Проект нормативов допустимых выбросов для объектов месторождения Восточный Жагабулак ТОО «Арал Петролеум Кэпитал» на 2026 год

Есқайыров С. Ғ.

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух от источников объектов АО «Горнорудная компания «Бенкала» на 2025-2034 гг.

Список исполнителей

Директор TOO «Lineplus»

Инженер-эколог TOO «Lineplus»

Есқайыров С.Ғ. (руководство проектом)

Супхалеев Б.К. (раздел 1-5)

TOO «Lineplus»

АННОТАЦИЯ

Корректировка проекта нормативов предельно-допустимых выбросов (НДВ) загрязняющих веществ поступающих в атмосферу от источников выбросов ТОО «Арал Петролеум Кэпитал» на месторождении Восточный Жагабулак разработан ТОО «Lineplus» (лицензия № 02194Р от 03.07.2020г.).

В данном проекте оценивается воздействие на атмосферный воздух загрязняющих веществ при эксплуатации оборудования и установок на месторождении Восточный Жагабулак на 2026.

В проекте определены, рассчитаны и систематизированы характеристики источников выделений и выбросов загрязняющих веществ от источников.

ТОО «Арал Петролеум Кэпитал» осуществляет добычу углеводородного сырья на месторождении Восточный Жагабулак согласно контракту № 3582-УВС от 28.07.2010 года.

В эксплуатационном фонде ТОО «Арал Петролеум Кэпитал» находится 3 скважины (№301, №306, №315). Скважина №213 — временно бездействующая, в связи отсутствия дебита нефти и газа, скважина №308 находится в бездействующем фонде с 2016 г. по причине аварии, данным проектом предполагается реконструкция методом бурения бокового наклонно-направленного ствола скважины для дальнейшей эксплуатации оператором.

В данной работе рассчитаны нормативы предельно-допустимых выбросов загрязняющих веществ (НДВ) поступающих в атмосферу при эксплуатации технологического оборудования УБСН, ДКС, площадок добывающих скважин, АГЗУ, производственной базы.

Основными и вспомогательными объектами на месторождении Восточный Жагабулак являются:

- Установка блочный сепарационный насос (УБСН);
- Дожимная компрессорная станция (ДКС);
- Автоматизированная групповая замерная установка (АГЗУ);
- Эксплуатационные скважины 301, 306, 315;
- Производственная база;
- Капитальный ремонт скважин;
- Горячая промывка коллекторной линии скважин.

На месторождении Восточный Жагабулак в основе существующей системы промыслового сбора и транспорта добываемой продукции заложена герметизированная система, в соответствии с которой продукция скважин по выкидным трубопроводам, проложенным по однотрубной лучевой системе, поступает на автоматизированную групповую замерную установку (АГЗУ) «ОЗНА-Спутник АМС-40-8-400», а затем направляется на установку блочную сепарации, отстоя, хранения и налива нефти (УБСН).

• На месторождении Восточный Жагабулак сырой газ частично расходуется на собственные нужды в виде топлива для подогрева продукции при подготовке нефти. В качестве подогревателя нефти на месторождении используется печь марки «Lineheaden» производства Канада компании «OILFIELD ENGINEERING & EQUIPMENT», предназначенная для подогрева нефтяных эмульсий, содержащих сероводород и высокоминерализованную пластовую воду.

В проекте НДВ на 2026 год насчитывается 74 источников загрязнения атмосферы, из которых 34 организованных, 40 неорганизованных.

Дожимная компрессорная станция (ДКС) передвижная установка — работает на электричестве, станция использует электричество от существующей сети месторождения и не имеет воздействия на окружающую среду. Проектом предусмотрены выбросы 3В от газовых

сепараторов, дренажной емкости ДКС.

Источниками выбросов загрязняющих веществ на месторождении Восточный Жагабулак являются более подробная информация представлено в разделе 1.1.:

Таблица 1.1

Фактически действующие скважины на 2056г.	Фактически действующие скважины на 2026 г.
Добывающие: № 301, 306, 315	Добывающие: № 301, 306, 315
3.2 3.01, 3.00, 3.12	3.2301,300,310

Таблица 1.2

		Таолица 1.2
Действующие	Проектируемые	Статус (новый, дейстующий и недействующий)
Устье скважины – 6003, 6015, 6017, 6019;	Устье скважины – 6003, 6015, 6017, 6019;	Действующий
Блок реагентов БР-2,5 – 6004, 6016, 6018, 6020;	Блок реагентов БР-2,5 – 6004, 6016, 6018, 6020;	Действующий
Дизельгенератор 30 кВт – 0012.	Дизельгенератор 30 кВт – 0012.	Действующий
Спутник АМС 40-8-1500 – 6005;	Спутник АМС 40-8-1500 – 6005;	Действующий
Блок реагентов БР-10/100 — 6006;	Блок реагентов БР-10/100 – 6006;	Действующий
Свеча рассеивания дренажной емкости – 0001;	Свеча рассеивания дренажной емкости – 0001;	Действующий
Факельная установка – 0002;	Факельная установка – 0002;	Действующий
Печь подогрева нефти – 0003;	Печь подогрева нефти – 0003;	Действующий
Блочная сепарационная установка – 6007;	Блочная сепарационная установка – 6007;	Действующий
Отстойник нефти – 6008;	Отстойник нефти – 6008;	Действующий
Насосная установка – 6009;	Насосная установка – 6009;	Действующий
Нефтеналивная эстакада – 6010;	Нефтеналивная эстакада – 6010;	Действующий
Установка«SULFATREAT XLP» – 6011;	Установка«SULFATREAT XLP» – 6011;	Действующий
Свеча рассеивания дренажных емкостей – 0004;	Свеча рассеивания дренажных емкостей – 0004;	Действующий
Свеча рассеивания резервуарного паркаV-75м3 (6шт) – 0005;	Свеча рассеивания резервуарного парка V-75м3 (6шт) – 0005;	Действующий
Емкости для хранения дизтоплива – 0006-0008;	Емкости для хранения дизтоплива – 0006-0008;	Действующий
Емкость для хранения бензина — 0009;	Емкость для хранения бензина – 0009;	Действующий
Топливораздаточные колонки (дизтопливо) – 6012;	Топливораздаточные колонки (дизтопливо) – 6012;	Действующий
Топливораздаточные колонки (бензин) – 6013;	Топливораздаточные колонки (бензин) – 6013;	Действующий
Сварочный пост – 6014;	Сварочный пост – 6014; Действующий	
Гараж для спецтехники – 6021;	Гараж для спецтехники – 6021;	Действующий
Дизельный генератор ДЭС-200 кВт – 0010;	Дизельный генератор ДЭС-200 кВт – 0010;	Действующий
Сварочный генератор Хонда –	Сварочный генератор Хонда –	Действующий

ТОО «Арал П оор деум Кэпитал»	0011.	TOO «Lineplus»	
Станок КРС ХЈ-550- 0013;	Станок KPC XJ-550- 0013;	Действующий	
Силовой двигатель бурового	Силовой двигатель бурового	Действующий	
насоса- 0014;	насоса- 0014;	деиствующии	
ДЭС-300 - 0015;	ДЭС-300 - 0015;	Действующий	
ДЭС-100 - 0016;	ДЭС-100 - 0016;	Действующий	
Цементировочный агрегат ЦА- 320- 0017;	Цементировочный агрегат ЦА- 320- 0017;	Действующий	
Емкости для хранения дизтоплива – 0018;	Емкости для хранения дизтоплива – 0018;	Действующий	
ППУ 1600/100 - 0019;	ППУ 1600/100 - 0019;	Действующий	
Выкидные линии и блок задвижек (манифольд) - 6022;	Выкидные линии и блок задвижек (манифольд) - 6022;	Действующий	
Сварочный пост – 6024.	Сварочный пост – 6024.	Действующий	
Передвижная паровая установка, ППУ 1600/100 – 0020;	Передвижная паровая установка, ППУ 1600/100 – 0020;	Действующий	
Цементировочный агрегат ЦА - 320 – 0021;	Цементировочный агрегат ЦА - 320 – 0021;	Действующий	
Агрегат для депарафинизации скважин АДПМ -12/150 – 0022;	Агрегат для депарафинизации скважин АДПМ -12/150 – 0022;	Действующий	
Свеча рассеивания дренажной емкости ДКС – 0023;	Свеча рассеивания дренажной емкости ДКС – 0023;	Действующий	
Газовый сепаратор ГС-1-2,5- 600-2 на входе ДКС-1ед – 6025;	Газовый сепаратор ГС-1-2,5- 600-2 на входе ДКС-1ед – 6025;	Действующий	
Газовый сепаратор на выходе ГС-1-1,5-1200-2 ДКС-1ед – 6026.	Газовый сепаратор на выходе ГС-1-1,5-1200-2 ДКС-1ед – 6026.	Действующий	
-	Работа бульдозера - 6027	Новый	
-	Работа экскаватора - 6028	Новый	
_	Сварочные работы – 6029	Новый	
_	Лакокрасочные работы - 6030	Новый	
-	Буровой станок ZJ50DB (либо его аналог не превыш. характ) - 0025	Новый	
-	Буровой станок ZJ50DB (либо его аналог не превыш. характ) – 0026	Новый	
-	Передвижная паровая установка №1 – 0027	Новый	
-	Цементировочный агрегат – 0028	Новый	
-	Цементно-смесительная машина – 0029	Новый	
-	Емкость хранения дизтоплива – 6031	Новый	
-	Насос для перекачки дизтоплива – 6032	Новый	
-	Блок приготовления бурового новый раствора - 6033		
-	Емкость бурового шлама – 6034	34 Новый	

TOO «Арал Петролеум Кэпитал»	Емкость бурового раствора –	TOO «Lineplus»
-	6035	Новый
-	Емкость хранения масла – 6036	Новый
1	Емкость отработанного масла — 6037	Новый
-	Пересыпка цемента – 6038	Новый
-	Блок приготовления цементного раствора — 6039	Новый
-	Установка освоения ZJ650 (либо его аналог не превыш. характ) - 0030	Новый
-	Установка освоения ZJ650 (либо его аналог не превыш. характ) - 0031	Новый
-	Установка освоения ZJ650(CAT-3412) (либо его аналог не превыш. характ) - 0032	Новый
-	Дизель-генератор VOLVO - TAD1241GE (либо его аналог не превыш. характ) – 0033	Новый
-	Передвижная паровая установка №2 – 0035	Новый
-	Нефтегазосепаратор – 6040	Новый
-	Насос технологический – 6041	Новый
-	Емкость хранения дизтоплива – 6042	Новый
-	Насос для перекачки дизтоплива - 6043	Новый

На 2026 год источниками будет выбрасываться в атмосферу вредные вещества 27-ти наименований и 5-ти групп веществ, обладающих эффектом суммации вредного действия.

Согласно пункту 18 Методики определения нормативов эмиссий в окружающую среду №63-п от 10.03.2021 г. (далее Методика) в части, для действующих объектов I или II категории учитывается фактическая максимальная нагрузка оборудования в пределах показателей, установленных проектом.

Таблина 1.3

Год	Выбросы факт., т/год	Добыча нефти, тонн	Объем газа на сжигание на факеле, м3
2025 год	283.4939695493	46500	76600
2 полугодие 2024	89.17796682143	18450	145000
1 полугодие 2024	6.51189847	3768.7	0
2023 год	23.75885817	7718.1	2222
2022 год	15.97970852	10052.5	56230

Общее количество выбросов загрязняющих веществ на 2026 год составит 283.4939695493 т/год загрязняющих веществ, при добычи нефти 46500 тонн и добычи газа 8 700 000 м3.

Увеличение объемов выбросов от полученного ранее разрешения на воздействие

KZ20VCZ03794477 Гот 103.12.2024 г., связано с реконструкцией оскважины методом бурения бокового наклонно-направленного ствола скважины №308 в 2026 г.

Объемы выбросов при реконструкции скважины №308 составят - 134.905747041 т/год.

Увеличение объемов выбросов так же связано с увеличением объемов добычи нефти и газа, технологически неизбежного сжигания сырого газа в период промышленной разработки месторождения Восточный Жагабулак в 2026г.

Баланс сырого газа на месторождении Восточный Жагабулак в период промышленной добычи в 2026г. представлен разделе 2.3.

Прогнозирование загрязнения атмосферного воздуха осуществлено программным комплексом «Эра», версия 3.0.

Как показало рассеивание вредных веществ в атмосфере, деятельность предприятия на 2026 год не повлечет за собой негативных последствий по изменению качества атмосферного воздуха.

СОДЕРЖАНИЕ

введение	19
1. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ	20
Физико-географическое положение месторождения	20
2. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ	22
КРАТКАЯ ХАРАКТЕРИСТИКА ТЕХНОЛОГИИ ПРОИЗВОДСТВА И ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ С ТО ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ	
КРАТКАЯ ХАРАКТЕРИСТИКА СУЩЕСТВУЮЩИХ УСТАНОВОК ОЧИСТКИ ГАЗА, УКРУБ АНАЛИЗ ИХ ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ЭФФЕКТИВНОСТИ РАБОТЫ	
ОЦЕНКА СТЕПЕНИ ПРИМЕНЯЕМОЙ ТЕХНОЛОГИИ, ТЕХНИЧЕСКОГО И ПЫЛЕГАЗООЧИО ОБОРУДОВАНИЯ ПЕРЕДОВОМУ НАУЧНО-ТЕХНИЧЕСКОМУ УРОВНЮ В СТРАНЕ И МИР ОПЫТУ	ОВОМУ
ПЕРСПЕКТИВА РАЗВИТИЯ ОПЕРАТОРА	30
ПАРАМЕТРЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ДЛЯ РАСЧЕТА НДЕ	31
ХАРАКТЕРИСТИКА АВАРИЙНЫХ И ЗАЛПОВЫХ ВЫБРОСОВ	34
ПЕРЕЧЕНЬ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ВЫБРАСЫВАЕМЫХ В АТМОСФЕРУ	36
ОБОСНОВАНИЕ ПОЛНОТЫ И ДОСТОВЕРНОСТИ ИСХОДНЫХ ДАННЫХ (Г/С, Т/ГОД), ПРИ ДЛЯ РАСЧЕТА НДВ	
2. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ	50
МЕТЕОРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ И КОЭФФИЦИЕНТЫ, ОПРЕДЕЛЯЮЩИЕ УС РАССЕИВАНИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРЕ ГОРОДА	
РЕЗУЛЬТАТЫ РАСЧЕТОВ УРОВНЯ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ НА СООТВЕТСТВУЮЩ ПОЛОЖЕНИЕ И С УЧЕТОМ ПЕРСПЕКТИВЫ РАЗВИТИЯ	
ПРЕДЛОЖЕНИЯ ПО НОРМАТИВАМ ДОПУСТИМЫХ ВЫБРОСОВ ПО КАЖДОМУ ИСТОЧН ИНГРЕДИЕНТУ	
ОБОСНОВАНИЕ ВОЗМОЖНОСТИ ДОСТИЖЕНИЯ НОРМАТИВОВ С УЧЕТОМ ИСПОЛЬЗОЕ МАЛООТХОДНОЙ ТЕХНОЛОГИИ И ДРУГИХ ПЛАНИРУЕМЫХ МЕРОПРИЯТИЙ	
3. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ	88
ПЛАН МЕРОПРИЯТИЙ ПО СОКРАЩЕНИЮ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В А В ПЕРИОДЫ НМУ	
4. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ	92
5. ИНВЕНТАРИЗАЦИЯ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ	110
6. РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ	147
7. САНИТАРНО-ЗАЩИТНАЯ ЗОНА	182
СПИСОК ЛИТЕРАТУРЫ	185

ВВЕДЕНИЕ

Проект нормативов предельно-допустимых выбросов ЗВ в атмосферу для ТОО «Арал Петролеум Кэпитал» выполнен ТОО «Lineplus» на основании договора.

Действующим в настоящее время проектным документом является Проект нормативов НДВ, разработанный ТОО «Lineplus» на 2026 год.

В соответствии с природоохранным законодательством Республики Казахстан нормативы НДВ загрязняющих веществ в атмосферу устанавливаются в целях предотвращения загрязнения воздушного бассейна и для получения разрешения на специальное природопользование.

Проект нормативов предельно-допустимых выбросов вредных веществ в атмосферу разработан на основании исходных данных заказчика и в соответствии с «Об утверждении Методик определения нормативов эмиссий в окружающую среду», утвержденной Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.

Проект выполнен в соответствии с нормативно-методическими документами, которые приведены в разделе «Список литературы».

Адрес оператора:

ТОО «Арал Петролеум Кэпитал»

Республика Казахстан, г. Алматы, пр.Абылай хана 235.тел.: 8(7272) 44-28-11 Местонахождение объекта:

Актюбинская область, Мугалжарский район, месторождение Восточный Жагабулак, ближайший населенный пункт п. Жагабулак.

Адрес исполнителя:

TOO «Lineplus»

Адрес: Республика Казахстан, Актюбинская область, г. Актобе, район Алматы, Садоводческий коллектив мичуринец 20/1, line.plus@bk.ru БИН:170540028209

1. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ

1.1. ФИЗИКО-ГЕОГРАФИЧЕСКОЕ ПОЛОЖЕНИЕ МЕСТОРОЖДЕНИЯ

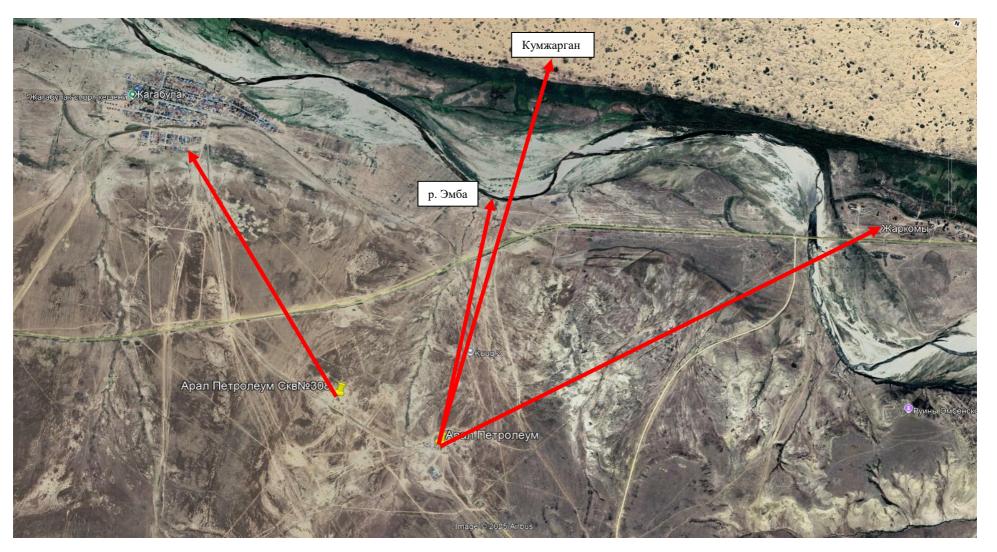
Подсолевое месторождение нефти Восточный Жагабулак открыто в 1991 году. Располагается месторождение в Мугалжарском районе Актюбинской области в 10 км. северовосточнее разрабатываемого месторождения Жанажол и 3 км. западнее месторождения Алибекмола (рис 1.1.). Общая площадь геологического отвода составляет 1466,41 км2.

В административном отношении месторождение Восточный Жагабулак находится в пределах Мугалжарского района Актюбинской области Республики Казахстан.

Областной центр г. Актобе находится в 230 км. по шоссейной дороге к северу от рассматриваемого месторождения.

Ближайший населенный пункт - пос. Жагабулак расположен на расстоянии примерно 3-4 км на северо-западе от месторождения. Поселок городского типа Темир и г. Эмба расположены в 70 км. на севере и в 50 км. на востоке от месторождения Жагабулак Восточный соответственно. На юго-западе на расстоянии 10-12 км. расположен пос. Шубарши. По остальным направлениям близлежащих населенных пунктов нет.

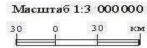
В географическом отношении площадь находится в пределах Подуральского плато, является частью предгорной равнины, расположенной между Мугоджарскими горами (западнее блока – 70-75 км.) и Прикаспийской низменностью с восточной стороны.

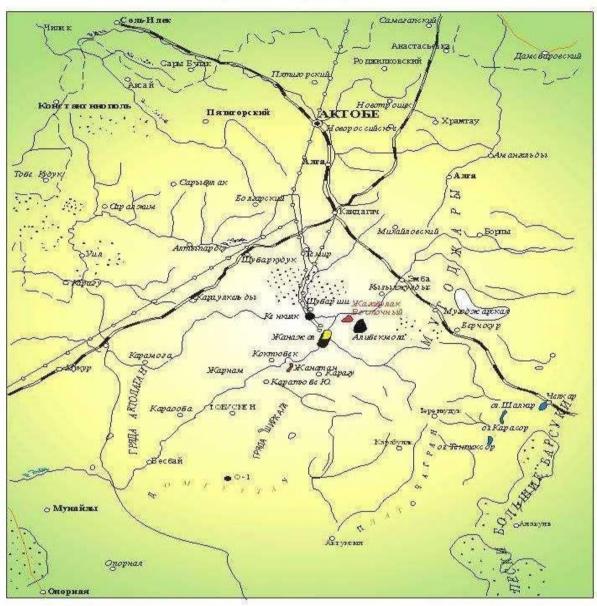

Территория представляет собой слабо всхолмленную полупустынную степь, расчлененную системой оврагов (саев), имеющих водосток в направлении к р. Эмба, протекающей вдоль северной границы месторождения. В целом площадь имеет уклон к руслу р. Эмба.

Севернее площади находится песчаный массив Кумжарган, западнее (12-15 км) - пески Кокжиде. Абсолютные отметки рельефа на площади колеблются в пределах (+200) - (+274) м, относительное превышение рельефа составляет порядка 60-70 м.

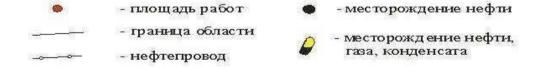
В 10 км. западнее месторождения Восточный Жагабулак в р. Эмбу впадает ее самый крупный приток - р. Темир, а еще через 2 км. по направлению к месторождению Эмба прини- мает еще один приток - пересыхающую р. Талдысу. В 9-10 км. от месторождения Восточный Жагабулак на восток, равнину рассекают в направлении с юга на север периодически пересыхающие балки Балабаршин и Ащысай, имеющие сток в р. Эмба.

Растительный покров района бедный. Заросли кустарника встречаются в долине р. Эмба и в глубоких балках. Животный мир представлен в основном грызунами.


Ситуационная карта-схема



Ближайшее село Жагабулак находится в северо-западном направлении на расстоянии 2900 м, село Жаркемер (Жаркомы) в северо-восточном направлении на расстоянии 4600 м, ближайший водный объект река Эмба (Жем) с севера на расстоянии 2400 м, на расстоянии 3600 м с севера находится заказник Кумжарган. Иных территорий заповедников, музеев, памятников архитектуры, санаториев, домов отдыха не имеется.


Рис. 1.1.

Обзорная карта месторождения Восточный Жагабулак

Условные обозначения:

1. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

КРАТКАЯ ХАРАКТЕРИСТИКА ТЕХНОЛОГИИ ПРОИЗВОДСТВА И ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ С ТОЧКИ ЗРЕНИЯ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

В состав месторождения Восточный Жагабулак включены: эксплуатационные скважины № 301, 308, 306, 315, АГЗУ, дожимная компрессорная станция (ДКС), установка блочной сепарации нефти (УБСН) и производственная база.

В состав АГЗУ входят: блок химреагентов, замерная установка «Спутник», дренажная емкость, свеча рассеивания.

Пункт сбора нефти имеет в своем составе: резервуарный парк (6 емкостей по 75 м³), нефтенасосную станцию, блочную сепарационную установку, отстойник нефти, дренажную емкость, факельную установку высокого давления, печь, свечу рассеивания дренажной емкости, свечу рассеивания резервуарного парка, автоналивную эстакаду.

На производственной базе находятся: контейнерная автозаправочная станция, гараж для спецтехники, дизельная электростанция, сварочный генератор, сварочный пост.

На сегодняшний день на месторождении Восточный Жагабулак сырой газ частично расходуется на собственные нужды промыла в виде топлива для подогрева продукции при подготовке нефти.

Кроме печи подогрева на месторождении Восточный Жагабулак отсутствуют источники потребления газа. Поэтому единственным и верным источником утилизации излишка добытого сырого газа из месторождения является реализация на УКПГ месторождения Алибекмола ТОО «Казахойл-Актобе».

Таким образом, в 2026 г. излишек сырого газа, после использования на собственные технологические нужды, планируется транспортировать для реализации на УКПГ месторождения Алибекмола ТОО «Казахойл-Актобе».

Процесс сбора, транспорта и подготовки нефти и газа на месторождении Восточный Жагабулак участка Северный функционирует по следующей схеме.

Продукция скважин за счет пластового давления по выкидным линиям поступает на автоматизированную групповую замерную установку (АГЗУ), где производится определение дебита скважин по жидкости. Далее нефтегазовая смесь по нефтесборному коллектору транспортируется на пункт сбора нефти, где производится сепарация, отстой и отделение нефти от газа.

На УБСН производится разделение нефтегазовой смеси на газовую и жидкую фазы, отстой нефти с последующей подачей на пункт налива нефти, и сдачи ее потребителю. Технологическая схема УБСН представлена на рис. 2.1.1. и включает:

- скважина;
- блок подачи реагента;3 АГЗУ;
- печь подогрева нефти;
- горизонтальный нефтегазовый сепаратор;
 отстойник нефти;

7а/b – аппарат для очистки газа от сероводорода; 8 – отстойник сточной воды;

9 – циркуляционный насос диэтиленгликоля; 10 – насос откачки уловленной нефти;

11a-f – горизонтальный резервуар для хранения нефти; 12a/b – насос отгрузки нефти;

13а/b – стояк налива нефти;

14а/b – дренажная емкость с насосной откачкой; 14с – дренажная емкость;

15а/b/с – свечи рассеивания; 17 – факел высокого давления.

Технология подготовки нефти на месторождении осуществляется следующим образом.

На УБСН нефтегазовая смесь, пройдя предварительный подогрев в печи огневого подогрева до температуры 20-25°С (поз. 4), поступает на І-ю ступень сепарации в горизонтальный нефтегазовый сепаратор (поз. 5), в котором происходит отделение нефти от газа. Нагрев нефти происходит за счет передачи тепла от теплоносителя-диэтиленгликоля, который, в свою очередь, нагревается при сжигании попутного газа в камере сгорания подогревателя. Циркуляция диэтиленгликоля осуществляется насосом (поз. 10) через теплообменник отстойника сточной воды

(поз. 8).

Процесс сепарации в горизонтальном нефтегазовом сепараторе (поз. 5), заключается в гравитационном расслоении нефтегазовой смеси за счет разницы удельных весов нефти и газа, которое происходит под давлением.

Частично дегазированная нефтяная эмульсия с горизонтального нефтегазового сепаратора направляется в отстойник нефти (поз. 6) для более глубокой дегазации и обезвоживания. Далее обезвоженная и дегазированная нефть поступает в резервуарный парк, состоящий из 6-ти горизонтальных резервуаров (поз. 11 a-f), общим объемом 450 м3.

Небольшой объем выделившегося газа (І-й ступени сепарации) отводится в аппараты (поз.

7 a/b), предназначенные для снижения концентрации сероводорода в газе, с последующим использованием в печи подогрева нефти в качестве топлива. Основной объем газа (І-й и ІІ-й ступени сепарации) сбрасывается на факел высокого давления (поз. 17).

Процесс очистки газа от серосодержащих компонентов осуществляется следующим образом. Попутный газ поступает в верхнюю часть аппаратов, наполненных гранулообразным реагентом «SULFATREAT*XLP». В аппарате при тесном контакте газа с реагентом происходит реакция нейтрализации сероводорода. Далее определенный объем очищенного от кислых компонентов с концентрацией не более 2 ppm и предварительно осущенного газа, используется для подогрева продукции скважин, а остальной объем передается на линию ДКС.

Продолжительность использования реагента при очистке попутного газа зависит от содержания сероводорода в газе, который определяется при возрастании разности давления на входе и выходе аппаратов.

Сточная вода, выделившаяся в процессе отстаивания нефти из отстойника (поз. 6), сбрасывается в отстойник сточной воды объемом 55 м3 (поз. 8) для отделения остаточной эмульгированной нефти. Сброс сточной воды осуществляется автоматически, методом поддержания уровня воды в заданном режиме. В отстойнике установлен теплообменник с теплоносителем-диэтиленгликолем для предотвращения замерзания воды в холодное время года. Накопившаяся в резервуарах (поз. 11 а-f) товарная нефть насосами (поз. 12 а/b), предназначенными для отгрузки товарной нефти, откачивается на нефтеналивную эстакаду, состоящая из 2-х стояков налива нефти (13 а/b). Откуда товарная нефть, пройдя узел учета нефти, отгружается в автоцистерны, с последующей сдачей потребителю.

Очищенная сточная вода из отстойника (поз. 8) направляется в подземную накопительную емкость объемом 45м3 (поз. 14b), откуда по мере накопления отгружается встроенным погружным насосом в автоцистерны. Спецпредприятие, согласно договору оказывает услуги по вывозу, захоронению и утилизации сточной (пластовой) воды, твердых бытовых отходов, канализационных стоков, твердых производственных отходов.

Уловленная эмульгированная нефть в процессе отстаивания сточной воды из отстойника (поз. 8) откачивается насосом (поз. 10) в отстойник нефти (поз. 6) для дальнейшей подготовки, а выделившийся газ - сбрасывается на свечу рассеивания (поз. 15 b).

Все аппараты УБСН оснащены предохранительными клапанами, сброс с которых осуществляется в факельную систему.

Для опорожнения аппаратов, технологических трубопроводов при проведении ремонтных и профилактических работ предусмотрена система закрытого дренажа. Дренаж от нефтегазового сепаратора (поз. 5), отстойника нефти (поз. 6) и горизонтальных резервуаров (поз. 11a-f) производится в дренажную емкость (поз. 14a), с насосов отгрузки товарной нефти (поз. 12a/b) - в дренажную емкость (поз. 14c). Жидкость с дренажной емкости (поз. 14a) откачивается встроенным погружным насосом в отстойник нефти (поз. 6), либо в трубопровод подачи нефти в резервуары (поз. 11a-f). Нефть с дренажной емкости (поз. 14c) откачивается насосами (поз. 12a/b).

Все технологические параметры, связанные с работой нефтегазового сепаратора, отстойников нефти и воды, аппаратов очистки газа, печи подогрева нефти, конденсатосборника, горизонтальных резервуаров, пункта налива нефти контролируются автоматически, что позволяет вести управление технологическим процессом и производить контроль дистанционнос пульта управления.

На УБСН предусмотрен контроль уровня загазованности на площадке установки сепарации, площадке резервуарного парка, пункте налива нефти с сигнализацией и регистрацией.

Источниками выбросов загрязняющих веществ на месторождении Восточный Жагабулак являются:

На площадке скважин № 301

- Источник №6003-Устье скважины-неплотности ЗРА и фланцевых соединений
- Источник №6004-Блок реагентов БР-2,5-неплотности ЗРА и фланцевых соелинений

На плошалке скважин № 308

- Источник №6015-Устье скважины неплотности ЗРА и фланцевых соединений
- Источник №6016-Блок реагентов БР-2,5-неплотности ЗРА и фланцевых соединений

На плошалке скважин № 306

- Источник №6017- Устье скважины- неплотности ЗРА и фланцевых соединений
- Источник № 6018- Блок реагентов БР-2,5- неплотности ЗРА и фланцевых соединений **На площадке скважин № 315:**
 - Источник №6019-Устье скважины неплотности ЗРА и фланцевых соединений
- Источник № 6020 -Блок реагентов БР-2,5 неплотности ЗРА и фланцевых соединений
 - Источник №0012-Дизельгенератор 30 кВт -выхлопная труба

На плошалке АГЗУ:

- Источник №6005-Спутник АМС 40-8-1500 неплотности ЗРА и фланцевых соединений
- Источник №6006-Блок реагентов БР-10/100 неплотности ЗРА и фланцевых соединений
- Источник № 0001-Свеча рассеивания дренажной емкости неплотности ЗРА и фланцевыхсоединений

УБСН и Пункт сбора нефти:

- Источник №0002-Факельная установка;
- Источник №0003-Печь подогрева нефти выхлопная труба;
- Источник №6007-Блочная сепарационная установка клапан,неплотности ЗРА и фланцевыхсоединений
- Источник №6008-Отстойник нефти–клапан,неплотности ЗРА и фланцевых соединений
- Источник №6009-Насосная установка-клапан,неплотности ЗРА и фланцевых соединений
 - Источник №6010-Нефтеналивная эстакада -дыхательный клапан.
- Источник №6011-Установка «SULFATREAT XLP» клапан,неплотности 3РА и фланцевых соединений
- Источник №0004-Свеча рассеивания дренажных емкостей- клапан,неплотности ЗРА ифланцевых соединений
- Источник№ 0005-Свеча рассеивания резервуарного паркаV-75м3(6шт) дыхательныйклапан

На производственной базе:

- Источник №0006-Емкости для хранения дизтоплива дыхательный клапан
- Источник №0007-Емкости для хранения дизтоплива дыхательный клапан
- Источник №0008 -Емкости для хранения дизтоплива дыхательный клапан
- Источник №0009- Емкость для хранения бензина дыхательный клапан
- Источник №6012 Топливораздаточные колонки (дизтопливо) неорганизованный
 - Источник №6013- Топливораздаточные колонки (бензин) неорганизованный
 - Источник №6014 -Сварочный пост неорганизованный
 - Источник №6027 -Гараж для спецтехники неорганизованный
 - Источник № 0010- Дизельный генератор ДЭС-200 кВт выхлопная труба

- Источник №0011 Сварочный генератор Хонда выхлопная труба **ДКС:**
- Источник №6025 Газовый сепаратор ГС-1-2,5-600-2 на входе
- Источник №6026 Газовый сепаратор ГС-1-1,5-1200-2 на выходе
- Источник № 0023 Свеча рассеивания дренажной емкости неплотности ЗРА и фланцевыхсоединений

Капитальный ремонт скважин:

- Источник №0013-Станок КРС XJ-450 выхлопная труба
- Источник №0014-Силовой двигатель бурового насоса выхлопная труба
- Источник №0015 –ДЭС 300 выхлопная труба
- Источник №0016- ДЭС 100 выхлопная труба
- Источник №0017-Цементировочный агрегат ЦА320 выхлопная труба
- Источник №0018- Емкости ДТ дыхательный клапан
- Источник №0019 –ППУ 1600/100 выхлопная труба
- Источник №6022 –выкидные линии и блок задвижек (манифольд) неорганизованный
 - Источник №6024 Сварочный пост неорганизованный

Горячая промывка коллекторной линии скважин. АГЗУ:

- Источник №0020 –ППУ 1600/100 выхлопная труба
- Источник №0021 Цементировочный агрегат ЦА320 выхлопная труба
- Источник №0021 Агрегат для депарафинизации скважин АДПМ -12/150

Период СМР и крепления скважины №308:

- Источник №0024 ДВС сварочного агрегата;
- Источник №6027 Расчет выбросов пыли при перемещении грунта бульдозером;
- Источник №6028 Расчет выбросов пыли при работе экскаватора;
- Источник №6029 Сварочные работы;
- Источник №6030 Лакокрасочные работы;

Период бурения и крепления скважины №308:

- Источник №0025 0026 Буровой станок ZJ50DB (либо его аналог по хар-кам не превыш. технич. показатели) ;
 - Источник №0027 Передвижная паровая установка №1;
 - Источник №0028 Цементировочный агрегат;
 - Источник №0029 Цементно-смесительная машина;
 - Источник №6031 Емкость хранения дизтоплива;
 - Источник №6032 Насос для перекачки дизтоплива;
 - Источник №6033 Блок приготовления бурового раствора;
 - Источник №6034 Емкость бурового шлама;
 - Источник №6035 Емкость бурового раствора;
 - Источник №6036 Емкость хранения масла;
 - Источник №6037 Емкость отработанного масла;
 - Источник №6038 Пересыпка цемента;
 - Источник №6039 Блок приготовления цементного раствора;

Период освоения скважины №308:

- Источник №0030-0031 Установка освоения ZJ650 (CAT-3512) (либо его аналог по хар-кам не превыш. технич. показатели);
- Источник №0032 Установка освоения ZJ650 (CAT-3412) (либо его аналог по харкам не превыш. технич. показатели);
 - Источник №0033 Дизель-генератор VOLVO TAD1241GE резервный (либо его

аналог по хар-кам не превыш. технич. показатели);

- Источник №0034 Передвижная паровая установка №2;
- Источник №6040 Нефтегазосепаратор;
- Источник №6041 Насос технологический;
- Источник №6042 Емкость для дизельного топлива;
- Источник №6043 Насос для перекачки дизтоплива;

Источники выбросов подразделяются на организованные и неорганизованные. Организованные источники выбросов загрязняющих веществ производят выбросы через специально сооруженные устройства (труба). Неорганизованные источники выбросов загрязняющих веществ — выбросы в виде ненаправленного потока газа.

Загрязняющими ингредиентами при эксплуатации ДВС могут быть следующие компоненты: углеводороды, оксид углерода, сажа, оксид азота, диоксид азота, формальдегид, бензапирен и другие.

Загрязненность атмосферного воздуха химическими веществами может влиять на состояние здоровья населения, на животный и растительный мир прилегающей территории.

Воздействие на атмосферный воздух намечаемой деятельности оценивается с позиции соответствия законодательным и нормативным требованиям, предъявляемым к качеству воздуха.

Расчеты выбросов вредных веществ произведены в соответствии с требованиями, сборников методик.

В процессе работы, которых происходит выделение в атмосферу: Азота (IV) диоксид (Азота диоксид) (4); Азот (II) оксид (Азота оксид) (6); Углерод (Сажа, Углерод черный); Метан (727*) (Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид); Сероводород (Дигидросульфид) (518), Углерод оксид (Окись углерода, Угарный газ) (584); Смесь углеводородов предельных С1-С5 (1502*); Смесь углеводородов предельных С6-С10 (1503*); Бензол (64); Диметилбензол (смесь о-. м-. п- изомеров) (203); Бенз/а/пирен (3,4-Бензпирен); (54) Формальдегид (Метаналь) (609); Алканы С12-19 /в пересчете на С/(Углеводороды предельные С12-С19(в пересчете на С) Ингибиторы коррозии: СНПХ 6301"А", СНПХ 6302 "А", СНПХ 6302 "Б" /по изопропиловому спирту/ (612*) Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526); Метантиол (Метилмеркаптан) (339) и т.д. В проекте учтены все технологические риски: наиболее вероятные величины утечки и расчет суммарных утечек через неподвижные уплотнения одного аппарата проводится путем подсчета общего числа фланцев, люков и других неподвижных соединений фланцевого типа и умножением величины утечки через одно уплотнение на общее число соединений и долю их, потерявших герметичность.

Однако утечка через фланцевые соединения возможна только при нарушении правил расчета, изготовления, монтажа или эксплуатации.

Для предотвращения возникновения аварийных ситуаций предусмотрено использование оборудования, с достаточным запасом прочности. Для защиты трубопроводов и аппаратов от превышения давления предусмотрены автоматические регуляторы давления, система блокировок и предохранительные клапаны. Одним из основных направлений снижения отрицательного воздействия на атмосферу является сокращение числа низких неорганизованных источников выбросов, представленных утечками через неплотности фланцев и запорно- регулирующей арматуры. Для снижения технологических утечек предусматривается высокогерметичная система сбора и первичной подготовки нефти и газа, с применением запорно- регулирующей арматуры, уплотнений насосов и фланцевых соединений повышенного класса герметичности. Для этого предусмотрено применение высокогерметичных фланцевых соединений, которые исключают протечки углеводородов.

Фланцевые соединения наиболее широко применяемый вид разъемных соединений в промышленности, обеспечивающий герметичность и прочность конструкции, а также процесс изготовления, разработки и сборки. ЗРА необходимо для перекрытия потока жидкости по трубопроводу и снова ее пускать, а также обеспечивать необходимую герметичность. ЗРА и ФС характеризуются герметичностью, прочностью и плотностью. Герметичность затвора называется способность не пропускать в закрытом состоянии газ, пар, жидкость и прочие вещества по коммуникации, на которой установлена ЗРА

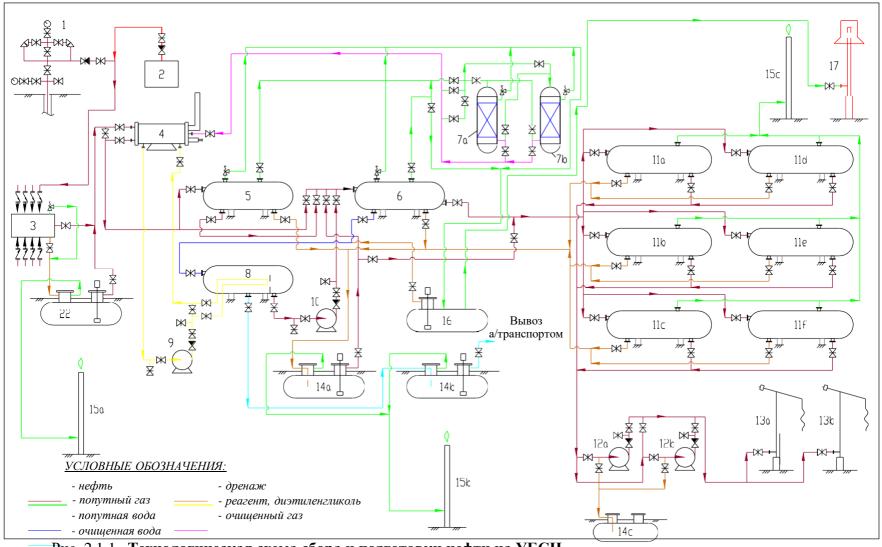


Рис. 2.1.1. Технологическая схема сбора и подготовки нефти на УБСН

Проект нормативов допустимых выбросов для объектов месторождения Восточный Жагабулак

КРАТКАЯ ХАРАКТЕРИСТИКА СУЩЕСТВУЮЩИХ УСТАНОВОК ОЧИСТКИГАЗА, УКРУБСНЕННЫЙ АНАЛИЗ ИХ ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ЭФФЕКТИВНОСТИ РАБОТЫ

На объекте месторождения Восточный Жагабулак ТОО «Арал Петролеум Кэпитал» газоочистное оборудование отсутствует.

Для снижения выделения углеводородов в атмосферу из резервуаров с нефтепродуктами используются дыхательные клапаны.

ОЦЕНКА СТЕПЕНИ ПРИМЕНЯЕМОЙ ТЕХНОЛОГИИ, ТЕХНИЧЕСКОГО И ПЫЛЕГАЗООЧИСТНОГО ОБОРУДОВАНИЯ ПЕРЕДОВОМУ НАУЧНО-ТЕХНИЧЕСКОМУ УРОВНЮ В СТРАНЕ И МИРОВОМУ ОПЫТУ

Применяемая технология добычи нефти и газа на месторождениях ТОО «Арал Петролиум Кэпитал» соответствует научно-техническому уровню в стране и за рубежом.

На предприятии применяются технологии указанные в пункте 3. Морская и континентальная нефтегазодобыча Приказа Министра энергетики Республики Казахстан от

28 ноября 2014 года № 155 «Об утверждении перечня наилучших доступных технологий»:

Исключение использования буровых растворов на нефтяной основе; использование буровых растворов на дизельной основе с повторным их ис- пользованием.

Повторное использование отфильтрованной воды из бурового раствора.

Применение биоцидов, ингибиторов коррозии.

Хранение сырой нефти в резервуарах; резервуары должны иметь вторичный (двойной) запор плавающей крышки.

ПЕРСПЕКТИВА РАЗВИТИЯ ОПЕРАТОРА

В таблице представлена сравнительная таблица по источникам загрязняющих веществ (действующие и новые источники).

Таблица 2.1

Перспективный план развития

Фактически действующие скважины на	Фактически действующие скважины на
2025 г.	2026 г.
Добывающие:	Добывающие:
№ 301, 306, 315	№ 301, 306, 315
	№308-планируется реконструкция методом
	бурения

Таблица 2.2

Действующие	Проектируемые	Статус (новый, дейстующий и недействующий)
Устье скважины – 6003, 6015, 6017, 6019;	Устье скважины – 6003, 6015, 6017, 6019;	Действующий
Блок реагентов БР-2,5 – 6004, 6016, 6018, 6020;	Блок реагентов БР-2,5 – 6004, 6016, 6018, 6020;	Действующий
Дизельгенератор 30 кВт – 0012.	Дизельгенератор 30 кВт – 0012.	Действующий
Спутник АМС 40-8-1500 – 6005;	Спутник АМС 40-8-1500 – 6005;	Действующий
Блок реагентов БР-10/100 — 6006;	Блок реагентов БР-10/100 – 6006;	Действующий
Свеча рассеивания дренажной емкости – 0001;	Свеча рассеивания дренажной емкости – 0001;	Действующий
Факельная установка – 0002;	Факельная установка – 0002;	Действующий
Печь подогрева нефти – 0003;	Печь подогрева нефти – 0003;	Действующий
Блочная сепарационная установка – 6007;	Блочная сепарационная установка – 6007;	Действующий
Отстойник нефти – 6008;	Отстойник нефти – 6008;	Действующий
Насосная установка – 6009;	Насосная установка – 6009;	Действующий
Нефтеналивная эстакада – 6010;	Нефтеналивная эстакада – 6010;	Действующий
Установка«SULFATREAT XLP» – 6011;	Установка«SULFATREAT XLP» – 6011;	Действующий
Свеча рассеивания дренажных емкостей – 0004;	Свеча рассеивания дренажных емкостей – 0004;	Действующий
Свеча рассеивания резервуарного паркаV-75м3 (6шт) – 0005;	Свеча рассеивания резервуарного паркаV-75м3 (6шт) – 0005;	Действующий
Емкости для хранения дизтоплива – 0006-0008;	Емкости для хранения дизтоплива – 0006-0008;	Действующий
Емкость для хранения бензина – 0009;	Емкость для хранения бензина – 0009;	Действующий
Топливораздаточные колонки (дизтопливо) – 6012;	Топливораздаточные колонки (дизтопливо) – 6012;	Действующий

Топливораздаточные колонки (бензин) – 6013;	Топливораздаточные колонки (бензин) – 6013;	Действующий
Сварочный пост – 6014;	Сварочный пост – 6014;	Действующий
Гараж для спецтехники – 6021;	Гараж для спецтехники – 6021;	Действующий
Дизельный генератор ДЭС-200 кВт – 0010;	Дизельный генератор ДЭС-200 кВт – 0010;	Действующий
Сварочный генератор Хонда – 0011.	Сварочный генератор Хонда – 0011.	Действующий
Станок КРС XJ-550- 0013;	Станок КРС ХЈ-550- 0013;	Действующий
Силовой двигатель бурового насоса- 0014;	Силовой двигатель бурового насоса- 0014;	Действующий
ДЭС-300 - 0015;	ДЭС-300 - 0015;	Действующий
ДЭС-100 - 0016;	ДЭС-100 - 0016;	Действующий
Цементировочный агрегат ЦА- 320- 0017;	Цементировочный агрегат ЦА- 320- 0017;	Действующий
Емкости для хранения дизтоплива – 0018;	Емкости для хранения дизтоплива – 0018;	Действующий
ППУ 1600/100 - 0019;	ППУ 1600/100 - 0019;	Действующий
Выкидные линии и блок задвижек (манифольд) - 6022;	Выкидные линии и блок задвижек (манифольд) - 6022;	Действующий
Сварочный пост – 6024.	Сварочный пост – 6024.	Действующий
Передвижная паровая установка, ППУ 1600/100 — 0020;	Передвижная паровая установка, ППУ 1600/100 – 0020;	Действующий
Цементировочный агрегат ЦА - 320 – 0021;	Цементировочный агрегат ЦА - 320 – 0021;	Действующий
Агрегат для депарафинизации скважин АДПМ -12/150 – 0022;	Агрегат для депарафинизации скважин АДПМ -12/150 – 0022;	Действующий
Свеча рассеивания дренажной емкости ДКС – 0023;	Свеча рассеивания дренажной емкости ДКС – 0023;	Действующий
Газовый сепаратор ГС-1-2,5- 600-2 на входе ДКС-1ед – 6025;	Газовый сепаратор ГС-1-2,5- 600-2 на входе ДКС-1ед – 6025;	Действующий
Газовый сепаратор на выходе ГС-1-1,5-1200-2 ДКС-1ед – 6026.	Газовый сепаратор на выходе ГС-1-1,5-1200-2 ДКС-1ед – 6026.	Действующий
-	Работа бульдозера - 6027	Новый
-	Работа экскаватора - 6028	Новый
-	Сварочные работы – 6029	Новый
-	Лакокрасочные работы - 6030	Новый
-	Буровой станок ZJ50DB (либо его аналог не превыш. характ) - 0025	Новый
-	Буровой станок ZJ50DB (либо его аналог не превыш. характ) – 0026	Новый
-	Передвижная паровая установка №1 – 0027	Новый
-	Цементировочный агрегат – 0028	Новый
-	Цементно-смесительная машина – 0029	Новый
-	Емкость хранения дизтоплива	Новый

	6021	
	- 6031	TT
-	Насос для перекачки	Новый
	дизтоплива – 6032	
-	Блок приготовления бурового	Новый
	раствора - 6033	
-	Емкость бурового шлама –	Новый
	6034	
-	Емкость бурового раствора –	Новый
	6035	
-	Емкость хранения масла – 6036	Новый
-	Емкость отработанного масла –	Новый
	6037	
-	Пересыпка цемента – 6038	Новый
-	Блок приготовления	Новый
	цементного раствора – 6039	
-	Установка освоения ZJ650	Новый
	(либо его аналог не превыш.	
	характ) - 0030	
-	Установка освоения ZJ650	Новый
	(либо его аналог не превыш.	
	характ) - 0031	
-	Установка освоения	Новый
	ZJ650(CAT-3412) (либо его	
	аналог не превыш. характ) -	
	0032	
-	Дизель-генератор VOLVO -	Новый
	TAD1241GE (либо его аналог	
	не превыш. характ) – 0033	
-	Передвижная паровая	Новый
	установка №2 – 0034	
-	Нефтегазосепаратор – 6040 Новый	
-	Насос технологический – 6041	Новый
-	Емкость хранения дизтоплива	Новый
	- 6042	
-	Емкость хранения дизтоплива -	Новый
	6043	
	I .	

ПАРАМЕТРЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУДЛЯ РАСЧЕТА НДВ

Параметры выбросов загрязняющих веществ в атмосферу для расчета предельно допустимых выбросов (НДВ) представлены в Приложении 3 составлена согласно

«Рекомендациям по оформлению и содержанию проектов нормативов предельно допустимых выбросов в атмосферу (НДВ) для предприятий Республики Казахстан» РНД 211.2.02-97, «Методика определения нормативов эмиссий в окружающую среду», (утверждена Приказом Министра ООС РК от 16 апреля 2012 года № 110-п)

В расчетах валовых выбросов загрязняющих веществ в атмосферу использованы методики, утвержденные МОС и ВР РК, список которых приводится в перечне используемой литературы, и программном комплексе «ЭРА» (фирма «Логос-плюс», г. Новосибирск).

Данные из таблицы параметров источников выбросов загрязняющих веществ в атмосферу использованы для проведения расчетов рассеивания и моделирования максимально-возможных приземных концентраций веществ и их групп суммаций в месте размещения производственной базы при существующих метеорологических характеристиках района.

Параметры выбросов загрязняющих веществ представлен в Приложении 3.

ХАРАКТЕРИСТИКА АВАРИЙНЫХ И ЗАЛПОВЫХ ВЫБРОСОВ

Под аварией понимают существенные отклонения от нормативно-проектных или допустимых эксплуатационных условий производстенно-хозяйственной деятельности по причинам, связанным с действиями человека или техническими средствами, а также в результате любых природных явлений (наводнение, землетрясение, оползни, ураганы и другие стихийные бедствия). К главным причинам аварий следует отнести:

- полные или частичные отказы технических систем и транспортных средств;
- пожары, которые могут быть вызваны различными причинами;
- ошибки обслуживающего персонала;
- природные явления.

К залповым выбросам относятся выбросы загрязняющих веществ, предусмотренные регламентом работ, превышающие обычный уровень выбросов, которые также могут превышать установленный предельный уровень (НДВ).

Аварийным выбросом является любой выброс вредных веществ, произошедший в ходе нарушения технологии или в результате аварии.

Периодические залповые и возможные аварийные выбросы месторождения Восточный Жагабулак предполагаются в период пуска и остановки АГЗУ, а также в случае возникновения аварийных ситуаций. Источниками залповых выбросов будут являться свечи на печах подогрева и факел, на котором в случае возникновения аварии на месторождении Восточный Жагабулак будет сжигаться весь выделившийся газ. Также аварийные выбросы возможны при разрыве нефтегазопроводов. В составе выбросов будут присутствовать: углеводороды, газ, содержащий кислые компоненты (H₂S, CO₂), и продукты сгорания попутного газа.

Для снижения риска возникновения аварий и снижения ущерба от их последствий, выявляются проблемы, анализируются ситуации и разрабатывается комплекс мер по обеспечению безопасности и оптимизации средств подавления и локализации аварий, разрабатываются планы мероприятий на случай любых аварийных ситуаций.

План содержит требования об оповещении и действиях персонала, необходимых для проведения аварийных работ с целью защиты персонала, объектов и окружающей среды.

Первоочередные и последующие действия разработаны для каждого объекта, установки, системы в случае: пожара, дорожно-транспортных происшествий, несчастного случая с людьми, угрозы взрыва.

Для предотвращения опасности аварийных выбросов из разрушенных или горящих объектов предусматривается обеспечение прочности и эксплуатационной надежности всех систем объекта. Надежность оборудования в целом определяется при их выборе и заказе.

Меры безопасности предусматривают соблюдение действующих противопожарных норм и правил на объекте, в том числе:

- ✓ соблюдение необходимых расстояний между объектами и опасными участками потенциальных источников возгорания;
- ✓ обеспечение беспрепятственного проезда аварийных служб к любой точке производственного участка;
- ✓ обеспечение безопасности производства на наиболее опасных участках исистемах контрольно измерительными приборами и автоматикой;
- ✓ обучение персонала правилам техники безопасности, пожарной безопасности и соблюдение правил эксплуатации при выполнении работ;
- ✓ регулярные технические осмотры оборудования, ремонт и замена неисправных материалов и оборудования;
- ✓ применение материалов, оборудования и арматуры, обеспечивающих надежность эксплуатации, термоизоляции горячих поверхностей.

Для борьбы с возможным пожаром предусматривается достаточное количество противопожарного оборудования, средств индивидуальной защиты и медикаментов.

ПЕРЕЧЕНЬ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ВЫБРАСЫВАЕМЫХ В АТМОСФЕРУ

Перечень загрязняющих веществ, выбрасываемых в атмосферу, составлен по расчетам выбросов при эксплуатации предприятия.

Таблицы составлены с помощью программного комплекса «Эраv3.0» (фирма «Логос-плюс», г. Новосибирск) на основе расчетов выбросов загрязняющих веществ на 2022г.

Количественная характеристика выбрасываемых в атмосферу загрязняющих веществ (т/год) приводится по усредненным годовым значениям в зависимости от изменения режима работы предприятий, технологического процесса и оборудования, расхода и характеристик сырья, реагентов, материала и т.д.

В таблице 3.1 наряду с загрязняющими веществами, их кодами и классами опасности приведены общие значения максимально-разовых и годовых выбросов предприятия в целом по видам загрязняющих веществ, а также определены коэффициенты опасности каждого вещества и выброс вещества в усл. т/год.

Численный показатель категории опасности определен по следующему принципу: $KO\Pi = \sum (Mi / \Pi J Ki)$ сi,

Мі – масса выбросов і-того вещества, т/год;

ПДКі – среднесуточная предельно-допустимая концентрация і-говещества, мг/м³

n – Количество загрязняющих веществ, выбрасываемых предприятием;

Сі– безразмерная величина, соотношения вредности і-того вещества с вредностью сернистого газа, где:

Константа	Класс опасности			
Константа	1	2	3	4
Ci	1,7	1,3	1,0	0,9

Согласно приведенным ниже граничным условиям деления предприятий на категории опасности рассчитана категория опасности предприятия по массе и видовому составу выбрасываемых в атмосферу веществ.

Категория опасности предприятия	I	II	Ш	IV
Значение КОП	КОП>106	106ЖОП>104	$10^4 > KO\Pi > 10^3$	коп< 10³

При совместном присутствии в воздухе атмосферы веществ, выделяемых в процессе производства предприятий, увеличивается токсичность воздействия этих веществ на окружающую среду и на здоровье человека, т.е. проявляется эффект суммации. Показатель эффекта суммации является одной из характеристик опасности загрязняющих веществ, выделяемых в атмосферу источниками выбросов. Токсичность воздействия этих веществ на организм человека и окружающую среду увеличивается при их совместном присутствии в воздухе атмосферы.

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2025

Код	Наименование	ЭНК,	пдк	пдк		Класс	Выброс вещества	Выброс вещества	Значение
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	M/ЭHK
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год	
			вая, мг/м3	мг/м3		ЗВ		(M)	
1	2	3	4	5	6	7	8	9	10
	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)			0.04		3	0.0212172	0.02759	0.68975
	Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)		0.01	0.001		2	0.00038836	0.0012984	1.2984
0301	Азота (IV) диоксид (Азота диоксид) (4)		0.2	0.04		2	13.126870066	80.43470495	2010.86762
0304	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	2.133917682	13.096522472	218.275375
0328	Углерод (Сажа, Углерод черный) (583)		0.15	0.05		3	0.777138759	4.872305101	97.446102
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0.5	0.05		3	2.78429387872	21.1575332343	423.150665
	Сероводород (Дигидросульфид) (518)		0.008			2	0.00205250528	0.0176645398	2.20806748
0337	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	11.2992372185	79.476212189	26.4920707
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0.02	0.005		2	0.00008987	0.000476	0.0952
	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		0.2	0.03		2	0.00028056	0.00086	0.02866667
0410	Пентан (450) Метан (727*)		100		50	4	0.000006334 0.009245282	0.281699905	
	Изобутан (2-Метилпропан) (279) Смесь углеводородов предельных		15		50	4	0.00000919 0.9119504372		0.00001932 0.04016451

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2025

1	ринская оол., муталжарский, тоо мар	3	4	5	6	7	8	9	10
	C1-C5 (1502*)								
0416	Смесь углеводородов предельных				30		2.7244698074	15.6455401159	0.521518
	C6-C10 (1503*)								
0501	Пентилены (амилены - смесь		1.5			4	0.02285	0.001047	0.000698
	изомеров) (460)								
0602	Бензол (64)		0.3	0.1		2	0.02107265	0.001719	0.01719
0616	Диметилбензол (смесь о-, м-, п-		0.2			3	0.0139153	0.1016091	0.5080455
	изомеров) (203)								
	Метилбензол (349)		0.6			3	0.0198746	0.001384	0.00230667
0627	Этилбензол (675)		0.02			3	0.0005488	0.00002512	0.001256
	Бенз/а/пирен (3,4-Бензпирен) (54)			0.000001		1	0.00002075		
	Формальдегид (Метаналь) (609)		0.05	0.01		2	0.198386111		118.301712
	Метантиол (Метилмеркаптан) (339)		0.006			4	0.00000047651		
1716	Смесь природных меркаптанов /в		0.00005			3	0.00020864007	0.00128595099	25.7190197
	пересчете на этилмеркаптан/ (
	Одорант СПМ - ТУ 51-81-88) (526)								
2735	Масло минеральное нефтяное (0.05		0.0003334	0.00023925	0.004785
	веретенное, машинное, цилиндровое								
	и др.) (716*)								
	Уайт-спирит (1294*)				1		0.00563		
2754	Алканы С12-19 /в пересчете на С/		1			4	9.7418033484	60.39985826	60.3998583
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
	РПК-265П) (10)								
2840	Ингибиторы коррозии: СНПХ 6301"А"				0.2		0.0378176	1.192558368	5.96279184
	, СНПХ 6302 "А", СНПХ 6302 "Б" /								
	по изопропиловому спирту/ (612*)								
2908	Пыль неорганическая, содержащая		0.3	0.1		3	0.32823726	0.455996	4.55996
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								

Перечень загрязняющих веществ, выбрасываемых в атмосферу на существующее положение

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2025

1	2	3	4	5	6	7	8	9	10
	всего:						44,18186608608	280,39375097643	3126.39631

Примечания: 1. В колонке 9: "М" - выброс 3B, τ /год; при отсутствии 3HК используется Π ДКс.с. или (при отсутствии Π ДКс.с.) Π ДКм.р. или (при отсутствии Π ДКм.р.) OBУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица групп суммации представлена в таблице 2.7.4

Актюбинская обл, Мугалжарский р, АФ ТОО "Арал Петролеум Кэпитал" на 2026 год эра v3.0 тоо "Lineplus"

Таблица 2.3

Таблица групп суммаций на существующее положение

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2025

Номер	Код	
группы	загряз-	Наименование
сумма-	няющего	загрязняющего вещества
ЦИИ	вещества	
1	2	3
		Площадка:01,Площадка 1
6007	0301	Азота (IV) диоксид (Азота диоксид) (4)
	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
6037	0333	Сероводород (Дигидросульфид) (518)
	1325	Формальдегид (Метаналь) (609)
6041	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
	0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)
6044	0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)
	0333	Сероводород (Дигидросульфид) (518)
6359	0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)
	0344	Фториды неорганические плохо растворимые - (
		алюминия фторид, кальция фторид, натрия
		гексафторалюминат) (Фториды неорганические плохо
		растворимые /в пересчете на фтор/) (615)

ОБОСНОВАНИЕ ПОЛНОТЫ И ДОСТОВЕРНОСТИ ИСХОДНЫХ ДАННЫХ(Г/С, Т/ГОД), ПРИНЯТЫХ ДЛЯ РАСЧЕТА НДВ

Данные для расчета НДВ приняты по исходным данным Заказчика, основанным на материальном отчете предприятия о количестве использованного сырья и материалов. Техническое задание и исходные данные Заказчика на проектирование представлены в приложении № 2.

Основной задачей проекта является утилизация попутного нефтяного газа путем перекачки на УКПГ (установка комплексной подготовки газа) ТОО «КазахойлАктобе, где после подготовки до товарного газа направляется в магистральный газопровод.

На месторождении Восточный Жагабулак в основе существующей системы промыслового сбора и транспорта добываемой продукции заложена герметизированная система, в соответствии с которой продукция скважин по выкидным трубопроводам, проложенным по однотрубной лучевой системе, поступает на автоматизированную групповую замерную установку (АГЗУ) «ОЗНА-Спутник АМС-40-8-400», а затем направляется на установку блочную сепарации, отстоя, хранения и налива нефти (УБСН).

• Утилизация сырого газа.

Подписан трехсторонний Договор купли продажи сырого газа между АО «КазТрансГаз», ТОО «Казахойл Актобе» и ТОО «Арал Петролеум Кэпитал». На месторождении Восточный Жагабулак сырой газ частично расходуется на собственные нужды в виде топлива для подогрева продукции при подготовке нефти. В качестве подогревателя нефти на месторождении используется печь марки «Lineheaden» производства Канада компании

«OILFIELD ENGINEERING & EQUIPMENT», предназначенная для подогрева нефтяных эмульсий, содержащих сероводород и высокоминерализованную пластовую воду.

В существующем положении попутный нефтяной газ с месторождения ТОО «Арал Петролеум Кэпитал» сжигается на устье скважины при освоении скв. №308.

Кроме печи подогрева и факела освоения скважины №308 на месторождении Восточный Жагабулак отсутствуют источники потребления газа. Поэтому единственным и верным источником утилизации излишка добытого сырого газа из месторождения является реализация на УКПГместорождения Алибекмола ТОО «Казахойл-Актобе».

Таким образом, в 2026 г. излишек сырого газа, после использования на собственные технологические нужды, планируется для реализации на УКПГ месторождения Алибекмола ТОО «Казахойл-Актобе».

На 01.01.2025-31.12.2025 год будет добываться 46 500,0 тонн нефти, попутного нефтяного газа соответственно будет добыто 8 700 000 м3:

1. Объем добываемого газа 01.01.2025-31.12.2025

- **8 700 000** м³

2. Объем транспортируемого газа по газопроводу до УКПГ «Алибекмола»

01.01.2025-31.12.2025

- **8 333 088** м³

3. Расход газа на собственные технологические нужды:

01.01.2025-31.12.2025

- **266 812** м³

Объем газа сжигаемого на факельной установке - $76\,600\,\mathrm{m}^3$.

План добычи нефти, баланс утилизации газа по месторождению На 01.01.2025- 31.12.2025 год представлен в таблице:

Период	Добыча нефти,	Добыча нефтяного газа _м з	Газовый фактор	
	тонн		м ³ /т	
01.01.2025-31.12.2025 г.	46 500,00	8 700 000	186	

Компонентный состав нефти:

Компонентный состав н	Нефть *, % в	Нефть *, % по
	молях	массе
Сероводород	0,1	0,02004717
Углекислый газ	0,02	0,005188679
Азот	0,01	0,001650943
Метан	0,44	0,041509434
Этан	0,28	0,049528302
Пропан	1,02	0,264622642
Бутан	2,94	1,005424528
Пентан	5,52	2,343396226
Гексаны	6,68	3,387264151
Гептаны	10,47	6,173349057
Октаны	13,64	9,168396226
Нонаны	10,8	8,150943396
Деканы	7,04	5,894339623
Ундеканы	5,24	4,819811321
Додеканы	3,97	3,979363208
Тридеканы	3,7	4,014150943
Тетрадеканы	3,08	3,595754717
Пентадеканы	2,84	3,55
Гексадеканы	2,41	3,211438679
Гептадеканы	1,97	2,787735849
Октадеканы	1,76	2,635849057
Нонадеканы	1,71	2,702122642
Эйкозаны	1,52	2,527358491
Генейкозаны	1,19	2,076886792
Докозаны	1,14	2,083726415
Трикозаны	0,98	1,872169811
Тетракозаны	0,83	1,654127358
Пентакозаны	0,76	1,577358491
Гексакозаны	0,68	1,46745283
Гептакозаны	0,61	1,366745283
Октакозаны	0,58	1,34740566
Нонакозаны	0,51	1,226886792
Триоктаны	5,56	13,83443396
Молеклярная масса		169,6

Компонентный состав газа сжигаемого на факелах*:

Компоненты	% ,	% , по
	объема	массе

Кислород	0,0011	0,014
Азот	1,414	1,535
Двуокись углерода	2,231	3,805
Метан	68,33	42,479
Этан	8,019	9,344
Пропан	6,825	11,662
Изо-бутан	3,144	1,396
Н-бутан	3,020	6,802
Изо-пентан	1,504	4,205
Н-пентан	1,258	3,517
Гексан	1,552	5,183
Сероводород	3,465	4,576
Метилмеркаптан	0,008	0,014
Этилмеркаптан	0,021	0,050
Плотность, $\kappa \Gamma/M^3$	1,073	

^{*}Отчет об испытании №110 АО «НИПИ нефтегаз» (прилагается)

Компонентный состав газа, сжигаемого в печи подогрева нефти *:

	таза, сжигаемого в печи под	_ .
Компоненты	% , объема	% по массе
Кислород	0,00964	0,01770
Азот	2,49661	3,96722
Гелий	0,00213	0,00050
Двуокись углерода	0,02870	0,07204
Метан	89,56010	81,6336
Этан	7,18979	12,35760
Пропан	0,63777	1,62177
Изо-бутан	0,03718	0,12622
Н-бутан	0,02943	0,16628
Пентан	0,00041	0,00132
Изо-пентан	0,00318	0,01793
Н-пентан	0,00309	0,01339
Гексан	0,00081	0,00428
Сероводород	1,03652	1,45468
Всего:	100	100
	%	
Метилмеркаптан	0,00185	
Этилмеркаптан	0,009621	
Плотность, $\kappa \Gamma/M^3$	0,8512	
Теплота сгорания, ккал/м ³ :	низшая -8334,12	Высшая -9222,4

^{*}Протокол испытании №112 от 05.10.2017 г.(прилагается)

Расчет выбросов вредных веществ в атмосферу произведен для всех структурных подразделений при полной нагрузке действующего оборудования. Проект нормативов НДВ составлен в соответствии с Исходными данными ТОО «Арал Петролиум Кэпитал» (Приложение 2). Параметры источников выброса для расчета нормативов НДВ приведеныв Приложении 3.

3. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ

Прогнозирование загрязнения атмосферы с определением максимальных концентраций в приземном слое атмосферы для нормирования величин выбросов осуществлено расчетными алгоритмами методики программным комплексом "Эра" версия

Нормативы эмиссий определены в соответствии с методикой.

МЕТЕОРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ И КОЭФФИЦИЕНТЫ, ОПРЕДЕЛЯЮЩИЕ УСЛОВИЯ РАССЕИВАНИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРЕ ГОРОДА

Атмосфера является одним из важнейших компонентов окружающей среды, состояние которой в значительной мере влияет на становление экологической ситуации.

Современное качество воздушного бассейна участка определяется взаимодействием ряда факторов, обусловленных как природными, так и антропогенными процессами.

Основными природными факторами, определяющими состояние воздушного бассейна, является ветровой и температурный режимы, количество и характер выпадения осадков.

Антропогенное влияние на качество атмосферы определяется наличием и характером источников загрязнения, состава и количеством продуцируемых ими выбросов. Описываемая территория, расположенная в центре Евразии, вдали от крУБСНых водоемов и высоких гор, смягчающих климат, отличается резкой континентальностью, которая отражается на всем комплексе метеорологических элементов. Особую роль приэтом играют направление и интенсивность переноса воздушных масс, которые в целом в

Казахстане носят материковый характер.

Действие зональной (западно-восточной) океанической циркуляции воздушных масс, приносящих влагу и заметно смягчающих климат, проявляется редко и носит сугубо эпизодический характер. В связи с этим ветры становятся одним из важных факторов, формирующих климат описываемой территории.

Ветровой режим

Значительная орографическая однородность района характеризует относительную устойчивость режимов ветра. Это особенно хорошо прослеживается по основным сезонам года — зимой и летом, резко отличающимся по барико-циркуляционным и термическим условиям.

Основным формирующим фактором зимних ветров являются западные отроги Сибирского максимума давления. Но заметная удаленность территории от ветрораздельного рубежа, созданного указанным отрогом циркуляции воздуха, с одной стороны, периодическое проявление восточного отрога Азорского антициклона, довольно частые выходы циклонов с юга Каспия и влияние местных циркуляционных факторов со стороны Мугалжар и Южного Уралтау – с другой, создают здесь более или менее равномерную повторяемость всех направлений ветра. Тем не менее, преобладающее влияние Сибирского максимума обуславливает в многолетнем разрезе несколько повышенную повторяемость ветров восточных румбов. Преобладание южных и юго- западных румбов для некоторых участков, расположенных у западных отрогов Южного Уралтау и Мугалжар, обусловлено, очевидно, местными циркуляционными и термическими факторами.

Летом режим ветра резко изменяется. В это время в результате ослабления влияния Сибирского антициклона и под все более усиливающимся влиянием восточного отрога Азорского максимума преобладают ветры северо-западного направления.

Ветровые условия весны и осени занимают промежуточное положение. В мае наблюдается тенденция поворота преобладающих зимних направлений ветра с восточных

румбов на северо-западные румбы. В июне эта перестройка почти завершается, а в октябре летняя система ветров перестраивается на зимнюю.

Скорость ветра также подвергается значительным изменениям по сезонам года. Наибольшие в году среднемесячные скорости ветра отмечаются во второй половине зимы (февраль и март), в период усиления деятельности циклона, когда средние их значения составляют 5-7,4 м/сек. К концу лета (август — сентябрь), связи с заметным падением градиентов барического поля,

средние скорости ветра уменьшаются до 4-3 м/сек. В остальное время года средние скорости ветра варьируют между летним минимумом и зимним максимумом. Довольно четко выражен также суточный ход скоростей ветра. В течение всего года характерны повышенные, относительно ночных, дневные скорости ветра. Особенно значительны суточные амплитуды колебания их летом $(1,8-2,5\,\text{ м/сек}$ ночью и $5,0-6,3\,\text{ м/сек}$ днем), тогда как зимой эта разница небольшая $(4-6\,\text{ м/сек}$ ночью и 5

- 7,2 м/сек днем). И в этом отношении весна и осень также занимают промежуточное положение.

Таблица 1.2 Сведения о максимальной и средней скорости ветра, о повторяемости направлений ветра Мугалжарского района Актюбинской области осредненные за период с 2016по 2020 г.

Клима	тические	характе	ристики					
Коэффициент, зависящий от стратификации атмосферы, А								
Коэффі	Коэффициент рельефа местности, η							
Средня	Средняя годовая скорость ветра							
Скорос	Скорость ветра превышение которой составляет 5% (U*)							
Средня	ія годова	я повтор	яемость	(%) напр	авлений	ветра и	штилей	•
C	CB	В	ЮВ	Ю	ЮЗ	3	C3	Штиль
9	9 18 11 13 12 15 11 11							
Средняя скорость ветна по направлениям (м/с)								
3,3	3,7	4,6	4,2	3,9	4,2	4,2	3,9	

Температурный режим

Расположение района в умеренных широтах и относительно небольшая величина облачности обуславливают довольно высокий приток солнечного тепла на земную поверхность за счет солнечного сияния. Суммарная солнечная радиация изменяется за год от 108 ккал/см² до 125 ккал/см². Наибольшее количество солнечного тепла получает поверхность земли летом (майавгуст).

Различные радиационные и циркуляционные факторы обуславливают значительное разнообразие температурных условий территории, носящих также материковый характер с большой контрастностью сезонных и межгодовых колебаний, значительной суточной и годовой амплитудой.

Холода наступают в конце сентября – начале октября и продолжаются до марта половины апреля. Самые низкие температуры устанавливаются в конце декабря и держатся в течениеянваря и февраля, когда в отдельные дни температура понижается до минус 30°С.

С увеличением прихода солнечной радиации от февраля к марту почти повсеместно температура воздуха заметно повышается. Более резкое повышение температуры происходит от марта к апрелю, когда разница среднемесячных температур вследствие смены отрицательного радиационного баланса положительным и значительной перестройки барико-циркуляционных условий достигает наибольших в году значений. С апреля интенсивность ее роста от месяца к месяцу постепенно уменьшается, и температура имеет наименьшее значение от июня к июлю, наиболее жаркому месяцу лета. От июля к августу начинается сначала медленный, а затем более интенсивный спад температуры, которая уже в ноябре почти повсеместно приобретает отрицательное значение.

Метеорологические сведения о суточной температуре воздуха по Мугалжарскому району Актюбинской области

число	Средняя	температур	а воздуха			
Месяц	Январь	Февраль	Март	Апрель	Май	Июнь
1	- 23.2	- 13.9	0.1	16.3	13.8	16.3
2	- 24.1	- 19.5	- 5.1	14.8	14.3	17.4
3	- 18.7	- 19.6	- 0.8	15.4	9.0	20.1
4	- 24.9	- 20.0	3.0	12.5	8.0	17.9
5	- 23.0	- 9.3	2.0	11.1	8.7	17.6
6	- 23.2	-5.8	1.2	9.2	11.6	19.7
7	- 18.8	- 8.9	3.5	6.9	10.9	17.6
8	- 14.1	- 17.6	- 1.6	9.3	12.1	14.9
9	- 21.3	- 22.9	1.2	11.5	13.9	11.3
10	- 19.4	- 24.3	- 0.8	13.4	15.8	13.1
11	- 21.1	- 17.9	2.0	14.0	13.2	20.3
12	- 24	- 21.7	- 2.2	15.9	11.6	22.9
13	- 28.5	- 21.6	- 0.6	14.3	15.2	24.5
14	- 13.4	- 13.6	2.4	15.2	16.0	26.7
15	- 7.2	- 15.1	3.0	12.4	14.2	27.0
16	- 13.2	- 11.3	2.3	- 0.9	14.5	27.0
17	- 24.9	- 8.6	- 0.2	- 1.0	16.3	26.2
18	- 25.4	- 17.5	2.8	3.3	15.2	26.6
19	- 19.9	- 17.9	9.0	8.1	17.1	28.6
20	- 21.0	- 7.6	11.9	12.0	19.1	29.3
21	- 24.8	- 11.2	5.1	11.0	20.9	28.6
22	- 26.2	- 13.5	8.1	14.7	22.3	29.9
23	- 24.0	- 14.4	4.1	14.3	22.0	30.0
24	- 18.0	- 4.7	3.1	15.1	20.0	25.2
25	-12.6	- 2.9	9.3	13.5	22.7	20.2
26	- 13.2	- 1.8	11.1	9.2	25.4	20.8
27	- 17.9	- 1.0	11.3	10.7	27.4	15.1
28	- 13.0	- 3.8	14.1	9.0	24.1	17.4
29	- 14.2	0.1	13.9	10.5	18.2	18.8
30	- 11.7		15.2	9.8	15.5	20.8
31	- 10.0		16.3		15.8	

продолжение таблицы

число	Средняя	Средняя температура воздуха							
Месяц	Июль	Август	Сентябр ь	Октябрь	Ноябрь	Декабрь			
1	22.0	23.1	19.5	5.8	2.8	- 0.9			
2	16.7	17.9	13.7	8.0	2.7	- 1.7			
3	18.1	17.7	13.5	14.5	4.0	- 6.7			
4	19.3	21.8	17.3	10.5	4.4	- 6.7			
5	20.1	22.7	17.8	10.5	2.4	- 5.9			
6	20.8	25.6	20.9	11.9	- 1.3	- 1.4			
7	25.0	27.6	21.1	13.2	- 0.7	0.8			
8	27.0	20.2	21.5	15.3	- 4.3	- 1.0			
9	29.3	15.7	22.1	16.2	- 3.2	0.8			
10	30.7	17.4	21.8	10.6	- 2.3	- 0.5			

11	31.9	22.6	22.1	4.9	- 0.6	0.9
12	30.4	25.0	23.1	4.8	- 0.5	2.6
13	28.3	26.9	20.1	5.6	- 0.5	- 1.4
14	22.8	27.1	19.0	8.7	1.4	- 2.8
15	23.9	26.4	20.9	9.0	1.8	- 8.6
16	26.3	26.2	10.9	8.5	2.4	- 10.9
17	24.5	27.5	8.4	7.1	0.2	- 11.4
18	26.6	29.0	7.1	5.7	- 1.2	- 15.3
19	28.1	28.1	7.1	2.5	- 3.9	- 18.7
20	26.8	27.1	8.0	7.2	0.7	- 18.0
21	25.5	27.0	7.9	4.6	3.1	- 17.5
22	26.4	27.2	7.0	5.3	2.6	- 17.7
23	24.8	26.7	8.7	5.3	3.0	- 21.6
24	25.6	25.4	9.2	4.9	4.3	- 19.7
25	27.5	21.6	7.5	5.8	3.5	- 15.7
26	29.9	21.7	8.9	5.8	1.5	- 15.1
27	30.1	24.4	5.5	2.6	3.7	- 17.4
28	31.6	24.8	2.8	4.0	4.6	- 19.4
29	33.5	20.3	4.5	3.2	- 1.9	- 19.0
30	27.5	19.7	4.1	3.8	0.9	- 22.1
31	23.7	25.1		2.4		- 18.7

Метеорологические сведения о суточной количестве осадков по Мугалжарскому району Актюбинской области*

число	Количество осадков, мм								
Месяц	Январь	Феврал ь	Март	Апрель	Май	Июнь			
1									
2						1.7			
3						2.4			
4									
5	0.0	0.0	0.5		0.4				
6			0.0		2.6				
7	0.6	0.4							
8	6.0	0.2			15.8				
9			0.3						
10			0.0						
11					18.5				
12					10.1				
13									
14	1.6	0.2			6.9	4.3			
15	1.4		2.4		0.4				
16	1.4	0.3	3.4	2.2					
17		0.5	3.2	1.4	3.9				
18					3.1				
19		0.0			3.2				
20	0.2	3.4							
21		3.2	0.5						
22		0.0	1.3						
23		0.0			0.0				

24		0.0	 0.0		0.7
25			 0.4		1.0
26			 		
27		0.2	 		1.0
28	0.0		 	0.3	
29			 4.0	3.2	
30	0.0		 	3.7	
31			 	0.5	

продолжение таблииы

число	Количес	Количество осадков, мм									
Месяц	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь					
1	1.0		1.6								
2	14.0	11.0		11.0							
3	0.7										
4	0.5				0.6						
5	1.9				0.4						
6	2.1										
7					1.6						
8					2.1						
9					0.7						
10				7.8	0.0						
11				1.7	0.0						
12											
13				2.0		0.0					
14	0.0		1.5	1.0		6.0					
15	7.2		0.0								
16			0.9			1.4					
17	15.3		1.0	0.0		1.9					
18						0.0					
19		0.0				0.0					
20				0.7	0.7	0.8					
21				2.6	0.6						
22	1.0			1.8							
23											
24											
25											
26				3.3							
27											
28					0.0						
29											
30											
31											

Метеорологические сведения об атмосферном явлении по Мугалжарскому району Актюбинской области

число	Атмосферные явления									
месяц	Январь	Февраль	Март	Апрель	Май	Июнь				
1			туман							
2			изморо зь			дождь				

3	низ. метель		l			дождь
4						дождв
5	сн. крупа	сн. крупа	дождь		дождь	
6		туман	дождь		дождь,	
7	снег	снег, туман				
8	снег	снег, поземок			дождь	
9	поземок		лив. снег			
10	поземок		лив. снег			
11		туман, изморозь			дождь	пыльн. позем
12					дождь	
13						
14	снег, поземок	снег, поземок			дождь, гроза	дождь, гроза
15	снег, поземок		дождь	дождь	дождь	гроза
16	снег, поземок		дождь	снег, дождь		
17	поземок	снег, поземок	дождь, снег		дождь, гроза	
18		изморозь			дождь	
19		сн. зерна			дождь	
20	снег	снег, метель				
21	туман	снег, метель	дождь			
22		снег, метель	дождь			
23		снег, метель			дождь	
24		снег, метель		дождь		дождь, гроза
25	поземок			дождь		дождь
26						
27		снег, метель				дождь
28	снег	туман, изморозь			дождь	
29	поземок	туман		дождь	дождь	
	HOSEMOR	J				
30	снег,				дождь	

продолжение таблицы

числ 0	Атмосферны	е явления				
меся ц	Июль	Август	Сентябр ь	Октябрь	Ноябрь	Декабрь
1	дождь		дождь			
2	дождь	дождь				
3	дождь, гроза					
4	дождь, гроза				дождь	
5	дождь, гроза				дождь	
6	дождь, гроза					
7		пыл. позем.			дождь, снег	
8					снег	
9					снег	
10			пыл. позем.	дождь	снег	
11				дождь	дождь	
12	пыл. позем.					
13				дождь	туман	снег, туман
14	дождь, гроза		дождь	дождь		снег, поземок
15	дождь		дождь			поземок
16			дождь			снег, поземок
17	дождь, гроза		дождь	дождь		снег,
18					туман, изморозь	снег,
19		дождь, гроза			туман, изморозь	снег
20				дождь	снег	снег
21				дождь	дождь	поземок
22	дождь			дождь		изморозь
23			пыл. позем.			изморозь
24					туман	изморозь
25						поземок
26				дождь		поземок
27		пыл. позем.	пыл. позем.			
28		пыл. позем.			дождь	
29	пыл. позем.				туман, изморозь	изморозь
30					туман, изморозь	
31						
	· ·					

Таблица 3.4

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере города Актюбинская обл, Мугалжарский район

Актюоинская обл, Мугалжарский р, АФ 100 "Арал Петролеум	
Наименование характеристик	Величина
Коэффициент, зависящий от стратификации	200
атмосферы, А	
Коэффициент рельефа местности в городе	1.00
	22.5
Средняя максимальная температура наружного	33.5
воздуха наиболее жаркого месяца года, град.С	
Средняя температура наружного воздуха наибо-	-15.4
лее холодного месяца (для котельных, работа-	-13.4
ющих по отопительному графику), град С	
Среднегодовая роза ветров, %	- 0
C	5.0
СВ	13.0
В	20.0
ЮВ	12.0
Ю	11.0
103	16.0
3	13.0
C3	10.0
Среднегодовая скорость ветра, м/с	2.4
Скорость ветра (по средним многолетним	7.0
данным), повторяемость превышения которой	
составляет 5 %, м/с	
Штиль	41

РЕЗУЛЬТАТЫ РАСЧЕТОВ УРОВНЯ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ НА СООТВЕТСТВУЮЩЕЕ ПОЛОЖЕНИЕ И С УЧЕТОМ ПЕРСПЕКТИВЫ РАЗВИТИЯ

Справка о фоновых концентрациях выдана РГП «Казгидромет» о том, что посты наблюдения отсутствует.

Расчет приземных концентраций выполнен в расчетном прямоугольнике 6980*6980 м с шагом расчетной сетки 698 м в заводской системе координат.

Рельеф местности по данным инженерных изысканий ровный, отдельные изолированные препятствия отсутствуют, поэтому безразмерный коэффициент η , учитывающий влияние рельефа местности, принимается равным единице.

Коэффициент А, зависящий от температурной стратификации атмосферы и определяющий условия горизонтального и вертикального рассеивания атмосферных примесей на территории Казахстана равен 200.

Анализ полей рассеивания вредных веществ в приземном слое атмосферы произведен при скорости ветра 7 м/с, повторяемость превышения которой составляет 5%. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере, приведены в таблице 1.2 по данным **Приложения 6**.

Расчет рассеивания приведен для летнего периода времени, когда наблюдается максимальное загрязнение приземного слоя атмосферы. Моделирование загрязнения атмосферы осуществлялось с учетом одновременности работы оборудования.

В таблице 10.1 приведены значения максимальных приземных концентраций на границе СЗЗ.

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ ПК ЭРА v3.0. Модель: MPK-2014

(сформирована 04.04.2025 20:19)

Город :010 Актюбинская обл., Мугалжарский. Объект :0003 ТОО "Арал Петролеум Кэпитал" 2026. Вар.расч. :7 существующее положение (2025 год)

Код ЗВ	Наименование загрязняющих веществ	Cm	РΠ	C33	ЖЗ				пдк (обув)		ПДКс.г.	
 	и состав групп суммаций		 	 	 		предприяти я	AEN 	мг/м3	мг/м3 	мг/м3	опасн
	Азота (IV) диоксид (Азота диоксид) (4)	339.0623	87.11317	0.783168 	нет расч.	нет расч.	нет расч.	28 	0.2000000	0.0400000		2
0304	Азот (II) оксид (Азота оксид) (6)	27.5508	7.077950 	0.063644 	нет расч. 	нет расч. 	нет расч. 	26 	0.4000000	0.0600000		3
	Углерод (Сажа, Углерод черный) (583)	85.8586	12.05473	0.026751	нет расч.	нет расч.	нет расч.	23	0.1500000	0.0500000		3
0330 	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	27.0955	7.093471 	0.066556 	нет расч. 	нет расч.	 HeT pacч. 	25 	0.5000000	0.0500000 0.0500000 		3
	Сероводород (Дигидросульфид) (518)	2.8798	0.554913	0.003483	нет расч.	нет расч.	нет расч.	29	0.0080000	0.0008000*		2
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	12.5755	2.821641	0.026851	нет расч.	нет расч.	нет расч.	28	5.0000000	3.0000000		4
0703 j		31.3575	5.222288	0.011326	нет расч.	нет расч.	нет расч.	18	0.0000100*	0.0000010		1 1
1325 1716 	Формальдегид (Метаналь) (609)								0.0500000			2 3
2754 	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)		9.373660 	0.112847 	нет расч. 	нет расч. 	HeT pacч. 	46 	1.0000000	0.1000000* 		4
2840 	Ингибиторы коррозии: СНПХ 6301"А", СНПХ 6302 "А", СНПХ 6302 "Б" /по изопропиловому спирту/ (612*)	6.7536	1.368993	0.004771	нет расч. 	нет расч. 	нет расч. 	5 1 	0.2000000	0.0200000* 		-
2908 	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок,	117.2349	8.362612 	0.011849 	нет расч. 	нет расч. 	HeT pacu. 	6 	0.3000000	0.1000000		3
 	клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		 	 	 	 		·		 		

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК-2014
- 3. "Звездочка" (*) в графе "ПДКмр(ОБУВ)" означает, что соответствующее значение взято как 10ПДКсс.
- 4. "Звездочка" (*) в графе "ПДКсс" означает, что соответствующее значение взято как ПДКмр/10.
- 5. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек) и зоне "Территория предприятия" приведены в долях ПДКмр.

Определение необходимости расчетов приземных концентраций по веществам

ЭРА v3.0 TOO "Lineplus"

Таблица 2.2

Определение необходимости расчетов приземных концентраций по веществам на существующее положение

	нская оол., мугалжарский, тоо "Арал петрол	Cym Kominia	JI. 2026					
Код	Наименование	ПДК	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	димость
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ , мг/м3	(M)	(H)	для Н<10	RNH
								расчетов
1	2	3	4	5	6	7	8	9
0123	Железо (II, III) оксиды (диЖелезо		0.04		0.0212172	2	0.053	Нет
	триоксид, Железа оксид) /в пересчете на							
	железо/ (274)							
0143	Марганец и его соединения /в пересчете на	0.01	0.001		0.00038836	2	0.0388	Нет
	марганца (IV) оксид/ (327)							
	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		2.134409884		5.336	
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.779662871		5.1978	Да
	Углерод оксид (Окись углерода, Угарный	5	3		11.3244783385	2.53	2.2649	Да
	газ) (584)							
	Пентан (450)	100	25		0.000006334		0.00000063	
	Метан (727*)			50			0.0002	_
	Изобутан (2-Метилпропан) (279)	15			0.00000919		0.000000613	
	Смесь углеводородов предельных С1-С5 (50	0.9119504372	4.6	0.0182	Нет
	1502*)							
	Смесь углеводородов предельных С6-С10 (30	2.7244698074	8.02	0.0908	Нет
	1503*)							
	Пентилены (амилены - смесь изомеров) (1.5			0.02285	2.88	0.0152	Нет
	460)							
	Бензол (64)	0.3			0.02107265		0.0702	
0616	Диметилбензол (смесь о-, м-, п- изомеров)	0.2			0.0139153	2.17	0.0696	Нет
	(203)							
	Метилбензол (349)	0.6			0.0198746		0.0331	
	Этилбензол (675)	0.02			0.0005488		0.0274	
	Бенз/а/пирен (3,4-Бензпирен) (54)		0.000001		0.00002075		2.075	
	Метантиол (Метилмеркаптан) (339)	0.006			0.00000079273		0.000012827	
	Смесь природных меркаптанов /в пересчете	0.00005			0.00020864007	8.38	4.1728	Да
	на этилмеркаптан/ (Одорант СПМ - ТУ 51-							
	81-88) (526)			0.05	0 0000004		0 0007	TT
2735	Масло минеральное нефтяное (веретенное,			0.05	0.0003334	2	0.0067	Нет

ЭРА v3.0 TOO "Lineplus" Таблица 2.2

Определение необходимости расчетов приземных концентраций по веществам на существующее положение

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026

1	2	3	4	5	6	7	8	9
	машинное, цилиндровое и др.) (716*)							
2752	Уайт-спирит (1294*)			1	0.00563	2	0.0056	Нет
2754	Алканы С12-19 /в пересчете на С/ (1			9.7418033484	5.43	9.7418	Да
	Углеводороды предельные С12-С19 (в							
	пересчете на С); Растворитель РПК-265П) (
	10)							
2840	Ингибиторы коррозии: СНПХ 6301"А", СНПХ			0.2	0.0378176	2	0.1891	Да
	6302 "А", СНПХ 6302 "Б" /по							
	изопропиловому спирту/ (612*)							
2908	Пыль неорганическая, содержащая двуокись	0.3	0.1		0.32823726	2	1.0941	Да
	кремния в %: 70-20 (шамот, цемент, пыль							
	цементного производства - глина,							
	глинистый сланец, доменный шлак, песок,							
	клинкер, зола, кремнезем, зола углей							
	казахстанских месторождений) (494)							
					дного воздейст			
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2			13.129899	2.44	65.6495	Да
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		2.89873671193	3.26	5.7975	Да
	Сернистый газ, Сера (IV) оксид) (516)							
0333	Сероводород (Дигидросульфид) (518)	0.008			0.00214975309	7.57	0.2687	Да
0342	Фтористые газообразные соединения /в	0.02	0.005		0.00008987	2	0.0045	Нет
	пересчете на фтор/ (617)					_		
0344	Фториды неорганические плохо растворимые	0.2	0.03		0.00028056	2	0.0014	Нет
	- (алюминия фторид, кальция фторид,							
	натрия гексафторалюминат) (Фториды							
	неорганические плохо растворимые /в							
	пересчете на фтор/) (615)							
1325	Формальдегид (Метаналь) (609)	0.05	0.01		0.198386111	2.43	3.9677	Да

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с
2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

Из табл. 3.2.1 видно, что для всех загрязняющих веществ месторождений при их рассеивании в атмосфере на границе СЗЗ выполняется условие нормативного качества атмосферного воздуха, поэтому лимитируемые выбросы предприятия на 01.01.25- 31.12.2025 год рекомендуется принять в качестве нормативов предельно допустимых выбросов (НДВ).

Как показало рассеивание вредных веществ в атмосфере, деятельность предприятия на 2026 г. не повлечет за собой негативных последствий по изменению качества атмосферного воздуха.

Карты рассеивания загрязняющих веществ в атмосфере приведены в Приложении 5.

ПРЕДЛОЖЕНИЯ ПО НОРМАТИВАМ ДОПУСТИМЫХ ВЫБРОСОВ ПО КАЖДОМУ ИСТОЧНИКУ И ИНГРЕДИЕНТУ

3.3.1 Характеристика источников выбросов загрязняющих веществ в атмосферу

Основное загрязнение атмосферного воздуха на месторождении Восточный Жагабулак будет происходить в результате выделения:

- о продуктов сгорания топливного газа (факел, печи, компрессора);
- о продуктов сгорания дизельного топлива (ДЭС, дизельгенераторы);
- о технологических потерь нефти и газа при испарении от коммуникаций, резервуаров, нефтепромыслового оборудования и в процессе продувок газовых систем указанного оборудования;
- о углеводородов от нефтедобывающих скважин, сепараторов, насосов, при стравливании газа на свечах, дренажных и буферных емкостей.

На основе анализа технологических процессов, состава исходного сырья и данных расчетов установлены вредные вещества, выделяемые и выбрасываемые в атмосферу производственными объектами.

Количество и состав выбросов от объектов ТОО «Арал Петролеум Кэпитал» определены в соответствии с отраслевыми методическими указаниями.

Основными вредными веществами, загрязняющими атмосферу при добыче, сборе и подготовке нефти являются: предельные углеводороды C_1 - C_5 , C_6 - C_{10} , C_{12} - C_{19} , оксид углерода, диоксид азота, оксид азота, диоксид серы, сероводород, метан, меркаптаны, бенз/а/пирен, соединения марганца, фтористый водород и т.д.

Общее количество выбросов загрязняющих веществ составит на 2026 год составит 283.4939695493 т/год вредных веществ.

Источниками выбросов загрязняющих веществ на месторождении Восточный Жагабулак являются:

На площадке скважин № 301, 308, 306, 315:

- Устье скважины 6003, 6015, 6017, 6019;
- Блок реагентов БР-2,5 6004, 6016, 6018, 6020;
- Дизельгенератор 30 кВт 0012.

На площадке АГЗУ:

- Спутник АМС 40-8-1500 6005;
- Блок реагентов БР-10/100 6006;
- Свеча рассеивания дренажной емкости 0001.

УБСН:

- Факельная установка 0002;
- Печь подогрева нефти 0003;
- Блочная сепарационная установка 6007;
- Отстойник нефти 6008;
- Насосная установка 6009;
- Нефтеналивная эстакада 6010;
- Установка «SULFATREAT XLР» 6011;
- Свеча рассеивания дренажных емкостей 0004;
- Свеча рассеивания резервуарного паркаV-75м3 (6шт) 0005;

На производственной базе:

- Емкости для хранения дизтоплива 0006-0008;
- Емкость для хранения бензина 0009;
- Дизельгенератор 200 кВт 0010;
- Топливораздаточные колонки (дизтопливо) 6012;
- Топливораздаточные колонки (бензин) 6013;
- Сварочный пост 6014;

- Гараж для спецтехники 6027;
- Дизельный генератор ДЭС-200 кВт 0010;
- Сварочный генератор Хонда 0011.

Дожимная компрессорная станция (ДКС):

- Газовый сепаратор ГС-1-2,5-600-2 на входе ДКС-1ед 6025
- Газовый сепаратор на выходе ГС-1-1,5-1200-2 ДКС-1ед 6026
- Свеча рассеивания дренажных емкостей ДКС 0023

Капитальный ремонт скважин:

- Станок КРС ХЈ-450- 0013;
- Силовой двигатель бурового насоса- 0014;
- ДЭС-300 0015;
- ДЭС-100 0016;
- Цементировочный агрегат ЦА-320-0017;
- Емкости для хранения дизтоплива 0018;
- ППУ 1600/100 0019;
- Выкидные линии и блок задвижек (манифольд) 6028;
- Сварочный пост 6024.

Горячая промывка коллекторной линии скважин, АГЗУ:

- Передвижная паровая установка, ППУ 1600/100 0020.
- Цементировочный агрегат ЦА -320 0021
- Агрегат для депарафинизации скважин АДПМ -12/150 0022

Период СМР и крепления скважины №308:

- Источник №0024 ДВС сварочного агрегата;
- Источник №6027 Расчет выбросов пыли при перемещении грунта бульдозером;
- Источник №6028 Расчет выбросов пыли при работе экскаватора;
- Источник №6029 Сварочные работы;
- Источник №6030 Лакокрасочные работы;

Период бурения и крепления скважины №308 с буровой установкой ZJ-50 являются:

- Источник №0025 0026 Буровой станок ZJ50DB (либо его аналог по хар-кам не превыш. технич. показатели) ;
 - Источник №0027 Передвижная паровая установка №1;
 - Источник №0028 Цементировочный агрегат;
 - Источник №0029 Цементно-смесительная машина;
 - Источник №6031 Емкость хранения дизтоплива;
 - Источник №6032 Насос для перекачки дизтоплива;
 - Источник №6033 Блок приготовления бурового раствора;
 - Источник №6034 Емкость бурового шлама;
 - Источник №6035 Емкость бурового раствора;
 - Источник №6036 Емкость хранения масла;
 - Источник №6037 Емкость отработанного масла;
 - Источник №6038 Пересыпка цемента;
 - Источник №6039 Блок приготовления цементного раствора;

Период освоения скважины №308 являются:

- Источник №0030-0031 Установка освоения ZJ650 (САТ-3512) (либо его аналог по хар-кам не превыш. технич. показатели);
 - Источник №0032 Установка освоения ZJ650 (CAT-3412) (либо его аналог по хар-

кам не превыш. технич. показатели);

- Источник №0033 Дизель-генератор VOLVO TAD1241GE резервный (либо его аналог по хар-кам не превыш. технич. показатели);
 - Источник №0034 Передвижная паровая установка №2;
 - Источник №6040 Нефтегазосепаратор;
 - Источник №6041 Насос технологический;
 - Источник №6042 Емкость для дизельного топлива;
 - Источник №6043 Насос для перекачки дизтоплива;

На 2026 год источниками будет выбрасываться в атмосферу вредные вещества 27-ти наименований и 5-ти групп веществ, обладающих эффектом суммации вредногодействия.

Источники выбросов подразделяются на организованные и неорганизованные. Организованные источники выбросов загрязняющих веществ производят выбросы через специально сооруженные устройства (труба). Неорганизованные источники выбросов загрязняющих веществ — выбросы в виде ненаправленного потока газа.

Характеристики источников выбросов (высота, диаметр) приняты по данным инвентаризации.

Карта-схема предприятия с нанесенными на нее источниками выбросов загрязняющих веществ в атмосферу представлена в приложении № 2.

AKTR	оинс	кая оол., мугалж			. "Арал Петролеум к									
		Источник выделе	RNHS	Число	Наименование	Номер	Высо	Диа-	Параме	етры газовозд	ц.смеси	Коорд	инаты ис	гочника
Про		загрязняющих вец	цеств	часов	источника выброса	источ	та	метр	на вых	ходе из трубы	і при	на к	арте-схе	еме, м
	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	вовой			
одс		Наименование	Коли	ТЫ	_	выбро	ника	трубы		нагрузке		точечного	о источ.	2-го кон
TBO			чест	В		COB	выбро			10		/1-го кон		/длина, ш
			во,	году			COB,	М	CKO-	объем на 1	тем-	/центра г		площадн
			шт.	тоду			M M	1,1		трубу, м3/с	пер.	ного исто		источни
									M/C	15,00, 120,0	oC	11010 1101	2 11171110	7101011171
									2-27			X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		3	4	J	0	/	O	J	10	1 1	12	10	14	
002	d	la	I 1	0760	Свеча рассеивания	0001	l a	0.1	Ι 4	0.031416	25	1290	1272	Площадка І
002		Свеча	1	8/60		0001	3	0.1	4	0.031416	25	1290	3/2	
		рассеивания			дренажной емкости									
000		A	1	EOOO	T	0000	10 2	0 200	2 07	0 252522	1 (0 0 0 0	1.0	0.1	
003	1	Факел		2880	Дымовая труба	0002	10.3	0.389	2.97	0.353532	1000.∠	19	21	

	Наименование газоочистных	Вещество по кото-	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выброс з	агрязняющего	вещества	
ца лин. ирина ого ка	установок, тип и мероприятия по сокращению выбросов	рому произво- дится газо- очистка	газо- очист кой, %	степень очистки/ мах.степ очистки%		вещества	r/c	мг/нм3	т/год	Год дос- тиже ния НДВ
Y2	1 7	1.0	1.0	2.0	0.1	2.2	2.2	2.4	٥٢	2.6
16	17	18	19	20	21	22	23	24	25	26
					0333	Сероводород (Дигидросульфид) (518)	0.000015	0.521	0.0000654456	2025
					0415	Смесь углеводородов предельных C1-C5 (1502*)	0.002848	98.956	0.0121238	2025
					0416	Смесь углеводородов предельных C6-C10 (1503*)	0.025192	875.317	0.107242	2025
					1716	Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	0.000002	0.069	0.0000087697	2025
					2754	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.048811	1695.979	0.207787585	2025
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.007593312	154.299	0.160735228	
					0304	Азот (II) оксид (Азота оксид) (6)	0.001233913	25.074	0.026119475	
					0328	Углерод (Сажа,	0.00632776	128.582	0.133946024	

1	2	3	4	5) "Арал Петролеум К 6	7	8	9	10	11	12	13	14	15
003		Печь подогрева нефти	1	8760	Дымовая труба	0003	4	0.5	5.25	1.0308375	60	625	-356	
003		Свеча рассеивания	1	8760	Свеча рассеивания дренажных емкостей	0004	10	0.1	4	0.031416	25	136	-274	

16	17	18	19	20	21	22	23	24	25	26
						Углерод черный) (583)				
					0330	Сера диоксид (0.286899623	5829.892	6.0730912288	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
							0.000243792	4.954	0.0051606101	
						Дигидросульфид) (518)				
						Углерод оксид (Окись	0.0632776	1285.821	1.339460237	
						углерода, Угарный газ) (584)				
					0410	Метан (727*)	0.00158194	32.146	0.033486506	
					1715	Метантиол (0.000000792	0.016	0.0000167805	
						Метилмеркаптан) (339)				
					0301	Азота (IV) диоксид (0.0329868	39.033	1.040271725	2025
						Азота диоксид) (4)				
						Азот (II) оксид (0.006185025	7.319	0.195050948	2025
						Азота оксид) (6)				
						Сера диоксид (0.036079312	42.692	1.137797199	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
						1	0.330898837	391.549	10.43522574	2025
						углерода, Угарный				
						ras) (584)				
						Метан (727*)	0.0082467			
						Сероводород (0.000004	0.139	0.0000654456	2025
						Дигидросульфид) (518)	0 00054405	05 540	0 0101000	0005
					0415	Смесь углеводородов	0.00074105	25.748	0.0121238	2025
						предельных С1-С5 (
					1	1502*)	0 00655500	007 760	0 1070404	2025
						Смесь углеводородов	0.00655502	227.760	0.1072424	2025
						предельных С6-С10 (
					1716	1503*)	0 000001	0 025	0 0000007607	2025
						Смесь природных	0.000001	0.035	0.0000087697	2025
						меркаптанов /в				
						пересчете на				
						этилмеркаптан/ (

	ОИНС	ская обл., Мугалж	арски	и, тос	"Арал Петролеум К	эпитал	· ZUZ6			T				1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
003		Емкости для хранения нефти V=75м3- 6 ед.	1	8760	Свеча рассеивания	0005	10	0.1	5	0.03927	25	136	-271	
004		Емкости для хранения дизтоплива	1		Дыхательный клапан	0006	3	0.5	5	0.98175	25	1	1	

16	17	18	19	20	21	22	23	24	25	26
					2754	Одорант СПМ - ТУ 51- 81-88) (526) Алканы С12-19 /в	0.01270068	441.296	0.207787585	2025
						пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-				
					0333	265П) (10) Сероводород (0.001229	34.162	0.006220956	2025
					0415	Дигидросульфид) (518) Смесь углеводородов предельных C1-C5 (1502*)	0.227615	6326.938	1.1524321	2025
					0416	Смесь углеводородов предельных C6-C10 (1503*)	2.013396	55965.697	10.19397	2025
					1716	Смесь природных меркаптанов /в пересчете на	0.000165	4.586	0.000833608	2025
						этилмеркаптан/ (Одорант СПМ - ТУ 51- 81-88) (526)				
					2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	3.901055	108436.325	19.75132379	2025
					0333	265П) (10) Сероводород (0.00001448	0.016	0.00000439	2025
					2754	Дигидросульфид) (518) Алканы C12-19 /в пересчете на C/ (0.00516	5.737	0.001564	2025
						Углеводороды предельные C12-C19 (в пересчете на C);				

ЭРА v3.0 TOO "Lineplus"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	"Арал Петролеум Б 6	7	8	9	10	11	12	13	14	15
004		Емкости для хранения дизтоплива	1	8760	Дыхательный клапан	0007	3	0.5	5	0.98175	25	1	1	
004		Емкости для хранения дизтоплива	1	8760	Дыхательный клапан	0008	3	0.5	5	0.98175	25	1	1	
004		Емкость для хранения бензина	1	8760	Дыхательный клапан	0009	3	0.5	5	0.98175	25	1	1	
004		Дизельгенератор 200 кВт	1	200	Дымовая труба	0010	2	0.089	9.5	0.059101	300	1290	372	

16	17	18	19	20	21	22	23	24	25	26
						Растворитель РПК-				
						265Π) (10)				
					0333	Сероводород (0.00001448	0.016	0.00000439	2025
						Дигидросульфид) (518)				
					2754	Алканы С12-19 /в	0.00516	5.737	0.001564	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
					0000	265Π) (10)	0 00001440	0 016	0 00000420	0005
					0333	Сероводород (0.00001448	0.016	0.00000439	2025
					2754	Дигидросульфид) (518) Алканы C12-19 /в	0.00516	5.737	0.001564	2025
					2/54	пересчете на С/ (0.00516	5.737	0.001564	2025
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0415	Смесь углеводородов	0.545	605.967	0.01112	2025
						предельных С1-С5 (****	
						1502*)				
					0416	Смесь углеводородов	0.2016	224.152	0.00411	2025
						предельных С6-С10 (
						1503*)				
					0501	Пентилены (амилены -	0.02015	22.404	0.000411	2025
						смесь изомеров) (460)				
					0602	Бензол (64)	0.01854	20.614		2025
					0616	Диметилбензол (смесь	0.002337	2.598	0.0000477	2025
						о-, м-, п- изомеров)				
						(203)				
						Метилбензол (349)	0.0175	19.458		
						Этилбензол (675)	0.000484	0.538		
					0301	Азота (IV) диоксид (0.426666667	15152.555	0.29376	2025
					0000	Азота диоксид) (4)	0 00000000	0.4.60	0 045506	0005
					0304	Азот (II) оксид (0.069333333	2462.290	0.047736	2025

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	AKTR	IOOVIIIC	TRAN COST., MYTASIA	арский	1, 100	Apan herponeym	KJIIVITaJ.	2020	1				Т	1	1
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	004 Сварочный генератор Хонда 1 8760 Дымовая труба 0011 0.2 0.03 9.5 0.0067152 300 1 1			Сварочный	1											

16	17	18	19	20	21	22	23	24	25	26
						Азота оксид) (6)				
						Углерод (Сажа,	0.027777778	986.494	0.01836	2025
						Углерод черный) (583)				
						Сера диоксид (0.066666667	2367.587	0.0459	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0005	IV) оксид) (516)	0 04444444	10000 501	0 00000	0005
						1	0.34444444	12232.531	0.23868	2025
						углерода, Угарный				
					0700	газ) (584)	0.000000667	0 004	0 00000000	2025
					0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.0000000667	0.024	0.000000505	2025
					1325	Формальдегид (0.006666667	236.759	0.00459	2025
					1323	Метаналь) (609)	0.00000007	250.755	0.00433	2023
					2754	Алканы С12-19 /в	0.161111111	5721.668	0.11016	2025
					2,01	пересчете на С/ (0.10111111	0721.000	0.11010	2020
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (0.00027	84.391	0.00019	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.00004	12.502	0.00003	2025
						Азота оксид) (6)				
						Сера диоксид (0.00013	40.633	0.000096	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.04167	13024.364	0.03	2025
						углерода, Угарный				
					0754	ras) (584)	0 00222	1040 004	0 0004	2025
					2/54	Алканы C12-19 /в	0.00333	1040.824	0.0024	2025
						пересчете на С/ (Углеводороды				
						лредельные C12-C19 (в				
						предельные С12-С19 (в пересчете на С);				
			I			mehecaere ug c),				

ЭРА v3.0 TOO "Lineplus"

Параметры выбросов загрязняющих веществ в атмосферу для расче

	оинс	ская оол., мугалж	арски	и, тоо) "Арал Петролеум Н	Сэпитал	1. 2026							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Дизельгенератор 30 кВт	1	100	Дымовая труба	0012	2	0.1	5	0.03927	300	1	1	
005		Станок КРС ХЈ- 450	1	8760	Дымовая труба	0013	1.5	0.089	10	0.0622115	300	-906	-285	

16	17	18	19	20	21	22	23	24	25	26
						Растворитель РПК-				
					0301	265П) (10) Азота (IV) диоксид (0.068666667	3670.093	0.155144	2025
						Азота диоксид) (4)		0070.030	0,100111	
					0304	Азот (II) оксид (0.011158333	596.390	0.0252109	2025
					0000	Азота оксид) (6)	0 005033333	211 700	0 01252	0005
					0328	Углерод (Сажа, Углерод черный) (583)	0.005833333	311.780	0.01353	2025
					0330	Сера диоксид (0.009166667	489.940	0.020295	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0337	IV) оксид) (516) Углерод оксид (Окись	0.06	3206.877	0.1353	2025
					0337	углерода, Угарный	0.00	3200.077	0.1333	2025
						ras) (584)				
					0703	Бенз/а/пирен (3,4-	0.000000108	0.006	0.000000248	2025
					1225	Бензпирен) (54) Формальдегид (0.00125	66.810	0.002706	2025
					1323	Метаналь) (609)	0.00123	00.010	0.002700	2023
					2754	Алканы С12-19 /в	0.03	1603.439	0.06765	2025
						пересчете на С/ (
						Углеводороды предельные C12-C19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.731733333	24687.331	3.624128	2025
					0304	Азота диоксид) (4) Азот (II) оксид (0.118906667	4011.691	0.5889208	2025
						Азота оксид) (6)	0.11030000	1011.031	0.0003200	
					0328	Углерод (Сажа,	0.047638889	1607.248	0.226508	2025
					0220	Углерод черный) (583)	0.1143333333	2057 205	0.56627	2025
					0330	Сера диоксид (Ангидрид сернистый,	0.1143333333	3857.395	0.3002/	2023
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.590722222	19929.877	2.944604	2025

TK TROOP.	инская обл., Мугал 2 3	марски	л, 100	Apan nerponeym	КЭПИТАЛ	1 2020		1.0	1.1	1.0	1.0	1 1 4	1 -
1 :	2 3	4	5	6	-7	8	9	10	11	12	13	14	15
005	Силовой двигатель бурового насоса	1	8760	Дымовая труба	0014	2	0.2	10	0.31416	300	-874	514	

16	17	18	19	20	21	22	23	24	25	26
						углерода, Угарный				
						газ) (584)				
					0703		0.000001143	0.039	0.000006229	2025
						Бензпирен) (54)				
						Формальдегид (0.011433333	385.740	0.056627	2025
						Метаналь) (609)				
					2754	Алканы С12-19 /в	0.276305556	9322.039	1.359048	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)	0 0440	F C 4 4 1 0 4	10 (0441)	2025
					0301	Азота (IV) диоксид (Азота диоксид) (4)	0.8448	5644.104	12.684416	2025
					0304	Азота диоксид) (4) Азот (II) оксид (0.13728	917.167	2.0612176	2025
						Азот (11) оксид (Азота оксид) (6)	0.13720	917.107	2.0012170	2023
						Углерод (Сажа,	0.055	367.455	0.792776	2025
						Углерод (сажа, Углерод черный) (583)	0.055	307.433	0.792770	2023
						Сера диоксид (0.132	881.891	1.98194	2025
						Ангидрид сернистый,	0.132	001.031	1.50151	2020
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.682	4556.438	10.306088	2025
						углерода, Угарный				
						газ) (584)				
						Бенз/а/пирен (3 , 4-	0.00000132	0.009	0.000021801	2025
						Бензпирен) (54)				
					1325	Формальдегид (0.0132	88.189	0.198194	2025
					2754	Алканы С12-19 /в	0.319	2131.237	4.756656	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				

1 1	<u> 2</u>	кая обл., Мугалж З	<u>арски</u> 4	и , тос	MAPAJI IIE		энитал 7	8	9	1.0	1.1	1.0	1 2	14	15
005		дэс-300	1		о Дымовая т		0015		0.089	10	11 0.0622115	12 300	13 -177		13
005		дэс-300	Т	8/60	дымовая т	руоа	0015	۷	0.089	10	0.0622115	300	-1//	4/9	
005		дэс-100	1	8760	Дымовая т	ทงกิล	0016	2	0.089	10	0.0622115	300	498	-546	
000		A00 100	_	0700	дымовал і	руса	0010	2	0.003	10	0.0022113	300	130	310	

16	17	18	19	20	21	22	23	24	25	26
					0301	Азота (IV) диоксид (0.64	21592.418	6.44288	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.104	3508.768	1.046968	2025
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.041666667	1405.756	0.40268	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.1	3373.815	1.0067	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337		0.516666667	17431.379	5.23484	2025
						углерода, Угарный				
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.000001	0.034	0.000011074	2025
						Бензпирен) (54)				
						Формальдегид (0.01	337.382	0.10067	2025
						Метаналь) (609)	0 04466666	04.50.005	0 44 600	0005
					2/54	Алканы С12-19 /в	0.241666667	8153.387	2.41608	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК- 265П) (10)				
					0201	26511) (10) Азота (IV) диоксид (0.213333333	7197.473	3.07936	2025
						Азота (17) диоксид (Азота диоксид) (4)	0.213333333	1191.413	3.07930	2023
						Азота диоксид) (4) Азот (II) оксид (0.034666667	1169.589	0.500396	2025
						Азот (II) оксид (Азота оксид) (6)	0.00700007	1109.009	0.300390	2023
						Углерод (Сажа,	0.013888889	468.585	0.19246	2025
						Углерод черный) (583)	0.013000003	400.303	0.19240	2025
						Сера диоксид (0.033333333	1124.605	0.48115	2025
						Ангидрид сернистый,	0.000000000	1121.000	0.10110	2020
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337		0.172222222	5810.460	2.50198	2025
						углерода, Угарный				
						газ) (584)				

1	2	3	4	5	Э "Арал Петролеум 6	7	8	9	10	11	12	13	14	15
005		Цементировочный агрегат ЦА-320			Дымовая труба	0017	1.5						1	
005		Емкости ДТ	1	8760	Дыхательный клапан	0018	3	0.05	5	0.0098175	25	1	1	

16	17	18	19	20	21	22	23	24	25	26
					0703	Бенз/а/пирен (3,4-	0.000000333	0.011	0.000005293	2025
						Бензпирен) (54)				
					1325	Формальдегид (0.003333333	112.460	0.048115	2025
						Метаналь) (609)				
					2754	Алканы С12-19 /в	0.080555556	2717.796	1.15476	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (0.360533333	15054.507	2.69184	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.058586667	2446.357	0.437424	2025
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.023472222	980.111	0.16824	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.056333333	2352.267	0.4206	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0000	IV) оксид) (516)	0 00105555	10150 050	0 10510	0005
					033/	±	0.291055556	12153.378	2.18712	2025
						углерода, Угарный				
					0700	ras) (584)	0 000000563	0 004	0 000004607	0005
					0/03	Бенз/а/пирен (3,4-	0.000000563	0.024	0.000004627	2025
					1205	Бензпирен) (54)	0 005(22222	005 007	0 04000	2025
						Формальдегид (0.005633333	235.227	0.04206	2025
						Метаналь) (609) Алканы C12-19 /в	0.136138889	5684.644	1.00944	2025
					2/54		0.136138889	3084.644	1.00944	2025
						пересчете на С/ (
						Углеводороды предельные C12-C19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					Usss	Сероводород (0.00001448	1.610	0.0000659	2025
					0333	Дигидросульфид) (518)	0.00001440	1.010	0.0000039	2023
						Чит.ичБосАлефич) (это)				

ЭРА v3.0 TOO "Lineplus"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	Петролеум К (6 граня) В Сород В (6 граня) В Сород В С	7	8	9	10	11	12	13	14	15
005		ппу 1600/100	1	8760	Выхлопная труба	0019	4	0.08	10	0.0502656	300	136	-271	
006		ппу 1600/100	1	100	Выхлопная труба	0020	1.5	0.08	10	0.0502656	300	1	1	
006		Цементировочный агрегат	1	100	Дымовая труба	0021	4	0.08	10	0.0502656	300	1	1	

16	17	18	19	20	21	22	23	24	25	26
					2754	Алканы С12-19 /в	0.00516	573.723	0.02346	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (0.0308	1286.091	0.971	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.005	208.781	0.1578	2025
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.002535	105.852	0.08	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.0596	2488.670	1.88	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.141	5887.626	4.44	2025
						углерода, Угарный				
						ras) (584)				
					0301	Азота (IV) диоксид (0.0546	2279.889	0.01968	2025
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.00888	370.795	0.0032	2025
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.0045	187.903	0.00162	2025
						Углерод черный) (583)	0 1050	4445 005	0 0001	0005
					0330	Сера диоксид (0.1058	4417.807	0.0381	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
					0000	IV) оксид) (516)	0.05	10400 050	0.00	0005
					0337	Углерод оксид (Окись	0.25	10439.053	0.09	2025
						углерода, Угарный				
					0001	ras) (584)	0 260522222	15054 505	0 05104060	0005
					0301	Азота (IV) диоксид (0.360533333	15054.507	0.05194368	2025
					0204	Азота диоксид) (4)	0 050506667	0446 257	0 000440040	2005
					0304	Азот (II) оксид (0.058586667	2446.357	0.008440848	2025
						Азота оксид) (6)				

1		3			"Арал Петролеум К 6	7			10	11	12	13	14	15
	2	Агрегат для депарафинизации скважин АДПМ - 12/150	1	5	6		8	9	10	4.1251556	300	13	14	15

16	17	18	19	20	21	22	23	24	25	26
						Углерод (Сажа,	0.023472222	980.111	0.00324648	2025
						Углерод черный) (583)				
					0330	Сера диоксид (0.056333333	2352.267	0.0081162	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
							0.291055556	12153.378	0.04220424	2025
						углерода, Угарный				
					0702	газ) (584)	0 000000563	0 004	0 00000000	2025
					0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000563	0.024	0.000000089	2025
					1325	Формальдегид (0.005633333	235.227	0.00081162	2025
						Метаналь) (609)	0.0000000000000000000000000000000000000	255.227	0.00001102	2023
						Алканы С12-19 /в	0.136138889	5684.644	0.01947888	2025
					2751	пересчете на С/ (0.130130003	3001.011	0.01317000	2020
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (0.490666667	249.654	0.639936	2025
						Азота диоксид) (4)				
						Азот (II) оксид (0.079733333	40.569	0.1039896	2025
						Азота оксид) (6)				
						Углерод (Сажа,	0.031944444	16.254	0.039996	2025
						Углерод черный) (583)	0 0000000		0 0000	0005
					0330	Сера диоксид (0.076666667	39.008	0.09999	2025
						Ангидрид сернистый,				
						Сернистый газ, Сера (IV) оксид) (516)				
					0227		0.396111111	201.543	0.519948	2025
					0337	углерод оксид (окись углерода, Угарный	0.396111111	201.343	0.319940	2023
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.000000767	0.0004	0.0000011	2025
						Бензпирен) (54)	3.300000707	0.0004	0.0000011	
					1325	Формальдегид (0.007666667	3.901	0.009999	2025
						Метаналь) (609)		2.301		

	онио	кая обл., Мугалж	арски	и, ТОС	"Арал Петролеум К	Эпитал	ı'' 2026							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
004		Свеча рассеивания дренажных емкостей ДКС	1	8760	Свеча рассеивания	0023	3	0.1	3	0.023562	25	1	1	
007		ДВС сварочного агрегата	1		Выхлопная труба	0024	2.5	0.15	4.16	0.0735134	127	1	1	

16	17	18	19	20	21	22	23	24	25	26
					2754	Алканы С12-19 /в	0.185277778	94.270	0.239976	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0333	Сероводород (0.000004	0.185	0.0000654456	2025
						Дигидросульфид) (518)				
					0415	Смесь углеводородов	0.00074105	34.331	0.0121238	2025
						предельных С1-С5 (
						1502*)				
					0416	Смесь углеводородов	0.00655502	303.680	0.1072424	2025
						предельных С6-С10 (
						1503*)				
					1716	Смесь природных	0.000001	0.046	0.0000087697	2025
						меркаптанов /в				
						пересчете на				
						этилмеркаптан/ (
						Одорант СПМ - ТУ 51-				
					0754	81-88) (526)	0 01070060	F00 204	0 007707505	2025
					2/54	Алканы С12-19 /в	0.01270068	588.394	0.207787585	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
					0301		0 09155556	1824 801	0 012384	
					0301		0.09133330	1024.001	0.012304	
					0304		0 014877778	296 530	0 0020124	
					0304		0.0140////0	2,0.330	0.0020124	
					0328		0 00777778	155 020	0 00108	
					1 5520			100.020	3.00100	
					0330		0.01222222	243 602	0 00162	
							••••	210:002	0.00102	
					0304	пересчете на С); Растворитель РПК- 265П) (10) Азота (IV) диоксид (Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6) Углерод (Сажа, Углерод черный) (583) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.091555556 0.014877778 0.007777778 0.012222222	296.530 155.020	0.0020124	

HNOOIL	CRAS OOIL, Mylank	арский, п	00 "Арал Петролеум	Kalimaa	2020						1	1
1 2	3	4 5	6	7	8	9	10	11	12	13	14	15
0.8	Буровой станок ZJ50DB (либо его аналог не превыш. характ)	1	Выхлопная труба	0025	2.5	0.5	7.78	1.527603	202	17	19	

16	17	18	19	20	21	22	23	24	25	26
					0337	IV) оксид) (516) Углерод оксид (Окись углерода, Угарный	0.08	1594.486	0.0108	
						газ) (584)	0.00000144	0.003	0.00000002	
					1325	Формальдегид (Метаналь) (609)	0.001666667	33.218	0.000216	
						Алканы C12-19 /в пересчете на C/ (Углеводороды	0.04	797.243	0.0054	
						предельные C12-C19 (в пересчете на C);				
					0001	Растворитель РПК- 265П) (10)	1 510	1500 155	11 04510	
						Азота (IV) диоксид (Азота диоксид) (4)	1.512			
					0304	Азот (II) оксид (Азота оксид) (6)	0.2457	279.850	1.84359175	
						Углерод (Сажа, Углерод черный) (583)	0.07875	89.696	0.6077775	
					0330	Сера диоксид (Ангидрид сернистый,	0.315	358.782	2.43111	
						Сернистый газ, Сера (IV) оксид) (516)	1 1025	1250 247	0 01/07	
						углерод оксид (окись углерода, Угарный газ) (584)	1.1923	1330.247	0.91407	
						Бенз/а/пирен (3,4-	0.000002475	0.003	0.000018233	
						Формальдегид (0.0225	25.627	0.162074	
						Алканы C12-19 /в пересчете на С/ (0.54	615.055	4.05185	
						Углеводороды предельные C12-C19 (в				
					0337 0703 1325 2754	Углерод оксид (Окись углерода, Угарный газ) (584) Бенз/а/пирен (3,4-Бензпирен) (54) Формальдегид (Метаналь) (609) Алканы C12-19 /в пересчете на C/ (Углеводороды	0.0225	0.003 25.627	0.000018233	3

	ONHC	Ray Oon., Myranx	арски.	и , тос	Э "Арал Петролеум	КЭПИТАЛ	." 2026							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
008		Буровой станок ZJ50DB (либо его аналог не превыш. характ)	1		Выхлопная труба	0026	2.5	0.5	7.78	1.527603	202	17	19	
008		Передвижная	1		Дымовая труба	0027	2.5	0.5	5	0.98175	202	18	20	
		паровая установка №1												

16	17	18	19	20	21	22	23	24	25	26
						Растворитель РПК-				
					0001	265Π) (10)	1 510	1700 155	11 24510	
					0301	Азота (IV) диоксид (1.512	1722.155	11.34518	
					0204	Азота диоксид) (4) Азот (II) оксид (0.2457	279.850	1.84359175	
					0304	Азот (11) оксид (0.245/	279.830	1.843391/3	
					0328	Углерод (Сажа,	0.07875	89.696	0.6077775	
					0320	Углерод черный) (583)	0.07073	09.090	0.0077773	
					0330	Сера диоксид (0.315	358.782	2.43111	
					0000	Ангидрид сернистый,	0.010	300.702	2.10111	
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	1.1925	1358.247	8.91407	
						углерода, Угарный				
						ras) (584)				
					0703	Бенз/а/пирен (3,4-	0.000002475	0.003	0.000018233	
						Бензпирен) (54)				
					1325	Формальдегид (0.0225	25.627	0.162074	
					0.7.5.4	Метаналь) (609)	0 5 4	64.5.05.5	4 05405	
					2754	Алканы С12-19 /в	0.54	615.055	4.05185	
						пересчете на С/ (
						Углеводороды предельные C12-C19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (0.01814	32.149	0.1182	
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.00295	5.228	0.0192	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.001493	2.646	0.00973	
						Углерод черный) (583)				
					0330	Сера диоксид (0.0351	62.207	0.229	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.083	147.098	0.541	

ЭРА v3.0 TOO "Lineplus"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	4	5	Э "Арал Петролеум Н 6	7	8	9	10	11	12	13	14	15
008		Цементировочный агрегат	1		Выхлопная труба	0028	2.5		7.78				19	
008		Цементно-	1		Выхлопная труба	0029	2.5	0.5	7.78	1.527603	202	17	19	
		смесительная машина												

16	17	18	19	20	21	22	23	24	25	26
						углерода, Угарный газ) (584)				
					0301	Азота (IV) диоксид (0.360533333	410.644	4.680704	
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.058586667	66.730	0.7606144	
					0000	Азота оксид) (6)	0 000470000	06 705	0 000544	
					0328	Углерод (Сажа, Углерод черный) (583)	0.023472222	26.735	0.292544	
					0330	Сера диоксид (0.056333333	64.163	0.73136	
					0000	Ангидрид сернистый,		01.100	0.70100	
						Сернистый газ, Сера (
					0000	IV) оксид) (516)	0 00105555	001 510	0.000000	
					0337	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.291055556	331.510	3.803072	
						углерода, Угарный газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.000000563	0.0006	0.000008045	
						Бензпирен) (54)				
					1325	Формальдегид (0.005633333	6.416	0.073136	
					0754	Метаналь) (609)	0 126120000	155 061	1 755064	
					2/54	Алканы C12-19 /в пересчете на C/ (0.136138889	155.061	1.755264	
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
					0301	265П) (10) Азота (IV) диоксид (0.067293333	76.647	4.8791928	
					0301	Азота (17) диоксид (0.00723333	70.047	4.0791920	
					0304	Азот (II) оксид (0.010935167	12.455	0.79286883	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.005716667	6.511	0.425511	
					0220	Углерод черный) (583) Сера диоксид (0.008983333	10.232	0.6382665	
					0330	сера диоксид (Ангидрид сернистый,	0.000903333	10.232	0.0302003	
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.0588	66.973	4.25511	

	3	apendii,		"Арал Петролеум 1	7	2020		T					
1 2	3	4	5	6	/	8	9	10	11	12	13	14	15
009	Установка освоения ZJ650 (либо его аналог не превыш. характ)	1		Выхлопная труба	0030	2.5	0.5	7.78	1.527603	202	17	19	

16	17	18	19	20	21	22	23	24	25	26
						углерода, Угарный				
						газ) (584)				
					0703		0.000000106	0.0001	0.000007801	
						Бензпирен) (54)				
					1325	Формальдегид (0.001225	1.395	0.0851022	
					0.5.4	Метаналь) (609)		00.406	0 400555	
					2/54	Алканы С12-19 /в	0.0294	33.486	2.127555	
						пересчете на С/ (
						Углеводороды				
						предельные C12-C19 (в пересчете на C);				
						Растворитель РПК-				
						265Π) (10)				
					0301	, , ,	1.739733333	1981.541	6.110468	
					0001	Азота диоксид) (4)	1.703700000	1301.011	0.110100	
					0304		0.282706667	322.000	0.99295105	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.090611111	103.205	0.3273465	
						Углерод черный) (583)				
					0330	Сера диоксид (0.362444444	412.821	1.309386	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	*	1.372111111	1562.823	4.801082	
						углерода, Угарный				
						ras) (584)		0 000		
					0703		0.000002848	0.003	0.00000982	
					1205	Бензпирен) (54)	0 00500000	00 407	0 0070004	
					1325	Формальдегид (0.025888889	29.487	0.0872924	
					2754	Метаналь) (609) Алканы С12-19 /в	0.621333333	707.693	2.18231	
					2/54	пересчете на С/ (0.02133333	101.093	2.10231	
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				

) "Арал Петролеум :								
1	2	3	4	5	6	7	8	9	10	11	12	13 14	15
009		Установка освоения ZJ650 (либо его аналог не превыш. характ)	1		Выхлопная труба	0031	2.5		7.78	1.527603	202	17 19	
009		Установка освоения ZJ650(CAT-3412) (либо его аналог не превыш. характ)	1		Выхлопная труба	0032	2.5	0.5	7.78	1.527603	202	17 19	

6.110468
0.110400
0.99295105
205 0.3273465
1.309386
4.801082
0.00000982
0.0872924
2.18231
3.870944
3.070944
0.6290284
0.0230204
0.241934
0.241004
0.604835
3.001000
3.145142
22 88 88 69 77 11

11(1100)1111	CRAH OUIL, Mylank	арский	<i>1</i> , 100	"Арал Петролеум	кэпитал	2020							
1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
009	Дизель- генератор VOLVO - TAD1241GE (либо его аналог не превыш. характ)	1		Выхлопная труба	0033	2.5		7.78				19	
009	Передвижная паровая	1		Дымовая труба	0034	2.5	0.5	5	0.98175	202	20	20	

16	17	18	19	20	21	22	23	24	25	26
					0703	Бенз/а/пирен (3,4-	0.000001617	0.002	0.000006653	
						Бензпирен) (54)				
					1325	Формальдегид (0.016166667	18.414	0.0604835	
						Метаналь) (609)				
					2754	Алканы С12-19 /в	0.390694444	444.998	1.451604	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					0301	Азота (IV) диоксид (0.7744	882.035	0.100736	
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.12584	143.331	0.0163696	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.050416667	57.424	0.006296	
						Углерод черный) (583)				
					0330	Сера диоксид (0.121	137.818	0.01574	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	· · · · · · · · · · · · · · · ·	0.625166667	712.059	0.081848	
						углерода, Угарный				
						газ) (584)				
					0703	Бенз/а/пирен (3,4-	0.00000121	0.001	0.00000173	
					1 2 2 5	Бензпирен) (54)	0 0101	10 500	0 001554	
					1325	Формальдегид (0.0121	13.782	0.001574	
					0754	Метаналь) (609)	0 00041666	222 262	0 007776	
					2754	Алканы С12-19 /в	0.292416667	333.060	0.037776	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
					0001	265Π) (10)	0 00505	12 010	0 0 0 1	
					0301	Азота (IV) диоксид (0.00785	13.912	0.061	
						Азота диоксид) (4)				

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		3 установка №2 Устье скважины №301	1		"Арал Петролеум 6	6003	2		10	11	2.5	13	14	15
001		Блок реагентов БР-2,5 №301	1	8760		6004	2				2.5	1	1	1

16	17	18	19	20	21	22	23	24	25	26
					0304	Азот (II) оксид (0.001275	2.260	0.00992	
						Азота оксид) (6)				
						Углерод (Сажа,	0.000646	1.145	0.00503	
						Углерод черный) (583)				
					0330	Сера диоксид (0.0152	26.939	0.1182	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.0359	63.625	0.2794	
						углерода, Угарный				
						газ) (584)				
1					0333	Сероводород (0.00000045		0.0000143244	2025
						Дигидросульфид) (518)				
					0415	Смесь углеводородов	0.000084144		0.002653586	2025
						предельных С1-С5 (
					0.41.6	1502*)	0 0000044000		0 000450500	0005
					0416		0.000744307		0.023472599	2025
						предельных C6-C10 (1503*)				
					1716	l ·	0.0000006		0.0000019195	2025
					1/10	Смесь природных меркаптанов /в	0.0000006		0.0000019193	2023
						меркантанов /в пересчете на				
						этилмеркаптан/ (
						Одорант СПМ - ТУ 51-				
						81-88) (526)				
					2754	Алканы C12-19 /в	0.001442133		0.045479331	2025
					2,01	пересчете на С/ (0.001112100		0.010173001	2020
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					2840	Ингибиторы коррозии:	0.0090536		0.28550592	2025
						снпх 6301"А", снпх				
						6302 "А", СНПХ 6302 "				
						Б" /по изопропиловому				
						спирту/ (612*)				

AKTROUH	ская оол., мугалж			"Арал Петролеум Н									
1 2		4	5	6	7	8	9	10	11	12	13	14	15
002	Нефтегазосепара тор Спутник АМС 40-8-1500	1			6005	2		10	11	2.5			1
002	Блок реагентов БР-10/100	1	8760		6006	2				2.5	1	1	1
003	Блочная сепарационная установка	1	8760		6007	2				2.5	1	1	1

16	17	18	19	20	21	22	23	24	25	26
1						Сероводород (0.000015373		0.000315037	2025
						Дигидросульфид) (518)				
					0415	Смесь углеводородов	0.00284797		0.05836052	2025
						предельных С1-С5 (
						1502*)				
						Смесь углеводородов	0.025192		0.516235	2025
						предельных С6-С10 (
						1503*)				
					1716	Смесь природных	0.000002060		0.0000422149	2025
						меркаптанов /в				
						пересчете на				
						этилмеркаптан/ (
						Одорант СПМ - ТУ 51-				
						81-88) (526)				
					2754	1 ,	0.048810918		1.000230235	2025
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)	0 0016000		0 050504600	0005
					2840	Ингибиторы коррозии: СНПХ 6301"A", СНПХ	0.0016032		0.050534688	2025
						6302 "А", СНПХ 6302 "				
						Б" /по изопропиловому				
						спирту/ (612*)				
1						Сероводород (0.0000495		0.000854371	2025
						Дигидросульфид) (518)				
					0415	Смесь углеводородов	0.0091668		0.15827227	2025
						предельных С1-С5 (
						1502*)				
						Смесь углеводородов	0.0810863		1.400015	2025
						предельных С6-С10 (
						1503*)				
					1716	Смесь природных	0.0000066		0.000114486	2025
						меркаптанов /в				
						пересчете на				

1	2	ская обл., Мугалж З	4	5	6	7	8	9	10	11	12	13	14	15
003		Отстойник нефти		8760		6008	2				2.5		1	1
003		Насосы для перекачки нефти Насосы для перекачки нефти	1	4000		6009	2				2.5	1	1	1

16	17	18	19	20	21	22	23	24	25	26
					2754	этилмеркаптан/ (Одорант СПМ - ТУ 51- 81-88) (526) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-	0.1571087		2.712599542	2025
1					0333	265П) (10) Сероводород (Дигидросульфид) (518)	0.00004		0.000633094	2025
					0415	Смесь углеводородов предельных C1-C5 (0.00657		0.11728066	2025
					0416	Смесь углеводородов предельных C6-C10 (1503*)	0.05809		1.037419	2025
					1716	Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	0.0000048		0.0000848346	2025
					2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.11255		2.010051798	2025
1					0333	Сероводород (Дигидросульфид) (518)	0.000012		0.00008	2025
					0415	Смесь углеводородов предельных C1-C5 (1502*)	0.002058		0.01482	2025
					0416	Смесь углеводородов	0.018208		0.131092	2025

16	17	18	19	20	21	22	23	24	25	26
					1716	предельных С6-С10 (1503*) Смесь природных меркаптанов /в	0.000002		0.00001072	2025
						пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51- 81-88) (526)				
						Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	0.035278		0.25399728	2025
1						265П) (10) Сероводород (Дигидросульфид) (518)	0.000011		0.0000372	2025
					0415	дигидросульфид) (310) Смесь углеводородов предельных C1-C5 (1502*)	0.002112		0.0068913	2025
						Смесь углеводородов предельных C6-C10 (1503*)	0.018681		0.060958	2025
						Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-	0.000002		0.0000049848	2025
					2754	81-88) (526) Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	0.036195		0.118108735	2025
1					0333	Сероводород (0.000061		0.0018546448	2025

	инская обл., Мугал	жарски	и, тоо	"Арал петролеу	м кэпитал	" 2026							
1	2 3	4	5	6	7	8	9	10	11	12	13	14	15
	SULFATREAT XLP'												
004	Топливораздаточ ная колонка для дизтоплива		4000		6012	2				2.5	1	1	1
004	Топливораздаточ ная колонка для бензина		4000		6013	2				2.5	1	1	1
004	Электросварка	1	500		6014	2				2.5	1	1	1

16	17	18	19	20	21	22	23	24	25	26
					0415	Дигидросульфид) (518) Смесь углеводородов	0.001883		0.0574323556	2025
						предельных C1-C5 (1502*)				
					0416	Смесь углеводородов предельных С6-С10 (1503*)	0.000076		0.0023167649	2025
					1716	Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51- 81-88) (526)	0.00000047		0.0000123232	2025
1					0333	Сероводород (Дигидросульфид) (518)	0.00000098		0.00000452	2025
					2754	Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	0.000348		0.00161	2025
1						Смесь углеводородов предельных C1-C5 (1502*)	0.0731		0.0172	2025
					0416	Смесь углеводородов предельных C6-C10 (1503*)	0.027		0.00636	2025
					0501	Пентилены (амилены - смесь изомеров) (460)	0.0027		0.000636	2025
						Бензол (64) Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.002484 0.000313		0.000585 0.0000738	
1					0627	Метилбензол (349) Этилбензол (675) Железо (II, III)	0.002344 0.0000648 0.0000772		0.000552 0.00001526 0.00278	2025

AKTK	ЮИНС	ская обл., мугалж	арски	и, тоо	тарал петролеум к	Эпитал								
_1	2	3	4	5	"Арал Петролеум К 6	7	8	9	10	11	12	13	14	15
		Сварочный пост												
		_												
	1	1					l	l						

16	17	18	19	20	21	22	23	24	25	26
						оксиды (диЖелезо				
						триоксид, Железа				
						оксид) /в пересчете				
						на железо/ (274)				
					0143	Марганец и его	0.00000606		0.000218	2025
						соединения /в				
						пересчете на марганца				
					0201	(IV) оксид/ (327)	0 000015		0 00054	2025
					0301	Азота (IV) диоксид (0.000015		0.00054	2025
					0227	Азота диоксид) (4) Углерод оксид (Окись	0.0000739		0.00266	2025
					0337	углерод оксид (окись углерода, Угарный	0.0000739		0.00200	2023
						газ) (584)				
					0342	Фтористые	0.00000517		0.000186	2025
					0012	газообразные	0.00000017		0.000100	2020
						соединения /в				
						пересчете на фтор/ (
						617)				
					0344	Фториды	0.00000556		0.0002	2025
						неорганические плохо				
						растворимые - (
						алюминия фторид,				
						кальция фторид,				
						натрия				
						гексафторалюминат) (
						Фториды				
						неорганические плохо				
						растворимые /в				
						пересчете на фтор/) (
						615)	0.00000556		0.0002	2025
					2908	Пыль неорганическая,	0.00000556		0.0002	2025
						содержащая двуокись кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				

1	2	ская обл., Мугалж З	4	5	6	7	8	9	10	11	12	13	14	15
001		Устье скважины №308	1	8760		6015	2				2.5	1	1	1
001		Блок реагентов БР-2,5 №308	1	8760		6016	2				2.5	1	1	1
001		Устье скважины №306	1	8760		6017	2				2.5	1	1	1

16	17	18	19	20	21	22	23	24	25	26
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					0333	Сероводород (0.00000045		0.0000143244	2025
						Дигидросульфид) (518)				
						Смесь углеводородов	0.000084144		0.002653586	2025
						предельных С1-С5 (
						1502*)				
					0416	Смесь углеводородов	0.000744307		0.023472599	2025
						предельных С6-С10 (
						1503*)				
					1716	Смесь природных	0.0000006		0.0000019195	2025
						меркаптанов /в				
						пересчете на				
						этилмеркаптан/ (
						Одорант СПМ - ТУ 51-				
					0754	81-88) (526)	0 001440133		0 045470221	0005
					2/54	Алканы C12-19 /в	0.001442133		0.045479331	2025
						пересчете на С/ (Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					2840	Ингибиторы коррозии:	0.0090536		0.28550592	2025
						СНПХ 6301"А", СНПХ				
						6302 "А", СНПХ 6302 "				
						Б" /по изопропиловому				
						спирту/ (612*)				
1					0333	Сероводород (0.00000045		0.0000143244	2025
						Дигидросульфид) (518)				
					0415	Смесь углеводородов	0.000084144		0.002653586	2025
						предельных С1-С5 (
						1502*)				
					0416	Смесь углеводородов	0.000744307		0.023472599	2025

АКТЮ	оинс	кая оол., мугалж •	арски	и, тоо	"Арал Петролеум К	эпитал.	· · · ∠U∠6			T			ı	1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.04				0.7.60		6040					0 -	-		_
001		Блок реагентов	1	8760		6018	2				2.5	1	1	1
		BP-2,5 №306												
001		Устье скважины	1	8760		6019	2				2.5	1	1	1
		№315												

16	17	18	19	20	21	22	23	24	25	26
						предельных C6-C10 (1503*) Смесь природных меркаптанов /в	0.0000006		0.0000019195	2025
					2754	пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	0.001442133		0.045479331	2025
1					2840	пересчете на С); Растворитель РПК- 265П) (10) Ингибиторы коррозии: СНПХ 6301"А", СНПХ 6302 "А", СНПХ 6302 "	0.0090536		0.28550592	2025
1						Б" /по изопропиловому спирту/ (612*) Сероводород (Дигидросульфид) (518)	0.00000045		0.0000143244	
						Смесь углеводородов предельных C1-C5 (1502*)	0.000084144		0.002653586	2025
						Смесь углеводородов предельных C6-C10 (1503*)	0.000744307		0.023472599	2025
					1716	Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-	0.0000006		0.0000019195	2025
						81-88) (526) Алканы С12-19 /в пересчете на С/ (Углеводороды	0.001442133		0.045479331	2025

ЭРА v3.0 TOO "Lineplus"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	3	арски 4	5	"Арал Петролеум К	7	8	9	10	11	12	13	14	15
001		Блок реагентов БР-2,5 №315	1	8760		6020	2				2.5	1		1
005		Выкидные линии и блок задвижек (манифольд)	1	8760		6022	2				2.5	1	1	1
005		Сварочный пост	1	1000		6024	2				2.5	1	1	1

16	17	18	19	20	21	22	23	24	25	26
1					2840	предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10) Ингибиторы коррозии:	0.0090536		0.28550592	2025
						СНПХ 6301"A", СНПХ 6302 "A", СНПХ 6302 " Б" /по изопропиловому спирту/ (612*)				
1					0333	Сероводород (Дигидросульфид) (518)	0.000000225		0.0000071082	2025
					0415	Смесь углеводородов предельных C1-C5 (0.000041755		0.0013168	2025
					0416	Смесь углеводородов предельных C6-C10 (1503*)	0.00036935		0.0116479	2025
						Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-	0.000000030		0.0000009525	2025
						81-88) (526) Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	0.000715637		0.022568339	2025
1					0123	265П) (10) Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете	0.00089		0.00214	2025
					0143	на железо/ (274) Марганец и его соединения /в	0.0000767		0.000184	2025

	2	3	4	5	"Арал Петролеум 6	7	8	9	10	11	12	13	14	15
					<u> </u>				-					
		J		07.60		6005						_		
4	I'as	овый	1	8760		6025	2				2.5	1	1	

16	17	18	19	20	21	22	23	24	25	26
						пересчете на марганца (IV) оксид/ (327)				
					0301	Азота (IV) диоксид (0.000125		0.0003	2025
						Азота диоксид) (4)				
					0337	Углерод оксид (Окись	0.001108		0.00266	2025
						углерода, Угарный				
						газ) (584)				
					0342	Фтористые	0.0000625		0.00015	2025
						газообразные				
						соединения /в				
						пересчете на фтор/ (
						617)				
					0344	Фториды	0.000275		0.00066	2025
						неорганические плохо				
						растворимые - (
						алюминия фторид,				
						кальция фторид,				
						натрия				
						гексафторалюминат) (
						Фториды				
						неорганические плохо				
						растворимые /в пересчете на фтор/) (
						пересчете на фтор/) (615)				
					2908	Пыль неорганическая,	0.0001167		0.00028	2025
					2500	содержащая двуокись	0.0001107		0.00020	2025
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					0333	Сероводород (0.00000343		0.0001082	2025

1	2	ская обл., Мугалж З	4	5	6	7	8	9	10	11	12	13	14	15
		сепаратор ГС-1- 2,5-600-2 на входе												
004		Газовый сепаратор ГС-1- 1,5-1200-2 на выходе	1	8760		6026	2				2.5	1	1	1
007		Работа бульдозера	1			6027	2				20	1	1	1
007		Работа экскаватора	1			6028	2				20	1	1	1

16	17	18	19	20	21	22	23	24	25	26
						Дигидросульфид) (518)				
						Пентан (450)	0.00000339		0.000107	
					0410	Метан (727*)	0.00001807		0.00057	2025
					0412	Изобутан (2-	0.00000489		0.0001542	2025
						Метилпропан) (279)				
					0415	Смесь углеводородов	0.0000811		0.00256	2025
						предельных С1-С5 (
						1502*)				
1					0333	Сероводород (0.000000192		0.00000605	2025
						Дигидросульфид) (518)				
						Пентан (450)	0.000002944		0.0000928	
					0410	Метан (727*)	0.0000296		0.000933	2025
					0412	Изобутан (2-	0.0000043		0.0001356	2025
						Метилпропан) (279)				
					0415	Смесь углеводородов	0.0000846		0.00267	2025
						предельных С1-С5 (
						1502*)				
1					2908	Пыль неорганическая,	0.25		0.036	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					2908	Пыль неорганическая,	0.028		0.1676	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				

1	2	ская обл., Мугалж 3	4	5	6	7	8	9	10	11	12	13	14	15
007		Сварочные работы	1			6029	2				20	1	1	1
007		Лакокрасочные работы	1			6030	2				20	1	1	1
008		Емкость хранения дизтоплива	1			6031	2				20	1	2	1

16	17	18	19	20	21	22	23	24	25	26
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					0123	Железо (II, III)	0.02025		0.02267	
						оксиды (диЖелезо				
						триоксид, Железа				
						оксид) /в пересчете				
						на железо/ (274)				
					0143	Марганец и его	0.0003056		0.0008964	
						соединения /в				
						пересчете на марганца				
					0001	(IV) оксид/ (327)	0 0005		0 0000	
					0301	Азота (IV) диоксид (0.00867		0.00824	
					0004	Азота диоксид) (4)	0 001400		0 001000	
					0304	Азот (II) оксид (0.001408		0.001338	
					0007	Азота оксид) (6)	0 01075		0 01007	
					0337	Углерод оксид (Окись	0.01375		0.01307	
						углерода, Угарный				
						газ) (584)	0.0000222		0.00014	
					0342	Фтористые	0.0000222		0.00014	
						газообразные соединения /в				
						пересчете на фтор/ (
						1617)				
1					0616	Диметилбензол (смесь	0.01125		0.10125	
					0010	о-, м-, п- изомеров)	0.01110		0.10110	
						(203)				
					2752	Уайт-спирит (1294*)	0.00563		0.03375	
1						Сероводород (0.00002316		0.0000622	
						Дигидросульфид) (518)				
						Алканы С12-19 /в	0.00825		0.02214	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				

ЭРА v3.0 TOO "Lineplus"

Параметры выбросов загрязняющих веществ в атмосферу для расче

1	2	жая обл., Мугалж З	4	5	6	7	8	9	10	11	12	13	14	15
008		Насос для перекачки дизтоплива	1	1644		6032	2				20	1	2	1
800		Блок приготовления бурового раствора	1			6033	2				20	1	2	1
008		Емкость бурового шлама	1			6034	2				20	1	2	1
800		Емкость бурового раствора	1			6035	2				20	1	2	1
800		Емкость хранения масла	1			6036	2				20	2	2	1
008		Емкость отработанного	1			6037	2				20	2	2	1

16	17	18	19	20	21	22	23	24	25	26
						265П) (10)				
1					0333	Сероводород (0.000101		0.001197	
						Дигидросульфид) (518)				
					2754	Алканы С12-19 /в	0.036		0.426	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					2754	Алканы С12-19 /в	0.0057		0.00022572	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					2754	Алканы С12-19 /в	0.0056		0.06096	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					2754	Алканы С12-19 /в	0.01167		0.127008	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					2735	Масло минеральное	0.0001667		0.0001994	
						нефтяное (веретенное,				
						машинное, цилиндровое				
						и др.) (716*)				
1					2735	Масло минеральное	0.0001667		0.00003985	
						нефтяное (веретенное,				

AKTIO	оинс	ская обл., мугалж	арски	и, тоо	"Арал Петролеум К	Эшитал	2026			1	,		•	,
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		масла												
008		Пересыпка	1			6038	2				20	2	2	1
		цемента												
			4											
008		Блок приготовления цементного раствора	1			6039	2				20	2	1	1
009		Нефтегазосепара тор	1			6040	2				20	2	1	1

16	17	18	19	20	21	22	23	24	25	26
						машинное, цилиндровое и др.) (716*)				
1					2908	Пыль неорганическая,	0.0273		0.00354	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					2908	Пыль неорганическая,	0.022815		0.248376	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
1					0333	Сероводород (0.000143879		0.001103286	
						Дигидросульфид) (518)				
					0415	Смесь углеводородов	0.026653535		0.2043837	
						предельных С1-С5 (
						1502*)				
					0416		0.235766887		1.807899255	
						предельных С6-С10 (
						1503*)				
					1716	Смесь природных	0.000019279		0.00014784	
						меркаптанов /в				
						пересчете на				

АКТЮ	ОИНС	ская обл., мугалж	арски	и, тоо	"Арал Петролеум Н	(ЭШИТал	." 2026			T	1		ı	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
009		Насос технологический	1			6041	2				20	2	1	1
009		Емкость хранения дизтоплива	1			6042	2				20	2	1	1
009		Насос для перекачки дизтоплива	1			6043	2				20	2	1	1

16	17	18	19	20	21	22	23	24	25	26
					2754	этилмеркаптан/ (Одорант СПМ - ТУ 51- 81-88) (526) Алканы С12-19 /в пересчете на С/ (0.456810089		3.502894862	
						Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)				
1					0333	Сероводород (Дигидросульфид) (518)	0.00000834		0.0001296	
					0415	Смесь углеводородов предельных C1-C5 (1502*)	0.01007		0.1565	
					0416	Смесь углеводородов предельных C6-C10 (1503*)	0.003725		0.0579	
					0602	Бензол (64)	0.00004865		0.000756	
					0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0000153		0.0002376	
					0621	Метилбензол (349)	0.0000306		0.000475	
1						Сероводород (Дигидросульфид) (518)	0.00002316		0.0000425	
						Алканы C12-19 /в пересчете на С/ (Углеводороды	0.00825		0.01514	
						предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)				
1					0333	Сероводород (Дигидросульфид) (518)	0.000101		0.001574	
					2754	дигидросульфид) (518) Алканы C12-19 /в пересчете на С/ (Углеводороды	0.036		0.56	

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Таблица 3.3

та нормативов допустимых выбросов на 2026 год

16	17	18	19	20	21	22	23	24	25	26
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				

Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026

ЭРА v3.0 TOO "Lineplus"

	Но- мер		Норма	ативы выбросов	хишикнгкдтьг	веществ		
Производство цех, участок	ис- точ- ника	существующее на 2026		на 2026	год	нд	В	год дос- тиже
Код и наименование загрязняющего вещества		r/c	т/год	r/c	т/год	r/c	т/год	ния НДВ
1	2	3	4	5	6	7	8	9
**0123, Железо (II, II Неорганизова			•	а оксид) /в				
- Производственная база	6014	0.0000772	0.00278	0.0000772	0.00278	0.0000772	0.00278	2025
- Капитальный ремонт скважин	6024	0.00089	0.00214	0.00089	0.00214	0.00089	0.00214	2025
Строительно-монтажные и подготовительные работы скв. №308	6029			0.02025	0.02267		0.02267	
Итого:		0.0009672	0.00492	0.0212172	0.02759	0.0009672	0.02759	
Всего по загрязняющему веществу:		0.0009672	0.00492	0.0212172	0.02759	0.0009672	0.02759	2025
**0143 , Марганец и его	соеди	нения /в пересч	ете на марганц	а (IV) оксид/				
Неорганизова								
Производственная база Капитальный ремонт скважин	6014 6024	0.00000606	0.000218	0.00000606	0.000218	0.00000606	0.000218 0.000184	
отроительно-монтажные и подготовительные работы скв. №308	6029			0.0003056	0.0008964		0.0008964	
Итого:		0.00008276	0.000402	0.00038836	0.0012984	0.00008276	0.0012984	
Всего по загрязняющему веществу:		0.00008276	0.000402	0.00038836	0.0012984	0.00008276	0.0012984	2025

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026

ЭРА v3.0 TOO "Lineplus"

1	2	3	4	5	6	7	8	9
Организован		источн						
Площадка добывающих	0012	0.068666667	0.155144	0.068666667	0.155144	0.068666667	0.155144	2025
скважин								
УБСН	0002			0.007593312	0.160735228		0.160735228	
УБСН	0003	0.0329868	1.040271725	0.0329868	1.040271725	0.0329868	1.040271725	2025
Производственная база	0010	0.426666667	0.29376	0.426666667	0.29376	0.426666667	0.29376	2025
Производственная база	0011	0.00027	0.00019	0.00027	0.00019	0.00027	0.00019	2025
Капитальный ремонт	0013	0.731733333	3.624128	0.731733333	3.624128	0.731733333	3.624128	2025
скважин								
Капитальный ремонт	0014	0.8448	12.684416	0.8448	12.684416	0.8448	12.684416	2025
скважин								
Капитальный ремонт	0015	0.64	6.44288	0.64	6.44288	0.64	6.44288	2025
скважин								
Капитальный ремонт	0016	0.213333333	3.07936	0.213333333	3.07936	0.213333333	3.07936	2025
скважин								
Капитальный ремонт	0017	0.360533333	2.69184	0.360533333	2.69184	0.360533333	2.69184	2025
скважин								
Капитальный ремонт	0019	0.0308	0.971	0.0308	0.971	0.0308	0.971	2025
скважин								
Горячая промывка	0020	0.0546	0.01968	0.0546	0.01968	0.0546	0.01968	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0021	0.360533333	0.05194368	0.360533333	0.05194368	0.360533333	0.05194368	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0022	0.490666667	0.639936	0.490666667	0.639936	0.490666667	0.639936	2025
коллекторной линии								
скважин, АГЗУ								
Строительно-монтажные	0024			0.091555556	0.012384		0.012384	
и подготовительные								
работы скв. №308								
Период бурение и	0025			1.512	11.34518		11.34518	
крелление скв. №308								
Период бурение и	0026			1.512	11.34518		11.34518	
крелление скв. №308								
Период бурение и	0027			0.01814	0.1182		0.1182	
крелление скв. №308								

ЭРА v3.0 TOO "Lineplus"

марскі	111, 100 11 <u>p</u> asi	IICI POJIC JM IOIIVI.	raji 2020				
2	3	4	5	6	7	8	9
0028			0.360533333	4.680704		4.680704	
0029			0.067293333	4.8791928		4.8791928	
0030			1.739733333	6.110468		6.110468	
0031			1.739733333	6.110468		6.110468	
0032			1.034666667	3.870944		3.870944	
0033			0.7744	0.100736		0.100736	
0034			0.00785	0.061		0.061	
	4.255590133	31.694549405	13.121089	80.489741433	4.255590133	80.489741433	
нн	ые исто	чники	·	•	•		
6014	0.000015	0.00054	0.000015	0.00054	0.000015	0.00054	2025
6024	0.000125	0.0003	0.000125	0.0003	0.000125	0.0003	2025
6029			0.00867	0.00824	0.00867	0.00824	
	0.00014	0.00084	0.00881	0.00908	0.00014	0.00908	
	4.255730133	31.695389405	13.129899	80.498821433	4.255730133	80.498821433	2025
oeA)	та оксид) (6)						
ые	источн	ики					
0012	0.011158333	0.0252109	0.011158333	0.0252109	0.011158333	0.0252109	2025
0002			0.001233913	0.026119475		0.026119475	
0003	0.0051541875	0.162542457	0.0051541875	0.162542457	0.006185025	0.195050948	2025
0010	0.069333333	0.047736	0.069333333	0.047736	0.069333333	0.047736	2025
0011	0.00004	0.00003	0.00004	0.00003	0.00004	0.00003	2025
0013	0.118906667	0.5889208	0.118906667	0.5889208	0.118906667	0.5889208	2025
	2 0028 0029 0030 0031 0032 0033 0034 H H H 6014 6024 6029	2 3 0028 0029 0030 0031 0032 0033 0034 4.255590133 H H ы е и с т о 6014 0.000015 6024 0.000125 6029 0.00014 4.255730133 0.00014 4.255730133	2 3 4 0028 0029 0030 0031 0032 0033 0034 4.255590133 31.694549405 1 Н Н Ы Е И С Т О Ч Н И К И 6014 0.000015 0.00054 6024 0.000125 0.0003 6029 0.00014 0.00084 4.255730133 31.695389405 (Азота оксид) (6) 1 Ы Е И С Т О Ч Н И К И 0012 0.011158333 0.0252109 0002 0003 0.0051541875 0.162542457 0010 0.0693333333 0011 0.00004 0.00003	2 3 4 5 0.360533333 0.029 0.067293333 0.030 1.739733333 0.031 1.739733333 0.032 1.034666667 0.033 0.7744 0.034 0.00785 13.121089 14.255590133 31.694549405 13.121089 14.4	2 3 4 5 6	2 3 4 5 6 7	2 3 4 5 6 7 8

ЭРА v3.0 TOO "Lineplus"

Актюбинская обл., Мугал	іжарск	ий , ТОО "Арал 1	Петролеум Кэпи	тал" 2026				
1	2	3	4	5	6	7	8	9
скважин								
Капитальный ремонт	0014	0.13728	2.0612176	0.13728	2.0612176	0.13728	2.0612176	2025
скважин								
Капитальный ремонт	0015	0.104	1.046968	0.104	1.046968	0.104	1.046968	2025
скважин	0016	0 00466667	0 500006	0 004666667	0 500006	0 00466667	0 500006	0005
Капитальный ремонт	0016	0.034666667	0.500396	0.034666667	0.500396	0.034666667	0.500396	2025
скважин Капитальный ремонт	0017	0.058586667	0.437424	0.058586667	0.437424	0.058586667	0.437424	2025
скважин	0017	0.03030007	0.43/424	0.03030007	0.43/424	0.03636667	0.43/424	2023
Капитальный ремонт	0019	0.005	0.1578	0.005	0.1578	0.005	0.1578	2025
Скважин	0013	0.003	0.1370	0.005	0.1370	0.003	0.1370	2025
Горячая промывка	0020	0.00888	0.0032	0.00888	0.0032	0.00888	0.0032	2025
коллекторной линии					*****			
скважин, АГЗУ								
Горячая промывка	0021	0.058586667	0.008440848	0.058586667	0.008440848	0.058586667	0.008440848	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0022	0.079733333	0.1039896	0.079733333	0.1039896	0.079733333	0.1039896	2025
коллекторной линии								
скважин, АГЗУ								
Строительно-монтажные	0024			0.014877778	0.0020124		0.0020124	
и подготовительные								
работы скв. №308								
Период бурение и	0025			0.2457	1.84359175		1.84359175	
крелление скв. №308	0000			0 0457	1 04050175		1 04050175	
Период бурение и крелление скв. №308	0026			0.2457	1.84359175		1.84359175	
Период бурение и	0027			0.00295	0.0192		0.0192	
крелление скв. №308	0027			0.00233	0.0172		0.0132	
Период бурение и	0028			0.058586667	0.7606144		0.7606144	
крелление скв. №308	0020			0.00000000	0.7000111		0.7000111	
Период бурение и	0029			0.010935167	0.79286883		0.79286883	
крелление скв. №308								
Период испытания скв.	0030			0.282706667	0.99295105		0.99295105	
Nº 3 0 8	0001			0 000706667	0 00005105		0.00005105	
Период испытания скв.	0031			0.282706667	0.99295105		0.99295105	
Nº 308								

ЭРА v3.0 TOO "Lineplus"

	TIMI, 100 APAJI					^	
_	3	4	ŭ	-	./	~	9
0032			0.168133333	0.6290284		0.6290284	
0033			0.12584	0.0163696		0.0163696	
0034			0.001275	0.00992		0.00992	
	2.133001884	13.105603401	2.1319710465	13.07309491	0.692356692	13.105603401	
нн	ые исто'	чники	!	· '			•
6029			0.001408	0.001338		0.001338	
	0.6913258545	5.143876205	0.001408	0.001338		0.001338	
	0.6913258545	5.143876205	2.1333790465	13.07443291	0.692356692	13.106941401	2025
Углер	од черный) (58	(3)					
ы е	источн						
0012	0.005833333	0.01353	0.005833333	0.01353	0.005833333	0.01353	2025
0002							
0010	0.02777778	0.01836	0.02777778	0.01836	0.02777778	0.01836	2025
0013	0.047638889	0.226508	0.047638889	0.226508	0.047638889	0.226508	2025
0014	0.055	0.792776	0.055	0.792776	0.055	0.792776	2025
0015	0.041666667	0.40268	0.041666667	0.40268	0.041666667	0.40268	2025
0016	0.013888889	0.19246	0.013888889	0.19246	0.013888889	0.19246	2025
0017	0.023472222	0.16824	0.023472222	0.16824	0.023472222	0.16824	2025
0019	0.002535	0.08	0.002535	0.08	0.002535	0.08	2025
0020	0.0045	0.00162	0.0045	0.00162	0.0045	0.00162	2025
0020							
22	2 0032 0033 0034 H H 6029 Углер ы е 0012 0010 0013 0014 0015 0016 0017	2 3 0032 0033 0034 2.133001884 H H ы е исто 6029 0.6913258545 0.6913258545 0.6913258545 0.6913258545 0.0012 0.005833333 0002 0010 0.02777778 0013 0.047638889 0014 0.055 0015 0.041666667 0016 0.013888889 0017 0.023472222 0019 0.002535	2 3 4 0032 0033 0034 2.133001884 13.105603401 Н ные источники 6029 0.6913258545 5.143876205 0.6913258545 5.143876205 Углерод черный) (583) ые источники 0012 0.005833333 0.01353 0002 0010 0.027777778 0.01836 0013 0.047638889 0.226508 0014 0.055 0.792776 0015 0.041666667 0.40268 0016 0.013888889 0.19246 0017 0.023472222 0.16824 0019 0.002535 0.08	0032 0.168133333 0033 0.12584 0034 0.001275 2.133001884 13.105603401 2.1319710465 Н ные источники 0.001408 0.6913258545 5.143876205 0.001408 0.6913258545 5.143876205 2.1333790465 Углерод черный) (583) ые источники 0012 0.005833333 0.01353 0.005833333 0002 0.005833333 0.01353 0.005833333 0002 0.00632776 0010 0.027777778 0.01356 0.027777778 0013 0.047638889 0.226508 0.047638889 0014 0.055 0.792776 0.055 0015 0.041666667 0.40268 0.041666667 0016 0.013888889 0.19246 0.013888889 0017 0.023472222 0.16824 0.023472222 0019 0.002535 0.08 0.002535	2 3 4 5 6 0032 0.168133333 0.6290284 0033 0.0012584 0.0163696 0034 0.001275 0.00992 2.133001884 13.105603401 2.1319710465 13.07309491 H ные источники 0.001408 0.001338 0.6913258545 5.143876205 0.001408 0.001338 0.6913258545 5.143876205 2.1333790465 13.07443291 Углерод черный) (583) ые источники 0012 0.005833333 0.01353 0.005833333 0.01353 0002 0.0012 0.027777778 0.01836 0.027777778 0.01836 0013 0.047638889 0.226508 0.047638889 0.226508 0014 0.055 0.792776 0.055 0.792776 0015 0.041666667 0.40268 0.041666667 0.40268 0016 0.013888889 0.19246 0.013888889 0.19246 0017 0.023472222 0.16824 0.023472222 0.16824 0019 0.002535 0.08 0.002535 0.08	2 3 4 5 6 7	2 3 4 5 6 7 8

1	2	3	4	5	6	7	8	9
скважин, АГЗУ								
Горячая промывка	0021	0.023472222	0.00324648	0.023472222	0.00324648	0.023472222	0.00324648	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0022	0.031944444	0.039996	0.031944444	0.039996	0.031944444	0.039996	2025
коллекторной линии								
скважин, АГЗУ								
Строительно-монтажные	0024			0.007777778	0.00108		0.00108	
и подготовительные								
работы скв. №308								
Период бурение и	0025			0.07875	0.6077775		0.6077775	
крелление скв. №308								
Период бурение и	0026			0.07875	0.6077775		0.6077775	
крелление скв. №308								
Период бурение и	0027			0.001493	0.00973		0.00973	
крелление скв. №308								
Период бурение и	0028			0.023472222	0.292544		0.292544	
крелление скв. №308								
Период бурение и	0029			0.005716667	0.425511		0.425511	
крелление скв. №308								
Период испытания скв.	0030			0.090611111	0.3273465		0.3273465	
Nº308								
Период испытания скв.	0031			0.090611111	0.3273465		0.3273465	
Nº308								
Период испытания скв.	0032			0.067361111	0.241934		0.241934	
Nº308								
Период испытания скв.	0033			0.050416667	0.006296		0.006296	
№308								
Период испытания скв.	0034			0.000646	0.00503		0.00503	
№308								
Итого:		0.277729444	1.93941648	0.779662871	4.925735504	0.277729444	4.925735504	
Всего по		0.277729444	1.93941648	0.779662871	4.925735504	0.277729444	4.925735504	2025
загрязняющему								
веществу:								
**0330 , Сера диоксид (Ангидр	ид сернистый,	Сернистый газ,	Сера (IV) окс	ид)	1		•

ЭРА v3.0 TOO "Lineplus" Таблица 3.6

1	2	3	4	5	6	7	8	9
Организованн	ные	источн	ики					•
Площадка добывающих	0012	0.009166667	0.020295	0.009166667	0.020295	0.009166667	0.020295	2025
скважин								
УБСН	0002			0.28689962343	6.07309122879		6.07309122879	
УБСН	0003	0.0329868	1.040271725	0.0329868	1.040271725	0.0360793125	1.137797199	2025
Производственная база	0010	0.066666667	0.0459	0.066666667	0.0459	0.066666667	0.0459	2025
Производственная база	0011	0.00013	0.000096	0.00013	0.000096	0.00013	0.000096	2025
Капитальный ремонт	0013	0.114333333	0.56627	0.114333333	0.56627	0.114333333	0.56627	2025
скважин								
Капитальный ремонт	0014	0.132	1.98194	0.132	1.98194	0.132	1.98194	2025
скважин								
Капитальный ремонт	0015	0.1	1.0067	0.1	1.0067	0.1	1.0067	2025
скважин								
Капитальный ремонт	0016	0.033333333	0.48115	0.033333333	0.48115	0.033333333	0.48115	2025
скважин								
Капитальный ремонт	0017	0.056333333	0.4206	0.056333333	0.4206	0.056333333	0.4206	2025
скважин								
Капитальный ремонт	0019	0.0596	1.88	0.0596	1.88	0.0596	1.88	2025
скважин								
Горячая промывка	0020	0.1058	0.0381	0.1058	0.0381	0.1058	0.0381	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0021	0.056333333	0.0081162	0.056333333	0.0081162	0.056333333	0.0081162	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0022	0.076666667	0.09999	0.076666667	0.09999	0.076666667	0.09999	2025
коллекторной линии								
скважин, АГЗУ								
Строительно-монтажные	0024			0.012222222	0.00162		0.00162	
и подготовительные								
работы скв. №308								
Период бурение и	0025			0.315	2.43111		2.43111	
крелление скв. №308								
Период бурение и	0026			0.315	2.43111		2.43111	
крелление скв. №308								
Период бурение и	0027			0.0351	0.229		0.229	
крелление скв. №308								

ЭРА v3.0 TOO "Lineplus" Таблица 3.6

Актюбинская обл., Мугал								_
1	2	3	4	5	6	7	8	9
Период бурение и	0028			0.056333333	0.73136		0.73136	
крелление скв. №308								
Период бурение и	0029			0.008983333	0.6382665		0.6382665	
крелление скв. №308								
Период испытания скв.	0030			0.36244444	1.309386		1.309386	
Nº308								
Период испытания скв.	0031			0.362444444	1.309386		1.309386	
Nº308								
Период испытания скв.	0032			0.161666667	0.604835		0.604835	
Nº308								
Период испытания скв.	0033			0.121	0.01574		0.01574	
Nº308								
Период испытания скв.	0034			0.0152	0.1182		0.1182	
Nº308								
NTOPO:		0.843350133	7.589428925	2.89564419943	23.4825336538	0.8464426455	23.5800591278	
Всего по		0.843350133	7.589428925	2.89564419943	23.4825336538	0.8464426455	23.5800591278	2025
загрязняющему								
веществу:								
**0333 , Сероводород (Ди	игидро	сульфид) (518)						
Организовань	ны е	источн	ики					
Площадка АГЗУ	0001	0.000015	0.0000654456	0.000015	0.0000654456	0.000015	0.0000654456	2025
УБСН	0002			0.00024379299	0.0051606101		0.0051606101	
УБСН	0004	0.000004	0.0000654456	0.000004	0.0000654456	0.000004	0.0000654456	2025
УБСН	0005	0.001229	0.006220956	0.001229	0.006220956	0.001229	0.006220956	2025
Производственная база	0006	0.00001448	0.00000439	0.00001448	0.00000439	0.00001448	0.00000439	2025
Производственная база	0007	0.00001448	0.00000439	0.00001448	0.00000439	0.00001448	0.00000439	2025
Производственная база	0008	0.00001448	0.00000439	0.00001448	0.00000439	0.00001448	0.00000439	2025
Производственная база	0023	0.000004	0.0000654456	0.000004	0.0000654456	0.000004	0.0000654456	2025
Капитальный ремонт	0018	0.00001448	0.0000659	0.00001448	0.0000659	0.00001448	0.0000659	2025
скважин								
NTOPO:		0.00130992	0.0064963628	0.00155371299	0.0116569729	0.00130992	0.0116569729	
Неорганизова	анн	ые исто	чники	, ,	· ·	•	•	
Площадка добывающих	6003		0.0000143244	0.00000045	0.0000143244	0.0000045	0.0000143244	2025
скважин								
Площадка добывающих	6015	0.00000045	0.0000143244	0.00000045	0.0000143244	0.00000045	0.0000143244	2025

ЭРА v3.0 TOO "Lineplus" Таблица 3.6

		iciposicym Kolivi				ı	
2	3	4	5	6	7	8	9
6017	0.00000045	0.0000143244	0.00000045	0.0000143244	0.0000045	0.0000143244	2025
6019	0.00000045	0.0000143244	0.00000045	0.0000143244	0.00000045	0.0000143244	2025
6005	0.0000153737	0.000315037	0.0000153737	0.000315037	0.0000153737	0.000315037	2025
6007	0.0000495	0.000854371	0.0000495	0.000854371	0.0000495	0.000854371	2025
6008	0.00004	0.000633094	0.00004	0.000633094	0.00004		
6009	0.000012	0.00008	0.000012	0.00008	0.000012	0.00008	2025
6010	0.000011	0.0000372	0.000011	0.0000372	0.000011	0.0000372	2025
6011	0.000061	0.0018546448	0.000061	0.0018546448	0.000061	0.0018546448	2025
6012	0.00000098	0.00000452	0.00000098	0.00000452	0.00000098	0.00000452	2025
6025	0.00000343	0.0001082	0.00000343	0.0001082	0.00000343	0.0001082	2025
6026	0.000000192	0.00000605	0.000000192	0.00000605	0.00000192	0.00000605	2025
6022	0.0000002254	0.00000710821	0.0000002254	0.00000710821	0.0000002254	0.00000710821	2025
6031			0.00002316	0.0000622		0.0000622	
6032			0.000101	0.001197		0.001197	
6040			0.000143879	0.001103286		0.001103286	
6041			0.00000834	0.0001296		0.0001296	
6042			0.00002316	0.0000425		0.0000425	
6043			0.000101	0.001574		0.001574	
	0.0001955011	0.00395752261	0.0005960401	0.00806610861	0.0001955011	0.00806610861	
	0.0015054211	0.01045388541	0.00214975309	0.01972308151	0.0015054211	0.01972308151	2025
Окись	углерода, Уга	рный газ) (584	.)				
ые							
0012	0.06	0.1353	0.06	0.1353	0.06	0.1353	2025
	2 6017 6019 6005 6007 6008 6009 6010 6011 6012 6025 6026 6022 6031 6042 6040 6041 6042 6043	2 3 6017 0.00000045 6019 0.00000045 6005 0.0000153737 6007 0.0000495 6008 0.00004 6009 0.000011 6011 0.000061 6012 0.00000098 6025 0.00000343 6026 0.00000192 6022 0.000002254 6031 6032 6040 6041 6042 6043 0.0001955011 0.0015054211	2 3 4 6017 0.00000045 0.0000143244 6019 0.00000045 0.0000143244 6005 0.0000153737 0.000315037 6007 0.0000495 0.000854371 6008 0.00004 0.000633094 6009 0.000012 0.00008 6010 0.000011 0.0000372 6011 0.000061 0.0018546448 6012 0.00000098 0.00000452 6025 0.00000343 0.0001082 6025 0.00000343 0.0001082 6026 0.000000192 0.00000605 6022 0.0000002254 0.00000710821 6031 6032 6040 6041 6042 6043 0.0015054211 0.00395752261 0.0015054211 0.01045388541	2 3 4 5	2 3 4 5 6 6017 0.00000045 0.0000143244 0.00000045 0.0000143244 6019 0.00000045 0.0000143244 0.00000045 0.0000143244 6005 0.0000153737 0.000315037 0.0000455 0.0000854371 0.0000495 0.000854371 6008 0.00004 0.000633094 0.00004 0.000633094 0.000012 0.00008 6010 0.000011 0.0000372 0.000011 0.0000372 0.000011 0.000372 6011 0.0000098 0.0000051 0.0000372 0.0000011 0.001584648 6012 0.00000343 0.0001082 0.00000383 0.0001082 0.00000343 0.0001082 6025 0.00000343 0.0001082 0.00000343 0.0001082 0.00000343 0.0001082 6026 0.00000192 0.0000065 0.00000254 0.0000065 0.00000345 0.0000065 6032 0.0001 0.00045 0.000066 0.000066 0.000066 0.00066 0.00066	2 3 4 5 6 7	2 3 4 5 6 7 8

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026

ЭРА v3.0 TOO "Lineplus"

1	2	3	4	5	6	7	8	9
скважин								
УБСН	0002			0.0632776			1.339460237	
УБСН	0003		10.43522574					1
Производственная база	0010	0.34444444	0.23868		0.23868		0.23868	
Производственная база	0011	0.04167	0.03		0.03			2025
Капитальный ремонт	0013	0.590722222	2.944604	0.590722222	2.944604	0.590722222	2.944604	2025
скважин								
Капитальный ремонт	0014	0.682	10.306088	0.682	10.306088	0.682	10.306088	2025
скважин								
Капитальный ремонт	0015	0.516666667	5.23484	0.516666667	5.23484	0.516666667	5.23484	2025
скважин								
Капитальный ремонт	0016	0.172222222	2.50198	0.172222222	2.50198	0.172222222	2.50198	2025
скважин								
Капитальный ремонт	0017	0.291055556	2.18712	0.291055556	2.18712	0.291055556	2.18712	2025
скважин								
Капитальный ремонт	0019	0.141	4.44	0.141	4.44	0.141	4.44	2025
скважин								
Горячая промывка	0020	0.25	0.09	0.25	0.09	0.25	0.09	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0021	0.291055556	0.04220424	0.291055556	0.04220424	0.291055556	0.04220424	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0022	0.396111111	0.519948	0.396111111	0.519948	0.396111111	0.519948	2025
коллекторной линии								
скважин, АГЗУ								
Строительно-монтажные	0024			0.08	0.0108		0.0108	
и подготовительные								
работы скв. №308								
Период бурение и	0025			1.1925	8.91407		8.91407	
крелление скв. №308								
Период бурение и	0026			1.1925	8.91407		8.91407	
крелление скв. №308								
Период бурение и	0027			0.083	0.541		0.541	
крелление скв. №308								
Период бурение и	0028			0.291055556	3.803072		3.803072	
крелление скв. №308								

ЭРА v3.0 TOO "Lineplus"

марск	MM, 100 Apasi	TICT POSICYM TOTAL	Tall 2020				
2	3	4	5	6	7	8	9
0029			0.0588	4.25511		4.25511	
0030			1.372111111	4.801082		4.801082	
0031			1.372111111	4.801082		4.801082	
0032			0.835277778	3.145142		3.145142	
0033			0.625166667	0.081848		0.081848	
0034			0.0359	0.2794		0.2794	
	4.1078466155	39.10598998	11.3095464385	79.992126217	4.1078466155	79.992126217	
анн	ые исто	чники		'			•
6014	0.0000739	0.00266	0.0000739	0.00266	0.0000739	0.00266	2025
6024	0.001108	0.00266	0.001108	0.00266	0.001108	0.00266	2025
6029			0.01375	0.01307		0.01307	
	0.0011819	0.00532	0.0149319	0.01839	0.0011819	0.01839	
	4.1090285155	39.11130998	11.3244783385	80.010516217	4.1090285155	80.010516217	2025
бразн	ые соединения	/в пересчете н	а фтор/ (617)	•	•		
		-					
6014	0.00000517	0.000186	0.00000517	0.000186	0.00000517	0.000186	2025
6024	0.0000625	0.00015	0.0000625	0.00015	0.0000625	0.00015	2025
6029			0.0000222	0.00014		0.00014	
	0.00006767	0.000336	0.00008987	0.000476	0.00006767	0.000476	
	0.00006767	0.000336	0.00008987	0.000476	0.00006767	0.000476	2025
	2 0029 0030 0031 0032 0033 0034 6014 6024 6029	2 3 0029 0030 0031 0032 0033 0034 4.1078466155 A H H Ы е И С Т О 6014 0.0000739 6024 0.001108 6029 0.0011819 4.1090285155 DODPASHЫЕ СОЕДИНЕНИЯ A H H Ы е И С Т О 6014 0.0000517 6024 0.0000625 6029 0.00006767	2 3 4 0029 0030 0031 0032 0033 0034 4.1078466155 39.10598998 3 н н ы е и с т о ч н и к и 6014 0.0000739 0.00266 6029 0.0011819 0.00266 6029 0.0011819 0.00532 4.1090285155 39.11130998 000разные соединения /в пересчете на н н ы е и с т о ч н и к и 6014 0.00000517 0.000186 6029 0.00006767 0.000336	2 3 4 5 0029 0.0588 0030 1.372111111 0031 1.372111111 0032 0.835277778 0033 0.625166667 0034 0.0359 4.1078466155 39.10598998 11.3095464385 6 H H E E И С Т О Ч Н И К И 6014 0.0000739 0.00266 0.001108 6029 0.001108 0.00266 0.001108 6029 0.0011819 0.00532 0.0149319 4.1090285155 39.11130998 11.3244783385 06разные соединения /В пересчете на фтор/ (617) 6 H H E E И С Т О Ч Н И К И 6014 0.00000517 0.000186 0.00000517 6024 0.0000625 0.00015 0.0000625 6029 0.0000625	2 3 4 5 6	2 3 4 5 6 7	2 3 4 5 6 7 8

ЭРА v3.0 TOO "Lineplus" Таблица 3.6

жарск	-	Петролеум Кэпи	гал" 2026				
2	3	4	5	9	7	8	9
ическ	ие плохо раств	оримые - (алюм	иния фторид,				•
нн	ые исто	чники					
6014	0.00000556	0.0002	0.00000556	0.0002	0.00000556	0.0002	2025
6024	0.000275	0.00066	0.000275	0.00066	0.000275	0.00066	2025
	0.00028056	0.00086	0.00028056	0.00086	0.00028056	0.00086	
	0.00028056	0.00086	0.00028056	0.00086	0.00028056	0.00086	2025
6025	0.00000339	0.000107	0.00000339	0.000107	0.00000339	0.000107	2025
6026	0.000002944	0.0000928	0.000002944	0.0000928	0.000002944	0.0000928	2025
	0.000006334	0.0001998	0.000006334	0.0001998	0.000006334	0.0001998	
	0.000006334	0.0001998	0.000006334	0.0001998	0.000006334	0.0001998	2025
ые	источн	ики					
0002		ĺ	0.00158194	0.033486506		0.033486506	
0003							
							l .
нн	ые исто	чники	· ·		ı		ı
			0.00001807	0.00057	0.00001807	0.00057	2025
							l .
	0.00004767	0.001503	0.00004767			0.001503	
	0.00004767	0.001503	0.00162961	0.034989506	0.00004767	0.034989506	
	2 ический ни 6014 6024 6025 6026	2 3 ические плохо раств н н ы е и с т о 6014 0.00000556 0.00028056 0.00028056 0.00028056 0.00000339 6026 0.00000334 0.000006334 0.000006334 ы е и с т о ч н 0002 0003 н н ы е и с т о 6025 0.00001807 6026 0.0000296 0.00004767	2 3 4 4 1 1 1 1 1 1 1 1	2 3 4 5 ические плохо растворимые – (алюминия фторид, ные источники 6014 0.00000556 0.00002 0.00000556 0.000275 0.00066 0.000275 0.00066 0.000275 0.00066 0.00028056 0.00028056 0.00028056 0.00028056 0.00028056 0.00028056 0.000028056 0.000028056 0.000028056 0.00000339 0.0000028056 0.000002944 0.0000928 0.000002944 0.0000928 0.000002944 0.00001998 0.000006334 0.0001998 0.000006334 0.0001998 0.000006334 0.0001998 0.000006334 0.0001998 0.000006334 0.0001998 0.000006334 0.000296 0.000933 0.0000296 0.000933 0.0000296 0.0000933 0.0000296 0.0000933 0.0000296 0.00004767 0.0001503 0.00004767	2 3 4 5 6 ические плохо растворимые - (алюминия фторид,	2 3 4 5 6 7	2 3 4 5 6 7 8

ЭРА v3.0 TOO "Lineplus"

Актюбинская обл., Мугал	жарск	ии, ТОО "Арал	Петролеум Кэпи	гал" 2026				
1	2	3	4	5	6	7	8	9
**0412 , Изобутан (2-Мет								
Неорганизова	н н	ые исто	чники					
Производственная база	6025			0.00000489		0.00000489		
Производственная база	6026	0.0000043	0.0001356	0.0000043	0.0001356	0.0000043	0.0001356	2025
Итого:		0.00000919	0.0002898	0.00000919	0.0002898	0.00000919	0.0002898	
Всего по		0.00000919	0.0002898	0.00000919	0.0002898	0.00000919	0.0002898	2025
загрязняющему								
веществу:								
**0415 , Смесь углеводор	одов	предельных С1-	-C5 (1502*)					
Организованн								
Площадка АГЗУ	0001			0.002848		0.002848		
УБСН	0004	0.00074105		0.00074105	0.0121238	0.00074105	0.0121238	2025
УБСН	0005	0.227615	1.1524321	0.227615		0.227615	1.1524321	2025
Производственная база	0009	0.545		0.545	0.01112	0.545	0.01112	2025
Производственная база	0023			0.00074105		0.00074105		
Итого:		0.7769451	1.1999235	0.7769451	1.1999235	0.7769451	1.1999235	
Неорганизова						_	_	
Площадка добывающих	6003	0.0000841443	0.002653586	0.0000841443	0.002653586	0.0000841443	0.002653586	2025
скважин								
Площадка добывающих	6015	0.0000841443	0.002653586	0.0000841443	0.002653586	0.0000841443	0.002653586	2025
скважин								
Площадка добывающих	6017	0.0000841443	0.002653586	0.0000841443	0.002653586	0.0000841443	0.002653586	2025
скважин								
Площадка добывающих	6019	0.0000841443	0.002653586	0.0000841443	0.002653586	0.0000841443	0.002653586	2025
скважин								
Площадка АГЗУ	6005			0.00284797		0.00284797		1
УБСН	6007	0.0091668		0.0091668		0.0091668		
УБСН	6008	0.00657		0.00657		0.00657		
УБСН	6009			0.002058		0.002058		
УБСН	6010			0.002112		0.002112		
УБСН	6011	0.001883	0.05743235562		0.05743235562	0.001883	0.05743235562	1
Производственная база	6013		0.0172	0.0731		0.0731	0.0172	
Производственная база	6025			0.0000811		0.0000811		
Производственная база	6026			0.0000846		0.0000846		
Капитальный ремонт	6022	0.000041755	0.0013168	0.000041755	0.0013168	0.000041755	0.0013168	2025

ЭРА v3.0 TOO "Lineplus" Таблица 3.6

1	2	3	4	тал" 2026 5	6	7	8	9
скважин								
Период испытания скв. №308	6040			0.026653535	0.2043837		0.2043837	
Период испытания скв. №308	6041			0.01007	0.1565		0.1565	
Итого:		0.0982818022	0.44741824962	0.1350053372	0.80830194962	0.0982818022	0.80830194962	
Всего по		0.8752269022	1.64734174962	0.9119504372	2.00822544962	0.8752269022	2.00822544962	2025
загрязняющему								
веществу:								
**0416 , Смесь углеводор	одов	предельных С6-	·C10 (1503*)					
Организованн	ны е	источн	ики					
Площадка АГЗУ	0001		0.107242	0.025192	0.107242	0.025192	0.107242	2025
УБСН	0004	0.00655502		0.00655502				
УБСН	0005		10.19397	2.013396	10.19397	2.013396		
Производственная база	0009		0.00411	0.2016				
Производственная база	0023			0.00655502				
NTOPO:		2.25329804	10.5198068	2.25329804	10.5198068	2.25329804	10.5198068	
Неорганизова			чники					
Площадка добывающих	6003	0.0007443076	0.023472599	0.0007443076	0.023472599	0.0007443076	0.023472599	2025
скважин								
Площадка добывающих скважин	6015	0.0007443076	0.023472599	0.0007443076	0.023472599	0.0007443076	0.023472599	2025
Площадка добывающих	6017	0.0007443076	0.023472599	0.0007443076	0.023472599	0.0007443076	0.023472599	2025
Скважин	0017	0.0007110070	0.020172033	0.0007110070	0.020172033	0.0007110070	0.020172033	2020
Площадка добывающих	6019	0.0007443076	0.023472599	0.0007443076	0.023472599	0.0007443076	0.023472599	2025
скважин								
Площадка АГЗУ	6005	0.025192	0.516235	0.025192	0.516235	0.025192	0.516235	2025
УБСН	6007	0.0810863	1.400015	0.0810863	1.400015	0.0810863	1.400015	2025
УБСН	6008	0.05809	1.037419	0.05809	1.037419	0.05809		
УБСН	6009	0.018208	0.131092	0.018208	0.131092	0.018208		
УБСН	6010	0.018681	0.060958	0.018681				
УБСН	6011		0.00231676491		0.00231676491		0.00231676491	
Производственная база	6013	0.027	0.00636	0.027			0.00636	
Капитальный ремонт	6022	0.00036935	0.0116479	0.00036935	0.0116479	0.00036935	0.0116479	2025
скважин								

ЭРА v3.0 TOO "Lineplus"

ARTHOUHERAN OOJI., Myraji	марск	ии, 100 крал	neiponeym Kann					
1	2	3	4	5	6	7	8	9
Период испытания скв.	6040			0.235766887	1.807899255		1.807899255	
Nº308								
Период испытания скв.	6041			0.003725	0.0579		0.0579	
Nº 308								
Итого:		0.2316798804	3.25993406091	0.4711717674	5.12573331591	0.2316798804	5.12573331591	
Всего по		2.4849779204	13.7797408609	2.7244698074	15.6455401159	2.4849779204	15.6455401159	2025
загрязняющему								
веществу:								
**0501 , Пентилены (амил	ены -	смесь изомерс	в) (460)					
Организованн	ые	источн	ики					
Производственная база	0009	0.02015	0.000411	0.02015	0.000411	0.02015	0.000411	2025
Итого:		0.02015	0.000411	0.02015	0.000411	0.02015	0.000411	
Неорганизова	нн	ые исто	чники		,		•	
Производственная база	6013	0.0027	0.000636	0.0027	0.000636	0.0027	0.000636	2025
Итого:		0.0027	0.000636	0.0027	0.000636	0.0027	0.000636	
Всего по		0.02285	0.001047	0.02285	0.001047	0.02285	0.001047	2025
загрязняющему								
веществу:								
**0602, Бензол (64)								
Организованн	ые	источн	ики					
Производственная база	0009	0.01854	0.000378	0.01854	0.000378	0.01854	0.000378	2025
Итого:		0.01854	0.000378	0.01854	0.000378	0.01854	0.000378	
Неорганизова	нн	ые исто	чники		,		•	
Производственная база	6013	0.002484	0.000585	0.002484	0.000585	0.002484	0.000585	2025
Период испытания скв.	6041			0.00004865	0.000756		0.000756	
Nº308								
Итого:		0.002484	0.000585	0.00253265	0.001341	0.002484	0.001341	
Всего по		0.021024	0.000963	0.02107265	0.001719	0.021024	0.001719	2025
загрязняющему								
веществу:								
** 0616, Диметилбензол (смесь	о-, м-, п- из	омеров) (203)					

ЭРА v3.0 TOO "Lineplus" Нормативы выбросов загрязняющих веществ в атмосферу по объекту

актюоинская оол., мугал	іжарскі	ии, 100 "Арал	петролеум кэпи	Taji" 2026				
1	2	3	4	5	6	7	8	9
Организовані	ные	источн	ики					
Производственная база	0009	0.002337	0.0000477	0.002337	0.0000477	0.002337	0.0000477	2025
Итого:		0.002337	0.0000477	0.002337	0.0000477	0.002337	0.0000477	
Неорганизова	анн	ые исто	чники	<u>'</u>		·		
Производственная база	6013	0.000313	0.0000738	0.000313	0.0000738	0.000313	0.0000738	2025
Строительно-монтажные	6030			0.01125	0.10125		0.10125	
и подготовительные								
работы скв. №308								
Период испытания скв.	6041			0.0000153	0.0002376		0.0002376	
Nº308								
Итого:		0.000313	0.0000738	0.0115783	0.1015614	0.000313	0.1015614	
Всего по		0.00265	0.0001215	0.0139153	0.1016091	0.00265	0.1016091	2025
загрязняющему								
веществу:								
**0621, Метилбензол (34	49)							
Организовани		источн	ики					
Производственная база	0009	i de la companya de		0.0175	0.000357	0.0175	0.000357	2025
Итого:		0.0175				0.0175		
Неорганизова	и анн		чники					1
Производственная база	6013	i de la companya de		0.002344	0.000552	0.002344	0.000552	2025
Период испытания скв.	6041	*****		0.0000306		***************************************	0.000475	
№308								
Итого:		0.002344	0.000552	0.0023746	0.001027	0.002344	0.001027	
3110101		0.002011	0,00000	0.0020710	0.002027	0.002011	0.00102	
Всего по		0.019844	0.000909	0.0198746	0.001384	0.019844	0.001384	2025
загрязняющему		0.013011	0.00000	0.0130710	0.002001	0.013011	0,001001	
веществу:								
**0627, Этилбензол (675	5)							
Организовани		источн	ики					
Производственная база	0009			0.000484	0.00000986	0.000484	0.00000986	2025
NTOPO:	0003	0.000484				0.000484		1
Неорганизова	ו ו		ч н и к и	0.0004	0.00000000	0.00019	0.00000000	ı
Производственная база	6013	i de la companya de		0.0000648	0.00001526	0.0000648	0.00001526	2025
Итого:	0010	0.0000648		0.0000648		0.0000648	0.00001526	1
1		0.0000010	0.00001020	0.0000040	0.00001020	0.0000010	0.00001020	1

ЭРА v3.0 TOO "Lineplus"

1	2	3	4	5	6	7	8	9
Всего по		0.0005488	0.00002512	0.0005488	0.00002512	0.0005488	0.00002512	2025
загрязняющему								
веществу:								
**0703, Бенз/а/пирен (3		•						
Организованн		источні				1		•
Площадка добывающих	0012	0.000000108	0.000000248	0.00000108	0.000000248	0.000000108	0.000000248	2025
скважин								
Производственная база	0010	0.000000667	0.000000505		0.000000505	0.000000667	0.000000505	
Капитальный ремонт	0013	0.000001143	0.000006229	0.000001143	0.000006229	0.000001143	0.000006229	2025
скважин								
Капитальный ремонт	0014	0.00000132	0.000021801	0.00000132	0.000021801	0.00000132	0.000021801	2025
скважин								
Капитальный ремонт	0015	0.000001	0.000011074	0.000001	0.000011074	0.000001	0.000011074	2025
скважин								
Капитальный ремонт	0016	0.00000333	0.000005293	0.000000333	0.000005293	0.00000333	0.000005293	2025
скважин								
Капитальный ремонт	0017	0.000000563	0.000004627	0.000000563	0.000004627	0.000000563	0.000004627	2025
скважин								
Горячая промывка	0021	0.000000563	0.00000089	0.000000563	0.000000089	0.000000563	0.00000089	2025
коллекторной линии								
скважин, АГЗУ								
Горячая промывка	0022	0.000000767	0.0000011	0.000000767	0.0000011	0.000000767	0.0000011	2025
коллекторной линии								
скважин, АГЗУ								
Строительно-монтажные	0024			0.000000144	0.00000002		0.00000002	
и подготовительные								
работы скв. №308								
Период бурение и	0025			0.000002475	0.000018233		0.000018233	
крелление скв. №308								
Период бурение и	0026			0.000002475	0.000018233		0.000018233	
крелление скв. №308								
Период бурение и	0028			0.000000563	0.000008045		0.000008045	
крелление скв. №308								
Период бурение и	0029			0.000000106	0.000007801		0.000007801	
крелление скв. №308	-							

ЭРА v3.0 TOO "Lineplus"

актюоинская оол., мугал	2	3	4	тал" 2026 5	6	7	8	9
Период испытания скв.	0030			0.000002848	0.00000982		0.00000982	
Nº308								
Период испытания скв.	0031			0.000002848	0.00000982		0.00000982	
Nº308								
Период испытания скв.	0032			0.000001617	0.000006653		0.000006653	
№308	0000			0.0000101	0 000000170		0 000000170	
Период испытания скв.	0033			0.00000121	0.00000173		0.00000173	
№308 Итого:		0.000006464	0.000050966	0.00002075	0.000129764	0.000006464	0.000129764	
MITOTO:		0.000006464	0.000050966	0.00002075	0.000129764	0.000006464	0.000129764	
Всего по		0.000006464	0.000050966	0.00002075	0.000129764	0.000006464	0.000129764	2025
загрязняющему		0.000000101	0.000000000	0.00002073	0.000129701	0.000000101	0.000123701	2020
веществу:								
**1325, Формальдегид (N	Иетана	ль) (609)						1
Организовани		источн	ики					
Площадка добывающих	0012	0.00125	0.002706	0.00125	0.002706	0.00125	0.002706	2025
скважин								
Производственная база	0010	0.006666667	0.00459	0.006666667	0.00459	0.006666667	0.00459	2025
Капитальный ремонт	0013	0.011433333	0.056627	0.011433333	0.056627	0.011433333	0.056627	2025
скважин								
Капитальный ремонт	0014	0.0132	0.198194	0.0132	0.198194	0.0132	0.198194	2025
скважин								
Капитальный ремонт	0015	0.01	0.10067	0.01	0.10067	0.01	0.10067	2025
скважин								
Капитальный ремонт	0016	0.003333333	0.048115	0.003333333	0.048115	0.003333333	0.048115	2025
СКВАЖИН	0017	0 005(22222	0 04006	0 005(22222	0 04006	0 005(22222	0.04206	2025
Капитальный ремонт	0017	0.005633333	0.04206	0.005633333	0.04206	0.005633333	0.04206	2025
скважин Горячая промывка	0021	0.005633333	0.00081162	0.005633333	0.00081162	0.005633333	0.00081162	2025
коллекторной линии	0021	0.003633333	0.00001102	0.003633333	0.00001102	0.003633333	0.00001102	2023
скважин, АГЗУ								
Горячая промывка	0022	0.007666667	0.009999	0.007666667	0.009999	0.007666667	0.009999	2025
коллекторной линии		2.00.0000			0.00000		0.000000	
скважин, АГЗУ								
Строительно-монтажные	0024			0.001666667	0.000216		0.000216	
и подготовительные								

ЭРА v3.0 TOO "Lineplus" Tаблица 3.6

актюоинская оол., мугал		·	петролеум кэпи					
1	2	3	4	5	6	7	8	9
работы скв. №308								
Период бурение и	0025			0.0225	0.162074		0.162074	
крелление скв. №308								
Период бурение и	0026			0.0225	0.162074		0.162074	
крелление скв. №308								
Период бурение и	0028			0.005633333	0.073136		0.073136	
крелление скв. №308								
Период бурение и	0029			0.001225	0.0851022		0.0851022	
крелление скв. №308								
Период испытания скв.	0030			0.025888889	0.0872924		0.0872924	
Nº308								
Период испытания скв.	0031			0.025888889	0.0872924		0.0872924	
Nº308								
Период испытания скв.	0032			0.016166667	0.0604835		0.0604835	
Nº308								
Период испытания скв.	0033			0.0121	0.001574		0.001574	
Nº308								
NTOPO:		0.064816666	0.46377262	0.198386111	1.18301712	0.064816666	1.18301712	
Всего по		0.064816666	0.46377262	0.198386111	1.18301712	0.064816666	1.18301712	2025
загрязняющему								
веществу:								
**1715 , Метантиол (Мети	ілмерк	аптан) (339)						
Организовань	иые	источн	ики					
УБСН	0002			0.00000079273	0.00001678046	0.00000079273	0.00001678046	[
NTOPO:				0.00000079273	0.00001678046	0.00000079273	0.00001678046	
Всего по				0.00000079273	0.00001678046	0.00000079273	0.00001678046	
загрязняющему								
веществу:								
**1716 , Смесь природных	мерк	аптанов /в пер	есчете на этил	меркаптан/				
Организованн				<u>.</u>				
Площадка АГЗУ	0001		0.00000876971	0.000002	0.00000876971	0.000002	0.00000876971	2025
УБСН	0004		0.00000876971		0.00000876971		0.00000876971	
УБСН	0005	0.000165		0.000165				

ЭРА v3.0 TOO "Lineplus" Таблица 3.6

Актюоинская оол., Мугал			петролеум кэпи					
1	2	3	4	5	6	7	8	9
Производственная база	0023		0.00000876971		0.00000876971		0.00000876971	
MTOFO:			0.00085991713	0.000169	0.00085991713	0.000169	0.00085991713	
Неорганизова	н н		чники					
Площадка добывающих	6003	0.000006	0.00000191946	0.0000006	0.00000191946	0.0000006	0.00000191946	2025
скважин								
Площадка добывающих	6015	0.000006	0.00000191946	0.0000006	0.00000191946	0.0000006	0.00000191946	2025
скважин								
Площадка добывающих	6017	0.000006	0.00000191946	0.0000006	0.00000191946	0.0000006	0.00000191946	2025
скважин								
Площадка добывающих	6019	0.000006	0.00000191946	0.0000006	0.00000191946	0.0000006	0.00000191946	2025
скважин								
Площадка АГЗУ		0.00000206007		0.00000206007		0.00000206007		
УБСН	6007	0.0000066	0.000114486	0.0000066	0.000114486	0.0000066	0.000114486	2025
УБСН	6008	0.0000048	0.0000848346	0.0000048	0.0000848346	0.0000048	0.0000848346	2025
УБСН	6009	0.000002	0.00001072	0.000002	0.00001072	0.000002	0.00001072	2025
УБСН	6010	0.000002	0.0000049848	0.000002	0.0000049848	0.000002	0.0000049848	2025
УБСН	6011	0.00000047	0.00001232322	0.00000047	0.00001232322	0.00000047	0.00001232322	2025
Капитальный ремонт	6022	0.0000000302	0.0000009525	0.0000000302	0.0000009525	0.0000000302	0.0000009525	2025
скважин								
Период испытания скв. №308	6040			0.0000192798	0.00014784		0.00014784	
Итого:		0.00002036027	0.00027819386	0.00003964007	0.00042603386	0.00002036027	0.00042603386	
Всего по		0.00018936027	0.00113811099	0.00020864007	0.00128595099	0.00018936027	0.00128595099	2025
загрязняющему								
веществу:								
**2735 , Масло минеральн	юе не	фтяное (верете	нное, машинное	е, цилиндровое	N			
Неорганизова			чники					-
Период бурение и	6036			0.0001667	0.0001994	0.0001667	0.0001994	
крелление скв. №308								
Период бурение и	6037			0.0001667	0.00003985	0.0001667	0.00003985	
крелление скв. №308								
Итого:				0.0003334	0.00023925	0.0003334	0.00023925	
Всего по				0.0003334	0.00023925	0.0003334	0.00023925	
загрязняющему								

ЭРА v3.0 TOO "Lineplus" Tаблица 3.6

ARTROUNICKAS COJI., Mylaj								
1	2	3	4	5	6	7	8	9
веществу:								
**2752 , Уайт-спирит (1:	294*)							
Неорганизова			чники					
Строительно-монтажные	6030			0.00563	0.03375	0.00563	0.03375	
и подготовительные								
работы скв. №308								
Итого:				0.00563	0.03375	0.00563	0.03375	
Всего по				0.00563	0.03375	0.00563	0.03375	
загрязняющему								
веществу:								
**2754 , Алканы C12-19	/в пер	есчете на С/ (Углеводороды п	редельные С12-	C19			
Организовані		источн						
Площадка добывающих	0012	0.03	0.06765	0.03	0.06765	0.03	0.06765	2025
скважин								
Площадка АГЗУ	0001		0.207787585					
УБСН	0004	0.01270068	0.207787585				0.207787585	2025
УБСН	0005	3.901055	19.75132379	3.901055	19.75132379	3.901055	19.75132379	2025
Производственная база	0006	0.00516	0.001564	0.00516		0.00516		
Производственная база	0007	0.00516	0.001564	0.00516	0.001564	0.00516		
Производственная база	0008		0.001564	0.00516			0.001564	
Производственная база	0010	0.161111111	0.11016	0.161111111			0.11016	
Производственная база	0011	0.00333	0.0024	0.00333				
Производственная база	0023	0.01270068	0.207787585	0.01270068	0.207787585	0.01270068	0.207787585	2025
Капитальный ремонт	0013	0.276305556	1.359048	0.276305556	1.359048	0.276305556	1.359048	2025
скважин								
Капитальный ремонт	0014	0.319	4.756656	0.319	4.756656	0.319	4.756656	2025
скважин								
Капитальный ремонт	0015	0.241666667	2.41608	0.241666667	2.41608	0.241666667	2.41608	2025
скважин								
Капитальный ремонт	0016	0.08055556	1.15476	0.08055556	1.15476	0.08055556	1.15476	2025
скважин								
Капитальный ремонт	0017	0.136138889	1.00944	0.136138889	1.00944	0.136138889	1.00944	2025
скважин								
Капитальный ремонт	0018	0.00516	0.02346	0.00516	0.02346	0.00516	0.02346	2025

Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026

ЭРА v3.0 TOO "Lineplus"

2	3	4	5	6	7	8	9
0021	0.136138889	0.01947888	0.136138889	0.01947888	0.136138889	0.01947888	2025
0022	0.185277778	0.239976	0.185277778	0.239976	0.185277778	0.239976	2025
0024			0.04	0.0054		0.0054	
0025			0.54	4.05185		4.05185	
0026			0.54	4.05185		4.05185	
0028			0.136138889	1.755264		1.755264	
0029			0.0294	2.127555		2.127555	
0030			0.6213333333	2.18231		2.18231	
0001				0 10001		0 10001	
0031			0.6213333333	2.18231		2.18231	
0000			0 000004444	1 451604		1 451604	
0032			0.390694444	1.451604		1.451604	
0000			0 000416667	0 00000		0 000000	
0033			0.29241666/	0.03///6		0.03///6	
	F F C F 4 2 1 0 0 C	21 520407425	0 776740470	40 204406405	F F C F 4 2 1 0 0 C	40 204406425	
		· ·	8.//6/484/2	49.384406425	3.363431806	49.384406425	
		i e	0 001//01001	0 045470221	0 001//01001	0 045470221	1 2025
6003	0.0014421331	0.0454/9331	0.0014421331	0.0454/9331	0.0014421331	0.045479331	2025
6015	0 001//01/21	0 045470221	0 0014401001	0 045470221	0 0014401001	0 045470221	2025
6013	0.0014421331	0.043479331	0.0014421331	0.0434/9331	0.0014421331	0.043479331	2023
6017	0 0014421331	0 045470331	0 001/1/21331	0 045479331	0 001//21331	0 045470331	2025
001/	0.0014421331	0.0404/9001	0.0014421331	0.0404/9001	0.0014421331	0.0404/9001	2023
6010	0 0014421331	0 045/70331	0 0014421331	N N45479331	0 0014421331	0 045470331	2025
0019	0.0014421331	0.0104/9001	0.0014421001	0.0404/9001	0.0014421331	0.040419331	2023
6005	0 048810918	1 000230235	0 048810918	1 000230235	0 048810918	1 000230235	2025
	0021 0022 0024 0025 0026 0028 0029 0030 0031 0032 0033	0021 0.136138889 0022 0.185277778 0024 0025 0026 0028 0029 0030 0031 0032 0033 5.565431806 H H M E M C T O 6003 0.0014421331 6015 0.0014421331 6017 0.0014421331	0021 0.136138889 0.01947888 0022 0.185277778 0.239976 0024 0025 0026 0028 0029 0030 0031 0032 0033 5.565431806 31.538487425 Н н ы е и с т о ч н и к и 6003 0.0014421331 0.045479331 6015 0.0014421331 0.045479331 6017 0.0014421331 0.045479331	0021 0.136138889 0.01947888 0.136138889 0022 0.185277778 0.239976 0.185277778 0024 0.04 0.04 0025 0.54 0.54 0028 0.136138889 0029 0.0294 0030 0.621333333 0031 0.621333333 0032 0.390694444 0033 0.292416667 5.565431806 31.538487425 8.776748472 H H M M E M C T O H H M K M 0.0014421331 0.0045479331 0.0014421331 6015 0.0014421331 0.045479331 0.0014421331 6017 0.0014421331 0.045479331 0.0014421331 6019 0.0014421331 0.045479331 0.0014421331	0021 0.136138889 0.01947888 0.136138889 0.01947888 0022 0.185277778 0.239976 0.185277778 0.239976 0024 0.04 0.0054 0025 0.54 4.05185 0028 0.136138889 1.755264 0029 0.0294 2.127555 0030 0.6213333333 2.18231 0031 0.6213333333 2.18231 0032 0.390694444 1.451604 0033 0.292416667 0.037776 5.565431806 31.538487425 8.776748472 49.384406425 1 H H M E W C T O H H W K W 0.0045479331 0.0014421331 0.045479331 6015 0.0014421331 0.045479331 0.0014421331 0.045479331 6017 0.0014421331 0.045479331 0.0014421331 0.045479331 6019 0.0014421331 0.045479331 0.0014421331 0.045479331	0021 0.136138889 0.01947888 0.136138889 0.01947888 0.136138889 0022 0.185277778 0.239976 0.185277778 0.239976 0.185277778 0024 0.04 0.04 0.0054 0.0054 0025 0.54 4.05185 0.028 0028 0.136138889 1.755264 0029 0.0294 2.127555 0030 0.621333333 2.18231 0031 0.621333333 2.18231 0032 0.390694444 1.451604 0033 0.292416667 0.037776 5.565431806 31.538487425 8.776748472 49.384406425 5.565431806 1	0021 0.136138889 0.01947888 0.136138889 0.01947888 0.136138889 0.01947888 0.0299976 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0185277778 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.054 0.054 0.05185 0.05185 0.0054 0.05185 0.0026 0.0292 0.0294 2.127555 2.127555 2.127555 2.127555 2.127555 2.18231 0.03776 0.037776 0.037776 0.037776 0.037776 0.037776 0.037776 0.037776 0.037776 0.037776 0.037776 0.037776 0.045479331 0.045479331

ЭРА v3.0 TOO "Lineplus"

актюоинская оол., мугал 1	2	3	4	тал" 2026 5	6	7	8	9
УБСН	6007	0.1571087	2.712599542	0.1571087	2.712599542	0.1571087	2.712599542	2025
УБСН	6008	0.11255	2.010051798	0.11255			2.010051798	
УБСН	6009	0.035278	0.25399728	0.035278	0.25399728	0.035278	0.25399728	2025
УБСН	6010	0.036195	0.118108735	0.036195	0.118108735	0.036195	0.118108735	2025
Производственная база	6012	0.000348	0.00161	0.000348	0.00161	0.000348	0.00161	2025
- Капитальный ремонт	6022	0.000715637	0.022568339	0.000715637	0.022568339	0.000715637	0.022568339	2025
скважин								
Период бурение и	6031			0.00825	0.02214		0.02214	
крелление скв. №308								
Период бурение и	6032			0.036	0.426		0.426	
крелление скв. №308								
Период бурение и	6033			0.0057	0.00022572		0.00022572	
крелление скв. №308								
Период бурение и	6034			0.0056	0.06096		0.06096	
крелление скв. №308								
Период бурение и	6035			0.01167	0.127008		0.127008	
крелление скв. №308								
Период испытания скв.	6040			0.456810089	3.502894862		3.502894862	
Nº 308								
Период испытания скв. №308	6042			0.00825	0.01514		0.01514	
Период испытания скв. №308	6043			0.036	0.56		0.56	
Итого:		0.3967747874	6.301083253	0.9650548764	11.015451835	0.3967747874	11.015451835	
Всего по		5.9622065934	37.839570678	9.7418033484	60.39985826	5.9622065934	60.39985826	2025
загрязняющему								
веществу:								
**2840, Ингибиторы корр	NNEOC	СНПХ 6301"А",	СНПХ 6302 "А"	, СНПХ 6302 "Е	3"			
Неорганизова			чники					
Площадка добывающих	6004	0.0090536	0.28550592	0.0090536	0.28550592	0.0090536	0.28550592	2025
скважин								
Площадка добывающих	6016	0.0090536	0.28550592	0.0090536	0.28550592	0.0090536	0.28550592	2025
скважин								
Площадка добывающих	6018	0.0090536	0.28550592	0.0090536	0.28550592	0.0090536	0.28550592	2025
скважин								

Таблица 3.6

Нормативы выбросов загрязняющих веществ в атмосферу по объекту

Актюбинская обл., Мугалжарский, ТОО "Арал Петролеум Кэпитал" 2026

ЭРА v3.0 TOO "Lineplus"

1	2	3	4	5	6	7	8	9
Площадка добывающих	6020	0.0090536	0.28550592	0.0090536	0.28550592	0.0090536	0.28550592	2025
скважин								
Площадка АГЗУ	6006	0.0016032	0.050534688	0.0016032	0.050534688	0.0016032	0.050534688	2025
Итого:		0.0378176	1.192558368	0.0378176	1.192558368	0.0378176	1.192558368	
Всего по		0.0378176	1.192558368	0.0378176	1.192558368	0.0378176	1.192558368	2025
загрязняющему								
веществу:								
**2908 , Пыль неорганиче	ская,	содержащая дв	уокись кремния	и в %: 70-20 (ш	амот			
Неорганизова								
Производственная база	6014	0.00000556						
Капитальный ремонт	6024	0.0001167	0.00028	0.0001167	0.00028	0.0001167	0.00028	2025
скважин								
Строительно-монтажные	6027			0.25	0.036		0.036	
и подготовительные								
работы скв. №308								
Строительно-монтажные	6028			0.028	0.1676		0.1676	
и подготовительные								
работы скв. №308								
Период бурение и	6038			0.0273	0.00354		0.00354	
крелление скв. №308								
Период бурение и	6039			0.022815	0.248376		0.248376	
крелление скв. №308								
Итого:		0.00012226	0.00048	0.32823726	0.455996	0.00012226	0.455996	
Всего по		0.00012226	0.00048	0.32823726	0.455996	0.00012226	0.455996	2025
загрязняющему								
веществу:								
Всего по объекту:		19.6724114514	140.426104454	44.3159538293	283.103867584	19.6765348014	283.199895519	
из них:								
Итого по организованным	I	18.896830176	129.203862146	42.3056284741	264.297739063	42.3097510314	264.427756248	
источникам:			•	•	•	•	•	

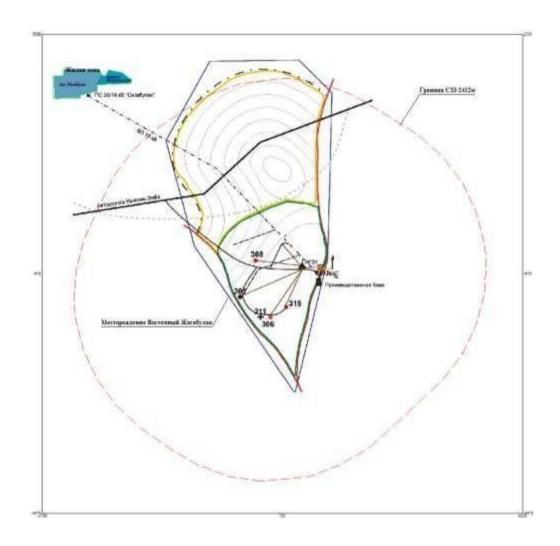
Таблица 3.6

ЭРА v3.0 TOO "Lineplus"

Нормативы выбросов загрязняющих веществ в атмосферу по объекту

1	2	3	4	5	6	7	8	9
Итого по неорганизованн	ным	0.77558127537	11.222242308	2.01032535517	18.806128521	2.00436195517	18.772139271	
источникам:								

3.3.2. Сравнительный анализ данных предыдущего проекта НДВ с результатами расчета данной инвентаризации

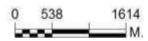
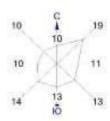

Текущим проектом НДВ на 2026 год для АФ ТОО «Арал Петролеум Кэпитал» выбросы составляют 283.4939695493 т/год увеличение связано с изменением объемов добычи нефти, с проведением работ по капитальному ремонту скважин и реконструкцией скважины №308.

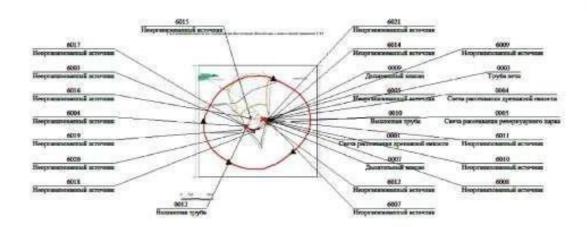
Сравнительный анализ по фактическим эмиссиям выбросов загрязняющих веществ и установленным лимитам за последние 3 года представлен ниже.

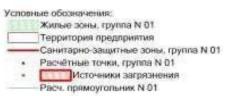
Таблица 3.3.2. Сравнительный анализ по эмиссиям выбросов загрязняющих веществ за 2023-2026 гг.

Год	Выбросы факт., т/год	Добыча нефти, тонн	Объем газа на сжигание на факеле, мЗ
2025 год	140.4261044539	46500	0
2 полугодие 2024	89.17796682143	18450	145000
1 полугодие 2024	6.51189847	3768.7	0
2023 год	23.75885817	7718.1	2222
2022 год	15.97970852	10052.5	56230

Проект нормативов допустимых выбросов для объектов месторождения Восточный Жагабулак


Рис. 2.2 - Ситуационная карта-схема предприятия.


Город: 006 Актюбинская обл, Мугалжарский р

Объект : 0006 АФ ТОО "Арал Петролеум Кэпитал" на 202 иод Вар.№ 1

ПК ЭРА v3.0

0 1361 4083м. Масштаб 1:136100

ОБОСНОВАНИЕ ВОЗМОЖНОСТИ ДОСТИЖЕНИЯ НОРМАТИВОВ С УЧЕТОМ ИСПОЛЬЗОВАНИЯ МАЛООТХОДНОЙ ТЕХНОЛОГИИ И ДРУГИХ ПЛАНИРУЕМЫХ МЕРОПРИЯТИЙ

Разработка плана специальных мероприятий, направленных на поэтапное снижение выбросов BXB в атмосферу, не производилась, так как согласно проведенному сводному расчету приземные концентрации выбрасываемых загрязняющих веществ не превышают предельно-допустимые концентрации, установленные для населенных мест.

Ежегодно на предприятии разрабатываются организационно-технические мероприятия, направленные на минимизацию отрицательного влияния выбросов предприятия на общее состояние окружающей среды и предотвращение сверхнормативных и аварийных выбросов вредных веществ в атмосферу.

Основными мероприятиями по уменьшению образования загрязняющих веществ и охране атмосферного воздуха при производственной деятельности предприятия являются:

выбор режима работы технологического оборудования и технологий, обеспечивающих соблюдение нормативов предельно допустимых выбросов (НДВ) и поддержание уровня загрязнения атмосферного воздуха ниже ПДК;

создание системы учета и контроля за выбросами загрязняющих веществ по составуи количеству с учетом их суммации;

проведение работ по ремонту оборудования при благоприятных метеорологических условиях (ветер от населенных пунктов, отсутствие штилей, приземных инверсий, опасных скоростей ветра и т. д.);

своевременное проведение планово-предупредительных ремонтов и профилактики технологического оборудования;

упорядоченное движение автотранспорта и другой техники по территории предприятия разработка оптимальных схем его движения.

Выполнение всех вышеперечисленных мероприятий является важным шагом на пути улучшения экологической ситуации в районе расположения объектов предприятия.

Ежегодно на предприятии разрабатываются технологические мероприятия, Проект нормативов допустимых выбросов направленные на снижение выпражения предприятых выбросов вредных веществ в атмосферу8.2

К основным мероприятиям, направленным на снижение выбросов загрязняющих веществ в атмосферу и обеспечивающим приземные концентрации в нормативных пределах, относятся:

- утилизация газа с использованием на собственные нужды, на печах подогрева нефти, что исключает также в выбросах сажи, бенз/а/пирена, формальдегида при работе на дизтопливе;
- все емкости для нефти и дренажная емкость оборудованы дыхательными клапанами, которые рассчитаны на определенное давление, срабатывание клапанов и выброс углеводородов в атмосферу происходит только при превышении установленного нормативами давления;
 - применение оборудования с минимальными выбросами в атмосферу;
- своевременное проведение планово-предупредительных ремонтов и профилактики технологического оборудования;
- проведение мониторинга атмосферного воздуха (расчетным или инструментальным методом).

Выполнение всех вышеперечисленных мероприятий является важным шагом на пути улучшения экологической ситуации в районе расположения предприятия.

В проекте НДВ рассчитаны и нормированы выбросы в количестве 40 единиц от неорганизованных источников (неплотности запорно- регулирующей арматуры и фланцевых соединений (скважин, ГУ, УБСН, ВППН)). В целях обеспечения экологической безопасности и рационального использования природных ресурсов в проекте НДВ предусмотрены мероприятия, предотвращающие выбросы вредных веществ в атмосферный воздух через неплотности запорной арматуры и фланцевых соединений. Согласно требованиям «Правил обеспечения промышленной безопасности для опасных производственных объектов нефтяной и газовой отраслей промышленности» утвержденные приказом Министерства по инвестициям и развитию РК от 30.12.2014 г. №355, для обеспечения безопасной эксплуатации разработки нефтегазовых месторождений, оборудования технологического допускается эксплуатация до устранения

неисправностей. Для безопасности технологических процессов составляется график проверки герметичности оборудования, трубопроводов, резервуаров, фланцевых соединений, арматуры, люков и возможных источников выделений вредных веществ, который утверждается техническим руководителем организации.

4. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯХ

Основные принципы разработки мероприятий по регулированию выбросов при НМУ

Под регулированием выбросов загрязняющих веществ в атмосферу понимается их краткое сокращение в периоды неблагоприятных метеорологических условий (НМУ).

При НМУ в кратковременные периоды загрязнения атмосферы, опасные для здоровья населения, предприятие обеспечивает снижение выбросов загрязняющих веществ, вплоть до частичной или полной остановки предприятия.

Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в периоды НМУ разрабатывают предприятия, расположенные в населенных пунктах, где органами Казгидромета проводится или планируется проведение прогнозирования НМУ.

В зависимости от состояния атмосферы при неблагоприятных метеорологических условиях могут быть использованы три режима, при которых предприятие обязано снизить выбросы вредных веществ от 20 до 80%.

При разработке мероприятий по регулированию выбросов следует учитывать вклад различных источников в создание приземных концентраций примесей. В каждом конкретном случае необходимо определить, на каких источниках следует сокращать выбросы в первую очередь, чтобы получить наибольший эффект.

В зависимости от ожидаемого уровня загрязнения атмосферы составляются предупреждения 3-х степеней, которым соответствует три регламента работы предприятий в периоды НМУ.

Степень предупреждения и соответствующие ей работы предприятий в каждом конкретном городе устанавливают местные органы Казгидромета:

- ✓ предупреждение первой степени составляются в случае, если ожидается один из комплексов НМУ, при этом концентрации в воздухе одного или нескольких контролируемых веществ выше ПДК;
- ✓ второй степени если предсказывается два таких комплекса одновременно (например, при опасной скорости ветра ожидается и приподнятая инверсия), и неблагоприятное направление ветра, когда ожидаются концентрации одного или нескольких контролируемых веществ выше 3 ПДК;
 - ✓ предупреждение третей степени составляется в случае, если при НМУ ожидаются концентрации в воздухе одного или нескольких вредных веществ выше 5 ПДК.

При выполнении мероприятий снижение концентраций загрязняющих веществ в приземном слое должно составлять:

по первому режиму - 15-20 %; по второму режиму - 20-40 %; по третьему режиму - 40-60 %.

Размер сокращения выбросов для каждого предприятия в каждом конкретном случае устанавливают и корректируют местные органы Казгидромета.

4.1. ПЛАН МЕРОПРИЯТИЙ ПО СОКРАЩЕНИЮ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХВЕЩЕСТВ В АТМОСФЕРУ В ПЕРИОДЫ НМУ

Главное условие при разработке мероприятий по кратковременному сокращению выбросов - выполнение мероприятий при НМУ не должно приводить к нарушению технологического процесса, следствием которого могут явиться аварийные ситуации.

В районе расположения объектов предприятия прогнозирование НМУ органами Казгидромета не проводится. Однако в целях минимизации влияния неблагоприятных метеорологических условий на загрязнение окружающей природной среды на предприятии разработан технологический регламент на период НМУ, обслуживающий персонал обучен реагированию на аварийные ситуации.

Исходя из специфики работы данных объектов, предложен следующий план мероприятий. При этом снижение работы оборудования, обеспечивающего жизнедеятельность объекта, при наступлении НМУ не предусматривается.

Мероприятия по I режиму работы предприятия, предусматривающие снижение воздействия основных загрязняющих веществ на 10%, носят организационно-технический характер и осуществляются без снижения мощности предприятия. При предупреждении об ожидаемых НМУ по I режиму на предприятии осуществляется:

- а) запрещение работы оборудования на форсированных режимах, обеспечение работы технологического оборудования по технологическому регламенту;
- б) усиление контроля за работой контрольно-измерительной аппаратуры и автоматических систем управления технологическим процессом для исключения возникновения ситуаций, сопровождающихся аварийными и залповыми выбросами;
- в) рассредоточение во времени работы технологических агрегатов не задействованных в едином технологическом процессе, при работе которых выбросы вредных веществ в атмосферу достигают максимальных значений;
 - г) прекращение ремонтных работ;
- д) прекращение испытания оборудования с целью изменения технологических режимов работы;
- e) усиление контроля за соблюдением правил техники безопасности и противопожарных норм;
- ж) сокращение времени движения автомобилей на переменных режимах и работы двигателей на холостом ходу;
- з) запрещение производства ремонтных и погрузочно-разгрузочных работ, связанных с повышенным выделением пыли и других загрязняющих веществ;
- и) проведение влажной уборки производственных помещений и территории предприятия, где это допускается правилами техники безопасности;
- к) усиление контроля за выбросами вредных веществ в атмосферу на источниках и контрольных точках.

Основными мероприятиями по данному режиму, ведущими к снижению выбросов в атмосферу, являются рассредоточение во времени работы оборудования и снижение расхода топлива на 5-10 % против расчетного.

Мероприятия по II режиму работы в период НМУ предусматривают снижение загрязняющих веществ на 20-40 % в атмосферу. Такие мероприятия включают в себя:

- а) снижение производительности отдельных аппаратов и технологических линий, работа которых связана со значительным выделением в атмосферу вредных веществ;
- б) уменьшение интенсивности технологических процессов, связанных с повышенными выбросами вредных веществ в атмосферу;
- в) ограничение использования автотранспорта и других передвижных источников выбросов на территории предприятия;
 - г) прекращение испытательных работ.

В случае оповещения предприятия о наступлении НМУ по III режиму предусматривается выполнение всех мероприятий предусматриваемых для I - II режимов работ при НМУ, а также сокращение работ на участках не связанных напрямую с основными технологическими операциями.

Мероприятия по III режиму работы в период НМУ, предусматривают снижение загрязняющих веществ на 40-60 % в атмосферу и включают в себя:

- а) снижение нагрузки или остановку производства, сопровождающегося значительными выделениями загрязняющих веществ;
- б) отключение аппаратов и оборудования, работа которых связана со значительным загрязнением воздуха;
- в) запрет погрузочно-разгрузочных работ, сыпучего сырья и реагентов, являющихся источником загрязнения;
- г) остановку пусковых работ на аппаратах и технологических линиях сопровождающихся выбросами в атмосферу;
- д) поэтапное снижение нагрузки параллельно работающих однотипных технологических агрегатов и установок.

Рассматриваемое предприятие находится вне населенных пунктов, максимальные концентрации вредных веществ на границе СЗЗ не превышают 1 ПДК.

МЕРОПРИЯТИЯ

по сокращению выбросов загрязняющих веществ ватмосферу в периоды НМУ на 2026год

Актюбинская обл, Мугалжарский р, АФ ТОО "Арал Петролеум Кэпитал" на 2026 год

График работы	Цех, участок,	Мероприятия на период	Вещества, по которым проводится	2	Карактеристи				ых проводит ы газовоздуг					
источник а	(номер режима работы предприяти	неблагоприятных метеорологических условий	сокращение выбросов		Координаті схе точечного источника	-		-	ика и харак после их со скорость , м/с	стеристи	ка вы	бросо		ти
	я в период НМУ)			Номер на карте-схеме объекта (города)	, центра группы источ- ников или одного конца линейного источника	линейног о источник а	высота, м	диаметр источника выбросов, м		м3/с	температура, ⁰ С	мощность выбросов без учета	мощность выбросов после	Степень эффективности мероприятий, %
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	I	I	Разработка мероприя	тий для п	ериодов НМУ	не требуется	I.		ı	I	1	l	l	

5. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ

В соответствии с Экологическим Кодексом Республики Казахстан физические и юридические лица, осуществляющие специальное природопользование, обязаны осуществлять производственный экологический контроль, составной частью которого является производственный мониторинг.

Для выполнения требований законодательства в области охраны атмосферного воздуха, в том числе для соблюдения нормативов предельно допустимых выбросов, предусматривается система контроля источников загрязнения атмосферы. Контроль за соблюдением установленных величин НДВ должен осуществляться в соответствии с рекомендациями РНД 211.2.02.02-97 и РНД 211.3.01.06-97.

Контроль выбросов осуществляется экологической службой предприятия, либо организацией, привлекаемой предприятием на договорных началах. При необходимости дополнительные контрольные исследования осуществляются территориальными контрольными службами.

План-график контроля соблюдения нормативов НДВ на источниках выбросов приведен на таблице 5.1. Кроме того, рекомендуется ежеквартально осуществлять контроль состояния атмосферного воздуха на границе санитарно-защитной и жилой зоны. План- график контроля состояния атмосферного воздуха на границе санитарно-защитной и селитебной зон приведен в таблице 5.3.

План-график контроля состояния атмосферного воздуха на границе санитарно-защитной и жилой зоны

Таблица 5.1.

Контролируемые точки	Определяемые компоненты	Периодичность контроля	Кем осуществляется контроль
На границе санитарно- защитной зоны месторождения	Диоксид азота Диоксид серы Оксид углерода Сажа	1 раз в квартал	сторонняя организация
На границе поселка Жагабулак	Углеводороды Смесь природных меркаптанов (СПМ)	1 раз в квартал	сторонняя организация

В таблице 5.2 приведены параметры для определения категории источников загрязнения атмосферы с целью установления источников и загрязняющих веществ, подлежащих контролю: контролю подлежат источники 1 и 2 категории. В таблице 11.4 приведено определение необходимости расчетов приземных концентраций по веществам.

Обоснованием для Производственного экологического мониторинга является информационное обеспечение деятельности, направленная на сохранение и восстановление природной среды, рациональное использование и воспроизводство природных ресурсов, предотвращение негативного воздействия хозяйственной и иной деятельности на окружающую среду и ликвидацию ее последствий.

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив до выбро		Кем осуществляет	Методика проведе- ния
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
0001	Площадка АГЗУ	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000015	0.5211875	Сторонняя организация на договорной основе	
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0.002848	98.9561326	Сторонняя организация на договорной основе	
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0.025192	875.317027	Сторонняя организация на договорной основе	
		Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1 раз/ кварт	0.000002	0.06949167	Сторонняя организация на договорной основе	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.048811	1695.97886	Сторонняя организация на договорной основе	
0002	УБСН	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.028173502	58.3952434		

1	2	3	5	6	7	8	9
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.004578194	9.4892269	договорной основе Сторонняя организация на	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	1.12442771011	2330.60234	договорной основе Сторонняя организация на	
		Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00089809381	1.86147986	договорной основе Сторонняя организация на	
		Метан (727*)	1 раз/ кварт	0.00586948	12.1656766	договорной основе Сторонняя организация на	
		Метантиол (Метилмеркаптан) (339)	1 раз/ кварт	0.00008393143		договорной основе Сторонняя организация на	
03	УБСН	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.011027		договорной основе Сторонняя организация на	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.001838	2.85454042	договорной основе Сторонняя организация	

1	2	ий, ТОО "Арал Петролеум Кэпитал" 2026	5	6	7	8	9
	-		Ŭ	o d	,	договорной	
						основе	
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	0.181945	282.573099	Сторонняя	
		Сернистый газ, Сера (IV) оксид) (516)				организация	
						на	
						договорной	
						основе	
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.010108	15.6984192	Сторонняя	
		Угарный газ) (584)				организация	
						на	
						договорной	
						основе	
		Метан (727*)	1 раз/ кварт	0.007351	11.4166086		
						организация	
						на	
						договорной	
						основе	
0004	УБСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000004	0.13898333	Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.00074105	25.7483996		
		(1502*)				организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.00655502	227.759631		
		(1503*)				организация	
						на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.000001	0.03474583		
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
						договорной основе	
		Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.01270068	441.295707	организация на	
						договорной основе	
0005	УБСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.001229	34.1621031	Сторонняя организация на договорной основе	
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0.227615	6326.93823	Сторонняя организация на договорной основе	
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	2.013396	55965.697	Сторонняя организация на договорной основе	
		Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1 раз/ кварт	0.000165	4.58644996	Сторонняя организация на договорной основе	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	3.901055	108436.325		
0006	Производственная база	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00001448	0.01609983		

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	1 раз/ кварт	0.00516	5.73723196	организация на	
0007	Производственная база	265П) (10) Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00001448	0.01609983	договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	1 раз/ кварт	0.00516	5.73723196	договорной основе Сторонняя организация на	
0008	Производственная база	лересчете на С), гастворитель гик- 265П) (10) Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00001448	0.01609983	договорной основе Сторонняя организация	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	1 раз/ кварт	0.00516	5.73723196	организация	
0009	Производственная база	пересчете на C); Растворитель РПК-265П) (10) Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0.545	605.967329	организация	
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0.2016	224.152318	на договорной основе Сторонняя организация на	

1	2	3	5	6	7	8	9
		Пентилены (амилены - смесь изомеров) (460)	1 раз/ кварт	0.02015	22.4041132	договорной основе Сторонняя организация на	
		Бензол (64)	1 раз/ кварт	0.01854	20.6140078	договорной основе Сторонняя организация на	
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0.002337	2.59843238	договорной основе Сторонняя организация на	
		Метилбензол (349)	1 раз/ кварт	0.0175	19.4576665	договорной основе Сторонняя организация на	
		Этилбензол (675)	1 раз/ кварт	0.000484	0.53814346	договорной основе Сторонняя организация на	
0010	Производственная база	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.068644	482.747534	договорной основе Сторонняя организация на	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.044618	313.781678	договорной основе Сторонняя организация на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.020593	144.822854	договорной основе Сторонняя	
						организация на договорной основе	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.050214	353.136249	Сторонняя организация на договорной	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.19459	1368.47857	основе Сторонняя организация на договорной основе	
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000000667	0.00469076		
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.006666667	46.8841713		
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.161111111	1133.03408	Сторонняя организация на договорной основе	
0011	Производственная база	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.00027	7.59523537		

1	2	3	5	6	7	8	9
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.00004	1.12522005	договорной основе Сторонняя организация на	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.00013	3.65696518	договорной основе Сторонняя организация на	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.04167	1172.19799	договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	1 раз/ кварт	0.00333	93.6745696	организация на	
0012	Площадка добывающих скважин	265П) (10) Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.426666667	11402.2299	организация на	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.069333333	1852.86235	договорной основе Сторонняя организация на	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.027777778	742.332681	договорной основе Сторонняя организация на	

- - 11 2026

1	2	3	5	6	7	8	9
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.06666667	1781.59843	договорной основе Сторонняя организация	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.34444444	9204.92516	на договорной основе Сторонняя организация на	
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000000667	0.01782489	договорной основе Сторонняя организация на	
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.006666667	178.159851	договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.161111111	4305.52951	организация на	
0013	Капитальный ремонт скважин		1 раз/ кварт	0.731733333	1315.58286	договорной основе Сторонняя организация на	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.118906667	213.782215	договорной основе Сторонняя организация на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.047638889	85.6499258	организация	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.114333333	205.559821	на договорной основе Сторонняя организация на	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.590722222	1062.05908	договорной основе Сторонняя организация на	
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000001143	0.002055	договорной основе Сторонняя организация на	
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.011433333	20.5559815	договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	1 раз/ кварт	0.276305556	496.769569	договорной основе Сторонняя организация на	
14	Капитальный ремонт скважин	265П) (10) Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.8448		договорной основе Сторонняя организация на	

1	2	3	5	6	7	8	9
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.13728	246.815618	договорной основе Сторонняя	
						организация на договорной основе	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.055	98.8844622		
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.132	237.322709	основе Сторонняя организация на договорной	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.682	1226.16733	организация на	
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.00000132	0.00237323	договорной основе Сторонняя организация на	
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.0132	23.7322709	договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-	1 раз/ кварт	0.319	573.529881	договорной основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		265Π) (10)				договорной основе	
0015	Капитальный ремонт	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.64	328.733469		
	скважин	4)				организация	
						на	
						договорной	
						основе	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.104	53.4191887	Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.041666667	21.4019187	Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	0.1	51.3646045	Сторонняя	
		Сернистый газ, Сера (IV) оксид) (516)				организация	
						на	
						договорной	
						основе	
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.516666667	265.38379	Сторонняя	
		Угарный газ) (584)				организация	
						на	
						договорной	
						основе	
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000001	0.00051365	Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.01	5.13646045	Сторонняя	
						организация	
						на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
						договорной основе	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	1 раз/ кварт	0.241666667	124.131128	Сторонняя организация	
		пересчете на C); Растворитель РПК- 265П) (10)				на договорной основе	
16	Капитальный ремонт скважин	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.213333333	208.985152		
						на договорной основе	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.034666667	33.9600875		
						на договорной	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.013888889	13.6058043	основе Сторонняя организация	
						на договорной	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.033333333	32.6539297	основе Сторонняя организация	
		oopmielbi ide, oopa (ii, onend, (eie,				на договорной	
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.172222222	168.711971	_	
		Угарный газ) (584)				организация на договорной	
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000000333	0.00032621	основе	
						организация на	

1	2	3	5	6	7	8	9
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.003333333	3.26539267	договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.080555556	78.9136646	договорной основе Сторонняя организация на договорной	
017	Капитальный ремонт скважин	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.360533333	353.184906	основе Сторонняя организация на	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.058586667	57.3925477	договорной основе Сторонняя организация на	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.023472222	22.9938088	договорной основе	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.056333333	55.1851414	договорной основе	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.291055556		договорной основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000000563	0.00055152	договорной основе Сторонняя организация	
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.005633333	5.51851384	на договорной основе Сторонняя организация	
		Алканы C12-19 /в пересчете на C/ (1 раз/ кварт	0.136138889	133.364093	_	
		Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)				организация на договорной основе	
18	Капитальный ремонт скважин	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00001448	1.60998292	Сторонняя организация на договорной основе	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.00516	573.723196		
19	Капитальный ремонт скважин	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.01422	380.014943		
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.00231	61.7323853	основе Сторонняя организация на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

- - 11 2026

1	2	3	5	6	7	8	9
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.001268	33.886002	договорной основе Сторонняя организация на	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.0298	796.374494	договорной основе Сторонняя организация на	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.0705	1884.04033	договорной основе Сторонняя организация на	
20	Горячая промывка коллекторной линии скважин, АГЗУ	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.000589	15.740422	договорной основе Сторонняя организация на	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.0000957	2.55748453	договорной основе Сторонняя организация на	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.0000525	1.40300876	договорной основе Сторонняя организация на	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.001235		договорной основе Сторонняя организация на	

- - 11 2026

1	2	3	5	6	7	8	9
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.00292	78.0340108	договорной основе Сторонняя	
		Угарный газ) (584)	r pas, Reapi	0.00232	, o . o s 10100	организация на договорной	
)21	Горячая промывка коллекторной линии скважин, АГЗУ	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.360533333	353.184906	основе Сторонняя организация на	
	CREAMIN, IN SV	Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.058586667	57.3925477	договорной основе	
						организация на договорной	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.023472222	22.9938088	организация на	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.056333333	55.1851414	договорной основе Сторонняя организация на	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.291055556	285.123232	договорной основе Сторонняя организация на	
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000000563	0.00055152	договорной основе	

1	2	3	5	6	7	8	9
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.005633333	5.51851384	договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.136138889	133.364093	договорной основе Сторонняя организация на договорной	
022	Горячая промывка коллекторной линии скважин, АГЗУ	Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.490666667	26225.1288	основе Сторонняя организация на договорной	
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.079733333	4261.5834	основе Сторонняя организация на	
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.031944444	1707.36513	договорной основе Сторонняя организация на	
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.076666667	4097.67638	договорной основе Сторонняя организация на	
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.396111111		договорной основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	кий, ТОО "Арал Петролеум Кэпитал" 2026 3	5	6	7	8	9
		Бенз/а/пирен (3,4-Бензпирен) (54)	1 раз/ кварт	0.000000767	0.04099458	договорной основе Сторонняя организация	
		Формальдегид (Метаналь) (609)	1 раз/ кварт	0.007666667	409.767654	на договорной основе Сторонняя организация на	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.185277778	9902.7179	договорной основе Сторонняя организация на договорной	
0023	Производственная база	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000004	0.18531111	основе Сторонняя организация на	
		Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	0.00074105	34.3311995	договорной основе Сторонняя организация на	
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0.00655502	303.679508	договорной основе Сторонняя организация на	
		Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1 раз/ кварт	0.000001	0.04632778	договорной основе Сторонняя организация на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.01270068	588.394276	Сторонняя	
		Углеводороды предельные С12-С19 (в				организация	
		пересчете на С); Растворитель РПК-				на	
		265Π) (10)				договорной	
						основе	
6003	Площадка добывающих	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00000045		Сторонняя	
	скважин					организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.0000841443		Сторонняя	
		(1502*)				организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.0007443076		Сторонняя	
		(1503*)				организация	
						на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.0000006		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.0014421331		Сторонняя	
		Углеводороды предельные С12-С19 (в				организация	
		пересчете на С); Растворитель РПК-				на	
		265π) (10)				договорной	
						основе	
6004	Площадка добывающих	Ингибиторы коррозии: СНПХ 6301"А",	1 раз/ кварт	0.0022634		Сторонняя	
	скважин	СНПХ 6302 "А", СНПХ 6302 "Б" /по				организация	
		изопропиловому спирту/ (612*)				на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
6005	Площадка АГЗУ	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000015		договорной основе Сторонняя	
						организация на договорной основе	
		Смесь углеводородов предельных С1-С5 (1502*)	1 раз/ кварт	0.002848		Сторонняя организация на договорной	
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0.025192		основе Сторонняя организация на договорной	
		Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1 раз/ кварт	0.000002		основе Сторонняя организация на договорной основе	
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.048811		Сторонняя организация на договорной основе	
6006	Площадка АГЗУ	Ингибиторы коррозии: СНПХ 6301"А", СНПХ 6302 "А", СНПХ 6302 "Б" /по изопропиловому спирту/ (612*)	1 раз/ кварт	0.0016032		Сторонняя организация на договорной	
6007	УБСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.0000495		основе Сторонняя организация на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1 2	3	5	6	7 8 9
				договорной
				основе
	Смесь углеводородов предельных С1-С5	5 1 раз/ кварт	0.0091668	Сторонняя
	(1502*)			организация
				на
				договорной
				основе
	Смесь углеводородов предельных С6-С1	1 раз/ кварт	0.0810863	Сторонняя
	(1503*)			организация
				на
				договорной
				основе
	Смесь природных меркаптанов /в	1 раз/ кварт	0.0000066	Сторонняя
	пересчете на этилмеркаптан/ (Одорант	2		организация
	СПМ - ТУ 51-81-88) (526)			на
				договорной
				основе
	Алканы C12-19 /в пересчете на C/ (1 раз/ кварт	0.1571087	Сторонняя
	Углеводороды предельные С12-С19 (в			организация
	пересчете на С); Растворитель РПК-			на
	265Π) (10)			договорной
				основе
08 УБСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00004	Сторонняя
				организация
				на
				договорной
				основе
	Смесь углеводородов предельных С1-С5	5 1 раз/ кварт	0.00657	Сторонняя
	(1502*)			организация
				на
				договорной
				основе
	Смесь углеводородов предельных С6-С1	10 1 раз/ кварт	0.05809	Сторонняя
	(1503*)			организация
				на

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	рский, ТОО "Арал Петролеум Кэпитал" 2026	5	6	7	8	9
						договорной основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.0000048		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант	r pas, neap1	0.0000010		организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.11255		Сторонняя	
		Углеводороды предельные С12-С19 (в	r pas, neap1	0.11200		организация	
		пересчете на С); Растворитель РПК-				на	
		265Π) (10)				договорной	
						основе	
6009	УБСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000012		Сторонняя	
		00F0-040F0H (Wr-1-WF00Ann fW) (0-0)	- Post, salar			организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.002058		Сторонняя	
		(1502*)	ross, samp			организация	
		,				на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.018208		Сторонняя	
		(1503*)				организация	
		,				на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.000002		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.035278		Сторонняя	
		Углеводороды предельные С12-С19 (в		0.000270		организация	
		пересчете на С); Растворитель РПК-				на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		265Π) (10)				договорной	
						основе	
6010	УБСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000011		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.002112		Сторонняя	
		(1502*)				организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.018681		Сторонняя	
		(1503*)				организация	
						на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.000002		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.036195		Сторонняя	
		Углеводороды предельные С12-С19 (в				организация	
		пересчете на С); Растворитель РПК-				на	
		265π) (10)				договорной	
						основе	
6011	УБСН	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000061		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.001883		Сторонняя	
		(1502*)				организация	
						на	

1	2	3	5	6	7	8	9
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.000076		Сторонняя	
		(1503*)				организация	
						на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.0000047		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
5012	Производственная	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.0000098		Сторонняя	
	база					организация	
						на	
						договорной	
						основе	
		Алканы C12-19 /в пересчете на C/ (1 раз/ кварт	0.000348		Сторонняя	
		Углеводороды предельные С12-С19 (в				организация	
		пересчете на С); Растворитель РПК-				на	
		265π) (10)				договорной	
						основе	
013	Производственная	Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.0731		Сторонняя	
	база	(1502*)				организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.027		Сторонняя	
		(1503*)				организация	
						на	
						договорной	
						основе	
		Пентилены (амилены - смесь изомеров)	1 раз/ кварт	0.0027		Сторонняя	
		(460)				организация	
						на	

1	2	ский, ТОО "Арал Петролеум Кэпитал" 2026 3	5	6	7	8	9
						договорной	
						основе	
		Бензол (64)	1 раз/ кварт	0.002484		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Диметилбензол (смесь о-, м-, п-	1 раз/ кварт	0.000313		Сторонняя	
		изомеров) (203)				организация	
						на	
						договорной	
						основе	
		Метилбензол (349)	1 раз/ кварт	0.002344		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Этилбензол (675)	1 раз/ кварт	0.0000648		Сторонняя	
						организация	
						на	
						договорной	
						основе	
6014	Производственная	Железо (II, III) оксиды (диЖелезо	1 раз/ кварт	0.0000772		Сторонняя	
	база	триоксид, Железа оксид) /в пересчете				организация	
		на железо/ (274)				на	
						договорной	
						основе	
		Марганец и его соединения /в	1 раз/ кварт	0.00000606		Сторонняя	
		пересчете на марганца (IV) оксид/ (организация	
		327)				на	
						договорной	
						основе	
		Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.000015		Сторонняя	
		4)				организация	
		·				на	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
						договорной	
						основе	
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.0000739		Сторонняя	
		Угарный газ) (584)				организация	
						на	
						договорной	
						основе	
		Фтористые газообразные соединения /в	1 раз/ кварт	0.00000517		Сторонняя	
		пересчете на фтор/ (617)				организация	
						на	
						договорной	
						основе	
		Фториды неорганические плохо	1 раз/ кварт	0.00000556		Сторонняя	
		растворимые - (алюминия фторид,				организация	
		кальция фторид, натрия				на	
		гексафторалюминат) (Фториды				договорной	
		неорганические плохо растворимые /в				основе	
		пересчете на фтор/) (615)					
		Пыль неорганическая, содержащая	1 раз/ кварт	0.00000556		Сторонняя	
		двуокись кремния в %: 70-20 (шамот,				организация	
		цемент, пыль цементного производства				на	
		- глина, глинистый сланец, доменный				договорной	
		шлак, песок, клинкер, зола,				основе	
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
15 Площа	адка добывающих	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00000045		Сторонняя	
скваж	кин					организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.0000841443		Сторонняя	
		(1502*)				организация	
						на	
						договорной	
						основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.0007443076		Сторонняя	
		(1503*)				организация	
						на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.0000006		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.0014421331		Сторонняя	
		Углеводороды предельные С12-С19 (в				организация	
		пересчете на С); Растворитель РПК-				на	
		265Π) (10)				договорной	
						основе	
16	Площадка добывающих	Ингибиторы коррозии: СНПХ 6301"А",	1 раз/ кварт	0.0022634		Сторонняя	
	скважин	СНПХ 6302 "A", СНПХ 6302 "Б" /по изопропиловому спирту/ (612*)				организация	
						на	
						договорной	
						основе	
17	Площадка добывающих	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00000045		Сторонняя	
	скважин					организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.0000841443		Сторонняя	
		(1502*)				организация	
					на	на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.0007443076		Сторонняя	
		(1503*)				организация	
						на	
						договорной	
						основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Смесь природных меркаптанов /в	1 раз/ кварт	0.0000006		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.0014421331		Сторонняя	
		Углеводороды предельные С12-С19 (в				организация	
		пересчете на С); Растворитель РПК-				на	
		265π) (10)				договорной	
						основе	
18	Площадка добывающих	Ингибиторы коррозии: СНПХ 6301"А",	1 раз/ кварт	0.0022634		Сторонняя	
	скважин	СНПХ 6302 "А", СНПХ 6302 "Б" /по				организация	
		изопропиловому спирту/ (612*)				на	
		The state of the s				договорной	
						основе	
19	Площадка добывающих	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00000045		Сторонняя	
	гэ площадка дооывающих скважин	ast an all all districtions from from the control of the control o				организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.0000841443		Сторонняя	
		(1502*)				организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.0007443076		Сторонняя	
		(1503*)				организация	
						на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.0000006		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант	1,550, 550,			организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в	1 раз/ кварт	0.0014421331		Сторонняя организация	
		пересчете на С); Растворитель РПК-				организация на	
		265D) (10)					
		20311) (10)				договорной	
6020	П	M	1/	0 0000001		основе	
6020	Площадка добывающих	Ингибиторы коррозии: СНПХ 6301"A",	1 раз/ кварт	0.0022634		Сторонняя	
	скважин	СНПХ 6302 "А", СНПХ 6302 "Б" /по				организация	
		изопропиловому спирту/ (612*)				на	
						договорной	
C021	П	Company (Harrison company) (F10)	1	0.0000045		основе	
6021	Площадка добывающих	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.0000045		Сторонняя	
	скважин					организация	
						на	
						договорной	
		C	1	0.0000841443		основе	
		Смесь углеводородов предельных С1-С5 (1502*)	1 раз/ кварт	0.0000041443		Сторонняя	
		(1302*)				организация	
						на договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 nan/ кварш	0.0007443076		Сторонняя	
		(1503*)	1 pas/ Kbapi	0.000/4430/0		организация	
		(1303*)				организация	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.000006		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант	г раз/ кварт	0.000000		организация	
		СПМ - ТУ 51-81-88) (526)				на	
		01111 10 01 01 00/ (020/				на договорной	
						основе	
		Алканы C12-19 /в пересчете на C/ (1 раз/ кварт	0.0014421331		Сторонняя	
		Углеводороды предельные С12-С19 (в	r pas/ Kbapt	0.0014421331		организация	
		пересчете на С); Растворитель РПК-				организация	
		265 _П) (10)				договорной	
		20011, (10)				основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
5022	Площадка добывающих	Ингибиторы коррозии: СНПХ 6301"А",	1 раз/ кварт	0.0022634		Сторонняя	
	скважин	СНПХ 6302 "А", СНПХ 6302 "Б" /по				организация	
		изопропиловому спирту/ (612*)				на	
						договорной	
						основе	
024	Капитальный ремонт	Железо (II, III) оксиды (диЖелезо	1 раз/ кварт	0.00089		Сторонняя	
	скважин	триоксид, Железа оксид) /в пересчете				организация	
		на железо/ (274)				на	
						договорной	
					основе		
		Марганец и его соединения /в	1 раз/ кварт	0.0000767		Сторонняя	
		пересчете на марганца (IV) оксид/ (организация	
		327)				на	
						договорной	
						основе	
		Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.000125		Сторонняя	
		4)				организация	
						на	
						договорной	
						основе	
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.001108		Сторонняя	
		Угарный газ) (584)				организация	
						на	
						договорной	
						основе	
		Фтористые газообразные соединения /в	1 раз/ кварт	0.0000625		Сторонняя	
		пересчете на фтор/ (617)				организация	
						на	
						договорной	
						основе	
		Фториды неорганические плохо	1 раз/ кварт	0.000275		Сторонняя	
		растворимые - (алюминия фторид,				организация	
		кальция фторид, натрия				на	
		гексафторалюминат) (Фториды				договорной	
		неорганические плохо растворимые /в				основе	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
		пересчете на фтор/) (615)					
		Пыль неорганическая, содержащая	1 раз/ кварт	0.0001167		Сторонняя	
		двуокись кремния в %: 70-20 (шамот,				организация	
		цемент, пыль цементного производства				на	
		- глина, глинистый сланец, доменный				договорной	
		шлак, песок, клинкер, зола,				основе	
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
6025	Производственная	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.00000343		Сторонняя	
	база					организация	
						на	
						договорной	
						основе	
		Пентан (450)	1 раз/ кварт	0.00000339		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Метан (727*)	1 раз/ кварт	0.00001807		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Изобутан (2-Метилпропан) (279)	1 раз/ кварт	0.00000489		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.0000811		Сторонняя	
		(1502*)				организация	
						на	
						договорной	
						основе	
6026	Производственная	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000000192		Сторонняя	
	база					организация	

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	кий, ТОО "Арал Петролеум Кэпитал" 2026	5	6	7	8	9
						на	
						договорной	
						основе	
		Пентан (450)	1 раз/ кварт	0.000002944		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Метан (727*)	1 раз/ кварт	0.0000296		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Изобутан (2-Метилпропан) (279)	1 раз/ кварт	0.0000043		Сторонняя	
						организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0.0000846		Сторонняя	
		(1502*)				организация	
						на	
						договорной	
						основе	
6028	Капитальный ремонт	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.0000002254		Сторонняя	
	скважин					организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0.000041755		Сторонняя	
		(1502*)				организация	
						на	
						договорной	
						основе	
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0.00036935		Сторонняя	
		(1503*)				организация	

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

1	2	3	5	6	7	8	9
						на	
						договорной	
						основе	
		Смесь природных меркаптанов /в	1 раз/ кварт	0.0000000302		Сторонняя	
		пересчете на этилмеркаптан/ (Одорант				организация	
		СПМ - ТУ 51-81-88) (526)				на	
						договорной	
						основе	
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.000715637		Сторонняя	
		Углеводороды предельные С12-С19 (в				организация	
		пересчете на С); Растворитель РПК-				на	
		265Π) (10)				договорной	
						основе	

6. ИНВЕНТАРИЗАЦИЯ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ

БЛАНК ИНВЕНТАРИЗАЦИИ ИСТОЧНИКОВ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ

АТМОСФЕРУ состоит:

В

- 1. Источники выделения загрязняющих веществ;
- 2. Характеристика источников загрязнения атмосферного воздуха;
- 3. Показатели работы газоочистных и пылеулавливающих установок (ПГО);
- 4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год.

Бланк инвентаризации

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ЭРА v3.0 ТОО "Lineplus"

1. Источники выделения вредных (загрязняющих) веществ

Наименование производства номер цеха,	Номер источ- ника загряз	Номер источ- ника выде-	источ- источника ника выделения выде- загрязняющих	гочника Наименование выпускаемой язняющих продукции	Время работы источника выделения, час		Наименование загрязняющего вещества	Код вредного вещества (ЭНК,ПДК или ОБУВ) и	Количество загрязняющего вещества, отходящего
участка	нения атм-ры	ления	веществ		в сутки	эа год		наименование	от источника выделен, т/год
A	1	2	3		5	5 6	7	8	9
					Площадка	1			
(001) Площадка добываюция	0012		Дизельгенератор 30 кВт			100	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.155144
скважин							Азот (II) оксид (Азота оксид) (6)	0304 (6)	0.0252109
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.01353
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.020295
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.1353
							Бенз/а/пирен (3,4- Вензпирен) (54)	0703(54)	0.000000248

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							Формальдегид (Метаналь) (609)	1325 (609)	0.002706
							Алканы С12-19 /в пересчете	2754(10)	0.06765
							на С/ (Углеводороды	, ,	
							предельные C12-C19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6003	6003 02	Устье скважины			8760	Сероводород (0333 (518)	0.0000143244
			Nº301				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.002653586
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.023472599
							предельных С6-С10 (1503*)		
							Смесь природных	1716 (526)	0.00000191946
							меркаптанов /в пересчете		
							на этилмеркаптан/ (Одорант		
							СПМ - ТУ 51-81-88) (526)		
							Алканы С12-19 /в пересчете	2754(10)	0.045479331
							на С/ (Углеводороды		
							предельные C12-C19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
						0.7.60	10)		0 00550500
	6004	6004 03	Блок реагентов			8760	Ингибиторы коррозии: СНПХ	2840(612*)	0.28550592
			BP-2,5 №301				6301"A", CHIX 6302 "A",		
							СНПХ 6302 "Б" /по		
							изопропиловому спирту/ (
	6015	CO1E O4	Устье скважины			07.00	612*) Сероводород (0333(518)	0.0000143244
	0013	0013 04	№308			0 / 60	Дигидросульфид) (518)	0333 (310)	0.0000143244
			IN-2 () ()				Смесь углеводородов	0415(1502*)	0.002653586
							предельных С1-С5 (1502*)	0410(1007)	0.002033300
							Предельных СТ-СЗ (1302") Смесь углеводородов	0416(1503*)	0.023472599
							предельных С6-С10 (1503*)	0410(1303,)	0.023472333
							Смесь природных	1716 (526)	0.00000191946
							меркаптанов /в пересчете	1,10(020)	0.0000171740
							Mehranianop /p nehecdere		1

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	2754(10)	0.045479331
	6016		Блок реагентов БР-2,5 №308			8760	пересчете на С); Растворитель РПК-265П) (10) Ингибиторы коррозии: СНПХ 6301"А", СНПХ 6302 "А", СНПХ 6302 "Б" /по изопропиловому спирту/ (2840(612*)	0.28550592
							612*)		
	6017	6017 06	Устье скважины №306				Сероводород (0333 (518)	0.0000143244
			IN: 2 ∩ Ø				Дигидросульфид) (518) Смесь углеводородов предельных C1-C5 (1502*)	0415(1502*)	0.002653586
							Смесь углеводородов предельных C6-C10 (1503*)	0416(1503*)	0.023472599
							Смесь природных меркаптанов /в пересчете	1716 (526)	0.00000191946
							на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в	2754(10)	0.045479331
							пересчете на С); Растворитель РПК-265П) (10)		
	6018		Блок реагентов БР-2,5 №306				Ингибиторы коррозии: СНПХ 6301"A", СНПХ 6302 "A", СНПХ 6302 "Б" /по изопропиловому спирту/ (2840 (612*)	0.28550592
	6019		Устье скважины №315			8760	612*) Сероводород (Дигидросульфид) (518)	0333(518)	0.0000143244
			11.010				Смесь углеводородов	0415(1502*)	0.002653586

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

	A	1	2	3	4	5	6	7	8	9
								предельных С1-С5 (1502*)		
								Смесь углеводородов	0416(1503*)	0.023472599
								предельных С6-С10 (1503*)		
								Смесь природных	1716 (526)	0.00000191946
								меркаптанов /в пересчете		
								на этилмеркаптан/ (Одорант		
								СПМ - ТУ 51-81-88) (526)		
								Алканы С12-19 /в пересчете	2754(10)	0.045479331
								на С/ (Углеводороды		
								предельные С12-С19 (в		
								пересчете на С);		
								Растворитель РПК-265П) (
								10)		
		6020	6020 09	Блок реагентов			8760	Ингибиторы коррозии: СНПХ	2840 (612*)	0.28550592
				BP-2,5 №315				6301"A", CHIX 6302 "A",		
								СНПХ 6302 "Б" /по		
								изопропиловому спирту/ (
(000)	Площадка	0001	0001 10	C=			07.00	612*)	0333 (518)	0.0000654456
(UUZ) АГЗУ	ПЛОЩадка	0001	0001 10				8/60	Сероводород (Дигидросульфид) (518)	0333 (318)	0.0000654456
AI Sy				рассеивания				дигидросульфид) (316) Смесь углеводородов	0415 (1502*)	0.0121238
								предельных С1-С5 (1502*)	0413(1302")	0.0121230
								Смесь углеводородов	0416(1503*)	0.107242
								предельных С6-С10 (1503*)	0110(1303)	0.107212
								Смесь природных	1716 (526)	0.00000876971
								меркаптанов /в пересчете	1110(020)	
								на этилмеркаптан/ (Одорант		
								CIM - TY 51-81-88) (526)		
								Алканы С12-19 /в пересчете	2754 (10)	0.207787585
								на С/ (Углеводороды		
								предельные С12-С19 (в		
								пересчете на С);		
								Растворитель РПК-265П) (
								10)		
		6005	6005 11	Нефтегазосепара			8760	Сероводород (0333 (518)	0.000315037
				тор Спутник АМС				Дигидросульфид) (518)		
				40-8-1500				Смесь углеводородов	0415(1502*)	0.05836052

А	1	2	3	4	5	6	7	8	9
							предельных C1-C5 (1502*) Смесь углеводородов	0416(1503*)	0.516235
							предельных С6-С10 (1503*)	0410(1303)	0.310233
							Смесь природных	1716 (526)	0.0000422149
							меркаптанов /в пересчете		
							на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)		
							Алканы C12-19 /в пересчете	2754 (10)	1.000230235
							на С/ (Углеводороды	2731(10)	1.000230233
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	6006	6006 12	Блок реагентов			8760	Ингибиторы коррозии: СНПХ	2840 (612*)	0.050534688
			BP-10/100				6301"A", CHIIX 6302 "A", CHIIX 6302 "B" /no		
							изопропиловому спирту/ (
							612*)		
(003) УБСН	0002	0002 01	Факельная установка			5880	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.160735228
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.026119475
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.133946024
							Сера диоксид (Ангидрид	0330(516)	6.07309122879
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516) Сероводород (0333(518)	0.0051606101
							Дигидросульфид) (518)	0333 (310)	0.0001000101
							Углерод оксид (Окись	0337 (584)	1.339460237
							углерода, Угарный газ) (584)		
							Метан (727*)	0410(727*)	0.033486506
							Метантиол (Метилмеркаптан) (339)	1715 (339)	0.00001678046
	0003	0003 24	Печь подогрева			8760	Азота (IV) диоксид (Азота	0301(4)	1.040271725
			нефти				диоксид) (4)		

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							Азот (II) оксид (Азота	0304(6)	0.195050948
							оксид) (6) Сера диоксид (Ангидрид	0330 (516)	1.137797199
							сера диоксид (ангидрид сернистый, Сернистый,	0330 (310)	1.13//3/13/
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	10.43522574
							углерода, Угарный газ) (,	
							584)		
							Метан (727*)	0410(727*)	0.260068
	0004	0004 25	Свеча			8760	Сероводород (0333 (518)	0.0000654456
			рассеивания				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.0121238
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.1072424
							предельных С6-С10 (1503*)	1 = 1 < 1 = 0 < 1	
							Смесь природных	1716 (526)	0.00000876971
							меркаптанов /в пересчете		
							на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)		
							Алканы С12-19 /в пересчете	2754 (10)	0.207787585
							на С/ (Углеводороды	2/34(10)	0.207707303
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	0005	0005 26	Емкости для			8760	Сероводород (0333 (518)	0.006220956
			хранения нефти				Дигидросульфид) (518)		
			V=75м3- 6 ед.				Смесь углеводородов	0415(1502*)	1.1524321
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	10.19397
							предельных С6-С10 (1503*)		
							Смесь природных	1716 (526)	0.000833608
							меркаптанов /в пересчете		
							на этилмеркаптан/ (Одорант		
							СПМ - ТУ 51-81-88) (526)	2754 (10)	10 75122270
							Алканы C12-19 /в пересчете на C/ (Углеводороды	2/34(10)	19.75132379
							Гиа с\ (ятлевонороны		

А	1	2	3	4	5	6	7	8	9
							предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (
	6007	6007 30	Блочная сепарационная			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.000854371
			установка				Смесь углеводородов предельных С1-С5 (1502*)	0415(1502*)	0.15827227
							Смесь углеводородов предельных С6-С10 (1503*)	0416(1503*)	1.400015
							Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1716 (526)	0.000114486
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754(10)	2.712599542
	6008	6008 32	Отстойник нефти			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.000633094
							Смесь углеводородов предельных С1-С5 (1502*)	0415(1502*)	0.11728066
							Смесь углеводородов предельных С6-С10 (1503*)	0416(1503*)	1.037419
							Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1716 (526)	0.0000848346
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754(10)	2.010051798
	6009	6009 33	Насосы для			4000	Сероводород (0333 (518)	0.00004

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
			перекачки нефти				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.00741
							предельных С1-С5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.065546
							предельных С6-С10 (1503*)		
							Смесь природных	1716 (526)	0.00000536
							меркаптанов /в пересчете		
							на этилмеркаптан/ (Одорант		
							СПМ - ТУ 51-81-88) (526)		
							Алканы С12-19 /в пересчете	2754(10)	0.12699864
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6009	6009 34	Насосы для			4000	Сероводород (0333 (518)	0.00004
			перекачки нефти				Дигидросульфид) (518)	0.445.44500.13	0 00744
							Смесь углеводородов	0415 (1502*)	0.00741
							предельных С1-С5 (1502*)	0.41.6.(1.50.24)	0 065546
							Смесь углеводородов	0416(1503*)	0.065546
							предельных С6-С10 (1503*)	1716 (506)	0 00000536
							Смесь природных	1716 (526)	0.00000536
							меркаптанов /в пересчете на этилмеркаптан/ (Одорант		
							СПМ - ТУ 51-81-88) (526)		
							Алканы С12-19 /в пересчете	2754 (10)	0.12699864
							на С/ (Углеводороды	2/34(10)	0.12099004
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6010	6010 35	Нефтеналивная			8760	Сероводород (0333 (518)	0.0000372
			эстакада				Дигидросульфид) (518)	,	
							Смесь углеводородов	0415 (1502*)	0.0068913
							предельных С1-С5 (1502*)	'	
							Смесь углеводородов	0416(1503*)	0.060958
							предельных С6-С10 (1503*)	, , , , , ,	

А	1	2	3	4	5	6	7	8	9
							Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1716 (526)	0.0000049848
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0.118108735
	6011	6011 36	Установка " SULFATREAT XLP"			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.0018546448
							Смесь углеводородов предельных C1-C5 (1502*)	0415 (1502*)	0.05743235562
							Смесь углеводородов предельных С6-С10 (1503*)	0416(1503*)	0.00231676491
							Смесь природных меркаптанов /в пересчете на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)	1716 (526)	0.00001232322
(004) Производственн	0006	0006 31	Емкости для хранения			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.00000439
ая база			дизтоплива				Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0.001564
	0007	0007 31	Емкости для хранения			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.00000439
			дизтоплива				Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0.001564
	0008	0008 31	Емкости для			8760	Сероводород (0333 (518)	0.00000439

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
			хранения				Дигидросульфид) (518)		
			дизтоплива				Алканы С12-19 /в пересчете	2754(10)	0.001564
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
	0009	0000 16	Емкость для			9760	10) Смесь углеводородов	0415(1502*)	0.01112
	0009	0009 16				0/60	предельных С1-С5 (1502*)	0413(1302^)	0.01112
			хранения бензина				Предельных СТ-СЗ (1302")	0416(1503*)	0.00411
			Оензина				предельных С6-С10 (1503*)	0410(1303)	0.00411
							Пентилены (амилены - смесь	0501 (460)	0.000411
							изомеров) (460)	0001(100)	0.000111
							Бензол (64)	0602(64)	0.000378
							Диметилбензол (смесь о-,	0616 (203)	0.0000477
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.000357
							Этилбензол (675)	0627 (675)	0.00000986
	0010	0010 17	Дизельгенератор			200	Азота (IV) диоксид (Азота	0301(4)	0.29376
			200 кВт				диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.047736
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.01836
							черный) (583)	0000 (516)	0 0450
							Сера диоксид (Ангидрид	0330 (516)	0.0459
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516) Углерод оксид (Окись	0337 (584)	0.23868
							углерод оксид (окись углерода, Угарный газ) (0337 (304)	0.23000
							[584]		
							Бенз/а/пирен (3,4-	0703(54)	0.000000505
							Бензпирен) (54)	0,00(01)	0.00000000
							Формальдегид (Метаналь) (1325 (609)	0.00459
							609)		111110
							Алканы С12-19 /в пересчете	2754(10)	0.11016
							на С/ (Углеводороды		
							предельные С12-С19 (в		

A	1	2	3	4	5	6	7	8	9
							пересчете на C); Растворитель РПК-265П) (
							110)		
	0011	0011 18	Сварочный			8760	Азота (IV) диоксид (Азота	0301(4)	0.00019
	0011		генератор Хонда				диоксид) (4)	0001(1)	0.00013
							Азот (II) оксид (Азота	0304(6)	0.00003
							оксид) (6)		
							Сера диоксид (Ангидрид	0330 (516)	0.000096
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.03
							углерода, Угарный газ) (584)		
							Алканы С12-19 /в пересчете	2754(10)	0.0024
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	0023	0023 01	Свеча			8760	Сероводород (0333 (518)	0.0000654456
			рассеивания				Дигидросульфид) (518)		
			дренажных				Смесь углеводородов	0415(1502*)	0.0121238
			емкостей ДКС				предельных С1-С5 (1502*)	0.44.6.44.5.00.1.	0 1070101
							Смесь углеводородов	0416(1503*)	0.1072424
							предельных С6-С10 (1503*)	1716 (506)	0 00000076071
							Смесь природных	1716 (526)	0.00000876971
							меркаптанов /в пересчете		
							на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526)		
							Алканы C12-19 /в пересчете	2754 (10)	0.207787585
							на С/ (Углеводороды	2/34(10)	0.207707303
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							110)		
	6012	6012 19	Топливораздаточ			4000	Сероводород (0333 (518)	0.00000452
	0012		ная колонка для				Дигидросульфид) (518)	0000 (010)	1 0.00000102

A	1	2	3	4	5	6	7	8	9
			диэтоплива				Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754(10)	0.00161
	6013	6013 20	Топливораздаточ ная колонка для			4000	Смесь углеводородов предельных C1-C5 (1502*)	0415(1502*)	0.0172
			бензина				Смесь углеводородов предельных С6-С10 (1503*)	0416(1503*)	0.00636
							Пентилены (амилены - смесь изомеров) (460)	0501(460)	0.000636
							Бензол (64)	0602(64)	0.000585
							Диметилбензол (смесь о-, м-, п- изомеров) (203)	0616(203)	0.0000738
							Метилбензол (349)	0621 (349)	0.000552
							Этилбензол (675)	0627 (675)	0.00001526
	6014	6014 21	Электросварка Сварочный пост			500	Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)	0123(274)	0.00278
							Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)	0143(327)	0.000218
							Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.00054
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.00266
							Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342(617)	0.000186
							Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (0344(615)	0.0002

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)		
							Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот,	2908 (494)	0.0002
							цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер,		
							зола, кремнезем, зола углей казахстанских месторождений) (494)		
	6025	6025 01	Газовый сепаратор ГС-1-			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.0001082
			2,5-600-2 на				Пентан (450)	0405 (450)	0.000107
			входе				Метан (727*)	0410 (727*)	0.00057
							Изобутан (2-Метилпропан) (279)	0412(279)	0.0001542
							Смесь углеводородов предельных С1-С5 (1502*)	0415(1502*)	0.00256
	6026	6026 01	Газовый сепаратор ГС-1-			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.00000605
			1,5-1200-2 на				Пентан (450)	0405(450)	0.0000928
			выходе				Метан (727*)	0410(727*)	0.000933
							Изобутан (2-Метилпропан) (279)	0412(279)	0.0001356
							Смесь углеводородов предельных С1-С5 (1502*)	0415(1502*)	0.00267
(005) Капитальный	0013	0013 01	Станок КРС ХЈ- 450			8760	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	3.624128
ремонт скважин							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.5889208
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.226508
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.56627

А	1	2	3	4	5	6	7	8	9
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	2.944604
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.000006229
							Формальдегид (Метаналь) (1325 (609)	0.056627
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754(10)	1.359048
	0014	0014 01	Силовой пвигатель			8760	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	12.684416
			бурового насоса				Азот (II) оксид (Азота оксид) (6)	0304(6)	2.0612176
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.792776
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	1.98194
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	10.306088
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.000021801
							Формальдегид (Метаналь) (1325 (609)	0.198194
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754 (10)	4.756656
	0015	0015 01	дэс-300			8760	Азота (IV) диоксид (Азота	0301(4)	6.44288

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
					_	_	диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	1.046968
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.40268
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	1.0067
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	5.23484
							углерода, Угарный газ) (
							584)		
							Бенз/а/пирен (3,4-	0703 (54)	0.000011074
							Бензпирен) (54)		
							Формальдегид (Метаналь) (1325 (609)	0.10067
							609)		
							Алканы С12-19 /в пересчете	2754 (10)	2.41608
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	0016	0016 01	ДЭС-100			8760	Азота (IV) диоксид (Азота	0301(4)	3.07936
							диоксид) (4)	000476	0 500006
							Азот (II) оксид (Азота	0304(6)	0.500396
							оксид) (6)	0000 (500)	0 10046
							Углерод (Сажа, Углерод	0328 (583)	0.19246
							черный) (583)	0220 (51.6)	0 40115
							Сера диоксид (Ангидрид	0330 (516)	0.48115
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)	0227 (504)	2.50198
							Углерод оксид (Окись	0337 (584)	2.50198
							углерода, Угарный газ) (
							584) Бенз/а/пирен (3,4-	0703(54)	0.000005293
							Бензлирен (3,4-	0703(34)	0.000003293
								1225/600\	0.048115
							Формальдегид (Метаналь) (1325 (609)	0.048115
							609)		

A	1	2	3	4	5	6	7	8	9
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754(10)	1.15476
	0017	0017 01	Цементировочный агрегат ЦА-320			8760	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	2.69184
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.437424
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.16824
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.4206
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	2.18712
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.000004627
							Формальдегид (Метаналь) (1325 (609)	0.04206
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754(10)	1.00944
	0018	0018 01	Емкости ДТ			8760	Сероводород (Дигидросульфид) (518)	0333 (518)	0.0000659
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754 (10)	0.02346
	0019	0019 01	ппу 1600/100			8760	Азота (IV) диоксид (Азота	0301(4)	0.971

А	1	2	3	4	5	6	7	8	9
							диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.1578
							оксид) (6) Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.08
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	1.88
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	4.44
	6022		Выкидные линии и блок задвижек				Сероводород (Дигидросульфид) (518)	0333 (518)	0.00000710821
			(манифольд)				Смесь углеводородов предельных С1-С5 (1502*)	0415 (1502*)	0.0013168
							Смесь углеводородов предельных C6-C10 (1503*)	0416(1503*)	0.0116479
							Смесь природных меркаптанов /в пересчете	1716 (526)	0.0000009525
							на этилмеркаптан/ (Одорант СПМ - ТУ 51-81-88) (526) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (0.022568339
	6024	6024 01	Сварочный пост			1000	10) Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на	0123(274)	0.00214
							железо/ (274) Марганец и его соединения /в пересчете на марганца (0143(327)	0.000184
							IV) оксид/ (327) Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0003
							Углерод оксид (Окись	0337 (584)	0.00266

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							углерода, Угарный газ) (584)		
							Фтористые газообразные соединения /в пересчете на	0342(617)	0.00015
							фтор/ (617) Фториды неорганические	0344(615)	0.00066
							плохо растворимые - (алюминия фторид, кальция	0344(013)	0.00000
							фторид, натрия		
							гексафторалюминат) (
							Фториды неорганические		
							плохо растворимые /в		
							пересчете на фтор/) (615)		
							Пыль неорганическая,	2908 (494)	0.00028
							содержащая двуокись		
							кремния в %: 70-20 (шамот, цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
(006) Горячая	0020	0020 01	ппу 1600/100			100	Азота (IV) диоксид (Азота	0301(4)	0.01968
промывка							диоксид) (4)	000446	0 0000
коллекторной							Азот (II) оксид (Азота	0304(6)	0.0032
линии скважин, АГЗУ							оксид) (6) Углерод (Сажа, Углерод	0328 (583)	0.00162
AI 37							черный) (583)	0320 (303)	0.00102
							Сера диоксид (Ангидрид	0330 (516)	0.0381
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.09
							углерода, Угарный газ) (
	0001	0.001.01					584)	0001/4:	0 0 - 1 - 1
	0021	0021 01	Цементировочный			100	Азота (IV) диоксид (Азота	0301(4)	0.05194368
			агрегат				диоксид) (4)		

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							Азот (II) оксид (Азота оксид) (6)	0304(6)	0.008440848
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.00324648
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.0081162
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.04220424
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.00000089
							Формальдегид (Метаналь) (1325 (609)	0.00081162
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	2754(10)	0.01947888
	0022	0022 01	Агрегат для депарафинизации			100	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.639936
			скважин АДПМ - 12/150				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.1039896
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.039996
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	0.09999
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.519948
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.0000011
							Формальдегид (Метаналь) (609)	1325 (609)	0.009999
							Алканы С12-19 /в пересчете	2754(10)	0.239976

А	1	2	3	4	5	6	7	8	9
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
(007)	0024	0024 01	ДВС сварочного				Азота (IV) диоксид (Азота	0301(4)	0.01238
Строительно-			агрегата				диоксид) (4)		
и энижаные							Азот (II) оксид (Азота	0304(6)	0.002012
одготовительн							оксид) (6)		
ие работы скв.							Углерод (Сажа, Углерод	0328 (583)	0.00108
308							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.00162
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.010
							углерода, Угарный газ) (
							584)		
							Бенз/а/пирен (3,4-	0703 (54)	0.0000000
							Бензпирен) (54)		
							Формальдегид (Метаналь) (1325 (609)	0.00021
							609)		
							Алканы С12-19 /в пересчете	2754(10)	0.005
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	6027	6027 01	Рабола				Пыль неорганическая,	2908 (494)	0.03
	0027	0027 01	бульдозера				содержащая двуокись	2900 (494)	0.03
			Оульдозера				кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
	6028	6028 0	1 Работа				Пыль неорганическая,	2908 (494)	0.1676
			экскаватора				содержащая двуокись		
							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6029	6029 0	1 Сварочные				Железо (II, III) оксиды (0123 (274)	0.02267
			работы				диЖелезо триоксид, Железа		
							оксид) /в пересчете на		
							железо/ (274)		
							Марганец и его соединения	0143(327)	0.0008964
							/в пересчете на марганца (
							IV) оксид/ (327)		
							Азота (IV) диоксид (Азота	0301(4)	0.00824
							диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.001338
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.01307
							углерода, Угарный газ) (
							584)		
							Фтористые газообразные	0342 (617)	0.00014
							соединения /в пересчете на		
							фтор/ (617)	0.64.6.40.00	0 10105
	6030	6030 0	1 Лакокрасочные				Диметилбензол (смесь о-,	0616(203)	0.10125
			работы				м-, п- изомеров) (203)	0750 (10041)	0 00075
(000) =	0005	0005 0					Уайт-спирит (1294*)	2752 (1294*)	0.03375
_ ` _ ·	0025	0025 0	1 Буровой станок				Азота (IV) диоксид (Азота	0301(4)	11.34518
бурение и			ZJ50DB (либо				диоксид) (4)	000476	1 04050155
крелление скв.			его аналог не				Азот (II) оксид (Азота	0304(6)	1.84359175
Nº308			превыш. характ)				оксид) (6)	0200 (502)	0 (07777
							Углерод (Сажа, Углерод	0328 (583)	0.6077775
							черный) (583)	0220 (516)	0 40111
							Сера диоксид (Ангидрид	0330 (516)	2.43111

А	1	2	3	4	5	6	7	8	9
							сернистый, Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	8.91407
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.000018233
							Формальдегид (Метаналь) (609)	1325 (609)	0.162074
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С); Растворитель РПК-265П) (10)	2754(10)	4.05185
	0026	0026 01	Буровой станок ZJ50DB (либо				Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	11.34518
			его аналог не превыш. характ)				Азот (II) оксид (Азота оксид) (6)	0304(6)	1.84359175
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.6077775
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	2.43111
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	8.91407
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.000018233
							Формальдегид (Метаналь) (609)	1325 (609)	0.162074
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C);	2754(10)	4.05185
							Растворитель РПК-265П) (10)		

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
	0027	0027 01	Передвижная				Азота (IV) диоксид (Азота	0301(4)	0.1182
			паровая				диоксид) (4)		
			установка №1				Азот (II) оксид (Азота	0304(6)	0.0192
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.00973
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.229
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.541
							углерода, Угарный газ) (
							584)		
	0028	0028 01	Цементировочный				Азота (IV) диоксид (Азота	0301(4)	4.680704
			агрегат				диоксид) (4)		
							Азот (II) оксид (Азота	0304(6)	0.7606144
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.292544
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.73136
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	3.803072
							углерода, Угарный газ) (
							584)		
							Бенз/а/пирен (3,4-	0703 (54)	0.000008045
							Бензпирен) (54)		
							Формальдегид (Метаналь) (609)	1325 (609)	0.073136
							Алканы С12-19 /в пересчете	2754(10)	1.755264
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	0029	0029 01	Цементно-				Азота (IV) диоксид (Азота	0301(4)	4.8791928
			смесительная				диоксид) (4)		
			машина			1	Азот (II) оксид (Азота	0304(6)	0.79286883

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.425511
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.6382665
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	4.25511
							углерода, Угарный газ) (
							584)		
							Бенз/а/пирен (3,4-	0703 (54)	0.000007801
							Бензпирен) (54)		
							Формальдегид (Метаналь) (609)	1325 (609)	0.0851022
							Алканы С12-19 /в пересчете	2754(10)	2.127555
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	6031	6031 01	Емкость				Сероводород (0333 (518)	0.0000622
			хранения				Дигидросульфид) (518)		
			дизтоплива				Алканы С12-19 /в пересчете	2754(10)	0.02214
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6032	6032 01	Насос для				Сероводород (0333 (518)	0.001197
			перекачки				Дигидросульфид) (518)		
			дизтоплива				Алканы С12-19 /в пересчете	2754(10)	0.426
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6033	6033 01					Алканы С12-19 /в пересчете	2754 (10)	0.00022572
			приготовления				на С/ (Углеводороды		

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
			бурового				предельные С12-С19 (в		
			раствора				пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6034	6034 01	Емкость				Алканы С12-19 /в пересчете	2754(10)	0.06096
			бурового шлама				на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6035	6035 01					Алканы С12-19 /в пересчете	2754 (10)	0.127008
			бурового				на С/ (Углеводороды		
			раствора				предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
	6006	6006 01					10)	0.00.5 (.04.61.)	0 0001001
	6036	6036 01					Масло минеральное нефтяное	2735 (716*)	0.0001994
			хранения масла				(веретенное, машинное,		
	6027	6027 01	T				цилиндровое и др.) (716*)	0705 (716+)	0 00002005
	6037	6037 01					Масло минеральное нефтяное	2/35(/16^)	0.00003985
			отработанного				(веретенное, машинное,		
	6038	6030 01	масла Пересыпка				цилиндровое и др.) (716*)	2908 (494)	0.00354
	0030	0030 01	цемента				Пыль неорганическая,	2900 (494)	0.00334
			цемента				содержащая двуокись кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6039	6039 01	Блок				Пыль неорганическая,	2908 (494)	0.248376
			приготовления				содержащая двуокись		
			цементного				кремния в %: 70-20 (шамот,		
			раствора				цемент, пыль цементного		
							производства - глина,		

А	1	2	3	4	5	6	7	8	9
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
009) Период	0030	0030 01	Установка				=	0301(4)	6.110468
спытания скв.			освоения ZJ650				диоксид) (4)		
308			(либо его				Азот (II) оксид (Азота	0304(6)	0.99295105
			аналог не				оксид) (6)		
			превыш. характ)				Углерод (Сажа, Углерод	0328 (583)	0.3273465
			inpossini, inaparti,				черный) (583)		0.0270100
							Сера диоксид (Ангидрид	0330 (516)	1.309386
							сернистый, Сернистый газ,	0000 (010)	1.003000
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	4.801082
							углерода, Угарный газ) (0007 (001)	1.001002
							584)		
							Бенз/а/пирен (3,4-	0703 (54)	0.00000982
							Бензпирен) (54)	0703(31)	0.00000002
								1325 (609)	0.0872924
							609)	1323 (003)	0.0072324
							Алканы С12-19 /в пересчете	2754 (10)	2.18231
							на С/ (Углеводороды	2/34(10)	2.10231
							предельные С12-С19 (в		
							пересчете на C);		
							Растворитель РПК-265П) (
							10)		
	0031	0031 01	Установка				,	0301(4)	6.110468
	0031	0031 01	освоения ZJ650				диоксид) (4)	0301(4)	0.110400
			(либо его				диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.99295105
			1				оксид) (6)	0304(6)	0.99293103
			аналог не					0328 (583)	0.3273465
			превыш. характ)				Углерод (Сажа, Углерод	0320 (303)	0.32/3403
							черный) (583)	0330 (516)	1.309386
							Сера диоксид (Ангидрид	0330 (316)	1.309386
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)	02277504	4 001000
							Углерод оксид (Окись	0337 (584)	4.801082

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6	7	8	9
							углерода, Угарный газ) (584)		
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703 (54)	0.00000982
							Формальдегид (Метаналь) (609)	1325 (609)	0.0872924
							Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете на С);	2754(10)	2.18231
							Растворитель РПК-265П) (10)		
	0032	0032 01	Установка освоения ZJ650(Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	3.870944
			САТ-3412) (либо его аналог не				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.6290284
			превыш. характ)				Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.241934
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.604835
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	3.145142
							Бенз/а/пирен (3,4- Бензпирен) (54)	0703(54)	0.000006653
							Формальдегид (Метаналь) (609)	1325 (609)	0.0604835
							Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (2754(10)	1.451604
	0033	0033 01	' '				10) Азота (IV) диоксид (Азота	0301(4)	0.100736
			генератор VOLVO - TAD1241GE (диоксид) (4) Азот (II) оксид (Азота	0304(6)	0.0163696

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
			либо его аналог				оксид) (6)		
			не превыш.				Углерод (Сажа, Углерод	0328 (583)	0.006296
			характ)				черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.01574
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.081848
							углерода, Угарный газ) (
							584)		
							Бенз/а/пирен (3,4-	0703 (54)	0.000000173
							Бензпирен) (54)		
							Формальдегид (Метаналь) (609)	1325 (609)	0.001574
							Алканы С12-19 /в пересчете	2754(10)	0.037776
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		
	0034	0034 01	Передвижная				Азота (IV) диоксид (Азота	0301(4)	0.061
			паровая				диоксид) (4)		
			установка №2				Азот (II) оксид (Азота	0304(6)	0.00992
							оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.00503
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.1182
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.2794
							углерода, Угарный газ) (
							584)		
	6040	6040 01	Нефтегазосепара				Сероводород (0333 (518)	0.001103286
			тор				Дигидросульфид) (518)	0.44 5 /4 5 0 0 : :	0 004055
							Смесь углеводородов	0415(1502*)	0.2043837
							предельных С1-С5 (1502*)	0.44.6.44.= 5.5	4 00=000==
							Смесь углеводородов	0416(1503*)	1.807899255
							предельных С6-С10 (1503*)		

ЭРА v3.0 TOO "Lineplus"

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

А	1	2	3	4	5	6	7	8	9
							Смесь природных	1716 (526)	0.00014784
							меркаптанов /в пересчете		
							на этилмеркаптан/ (Одорант		
							СПМ - ТУ 51-81-88) (526)		
							Алканы С12-19 /в пересчете	2754(10)	3.502894862
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6041	6041 01	Hacoc				Сероводород (0333 (518)	0.0001296
			технологический				Дигидросульфид) (518)		
							Смесь углеводородов	0415(1502*)	0.1565
							предельных C1-C5 (1502*)		
							Смесь углеводородов	0416(1503*)	0.0579
							предельных С6-С10 (1503*)		
							Бензол (64)	0602(64)	0.000756
							Диметилбензол (смесь о-,	0616(203)	0.0002376
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621(349)	0.000475
	6042	6042 01	Емкость				Сероводород (0333 (518)	0.0000425
			хранения				Дигидросульфид) (518)		
			дизтоплива				Алканы С12-19 /в пересчете	2754(10)	0.01514
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6043	6043 01	Насос для				Сероводород (0333 (518)	0.001574
			перекачки				Дигидросульфид) (518)		
			дизтоплива				Алканы С12-19 /в пересчете	2754(10)	0.56
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		

ЭРА v3.0 TOO "Lineplus"

1. Источники выделения вредных (загрязняющих) веществ на 2026 год

A	1	2	3	4	5	6		/		8	9	
Примечание: В г	рафе 8 г	з скобка:	х (без "*") ук	азан код 3В из	з таблицы	і 1 Прило	жения 1 к	Приказу	Министерст	ва националь	ной экономик	1
РК от 28.02.201	5 r. №16	68 (спис	ок ПЛК), со "*"	указан кол ЗЕ	3 из табл	ицы 2 вы	шеуказанн	опо Прило	жения (спи	сок ОБУВ).		

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ ЭРА v3.0 ТОО "Lineplus"

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, $\tau/$ год на 2026 год

AKTRO	инская оол., мугалжарский, тос	Apan herpone	ум кэнитал 20	20				
Код		Количество	В том	числе	из по	ступивших на с	чистку	Всего
заг-	Наименование	загрязняющих						выброшено
-екд	загрязняющего	веществ	выбрасыва-	поступает	выброшено	уловлено и	обезврежено	В
ЩЗКН	вещества	то хишкдохто	ется без	на	В			атмосферу
веще		источника	очистки	очистку	атмосферу	фактически	из них ути-	
ства		выделения					лизировано	
1	2	3	4	5	6	7	8	9
				ощадка:01				
	В С Е Г О по площадке:01	283.493969549	283.493969549	0	0	0	0	283.493969549
	в том числе:							
	Твердые:	5.411609668	5.411609668	0	0	0	0	5.411609668
	хин си:							
	Железо (II, III) оксиды (0.02759	0.02759	0	0	0	0	0.02759
	диЖелезо триоксид, Железа							
	оксид) /в пересчете на							
	железо/ (274)							
	Марганец и его соединения /в	0.0012984	0.0012984	0	0	0	0	0.0012984
	пересчете на марганца (IV)							
	оксид/ (327)	4 005504	4 005705504	0				4 005505604
0328	Углерод (Сажа, Углерод	4.925735504	4.925735504	0	0	0	0	4.925735504
0244	черный) (583)	0 00000	0 00006	0	0			0 00000
0344	Фториды неорганические плохо	0.00086	0.00086	U	U	U	0	0.00086
	растворимые - (алюминия							
	фторид, кальция фторид, натрия гексафторалюминат) (
	Фториды неорганические плохо							
	растворимые /в пересчете на							
	фтор/) (615)							
	Бенз/а/пирен (3,4-Бензпирен)	0.000129764	0.000129764	0	0	0	0	0.000129764
0,00	(54)	0.000129701	0.000125701	Ö	0			0.000129701
2908	Пыль неорганическая,	0.455996	0.455996	0	0	0	0	0.455996
	содержащая двуокись кремния в							
1								

ЭРА v3.0 TOO "Lineplus"

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год

на 2026 год

AKTIOC	инская обл., Мугалжарский, ТОС							
1	2	3	4	5	6	7	8	9
	%: 70-20 (шамот, цемент, пыль							
	цементного производства -							
	глина, глинистый сланец,							
	доменный шлак, песок,							
	клинкер, зола, кремнезем,							
	зола углей казахстанских							
	месторождений) (494)							
	Газообразные, жидкие:	278.082359881	278.082359881	0	0	0	0	278.082359881
	N3 HNX:							
0301	Азота (IV) диоксид (Азота	80.498821433	80.498821433	0	0	0	0	80.498821433
	диоксид) (4)							
0304	Азот (II) оксид (Азота оксид)	13.106941401	13.106941401	0	0	0	0	13.106941401
	(6)							
0330	Сера диоксид (Ангидрид	23.5800591278	23.5800591278	0	0	0	0	23.5800591278
	сернистый, Сернистый газ,							
	Сера (IV) оксид) (516)							
0333	Сероводород (Дигидросульфид)	0.01972308151	0.01972308151	0	0	0	0	0.01972308151
	(518)							
0337	Углерод оксид (Окись	80.010516217	80.010516217	0	0	0	0	80.010516217
	углерода, Угарный газ) (584)							
0342	Фтористые газообразные	0.000476	0.000476	0	0	0	0	0.000476
	соединения /в пересчете на							
	фтор/ (617)							
	Пентан (450)	0.0001998		0	0	0	0	0.0001998
	Метан (727*)	0.295057506		0	0	0	0	0.295057506
0412	Изобутан (2-Метилпропан) (0.0002898	0.0002898	0	0	0	0	0.0002898
	279)							
0415	Смесь углеводородов	2.00822544962	2.00822544962	0	0	0	0	2.00822544962
	предельных С1-С5 (1502*)							
0416	Смесь углеводородов	15.6455401159	15.6455401159	0	0	0	0	15.6455401159
	предельных С6-С10 (1503*)							
0501	Пентилены (амилены - смесь	0.001047	0.001047	0	0	0	0	0.001047
	изомеров) (460)							
0602	Бензол (64)	0.001719	0.001719	0	0	0	0	0.001719

ЭРА v3.0 TOO "Lineplus"

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год

на 2026 год

711(1100	инская оол., мугалжарский, тос	Tipasi neiposie	ym Romman 20				1	1
1	2	3	4	5	6	7	8	9
0616	Диметилбензол (смесь о-, м-,	0.1016091	0.1016091	0	0	0	0	0.1016091
	п- изомеров) (203)							
0621	Метилбензол (349)	0.001384	0.001384	0	0	0	0	0.001384
0627	Этилбензол (675)	0.00002512	0.00002512	0	0	0	0	0.00002512
1325	Формальдегид (Метаналь) (609)	1.18301712	1.18301712	0	0	0	0	1.18301712
1715	Метантиол (Метилмеркаптан) (0.00001678046	0.00001678046	0	0	0	0	0.00001678046
	339)							
1716	Смесь природных меркаптанов /	0.00128595099	0.00128595099	0	0	0	0	0.00128595099
	в пересчете на этилмеркаптан/							
	(Одорант СПМ - ТУ 51-81-88) (
	526)							
2735	Масло минеральное нефтяное (0.00023925	0.00023925	0	0	0	0	0.00023925
	веретенное, машинное,							
	цилиндровое и др.) (716*)							
2752	Уайт-спирит (1294*)	0.03375	0.03375	0	0	0	0	0.03375
2754	Алканы С12-19 /в пересчете на	60.39985826	60.39985826	0	0	0	0	60.39985826
	С/ (Углеводороды предельные							
	С12-С19 (в пересчете на С);							
	Растворитель РПК-265П) (10)							
2840	Ингибиторы коррозии: СНПХ	1.192558368	1.192558368	0	0	0	0	1.192558368
	6301"А", СНПХ 6302 "А", СНПХ							
	6302 "Б" /по изопропиловому							
	спирту/ (612*)							

7. РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ

3.1.1. Расчет выбросов вредных веществ в атмосферу от источников ТОО «Арал Петролеум Кэпитал» на 01.01.2025-31.12.2025г. <u>Плошадка добывающих скважин:</u>

Источник загрязнения № 6003.6015.6017.6019. Неорганизованные Источник выделения № 002.004.006.008.010 Скважины №№ 301. 308. 306. 315. Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из неплотностей запорно-регулирующей арматуры и фланцевых соединений.

Расчет выбросов загрязняющих веществ от запорно-регулирующей арматуры и фланцевых соединений определяется по формуле:

Q=B*C*n*10⁻². кг/часгде:

В – величина утечки углеводородов. кг/час;

С – процент потерявших герметичность уплотнений. n – Количество фланцевых соединений – 35 шт.

n – Количество запорно-регулирующей арматуры – 12 шт.

$$M_{cek}$$

$$= \frac{Q}{3.6}$$
 M_{coo}

$$= \frac{Q \times T}{1000}$$

- Количество скважин 4 шт.
- Время работы скважин №№ 301. 308. 306. 315 8760 час/год.

Источники	Кол-	C. %	B.	Q.	М. г/сек	М. т/год
выделения	во		кг/час	кг/час		
Неплотности запорно-						0.000040
регулирующей	12	7.0	0.0095	0.00798	0.0022167	0,0699048
арматуры						
Фланцевые соединения	35	2.0	0.00028	0.000196	0.0000544	0,00171696
					0.0000344	
Всего:					0,0022711	0,07162176
					0,0022711	
Скважины №№ 301. 308	. 306. 315	i .			0.0022711	0,07162176
					0.0022/11	

Выбросы индивидуальных компонентов по группам от одной скважины

Опрадалдемий	Углеводороды	предельные			Смесь
Определяемый параметр	C ₁ - C ₅	C_{6} - C_{10} C_{12} - C_{19}		Сероводород	природных
параметр	C1 C3	C6 C10	C12 C19		меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
Мі. г/сек	0.0000841443	0.0007443076	0.0014421331	0.00000045	0.0000006
G _i . т/год	0.00265359	0.023473	0.045479331	1.43244E-05	1.91946E-06

Источник загрязнения № 6004.6016.6018.6020 Неорганизованные

Источник выделения №003.005.007.009.011 Блок реагентов скважин №№ 301. 308. 306. 315.

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из неплотностей запорно-регулирующей арматуры и фланцевых соединений.

Расчет выбросов загрязняющих веществ от запорно-регулирующей арматуры и фланцевых соединений определяется по формуле:

². кг/часгде:

В – величина утечки углеводородов. кг/час;

С — процент потерявших герметичность уплотнений. n — Количество фланцевых соединений — 30 шт.

n – Количество запорно-регулирующей арматуры – 12 шт.

$$M_{ce\kappa} = \frac{Q}{3.6}$$

$$M_{coo} = \frac{Q \times T}{1000}$$

- ▶ Количество скважин 4 шт.
- Время работы скважин №№ 301. 308. 306. 315. 8760 час/год.

Источники выделения	Кол-во	C. %	В. кг/час	Q. кг/час	М. г/сек	М. т/год
Неплотности запорнорегулирующей арматуры	12	7.0	0.0095	0.00798	0.0022167	0,0349524
Фланцевые соединения	30	2.0	0.00028	0.000168	0.0000467	0.00073584
Всего:					0.0022634	0,07137648
Скважины № 301. 308. 306	5. 315.				0.0022634	0,07137648
Ингибиторы коррозии: CF 6302 «Б»	А». СНПХ	0.0090536	0,28550592			

Источник загрязнения N 0012, Дизельгенератор 30 кВт Источник выделения N 001, Дымовая труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 4.51

Эксплуатационная мощность стационарной дизельной установки $P_{\mathfrak{g}}$, кВт, 30

Удельный расход топлива на экспл./номин. режиме работы двигателя b_{j} , г/кBт*ч, 1503.33

Температура отработавших газов T_{o2} , K, 573

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{az} , кг/с:

$$G_{oz} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 1503.33 * 30 = 0.393271128$$
 (A.3)

Удельный вес отработавших газов γ_{nz} , кг/м³:

$$\gamma_{oz} = 1.31 \, / \, (1 + T_{oz} \, / \, 273) = 1.31 \, / \, (1 + 573 \, / \, \, 273) = 0.422730496 \quad (\text{A}.5)$$

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов \mathbf{Q}_{az} , \mathbf{M}^3/\mathbf{c} :

$$Q_{o2} = G_{o2} / \gamma_{o2} = 0.393271128 / 0.422730496 = 0.930311703$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального

ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального

ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO_3

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.068666667	0.155144	0	0.068666667	0.155144
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота	0.011158333	0.0252109	0	0.011158333	0.0252109
	оксид) (6)					
0328	Углерод (Сажа,	0.005833333	0.01353	0	0.005833333	0.01353
	Углерод черный)					
	(583)					
0330	Сера диоксид	0.009166667	0.020295	0	0.009166667	0.020295
	(Ангидрид					
	сернистый,					
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	0.06	0.1353	0	0.06	0.1353

	углерода, Угарный					
	газ) (584)					
0703	Бенз/а/пирен (3,4-	0.00000108	0.000000248	0	0.00000108	0.000000248
	Бензпирен) (54)					
1325	Формальдегид	0.00125	0.002706	0	0.00125	0.002706
	(Метаналь) (609)					
2754	Алканы С12-19 /в	0.03	0.06765	0	0.03	0.06765
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19					
	(в пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					

Плошадка АГЗУ:

Источник загрязнения № 6005. Неорганизован

Источник выделения № 011. Нефтегазосепаратор Спутник АМС 40-8-1500 Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

Расчет выбросов составлен для нефтегазосепаратора «Спутник» с учетом других типов неплотностей арматуры. фланцевых соединений и предохранительных клапанов определяетсяпо формуле:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений; n — Количество фланцевых соединений — 24 шт.

- n Количество предохранительных клапанов 2 шт.
- n Количество других типов неплотностей арматуры 10 шт.

Количество выбросов углеводородов из нефтегазосепаратора при работе определяетсяпо формуле:

$$Q = 0.004$$
 *(PV/1011)^{0.8} / Kg (кг/час). где: P — давление в аппарате; V — объем аппарата. $M_{cek} = \frac{Q}{3.6}$

$$M_{coo} = \frac{Q \times T}{1000}$$

- Спутник АМС 40-8-1500 1 шт.
- Время работы 8760 час/год.

Наименование	Р. гПа	V. m ³	Kg	М. кг/час	М. г/сек	М. т/год	
Спутник АМС	40000	0.8	0.33	0.192242	0.05340056	0.835099248	
Наименование	Кол-во	C. %	B.	М. кг/час	М. г/сек	М. т/год	
			кг/час				
Клапаны	2	35.0	0.111	0.0777	0.02158333	0,680652	
Другие типы	10	7.0	0.0095	0.00665	0.00184722		
неплотностей арматуры	10	7.0	0.0093	0.00003	0.00104722	0,058254	
Фланцевые соединения	24	2.0	0.00028	0.0001344	0.0000373	0,001177344	
Итого:	Итого:						

Выбросы индивидуальных компонентов по группам

Определяемый	Углеводороды	предельные	1.		Смесь
параметр	C ₁ - C ₅	C ₆ - C ₁₀	C ₁₂ - C ₁₉	Сероводород	природных меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
М _і . г/сек	0.00284797	0.025192	0.048810918	1.53737E-05	2.06007E-06
G _i . т/год	0.05836052	0.516235	1.000230235	0.000315037	4.22149E-05

Источник загрязнения № 6006. Неорганизован Источник выделения № 012. Блок реагентов БР-

*10/100*Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из других типов неплотностей арматуры. фланцевых соединений и уплотнения насосов.

Расчет выбросов загрязняющих веществ от других типов неплотностей арматуры. фланцевых соединений и уплотнения насосов определяется по формуле:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений. n — Количество фланцевых соединений — 13 шт.

n- Количество других типов неплотностей арматуры -4~ шт. n- Количество уплотнения насосов -2~ шт.

$$M_{cek} = \frac{Q}{3.6}$$

$$M_{zoo} = \frac{Q \times T}{1000}$$

Время работы— 8760 час/год.

Источники выделения	Кол-во	C. %	В. кг/час	М. кг/час	М. г/сек	М. т/год
Другие типы неплотностей арматуры	4	7.0	0.0095	0.00266	0.00074	0,0233016
Фланцевые содинения	13	2.0	0.00028	0.0000728	0.0000202	0,000637728
Уплотнения насосов	2	23	0.0066	0.003036	0.000843	0,02659536
Ингибиторы коррозии: СНП2 «Б»	X 6301 «A	». СНПУ	X 6302 «A». (СНПХ 6302	0.0016032	0.050534688

Источник загрязнения № 0001. Свеча рассеивания Источник выделения № 010. Свеча рассеивания дренажной емкости

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из других типов неплотностей арматуры и

фланцевых соединений.

Расчет выбросов загрязняющих веществ других типов неплотностей арматуры и фланцевых соединений определяется по формуле:

$$Q=B*C*n*10^{-}$$

². кг/часгде:

В – величина утечки углеводородов. кг/час;

C- процент потерявших герметичность уплотнений; n- Количество фланцевых соединений -8 шт.

n – Количество других типов неплотностей арматуры – 4 шт.

Количество выбросов углеводородов из емкости при работе определяется по формуле: $Q = 0.004 * (PV/1011)^{0.8} / Kg (кг/час)$.

где:

 $P - {\sf д}$ авление в аппарате; $V - {\sf о}$ бъем аппарата.

$$M_{ce\kappa} = \frac{Q}{3.6}$$

$$M_{zoo} = \frac{Q \times T}{1000}$$

▶ Время работы – 8760 час/год.

Наименование	Р. гПа	V. m ³	$K_{\rm g}$	М. кг/час	М. г/сек	М. т/год	
Дренажная емкость	700	22	0.51	0.0693	0.01925	0,303534	
Наименование	Кол-во	C. %	В. кг/час	М. кг/час	М. г/сек	М. т/год	
Другие типы неплотностей арматуры	4	7.0	0.0095	0.00266	0.00074	0,0233016	
Фланцевые соединения	8	2.0	0.00028	0.0000448	0.0000124	0,000392448	
Итого: 0.0200024 0,327228048							

	Углеводородь	і предельные		Смесь	
Определяемый параметр	C ₁ - C ₅	C ₆ - C ₁₀	C ₁₂ - C ₁₉	Сероводород	природных меркаптанов
C _i . macc %	3.705	32.773	63.49932	0.02	0.00268
Мі. г/сек	0.0007411	0.0065554	0.0127014	0.000004	0.00000054
G _i . т/год					
	0.0121238	0.107242	0.207787585	6.54456E-05	8.76971E-06

УБСН:

Источник загрязнения № 0002. Дымовая труба Источник выделения №024 . Факельная установка

Список литературы:

1. "Методика расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей". Министерство охраны окружающей среды РК. РНД. Астана 2008г.

2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. (дополненное и переработанное), СПб, НИИ Атмосфера, 2005

Площадка: ТОО "Арал Петролеум Кэпитал" 2025

Цех: Период испытания

Источник: 0002 Наименование: Факел

Тип: Высотная

Тип сжигаемой смеси: Некондиционная газовая и газоконденсатная смесь

Тип месторождения: сернистое

1.РАСЧЕТ ВСПОМОГАТЕЛЬНЫХ ПАРАМЕТРОВ

Таблица процентного содержания составляющих смеси.

Состав смеси задавался в объемных и массовых долях.

Компонент	[%]об.	[%]мас.	Молек.мас.	Плотность
Метан(СН4)	68.33	44.7043648	16.043	0.7162
Этан(С2Н6)	8.019	9.83346478	30.07	1.3424
Пропан(С3Н8)	6.825	12.2733925	44.097	1.9686
Бутан(С4Н10)	6.164	14.6107008	58.124	2.5948
Пентан(С5Н12)	2.762	8.12678843	72.151	3.2210268
Азот(N2)	1.414	1.61550558	28.016	1.2507
Сероводород(H2S)	3.465	4.81594186	34.082	1.5215
Меркаптаны(RSH)	0.008	0.01565972	48	2.1429

Молярная масса смеси M, кг/моль (прил.3,(5)): **24.52150238**

Плотность сжигаемой смеси R_o , кг/м³: 0.874

Показатель адиабаты K (23):

$$K = \sum_{i=1}^{N} (K_i * [i]_o) = 1.166909$$

где (K_i) - показатель адиабаты для индивидуальных углеводородов;

 $[i]_o$ - объемные единицы составляющих смеси, %;

Скорость распространения звука в смеси W_{36} , м/с (прил.6):

$$W_{36} = 91.5 * (K * (T_0 + 273) / M)^{0.5} = 91.5 * (1.166909 * (45 + 273) / 24.52150238)^{0.5} = 355.9423073$$

где T_o - температура смеси, град.С;

Объемный расход B, м³/с: **0.002176**

Скорость истечения смеси W_{ucm} , м/с (3):

$$W_{ucm} = 4 * B / (pi * d^2) = 4 * 0.002176 / (3.141592654 * 0.15^2) = 0.123136411$$

Массовый расход G, г/с (2):

$$G = 1000 * B * R_0 = 1000 * 0.002176 * 0.874 = 1.901824$$

Проверка условия бессажевого горения, т.к. $W_{ucm}/W_{36} = 0.000345945 < 0.2$, горение сажевое.

2.РАСЧЕТ МОЩНОСТИ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Полнота сгорания углеводородной смеси п: 0.9984

Массовое содержание углерода $[C]_{M}$, % (прил.3,(8)):

Проект нормативов допустимых выбросов для объектов месторождения Восточный Жагабулак

$$[C]_{M} = \frac{N}{100 * 12 *} ; \sum_{i=1}^{N} \frac{N}{(x_{i} * [i]_{o}) / ((100 - [\text{Hez}]_{o}) * M)} = 100 * 12 * ; \sum_{i=1}^{N} \frac{N}{(x_{i} * [i]_{o}) / ((100 - 0) * i)}$$

24.5215024) = 71.22630469

где x_i - число атомов углерода;

[нег] - общее содержание негорючих примесей, %: 0.782;

величиной [нег] можно пренебречь, т.к. ее значение не превышает 3%;

Расчет мощности выброса метана, оксида углерода, оксидов азота, сажи M_i , г/с: (1)

 $M_i = yB_i * G$

где VB_i - удельные выбросы вредных веществ, г/г;

0.8, 0.13 - коэффициенты трансформации оксидов азота в атмосфере ([2],п.2.2.4)

Код	Примесь	УВ г/г	М г/с
0337	Углерод оксид (Окись углерода, Угарный	0.02	0.03803648
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.8*0.003	0.0045644
0304	Азот (II) оксид (Азота оксид) (6)	0.13*0.003	0.0007417
0410	Метан (727*)	0.0005	0.000950912
0328	Углерод (Сажа, Углерод черный) (583)	0.002	0.003803648

Мощность выброса диоксида углерода M_{co2} , г/с (6):

 $M_{co2} = 0.01 * G * (3.67 * n * [C]_{M} + [CO2]_{M}) - M_{co} - M_{ch4} - M_{c} = 0.01 * 1.9018240 * (3.67 * 0.9984000 * 71.2263047 + 4.0041813) - 0.0380365 - 0.0009509 - 0.0038036 = 4.996785407$

где $[CO2]_{M}$ - массовое содержание диоксида углерода, %;

 M_{co} - мощность выброса оксида углерода, г/с;

 M_{ch4} - мощность выброса метана, г/с;

 M_c - мощность выброса сажи, г/с;

Массовое содержание серы $[S]_{M}$, %:

$$[S]_{M} = \sum_{i=1}^{N} \sum_{j=1}^{N} ([i]_{M} * A_{s} * x_{i} / M_{s}) = \sum_{i=1}^{N} \sum_{j=1}^{N} ([i]_{M} * 32.064 * x_{i} / M_{s}) = 4.54124996$$

где A_s - атомная масса серы;

 x_i - количество атомов серы;

 M_s - молярная масса составляющей смеси содержащая атомы серы;

 $[i]_{M}$ - массовые единицы составляющих смеси, %;

Мощность выброса диоксида серы M_{so2} , г/с (7):

$$M_{so2} = 0.02 * [S]_M * G * n = 0.02 * 4.54124996 * 1.901824 * 0.9984 = 0.17245679$$

Мощность выброса сероводорода M_{h2s} , г/с (8):

 $M_{h2s} = 0.01 * [H2S]_{M} * G * (1-n) = 0.01 * 4.81594186 * 1.901824 * (1-0.9984) = 0.000146545$ Мощность выброса меркаптана M_{rsh} , г/с (9):

$$M_{rsh} = 0.01 * [RSH]_M * G * (1-n) = 0.01 * 0.01565972 * 1.901824 * (1-0.9984) = 0.000000477$$

3.РАСЧЕТ ТЕМПЕРАТУРЫ ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Низшая теплота сгорания Q_{H2} , ккал/м³ (прил.3,(1)):

$$Q_{n2} = 85.5 * [CH4]_o + 152 * [C2H6]_o + 218 * [C3H8]_o + 283 * [C4H10]_o + 349 * [C5H12]_o + 56 * [H2S]_o = 85.5 * 68.33 + 152 * 8.019 + 218 * 6.825 + 283 * 6.164 + 349 * 2.762 + 56 * 3.465 = 11451.343$$

где $[CH2]_o$ - содержание метана, %;

 $[C2H6]_o$ - содержание этана, %;

 $[C3H8]_o$ - содержание пропана, %;

[C4H10]₀ - содержание бутана, %;

[C5H12]₀ - содержание пентана, %;

Доля энергии теряемая за счет излучения E (11):

$$E = 0.048 * (M)^{0.5} = 0.048 * (24.52150238)^{0.5} = 0.238$$

Объемное содержание кислорода [02], %:

$$[02]_o = \sum_{i=1}^{N} \sum_{i=1}^{N} ([i]_o * A_o * x_i / M_o) = \sum_{i=1}^{N} \sum_{i=1}^{N} ([i]_o * 16 * x_i / M_o) = 1.62213992$$

где A_o - атомная масса кислорода;

 x_i - количество атомов кислорода;

 M_o - молярная масса составляющей смеси содержащая атомы кислорода;

Стехиометрическое количество воздуха для сжигания 1 м^3 углеводородной смеси и природного газа V_o , $\text{м}^3/\text{м}^3$ (13):

$$V_o = 0.0476 * (1.5 * [H2S]_o + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o) = 0.0476 * (1.5 * 3.465 + \sum_{i=1}^{N} ((x + y / 4) * [CxHy]_o) - [O2]_o)$$

 $+ y / 4) * [CxHy]_0)-1.62213992) = 12.59442974$

где x - число атомов углерода;

у - число атомов водорода;

Количество газовоздушной смеси, полученное при сжигании 1 м 3 углеводородной смеси и природного газа V_{nc} , м 3 /м 3 (12):

$$V_{nc} = 1 + V_0 = 1 + 12.59442974 = 13.59442974$$

Предварительная теплоемкость газовоздушной смеси C_{nc} , ккал/(м³*град.С): **0.4**

Ориентировочное значение температуры горения T_2 , град.С (10):

$$T_{z} = T_{o} + (Q_{nz} * (1-E) * n) / (V_{nc} * C_{nc}) = 45 + (11451.343 * (1-0.238) * 0.9984) / (13.59442974 * 0.4) = 1647.119775$$

где T_o - температура смеси или газа, град.С;

при условие, что 1500< = T_o <1800, C_{nc} = **0.39**

Температура горения T_{c} , град.С (10):

$$T_z = T_o + (Q_{Hz} * (1-E) * n) / (V_{nc} * C_{nc}) = 45 + (11451.343 * (1-0.238) * 0.9984) / (13.59442974 * 0.39) = 1688.19977$$

4.РАСЧЕТ РАСХОДА ВЫБРАСЫВАЕМОЙ ГАЗОВОЗДУШНОЙ СМЕСИ

Расход выбрасываемой в атмосферу газовоздушной смеси V_1 , м³/с (14):

$$V_I = B * V_{nc} * (273 + T_2) \, / \, 273 = 0.002176 * 13.59442974 * (273 + 1688.19977) \, / \, 273 = 0.212509854$$
 Длина факела $L_{\phi n}$, м:

$$L_{\phi H} = 15 * d = 15 * 0.15 = 2.25$$

Высота источника выброса вредных веществ H, м (16):

$$H = L_{\phi H} + h_{\theta} = 2.25 + 8 = 10.25$$

где h_{ϵ} - высота факельной установки от уровня земли, м;

5.РАСЧЕТ СРЕДНЕЙ СКОРОСТИ ПОСТУПЛЕНИЯ В АТМОСФЕРУ ГАЗОВОЗДУШНОЙ СМЕСИ ИЗ ИСТОЧНИКА ВЫБРОСА (\mathbf{W}_{o})

Диаметр факела D_{ϕ} , м (29):

$$D_{\phi} = 0.14 * L_{\phi H} + 0.49 * d = 0.14 * 2.25 + 0.49 * 0.15 = 0.3885$$

Средняя скорость поступления в атмосферу газовоздушной смеси (W_o), (м/с):

$$W_o = 1.27 * V_1 / D_{\phi}^2 = 1.27 * 0.212509854 / 0.3885^2 = 1.788136823$$

6.РАСЧЕТ ВАЛОВЫХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Валовый выброс i-ого вредного вещества рассчитывается по формуле I_i , т/год (30):

$$\Pi_i = 0.0036 * \tau * M_i$$

где τ - продолжительность работы факельной установки, ч/год: **5880**;

Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный	0.03803648	0.805156209
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.004564378	0.096618745
0304	Азот (II) оксид (Азота оксид) (6)	0.000741711	0.015700546
0410	Метан (727*)	0.000950912	0.020128905
0328	Углерод (Сажа, Углерод черный) (583)	0.003803648	0.080515621
0330	Сера диоксид (Ангидрид сернистый, Серни	0.17245679	3.650565335
0333	Сероводород (Дигидросульфид) (518)	0.000146545	0.003102068
1715	Меркаптаны	0.00000477	0.000010087

1) Объем сырого газа, сжигаемого при техническом обслуживании и ремонтных работах технологического оборудования V_8

Источник загрязнения № 0003. Труба печи Источник выделения №024 . Печь подогрева нефти

Произведен перерасчет с учётом фактической максимальной нагрузки оборудования за последние 3 года (2020-2023гг), а именно протокола испытания за 4 квартал 2020 года (протокола испытании 3659/3 от 16.11.2020 прилагается). В связи с тем, что инструментальные методы являются превалирующими в расчете организованных источников, выбросы загрязняющих веществ взяты по фактическим данным согласно протокола анализа отбора проб выбросов из источников загрязнения атмосферы

Расчет по Источнику №0003, Печь подогрева произведен согласно замечанию KZ38RXX00041332 Дата выдачи: 19.11.2024 сделан перерасчет с учётом фактической максимальной нагрузки оборудования, а именно выбранных максимальных значений концентраций ЗВ из протоколов испытаний за 2022-2024 гг., протокола прилагаются.

- Азота (IV) диоксид 32 мг/м3 максимальная концентрация была в 1 кв. 2024 г;
- Азот (II) оксид 6 мг/м3 максимальная концентрация была в 1 кв. 2023 г;
- Сера диоксид 35 мг/м3 максимальная концентрация была в 4 кв. 2023 г;
- Углерод оксид 321 мг/м3 максимальная концентрация была в 1 кв. 2022 г;

Примесь	Диаметр	концентрация ЗВ мг/м3	скросот ьГВС м/с	ГВС м3/сек	Масса выброса г/сек
Азота (IV) диоксид		32			0,0329868
Азот (II) оксид	0,5	6	5,25	1,0308375	0,006185025
Сера диоксид		35			0,0360793125
Углерод оксид		321			0,3308988375
Метан		8			0,0082467

Код	Примесь	Выброс г/с		время работы	Согл. Замера мт/год
0301	Азота (IV) диоксид	0.0329868	3600	8760	1.040271725
0304	Азот (II) оксид	0.006185025	3600	8760	0.195050948
0330	Сера диоксид	0.0360793125	3600	8760	1.137797199
0337	Углерод оксид	0.3308988375	3600	8760	10.43522574
0410	Метан	0,0082467	3600	8760	0.260068

0.414396675		13.06841361	
0.414370073		13.00041301	
		2	
		<i>L</i>	

Источник загрязнения № 6007. Неорганизован Источник выделения № . Блочная сепарационная установка

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из других типов неплотностей арматуры. фланцевых соединений и предохранительных клапанов.

Расчет выбросов загрязняющих веществ от других типов неплотностей арматуры. фланцевыхсоединений и предохранительных клапанов определяется по формуле:

². кг/часгде:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений; n — Количество фланцевых соединений — 8 шт.

n – Количество других типов неплотностей арматуры

- 4 шт.n - Количество предохранительных клапанов - 3 шт.

Количество выбросов углеводородов из установки при работе определяется по формуле: $Q = 0.004 * (PV/1011)^{0.8} / Kg (кг/час)$.

где:

аппарате;

аппарата.

$$M_{ce\kappa} = \frac{Q}{3.6}$$

$$M_{coo} = \frac{Q \times T}{1000}$$

▶ Время работы – 8760 час/год.

Наименование	Р. гПа	V. m ³	K_g	М. кг/час	М. г/сек	М. т/год
Сепарационная установка	16000	12.0	0.33	0.8061	0.2239	3,530718
	·		·			
Наименование	Кол-во	C. %	B.	М. кг/час	М. г/сек	М. т/год
			кг/час			
Клапаны	3	35.0	0.078	0.0819	0.02275	0,717444
Другие типы	4	7.0	0.0095	0.00266	0.00074	
неплотностей арматуры		7.0	0.0093	0.00200	0.00074	0,0233016
Фланцевые соединения	8	2.0	0.00028	0.0000448	0.0000124	0,000392448
Итого:	•			•	0.247418	4,271856048

Выбросы индивидуальных компонентов по группам

Определяемый параметр	Углеводороды	предельные		Смесь	
	C ₁ - C ₅	C ₆ - C ₁₀	C ₁₂ - C ₁₉	Сероводород	природных меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
М _і . г/сек	0.0091668	0.0810863	0.1571087	0.0000495	0.0000066
G _i . т/год	0.15827227	1.400015	2.712599542	0.000854371	0.000114486

Источник загрязнения № 6008. Неорганизован Источник выделения №32 . Отстойник нефти

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из других типов неплотностей арматуры. фланцевых соединений и предохранительных клапанов.

Расчет выбросов загрязняющих веществ от других типов неплотностей арматуры. фланцевых соединений и предохранительных клапанов определяется по формуле:

². кг/часгде:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений; n — Количество фланцевых соединений — $8\,\mathrm{mm}$

n – Количество других типов неплотностей арматуры

− 4 шт.п – Количество предохранительных клапанов – 3 шт.

Количество выбросов углеводородов из установки при работе определяется по формуле:

$$Q=0.004~*(PV/1011)^{0.8}$$
 / Kg (кг/час).где:
 P — давление в аппарате; V — объем

 M_{cov}

аппарата.

 M_{200}

$$= \frac{Q}{3.6} = \frac{Q \times T}{1000}$$

Время работы – 8760 час/год.

Наименование	Р. гПа	V. m ³	Kg	М. кг/час	М. г/сек	М. т/год
Сепарационная	10000	30.0	0.33	0.5535	0.15375	2.42433
установка	10000	00.0	0.00	0.000	0.10070	21.2.00
Наименование	Кол-во	C. %	B.	М. кг/час	М. г/сек	М. т/год
			кг/час			
Клапаны	3	35.0	0.078	0.0819	0.02275	
	3	33.0	0.070	0.0017	0.02273	0,717444
Другие типы	4	7.0	0.0095	0.00266	0.00073889	
неплотностей арматуры	4	7.0	0.0093	0.00200	0.00073889	0,0233016
Фланцевые соединения	8	2.0	0.00028	0.000045	0.0000125	0,0003942
Итого:					0.1772548	3,1654698

Выбросы индивидуальных компонентов по группам

Опрадализмиці	Углеводороды	предельные		Смесь	
Определяемый параметр	C ₁ - C ₅	C ₆ - C ₁₀	C ₁₂ - C ₁₉	Сероводород	природных меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
Мі. г/сек	0.00657	0.05809	0.11255	0.00004	0.0000048
G _i . т/год	0.11728066	1.037419	2.010051798	0.000633094	8.48346E-05

Источник загрязнения № 6009. Неорганизован Источники выделения № 033-034 . Насосы для перекачки нефти — 2 ед. Список литературы:

Методические указания по определению загрязняющих веществ в атмосфере из резервуаров. РНД 211.2.02.09.-2004. Астана. 2005 г.

Количество выбросов паров нефтепродуктов в атмосферу из теплообменных аппаратов и средств перекачки определяется в зависимости от типа оборудования. вида продукта. количества оборудования и времени его работы.

Максимальный выброс от одной единицы оборудования рассчитываются по формуле:

 $M_{ce\kappa}=Q/$

3.6. Γ/c

где:

Q – удельное выделение загрязняющих веществ. кг/час.

Годовые выбросы от одной единицы оборудования рассчитываются по формуле: $\mathbf{M}_{\text{год}} = \mathbf{Q} * \mathbf{T}/\mathbf{10}$

³. т/годгде:

T – фактический годовой фонд времени работы одной единицы оборудования. час.

Исходные данные:	Выбросы вредных веществ					
Политоболения	Т пос	О. кг/час	М. г/с	М. т/год	На 2 насоса	
Центробежные насосы – 2 шт.	Т. час	Q. K1/4ac	IVI. 17C	WI. 1/10Д	г/с	т/год
насосы — 2 шт.	4000	0.05	0.01389	0.2	0.02778	0.4

Выбросы индивидуальных компонентов по группам

Определяемый	Углеводороды	і предельные		Смесь	
_	C ₁ - C ₅	C ₆ - C ₁₀	C ₁₂ - C ₁₉	Сероводород	природных
параметр	C1- C5	C6- C10	C12- C19		меркаптанов
C _i . macc %	3.705	32.773	63.49932	0.02	0.00268
М _і . г/сек	0.001029	0.009104	0.017639	0.000006	0.000001
G _i . т/год					
	0,01482	0,131092	0,25399728	0,00008	0,00001072

Источник загрязнения N_{2} 6010. Неорганизован Источники выделения N_{2} 35 . Нефтеналивная

эстакадаСписок литературы:

Методические указания по определению загрязняющих веществ в атмосфере изрезервуаров. РНД 211.2.02.09.-2004. Астана. 2005 г.

Расчет максимальных выбросов от нефтеналивной эстакады рассчитывается поформуле:

максимальные выбросы:

р ч

годовые выбросы:

$$G=(Y_{03}*B_{03}+Y_{BJ}*B_{BJ})*K_{p}^{max}*10^{-6}$$
. т/год

где:

 ${\rm Y}_{\rm os}$. ${\rm Y}_{\rm вл}$ — средние удельные выбросы из резервуара соответственно в осенн-зимний ивесенне-летний периоды года. г/т.

 C_1 – концентрация паров нефтепродукта в резервуаре. г/м³.

 $_{\rm q}^{\rm max}$ — максимальный объем паровоздушной смеси. вытесняемой из резервуара во время его закачки. $_{\rm m}^{\rm M}$ /час;

^{пах} – опытный коэффициент.

Добыча нефти = 46500 тонн V^{max} . м³/час Наименование Воз. т Ввл. т Группа 23250,00 23250,00 38 Нефть A табличные данные C_1 . Γ/M^3 $y_{o3. \Gamma/T}$ $\mathbf{y}_{\scriptscriptstyle \mathrm{B}\pi}$. $_{\Gamma}/_{\mathrm{T}}$ Kmax_p М. г/сек G. т/год 4.0 1.0 0.057001 5.4 4.0 0,186

Выбросы индивидуальных компонентов по группам

Определяемый	Углеводороды	предельные		Смесь	
параметр	C ₁ - C ₅	C ₆ - C ₁₀	C ₁₂ - C ₁₉	Сероводород	природных
	C1- C3	C ₆ - C ₁₀	C12- C19		меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
М _і . г/сек	0.002112	0.018681	0.036195	0.000011	0.000002
G _i . т/год	0.0068913	0.060958	0.118108735	0.0000372	4.9848E-06

Источник загрязнения № 6011. Неорганизован Источники выделения № 036 . Установка «SULFATREAT XLP»

В выбросах источника учтены выделения из других типов неплотностей арматуры и фланцевых соединений.

Расчет выбросов загрязняющих веществ от других типов неплотностей арматуры и фланцевых соединений определяется по формуле:

$$Q=B*C*n*10^{-}$$

². кг/часгде:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений; n — Количество фланцевых соединений — $26\ \mathrm{mt}$.

n – Количество других типов неплотностей арматуры – 10 шт.

Установка «SULFATREAT XLP» предназначена для снижения содержания сероводорода в газе. идущем на подогреватель нефти. Представляет собой два сосуда. объемом 6 м³ каждый. Процесс очистки производится путем адсорбции гранулированным реагентом «SULFATREAT XLP». Эффективность очистки составляет 95.66%.

Количество выбросов углеводородов определяется по формуле:

$$\Pi = 0.037 * (PV/1011)^{0.8} * \sqrt{Mr/T}$$
 (κΓ/час).

гле:

Р – давление в

аппарате; V – объем

аппарата;

Mr — молекулярная

масса;Т – температура.

$$M_{cek} = \frac{Q}{3.6}$$

$$M_{coo} = \frac{Q \times T}{1000}$$

Время работы – 8760 час/год.

Наименование	Р. гПа	V. M ³	Mr. г/моль	Т. К	М. кг/час	М. г/сек	М. т/год
Сепарационная установка	100	12.0	22.54	373.0	0.0004764	0.000132	0,002086632
Наименование	Кол-во	C. %	В. кг/час		М. кг/час	М. г/сек	М. т/год
Другие типы	10	7.0	0.0095		0.00665		
неплотностей						0.00185	
арматуры							0,058254
Фланцевые соединения	26	2.0	0.00028		0.0001456	0.00004	0,001275456
Итого:	•	•	•			0.00202	0.03185446

Выбросы индивидуальных компонентов по группам

		1 /			
Определяемый	Углеводороды предельные		Сапаранаран	Смесь природных	
параметр	C ₁ - C ₅	C_6 - C_{10}	Сероводород	меркаптанов	
Сі. масс %	93.2053	3.76061	3.0107	0.02342	
М _і . г/сек	0.001883	0.000076	0.000061	0.00000047	
Gi. т/год					
	0.0574323556	0.0023171408	0.001855076	0.0000144305	

Источник загрязнения № 0004. Свеча рассеивания Источники выделения № 025. Свеча рассеивания дренажных емкостей

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из других типов неплотностей

В выбросах источника учтены выделения из других типов неплотностей арматуры ифланцевых соединений.

Расчет выбросов загрязняющих веществ от других типов неплотностей арматуры и фланцевых соединений определяется по формуле:

$$Q=B*C*n*10$$

². кг/часгде:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений; n — Количество фланцевых соединений — 8 шт.

n – Количество других типов неплотностей арматуры – 4 шт.

Количество выбросов углеводородов из емкости при работе определяется по формуле: $Q = 0.004 * (PV/1011)^{0.8} / Kg$ (кг/час).

где:

 $P \ - \$ давление в аппарате; $V \ - \$ объем аппарата.

 M_{cek}

 $M_{\it rod}$

$$= \frac{Q}{3.6} = \frac{Q \times T}{1000}$$

▶ Время работы – 8760 час/год.

Наименование	Р. гПа	V. m ³	Kg	М. кг/час	М. г/сек	М. т/год
Дренажная емкость	700	22	0.51	0.0693	0.01925	0,303534

Наименование	Кол-во	C. %	B.	М. кг/час	М. г/сек	М. т/год
			кг/час			
Другие типы неплотностей арматуры	4	7.0	0.0095	0.00266	0.00074	0,0233016
Фланцевые соединения	8	2.0	0.00028	0.0000448	0.0000124	0,000392448
Итого:					0.02000	0,327228048

Выбросы индивидуальных компонентов по группам

Определяемый	Углеводородь	і предельные		Смесь	
параметр	C ₁ - C ₅	C ₆ - C ₁₀	C ₁₂ - C ₁₉	Сероводород	природных
параметр	C1- C5	C6- C10	C12- C19		меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
М _і . г/сек	0.00074105	0.00655502	0.01270068	0.000004	0.000001
G _i . т/год					
	0.0121238	0.1072424	0.207787585	6.54456E-05	8.76971E-06

Источник загрязнения № 0005. Свеча рассеивания Источник выделения № 026. Емкости для хранения нефти V=75м3 — 6 ед.

Список литературы:

Методические указания по определению загрязняющих веществ в атмосфере из резервуаров.РНД 211.2.02.09.-2004. Астана. 2005 г.

Валовые выбросы паров нефтей и бензинов рассчитываются по формулам:максимальные выбросы:

G=
$$(0.163*P_{38}*m*K^{max}_{t}*K^{max}_{p}*K_{B}*V^{max}_{y})/10^{4}$$
. Γ/cek

годовые выбросы:

$$M = (0.294*P_{38}*m*(K^{\text{мак}}*K_{\text{B}}+K^{\text{міп}})*K^{\text{ср}}*K_{06}*B)/10^{7}*\rho_{\text{ж}}).$$
 т/год

где

_p. K

т – молекулярная масса паров жидкости;

 K^{mak} . K^{min} — опытные коэффициенты;

 $\stackrel{t}{\overset{t}\overset{t}{\overset{t}{\overset{}}{\overset{}}}}$ — опытные коэффициенты;

 P_{38} – давление насыщенных паров нефтей и бензинов при температуре 38^{0} С;

 закачки. м³/час:

К_в – опытный коэффициент;

Коб – коэффициент

оборачиваемости; $\rho_{\text{ж}}$ – плотность

жидкости. T/M^3 ;

B – количество жидкости. закачиваемое в резервуары в течение года. т/год.

Наимено	вание	P ₃₈ .	t _{нк} . ⁰ С	n	tж. ⁰ С	tж. ⁰ С	$V_{\mathbf{q}}^{\max}$.	ρж .	В. т/год
продукта	a	мм.рт.ст.			min	max	м ³ /час	T/M^3	
Нефть		194,25	60	58	30	10	38	0.8371	46500
продолж	продолжение								
Конструг	кция	Режим	CCB	V _p . м	N_p .	шт.	Группа		Кол-во
резервуа	pa	эксплуатаці	ИИ				нефтепр	одукта	групп
Наземны	ій	мерник	ГОР	75.0	6		A		1
горизонт	сальный								
табличн	ые данны	ie –							
m	Кмак	K ^{мin}	K ^{max}	Kcp	Кв	Коб	М. г/с	ек С	т. т/год
	t	t	p	p					
69.0	0.74	0.42	1.0	0.7	1.0	1,75	6,1435	5 3	1,104780

Выбросы индивидуальных компонентов по группам

Определяемый	Углеводороды	і предельные		Смесь	
_	C ₁ - C ₅	C C	C ₁₂ - C ₁₉	Сероводород	природных
параметр	C1- C5	C_{6} - C_{10}	C12- C19		меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
М _і . г/сек	0.227615	2.013396	3.901055	0.001229	0.000165
G _i . т/год					
	1.1524321	10.19397	19.75132379	0.006220956	0.000833608

Производственная база:

Источники загрязнения № 0006.0007.0008. Дыхательные клапана Источники выделения №031 . Емкости для хранения дизтоплива -3 ед.

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана. 2005 Расчет по п. 9

Нефтепродукт: Дизельное

топливо Расчет выбросов от

резервуаров

Конструкция резервуара:наземный

Климатическая зона: вторая - северные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре. г/м3(Прил. 15) . CMAX =

1.86

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период. м3 . QOZ = 30 Концентрация паров нефтепродуктов при заполнении резервуаров осенне-зимний период. г/м3(Прил. 15) . COZ = 0.96

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период. м3 . QVL = Проект нормативов допустимых выбросов

Концентрация паров нефтепродуктов при заполнении резервуаровв весенне-летний период. г/м3(Прил. 15) . CVL = 1.32

Объем сливаемого нефтепродукта из автоцистерны в резервуар. м3/час . VSL = 10 Максимальный из разовых выброс. г/с (9.2.1) . GR = (CMAX*VSL) / 3600 = (1.86*10) / 3600 = 0.00517

Выбросы при закачке в резервуары. т/год (9.2.4) . $MZAK = (COZ * QOZ + CVL * QVL) * 10 ^ -6 = (0.96 * 30 + 1.32 * 30) * 10 ^ -6 = 0.0000684$

Удельный выброс при проливах. г/м3 . J = 50

Выбросы паров нефтепродукта при проливах. т/год (9.2.5) . $MPRR = 0.5 * J * (QOZ + QVL) * 10 ^ (-6) = 0.5 * 50 * (30 + 30) * 10 ^ (-6) = 0.0015$

Валовый выброс. т/год (9.2.3) . MR = MZAK + MPRR = 0.0000684 + 0.0015 = 0.001568

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на С/(592)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 99.72 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 99.72 * 0.001568 / 100 = 0.001564$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 99.72 * 0.00517 / 100 = 0.00516$

Примесь: 0333 Сероводород (Дигидросульфид) (528)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 0.28 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 0.28 * 0.001568 / 100 = 0.00000439$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 0.28 * 0.00517 / 100 = 0.00001448$

Код	Примесь	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (528)	0.00001448	0.00000439
	Углеводороды предельные C12-19 /в пересчете на C/ (592)	0.00516	0.001564

Источники загрязнения № 0009. Дыхательный клапан Источник выделения № 16. Емкость для хранения бензина Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана. 2005 Расчет по п. 9

Нефтепродукт: Бензины автомобильные высокооктановые (90 и

более)Расчет выбросов от резервуаров

24

Конструкция резервуара:наземный

Климатическая зона: вторая - северные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре. г/м3(Прил. 15) . CMAX = 580

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период. м3 . QOZ = 24 Концентрация паров нефтепродуктов при заполнении резервуаров осенне-зимний период. г/м3(Прил. 15) . COZ = 250

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период. м3 . QVL=

Концентрация паров нефтепродуктов при заполнении резервуаров весенне-летний период. г/м3(Прил. 15) . CVL = 310 Проект нормативов допустимых выбросов

Объем сливаемого нефтепродукта из автоцистерны в резервуар. м3/час . VSL = 5 Максимальный из разовых выброс. г/с (9.2.1) . GR = (CMAX * VSL) / 3600 = (580 * 5) / 3600 = 0.806

Выбросы при закачке в резервуары. т/год (9.2.4) . $MZAK = (COZ * QOZ + CVL * QVL) * 10 ^ -6 = (250 * 24 + 310 * 24) * 10 ^ -6 = 0.01344$

Удельный выброс при проливах. г/м3 . J = 125

Выбросы паров нефтепродукта при проливах. т/год (9.2.5) . $MPRR = 0.5 * J * (QOZ + QVL) * 10 ^ (-6) = 0.5 * 125 * (24 + 24) * 10 ^ (-6) = 0.003$

Валовый выброс. т/год (9.2.3) . MR = MZAK + MPRR = 0.01344 + 0.003 = 0.01644

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1531*, 1539*)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 67.67 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 67.67 * 0.01644 / 100 = 0.01112$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 67.67 * 0.806 / 100 = 0.545$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1532*. 1540*)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 25.01 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 25.01 * 0.01644 / 100 = 0.00411$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 25.01 * 0.806 / 100 = 0.2016$

Примесь: 0501 Пентилены (амилены - смесь изомеров) (468)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 2.5 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 2.5 * 0.01644 / 100 = 0.000411$ Максимальный из разовых выброс. г/с (5.2.4) . G = CI * G / 100 = 2.5 * 0.806 / 100 = 0.02015

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 2.3 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 2.3 * 0.01644 / 100 = 0.000378$

Максимальный из разовых выброс. г/с (5.2.4) . $_{G}$ = CI * G / 100 = 2.3 * 0.806 / 100 = 0.01854

Примесь: 0621 Метилбензол (353)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 2.17 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 2.17 * 0.01644 / 100 = 0.000357$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 2.17 * 0.806 / 100 = 0.0175$

Примесь: 0627 Этилбензол (687)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 0.06 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 0.06 * 0.01644 / 100 = 0.00000986$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 0.06 * 0.806 / 100 = 0.000484$

Примесь: 0616 Диметилбензол (смесь о-. м-. п- изомеров) (203)

0415	Смесь углеводородов предельных С1-С5 (1531*.	0.545	0.01112	
	1539*)			
0416	Смесь углеводородов предельных С6-С10 (1532*.	0.2016	0.00411	
	1540*)			
0501	Пентилены (амилены - смесь изомеров) (468)	0.02015	0.000411	
0602	Бензол (64)	0.01854	0.000378	
0616	Диметилбензол (смесь о м п- изомеров) (203)	0.002337	0.0000477	
0621	Метилбензол (353)	0.0175	0.000357	
0627	Этилбензол (687)	0.000484	0.00000986	

Источники загрязнения № 6012. Неорганизован

Источник выделения № 19. Топливораздаточная колонка для дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана. 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо

Климатическая зона: вторая - северные области РК

(прил. 17) Расчет выбросов от топливораздаточных колонок

(TPK)

Максимальная концентрация паров нефтепродукта при заполнениибаков автомашин. г/м3 (Прил. 12) . *CMAX* = **3.14**

Количество отпускаемого нефтепродукта в осенне-зимний период. м3 . QOZ = 30

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период. г/м3(Прил. 15) . CAMOZ = 1.6

Количество отпускаемого нефтепродукта в весенне-летний период. м3 . QVL = 30 Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период. г/м3(Прил. 15) . CAMVL = 2.2 Производительность одного рукава ТРК

(с учетом дискретности работы). м3/час . VTRK = 0.4

Количество одновременно работающих рукавов ТРК. отпускающихвыбранный вид нефтепродукта . NN = 1

Максимальный из разовых выброс при заполнении баков. г/с (9.2.2) . GB = NN * CMAX * MINDE (2.60) = 1.82.14 * 0.44.2600 = 0.00240

VTRK / 3600 = 1 * 3.14 * 0.4 / 3600 = 0.000349

Выбросы при закачке в баки автомобилей. т/год (9.2.7) . $MBA = (CAMOZ * QOZ + CAMVL * QVL) * 10 ^ -6 = (1.6 * 30 + 2.2 * 30) * 10 ^ -6 = 0.000114$

Удельный выброс при проливах. г/м3 . J = 50

Выбросы паров нефтепродукта при проливах на ТРК. т/год (9.2.8) . $MPRA = 0.5 * J * (QOZ + QVL) * 10 ^ -6 = 0.5 * 50 * (30 + 30) * 10 ^ -6 = 0.0015$

Валовый выброс. τ/τ од (9.2.6) . MTRK = MBA + MPRA = 0.000114 + 0.0015 = 0.001614

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на С/(592)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 99.72 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 99.72 * 0.001614 / 100 = 0.00161$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 99.72 * 0.000349 / 100 = 0.000348$

Примесь: 0333 Сероводород (Дигидросульфид) (528)

Концентрация ЗВ в парах. % масс(Прил. 14) . CI = 0.28 Валовый выброс. т/год (5.2.5) . $_M_ = CI * M / 100 = 0.28 * 0.001614 / 100 = 0.00000452$ Максимальный из разовых выброс. г/с (5.2.4) . $_G_ = CI * G / 100 = 0.28 * 0.000349 / 100 = 0.000000977$

Код	Примесь	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (528)	0.00000098	0.00000452
2754	Углеводороды предельные C12-19 /в пересчете на C/ (592)	0.000348	0.00161

Источники загрязнения № 6013. Неорганизован

Источник выделения № 20. Топливораздаточная колонка для бензина

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт: Бензины автомобильные высокооктановые (90 и

более) Климатическая зона: вторая - северные области РК (прил. 17)

Расчет выбросов от топливораздаточных колонок (ТРК)

Максимальная концентрация паров нефтепродукта при заполнениибаков автомашин, г/м3 (Прил. 12), *CMAX* = **972**

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 24

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), CAMOZ = 420 Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 24 Концентрация паров нефтепродукта при заполнении баков автомашин в весенне-

летний период, $\Gamma/M3$ (Прил. 15), CAMVL = 515

Производительность одного рукава ТРК

(с учетом дискретности работы), м3/час, VTRK = 0.4

Количество одновременно работающих рукавов ТРК, отпускающихвыбранный вид нефтепродукта, NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (9.2.2), $GB = NN \cdot CMAX \cdot VTRK$ / $3600 = 1 \cdot 972 \cdot 0.4$ / 3600 = 0.108

Выбросы при закачке в баки автомобилей, т/год (9.2.7), $\textit{MBA} = (\textit{CAMOZ} \cdot \textit{QOZ} + \textit{CAMVL} \cdot$

$$QVL$$
) $\cdot 10^{-6} = (420 \cdot 24 + 515 \cdot 24) \cdot 10^{-6} = 0.02244$

Удельный выброс при проливах, $\Gamma/M3$, J = 125

Выбросы паров нефтепродукта при проливах на ТРК, т/год (9.2.8), $MPRA = 0.5 \cdot J \cdot (QOZ + I)$

$$QVL$$
) · $10^{-6} = 0.5 \cdot 125 \cdot (24 + 24) \cdot 10^{-6} = 0.003$

Валовый выброс, т/год (9.2.6), MTRK = MBA + MPRA = 0.02244 + 0.003 = 0.02544

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 67.67 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 67.67 \cdot 0.02544 / 100 = 0.0172$ Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 67.67 \cdot 0.108 / 100 = 0.0731$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 25.01 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 25.01 \cdot 0.02544 / 100 = 0.00636$ Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 25.01 \cdot 0.108 / 100 = 0.027$

Примесь: 0501 Пентилены (амилены - смесь изомеров) (460)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 2.5 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 2.5 \cdot 0.02544 / 100 = 0.000636$ Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.5 \cdot 0.108 / 100 = 0.0027$

Примесь: 0602 Бензол (64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 2.3 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 2.3 \cdot 0.02544 / 100 = 0.000585$ Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.3 \cdot 0.108 / 100 = 0.002484$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 2.17 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 2.17 \cdot 0.02544 / 100 = 0.000552$ Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 2.17 \cdot 0.108 / 100 = 0.002344$

Примесь: 0627 Этилбензол (675)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.02544 / 100 = 0.00001526$ Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 0.06 \cdot 0.108 / 100 = 0.0000648$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.29 Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.29 \cdot 0.02544 / 100 = 0.0000738$ Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.29 \cdot 0.108 / 100 = 0.000313$

Код	Примесь	Выброс г/с	Выброс т/год
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.0731	0.0172
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.027	0.00636
0501	Пентилены (амилены - смесь изомеров) (460)	0.0027	0.000636
0602	Бензол (64)	0.002484	0.000585
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.000313	0.0000738
0621	Метилбензол (349)	0.002344	0.000552
0627	Этилбензол (675)	0.0000648	0.00001526

Источники загрязнения № 6014. Неорганизован Источник выделения №21 . Электросварка Сварочный пост:

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана. 2005

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными

электродами Электрод (сварочный материал): УОНИ-13/55

Расход сварочных материалов. кг/год . B = 200

Фактический максимальный расход сварочных материалов.

с учетом дискретности работы оборудования. кг/час . BMAX = 0.02

Удельное выделение сварочного аэрозоля. г/кг расходуемого материала (табл. 1. 3) . GIS = 16.99 в том числе:

Примесь: 0123 Железо (II. III) оксиды /в пересчете на железо/ (277)

Удельное выделение загрязняющих веществ.

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1. 3) . *GIS* = 13.9

Валовый выброс. т/год (5.1) . $_M_=GIS*B/10^6=13.9*200/10^6=0.00278$ Максимальный из разовых выброс. г/с (5.2) . $_G_=GIS*BMAX/3600=13.9*0.02/3600=0.0000772$

Примесь: 0143 Марганеи и его соединения /в пересчете на марганиа (IV) оксид/ (332)

Удельное выделение загрязняющих веществ.

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1. 3) . *GIS* = **1.09**

Валовый выброс. т/год (5.1) . _*M_* = *GIS* * *B / 10* ^ 6 = 1.09 * 200 / 10 ^ 6 = 0.000218 Максимальный из разовых выброс. г/с (5.2) . _*G_* = *GIS* * *BMAX / 3600* = 1.09 * 0.02 / 3600 = 0.00000606

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот. цемент. пыль цементного производства - глина. глинистый сланеи. доменный шлак. песок. клинкер. зола. кремнезем. зола углей казахстанских месторождений) (503)

Удельное выделение загрязняющих веществ.

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1. 3) . *GIS* = 1

Валовый выброс. т/год (5.1) . $_{M_{-}}$ = GIS * B / 10 ^ 6 = 1 * 200 / 10 ^ 6 = 0.0002

Максимальный из разовых выброс. г/с (5.2) . _G_ = GIS * BMAX / 3600 = 1 * 0.02 / 3600 = 0.00000556

<u>Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид. кальиия фторид. натрия гексафторалюминат) (625)</u>

Удельное выделение загрязняющих веществ.

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1. 3) . *GIS* = 1

Валовый выброс. т/год (5.1) . $M = GIS * B / 10 ^ 6 = 1 * 200 / 10 ^ 6 = 0.0002$

Максимальный из разовых выброс. г/с (5.2) . _G_ = GIS * BMAX / 3600 = 1 * 0.02 / 3600 = 0.00000556

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (627)

Удельное выделение загрязняющих веществ.

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1. 3) . *GIS* = **0.93**

Валовый выброс. т/год (5.1) . $_M_=GIS*B/10^6=0.93*200/10^6=0.000186$ Максимальный из разовых выброс. г/с (5.2) . $_G_=GIS*BMAX/3600=0.93*0.02/3600=$

0.00000517

0.000015

Примесь: 0301 Азота (IV) диоксид (4)

Удельное выделение загрязняющих веществ. г/кг расходуемого материала (табл. 1. 3) . GIS = 2.7 Валовый выброс. т/год (5.1) . $_M_ = GIS * B / 10 ^ 6 = 2.7 * 200 / 10 ^ 6 = 0.00054$ Максимальный из разовых выброс. г/с (5.2) . $_G_ = GIS * BMAX / 3600 = 2.7 * 0.02 / 3600 = 0.00054$

Примесь: 0337 Углерод оксид (594)

Удельное выделение загрязняющих веществ. г/кг расходуемого материала (табл. 1. 3) . GIS=13.3 Валовый выброс. т/год (5.1) . $_M_=GIS*B/10^6=13.3*200/10^6=0.00266$ Максимальный из разовых выброс. г/с (5.2) . $_G_=GIS*BMAX/3600=13.3*0.02/3600=0.0000739$

ИТОГО:

Код	Примесь	Выброс г/с	Выброс т/год
0123	Железо (II. III) оксиды /в пересчете на железо/ (277)	0.0000772	0.00278
0143	Марганец и его соединения /в пересчете на марганца	0.00000606	0.000218
	(IV) оксид/ (332)		
0301	Азота (IV) диоксид (4)	0.000015	0.00054
0337	Углерод оксид (594)	0.0000739	0.00266
0342	Фтористые газообразные соединения /в пересчете на	0.00000517	0.000186
	фтор/ (627)		
0344	Фториды неорганические плохо растворимые -	0.00000556	0.0002
	(алюминия фторид. кальция фторид. натрия		
	гексафторалюминат) (625)		
2908	Пыль неорганическая: 70-20% двуокиси кремния	0.00000556	0.0002
	(шамот. цемент. пыль цементного производства -		
	глина. глинистый сланец. доменный шлак. песок.		
	клинкер. зола. кремнезем. зола углей казахстанских		
	месторождений) (503)		

Источник загрязнения № 0010. Выхлопная труба Источник выделения №17 . Дизельгенератор 200 кВт

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04.-2004. Астана. 2005 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год B_{200} . т. 9.18 Эксплуатационная мощность стационарной дизельной установки P_{9} . кВт. 200

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 . г/кВт*ч. 230Температура отработавших газов T_{o2} . К. 573

Используемая природоохранная технология: процент очистки указан самостоятельно 1. Оценка расхода и температуры отработавших газов

Расход отработавших газов $G_{\alpha 2}$. кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{9} * P_{9} = 8.72 * 10^{-6} * 230 * 200 = 0.40112$$
 (A.3)

Удельный вес отработавших газов γ_{02} . кг/м³:

$$\gamma_{o2} = 1.31/(1 + T_{o2}/273) = 1.31/(1 + 573/273) = 0.422730496$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре. равной 0 гр.С. кг/м 3 ; Объемный расход отработавших газов $Q_{\alpha 2}$. м 3 /с:

$$Q_{o2} = G_{o2} / \gamma_{o2} = 0.40112 / 0.422730496 = 0.948878785$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{Mi} г/к $\mathrm{B}\mathrm{T}^*$ ч стационарной дизельной установки до

капитальногоремонта

Группа	CO	NOx	СН	С	SO2		БП
Б	6.2	9 h		0.5	1.2	0.12	1.2E-5

Таблица значений выбросов

 q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2		БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса

 M_i . Γ/c :

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i . т/год:

$$W_i = q_{3i} * B_{200} / 1000$$
 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений. т.е. $0.8\,$ - для $NO_2\,$ и $0.13\,$ -

для NO Итого выбросы по

Код	Пахила	г/сек	т/год	%	г/сек	T/70 T
1	1		' '	%0	17Cek	т/год
вещес	гвам:	без	без	очистки	c	c
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	0.4266667	0.29376	0	0.4266667	0.29376
	(4)					
0304	Азот (II) оксид(6)	0.0693333	0.047736	0	0.0693333	0.047736
0328	Углерод (593)	0.0277778	0.01836	0	0.0277778	0.01836
0330	Сера диоксид (526)	0.0666667	0.0459	0	0.0666667	0.0459
0337	Углерод оксид	0.3444444	0.23868	0	0.3444444	0.23868
	(594)					
0703	Бенз/а/пирен (54)	0.0000007	0.0000005	0	0.000007	0.0000005
1325	Формальдегид	0.0066667	0.00459	0	0.0066667	0.00459
	(619)					
2754	Углеводороды	0.1611111	0.11016	0	0.1611111	0.11016
	предельные С12-19					
	/в пересчете на С/					
	(592)					

Произведен перерасчет с учётом фактической максимальной нагрузки оборудования, а именно протокола испытания за 4 квартал 2020 года (протокола испытании 3659/2 от 16.11.2020 прилагается). В связи с тем, что инструментальные методы являются превалирующими в расчете организованных источников, выбросы загрязняющих веществ взяты по фактическим данным согласно протокола анализа отбора проб выбросов из источников загрязнения атмосферы

Расчет по Источнику №0010, ДЭС произведен согласно замечание KZ47RXX00015465 Дата выдачи: 23.11.2020 сделан перерасчет с учётом фактической максимальной нагрузки оборудования, а именно протокола испытания №3659/2 от 16.11.2020 г. 4 квартал 2020 года протокол прилагается.

	Примесь	имесь Диаметр		концентрация 3B мг/м3		Б ГВС м3	/сек	выбр	асса роса /сек
Азота	(IV) диоксид		920					0,06864	4
Азот (II) оксид		598					0,04461	8
Сера д	циоксид	0,1	673		9,5	0,0746	128	0,05021	4
Углер	од оксид		2608					0,19459	0
Углер	од (Сажа)		276					0,02059	3
Мгод=	=Мг/сек*Т вр	емя рабоп	nы*3600/100	0000)				
Время	работы 200	часов в го	од						
Код	Наименовані	ие	г/сек			Т-время			
источ			согласно			работы			M
ника			протокола	-		(час)	-		т/год
0301	Азота (IV) ди	юксид (4)	0.068644	3600		200	100	0000	0,04942368
0304	Азот (II) окс	ид(6)							
			0.044618	360	0	200	100	0000	0,03212496
0330	Сера диокси;	д (526)	0.050214	360	0	200	100	0000	0,03615408
0337	Углерод окс	ид (594)							
			0.194590	360	0	200	100	0000	0,1401048
0328	Углерод(Саж	ka)(593)							
_	200		0.020593	360		200		0000	0,01482696
	гальным ЗВ р	асчет про		, 			_		Γ,
Код	Примесь		г/сек	т/го		%	г/се	К	т/год
				очистки	c	U	c		
0702	TD / /	(5.4)	очистки		стки	0		сткой	очисткой
	Бенз/а/пирен	, ,	0.0000007			0		00007	0.0000005
	Формальдеги	,	0.0066667			0		66667	0.00459
	Углеводород		0.1611111	0.11	1016	0	0.16	511111	0.11016
	предельные								
	пересчете на	C/ (592)		1			1		

Список литературы:

Методика определения платежей за загрязнения атмосферного воздуха передвижными источниками. Астана-2005

На электрогенераторах установлены двигатели внутреннего сгорания, работающие набензине, марки АИ-92, расход-2,4 л/час.время работы 200 часов в год.

Расчет проведен в соответствии с Методикой расчета выбросов загрязняющих веществ от автотранспортных предприятий (приложение №3 к приказу №100-п от 18.04.2008г.).

Удельные выбросы загрязняющих веществ на холостом ходу легковыми автомобилями (табл, 3,3 Методики) составляют, mx, г/мин:

Оксид углерода	2,5
Углеводороды	0,2
Окислы азота	0,02
Окислы азота	0,02
Диоксид серы	0,008

Валовый выброс рассчитывается по формуле:

Мвал =
$$mx * t * n * 10$$
-6, где n — количество источников выделения; $n = 1, t$ — время работы установки = 200

 $m час/год * 60 \qquad мин/час = 12000 \qquad мин/год,$

65160 Mco = 2,5 * 12000 * 1 * 10⁻⁶ = 0,03 т/год Mch = 0,2 * 12000* 1 * 10⁻⁶ = 0,00240 т/год Mno2 = 0,8* 0,02 * 12000 * 1 * 10⁻⁶ = 0,00019 т/год

Mno = $0.13 * 0.02 * 12000 * 1 * 10^{-6} = 0.00003$ т/год

 $Mso2 = 0,008 * 12000 * 1 * 10^{-6} = 0,000096$ т/год

	Итого:		г/с	т/год
0337	Оксид углер	ода	0.04167	0.03000
2754	Углеводород	Т Р	0.00333	0.00240
0301	Диоксид азо	та	0.00027	0.00019
0304	Оксид азота		0.00004	0.00003
0330	Диоксид сер	ы	0.00013	0.000096
Итого:			0,04544	0,032716

Источник загрязнения N 6027. Неорганизован Источник выделения N 022. Гараж для спецтехники

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ

ВЕЩЕСТВОТ СТОЯНОК АВТОМОБИЛЕЙ

Стоянка: Расчетная схема 1. Обособленная. имеющая непосредственный выезд на дорогуобщего пользования

Условия хранения: Теплая закрытая

стоянкаРЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Теплый период хранения (t>5)

Tun 3	Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)										
Dn.	Nk.	\boldsymbol{A}	Nk1	<i>L1</i> .	<i>L2</i> .						
cym	шm		шm.	км	км						
122	4	1.00	2	0.1	0.1						

<i>3B</i>	Tpr	Mpr.	Tx.	Mxx.	Ml.	<i>z/c</i>	т/год
	мин	г/мин	мин	г/мин	г/км		
0337	1.5	3	1	2.9	6.1	0.00445	0.00562
2732	1.5	0.4	1	0.45	1	0.000639	0.00083
0301	1.5	1	1	1	4	0.001288	0.00168
0304	1.5	1	1	1	4	0.0002093	0.000273
0328	1.5	0.04	1	0.04	0.3	0.0000722	0.0000976
0330	1.5	0.113	1	0.1	0.54	0.0001797	0.000233

Tun 1	машин	ы: Гру з	вовые а	втомоби	ли дизел	ьные свыше 16 т (СНГ)
Dn.	Nk.	A	Nk1	<i>L1</i> .	<i>L2</i> .		,
cym	шm		шm.	км і	км		
122	2	1.00	2	0.1	0.1		
<i>3B</i>	Tpr	Mpr.	Tx.	Mxx.	Ml.	г/c	т/год
	мин	г/мин	і ми	н г/мин	г/км		
0337	1.5	3	1	2.9	7.5	0.00453	0.00288
2732	1.5	0.4	1	0.45	1.1	0.000644	0.00042
0301	1.5	1	1	1	4.5	0.001312	0.00086
0304	1.5	1	1	1	4.5	0.000213	0.0001396
0328	1.5	0.04	1	0.04	0.4	0.0000778	0.0000537
0330	1.5	0.113	1	0.1	0.78	0.000193	0.0001282

Tun I	маш	шнь	<i>ı: Груз</i>	овые (<i>16m</i>	омобил	и карбю	раторные до 2 т (СНГ)
Dn. cym	Nk. un		1		L1. км		.2. м		
122	1		.00	1	0.1	0	.1		
<i>3B</i>		pr un	Mpr. г/мин	Тх		Мхх. г/мин	Ml. г/км	z/c	т/год
0337	1.	.5	5	1	ļ.	4.5	22.7	0.00396	0.002567
2704	1.	.5	0.65	1		0.4	2.8	0.00046	0.000285
0301	1.	.5	0.05	1		0.05	0.6	0.0000411	0.0000288
0304	1.	.5	0.05	1		0.05	0.6	0.00000668	0.00000468
0330	1.	.5	0.013	1		0.012	0.09	0.00001125	0.0000075

	Tun машины: Легковые автомобили карбюраторные рабочим объемом свыше 1.2 до 1.8 л (после 94)												
Dn. cym	Nk. um		4	Nk1 um.	L1 KM		L2. км						
122	1	1	1.00	1	0.1		0.1						
<i>3B</i>	Тр		Mpr. г/мин	Тх		Мхх. г/мин	Ml. г/км	z/c	т/год				
0337	1.5	5	3	1		2	9.4	0.002067	0.001266				
2704	1.5	5	0.31	1		0.25	1.2	0.000232	0.000147				
0301	1.5	5	0.02	1		0.02	0.17	0.00001488	0.00001016				
0304	1.5	5	0.02	1		0.02	0.17	0.00000242	0.00000165				
0330	1.5	5	0.01	1		0.009	0.054	0.00000817	0.00000534				

BCEI	O по периоду: Теплый период хранения (t>5	5)	
Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (594)	0.015007	0.012333
2704	Бензин (нефтяной. малосернистый) /в пересчете на углерод/ (60)	0.000692	0.000432
2732	Керосин (660*)	0.001283	0.00125
0301	Азота (IV) диоксид (4)	0.00265598	0.00257896
0328	Углерод (593)	0.00015	0.0001513
0330	Сера диоксид (526)	0.00039212	0.00037404
0304	Азот (II) оксид (6)	0.0004314	0.00041893

Выбросы по периоду: Переходный период хранения (t>-5 и t<5)

Tun A	машин	<i>ы: Гру</i> з	вовые	авт	омобі	іли дизелі	ьные свыше 8 до 10	6 т (СНГ)
Dn.	Nk.	\overline{A}	Nk1	L1	•	<i>L2</i> .		
cym	шm		шm.	км	!	км		
122	4	1.00	2	0.1	-	0.1		
<i>3B</i>	Tpr	Mpr.	Tx	•	Mxx.	Ml.	z/c	т/год
	мин	г/мин	м	lH	г/мин	г/км		
0337	1.5	3	1		2.9	6.1	0.00445	0.00562
2732	1.5	0.4	1		0.45	1	0.000639	0.00083
0301	1.5	1	1		1	4	0.001288	0.00168
0304	1.5	1	1		1	4	0.0002093	0.000273
0328	1.5	0.04	1		0.04	0.3	0.0000722	0.0000976
0330	1.5	0.113	1		0.1	0.54	0.0001797	0.000233

Tun.	машин	ы: Гру з	вовые а	втомоб	или дизель	ные свыше 16 т (СНГ)
Dn. cym	Nk. um	$oldsymbol{A}$		L1. км	L2. км		
122	2	1.00	2	0.1	0.1		
20	Tnu	Mari	T	Mxx.	Ml.	z/c	m/20 ð
<i>3B</i>	Трг мин	Mpr. г/мин	Тх. и ми	,			<i>III,</i> 200
3 B 0337	_	_				0.00453	0.00288

0301	1.5	1	1	1	4.5	0.001312	0.00086	
0304	1.5	1	1	1	4.5	0.000213	0.0001396	
0328	1.5	0.04	1	0.04	0.4	0.0000778	0.0000537	
0330	1.5	0.113	1	0.1	0.78	0.000193	0.0001282	

Tun 3	Тип машины: Грузовые автомобили карбюраторные до 2 т (СНГ)											
Dn.	Nk.	\boldsymbol{A}	Nk1	<i>L1</i> .	<i>L2</i> .							
cym	шт		шm.	км	км							
122	1	1.00	1	0.1	0.1							

<i>3B</i>	Tpr мин	Mpr. г/мин	Тх. мин	Мхх. г/мин	Ml. г/км	z/c	т/год
0337	1.5	5	1	4.5	22.7	0.00396	0.002567
2704	1.5	0.65	1	0.4	2.8	0.00046	0.000285
0301	1.5	0.05	1	0.05	0.6	0.0000411	0.0000288
0304	1.5	0.05	1	0.05	0.6	0.00000668	0.0000468
0330	1.5	0.013	1	0.012	0.09	0.00001125	0.0000075

Тип машинь	: Легковые	автомобили	карбюраторн	ые рабочим (объемом свы	ше 1.2 до 1.8 л
(после 94)						

<i>c > i ,</i>				
Nk.	\boldsymbol{A}	Nk1	<i>L1</i> .	<i>L2</i> .
шт		шm.	км	км
1	1.00	1	0.1	0.1
	Nk.	Nk. A um	Nk. A Nk1 um um.	Nk. A Nk1 L1. um um. км

<i>3B</i>	Tpr мин	Mpr. г/мин	Тх. мин	Мхх. г/мин	Ml. г/км	2/c	m/20ð
0337	1.5	3	1	2	9.4	0.002067	0.001266
2704	1.5	0.31	1	0.25	1.2	0.000232	0.000147
0301	1.5	0.02	1	0.02	0.17	0.00001488	0.00001016
0304	1.5	0.02	1	0.02	0.17	0.00000242	0.00000165
0330	1.5	0.01	1	0.009	0.054	0.00000817	0.00000534

ВСЕГ	ВСЕГО по периоду: Переходный период хранения (t>-5 и t<5)						
Код	Примесь	Выброс г/с	Выброс т/год				
0337	Углерод оксид (594)	0.015007	0.012333				
2704	Бензин (нефтяной. малосернистый) /в пересчете на углерод/ (60)	0.000692	0.000432				
2732	Керосин (660*)	0.001283	0.00125				
0301	Азота (IV) диоксид (4)	0.00265598	0.00257896				
0328	Углерод (593)	0.00015	0.0001513				
0330	Сера диоксид (526)	0.00039212	0.00037404				
0304	Азот (II) оксид (6)	0.0004314	0.00041893				

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Примесь	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (4)	0.00265598	0.00515792
0304	Азот (II) оксид (6)	0.0004314	0.00083786
0328	Углерод (593)	0.00015	0.0003026
0330	Сера диоксид (526)	0.00039212	0.00074808
0337	Углерод оксид (594)	0.015007	0.024666
2704	Бензин (нефтяной. малосернистый) /в пересчете на	0.000692	0.000864
	углерод/ (60)		

 2732 | Керосин (660*)
 0.001283
 0.0025

Максимальные разовые выбросы достигнуты в теплый период

Источник загрязнения № 0023. Свеча рассеивания дренажных емкостей Источники выделения № 01. Свеча рассеивания

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из других типов неплотностей арматуры ифланцевых соединений.

Расчет выбросов загрязняющих веществ от других типов неплотностей арматуры и фланцевых соединений определяется по формуле:

$$Q=B*C*n*10^{-}$$

². кг/часгде:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений; n — Количество фланцевых соединений — 8 шт.

n – Количество других типов неплотностей арматуры – 4 шт.

Количество выбросов углеводородов из емкости при работе определяется по формуле: $Q = 0.004 * (PV/1011)^{0.8} / Kg (кг/час)$.

гле:

P -давление в аппарате; V - объем аппарата.

 $M_{cek} = \frac{Q}{3.6}$

$$M_{zoo} = \frac{Q \times T}{1000}$$

▶ Время работы – 8760 час/год.

Наименование	Р. гПа	V. m ³	Kg	М. кг/час	М. г/сек	М. т/год
Дренажная емкость	700	22	0.51	0.0693	0.01925	0,303534

Наименование	Кол-во	C. %	B.	М. кг/час	М. г/сек	М. т/год
			кг/час			
Другие типы	4	7.0	0.0095	0.00266	0.00074	
неплотностей арматуры					0.00074	0,1297016
Фланцевые соединения	8	2.0	0.00028	0.0000448	0.0000124	0,000392448
Итого:	•	•	•		0.02000	0,327228048

Выбросы индивидуальных компонентов по группам

Определяемый	Углеводородь	и предельные		Смесь	
1	C ₁ - C ₅	C C	C ₁₂ - C ₁₉	Сероводород	природных
параметр	C1- C5	C_{6} - C_{10}	C12- C19		меркаптанов
C _i . macc %	3.705	32.773	63.49932	0.02	0.00268
М _і . г/сек	0.00074105	0.00655502	0.01270068	0.000004	0.000001
G _i . т/год					
	0.0121238	0.1072424	0.207787585	6.54456E-05	8.76971E-06

Источник загрязнения N 6025

Источник выделения N 6025 01, Газовый сепаратор ГС-1-2,5-600-2 на входе

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Неочищенный нефтяной газ

Расчетная величина утечки, кг/час(Прил.Б1), Q = 0.006588

Расчетная доля уплотнений, потерявших герметичность, доли единицы(Прил.Б1), X = 0.07

Общее количество данного оборудования, шт., N = 1

Среднее время работы данного оборудования, час/год, $_{T}$ = **8760**

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 1 = 0.000461$

Суммарная утечка всех компонентов, г/с, G = G / 3.6 = 0.000461 / 3.6 = 0.000128

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 63.39

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 63.39 / 100 = 0.0000811$

Валовый выброс, т/год, $M = G \cdot T \cdot 3600 / 10^6 = 0.0000811 \cdot 8760 \cdot 3600 / 10^6 = 0.00256$

<u>Примесь: 0410 Метан (727*)</u>

Массовая концентрация компонента в потоке, %, C = 14.12

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 14.12 / 100 = 0.00001807$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6 = 0.00001807 \cdot 8760 \cdot 3600 / 10^6 = 0.00057$

Примесь: 0412 Изобутан (2-Метилпропан) (279)

Массовая концентрация компонента в потоке, %, C = 3.82

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 3.82 / 100 = 0.00000489$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600$ / $10^6=0.00000489\cdot 8760\cdot 3600$ / $10^6=0.0001542$

Примесь: 0405 Пентан (450)

Массовая концентрация компонента в потоке, %, C = 2.65

Максимальный разовый выброс, г/с, $G = G \cdot C / 100 = 0.000128 \cdot 2.65 / 100 = 0.00000339$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6=0.00000339\cdot 8760\cdot 3600 / 10^6=0.000107$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Массовая концентрация компонента в потоке, %, C = 2.68

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 2.68 / 100 = 0.00000343$

Валовый выброс, т/год, $M = G \cdot T \cdot 3600 / 10^6 = 0.00000343 \cdot 8760 \cdot 3600 / 10^6 = 0.0001082$

Сводная таблица расчетов:

Оборудов.	Технологич. поток	Общее кол- во, шт.	Время ра- боты, ч/г
Запорно-	Неочищенный	1	8760
регулирующ	нефтяной газ		
ая арматура			
(тяжелые			
углеводород			
ы)			

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000343	0.0001082
0405	Пентан (450)	0.00000339	0.000107
0410	Метан (727*)	0.00001807	0.00057
0412	Изобутан (2-Метилпропан) (279)	0.00000489	0.0001542
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.0000811	0.00256

Источник загрязнения N 6026

Источник выделения N 6026 01, Газовый сепаратор ГС-1-1,5-1200-2 на выходе

Список литературы:

- 1. Методика расчетов выбросов в окружающую среду от неорганизованных источников АО "Казтрансойла" Астана, 2005 (п.6.1, 6.2, 6.3 и 6.4)
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (дополненное и переработанное), СПб, НИИ Атмосфера, 2005
- 3. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Наименование оборудования: Запорно-регулирующая арматура (тяжелые углеводороды)

Наименование технологического потока: Очищенный нефтяной газ

Расчетная величина утечки, кг/час(Прил.Б1), Q = 0.006588

Расчетная доля уплотнений, потерявших герметичность, доли единицы(Прил.Б1), X = 0.07

Общее количество данного оборудования, шт., N = 1

Среднее время работы данного оборудования, час/год, $_{T_{-}}$ = **8760**

Суммарная утечка всех компонентов, кг/час (6.1), $G = X \cdot Q \cdot N = 0.07 \cdot 0.006588 \cdot 1 = 0.000461$

Суммарная утечка всех компонентов, г/с, G = G / 3.6 = 0.000461 / 3.6 = 0.000128

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Массовая концентрация компонента в потоке, %, C = 66.13

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 66.13 / 100 = 0.0000846$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6=0.0000846 \cdot 8760 \cdot 3600 / 10^6=0.00267$ Проект нормативов допустимых выбросов

для объектов месторождения Восточный Жагабулак

Примесь: 0410 Метан (727*)

Массовая концентрация компонента в потоке, %, C = 23.11

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 23.11 / 100 = 0.0000296$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6=0.0000296\cdot 8760\cdot 3600 / 10^6=0.000933$

Примесь: 0412 Изобутан (2-Метилпропан) (279)

Массовая концентрация компонента в потоке, %, C = 3.36

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 3.36 / 100 = 0.0000043$

Валовый выброс, т/год, $_M_=_G_\cdot_T_\cdot 3600 / 10^6=0.0000043\cdot 8760\cdot 3600 / 10^6=0.0001356$

Примесь: 0405 Пентан (450)

Массовая концентрация компонента в потоке, %, C = 2.3

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 2.3 / 100 = 0.000002944$

Валовый выброс, т/год, $_{M}$ = $_{G}$ · $_{T}$ · $_{3600}$ / $_{10}$ 6 = 0.000002944 · 8760 · 3600 / $_{10}$ 6 = 0.0000928

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Массовая концентрация компонента в потоке, %, C = 0.15

Максимальный разовый выброс, г/с, $_G_ = G \cdot C / 100 = 0.000128 \cdot 0.15 / 100 = 0.000000192$

Валовый выброс, т/год, $_M_ = _G_ \cdot _T_ \cdot 3600 / 10^6 = 0.000000192 \cdot 8760 \cdot 3600 / 10^6 = 0.00000605$

Сводная таблица расчетов:

Оборудов.	Технологич. поток	Общее кол- во, шт.	Время ра- боты, ч/г
Запорно-	Очищенный	1	8760
регулирующ	нефтяной газ		
ая арматура			
(тяжелые			
углеводород			
ы)			

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000000192	0.0000605
0405	Пентан (450)	0.000002944	0.0000928
0410	Метан (727*)	0.0000296	0.000933
0412	Изобутан (2-Метилпропан) (279)	0.0000043	0.0001356
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.0000846	0.00267

Капитальный ремонт скважин:

Источник загрязнения N 0013, Выхлопная труба Источник выделения N 001, Станок КРС XJ-450

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 113.254

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 343

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 37.69

Температура отработавших газов T_{o2} , K, 573

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{a2} , кг/с:

$$G_{o2} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 37.69 * 343 = 0.112729282$$
 (A.3)

Удельный вес отработавших газов γ_{a2} , кг/м³:

$$\gamma_{oz} = 1.31 \, / \, (1 + T_{oz} \, / \, 273) = 1.31 \, / \, (1 + 573 \, / \, 273) = 0.422730496 \quad (\text{A.5})$$

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов Q_{a_2} , м³/с:

$$Q_{o2} = G_{o2} / \gamma_{o2} = 0.112729282 / 0.422730496 = 0.266669387$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	6.2	9.6	2.9		1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для $NO_2\,$ и $0.13\,$ - для NO

Итого выбросы по веществам:

rimoco	выбросы по веществим.					
Код	Примесь	г/сек т/год		%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой

0301	Азота (IV) диоксид (Азота диоксид) (4)	0.731733333	3.624128	0	0.731733333	3.624128
0304	Азот (II) оксид (Азота оксид) (6)	0.118906667	0.5889208	0	0.118906667	0.5889208
0328	Углерод (Сажа, Углерод черный) (583)	0.047638889	0.226508	0	0.047638889	0.226508
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.114333333	0.56627	0	0.114333333	0.56627
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.590722222	2.944604	0	0.590722222	2.944604
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001143	0.000006229	0	0.000001143	0.000006229
1325	Формальдегид (Метаналь) (609)	0.011433333	0.056627	0	0.011433333	0.056627
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.276305556	1.359048	0	0.276305556	1.359048

Источник загрязнения N 0014, Выхлопная труба Источник выделения N 001, Силовой двигатель бурового насоса

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B_{200}}$, т, 396.388

Эксплуатационная мощность стационарной дизельной установки P_{q} , кВт, 396

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 114.267

Температура отработавших газов T_{o2} , K, 573

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{o2} = 8.72 * 10^{-6} * b_{_9} * P_{_9} = 8.72 * 10^{-6} * 114.267 * 396 = 0.394577663$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{o2} = 1.31 / (1 + T_{o2} / 273) = 1.31 / (1 + 573 / 273) = 0.422730496$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, $\kappa \Gamma/M^3$;

Объемный расход отработавших газов $oldsymbol{Q_{o2}}$, \mathbf{M}^3 /с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.394577663 / 0.422730496 = 0.933402407$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ij} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_3 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO₂ и 0.13 - для NO

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.8448	12.684416	0	0.8448	12.684416
0304	Азот (II) оксид (Азота оксид) (6)	0.13728	2.0612176	0	0.13728	2.0612176
0328	Углерод (Сажа, Углерод черный) (583)	0.055	0.792776	0	0.055	0.792776
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.132	1.98194	0	0.132	1.98194
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.682	10.306088	0	0.682	10.306088
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.00000132	0.000021801	0	0.00000132	0.000021801
1325	Формальдегид (Метаналь) (609)	0.0132	0.198194	0	0.0132	0.198194
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.319	4.756656	0	0.319	4.756656

Источник загрязнения 0015, Дымывоя труба Источник выделения N 001,ДЭС-300

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год \boldsymbol{B}_{200} , т, 201.34

Эксплуатационная мощность стационарной дизельной установки P_{a} , кВт, 300

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 76.61

Температура отработавших газов T_{o2} , K, 573

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{q_2} , кг/с:

$$G_{oz} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 76.61 * 300 = 0.20041176$$
 (A.3)

Удельный вес отработавших газов γ_{a2} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 573 / 273) = 0.422730496$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов $oldsymbol{Q}_{a}$, м 3 /с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.20041176 / 0.422730496 = 0.47408872$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ij} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{9i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для $NO_2\,$ и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек без	т/год без очистки	% очистки	г/сек с очисткой	т/год с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	очистки 0.64	6.44288	0	0.64	6.44288
0304	Азот (II) оксид (Азота оксид) (6)	0.104	1.046968	0	0.104	1.046968
0328	Углерод (Сажа, Углерод черный) (583)	0.041666667	0.40268	0	0.041666667	0.40268
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.1	1.0067	0	0.1	1.0067
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.516666667	5.23484	0	0.516666667	5.23484
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000001	0.000011074	0	0.000001	0.000011074

1325	Формальдегид	0.01	0.10067	0	0.01	0.10067
	(Метаналь) (609)					
2754	Алканы С12-19 /в	0.241666667	2.41608	0	0.241666667	2.41608
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					

Источник загрязнения N 0016, Выхлопная труба Источник выделения N 001,ДЭС-100

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 96.23

Эксплуатационная мощность стационарной дизельной установки P_{a} , кВт, 100

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 109.85

Температура отработавших газов T_{oz} , K, 573

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{oz} = 8.72 * 10^{-6} * b_{9} * P_{9} = 8.72 * 10^{-6} * 109.85 * 100 = 0.0957892$$
 (A.3)

Удельный вес отработавших газов γ_{n_2} , кг/м³ :

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 573 / 273) = 0.422730496$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, $\kappa \Gamma / M^3$;

Объемный расход отработавших газов $oldsymbol{Q_{o2}}$, \mbox{M}^3/\mbox{c} :

$$Q_{02} = G_{02} / \gamma_{02} = 0.0957892 / 0.422730496 = 0.226596379$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{ni} г/кВт*ч стационарной дизельной установки до капитального ремонта

		7700					
Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_{9} / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{\jmath i} * B_{\jmath o \partial} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для $NO_2\,$ и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.213333333	3.07936	0	0.213333333	3.07936
0304	Азот (II) оксид (Азота оксид) (6)	0.034666667	0.500396	0	0.034666667	0.500396
0328	Углерод (Сажа, Углерод черный) (583)	0.013888889	0.19246	0	0.013888889	0.19246
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.033333333	0.48115	0	0.033333333	0.48115
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.172222222	2.50198	0	0.172222222	2.50198
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000333	0.000005293	0	0.000000333	0.000005293
1325	Формальдегид (Метаналь) (609)	0.003333333	0.048115	0	0.003333333	0.048115
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.08055556	1.15476	0	0.08055556	1.15476

Источник загрязнения N 0017, Цементировочный агрегат ЦА-320 Источник выделения N 001, Дымовая труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\pmb B}_{{\pmb z}{\pmb o}{\pmb o}}$, т, 84.12

Эксплуатационная мощность стационарной дизельной установки P_{a} , кВт, 169

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 56.82

Температура отработавших газов T_{o2} , K, 573

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{n_2} , кг/с:

$$G_{oz} = 8.72 * 10^{-6} * b_{_{9}} * P_{_{9}} = 8.72 * 10^{-6} * 56.82 * 169 = 0.083734498 \quad \text{(A.3)}$$

Удельный вес отработавших газов γ_{o2} , кг/м 3 :

$$\gamma_{o2} = 1.31 / (1 + T_{o2} / 273) = 1.31 / (1 + 573 / 273) = 0.422730496$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м 3 ;

Объемный расход отработавших газов Q_{oz} , M^3/c :

$$Q_{o2} = G_{o2} / \gamma_{o2} = 0.083734498 / 0.422730496 = 0.198080097$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ji} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000$$
 (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для $NO_2\,$ и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	m/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.360533333	2.69184	0	0.360533333	2.69184
0304	Азот (II) оксид (Азота оксид) (6)	0.058586667	0.437424	0	0.058586667	0.437424
0328	Углерод (Сажа, Углерод черный) (583)	0.023472222	0.16824	0	0.023472222	0.16824
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.056333333	0.4206	0	0.056333333	0.4206
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.291055556	2.18712	0	0.291055556	2.18712
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000563	0.000004627	0	0.000000563	0.000004627
1325	Формальдегид (Метаналь) (609)	0.005633333	0.04206	0	0.005633333	0.04206
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.136138889	1.00944	0	0.136138889	1.00944

Источник загрязнения N 0018, Емкости ДТ Источник выделения N 0018 01, Дыхательный клапан

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов.

Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от резервуаров

Климатическая зона: вторая - северные области РК (прил. 17)

Нефтепродукт: Дизельное топливо Конструкция резервуара: Наземный

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 1.86

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 450

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 0.96

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 450

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 1.32

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 10

Максимальный из разовых выброс, г/с (7.1.2), $GR = (CMAX \cdot VSL) / 3600 = (1.86 \cdot 10) / 3600 = 0.00517$

Выбросы при закачке в резервуары, т/год (7.1.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.96 \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6}$

 $450 + 1.32 \cdot 450) \cdot 10^{-6} = 0.001026$

Удельный выброс при проливах, г/м3 (с. 20), J = 50

Выбросы паров нефтепродукта при проливах, т/год (7.1.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.000$

 $0.5 \cdot 50 \cdot (450 + 450) \cdot 10^{-6} = 0.0225$

Валовый выброс, т/год (7.1.3), MR = MZAK + MPRR = 0.001026 + 0.0225 = 0.02353

Полагаем, G = 0.00517

Полагаем, M = 0.02353

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация 3В в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.02353 / 100 = 0.02346$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.00517 / 100 = 0.00516$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.28 \cdot 0.02353 / 100 = 0.0000659$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.00517 / 100 = 0.00001448$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00001448	0.0000659
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00516	0.02346
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

Источник загрязнения N 0019 Источник выделения N 0019 01, ППУ 1600/100

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г.

п.2. Расчет выбросов вредных веществ при сжигании топлива

в котлах производительностью до 30 т/час

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, т/год, BT = 319.74

Расход топлива, г/с, BG = 10.14

Марка топлива, M = Дизельное **топливо**

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более(прил. 2.1), AIR = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

<u> Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)</u>

Номинальная паропроизв. котлоагрегата, т/ч, QN = 1.6

Факт. паропроизводительность котлоагрегата, т/ч, QF = 1.6

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0888

Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0888 \cdot (1.6 / 1.6)^{0.25} = 0.0888$

 $0.0888 \cdot (1-0) = 1.214$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 10.14 \cdot 42.75 \cdot 10.000 \cdot 10.0000$

 $0.0888 \cdot (1-0) = 0.0385$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 1.214 = 0.971$

Выброс азота диоксида (0301), г/с, $_G_ = 0.8 \cdot MNOG = 0.8 \cdot 0.0385 = 0.0308$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_ = 0.13 \cdot MNOT = 0.13 \cdot 1.214 = 0.1578$ Выброс азота оксида (0304), г/с, $_G_ = 0.13 \cdot MNOG = 0.13 \cdot 0.0385 = 0.005$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, %(прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot BT \cdot SR \cdot (1-NSO2) + 0$

 $319.74 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 319.74 = 1.88$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_ = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot BG \cdot S1$

 $10.14 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 10.14 = 0.0596$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4 = 0

Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, %(табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R = 0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4 / 100) = 0.001 \cdot 319.74 \cdot 13.9 \cdot 1000 \cdot 10000 \cdot 1000 \cdot 1000$

(1-0 / 100) = 4.44

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4 / 100) = 0.001 \cdot 10.14 \cdot 13.9 \cdot (1-0 / 100) = 0.141$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 319.74 \cdot 0.025 \cdot 0.01 = 0.08$ Выброс твердых частиц, г/с (ф-ла 2.1), $G = BG \cdot AIR \cdot F = 10.14 \cdot 0.025 \cdot 0.01 = 0.002535$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0308	0.971
0304	Азот (II) оксид (Азота оксид) (6)	0.005	0.1578
0328	Углерод (Сажа, Углерод черный) (583)	0.002535	0.08
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0596	1.88
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.141	4.44

Источник загрязнения № 6022Неорганизованные

Источник выделения Выкидные линии и блок задвижек (манифольд)

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

В выбросах источника учтены выделения из неплотностей запорно-регулирующей арматуры и фланцевых соединений.

Расчет выбросов загрязняющих веществ от запорно-регулирующей арматуры и фланцевых соединений определяется по формуле:

$$Q=B*C$$
 * $n*10^{-2}$. кг/час где:

В – величина утечки углеводородов. кг/час;

C — процент потерявших герметичность уплотнений. n — Количество фланцевых соединений — 30 шт.

n – Количество запорно-регулирующей арматуры – 10 шт.

$$M_{cek} = \frac{Q}{3}$$
.

$$\begin{array}{c} M_{\text{200}} = Q \times T \\ 1000 \end{array}$$

Время работы скважин 8760 час/год.

Источники выделения	Кол- во	C, %	В,	Q, кг/час	М, г/сек	М, т/год
Неплотности запорно-						
регулирующей арматуры	6	7	0,0095	0,00399	0,001108333	0,0349524
Фланцевые соединения	12	2	0,00028	0,0000672	1,86667E-05	0,000588672
Всего:	-				0,001127	0,035541072

Определяемый параметр	Углеводоро	оды пределы	ные		Смесь	
	C1- C5 C6- C10		C12- C19	Сероводород	природных	
<u>r</u>	CI- CJ	C0- C10	C12- C19	Сероводород	меркаптанов	
Сі, масс %	3,705	32,773	63,49932	0,02	0,00268	
Мі. г/сек	4.1755E-	0.00036935	0.00071563	2.254E-07	3.02036E-08	
	05		7			
Gi. т/год	0.0013168	0.0116479	0.022568339	7.10821E-06	9.52501E-07	

Источник загрязнения: 6024, Неорганизованный Источник выделения: 6024 01, Сварочный

пост

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферупри сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

РАСЧЕТ выбросов ЗВ от сварки металлов Вид сварки: Ручная дуговая сварка сталей штучными электродамиЭлектрод (сварочный материал): УОНИ-13/45 Расход сварочных материалов, кг/год, B=200 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=0.3

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), GIS = 16.31 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид.</u> Железа оксид)(274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 10.69 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 10.69 \cdot 200/10^6 = 0.00214$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 10.69 \cdot 0.3/3600 = 0.00089$

Примесь: 0143 Марганеи и его соединения (в пересчете на марганиа (IV) оксид) (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.92 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 0.92 \cdot 200/10^6 = 0.000184$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 0.92 \cdot 0.3/3600 = 0.0000767$

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, иемент, пыль иементного производства - глина, глинистый сланеи, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS=1.4 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6=1.4 \cdot 200/10^6=0.00028$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600=1.4 \cdot 0.3/3600=0.0001167$

Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия

фторид, кальиияфторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS=3.3 Валовый выброс, т/год (5.1), $_M_=GIS\cdot B/10^6=3.3\cdot 200/10^6=0.00066$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS\cdot BMAX/3600=3.3\cdot 0.3/3600=0.000275$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.75 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 0.75 \cdot 200/10^6 = 0.00015$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 0.75 \cdot 0.3/3600 = 0.0000625$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1.5 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 1.5 \cdot 200/10^6 = 0.0003$

Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600=1.5 \cdot 0.3/3600=$ 0.000125

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 13.3 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B/10^6 = 13.3 \cdot 200/10^6 = 0.00266$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX/3600 = 13.3 \cdot 0.3/3600 = 0.001108$

:OTOTN

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0.00089	0.00214
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.0000767	0.000184
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.000125	0.0003
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.001108	0.00266
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.0000625	0.00015

0344	Фториды неорганические плохо растворимые -	0.000275	0.00066
	(алюминия фторид, кальция фторид, натрия		
	гексафторалюминат) (Фториды неорганические		
	плохо		
	растворимые /в пересчете на фтор/) (615)		
2908	Пыль неорганическая, содержащая двуокись	0.0001167	0.00028
	кремния в		
	%: 70-20 (шамот, цемент, пыль цементного		
	производства		
	- глина, глинистый сланец, доменный шлак, песок,		
	клинкер, зола, кремнезем, зола углей		
	казахстанскихместорождений) (494)		

Горячая промывка коллекторной линии скважин, АГЗУ:

Источник загрязнения N 0020 Источник выделения N 0020 01, ППУ 1600/100

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, т/год, BT = 6.48

Расход топлива, Γ/c , BG = 18

Марка топлива, *М* = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более(прил. 2.1), AIR = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная паропроизв. котлоагрегата, $\tau/4$, QN = 1.6

Факт. паропроизводительность котлоагрегата, т/ч, QF = 1.6

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0888

Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0888 \cdot (1.6/100)$

$$(1.6)^{0.25} = 0.0888$$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 6.48 \cdot 42.75 \cdot 0.0888 \cdot (1-0) = 0.0246$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 18 \cdot 42.75 \cdot 10^{-10} \cdot 10^{-10}$

 $0.0888 \cdot (1-0) = 0.0683$

Выброс азота диоксида (0301), т/год, $_M_=0.8 \cdot MNOT=0.8 \cdot 0.0246=0.01968$ Выброс азота диоксида (0301), г/с, $_G_=0.8 \cdot MNOG=0.8 \cdot 0.0683=0.0546$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.0246=0.0032$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.0683=0.00888$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, %(прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 6.48 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 6.48 = 0.0381$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 18 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 18 = 0.1058$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R = 0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 6.48 \cdot 13.9 \cdot (1-0/100) = 0.09$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 18 \cdot 13.9 \cdot (1-0/100) = 0.25$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 6.48 \cdot 0.025 \cdot 0.01 = 0.00162$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG \cdot A1R \cdot F = 18 \cdot 0.025 \cdot 0.01 = 0.0045$

Итого:

111010.			
Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0546	0.01968
0304	Азот (II) оксид (Азота оксид) (6)	0.00888	0.0032
0328	Углерод (Сажа, Углерод черный) (583)	0.0045	0.00162
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.1058	0.0381
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.25	0.09

Источник загрязнения N 0021, Цементировочный агрегат ЦА-320 Источник выделения N 001, Дымовая труба

Список литературы:

^{1. &}quot;Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год \boldsymbol{B}_{200} , т, 19.998

Эксплуатационная мощность стационарной дизельной установки P_{3} , кВт, 230

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 869.48

Температура отработавших газов T_{oc} , K, 573

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{q_2} , кг/с:

$$G_{o2} = 8.72 * 10^{-6} * b_{_{9}} * P_{_{9}} = 8.72 * 10^{-6} * 869.48 * 230 = 1.743829088 \quad \text{(A.3)}$$

Удельный вес отработавших газов γ_{n_2} , кг/м³:

$$\gamma_{oz} = 1.31 \, / \, (1 + T_{oz} \, / \, 273) = 1.31 \, / \, (1 + 573 \, / \, 273) = 0.422730496 \quad (\text{A.5})$$

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, $\kappa \Gamma/M^3$;

Объемный расход отработавших газов Q_{az} , м³/с:

$$Q_{o2} = G_{o2} / \gamma_{o2} = 1.743829088 / 0.422730496 = 4.125155631$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ij} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_{9} / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{3i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для $NO_2\,$ и $0.13\,$ - для NO

Итого выбросы по вешествам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.490666667	0.639936	0	0.490666667	0.639936
0304	Азот (II) оксид (Азота оксид) (6)	0.079733333	0.1039896	0	0.079733333	0.1039896
0328	Углерод (Сажа, Углерод черный) (583)	0.031944444	0.039996	0	0.031944444	0.039996

0330	Сера диоксид	0.076666667	0.09999	0	0.076666667	0.09999
	(Ангидрид сернистый,					
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.396111111	0.519948	0	0.396111111	0.519948
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000767	0.0000011	0	0.000000767	0.0000011
1325	Формальдегид (Метаналь) (609)	0.007666667	0.009999	0	0.007666667	0.009999
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.185277778	0.239976	0	0.185277778	0.239976

Строительно-монтажные и подготовительные работы скв. №308

Источник загрязнения №0024 – ДВС сварочного агрегата

Источник выделения №0001 Неорганизованный

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный Расход топлива стационарной дизельной установки за год B_{200} , т, 0.36

Эксплуатационная мощность стационарной дизельной установки P_{3} , кВт, 40

Удельный расход топлива на экспл./номин. режиме работы двигателя $b_{\it 3}$, г/кВт*ч, 112 Температура отработавших газов $T_{\it 02}$, K, 400

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{3} = 8.72 * 10^{-6} * 112 * 40 = 0.0390656$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 400/273) = 0.531396731$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, $\kappa \Gamma/M^3$; Объемный расход отработавших газов Q_{02} , M^3/c :

$$Q_{02} = G_{02} / \gamma_{02} = 0.0390656 / 0.531396731 = 0.073514942$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов *емі* г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH		SO2	CH2O	БП
A	7.2	110 3	3.6	0.7	1.1	UIS	1.3E-5

Таблица значений выбросов q_{3i} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
A	30	/ 1 ⊀	15	3	4.5	0.6	

 $\overline{\text{Расчет}}$ максимального из разовых выброса Mi, г/с:

$$Mi = e_{M}i * P_{9} / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$Wi = q_{i} * B_{i} / 1000 \qquad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек без очистки	т/год без очистки	% очистки	г/сек с очисткой	т/год с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.091555556	0.012384	0	0.09155556	0.012384
0304	Азот (II) оксид (Азота оксид) (6)	0.014877778	0.0020124	0	0.014877778	0.0020124
0328	Углерод (Сажа, Углерод черный) (583)	0.007777778	0.00108	0	0.007777778	0.00108
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.012222222	0.00162	0	0.012222222	0.00162
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.08	0.0108	0	0.08	0.0108
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000144	0.00000002	0	0.000000144	0.00000002
1325	Формальдегид (Метаналь) (609)	0.001666667	0.000216	0	0.001666667	0.000216
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.04	0.0054	0	0.04	0.0054

Источник загрязнения №6027. Работа бульдозера Источник выделения № 001 Неорганизованный

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

Материал: Глина

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Вид работ: Работа бульдозером

Оборудование: Бульдозер при работе по сухой погоде

Интенсивность пылевыделения от единицы оборудования, г/ч(табл.16), G = 900

Количество одновременно работающего данного оборудования, шт., N = 1

Максимальный разовый выброс , г/ч, $GC = N \cdot G \cdot (1-NI) = 1 \cdot 900 \cdot (1-0) = 900$

Максимальный разовый выброс, г/с (9), $_G_ = GC / 3600 = 900 / 3600 = 0.25$

Время работы в год, часов, RT = 24

Валовый выброс, т/год, $_M_ = GC \cdot RT \cdot 10^{-6} = 900 \cdot 40 \cdot 10^{-6} = 0,225$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.25	0.036
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6028 Неорганизованный Источник выделения N 6028 01, Работа экскаватора

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Глина

Весовая доля пылевой фракции в материале(табл.3.1.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.02

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 5

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.7

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.6

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 15

Суммарное количество перерабатываемого материала, т/год, GGOD = 2080

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 2 \cdot 1 \cdot 0.7 \cdot 0.6 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 15 \cdot 10^6 / 3600 \cdot (1-0) = 1.4$

Продолжительность выброса составляет менее 20 мин согласно п.2.1 применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), TT = 1

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 1.4 \cdot 1 \cdot 60 / 1200 = 0.07$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.7 \cdot 0.6 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 2080 \cdot (1-0) = 0.419$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.07 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.419 = 0.419

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.419 = 0.1676$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.07 = 0.028$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.028	0.1676
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения N 6029 Источник выделения N 6029 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): МР-3

Расход сварочных материалов, кг/год, B = 350

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, BMAX = 0.2

Удельное выделение сварочного аэрозоля, $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), GIS=11.5 в том числе:

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 9.77 Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 9.77 \cdot 350 / 10^6 = 0.00342$ Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 9.77 \cdot 0.2 / 3600 = 0.000543$

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1.73 Валовый выброс, т/год (5.1), $_M_=GIS \cdot B \ / \ 10^6 = 1.73 \cdot 350 \ / \ 10^6 = 0.000606$ Максимальный из разовых выброс, г/с (5.2), $_G_=GIS \cdot BMAX \ / \ 3600 = 1.73 \cdot 0.2 \ / \ 3600 = 0.0000961$

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Удельное выделение загрязняющих веществ,

 $\Gamma/\kappa\Gamma$ расходуемого материала (табл. 1, 3), *GIS* = **0.4**

Валовый выброс, т/год (5.1), $_M_ = GIS \cdot B / 10^6 = 0.4 \cdot 350 / 10^6 = 0.00014$

Максимальный из разовых выброс, г/с (5.2), $_G_ = GIS \cdot BMAX / 3600 = 0.4 \cdot 0.2 / 3600 = 0.0000222$

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от резки металлов

Вид резки: Газовая

Разрезаемый материал: Сталь углеродистая Толщина материала, мм (табл. 4), $\boldsymbol{L}=\mathbf{5}$

Способ расчета выбросов: по времени работы оборудования Время работы одной единицы оборудования, час/год, $_T_=264$

Удельное выделение сварочного аэрозоля, г/ч (табл. 4), GT = 74 в том числе:

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение, г/ч (табл. 4), GT = 1.1

Валовый выброс ЗВ, т/год (6.1), $_M_=GT\cdot_T_/10^6=1.1\cdot264/10^6=0.0002904$ Максимальный разовый выброс ЗВ, г/с (6.2), $_G_=GT/3600=1.1/3600=0.0003056$

<u>Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на</u> железо/ (274)

Удельное выделение, г/ч (табл. 4), GT = 72.9

Валовый выброс ЗВ, т/год (6.1), $_M_=GT\cdot_T_/10^6=72.9\cdot264/10^6=0.01925$ Максимальный разовый выброс ЗВ, г/с (6.2), $_G_=GT/3600=72.9/3600=0.02025$

Газы:

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение, г/ч (табл. 4), GT = 49.5

Валовый выброс ЗВ, т/год (6.1), $_M_ = GT \cdot _T_ / 10^6 = 49.5 \cdot 264 / 10^6 = 0.01307$ Максимальный разовый выброс ЗВ, г/с (6.2), $_G_ = GT / 3600 = 49.5 / 3600 = 0.01375$

Расчет выбросов оксидов азота:

Удельное выделение, г/ч (табл. 4), GT = 39

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс 3В, т/год (6.1), $_M_=KNO2 \cdot GT \cdot _T_/10^6 = 0.8 \cdot 39 \cdot 264 / 10^6 = 0.00824$ Максимальный разовый выброс 3В, г/с (6.2), $_G_=KNO2 \cdot GT / 3600 = 0.8 \cdot 39 / 3600 = 0.00867$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс ЗВ, т/год (6.1), $_M_=KNO \cdot GT \cdot _T_/10^6 = 0.13 \cdot 39 \cdot 264 / 10^6 = 0.001338$ Максимальный разовый выброс ЗВ, г/с (6.2), $_G_=KNO \cdot GT / 3600 = 0.13 \cdot 39 / 3600 = 0.001408$

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид, Железа	0.02025	0.02267
	оксид) /в пересчете на железо/ (274)		
0143	Марганец и его соединения /в пересчете на марганца	0.0003056	0.0008964
	(IV) оксид/ (327)		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00867	0.00824
0304	Азот (II) оксид (Азота оксид) (6)	0.001408	0.001338
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01375	0.01307
0342	Фтористые газообразные соединения /в пересчете на	0.0000222	0.00014
	фтор/ (617)		

Источник загрязнения N 6030

Источник выделения N 6030 01, Лакокрасочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.15

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MSI = 0.09

Марка ЛКМ:

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.15 \cdot 45 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.0675$

Максимальный из разовых выброс 3В (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.09 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 10^6) = 0.01125$

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.15

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.09

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_ = MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.15 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.15 \cdot 100 \cdot 100 \cdot 10^{-6} = 0.10 \cdot 100 \cdot 10^{-6} = 0.10 \cdot 100 \cdot 10^{-6}$ 0.03375

Максимальный из разовых выброс 3B (5-6), г/с, $G = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.09 \cdot 45 \cdot$ $50 \cdot 100 / (3.6 \cdot 10^6) = 0.00563$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_{M}$ = $MS \cdot F2 \cdot FPI \cdot DP \cdot 10^{-6} = 0.15 \cdot 45 \cdot 50 \cdot 100 \cdot 10^{-6} = 0.15 \cdot 100 \cdot 100$ 0.03375

Максимальный из разовых выброс 3В (5-6), г/с, $_G_ = MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 10^6) = 0.09 \cdot 45 \cdot$ $50 \cdot 100 / (3.6 \cdot 10^6) = 0.00563$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.01125	0.10125
2752	Уайт-спирит (1294*)	0.00563	0.03375

Период бурение и крепление скважины №308 с буровой установкой ZJ-50DB (либо ее аналогом)

Источник загрязнения N 0025 Буровой станок ZJ50DB (либо его аналог по хар-кам не превыш. технич. показатели)

Источник выделения N 001, Выхлопная труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 405.185

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 810

Удельный расход топлива на экспл./номин. режиме работы двигателя b_3 , г/кBт*ч, 157.9

Температура отработавших газов T_{o2} , K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{02} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 157.9 * 810 = 1.11527928$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 274 / 273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 1.11527928 / 0.653802559 = 1.705834986$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
В	5.3	8.4	2.4	0.35	Ι Δ	0.1	1.1E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

		1 30	1			F 1	
Группа	CO	NOx	CH	C	SO2	CH2O	БП
В	22	35	10	1.5	6	0.4	4.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{mi} * P_2 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для NO_2 и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек без очистки	т/год без очистки	% очистки	г/сек с очисткой	т/год с очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.512	11.34518	0	1.512	11.34518
0304	Азот (II) оксид (Азота оксид) (6)	0.2457	1.84359175	0	0.2457	1.84359175
0328	Углерод (Сажа, Углерод черный) (583)	0.07875	0.6077775	0	0.07875	0.6077775
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера	0.315	2.43111	0	0.315	2.43111

	(IV) оксид) (516)					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1.1925	8.91407	0	1.1925	8.91407
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000002475	0.000018233	0	0.000002475	0.000018233
1325	Формальдегид (Метаналь) (609)	0.0225	0.162074	0	0.0225	0.162074
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.54	4.05185	0	0.54	4.05185

Источник загрязнения N 0026 Буровой станок ZJ50DB (либо его аналог по хар-кам не превыш. технич. показатели)

Источник выделения N 001, Выхлопная труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it zoo}$, т, 405.185

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 810

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 157.9

Температура отработавших газов T_{oz} , K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{2} = 8.72 * 10^{-6} * 157.9 * 810 = 1.11527928$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 274 / 273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 1.11527928 / 0.653802559 = 1.705834986$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
В	5.3	8.4	2.4	0.35	1.4	0.1	1.1E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
В	22	35	10	1.5	6	0.4	4.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для NO_2 и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.512	11.34518	0	1.512	11.34518
0304	Азот (II) оксид (Азота оксид) (6)	0.2457	1.84359175	0	0.2457	1.84359175
0328	Углерод (Сажа, Углерод черный) (583)	0.07875	0.6077775	0	0.07875	0.6077775
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.315	2.43111	0	0.315	2.43111
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1.1925	8.91407	0	1.1925	8.91407
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000002475	0.000018233	0	0.000002475	0.000018233
1325	Формальдегид (Метаналь) (609)	0.0225	0.162074	0	0.0225	0.162074
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.54	4.05185	0	0.54	4.05185

Источник загрязнения N 0027 Передвижная паровая установка №1 Источник выделения N 0027 01, Дымовая труба

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, т/год, BT = 38.919

Расход топлива, г/с, BG = 5.972

Марка топлива, M = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более(прил. 2.1), AIR = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

Примесь: 0301 Aзота (IV) диоксид (Азота диоксид) (4)

Номинальная паропроизв. котлоагрегата, т/ч, QN = 1.5

Факт. паропроизводительность котлоагрегата, т/ч, QF = 1.5

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0888

Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0888 \cdot (1.5 / 1.5)^{0.25} = 0.0888$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 38.919 \cdot$

 $42.75 \cdot 0.0888 \cdot (1-0) = 0.1477$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 5.972 \cdot 42.75 \cdot 0.0888 \cdot (1-0) = 0.02267$

Выброс азота диоксида (0301), т/год, $_M_ = 0.8 \cdot MNOT = 0.8 \cdot 0.1477 = 0.1182$

Выброс азота диоксида (0301), г/с, $_G_ = 0.8 \cdot MNOG = 0.8 \cdot 0.02267 = 0.01814$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_=0.13 \cdot MNOT=0.13 \cdot 0.1477=0.0192$ Выброс азота оксида (0304), г/с, $_G_=0.13 \cdot MNOG=0.13 \cdot 0.02267=0.00295$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, %(прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 38.919 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 38.919 = 0.229$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_=0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 5.972 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 5.972 = 0.0351$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, %(табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R = 0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_M_=0.001 \cdot BT \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 38.919 \cdot 13.9 \cdot (1-0/100) = 0.541$

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4 / 100) = 0.001 \cdot 5.972 \cdot 13.9 \cdot (1-0 / 100) = 0.083$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F = 38.919 \cdot 0.025 \cdot 0.01 = 0.00973$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG \cdot A1R \cdot F = 5.972 \cdot 0.025 \cdot 0.01 = 0.001493$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.01814	0.1182
0304	Азот (II) оксид (Азота оксид) (6)	0.00295	0.0192
0328	Углерод (Сажа, Углерод черный) (583)	0.001493	0.00973
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0351	0.229
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.083	0.541

Источник загрязнения N 0028 Источник выделения N 001, ЦА-320М

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it coo}$, т, 146.272

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 169

Удельный расход топлива на экспл./номин. режиме работы двигателя $b_{\mathfrak{I}}$, г/кBт*ч, 572.43

Температура отработавших газов $T_{\theta z}$, K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{3} * P_{3} = 8.72 * 10^{-6} * 572.43 * 169 = 0.843578642$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{02} = 1.31/(1 + T_{02}/273) = 1.31/(1 + 274/273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.843578642 / 0.653802559 = 1.290265127$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1) Расчет валового выброса W_i , т/год: $W_i = q_{9i} * B_{200} / 1000$ (2)

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.360533333	4.680704	0	0.360533333	4.680704
0304	Азот (II) оксид (Азота оксид) (6)	0.058586667	0.7606144	0	0.058586667	0.7606144
0328	Углерод (Сажа, Углерод черный) (583)	0.023472222	0.292544	0	0.023472222	0.292544
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.056333333	0.73136	0	0.056333333	0.73136
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.291055556	3.803072	0	0.291055556	3.803072
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000563	0.000008045	0	0.000000563	0.000008045
1325	Формальдегид (Метаналь) (609)	0.005633333	0.073136	0	0.005633333	0.073136
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.136138889	1.755264	0	0.136138889	1.755264

Источник №0029 Цементно-смесительная машина Источник выделения N 001,Цементно-смесительная машина

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 141.837

Эксплуатационная мощность стационарной дизельной установки P_3 , кВт, 29.4

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 1595.37

Температура отработавших газов T_{o2} , K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1. Оценка расхода и температуры отработавших газов Расход отработавших газов G_{0z} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{3} = 8.72 * 10^{-6} * 1595.37 * 29.4 = 0.409001816$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{0z} = 1.31 / (1 + T_{0z} / 273) = 1.31 / (1 + 274 / 273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.409001816 / 0.653802559 = 0.625573899$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
A	7.2	10.3	3.6	0.7	1.1	0.15	1.3E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
A	30	43	15	3	4.5	0.6	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_9 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \qquad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для NO_2 и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек без	т/год без	% очистки	г/сек с	m/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.067293333	4.8791928	0	0.067293333	4.8791928
0304	Азот (II) оксид (Азота оксид) (6)	0.010935167	0.79286883	0	0.010935167	0.79286883
0328	Углерод (Сажа, Углерод черный) (583)	0.005716667	0.425511	0	0.005716667	0.425511
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.008983333	0.6382665	0	0.008983333	0.6382665
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0588	4.25511	0	0.0588	4.25511
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000000106	0.000007801	0	0.000000106	0.000007801
1325	Формальдегид (Метаналь) (609)	0.001225	0.0851022	0	0.001225	0.0851022
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-	0.0294	2.127555	0	0.0294	2.127555

[265II) (10)

Источник загрязнения N 6031 Источник выделения N 601 01, Емкость хранения дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: вторая - северные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 1.86 Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 424.644 Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 0.96

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 424.644 Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 1.32

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 16

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (1.86 \cdot 16) / 3600 = 0.00827$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.96 \cdot 424.644 + 1.32 \cdot 424.644) \cdot 10^{-6} = 0.000968$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (424.644 + 424.644) \cdot 10^{-6} = 0.02123$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000968 + 0.02123 = 0.0222

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $_{M_{-}}$ = $CI \cdot M / 100 = 99.72 \cdot 0.0222 / 100 = 0.02214$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.00827 / 100 = 0.00825$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.28 \cdot 0.0222 / 100 = 0.0000622$

Максимальный из разовых выброс, г/с (5.2.4), $G_{-} = CI \cdot G / 100 = 0.28 \cdot 0.00827 / 100 = 0.00002316$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00002316	0.0000622

2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00825	0.02214
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

Источник загрязнения N 6032

Источник выделения N 6032 01, Насос для перекачки дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q = 0.13

Общее количество аппаратуры или средств перекачки, шт., N1 = 2

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI = 1

Время работы одной единицы оборудования, час/год, $_{T}$ = 1644

Максимальный из разовых выброс, г/с (8.1), $G = Q \cdot NN1 / 3.6 = 0.13 \cdot 1 / 3.6 = 0.0361$

Валовый выброс, т/год (8.2), $M = (Q \cdot NI \cdot _T_) / 1000 = (0.13 \cdot 2 \cdot 1644) / 1000 = 0.4274$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M$ / $100=99.72\cdot 0.4274$ / 100=0.426

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.0361 / 100 = 0.036$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_{M_{-}}$ = $CI \cdot M / 100 = 0.28 \cdot 0.4274 / 100 = 0.001197$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.0361 / 100 = 0.000101$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000101	0.001197
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.036	0.426
	предельные С12-С19 (в пересчете на С);		
	Растворитель РПК-265П) (10)		

Источник №6033 – Блок приготовления бурового раствора

Исходные данные:						
Vемкостей			7	м3		
n			1	шт.		
Т			11	час		
h			3	M		
Секундный выброс загрязняюц	цихвеществ в а	атмосферу р	ассчитывае	тся по форм	иуле 5.32:	
Пс = Fом * g* K11					0,0057	г/сек
$F-$ площадь испарения, M^2 ;			1,9	\mathbf{M}^2		

g – удельный выброс				0,02	кг/ч*м ²		
К11 – коэффициент, зан	зисящий от	укрытия ем	икости.	0,15			
Годовой выброс углеводородов (С12-С19) в атмосферу рассчитывается по формуле:							
$\Pi \Gamma = \Pi c * T * 3,6/1000$						0,00022572	т/год
Т- время работы, час							
Методика расчета выбросов вредных веществ в окружающую среду от							
неорганизованных ист	очников АС	Э"КазТранс	Ойл" НД, Ас	тана, 2005			

Источник №6034 – Емкость бурового шлама

Исходные данные:				
Vемкостей		50	м3	
n		2	шт.	
Т		3024	час	
h		2	M	
Секундный выброс загрязняющихвещест	гв в атмосферу р	ассчитывае	тся по форм	іуле:
$\Pi c = Fom * g* K11/3,6$				0,0056 г/сек
F – площадь испарения, м ² ;		4	M ²	
g – удельный выброс		0,02	кг/ч*м ²	
К11 – коэффициент, зависящий от укрыти	ия емкости.	0,25		
Годовой выброс углеводородов (С12-С19	9) в атмосферу ра	ссчитывает	тся по форму	уле:
$\Pi_{\Gamma} = \Pi_{c} * T * 3,6/1000$				0,06096 т/год
Т- время работы, час				
Методика расчета выбросов вредных в	еществ в окруж	ающую сре	еду от	
неорганизованных источников АО"КазТр	рансОйл" НД, Ас	тана, 2005		

Источник №6035 – Емкость бурового раствора

Наименование	Обозначение	Ед.изм	Кол-во
Исходные данные:			_
Объем емкости для хранения бурового раствора	V	мЗ	40
Количество емкостей	N	ШТ	2
Удельный выброс ЗВ, табл.5.9	g	$\kappa\Gamma/\Psi^*M^2$	0,02
Общая площадь испарения	F	M^2	7
Коэф. зависящий от укрытия емкости	K ₁₁		0,15
Период хранения раствора	T	час	3024
Расчет:		·	
Кол-во выбросов произ. по формуле			
$\Pi p = F * g * K_{II} * n$	Пр	кг/час	0,042
2754 Углеводороды предельные С12-С19 (в пересчете на С)	Пр	г/с	0,01167
2754 Углеводороды предельные С12-С19 (в пересчете на С)	Пр	т/год	0,127008
Сборник методик по расчету выбросов вредных веществ в	з атмосферу раз.	личными прои	ізводствами.

Алматы, 1996г.

Источник загрязнения N 6036 Источник выделения N 6036 01, Емкость хранения масла

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: вторая - северные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 0.2 Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 15.648 Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, $\Gamma/M3$ (Прил. 15), COZ = 0.12

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, QVL = 15.648 Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.12

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.2 \cdot 3) / 3600 =$

0.0001667

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.12 \cdot 15.648 + 0.12 \cdot 15.648) \cdot 10^{-6} = 0.000003756$

Удельный выброс при проливах, г/м3, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot (15.648 + 15.648) \cdot 10^{-6} = 0.0001956$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000003756 + 0.0001956 = 0.0001994

<u>Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.)</u> (716*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 100 \cdot 0.0001994 / 100 = 0.0001994$

Максимальный из разовых выброс, г/с (5.2.4), $_G_$ = $CI \cdot G / 100 = 100 \cdot 0.0001667 / 100 = 100 \cdot 0.000167 / 100 = 100 \cdot 0.0001667 / 100 = 100 \cdot 0.$

0.0001667

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное (веретенное,	0.0001667	0.0001994
	машинное, цилиндровое и др.) (716*)		

Источник загрязнения N 6037

Источник выделения N 6037 01, Емкость отработанного масла

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Масла

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: вторая - северные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, $\Gamma/M3$ (Прил. 15), CMAX = 0.2

Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 3.13

Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 0.12

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, *QVL* = **3.13** Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, г/м3(Прил. 15), CVL = 0.12

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 3

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (0.2 \cdot 3) / 3600 = 0.0001667$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.12 \cdot 3.13 + 0.12 \cdot 3.13) \cdot 10^{-6} = 0.000000751$

Удельный выброс при проливах, $\Gamma/M3$, J = 12.5

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 12.5 \cdot (3.13 + 3.13) \cdot 10^{-6} = 0.0000391$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000000751 + 0.0000391 = 0.00003985

<u>Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.)</u> (716*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 100

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 100 \cdot 0.00003985 / 100 = 0.00003985$

Максимальный из разовых выброс, г/с (5.2.4), $_{G}$ = $CI \cdot G / 100 = 100 \cdot 0.0001667 / 100 = 100 \cdot 0.000167 / 100 = 100 \cdot 0.0001667 / 100 = 100 \cdot 0.000167 / 100 = 100 \cdot 0.0001667 / 100 = 100 \cdot 0.$

0.0001667

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное (веретенное,	0.0001667	0.00003985
	машинное, цилиндровое и др.) (716*)		

Источник загрязнения N 6038

Источник выделения N 6038 01, Пересыпка цемента

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Цемент

Весовая доля пылевой фракции в материале(табл.3.1.1), KI = 0.04

Доля пыли, переходящей в аэрозоль(табл.3.1.1), K2 = 0.03

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла(табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 5

Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), м/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2), K3 = 2

Влажность материала, %, VL = 2

Коэфф., учитывающий влажность материала(табл.3.1.4), K5 = 0.8

Размер куска материала, мм, G7 = 2

Коэффициент, учитывающий крупность материала(табл.3.1.5), K7 = 0.8

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.3.1.7), B = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 8

Суммарное количество перерабатываемого материала, т/год, GGOD = 24

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Пересыпка

Максимальный разовый выброс, г/с (3.1.1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GMAX \cdot 10^6 / 3600 \cdot (1-NJ) = 0.04 \cdot 0.03 \cdot 2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 8 \cdot 10^6 / 3600 \cdot (1-0) = 1.365$

Продолжительность выброса составляет менее 20 мин согласно п.2.1 применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), TT = 1

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, $GC = GC \cdot TT \cdot 60 / 1200 = 1.365 \cdot 1 \cdot 60 / 1200 = 0.0683$

Валовый выброс, т/год (3.1.2), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot K8 \cdot K9 \cdot KE \cdot B \cdot GGOD \cdot (1-NJ) = 0.04 \cdot 0.03 \cdot 1.2 \cdot 1 \cdot 0.8 \cdot 0.8 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 24 \cdot (1-0) = 0.00885$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.0683 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.00885 = 0.00885

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.00885 = 0.00354$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0683 = 0.0273$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0273	0.00354
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник №6039 – Блок приготовления цементного раствора

К1	Весовая доля пылевой фракции в материале	0,04
К2	Доля пыли, переходящий в аэрозоль	0,03
К3	Коэффициент, учитывающий среднею скорость ветра	1,2
К4	Коэффициент, учитывающий степень защищенности узла	1
К5	Коэффициент, учитывающий влажность материала	0,9
К7	Коэффициент, учитывающий крупность материала	1
G	Суммарное количество перерабатываемого материала, т/час	0,117
В	Коэффициент, учитывающий высоту падения материала	0,5
	Суммарное количество цемента, т/период	25
R _T 2	Время работы узла переработки в год, часов	3024
Максимал	ьно разовый выброс пыли при пересыпке материала, г/с	
	G r/c = K1*K2*K3*K4*K5*K7*B*G*1000000/3600	
Валовый і	выброс пыли при пересыпке материала. т/год	
	М т/год = K1*K2*K3*K4*K5*K7*В*G*Rт2	
Gr/c	2908 Пыль неорганическая 70-20% двуокиси кремния	0,02106
М т/год	М т/год	
Хранение		
Rт	Период хранения материала составит час/скв	3024
К3	Коэффициент, учитывающий среднею скорость ветра	2
К4	Коэффициент, учитывающий степень защищенности узла	0,005
F	Поверхность пылевыделения в плане, м2	50
К6	Коэффициент, учитывающий профиль поверхности складируемого материала	1,3
q	Унос пыли с 1м2 фактической поверхности материала, г/м2*сек	0,003
Максимал	ьно разовый выброс пыли при хранении, г/с	
	G r/c = K3*K4*K5*K6*K7*q*F	
Валовый н	выброс пыли при пересыпке материала. т/год	
	M т/год = K3*K4*K5*K6*K7*q*F*Rт*0,0036	
Gr/c	2908 Пыль неорганическая 70-20% двуокиси кремния	0,001755
М т/год	2700 Tiblib neoptatiii teetaan 10 2010 Abjornen kpesiiinn	0,019106
Итого выб	росы по веществам:	_
Gr/c	2908 Пыль неорганическая 70-20% двуокиси кремния	0,022815
М т/год	2700 Tibaib neoptami reekan 10 2010 gayokhen kpesinina	0,248376
	а расчета нормативов выбросов от неорганизованных источников Приложени	
Приказу 1	Министра охраны окружающей среды Республики Казахстан от 12.06.2014 М	2221-n.

Период освоения скважины №308

Источник загрязнения N 0030 Установка освоения ZJ650 (CAT-3512) (либо его аналог по хар-кам не превыш. технич. показатели)

Источник выделения N 001, Выхлопная труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год B_{200} , т, 218.231

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 932

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кВт*ч, 108.404

Температура отработавших газов T_{oz} , K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_3 = 8.72 * 10^{-6} * 108.404 * 932 = 0.881003644$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 274 / 273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{o2} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.881003644 / 0.653802559 = 1.347507182$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кВт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
В	5.3	8.4	2.4	0.35	1.4	0.1	1.1E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
В	22	35	10	1.5	6	0.4	4.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_{2} / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для NO_2 и $0.13\,$ - для NO

Итого выбросы по вешествам:

Код	Примесь	г/сек без	m/год без	% очистки	г/сек с	m/год с
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.739733333	6.110468	0	1.739733333	6.110468
0304	Азот (II) оксид (Азота оксид) (6)	0.282706667	0.99295105	0	0.282706667	0.99295105
0328	Углерод (Сажа,	0.090611111	0.3273465	0	0.090611111	0.3273465

	Углерод черный) (583)					
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.362444444	1.309386	0	0.362444444	1.309386
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1.372111111	4.801082	0	1.372111111	4.801082
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000002848	0.00000982	0	0.000002848	0.00000982
1325	Формальдегид (Метаналь) (609)	0.025888889	0.0872924	0	0.025888889	0.0872924
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.621333333	2.6187720	0	0.621333333	2.18231

Источник загрязнения N 0031 Установка освоения ZJ650 (CAT-3512) (либо его аналог по хар-кам не превыш. технич. показатели)

Источник выделения N 001, Выхлопная труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it zoo}$, т, 218.231

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 932

Удельный расход топлива на экспл./номин. режиме работы двигателя b_1 , г/кВт*ч, 108.404

Температура отработавших газов T_{o2} , K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{o2} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{3} = 8.72 * 10^{-6} * 108.404 * 932 = 0.881003644$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 274 / 273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{oz} = G_{oz} / \gamma_{oz} = 0.881003644 / 0.653802559 = 1.347507182$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	СН	С	SO2	CH2O	БП
В	5.3	8.4	2.4	0.35	1.4	0.1	1.1E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
В	22	35	10	1.5	6	0.4	4.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_{2} / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{2i} * B_{200} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для NO_2 и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	c	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	1.739733333	6.110468	0	1.739733333	6.110468
0304	Азот (II) оксид (Азота оксид) (6)	0.282706667	0.99295105	0	0.282706667	0.99295105
0328	Углерод (Сажа, Углерод черный) (583)	0.090611111	0.3273465	0	0.090611111	0.3273465
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.362444444	1.309386	0	0.362444444	1.309386
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	1.372111111	4.801082	0	1.372111111	4.801082
0703	Бенз/а/пирен (3,4- Бензпирен) (54)	0.000002848	0.00000982	0	0.000002848	0.00000982
1325	Формальдегид (Метаналь) (609)	0.025888889	0.0872924	0	0.025888889	0.0872924
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете на С); Растворитель РПК-265П) (10)	0.621333333	2.18231	0	0.621333333	2.18231

Источник загрязнения N 0032 Установка освоения ZJ650 (CAT-3412) (либо его аналог по хар-кам не превыш. технич. показатели)

Источник выделения N 001, Выхлопная труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it coo}$, т, 120.967

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 485

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 115.5

Температура отработавших газов T_{oz} , K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов $G_{\varrho\varrho}$, кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_2 * P_2 = 8.72 * 10^{-6} * 115.5 * 485 = 0.4884726$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 274 / 273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{oz} , м³/с:

$$Q_{0z} = G_{0z} / \gamma_{0z} = 0.4884726 / 0.653802559 = 0.747125555$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.17	1.2E-5

Таблица значений выбросов q_{ii} г/кг. топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

 $M_i = e_{Mi} * P_9 / 3600$ (1)

Расчет валового выброса W_i , т/год:

 $W_i = q_{\ni i} * B_{\circ o \partial} / 1000 \quad (2)$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. $0.8\,$ - для NO_2 и $0.13\,$ - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид	1.034666667	3.870944	0	1.034666667	3.870944
	(Азота диоксид) (4)					
0304	Азот (II) оксид (Азота	0.168133333	0.6290284	0	0.168133333	0.6290284
	оксид) (6)					
0328	Углерод (Сажа,	0.067361111	0.241934	0	0.067361111	0.241934
	Углерод черный) (583)					
0330	Сера диоксид	0.161666667	0.604835	0	0.161666667	0.604835
	(Ангидрид сернистый,					
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	0.835277778	3.145142	0	0.835277778	3.145142
	углерода, Угарный газ)					
	(584)					
0703	Бенз/а/пирен (3,4-	0.000001617	0.000006653	0	0.000001617	0.000006653
	Бензпирен) (54)					
1325	Формальдегид	0.016166667	0.0604835	0	0.016166667	0.0604835
	(Метаналь) (609)					
2754	Алканы C12-19 /в	0.390694444	1.451604	0	0.390694444	1.451604
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					

Источник загрязнения №0033 – Дизель-генератор VOLVO - TAD1241GE (либо его аналог по хар-кам не превыш. технич. показатели)

Источник выделения N 001, Выхлопная труба

Список литературы:

1. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.

Исходные данные:

Производитель стационарной дизельной установки (СДУ): отечественный

Расход топлива стационарной дизельной установки за год ${\it B}_{\it coo}$, т, 3.148

Эксплуатационная мощность стационарной дизельной установки P_2 , кВт, 363

Удельный расход топлива на экспл./номин. режиме работы двигателя b_2 , г/кBт*ч, 24.64

Температура отработавших газов $T_{\alpha c}$, K, 274

Используемая природоохранная технология: процент очистки указан самостоятельно

1.Оценка расхода и температуры отработавших газов

Расход отработавших газов G_{oz} , кг/с:

$$G_{02} = 8.72 * 10^{-6} * b_{2} * P_{3} = 8.72 * 10^{-6} * 24.64 * 363 = 0.07799447$$
 (A.3)

Удельный вес отработавших газов γ_{02} , кг/м³:

$$\gamma_{oz} = 1.31 / (1 + T_{oz} / 273) = 1.31 / (1 + 274 / 273) = 0.653802559$$
 (A.5)

где 1.31 - удельный вес отработавших газов при температуре, равной 0 гр.С, кг/м³;

Объемный расход отработавших газов Q_{o2} , м³/с:

$$Q_{02} = G_{02} / \gamma_{02} = 0.07799447 / 0.653802559 = 0.119293614$$
 (A.4)

2. Расчет максимального из разовых и валового выбросов

Таблица значений выбросов e_{mi} г/кBт*ч стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	C	SO2	CH2O	БП
Б	6.2	9.6	2.9	0.5	1.2	0.12	1.2E-5

Таблица значений выбросов q_{ii} г/кг.топл. стационарной дизельной установки до капитального ремонта

Группа	CO	NOx	CH	С	SO2	CH2O	БП
Б	26	40	12	2	5	0.5	5.5E-5

Расчет максимального из разовых выброса M_i , г/с:

$$M_i = e_{Mi} * P_2 / 3600$$
 (1)

Расчет валового выброса W_i , т/год:

$$W_i = q_{2i} * B_{200} / 1000 \quad (2)$$

Коэффициенты трансформации приняты на уровне максимально установленных значений, т.е. 0.8 - для NO_2 и 0.13 - для NO

Итого выбросы по веществам:

Код	Примесь	г/сек	т/год	%	г/сек	т/год
		без	без	очистки	\boldsymbol{c}	\boldsymbol{c}
		очистки	очистки		очисткой	очисткой
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.7744	0.100736	0	0.7744	0.100736
0304	Азот (II) оксид (Азота оксид) (6)	0.12584	0.0163696	0	0.12584	0.0163696
0328	Углерод (Сажа,	0.050416667	0.006296	0	0.050416667	0.006296

	Углерод черный) (583)					
0330	Сера диоксид	0.121	0.01574	0	0.121	0.01574
	(Ангидрид сернистый,					
	Сернистый газ, Сера					
	(IV) оксид) (516)					
0337	Углерод оксид (Окись	0.625166667	0.081848	0	0.625166667	0.081848
	углерода, Угарный газ)					
	(584)					
0703	Бенз/а/пирен (3,4-	0.00000121	0.000000173	0	0.00000121	0.000000173
	Бензпирен) (54)					
1325	Формальдегид	0.0121	0.001574	0	0.0121	0.001574
	(Метаналь) (609)					
2754	Алканы С12-19 /в	0.292416667	0.037776	0	0.292416667	0.037776
	пересчете на С/					
	(Углеводороды					
	предельные С12-С19 (в					
	пересчете на С);					
	Растворитель РПК-					
	265Π) (10)					

Источник загрязнения N 0034 Передвижная паровая установка №2 Источник выделения N 0034 01, Дымовая труба

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, КЗ = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, т/год, BT = 20.103

Расход топлива, г/с, BG = 2.585

Марка топлива, M = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг(прил. 2.1), QR = 10210

Пересчет в МДж, $QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75$

Средняя зольность топлива, %(прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более(прил. 2.1), AIR = 0.025

Среднее содержание серы в топливе, %(прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более(прил. 2.1), SIR = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная паропроизв. котлоагрегата, т/ч, QN = 1.5

Факт. паропроизводительность котлоагрегата, т/ч, QF = 1.5

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.0888

Коэфф. снижения выбросов азота в рез-те техн. решений, B = 0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), $KNO = KNO \cdot (QF/QN)^{0.25} = 0.0888 \cdot (1.5 / 1.5)^{0.25} = 0.0888$

Выброс окислов азота, т/год (ф-ла 2.7), $MNOT = 0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 20.103 \cdot 42.75 \cdot$

 $0.0888 \cdot (1-0) = 0.0763$

Выброс окислов азота, г/с (ф-ла 2.7), $MNOG = 0.001 \cdot BG \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 2.585 \cdot 42.75 \cdot$

 $0.0888 \cdot (1-0) = 0.00981$

Выброс азота диоксида (0301), т/год, $M = 0.8 \cdot MNOT = 0.8 \cdot 0.0763 = 0.061$

Выброс азота диоксида (0301), г/с, $_G_ = 0.8 \cdot MNOG = 0.8 \cdot 0.00981 = 0.00785$

Примесь: 0304 Aзот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_M_ = 0.13 \cdot MNOT = 0.13 \cdot 0.0763 = 0.00992$ Выброс азота оксида (0304), г/с, $G = 0.13 \cdot MNOG = 0.13 \cdot 0.00981 = 0.001275$

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива(п. 2.2), NSO2 = 0.02

Содержание сероводорода в топливе, %(прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_M_ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot BT \cdot SR \cdot (1-NSO$

 $20.103 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 20.103 = 0.1182$

Выбросы окислов серы, г/с (ф-ла 2.2), $_G_$ = $0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot BG = 0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.$

 $2.585 \cdot 0.3 \cdot (1-0.02) + 0.0188 \cdot 0 \cdot 2.585 = 0.0152$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, %(табл. 2.2), Q4 = 0

Тип топки: Камерная топка

Потери тепла от химической неполноты сгорания, %(табл. 2.2), O3 = 0.5

Коэффициент, учитывающий долю потери тепла, R=0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), $CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9$

Выбросы окиси углерода, т/год (ф-ла 2.4), $_{-}M_{-}=0.001\cdot BT\cdot CCO\cdot (1-Q4/100)=0.001\cdot 20.103\cdot 13.9\cdot (1-Q4/100)=0.001\cdot 13.9\cdot (1-Q4/1$

(1-0 / 100) = 0.2794

Выбросы окиси углерода, г/с (ф-ла 2.4), $_G_=0.001 \cdot BG \cdot CCO \cdot (1-Q4/100) = 0.001 \cdot 2.585 \cdot 13.9 \cdot (1-0/100) = 0.0359$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент(табл. 2.1), F = 0.01

Тип топки: Камерная топка

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_ = BT \cdot AR \cdot F = 20.103 \cdot 0.025 \cdot 0.01 = 0.00503$

Выброс твердых частиц, г/с (ф-ла 2.1), $G = BG \cdot A1R \cdot F = 2.585 \cdot 0.025 \cdot 0.01 = 0.000646$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00785	0.061
0304	Азот (II) оксид (Азота оксид) (6)	0.001275	0.00992
0328	Углерод (Сажа, Углерод черный) (583)	0.000646	0.00503
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0152	0.1182
	Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0359	0.2794

Источник загрязнения N 6040 Нефтегазосепаратор Источник выделения N 6040 01, Неорганизованный источник

Список литературы:

Сборник методики по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы. 1996 г.

Расчет выбросов составлен для нефтегазосепаратора «Спутник» с учетом других типов неплотностей арматуры. фланцевых соединений и предохранительных клапанов определяетсяпо формуле:

 $Q = \hat{B} * C * n * 10^{-2}$. кг/часгде:

В – величина утечки углеводородов. кг/час;

С – процент потерявших герметичность уплотнений;

n – Количество фланцевых соединений – 12 шт.

n – Количество предохранительных клапанов – 1 шт.

n – Количество других типов неплотностей арматуры – 6 шт.

Количество выбросов углеводородов из нефтегазосепаратора при работе определяется по формуле:

 $Q = 0.004 * (PV/1011)^{0.8} / Kg (кг/час).где:$

P — давление в аппарате; V — объем аппарата.

 $M_{cek}=Q/3,6$

 $M_{rog} = Q*T/1000$

Нефтегазосепаратор – 1 шт.

Время работы -2160 час/год.

Наименование	Р. гПа	V. m ³	Кg	Q. кг/час	М. г/сек	М. т/год		
Нефтегазосепаратор	1000	0.8	0.33	2.54691	0.707475	5,5013256		
Наименование	Кол-во	C. %	B.	Q. кг/час	М. г/сек	М. т/год		
			кг/час					
Клапаны	1	35.0	0.111	0.03885	0.010792	0,0136752		
Другие типы	6	7.0	0.0095	0.00399	0.001108			
неплотностей арматуры	U	7.0	0.0073	0.00377	0.001100	0,00140448		
Фланцевые соединения	12	2.0	0.00028	0.0000672	0.00001867	0,0000236544		
Итого: 0,719394 5,51642								

Выбросы индивидуальных компонентов по группам

Определяемый параметр	Углеводороды 1	предельные		Смесь	
	C ₁ - C ₅	C6- C10	C12- C19	Сероводород	природных меркаптанов
Сі. масс %	3.705	32.773	63.49932	0.02	0.00268
Мі. г/сек	0.026653535	0.235766887	0.456810089	0.000143879	1.92798E-05
Gi. т/год	0.2043837	1.807899255	3.502894862	0.001103286	0.00014784

Источник загрязнения N 6041

Источник выделения N 6041 01, Насос технологический

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Сырая нефть

Тип нефтепродукта и средняя температура жидкости: Нефть, мазут и жидкости с температурой кипения >300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q = 0.05

Общее количество аппаратуры или средств перекачки, шт., NI = 2

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI = 1

Время работы одной единицы оборудования, час/год, T = 2160

Максимальный из разовых выброс, г/с (8.1), $G = Q \cdot NN1 / 3.6 = 0.05 \cdot 1 / 3.6 = 0.0139$

Валовый выброс, т/год (8.2), $M = (O \cdot N1 \cdot T) / 1000 = (0.05 \cdot 2 \cdot 2160) / 1000 = 0.216$

Примесь: 0415 Смесь углеводородов предельных С1-С5 (1502*)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 72.46

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 72.46 \cdot 0.216 / 100 = 0.1565$

Примесь: 0416 Смесь углеводородов предельных С6-С10 (1503*)

Концентрация 3В в парах, % масс(Прил. 14), CI = 26.8

Валовый выброс, т/год (5.2.5), $_{M_{-}}$ = $CI \cdot M / 100 = 26.8 \cdot 0.216 / 100 = 0.0579$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 26.8 \cdot 0.0139 / 100 = 0.003725$

<u>Примесь: 0602 Бензол (</u>64)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.35

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 0.35 \cdot 0.216 / 100 = 0.000756$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.35 \cdot 0.0139 / 100 = 0.00004865$

Примесь: 0621 Метилбензол (349)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.22

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 0.22 \cdot 0.216 / 100 = 0.000475$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.22 \cdot 0.0139 / 100 = 0.0000306$

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Концентрация 3В в парах, % масс(Прил. 14), CI = 0.11

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.11 \cdot 0.216 / 100 = 0.0002376$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.11 \cdot 0.0139 / 100 = 0.0000153$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.06

Валовый выброс, т/год (5.2.5), $_M_ = CI \cdot M / 100 = 0.06 \cdot 0.216 / 100 = 0.0001296$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 0.06 \cdot 0.0139 / 100 = 0.00000834$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000834	0.0001296
0415	Смесь углеводородов предельных С1-С5 (1502*)	0.01007	0.1565
0416	Смесь углеводородов предельных С6-С10 (1503*)	0.003725	0.0579
0602	Бензол (64)	0.00004865	0.000756
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0.0000153	0.0002376
0621	Метилбензол (349)	0.0000306	0.000475

Источник загрязнения N 6042 Источник выделения N 6042 01, Емкость хранения дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005 Расчет по п. 9

Нефтепродукт:Дизельное топливо

Расчет выбросов от резервуаров

Конструкция резервуара:наземный

Климатическая зона: вторая - северные области РК (прил. 17)

Максимальная концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 15), CMAX = 1.86 Количество закачиваемого в резервуар нефтепродукта в осенне-зимний период, м3, QOZ = 290.3395 Концентрация паров нефтепродуктов при заполнении резервуаров

в осенне-зимний период, г/м3(Прил. 15), COZ = 0.96

Количество закачиваемого в резервуар нефтепродукта в весенне-летний период, м3, OVL = 290.3395

Концентрация паров нефтепродуктов при заполнении резервуаров

в весенне-летний период, $\Gamma/M3$ (Прил. 15), CVL = 1.32

Объем сливаемого нефтепродукта из автоцистерны в резервуар, м3/час, VSL = 16

Максимальный из разовых выброс, г/с (9.2.1), $GR = (CMAX \cdot VSL) / 3600 = (1.86 \cdot 16) / 3600 = 0.00827$

Выбросы при закачке в резервуары, т/год (9.2.4), $MZAK = (COZ \cdot QOZ + CVL \cdot QVL) \cdot 10^{-6} = (0.96 \cdot QOZ + CVL) \cdot 10^{-6}$

 $290.3395 + 1.32 \cdot 290.3395 \cdot 10^{-6} = 0.000662$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах, т/год (9.2.5), $MPRR = 0.5 \cdot J \cdot (QOZ + QVL) \cdot 10^{-6} = 0.5 \cdot 50 \cdot (290.3395 + 290.3395) \cdot 10^{-6} = 0.01452$

Валовый выброс, т/год (9.2.3), MR = MZAK + MPRR = 0.000662 + 0.01452 = 0.01518

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в</u> пересчете на C); Растворитель РПК-265П) (10)

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.01518 / 100 = 0.01514$

Максимальный из разовых выброс, г/с (5.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.00827 / 100 = 0.00825$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 0.28 \cdot 0.01518 / 100 = 0.0000425$

Максимальный из разовых выброс, г/с (5.2.4), $\underline{G} = CI \cdot G / 100 = 0.28 \cdot 0.00827 / 100 = 0.00002316$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00002316	0.0000425
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.00825	0.01514
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

Источник загрязнения N 6043

Источник выделения N 6043 01, Насос для перекачки дизтоплива

Список литературы:

Методические указания по определению выбросов загрязняющих

веществ в атмосферу из резервуаров РНД 211.2.02.09-2004. Астана, 2005

Расчеты по п. 6-8

Расчет выбросов от теплообменных аппаратов и средств перекачки

Нефтепродукт: Дизельное топливо

Тип нефтепродукта и средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя сальниковыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q = 0.13

Общее количество аппаратуры или средств перекачки, шт., N1 = 2

Одновременно работающее количество аппаратуры или средств перекачки, шт., NNI = 1

Время работы одной единицы оборудования, час/год, $_{T}$ = 2160

Максимальный из разовых выброс, г/с (8.1), $G = Q \cdot NN1 / 3.6 = 0.13 \cdot 1 / 3.6 = 0.0361$

Валовый выброс, т/год (8.2), $M = (Q \cdot N1 \cdot T) / 1000 = (0.13 \cdot 2 \cdot 2160) / 1000 = 0.562$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), *CI* = **99.72**

Валовый выброс, т/год (5.2.5), $_{M}$ = $CI \cdot M / 100 = 99.72 \cdot 0.562 / 100 = 0.56$

Максимальный из разовых выброс, г/с (5.2.4), $G = CI \cdot G / 100 = 99.72 \cdot 0.0361 / 100 = 0.036$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация 3В в парах, % масс(Прил. 14), *CI* = **0.28**

Валовый выброс, т/год (5.2.5), $_M_=CI\cdot M/100=0.28\cdot 0.562/100=0.001574$

Максимальный из разовых выброс, г/с (5.2.4), $_G_=CI\cdot G/100=0.28\cdot 0.0361/100=0.000101$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.000101	0.001574
2754	Алканы С12-19 /в пересчете на С/ (Углеводороды	0.036	0.56
	предельные С12-С19 (в пересчете на С); Растворитель		
	РПК-265П) (10)		

8. САНИТАРНО-ЗАЩИТНАЯ ЗОНА

В соответствии с санитарными правилами «Санитарно-эпидемиологические требования по установлению санитарно-защитной зоны производственных объектов», утвержденных приказом Министра национальной экономики Республики Казахстан от 20 марта 2015 года № 237 предприятие должно быть отделено от жилой зоны санитарно-защитной зоной (СЗЗ).

Размер санитарно-защитной зоны на месторождении Восточный Жагабулак установлен 2415 м в соответствии с «Проект обоснования размера санитарно-защитной зоны при промышленной разработке месторождения Восточный Жагабулак ТОО «Арал Петролеум Кэпитал», на 2014-2016 г.г.» при промышленной разработке месторождения Восточный Жагабулак Мугалжарского района Актюбинской области» (Санитарно-эпидемиологическое заключение №4 от 14.02.2014 г.).

В проекте принятой санитарно-защитной зоны не требуется, так как по расчету рассеивания концентрация загрязняющих веществ на границе санитарно-защитной зоны и в жилой зоне не превышают 1 ПДК.

В проекте принятой санитарно-защитной зоны не требуется, так как по расчету рассеивания расстояния от крайнего источника до значения 1ПДК не достигает границ СЗЗ 2412 м, соответственно концентрация загрязняющих веществ на границе санитарно-защитной зоны и в жилой зоне не превышают 1 ПДК.

Границы СЗЗ промышленной площадки предприятия нанесены на карты изолиний приземных концентраций загрязняющих веществ (приложение 5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Экологический кодекс РК.
- 2. Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2
- 3. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 Об утверждении Методик определения нормативов эмиссий в окружающую среду.
- 4. Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.
- 5. Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. Астана, 2005, 15 с. РНД 211.2.02.04-2004.
- 6. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров. Астана, 2005, 57 с. РНД 211.2.02.09-2004.
- 7. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы, 1996, 217 с.
- 8. Методике расчета параметров выбросов и валовых выбросов вредных веществ от факельных установок сжигания углеводородных смесей» Министерство охраны окружающей среды РК. РНД. Астана 2008г.
- 9. Методика расчета выбросов вредных веществ в окружающую среду от неорганизованных источниковнефтегазового оборудования. РД 39-142-96. М., 1996.
- 10. Тепловой расчет котельных агрегатов. Нормативный метод. М., Госэнергоиздат, 1972.
- 11. Методика расчета выбросов вредных веществ в окружающую среду от неорганизованных источников АО «КазТрансОйл», НД, 2005г
- 12. РНД 211.2.01.01-97. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Алматы, 1997, 93 с.

Приложение 1 (Расчет рассеивания)

СВОДНАЯ ТАВЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ ПК ЭРА v3.0. Модель: MPK-2014

(сформирована 08.04.2025 15:05)

Город :010 Актюбинская обл., Мугалжарский. Объект :0003 ТОО "Арал Петролеум Кэпитал" 2026. Вар.расч. :7 существующее положение (2025 год)

Код ЗВ 	Наименование загрязняющих веществ и состав групп суммаций	Cm	РП 	C33	ЖЗ 		Территория предприяти		ПДК (ОБУВ) мг/м3	ПДКс.с. мг/м3	ПДКс.г. мг/м3	Класс опасн
<	 		 	 	 	 	я 					
0301	Азота (IV) диоксид (Азота	339.0623	87.11317	0.783168	нет расч.	нет расч.	нет расч.	28	0.2000000	0.0400000		2
	диоксид) (4)						1					
0304		27.5508	7.077950	0.063644	нет расч.	нет расч.	нет расч.	26	0.4000000	0.0600000		3
	(6)	05 0506	10 05450						0 1500000			
0328 	Углерод (Сажа, Углерод черный) (583)	85.8586	12.054/3 	0.026751	нет расч.	нет расч.	нет расч. 	23 	0.1500000	0.0500000 		3
0330	Сера диоксид (Ангидрид	27.0955	7.093471	0.066556	нет расч.	нет расч.	нет расч.	25	0.5000000	0.0500000		j 3 j
	сернистый, Сернистый газ, Сера		l	I	1	1	1					
	(IV) оксид) (516)						1					
0333	Сероводород (Дигидросульфид)	2.8798	0.554913	0.003483	нет расч.	нет расч.	нет расч.	29	0.0080000	0.0008000*		2
	(518)	40 5555					1					
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	12.5755	2.821641	0.026851	нет расч.	нет расч.	нет расч.	28	5.0000000	3.0000000		4
1 0703		31 3575	I I 5 222288	I N N11326	luem nacu	luem nacu	 нет расч.	l 18	0.0000100*	I I N NNNNN1N I		1 1 1
1 0703	(54)	31.3373	1	1	I paca.	I paca.	I paca.	1 10	0.0000100	0.0000010 		+
1325		20.6511	I 5.239745	0.047153	 нет расч.	нет расч.	нет расч.	18	0.0500000	0.0100000		i 2 i
1716							нет расч.		0.0000500	0.0000050*		3
	пересчете на этилмеркаптан/		l	I	1	1	1					1 1
	(Одорант СПМ - ТУ 51- 81-88)		l				1					
	(526)						1					
2754	Алканы С12-19 /в пересчете на С/		9.373660	0.112847	нет расч.	нет расч.	нет расч.	46	1.0000000	0.1000000*		4
	(Углеводороды предельные С12-С19						1					
	(в пересчете на С); Растворитель						!					
	РПК-265П) (10)	6 7526	1 260002	0 004771					0 000000			
2840	Ингибиторы коррозии: СНПХ 6301"A", СНПХ 6302 "A", СНПХ	6.7536	1.368993	0.004//1	нет расч.	нет расч.	нет расч.] 5	0.200000	0.0200000*		-
1	6301 A , Сних 6302 A , Сних 6302 "Б" /по изопропиловому		 	1	I I	I I	1	 				
1	6302 в /но изопрониловому		l I	I I	1	I I	I I	 		 		
1 2908		117 2349	ı I 8 362612	1 0 011849	і Інет пасч	і Інет пасч	і Інет пасч	16	0 3000000	 0.1000000		1 3 1
1 2300	двуокись кремния в %: 70-20	117.2319	1	1	l l	l l			0.3000000	0.1000000		
i	(шамот, цемент, пыль цементного		I	i	i	i	i			'		i i
İ	производства - глина, глинистый			İ			İ					i i
1	сланец, доменный шлак, песок,		l	I		1	1	ı İ		ı i		i i
	клинкер, зола, кремнезем, зола			I			1					
	углей казахстанских		l	I			1					1
	месторождений) (494)						1					

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- 2. Cm сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК-2014
- 3. "Звездочка" (*) в графе "ПДКмр(ОБУВ)" означает, что соответствующее значение взято как 10ПДКсс.
- 4. "Звездочка" (*) в графе "ПДКсс" означает, что соответствующее значение взято как ПДКмр/10.
- 5. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек) и зоне "Территория предприятия" приведены в долях ПДКмр.