Министерство промышленности и строительства Республики Казахстан Комитет геологии МД «Востказнедра» ТОО «Gl gold»

ПЛАН

проведения операций по разведке твердых полезных ископаемых в контуре блоков

М-45-98-(10в-56-15,20), М-45-99-(10а-5а-11,16) (Тополевка), в Катон-Карагайском районе Восточно-Казахстанской области на 2025-2030 гг.

(Лицензия №3191-EL от 24 февраля 2025 г.)

Автор проекта: ТОО «ГРК Балхаш ГЕО»

Муратбеков Д. Х.

10alus

СПИСОК ИСПОЛНИТЕЛЕЙ:

Hoseus

Муратбеков Д. X. Главный геолог

Набиев Е.Р. Горный инженер-геолог

Тен Л.А. Геолог

Тен Л.А. Геолог Согласование проектных объемов и решение методических вопросов проведения оценочных работ.

Составление геолого-методической части и графических приложений проекта

Компьютерная обработка текста

Компьютерная обработка графических приложений

Нормоконтролер

Лим Д.К.

ОГЛАВЛЕНИЕ

$N_{\underline{0}}$	Наименование	Стр.
1	2	3
	ВВЕДЕНИЕ	5
1	ОБЩИЕ СВЕДЕНИЯ ОБ ОБЪЕКТЕ НЕДРОПОЛЬЗОВАНИЯ	6
1.1	Географо-экономическая характеристика района	6
2.	ГЕОЛОГО-ГЕОФИЗИЧЕСКАЯ ИЗУЧЕННОСТЬ ОБЪЕКТА	9
2.1	Краткий обзор, анализ ранее выполненных геологических исследований	9
2.2	Обоснование геологических исследований по дальнейшему направлению работ	13
2.3.	Краткие сведения о геологии	14
2.3.1	Неогеновая система	14
2.3.2.	Четвертичная система	16
3.	ГЕОЛОГИЧЕСКОЕ ЗАДАНИЕ	19
4.	СОСТАВ, ВИДЫ, МЕТОДЫ И СПОСОБЫ РАБОТ	20
4.1	Геологические задачи и методы их решения	20
4.2	Виды, объемы и сроки проведения геолоразведочных работ	20
4.2.1.	Предварительный целевой анализ имеющихся материалов, для проектирования разведочных выработок	22
4.2.2.	Геологические маршруты	22
4.2.3.	Поисково-разведочные работы	23
4.2.4.	Горные работы	23
4.2.5	Гидрогеологические исследования	23
4.2.6.	Шлиховая обработка проб	24
4.3.	Камеральные работы	27
5.	РАСЧЕТ ФИНАНСОВЫХ ЗАТРАТ НА ПЕРИОД 2025-2030 гг.	28
6.	ОХРАНА ТРУДА И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ	29
7.	ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ	31
8.	ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ	32
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	33
	ТЕКСТОВЫЕ ПРИЛОЖЕНИЯ	34

СПИСОК ТАБЛИЦ

№ п/п	№табл.	Наименование таблицы	
1	2	3	4
1	1.1	Географические координаты контура Лицензионной площади	8
2	5.1	Расчет финансовых затрат на период 2025-2030 гг.	28

СПИСОК РИСУНКОВ

.№ п/п	№ рис	Наименование рисунка	
1	2	3	4
1	1.1	Обзорная карта листа M-45-XXV	7
2	1.2	Космоснимок контурных границ Лицензионной площади	8
3	4.1	Схема промывки проб из шурфов	26

СПИСОК ТЕКСТОВЫХ ПРИЛОЖЕНИЙ

№ прил.	Наименование	Стр.
1	2	3
1	TDIATOWELIAE 1 Transpara Mo2101 EL oz 24 doppora 2025 p	25
1	ПРИЛОЖЕНИЕ 1. Лицензия №3191-EL от 24 февраля 2025 г.	35
2	ПРИЛОЖЕНИЕ 2. Координаты шурфов и координаты контура площадей	37
	геологической разведки	

СПИСОК ГРАФИЧЕСКИХ ПРИЛОЖЕНИЙ

№	Название чертежа	No	Кол-во	Масштаб
Π/Π	1	приложений	ЛИСТОВ	
1	2	3	4	5
1	Схематическая геологическая карта участка Тополевка	1	1	1:15 000
2	Картограмма расположения шурфов участка Тополевка	1	1	1:10 000

ВВЕДЕНИЕ

План разведки твердых полезных ископаемых разработан в соответствии с требованиями Кодекса Республики Казахстан от 27 декабря 2017 года «О недрах и недропользовании» (п. 3 статья 196).

Недропользователем является TOO «Gl gold».

Основанием для проектирования является Лицензия №3191-EL от 24 февраля 2025 г. на проведении разведки ТПИ в контуре блоков М-45-98-(10в-56-15,20), М-45-99-(10а-5а-11,16) пределах листа М-45-XXV.

Для удобства геологического описания и обсуждения рассматриваемой площади недропользования присвоено название «участок Тополевка».

Срок действия Лицензии: 6 (шесть) лет со дня выдачи.

Согласно геологическому заданию, целью планируемых работ являются геологоразведочные работы на полезные ископаемые по всей площади блоков.

Работы будут проводиться в соответствии с настоящим Планом, утвержденным и согласованным в соответствии с действующим законодательством Республики Казахстан.

1. ОБЩИЕ СВЕДЕНИЯ ОБ ОБЪЕКТЕ НЕДРОПОЛЬЗОВАНИЯ

1.1 Географо-экономическая характеристика района

Рассматриваемая территория принадлежит Большенарымскому, Курчумскому и Катон-Карагайскому районам Востоко-казахстанской области. Центр площади расположен в 280 км от г. Усть-Каменогорска, который связан с районными центрами шоссейной или улучшенной грунтовой дорогами. На большей южной части района в связи с отсутствием постоянных населенных пунктов, постоянных дорог нет.

Рельеф района неоднороден, южная часть площади, занятая Нарымским и Сарымсактинским хребтами, находится в высокогорной области с большими (500-800 до 1000-1500 метров) перепадами высот с ледниковыми формами рельефа-карами, моренами, трогами. Максимальная абсолютная отметка достигает 2950 м, Водораздельная часть Нарымского хребта пенепленизирована; северные склоны этого хребта обрывистые, крутые, а южные - более пологие. К северу от долины р. Нарым рельеф мелко- и среднегорный с относительными превышениям 200-300 м, с пологами склонами хребтиков и невысокие вершинами.

Гидрографическая сеть района к северу от водораздела принадлежит системе р. Нарым, а к югу от него - системе р. Курчум, являющиеся крупнейшими реками района. В них впадают многочисленные бурные реки, берушие начало в горах. Северные притоки р. Нарым более маловодны и спокойны. В целом район хорошо обеспечен водными ресурсами.

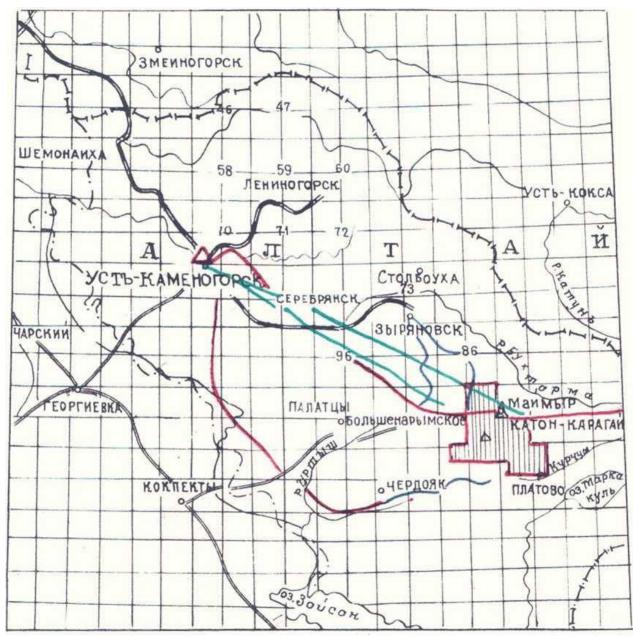


Рис. 1.1 Обзорная карта листа M-45-XXV.

Таблица 1.1 Географические координаты контура Лицензионной площади

№ угловой точки	Северная широта	Восточная долгота	Номер блока
1	49° 16' 0.0"	84° 59' 0.0"	М-45-98-(10в-5б-15) (частично),
2	49° 18' 0.0"	84° 59' 0.0"	М-45-98-(10в-5б-20) (частично),
3	49° 18' 0.0"	85° 01' 0.0"	М-45-99-(10а-5а-11) (частично),
4	49° 16' 0.0"	85° 01' 0.0"	М-45-99-(10а-5а-16) (частично).
	Площадь: 896	Количество блоков: 4 (четыре)	

Рис. 1.2 Космоснимок контурных границ Лицензионной площади.

2. ГЕОЛОГО-ГЕОФИЗИЧЕСКАЯ ИЗУЧЕННОСТЬ ОБЪЕКТА

2.1. Краткий обзор, анализ ранее выполненных геологических исследований

Площадные геологические работы в районе впервые проведены в 1928-30 гг. Н. С. Катковой. В 1935 г. водораздельная часть и северные склоны Нарымского хребта изучены НЛ. Морозенко. В 1939 г. В. Л. Воронко закартировал борта Нарымско-Бухтарминской котловины. В 1942 г. А.И. Семеновым изучена площадь севернее Нарымской долины. Им же составлена в 1943 г. первая государственная карта масштаба 1:200 000 листа М-45-ХХV.

В период с 1950 по 1955 гг. на площади геологическую съемку масштаба 1:100 000-1:200 000 проводят Старицын Ф. В., Бельговский Г. Л., Кабанов П.Н., Авров Д.П. На листе М-45-110-А-б Хоревой Б.Я. в это же время проведена геологическая съемка масштаба 1:50 000, которая признана некондиционной. Все эти материалы были обобщены в 1954-1956 гг. Р.К. Григайтис и Д.П. Авровым при составлении геологических карт масштаба 1:200 000 листов М-45-XXV и М-45-XXVI.

Этими исследователями на площади были выделены следующие стратиграфические подразделения: пугачевская свита, такырская, даланкаринская, балгынская, джалтырская. При этом часть свит (такырская, даланкаринская) были выделены в соответствии со стратиграфической схемой, разработанной для Калбы В.П. Нехорошевым, хотя они ни по объему, ни по составу не отвечали стратотипам. Джалтырская свита, состоящая из нескольких резко контрастных по составу толщ, датировалась единым верхне-визейским возрастом.

Из магматических пород были выделены:

- 1. Гипабиссальные интрузии диабазов, габбро-диабазов нижнего карбона.
 - 2. Гнейсовидные гранитоиды нижнего карбона.
- 3. Верхнекаменноугольные пермские гранитоиды (змеиногорский комплекс).
 - 4. Пермские гранитоиды (калбинский комплекс).

Приведено краткое описание выявленных ранее россыпей золота и кварцево-жильного золоторудного Маймырского месторождения.

После составления карты м-ба 1:200 000, непосредственно на площади геологосъемочных работ не поводилось, но на смежных площадях, в эти годы Алтайской поисково-съемочной, а с 1974 года Алтайской геолого-геофизической экспедицией (А.Ф. Дубинин, Л.Г. Ажгирей, Г.З. Назаров, Е.С. Шуликов и др.) проведена геологическая съемка м-ба 1:50 000.

В это же время в регионе были проведены также специализированные тематические и научно-исследовательские работы, посвященные вопросам стратиграфии, магматизма, металлогении и ряду других вопросов геологии района. Эти материалы были обобщены в сводных отчетах (Стучевский, Ермолов и

др.,1969; Ротараш, Мураховский и др., 1971; Мураховский и др. 1976), а также в многочисленных опубликованных статьях и фондовых отчетах.

В результате геологосъемочных и тематических работ разработана стратиграфическая схема района, которая была принята в 1971 году на стратиграфическом совещании в г. Алма-Ате.

К началу работ к границам площади были подведены следующие стратиграфические подразделения: нижнепалеозойские-нижнедевонские отложения, большереченская свита, белоубинская свита, джайдакская свита, балгынская свита, ларихинская свита, джалтырская свита. Кроме того, при тематических работах было установлено наличие на площади континентальных верхнепалеозойских отложений и разновозрастный характер отложений на участке стратотипа джалтырской свиты. Северо-западнее района работ в кремнистотуфогенной толще, относимой ранее к балгынской свите, были установлены споры, характерные для верхов пихтовской свиты, низов тарханской свиты. Таким образом, стратиграфическая схема района после составления карт масштаба 1:200 000 значительно изменилась. Вместе с тем изменилось и представление о структуре района. Если раньше здесь отмечалось в целом наращивание разреза от Северо-Восточной зоны смятия до Иртышского разлома, то к началу работ отчетливо наметилось синклинорное строение региона.

Появились новые сведения о магматизме. Был выделен верхне- визейский комплекс субвулканических габброидных интрузий, гнейсовидные граниты Иртышской зоны отнесены к змеиногорскому комплексу. В объяснительной записке к изданным картам м-ба 1:200 000 сведения о предшествующих поисковых работах приводятся в очень краткой форме. Поэтому здесь уместно на них остановиться несколько подробнее.

Целенаправленные поисковые работы в районе начались в 1935 году, когда на Южный Алтай была направлена ЦНИГРИ Нарымская оловорудная экспедиция, научным руководителем которой был Г.Л. Падалка. Эта экспедиция состояла из шести партий. Непосредственно в районе проводили работы партии под руководством И.К. Морозенко, Н.Ф. Аникеевой, А.А. Никонова. Экспедицией установлена полная бесперспективность района на олово и вольфрам И.К. Морозенко установлены старые старательские отработки россыпного золота на водораздельной части и северных склонах Нарымского хребта. В 1935 г. Н.Л. Аникеевой и Г.Л. Падалка по древним отвалам было открыто Джалтырское месторождение, расположенное вблизи границы площади в структурах Иртышской зоны. Это месторождение вначале из-за ошибки в химических анализах, показавших значительное содержание олова, разведывалось партией Нарымского отделения Союзникельоловоразведки, но олова не оказалось, и работы были прекращены. В 1951 году партией Казахского геологического управления на месторождении были проведены буровые работы, которыми было установлено наличие колчеданно-полиметаллического оруденения.

Добыча золота старательскими артелями из золотоносных россыпей производилась издавна. Из архивных материалов известно, что уже в 1903-1911 годах золотопромышленником Валитовым разрабатывался правый увал Теректинской россыпи системой открытых урезов.

В 1932 году Алкабекским комбинатом треста Алтайзолото сюда послана партия, переименованная в этом же году в промысловую контору, которая в свою очередь была преобразована в Южно-Алтайское приисковое управление. Этой организацией были открыты и начали отрабатываться россыпи по рекам Нарымке, Березовке, Маралихе, Максихе и др. Однако, в связи с тем, что россыпи отрабатывались бессистемным способом - вместо плановой отработки производилась избирательная выемка наиболее обогащенных участков - уже к 1939 году россыпи истощились. Попытка подсчета запасов, предпринятая геологом этого управления Тихоновым Б.А. в 1940 году, окончилась неудачей.

В 1938 году десятником Семичевым Д.М., работавшим в поисковой партии Нарымского приискового управления Треста Алтайзолото, открыто Маймырское месторождение, которое отрабатывалось подземным способом до 1948 года. После открытия этого месторождения, в 1940-41 гг. в районе Большенарымской поисковой партией были проведены поиски коренных источников золота. (Таратута и др., 1940, 1941 гг.). В результате этих работ был выявлен целый ряд рудопроявлений золота кварцево-жильного типа. Наиболее богатые из них были частично отработаны с поверхности, или подземным способом. В это же время было открыто Нижне-Теректинское рудопроявление, отнесенное авторами к типу "вторичных кварцитов". Опробованием здесь было установлено наличие золота с содержанием до 1,5 г/т. Этими работами была установлена широкая зараженность района золотом, были намечены участки для более детального изучения. Однако, с началом войны поисковые работы были прекращены и продолжалась только эксплуатация Маймырского месторождения вплоть до 1948 года, когда оно было законсервировано из-за отработки верхних горизонтов.

В 1952-53 гг. поисками золота в районе занималась Бухтарминская поисковая партия под руководством Берука И.И. Этой партией в основном были ревизованы известные ранее рудо-проявления и выявлен ряд новых, преимущественно кварцевожильного типа. Установлены в целом более низкие содержания, чем указывались ранее.

В 1964 году ревизию на золото в районе Маймырского месторождения и Шайтан-Булакского рудопроявления проводил отряд № 3 УГГП (Штейнберг 3.3., Синицин А.В. и др.). Этими исследователями впервые было обращено внимание на зоны вкрапленной сульфидной минерализации, но ввиду низких содержаний золота им была дана отрицательная оценка также, как и всему участку.

В 1972-74 гг. на листе М-44-93-Б Маркакольской партией АГЭ (Бейлин ЭЛ., Тарасов З.П. и др.) проведены опережающие геофизические работы масштаба 1:50 000. В комплекс этих работ наряду с геофизическими методами входила также литогеохимическая съемка по вторичным ореолам. Было выявлено две группы слабоконтрастных вторичных ореолов рассеяния свинца и цинка, которым дана отрицательная оценка. После 1974 г. непосредственно на

площади поисковые работы не проводились.

В 1951-52 годах на площади проведены первые маршрутные гравиметрические исследования (Лиогенький С.Л., Бродовой В.В.). Сделана попытка выделения гравимагнитнымм измерениями по региональным профилям крупных структурных элементов района. Наряду с маршрутными наблюдениями производились и площадные магнитометрические работы на листах М-45-110-А.Б.

В 1957 году Западно-Сибирским геофизическим трестом (Кабанов 0.М.) проведена аэромагнитная съемка с использованием станции АСГМ-25. Масштаб съемки 1:200 000. Основные недостатки: 1) низкая точность + 50 гамм; 2) визуальная привязка маршрутов; 3) невыдержанность высоты полета (от 50 м над хребтами до 1500 м над долинами); что привело к появлению ложных локальных аномалий; 4) станция АСГМ-25 характеризуется сползанием нуль пункта 80-100 гамм/час.

В 1962-53 гг. Алтайской геофизической экспедицией (Сериков П.З., Щук Г.М.) проведена гравиметровая съемка, охватывающая листы М-45-110-А,Б, 98-Г. Выделены глубинные разломы, являющиеся важными элементами геологического строения площади.

В 1957-58 годах на всей территории участка проведена аэрогеофизическая съемка, в комплекс которой входит магнитометрия, радиометрия масштаба 1:50 000 (Кузнецов З.А., Хромов Б.С.). Использовалась станция АСГ-46 с ядерно-прецессионной приставкой ЛП-1. Фактические ошибки по контрольным измерениям составили 28 нТ. Получена кондиционная карта изолиний, на которую вынесены значения полного вектора в точках определения. При последующих наземных магнитных съемках масштаба 1:50 000 на соседних площадях (Арминбаев Ч.Б., Мамаев Г.А. 1972-75 гг.) установлена хорошая сходимость аэромагнитных измерений с наземными. Этой съемкой откартированы поля развития эффузивных и осадочных пород, оконтурены интрузивные массивы.

В 1967 году Любецким В.И. проведено обобщение гравимагнитных данных по Зайсанской геосинклинали. Впервые была составлена гравиметровая карта для территории Восточного Казахстана. Установлена связь заложения и развития глубинных разломов с особенностями строения земной коры. Показана роль глубинных структур в размещении магматических формаций и дана их геофизическая характеристика.

В 1977 году на восточной части площади (листы М-45-III-А, III-Б) Аэрогео физической экспедицией КазИМСа проведена гравиметровая съемка масштаба 1:200 000. Результаты анализа полученных гравиметровых карт сведены в структурно-тектоническую схему, на которой нашли отражение глубинные разломы широтного и северо-западного простирания. Зафиксированы пояса габброидных интрузий в зонах Белорецко-Маркакольского и Березовско-Маркакольского разломов. В южной части листа М-45- III -Б оконтурена локальная, не выходящая на эрозионный срез гранитоидная интрузия. В 1973-77 годы

на соседних листах партиями Алтайской геофизической экспедиции проводились опережающие геофизические работы масштаба 1:50 000, в комплекс которых входили магнитометрия, литогеохимия. Для выявления зон сульфидной минерализации использовались методы электроразведки.

Непосредственно на площади опережающие геофизические работы были проведены на листе М-45-98-Б в 1972-74 гг. (Бейлин Э.В., Тарасов В.И. и др.). В комплекс этих работ входили: магнитометрия площадная - 340 км², литогеохимическая съемка - 248 км², ВЭЗ - 440 ф.т. работы сопровождались геологическими маршрутными наблюдениями, небольшими объемами горных работ (67,2 п.м. шурфов, 230 м³ канав), бурением скважин УПБ (1000 п.м.)

В результате этих работ слабыми положительными магнитными полями отметились эффузивы марихинской свиты. Отрицательное магнитное поле установлено над осадочными отложениями нижнекаменноугольного возраста.

В центральной части планшета получена положительная аномалия до 100 гамм, отвечающая, по мнению авторов, не выходящей на поверхность интрузии среднего-основного состава. Откартированы разломы субмеридионального направления. Методом ВЭЗ установлены мощности рыхлых отложений в пределах Нарымской долины. С помощью литогеохимии выявлены две группы слабо контрастных вторичных ореолов рассеяния свинца и цинка, которым после проверки горными работами дана отрицательная оценка.

В целом комплекс работ отвечает существующим требованиям к опережающим геофизическим работам. Результаты этих работ были использованы при проведении геологической съемки и составлении геологической карты

2.2. Обоснование геологических исследований по дальнейшему направлению работ.

Все проведенные исследования позволили произвести формационные расчленения геологических образований, выявить закономерности пространственного и возрастного размещения выделенных формаций, складчатых и разрывных структур, а также определить основные закономерности размещения с ними россыпного золота. Все это послужило основой для структурноформационного, а также металлогенического районирования исследуемой территории. На основании проведенного формационного анализа было отмечено, что концентрация россыпного золота в основном приурочены к приплотиковой части осадочных пород, образуя местами золотосодержащие струи и гнезда.

Проанализировав геологические и геофизические материалы на участке Тополевка, нами были выделены ряд факторов для постановления поисковых работ на данном участке с целью обнаружения промышленного объекта.

Ниже приводим критерий поисковой и прогнозной оценки перспективности участка Тополевка:

- 1. приручённость к приплотиковой зоне.
- 2. первичные, вторичные шлиховые ореолы золота.

3. коэффициент надежности прогноза 0,5.

На основании вышеописанного, нами участок Тополевка отнесен к перспективному объекту.

В связи с этим имеются все основания выявить промышленную концентрацию россыпного золота на данной площади, где необходимо провести комплекс поисково-детальных работ масштаба 1:10000.

2.3. Краткие сведения о геологии

2.3.1. Неогеновая система

В пределах описываемой площади отложения неогена нигде не выходят на дневную поверхность. Они вскрыты многими картировочными скважинами в долинообразных понижениях и межгорных впадинах центральной и северной частях района. Сюда относятся осадки аральской, сарыбулакской, павлодарской и вторушкинской свит.

Аральская свита $(N_1^{1-2}ar)$. Отложения этой свиты вскрыты в наиболее глубоких участках древнего погребенного рельефа Зыряновской впадины. Они представлены голубовато-серыми, синь-серыми, зеленовато-серыми, очень плотными, вязкими, пластичными, гипсоносными глинами, содержащими редкие обломки и щебенку различных пород. Среди глин отмечаются линзовидные прослои разнозернистого серого непостоянной (0-35)мощности M), которые ПО простиранию выклиниваются и фациально замещаются глинами.

Образования аральской свиты залегают на размытой поверхности палеозойского основания и перекрываются осадками средневерхнемиоценовых сарыбулакских слоев, реже со стратиграфическим несогласием – глинами ниже-среднеплиоценовой павлодарской свиты.

Ввиду отсутствия фауны и флоры, в пределах изученной территории, возраст отложений этой свиты определяется путем сопоставления со сходными осадками соседних районов (Прииртышья), где они фаунистически охарактеризованы и датированы как нижне-среднемиоценовые. На соседнем к западу планшете в урочище Павловском по скважине 38 на глубине 123 м в аналогичных отложениях были обнаружены отпечатки листьев и веточек Zelkova underi Kov (определения И.А. Ильинской) нижне-среднемиоценового возраста.

Мощность отложений колеблется от 20 до 40-55м.

Сарыбулакские слои (N_1 3sr). Это толща однообразных палево-желтых, кофейных, бурованто-серых плотных, вязких, пластичных (редко слабопесчанистых) глин с охристыми, буро-рыжими пятнами и включениями различных пород в виде щебенки и обломков до 5-12 см в поперечнике. Эти отложения вскрыты в пределах Зыряновской впадины и на северо-западе района, в долине рек. Мельничной, где они перекрывают осадки аральской свиты или залегают

на размытой поверхности палеозойских пород. Характер залегания осадков аральской свиты и сарыбулакских слоев не выяснен.

Верхнемиоценовый возраст отложений сарыбулакских слоев определяется их стратиграфическим положением и по аналогии с соседними районами (Зайсанская впадина — Василенко, 1961).

Мощность составляет 20-25 м, достигая 45 м, в самой центральной части впадины.

Павлодарская свита (N_2^{1-2} pv). Отложения павлодарской свиты имеют самое широкое распространение среди образований неогена. Буровыми скважинами на глубинах от 20 до 100 м они вскрыты в пределах Зыряновской впадины и во всех долинообразных понижениях. В верховьях речек Мельничной и Зубовки эти отложения вскрыты шурфами на глубинах 7-10 м.

Слагающие эту толщу глины имеют красную, красно-бурую, кирпичнокрасную окраску, обычно очень плотные, жирные, вязкие, пластичные, неравномерно гипсоносные. В основной массе красно-бурых глин отмечается примесь песка, дресвы, щебня, галечника. Иногда низы разреза представлены песчанистыми разновидностями. Песчанистые, песчано-глинистые образования свиты развиты ограниченно. Они, вероятно, имеют озерно-аллювиальное происхождение, в то время как для красноцветных глин более вероятен делювиальный, делювиально-пролювиальный генезис, так как среди них много обломочного материала местного происхождения.

Характер взаимоотношений между осадками павлодарской свиты и подстилающих отложений очень сложный. Фактами прямых признаков размыва нижеподстилающих пород мы не располагаем. Известно, что рассматриваемые отложения залегают на остатках сарыбулакских слоев и аральской свиты, либо на выветрелой поверхности палеозойского фундамента.

Можность отложений павлодарской свиты меняется от 20 до 80м, в среднем она составляет 20-50 м. Учитывая стратиграфическое положение и литологическое сходство с однотипными фаунистически охарактеризованными отложениями соседних площадей, рассматриваемые осадки датируются как нижний-средний плиоцен.

По данным М.Н. Барцевой (1956) в красных глинах Зыряновской впадины, обнаружена пыльца.

Указанный комплекс пыльцы, по мнению Покровской И.М., свидетельствует о том, что данные отложения являются неогеновыми и отвечают плиоцену.

Вторушкинская свита (N_2 ³- Q_1 vt) выделена в 1957г. И.С. Чумаковым в долине р. Вторушки в Зыряновском районе. С видимым размывом они ложаться на породы павлодарской свиты и более древние образования. Представлены однообразными красно-бурыми и буровато-коричневыми карбонатными песчанистыми глинами и суглинками монтмориллонит-гидрослюдистого состава с включениями полимиктового грубозернистого песка, выветрелого щебня, глыб и дресвы палеозойских пород, которыми сложены местные склоны и междуречья. Обломочный материал зачастую обособляется в виде линз и

слоев конгломерато-брекчий и песчаников с карбонатным цементом. Часто встречаются конкреции карбонатов, точечные выделения и налеты марганца, реже включения мелкокристаллического гипса. Это преимущественно пролювиальные, делювиально-пролювиальные и аллювиально-делювиальные отложения.

Мощность отложений вторушкинской свиты колеблется от 10 до 70 м.

Отложения охарактеризованы многочисленными находками малакофауны, остракод, мелкими позвоночными (преимущественно грызунами) остатками семян, плодов, реже листьев (по-видимому, осоковых) растений, которые в большом количестве приведены И.С. Чумаковым (1964).

2.3.2. Четвертичная система

Отложения четвертичного возраста имеют весьма широкое распространение и занимают в среднем около 60% площади. Они характеризуются пестротой литологического состава, разнообразием генетических типов и тесной связью с наблюдаемым ныне рельефом. В разрезе четвертичной толщи выделяются следующие подразделения: нижне-среднеплейстоценовые, средне-верхнеплейстоценовые, верхнеплейстоцен-современные и современные.

Нижний – средний плейстоцен (Q_{I-II})

Отложения, относимые условно к нижне-среднему плейстоцену изучены, в основном, по картировочным скважинам. Представлены они глинистой, песчано-глинистой толщей, которая залегает на глинах павлодарской свиты или на размытой поверхности палеозойских пород и перекрывается более молодыми образованиями.

В разрезе описываемых отложений по всем профилям четко выделяются две согласно залегающие толщи. Снизу вверх:

- а) толща бурых, буро-серых песчано-глинистых образований;
- б) толща коричневых, коричнево-красных глин.

По мощности эти толщи равноценны и составляют в среднем по 10-20 м.

Нижняя толща представлена буровато-серыми, бурыми, желтовато-бурыми плотными, вязкими, пластичными неравномерно-песчанистыми глинами с частыми включениями щебня, дресвы обломков и хорошо окатанных, местами, галек.

Выше в резерве залегает толща коричневых, красно-коричневых, кирпично-красных слабо пятнистых, плотных, вязких, слабо песчанистых глин с примесью дресвяно-щебнистого материала, состоящего из обломков местных пород палеозоя.

На севере района в долине р. Вторушки в разрезе описываемых отложений преобладают бурые, желто-бурые глины. А в долине р. Мельничной отмечены только коричневые, коричневато-красные глины с переходами от песчанистых, до глин с включениями обломков и щебня.

В узких долинообразных понижениях, там, где близко подходят горные сооружения, эти отложения представлены толщей, состоящей из обломков,

дресвы и песчано-щебнистого материала, иногда слабосцементированной глиной.

В генетическом отношении рассматриваемая толща неоднородна. В ее строении принимают участие делювиально-пролювиальные (слабопесчанистые глины с обломками пород) и аллювиальные, возможно частично озерные образования (песчаные глины с прослоями песка, дресвы, гравия и гальки местных палеозойских пород. Мощность рассматриваемых образований составляет 15-40 м, иногда достигая до 70-110 м.

Отнесение описанных отложений к нижне-среднему плейстоцену основанно исключительно на их положении в разрезе между красноцветами павлодарской свиты и толщей суглинков среднего-верхнего плейстоцена ($Q_{\text{II-III}}$). По опорным скважинам ранее (Д.Г. Конников, 1972) был принят керн разнообразных рыхлых отложений для получения комплекса микрофауны. В промытом шламе микрофауна не установлена.

Средний верхний плейстоцен (Q_{II-III}).

Отложения этого возраста слагают широкие равнинные пространства речных долин, предгорные шлейфы, конусы выноса, выполняют днища мелких логов, а также маломощным чехлом покрывают склоны возвышенностей, сглаживая и маскируя древний рельеф. Они изучены шурфами, скважинами и в естественных обнажениях и представлены слабокарбонатными, плотными лёссовидными суглинками палевой, светло-и желтовато-коричневой окраски с редкими желваками и «журавчиками» мергелистого состава и неравномерной примесью обломочного материала.

В центральных частях впадин и долин суглинки отличаются тонкостью и одноразностью. Вблизи склонов в их составе появляется щебенка, дресва и валуны, содержание которых резко увеличивается к основанию склонов и конусах выноса.

Условия распространения лёссовидных отложений, литологические особенности осадков и наличие слоистости указывают на то, что данные отложения относятся к делювиально-пролювиальным образованиям. Подстилаются лёссовидные суглинки породами различного происхождения. Они лежат то на коренных породах палеозоя, то на буро-серых глинах нижне-среднеплейстоценового возраста, а в долинах рек их подстилает речной аллювий. Мощность их весьма непостоянна и колеблется от 0,3-0,7 м на склонах и водоразделах – до 10-20 м в долинах.

Средне-верхнеплейстоценовый возраст лёссовидных суглинков устанавливается находками фауны, как на соседних площадях, так и в пределах описываемого района. На соседней площади к северу от пос. Пролетарского, в шурфе найдены верхние коренные зубы ископаемой лошади.

Верхне-плейстоцен-современные ($Q_{\text{III-IV}}$) представлены аллювиальными осадками, слагающими аккумулятивный покров третьей надпойменной террасы, развитой по правобережью р. Бухтармы. Это светло-палевые, палевожелтые, желто-бурые лёссовидные суглинки и супеси, реже красно-бурые и желто-бурые глины, разнозернистые пески и галечники.

В борту реки в окрестностях Ларыгинского лесхоза вскрыт следующий разрез третьей надпойменной террасы:

- -0.8-1.5 м Почвенно-растительный слой с остатками корней трав и кустарников;
- 1-1,5 м Палево-желтые, желто-серые лёссовидные суглинки с неравномерной присадкой илистого и песчанистого материала;
- 1-1,5 м Супеси палево-серые, желтовато-серые слабозернистые с редкими маломощными (0,1-0,3 м) прослоями песков и суглинков;
- 1-1,5 м Красно-бурые, красно-желтые вязкие глины с ленеточными и линзовидно-выклинивающимися прослоями разнозернистых песков и гравийно-галечниковых отложений;
 - 0,5-1,0 м Галечники, пески разнозернистые.

Суммарная мощность по разрезу 7 м.

Для верхней части разреза (супеси, суглинки) характерны остатки корней, частые кротовины и ходы червей, заполненные черноземом, отдельные маломощные (0,1-0,2 м) горизонты погребенных почв и слабовыраженная столбчатая отдельность, обусловленная наличием вертикальных нитевидных корневых остатков, окруженных плотной карбонатной оболочкой. Супеси и суглинки местами слабослоистые. В них отмечены редкие маломощные (до 5-10 см) прослои разнозернистых песков и илистого материала, что свидетельствует об их аллювиальном происхождении.

Видимая мощность отложений первой надпойменной террасы составляет 2-3 м. Возраст отложений первой и второй надпойменных террас принимается как ране и познеплейстоценовый по аналогии с соседними районами в связи с тем, что они вложены в верхнеплейстоценсовременные суглинки третьей надпойменной террасы.

Современные отложения (Q_{IV})

Самыми молодыми образованиями района являются пойменные и русловые отложения, развитые в долинах современных рек, ручьев и временных водотоков. Они представлены разноцветными суглинками, песками, галечниками с примесью гравийного, глинистого, илистого и щебенистого материала. Мощность отложений не превышает 3-4 м.

	«J	ТВЕРЖДАЮ»
Дир	екто	p TOO «Fs gold»
		 Токен Г.
‹ ‹	>>	2025 г.

3. ГЕОЛОГИЧЕСКОЕ ЗАДАНИЕ

Отрасль: Твердые полезные ископаемые

Полезное ископаемое: россыпное золото.

Наименование объекта: M-45-98-(10в-56-15,20), M-45-99-(10а-5а-11,16) (уча-

сток Тополевка)

Местонахождение объекта: Катон-Карагайском район, Восточно-Казахстанская область.

Геологическое задание выдано на разведку блоков M-45-98-(10в-56-15,20), M-45-99-(10а-5а-11,16).

Основание выдачи геологического задания:

-Лицензия на разведку твердых полезных ископаемых на блоках М-45-98-(10в-56-15,20), М-45-99-(10а-5а-11,16) (участок **Тополевка**) в Катон-Карагайском районе Восточно-Казахстанской области Республики Казахстан.

- 1. Целевое назначение работ, пространственные границы объекта, основные оценочные параметры:
- геологоразведочные работы на россыпное золото по всей площади блоков.
- 2. Геологические задачи, последовательность и основные методы их решения:
- 2.1. Составление Плана работ, проектирование Проекта ОВОС и согласование их в Уполномоченных органах РК;
- 2.2. Проведение топоработ, геофизических работ, поисковых геологических маршрутов, горных работ, геологической и фотодокументации шурфов, шлихового опробования, лабораторных работ и технологических исследований.
- 3. Ожидаемые результаты выполненных работ:

По результатам работ будет составлен отчет с подсчетом запасов согласно Кодекса KAZRC;

4. Ассигнования: 177 087 000,0 тенге 5. Сроки выполнения: 2025-2030 гг.

Горный инженер-геолог:

Scaleurs

Муратбеков Д.Х.

4. СОСТАВ, ВИДЫ, МЕТОДЫ И СПОСОБЫ РАБОТ

4.1. Геологические задачи и методы их решения

Настоящий проект предусматривает проведение поисково-оценочных работ на контрактной территории площадью 8,96 км² с целью выявления перспективных участков россыпного золота.

Учитывая относительно значительную площадь, поисково-оценочные работы будут сосредоточены в пойме реки Нарымка и всех притоков.

Площадь Контрактной территории на 30% представлена рыхлыми отложениями. Вероятность обнаружения средних мелких месторождений, как россыпных, так и коренных, расположенных вблизи дневной поверхности, вполне возможна. Учитывая малоизученность района, возможно внесение корректив в объемы, методы и места заложения горных выработок в процессе работ.

4.2. Виды, объёмы и сроки проведения геологоразведочных работ

Работы предполагается проводить в два этапа:

Первый, собственно поисковый этап, ориентирован на обнаружение потенциально коммерческих объектов золотого оруденения и второй, оценочный на разведку последних.

На первом этапе будет выполнено геологическое изучение всей проектной территории, ограниченной лицензионными координатами, в первую очередь строение геологических структур и участков метасоматического преобразования пород, благоприятных для локализации золотой минерализации. В процессе поисков здесь возможно обнаружение новых зон золотой минерализации. Для их обнаружения очевидно необходимо более тщательное изучение территории с применением передовых приемов и методов, которые будут включать:

- Маршрутные поиски в масштабах 1:25 000 1:10 000.
- Шлиховая сьемка на золото по поймам рек.
- Проходка поверхностных горных выработок (канав, шурфов) механизированным способом.
 - Шлиховое опробование.
 - Лабораторные работы
 - Минералого-петрографические и др. исследования
 - Камеральная и тематическая обработка полевых материалов.

Указанный комплекс исследований будет направлен на решения следующих конкретных задач:

- 1. Уточнение и дополнение геологического строения площади с составлением схематической геологической карты масштаба 1:15 000, как основы ведения поисковых работ.
- 2. Изучение тектонических зон и областей метасоматического преобразования пород, перспективных на золотое оруденение.

Таким образом, целью проектных геолого-поисковых исследований первого этапа является комплексное изучение территории для выявления объектов, перспективных для локализации коммерческого золотого оруденения, с дальнейшей их оценкой на втором этапе работ.

Во второй этап планируется разведка выделенных перспективных участков с целью оценки их коммерческой ценности и подсчетом запасов категории C_2 .

Предполагаемые коммерческие объекты вероятней всего, по сложности геологического строения, будут относиться к третьей группе месторождений золота, т.е. с локализацией рудных тел в мелких и средних сложно построенных минерализованных и жильных зонах. Для их разведки предполагается создать сеть горных выработок с плотностью, в среднем 40х200 м в сложных геоморфологических условиях, как по простиранию, так и по падению.

Работы второго этапа будут включать:

- Проходка поверхностных горных выработок (шурфов, канав) механизированным способом.
 - Опробование.
 - Лабораторные работы
 - Минералого-петрографические и др. исследования
 - Полупромышленные технологические испытания.
 - Камеральная и тематическая обработка полевых материалов.
 - Подсчет запасов по россыпному золоту по категориям С2.

Конечная цель разведочных работ второго этапа — оценка золоторудных и россыпных объектов с подсчетом запасов и составлением ТЭО дальнейшей эксплуатации.

Предполагается, что выявление коммерческих объектов, представленных россыпным золотом велико, именно оценка этой площади, прежде всего и определяет объемы разведочных работ.

Отметим также, что условия и методика проведения вышеуказанных одноименных видов работ на этапах поисков и оценки, идентичны. Поэтому далее, приводятся, как единые. Все работы, планируется выполнить в строгой последовательности.

- 1) Целевой анализ материалов по золотоносности коренных пород сбор, обобщение результатов ГРР предшествующих исследователей. Целевое дешифрирование космо-аэрофотоснимков и совместный анализ материалов с целью корректировки направления работ и подготовки проектной документации;
- 2) Площадные поисковые работы с целью выделения перспективных участков для проведения поисково-оценочных работ;
 - 3) Полевые разведочные работы;
 - 4) Технологические исследования;
 - 5) Топо-маркшейдерские работы;
 - 6) Лабораторные аналитические исследования;

7) Подготовка отчетной документации по проведенным работам геологического изучения

Сроки полевых работ планируются начать в весенне-летний период <u>2025</u> <u>г.</u> и продолжать до <u>2030 г</u>. Срок начала работ связан с необходимостью разработки Проекта OBOC, экологической экспертизой, разработкой водоохранных зон, водоохранных полос и последующей их государственной экспертизы.

4.2.1. Предварительный целевой анализ имеющихся материалов, для проектирования разведочных выработок

Выполнение работ по сбору результатов ГРР будет произведено путем изучения фондовых и архивных материалов по следующим направлениям:

- результатам геохимических поисков;
- данным о разведанности и отработанности смежных территорий возможности продолжения перспективных структуру на характеризуемую площадь;
- геологии осадочных и интрузивных комплексов и связи их с золотоносностью;

Специальные исследования включают в себя дешифрирование аэрокосмических снимков, морфоструктурный анализ, ретроспективные реконструкции процессов образования и взаимодействия.

В результате этих исследований будут выделены участки россыпного золота и наиболее перспективные для образования коренного золотого оруденения, дана их обоснованная прогнозная оценка.

Полученный материал будет являться основой для корректировки очередности проведения поисково-оценочных работ.

4.2.2. Геологические маршруты

Геологические маршруты предусматриваются для картирования площади поисковых участков, уточнение имеющихся карт, картирования зон метасоматически-измененных пород, обследования известных и вновь выявленных литохимических и геофизических аномалий, уточнения мест заложения горных выработок.

Геолого-поисковые маршруты будут проходиться вкрест простирания основных структур для общего изучения территории. Оруденелые точки наблюдений опробуются штуфными пробами. При необходимости проходки канав, маркируются места заложения канав на местности и топографическом плане. Количество фиксированных точек маршрута должно соответствовать масштабу съемки, но не менее одной точки на 1кв. см карты. Учитывая площадь поисков (8,96 кв. км), наиболее приемлемый масштаб геологической съемки 1:5 000. Общий объем геологических маршрутов составит 30 п. км.

4.2.3. Поисково-разведочные работы.

Горные работы будут выполняться на перспективных участках Лицензионной территории. Исходя из 6-летнего периода времени на разведку, график выполнения работ планируется в следующей последовательности: 2-й и 3-й годы - поисковые маршрутные поиски, проходка шурфов и канав. В результате получения положительных результатов, разрабатываются временные кондиции с подсчетом запасов и на ее основе составляется проектно-сметная документация, для разработки технологической схемы переработки в промышленных масштабах; в 4-й 5-й годы — продолжение горных работ с проходкой поисковых шурфов, проведение лабораторно-технологических, промышленных испытаний проб. Завершение аналитических исследований проб. Шестой год — завершение работ, окончательная обработка полученных материалов и составление отчета, проведение подсчета запасов и утверждение запасов руд.

4.2.4. Горные работы

Проектом планируется изучить шурфами и канавами пойму и террасовые отложения реки Тополевка и всех притоков. Горные выработки будут проходиться на расстоянии 100 м от водного потока, не нарушая положения Водного Кодекса.

Для выявления коренных пород горнопроходческими работами ставится задача вскрытия перекрытых чехла рыхлых отложений по коренным породам, с целью выявления и оконтуривания закрытых рудных зон и кварцевых жил, их опробования, выявления соотношений с вмещающими отложениями и элементов их залегания.

Глубина проходки шурфов и канав в среднем составит 5.0 м. Общий объем проходимых шурфов составит 1200 м^3 .

4.2.5. Гидрогеологические исследования

Гидрогеологические и инженерно-геологические работы будут проводиться в соответствии с «Временными требованиями к инженерно-геологической и гидрогеологической изученности месторождений полезных ископаемых с целью сохранения среды обитания и геологической среды», утвержденными ГКЗ 9 июня 1995 года и зарегистрированными в Министерстве юстиции РК от 11 февраля 1997 года № 257.

Будут ориентировочно характеризованы гидрогеологические и инженерно-геологические условия предполагаемых месторождений.

В горных выработках планируется осуществлять комплекс гидрогеологических, инженерно-геологических и других наблюдений и исследований для обоснования способа вскрытия и разработки месторождения, определения источников водоснабжения.

Специальных работ по гидрогеологии и инженерной геологии не предусматриваются. Они будут проводиться попутно в минимальном объеме и заключаться в: определении уровня грунтовых вод по сезонам; химического состава подземных вод по сезонам; выявлении наиболее обводненных участков и зон; изучении режима поверхностных вод, их химизма и загрязненности.

4.2.6. Шлиховая обработка проб

Промывка рядовых проб, отобранных в процессе поисково-оценочных работ производится на месте работ, преимущественно по единой технологической схеме, позволяющей «улавливать» в шлихе (концентрате) мелкое и тонкое золото (МТЗ). Для решения этой задачи применена технологическая линия, позволяющая на всех этапах обработки шлиховых проб свести к минимуму потери металла.

Промывка проб осуществляется с целью предварительного обогащения породы путем отмывки в воде до получения шлиха, или тяжелого минерального концентрата, содержащего золото. Полученный серый или черный шлих (шлиховой концентрат) отправляется на лабораторные или минералогические исследования.

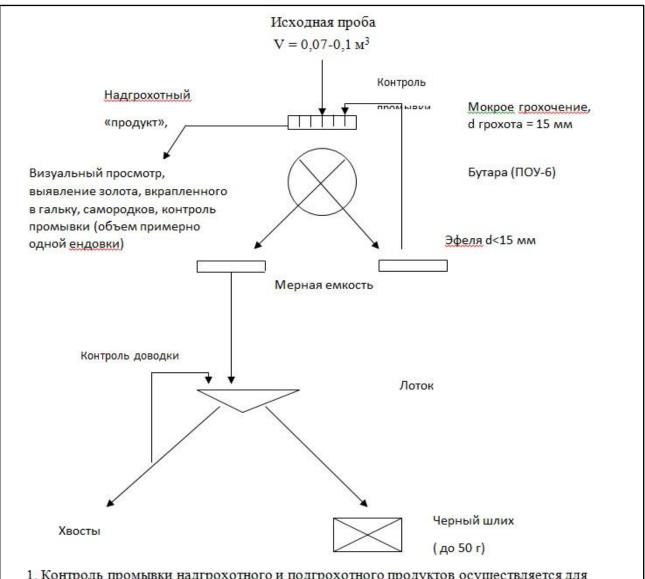
В целом промывка проб заключается в проведении трех основных последовательных операций:

- 1. Отмучивание отделение глинистого материала и крупных валунов, гали и гравия.
 - 2. Отмывка мелких частиц минералов с небольшим удельным весом.
- 3. Доводка шлихового концентрата отделение тяжелых минералов от небольшого количества легкого и относительно легкого (пустого) материала, оставшегося от второй операции, с получением лабораторной навески для проведения анализа.

Наиболее важным из элементов технологической линии промывки проб, содержащих МТЗ, является гидродешламатор, конструктивные особенности которого сводят до минимума его потери на первых двух и, частично, на третьей стадиях.

Промывка проб проводится на месте работ с применением технологической цепи аппаратов, включающих гидроконцентраторы, гидродешламаторы, классификаторы и водонасосное оборудование.

Конечная доводка проб осуществляется концентратором «Фалькон» с получением фиксированной навески концентрата -80 гр., достаточной для проведения анализа и возможного контроля.


Большеобъемные пробы после предварительного грохочения промываются на бутаре. Промывка материала, собранного на коврах, осуществляется на концентраторах, иногда с доводкой на лотке.

При отборе проб особое внимание обращается на соответствие объема выжелоненной породы теоретическому. При этом фактический объем проб замеряется по столбику породы до и после желонения. При отборе «всухую» замер объема пробы производится в мерной емкости.

Обработка (промывка) шлиховых проб планируется осуществлять непосредственно на участке работ.

Основные операции промывки шлиховых проб:

- дезинтеграция и отмучивание глинистой фракции в мерном бачке;
- мокрое грохочение пробы на сите с размером ячей 10 мм;
- визуальный просмотр надгрохотного продукта (более 10 мм) с целью выявления вкрапленности золота в гальке, поделочных камней и самоцветов;
 - сброс крупной фракции в отвал;
- доводка мелкой фракции (подгрохотного продукта) в лотке до черного шлиха;
- сушка шлиха на совке, его капсюлирование. На капсюле указывалось название объекта, номер разведочной линии, скважины, интервал опробования, визуальное определение количества металла.

- 1. Контроль промывки <u>надгрохотного</u> и <u>подгрохотного</u> продуктов осуществляется для каждой секции бороздовых проб
- 2. Контроль промывки <u>подгрохотных</u> продуктов и «хвостов» производится до значений «зн» или «пс» шлиха
- 3. Для контроля промывки поступает весь эфельный материал с бутары
- 4. Контроль слива осуществляется периодически при помощи отсечного ковша объемом 3-5 л.

Рис. 4.1. Схема промывки проб из шурфов.

Все пробы, отобранные в процессе геологоразведочных работ, будут подвергаться пробирному, атомно-абсорбционному или минералогическому анализу на золото.

Минералогические исследования шлихов проводятся с целью определения количества золота в пробе. Каждое крупное зерно золота измеряется и высчитывается его вес.

Работы планируются проводить в полевой период <u>2025-2030</u> гг.

4.3. Камеральные работы

Все геологические исследования по данному проекту будут сопровождаться камеральной обработкой, выполняемой в соответствии с требованиями инструкций по каждому виду работ.

По срокам проведения и видам, камеральные работы подразделяются на текущую и окончательную камеральные обработки.

Текущая камеральная обработка включает обеспечение геологоразведочных работ. Она состоит из следующих основных видов:

- уточнение геологических карт, планов расположения горных выработок, рабочих геологических разрезов, составление колонок и паспортов шурфов;
- обработка данных анализов проб с составлением таблицы вывода средних содержаний компонентов по выработкам;
 - выноска результатов анализов на разрезе и проекции;
- представление получаемой информации в электронном виде и пополнение компьютерных баз данных опробования.

Окончательная камеральная обработка заключается в количественной и качественной интерпретации геологических и геодезических материалов, математической и графической обработке результатов анализов проб, корректировке и пополнении разрезов, планов и геологической карты, составлении отчетных графических приложений. Составление отчета с подсчетом запасов по кодексу KAZRC.

5.РАСЧЕТ ФИНАНСОВЫХ ЗАТРАТ НА ПЕРИОД 2025-2030 гг.

ТАБЛИЦА 5.1

№ п/п	Виды работ	Ед.изм	Объ- емы	Стои- мость еди-	Сметная стои-мость	1-ый	і́ год	2-ой	і́ год	3-ий	і́ год	4-ый	й год	5-ыі	й год	6-ой	і год
				ницы, тыс тг	тыс. тг	объем	тыс.тг										
1	Составление плана работ	план	1	5 600	5 600	1	5 600										
2	Составление и согласование проекта ОВОС	проект	1	2000	2000	1	2000										
3	Топографо-геодезические работы	км ²	8.96	4 100	36 736			8.96	36 736								
4	Поисковые маршруты	п.км	30	85	2 550			30	2 550								
5	Отбор штуфной пробы	проба	120	1.9	228			120	228								
6	Отбор шлиховой пробы $V=0.02 \text{ м}^3$	проба	30	8.5	255			30	255								
7	Обработка шлиховой пробы V=0,02 м ³	проба	30	35	1 050			30	1 050								
8	Проходка шурфов механическим способом	м ³	1200	6.3	7560			1200	7560								
9	Засыпка шурфов механическим способом	м ³	1200	1.2	1440			1200	1 440								
10	Геологическая и фотодокументация шурфов	п.м	240	7.1	1704			240	1704								
11	Отбор шлиховых проб $V=0,28 \text{ м}^3$	проба	1200	15	18000			1200	18 000								
12	Обработка шлиховых проб V=0,28 м ³	проба	1200	25	30000			1200	30 000								
13	Лабораторно-аналитические исследования штуфных проб	анализ	120	5.8	696					120	696						
14	Лабораторно-аналитические исследования шлиховых проб	анализ	260	12.3.	3 198					260	3 198						
15	Внутренний (5%) и внешний (5%) контроль	анализ	12	5.8	69.6					12	69.6						
16	Технологические исследования	проб	1	24 000	24 000							1	24 000				
17	Камеральные работы с подсчетом запасов по кодексу KAZRC	отчет	1	42 000	42 000									1	42 000		
	ИТОГО				177 087		7 600		99 523		3 964		24 000		42 000		

6. ОХРАНА ТРУДА И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ

На всем цикле геологоразведочных работ будет поддерживаться безопасность труда - состояние защищенности работника, обеспеченное комплексом мероприятий, исключающих вредное и опасное воздействие на работников в процессе трудовой деятельности.

Также будут созданы безопасные условия труда - условия труда, созданные работодателем, при которых воздействие на работника вредных и опасных производственных факторов отсутствует либо уровень их воздействия не превышает нормы безопасности.

Безопасность производственного оборудования будет выполняться согласно использованию оборудования строго по ГОСТ и заводского («некустарного») изготовления - соответствие производственного оборудования требованиям безопасности труда при выполнении им заданных функций в условиях, установленных нормативно - технической и проектной документацией;

Безопасность производственного процесса - соответствие производственного процесса требованиям безопасности труда в условиях, установленных нормативно - технической документацией будет прописана во всех регламентах проведения геологоразведочных работ.

Полевые работы будут вестись с соблюдением всех норм и правил промышленной безопасности, промышленной санитарии и противопожарной безопасности. Геологоразведочные работы, проводимые в полевых условиях, в том числе и сезонные, должны планироваться с учетом конкретных природноклиматических и других условий и специфики района работ. Все работники должны будут обеспечены водой, удовлетворяющей требованиям ГОСТа «Вода питьевая. Гигиенические требования и контроль за качеством». Расход воды на одного работающего не менее 25 л/см. Питьевая вода будет применяться на рабочих местах бутилированная.

Все рабочие будут ознакомлены с правилами техники безопасности применительно к профилю работы, обучены оказанию первой медицинской помощи, умению наложить повязку, жгут, шину, делать искусственное дыхание, правильно транспортировать пострадавшего и т.д.

Все участвующие в выполнении геологоразведочных работ будут снабжены средствами связи, мобильными телефонами или рациями.

Согласно Закону Республики, Казахстан «О пожарной безопасности» №40-I от 22.11.2006 г., обеспечение пожарной безопасности и пожаротушения возлагается на руководство.

Все сотрудники обязаны:

- соблюдать требования пожарной безопасности, а также выполнять предписания и иные законные требования органов противопожарной службы.
- содержать в исправном состоянии системы и средства пожаротушения, не допускать их использования не по назначению.

Все рабочие и ИТР будут обеспечены индивидуальными средствами защиты; спецодеждой, спецобувью, касками, рукавицами, респираторами и т.п.

Виды спецодежды, обуви, индивидуальных приспособлений будут соответствовать выполняемой работе.

Автомобили, и рабочие места будут укомплектованы аптечками первой помощи. Перечень лекарств и принадлежностей будет соответствовать Правилам безопасности при геологоразведочных работах.

При необходимости срочная квалифицированная медицинская помощь сотрудникам будет оказываться медработниками в ближайшем населенном пункте.

Основным условием безопасности ведения геологоразведочных работ на предприятие является обязательное выполнение всех требований следующих правил и документов:

- Трудовой кодекс РК. Раздел 5. «Безопасность и охрана труда»;
- Правила безопасности при ГРР;
- Инструкция по правилам пожарной безопасности;
- Инструкция по правилам перевозки людей автомобильными транспортом;
 - Санитарно-эпидемиологические требования при ГРР;
- Приказ и. о. Министерства здравоохранения РК №334 от 08.07.2005 г.;
- Предельно допустимые концентрации (ПДК) химических веществ в воздухе рабочей зоны.
 - Приказ Министерства здравоохранения РК №889 от 08.11.2010 г.;
- Санитарно-эпидемиологические требования к обеспечению радиационной безопасности. Приказ Министерства здравоохранения РК №565 от 29.07.2010 г.

Целью политики TOO «Gl gold» является достижение полного соблюдения требований законодательства PK в области безопасности и охраны труда, обеспечение эксплуатации оборудования, приспособлений, инструментов, соответствующих требованиям по безопасности и охране труда, тем самым обеспечивающих безопасность, сохранение жизни и здоровья работников в процессе их трудовой деятельности; привлечение работников к активному участию во всех элементах ведомственной системы управления охраной труда Компании, а также предотвращение загрязнения и охраны окружающей среды, предупреждение производственного травматизма и несчастных случаев на производстве, заблаговременное выявление опасностей и рисков на рабочих местах.

7. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

Настоящим Планом разведки предусматривается проведение геологоразведочных работ в соответствии с Кодексом Республики Казахстан «О недрах и недропользовании», Экологическим кодексом Республики Казахстан, Земельным кодексом Республики Казахстан, направленных на предотвращение загрязнения недр при проведении операций по недропользованию и снижению вредного влияния на окружающую среду.

Полевые геологоразведочные включают: топогеодезические работы, геологические маршруты, профильные геофизические работы, литохимическая съемка, горные работы, опробование.

Полевые геологоразведочные работы планируются выполнять в период с мая по ноябрь. Продолжительность работ в сутки 12 часов.

При проведении геологоразведочных работ предусматривается вахтовый поселок, который будет состоять из передвижных вагончиков.

При проведении работ по Плану предусмотрены следующие основные мероприятия по минимизации вредного воздействия на окружающую среду:

- приготовление пищи будет производиться в специальном оборудованном вагончике с переносной газовой печью;
- питьевое и техническое водоснабжение будет осуществляться из ближайшего поселка соответствующей по качеству требованием СП РК от 16 марта 2015 года «Вода питьевая»;
- бытовые отходы, производимые в полевых условиях, будут собираться, и вывозиться в места складирования, по согласованию с местными органами;
 - при устройстве уборных, будут применятся биотуалеты;
 - столовая на участке предусматривается;
- предусматривается строгий запрет на охоту и рыбалку в запрещенные сроки и запрещенными методами.

Действует строгий запрет на охоту и рыбалку в запрещенные сроки и запрещенными методами.

Воздействие проектируемых работ на животный и растительный мир будет минимальным. Опасные для жизни животных и людей работы проводиться не будут.

Проведение работ, указанных в настоящем Плане разведки не нарушат существующего экологического равновесия, никак не изменят существующий видовой состав растительного и животного мира.

8. ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ

В результате проведённых работ будет изучено геологическое строение лицензионной площади, морфология и условия залегания рудных тел, определены их количественные и качественные показатели.

В результате выполнения геологоразведочных работ будет:

- уточнено геологическое строение блоков M-45-98-(10в-56-15,20), M-45-99-(10а-5а-11,16);
- по результатам лабораторных работ определено содержание полезных компонентов;
 - будет создана геологическая модель изучаемых блоков;
- по результатам работ будет составлен отчет с подсчетом запасов согласно Кодекса KAZRC;
- при бесперспективности лицензионной площади будет составлен отчет по результатам проведенных работ.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ:

Вид	Библиографическое описание
издания	
Отчеты	1. Караваев О.В. Геологическое строение и полезные ископае-
	мые "Зыряновского" горнорудного района. Отчет Зырянов-
	ской партии о результатах геологической съемки и доизуче-
	ния площадей масштаба 1:50000, проведенных в 1984-1988гг.
	на участке "Зыряновском". Листы: М-45-85-Г, геологическая
	съемка. Листы: М-45-73-А-Б-Г; 73-Б-В-Г; 85-Б; 86-А, геологи-
	ческое доизучение площадей.
	2. Стасенко Н.В. Геологическое строение и полезные ископа-
	емые восточной части Нарымского хребта. (Окончательный
	отчет Маймырской партии по результатам групповой геоло-
	гической съемки масштаба 1:50000, проведенной в 1978-82гг.
	на площади листов М-45-98-Б,Г; 99-В; 110-А-б; 110-Б-а,б;
	111-А-а,б,г; 111-Б-а,в).
Книги,	1. Черников С.С. Древняя металлургия и горное дело Запад-
статьи	ного Алтая. Академия наук КазССР. Алма-Ата. 1949г. 118 стр.
	2. Отв. Редакторы ак. Деревянко А.П., ак. Молодин В.И. Фено-
	мен алтайских мумий. Новосибирск. Издательство Института археологии и этнографии СО РАН, 2000г
	3. Черников С.С. Загадка. Где и когда зародилось «скифское
	искусство». Москва, Наука. 1965г. 191 стр.
	1. Рациональная сеть предварительной разведки. В.И. Брюхов,
Ихгаты	М.Н. Денисов, Е.К. Казаков и др. М., Недра, 1978. 261 стр.
Инструк- ции	2. Приказ и.о. Министра по инвестициям и развитию РК от
ции	28.05.2018, №396. Инструкция по составлению проектных до-
	кументов по геологическому изучению недр.

ТЕКСТОВЫЕ ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ 1

Қатты пайдалы қазбаларды барлауға арналған

Лицензия

24.02.2025 жылғы №3191-ЕL

1. Жер қойнауын пайдаланушының атауы: "Gl gold" жауапкершілігі шектеулі серіктестігі (бұдан әрі – Жер қойнауын пайдаланушы).

Занды мекен-жайы: Казахстан, Акмолинская область, Кокшетау г.а., г. Кокшетау, ул. Фруктовая, ном. уч. 167

Лицензия «Жер қойнауын пайдалану туралы» Қазақстан Республикасының 2017 жылғы 27 желтоқсандағы Кодексіне (бұдан әрі - Кодекс) сәйкес қатты пайдалы қазбаларды барлау жөніндегі операцияларды жүргізу максатында берілген және жер қойнауы учаскесін пайдалануға құқық береді.

Жер қойнауын пайдалану құқығындағы үлестің мөлшері: 100% (жүз).

- 2. Лицензия шарттары:
- 1) лицензияның мерзімі (ұзарту мерзімін ескере отырып, барлауға арналған лицензияның мерзімі ұзартылған кезде мерзім көрсетіледі): берілген күнінен бастап 6 жыл;
 - 2) жер қойнауы учаскесі аумағының шекарасының: 4 (төрт) блок, келесі географиялық координаттармен:
- М-45-98-(10в-56-15) (толық емес), М-45-98-(10в-56-20) (толық емес), М-45-99-(10а-5а-11) (толық емес), М-45-99-(10а-5а-16) (толық емес)
 - 3) Кодекстің 191-бабында көзделген жер қойнауын пайдалану шарттары: ..
 - 3. Жер қойнауын пайдаланушының міндеттемелері:
 - 1) Қол қою бонусын төлеу: 100,00 АЕК;

Мерзімі лицензия берілген күннен бастап 10 жұмыс күн;

- 2) Қазақстан Республикасының "Салық және бюджетке төленетін басқа да міндетті төлемдер туралы (Салық кодексі)" Кодексінің 563-бабына сәйкес мөлшерде және тәртіппен жер учаскелерін пайдаланғаны үшін төлемдерді (жалдау төлемдерін) лицензия мерзімі ішінде төлеу;
 - 3) қатты пайдалы қазбаларды барлау жөніндегі операцияларға жыл сайынғы ең төмен шығындарды жүзеге асыру:
 - бірінші жылдан үшінші жылына дейінгі барлау мерзімін қоса алғанда әр жыл сайын 1 800,00;
 - төртінші жылдан алтыншы жылына дейінгі барлау мерзімін қоса алғанда әр жыл сайын 2 300,00;
 - 4) Кодекстің 278-бабына сәйкес Жер қойнауын пайдаланушының міндеттемелері: жоқ.
 - 4. Лицензияны қайтарып алу негіздері:
- 1) ұлттық кауіпсіздікке қатер төндіруге әкеп соққан жер қойнауын пайдалану құқығының және жер қойнауын пайдалану құқығымен байланысты объектілердің ауысуы жөніндегі талаптарды бұзу;
 - 2) осы лицензияда көзделген шарттар мен міндеттемелерді бұзу;
 - 3) осы Лицензияның 3-тармағының 4) тармақшасында көрсетілген міндеттемелердің орындалмауы.
 - 5. Лицензия берген мемлекеттік орган: Қазақстан Республикасының Өнеркәсіп және құрылыс министрлігі.

ЭЦК деректері:

Қол қойылған күні мен уақыты: 24.02.2025 19:28 Пайдаланушы; ШАРХАН ИРАН ШАРХАНОВИЧ

БСН: 231040007978

Кілт алгоритмі: ГОСТ 34.10-2015/кг

КР "Жер қойнауы және жер қойнауын пайдалану туралы" Кодексінің 196-бабына сәйкес Сізге заңнамада белгіленген тәртіппен мемлекеттік экологиялық сараптаманың оңқорытындысымен бекітілген барлау жоспарының көшірмесін қатты пайдалы қазбалар саласындағы үәкілетті органға ұсыну қажет.

№ 3191-EL minerals.e-qazyna.kz Құжатты тексеру үшін осы QR-кодты сканерленіз

Лицензия

на разведку твердых полезных ископаемых

№3191-EL от 24.02.2025

1. Наименование недропользователя: **Товарищество с ограниченной ответственностью "Gl gold"** (далее – Недропользователь).

Юридический адрес: Казахстан, Акмолинская область, Кокшетау г.а., г. Кокшетау, ул. Фруктовая, ном. уч. 167.

Лицензия выдана и предоставляет право на пользование участком недр в целях проведения операций по разведке твердых полезных ископаемых в соответствии с Кодексом Республики Казахстан от 27 декабря 2017 года «О недрах и недропользовании» (далее – Кодекс).

Размер доли в праве недропользования: 100% (сто).

- 2. Условия лицензии:
- 1) срок лицензии (при продлении срока лицензии на разведку срок указывается с учетом срока продления): 6 лет со дня ее выдячи;
 - 2) границы территории участка недр (блоков): 4 (четыре):
- M-45-98-(10в-56-15) (частично), M-45-98-(10в-56-20) (частично), M-45-99-(10а-5а-11) (частично), M-45-99-(10а-5а-16) (частично)
 - 3) условия недропользования, предусмотренные статьей 191 Кодекса: ..
 - 3. Обязательства Недропользователя:
 - 1) уплата подписного бонуса: 100,00 МРП;
 - Срок выплаты подписного бонуса 10 раб дней с даты выдачи лицензии;
- 2) уплата в течение срока лицензии платежей за пользование земельными участками (арендных платежей) в размере и порядке в соответствии со статьей 563 Кодекса Республики Казахстан "О налогах и других обязательных платежах в бюджет (Налоговый кодекс)";
 - 3) ежегодное осуществление минимальных расходов на операции по разведке твердых полезных ископаемых:
 - в течение каждого года с первого по третий год срока разведки включительно 1 800,00;
 - в течение каждого года е четвертого по шестой год срока разведки включительно 2 300,00;
 - 4) Обязательства Недропользователя в соответствии со статьей 278 Кодекса: нет.
 - 4. Основания отзыва лицензии:
- 1) нарушение требований по переходу права недропользования и объектов связанных с правом недропользования, повлекшее угрозу национальной безопасности;
 - 2) нарушение условий и обязательств, предусмотренных настоящей лицензией;
 - 3) Неисполнение обязательств, указанных в подпункте 4) пункта 3 настоящей Лицензии.
- 5. Государственный орган, выдавший лицензию: Министерство промышленности и строительства Республики Казахстан.

Ланные ЭШІ:

Дата и время подписи: 24.02.2025 19:28 Пользователь: ШАРХАН ИРАН ШАРХАНОВИЧ БИН: 231040007978

Алгоритм ключа: ГОСТ 34.10-2015/kz

В соответствии со статьей 196 Кодекса РК «О недрах и недропользовании» вам необходимо в установленном законодательством порядке представить копию утвержденного Плана разведки, с положительным заключением государственной экологической экспертизы, в уполномоченный орган в области твердых полезных ископаемых.

№ 3191-EL minerals.e-qazyna.kz Для проверки документа отсканируйте данный QR-код

ПРИЛОЖЕНИЕ 2

Координаты проектных шурфов

Шурф	X (utm45U)	Y (utm45U)
ш-1-1	354227.854	5459198.97
ш-1-2	354267.84	5459197.91
ш-1-3	354307.826	5459196.85
ш-1-4	354787.658	5459184.16
ш-1-5	354827.644	5459183.1
ш-1-6	354867.63	5459182.04
ш-2-1	354273.176	5459397.84
ш-2-2	354313.162	5459396.78
ш-2-3	354353.148	5459395.73
ш-2-4	354713.022	5459386.21
ш-2-5	354753.008	5459385.15
ш-2-6	354792.994	5459384.09
ш-3-1	354278.512	5459597.77
ш-3-2	354318.498	5459596.71
ш-3-3	354358.484	5459595.65
ш-3-4	354798.33	5459584.02
ш-3-5	354838.316	5459582.96
ш-3-6	354878.302	5459581.9
ш-3-7	354918.288	5459580.84
ш-3-8	354958.274	5459579.79
ш-3-9	354998.26	5459578.73
ш-4-1	354203.876	5459799.81
ш-4-2	354243.862	5459798.76
ш-4-3	354283.848	5459797.7
ш-4-4	354657.38	5459787.82
ш-4-5	354923.624	5459780.77
ш-4-6	354963.61	5459779.72
ш-4-7	355003.596	5459778.66
ш-4-8	355043.582	5459777.6
ш-4-9	355083.568	5459776.54
ш-4-10	355123.554	5459775.48
ш-4-11	355163.54	5459774.43
ш-4-12	355203.526	5459773.37
ш-5-1	354129.24	5460001.86
ш-5-2	354169.226	5460000.8
ш-5-3	354209.212	5459999.74
ш-5-4	354609.072	5459989.16
ш-5-5	354649.058	5459988.11
ш-5-6	354689.044	5459987.05
ш-5-7	354729.03	5459985.99
ш-5-8	354769.016	5459984.93
ш-5-9	355048.918	5459977.53
ш-5-10	355088.904	5459976.47

	PTCD	
ш-5-11	355128.89	5459975.41
ш-5-12	355168.876	5459974.36
ш-5-13	355208.862	5459973.3
ш-5-14	355248.848	5459972.24
ш-5-15	355288.834	5459971.18
ш-5-16	355328.82	5459970.12
ш-6-1	354054.604	5460203.9
ш-6-2	354094.59	5460202.85
ш-6-3	354134.576	5460201.79
ш-6-4	354614.408	5460189.09
ш-6-5	354654.394	5460188.04
ш-6-6	354694.38	5460186.98
ш-6-7	354734.366	5460185.92
ш-6-8	354774.352	5460184.86
ш-6-9	354814.338	5460183.8
ш-6-10	354854.324	5460182.75
ш-6-11	355094.24	5460176.4
ш-6-12	355134.226	5460175.34
ш-6-13	355174.212	5460174.28
ш-6-14	355214.198	5460173.23
ш-6-15	355254.184	5460172.17
ш-6-16	355294.17	5460171.11
ш-6-17	355334.156	5460170.05
ш-6-18	355374.142	5460169
<u> </u>	353979.968	5460405.95
ш-7-2	354019.954	5460404.89
ш-7-3	354059.94	5460403.83
<u> </u>	354339.842	5460396.43
ш-7-5	354659.73	5460387.96
ш-7-6	354699.716	5460386.91
ш-7-7	354739.702	5460385.85
ш-7-8	354779.688	5460384.79
ш-7-9	354819.674	5460383.73
ш-7-10	354859.66	5460382.68
ш-7-11	355099.576	5460376.33
ш-7-11	355139.562	5460375.27
ш-7-13	355179.548	5460374.21
ш-8-1	353905.331	5460607.99
ш-8-1	353905.331	5460606.93
ш-8-2	353945.317	5460605.88
ш-8-3 ш-8-4	354265.206	5460598.47
ш-8-4	354305.192	5460597.41
ш-8-5	1	
	354345.178	5460596.36
ш-8-7	354665.066	5460587.89

ш-8-8	354705.052	5460586.84
ш-8-9	354745.038	5460585.78
ш-8-10	354785.024	5460584.72
ш-8-11	354825.01	5460583.66
ш-8-12	354864.996	5460582.6
ш-8-13	355184.884	5460574.14
ш-8-14	355224.87	5460573.08
ш-8-15	355264.856	5460572.03
ш-8-16	355304.842	5460570.97
ш-8-17	355344.828	5460569.91
ш-8-18	355384.814	5460568.85
ш-8-19	355424.8	5460567.79
ш-8-20	355464.786	5460566.74
ш-8-21	355504.772	5460565.68
ш-8-22	355544.758	5460564.62
ш-8-23	355584.744	5460563.56
ш-8-24	355624.73	5460562.51
ш-8-25	355664.716	5460561.45
ш-8-26	355704.702	5460560.39
ш-9-1	353870.681	5460808.98
ш-9-2	353910.667	5460807.92
ш-9-3	353950.653	5460806.86
ш-9-4	354230.555	5460799.46
ш-9-5	354550.444	5460791
ш-9-6	354590.43	5460789.94
ш-9-7	354630.416	5460788.88
ш-9-8	354910.318	5460781.48
ш-9-9	354950.304	5460780.42
ш-9-10	354990.29	5460779.36
ш-10-1	353836.031	5461009.97
ш-10-2	353876.017	5461008.91
ш-10-3	353916.003	5461007.85
ш-10-4	354435.821	5460994.1
ш-10-5	354475.807	5460993.04
ш-10-6	354515.793	5460991.98
ш-10-7	354875.667	5460982.46
ш-10-8	354915.654	5460981.4
ш-10-9	354955.64	5460980.35
ш-10-10	355235.542	5460972.94
ш-10-11	355275.528	5460971.88
ш-10-12	355315.514	5460970.83
ш-10-13	355355.5	5460969.77
ш-10-14	355395.486	5460968.71
ш-10-15	355435.472	5460967.65
ш-10-16	355475.458	5460966.59
ш-10-17	355515.444	5460965.54
ш-10-18	355555.43	5460964.48
ш-10-19	355595.416	5460963.42

ш-10-20	355635.402	5460962.36
ш-10-21	355675.388	5460961.31
ш-10-22	355715.374	5460960.25
ш-11-1	353761.395	5461212.01
ш-11-2	353801.381	5461210.95
ш-11-3	353841.367	5461209.89
ш-11-4	354281.213	5461198.26
ш-11-5	354321.199	5461197.2
ш-11-6	354361.185	5461196.14
ш-11-7	354920.989	5461181.33
ш-11-8	354960.975	5461180.28
ш-11-9	355000.961	5461179.22
ш-11-10	355240.877	5461172.87
ш-11-11	355280.863	5461171.81
ш-11-12	355320.85	5461170.75
ш-12-1	353726.745	5461413
ш-12-2	353766.731	5461411.94
ш-12-3	353806.731	5461410.88
ш-12-3	354206.577	5461400.3
ш-12-4		
	354246.563	5461399.24
ш-12-6	354286.549	5461398.19
ш-12-7	354926.325	5461381.26
ш-12-8	354966.311	5461380.2
ш-12-9	355006.297	5461379.15
ш-12-10	355246.213	5461372.8
ш-12-11	355286.199	5461371.74
ш-12-12	355326.185	5461370.68
ш-13-1	353692.048	5461613.98
ш-13-2	353732.034	5461612.93
ш-13-3	353772.02	5461611.87
ш-13-4	354131.894	5461602.35
ш-13-5	354171.88	5461601.29
ш-13-6	354211.866	5461600.23
ш-13-7	354891.628	5461582.25
ш-13-8	354931.614	5461581.19
ш-13-9	354971.6	5461580.13
ш-13-10	355211.516	5461573.79
ш-13-11	355251.502	5461572.73
ш-13-12	355291.488	5461571.67
ш-14-1	353617.365	5461816.03
ш-14-2	353657.351	5461814.97
ш-14-3	353697.337	5461813.91
ш-14-4	354057.211	5461804.39
ш-14-5	354097.197	5461803.34
ш-14-6	354137.183	5461802.28
ш-14-7	354856.931	5461783.24
ш-14-8	354896.918	5461782.18
ш-14-8		5461781.12
ш-14-Э	354936.904	3401/01.12

ш-14-10	355176.82	5461774.78
ш-14-11	355216.806	5461773.72
ш-14-12	355256.792	5461772.66
ш-15-1	353542.823	5462018.07
ш-15-2	353582.809	5462017.01
ш-15-3	353622.795	5462015.96
ш-15-4	353982.669	5462006.44
ш-15-5	354022.655	5462005.38
ш-15-6	354062.641	5462004.32
ш-15-7	354942.333	5461981.05
ш-15-8	354982.319	5461979.99
ш-15-9	355022.305	5461978.93
ш-15-10	355262.221	5461972.59
ш-15-11	355302.207	5461971.53
ш-15-12	355342.193	5461970.47
ш-15-13	355382.179	5461969.41
ш-16-1	353508.126	5462219.06
ш-16-2	353548.112	5462218
ш-16-3	353588.098	5462216.94
ш-16-4	353907.986	5462208.48
ш-16-5	353947.972	5462207.42
ш-16-6	353987.958	5462206.37
ш-16-7	354947.622	5462180.98
ш-16-8	354987.608	5462179.92
ш-16-9	355027.594	5462178.86
ш-16-10	355267.51	5462172.52
ш-16-11	355307.496	5462171.46
ш-16-12	355347.482	5462170.4
ш-16-13	355387.468	5462169.34

	1	•
ш-17-1	353473.429	5462420.05
ш-17-2	353513.415	5462418.99
ш-17-3	353553.401	5462417.93
ш-17-4	353873.289	5462409.47
ш-17-5	353913.275	5462408.41
ш-17-6	353953.261	5462407.35
ш-17-7	355032.883	5462378.79
ш-17-8	355072.869	5462377.73
ш-17-9	355112.855	5462376.68
ш-17-10	355392.757	5462369.27
ш-17-11	355432.743	5462368.21
ш-17-12	355472.729	5462367.16
ш-17-13	355512.715	5462366.1
ш-17-14	355552.701	5462365.04
ш-18-1	353438.732	5462621.04
ш-18-2	353478.718	5462619.98
ш-18-3	353518.704	5462618.92
ш-18-4	353798.606	5462611.52
ш-18-5	353838.592	5462610.46
ш-18-6	353878.578	5462609.4
ш-18-7	355118.144	5462576.61
ш-18-8	355158.13	5462575.55
ш-18-9	355198.116	5462574.49
ш-18-10	355478.018	5462567.09
ш-18-11	355518.004	5462566.03
ш-18-12	355557.99	5462564.97
ш-18-13	355597.976	5462563.91
ш-18-14	355637.962	5462562.86

Координаты контура площадей геологической разведки

Nº пл.	Nº угл.т.	X (utm45U)	Y (utm45U)
1	1	353705.8472	5461933.186
1	2	353707.5788	5462010.061
1	3	353706.2266	5462011.866
1	4	353707.578	5462021.825
1	5	353666.0409	5462033.233
1	6	353628.8164	5462120.299
1	7	353638.3557	5462180.894
1	8	353650.7719	5462206.312
1	9	353634.128	5462234.162
1	10	353629.5103	5462264.997
1	11	353609.6161	5462293.251
1	12	353623.0182	5462362.451
1	13	353624.8287	5462366.234
1	14	353623.6142	5462382.503

1	15	353628.5838	5462392.728
1	16	353610.3745	5462464.859
1	17	353605.0236	5462467.377
1	18	353585.884	5462534.325
1	19	353561.0306	5462586.312
1	20	353571.7773	5462617.751
1	21	353564.6659	5462645.921
1	22	353433.8071	5462649.383
1	23	353433.8071	5462621.166
1	24	353468.504	5462420.178
1	25	353503.2009	5462219.19
1	26	353537.8978	5462018.202
1	27	353612.4404	5461816.16
1	28	353687.1233	5461614.115
1	29	353721.8202	5461413.127
1	30	353756.4703	5461212.14

1	31	353831.1065	5461010.096
1	32	353865.7566	5460809.109
1	33	353900.4067	5460608.122
1	34	353975.0428	5460406.078
1	35	354049.6789	5460204.034
1	36	354124.3151	5460001.989
1	37	354124.3131	5459799.945
1			5459597.9
	38	354273.5873	
1	39	354268.2514	5459397.971
1	40	354222.9295	5459199.1
1	41	354218.8427	5459176.539
1	42	354309.2364	5459174.148
1	43	354338.9732	5459231.115
1	44	354345.3016	5459245.245
1	45	354351.4526	5459273.356
1	46	354348.9953	5459280.268
1	47	354354.6089	5459331.879
1	48	354373.0106	5459369.974
1	49	354393.0134	5459400.572
1	50	354411.016	5459414.023
1	51	354413.0093	5459417.548
1	52	354416.16	5459420.752
1	53	354412.4042	5459428.067
1	54	354410.0966	5459472.359
1	55	354413.1895	5459493.268
1	56	354413.4886	5459524.263
1	57	354224.3668	5460034.828
1	58	354068.8129	5460419.255
1	59	353705.8472	5461933.186
2	1	354385.9251	5460586.963
2	2	354379.2427	5460617.715
2	3	354363.925	5460627.446
2	4	354321.3846	5460673.18
2	5	354310.0661	5460737.654
2	6	354312.2559	5460745.763
2	7	354268.8327	5460766.594
2	8	354239.1691	5460824.4
2	9	354231.5912	5460852.946
2	10	354219.7141	5460870.751
2	11	354215.9514	5460894.925
2	12	354201.2073	5460920.354
2	13	354178.49	5460970.505
2	14	354177.2365	5460977.298
2	15	354163.671	5460989.708
2	16	354134.8376	5461001.669
2	17	354262.8578	5460467.696
2	18	354367.8883	5460208.13
2		354367.8883	
	19	334370.7423	5460255.475

2	20	354381.3368	5460310.022
2	21	354381.1449	5460314.048
2	22	354370.3532	5460347.749
2	23	354378.9774	5460429.001
2	24	354409.4652	5460450.765
2	25	354406.6771	5460463.424
2	26	354415.5941	5460531.901
2	27	354418.3758	5460537.372
2	28	354385.9251	5460586.963
3	1	354879.7788	5460390.768
3	2	354883.5742	5460415.632
3	3	354888.6644	5460442.688
3	4	354886.1002	5460477.543
3	5	354888.4321	5460496.81
3	6	354885.4182	5460529.277
3	7	354913.3211	5460575.286
3	8	354921.4212	5460582.802
3	9	354912.0948	5460598.547
3	10	354958.1604	5460689.031
3	11	354977.7653	5460694.91
3	12	354979.564	5460713.701
3	13	354987.5422	5460736.292
3	14	354993.9133	5460757.397
3	15	354997.2927	5460769.459
3	16	355000.7249	5460796.41
3	17	355009.6856	5460833.631
3	18	355015.9015	5460867.182
3	19	355016.1868	5460869.843
3	20	355006.1969	5460888.954
3	21	354998.6281	5460934.338
3	22	355003.1216	5460982.234
3	23	355017.5414	5461024.954
3	24	355031.2119	5461046.323
3	25	355037.4991	5461058.89
3	26	355035.3669	5461069.455
3	27	355029.3911	5461110.932
3	28	355029.1068	5461156.355
3	29	355026.3767	5461199.487
3	30	355024.2875	5461213.638
3	31	355008.6883	5461246.459
3	32	355017.1093	5461313.784
3	33	355030.4064	5461335.972
3	34	355029.1188	5461347.158
3	35	355020.0704	5461382.325
3	36	355000.5822	5461436.454
3	37	355010.9329	5461485.742
3	38	355015.5226	5461503.208
3	39	355015.6718	5461510.017

3	40	355008.6458	5461528.728
3	41	354990.2284	5461575.646
3	42	354985.2585	5461654.77
3	43	354987.6664	5461687.974
3	44	354986.884	5461694.41
3	45	354977.1933	5461717.957
3	46	354963.1535	5461759.7
3	47	354959.3977	5461784.661
3	48	354952.2318	5461832.528
3	49	354955.5017	5461839.791
3	50	354954.4454	5461843.571
3	51	354959.8736	5461886.253
3	52	354975.852	5461924.679
3	53	355008.3363	5461961.551
3	54	355032.8089	5461976.464
3	55	355038.133	5461992.617
3	56	355039.7237	5462010.835
3	57	355044.9309	5462040.326
3	58	355047.7372	5462059.157
3	59	355048.8162	5462080.9
3	60	355045.7502	5462127.85
3	61	355054.2013	5462157.025
3	62	355055.7834	5462168.336
3	63	355055.7834	5462183.373
3	64	355052.0247	5462228.579
3	65	355063.5175	5462278.9
3	66	355092.942	5462333.961
3	67	355125.8379	5462358.045
3	68	355134.7723	5462367.453
3	69	355146.1863	5462389.684
3	70	355161.547	5462412.455
3	71	355177.0583	5462443.697
3	72	355202.7657	5462488.527
3	73	355218.9745	5462521.026
3	74	355238.1229	5462552.746
3	75	355240.0506	5462556.599
3	76	355232.2619	5462565.06
3	77	355229.219	5462601.885
3	78	355123.9091	5462604.671
3	79	355112.8357	5462576.607
3	80	355027.5745	5462378.793
3	81	354942.3134	5462180.978
3	82	354937.0243	5461981.048
3	83	354851.6228	5461783.238
3	84	354886.3197	5461582.25
3	85	354920.9698	5461381.263
3	86	354915.6807	5461181.333
3	87	354870.3588	5460982.462

3 89 354820.0505 5460654.484 3 90 354713.2814 5460657.658 3 91 354638.2958 5460788.88 3 92 354523.6737 5460991.982 3 93 354369.0655 5461196.143 3 94 354294.4294 5461398.187 3 95 354145.0636 5461600.233 3 96 354145.0636 5461802.278 3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462609.4 3 100 353886.4583 5462699.41 3 101 353876.2161 5462637.858 3 102 353814.5755 546269.613 3 103 3538781.9597 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721<	3	88	354905.0089	5460781.475
3 91 354638.2958 5460788.88 3 92 354523.6737 5460991.982 3 93 354369.0655 5461196.143 3 94 354294.4294 5461398.187 3 95 354219.7465 5461600.233 3 96 354145.0636 5461802.278 3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462639.309 3 103 353876.2161 5462639.309 3 104 353878.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462553.224 3 106 353793.0771 5462554.002 3 107 353810.721 54622552.26 3 108 353891.47	3	89	354820.0505	5460654.484
3 92 354523.6737 5460991.982 3 93 354369.0655 5461196.143 3 94 354294.4294 5461398.187 3 95 354219.7465 5461600.233 3 96 354145.0636 5461802.278 3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462585.324 3 107 353810.721 5462554.002 3 108 353810.721 5462554.002 3 109 353840.9091 5462554.002 3 110 353870.74	3	90	354713.2814	5460657.658
3 93 354369.0655 5461196.143 3 94 354294.4294 5461398.187 3 95 354219.7465 5461600.233 3 96 354145.0636 5461802.278 3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353814.5755 5462639.309 3 104 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462585.324 3 108 353810.721 5462585.3024 3 109 353840.9091 5462595.226 3 110 353850.7481 54622445.643 3 111 35389	3	91	354638.2958	5460788.88
3 94 354294.4294 5461398.187 3 95 354219.7465 5461600.233 3 96 354145.0636 5461802.278 3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353878.4641 5462613.264 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462554.002 3 108 353819.4711 5462553.037 3 109 353840.9091 54622555.226 3 111 3538	3	92	354523.6737	5460991.982
3 95 354219.7465 5461600.233 3 96 354145.0636 5461802.278 3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462639.309 3 102 353814.5755 5462639.309 3 103 3538781.9597 5462613.264 3 104 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462533.037 3 109 353840.9091 5462554.002 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353891.7328 5462154.136 3 113 353	3	93	354369.0655	5461196.143
3 96 354145.0636 5461802.278 3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353807.7375 5462629.613 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353840.9091 5462554.002 3 109 353840.9091 5462553.037 3 110 3538950.7481 5462445.643 3 111 3538950.7481 5462445.643 3 112 3538950.7481 5462163.475 3 113	3	94	354294.4294	5461398.187
3 97 354070.521 5462004.32 3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353807.7375 5462629.613 3 104 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 106 353793.0771 5462554.002 3 108 353819.4711 5462554.002 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353886.8693 5462384.671 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 3	3	95	354219.7465	5461600.233
3 98 353995.8381 5462206.366 3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353807.7375 5462629.613 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462554.002 3 109 353840.9091 5462555.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 <td< td=""><td>3</td><td>96</td><td>354145.0636</td><td>5461802.278</td></td<>	3	96	354145.0636	5461802.278
3 99 353961.1412 5462407.354 3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353807.7375 5462629.613 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462554.002 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353893.7238 5462154.136 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 <t< td=""><td>3</td><td>97</td><td>354070.521</td><td>5462004.32</td></t<>	3	97	354070.521	5462004.32
3 100 353886.4583 5462609.4 3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353807.7375 5462629.613 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462553.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462019.974 3 117 <	3	98	353995.8381	5462206.366
3 101 353876.2161 5462637.858 3 102 353814.5755 5462639.309 3 103 353807.7375 5462629.613 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462553.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353918.0051 5462071.877 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.5945 5462010.967 3 120	3	99	353961.1412	5462407.354
3 102 353814.5755 5462639.309 3 103 353807.7375 5462629.613 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462553.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 3538917.1357 5462113.868 3 114 353918.0051 5462071.877 3 116 353951.5361 5462071.877 3 116 353951.5361 5462019.974 3 117 353951.1625 5462019.974 3 119 353978.803 5461920.076 3 120	3	100	353886.4583	5462609.4
3 103 353807.7375 5462629.613 3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462533.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462071.877 3 116 353951.5361 5462019.974 3 117 353951.5361 5462019.974 3 118 353965.1594 5462010.967 3 120	3	101	353876.2161	5462637.858
3 104 353783.4641 5462613.264 3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462533.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353951.1625 5462019.974 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 <	3	102	353814.5755	5462639.309
3 105 353781.9597 5462611.489 3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462554.002 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462013.475 3 115 353918.0051 5462071.877 3 116 353951.5361 5462071.877 3 116 353951.1625 5462019.974 3 118 353965.1594 5462019.974 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461896.937 3 122 <	3	103	353807.7375	5462629.613
3 106 353793.0771 5462585.324 3 107 353810.721 5462554.002 3 108 353819.4711 5462533.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353951.1625 5462019.974 3 119 353978.803 5461920.076 3 119 353968.7494 5461896.937 3 121 353968.7494 5461896.937 3 122 354001.1136 5461841.046 3 123	3	104	353783.4641	5462613.264
3 107 353810.721 5462554.002 3 108 353819.4711 5462533.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353836.8693 5462384.671 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353951.1625 5462019.974 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461755.376 3 124 <	3	105	353781.9597	5462611.489
3 108 353819.4711 5462533.037 3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353892.7322 5462163.475 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353951.1625 5462019.974 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354039.6763 5461739.132 3 125 354039.6763 546173.417 3 128 354049.8112	3	106	353793.0771	5462585.324
3 109 353840.9091 5462505.226 3 110 353850.7481 5462445.643 3 111 353836.8693 5462384.671 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353951.1625 5462019.974 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354039.6763 5461755.376 3 125 354039.1968 546173.417 3 126 <	3	107	353810.721	5462554.002
3 110 353850.7481 5462445.643 3 111 353836.8693 5462384.671 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353965.1594 5462019.974 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354039.6763 5461755.376 3 125 354039.1968 5461755.376 3 126 354039.1968 5461702.489 3 127	3	108	353819.4711	5462533.037
3 111 353836.8693 5462384.671 3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353965.1594 5462019.974 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354031.7955 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 546173.417 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 129 <	3	109	353840.9091	5462505.226
3 112 353892.7322 5462163.475 3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353965.1594 5462010.967 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129	3	110	353850.7481	5462445.643
3 113 353893.7238 5462154.136 3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353965.1594 5462010.967 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377	3	111	353836.8693	5462384.671
3 114 353917.1357 5462113.868 3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353965.1594 5462010.967 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461592.132 3 132 354109.2079	3	112	353892.7322	5462163.475
3 115 353918.0051 5462071.877 3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353965.1594 5462010.967 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461504.319 3 134 354137.3308	3	113	353893.7238	5462154.136
3 116 353951.5361 5462026.974 3 117 353951.1625 5462019.974 3 118 353965.1594 5462010.967 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308	3	114	353917.1357	5462113.868
3 117 353951.1625 5462019.974 3 118 353965.1594 5462010.967 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	115	353918.0051	5462071.877
3 118 353965.1594 5462010.967 3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	116	353951.5361	5462026.974
3 119 353978.803 5461920.076 3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	117	353951.1625	5462019.974
3 120 353964.324 5461896.937 3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	118	353965.1594	5462010.967
3 121 353968.7494 5461890.668 3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	119	353978.803	5461920.076
3 122 354001.1136 5461841.046 3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	120	353964.324	5461896.937
3 123 354033.9304 5461769.247 3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	121	353968.7494	5461890.668
3 124 354031.7955 5461755.376 3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	122	354001.1136	5461841.046
3 125 354039.6763 5461739.132 3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	123	354033.9304	5461769.247
3 126 354039.1968 5461702.489 3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	124	354031.7955	5461755.376
3 127 354052.5866 5461673.417 3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	125	354039.6763	5461739.132
3 128 354049.8112 5461657.467 3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	126	354039.1968	5461702.489
3 129 354055.5841 5461653.103 3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	127	354052.5866	5461673.417
3 130 354087.5986 5461608.746 3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	128	354049.8112	5461657.467
3 131 354089.6377 5461598.201 3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	129	354055.5841	5461653.103
3 132 354109.2079 5461592.132 3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	130	354087.5986	5461608.746
3 133 354138.497 5461504.319 3 134 354137.3308 5461496.647	3	131	354089.6377	5461598.201
3 134 354137.3308 5461496.647	3	132	354109.2079	5461592.132
	3	133	354138.497	5461504.319
3 135 354139.7292 5461493.821	3	134	354137.3308	5461496.647
	3	135	354139.7292	5461493.821

3	136	354159.3464	5461445.798
3	137	354177.402	5461389.659
3	138	354178.537	5461354.499
3	139	354190.2986	5461319.991
3	140	354209.2706	5461273.003
3	141	354222.8348	5461245.498
3			
3	142	354238.1523	5461223.707
	143	354262.9092	5461188.48
3	144	354267.8495	5461167.833
3	145	354271.4976	5461162.802
3	146	354273.8952	5461161.807
3	147	354312.6253	5461126.376
3	148	354360.9674	5461091.945
3	149	354372.1682	5461031.244
3	150	354380.6326	5461012.558
3	151	354409.2246	5460963.245
3	152	354411.9775	5460945.559
3	153	354417.7851	5460936.853
3	154	354423.7716	5460914.302
3	155	354463.2189	5460890.494
3	156	354500.554	5460837.962
3	157	354521.813	5460781.306
3	158	354520.2901	5460766.593
3	159	354526.5078	5460762.644
3	160	354563.6517	5460717.946
3	161	354574.9274	5460666.056
3	162	354598.5989	5460629.882
3	163	354628.6379	5460578.154
3	164	354628.6379	5460506.86
3	165	354611.0475	5460472.259
3	166	354616.7203	5460446.503
3	167	354613.5822	5460365.593
3	168	354581.9549	5460332.57
3	169	354583.7118	5460295.702
3	170	354573.3605	5460242.406
3	171	354574.224	5460240.727
3	172	354587.2235	5460177.715
3	173	354569.4887	5460126.513
3	174	354587.2066	5460093.103
3	175	354590.2782	5460038.354
3	176	354597.9234	5459999.412
3	177	354615.2237	5459963.983
3	178	354625.3596	5459887.909
3	179	354618.0768	5459866.537
3	180	354632.8511	5459807.589
3	181	354653.0747	5459756.996
3			
	182	354673.498	5459776.273
3	183	354680.0229	5459817.681

3	184	354715.5305	5459835.735
3	185	354737.7568	5459870.536
3	186	354749.1305	5459882.478
3	187	354751.8455	5459887.096
3	188	354764.1131	5459906.415
3	189	354769.7042	5459914.548
3	190	354770.7179	5459918.707
3	191	354769.7887	5459920.399
3	192	354776.3409	5459961.548
3	193	354788.1443	5460015.812
3	194	354810.486	5460026.604
3	195	354813.3381	5460030.968
3	196	354813.1078	5460050.74
3	197	354828.2169	5460075.907
3	198	354828.5753	5460090.356
3	199	354842.7351	5460126.466
3	200	354841.4069	5460156.027
3	201	354875.5821	5460186.939
3	202	354869.2758	5460217.858
3	203	354880.3002	5460240.542
3	204	354879.9068	5460257.831
3	205	354879.3388	5460258.565
3	206	354872.7852	5460294.816
3	207	354858.2012	5460318.813
3	208	354873.3125	5460355.493
3	209	354869.1802	5460378.307
3	210	354879.7788	5460390.768
4	1	355393.4516	5460168.484
4	2	355189.8567	5460374.213
4	3	355293.644	5460530.934
4	4	355721.8439	5460518.526
4	5	355724.9213	5460693.206
4	6	355633.8431	5460666.07
4	7	355528.2363	5460661.194
4	8	355465.1997	5460673.071
4	9	355419.0122	5460668.459
4	10	355371.6191	5460680.644
4	11	355357.8928	5460685.638
4	12	355328.5711	5460688.118
4	13	355289.4871	5460692.663
4	14	355274.5248	5460701.199
4	15	355269.7818	5460700.789
4	16	355225.7276	5460704.602
4	17	355210.5124	5460690.255
4	18	355175.2945	5460687.648
4	19	355172.4151	5460678.11
4	20	355170.6101	5460672.999
4	21	355170.258	5460669.32

4	22	355169.7061	5460634.85
4	23	355163.5823	5460620.105
4	24		
-		355163.6775	5460617.749
4	25	355154.0261	5460563.732
4	26	355121.0971	5460535.975
4	27	355103.5413	5460478.452
4	28	355081.9775	5460464.455
4	29	355090.6789	5460425.889
4	30	355079.258	5460401.429
4	31	355080.5272	5460383.033
4	32	355076.6723	5460373.988
4	33	355072.3884	5460321.956
4	34	355072.3948	5460321.834
4	35	355087.2848	5460307.031
4	36	355080.5693	5460277.807
4	37	355086.7465	5460271.033
4	38	355088.4819	5460209.542
4	39	355074.3851	5460175.543
4	40	355078.1871	5460155.083
4	41	355065.461	5460094.135
4	42	355021.0512	5460044.586
4	43	355018.7475	5460014.701
4	44	355016.4886	5460011.33
4	45	355032.3322	5459967.897
4	46	354996.3388	5459943.167
4	47	354974.2662	5459894.637
4	48	354966.7008	5459889.582
4	49	354962.0054	5459874.695
4	50	354955.8491	5459859.447
4	51	354950.374	5459836.982
4	52	354927.3248	5459803.453
4	53	354918.5894	5459789.697
4	54	354906.6049	5459769.314
4	55	354897.2244	5459759.465
4	56	354889.4284	5459719.366
4	57	354854.2487	5459691.391
4	58	354825.1741	5459647.101
4	59	354823.2951	5459646.048
4	60	354777.7556	5459587.999
4	61	354749.1479	5459581.436
4	62	354713.8253	5459553.743
4	63	354696.335	5459541.062
4	64	354681.5217	5459525.488
4	65	354658.2994	5459503.687
4	66	354639.6194	5459486.084
4	67	354662.3873	5459424.618
4	68	354763.5019	5459162.131
4	69	354886.2159	5459158.884
- 4	כט	334000.2139	J4J3IJ0.004

4	70	354877.9393	5459182.045
4	71	354803.3032	5459384.089
4	72	355016.9731	5459578.234
4	73	355219.6545	5459772.942
4	74	355345.3664	5459969.686
4	75	355393.4516	5460168.484
5	1	355647.0619	5462562.855
5	2	355658.0453	5462590.541
5	3	355438.2037	5462596.357
5	4	355439.4826	5462567.582
5	5	355434.3829	5462512.908
5	6	355409.1957	5462462.565
5	7	355390.1079	5462430.945
5	8	355374.8337	5462400.32
5	9	355349.2103	5462355.637
5	10	355330.6754	5462318.304
5	11	355314.6081	5462294.486
5	12	355299.4682	5462264.999
5	13	355266.4897	5462216.858
5	14	355248.7757	5462203.89
5	15	355249.8549	5462190.91
5	16	355249.8549	5462155.171
5	17	355244.6277	5462117.799
5	18	355241.5549	5462107.191
5	19	355243.1894	5462082.162
5	20	355241.1251	5462040.565
5	21	355236.5984	5462010.19
5	22	355232.3779	5461986.287
5	23	355229.6152	5461954.645
5	24	355221.8927	5461931.216
5	25	355222.3096	5461890.738
5	26	355172.1346	5461834.544
5	27	355160.3703	5461826.506
5	28	355160.879	5461824.686
5	29	355152.3614	5461805.769
5	30	355152.7167	5461803.407
5	31	355159.5819	5461782.995
5	32	355176.5454	5461741.776
5	33	355182.557	5461692.325
5	34	355179.7539	5461653.671
5	35	355182.1	5461616.32
5	36	355190.3368	5461595.337
5	37	355210.486	5461541.678
5	38	355209.0674	5461476.931
5	39	355201.748	5461449.077
5	40	355206.0855	5461437.03
5	41	355220.5034	5461380.995
5	42	355225.6072	5461336.656

			•
5	43	355221.6426	5461279.482
5	44	355212.806	5461264.737
5	45	355219.5851	5461218.819
5	46	355223.1414	5461162.633
5	47	355223.379	5461124.671
5	48	355226.789	5461101.003
5	49	355236.8484	5461051.157
5	50	355221.9756	5460995.499
5	51	355201.198	5460953.97
5	52	355195.0929	5460944.427
5	53	355203.617	5460928.12
5	54	355204.8651	5460920.969
5	55	355236.6191	5460924.08
5	56	355274.6779	5460904.86
5	57	355285.7413	5460905.816
5	58	355333.0141	5460901.173
5	59	355353.1966	5460889.659
5	60	355401.5364	5460885.571

5	61	355431.2032	5460874.777
5	62	355434.5761	5460873.91
5	63	355474.0501	5460877.852
5	64	355542.4493	5460864.965
5	65	355600.0594	5460867.625
5	66	355641.7095	5460880.034
5	67	355678.8844	5460908.758
5	68	355732.4446	5460935.685
5	69	355734.514	5460999.189
5	70	355329.9957	5461010.777
5	71	355329.9957	5461170.754
5	72	355335.2848	5461370.684
5	73	355300.5879	5461571.672
5	74	355265.891	5461772.659
5	75	355391.2785	5461969.412
5	76	355396.5676	5462169.342
5	77	355561.8008	5462365.041
5	78	355647.0619	5462562.855