1488452	0	0.09923013
	пересчете на углерод/ (60)								
	Керосин (660*)			1.2		0.0156			0.03787858
	Углеводороды предельные С12-19 /в	1			4	0.0139	0.00896	0	0.00896
	пересчете на С/ (592)								
	Пыль неорганическая: ниже 20%	0.5	0.15		3	0.01566875	0.0683251	0	0.45550067
	двуокиси кремния (доломит, пыль								
	цементного производства -								
	известняк, мел, огарки, сырьевая								
	смесь, пыль вращающихся печей,								
	боксит и др.) (504)								
	Пыль абразивная (1046*)			0.04		0.0038			0.171
	Пыль древесная (1058*)			0.1		0.1305			1.165752
	Свинец и его неорганические	0.001	0.0003		1	0.000005666	0.0000204	0	0.068
	соединения /в пересчете на свинец/								

г. Зайсан, СК "Зайсан" - Производственая база

Код	Наименование	ПДК	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ,мг/м3					
1	2	3	4	5	6	7	8	9	10
	(523)								
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.180996988	0.9006903	57.3152	22.5172575
0322	Серная кислота (527)	0.3	0.1		2	0.0000333	0.0000108	0	0.000108
0330	Сера диоксид (526)	0.5	0.05		3	0.564059784	2.9286774	58.5735	58.573548
0333	Сероводород (Дигидросульфид) (528)	0.008			2	0.0000391	0.0000252	0	0.00315
0337	Углерод оксид (594)	5	3		4	2.015442788	13.6066948	3.8991	4.53556493
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	0.9655647	4.8059684	48.0597	48.059684
	двуокиси кремния (шамот, цемент,								
	пыль цементного производства -								
	глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола,								
	кремнезем, зола углей казахстанских								
	месторождений) (503)								
	всего:					8.3240508251	22.9025441	171.5	138.597112

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ M/Π ДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Тарбагатайский район, СК "Зайсан" - Сатпаевское месторождение ПГС транспорт

Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0304	Азот (II) оксид (6)	0.4	0.06		3	0.0187778	0.0319072	0	0.53178667
0328	Углерод (593)	0.15	0.05		3	0.0559722	0.095108	1.9022	1.90216
0337	Углерод оксид (594)	5	3		4	0.3611111	0.6136	0	0.20453333
0703	Бенз/а/пирен (54)		0.000001		1	0.00000116	0.000002	3.249	2
2732	Керосин (660*)			1.2		0.1083333	0.18408	0	0.1534
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.1155556	0.196352	7.9117	4.9088
0330	Сера диоксид (526)	0.5	0.05		3	0.0722222	0.12272	2.4544	2.4544
	всего:					0.73197336	1.2437692	15.5	12.15508

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ М/ПДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Тарбагатайский район, СК "Зайсан" - Сатпаевское месторождение ПГС без тр-та

Код	Наименование	ПДК	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	0.4138318	2.9961501	29.9615	29.961501
	двуокиси кремния (шамот, цемент,								
	пыль цементного производства -								
	глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола,								
	кремнезем, зола углей казахстанских								
	месторождений) (503)								
	всего:					0.4138318	2.9961501	30	29.961501

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Эра v3.0 ТОО "УК-ПРОЕКТ" Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Тарбагатайский район, СК "Зайсан" - Сатпаевское месторождение ПГС

Код	Наименование	ПДК	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0304	Азот (II) оксид (6)	0.4	0.06		3	0.0187778	0.0319072	0	0.53178667
0328	Углерод (593)	0.15	0.05		3	0.0559722	0.095108	1.9022	1.90216
0703	Бенз/а/пирен (54)		0.000001		1	0.00000116	0.000002	3.249	2
2732	Керосин (660*)			1.2		0.1083333	0.18408	0	0.1534
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.1155556	0.196352	7.9117	4.9088
0330	Сера диоксид (526)	0.5	0.05		3	0.0722222	0.12272	2.4544	2.4544
0337	Углерод оксид (594)	5	3		4	0.3611111	0.6136	0	0.20453333
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	0.4138318	2.9961501	29.9615	29.961501
	двуокиси кремния (шамот, цемент,								
	пыль цементного производства -								
	глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола,								
	кремнезем, зола углей казахстанских								
	месторождений) (503)								
	всего:					1.14580516	4.2399193	45.5	42.116581

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ M/Π ДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан

Код	Наименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0328	Углерод (593)	0.15	0.05		3	0.0026836	0.010546	0	0.21092
2754	Углеводороды предельные С12-19 /в	1			4	8.0519055	0.814181	0	0.814181
	пересчете на С/ (592)								
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.1354586	0.3829455	18.8539	9.5736375
0304	Азот (II) оксид (6)	0.4	0.06		3	0.025132	0.0622286	1.0371	1.03714333
0330	Сера диоксид (526)	0.5	0.05		3	2.18633344	5.129	102.58	102.58
0333	Сероводород (Дигидросульфид) (528)	0.008			2	0.00021406	0.0000094	0	0.001175
0337	Углерод оксид (594)	5	3		4	0.8107032	2.1035	0	0.70116667
2904	Мазутная зола теплоэлектростанций		0.002		2	0.0024	0.005	3.291	2.5
	/в пересчете на ванадий/ (331)								
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	250.8520537	1297,7915322	13110.2533	13110.2533
	двуокиси кремния (шамот, цемент,								
	пыль цементного производства -								
	глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола,								
	кремнезем, зола углей казахстанских								
	месторождений) (503)								
	всего:					262.0668841	1306.298943	13236	13227.6715

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ M/Π ДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

на существующее положение

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево без тр-та

Код	Наименование	ПДК	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0328	Углерод (593)	0.15	0.05		3	0.0077275	0.0485	0	0.97
2754	Углеводороды предельные С12-19 /в	1			4	8.0519055	1.0986765	1.0884	1.0986765
	пересчете на С/ (592)								
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.0950382	0.5774546	32.1585	14.436365
0304	Азот (II) оксид (6)	0.4	0.06		3	0.0154437	0.0938364	1.5639	1.56394
0330	Сера диоксид (526)	0.5	0.05		3	2.088026	13.04865864	260.9732	260.973173
0333	Сероводород (Дигидросульфид) (528)	0.008			2	0.000214	0.0000178	0	0.002225
0337	Углерод оксид (594)	5	3		4	0.474905	3.02	1.006	1.00666667
2904	Мазутная зола теплоэлектростанций		0.002		2	0.0016	0.01	8.1033	5
	/в пересчете на ванадий/ (331)								
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	144.0735196	910.00909506	9230.2766	9230.27659
	двуокиси кремния (шамот, цемент,								
	пыль цементного производства -								
	глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола,								
	кремнезем, зола углей казахстанских								
	месторождений) (503)								
	всего:					154.8083795	927.906239	9535.2	9515.32764

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ; "a" - константа, зависящая от класса опасности ЗВ

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ M/Π ДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

на существующее положение

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево только транспорт

Код	Наименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0304	Азот (II) оксид (6)	0.4	0.06		3	0.0002451	0.0002289	0	0.003815
0328	Углерод (593)	0.15	0.05		3	0.0000639	0.000054	0	0.00108
0337	Углерод оксид (594)	5	3		4	0.0320711	0.0529164	0	0.0176388
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		4	0.0032028	0.0061979	0	0.00413193
	пересчете на углерод/ (60)								
2732	Керосин (660*)			1.2		0.000597	0.000486	0	0.000405
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.0015089	0.0014091	0	0.0352275
0330	Сера диоксид (526)	0.5	0.05		3	0.00022044	0.0002535	0	0.00507
	всего:					0.03790924	0.0615458		0.06736823

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ; "a" - константа, зависящая от класса опасности ЗВ

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ М/ПДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Жарминский район, СК "Зайсан" - Битумное хозяйство без транспорта

Код	Наименование	пдк	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
2754	Углеводороды предельные С12-19 /в	1			4	0.5412	2.2077	2.0396	2.2077
	пересчете на С/ (592)								
	ВСЕГО:					0.5412	2.2077	2	2.2077

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ; "a" - константа, зависящая от класса опасности ЗВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Эра v3.0 ТОО "ВК-ЭКОПРОМ"

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Жарминский район, СК "Зайсан" - Битумное хозяйство транспорт

Код	Наименование	пдк	ПДК	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	КОВ	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК)**а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0304	Азот (II) оксид (6)	0.4	0.06		3	0.000039	0.0000334	0	0.00055667
0337	Углерод оксид (594)	5	3		4	0.020325	0.0163183	0	0.00543943
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		4	0.0022917	0.019845	0	0.01323
	пересчете на углерод/ (60)								
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.00024	0.0002056	0	0.00514
0330	Сера диоксид (526)		0.125		3	0.00003194	0.0000284	0	0.0002272
	всего:					0.02292764	0.0364307		0.0245933

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ; "a" - константа, зависящая от класса опасности ЗВ

Таблица 3.1

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ М/ПДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода 3В (колонка 1)

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

г. Зайсан, СК "Зайсан" - Строительный камень без тр-та

Код	Наименование	ПДК	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0008	Взвешенные частицы РМ10 (116)	0.3	0.06				0.355264	5.9211	5.92106667
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.0505	0.0785	2.4024	1.9625
0304	Азот (II) оксид (6)	0.4	0.06		3	0.06565	0.0624	1.04	1.04
0337	Углерод оксид (594)	5	3		4	0.042083	0.0522	0	0.0174
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	0.4126254	1.0129222	10.1292	10.129222
	двуокиси кремния (шамот, цемент,								
	пыль цементного производства -								
	глина, глинистый сланец, доменный								
	шлак, песок, клинкер, зола,								
	кремнезем, зола углей казахстанских								
	месторождений) (503)								
	всего:					0.5708584	1.5612862	19.5	19.0701887

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ; "a" - константа, зависящая от класса опасности ЗВ

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ М/ПДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

на существующее положение

г. Зайсан, СК "Зайсан" - Строительный камень только тр-т

Код	Наименование	ПДК	пдк	ОБУВ	Класс	Выброс	Выброс	Значение	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,	KOB	вещества,
веще-		разовая,	суточная,	безопасн.	ности	r/c	т/год	(М/ПДК) **а	усл.т/год
ства		мг/м3	мг/м3	УВ , мг/м3					
1	2	3	4	5	6	7	8	9	10
0304	Азот (II) оксид (6)	0.4	0.06		3	0.01877778	0.150072	2.5012	2.5012
0328	Углерод (593)	0.15	0.05		3	0.0643892	0.45533	9.1066	9.1066
0337	Углерод оксид (594)	5	3		4	0.3611111	2.886	0	0.962
0703	Бенз/а/пирен (54)		0.000001		1	0.00000116	0.0000092	43.495	9.2
1301	Проп-2-ен-1-аль (482)	0.03	0.01		2	0.00202	0.00192	0	0.192
1325	Формальдегид (619)	0.05	0.01		2	0.00202	0.00192	0	0.192
2732	Керосин (660*)			1.2		0.1083333	0.8658	0	0.7215
2754	Углеводороды предельные С12-19 /в	1			4	0.0202	0.0192	0	0.0192
	пересчете на С/ (592)								
0301	Азота (IV) диоксид (4)	0.2	0.04		2	0.1155556	0.92352	59.211	23.088
0330	Сера диоксид (526)	0.5	0.05		3	0.0890552	0.5932	11.864	11.864
	всего:					0.78146334	5.8969712	126.2	57.8465

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; "ПДК" - ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ; "a" - константа, зависящая от класса опасности ЗВ

^{2. &}quot;0" в колонке 9 означает, что для данного ЗВ M/Π ДК < 1. В этом случае КОП не рассчитывается и в определении категории опасности предприятия не участвует.

^{3.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Эра v3.0 ТОО "УК-ПРОЕКТ"

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

Таблица 3.3

г. Зайсан, ТОО "СК "Зайсан" общее по 2 плошадкам

г. З	айса	н, ТОО "СК "Зайс	ан" с	общее г	10 2 площадкам											
		Источники выделе	ения	Число	Наименование	Чис	Ho-	Высо	Диа-	Параме	тры газовозд	ц.смеси	Ко	ординать	источник	a
Про		загрязняющих веп	цеств	часов	источника выброса	ло	мер	та	метр	на вых	коде из ист.в	выброса	1	на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ист	ист.	источ	устья							
одс		Наименование	Ko-	ты		выб	выб-	ника	трубы	CKO-	объем на 1	тем-	точечного	источ.	2-го ко	нца лин.
TBO			лич	В		po-	poca	выбро		рость	трубу, м3/с	пер.	/1-го кон	нца лин.	/длина, ш	шрина
			ист	год		ca		са,м	М	M/C		οС	/центра г	ілощад-	площад	ОТОНД
													ного исто	учника	источ	ника
													X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
001		зарядное	1	90	труба	1	0001	2	0.2	4.8	0.1507964	20	260	130		
		устройство														
004		кузнечный горн	1	500	труба	1	0003	7.2	0.4	3	0.3769911	80	229	179		
002		стол пайки	1	500	труба	1	0005	2	0.4	3.8	0.4775221	20	255	122		
		радиаторов														
			1										1			

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

Ho-	Наименование	Вещества	Средняя	Код		Выбросы	загрязняющих	и веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование				
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	тах.степ						дос-
	выбросов	газоо-й %	очистки%						тиже
									пия
									НДВ
8	18	19	20	21	22	23	24	25	26
0001				0322	Серная кислота (527)	0.0000333	0.221	0.0000108	2026
0003				0301	Азота (IV) диоксид (4)	0.002911	7.722	0.005245	2026
				0304	лот (II) оксид (6)	0.000473	1.255	0.0008523	2026
					Сера диоксид (526)	0.014985			
					Углерод оксид (594)	0.0431088			
					Пыль неорганическая:	0.025641	68.015	0.03058	
					70-20% двуокиси				
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				
0005				0168	Олово оксид /в	1.E-10	0.0000002	0.0000112	2026
					пересчете на олово/ (454)				
				0184	Свинец и его	0.000005666	0.012	0.0000204	2026
					неорганические				
					соединения /в				
					пересчете на свинец/ (523)				

Эра v3.0 ТОО "УК-ПРОЕКТ"

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

Таблица 3.3

г. 3	айса	н, ТОО "СК "Зайс	ан" с	общее г	ю 2 площадкам											
		Источники выделе	пин	Число	Наименование	Чис	Ho-	Высо	Диа-	Параме	тры газовозд	ц.смеси	Ко	ординаты	источник	a
Про		загрязняющих веш	цеств	часов	источника выброса	ло	мер	та	метр	на вых	оде из ист.в	выброса	I	на карте-	-схеме, м	
изв	Цех			рабо-	вредных веществ	ист	ист.	источ	устья							
одс		Наименование	Ko-	ты		выб	выб-	ника	трубы	ско-	объем на 1	тем-	точечного	источ.	2-го ко	нца лин.
TBO			лич	В		po-	poca	выбро		рость	трубу, м3/с	пер.	/1-го кон	нца лин.	/длина, ш	ирина
			ист	год		ca		са,м	М	м/с		oC	/центра г	ілощад-	площад	ОТОНД
													ного исто	учника	источ	ника
													X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
005		емкости для	2	8760	дыхат. клапан	1	0006	4	0.08	1.45	0.0072885	20	219	88		
		бензина объемом														
		7 и 5 м3														
		емкость для	1	8760												
		дизельного														
		топлива объемом														
		18 м3														
007			1	1 4 4 0		1	0007	1.0	0 0	2 0	0 1005001	0.0	1.00	220		
007		печь отопления	1	1440	труба	1	0007	10	0.2	3.9	0.1225221	80	166	228		
1				1		1			ĺ				1	İ	1	

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

Ho-	Наименование	Вещества	Средняя	Код		Выбросы	загрязняющих	к веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование	-	-		
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	тах.степ						дос-
Ī	выбросов	газоо-й %	очистки%						тиже
	_								ния
									ндв
8	18	19	20	21	22	23	24	25	26
0006				0333	Сероводород (0.0000391	5.365	0.0000252	2026
					Дигидросульфид) (528)				
				0415	Смесь углеводородов	3.28	450024.010	0.0712	2026
					предельных С1-С5 (
					1531*, 1539*)				
				0416	Смесь углеводородов	0.8	109761.954	0.01735	2026
					предельных С6-С10 (
					1532*, 1540*)				
				0501	Пентилены (амилены -	0.1088	14927.626	0.00236	2026
					смесь изомеров) (468)				
					Бензол (64)	0.087			
					Ксилол (смесь	0.00653	895.932	0.0001416	2026
					изомеров о-, м-, п-) (327)				
				0621	Толуол (567)	0.0631	8657.474	0.00137	2026
				0627	Этилбензол (687)	0.002175	298.415	0.0000472	2026
				2754	Углеводороды	0.0139	1907.114	0.00896	2026
					предельные С12-19 /в				
					пересчете на С/ (592)				
0007				0301	Азота (IV) диоксид (4)	0.0303426	247.650	0.1573517	2026
				0304	Азот (II) оксид (6)	0.0049307	40.243	0.0255696	2026
				0330	Сера диоксид (526)	0.156195	1274.831	0.5904	2026
				0337	Углерод оксид (594)	0.4493418	3667.435	2.330208	2026
				2908	Пыль неорганическая:	0.267267	2181.378	0.9174	2026
					70-20% двуокиси				
					кремния (шамот,				

Эра v3.0 ТОО "УК-ПРОЕКТ"

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

Таблица 3.3

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

г. 3	Зайса	н, ТОО "СК "Зайс	ан" с	общее г	ю 2 площадкам											
		Источники выделе	ения	Число	Наименование	Чис	Ho-	Высо	Диа-	Параме	етры газовозд	.смеси	Ко	ординать	источник	a
Про		загрязняющих вег	цеств	часов	источника выброса	. ло	мер	та	метр	на вых	коде из ист.в	ыброса	1	на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ист	ист.	источ	устья							
одс		Наименование	Ko-	ты		выб	выб-	ника	трубы		объем на 1	тем-	точечного	о источ.	2-го ко	нца лин.
TBO			лич	В		po-	poca	выбро			трубу, м3/с	пер.	/1-го кон		/длина, ш	шрина
			ист	год		са		ca, M	М	M/C		oC	/центра г		площад	
													ного исто	учника	ИСТОЧ	ника
														1 -		
				_					1.0		1.0	1.0	X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
004		печь отопления	1	1440	труба	1	0008	10	0.2	4.1	0.1288053	80	250	150		

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

	· · · / · · · · · · · · · · · · · · · ·			- 1-11	-				
Ho-	Наименование	Вещества	Средняя	Код		Выбросы	загрязняющих	к веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование				
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	тах.степ						дос-
	выбросов	газоо-й %	очистки%						тиже
									RNH
									НДВ
8	18	19	20	21	22	23	24	25	26
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				
0008				0008	Взвешенные частицы	0.000405	3.144	0.0021	2026
					PM10 (116)				
				0301	Азота (IV) диоксид (0.0507622	394.100	0.2631531	2026
					4)				
				0304	Азот (II) оксид (6)	0.0082488	64.041	0.0427624	2026
				0330	Сера диоксид (526)	0.260415	2021.772	0.984	2026
				0337	Углерод оксид (594)	0.7493249	5817.501	3.8905613	2026
				2908	Пыль неорганическая:	0.445599	3459.477	1.529	2026
					70-20% двуокиси				
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				

Эра v3.0 ТОО "УК-ПРОЕКТ"

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

Таблица 3.3

г.	Зайса	.н , ТОО "СК "Зайс	сан" с	общее г	ю 2 площад	кам											
		Источники выдел	ения	Число	Наимено	вание	Чис	Ho-	Высо	Диа-	Параме	етры газовозд	ц.смеси	Кс	ординаты	источник	:a
Про		загрязняющих ве	ществ	часов	источника	выброса	ло	мер	та	метр	на вых	коде из ист.в	выброса		на карте-	-схеме, м	
изв	Цех			рабо-	вредных в	веществ	ист	ист.	источ	устья							
одс		Наименование	Ко-	ты			выб	выб-	ника	трубы	ско-	объем на 1	тем-	точечного	о источ.	2-го ко	нца лин.
TBO			лич	В			po-	poca	выбро		рость	трубу, м3/с	пер.	/1-го кол	нца лин.	/длина, ш	ширина
			ист	год			ca		са,м	M	M/C		οС	/центра п	площад-	площа	цного
														ного ист	очника	источ	ника
														Х1	Y1	X2	Y2
1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16	17
008	3	печь отопления	1	4320	труба		1	0009	10	0.2	4.12	0.1294336	80	112	49		
002	2	сверлильный	1	200	неорган. и	источник	1	6006	2				20	249	124	1	1
		станок															
		заточной станок	1	500													
		(400 мм)															
003	3	токарный станок	1	1000	неорган. и	источник	1	6008	2				20	242	139	1	1
		фрезерный	1	100													
		станок															
000	5	циркулярная	1	280	неорган. и	источник	1	6012	2				20	97	71	1	1
		пила Ц6-2															

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

	,		,	0 -10-1-					
Ho-	Наименование	Вещества	Средняя	Код		Выбросы	загрязняющих	к веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование				
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	тах.степ						дос-
	выбросов	газоо-й %	очистки%						тиже
									пия
									НДВ
8	18	19	20	21	22	23	24	25	26
					месторождений) (503)				
0009				0301	Азота (IV) диоксид (0.0252812	195.322	0.3933792	2026
					4)				
					Азот (II) оксид (6)	0.0041082	31.740	0.0639241	
				0330	Сера диоксид (526)	0.13014	1005.458	1.3284	2026
					Углерод оксид (594)	0.3743868	2892.501		
				2908	Пыль неорганическая:	0.222684	1720.450	2.2935	2026
					70-20% двуокиси				
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				
6006				0008	Взвешенные частицы	0.00602		0.0105984	2026
					PM10 (116)				
					Пыль абразивная (0.0038		0.00684	2026
					1046*)				
6008				0008	Взвешенные частицы	0.00404		0.00554	2026
					PM10 (116)				
6010	_	0006/100	05 0/05 0	0000		0 1005		0 116555	0005
	Пылеулавливающи	2936/100	95.0/95.0	2936	Пыль древесная (1058*	0.1305		0.1165752	2026
	й агрегат;				[)				

Эра v3.0 ТОО "УК-ПРОЕКТ"

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 плошадкам

г. З	айса	н, ТОО "СК "Зайс	сан" с	общее г	10 2 площадкам											
		Источники выдел	ения	Число	Наименование	Чис	Ho-	Высо	Диа-	Параме	етры газовозд	.смеси	Ко	ординать	источник	a
Про		загрязняющих ве	цеств	часов	источника выброса	ло	мер	та	метр	на вых	коде из ист.в	ыброса	I	на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ист	ист.	источ	устья							
одс		Наименование	Ко-	ты		выб	выб-	ника	трубы		объем на 1	тем-	точечного	о источ.	2-го ко	нца лин.
TBO			лич	В		po-	poca	выбро		рость	трубу, м3/с	пер.	/1-го кон	нца лин.	/длина, ш	ирина
			ист	год		ca		са,м	M	M/C		oC	/центра г	ілощад-	площад	ОТОНД
													ного исто	чника	источ	ника
														1		
													X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
		фуговальный	1	240												
0.00		станок СФ-4	1	4200		1	6010	1 -				0.0	1 4 4	0.0	1	1
009		склад угля	1	4320	неорган. источник	1	6013	1.5				20	144	88	1	1
010		площадка для	1	4320	неорган. источник	1	6016	1.5				20	162	238	1	1
		хранения золы														
		1														
011		грузовые	12	248.8	неорган. источник	1	6024	2				20	88	188	1	1
		дизельные														

Таблица 3.3

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

Ho-	Наименование	Вещества	Средняя	Код		Выбросы	загрязняющих	веществ	
мер	газоочистных	по котор.	эксплуат		Наименование				-
ист.	установок	производ.		ще-	вещества	- / -	/ 2	_ /	
выб-	1 1	г-очистка	очистки/			r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	max.cren						дос-
	выбросов	газоо-й %	очистки%						тиже
									ния НДВ
									11.4.5
8	18	19	20	21	22	23	24	25	26
6013				2909	Пыль неорганическая:	0.01566875		0.0683251	2026
					ниже 20% двуокиси				
					кремния (доломит,				
					пыль цементного				
					производства -				
					известняк, мел,				
					огарки, сырьевая				
					смесь, пыль				
					вращающихся печей,				
					боксит и др.) (504)				
6016				2908	Пыль неорганическая:	0.0043737		0.0354884	2026
					70-20% двуокиси				
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
6024				0201	месторождений) (503)	0.058		0.0535104	2026
0024				0301	Азота (IV) диоксид (4)	0.038		0.0555104	2020
				0304	лот (II) оксид (6)	0.001856		0.0086954	2026

Эра v3.0 ТОО "УК-ПРОЕКТ" Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

Таблица 3.3

г. :	Зайса	н, ТОО "СК "Зайс	ан" с	общее п	10 2 площадкам											
		Источники выделе	ения	Число	Наименование	Чис	Ho-	Высо	Диа-	Параме	тры газовозд	.смеси	Ко	ординаты	источник	a
Про		загрязняющих веш	цеств	часов	источника выброса	ло	мер	та	метр	на вых	оде из ист.в	ыброса	I	на карте	-схеме, м	
изв	Цех			рабо-	вредных веществ	ист	ист.	источ	устья							
одс		Наименование	Ko-	ты		выб	выб-	ника	трубы	ско-	объем на 1	тем-	точечного	источ.	2-го ко	нца лин.
TBO			лич	В		po-	poca	выбро		рость	трубу, м3/с	пер.	/1-го кон	ца лин.	/длина, ш	ирина
			ист	год		ca		са,м	М	M/C		οС	/центра п	лощад-	площад	цного
													ного исто	чника	источ	ника
													X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
012		легковые бензиновые автобус бензиновый	3	127.5	неорган. источник	1	6025	2				20	138	211	1	1
013	3	грузовые дизельные автобус бензиновый	3	170 127.5	неорган. источник	1	6026	2				20	135	123	1	1
014	I	грузовые бензиновые	11	467.5	неорган. источник	1	6027	2				20	177	143	1	1

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

Ho-	нсан, 100 ск з Наименование	Вещества	Средняя			Выбросы	загрязняющих	к веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование				
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	max.cren						дос-
	выбросов	газоо-й %	очистки%						тиже
									кин
									ндв
8	18	19	20	21	22	23	24	25	26
				0328	Углерод (593)	0.001133		0.0048663	
				0330	Сера диоксид (526)	0.000992		0.0049629	
				0337	Углерод оксид (594)	0.058		0.250481	
					Керосин (660*)	0.0078		0.0340907	
6025				0301	Азота (IV) диоксид (0.000402288		0.0008976	
					4)				
				0304	Азот (II) оксид (6)	0.000065394		0.0001459	
				0330	Сера диоксид (526)	0.000114444		0.000249	
				0337	Углерод оксид (594)	0.062022188		0.1239626	
				2704	Бензин (нефтяной,	0.006777755		0.0139978	
					малосернистый) /в				
					пересчете на углерод/				
					(60)				
6026				0301	Азота (IV) диоксид (0.0115688		0.0193733	
					4)				
				0304	Азот (II) оксид (6)	0.0018802		0.0031483	
				0328	Углерод (593)	0.001133		0.0016221	
				0330	Сера диоксид (526)	0.00103394		0.0020783	
					Углерод оксид (594)	0.08025		0.3003937	
				2704	Бензин (нефтяной,	0.00243		0.024425	
					малосернистый) /в				
					пересчете на углерод/				
				2732	Керосин (660*)	0.0078		0.0113636	
6027					Азота (IV) диоксид (0.0017289		0.00778	
					4)				
				0304	Азот (II) оксид (6)	0.0002809		0.0012642	

Эра v3.0 ТОО "УК-ПРОЕКТ"

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

г.	заиса	н, TOO "СК "Зайс	сан" с	оощее г	іо 2 площа	дкам											
		Источники выделе	Число	Наимен	ование	Чис	Ho-	Высо	Диа-	Параме	етры газовозд	.смеси	Ко	ординаты	источник	a	
Про		загрязняющих ве	цеств	часов	источника	выброса	ЛО	мер	та	метр	на вых	коде из ист.в	ыброса	1	на карте	-схеме, м	
изв	Цех			рабо-	вредных	веществ	ист	ист.	источ								
одс		Наименование	Ко-	ТЫ			выб	выб-	ника	трубы	ско-	объем на 1	тем-	точечного	о источ.	2-го ко	нца лин.
TBO			лич	В			po-	poca	выбро		рость	трубу, м3/с	пер.	/1-го кон	ца лин.	/длина, ш	ирина
			ист	год			са		са,м	М	м/с		οС	/центра г	ілощад-	площа	цного
														ного исто	чника	источ	ника
														X1	Y1	X2	Y2
1	2	3	4	5	(5	7	8	9	10	11	12	13	14	15	16	17
015	;	бульдозер Т-170	1	. 64	неорган.	источник	1	6051	2				18	86	248	1	1
019	,	экскаватор ТС- 4361 погрузчик Л-34	1 1		неорган.	источник	1	6052	2				18	124	151	1	1

Таблица 3.3

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

1. Ja	исан, 100 ск з	заисан оощ	ee 110 Z 1131	Ощадк	ам				
Ho-	Наименование	менование Вещества Ср		Код		Выбросы	загрязняющих	к веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование				
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	тах.степ						дос-
	выбросов	газоо-й %	очистки%						тиже
	_								пия
									ндв
8	18	19	20	21	22	23	24	25	26
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				
6051				2908	Пыль неорганическая:	0.0168		0.0032256	5
					70-20% двуокиси				
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				
6052				2908	Пыль неорганическая:	0.2223648		0.2481591	-
					70-20% двуокиси				
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				

Эра v3.0 ТОО "УК-ПРОЕКТ"

Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. 3		н, ТОО "СК "Зайс		1			1		Т				T			
		Источники выдел		Число	Наименование	Чис		Высо	Диа-	_	етры газовозд			-	источник	
Про					источника выброса		мер		метр	на вых	коде из ист.в	выброса		на карте-	-схеме, м	
изв	Цех			рабо-	вредных веществ			источ	1-			ı			r	
одс		Наименование	Ko-	ТЫ		выб		ника	трубы		объем на 1	тем-	точечного			нца лин
TBO			лич	В		po-	poca	выбро			трубу, м3/с		/1-го ког		/длина, і	ширина
			ист	год		са		ca, M	M	M/C		οС	/центра і		площа	
													ного исто	очника	ИСТОЧ	иника
													X1	Y1	х2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	<u> </u>	-	_		-	1				<u> </u>	<u> </u>		1			
020		автосамасвал	1	472	неорган. источник	1	6053	2				18	43	135	1	
020		Камкз-5511	_	4/2	neopian: neiothink		0000					10	45	155	_	-
ı		1	1						1					1		

1 6054

8760 неорган. источник

018

отвал вскрышной

породы

18

376

158

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

Ho-	Наименование	Вещества		Код		Выбросы	загрязняющих	к веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование				
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	тах.степ						дос-
	выбросов	газоо-й %	очистки%						тиже
									пия
									НДВ
8	18	19	20	21	22	23	24	25	26
	10	10	20	21	доменный шлак, песок,	23	2.1	23	20
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				
6053				0301	Азота (IV) диоксид (0.1155556		0.196352	202
0000				0301	4)	0.1133330		0.190332	202
				0304	лот (II) оксид (6)	0.0187778		0.0319072	
					Углерод (593)	0.0559722		0.095108	
					Сера диоксид (526)	0.0722222		0.12272	
				0337	Углерод оксид (594)	0.3611111		0.6136	
					Бенз/а/пирен (54)	0.00000116		0.000002	
					Керосин (660*)	0.1083333		0.18408	
					Пыль неорганическая:	0.000667		0.0011334	
					70-20% двуокиси				
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				
6054				2908	Пыль неорганическая:	0.174		2.743632	
					70-20% двуокиси				

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

· ·	arroa			ощее п	о и площадкам											
		Источники выделе	еиия	Число	Наименование	Чис	Ho-	Высо	Диа-	Параме	етры газовозд	.смеси	Кс	ординаты	источник	ta
Про		загрязняющих веш	цеств	часов	источника выброса	ЛО	мер	та	метр	на вых	коде из ист.в	ыброса	1	на карте-	-схеме, м	
изв	Цех			рабо-	вредных веществ	ист	ист.	источ	устья							
одс		Наименование	Ко-	ТЫ		выб	выб-	ника	трубы	ско-	объем на 1	тем-	точечного	о источ.	2-го ко	нца лин.
TBO			лич	В		po-	poca	выбро		рость	трубу, м3/с	пер.	/1-го кон	нца лин.	/длина, ш	ширина
			ист	год		са		са,м	М	м/с		οС	/центра г		площа;	
													ного исто	очника	источ	иника
													X1	Y1	X2	Y2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
									1					ĺ		

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.3 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ на 2025 год

г. Зайсан, ТОО "СК "Зайсан" общее по 2 площадкам

Ho-	Наименование	Вещества	Средняя	Код		Выбросы	загрязняющи	х веществ	
мер	газоочистных	по котор.	эксплуат	ве-	Наименование				
ист.	установок	производ.	степень	ще-	вещества				
выб-	и мероприятий	г-очистка	очистки/	ства		r/c	мг/м3	т/год	Год
poca	по сокращению	к-т обесп	тах.степ						дос-
	выбросов	газоо-й %	очистки%						тиже
									RNH
									НДВ
8	18	19	20	21	22	23	24	25	26
					кремния (шамот,				
					цемент, пыль				
					цементного				
					производства - глина,				
					глинистый сланец,				
					доменный шлак, песок,				
					клинкер, зола,				
					кремнезем, зола углей				
					казахстанских				
					месторождений) (503)				

3.5. Обоснование достоверности данных, полученных в результате проведенной инвентаризации

Основной целью инвентаризации выбросов загрязняющих веществ в атмосферу является получение данных о количестве вредных веществ, отходящих от источника загрязнения. Инвентаризация вредных выбросов включает в себя ознакомление с технологическим процессом предприятия и определение загрязняющих веществ.

Количественные и качественные характеристики выбросов определены, согласно «Методологии проведения инвентаризации выбросов вредных (загрязняющих) веществ в атмосферный воздух и их источников» (Приложение 1 к Методике определения нормативов эмиссий в окружающую среду):

- на источниках: № 0013 (Асфальтосмесительная установка ДС-158), №0015
 (Асфальтосмесительная установка ДС-508), согласно методикам расчета.
- на источниках: № 0013 (Асфальтосмесительная установка ДС-158), №0015 (Асфальтосмесительная установка ДС-508) выбросы углеводородов предельных С12-19 определены расчетным методом.
- на остальных источниках расчетным методом, согласно методик расчета выбросов вредных веществ в атмосферу, утвержденных в РК.

Химические анализы выполнены согласно области деятельности лаборатории.

Согласно п.21 «Методики определения нормативов эмиссии в окружающую среду» от $11.12.2013\,$ г, установленное инструментальными замерами количество выбросов окислов азота (M_{NOx}) в пересчете на NO_2 разделяется на составляющие оксид азота (NO_2).

Для теоретического расчета были приняты исходные данные, предоставленные «Заказчиком» для разработки инвентаризации.

3.6 Сравнительная таблица нормативов выбросов вредных веществ по площадкам для TOO «Строительная компания «Зайсан»»

Наименование вредных		ержденные ивы ПДВ	Предлагаемые к утверждению нормативы НДВ на 2026-2035 г.г.								
веществ	на 2016	-2025 г.г.									
	г/сек т/год		г/сек	т/год							
Площадка «Производственная база»											
ИТОГО:	7,792536516	21,1160438									
Олово оксид	0,0000000001	0,0000112000	0,0000000001	0,0000112000							
Свинец и его неорганические соединения	0,0000056660	0,0000204000	0,0000056660	0,0000204000							
Азот (IV) оксид	0,1092970000	0,8191290000	0,1092970000	0,8191290000							
Серная кислота	0,0000333000	0,0000108000	0,0000333000	0,0000108000							
Сера диоксид	0,5617350000	2,9205120000	0,5617350000	2,9205120000							
Сероводород	0,0000391000	0,0000252000	0,0000391000	0,0000252000							
Углерод оксид	1,6161623000	12,1239629000	1,6161623000	12,1239629000							
Смесь углеводородов предельных C ₁ -C ₅	3.28	0,0712000000	3.28	0,0712000000							
Смесь углеводородов предельных C ₆ -C ₁₀	0,8000000000	0,0173500000	0,8000000000	0,0173500000							
Пенттилены	0,1088000000	0,0023600000	0,1088000000	0,0023600000							
Бензол	0,0870000000	0,0018880000	0,0870000000	0,0018880000							
Ксилол	0,0065300000	0,0001416000	0,0065300000	0,0001416000							
Толуол	0,0631000000	0,0013700000	0,0631000000	0,0013700000							
Этилбензол	0,0021750000	0,0000472000	0,0021750000	0,0000472000							
Смесь углеводородов предельных C ₁₂ -C ₁₉	0,0139000000	0,0089600000	0,0139000000	0,0089600000							
Взвешенные вещества	-	-	-	-							

Взвешенные частицы РМ10	0,0104650000	0,0182384000	0,0104650000	0,0182384000
Пыль неорганическая: 70-20%	0,9655647000	4,8059684000	0,9655647000	4,8059684000
двуокиси кремния			•	·
Пыль абразивная	0,0038000000	0,0068400000	0,0038000000	0,0068400000
Пыль древесная	0,1305000000	0,1165752000	0,1305000000	0,1165752000
Пыль золы Казахстанских углей	-	-	-	-
Пыль неорганическая ниже 20%	0,0156687500	0,0683251000	0,0156687500	0,0683251000
Азот (II) оксид	0,0177607000	0,1331084000	0,0177607000	0,1331084000
Площадка «- Уйденин	ское местороз	ждение песчана)-гравийных от.	ложений»
итого:	0,392688333	3,5295507	.	
Пыль неорганическая: 70-20%	Ź	,		
двуокиси кремния	0,392688333	3,5295507		
Площадка «- Карьер	по добыче пес	чано-гравийной	і смеси на Сат	паевском
Transfer in the second		рождении»		
итого:	0,4138318	2,9961501	0,4138318	2,9961501
Пыль неорганическая: 70-20%	ŕ	,	,	,
двуокиси кремния	0,4138318	2,9961501	0,4138318	2,9961501
Appendix in comme	Плошадка «	АБЗ в г. Зайсан	'))	
итого:	262,0668841	1306,298943	262,0668841	1306,298943
Азот (IV) оксид	0,1354586	0,3829455	0,1354586	0,3829455
Углерод черный	0,0026836	0,010546	0,0026836	0,010546
Сера диоксид	2,18633344	5,129	2,18633344	5,129
Сера диоксид	0,00021406	0,0000094	0,00021406	0,0000094
Углерод оксид	0,8107032	2,1035	0,8107032	2,1035
Углеводороды предельные С12-	0,8107032	2,1033	0,8107032	2,1033
Углеводороды предельные С12- 19	8,0519055	0,814181	8,0519055	0,814181
Мазутная зола	0,0024	0,005	0,0024	0,005
теплоэлектростанций	0,0024	0,003	0,0024	0,003
Пыль неорганическая: 70-20%	250,8520537	1297,791532	250,8520537	1297,791532
SiO2				
Азота оксид	0,025132	0,0622286	0,025132	0,0622286
	Площадка «А	Б3 в с, Сатпае		
итого:	154,8083795	924,886239	154,8083795	924,886239
Азот (IV) оксид	0,0950382	0,5774546	0,0950382	0,5774546
Углерод черный	0,0077275	0,0485	0,0077275	0,0485
Сера диоксид	2,088026	13,04865864	2,088026	13,04865864
Сероводород	0,000214	0,0000178	0,000214	0,0000178
Углерод оксид	0,474905	03,02,2025	0,474905	03,02,2025
Углеводороды предельные C12- 19	8,0519055	1,0986765	8,0519055	1,0986765
Мазутная зола				
мазутная зола теплоэлектростанций	0,0016	0,01	0,0016	0,01
Пыль неорганическая: 70-20%	144,0735196	910,0090951	144,0735196	910,0090951
SiO2	0.0154437	•		•
Азота оксид	· · · · · · · · · · · · · · · · · · ·	0,0938364	0,0154437	0,0938364
Площадка «Битумное	· · · · · · · · · · · · · · · · · · ·	-	ии тупик в п, Ж	ангиз-Тобе
		кого района»		
итого:	0,54	2,2077	0,54	2,2077
Углеводороды предельные C12- 19	0,54	2,2077	0,54	2,2077
Площадка «Отработк	а строительн	ого камня Зайс	анского местої	ождения»
итого:	0,5708584	1,5612862	0,5708584	1,5612862
Азот (IV) оксид	0,0505	0,0785	0,0505	0,0785
Азота оксид	0,06565	0,0624	0,06565	0,0624
Углерод оксид	0,042083	0,0522	0,042083	0,0522
Взвешенные частицы РМ10	0,042083	0,355264	0,042083	0,355264
Пыль неорганическая: 70-20%	0,4126254	1,0129222	0,4126254	1,0129222
SiO2 ИТОГО но площелием:	426,5863786	2262,5959125	426,1936903	2259,0663618
ИТОГО по площадкам:	420,5005/80	4404,3939143	440,1930903	4459,0003018

При разработке проекта нормативов НДВ выявлены следующие изменения по сравнению с предыдущим ПДВ:

1. Нормативы выбросов для площадок «Производственная база», «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении», АБЗ в г. Зайсан, АБЗ в с. Сатпаево, битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района, отработка строительного камня Зайсанского месторождения остаются без изменений.

4. ПРОВЕДЕНИЕ РАСЧЕТОВ И ОПРЕДЕЛЕНИЕ НДВ

Расчет приземных концентраций загрязняющих веществ, выбрасываемых источниками выбросов для предприятия ТОО «Строительная компания «Зайсан» в приземном слое атмосферы, проводился по программе расчета загрязнения атмосферы «ЭРА» верс. 3.0.

При расчете принята программа, работающая в режиме, когда суммарные приземные концентрации рассчитываются в узлах прямоугольной сетки выбранной области обсчета с перебором всех направлений ветра.

Вычислением на ЭВМ определены приземные концентрации вредных веществ в расчетных точках на местности и вклады отдельных источников в максимальную концентрацию вредных веществ, содержащихся в выбросах предприятия.

При проведении расчетов были заложены следующие исходные данные:

- коэффициент оседания примеси для газообразных веществ = 1,0;
- коэффициент стратификации атмосферы = 200;
- коэффициент рельефа местности = 1,0 (перепад высот местности в радиусе 1 км не превышает 50 м).

В соответствии с количеством населения из Руководства по контролю загрязнения атмосферы РД 52.04.186-89 фоновые концентрации для площадки «Производственная база в г. Зайсан» приняты по г. Зайсан (численность жителей 10000 - 50000) по пыли $-0.2 \, \text{мг/м}^3$; по диоксиду серы $-0.02 \, \text{мг/m}^3$; по диоксиду азота $-0.008 \, \text{мг/m}^3$; по оксиду углерода $-0.4 \, \text{мг/m}^3$; для площадок «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении», «Уйденинское месторождение песчано-гравийных отложений» приняты за $0 \, \text{(численность жителей менее } 10 \, \text{тыс. чел}).$

Необходимость расчетов рассеивания по площадкам представлена в таблице 3.4.

1. Площадка «Производственная база в г. Зайсан»

Размер расчетного прямоугольника определен с учетом зоны влияния загрязнения для площадки «Производственная база в г. Зайсан» со сторонами 1000 х 1000 м, шаг расчетной сетки по осям X и У равен 20 м. В список вредных веществ по площадке включено 24 ингредиента и 5 групп суммации: 27 - свинец и его неорганические соединения + сера диоксид; 28 - серная кислота + сера диоксид; 30 - сера диоксид + сероводород; 31 - азота диоксид + сера диоксид, ПЛ - пыль неорганическая: 70-20% двуокиси кремния + пыль неорганическая: ниже 20% двуокиси кремния + пыль абразивная + пыль древесная.

Ближайшая жилая застройка находится с юго-западной и юго-восточной сторон площадки на расстоянии соответственно 15 и 50 м от ее границы и от крайних источников на расстоянии 40 и 72 м соответственно.

Расчет рассеивания для площадки «Производственная база в г. Зайсан» проводился на существующее положение без учета фона и с учетом фона на границе существующей (нормативной) санитарно-защитной зоны и на границе жилой зоны. Анализ результатов расчетов приземных концентраций без учета и с учетом фона показал, что превышение ПДК на границе жилой зоны и на границе существующей санитарно-защитной зоны не зафиксировано.

2. Площадка «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении»

Размер расчетного прямоугольника для площадки «Карьер по добыче песчаногравийной смеси на Сатпаевском месторождении» определен с учетом зоны влияния загрязнения со сторонами 1300 х 950 м, шаг расчетной сетки по осям X и У равен 50 м. В список вредных веществ по площадке включено 8 ингредиентов и 1 группа суммации: 31 - азота диоксид + сера диоксид.

При проведении расчетов рассеивания СЗЗ площадки «Карьер по добыче песчаногравийной смеси на Сатпаевском месторождении», размером 300 метров, установленная согласно санитарно-эпидемиологического заключения №71 от 09.02.2011 г.

Расчет рассеивания для площадки «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении» проводился на существующее положение без учета фона на границе санитарно-защитной зоны. Анализ результатов расчетов приземных концентраций без учета показал, что превышение ПДК на границе санитарно-защитной зоны не зафиксировано.

Расчет приземных концентраций загрязняющих веществ, выбрасываемых источниками выбросов для предприятия ТОО «Строительная компания «Зайсан» в приземном слое атмосферы, проводился по программе расчета загрязнения атмосферы «ЭРА» верс. 3.0.

При расчете принята программа, работающая в режиме, когда суммарные приземные концентрации рассчитываются в узлах прямоугольной сетки выбранной области обсчета с перебором всех направлений ветра.

Вычислением на ЭВМ определены приземные концентрации вредных веществ в расчетных точках на местности и вклады отдельных источников в максимальную концентрацию вредных веществ, содержащихся в выбросах предприятия.

При проведении расчетов были заложены следующие исходные данные:

- коэффициент оседания примеси для газообразных веществ = 1,0;
- коэффициент стратификации атмосферы = 200;
- коэффициент рельефа местности = 1,0 (перепад высот местности в радиусе 1 км не превышает 50 м).

В соответствии с количеством населения из Руководства по контролю загрязнения атмосферы РД 52.04.186-89 фоновые концентрации для площадки «АБЗ в г. Зайсан», расположенной в г. Зайсан (численность жителей 10000 - 50000) приняты по пыли – 0.2 мг/м³; по диоксиду серы – 0.02 мг/м³; по диоксиду азота – 0.008 мг/м³; по оксиду углерода – 0.4 мг/м³; для площадок «АБЗ в с. Сатпаево», «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района», «Отработка строительного камня Зайсанского месторождения» (численность жителей менее 10 тыс. чел) приняты за 0.

3. Плошадка «АБЗ в г. Зайсан»

Размер расчетного прямоугольника определен с учетом зоны влияния загрязнения для площадки «АБЗ в г. Зайсан» со сторонами 3500 х 3500 м, шаг расчетной сетки по осям X и У равен 350 м. В список вредных веществ по площадке включено 9 ингредиентов и 4 группы суммации: 02 - азота диоксид + азота оксид + сера диоксид + мазутная зола теплоэлектростанций; 30 - сера диоксид + сероводород; 31 - азота диоксид + сера диоксид; ПЛ - мазутная зола теплоэлектростанций + пыль неорганическая: 70-20% двуокиси кремния.

Площадка «АБЗ в г. Зайсан» - размер СЗЗ составляет 1000 метров (согласно санитарноэпидемиологического заключения №71 от 09.02.2011 г.).

Ближайшая жилая застройка (г. Зайсан) расположена в юго-западном направлении на расстоянии 1.5 км от границы площадки.

Расчет рассеивания для площадки ««АБЗ в г. Зайсан»» проводился на существующее положение без учета фона и с учетом фона на границе санитарно-защитной зоны. Анализ результатов расчетов приземных концентраций без учета и с учетом фона показал, что превышение ПДК на границе санитарно-защитной зоны не зафиксировано.

4. Площадки «АБЗ в с. Сатпаево»

Размер расчетного прямоугольника определен с учетом зоны влияния загрязнения со сторонами $3500 \times 3000 \, \text{м}$, шаг расчетной сетки по осям X и У равен $100 \, \text{м}$. В список вредных веществ по площадке включено $11 \, \text{ингредиентов}$ и $4 \, \text{группы}$ суммации: $02 \, \text{-}$ азота диоксид + азота оксид + сера диоксид + мазутная зола теплоэлектростанций; $30 \, \text{-}$ сера диоксид +

сероводород; 31 - азота диоксид + сера диоксид; ПЛ - мазутная зола теплоэлектростанций + пыль неорганическая: 70-20% двуокиси кремния.

Площадка «АБЗ в с. Сатпаево» - размер СЗЗ составляет 1000 метров (согласно санитарно-эпидемиологического заключения №71 от 09.02.2011 г.).

Ближайшая жилая застройка (с. Сатпаево) расположена в северном направлении на расстоянии 1000 м от границы площадки.

Расчет рассеивания для площадки «АБЗ в с. Сатпаево» проводился на существующее положение без учета фона и с учетом фона на границе санитарно-защитной зоны и на границе жилой зоны. Анализ результатов расчетов приземных концентраций без учета и с учетом фона показал, что превышение ПДК на границе жилой зоны и на границе санитарно-защитной зоны не зафиксировано.

5. Площадка «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района»

Размер расчетного прямоугольника определен с учетом зоны влияния загрязнения для площадки «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района» со сторонами $1100 \times 1000 \,\mathrm{m}$, шаг расчетной сетки по осям X и У равен $50 \,\mathrm{m}$. В список вредных веществ по площадке включено 6 ингредиентов и 1 группа суммации: 31 - азота диоксид + сера диоксид.

Площадка «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района» - размер С33 составляет 500 метров (согласно санитарно-эпидемиологического заключения №71 от $09.02.2011 \, \Gamma$.).

Ближайшая жилая застройка (п. Жангиз-Тобе) находится в южном направлении на расстоянии 1 км.

Расчет рассеивания для площадки «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района» проводился на существующее положение без учета фона на границе санитарно-защитной зоны. Анализ результатов расчетов приземных концентраций без учета показал, что превышение ПДК на границе санитарно-защитной зоны не зафиксировано.

6. Площадка «Отработка строительного камня Зайсанского месторождения»

Размер расчетного прямоугольника определен с учетом зоны влияния загрязнения для площадки «Отработка строительного камня Зайсанского месторождения» со сторонами 2500 х 2500 м, шаг расчетной сетки по осям X и У равен 100 м. В список вредных веществ по площадке включено 12 ингредиентов и 1 группа суммации: 31 - азота диоксид + сера диоксид.

Площадка «Отработка строительного камня Зайсанского месторождения» - размер СЗЗ составляет 1000 метров (согласно санитарно-эпидемиологического заключения №71 от 09.02.2011 г.).

Расчет рассеивания для площадки «Отработка строительного камня Зайсанского месторождения» проводился на существующее положение без учета фона на границе санитарно-защитной зоны. Анализ результатов расчетов приземных концентраций без учета и показал, что превышение ПДК на границе санитарно-защитной зоны не зафиксировано.

Зон заповедников, музеев, памятников архитектуры в районе расположения предприятия нет.

Перечень источников, дающих наибольший вклад в уровень загрязнения атмосферы, приведен в таблице 3.5.

Карты рассеивания вредных веществ, в приземном слое атмосферы приведены в приложении.

г. Зайсан, СК "Зайсан" - Производственая база с фоном

	сан, ск "заисан" - производственая база с		7	•		,	7	,
Код	Наименование	пдк	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	Примечание
веще-		_		безопасн.	r/c	высота,	м/пдк	
ства		мг/м3	мг/м3	УВ , мг/м3		М	для Н<10	
1	2	3	4	5	6	7	8	9
0008	Взвешенные частицы РМ10 (116)	0.3	0.06		0.010465	2.3096	0.0349	_
	Олово оксид /в пересчете на олово/ (454)	0.3	0.02		0.0000000001		5.E-10	
	Азот (II) оксид (6)	0.4			0.021843194		0.0546	
	Углерод (593)	0.15			0.002266		0.0151	
	Смесь углеводородов предельных С1-С5	0.13	0.00	50			0.0656	
0113	(1531*, 1539*)				3.20	1.0000	0.000	
0416	Смесь углеводородов предельных C6-C10 (1532*, 1540*)			30	0.8	4.0000	0.0267	-
0501	Пентилены (амилены - смесь изомеров) (468)	1.5			0.1088	4.0000	0.0725	-
0602	Бензол (64)	0.3	0.1		0.087	4.0000	0.29	Расчет
0616	Ксилол (смесь изомеров о-, м-, п-) (327)	0.2			0.00653	4.0000	0.0327	-
0621	Толуол (567)	0.6			0.0631	4.0000	0.1052	Расчет
0627	Этилбензол (687)	0.02			0.002175	4.0000	0.1087	Расчет
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	5	1.5		0.036260555	2.0000	0.0073	-
2732	Керосин (660*)			1.2	0.0156	2.0000	0.013	_
	Углеводороды предельные C12-19 /в пересчете на C/ (592)	1			0.0139		0.0139	-
2909	Пыль неорганическая: ниже 20% двуокиси кремния (доломит, пыль цементного производства – известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит и др.) (504)	0.5	0.15		0.01566875	1.5000	0.0313	-
2930	Пыль абразивная (1046*)			0.04	0.0038	2.0000	0.095	
2930	Пыль древесная (1046^)			0.04			0.095	
2930	пыль древесная (1038^) Вещества, облад			1	l		0.29	Расчет
0184	Свинец и его неорганические соединения /в	0.001			0.000005666		0.0057	_
0301	пересчете на свинец/ (523) Азота (IV) диоксид (4)	0.2	0.04		0.180996988	6.7859	0.905	Расчет

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код	Наименование	ПДК	пдк	ОБУВ	Выброс	Средневзве-	М/(ПДК*Н)	
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	Примечание
веще-		разовая,	суточная,	безопасн.	r/c	высота,	м/пдк	
ства		мг/м3	мг/м3	УВ , мг/м3		М	для H<10	
1	2	3	4	5	6	7	8	9
0322	Серная кислота (527)	0.3	0.1		0.0000333	2.0000	0.0001	-
0330	Сера диоксид (526)	0.5	0.05		0.564059784	9.8926	1.1281	Расчет
0333	Сероводород (Дигидросульфид) (528)	0.008			0.0000391	4.0000	0.0049	-
0337	Углерод оксид (594)	5	3		2.015442788	8.3552	0.4031	Расчет
2908	Пыль неорганическая: 70-20% двуокиси	0.3	0.1		0.9655647	9.8871	3.2185	Расчет
	кремния (шамот, цемент, пыль цементного							
	производства - глина, глинистый сланец,							
	доменный шлак, песок, клинкер, зола,							
	кремнезем, зола углей казахстанских							
	месторождений) (503)							

Примечание. 1. Необходимость расчетов концентраций определяется согласно п.5.21 ОНД-86.Средневзвешенная высота ИЗА по стандартной формуле: Сумма(Ні*Мі)/Сумма(Мі), где Ні - фактическая высота ИЗА, Мі - выброс ЗВ, г/с 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - 10*ПДКс.с.

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.4

Тарбагатайский район, СК "Зайсан" - Сатпаевское месторождение ПГС

Код	Наименование	пдк	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	Примечание
веще-		разовая,	суточная,	безопасн.	r/c	высота,	М/ПДК	
ства		мг/м3	мг/м3	УВ,мг/м3		М	для Н<10	
1	2	3	4	5	6	7	8	9
0304	Азот (II) оксид (6)	0.4	0.06		0.0187778	2.0000	0.0469	_
0328	Углерод (593)	0.15	0.05		0.0559722	2.0000	0.3731	Расчет
0703	Бенз/а/пирен (54)		0.000001		0.00000116	2.0000	0.116	Расчет
2732	Керосин (660*)			1.2	0.1083333	2.0000	0.0903	-
	Вещества, облад	ающие эффе	ктом сумма	рного вред	ного воздейств	вия	•	
0301	Азота (IV) диоксид (4)	0.2	0.04		0.1155556	2.0000	0.5778	Расчет
0330	Сера диоксид (526)	0.5	0.05		0.0722222	2.0000	0.1444	Расчет
0337	Углерод оксид (594)	5	3		0.3611111	2.0000	0.0722	_
2908	Пыль неорганическая: 70-20% двуокиси	0.3	0.1		0.4138318	2.0000	1.3794	Расчет
	кремния (шамот, цемент, пыль цементного							
	производства - глина, глинистый сланец,							
	доменный шлак, песок, клинкер, зола,							
	кремнезем, зола углей казахстанских							
	месторождений) (503)							

Примечание. 1. Необходимость расчетов концентраций определяется согласно п.5.21 ОНД-86.Средневзвешенная высота ИЗА по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - 10*ПДКс.с.

г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан

Код	Наименование	пдк	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	Примечание
веще-		разовая,	суточная,	безопасн.	r/c	высота,	м/пдк	
ства		мг/м3	мг/м3	УВ , мг/м3		М	для Н<10	
1	2	3	4	5	6	7	8	9
0328	Углерод (593)	0.15	0.05		0.0026836	14.7928	0.0012	_
2754	Углеводороды предельные С12-19 /в	1			8.0519055	5.1511	8.0519	Расчет
	пересчете на С/ (592)							
	Вещества, облад	аффе эмшиа	ктом сумма	рного вред	ного воздейств	RN		
0301	Азота (IV) диоксид (4)	0.2	0.04		0.1354586	19.2647	0.0352	Расчет
0304	Азот (II) оксид (6)	0.4	0.06		0.025132	19.3560	0.0032	_
0330	Сера диоксид (526)	0.5	0.05		2.18633344	19.8497	0.2203	Расчет
0333	Сероводород (Дигидросульфид) (528)	0.008			0.00021406	3.0000	0.0268	_
	Углерод оксид (594)	5	3		0.8107032		0.0085	
2904	Мазутная зола теплоэлектростанций /в		0.002		0.0024	20.0000	0.006	_
	пересчете на ванадий/ (331)							
2908	Пыль неорганическая: 70-20% двуокиси	0.3	0.1		255.9884088	4.5403	853.2947	Расчет
	кремния (шамот, цемент, пыль цементного							
	производства - глина, глинистый сланец,							
	доменный шлак, песок, клинкер, зола,							
	кремнезем, зола углей казахстанских							
	месторождений) (503)							

Примечание. 1. Необходимость расчетов концентраций определяется согласно п.5.21 ОНД-86.Средневзвешенная высота ИЗА по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Нi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - 10*ПДКс.с.

Эра v3.0 ТОО "УК-ПРОЕКТ"

Определение необходимости расчетов приземных концентраций по веществам

на существующее положение

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево

Idpodi	atanckin panoh, ck Sancah - Abs b c. cat	пасьс						
Код	Наименование	ПДК	пдк	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	Примечание
веще-		разовая,	суточная,	безопасн.	r/c	высота,	М/ПДК	
ства		мг/м3	мг/м3	УВ,мг/м3		М	для Н<10	
1	2	3	4	5	6	7	8	9
0328	Углерод (593)	0.15	0.05		0.0077914	15.9676	0.0033	_
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		0.0032028	2.0000	0.0006	_
	пересчете на углерод/ (60)							
2732	Керосин (660*)			1.2	0.000597	2.0000	0.0005	_
2754	Углеводороды предельные С12-19 /в	1			8.0519055	4.9630	8.0519	Расчет
	пересчете на С/ (592)							
	Вещества, облад	ающие эффе	ктом сумма	рного вред	ного воздейств	RN	•	
0301	Азота (IV) диоксид (4)	0.2	0.04		0.0965471	16.6565	0.029	Расчет
0304	Азот (II) оксид (6)	0.4	0.06		0.0156888	16.6566	0.0024	_
0330	Сера диоксид (526)	0.5	0.05		0.08824644	14.0121	0.0126	Расчет
0333	Сероводород (Дигидросульфид) (528)	0.008			0.000214	2.1827	0.0268	_
0337	Углерод оксид (594)	5	3		0.5069761	15.3634	0.0066	_
2904	Мазутная зола теплоэлектростанций /в		0.002		0.0016	18.0000	0.0044	_
	пересчете на ванадий/ (331)							
2908	Пыль неорганическая: 70-20% двуокиси	0.3	0.1		146.192580844	3.5541	487.3086	Расчет
	кремния (шамот, цемент, пыль цементного							
	производства - глина, глинистый сланец,							
	доменный шлак, песок, клинкер, зола,							
	кремнезем, зола углей казахстанских							
	месторождений) (503)							
i	•							

Примечание. 1. Необходимость расчетов концентраций определяется согласно п.5.21 ОНД-86.Средневзвешенная высота ИЗА по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - 10*ПДКс.с.

Эра v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.4

Жарминский район, СК "Зайсан" - Битумное хозяйство

Код	Наименование	ПДК	пдк	ОБУВ	Выброс	Средневзве-	М/(ПДК*Н)					
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	Примечание				
веще-		разовая,	суточная,	безопасн.	r/c	высота,	м/пдк					
ства		мг/м3	мг/м3	УВ , мг/м3		М	для Н<10					
1	2	3	4	5	6	7	8	9				
0304	Азот (II) оксид (6)	0.4	0.06		0.000039		0.0000975	-				
0337	Углерод оксид (594)	5	3		0.020325		0.0041	_				
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		0.0022917		0.0005	-				
	пересчете на углерод/ (60)											
2754	Углеводороды предельные С12-19 /в	1			0.5412	2.7384	0.5412	Расчет				
	пересчете на С/ (592)											
	Вещества, обладающие эффектом суммарного вредного воздействия											
0301	Азота (IV) диоксид (4)	0.2	0.04		0.00024		0.0012	-				
0330	Сера диоксид (526)	0.5	0.05		0.00003194		0.00006388	-				

Примечание. 1. Необходимость расчетов концентраций определяется согласно п.5.21 ОНД-86.Средневзвешенная высота ИЗА по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - 10*ПДКс.с.

г. Зайсан, СК "Зайсан" - Строительный камень

Код	Наименование	пдк	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	Примечание
веще-		разовая,	суточная,	безопасн.	r/c	высота,	м/пдк	
ства		мг/м3	мг/м3	УВ,мг/м3		М	для Н<10	
1	2	3	4	5	6	7	8	9
	Взвешенные частицы РМ10 (116)	0.3						-
0304	Азот (II) оксид (6)	0.4			0.08442778	2.0000	0.2111	
0328	Углерод (593)	0.15	0.05		0.0643892	2.0000	0.4293	Расчет
0703	Бенз/а/пирен (54)		0.000001		0.00000116	2.0000	0.116	Расчет
1301	Проп-2-ен-1-аль (482)	0.03	0.01		0.00202	2.0000	0.0673	-
1325	Формальдегид (619)	0.05	0.01		0.00202	2.0000	0.0404	-
2732	Керосин (660*)			1.2	0.1083333	2.0000	0.0903	-
2754	Углеводороды предельные С12-19 /в	1			0.0202	2.0000	0.0202	-
	пересчете на С/ (592)							
	Вещества, облад	ающие эффе	ктом сумма	рного вред	ного воздейств	RNS		
0301	Азота (IV) диоксид (4)	0.2	0.04		0.1660556	2.0000	0.8303	Расчет
0330	Сера диоксид (526)	0.5	0.05		0.0890552	2.0000	0.1781	Расчет
0337	Углерод оксид (594)	5	3		0.4031941	2.0000	0.0806	-
2908	Пыль неорганическая: 70-20% двуокиси	0.3	0.1		0.4126254	2.0000	1.3754	Расчет
	кремния (шамот, цемент, пыль цементного							
	производства - глина, глинистый сланец,							
	доменный шлак, песок, клинкер, зола,							
	кремнезем, зола углей казахстанских							
	месторождений) (503)							
-					1			

Примечание. 1. Необходимость расчетов концентраций определяется согласно п.5.21 ОНД-86.Средневзвешенная высота ИЗА по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Нi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с 2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - 10*ПДКс.с.

ЭРА v3.0 ТОО "УК-ПРОЕКТ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код		Расчетная максима	=	_	аты точек				Принадлежность
вещества	Наименование	концентрация (общая			имальной	наибо	льший в	вклад в	источника
/	вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	концен	трацию	(производство,
группы									цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		эоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
			цествующее положение						
	1	н е к q т ь Є І	яющие веще	ества	:	1 1		Ī	I
0008	Взвешенные частицы РМ10 (116)	0.21883/0.06565	0.01565/0.0047	275/50	483/-70	6006	65.4		Ремонтно- механическая
						6008	34.2		мастерская. Медницкий цех Ремонтно-
									механическая мастерская. Токарный цех
0168	Олово оксид /в пересчете на олово/ (454)	1.926e-8/3.852e-9	1.926e-8/3.852e-9	*/*	*/*	0005	100		Ремонтно- механическая мастерская.
0184	Свинец и его неорганические	0.04341/0.00004	0.00288/2.9e-6	293/58	483/-70	0005	100		Медницкий цех Ремонтно- механическая
0301	соединения /в пересчете на свинец/ (523) Азота (IV) диоксид (4)	0.41631(0.37631)/ 0.08326(0.07526)	0.15094(0.11094)/ 0.03019(0.02219)		512/294	6026	75.6		мастерская. Медницкий цех Открытая стоянка
		вклад предпр.= 90%	вклад предпр.= 74%			0008	15.7		автотранспорта №1 Ремонтно- механическая
						6027	5.5		мастерская Открытая стоянка

ЭРА v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код	.к заисан - производств	Расчетная максима	приземная	Координ	аты точек	Источ	іники, і	дающие	Принадлежность
вещества	Наименование	концентрация (общая	и без учета фона)	_	мальной		льший і		источника
/	вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	конце	нтрацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BF	слада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
									автотранспорта
									Nº 2
						6024		15.4	Стояночный бокс
									Nº 1
0304	Азот (II) оксид (6)	0.04048/0.01619	0.01182/0.00473	8/166	529/259	6024	67.6		Стояночный бокс
									Nº 1
						0007		13.4	Моторный цех
						0008	10.2	44.8	Ремонтно-
									механическая
									мастерская
						6026		15.5	Открытая
									стоянка
									автотранспорта
									№1
0322	Серная кислота (527)	0.002933/0.00088	0.002933/0.00088	*/*	*/*	0001	100	100	Ремонтно-
									механическая
									мастерская.
									Аккумуляторная
0328	Углерод (593)	0.05156/0.00773	0.00604/0.00091	18/146	-100/421	6024	100	61.6	Стояночный бокс
									Nº 1
						6026		38.4	Открытая
									стоянка
									автотранспорта
									Nº1
0330	Сера диоксид (526)	0.39052(0.35052)/	0.17901(0.13901)/	311/67	492/326	0008	71.1	59.9	Ремонтно-
		0.19526(0.17526)	0.0895(0.0695)						механическая
		вклад предпр.= 90%	вклад предпр.= 78%						мастерская
						0007	21.8	18.4	Моторный цех

ЭРА v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код		Расчетная максима	-	Координ	аты точек				Принадлежность
вещества	Наименование	концентрация (общая				наибс	льший в	вклад в	источника
/	вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	концен	нтрацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BK	пада	
		эоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
						0003	6.8		Ремонтно-
									механическая
									мастерская
						0009		14.5	Административно
									-бытовой корпус
0333	Сероводород (0.034638/0.000277	0.034638/0.000277	*/*	*/*	0006	100	100	A3C
	Дигидросульфид) (528)								
0337	Углерод оксид (594)	0.34741(0.26741)/	0.1722(0.0922)/	311/67	492/326	0008	62	39.9	Ремонтно-
		1.73705(1.33705)	0.86101(0.46101)						механическая
		вклад предпр.= 77%	вклад предпр.= 54%						мастерская
						0007	14.7	13.2	Моторный цех
						6027	14.2	20.6	Открытая
									стоянка
									автотранспорта
									№2
0415	Смесь углеводородов	0.29563/14.78169	0.03315/1.65767	240/34	356/-177	0006	100	100	A3C
	предельных С1-С5 (1531*								
	, 1539*)								
0416	Смесь углеводородов	0.12018/3.60529	0.01348/0.40431	240/34	356/-177	0006	100	100	A3C
	предельных С6-С10 (
	1532*, 1540*)								
0501	Пентилены (амилены -	0.32688/0.49032	0.03666/0.05499	240/34	356/-177	0006	100	100	A3C
	смесь изомеров) (468)								
0602	Бензол (64)	0.24182/0.07254	0.06799/0.0204	240/34	356/-177	0006	100	100	A3C
0616	Ксилол (смесь изомеров	0.14714/0.02943	0.0165/0.0033		356/-177	0006	100	100	A3C
	о-, м-, п-) (327)								
0621	Толуол (567)	0.47395/0.28437	0.05315/0.03189	240/34	356/-177	0006	100	100	A3C
0627	Этилбензол (687)	0.49009/0.0098	0.05496/0.0011	240/34	356/-177	0006	100	100	A3C

ЭРА v3.0 ТОО "УК-ПРОЕКТ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код		Расчетная максима	<u>+</u>	_	аты точек				Принадлежность
вещества	Наименование	концентрация (общая			имальной	наибо	льший в	зклад в	источника
/	вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	концен	нтрацию	(производство,
группы									цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BK	пада	
		эоне	санитарно -	зоне		ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (0.01936/0.0968	0.00435/0.02174	240/34	-25/474	6027	89.2	70.2	Открытая стоянка автотранспорта
	60)					6025	10.7	26.5	№2 Стояночный бок №2
2732	Керосин (660*)	0.04079/0.04894	0.00968/0.01161	18/146	-100/421	6024	100	60.9	Стояночный бок №1
						6026		39.1	Открытая стоянка автотранспорта №1
2754	Углеводороды предельные C12-19 /в пересчете на C/ (592)	0.06264/0.06264	0.00702/0.00702	2 240/34	356/-177	0006	100	100	A3C
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)	0.69936/0.20981	0.21975/0.06592	71/39	405/422	0009	78.4	13.3	Административн -бытовой корпу
						0008	19.5	44.6	Ремонтно- механическая мастерская

ЭРА v3.0 ТОО "УК-ПРОЕКТ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код вещества / группы	Наименование вещества	доля ПДК / мг/м3 приземной конц. мак			наибольший вклад в макс. концентрацию			Принадлежность источника (производство, цех, участок)	
суммации		в жилой	на границе		и на грани це СЗЗ	N	% BK	лада	
		зоне	санитарно - защитной зоны	зоне Х/Ү	де C33	ист.	ЕЖ	C33	
1	2	3	4	5	6	7	8	9	10
2909	Пыль неорганическая: ниже 20% двуокиси кремния (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей,	0.19734/0.09867	0.0131/0.00655	68/46	250/-219	0007 6013	100	36 100	Моторный цех Склад угля
2930	боксит и др.) (504) Пыль абразивная (1046*)	0.31346/0.01254	0.04291/0.00172	275/50	483/-70	6006	100	100	Ремонтно- механическая мастерская. Медницкий цех
2936	Пыль древесная (1058*)	0.14423/0.01442	0.04017/0.00402	46/46	-202/48	6012	100	100	Столярный цех
		Труг	 тпы суммаци	T/4 •	ļ				
27 0184	Свинец и его неорганические соединения /в пересчете на свинец/ (523)	0.41593(0.37593) вклад предпр.= 90%	· · · · · ·	311/67	492/326	0008	66.3	59.4	Ремонтно- механическая мастерская
0330	Сера диоксид (526)					0007	20.3		Моторный цех Ремонтно- механическая мастерская. Медницкий цех Административно -бытовой корпус

ЭРА v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код	л заисан - производств	Расчетная максима	альная приземная	Координ	аты точек	Источ	иники,	дающие	Принадлежность
вещества	Наименование	концентрация (общая	я и без учета фона)	с макси	мальной	наибо	ольший і	зклад в	источника
/	вещества	доля ПДК	: / мг/м3	приземн	ой конц.	макс.	конце	нтрацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BF	слада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	1
1	2	3	4	5	6	7	8	9	10
28 0322	Серная кислота (527)	0.39116(0.35116)	0.17906(0.13906)	311/67	492/326	0008	71	59.9	Ремонтно-
		вклад предпр.= 90%	вклад предпр.= 78%						механическая
									мастерская
0330	Сера диоксид (526)					0007	21.8	18.4	Моторный цех
						0003	6.8		Ремонтно-
									механическая
									мастерская
						0009		14.5	Административно
									-бытовой корпус
30 0330	Сера диоксид (526)	0.39081(0.35081)	0.18017(0.14017)	311/67	492/326	0008	71.1	59.5	Ремонтно-
		вклад предпр.= 90%	вклад предпр.= 78%						механическая
									мастерская
0333	Сероводород (0007	21.7	18.2	Моторный цех
	Дигидросульфид) (528)								
						0003	6.8		Ремонтно-
									механическая
									мастерская
						0009		14.4	Административно
									-бытовой корпус
31 0301	Азота (IV) диоксид (4)	0.62556(0.54556)	0.32872(0.24872)	311/67	512/294	0008	66	49.2	Ремонтно-
		вклад предпр.= 87%	вклад предпр.= 76%						механическая
									мастерская
0330	Сера диоксид (526)					0007	21.1	16.6	Моторный цех
						0003	6.1		Ремонтно-
									механическая
									мастерская
						0009		11.1	Административно
									-бытовой корпус

ЭРА v3.0 ТОО "УК-ПРОЕКТ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Производственая база с фоном

Код		Расчетная максима	альная приземная	Координ	аты точек	Источ	ники,	цающие	Принадлежность
вещества	Наименование	концентрация (общая	н и без учета фона)	с макси	мальной	наибс	льший в	вклад в	источника
/	вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	концен	нтрацию	(производство,
группы									цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BK	пада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
			Пыли:						
			II BI JI VI •						
2908	Пыль неорганическая:	0.88444(0.48444)	0.54196(0.14196)	71/39	457/371	0009	64.4	12.6	Административн
	70-20% двуокиси кремния	вклад предпр.= 55%	вклад предпр.= 26%						-бытовой корпу
	(шамот, цемент, пыль								
	цементного производства								
	- глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (503)								
2909	Пыль неорганическая:					0008	18.9	47	Ремонтно-
	ниже 20% двуокиси								механическая
	кремния (доломит, пыль								мастерская
	цементного производства								
	- известняк, мел,								
	огарки, сырьевая смесь,								
	пыль вращающихся печей,								
	боксит и др.) (504)								
2930	Пыль абразивная (1046*)					6013	12.8		Склад угля
2936	Пыль древесная (1058*)					0007		27.3	Моторный цех

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Тарбагатайский район, СК "Зайсан" - Сатпаевское месторождение ПГС

Код	Panon, en Sancan	Расчетная максима	альная приземная	Координ	аты точек	Источ	иники, д	дающие	Принадлежность
вещества	Наименование	концентрация (общая	я и без учета фона)	с макси	мальной	наибо	ольший в	вклад в	источника
/	вещества	доля ПДК	. / мг/м3	приземн	ой конц.	макс.	. концен	нтрацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BK	пада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЕЖ	C33	
1	2	3	4	5	6	7	8	9	10
		Суг	цествующее положение						
		Загрязн	яющие веще	ества	:	·			
0301	Азота (IV) диоксид (4)		0.65147/0.13029	-37/1296	-255/161	6053	100	100	Автотранспортны
									е работы
0304	Азот (II) оксид (6)		0.05293/0.02117	27/1206	255/161	6053	100	100	7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
0304	ASOT (II) ORCHA (6)		0.03293/0.0211/	-3//1296	-233/161	6033	100	100	Автотранспортны е работы
0328	Углерод (593)		0.47017/0.07053	-37/1296	-255/161	6053	100	100	е расоты Автотранспортны
0320	итмерод (393)		0.4701770.07033	3771230	233/101	0000	100	100	е работы
0330	Сера диоксид (526)		0.16287/0.08143	-37/1296	-255/161	6053	100	100	Автотранспортны
									е работы
0337	Углерод оксид (594)		0.08143/0.40717	-37/1296	-255/161	6053	100	100	Автотранспортны
									е работы
0703	Бенз/а/пирен (54)		0.14616/1.5e-6	-37/1296	-255/161	6053	100	100	Автотранспортны
					,				е работы
2732	Керосин (660*)		0.10179/0.12215	-37/1296	-255/161	6053	100	100	Автотранспортны
0.000	_		0 00006/0 00151	27/1006	672/107	6050	00.0	01 0	е работы
2908	Пыль неорганическая:		0.93836/0.28151	-3//1296	6/3/18/	6052	83.2		Выемочно-
	70-20% двуокиси кремния								погрузочные работы
	(шамот, цемент, пыль цементного производства								Рассты
	- глина, глинистый								
	сланец, доменный шлак,								
	Colonia, Monolinian molate								

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Тарбагатайский район, СК "Зайсан" - Сатпаевское месторождение ПГС

Код		Расчетная максима	альная приземная	Координ	аты точек	Источ	ники, д	дающие	Принадлежность
вещества	Наименование	концентрация (общая	я и без учета фона)	с макси	мальной	наибо	ольший в	вклад в	источника
/	вещества	доля ПДК	1 / мг/м3	приземно	ой конц.	макс.	концен	нтрацию	(производство,
группы									цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)	T n v i	лпы суммаци			6054		77.8	Отвал вскрышной породы Вскрышные работы
	I						1	1	
31 0301	Азота (IV) диоксид (4)		0.81434	-37/1296	-255/161	6053	100	100	Автотранспортны е работы
0330	Сера диоксид (526)								

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан

Код вещества / группы	Наименование вещества		/ мг/м3	с макси приземно	ой конц.	наибс	ольший в концен	вклад в нтрацию	Принадлежность источника (производство, цех, участок)
суммации		B WNION	на границе санитарно -	в жилои	на грани це СЗЗ	N MCT.	6 BK	лада	
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
			ктива (конец 2019 го, яющие веще		: 	l i		<u> </u>	
0301	Азота (IV) диоксид (4)		0.05574(0.01574)/ 0.01115(0.00315) вклад предпр.= 28%		-741/518	0013			АБЗ в г. Зайсан. Асфальтосмесите ль ДС-158
0304	Азот (II) оксид (6)		0.012023/0.004809		*/*	0010		10.8	АБЗ в г. Зайсан. Паровой котел Е-1/9 АБЗ в г.
						0013		33.3	Зайсан. Паровой котел E-1/9 АБЗ в г. Зайсан.
0328	Углерод (593)		0.00048/0.00007		-741/518	0013		58.8	Асфальтосмесите ль ДС-158 АБЗ в г. Зайсан. Асфальтосмесите
0000	4506		0.12671.0.00675.1		000/005	0010			ль ДС-158 АБЗ в г. Зайсан. Паровой котел Е-1/9
0330	Сера диоксид (526)		0.13671(0.09671)/ 0.06835(0.04835) вклад предпр.= 71%		-800/295	0013			АБЗ в г. Зайсан. Асфальтосмесите ль ДС-158

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан с мероприятиями

Код			альная приземная	Координ	аты точек	1			Принадлежность
вещества	Наименование	концентрация (общая	н и без учета фона)	с макси	мальной	наибо	льший і	вклад в	источника
/	вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	конце	нтрацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BF	слада	1
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ΣЖ	C33	1
1	2	3	4	5	6	7	8	9	10
0333	Сероводород (0.00219/0.00002		-800/295	0019		82.6	АБЗ в г.
	Дигидросульфид) (528)								Зайсан.
									Мазутохранилище
						0020		17.4	АБЗ в г.
									Зайсан. Емкость
									для хранения
									дизельного
									топлива
0337	Углерод оксид (594)		0.08385(0.00385)/		-800/295	0013		86.6	АБЗ в г.
			0.41925(0.01925)						Зайсан.
			вклад предпр.= 4.6%						Асфальтосмесите
									ль ДС-158
						0010		13.4	АБЗ в г.
									Зайсан. Паровой
									котел Е-1/9
2754	Углеводороды предельные		0.35608/0.35608		1114/735	6021		16.3	АБЗ в г.
	С12-19 /в пересчете на								Зайсан.
	C/ (592)								Битумохранилище
						6023		15.5	АБЗ в г.
									Зайсан.
									Битумохранилище
						6028		13.2	АБЗ в г.
									Зайсан.
									Битумные котлы
2904	Мазутная зола		0.000693/0.000014		*/*	0013		100	АБЗ в г.
	теплоэлектростанций /в		.,						Зайсан.
	пересчете на ванадий/ (Асфальтосмесите
	331)								ль ДС-158

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан с мероприятиями

Код вещества / группы	Наименование вещества	Расчетная максима концентрация (общая доля ПДК	альная приземная я и без учета фона)	с макси		наибо	льший в	ающие клад в трацию	Принадлежность источника (производство, цех, участок)
суммации		в жилой зоне	на границе санитарно -	зоне	на грани це СЗЗ			лада	
			защитной зоны	X/Y	X/Y		ЖЗ	C33	1.0
1	2	3	4	5	6	7	8	9	10
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)		0.7498/0.22494		-800/295	6017		37.4	АБЗ в г. Зайсан. Дробильно- сортировочная линия
	месторождении) (303)					6014			АБЗ в г. Зайсан. Дробильно- сортировочная линия
						0013		18.5	АБЗ в г. Зайсан. Асфальтосмесите ль ДС-158
		груг Груг	пы суммаци _.	и:	!				
02 0301	Азота (IV) диоксид (4)		0.19641(0.11641) вклад предпр.= 59%		-800/295	0013		96.6	АБЗ в г. Зайсан. Асфальтосмесите ль ДС-158
0304 0330	Азот (II) оксид (6) Сера диоксид (526)								Ho 100

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан с мероприятиями

Код вещества / группы	Наименование вещества	Расчетная максима концентрация (общая доля ПДК	_	с макси	аты точек мальной ой конц.	наибо	льший в	клад в	Принадлежность источника (производство, цех, участок)
суммации		в жилой	на границе		на грани	N	% BK	лада	
		зоне	санитарно -	зоне	· ·	ист.			
-1		2	защитной зоны	X/Y	X/Y		ЖЗ	C33	1.0
1	2	3	4	5	6	7	8	9	10
2904	Мазутная зола теплоэлектростанций /в пересчете на ванадий/ (331) Сера диоксид (526)		0.13852(0.09852)		-800/295	0013		96.1	АБЗ в г.
0333			вклад предпр.= 71%		-0007293	0013			Зайсан. Асфальтосмесите ль ДС-158
0333	Сероводород (Дигидросульфид) (528)								
31 0301	Азота (IV) диоксид (4)		0.19244(0.11244) вклад предпр.= 58%		-800/295	0013			АБЗ в г. Зайсан. Асфальтосмесите ль ДС-158
0330	Сера диоксид (526)								
			Пыли:						
2904	Мазутная зола теплоэлектростанций /в пересчете на ванадий/ (331)		0.92714(0.52714) вклад предпр.= 57%		-800/295	0013		31.4	АБЗ в г. Зайсан. Асфальтосмесите ль ДС-158
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак,					6017		31.4	АБЗ в г. Зайсан. Дробильно- сортировочная линия

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан с мероприятиями

Код		Расчетная максима	альная приземная	Координ	аты точек	Источ	ники, д	дающие	Принадлежность
вещества	Наименование	концентрация (общая	н и без учета фона)	с макси	мальной	наибо	льший в	вклад в	источника
/	вещества	доля ПДК	/ мг/м3	приземно	ой конц.	макс.	концен	нтрацию	(производство,
группы									цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N % вклада		пада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)					6014		27.9	АБЗ в г. Зайсан. Дробильно- сортировочная линия

ЭРА v3.0 ТОО "УК-ПРОЕКТ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево

Код вещества / группы	Наименование вещества	Расчетная максима концентрация (общая доля ПДК	и без учета фона)	с макси		наибс	ники, д эльший в концен	клад в	Принадлежность источника (производство, цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
		-	ктива (конец 2022 го						
	I	нек q ть Е І	яющие веще	ства	: 	1 1		1	1
0301	Азота (IV) диоксид (4)	0.01169/0.00234	0.0131/0.00262	81/1229	-905/272	0015	75.6	75.9	A53 b c.
						0018	17.8	18	Сатпаево. Асфальтосмесите ль ДС-508 АБЗ в с. Сатпаево. Паровой котел Е-1/9
						6041	6.6		АБЗ в с. Сатпаево. Бульдозерные и погрузочные работы
0304	Азот (II) оксид (6)	0.03384/0.013536	0.03384/0.013536	*/*	*/*	6041	65	65	АБЗ в с. Сатпаево. Бульдозерные и погрузочные работы
						0018	26.6		АБЗ в с. Сатпаево. Паровой котел E-1/9
						0015	8.9		АБЗ в с. Сатпаево. Асфальтосмесите

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево с мероприятиями

1	2	3	4	5	6	7	8	9	10
									ль ДС-508
0328	Углерод (593)	0.00122/0.00018	0.00136/0.0002	81/1229	-910/51	0015	74.6	73.5	АБЗ в с.
									Сатпаево.
									Асфальтосмесите
									ль ДС-508
						0018	22.6	24	АБЗ в с.
									Сатпаево.
									Паровой котел
									E-1/9
0330	Сера диоксид (526)	0.00539/0.0027	0.0061/0.00305	81/1229	-910/51	0018	50.9	51.3	АБЗ в с.
									Сатпаево.
									Паровой котел
									E-1/9
						0015	48.2	48	АБЗ в с.
									Сатпаево.
									Асфальтосмесите
									ль ДС-508
0333	Сероводород (0.00354/0.00003	0.00417/0.00003	81/1229	-910/51	0016	84.5	84.2	АБЗ в с.
	Дигидросульфид) (528)								Сатпаево.
									Мазутохранилище
						0021	15.5	15.8	АБЗ в с.
									Сатпаево.
									Емкость для
									хранения
									дизельного
									топлива
0337	Углерод оксид (594)	0.00299/0.01497	0.00332/0.01659	81/1229	-905/272	0015	56.3	57.2	АБЗ в с.
									Сатпаево.
									Асфальтосмесите
						60.41	00 1	0.0	ль ДС-508
						6041	22.1	20.8	АБЗ в с.
									Сатпаево.
									Бульдозерные и
									погрузочные
						0016	01 6	0.0	работы
						0018	21.6	22	АБЗ в с.

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево с мероприятиями

1	2	3	4	5	6	7	8	9	10
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.022879/0.114395	0.022879/0.114395	*/*	*/*	6041	100	100	Сатпаево. Паровой котел Е-1/9 АБЗ в с. Сатпаево. Бульдозерные и погрузочные работы
2732	Керосин (660*)	0.017769/0.021323	0.017769/0.021323	*/*	*/*	6041	100	100	АБЗ в с. Сатпаево. Бульдозерные и погрузочные работы
2754	Углеводороды предельные C12-19 /в пересчете на C/ (592)	0.23329/0.23329	0.25577/0.25577	81/1229	1067/428	6044	21.3	21.4	АБЗ в с. Сатпаево. Битумные котлы.
						6045	21.2	21.4	АБЗ в с. Сатпаево. Битумные котлы.
						6043	21.2	20.9	АБЗ в с. Сатпаево. Битумные котлы.
2904	Мазутная зола теплоэлектростанций /в пересчете на ванадий/ (331)	0.009131/0.000183	0.009131/0.000183	*/*	*/*	0015	100	100	АБЗ в с. Сатпаево. Асфальтосмесите ль ДС-508
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)	0.62358/0.18707	0.66606/0.19982	81/1229	-910/51	0015	26.5	26.9	АБЗ в с. Сатпаево. Асфальтосмесите ль ДС-508

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево с мероприятиями 6 8 10 6034 19.9 АБЗ в с. 20.4 Сатпаево. Пробильносортировочная линия 6033 20.2 19.7 АБЗ в с. Сатпаево. Дробильносортировочная линия Группы суммации: -905/272 02 0301 0.01947 0.02204 81/1229 0015 69.9 70.2 АБЗ в с. Азота (IV) диоксид (4) Сатпаево. Асфальтосмесите ль ДС-508 0304 Азот (II) оксид (6) 0018 25.7 25.7 АБЗ в с. Сатпаево. Паровой котел E-1/9 0.330 Сера диоксид (526) 2904 Мазутная зола теплоэлектростанций /в пересчете на ванадий/ (331) 30 0330 Сера диоксид (526) 0.00879 0.01004 81/1229 -910/51 0018 41.9 42.6 АБЗ в с. Сатпаево. Паровой котел E - 1/90333 Сероводород (0016 34 34.6 АБЗ в с. Сатпаево. Дигидросульфид) (528) Мазутохранилище 0015 17.1 15.7 АБЗ в с. Сатпаево. Асфальтосмесите

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево с мероприятиями

1	2	3	4	5	6	7	8	9	10
0330	Азота (IV) диоксид (4) Сера диоксид (526)	0.01708	0.01919	81/1229	-905/272	0015	67 28.2		ль ДС-508 АБЗ в с. Сатпаево. Асфальтосмесите ль ДС-508 АБЗ в с. Сатпаево. Паровой котел Е-1/9
			Пыли:						
2904	Мазутная зола теплоэлектростанций /в пересчете на ванадий/ (331)	0.57434	0.63227	81/1229	-910/51		52.4	54.2	АБЗ в с. Сатпаево. Асфальтосмесите ль ДС-508
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей					6034	13.4	12.6	АБЗ в с. Сатпаево. Дробильно- сортировочная линия
	казахстанских месторождений) (503)					6033	13.2	12.5	АБЗ в с. Сатпаево. Дробильно- сортировочная линия

ЭРА v3.0 ТОО "УК-ПРОЕКТ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Жарминский район, СК "Зайсан" - Битумное хозяйство

Код			альная приземная	_	аты точек				Принадлежность
вещества	Наименование	концентрация (общая	я и без учета фона)	с макси	имальной	наибо	льший в	клад в	источника
/	вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	концен	трацию	(производство,
группы									цех, участок
суммации		в жилой	на границе	в жилой	на грани	N	% BK.	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
		•	цествующее положение						
		Загрязн	яющие веще	ства	:				·
			_						
0301	Азота (IV) диоксид (4)		0.04286/0.008572		*/*	6057		100	Стоянка
0.004			0.00040040.001000			6055		100	автотранспорта
0304	Азот (II) оксид (6)		0.003482/0.001393		*/*	6057		100	Стоянка
0.2.2.0	(506)		0 000000/0 0011/41		*/*	6057		1.00	автотранспорта
0330	Сера диоксид (526)		0.002282/0.001141		* / *	6057		100	Стоянка
0337	Углерод оксид (594)		0.00201/0.01004		128/-473	6057		100	автотранспорта Стоянка
0337	утлерод оксид (394)		0.00201/0.01004		120/-4/3	0037		100	автотранспорта
2704	Бензин (нефтяной,		0.01637/0.08185		*/*	6057		100	Стоянка
	малосернистый) /в		0.0103770.00103		/	0037		100	автотранспорта
	пересчете на углерод/ (abioipanchopia
	(60)								
	Углеводороды предельные		0.16235/0.16235		557/214	0023		45.9	Резервуары для
	С12-19 /в пересчете на								хранения
	C/ (592)								разогретого
									битума
						0022		45.6	Резервуары для
									хранения
									разогретого
									битума
						6055		5.6	Битумохранилище

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Жарминский район, СК "Зайсан" - Битумное хозяйство

Код		Расчетная максима	альная приземная	Координ	аты точек	Источ	ники, д	дающие	Принадлежность
вещества	Наименование	концентрация (общая	н и без учета фона)	с максимальной наибольший вклад в					источника
/	вещества	доля ПДК	приземн	макс.	концен	нтрацию	(производство,		
группы								цех, участок)	
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		зоне	зоне санитарно -						
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
31 0301	Азота (IV) диоксид (4)		0.045141		*/*	6057			Стоянка автотранспорта
0330	Сера диоксид (526)								1 1
Примечание: X/Y=* * - Расчеты не проводились. Расчетная концентрация принята на уровне максимально возможной (теоретич									ретически)

ЭРА v3.0 ТОО "УК-ПРОЕКТ"
Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Строительный камень

Код	Ск заисан - строительны		альная приземная	Координ	аты точек	Источ	иники, л	дающие	Принадлежность
вещества	Наименование	концентрация (общая	-	_	мальной		ольший в		источника
. /	вещества	•	2 / мг/м3					трацию	(производство,
группы	·			1			·	<u>.</u> .	цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЕЖ	C33	
1	2	3	4	5	6	7	8	9	10
		Суі	цествующее положение						
		Загрязн	яющие веще	ства	:				
0301	Азота (IV) диоксид (4)		0.10668/0.02134		-43/1107	6063		72.2	Транспортные
									работы
						6060			Буровые работы
0304	Азот (II) оксид (6)		0.02749/0.01099		-945/168	6060			Буровые работы
						6063		18.9	Транспортные
0328	Углерод (593)		0.02277/0.00342		1140/598	6063		90.1	работы
0320	углерод (393)		0.02277/0.00342		1140/396	0003		90.1	Транспортные работы
						6060		9.9	Буровые работы
0330	Сера диоксид (526)		0.0233/0.01165		533/1098	6063			Транспортные
0000	copa gronoria (cz c)		0.020070.01100		00071000	0000		01.1	работы
						6060		15.9	Буровые работы
0337	Углерод оксид (594)		0.01075/0.05373		533/1098	6063		91.7	Транспортные
									работы
						6060		8.3	Буровые работы
0703	Бенз/а/пирен (54)		0.00657/6.567e-8		342/1138	6063		100	Транспортные
									работы
1301	Проп-2-ен-1-аль (482)		0.00918/0.00028		-590/852	6060			Буровые работы
1325	Формальдегид (619)		0.00551/0.00028		-590/852	6060		100	Буровые работы
2732	Керосин (660*)		0.01232/0.01478		342/1138	6063		100	Транспортные
0.7.5.4			0.00055/0.0055		500/050				работы
2754	Углеводороды предельные		0.00275/0.00275		-590/852	6060		100	Буровые работы
I	С12-19 /в пересчете на						1	1	

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.5 Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Строительный камень

	Расчетная максима	альная приземная	Координ	аты точек	Источ	иники, д	цающие	Принадлежность
Наименование	концентрация (общая	н и без учета фона)	с макси	мальной	наибо	ольший в	клад в	источника
вещества	доля ПДК	/ мг/м3	приземн	ой конц.	макс.	. концен	трацию	(производство,
								цех, участок)
	в жилой	на границе	в жилой	на грани	N	% BK	лада	
	зоне	санитарно -	зоне	це СЗЗ	ист.			
		защитной зоны	X/Y	X/Y		ЖЗ	C33	
2	3	4	5	6	7	8	9	10
C/ (592)								
Пыль неорганическая:		0.07031/0.02109		-909	6062		37.7	Погрузочные
70-20% двуокиси кремния				/-200				работы
(шамот, цемент, пыль								
цементного производства								
- глина, глинистый								
сланец, доменный шлак,								
песок, клинкер, зола,								
кремнезем, зола углей								
казахстанских								
месторождений) (503)								
					6060		28.9	Буровые работы
					6058		17.4	Вскрышные
								работы
1	Груг	ппы суммаци І	и:	ı	ı	ı	İ	1
Двоша (ТУ) пиоксип (Д)		n 12988		-43/1107	6063		74 1	Транспортные
risola (17) gronoria (17)		0.12300		13/110/	0005			работы
Сера диоксил (526)					6060			Буровые работы
		0.16005(0.08005)		-909				Погрузочные
1					0002			работы
Пыль неорганическая:		, <u>-</u> <u>-</u> <u>-</u> <u>-</u>			6060			Буровые работы
								01 3==== F=== 3124
· -								
1 ' ' '								
	2 С/ (592) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	Наименование вещества 2 С/ (592) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503) Гру г Азота (IV) диоксид (4) Сера диоксид (526) Углерод оксид (594) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль	вещества доля ПДК / мг/м3 в жилой зоне 2 С/ (592) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503) Группы суммаци 0.12988 Сера диоксид (526) Углерод оксид (594) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль доля ПДК / мг/м3 на границе санитарно – защитной зоны 0.07031/0.02109	Наименование вещества Концентрация (общая и без учета фона) приземн В жилой на границе санитарно – защитной зоны X/Y 2 3 4 5 С/ (592) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503) Группы суммации: Общая и без учета фона) приземн приземни в жилой зоне X/Y 3 4 5 0.07031/0.02109 0.07031/0.02109 7 руппы суммации: Общая и без учета фона) приземния и зоне X/Y 5 0.07031/0.02109 0	Наименование вещества Концентрация (общая и без учета фона) приземной конц.	Наименование вещества концентрация (общая и без учета фона) с максимальной приземной конц. макс. В жилой на границе санитарно зоне це СЗЗ ист. зоне це СЗЗ х/у ист. зоне де СЗЗ	Наименование вещества Концентрация (общая и без учета фона) с максимальной макс. концентрация (общая и без учета фона) приземной конц. Макс. концентрация в жилой на границе санитарно - зашитной зоны доне це Сзз ист. 2 3 4 5 6 7 8 С/ (592) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503) Группы суммаци и: Азота (IV) диоксид (4) Сера диоксид (526) Углерод оксид (594) Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль в клад предпр.= 50% двуокиси кремния (шамот, цемент, пыль обоба боба соба двуокиси кремния (шамот, цемент, пыль обоба без двуокиси кремния (шамот, цемент, пыль обоба самок деять неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль обоба самок демент, пыль обоба самок	Наименование вещества концентрация (общая и без учета фона) с максимальной приземной конц. макс. концентрация (общая и без учета фона) приземной конц. макс. концентрация в жилой приземной конц. макс. концентрация в жилой зоне защитной зоне зоне зоне зоне зоне зоне зоне зоне

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

г. Зайсан, СК "Зайсан" - Строительный камень

Код		Расчетная максима	альная приземная	Координ	аты точек	Источ	ники, д	цающие	Принадлежность
вещества	Наименование	концентрация (общая				наибо	ольший в	вклад в	источника
/	вещества	доля ПДК	приземн	макс. концентраци			(производство,		
группы									цех, участок)
суммации		в жилой	на границе	в жилой	N % вклада				
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
	- глина, глинистый								
	сланец, доменный шлак,								
	песок, клинкер, зола,								
	кремнезем, зола углей								
	казахстанских								
	месторождений) (503)								
						6058		15.3	Вскрышные
									работы

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

	Ho-		Норма	ативы выбросо	ды загрязняющ	их веществ		
Производство	мер ис-	CVIIIO CERRI MONIO	ее положение					год
цех, участок	точ-	-	ее положение 25 год	да 2026 -	-2035 год	п	ДВ	дос-
Hex, yaddiok	ника	на 20	25 год	на 2020	2033 ГОД	11	дь	тиже
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	ния
	роса	1/0	171ОД	1 / C	171ОД	170	171ОД	НДВ
1	2	3	4	5	6	7	8	9
(0008) Взвешенные част	гицы Р	PM10 (116)						ı
Организован	ны е	е источ	ники					
Ремонтно-механическая	0008	0.000405	0.0021	0.000405	0.0021	0.000405	0.0021	2035
мастерская								
неорганизов	анн	ые ист	очники	•	•	•	•	•
Ремонтно-механическая	6006	0.00602	0.0105984	0.00602	0.0105984	0.00602	0.0105984	2035
мастерская. Медницкий								
цех								
Ремонтно-механическая	6008	0.00404	0.00554	0.00404	0.00554	0.00404	0.00554	2035
мастерская.Токарный								
цех								
Итого:		0.01006	0.0161384	0.01006	0.0161384	0.01006	0.0161384	
Bcero:		0.010465		0.010465	0.0182384	0.010465	0.0182384	2035
(0168) Олово оксид /в	перес	чете на олов	0/ (454)					
Организован								
Ремонтно-механическая	0005	1.E-10	0.0000112	1.E-10	0.0000112	1.E-10	0.0000112	2035
мастерская. Медницкий								
цех								
(0184) Свинец и его не				есчете на св	винец/ (523)			
Организован						1	1	
Ремонтно-механическая	0005	0.000005666	0.0000204	0.000005666	0.0000204	0.000005666	0.0000204	2035
мастерская. Медницкий								
цех								
1								

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

r. Sancah, Ch. Sancah		оизводствена	я оаза оез тр					
	Ho-		норма	тивы выбросс	ишикнекдлье во	их веществ		
	мер							1
Производство	NC-		ее положение					год
цех, участок	точ-	на 20	25 год	на 2026-	-2035 год	Н	ДВ	дос-
	ника							тиже
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	RNH
	poca							НДВ
1	2	3	4	5	6	7	8	9
(0301) Азота (IV) дион	ксид (4)						
Организован								
Ремонтно-механическая	0003	0.002911	0.005245	0.002911	0.005245	0.002911	0.005245	2035
мастерская								
	0008	0.0507622	0.2631531	0.0507622	0.2631531	0.0507622	0.2631531	2035
Моторный цех	0007	0.0303426	0.1573517	0.0303426	0.1573517	0.0303426		l l
Административно-	0009	0.0252812	0.3933792	0.0252812	0.3933792	0.0252812	0.3933792	2035
бытовой корпус								
NTOPO:		0.109297	0.819129	0.109297	0.819129	0.109297	0.819129	
(0304) Asot (II) okcu,	ц (6)							
Организован	ны е	источ	ники					
Ремонтно-механическая	0003	0.000473	0.0008523	0.000473	0.0008523	0.000473	0.0008523	2035
мастерская								
	0008	0.0082488	0.0427624	0.0082488	0.0427624	0.0082488		I
Моторный цех	0007	0.0049307	0.0255696	0.0049307	0.0255696	0.0049307	0.0255696	l l
Административно-	0009	0.0041082	0.0639241	0.0041082	0.0639241	0.0041082	0.0639241	2035
бытовой корпус								
MTOPO:		0.0177607	0.1331084	0.0177607	0.1331084	0.0177607	0.1331084	
(0322) Серная кислота								
Организован			· ·	_				
Ремонтно-механическая	0001	0.0000333	0.0000108	0.0000333	0.0000108	0.0000333	0.0000108	2035
мастерская.								
Аккумуляторная								

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

	Но-		Норма	тивы выбросо	в загрязняющи	х веществ		
	мер		1					1
Производство	NC-		е положение					год
цех, участок	точ-	на 202	25 год	на 2026-	2035 год	н д	, В	дос-
	ника							тиже
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	RNH
	poca							НДВ
1	2	3	4	5	6	7	8	9
(0330) Сера диоксид (526)							
Организован	ны е	источ	ники					
Ремонтно-механическая	0003	0.014985	0.017712	0.014985	0.017712	0.014985	0.017712	2035
мастерская								
	0008	0.260415	0.984	0.260415	0.984	0.260415	0.984	
Моторный цех	0007	0.156195	0.5904	0.156195	0.5904	0.156195	0.5904	
Административно-	0009	0.13014	1.3284	0.13014	1.3284	0.13014	1.3284	2035
бытовой корпус								
Итого:		0.561735	2.920512	0.561735	2.920512	0.561735	2.920512	
(0333) Сероводород (Ді	_							
Организован				ı	i	į.		•
A3C	0006	0.0000391	0.0000252	0.0000391	0.0000252	0.0000391	0.0000252	2035
(0337) Углерод оксид	(594)	l						
Организован	ны е	источ						
Ремонтно-механическая	0003	0.0431088	0.0776736	0.0431088	0.0776736	0.0431088	0.0776736	2035
мастерская								
	0008	0.7493249	3.8905613	0.7493249	3.8905613	0.7493249	3.8905613	2035
Моторный цех	0007	0.4493418	2.330208	0.4493418	2.330208	0.4493418	2.330208	2035
Административно-	0009	0.3743868	5.82552	0.3743868	5.82552	0.3743868	5.82552	2035
бытовой корпус								
Итого:		1.6161623	12.1239629	1.6161623	12.1239629	1.6161623	12.1239629	
(0415) Смесь углеводор	родов	предельных С	1-C5 (1531*,	<u> </u> 1539*)				
Организован								

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

г. заисан, Ск "заисан"		оизводствена						
	Ho-		Норма	ативы выбросс	идикнекдлее во	их веществ		
	мер							
Производство	NC-	существующе	ее положение					год
цех, участок	точ-	на 2025 год		на 2026-2035 год		ндв		дос-
	ника							тиже
	выб-	г/с	т/год	г/с	т/год	r/c	т/год	ния
	poca							ндв
1	2	3	4	5	6	7	8	9
A3C	0006	3.28	0.0712	3.28	0.0712	3.28	0.0712	2035
(0416) Смесь углеводо	_	=	6-C10 (1532*,	1540*)				
Организован			<u>.</u>					
A3C	0006	0.8	0.01735	0.8	0.01735	0.8	0.01735	2035
(0501) Пентилены (ами	лены -	смесь изоме	ров) (468)					1
Организован	ные	источ	ники					
A3C	0006	0.1088	0.00236	0.1088	0.00236	0.1088	0.00236	2035
(0602) Бензол (64)								
Организован	ные	источ	ники	•	'	•		
A3C	0006	0.087	0.001888	0.087	0.001888	0.087	0.001888	2035
(0616) Ксилол (смесь	изомер	ов о-, м-, п	·-) (327)					
Организован	ные	источ	ники					
A3C	0006	0.00653	0.0001416	0.00653	0.0001416	0.00653	0.0001416	2035
(0621) Толуол (567)								
Организован	ные	. источ	ники		ı			1
A3C	0006			0.0631	0.00137	0.0631	0.00137	2035
(0627) Этилбензол (68	<u>1</u> 7)							

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

1. Sancan, en Sancan	Ho-							
	мер							
Производство	NC-	существующе	ее положение					год
цех, участок	точ-	на 20	25 год	на 2026-	-2035 год	Н	ДВ	дос-
	ника							тиже
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	пия
	poca							НДВ
1	2	3	4	5	6	7	8	9
Организован								
A3C	0006	0.002175	0.0000472	0.002175	0.0000472	0.002175	0.0000472	2035
(2754) Углеводороды п	_		в пересчете н	a C/ (592)				
Организован					i	•	i	•
A3C	0006	0.0139	0.00896	0.0139	0.00896	0.0139	0.00896	2035
(2908) Пыль неорганич			=	(шамот, цеме	нт, пыль цеме	нтного (503)		
Организован				ı	ı	•		
Ремонтно-механическая	0003	0.025641	0.03058	0.025641	0.03058	0.025641	0.03058	2035
мастерская								
	0008			0.445599				
Моторный цех	0007							
Административно-	0009	0.222684	2.2935	0.222684	2.2935	0.222684	2.2935	2035
бытовой корпус								
Итого:		0.961191		0.961191	4.77048	0.961191	4.77048	
Неорганизов							l	1
Площадка для	6016	0.0043737	0.0354884	0.0043737	0.0354884	0.0043737	0.0354884	2035
временного хранения								
ЗОЛЫ								
Bcero:		0.9655647	4.8059684	0.9655647	4.8059684	0.9655647	4.8059684	2035
(2909) Пыль неорганич	еская:						1	
Неорганизов			очники	,,,,,	,	, ,		
Склад угля	6013			0.01566875	0.0683251	0.01566875	0.0683251	2035
	1	i l	i l				ı	i

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

r. Sancar, CR Sancar			a dasa des ip	-				
	Но- мер		Норма	ативы выбросс	ишикнекдлье во	их веществ		
Производство	мер	CVIIIO CERRIZIONI	ее положение					год
производство цех, участок	точ-		25 год	на 2026-2035 год		Н	дос-	
цех, yчасток	ника	Ha 20	114 2020 2		2033 10д	11	ндв	
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	ния
	роса	1.7 C	1710д	1.7 C	1710д	1.7 C	171°ОД	НДВ
1	2	3	4	5	6	7	8	9
(2930) Пыль абразивна	л ля (104	16*)		-	-		-	
, Неорганизов			очники					
- Ремонтно-механическая	6006	0.0038	0.00684	0.0038	0.00684	0.0038	0.00684	2035
мастерская. Медницкий	i							
цех								
(2936) Пыль древесная	(1058	3*)						
Неорганизов	занн	ине ист	очники					
Столярный цех	6012	0.1305	0.1165752	0.1305	0.1165752	0.1305	0.1165752	2 2035
Всего по предприятию:	<u> </u>	7.792536516	21.1160438	7.792536516	21.1160438	7.792536516	21.1160438	3
твердые:		1.126004116	5.0159787	1.126004116	5.0159787	1.126004116	5.0159787	7
Газообразные, ж и д в	ие:	6.6665324	16.1000651	6.6665324	16.1000651	6.6665324	16.1000651	

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

	Ho-		Норма	ативы выбросо	дымкнекдлье во	их веществ			
Производство	мер ис-	CVIIIACMBVIOIIIA	ее положение					год	
цех, участок	точ-	-	25 год	на 2026-2035 год		пдв		дос-	
Hex, yaddiok	ника	Па 2023 ГОД		на 2020	на 2020-2033 10д		пдь		
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	тиже ния	
	роса	1.7 C	171 ОД	1'/ C	171ОД	17,0	Т/ТОД	НДВ	
1	2	3	4	5	6	7	8	9	
(0008) Взвешенные част	гицы Р	M10 (116)						I .	
Организован	ны е	источ	ники						
Ремонтно-механическая	0008	0.000405	0.0021	0.000405	0.0021	0.000405	0.0021	2035	
мастерская									
Неорганизов	анн	ые ист	очники		•	•		•	
Ремонтно-механическая	6006	0.00602	0.0105984	0.00602	0.0105984	0.00602	0.0105984	2035	
мастерская. Медницкий									
цех									
Ремонтно-механическая	6008	0.00404	0.00554	0.00404	0.00554	0.00404	0.00554	2035	
мастерская.Токарный									
цех									
Итого:		0.01006	0.0161384	0.01006	0.0161384	0.01006	0.0161384	:	
Bcero:		0.010465		0.010465	0.0182384	0.010465	0.0182384	2035	
(0168) Олово оксид /в	перес	чете на олов	0/ (454)						
Организован									
Ремонтно-механическая	0005	1.E-10	0.0000112	1.E-10	0.0000112	1.E-10	0.0000112	2035	
мастерская. Медницкий									
цех									
(0184) Свинец и его не				есчете на св	винец/ (523)				
Организован						l	1	1	
Ремонтно-механическая	0005	0.000005666	0.0000204	0.000005666	0.0000204	0.000005666	0.0000204	2035	
мастерская. Медницкий									
цех									
							1		

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

1. Sancah, Cr. Sancah	Но- Нормативы выбросов загрязняющих веществ мер							
Производство	мер	существующе	ее положение					год
цех, участок	точ-	на 20	25 год	на 2026-	-2035 год	Н	дв	дос-
	ника	_						тиже
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	RNH
	poca							НДВ
1	2	3	4	5	6	7	8	9
(0301) Азота (IV) дио								
Организован	н ы е							
Ремонтно-механическая	0003	0.002911	0.005245	0.002911	0.005245	0.002911	0.005245	2035
мастерская								
	0008	0.0507622	0.2631531	0.0507622	0.2631531	0.0507622		1
Моторный цех	0007	0.0303426	0.1573517	0.0303426		0.0303426		
Административно-	0009	0.0252812	0.3933792	0.0252812	0.3933792	0.0252812	0.3933792	2035
бытовой корпус								
Итого:		0.109297	0.819129	0.109297	0.819129	0.109297	0.819129	
(0304) Азот (II) окси;								
Организован				·	•	i		
Ремонтно-механическая	0003	0.000473	0.0008523	0.000473	0.0008523	0.000473	0.0008523	2035
мастерская								
	0008	0.0082488	0.0427624	0.0082488		0.0082488		
Моторный цех	0007	0.0049307	0.0255696	0.0049307	0.0255696	0.0049307	0.0255696	2035
Административно-	0009	0.0041082	0.0639241	0.0041082	0.0639241	0.0041082	0.0639241	2035
бытовой корпус								
Итого:		0.0177607	0.1331084	0.0177607	0.1331084	0.0177607	0.1331084	
(0322) Серная кислота								
Организован	1	i		,	•			
Ремонтно-механическая	0001	0.0000333	0.0000108	0.0000333	0.0000108	0.0000333	0.0000108	2035
мастерская.								
Аккумуляторная								

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

1. Sancan, CR Sancan	Но- Нормативы выбросов загрязняющих веществ							
	мер		-	-	•			
Производство	ис-	существующе	е положение					год
цех, участок	точ-	на 202	25 год	на 2026-	2035 год	Н Д	Į В	дос-
	ника							тиже
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	пия
	poca							НДВ
1	2	3	4	5	6	7	8	9
(0330) Сера диоксид (
пввоеин в п ф О								
Ремонтно-механическая	0003	0.014985	0.017712	0.014985	0.017712	0.014985	0.017712	2035
мастерская								
	0008	0.260415	0.984	0.260415	0.984	0.260415	0.984	
Моторный цех	0007	0.156195	0.5904	0.156195	0.5904	0.156195	0.5904	
Административно-	0009	0.13014	1.3284	0.13014	1.3284	0.13014	1.3284	2035
бытовой корпус								
MTOPO:		0.561735	2.920512	0.561735	2.920512	0.561735	2.920512	
(0333) Сероводород (Ді	<u>І — І</u> игидро	 сульфид) (52	8)					
Организован	ны е	источ	ники					
A3C	0006	0.0000391	0.0000252	0.0000391	0.0000252	0.0000391	0.0000252	2035
(0337) Углерод оксид	(594)							
Организован	ны е	источ	ники					
Ремонтно-механическая	0003	0.0431088	0.0776736	0.0431088	0.0776736	0.0431088	0.0776736	2035
мастерская								
	0008	0.7493249	3.8905613	0.7493249	3.8905613	0.7493249	3.8905613	2035
Моторный цех	0007	0.4493418	2.330208	0.4493418	2.330208	0.4493418	2.330208	2035
Административно-	0009	0.3743868	5.82552	0.3743868	5.82552	0.3743868	5.82552	2035
бытовой корпус								
Итого:		1.6161623	12.1239629	1.6161623	12.1239629	1.6161623	12.1239629	
(0415) Смесь углеводор	оодов	предельных С	1-C5 (1531*,	<u> </u> 1539*)				
Организован								

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

г. заисан, Ск "заисан"		оизводствена						
	Ho-		Норма	ативы выбросс	идикнекдлее во	их веществ		
	мер							
Производство	NC-	существующе	ее положение					год
цех, участок	точ-	на 2025 год		на 2026-2035 год		ндв		дос-
	ника							тиже
	выб-	г/с	т/год	г/с	т/год	r/c	т/год	ния
	poca							ндв
1	2	3	4	5	6	7	8	9
A3C	0006	3.28	0.0712	3.28	0.0712	3.28	0.0712	2035
(0416) Смесь углеводо	_	=	6-C10 (1532*,	1540*)				
Организован			<u>.</u>					
A3C	0006	0.8	0.01735	0.8	0.01735	0.8	0.01735	2035
(0501) Пентилены (ами	лены -	смесь изоме	ров) (468)					1
Организован	ные	источ	ники					
A3C	0006	0.1088	0.00236	0.1088	0.00236	0.1088	0.00236	2035
(0602) Бензол (64)								
Организован	ные	источ	ники	•	'	•		
A3C	0006	0.087	0.001888	0.087	0.001888	0.087	0.001888	2035
(0616) Ксилол (смесь	изомер	ов о-, м-, п	·-) (327)					
Организован	ные	источ	ники					
A3C	0006	0.00653	0.0001416	0.00653	0.0001416	0.00653	0.0001416	2035
(0621) Толуол (567)								
Организован	ные	. источ	ники		ı			1
A3C	0006			0.0631	0.00137	0.0631	0.00137	2035
(0627) Этилбензол (68	<u>1</u> 7)							

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

	Но- мер		Нормативы выбросов загрязняющих веществ						
Производство	мер ис- точ- ника		ее положение 25 год	на 2026-	-2035 год	Н	ДВ	год дос- тиже	
	выб- роса	r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ	
1	2	3	4	5	6	7	8	9	
Организован АЗС	ные			0.002175	0.0000472	0.002175	0.0000472	2035	
(2754) Углеводороды пр			в пересчете н	a C/ (592)					
Организован АЗС	ны e			0.0139	0.00896	0.0139	0.00896	2035	
(2908) Пыль неорганиче			киси кремния	(шамот, цеме	нт, пыль цеме	нтного(503)		•	
Организован				•			•		
Ремонтно-механическая	0003	0.025641	0.03058	0.025641	0.03058	0.025641	0.03058	2035	
мастерская	0008							1	
Моторный цех	0007							1	
Административно- бытовой корпус	0009	0.222684	2.2935	0.222684	2.2935	0.222684	2.2935	2035	
MTOPO:		0.961191	4.77048	0.961191	4.77048	0.961191	4.77048		
Неорганизов	_								
Площадка для временного хранения золы	6016	0.0043737	0.0354884	0.0043737	0.0354884	0.0043737	0.0354884	2035	
SOUTH									
Bcero:		0.9655647					4.8059684	2035	
(2909) Пыль неорганиче			уокиси кремни	я (доломит,	пыль цементно	го(504)			
неорганизов	_		очники					1	
Склад угля	6013	0.01566875	0.0683251	0.01566875	0.0683251	0.01566875	0.0683251	2035	

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Производственая база без транспорта

r. Sancah, CR Sanca.	Ho-		-	-	в загрязняющи	TY BEILICTB		
	мер		порме	TIMBE BEOPOCO	B Salpasiialomi	и вещееть		
Производство	ис-	существующе	ее положение					год
цех, участок	точ-	на 20	25 год	на 2026-	на 2026-2035 год		ндв	
	ника							тиже
	выб-	r/c	т/год	г/с	т/год	r/c	т/год	пия
	poca							НДВ
1	2	3	4	5	6	7	8	9
(2930) Пыль абразивн	ая (104	6*)						
Неорганизо	ванн	ине ист	очники					
Ремонтно-механическа	я 6006	0.0038	0.00684	0.0038	0.00684	0.0038	0.00684	2035
мастерская. Медницки	й							
цех								
(2936) Пыль древесна	я (1058	(*)						
Неорганизо			· ·					
Столярный цех	6012	0.1305	0.1165752	0.1305	0.1165752	0.1305	0.1165752	2 2035
Всего по предприятию	:	7.792536516	21.1160438	7.792536516	21.1160438	7.792536516	21.1160438	3
твердые:		1.126004116	5.0159787	1.126004116	5.0159787	1.126004116	5.015978	7
Газообразные, ж и д	кие:	6.6665324	16.1000651	6.6665324	16.1000651	6.6665324	16.1000653	1

Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ г. Зайсан, СК "Зайсан" - АБЗ в г. Зайсан с мероприятиями

			Норматин	вы выбросов	хишикнекqлье	веществ		год дос-
КОД	Наименование загрязняющего	существующе	ее положение					тиже
3B	вещества	на 20	25 год	на 2026-	2035 годы	H	ідв	ния НДВ
		r/c	т/год	r/c	т/год	r/c	т/год	
1	2	3	4	5	6	7	8	9
0301	Азота (IV) диоксид (4)	0.1354586	0.3829455	0.1354586	0.3829455	0.1354586	0.3829455	2026
0304	Азот (II) оксид (6)	0.025132	0.0622286	0.025132	0.0622286	0.025132	0.0622286	2026
0328	Углерод (593)	0.0026836	0.010546	0.0026836	0.010546	0.0026836	0.010546	2026
0330	Сера диоксид (526)	2.18633344	5.129	2.18633344	5.129	2.18633344	5.129	2026
0333	Сероводород (Дигидросульфид) (528)	0.00021406	0.0000094	0.00021406	0.0000094	0.00021406	0.0000094	2026
0337	Углерод оксид (594)	0.8107032	2.1035	0.8107032	2.1035	0.8107032	2.1035	2026
	Углеводороды предельные C12- 19	8.0519055						2026
2904	/в пересчете на С/ (592) Мазутная зола теплоэлектростанций /в пересчете на ванадий/ (331)	0.0024	0.005	0.0024	0.005	0.0024	0.005	2026
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,	250.8520537	1297.7915322	250.8520537	1297.7915322	250.8520537	1297.7915322	2026
	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)							
	о по предприятию:				1306.2989427			
	ердые:						1297.8070782	
Газо	образные, жидкие:	11.2097468	8.4918645	11.2097468	8.4918645	11.2097468	8.4918645	

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

Тарбагатайский район, СК "Зайсан" - АБЗ в с. Сатпаево без тр-та

		Нормативы выбросов загрязняющих веществ							
код Зв	Наименование загрязняющего вещества	существующее положение на 2025 год		на 2026 - 2035 года		ндв		год дос- тиже	
		r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ	
1	2	3	4	5	6	7	8	9	
0301	Азота (IV) диоксид (4)	0.0950382	0.5774546	0.0950382	0.5774546	0.0950382	0.5774546	2026	
0304	Азот (II) оксид (6)	0.0154437	0.0938364	0.0154437	0.0938364	0.0154437	0.0938364	2026	
0328	Углерод (593)	0.0077275	0.0485	0.0077275	0.0485	0.0077275	0.0485	2026	
0330	Сера диоксид (526)	2.088026	13.04865864	2.088026	13.04865864	2.088026	13.04865864	2026	
	Сероводород (Дигидросульфид) (528)	0.000214	0.0000178	0.000214	0.0000178	0.000214	0.0000178	2026	
0337	Углерод оксид (594)	0.474905	3.02	0.474905	3.02	0.474905	3.02	2026	
2754	Углеводороды предельные C12-19 /в пересчете на C/ (592)	8.0519055	1.0986765	8.0519055	1.0986765	8.0519055	1.0986765	2026	
	Мазутная зола теплоэлектростанций /в пересчете на ванадий/ (331)	0.0016	0.01	0.0016	0.01	0.0016	0.01	2026	
2908	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (503)	144.0735196	910.00909506	144.0735196	910.00909506	144.0735196	910.00909506	2026	
Всего	по предприятию:	154.8083795	927.906239	154.8083795	927.906239	154.8083795	927.906239		
Тве	рдые:	144.0828471	910.06759506	144.0828471	910.06759506	144.0828471	910.06759506		
Газоо	бразные, жидкие:	10.7255324	17.83864394	10.7255324	17.83864394	10.7255324	17.83864394		

					год
на 202	2 год	Н	ДВ		дос-
					тиже
r/c	т/год	r/c	т	/год	пия
					НДВ
9	10	11		12	13
0.0950382	0.5774546	0.0950382	0	.5774546	
0.0154437	0.0938364	0.0154437	0	.0938364	2015
0.0077275	0.0485	0.0077275		0.0485	2015
2.088026	13.04865864	2.088026	13.	04865864	2015
0.000214	0.0000178	0.000214	0	.0000178	2015
0.474905	3.02	0.474905		3.02	
8.0519055	1.0986765	8.0519055	1	.0986765	2015
0.0016	0.01	0.0016		0.01	2015
111 0505106	010 0000506	1 1 6 1 0 0 5 0 0 0		0056500	0045
144.0735196	910.00909506	146.1925808	923	.0276588	2015
154.8083795	927.906239	156.9274407	9/10	92480274	
144.0828471	910.06759506			.0861588	
10.7255324	17.83864394	10.7255324	⊥ / •	83864394	

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

Жарминский район, СК "Зайсан" - Битумное хозяйство без транспорта

марминский район, ск	заиса	н - витумно	е хозяиство о	ез транспорта	·				
	Ho-	Нормативы выбросов загрязняющих веществ							
	мер								
Производство	ис-	существующе	е положение					год	
цех, участок т		на 2025 год		на 2026-2	2035 год	ндв		дос-	
	ника							тиже	
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	пия	
	poca							НДВ	
1	2	3	4	5	6	7	8	9	
(2754) Углеводороды п	редель	ные С12-19 /	в пересчете н	a C/ (592)					
Организован	ные	е источ	ники						
Резервуары для	0022	0.247	0.852	0.247	0.852	0.247	0.852	2026	
хранения разогретого									
битума									
	0023	0.247	1.29	0.247	1.29	0.247	1.29	2026	
Итого:		0.494	2.142	0.494	2.142	0.494	2.142		
Неорганизов	анн	иые ист	очники						
Битумохранилище	6055	0.0315	0.0261	0.0315	0.0261	0.0315	0.0261	1	
	6056	0.0157	0.0396	0.0157	0.0396	0.0157	0.0396	2026	
Итого:		0.0472	0.0657	0.0472	0.0657	0.0472	0.0657		
Bcero:		0.5412	2.2077	0.5412	2.2077	0.5412	2.2077	2026	
Всего по предприятию:		0.5412	2.2077	0.5412	2.2077	0.5412	2.2077		
твердые:									
Газообразные, ж и д к	ие:	0.5412	2.2077	0.5412	2.2077	0.5412	2.2077		
Организованные источн	ики	0.494	2.142	0.494	2.142	0.494	2.142		
Неорганизованные исто	чники	0.0472	0.0657	0.0472	0.0657	0.0472	0.0657		

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Строительный камень без тр-та

	Ho-	Нормативы выбросов загрязняющих веществ						
	мер							1
производство ис-			ее положение					год
цех, участок	точ-			на 2026-	на 2026-2035 год		Į В	дос-
	ника							тиже
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	RNH
	poca							НДВ
1	2	3	4	5	6	7	8	9
(0008) Взвешенные ча	стицы Р	M10 (116)						
неорганизо:	ванн	ые ист	очники					
Взрывные работы	6061		0.355264		0.355264		0.355264	2026
(0301) Азота (IV) ди	оксид (4)						
неорганизо:	ванн	ые ист	очники					
Буровые работы	6060	0.0505	0.048	0.0505	0.048	0.0505	0.048	2026
Взрывные работы	6061		0.0305		0.0305		0.0305	2026
Итого:		0.0505	0.0785	0.0505	0.0785	0.0505	0.0785	
(0304) ABOT (II) OKC	ид (6)							
неорганизо:	ванн	ые ист	очники					
Буровые работы	6060	0.06565	0.0624	0.06565	0.0624	0.06565	0.0624	2026
(0337) Углерод оксид	(594)							
неорганизо:	ванн	ые ист	очники					
Буровые работы	6060	0.042083	0.04	0.042083	0.04	0.042083	0.04	2026
Взрывные работы	6061		0.0122		0.0122		0.0122	2026
Итого:		0.042083	0.0522	0.042083	0.0522	0.042083	0.0522	
(2908) Пыль неоргани	ческая:	70-20% двус	киси кремния	(шамот, цеме	нт, пыль цемен	нтного(503)		
неорганизо:	ванн	ые ист	очники					
Вскрышные работы	6058	0.0664356	0.0065771	0.0664356	0.0065771	0.0664356	0.0065771	2026

ЭРА v3.0 ТОО "ВК-ЭКОПРОМ" Таблица 3.6 Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

г. Зайсан, СК "Зайсан" - Строительный камень без тр-та

	Ho-	Нормативы выбросов загрязняющих веществ								
	мер		_							
Производство	существующее положение на 2025 год						год			
цех, участок точ-			на 2026-	2035 года	Н	дос-				
	ника						тиже			
	выб-	r/c	т/год	r/c	т/год	r/c	т/год	пия		
	poca							ндв		
1	2	3	4	5	6	7	8	9		
Буровые работы	6060	0.11	0.104544	0.11	0.104544	0.11	0.104544	2026		
Погрузочные работы	6062	0.156156	0.073081	0.156156	0.073081	0.156156	0.073081	2026		
Транспортные работы	6063	0.001189	0.0047512	0.001189	0.0047512	0.001189	0.0047512	2026		
Отвал вскрышной	6064	0.0522	0.8230896	0.0522	0.8230896	0.0522	0.8230896	2026		
породы										
Зачистка разрезной	6059	0.0266448	0.0008793	0.0266448	0.0008793	0.0266448	0.0008793	2026		
траншеи и зачистка										
подуступов										
Итого:		0.4126254	1.0129222	0.4126254	1.0129222	0.4126254	1.0129222			
Всего по предприятию:		0.5708584	1.5612862	0.5708584	1.5612862	0.5708584	1.5612862			
Твердые: 0.4126254		0.4126254	1.3681862	0.4126254	1.3681862	0.4126254	1.3681862			
Газообразные, жидкие: 0.158233		0.158233	0.1931	0.158233	0.1931	0.158233	0.1931			
Организованные источники		_	-	_	-	-	-			
Неорганизованные исто	0.5708584	1.5612862	0.5708584	1.5612862	0.5708584	1.5612862				

5. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ НА ПЕРИОД НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ

Мероприятия по сокращению выбросов вредных веществ в периоды неблагоприятных метеоусловий (НМУ) данным проектом не разрабатывались в связи с отсутствием прогнозирования НМУ в городе Зайсан и других населенных пунктах, где размещены объекты данного предприятия.

6. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ НДВ

Согласно п.30 «Методики определения нормативов эмиссий в окружающую среду», производственный экологический контроль осуществляется на основе программы, разработанной в объеме необходимом для слежения за соблюдением экологического законодательства Республики Казахстан с учетом своих технических и финансовых возможностей.

ТОО «Строительная компания «Зайсан» для проведения контроля имеет «Программу работ по организации системы производственного экологического контроля окружающей среды ТОО «Строительная компания «Зайсан» на 2026-2035 годы на площадки «Производственная база в г. Зайсан», «АБЗ в г. Зайсан», «АБЗ в с. Сатпаево», «Карьер по добыче песчано-гравийной смеси на Сатпаевском месторождении», «Битумное хозяйство, железнодорожный тупик в п. Жангиз-Тобе Жарминского района», «Отработка строительного камня Зайсанского месторождения».

Предприятие отчитывается за выбросы перед местными органами по охране окружающей среды по утвержденной форме 2-ТП-воздух.

7. СПИСОК ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года №400-VI 3PK
- 2. Методика определения выбросов загрязняющих веществ в атмосферу для тепловых электростанций и котельных Приложение № 3 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө
- 3. Санитарные правила «Санитарно-эпидемиологические требования к санитарно защитным зонам объектов, являющимися объектами воздействия на среду обитания и здоровье человека». Утверждены приказом и. о. Министра здравоохранения РК от 11.01.2022 года за №КР ДСМ-2.
- 4. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 5. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.9.3. Расчет выбросов вредных веществ неорганизованными источниками
- 6. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 7. "Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.б. Методика расчета выбросов вредных веществ при работе асфальтобетонных заводов
- 8. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2004 г.
- 9. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005
- 10. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211.2.02.06-2004. Астана, 2005
- 11. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 12. Методика расчета выбросов загрязняющих веществ от предприятий дорожностроительной отрасли (раздел 4) Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 13. Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности. РНД 211.2.02.08-2004. Астана, 2004 г.