Республика Казахстан Акмолинская область

ПРОЕКТ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ

К ПЛАНУ ГОРНЫХ РАБОТ месторождения Кызылсор

СОДЕРЖАНИЕ

Аннотация	4					
Содержание	2					
1. Введение	5					
2. Общие сведения об операторе	6					
3. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ	8					
ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ИХ МОЩНОСТЬ, ГАБАРИТЫ						
4. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ	13					
4.1. Краткая характеристика технологии производства и технологического оборудования	13					
4.2. Краткая характеристика существующих очистных сооружений 4.3. Перспектива развития предприятия						
4.3. Перспектива развития предприятия						
4.4. Перечень загрязняющих веществ	16					
4.5. Описание конструкции, водовыпускного устройства и инженерных сооружений для	18					
транспортировки сточных вод к месту выпуска						
4.6. Обоснование полноты и достоверности исходных данных	19					
5. МЕРОПРИЯТИЯ ПО СОБЛЮДЕНИЮ НОРМАТИВОВ ЭМИССИЙ СБРОСОВ	20					
6. КОНТРОЛЬ СОБЛЮДЕНИЯ УСТАНОВЛЕННЫХ НОРМАТИВОВ ЭМИССИЙ СБРОСОВ	21					
7. Список используемой литературы	22					
приложения						
1. Заключение на Проект «Отчет о возможных воздействиях» к Плану горных ра на месторождении «Кызылсор» в районе Биржан Сал Акмолинской области «Кен Шуак» - 23						
2. Лицензия ТОО «Эко-Даму» - 24						
3. Карта-схема объекта – 26						
4. Протокол исследования (испытаний) и измерений – 27						

АННОТАЦИЯ

В настоящем проекте содержится оценка уровня загрязнения атмосферного воздуха от источников сбросов вредных веществ на месторождении «Кызылсор» в районе Биржан Сал Акмолинской области, предложены нормативы допустимых сбросов (НДС) загрязняющих веществ в атмосферу по ингредиентам и рекомендации по организации системы контроля за соблюдением нормативов НДС.

Заключение по результатам Оценки воздействия на окружающую среду на Проект «Отчет о возможных воздействиях» к Плану горных работ на месторождении «Кызылсор» в районе Биржан Сал Акмолинской области ТОО «Кен Шуак» выдано РГУ «Комитет экологического регулирования и контроля» (приложение 1).

Открытый способ разработки месторождения. Классификация: Пункт 3.1. раздела 1 приложения 1 Экологического кодекса РК: добыча и обогащение твердых полезных ископаемых, за исключением общераспространенных полезных ископаемых, относится к видам намечаемой деятельности и иных критерий, на основании которых осуществляется отнесение объекта, оказывающее негативное воздействие на окружающую среду, к объектам I категории.

Согласно санитарным правилам «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденных приказом Исполняющий обязанности Министра здравоохранения Республики Казахстан от 11 января 2022 года №ҚР ДСМ-2, размер санитарно-защитной зоны устанавливается 1000 м (раздел 3 Добыча руд, нерудных ископаемых, природного газа, п.11, пп.1 карьеры нерудных стройматериалов).

Нормативы предельно допустимого сброса (ПДС) загрязняющих веществ, поступающих в пруд-накопитель, разработаны для ТОО «Кен Шуак». В данной работе рассматривается один водовыпуск - выпуск №1 — карьерных вод. *Карьерный водоотлив предусматривается с 2026 г.* Нормативы допустимого сброса загрязняющих веществ для пруда — испарителя предполагаемо установлены на 2026-2035 гг. по 23 веществам:

- 1. гидрокарбонаты;
- 2. карбонаты;
- 3. хлориды;
- 4. сульфаты;
- 5. фосфаты;
- 6. медь;
- 7. цинк;
- 8. никель;
- 9. кадмий;
- 10. свинец;
- 11. олово;
- 12. молибден;
- 13. БПК5;
- 14. взвешенные в-ва;
- 15. кальций;
- 16. магний;
- 17. AΠAB:
- 18. азот аммонийный;
- 19. нитриты;
- 20. нитраты;
- 21. фториды;
- 22. железо;
- 23. нефтепродукты.

Валовый сброс вредных веществ, отходящих от пруда-накопителя будет

составлять:

2026 г. - 76,4012895 т/год;

2027 г. - 77,70546 т/год;

2028 г. - 137,8844 т/год;

2029 г. - 137,7442 т/год;

2030 г. - 200,185058 т/год;

2031 г. - 261,0686 т/год;

2032 г. - 324,0193 т/год;

 $2033 \ \Gamma. - 385,335 \ \text{т/год};$

 $2034 \Gamma. - 444,976683 \text{ т/год};$

 $2035 \ \Gamma. - 505,0894 \ \text{т/год}.$

Для веществ, попадающих под общие требования показателей состава и свойств воды – рН, прозрачность, температура и прочие – нормативы ПДС не рассчитываются, показатели веществ должны удовлетворять требованиям «Правил охраны поверхностных вод» и «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов» №26 от 20.02.2023 г.

Нормативы эмиссии сбросов устанавливаются на срок до 10-ти лет и подлежат пересмотру (переутверждению) при изменении экологической обстановки в регионе, появлении новых и уточнении параметров существующих источников загрязнения окружающей среды в местных органах по контролю за исполнением и охраной окружающей среды.

1. ВВЕДЕНИЕ

Проект нормативов допустимых сбросов для месторождении «Кызылсор» в районе Биржан Сал Акмолинской области разработан на основании Экологического кодекса Республики Казахстан, Методики определения нормативов эмиссий в окружающую среду, утв. Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года №63 и других нормативных правовых актов Республики Казахстан.

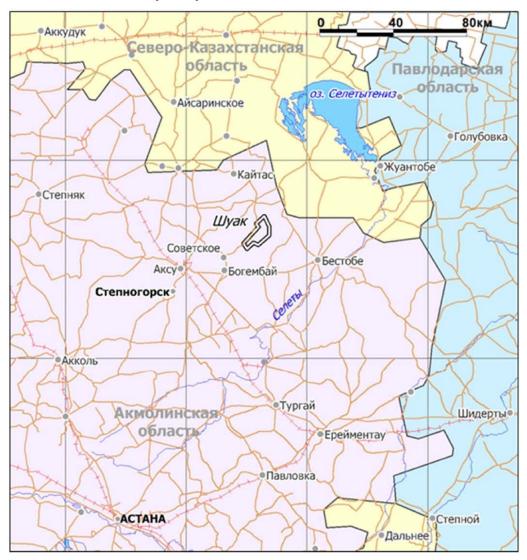
При разработке проекта использованы основные директивные и нормативные документы, инструкции и методические рекомендации по нормированию качества атмосферного воздуха, указанные в списке использованной литературы.

Проектная документация выполнена ТОО «Эко-Даму», правом для осуществления работ в области экологического проектирования и нормирования является лицензия №01392Р от 19.05.2011 г., выданная Министерством охраны окружающей среды Республики Казахстан (приложение 2).

Заказчик проекта: ТОО «Кен Шуак», 010000, Республика Казахстан, г.Астана, район "Сарыарка", Проспект Бөгенбай Батыр, здание № 6/5, 161040004442, КАРДИЕВ АЗАТ ТУРЕМУРАТОВИЧ, +77172570731, kenshuaknedra@mail.ru.

Разработчик отчета воздействия: ТОО «ЭКО-ДАМУ», г.Кокшетау, ул.Ауельбекова 139, каб. 319, БИН 100940015182, Тел: 87017503822, Директор Темиргалиев Н.Б.

2. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ


Месторождение Кызылсор расположен в районе Биржан Сал Акмолинской области в 70 км к востоку от г. Степногорска и рудника Аксу, в 38 км к западу от рудника Бестюбе, в 113 км от районного центра Енбекшильдер, в 225 км от областного центра г. Кокшетау, в 300 км севернее г. Астаны. С населенными пунктами участок связан автомобильными дорогами с твердым покрытием, а также грунтовой дорогой в 40 км (от центра площади) до поселка совхоз Советский. До ближайшей железнодорожной станции Аксу - 70 км. (рис. 1) Ближайшие к участку населенные пункты: поселок Богембай с угольным карьером (50 км), бывший совхоз Советский (40 км).

Координаты угловых точек месторождения Кызылсор

- 1. 52⁰ 35' 25,65", 72⁰ 32' 41,44"
- 2. 52° 37′ 12,46″, 72° 32′ 35,46″
- 3. 52⁰ 37' 16,83", 72⁰ 36' 08,59"
- 4. 52° 36′ 37,66″, 72° 36′ 10,73″
- 5. 52° 36′ 04,88″, 72° 35′ 44,00″
- 6. 52⁰ 35' 57,45", 72⁰ 35' 36,00"
- 7. 52⁰ 35' 49,43", 72⁰ 35' 33,78"
- 8. 52⁰ 35' 29,36", 72⁰ 35' 42,00"

Площадь 12.2 км^2 .

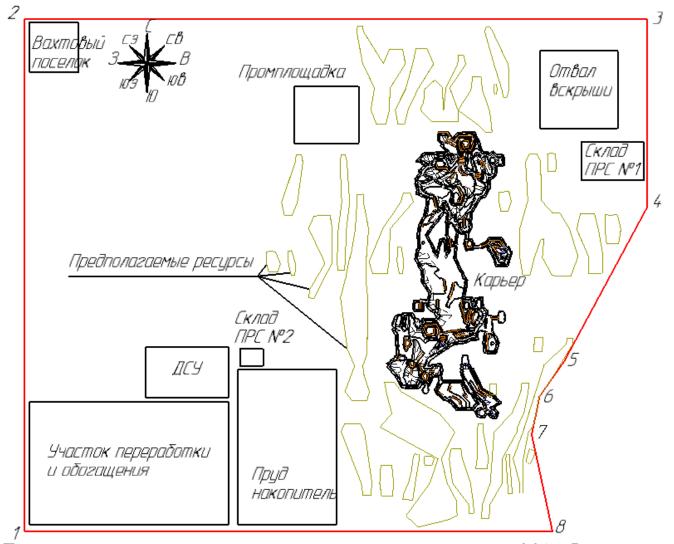
В районе месторождения памятников, состоящих на учете в органах охраны памятников Комитета культуры РК, имеющие архитектурно-художественную ценность и представляющие научный интерес в изучении народного зодчества Казахстана, отсутствуют. Особо охраняемые природные зоны так же отсутствуют.

Рисунок 1 – Обзорная схема района работ

В состав настоящего проекта входят следующие объекты:

- промплощадка,
- карьер,
- внешний отвал вскрыши;
- склад ПРС
- пруд-накопитель.

Промплощадка будет сформирована в непосредственной близости от карьера и к юго-востоку от него.


На промплощадке будут размещены следующие объекты:

- бытовой вагончик (нарядная, раздевалка);
- бытовой вагончик (для периодического отдыха, проведения профилактических процедур, диспетчерская мед. пункт);
- склад запчастей и масел;
- пункт охраны;
- уборная на 2 очка;
- ангар для стоянки и ремонта техники (со сварочным постом и пунктом замены

масла);

- резервуар для воды, вместимостью 50 м³;
- контейнер для ТБО.

Схема участка недр

Поверхность площадки выравнивается и покрывается насыпью на высоту 0,25 м. В качестве материала по покрытию площадки для стоянки на промплощадке используются вскрышные породы отрабатываемого месторождения.

Так же на промплощадке будет оборудована бетонная площадка для контейнера твердых бытовых отходов. Размеры бетонной площадки для контейнера ТБО 1,5×1,5, высотой 15 см от поверхности покрытия, с ограждением с трех сторон. Площадка для контейнеров ТБО будет располагаться на расстоянии не менее 50 метров от бытового вагончика и на расстоянии 5 метров от уборной.

Вывоз отходов будет осуществляться согласно Договору по вывозу ТБО. Контейнера не реже одного раза в неделю дезинфицироваться и промываться.

Электроснабжение. Для электроснабжения производственных объектов месторождения планируется провести ЛЭП с поселка Советское или при получении разрешения присоединиться к ближайшей линии электропередач.

Планом горных работ предусматривается ночное и вечернее освещение карьера, забоев карьера, освещение въездных траншей, промплощадки, отвалов вскрышных пород. Освещение карьеров предусматривается от светодиодных прожекторов типа GALAD Эверест LED-1200 или аналогичных, установленных на прожекторных мачтах длиной 13 м на борту карьера. Такие же прожекторы устанавливаются в забоях карьеров на передвижных прожекторных мачтах. Для освещения въездных тарншей, территории вблизи прожекторных мачт используются светодиоидные светильники типа GALAD Победа LED-1000. Освещение отвалов осуществляется от светодиоидных прожекторов типа GALAD Эверест LED-1200 или аналогичных, установленных на прожекторных

мачтах длиной 13м по периметру отвала.

После получения лицензии на добычу в первые года будут проведены инженерно- геологические изыскания под объектами строительства, составлена и согласована проектная документация на строительство объектов и произведено строительство. Для конечного выбора оборудования для обогащения будет отобрана технологическая проба. В связи с этим непосредственно к добыче планируется приступить на 4 год. Общий срок отработки всех утвержденных запасов с учетом периода строительства составит 25 лет (разрешенный срок лицензии на добычу).

Разработку необходимо начинать с центра утвержденных запасов, где меньше покрывающих пород и быстрее можно обеспечить объем готовых, подготовленных и вскрытых запасов. Добыча будет производится уступами, по мере отодвигания фронта работ верхнего уступа и создания площадки будет вскрываться нижележащий уступ. При этом будет проводиться эксплуатационное опробование с целью уточнения содержания меди.

Календарный план горных работ

Года				Наименован	ие показателей			
отработки	Геологические запасы тыс.т	Потери, %/тыс.т	Засорение, %/тыс.т	Объем добычи тыс.т	Объем добычи тыс.м ³	Вскрышные работы тыс.м ³	Снятие ПРС тыс.м ³	Горная масса тыс.м
2025	Строительство ин	фраструктур	ы, участка об	богащения и т.д.	-	•	•	•
2026	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2027	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2028	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2029	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2030	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2031	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2032	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2033	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2034	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2035	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2036	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2037	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2038	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2039	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2040	337	2,0/6,74	5,1/17,19	347,45	157,93	304	40	501,93
2041	337	2,0/6,74	5,1/17,19	347,45	157,93	310	26,2	494,13
2042	337	2,0/6,74	5,1/17,19	347,45	157,93	310		467,93

2043	337	2,0/6,74	5,1/17,19	347,45	157,93	310	467,93
2044	337	2,0/6,74		347,45			467,93
2044	JJ 1	4,0/0,74	5,1/17,19	J+1,+J	157,93	310	+01,73

3. ИНФОРМАЦИЯ О ПОКАЗАТЕЛЯХ ОБЪЕКТОВ, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ, ВКЛЮЧАЯ ИХ МОЩНОСТЬ, ГАБАРИТЫ

Пруд накопитель запроектирован с целью сбора и испарения карьерных вод и для забора воды для полива дорог и пылеподавления в забое. Пруд накопитель запроектирован за пределами рудных тел в естественном логу, путем устройства ограждающей дамбы в наиболее удобном месте.

Срезку почвенно-плодородного слоя следует производить бульдозером с дальностью перемещения до 50 м в бурты. ППС грузится на а/самосвалы и перевозятся к месту складирования. Отсыпка грунта в тело дамбы и экранов выполняется слоями, толщиной 0,2 и от краев к середине, с тщательным уплотнением. Укладка грунта в тело производится постоянными по толщине слоями, без волнистости, по всей длине отсыпаемого участка.

Проектом строительства пруда принимается выемка ПРС с участка: 95250 м3, грунта 429413,3 м3.

Строительство пруда накопителя. Срезку почвенно-плодородного слоя следует производить бульдозером с дальностью перемещения до 50 м в бурты. ППС грузится на а/самосвалы и перевозятся к месту складирования. Отсыпка грунта в тело дамбы и экранов выполняется слоями, толщиной 0,2 и от краев к середине, с тщательным уплотнением. Укладка грунта в тело производится постоянными по толщине слоями, без волнистости, по всей длине отсыпаемого участка. Для обеспечения герметичности и экологической безопасности проектом предусмотрены следующие конструктивные элементы:

- -изоляционный слой геомембрана толщиной 1,5 мм;
- -на дно пруда и внутреннюю часть дамбы укладывается глина мощностью 0,5 м

Ширина гребня дамбы принята 5,0 м из расчета безопасного ведения строительных работ и работы механизмов в период эксплуатации. Такая ширина гребня дамбы позволяет выполнить разворот экскаватора, безопасный заезд задом автосамосвала и других механизмов при чистке и ремонте пруда.

Технология строительства пруда-накопителя. Требуемая емкость пруда накопителя определялась с учетом коэффициента заполнения чаши, учитывающего форму пруда и расчетный объем осадка/воды. Расчет вместимости выполнен согласно нормативным документам по проектированию гидротехнических водоемов и прудов накопителей.

Строительство осуществляется в 2 очереди. Первая очередь имеет вместимость до 400000 м3 и площадь по поверхности 10,0 га. Этого достаточно для отработки карьера в первые пять лет в течении которых должен проводится мониторинг по водопритоку подземных вод и атмосферных осадков на основании которого можно скорректировать гидрогеологическую часть проекта и водоотлив. Для дальнейшей отработки, необходимо строительство 2 очереди, вмещающей до 2 075 854 м3 и возможную площадь по зеркалу воды 53,5 га. Общий объем пруда накопителя составит 2 075 854 м3 и возможная площадь по зеркалу воды 63,5 га.

Водоснабжение и водоотведение

Работающий персонал будет обеспечен водой, удовлетворяющей Санитарные правила «Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов». Утверждены приказом министра национальной экономии Республики Казахстан от 16 марта 2015 года №209. Питьевое водоснабжение привозная бутилированная, а техническое водоснабжение

будет осуществляться с пруда накопителя. Для расчета объема хозяйственно-питьевого водопотребления для нужд строительного персонала принята норма 45 л/сут на 1 человека (СН РК 01-02-2011 «Внутренний водопровод и канализация зданий и сооружений»). Расчет водопотребления для хозяйственно-питьевых и технических нужд рассчитывается по факту, исходя из численности персонала.

Питьевая вода по качеству должна отвечать требованиям Санитарных правил, утвержденных постановлением Правительства РК от 16 марта 2015 года №209. Емкости для хранения воды периодически обрабатываются и один раз в год хлорируются.

Численность трудящихся на вахте участка Кызылсор составляет 20 человек. Расчеты потребности хозпитьевого водопотребления и водоотведения сведены в таблицу 9.2.1.1.

Расчет водопотребления и водоотведения на хозяйственно-бытовые нужды

		Водо	потребл	ение, тыс	.м3/сут.			Водо	отведение,	тыс.м3/сут.		
		На пр	оизводо	твенные	нужды				05			
_		Свеж	ая вода			На Безвозврат			Объем сточной		Хозяйстве	
Производст во	Всего	всег	в т.ч. питьев ого качест ва	0~	Повторно- используе мая вода	нно – бытовые		Всего	повторно используе мой	Производстве нные сточные воды	бытовые сточные воды	Примеча ние
1	2	3	4	5	6	7	8	9	10	11	12	13
Потребность питьевой воды	0,112	0,112										
Столовая	0,256					0,256		0,256			0,256	
Неучтенные 10%	0,036 8					0,0368		0,036 8			0,0368	
Пылеподавл ение	5920, 0				5920,0							
Итого в сутки:	0,404 8	0,404 8										
Итого в год	6061, 68	6061, 68			5920,0	0,2928		0, 2928			0,2928	

Техническая вода используется для поливки внутрикарьерных автодорог, забоя в теплое время года (май-август) будет проводиться два раза в смену. Потребность в технической воде при одном поливе определяется исходя из размеров дороги (1,5х 2400м длина полива (внутрикарьерные дороги, дороги на отвал и поверхность отвала) составит 36000 литров. Потребность карьера в технической воде на полив автодорог и отвалов принята согласно «Норм технологического проектирования горнорудных предприятий цветной металлургии с открытым способом разработки» и составляет 1,5 л на 1 м² орошаемой площади.

Потребность карьера в технической воде на орошение отбитой горной массы (забоев) принята в количестве 30 л на 1 м 3 согласно вышеперечисленных Норм.

Необходимый объем технической воды в год для полива дорог составит 36×4 месяца $\times 60$ (кол-во смен в месяц) = 8640 тонн.

Необходимый расход воды в смену составит 36000*2=72000(72 тонн) и может быть обеспечен одной поливомоечной машиной.

Для производства работ по пылеподавлению на карьере в теплое время года (4 месяца) используется поливомоечная машина на базе КамАЗ.

Потребность карьера в технической воде на полив автодорог, отвалов и на орошение отбитой горной массы

Наименование	ед.изм	1год	2год	3год	4год	5год	6год
--------------	--------	------	------	------	------	------	------

	Для полива автодорог,поверхности отвалов	тыс.т	0,543	12,9	9,2	11,6	12,5	14,2	
	На орошение горной массы(забоев)	тыс.т	5,38	5,38	5,38	5,38	5,38	4,96	
•	Всего	тыс.т	5,92	18,28	14,58	16,98	17,88	19,16	

Водоотведение. Сточные воды (хоз.бытовые нужды) отводятся в биотуалет. По мере накопления биотуалет будет очищаться ассенизаторской машиной по Договору.

4. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ

4.1. Краткая характеристика технологии производства и технологического оборудования

Карьерная вода откачивается насосами и посредством трубопровода отводится в пруд - накопитель.

С целью определения обводнености и определения основных характеристик водоносного горизонта на участке «Кызылсор» в 2021 году проберена 1 гидрогеологическая скважина глубиной 75м. В скважине оставлена обсадка с закрывающейся крышкой в верхней части оголовка обсадной трубы для ведения дальнейшего мониторинга за уровнем подземных вод.

В процессе проведения отмечалась глубина появления грунтовых вод, фиксировался установившийся уровень грунтовых вод. С целью изучения водообильности пород были проведены 5 пробных откачек.

Продолжительность пробных откачек составила от 8 до 16 часов. В процессе откачек велись наблюдения за динамическим уровнем воды и дебитом, за восстановлением уровня воды после прекращения откачек, отбирались пробы воды на химический и бактериологический анализы.

Замеры уровня воды осуществлялись электроуровнемером, а дебита – емкостью 10л.

Результаты проведенной инвентаризации выпусков сточных вод подготовлены по форме согласно приложению 6 к Методике определения нормативов эмиссий в окружающую среду.

- 1 Сведения о водоносном горизонте:
- а) слабонапорные
- б) номер водоносного горизонта І
- в) литология и возраст -мезозойская кора выветривания и трещиноватый гранодиорит
 - Γ) мощность <u>59,0м;</u>
- д) глубина вскрытия уровня воды -6,0m; е) установившийся уровень воды -3,96m;
 - 2. Сведения о технической конструкции скважины:
- а) диаметр бурения: начальный -132 мм; конечный $-\underline{76}$ мм б) сведения о трубах, оставленных в скважине:

в интервале от +0.74м до 25 м диаметром 127 мм

- 3. <u>Сведения о фильтре, оставленном в скважине:</u> тип фильтра без фильтра;
- 4. Сведения об опробовании водоносного горизонта перед сдачей скважины в эксплуатацию:

Дебит – 1,83 л/сек;

Статический уровень воды -3,96 м; Продолжительность прокачки -96 часов (12 бр/см) Опробование произведено <u>27.09.21г. и 02.10.21г.</u>

5. Способ опробования: насосом

Показатели качества воды Таблица № 1.8.7

Наименование ЗВ	ИД на метод испытаний	Ед. изм.	Факт - кая	ПДК
			кон - я	
pН	ГОСТ 26449.1-85, п 4	Ед. рН	8,3	не норм.
прозрачность	CT PK 7027-2007	мг/дм ³	10	не норм.

жесткость общая	ГОСТ 26449.1-85, п 10	МГ-	8,0	не норм.
		экв/дм ³		
гидрокарбонаты	ГОСТ 26449.1-85, п 7	мг/дм ³	280,6	не норм.
карбонаты	ГОСТ 26449.1-85, п 7	$M\Gamma/дM^3$	12,0	не норм.
хлориды	ГОСТ 26449.1-85, п 9	мг/дм ³	332,5	не норм.
сульфаты	ГОСТ 26449.1-85, п 12	мг/дм ³	237,0	не норм.
фосфаты	CT PK 2016-2010	мг/дм ³	0,55	не норм.
медь	M 01-46-2013	мг/дм ³	0,39	не норм.
цинк	M 01-46-2013	мг/дм ³	0,78	не норм.
никель	M 01-46-2013	мг/дм ³	0,054	не норм.
кадмий	M 01-46-2013	мг/дм ³	0,002	не норм.
свинец	M 01-46-2013	мг/дм ³	0,002	не норм.
олово	M 01-46-2013	мг/дм ³	0,0006	не норм.
молибден	M 01-46-2013	мг/дм ³	0,007	не норм.
серебро	M 01-46-2013	мг/дм ³	не обн.	не норм.
БПК5	СТ РК ИСО 5815-1-2010	$M\Gamma O_2/дM^3$	3,6	не норм.
взвешенные в-ва	CT PK 2015-2010	$M\Gamma/дM^3$	44,0	не норм.
кальций	ГОСТ 26449.1-85,	мг/дм3	70,0	не норм.
магний	ГОСТ 26449.1-85, п.12	мг/дм3	54,0	не норм.
АПАВ	CT PK 1983-2010	мг/дм3	0,093	не норм.
азот аммонийный	ГОСТ 26449.1-85, п.24	мг/дм3	1,63	не норм.
нитриты	СТ РК ИСО 7890-3-	мг/дм3	0,8	не норм.
нитраты	ГОСТ 26449.2-85, п.12	мг/дм3	5,0	не норм.
фториды	M 01-13-2007	мг/дм3	1,03	не норм.
железо	M 01-46-2013	мг/дм3	21,8	не норм.
нефтепродукты	M 01-05-2012	мг/дм3	0,753	не норм.

Лабораторный анализ пробы воды показал следующее:

вода слабощелочная;

имеет высокие показатели по жесткости общей, сухому остатку, хлоридам, сульфатам, гидрокарбонатам и железу общему.

В связи с тем, что для подземных вод, не являющихся источниками питьевого водоснабжения, отсутствуют нормативы предельно-допустимых концентраций, поэтому, в таблице \mathbb{N}_{2} 1.4 приведены фактические данные, полученные в результате лабораторных анализов.

В 2021 году из гидрогеологической скважины отобраны пробы воды на химический бактериологический анализы. Пробы были исследованы в лаборатории Степногорского городского управление охраны здоровья (СЭС) в г. Степногорск. Результаты исследований см в таблице 1.5, 1.6

Водопритоки в карьер будут формироваться за счет дренирования подземных вод и за счет атмосферных осадков, в том числе твердых в паводковый период и кратковременных ливневых дождей летом.

В заключении выполненных расчетов водопритоков необходимо отметить, что водопритоки за счет дренирования подземных вод будут иметь постоянный характер и фактические величины будут постоянно нарастать до величин вышерасчитанных водопритоков, которые соответствуют максимальному развороту горнодобычных работ на карьере.

Водопритоки за счет снеготаяния ожидаются ежегодно в паводковый период. Расчетные их величины соответствуют максимально возможным значениям наиболее многоводных лет.

Водопритоки за счет ливневых дождей носят разовый характер с вероятностью проявления 2 % и всецело зависят от природно-климатических условий района.

В процессе ведения горных работ необходимо проводить гидрогеологические наблюдения и при необходимости внести корректировку в расчет водопритоков и карьерной водоотливной установки.

Микробиологическое исследования воды

Таблица 1.8.7

Наименование	Ед. измерения	Норма по	Результаты	НД на метод
показателей		нд	испытания	испытания
Общее микробное число	КОЕ в 1мл	Не более 50	1 КОЕ в 1 мл	ГОСТ 18963-73
Общие колиформные	КОЕ в 100мл	Отсутствие	КОЕ ОКБ в 100 мл	ГОСТ 18963-73
бактерии (ОКБ)	KOE B TOOMJI	Отсутствие	Обнаружены	100110903-73
Термотолерантные	КОЕ в 100мл	Отсутствие	КОЕ ТКБ в 100 мл	ГОСТ 18963-73
колиформные бактерии	KOE B TOOMJI	Отсутствие	Не обнаружены	100110903-73
Патогенная флора, в т.ч	КОЕ в 1000мл	Отсутствие	-	МУК 3.05.039.97
сальмонеллы				
Коли-фаги	БОЕ в 100мл	Отсутствие	-	МУК 10.05.045.03

Исследование образцов воды из гидрогеологической скважины

Наимо	енования показателей	Обнаруженная	Нормативные	НД на методы
		концентрация	показатели	исследования
запах	Интенсивность в баллах	2		ГОСТ 3351-74
	Характер			
	Порог исчезновения (в разведении)			
Цветност	ъ в градусах	24,46		ГОСТ 31868-2012
Цвет (опи	ісать)	-	-	-
Порог ис	чезновения цвета			
Муть, ос	адок (мутность)	32,24		ГОСТ 3351-74
Прозрачн	ЮСТЬ	=	-	-
Плавающ мг/дм ³	цие примеси, пленка	-	-	-
Взвешени	ные вещества мг/дм ³	-	-	-
pН		7,45		ГОСТ 26449.1-85
	нный кислород мг O_2 /дм 3	-	-	-
БПК-5, м	$\Gamma O_2/дм^3$	-	-	-
БПК-20, 1		-	-	-
	иость мг $\mathrm{O_2}/\mathrm{дm}^3$	14,08		ГОСТ 26449.2-85
ХПК, мг		-	-	-
	сть мг-экв/ дм ³	-	-	-
	ость мг-экв/ дм ³	-	-	-
	гь общая моль/ дм ³	109,2	-	ГОСТ 31954-2012
Сухой ос	таток мг/дм ³	27766,0	-	ГОСТ 26449.1-85
Кальций		-	-	-
Магний м		-	-	-
	бщее мг/дм ³	0,032	-	ГОСТ 26449.1-85
X лориды мг/дм 3		13475,0	-	ГОСТ 26449.1-85
Сульфатн	ы мг/дм ³	518,4	-	ГОСТ 31940-2012
	Аммиака мг/дм ³	0,023		ГОСТ 33045-2014
Азот	Нитритов $M\Gamma/дM^3$	н/о		ГОСТ 33045-2014
	Нитратов мг/дм ³	0,1		ГОСТ 33045-2014
Фтор, мг	/дм ³	-	-	-

Подотого и до 3			
Нефтепродукты, мг/дм ³	-	_	-
Фенолы, мг/дм 3	-	-	-
Цианиды, мг/дм ³	-	-	-
Медь, мг/дм ³	-	-	-
Свинец, мг/дм ³	-	-	-
Цинк, мг/дм ³	-	-	-

Пруд-накопитель запроектирован с целью сбора и испарения карьерных вод и для забора воды для полива дорог и пылеподавления в забое. Пруд-накопитель запроектирован за пределами утвержденных запасов, путем устройства ограждающей дамбы в наиболее удобном месте, на северо-западной части карьеров. Основанием дамбы и дна пруда, после снятия растительного слоя, будут служить породы с недостаточными водоупорными качествами.

Перечень загрязняющих веществ в составе карьерных вод количественные показатели приведены в таблице 3.3.1.

Таблица 3.3.1 Качественные и количественные показатели состояния нормативно чистых карьерных вод

Nº	Наименование загрязняющих веществ	Максимальная концентрация загрязняющих веществ, мг/дм ³
1	2	3
1	Гидрокарбонаты;	280,6
2	Карбонаты;	12
3	Хлориды;	332,5
4	Сульфаты;	237
5	Фосфаты;	0,55
6	Медь;	0,39
7	Цинк;	0,78
8	Никель;	0,054
9	Кадмий;	0,002
10	Свинец;	0,002
11	Олово;	0,0006
12	Молибден;	0,007
13	БПК5;	3,6
14	Взвешенные в-ва;	44
15	Кальций;	70
16	Магний;	54
17	АПАВ;	0,093
18	Азот аммонийный;	1,63
19	Нитриты;	0,8
20	Нитраты;	5
21	Фториды;	1,03

23	22 Желез);	21,8
	23 Нефте	тродукты.	0,753
			0,755
	·		
	·		
	·		

Ожидаемые объемы сбрасываемых вод в пруд-накопитель составляют:									
		2026 год							
Наумоноромно загрязмятомого	Концентрация	Макс сут расход	Макс сут						
Наименование загрязняющего вещества	мг/дм3	м3/час	расход тыс.м3/год	Сброс г/час	Сброс т/год				
Гидрокарбонаты;	280,6	8,18	71631,25	2295,308	20,0997288				
Карбонаты;	12	8,18	71631,25	98,16	0,859575				
Хлориды;	332,5	8,18	71631,25	2719,85	23,8173906				
Сульфаты;	237	8,18	71631,25	1938,66	16,9766063				
Фосфаты;	0,55	8,18	71631,25	4,499	0,03939719				
Медь;	0,39	8,18	71631,25	3,1902	0,02793619				
Цинк;	0,78	8,18	71631,25	6,3804	0,05587238				
Никель;	0,054	8,18	71631,25	0,44172	0,00386809				
Кадмий;	0,002	8,18	71631,25	0,01636	0,00014326				
Свинец;	0,002	8,18	71631,25	0,01636	0,00014326				
Олово;	0,0006	8,18	71631,25	0,004908	4,2979E-05				
Молибден;	0,007	8,18	71631,25	0,05726	0,00050142				
БПК5;	3,6	8,18	71631,25	29,448	0,2578725				
Взвешенные в-ва;	44	8,18	71631,25	359,92	3,151775				
Кальций;	70	8,18	71631,25	572,6	5,0141875				
Магний;	54	8,18	71631,25	441,72	3,8680875				
АПАВ;	0,093	8,18	71631,25	0,76074	0,00666171				
Азот аммонийный;	1,63	8,18	71631,25	13,3334	0,11675894				
Нитриты;	0,8	8,18	71631,25	6,544	0,057305				
Нитраты;	5	8,18	71631,25	40,9	0,35815625				
Фториды;	1,03	8,18	71631,25	8,4254	0,07378019				
Железо;	21,8	8,18	71631,25	178,324	1,56156125				
Нефтепродукты.	0,753	8,18	71631,25	6,15954	0,05393833				
					76,4012895				
			200	77					
		3.6		27 год					
Наименование загрязняющего	Концентрация	Макс сут расход	Макс сут расход						
вещества	мг/дм3	м3/час	тыс.м3/год	Сброс г/час	Сброс т/год				
Гидрокарбонаты;	280,6	8,32	72854	2334,592	20,44283				
Карбонаты;	12	8,32	72854	99,84	0,874248				
Хлориды;	332,5	8,32	72854	2766,4	24,22396				
Сульфаты;	237	8,32	72854	1971,84	17,2664				
Фосфаты;	0,55	8,32	72854	4,576	0,04007				
Медь;	0,39	8,32	72854	3,2448	0,028413				
Цинк;	0,78	8,32	72854	6,4896	0,056826				
Никель;	0,054	8,32	72854	0,44928	0,003934				
Кадмий;	0,002	8,32	72854	0,01664	0,000146				

Свинец;	0,002	8,32	72854	0,01664	0,000146		
Олово;	0,0006	8,32	72854	0,004992	4,37E-05		
Молибден;	0,007	8,32	72854	0,05824	0,00051		
БПК5;	3,6	8,32	72854	29,952	0,262274		
Взвешенные в-ва;	44	8,32	72854	366,08	3,205576		
Кальций;	70	8,32	72854	582,4	5,09978		
Магний;	54	8,32	72854	449,28	3,934116		
АПАВ;	0,093	8,32	72854	0,77376	0,006775		
Азот аммонийный;	1,63	8,32	72854	13,5616	0,118752		
Нитриты;	0,8	8,32	72854	6,656	0,058283		
Нитраты;	5	8,32	72854	41,6	0,36427		
Фториды;	1,03	8,32	72854	8,5696	0,07504		
Железо;	21,8	8,32	72854	181,376	1,588217		
Нефтепродукты.	0,753	8,32	72854	72854 6,26496			
					77,70546		
			200	10			
		3.6		28 год			
Наименование загрязняющего	Концентрация	Макс сут расход	Макс сут расход				
вещества	мг/дм3	м3/час	тыс.м3/год	Сброс г/час	Сброс т/год		
Гидрокарбонаты;	280,6	14,76	129275,7	4141,656	36,27476		
Карбонаты;	12	14,76	129275,7	177,12	1,551308		
Хлориды;	332,5	14,76	129275,7	4907,7	42,98417		
Сульфаты;	237	14,76	129275,7	3498,12	30,63834		
Фосфаты;	0,55	14,76	129275,7	8,118	0,071102		
Медь;	0,39	14,76	129275,7	5,7564	0,050418		
Цинк;	0,78	14,76	129275,7	11,5128	0,100835		
Никель;	0,054	14,76	129275,7	0,79704	0,006981		
Кадмий;	0,002	14,76	129275,7	0,02952	0,000259		
Свинец;	0,002	14,76	129275,7	0,02952	0,000259		
Олово;	0,0006	14,76	129275,7	0,008856	7,76E-05		
Молибден;	0,007	14,76	129275,7	0,10332	0,000905		
БПК5;	3,6	14,76	129275,7	53,136	0,465393		
Взвешенные в-ва;	44	14,76	129275,7	649,44	5,688131		
Кальций;	70	14,76	129275,7	1033,2	9,049299		
Магний;	54	14,76	129275,7	797,04	6,980888		
АПАВ;	0,093	14,76	129275,7	1,37268	0,012023		
Азот аммонийный;	1,63	14,76	129275,7	24,0588	0,210719		
Нитриты;	0,8	14,76	129275,7	11,808	0,103421		
Нитраты;	5	14,76	129275,7	73,8	0,646379		
Фториды;	1,03	14,76	129275,7	15,2028	0,133154		
Железо;	21,8	14,76	129275,7	321,768	2,81821		
Нефтепродукты.	0,753	14,76	129275,7	11,11428	0,097345		
					137,8844		

			202	29 год	T
Наименование загрязняющего вещества	Концентрация мг/дм3	Макс сут расход м3/час	Макс сут расход тыс.м3/год	Сброс г/час	Сброс т/год
Гидрокарбонаты;	280,6	14,74	129144,3	4136,044	36,23789
Карбонаты;	12	14,74	129144,3	176,88	1,549732
Хлориды;	332,5	14,74	129144,3	4901,05	42,94048
Сульфаты;	237	14,74	129144,3	3493,38	30,6072
Фосфаты;	0,55	14,74	129144,3	8,107	0,071029
Медь;	0,39			·	0,050366
Цинк;	0,39		14,74 129144,3 5,7486		0,100733
Никель;	0,78	14,74	129144,3 129144,3	11,4972 0,79596	0,100733
Кадмий;		14,74		0,79396	
Свинец;	0,002	14,74	129144,3	0,02948	0,000258
Олово;	0,002	14,74	129144,3	,	0,000258
Молибден;	0,0006	14,74	129144,3	0,008844	7,75E-05
БПК5;	0,007	14,74	129144,3	0,10318	0,000904
Взвешенные в-ва;	3,6	14,74	129144,3	53,064	0,464919
Кальций;	44	14,74	129144,3	648,56	5,682349
Магний;	70	14,74	129144,3	1031,8	9,040101
АПАВ;	54	14,74	129144,3	795,96	6,973792
Азот аммонийный;	0,093	14,74	129144,3	1,37082	0,01201
Нитриты;	1,63	14,74	129144,3	24,0262	0,210505
Нитраты;	0,8	14,74	129144,3	11,792	0,103315
Фториды;	5	14,74	129144,3	73,7	0,645722
Железо;	1,03	14,74	129144,3	15,1822	0,133019
Нефтепродукты.	21,8	14,74	129144,3	321,332	2,815346
пефтепродукты.	0,753	14,74	129144,3	11,09922	0,097246
					137,7442
			203	80 год	Т
		Макс сут	Макс сут		
Наименование загрязняющего вещества	Концентрация мг/дм3	расход м3/час	расход тыс.м3/год	Сброс г/час	Сброс т/год
Гидрокарбонаты;	280,6	21,43	187686,7	6013,258	52,664888
Карбонаты;	12	21,43	187686,7	257,16	2,2522404
Хлориды;	332,5	21,43	187686,7	7125,475	62,4058278
Сульфаты;	237	21,43	187686,7	5078,91	44,4817479
Фосфаты;	0,55	21,43	187686,7	11,7865	0,10322769
Медь;	0,39	21,43	187686,7	8,3577	0,10322709
Цинк;	0,39	21,43	187686,7	16,7154	0,07319781
Никель;	0,054	21,43	187686,7	1,15722	0,01013508
Кадмий;	0,034	21,43	187686,7	0,04286	0,01013308
Свинец;	·				
Свинец;	0,002	21,43	187686,7	0,04286	0,00037537

Олово;	0,0006	21,43	187686,7	0,012858	0,00011261	
Молибден;	0,007	21,43	43 187686,7 0,1500		0,15001 0,00131381	
БПК5;	3,6	21,43	187686,7	77,148	0,67567212	
Взвешенные в-ва;	44	21,43	187686,7	942,92	8,2582148	
Кальций;	70	21,43	187686,7	1500,1	13,138069	
Магний;	54	21,43	187686,7	1157,22	10,1350818	
АПАВ;	0,093	21,43	187686,7	1,99299	0,01745486	
Азот аммонийный;	1,63	21,43	187686,7	34,9309	0,30592932	
Нитриты;	0,8	21,43	187686,7	17,144	0,15014936	
Нитраты;	5	21,43	187686,7	107,15	0,9384335	
Фториды;	1,03	21,43	187686,7	22,0729	0,1933173	
Железо;	21,8	21,43	187686,7	467,174	4,09157006	
Нефтепродукты.	0,753	21,43	187686,7	16,13679	0,14132809	
	·			200,185058		
			203	31 год		
Наименование загрязняющего вещества	Концентрация мг/дм3	Макс сут расход м3/час	Макс сут расход тыс.м3/год	Сброс г/час	Сброс т/год	
Гидрокарбонаты;	280,6	27,94	244769	7839,964	68,68218	
Карбонаты;	12	27,94	244769	335,28	2,937228	
Хлориды;	332,5	27,94	244769	9290,05	81,38569	
Сульфаты;	237	27,94	244769	6621,78	58,01025	
Фосфаты;	0,55	27,94	244769	15,367	0,134623	
Медь;	0,39	27,94	244769	10,8966	0,09546	
Цинк;	0,78	27,94	244769	21,7932	0,19092	
Никель;	0,054	27,94	244769	1,50876	0,013218	
Кадмий;	0,002	27,94	244769	0,05588	0,00049	
Свинец;	0,002	27,94	244769	0,05588	0,00049	
Олово;	0,0006	27,94	244769	0,016764	0,000147	
Молибден;	0,007	27,94	244769	0,19558	0,001713	
БПК5;	3,6	27,94	244769	100,584	0,881168	
Взвешенные в-ва;	44	27,94	244769	1229,36	10,76984	
Кальций;	70	27,94	244769	1955,8	17,13383	
Магний;	54	27,94	244769	1508,76	13,21753	
АПАВ;	0,093	27,94	244769	2,59842	0,022764	
Азот аммонийный;	1,63	27,94	244769	45,5422	0,398973	
Нитриты;	0,8	27,94	244769	22,352	0,195815	
Нитраты;	5	27,94	244769	139,7	1,223845	
Фториды;	1,03	27,94	244769	28,7782	0,252112	
Железо;	21,8	27,94	244769	609,092	5,335964	
Нефтепродукты.	0,753	27,94	244769	21,03882	0,184311	
					261,0686	

			203	32 год 		
Наименование загрязняющего вещества	Концентрация мг/дм3	Макс сут расход м3/час	Макс сут расход тыс.м3/год	Сброс г/час	Сброс т/год	
Гидрокарбонаты;	280,6	34,68	303789,5	9731,208	85,24333	
Карбонаты;	12	34,68	303789,5	416,16	3,645474	
Хлориды;	332,5	34,68	303789,5	11531,1	101,01	
Сульфаты;	237	34,68	303789,5	8219,16	71,99811	
Фосфаты;	0,55	34,68	303789,5	19,074	0,167084	
Медь;	0,39	34,68	303789,5	13,5252	0,118478	
Цинк;	0,78	34,68	303789,5	27,0504	0,236956	
Никель;	0,054	34,68	303789,5	1,87272	0,016405	
Кадмий;	0,002	34,68	303789,5	0,06936	0,000608	
Свинец;	0,002	34,68	303789,5	0,06936	0,000608	
Олово;	0,002	34,68	303789,5	0,020808	0,000182	
Молибден;	0,000	34,68	303789,5	0,020808	0,000182	
БПК5;	3,6	34,68	303789,5	124,848	1,093642	
Взвешенные в-ва;	44	34,68	303789,5	1525,92	13,36674	
Кальций;	70	34,68	303789,5	2427,6	21,26527	
Магний;	54	34,68	303789,5	1872,72	16,40463	
АПАВ;	0,093	34,68	303789,5	3,22524	0,028252	
Азот аммонийный;	1,63	34,68	303789,5	56,5284	0,495177	
Нитриты;	0,8	34,68	303789,5	27,744	0,243032	
Нитраты;	5	34,68	303789,5	173,4	1,518948	
Фториды;	1,03	34,68	303789,5	35,7204	0,312903	
Железо;	21,8	34,68	303789,5	756,024	6,622611	
Нефтепродукты.	0,753	34,68	303789,5	26,11404	0,228753	
	0,733	31,00	303707,5	20,11101	324,0193	
					, , , , , , ,	
				33 год		
Наименование загрязняющего	Концентрация	Макс сут расход	Макс сут расход			
вещества	мг/дм3	м3/час	тыс.м3/год	Сброс г/час	Сброс т/год	
Гидрокарбонаты;	280,6	41,24	361277	11571,94	101,3743	
Карбонаты;	12	41,24	361277	494,88	4,335324	
Хлориды;	332,5	41,24	361277	13712,3	120,1246	
Сульфаты;	237	41,24	361277	9773,88	85,62265	
Фосфаты;	0,55	41,24	361277	22,682	0,198702	
Медь;	0,39	41,24	361277	16,0836	0,140898	
Цинк;	0,78	41,24	361277	32,1672	0,281796	
Никель;	0,054	41,24	361277	2,22696	0,019509	
Кадмий;	0,002	41,24	361277	0,08248	0,000723	
Свинец;	0,002	41,24	361277	0,08248	0,000723	

			1		
Олово;	0,0006	41,24	361277	0,024744	0,000217
Молибден;	0,007	41,24	361277	0,28868	0,002529
БПК5;	3,6	41,24	361277	148,464	1,300597
Взвешенные в-ва;	44	41,24	361277	1814,56	15,89619
Кальций;	70	41,24	361277	2886,8	25,28939
Магний;	54	41,24	361277	2226,96	19,50896
АПАВ;	0,093	41,24	361277	3,83532	0,033599
Азот аммонийный;	1,63	41,24	361277	67,2212	0,588882
Нитриты;	0,8	41,24	361277	32,992	0,289022
Нитраты;	5	41,24	361277	206,2	1,806385
Фториды;	1,03	41,24	361277	42,4772	0,372115
Железо;	21,8 41,24 361277 899,6		899,032	7,875839	
Нефтепродукты.	ы. 0,753 41,24 361277 31,053				0,272042
					385,335
			203	34 год	
		Макс сут	Макс сут		
Наименование загрязняющего	Концентрация мг/дм3	расход м3/час	расход тыс.м3/год	Сброс г/час	Сброс т/год
вещества Гидрокарбонаты;	280,6		417195	13363,575	117,064917
Карбонаты;	12	47,625 47,625	417195	571,5	5,00634
Хлориды;	332,5	47,625	417195	15835,3125	138,717338
Сульфаты;	237	47,625	417195	11287,125	98,875215
Фосфаты;	0,55	47,625	417195	26,19375	0,22945725
Медь;	0,39	47,625	417195	18,57375	0,22943723
Цинк;	0,78	47,625	417195	37,1475	0,3254121
Никель;	0,054	47,625	417195	2,57175	0,02252853
Кадмий;	0,002	47,625	417195	0,09525	0,00083439
Свинец;	0,002	47,625	417195	0,09525	0,00083439
Олово;	0,002	47,625	417195	0,028575	0,00083439
Молибден;	0,007	47,625	417195	0,333375	0,00292037
БПК5;	3,6	47,625	417195	171,45	1,501902
Взвешенные в-ва;	44	47,625	417195	2095,5	18,35658
Кальций;	70	47,625	417195	3333,75	29,20365
Магний;	54	47,625	417195	2571,75	22,52853
АПАВ;	0,093	47,625	417195	4,429125	0,03879914
Азот аммонийный;	1,63	47,625	417195	77,62875	0,68002785
Нитриты;	0,8	47,625	417195	38,1	0,333756
Нитраты;	5	47,625	417195	238,125	2,085975
Фториды;	1,03	47,625	417195	49,05375	0,42971085
Железо;	21,8	47,625	417195	1038,225	9,094851
Нефтепродукты.	0,753	47,625	417195	35,861625	0,31414784
<u> </u>	0,733	77,023	71/1/3	33,001023	444,976683

			203	35 год	T
Наименование загрязняющего вещества	Концентрация мг/дм3	Макс сут расход м3/час	Макс сут расход тыс.м3/год	Сброс г/час	Сброс т/год
Гидрокарбонаты;	280,6	54,058	473554,7	15168,67	132,8794
Карбонаты;	12	54,058	473554,7	648,696	5,682656
Хлориды;	332,5	54,058	473554,7	17974,29	157,4569
Сульфаты;	237	54,058	473554,7	12811,75	112,2325
Фосфаты;	0,55	54,058	473554,7	29,7319	0,260455
Медь;	0,39	54,058	473554,7	21,08262	0,184686
Цинк;	0,78	54,058	473554,7	42,16524	0,369373
Никель;	0,054	54,058	473554,7	2,919132	0,025572
Кадмий;	0,002	54,058	473554,7	0,108116	0,000947
Свинец;	0,002	54,058	473554,7	0,108116	0,000947
Олово;	0,0006	54,058	473554,7	0,032435	0,000284
Молибден;	0,007	54,058	473554,7	0,378406	0,003315
БПК5;	3,6	54,058	473554,7	194,6088	1,704797
Взвешенные в-ва;	44	54,058	473554,7	2378,552	20,8364
Кальций;	70	54,058	473554,7	3784,06	33,14883
Магний;	54	54,058	473554,7	2919,132	25,57195
АПАВ;	0,093	54,058	473554,7	5,027394	0,044041
Азот аммонийный;	1,63	54,058	473554,7	88,11454	0,771894
Нитриты;	0,8	54,058	473554,7	43,2464	0,378844
Нитраты;	5	54,058	473554,7	270,29	2,367773
Фториды;	1,03	54,058	473554,7	55,67974	0,487761
Железо;	21,8	54,058	473554,7	1178,464	10,32349
Нефтепродукты.	0,753	54,058	473554,7	40,70567	0,356587
					505,0894

Образующиеся сбросы не входят в перечень загрязнителей, данные по которым подлежат в регистр выбросов и переноса загрязнителей (согласно правилам ведения регистра выбросов и переноса загрязнителей).

4.2. Краткая характеристика существующих очистных сооружений

Очистные сооружения на предприятии отсутствуют. Характер сбрасываемых в пруднакопитель сточных вод (карьерных) не требует установления очистных сооружений. Сброс карьерных вод горно-металлургических предприятий в накопители сточных вод допускается без предварительной очистки (п. 10 ст. 222 ЭК РК): Запрещается сброс сточных вод без предварительной очистки, за исключением сбросов шахтных и карьерных вод горно-металлургических предприятий в пруды-накопители и (или) пруды-испарители, а также вод, используемых для водяного охлаждения, в накопители, расположенные в системе замкнутого (оборотного) водоснабжения.

4.3 Перспектива развития предприятия

На период действия разработанных в проекте нормативов допустимых сбросов в

пруд накопитель реконструкции, ликвидации отдельных производств, источников сбросов, строительство новых технологических линий, расширения и введения в действие новых производств, цехов, изменения номенклатуры, предприятие не предусматривает (приложение 5). Работы будут производиться согласно техническому регламенту. В случае изменений в технологическом процессе будет проводиться корректировка проекта нормативов допустимых сбросов.

4.4. Перечень загрязняющих веществ

При эксплуатации объекта качественный и количественный состав карьерных вод будет постоянно контролироваться. Лабораторный контроль за качественными и количественными показателями очищенных вод будет вестись аккредитованной лабораторией. Протокола лабораторных замеров представлены в *приложении* 5.

Перечень загрязняющих веществ в составе карьерных вод Месторождения «Кызылсор» количественные показатели приведены в таблице 3.3.1.

Таблица 3.3.1 Качественные и количественные показатели состояния нормативно чистых карьерных вод

No	Наименование загрязняющих веществ	Максимальная концентрация загрязняющих веществ, мг/дм ³
1	2	3
1	Гидрокарбонаты;	280,6
2	Карбонаты;	12
3	Хлориды;	332,5
4	Сульфаты;	237
5	Фосфаты;	0,55
6 7	Медь;	0,39
	Цинк;	0,78
8	Никель;	0,054
9	Кадмий;	0,002
10	Свинец;	0,002
11	Олово;	0,0006
12	Молибден;	0,007
13	БПК5;	3,6
14	Взвешенные в-ва;	44
15	Кальций;	70
16	Магний;	54
17	АПАВ;	0,093
18	Азот аммонийный;	1,63
19	Нитриты;	0,8
20	Нитраты;	5
21	Фториды;	1,03
22	Железо;	21,8

 23	Нефтепродукты.	0,753
		24
		2-7

4.5. Описание конструкции, водовыпускного устройства и инженерных сооружений для транспортировки сточных вод к месту выпуска

Строительство осуществляется в 2 очереди. Первая очередь имеет вместимость до 400000 м3 и площадь по поверхности 10,0 га. Этого достаточно для отработки карьера в первые пять лет в течении которых должен проводится мониторинг по водопритоку подземных вод и атмосферных осадков на основании которого можно скорректировать гидрогеологическую часть проекта и водоотлив. Для дальнейшей отработки, необходимо строительство 2 очереди, вмещающей до 2 075 854 м3 и возможную площадь по зеркалу воды 53,5 га. Общий объем пруда накопителя составит 2 075 854 м3 и возможная площадь по зеркалу воды 63,5 га.

4.6 Обоснование полноты и достоверности исходных данных

Обоснование полноты и достоверности исходных данных для определения параметров источников сбросов, количественной и качественной характеристики сбросов приведено в материалах инвентаризации источников сбросов настоящего проекта, утвержденных Заказчиком. Количество сбросов на рассматриваемый период определено расчетным путем по действующим методическим документам на основании исходных данных, представленных предприятием.

Предлагаемые нормативы НДС на представлены в таблице 3.9.1.

Нормативы сбросов загрязняющих веществ объекту

Таблица 3.9.1

		Существующее положение					Существующее положение 2026 г.					Год достижения
Номер выпуск а	Наименование показателя	Расход сточных вод Концентрация на выпуске, мг/дм3		Сброс		Расход с	Расход сточных вод		¹ Сброс	Сброс		
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год	
	2	3	4	5	6	7	8	9	10	11	12	13
№ 1	Гидрокарбонаты;						8,18	71631,25	280,6	2295,308	20,0997288	2026
	Карбонаты;						8,18	71631,25	12	98,16	0,859575	2026
	Хлориды;						8,18	71631,25	332,5	2719,85	23,8173906	2026
	Сульфаты;						8,18	71631,25	237	1938,66	16,9766063	2026
	Фосфаты;						8,18	71631,25	0,55	4,499	0,03939719	2026
	Медь;						8,18	71631,25	0,39	3,1902	0,02793619	2026
	Цинк;						8,18	71631,25	0,78	6,3804	0,05587238	2026
	Никель;						8,18	71631,25	0,054	0,44172	0,00386809	2026
	Кадмий;						8,18	71631,25	0,002	0,01636	0,00014326	2026
	Свинец;						8,18	71631,25	0,002	0,01636	0,00014326	2026
	Олово;						8,18	71631,25	0,0006	0,004908	4,2979E-05	2026
	Молибден;						8,18	71631,25	0,007	0,05726	0,00050142	2026
	БПК5;						8,18	71631,25	3,6	29,448	0,2578725	2026
	Взвешенные вещества						8,18	71631,25	44	359,92	3,151775	2026
	Кальций;						8,18	71631,25	70	572,6	5,0141875	2026
	Магний;						8,18	71631,25	54	441,72	3,8680875	2026
	АПАВ;						8,18	71631,25	0,093	0,76074	0,00666171	2026
	Азот аммонийный;						8,18	71631,25	1,63	13,3334	0,11675894	2026
	Нитриты;						8,18	71631,25	0,8	6,544	0,057305	2026
	Нитраты;						8,18	71631,25	5	40,9	0,35815625	2026
	Фториды;						8,18	71631,25	1,03	8,4254	0,07378019	2026
	Железо;						8,18	71631,25	21,8	178,324	1,56156125	2026
	Нефтепродукты.						8,18	71631,25	0,753	6,15954	0,05393833	2026
	Всего:									8724,71929	76,4012895	

		Существующее положение					Существующее положение 2027 г.					Год	
HITVCK	Наименование показателя	Расход сточных вод Концентрация на выпуске, мг/дм3			Сброс		Расход сточных вод		Концентра ция на выпуске, мг/дм3			достижения ДС	
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год		
	2	3	4	5	6	7	8	9	10	11	12	13	
№ 1	Гидрокарбонаты;						8,32	72854	280,6	2334,592	20,44283	2027	
	Карбонаты;						8,32	72854	12	99,84	0,874248	2027	
	Хлориды;						8,32	72854	332,5	2766,4	24,22396	2027	
	Сульфаты;						8,32	72854	237	1971,84	17,2664	2027	
	Фосфаты;						8,32	72854	0,55	4,576	0,04007	2027	
	Медь;						8,32	72854	0,39	3,2448	0,028413	2027	
	Цинк;						8,32	72854	0,78	6,4896	0,056826	2027	
	Никель;						8,32	72854	0,054	0,44928	0,003934	2027	
	Кадмий;						8,32	72854	0,002	0,01664	0,000146	2027	
	Свинец;						8,32	72854	0,002	0,01664	0,000146	2027	
	Олово;						8,32	72854	0,0006	0,004992	4,37E-05	2027	
	Молибден;						8,32	72854	0,007	0,05824	0,00051	2027	
	БПК5;						8,32	72854	3,6	29,952	0,262274	2027	
	Взвешенные вещества						8,32	72854	44	366,08	3,205576	2027	
	Кальций;						8,32	72854	70	582,4	5,09978	2027	
	Магний;						8,32	72854	54	449,28	3,934116	2027	
	АПАВ;						8,32	72854	0,093	0,77376	0,006775	2027	
	Азот аммонийный;						8,32	72854	1,63	13,5616	0,118752	2027	
	Нитриты;						8,32	72854	0,8	6,656	0,058283	2027	
	Нитраты;						8,32	72854	5	41,6	0,36427	2027	
	Фториды;						8,32	72854	1,03	8,5696	0,07504	2027	
	Железо;						8,32	72854	21,8	181,376	1,588217	2027	
	Нефтепродукты.						8,32	72854	0,753	6,26496	0,054859	2027	
	Всего:									8874,042	77,70546		

	Наименование показателя	Существующее положение						Существующее положение 2028 г.					
Іомер ыпуск		Расход сточных вод		Концентрация на выпуске, мг/дм3	Сброс		Расход сточных вод		Концентра ция на выпуске, мг/дм3			достижения ДС	
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год		
	2	3	4	5	6	7	8	9	10	11	12	13	
№ 1	Гидрокарбонаты;						14,76	129275,7	280,6	4141,656	36,27476	2028	
	Карбонаты;						14,76	129275,7	12	177,12	1,551308	2028	
	Хлориды;						14,76	129275,7	332,5	4907,7	42,98417	2028	
	Сульфаты;						14,76	129275,7	237	3498,12	30,63834	2028	
	Фосфаты;						14,76	129275,7	0,55	8,118	0,071102	2028	
	Медь;						14,76	129275,7	0,39	5,7564	0,050418	2028	
	Цинк;						14,76	129275,7	0,78	11,5128	0,100835	2028	
	Никель;						14,76	129275,7	0,054	0,79704	0,006981	2028	
	Кадмий;						14,76	129275,7	0,002	0,02952	0,000259	2028	
	Свинец;						14,76	129275,7	0,002	0,02952	0,000259	2028	
	Олово;						14,76	129275,7	0,0006	0,008856	7,76E-05	2028	
	Молибден;						14,76	129275,7	0,007	0,10332	0,000905	2028	
	БПК5;						14,76	129275,7	3,6	53,136	0,465393	2028	
	Взвешенные вещества						14,76	129275,7	44	649,44	5,688131	2028	
	Кальций;						14,76	129275,7	70	1033,2	9,049299	2028	
	Магний;						14,76	129275,7	54	797,04	6,980888	2028	
	АПАВ;						14,76	129275,7	0,093	1,37268	0,012023	2028	
	Азот аммонийный;						14,76	129275,7	1,63	24,0588	0,210719	2028	
	Нитриты;						14,76	129275,7	0,8	11,808	0,103421	2028	
	Нитраты;						14,76	129275,7	5	73,8	0,646379	2028	
	Фториды;						14,76	129275,7	1,03	15,2028	0,133154	2028	
	Железо;						14,76	129275,7	21,8	321,768	2,81821	2028	
	Нефтепродукты.						14,76	129275,7	0,753	11,11428	0,097345	2028	
	Всего:									15742,89	137,8844		

	Наименование показателя	Существующее положение						Существующее положение 2029 г.					
Іомер ыпуск		Расход сточных вод		Концентрация на выпуске, мг/дм3	Сброс		Расход сточных вод		Концентра ция на выпуске, мг/дм3			достижения ДС	
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год		
	2	3	4	5	6	7	8	9	10	11	12	13	
№ 1	Гидрокарбонаты;						14,74	129144,3	280,6	4136,044	36,23789	2029	
	Карбонаты;						14,74	129144,3	12	176,88	1,549732	2029	
	Хлориды;						14,74	129144,3	332,5	4901,05	42,94048	2029	
	Сульфаты;						14,74	129144,3	237	3493,38	30,6072	2029	
	Фосфаты;						14,74	129144,3	0,55	8,107	0,071029	2029	
	Медь;						14,74	129144,3	0,39	5,7486	0,050366	2029	
	Цинк;						14,74	129144,3	0,78	11,4972	0,100733	2029	
	Никель;						14,74	129144,3	0,054	0,79596	0,006974	2029	
	Кадмий;						14,74	129144,3	0,002	0,02948	0,000258	2029	
	Свинец;						14,74	129144,3	0,002	0,02948	0,000258	2029	
	Олово;						14,74	129144,3	0,0006	0,008844	7,75E-05	2029	
	Молибден;						14,74	129144,3	0,007	0,10318	0,000904	2029	
	БПК5;						14,74	129144,3	3,6	53,064	0,464919	2029	
	Взвешенные вещества						14,74	129144,3	44	648,56	5,682349	2029	
	Кальций;						14,74	129144,3	70	1031,8	9,040101	2029	
	Магний;						14,74	129144,3	54	795,96	6,973792	2029	
	АПАВ;						14,74	129144,3	0,093	1,37082	0,01201	2029	
	Азот аммонийный;						14,74	129144,3	1,63	24,0262	0,210505	2029	
	Нитриты;						14,74	129144,3	0,8	11,792	0,103315	2029	
	Нитраты;						14,74	129144,3	5	73,7	0,645722	2029	
	Фториды;						14,74	129144,3	1,03	15,1822	0,133019	2029	
	Железо;						14,74	129144,3	21,8	321,332	2,815346	2029	
	Нефтепродукты.						14,74	129144,3	0,753	11,09922	0,097246	2029	
	Всего:									15721,56	137,7442		

	Наименование показателя	Сущест	вующее полож	ение			Существ	Год				
Іомер ыпуск		Расход сточных вод		Концентрация на выпуске, мг/дм3	Сброс		Расход сточных вод		Концентра ция на выпуске, мг/дм3			достижения ДС
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год	
	2	3	4	5	6	7	8	9	10	11	12	13
√ 21	Гидрокарбонаты;						21,43	187686,7	280,6	6013,258	52,664888	2030
	Карбонаты;						21,43	187686,7	12	257,16	2,2522404	2030
	Хлориды;						21,43	187686,7	332,5	7125,475	62,4058278	2030
	Сульфаты;						21,43	187686,7	237	5078,91	44,4817479	2030
	Фосфаты;						21,43	187686,7	0,55	11,7865	0,10322769	2030
	Медь;						21,43	187686,7	0,39	8,3577	0,07319781	2030
	Цинк;						21,43	187686,7	0,78	16,7154	0,14639563	2030
	Никель;						21,43	187686,7	0,054	1,15722	0,01013508	2030
	Кадмий;						21,43	187686,7	0,002	0,04286	0,00037537	2030
	Свинец;						21,43	187686,7	0,002	0,04286	0,00037537	2030
	Олово;						21,43	187686,7	0,0006	0,012858	0,00011261	2030
	Молибден;						21,43	187686,7	0,007	0,15001	0,00131381	2030
	БПК5;						21,43	187686,7	3,6	77,148	0,67567212	2030
	Взвешенные вещества						21,43	187686,7	44	942,92	8,2582148	2030
	Кальций;						21,43	187686,7	70	1500,1	13,138069	2030
	Магний;						21,43	187686,7	54	1157,22	10,1350818	2030
	АПАВ;						21,43	187686,7	0,093	1,99299	0,01745486	2030
	Азот аммонийный;						21,43	187686,7	1,63	34,9309	0,30592932	2030
	Нитриты;						21,43	187686,7	0,8	17,144	0,15014936	2030
	Нитраты;						21,43	187686,7	5	107,15	0,9384335	2030
	Фториды;						21,43	187686,7	1,03	22,0729	0,1933173	2030
	Железо;						21,43	187686,7	21,8	467,174	4,09157006	2030
	Нефтепродукты.						21,43	187686,7	0,753	16,13679	0,14132809	2030
	Всего:									22857,058	200,185058	

	Наименование показателя	Существующее положение						Существующее положение 2031 г.					
Іомер ыпуск		Расход сточных вод		Концентрация на выпуске, мг/дм3	Сброс		Расход сточных вод		Концентра ция на выпуске, мг/дм3			достижения ДС	
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год		
	2	3	4	5	6	7	8	9	10	11	12	13	
№ 1	Гидрокарбонаты;						27,94	244769	280,6	7839,964	68,68218	2031	
	Карбонаты;						27,94	244769	12	335,28	2,937228	2031	
	Хлориды;						27,94	244769	332,5	9290,05	81,38569	2031	
	Сульфаты;						27,94	244769	237	6621,78	58,01025	2031	
	Фосфаты;						27,94	244769	0,55	15,367	0,134623	2031	
	Медь;						27,94	244769	0,39	10,8966	0,09546	2031	
	Цинк;						27,94	244769	0,78	21,7932	0,19092	2031	
	Никель;						27,94	244769	0,054	1,50876	0,013218	2031	
	Кадмий;						27,94	244769	0,002	0,05588	0,00049	2031	
	Свинец;						27,94	244769	0,002	0,05588	0,00049	2031	
	Олово;						27,94	244769	0,0006	0,016764	0,000147	2031	
	Молибден;						27,94	244769	0,007	0,19558	0,001713	2031	
	БПК5;						27,94	244769	3,6	100,584	0,881168	2031	
	Взвешенные вещества						27,94	244769	44	1229,36	10,76984	2031	
	Кальций;						27,94	244769	70	1955,8	17,13383	2031	
	Магний;						27,94	244769	54	1508,76	13,21753	2031	
	АПАВ;						27,94	244769	0,093	2,59842	0,022764	2031	
	Азот аммонийный;						27,94	244769	1,63	45,5422	0,398973	2031	
	Нитриты;						27,94	244769	0,8	22,352	0,195815	2031	
	Нитраты;						27,94	244769	5	139,7	1,223845	2031	
	Фториды;						27,94	244769	1,03	28,7782	0,252112	2031	
	Железо;						27,94	244769	21,8	609,092	5,335964	2031	
	Нефтепродукты.						27,94	244769	0,753	21,03882	0,184311	2031	
	Всего:									29800,57	261,0686		

		Существующее положение						Существующее положение 2032 г.					
омер ыпуск	Наименование показателя	Расход сточных вод		Концентрация на выпуске, мг/дм3	Сброс		Расход сточных вод		Концентра ция на выпуске, мг/дм3			достижения ДС	
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год		
	2	3	4	5	6	7	8	9	10	11	12	13	
© 1	Гидрокарбонаты;						34,68	303789,5	280,6	9731,208	85,24333	2032	
	Карбонаты;						34,68	303789,5	12	416,16	3,645474	2032	
	Хлориды;						34,68	303789,5	332,5	11531,1	101,01	2032	
	Сульфаты;						34,68	303789,5	237	8219,16	71,99811	2032	
	Фосфаты;						34,68	303789,5	0,55	19,074	0,167084	2032	
	Медь;						34,68	303789,5	0,39	13,5252	0,118478	2032	
	Цинк;						34,68	303789,5	0,78	27,0504	0,236956	2032	
	Никель;						34,68	303789,5	0,054	1,87272	0,016405	2032	
	Кадмий;						34,68	303789,5	0,002	0,06936	0,000608	2032	
	Свинец;						34,68	303789,5	0,002	0,06936	0,000608	2032	
	Олово;						34,68	303789,5	0,0006	0,020808	0,000182	2032	
	Молибден;						34,68	303789,5	0,007	0,24276	0,002127	2032	
	БПК5;						34,68	303789,5	3,6	124,848	1,093642	2032	
	Взвешенные вещества						34,68	303789,5	44	1525,92	13,36674	2032	
	Кальций;						34,68	303789,5	70	2427,6	21,26527	2032	
	Магний;						34,68	303789,5	54	1872,72	16,40463	2032	
	АПАВ;						34,68	303789,5	0,093	3,22524	0,028252	2032	
	Азот аммонийный;						34,68	303789,5	1,63	56,5284	0,495177	2032	
	Нитриты;						34,68	303789,5	0,8	27,744	0,243032	2032	
	Нитраты;						34,68	303789,5	5	173,4	1,518948	2032	
	Фториды;						34,68	303789,5	1,03	35,7204	0,312903	2032	
	Железо;						34,68	303789,5	21,8	756,024	6,622611	2032	
	Нефтепродукты.						34,68	303789,5	0,753	26,11404	0,228753	2032	
	Всего:									36989,4	324,0193		

	Наименование показателя	Существующее положение						Существующее положение 2033 г.					
Іомер ыпуск		Расход сточных вод		Концентрация на выпуске, мг/дм3	Сброс		Расход сточных вод		Концентра ция на выпуске, мг/дм3			достижения ДС	
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год		
	2	3	4	5	6	7	8	9	10	11	12	13	
√ 21	Гидрокарбонаты;						41,24	361277	280,6	11571,94	101,3743	2033	
	Карбонаты;						41,24	361277	12	494,88	4,335324	2033	
	Хлориды;						41,24	361277	332,5	13712,3	120,1246	2033	
	Сульфаты;						41,24	361277	237	9773,88	85,62265	2033	
	Фосфаты;						41,24	361277	0,55	22,682	0,198702	2033	
	Медь;						41,24	361277	0,39	16,0836	0,140898	2033	
	Цинк;						41,24	361277	0,78	32,1672	0,281796	2033	
	Никель;						41,24	361277	0,054	2,22696	0,019509	2033	
	Кадмий;						41,24	361277	0,002	0,08248	0,000723	2033	
	Свинец;						41,24	361277	0,002	0,08248	0,000723	2033	
	Олово;						41,24	361277	0,0006	0,024744	0,000217	2033	
	Молибден;						41,24	361277	0,007	0,28868	0,002529	2033	
	БПК5;						41,24	361277	3,6	148,464	1,300597	2033	
	Взвешенные вещества						41,24	361277	44	1814,56	15,89619	2033	
	Кальций;						41,24	361277	70	2886,8	25,28939	2033	
	Магний;						41,24	361277	54	2226,96	19,50896	2033	
	АПАВ;						41,24	361277	0,093	3,83532	0,033599	2033	
	Азот аммонийный;						41,24	361277	1,63	67,2212	0,588882	2033	
	Нитриты;						41,24	361277	0,8	32,992	0,289022	2033	
	Нитраты;						41,24	361277	5	206,2	1,806385	2033	
	Фториды;						41,24	361277	1,03	42,4772	0,372115	2033	
	Железо;						41,24	361277	21,8	899,032	7,875839	2033	
	Нефтепродукты.						41,24	361277	0,753	31,05372	0,272042	2033	
	Всего:									43986,24	385,335		

		Сущести	зующее полож	ение			Существ	ующее положен	ие 2034 г			Год
Іомер ыпуск	Наименование показателя	Расход	сточных вод	Концентрация на выпуске, мг/дм3	Сброс		Расход ст	гочных вод	Концент ция выпуске мг/дм3	на Сброс		достижени: ДС
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год	
	2	3	4	5	6	7	8	9	10	11	12	13
V <u>0</u> 1	Гидрокарбонаты;						47,625	417195	280,6	13363,575	117,064917	2034
	Карбонаты;						47,625	417195	12	571,5	5,00634	2034
	Хлориды;						47,625	417195	332,5	15835,3125	138,717338	2034
	Сульфаты;						47,625	417195	237	11287,125	98,875215	2034
	Фосфаты;						47,625	417195	0,55	26,19375	0,22945725	2034
	Медь;						47,625	417195	0,39	18,57375	0,16270605	2034
	Цинк;						47,625	417195	0,78	37,1475	0,3254121	2034
	Никель;						47,625	417195	0,054	2,57175	0,02252853	2034
	Кадмий;						47,625	417195	0,002	0,09525	0,00083439	2034
	Свинец;						47,625	417195	0,002	0,09525	0,00083439	2034
	Олово;						47,625	417195	0,0006	0,028575	0,00025032	2034
	Молибден;						47,625	417195	0,007	0,333375	0,00292037	2034
	БПК5;						47,625	417195	3,6	171,45	1,501902	2034
	Взвешенные вещества						47,625	417195	44	2095,5	18,35658	2034
	Кальций;						47,625	417195	70	3333,75	29,20365	2034
	Магний;						47,625	417195	54	2571,75	22,52853	2034
	АПАВ;						47,625	417195	0,093	4,429125	0,03879914	2034
	Азот аммонийный;						47,625	417195	1,63	77,62875	0,68002785	2034
	Нитриты;						47,625	417195	0,8	38,1	0,333756	2034
	Нитраты;						47,625	417195	5	238,125	2,085975	2034
	Фториды;						47,625	417195	1,03	49,05375	0,42971085	2034
	Железо;						47,625	417195	21,8	1038,225	9,094851	2034
	Нефтепродукты.						47,625	417195	0,753	35,861625	0,31414784	2034
	Всего:									50796,425	444,976683	

		Сущест	вующее полож	ение			Существ	ующее положен	ие 2035 г			Год
Іомер ыпуск	Наименование показателя	Расход	сточных вод	Концентрация на выпуске, мг/дм3	Сброс		Расход с	гочных вод	Концент ция выпуске мг/дм3	на Сброс		достижения ДС
		м3/ч	тыс. м3/год		г/ч	т/год	м3/ч	тыс. м3/год		г/ч	т/год	
	2	3	4	5	6	7	8	9	10	11	12	13
№ 1	Гидрокарбонаты;						54,058	473554,7	280,6	15168,67	132,8794	2035
	Карбонаты;						54,058	473554,7	12	648,696	5,682656	2035
	Хлориды;						54,058	473554,7	332,5	17974,29	157,4569	2035
	Сульфаты;						54,058	473554,7	237	12811,75	112,2325	2035
	Фосфаты;						54,058	473554,7	0,55	29,7319	0,260455	2035
	Медь;						54,058	473554,7	0,39	21,08262	0,184686	2035
	Цинк;						54,058	473554,7	0,78	42,16524	0,369373	2035
	Никель;						54,058	473554,7	0,054	2,919132	0,025572	2035
	Кадмий;						54,058	473554,7	0,002	0,108116	0,000947	2035
	Свинец;						54,058	473554,7	0,002	0,108116	0,000947	2035
	Олово;						54,058	473554,7	0,0006	0,032435	0,000284	2035
	Молибден;						54,058	473554,7	0,007	0,378406	0,003315	2035
	БПК5;						54,058	473554,7	3,6	194,6088	1,704797	2035
	Взвешенные вещества						54,058	473554,7	44	2378,552	20,8364	2035
	Кальций;						54,058	473554,7	70	3784,06	33,14883	2035
	Магний;						54,058	473554,7	54	2919,132	25,57195	2035
	АПАВ;						54,058	473554,7	0,093	5,027394	0,044041	2035
	Азот аммонийный;						54,058	473554,7	1,63	88,11454	0,771894	2035
	Нитриты;						54,058	473554,7	0,8	43,2464	0,378844	2035
	Нитраты;						54,058	473554,7	5	270,29	2,367773	2035
	Фториды;						54,058	473554,7	1,03	55,67974	0,487761	2035
	Железо;						54,058	473554,7	21,8	1178,464	10,32349	2035
	Нефтепродукты.						54,058	473554,7	0,753	40,70567	0,356587	2035
	Всего:									57657,81	505,0894	

5. МЕРОПРИЯТИЯ ПО СОБЛЮДЕНИЮ НОРМАТИВОВ ЭМИССИЙ СБРОСОВ

5.1. Предложения по предупреждению аварийных сбросов сточных вод

Предупреждение аварийных ситуаций обеспечивается, прежде всего, правильной эксплуатацией объектов.

Нормальную работу системы водоотведения могут нарушить:

- перегрузка оборудования по объему сточных вод;
- отключение электроэнергии, питающей насосы;
- несоблюдение правил эксплуатации сооружений и сроков плановых ремонтов.

Основными мероприятиями, обеспечивающими безопасное ведение технологического процесса при эксплуатации системы водоотведения предприятия, являются:

- соблюдение целостности системы трубопроводов, отводящей шахтнорудничные воды;
- соблюдение целостности и достаточности обвалования пруда-накопителя в целях недопущения несанкционированного сброса;
- соблюдение всех производственных инструкций по технике безопасности и противопожарной безопасности;
- следовать разработанному плану ликвидации аварии в случае отключения электроэнергии и др. причин;
 - регулярный контроль исправности работы откачивающего оборудования;
 - запрет на работу с неисправным оборудованием;
- запрет на проведение ремонтных и других видов работ на действующем оборудовании и трубопроводах;
- в процессе текущего ремонта своевременно ликвидировать мелкие повреждения, вызывающие нарушение нормальной работы сети;
- постоянно следить за обогревом аппаратов и трубопроводов, за циркуляцией воды в трубопроводах в холодное время года;
- постоянно контролировать исправность приборов учета объемов сбрасываемых сточных вод;
 - регулярный капитальный ремонт оборудования.

При возникновении аварийных ситуаций необходимо обеспечить:

- оперативное оповещение лиц, ответственных за экологическую безопасность на предприятии;
- принятие безотлагательных мер для выяснения причин аварии и устранения ее последствий;
 - наличие необходимого количества рабочих, техники и оборудования.

Ответственность за ликвидацию аварий несет руководитель предприятия и ответственный за экологическую деятельность в структурном подразделении.

В случае возникновения аварийных сбросов известить контролирующие органы и предоставить информацию о продолжительности аварийного сброса, объеме сброшенной воды и ее составе.

6. КОНТРОЛЬ СОБЛЮДЕНИЯ УСТАНОВЛЕННЫХ НОРМАТИВОВ ЭМИССИЙ СБРОСОВ

Контроль за соблюдением нормативов ПДС на предприятии предлагается вести непосредственно в месте выпуска сточных вод, а также в пруду-накопителе и в водопроявлениях, возможных к образованию в районе расположения пруда-накопителя (рельеф территории, прилегающей к пруду-накопителю, представлен оврагами, выемками, углублениями).

В соответствии с п.5.2. «Правил охраны поверхностных вод Республики Казахстан», РНД 1.01.03-94 предприятию предлагается осуществлять контроль:

- объемов сбрасываемых сточных (карьерных) вод и их соответствия установленным лимитам;
- за составом и свойствами сточных (карьерных) вод и их соответствия установленным нормам сброса (ПДС);
- за составом и свойствами воды в пруду-накопителе, принимающем сточные воды и соблюдения норм качества воды.

В соответствии с этими обязанностями предприятием должен быть организован учет и контроль водоотведения, лабораторный контроль качества сточных (карьерных) вод. Контроль за соблюдением нормативов предельно допустимых сбросов (ПДС) загрязняющих веществ, поступающих в пруд-накопитель, осуществляется экологом предприятия и силами специализированных лабораторий, привлекаемых по договору с ТОО «Кен Шуак» в соответствии с программой производственного экологического контроля.

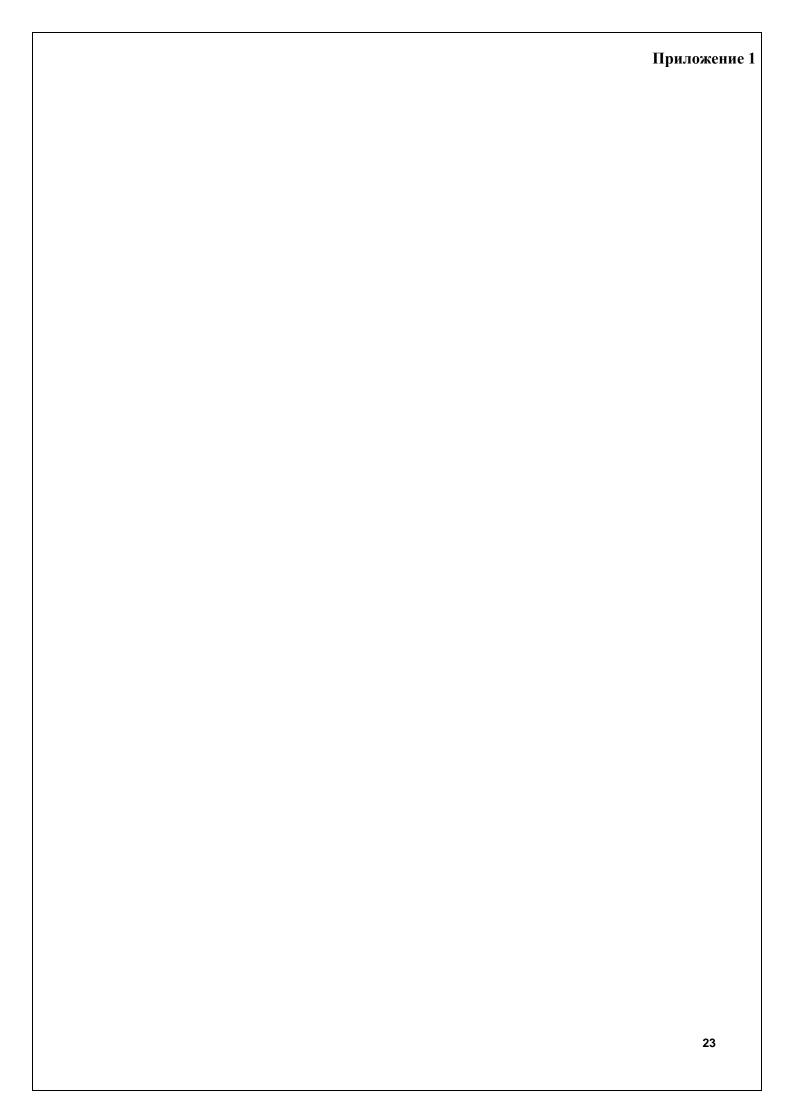
Лаборатории должны быть укомплектованы технически грамотными в проведении измерений и испытаний работниками, необходимым оборудованием и материалами, лаборатории должны иметь аттестаты аккредитации. В соответствии с требованиями научно-технической документации (НТД) должны быть аттестованные методики испытаний вод, реагентов. Методы химического анализа должны быть выбраны с учетом требований, предъявляемых к точности определения, длительности анализа, его трудоемкости, стоимости и дефицитности применяемых реактивов, наличия приборов и оборудования. Определение контролируемых параметров в пробах воды проводится в соответствии с методиками выполнения измерений содержания компонентов в природных и сточных водах.

Настоящим проектом предлагается вести контроль качества вод в следующих точках:

1. точка сброса карьерных вод в пруд-накопитель;

Точки отбора проб воды представлены на рисунке 6.1.

Контроль сбрасываемых сточных (карьерных) вод рекомендуется вести ежеквартально по следующим нормируемым показателям:

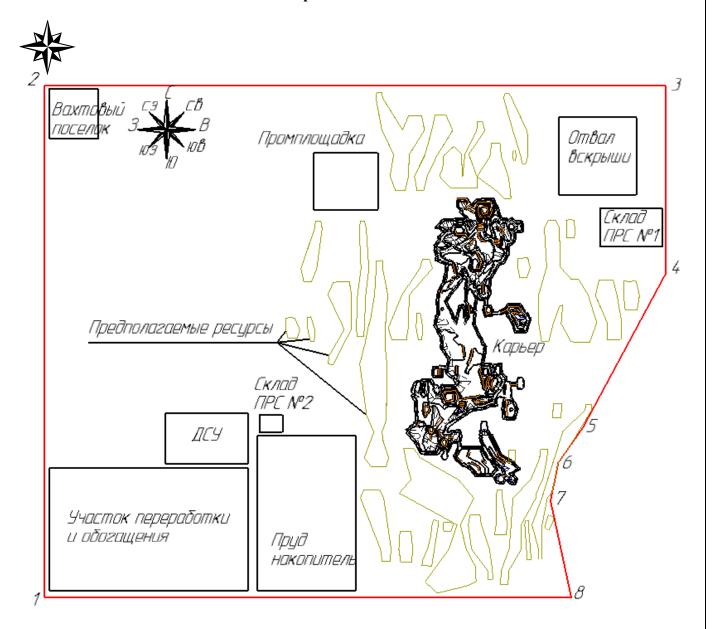

- 1. гидрокарбонаты;
- 2. карбонаты;
- 3. хлориды;
- 4. сульфаты;
- 5. фосфаты;
- 6. медь;
- 7. цинк;
- 8. никель;
- 9. кадмий;
- 10. свинец:
- 11. олово:

- 12. молибден;
- 13. БПК5;
- 14. взвешенные в-ва;
- 15. кальций;
- 16. магний;
- 17. AΠAB;
- 18. азот аммонийный;
- 19. нитриты;
- 20. нитраты;
- 21. фториды;
- 22. железо;
- 23. нефтепродукты.

По результатам анализов проводится оценка влияния сбросов сточных (карьерных) вод на состояние пруда-накопителя путем сопоставления фактического состава воды в контрольном створе и установленных нормативов ПДС загрязняющих веществ. Выводы о влиянии сбрасываемых вод на поверхностные воды пруда-накопителя отражаются в ежеквартальных и годовых отчетах, представляемых в контролирующие органы.

7. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года №400-VI 3PK;
- 2. Методика определения нормативов эмиссий в окружающую среду. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года №63;
- 3. Рекомендации по оформлению и содержанию нормативов предельно допустимых сбросов в водные объекты (ПДС) для предприятий, Алматы, 1993 г.
- 4. Приказ Министра национальной экономики РК № 26 от 20.02.2023 г. Санитарные правила «Об утверждении Санитарных правил "Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов";
- 5. РНД 211.3.03.03-2000 Методика по установлению предельно-допустимых сбросов (ПДС) загрязняющих веществ на поля фильтрации и в естественные понижения рельефа местности
- 6. Методика предельно-допустимых сбросов (ПДС) веществ в водные объекты Республики Казахстан со сточными водами, Алматы 1994 г.
- 7. Предельно допустимые концентрации вредных веществ в воде водоемовсанитарнобытового водопользования и требованиями к составу и свойствамводы водоемов у пунктов питьевого и культурно-бытового водопользования(утв. Минздравом СССР 28 декабря 1972 г. N 1003-72)
- 8. Инструкция по нормированию сбросов загрязняющих веществ в водные объекты Республики Казахстан РНД 211.2.03.01-97
- 9. Инструкция по согласованию и утверждению проектов нормативов предельнодопустимых выбросов (ПДВ) и предельно-допустимых сбросов (ПДС), утв. приказом Министра природных ресурсов и охраны окружающей среды Республики Казахстан от 21 марта 2002 года N 83-п. Зарегистрированной в Министерстве юстиции Республики Казахстан 3 мая 2002 года N 1843.
- 10. Методика проведения технологического контроля работы очистных сооружений городских канализаций, Москва 1971 г
- 11. Лапшев Н.Н. Расчеты выпусков сточных вод, М. 1977г
- 12. М. Хаммер Технология обработки природных и сточных вод, М. 1979 г
- 13. Б.О.Ботук Очистка бытовых сточных вод, М. 1949г
- 14. Справочник проектировщика. Канализация населенных мест и промышленных предприятий, М 1981г
- 15. СНиП 04.03.85 «Канализация. Наружные сети и сооружения».



ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии
Дата выдачи лицензии «19 » мая 20 11 г.
Перечень лицензируемых видов работ и услуг, входящих в состав лицензи-
руемого вида деятельности
природоохранное проектирование, нормирование
Филиалы, представительства полное наименование, местонахождение, реквизиты ТОО "ЭКО-ДАМУ" Г. КОКШЕТАУ УЛ. АУЕЛЬБЕКОВА ДОМ 139 КАБ. 323
Производственная база
Орган, выдавший приложение к лицензии полное наименование органа, выдавшего
МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ РК приложение к лицензии
Руководитель (уполномоченное лицо) <u>Турекельдиев С.М.</u> Утчуб- фамилия и избиливалы руководителя (уполномоченного лица) органа, выдавшего приложение к лицензии
Дата выдачи приложения к лицензии «19 »мая 20 11 г.
Номер приложения к лицензии № 0074741
Город Астана

Приложение 3

Карта-схема объекта

"Geoanalytic Kokshetau" жауапкершілігі шектеулісеріктестігі

Мекен-жайы: Қазақстан Республикасы, 020000, Акмола облысы, Көкшетау қ. Бөгенбай көшесі, үй 50 тел/факс 8(7162) 29 45 86, 50-06-12 E-mail: geoanalytic2017@gmail.com

Товарищество с ограниченной ответственностью "Geoanalytic Kokshetau" БИН 170640025585

Адрес: Республика Казахстви, 020000, Акмолинская область, г.Кокшетау, ул. Богенбая д. 50 тел/факс 8(7162) 29 45 86, 50-06-12 E-mail: geoanalytic2017@gmail.com

Директору ТОО «Кен шуак»

Справка по гидрогеологическим изысканиям

С целью определения обводнености и определения основных характеристик водоносного горизонта на участке «Кызылсор» в 2021 году пробурена 1 гидрогеологическая скважина глубиной 75м. В скважине оставлена обсадка с закрывающейся крышкой в верхней части оголовка обсадной трубы для ведения дальнейшего мониторинга за уровнем подземных вод.

В процессе проведения отмечалась глубина появления грунтовых вод, фиксировался установившийся уровень грунтовых вод. С целью изучения водообильности пород были проведены 5 пробных откачек.

Продолжительность пробных откачек составила от 8 до 16 часов. В процессе откачек велись наблюдения за динамическим уровнем воды и дебитом, за восстановлением уровня воды после прекращения откачек, отбирались пробы воды на химический и бактериологический анализы.

Замеры уровня воды осуществлялись электроуровнемером, а дебита – емкостью 10 л.

- 1 Сведения о водоносном горизонте:
 - а) слабонапорные
 - б) номер водоносного горизонта І
- в) литология и возраст –мезозойская кора выветривания и трещиноватый гранодиорит
 - г) мощность 59,0м;
 - д) глубина вскрытия уровня воды 6,0м;
 - е) установившийся уровень воды 3,96м;
 - 2. Сведения о технической конструкции скважины:
 - а) диаметр бурения: начальный 132 мм; конечный –76мм
 - б) сведения о трубах, оставленных в скважине:
 - в интервале от <u>+ 0,74м до 25 м диаметром 127 мм</u>
 - Сведения о фильтре, оставленном в скважине: тип фильтра - без фильтра;
- Сведения об опробовании водоносного горизонта перед сдачей скважины в эксплуатацию;

Дебит - 1,83 л/сек;

Статический уровень воды - 3,96 м;

Продолжительность прокачки - 96 часов (12 бр/см)

Опробование произведено 27.09.21г. и 02.10.21г.

5. Способ опробования: насосом

В 2021 году из гидрогеологической скважины отобраны пробы воды на химический бактериологический анализы. Пробы были исследованы в лаборатории Степногорского городского управление охраны здоровья (СЭС) в г. Степногорск. Результаты исследований см в таблице 1, 2

В процессе ведения горных работ необходимо проводить гидрогеологические наблюдения и при необходимости внести корректировку в расчет водопритоков и карьерной водоотливной установки.

Таблица 1 Микробиологическое исследования воды

Наименование показателей	Ед. измерения	Норма по НД	Результаты испытания	НД на метод испытания
Общее микробное число	КОЕ в 1мл	Не более 50	1 КОЕ в 1 мл	ΓΟCT 18963-73
Общие колиформные бактерии (ОКБ)	КОЕ в 100мл	Отсутствие	КОЕ ОКБ в 100 мл Обнаружены	ГОСТ 18963-73
Термотолерантные колиформные бактерии	КОЕ в 100мл	Отсутствие	КОЕ ТКБ в 100 мл Не обнаружены	ГОСТ 18963-73
Патогенная флора, в т.ч сальмонеллы	КОЕ в 1000мл	Отсутствие	4.	МУК 3.05.039.97
Коли-фаги	БОЕ в 100мл	Отсутствие	*	МУК 10.05.045.03

Таблица 2 Исследование образцов воды из гидрогеологической скважины

Наименования показателей		Обнаруженная концентрация	Нормативные показатели	НД на методы исследования
Интенсивность в баллах		2	× 1	ГОСТ 3351-74
	Характер			
запах	Порог исчезновения (в разведении)	n		
Цветно	сть в градусах	24,46		ΓΟCT 31868-2012
Цвет (от	писать)			
Порог и	счезновения цвета		8	
Муть,	осадок (мутность)	32,24		ГОСТ 3351-74
Прозрачность				•
Плавающие примеси, пленка мг/дм ³			-	
Взвеше	нные вещества мг	(*)		•

/дм ³				
pН		7,45		ΓΟCT 26449.1-85
Растворен мгО ₂ /дм ³	ный кислород		100	-
БПК-5, мг	О2/дм3		- 2	
БПК-20, м	гО₂/дм³		-	-
	ость мгO ₂ /дм ³	14,08		TOCT 26449.2-85
ХПК, мгО	2/дм ³	(*)		-
Щелочнос	ть мг-экв/ дм ³			*
	сть мг-экв/ дм ³			•
Жесткость	ь общая моль/ дм ³	109,2	16	ГОСТ 31954-2012
	аток мг/дм³	27766,0		ГОСТ 26449.1-85
Кальций м				
Магний м	г/дм ³	.*		
Железо общее мг/дм ³		0,032		ГОСТ 26449.1-85
Хлориды г	мг/дм³	13475,0	45	ГОСТ 26449.1-85
Сульфаты		518,4	21	ГОСТ 31940-2012
	Аммиака мг /дм ³	0,023		ΓΟCT 33045-2014
Азот	Нитритов мг /дм ³	н/о		ΓΟCT 33045-2014
	Нитратов мг /дм ³	0,1		ΓΟCT 33045-2014
Фтор, мг/,		-	25	
Нефтепро	дукты, мг/дм3		27	
Фенолы, м	иг/дм3			
Цианиды,		() to	*	
Медь, мг/			-	
Свинец, м		1 (4)	= 0	•
Цинк, мг/		V#1	25	
	свалентный мг/дм ³		25 10	-
	тивалентный мг		7.5	
Ртуть, мг/	/ _{ДМ} ³			
Кадмий, м				
Марганец	, мг/дм ³	-	2	*
СПАВ, мг		(2)	2/	
Уран есте	and the second			
Радий 226			-	
Свинец 21			-	
Стронций	and the latest and th	0.00		
Цезий 137		-	23	- 1
Другие ве				

Приложение

- Копия протокола микробиологического исследования воды – 1 экз.

Директор

Самеков Р.С.

KZ.T.03.1477

Аттестат аккредитации зарегистрирован в реестре субъектов аккредитации № KZ.T.03.1477 or 5 aвгуста 2019г Действителен до 5 августа 2024 года

Нысанның БКСЖ Код формы по ОКУД КҰЖЖ бойынша

Код организации по ОКПО

бойынша колы уйым колы

Қазақстан Республикасы Денсаулық сақтау министрлігі Санитариялық-эпидемиологиялық бакылау комитетінің Комитет санитарно-эпидемиологического

контроля Министерства здравоохранения Республики Казахстан

« Ұлттық Сараптама Орталығы» шаруашылық жүргізу құқындағы Республикалық Мемлекеттік Кэсіпорнының Акмола облысы бойынша филиалының Степногорск қалалық бөлімшесі Степногорское городское отделение филиала Республиканского Государственного предприятия на праве хозяйственного ведения «Национальный Центр Экспертизы» по Акмолинской области

Испытательный Центр Степногорского городского отделения филиала РГП на ПХВ «Национальный центр экспертизы» Комитета сапитарно-

зпидемиологического контроля Министерства Здравоохранения Республики Казахстан по Акмолинской области

Лаборатория бактериологических и паразитологических исследований Акмолинская область, г.Степногорск, территория больничного комплекса, дом 6,

1 микрорайон здание 99

Қазақстан Республикасы Денсаулық сақтау министрінің 2021 жылғы «20» тамыздағы № КР ДСМ-84 бұйрығымен бекітілген № 024/е нысанды медициналық кужаттама

Медицинская документация Форма Утверждена приказом Министра здравоохранения Республики Казахстан от «20» августа 2021 года № КР ДСМ-84

Стр.1 из 2

SELECTION NO. 05.10

Судыүлгісін микробиологиялық зерттеу ХАТТАМАСЫ ПРОТОКОЛ

микробиологического исследования воды № PO-03-129/261 от «05» октября 2021 ж. (г.)

Г. Объектінің атауы, мекенжайы (Наименование объекта, адрес): уч.Кызыл сор

2. Үлгі алынған орын (Место отбора образца): скважина

3. Үлгіні зерттеу мақсаты (Цель исследования образца): СП, утв. приказом МНЭ РК № 209 от 16.03.2015 г

Алынған күні мен уақыты (Дата и время отбора): 01.10.2021г 15⁰⁰ч.

Жеткізілген күні мен уақыты (Дата и время доставки): 01.10.2021г 16³⁰ч.

Мөлшері (Объем): 1 проба 0,5 л

Партия немері (Номер партий): -

8. Өндірілген мерзімі (Дата выработки):-

9.Зерттеу күні мен уақыты (Дата и время исследования): 01.10.2021г 16⁴⁵ч.

10. Улгі алу әдісіне нормативтік құжат (НҚ) (Нормативный документ (НД) на метод отбора): СТ РК ГОСТ Р

11 Тасымалдау жағдайы (Условия транспортировки): автотранспорт

12. Сактау жағдайы (Условия хранения): термосумка

13. Сынама экелген тұлға туралы қосымша мәліметтер (дополнительные сведения о лице, доставившем пробу): по договору, пробы доставил мастер бур.работ Штец М.Н.

14. Зерттеу эдістеріне қолданылған НҚ (НД на метод испытаний): СП, утв. приказом МНЭ РК № 209 от 16.03.2015 г

Зерттеу нэтижелері (Результаты исследования) - № 129/261 - Вода скважина

Көрсеткіштердің атауы Наименование показателей	Өлшеу бірлігі Единица измерения	НҚ бойынша нормасы (Норма по НД)	Зерттеу нәтижесі Результат испытания	Зерттеу әдістеріне қолданылған НҚ (НД на метод испытания)
1	2	3	4	5
ЖМН Общее микробное число (ОМЧ)	ҚҚБ в 1 мл КОЕ в 1 мл	Артык емес 50 не более 50	1 ҚҚБ в 1 мл 1 КОЕ в 1 мл	MCT/ΓΟCT 18963-73
ЖКБ Общие колиформные бактерии (ОКБ)	ҚҚБ в 100 мл КОЕ в 100 мл	болмауы отсутствие	ККБ ЖКБ в 100 мл табылды КОЕ ОКБ в 100 мл Обнаружены	MCT/FOCT 18963-73
ТКБ Термотолерантные колиформные бактерии (ТКБ)	ҚҚБ в 100 мл КОЕ в 100 мл	болмауы отсутствие	ККБ ТКБ в 100 мл табылмады КОЕ ТКБ в 100 мл Не обнаружены	MCT/FOCT 18963-73
Патогенді флора Патогенная флора,в т.ч сальмонеллы	ҚҚБ в 1000 мл КОЕ в 1000 мл	болмауы отсутствие	entre Soundations	МУК 3.05.039.97
Коли-фаги	БОЕ в 100 мл	болмауы отсутствие	may a language	МУК 10.05.045.03

Зерттеу жүргізген маманның Т.А.Ә. (болған жағдайда), лауазымы (Ф.И.О.(при наличии), должность специалиста проводившего исследование) Зертханашы БПЗЗ (лаборант ЛБПИ) Забавина Е.В. Колы (Подпись)

Дәрігер СЭҚ (врач СЭС) Тимурина Т.Н. Қолы (Подпись) Зерткана меңгерушісінің Т.А.Ә. (болған жағдайда), колы.(Ф.И.О. (при наличии), подпись заведующего лабораторией) -

Мер орны Место печати

Қазақстан Республикасы Денсаулық сақтау министрлігі Санитариялық-эпидемиологиялық бақылау комитетінің «Ұлттық сараптама орталығы» шаруашылық жүргізу құқығындағы республикалық мемлекеттік кәсіпорының Ақмола облысы бойынша филиалының Степногорск калалық бөлімшесі бастығы

Начальник Степногорского городского отделения филиала Республиканского государственного предприятия на праве хозяйственного ведения «Национальный центр экспертизы» Комитета санитарно-эпидемиологического контроля Министерства здравоохранения Республики Казахстан по Акмолинской области

Дуйсенов А.Х. Т.А.Ә., колы (Ф.И.О., подпись)

Хаттама 2 данада толтырылады (Протокол составлен в 2-х экземплярах) Хаттама берілген күні (Дата выдачи протокола) «_05_» _октября_2021 (ж)г

Парактар саны (Количество страниц) _2_

Сынау нэтижелері тек кана сыналуға жататын үлгілерге қолданылады (Результаты исследования распространяются только на образцы, подвергнутые испытаниям)

Рұқсатсыз хаттаманы жартылай қайта басуға ТЫЙЫМ САЛЫНҒАН (Частичная перепечатка протокола без разрешения ЗАПРЕЩЕНА)

Санитариялық дәрігердің немесе гигиенист дәрігердің зерттелген өнімдердің, химиялық заттардың, физикалық және радиациялық факторлардың үлгілері / сынамалары туралы қорытындысы (Заключение санитарного врача или врача-гигиениста по образцам/пробам исследуемой продукции, химических веществ, физических и радиационных факторов):

КАЛАУСТИН РОСТІГЬІЙКАСЫ ДІНСАЯТЫК САБУЛЬ ИМЕНТИКІ САБУЛЬ ИМЕНТИТІК САБУЛЬ ИМЕНТИТІК САБУЛЬ ИМЕНТИКІ І САБУЛЬ ИМЕНТИКІ І САБУЛЬ І С

8(71645)6-90-98 email exec_steps/mail.ru

15. Условия проведения испытаний:

Аттестит викредитации зарег истрирован в ресстре № К.Т.ОЗ 1477 от 05.08.2019 г., обстантелен до 05.08.2024г

Нысанның БҚСЖ бойынша колы Кол формы по ОКУД

КУЖЖ бойынша ұйым коды Кад организацын по ОКПО

температура 19.2°C, влажность 57%

КР ДСМ СЭБК-Улттык сараптами арталыгын ШЖК РМК Аккола облысы бойынша филиалынын Степкигорск калалык болыт Степкогорское городское отделение филиал РГП на ПХВ "Национальный неитр экспертивы" КСЭК МЗ РК по Акмоливской области 921500 РК Акмоливская область, у Степногорск, больничный комплекс, за №6

Санитирлык-гыгмендлык жүлтөулөр тертханасы Лабораторык саничарыогитирлических неслединаний

Казакстан Республикасы Девсаулып сактау министрінің. 2021 жылғы «20» тамыуынан №84 бұйрығымен бекттаген № 075% нысанды медициналық құжаттама

Медицинская документация Форма № 075/у Утверждена приказом Министра заравоохранения Республики Казахстан от «20» августа2021 года №84

Жер үеті су объектінің және ағынды су үлгізерін зерттеу ХАТТАМАСЫ ПРОТОКОЛ

исследовании образцов воды поверхностных водных объектов и сточных вод

No. PO-02-09 or -	б. ж. (казанынан) октября күні 2021 ж. (г.)
1. Объектини атпуы, мекентайны (Наименование объекта, адрес)	TOO "Geographytic Kokshetau", r Kossaleray, yn Gorenfian, 200 50
Улгі атауы (Наяменовиние образци)	проставона
Yari влынгин орын (Место отбори обралис)	ун Кылылсор, 63 им триссы Стерногорск-Бестобе
Зерттеу максаты (Пель просоедования)	для технических целей
Гристелген күні мен уақылы (Дауа и времи өтбера)	01.10.2021w (r). 15c (v).00wm
Mannepi (Obuesi)	1.51
Топтама сана (Номер партий)	карсстиметен (не указии)
Ондірілген нерзімі (Дата выроботон)	карсетілмеген (не указан)
Жеткізілген күні мен уақыты (Дата із время доставки)	01;10;2021ж (r.);16s;30 мин
0. Зертуеу кули мен уакыты(Дата и преми исследивания)	61.10.2021 x (r.) 16c(4).40 mm
1. Іррегеу алу ашелне НК (НД на метод отборы)	KP CT MEMCT P 51592-2001 (CT PK FOCT P 51592-2001)
12. Тасымалдау жаглайы (Уелония тринспортирония)	автоналы (автогранспорт).
3. Сактау жагаайы (Усоннок хранения)	тоназитным (термосумка)
Lift Temporary Assertances LEE and LEE or appears account model	

Kopern	пштердін тауы Намченованне показителей	Амиетализи концентроция Обиоруженная концентрация	Нормативные корсетиштер Нормативные показатели	Тексеру альстие колдинытам НК НД на методы исследования
	Карамедыльный, йкилеен Интенсивность в базлич	2		MEMCT/FOCT 3351-74
Hick Sames*	Сиппы (сургтеледі) Харцягері ((піпсать)			
2	Жогаму шегі (оселогенде) Порат нечезновання (в разведення)		Status	
	Тустын, градуенен Цверность в градуеля*	24,46		MEMCT/FOCT 31868-2012
	Тусі (суратта) Цвет (описата) ини жоғату цвет (силогиясы) Бапат деле пиления плети		-	
	Jiak, rysde (cyperrey) Myrn, ecusor (syrvocru)*	37.24		MEMCT/FOCT 3351-74
	Моларин прицичность			
	п жүрген косоштар, кабыршак опция премеен, плятко метре [*]			
16	Опшентем митар, мг/ам* Взекцияные вещества			
	pH	7,45		MEMCT/T/CCT 26449.1-85
	Едетаген оттеп мгО ₇ дн ² Растворенный анслирод			
	BHK-3, mOyan*			
	EEE-30, urOyani			

стр 1 из 2

	Титыгум, мгізулмі Окнепизмисть	14.08		
_	XIIIK, surGy/gu ²⁴	1938		MEMCT/TOCT 26449 2-85
- 7	Ситані мі-ма/дм ² Щиночнота			
10	Minusparu m-100/2007		-	
Mar	Кисколиветь пто керменти иоль/ды			
-	Жествреть общав артив восцых потам	109,2		MEMCT/FOCT 31954-2012
-	Cyneil octatus	27766,0	2	Water Authors - Toy - A
-	Marina, writin			MEMCT/TOCT 26449 1-85
2	Karana rewip, arrow			
- 0	Желено общее Хлориатер мезда	0,032		MEMCT/TOCY 26449 1-85
	Хапензы	13475,0		
	Сульфитар, медан Сульфитае	518.4		MEMCTTOCT 26449 1-85
	American, secon	0.023		MEMCTFOCT 31940-2012
	Нитриптерана, штам"			MEMCT/TOCT 33045/2014
	Herpercapasin, securi	***		MEMCT/FOCT/33045-2014
	Нитратов Фтор, ветам	9,1		MEMCT/TOCT/33045-2014
My	най енімаєрь, медол		*	
	Найтиниологи Финилар, игори		+	
	Флиолы этер мизм ² . Пименты			
- 5	that mr/and, Mean			
	spens arrigae, Caimen spens arrigae, Hosse			
Yie	minorett spon at 'an'			
kemi	ом предержением. Ввоемен кром вогды!			
Ch	nan, arrawi, Erora			
	Reporti sorge			4
.).	diffusion world			
	CEAL MILLS CEAB			
- 50	Тибити уран ин остостирацый			
	Parent 236		2	
hee	госын 210 Сынки Стропция 90			
_	Ucanii (32		-	
Д	Басці інттар. ругие вецистив			
	парелитации:		-	
A) (a)	тазантарду кабасска СЕГ Санстаров описания (резул. и й тагсе мазывания (г. А. эт йог.	хотына: выполня пответняму выходования в вестава- ветням подата водных индерства удо принажения известить водных индерства удо принажения, свяд известить для видентику, свяд известить выполняму выполняму, свяд	п су на шероге коймуливае се попациять в воес можено туря рина воз потещей составля, местам во почибира в местам ку потура-быторого за МЕО ВК №200 от 16 03.2 постава представниять осел-	пистариях пистания под пистания пистания с пистания с пистания п
3/	ALLEN SEE	роган жагдайда (Ф.И.О. упрасівдочня), ін птык сарастама орцальнычыю биспоксы (с компантель Наспонельного оснады жазара 268	ранбалары) осы (замастилов)	
to to to	15.8	7.6 (200) 200	The state of the s	
to no	Phonesto michalina soluti	Т. А. (Понтан экспекс), долж (О Каттами 2 даница гоотверский (Процения тем улгания кашинамуы/Ргу волгы экспе жий катта босута Тыйым САЛЫН АИ част	 Н.О. (при тогонног), подпис состивляется в 3-х, и, ценеция свымя разпространаются того- миз перспичатка прогомоза бе 	(00x) ко: на обращия, пошвертнутие исполниния в рекрешения ЗАПРЕЩЕНА
p op 10 ne	орозрудын үлгэгрий акти	1. А. С. Поограм массаблят, польс (О Кастаму 2 монала гоотреродила ПТратовии тран улгаруе кондинентый гоотреродила включ веней майта боогу т. Тыйным САЛБИИ АНУ Част	В О (претигнично), въздине бостивлистся в 2-х дугемиция въмним распристраналетов года- мита перспечатна протокода бе онизадержив, химияллық запт.	ота) ко на обращы, подвергнутия испытивни э разрешения ЗАПРЕЗЦЕНА паральны,физикальск жине радивацияльно
th op no	орозрудын үлгэгрий акти	1. А. О. Понтан, магайла і доль (О катама 2 мінаца гоотверсаціва Піратомін тран улітаріє кондинальній гоотверсаців Піратомін тран улітаріє кондинальній гоотверсаців колді міна міна конді в порта так праводі по	В О (претигнично), въздине бостивлистся в 2-х дугемиция въмним распристраналетов года- мита перспечатна протокода бе онизадержив, химияллық запт.	ота) ко на обращы, подвергнутия испытивни э разрешения ЗАПРЕЗЦЕНА паральны,физикальск жине радивацияльно
p op no	орозрудын үлгэгрий акти	1. А. О. Понтан, магайла і доль (О катама 2 мінаца гоотверсаціва Піратомін тран улітаріє кондинальній гоотверсаців Піратомін тран улітаріє кондинальній гоотверсаців колді міна міна конді в порта так праводі по	В О (претигнично), въздине бостивлистся в 2-х дугемиция въмним распристраналетов года- мита перспечатна протокода бе онизадержив, химияллық запт.	ота) ко на обращы, подвергнутия испытивни э разрешения ЗАПРЕЗЦЕНА паральны,физикальск жине радивацияльно