

ТОВАРИЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ

ЖАУАПКЕРШІЛІГІ ШЕКТЕУЛІ СЕРІКТЕСТІГІ

Государственная лицензия № 01931Р от 05.06.2017г.

РАЗДЕЛ «ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ»

в составе рабочего проекта

«Перенос установки по сжиганию отходов Веста Плюс Пир-0,75 К» по адресу Атырауская область, Махамбетский район, сельский округ Бейбарыс, с.Бейбарыс, улица 1»

Директор
TOO«ABC Engineering»

Садырова М.Б.

СОДЕРЖАНИЕ:

АННОТАЦИЯ	3
ВВЕДЕНИЕ	6
ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРУЕМОМ ОБЪЕКТЕ	7
1 ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОСТОЯНИЕ АТМОСФЕРНОГО ВОЗДУХА	.11
2 ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОСТОЯНИЕ ВОД	.26
З ОЦЕНКА ВОЗДЕЙСТВИЙ НА НЕДРА	.33
4 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ ОТХОДО ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ)B
5 ОЦЕНКА ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ	.40
6 ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЗЕМЕЛЬНЫЕ РЕСУРСЫ И ПОЧВЫ	43
7 ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНОСТЬ	47
8 ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЖИВОТНЫЙ МИР	.50
9 ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЛАНДШАФТЫ И МЕРЫ Г ПРЕДОТВРАЩЕНИЮ, МИНИМИЗАЦИИ, СМЯГЧЕНИЮ НЕГАТИВНЬ ВОЗДЕЙСТВИЙ, ВОССТАНОВЛЕНИЮ ЛАНДШАФТОВ В СЛУЧАЯХ И НАРУШЕНИЯ	IX IX
10 ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКУЮ СРЕДУ	
11 ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА РЕАЛИЗАЦИИ НАМЕЧАЕМО ДЕЯТЕЛЬНОСТИ В РЕГИОНЕ)Й .61
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	63
ПРИЛОЖЕНИЯ	64
ПРИЛОЖЕНИЕ 1 – МЕТЕОРОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ И ФОНОВА СПРАВКА РГП «КАЗГИДРОМЕТ»	
ПРИЛОЖЕНИЕ 2 – РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ АТМОСФЕРУ В ПЕРИОД СТРОИТЕЛЬСТВА	
ПРИЛОЖЕНИЕ 3 – РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ АТМОСФЕРУ В ПЕРИОД ЭКСПЛУАТАЦИИ	B .77
ПРИЛОЖЕНИЕ 4 – РАСЧЕТ РАССЕИВАНИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПЕРИОД ЭКСПЛУАТАЦИИ	
ПРИЛОЖЕНИЕ 5 – СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ В ПЕРИО ЭКСПЛУАТАЦИИ	ЭД .97
при пожение с копия липензии "ARC ENCINEEDINC»	00

АННОТАЦИЯ

Раздел «Охрана окружающей среды» разработан согласно Приложения 3 к Инструкции по организации и проведению экологической оценки утв. приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.

Настоящий документ включает: введение; подразделы, характеризующие современное состояние и динамику изменения показателей компонентов окружающей среды, обусловленные строительством проектируемого объекта.

В процессе оценки (настоящий природоохранный документ) проведен анализ современного состояния компонентов окружающей среды и возможные последствия в условиях определения потенциально-значимых воздействий, а также рассмотрен уровень воздействия объекта на компоненты окружающей среды.

На период проведения строительства имеется 7 неорганизованных источников выбросов на атмосферный воздух.

- Работа со строительными материалами (источник № 6001);
- Разработка и засыпка грунта (источник №6002);
- Сварочные работы (источник №6003);
- Газосварка (источник №6004);
- Медницкие работы (источник №6005);
- Покрасочные работы (источник №6006);
- Гидроизоляция битумом (источник №6007);

В период строительства в атмосферный воздух выделяются оксид железы, марганец и его соединения, оксид олова, свинец, оксид азота, диоксид азота, углерод, сера диоксид, углерод оксид, фтористые газообразные, фториды неорганические, диметилбензол, уайт-спирит, алканы C12-19 пыль неорганическая.

Валовый выброс загрязняющих веществ на период строительства составляет 0,129027692 т, из них:

- Газообразные 0,026409142 т/период;
- Твердые 0,10261855 т/период.

В период эксплуатации

Источниками выбросов загрязняющих веществ в период эксплуатации являются:

• Печь инсинератор «Веста Плюс» Пир-0,75 (источник № 0001);

Емкость для хранения дизельного топлива (источник № 0004);

• Хранение и погрузка золы (источник № 6003).

В период эксплуатации в атмосферный воздух выделяются оксид азота, диоксид азота, гидрохлорид, углерод, сера диоксид, сероводород, углерод оксид, фтористые газообразные, взвешенные частицы, алканы C12-19 пыль неорганическая.

Валовый выброс загрязняющих веществ на период эксплуатации составляет 1,38920232 тонн, из них:

Газообразные – 1,06064125 т/год;

• Твердые – 0,328561073 т/год.

В процессе строительных работ будут образовываться следующие виды отходов: огарыши сварочных электродов, тара из под лакокрасочных материалов, коммунальные отходы.

Общее количество отходов: 0,02781 т/период;

• в т.ч. отходов производства: 0,00281 т/период;

• отходов потребления: 0,025 т/период;

В период эксплуатации образуется зола и коммунальные отходы.

Общее количество отходов: 57,9 т/период;

• в т.ч. отходов производства: 57,6 т/период;

• отходов потребления: 0,3 т/период;

В периоды накопления образующихся отходов для последующей их сдачи в специализированные предприятия предусматривается их временное накопление (хранение) на территории объекта в специальных местах, оборудованных в основном в соответствии с действующими нормами и правилами.

Водоснабжение и водоотведение:

Источником водоснабжения в период строительства используется привозная вода (питьевая воды на площадке строительства привозная бутилированная вода).

Система водоотведения санитарно-бытовых помещений строительных площадок осуществляется путем подключения их мобильным туалетным кабинам «Биотуалет», который по мере накопления будет выкачиваться и вывозиться согласно договору специализированной подрядной организации.

В соответствии с техническими условиями, водоснабжение на хозяйственнопитьевые нужды запроектировано от водопровода Д110. Точка подключения-

существующий водопроводный колодец. От существующего колодца к зданию запроектирован трубопровод Ø40.

Согласно Решению по определению категории объекта, оказывающего негативное воздействие на окружающею среду от 8 сентября 2021 года категория объекта ТОО «АТАКИМ» определена II категория.

ВВЕДЕНИЕ

Настоящим разделом рассматриваются вопросы охраны окружающей среды при переносе установки по сжиганию отходов Веста Плюс Пир-0,75 К» по адресу Атырауская область, Махамбетский район, сельский округ Бейбарыс, с.Бейбарыс, улица 1.

Раздел ООС выполнен в соответствии с действующими правовыми и нормативнометодическими документами РК, регулирующими вопросы охраны окружающей среды и экологической безопасности.

Все необходимые расчеты по воздействию на компоненты окружающей среды произведены по методикам и нормативным документам, действующим на территории РК.

Разработчик (исполнитель) проекта ТОО «ABC Engineering».

01931Р от 05.06.2017 года. Государственная лицензия

Западно-Казахстанская область, инд.090014 Адрес исполнителя

г. Уральск, мкр-н. Жана Орда, дом11, кв. 89

сот 8-705-576-46-87

e-mail: <u>abc_engineering@inbox.ru</u>

ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТИРУЕМОМ ОБЪЕКТЕ

В административном отношении район расположения инсинератора Веста Плюс предполагается по адресу: Атырауская область, Махамбетский район, сельский округ Бейбарыс, с. Бейбарыс, улица 1.

В соответствии с Актом на земельный участок по кадастровому номеру 04-065-018-365 Целевое назначение участка: для переработки и удалению опасных отходов. Площадь земельного участка: 0,5 га. Право на временное возмездное краткосрочное землепользование (аренды) на земельный участок сроком на 07.12.2026 года. (см. Приложение В).

Географические координаты приняты согласно база данных ЕГКН: 1) 555875.8970, 522989.3517; 2) 555881.6821, 5230058.8041; 3) 555952.7871, 5230052.6425; 4) 555946.9243, 5229983.0623.

Ближайшим водным объектом к площадке проектируемых работ является река Черная Речка, протекающая в северо-восточном направлении на расстоянии не менее 8 км от участка работ. Ближайшая жилая зона располагается на расстоянии не менее 11 км от проектируемого участка.

В близи территории особо охраняемые природные комплексы, заповедники и памятники архитектуры отсутствуют.

Печь-инсинератор «Веста Плюс» Пир-0,75 К с ручной загрузкой предназначена для сжигания горючих отходов, отходов птицефабрик, промасленной ветоши, корпусов компьютерной оргтехники, отработанных масел, отработанных И нефтесодержащих отходов, медицинских отходов в т.ч. просроченных препаратов и лекарственных средств, бумажных документов (в том числе архивных документов), пищевых отходов, химических отходов (в том числе химические реагенты), биоорганических отходов, бытового мусора (в т.ч. класса А, Б, В), промышленных отходов и сельскохозяйственных с целью превращения их в стерильную золу (пепел), которая допускается к захоронению на полигоне ТБО. Показатели Пир 0,75 К: рабочая температура: $1300~^{0}$ C; расчетное время сгорания отходов: 80~ кг/час; время работы оборудования: 4800 час/год; диаметр газоотводной трубы: 320 мм; габаритные размеры: длина -2.5 м, ширина -1.2 м, высота -2.5 м.

Для сжигания отходов на печи-инсинераторе будут приниматься промышленные отходы в следующих объемах:

Медицинские отходы – 49,76 т/год;

- Промасленная ветошь 18,432 т/год;
- Отработанные автошины 3,6864 т/год;
- Воздушные фильтры 3,6864 т/год;
- Масляные фильтры 3,6864 т/год;
- Топливные фильтры 3,6864 т/год;
- Промасленные отходы 18,432 т/год;
- Загрязненный нефтепродуктами грунт 18,432 т/год;
- Пищевые отходы 18,432 т/год;
- Оргтехника 9,216 т/год;
- Полиэтилен 18,432 т/год;
- Строительные отходы 18,432 т/год.

Печь-инсинератор для утилизации бытовых отходов, в т.ч. медицинских отходов «Веста Плюс» с ручной загрузкой предназначена для сжигания медицинских отходов с целью превращения их в стерильную золу (пепел), которая допускается к захоронению на полигоне ТБО. Объект состоит из следующих основных частей: - Горизонтальная топка. - Вертикальная топка Печь представляет собой L-образную конструкцию, выполненную из двух топок (вертикальной и горизонтальной) выложенную из огнеупорного кирпича. В горизонтальной топке происходит непосредственно сам процесс сжигания отходов, после чего остаются несгоревшие частицы которые поступают в вертикальную топку, где за счет завихрителя отходящих газов и дополнительного притока воздуха происходит процесс «дожигания». Для процесса дожигания несгоревших частиц в вертикальной топке (далее дожигатель) расположены две составные части: завихритель отходящих газов и воздушный канал.Завихритель отходящих газов (далее - завихритель) представляет собой конструкцию из огнеупорного кирпича, находящуюся на нижней полке и вертикальной топки (далее - дожигатель). Завихритель позволяет ускорить отход газов. Это позволяет усилить приток воздуха в дожигатель, вследствие чего увеличивается температура без дополнительных устройств. Второй составной частью процесса дожига несгоревших частиц является воздушный канал. Воздушный канал служит для подачи воздуха в дожигатель. В то время когда в дожигателе несгоревшие частицы ускоряются за счет завихрителя, воздушный канал обеспечивает приток воздуха, следствием чего значительно повышается температура и происходит дожигание не сгоревших частиц, что значительно снижает выбросы в атмосферу, и делает возможным поставку установки близ жилых районов. Объект предназначен для периодической работы, т. е. после периода загрузки отходов следует период сгорания, после сгорания следует период золоудаления. Период загрузки отходов для последующего сжигания начинается с загрузочного окна. Через загрузочное окно отходы помещаются в горизонтальную топку непосредственно на колосниковую решетку. Образующиеся продукты сгорания перемещаются в заднюю часть топочного пространства где происходит дожигание несгоревших частиц, и, благодаря наличию разряжения, покидают ее через вертикально расположенный газоход. Для удаления золы служит камера сбора золы (далее - зольник). Зольник расположен под горизонтальной топкой, и служит для подачи воздуха через колосниковую решетку в горизонтальную топку, а так же для сбора золы, которая удаляется из зольника ручным способом.

Рисунок 1 - Ситуационный план расположения объекта

1 ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОСТОЯНИЕ АТМОСФЕРНОГО ВОЗДУХА

Характеристика климатических условий

Климат района отличается резкой континентальностью, аридностью, проявляющейся в больших годовых и суточных амплитудах температуры воздуха и в неустойчивости климатических показателей во времени (из года в год).

Для района характерным является изобилие тепла и преобладание ясной сухой погоды. Годовое число часов солнечного сияния составляет 2600-2700.

Влияние Каспийского моря на климат прилегающих к нему территорий весьма ограничено. Оно заметно лишь в узкой полосе побережья и выражается в небольшом увеличении влажности воздуха, повышения температуры его в зимние месяцы и в понижении ее в летние, в уменьшении как годовых, так и суточных амплитуд температуры, то есть, в меньших колебаниях температуры между зимой и летом, днем и ночью.

Однако какого-либо заметного увеличения осадков в прибрежной зоне не отмечается. Годовое количество осадков на восточном побережье также мало, как и в пустыне.

Таблица 1. Характеристика температурного режима

Температура воздуха, °С	Метеостанция Атырау
Среднегодовая	+8,4
Абсолютная максимальная	+43,0
Абсолютная минимальная	-38,0
Средняя максимальная наиболее теплого месяца	+32,1
Средняя наиболее холодных суток	-19,0
Средняя из наиболее холодной пятидневки	-28,0
Средняя самого холодного месяца	-8,1

Таблица 2. Осадки на территории площади изысканий

V	Метеостанция
Характеристика	Атырау
Годовое количество осадков, мм	190
Количество осадков за теплый период	113
Количество осадков холодный период	77
Средние даты образования и разрушения устойчивого снежного покрова.	10/XII-4/III
Снежный покров не устойчив	10/AII-4/III
Максимальная высота снежного покрова за зиму, см	33

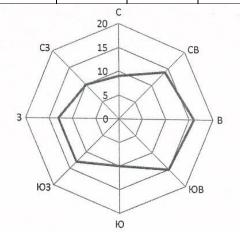
Таблица 3. Характеристика скорости ветра на участке изысканий

Характеристика	Метеостанция Актау
Средняя скорость ветра за год, м/сек	4,6
Повторяемость скоростей ветра ≥ 3 м/с, %	78
Средняя скорость ветра в январе, м/сек	4,6
Средняя скорость ветра в июле, м/сек	4,3
Ветровой район	III

Таблица 9. Нормативная глубина промерзания грунтов

Нормативная глубина промерзания для суглинков и глин	1,15
Нормативная глубина промерзания для супесей и песков мелких и пылеватых	1,42

	Средняя месячная и годовая абсолютная влажность воздуха, мб.											
I	I II III IV V VI VII VIII IX X XI XII год											
3,0	3,3	4,5	7,1	10,6	13,5	15,5	14,4	10,8	7,4	5,0	3,7	8,2


	Средняя месячная и годовая относительная влажность воздуха, %											
I II III IV V VI VII VIII IX X XI XII год												
85	83	78	59	51	48	48	49	58	70	79	84	66

	Средняя продолжительность метелей, часы											
I	I II III IV V VI VII VIII IX X XI XII год											
16	19	9	0,05	-	-	-	-	ı	-	2	6	52

	Среднее давление воздуха, гПа										
I	I II III IV V VI VII VIII IX X XI XII год									год	
1027,6	1027,6 1027,1 1024,8 1021,2 1018,3 1014,3 1012,1 1015,0 1020,8 1020,8 1027,4 1027,5 1021,8										

	Гололедные явления									
Район по толщине	Нормативная толщина стенки	Нормативная толщина стенки гололеда с								
Стенки гололеда	гололеда с повторяемостью	повторяемостью								
	1 раз в 5 лет, мм	1 раз в 10 лет, мм								
II	5	10								

Направление ветра										
С	С СВ В ЮВ Ю ЮЗ З СЗ штиль									
9	14	16	15	10	13	13	10	4		

Характеристика современного состояния воздушной среды

Состояние воздушного бассейна зависит как от деятельности собственных предприятий, так и от трансграничного переноса загрязняющих веществ с сопредельных территорий.

Компонентный состав и объём выбросов формируют качество атмосферного воздуха, называемое фоновым состоянием. Фоновое состояние атмосферного воздуха характеризуется концентрациями загрязняющих веществ по городу Атырау согласно данным РГП «Казгидромет» (см. табл. 4).

Таблица 4. Фоновые концентрации загрязняющих веществ в атмосферном воздухе по городу Атырау

			Концентрация C_{ϕ} –мг/м 3							
Примесь	Номер	Штиль	Скоро	Скорость ветра города (3- Ux) м/сек						
примссв	поста	(0-2 M/c)	Север	Восток	Юг	Запад				
Диоксид азота		0,06	0,05	0,05	0,05	0,05				
Взвешенные вещества	- A	0,12	0,47	0,51	0,48	0,46				
Диоксид серы	г. Атырау	0,015	0,016	0,017	0,018	0,048				
Оксид углерода		1,667	1,313	1,557	1,431	1,453				

Источники и масштабы расчетного химического загрязнения

Источниками выбросов загрязняющих веществ в атмосферу являются объекты, от которых загрязняющие вещества поступают непосредственно в атмосферу.

Выбросы вредных веществ в атмосферу подразделяются на постоянные, периодические, разовые и аварийные. Источники выбросов подразделяются на организованные и неорганизованные. Номер источника выделения состоит из двух частей: первая часть — четырехразрядный номер источника загрязнения атмосферы, к которому подключен данный источник выделения, вторая часть — его порядковый номер.

Настоящим проектом рассматривается степень воздействия проектируемых работ на состояние атмосферного воздуха в период строительства и эксплуатации объекта при максимальной загрузке оборудования.

Источникам организованных выбросов в данном проекте присвоены четырех разрядные номера, начиная с 0001, а неорганизованных выбросов – с 6001.

Период строительства

В период строительства выбросы загрязняющих веществ в атмосферу будут выделяться при разгрузке строительных материалов, земляных работах, медницкой работе, гидроизоляции битумом, проведении покрасочных и сварочных работ.

Основными источниками выбросов загрязняющих веществ в атмосферу в период строительства являются:

Неорганизованные источники:

- Работа со строительными материалами (источник № 6001);
- Разработка и засыпка грунта (источник №6002);

- Сварочные работы (источник №6003);
- Газосварка (источник №6004);
- Медницкие работы (источник №6005);
- Покрасочные работы (источник №6006);
- Гидроизоляция битумом (источник №6007).

Период эксплуатации

В период эксплуатации выбросы загрязняющих веществ в атмосферу будут выделяться от установки по сжиганию отходов, емкости для хранения дизельного топлива и хранении и погрузки золы.

Источниками выбросов загрязняющих веществ в период эксплуатации являются:

Организованные источники:

- Инсинератор (источник № 0001);
- Емкость для хранения дизельного топлива (источник № 0004).

Неорганизованные источники:

• Хранение и погрузка золы (источник № 6003).

Расчеты выбросов загрязняющих веществ от установленных источников выбросов в период строительства и эксплуатации проводились в соответствии с действующими методиками в программе «Excel» и ПК «ЭРА», представлены в Приложениях А и Б соответственно.

Перечни загрязняющих веществ, выбрасываемых в атмосферу в период строительства и эксплуатации, представлены в таблицах 5-6.

Параметры источников выбросов загрязняющих веществ в атмосферу в период строительства и эксплуатации приведены в таблицах 7-8.

Таблица 5 – Перечень загрязняющих веществ, выбрасываемых в атмосферу в период строительства

							T-FJ =F		
							Выброс	Выброс	Значение
Код	Наименование загрязняющего	энк,	ПЛКм п	ПДКс.с.,	OEVB	Класс	вещества с	вещества с	М/ЭНК
3B	вещества	$M\Gamma/M^3$	иг/м ³	иг/м ³	$M\Gamma/M^3$	опасности	учетом	учетом	
ЭБ	вещества	IVII / IVI	IVII / IVI	IVII / IVI	IVII / IVI	опасности	очистки,	очистки,	
							г/с	т/год, (М)	
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды			0,04		3	0,000594	0,000842	0,02105
	(диЖелезо триоксид, Железа								
	оксид) /в пересчете на железо/								
	(274)								
0143	Марганец и его соединения /в		0,01	0,001		2	0,0000511	0,0000725	0,0725
	пересчете на марганца (IV)								
	оксид/ (327)								
0168	Олово оксид /в пересчете на			0,02		3	0,00003694	0,00000133	0,0000665
	олово/ (Олово (II) оксид) (446)								
0184	Свинец и его неорганические		0,001	0,0003		1	0,00006722	0,00000242	0,00806667
	соединения /в пересчете на								
	свинец/ (513)								

0301	Азота (IV) диоксид (Азота диоксид) (4)	0,2	0,04		2	0,0021997	0,00010799	0,00269975
0304	Азот (II) оксид (Азота оксид) (6)	0,4	0,06		3	0,00035783	0,000017552	0,00029253
0337		5	3		4	0,000739	0,001048	0,00034933
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,02	0,005		2	0,0000417	0,0000591	0,01182
0344	Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)	0,2	0,03		2	0,0001833	0,00026	0,00866667
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,2			3	0,01005	0,000399	0,001995
2752	Уайт-спирит (1294*)			1		0,0278	0,0007875	0,0007875
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1			4	0,012341	0,02399	0,02399
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1		3	0,0408878		1,014403
	Β С Ε Γ Ο:					0,09534959	0,129027692	1,16668695

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

 Таблица 6 –Перечень загрязняющих веществ, выбрасываемых в атмосферу в период эксплуатации

 Выброс
 Выброс
 Значение

14001	ица о -перечень	our phon	инощих в	сществ, в	Diopacbi	DUCMBIA D U	тмосферу в пе	риод эксилу	шищии
	Наименование				ОБУВ	Класс	Выброс	Выброс	Значение М/ЭНК
Код		ЭНК, мг/м	ПДКм.р	ПДКс.с.	ОБУБ	опасност	вещества с	вещества	М/ЭПК
3B	загрязняющего вещества	M1/M 3	, мг/м3	, мг/м3	, мг/м3	и ЗВ	учетом очистки, г/с	с учетом очистки,	
	вещества	3			WII / WIJ	и ЭБ	очистки, т/с	т/год, (М)	
1	2	3	4	5	6	7	8	9	10
030	Азота (IV)		0,2	0,04		2	0,00834	0,07037	1,75925
1	диоксид (Азота		0,2	0,01		_	0,00031	0,07037	1,73723
	диоксид) (4)								
030	Азот (II) оксид		0,4	0,06		3	0,00135525	0,0114351	0,19058542
4	(Азота оксид) (6)							3	
031	Гидрохлорид		0,2	0,1		2	0,0009275	0,0076930	0,07693056
6	(Соляная							6	
	кислота, Водород								
	хлорид) (163)								
032	Углерод (Сажа,		0,15	0,05		3	0,0002	0,0008312	0,016625
8	Углерод черный)							5	
	(583)								
033	Сера диоксид		0,5	0,05		3	0,0124444444	0,1231692	2,463384
0	(Ангидрид						5		
	сернистый,								
	Сернистый газ,								
	Сера (IV) оксид) (516)								
033	Сероводород		0,008			2	0,000000162	0,000002	0,00025
033	Сероводород		0,000				0,000000102	0,000002	0,00023

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

3	(Дигидросульфи д) (518)						
033 7	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3	4	0,01112	0,0992175	0,0330725
034	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,02	0,005	2	0,00193	0,0160081 9	3,2016384
275 4	Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12- С19 (в пересчете на С); Растворитель РПК-265П) (10)	1		4	0,000058	0,000666	0,000666
290 2	Взвешенные частицы (116)	0,5	0,15	3	0,1038194444 5	0,86112	5,7408
290 8	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0,3	0,1	3	0,01252	0,19869	1,9869
	ВСЕГО:				0,152714801	1,3892023	15,4701018 8

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Ta	<u>блица</u>			цих	веществ, выбрасыва	емых	в атмос				оител													
		Источники выделения	I		ä				Парам	иетры		K	оордина	ты источ	ника				лах	Наименование	Выбросы з	агрязняюш	цих веществ	Год
		загрязняющих вещести	В		Наименование источника выброса вредных веществ					эд.смес	И		на карт	е-схеме,	M	¥ 2	_	%	Средняяэксплуатстепеньочистки/max .степочистки%	вещества				дос-
				в год	ыб		×			ходе из						ие газоочистных і мероприятий по нию выбросов	Г	Коэфф обеспгазоочисткой,%	XIX					тиже
					a B	g	ca,		ист.вь	лброса						исл	рым	TKC	Д					ния
.BO		Наименование	Коли	часов работы	веществ	Номер источника выброса	источника выброса,	<u> ۲</u>	ر,	ွ		точеч	ного	2-го ко	нца лин	азоочи юприят выбро	Веществапо которым оизво-дитсягазоочист	ПС	1100	Ва	г/с	мг/нм3	т/год	ПДВ
Производство	L.		чест	360	Энге	919	BbI),ei	Скорость м/	13/6		источ		/длина	, ширина	a3C OII	ю котор	00	TE X	cci				
380	Цех		во	Вр	X B	a B	Ка	py(СП	, N	ن ت	/1-го	конца	плоц	адного	Mep 7150	011	<u>ra3</u>	TTC AIM	еш				
ОИ	-		ист.	[O 21	16 1 (Hbi	HIK	ШИ	T K	odc	36	0.	лин.		исто	чника	анк и г	твап	эсп	/ат	я д				
lq.				Ъ (вредных	[Ь0.	TOL	Диаметр устья трубым	$C_{\mathbf{K}}$	объем на 1 трубу, м3/	тем-пер. оС	/цент	pa			Наименование г установок и мер сокращению	nec Bo-	90	TITI CTC	Ko				
				Число	HOB	ИСЛ	ИС	ру		Ha]	-Wa	площ	ад-			мен пно	Вещес произво-	фф	экс					
				$^{ m H}$	Me	də	Высота	мет		M.	Ť	ного				Гаи ста	l di	603	ККН					
					Гаи	МО	PFIC	иал		бъе		источ				T Y		云	едп					
						H						X1	Y1	X2	Y2				_					
1	2	3	4	5		7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26
0	01	Работа со	1		Работа со	6001	2	2				1		1	1 1					2908 Пыль неорганическая,	0.0034		0.00929	2025
		строительными			строительными															содержащая двуокись				
		материалами			материалами															кремния в %: 70-20				
																				(шамот, цемент, пыль				
																				цементного				
																				производства - глина,				
																				глинистый сланец,				
																				доменный шлак, песок,				
																				клинкер, зола, кремнезем, зола углей				
																				казахстанских				
																				месторождений) (494)				
0	11	Разработка и засыпка	1		Разработка и засыпка	6002	2	,				1		1	1 1					2908 Пыль неорганическая,	0.03741		0.09204	2025
	,	грунта	1		грунта	0002						1		1	1 .					содержащая двуокись	0.03741		0.07204	2023
		177114			19,1114															кремния в %: 70-20				
																				(шамот, цемент, пыль				
																				цементного				
																				производства - глина,				
																				глинистый сланец,				
																				доменный шлак, песок,				
																				клинкер, зола,				
																				кремнезем, зола углей				
																				казахстанских				
																				месторождений) (494)				
0	01	Сварочные	1	1	Сварочные	6003	2	2				1		1	1 1					0123 Железо (II, III)	0.000594		0.000842	2025
		работы			работы															оксиды (диЖелезо				
																				триоксид, Железа				
																				оксид) /в пересчете				
																				на железо/ (274)				
																				0143 Марганец и его	0.0000511		0.0000725	2025
																				соединения /в				
																				пересчете на марганца				
																				(IV) оксид/ (327)				
																				0301 Азота (IV) диоксид	0.0000667		0.0000945	2025
																				(Азота диоксид) (4)				
			1																	0304 Азот (II) оксид	0.00001083		0.00001536	2025
																				(Азота оксид) (6)	0.000730		0.001040	2025
																				0337 Углерод оксид (Окись	0.000739		0.001048	2025
																				углерода, Угарный газ) (584)	0.0000417		0.0000501	2025
																1				0342 Фтористые	0.0000417		0.0000591	2025
																1				газообразные соединения /в				
			1																	пересчете на фтор/ (617)				
			1																	0344 Фториды	0.0001833		0.00026	2025
			1																	неорганические плохо	0.0001655		0.00020	2023
			1																	растворимые -				
			1																	(Алюминия фторид,				
I	I	I	1	I	l I	l	1	1		1	1	1	I	1	I	1	Ţ	I	l	(таполиты фторида,	I			1 1

			,,								,			кальция фторид, натрия	, ,		
														гексафторалюминат)			
														(Фториды			
														неорганические плохо			
														растворимые /в			
														пересчете на фтор/) (615)			
													2908	Пыль неорганическая,	0.0000778	0.0001103	2025
														содержащая двуокись			
														кремния в %: 70-20			
														(шамот, цемент, пыль			
														цементного			
														производства - глина,			
														глинистый сланец,			
														доменный шлак, песок,			
														клинкер, зола,			
														кремнезем, зола углей			
														казахстанских			
														месторождений) (494)			
001	Газосварка	1	Газосварка	6004	2		1	1	1	1			0301	Азота (IV) диоксид	0.002133	0.00001349	2025
			•											(Азота диоксид) (4)			
													0304	Азот (II) оксид	0.000347	0.000002192	2025
														(Азота оксид) (6)			
001	Медницкие	1	Медницкие работы	6005	2		1	1	1	1			0168	Олово оксид /в	0.00003694	0.00000133	2025
	работы													пересчете на олово/			
	Î													(Олово (II) оксид) (446)			
													0184	Свинец и его	0.00006722	0.00000242	2025
														неорганические			
														соединения /в			
														пересчете на свинец/(513)			
001	Покрасочные	1	Покрасочные	6006	2		1	1	1	1				Диметилбензол (смесь	0.01005	0.000399	2025
	работы		работы											о-, м-, п- изомеров) (203)			
	ſ												2752	Уайт-спирит (1294*)	0.0278	0.0007875	2025
001	Гидроизоляция	1	Гидроизоляция	6007	2		1	1	1	1			2754	Алканы С12-19 /в	0.012341	0.02399	2025
	битумом		битумом											пересчете на С/			
														(Углеводороды			
														предельные С12-С19 (в			
														пересчете на С);			
														Растворитель РПК-265П) (10)			

Таблица 8 – Параметры загрязняющих веществ, выбрасываемых в атмосферу в период эксплуатаци

Таоли	ца 8 –	- Параметры	загрязнян	ощих в	еществ, выој	расываем	ых в атм(осферу в	период эг	ксилуатаг	ции														
												Коорд	цинаты и	источни	іка на										
													карте-сх	кеме,м.											
												точеч	Ного	2-го к	онца										
									Попомотрия	газовоздушн		источн	ика /1-	линей	іного		Darraam								
		Источник ві	ыделения							тазовоздуші оде из трубь		го к	онца	источн	ника /		Веществ	17 1 1	Среднеэксплу			Dryfinaary			
		загрязняющи	іх веществ	11	Наименование	TT						линеі	йного	дли	на,	Наименование		Коэффи-	а-тационная			выоросы за	грязняющ	его вещества	1
-		-		Число	источника	Номер	Высота	Диаметр	максималь	ьно разовой і	нагрузке	источ	ника	шир	ина	газоочистных	-		степень	TC					Год
Произ-	Цех			часов	выброса	источника	источника					/цен	тра	площа,		установок, тип	-	обеспечен-	очистки/	Код	Наименование вещества				дости-
водство	,			работы в	вредных	выбросов на	выбросов, м	трубы, м				площа	адного	источ	ника	и мероприятия			максимальная	вещества	·				жения
				году	веществ	карте-схеме	1 1	13				источ				по сокращению	дится	очисткой,	степень						НДВ
	•		Количество,						Скорость,	Объемный	т.					выбросов	газоочис	%	очистки, %						
			шт.							расход, м3/с	Темпе-						тка		,				, ,		
		Наименование							293.15 K.	(T = 293.15)	ратура	X1	Y1	X2	Y2							г/с	мг/нм3	т/год	
									P= 101.3	K, P= 101.3	смеси,														
									кПа)	кПа)	oC														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
001		Печь	1	2304	Труба дымовая	0001	(0,32	9	0,7238229		1	1			Веста Плюс;	0301	100	75,00/75,00	0301	Азота (IV) диоксид (Азота	0,00834	11,522	0,07037	2025
		инсенератор															0304	100	75,00/75,00		диоксид) (4)				
	l 1	"Веста Плюс"															0316	100	75,00/75,00	0304	Азот (II) оксид (Азота оксид)	0,0013553	1,872	0,01143513	2025
]	ПИр-0,75															0328	100	75,00/75,00		(6)				
																	0330	100	75,00/75,00	0316	Гидрохлорид (Соляная кислота,	0,0009275	1,281	0,00769306	2025
																	0337	100	75,00/75,00		Водород хлорид) (163)				
																	0342	100	75,00/75,00	0328	Углерод (Сажа, Углерод	0,0002	0,276	0,00083125	2025
																	2902	100	75,00/75,00		черный) (583)				
																				0330	Сера диоксид (Ангидрид	0,0124444	17,193	0,1231692	2025
																					сернистый, Сернистый газ,				
																					Сера (IV) оксид) (516)				
																				0337	Углерод оксид (Окись углерода,	0,01112	15,363	0,0992175	2025
																					Угарный газ) (584)				
																				0342	Фтористые газообразные	0,00193	2,666	0,01600819	2025
																					соединения /в пересчете на				
																					фтор/ (617)				
																				2902	Взвешенные частицы (116)	0,1038194	143,432	0,86112	2025
001		Емкость для	1		Емкость для	0004	2	0,1	0,01	0,0000785		1	1							0333	Сероводород (Дигидросульфид)	1,62E-07	2,064	0,000002	2025
		хранения			хранения																(518)				
		гопливо			топливо															2754	Алканы С12-19 /в пересчете на	0,000058	738,854	0,000666	2025
																					С/ (Углеводороды предельные				
																					С12-С19 (в пересчете на С);				
																					Растворитель РПК-265П) (10)				
001		Хранение и	1		Хранение и	6003	2	2				1	1	1	1					2908	Пыль неорганическая,	0,01252		0,19869	2025
		погрузка золы			погрузка золы																содержащая двуокись кремния				
																					в %: 70-20 (шамот, цемент,				
						ĺ															пыль цементного производства				
																					- глина, глинистый сланец,				
						ĺ															доменный шлак, песок,				
						ĺ															клинкер, зола, кремнезем, зола				
						ĺ												ĺ			углей казахстанских				
						I						1						I			месторождений) (494)				

Внедрение малоотходных и безотходных технологий, а также специальные мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух, обеспечивающие соблюдение в области воздействия намечаемой деятельности экологических нормативов качества атмосферного воздуха или целевых показателей его качества, а до их утверждения — гигиенических нормативов

Внедрение малоотходных и безотходных технологий данным проектом не предусматриваются.

Расчеты количества выбросов загрязняющих веществ в атмосферу

В период строительства в атмосферный воздух выделяются оксид железы, марганец и его соединения, оксид олова, свинец, оксид азота, диоксид азота, углерод, сера диоксид, углерод оксид, фтористые газообразные, фториды неорганические, диметилбензол, уайт-спирит, алканы C12-19 пыль неорганическая.

Валовый выброс загрязняющих веществ на период строительства составляет 0,129027692 т.

В период эксплуатации в атмосферный воздух выделяются оксид азота, диоксид азота, гидрохлорид, углерод, сера диоксид, сероводород, углерод оксид, фтористые газообразные, взвешенные частицы, алканы С12-19 пыль неорганическая.

Валовый выброс загрязняющих веществ на период эксплуатации составляет 1,38920232 тонн.

Определение нормативов допустимых выбросов загрязняющих веществ

Согласно п. 8 «Методики определения нормативов эмиссий в окружающую среду», №63 от 10.03.2021 г.: «Нормативы допустимых выбросов устанавливаются для отдельного стационарного источника и (или) совокупности стационарных источников, входящих в состав объекта I или II категории, расчетным путем с применением метода моделирования рассеивания приземных концентраций загрязняющих веществ с таким условием, чтобы общая нагрузка на атмосферный воздух в пределах области воздействия не приводила к нарушению установленных экологических нормативов качества окружающей среды или целевых показателей качества окружающей среды или целевых показателей качества окружающей среды».

Предложения по нормативам НДВ по каждому источнику выбросов загрязняющих веществ по ингредиентам в период строительства и эксплуатации представлены таблицами 9 и 10. В нормативах выбросов загрязняющих веществ на период строительства не учтены выбросы от работы автотранспорта, т.к. в

соответствии со ст. 202. п. 17 Экологического кодекса Республики Казахстан «нормативы эмиссий от передвижных источников выбросов загрязняющих веществ в атмосферу не устанавливаются».

Таблица 9 - Нормативы выбросов загрязняющих веществ в атмосферу в период строительства

1	Таблица 9 - Нор		ыбросов за					(строитель	
Выброса Положение Ния	Производство	Номер							Год
Код и наименование загряняющего вещества Тес т/год г/с т/год г/с т/год г/с т/год г/с т/год н/дВ наименование загряняющего вещества Тел за в а в и н. в. е. и с. т. о. ч. и к. и (123) Железо (П. П.) океиды (дыЖелезо трноксид, Железо океид) /в пересчете на(24) Тел за в а в и н. в. е. и с. т. о. ч. и к. и (1013) Железо (П. П.) океиды (дыЖелезо трноксид, Железо океид) /в пересчете на(24) Тел за боль и н. в. е. и с. т. о. ч. и к. и (1014) Мартанен и его соединения /в пересчете на марганиа (П.) океид/ (327) Тел за боль и н. в. е. о.	цех, участок				на 20	25 год	Н	ДВ	достиже
наименование загрязняющего вещества 1 2 3 4 5 6 7 8 9 9		выброса	поло	жение					
3 агрязивощего вещества 3	Код и		г/с	т/год	г/с	т/год	г/с	т/год	ндв
Вещества 1 2 3 4 5 6 7 8 9	наименование								
1 2 3 4 5 6 7 8 9	загрязняющего								
Неорганизованные Неоргания ованные источники	вещества								
(0123) Женезо (II, III) оксида (диЖелезо триокенд, Железа оксид) / в пересчете на (274)	1	2	3	4	5	6	7	8	9
Строительная 6003 0.000594 0.000842 0.000594 0.000842 20									
площадка 0.0003 0.0000672 0.0000511 0.0000725 0.0000511 0.0000725 0.00000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.00000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.0000725 0.00000725 0.00000725 0.00000725 0.00000725 0.00000725 0.00000725 0.00000725 0.000000725 0.000000725 0.0000000000000000000000000000000000	(0123) Железо (II, I	III) оксиды (диЖелезо т	риоксид, Жел	еза оксид) /в	пересчете на	(274)		
(0143) Мартанец и его соединения /в пересчете на мартаниа (IV) оксид/ (327) (20000725 0.0000511 0.0000725 20 площадка (0168) Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) (0168) Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) (0168) Олово оксид /в пересчете на олово/ (Олово (II) оксид) (446) (0184) Свинец и его неорганические соединения /в пересчете на ввинец/ (513) (0184) Свинец и его неорганические соединения /в пересчете на ввинец/ (513) (0184) Свинец и его неорганические соединения /в пересчете на свинец/ (513) (0301) Азота (IV) двокенд (Азота двокенд) (4) (0301) Азота (IV) двокенд (Азота двокенд) (4) (0301) Азота (IV) двокенд (Азота двокенд) (6) (0304) Азот (II) окенд (Азота оксид) (6) (0304) Фториды (1000) (1000	Строительная	6003			0.000594	0.000842	0.000594	0.000842	2025
Строительная 6003 0.0000511 0.0000725 0.0000511 0.0000725 20	площадка								
Площадка 10168 Олово оксид /в пересчете на олово (Олово (II) оксид) (446) 10,00003694 10,0000364 10	(0143) Марганец и	его соедине	ния /в перес	счете на марга	анца (IV) окс	еид/ (327)			
Оторотительная Ото	Строительная	6003			0.0000511	0.0000725	0.0000511	0.0000725	2025
Строительная 6005 0.00003694 0.00000133 0.00003694 0.00000133 20									
площадка		ц/в пересчет	ге на олово/	(Олово (II) от	ксид) (446)				
(0184) Свинец и его неорганические соединения /в пересчете на свинец/ (513) (2000006722 0.00000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.000000242 2.0000000242 2.0000000000000000000000000000000000	Строительная	6005			0.00003694	0.00000133	0.00003694	0.00000133	2025
Строительная 6005 0.00006722 0.00000242 0.00006722 0.00000242 20	площадка								
Площадка (0301) Азота (IV) диоксид (Азота диоксид) (4) (2700 ительная 6003 0.0000667 0.0000945 0.0000667 0.0000945 20 илощадка 6004 0.002133 0.00001349 0.002133 0.00001349 20 (0304) Азот (II) оксид (Азота оксид) (6) (0337) Углерод оксид (Окись углерода, Угарный газ) (584) (0337) Углерод оксид (Окись углерода, Угарный газ) (584) (0342) Фтористые газообразные соединения /в пересчете на фтор/ (617) (0342) Фтористые газообразные соединения /в пересчете на фтор/ (617) (0342) Фтористые газообразные соединения /в пересчете на фтор/ (617) (000034) (0000417 0.0000591 0.0000417 0.0000591 0.0000417 (0.000591 0.000148 0.000739 0.00148 (0344) Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, (615) (0344) Фториды неорганические плохо растворимые - (аломиния фторид, кальция фторид, (615) (0344) Фториды неорганические плохо растворимые - (аломиния фторид, кальция фторид, (615) (0344) Фториды порадка (0344) Фториды порадка (0345) (0346)		о неорганич	еские соеди	нения /в пере	счете на сви				
(0301) Азота (IV) дноксид (Азота диоксид) (4) Строительная 6003 0.0000667 0.0000945 0.0000667 0.0000945 20 площадка 6004 0.002133 0.00001349 0.002133 0.00001349 20 (0304) Азот (II) оксид (Азота оксид) (6) (0.0001083 0.00001536 0.0000539 0.0000417 0.0000591 0.00000591 0.00		6005			0.00006722	0.00000242	0.00006722	0.00000242	2025
Строительная 6003 0.0000667 0.0000945 0.0000667 0.0000945 20	площадка								
ПЛОЩАДКА 0.002133 0.00001349 0.002133 0.00001349 20	(0301) Азота (IV) д	иоксид (Азо	ота диоксид	(4)					
G034) Азот (II) оксид (Азота оксид) (6) 0.002133 0.00001349 0.002133 0.00001349 20	Строительная	6003			0.0000667	0.0000945	0.0000667	0.0000945	2025
(0304) Азот (II) оксид (Азота оксид) (6)	площадка								
Строительная площадка 6003 площадка 0.00001083 0.00001536 0.00001083 0.00001536 0.00001536 0.00001536 0.00001536 0.00001536 0.00001536 0.00001536 0.00001536 0.000002192 0.000347 0.000002192 0.0000347 0.000002192 0.0000347 0.000002192 0.0000347 0.000002192 0.00000347 0.000002192 0.000002192 0.0000347 0.000002192 0.000002192 0.00000347 0.000002192 0.00000347 0.0000034 0.0000348 0.000739 0.001048 0.000739 0.001048 0.000739 0.001048 0.000739 0.001048 0.000739 0.001048 0.000034 0.0000591 0.0000417 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.000041 0.0		6004			0.002133	0.00001349	0.002133	0.00001349	2025
ПЛОЩАДКА 0.000347 0.000002192 0.000347 0.000002192 20		сид (Азота о	ксид) (6)						
6004 0.000347 0.00002192 0.000347 0.000002192 20	Строительная	6003			0.00001083	0.00001536	0.00001083	0.00001536	2025
(0337) Углерод оксид (Окись углерода, Угарный газ) (584) Строительная 6003 0.000739 0.001048 0.000739 0.001048 20	площадка								
Строительная площадка 6003 площадка 0.000739 п.001048 п.000739 п.001048 п.000739 п.001048 п.000148 п.000141 п.00000591 п.00000417 п.00000591 п.0000044 п.0000048 п.0000048 п.0000048 п.0000048 п.0000048 п.0000048 п.0000048 п.00000048 п.0000048 п.00000048 п.00000048 п.00000048 п.0000048 п.000000048 п.000000048 п.0000000048 п.00000000048 п.00000000048 п.0000000000048 п.00000000000000048 п.000000000000000000000000000000000000						0.000002192	0.000347	0.000002192	2025
Площадка 10342) Фтористые газообразные соединения /в пересчете на фтор/ (617) 10.0000591 10.0000417 10.0000591 10.0000417 10.0000591 10.0000417 10.0000591 10.0000417 10.0000591 10.0000417 10.0000591 10.0000417 10.0000591 10.0000417 10.0000591 10.0000417 10.0000591 10.00004417 10.0000591 10.00004417 10.0000591 10.00004417 10.0000591 10.00004417 10.0000591 10.00004417 10.000064 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.00026 10.0001833 10.000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.0000399 10.00000399 10.00000399 10.000007875 10.00007875 10.00007875 10.00007875 10.00007875 10.00007875 10.00007875 10.000007875 10.000007875 10.000007875 10.0000007875 10.0000000000000000000000000000000000		ид (Окись у	тлерода, Уг	арный газ) (5	84)				
(0342) Фтористые газообразные соединения /в пересчете на фтор/ (617) Строительная 6003 0.0000417 0.0000591 0.0000417 0.0000417 0.0000417 0.0000417 0.0000591 20 (0344) Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, (615) Строительная 6003 0.0001833 0.00026 0.0001833 0.00026 20 площадка (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) Строительная 6006 0.01005 0.000399 0.01005 0.000399 20 Строительная 6006 0.0278 0.0007875 0.0278 0.0007875 20 площадка (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 Строительная 6001 0.03741 0.09204 0.03741 0.09204 0.03741 0.09204 0.0	Строительная	6003			0.000739	0.001048	0.000739	0.001048	2025
Строительная площадка 6003 0.0000417 0.0000591 0.0000417 0.0000591 0.0000591 20 (0344) Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, (615) 0.0001833 0.00026 0.0001833 0.00026 20 Строительная площадка 6006 0.01005 0.000399 0.01005 0.000399 0.01005 0.000399 20 Строительная площадка 6006 0.0278 0.0007875 0.0278 0.0007875 20 площадка (2754) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете(10) Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 6002 0.03741 0.09204 0.03741 0.09204 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692 0.09534959 0.129027692 0.09534959 0.129027692 0.00534959<									
ПЛОЩАДКА (0344) Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, (615)		газообразнь	е соединени	ия /в пересчет	е на фтор/ (6				
(0344) Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, (615) Строительная 6003 0.0001833 0.00026 0.0001833 0.00026 20 площадка (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) 0.01005 0.000399 0.01005 0.000399 0.01005 0.000399 20 Строительная 6006 0.0278 0.0007875 0.0278 0.0007875 20 площадка (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 6002 0.03741 0.09204 0.03741 0.09204 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692 0.09534959 0.129027692		6003			0.0000417	0.0000591	0.0000417	0.0000591	2025
Строительная 6003 0.0001833 0.00026 0.0001833 0.00026 20 площадка (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) Строительная 6006 0.001005 0.000399 0.01005 0.000399 20 площадка 0.00278 0.0007875 0.0278 0.0007875 20 площадка (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 6002 0.03741 0.09204 0.03741 0.09204 20 6003 0.0000778 0.0001103 0.0000778 0.0001103 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692									
Площадка (0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) (2750) (2750) (2750) (2750) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пер		еорганическ	ие плохо ра	створимые - (
(0616) Диметилбензол (смесь о-, м-, п- изомеров) (203) Строительная 6006 0.01005 0.000399 0.01005 0.000399 20 площадка 0.0278 0.0007875 0.0278 0.0007875 20 площадка (2754) Алканы C12-19 /в пересчете на С/ (Углеводороды предельные C12-C19 (в пересчете(10) Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 6002 0.03741 0.09204 0.03741 0.09204 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692 0.09534959 0.129027692	Строительная	6003			0.0001833	0.00026	0.0001833	0.00026	2025
Строительная 6006 0.01005 0.000399 0.01005 0.000399 20 0.01005 0.000399 20 0.01005 0.000399 20 0.01005 0.000399 20 0.01005 0.000399 20 0.01005 0.0007875 0.0278 0.0007875 20 0.000000000000000000000000000000000									
Площадка 10.0278 0.0007875 0.0278 0.0007875 20		зол (смесь с	о-, м-, п- изо	меров) (203)					
Строительная 6006 0.0278 0.007875 0.0278 0.0007875 20 площадка (2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10) Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 0.0034 0.00929 0.0034 0.00929 20 площадка 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.0034 0.00929 0.00929 0.0034 0.00929 0.	Строительная	6006			0.01005	0.000399	0.01005	0.000399	2025
Площадка (2754) Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете(10))	площадка								
Площадка (2754) Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете(10))									
(2754) Алканы С12-19 /в пересчете на С/ (Углеводороды предельные С12-С19 (в пересчете(10)) Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494)) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 6002 0.03741 0.09204 0.03741 0.09204 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692 0.09534959 0.129027692	Строительная	6006			0.0278	0.0007875	0.0278	0.0007875	2025
Строительная 6007 0.012341 0.02399 0.012341 0.02399 20 площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 6002 0.03741 0.09204 0.03741 0.09204 20 6003 0.0000778 0.0001103 0.0000778 0.0001103 20 Итого по неорганизованным 0.09534959 0.129027692									
Площадка (2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,(494)			чете на С/ (Углеводородн					
(2908) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, (494)) Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 6002 0.03741 0.09204 0.03741 0.09204 20 Боло воза 0.0000778 0.0001103 0.0000778 0.0001103 0.0001103 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692 0.09534959 0.129027692 0.000176 0.0000176 0.000176 0.000176 0.000176 0.000176 0.000176 0.000176 0.000176 0.000176 0.000176 0.000176 0.000176 0.000176 <td>•</td> <td>6007</td> <td></td> <td></td> <td>0.012341</td> <td>0.02399</td> <td>0.012341</td> <td>0.02399</td> <td>2025</td>	•	6007			0.012341	0.02399	0.012341	0.02399	2025
Строительная 6001 0.0034 0.00929 0.0034 0.00929 20 площадка 0.0034 0.00929 20 0.0034 0.00929 20 0.0034 0.00929 0.0034 0.00929									
площадка 0.03741 0.09204 0.03741 0.09204 20 6003 0.0000778 0.0001103 0.0000778 0.0001103 0.00001103 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692			одержащая	двуокись кре				T	
6002 0.03741 0.09204 0.03741 0.09204 20 6003 0.0000778 0.0001103 0.0000778 0.0001103 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692		6001			0.0034	0.00929	0.0034	0.00929	2025
6003 0.0000778 0.0001103 0.0000778 0.0001103 20 Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692	площадка								
Итого по неорганизованным 0.09534959 0.129027692 0.09534959 0.129027692		6002			0.03741				
		6003							2025
HOTOHHHIOM	Итого по неоргани:	зованным			0.09534959	0.129027692	0.09534959	0.129027692	
	источникам:								
Всего по предприятию: 0.09534959 0.129027692 0.09534959 0.129027692	Всего по предприя	тию:			0.09534959	0.129027692	0.09534959	0.129027692	

Таблица 10. Нормативы выбросов загрязняющих веществ в атмосферу в период эксплуатации.

эксплуатации.	1							1
Производство		Hoj	рмативы	выбросов загряз веществ	вняющих			год
цех, участок	Номер источник		гвующ ожение	на 2025-20)34 года	нд	В	жит
Код и наименование загрязняющего вещества	а	г/с	т/год	г/с	т/год	г/с	т/год	е ния НД В
1	2	3	4	5	6	7	8	9
Организованн	ные исто	чник	И					
(0301) Азота (IV) ди	оксид (Азот	а диокс	ид) (4)					
р-он. Махамбет,с/о Бейбарыс,с.Бейбар ыс, ул.1, зем.уч. №293	0001			0,00834	0,07037	0,00834	0,07037	202 5
(0304) Азот (II) окси	ід (Азота ок	сид) (6)	•					
р-он. Махамбет,с/о Бейбарыс,с.Бейбар ыс, ул.1, зем.уч. №293	0001			0,00135525	0,0114351 25	0,00135525	0,0114351 25	202 5
(0316) Гидрохлорид		сислота,	Водоро					
р-он. Махамбет,с/о Бейбарыс,с.Бейбар ыс, ул.1, зем.уч. №293	0001			0,0009275	0,0076930 56	0,0009275	0,0076930 56	202 5
(0328) Углерод (Саж	ка, Углерод	черный	i) (583)					
р-он. Махамбет,с/о Бейбарыс,с.Бейбарыс, ул. 1, зем. уч.	0001			0,0002	0,0008312	0,0002	0,0008312	202 5
№293	. (Cor		ma (IV) avasta) (516)		
(0330) Сера диоксид р-он. Махамбет,с/о	(Ангидрид 0001	сернис	гыи, сеј	0,012444444	ра (гу) оксид 0,1231692	0,012444444	0,1231692	202
Бейбарыс,с.Бейбар ыс, ул.1, зем.уч. №293	0001			45	0,1231072	45	0,1231092	5
(0333) Сероводород	(Дигидросу	льфид)	(518)	l				ı
р-он. Махамбет,с/о Бейбарыс,с.Бейбар ыс, ул.1, зем.уч. №293	0004	•		0,00000162	0,000002	0,00000162	0,000002	202
(0337) Углерод окси	ід (Окись уг	лерода,	Угарнь	ій газ) (584)				
р-он. Махамбет,с/о Бейбарыс,с.Бейбарыс,ул.1, зем.уч. №293	0001			0,01112	0,0992175	0,01112	0,0992175	202 5
(0342) Фтористые г	азообразны	е соедин	ения /в	пересчете на фт	rop/ (617)			,
р-он. Махамбет,с/о Бейбарыс,с.Бейбарыс,с.Бейбарыс, ул. 1, зем. уч.	0001			0,00193	0,0160081	0,00193	0,0160081 92	202 5
№293								
(2754) Алканы С12-		ете на (С/ (Угле					
р-он. Махамбет,с/о Бейбарыс,с.Бейбарыс,с.Бейбарыс, ул. 1, зем.уч.	0004			0,000058	0,000666	0,000058	0,000666	202 5
№293	HOOTH (1:	16)]
(2902) Взвешенные р-он. Махамбет,с/о	частицы (1	10)		0,103819444	0,86112	0,103819444	0,86112	202
Бейбарыс,с.Бейбар ыс, ул.1, зем.уч. №293	5001			45	0,00112	45	0,00112	5

Итого по организова источникам:	анным		0,140194800 9	1,1905123 23	0,140194800 9	1,1905123 23	
Неорганизова	нные и	точники					
(2908) Пыль неорга	ническая, с	одержащая дву	окись кремния	в %: 70-20 (ш	амот, цемент,(4	194)	
р-он. Махамбет,с/о Бейбарыс,с.Бейбар ыс, ул.1, зем.уч. №293	6003		0,01252	0,19869	0,01252	0,19869	202 5
Итого по неорганизо источникам:	ованным		0,01252	0,19869	0,01252	0,19869	
Всего по объекту:			0,152714801	1,3892023 23	0,152714801	1,3892023 23	

<u>Оценка последствий загрязнения и мероприятия по снижению</u> <u>отрицательного воздействия</u>

Оценка последствий загрязнения

При соблюдении проектных решений уровень воздействия на состояние атмосферного воздуха при проведении проектируемых работ оценивается как:

- Локальное по масштабу 1 балл;
- Кратковременной продолжительности по времени 1 балл;
- Незначительное по интенсивности 1 балл.

Таким образом, воздействие на атмосферный воздух определяется как воздействие низкой значимости.

<u>Предложения по организации мониторинга и контроля за состоянием</u> атмосферного воздуха

В программе производственного экологического контроля устанавливаются обязательный перечень параметров, отслеживаемых в процессе производственного экологического контроля, критерии определения его периодичности, продолжительность и частота измерений, используемые инструментальные или расчетные методы. Экологическая оценка эффективности производственного процесса в рамках производственного экологического контроля осуществляется на основе измерений и (или) на основе расчетов уровня эмиссий в окружающую среду, вредных производственных факторов, а также фактического объема потребления природных, энергетических и иных ресурсов.

Разработка мероприятий по регулированию выбросов в период особо неблагоприятных метеорологических условий, обеспечивающих соблюдение экологических нормативов качества атмосферного воздуха или целевых показателей его качества, а до их утверждения — гигиенических нормативов

Загрязнение приземного слоя воздуха, создаваемое техногенными выбросами, в большой степени зависит от метеорологических условий. В отдельные периоды, когда метеорологические условия способствуют накоплению вредных веществ в приземном слое атмосферы, концентрации примесей в воздухе могут резко возрастать.

Под регулированием выбросов вредных веществ в атмосферу понимается их кратное сокращение в периоды неблагоприятных метеорологических условий (НМУ).

При НМУ в кратковременные периоды загрязнения атмосферы, опасные для здоровья населения, предприятие-природопользователь обеспечивает снижение выбросов вредных веществ, вплоть до частичной или полной остановки оборудования.

При неблагоприятных метеорологических условиях в соответствии РД 52.04.52-85 «Методические указания. Регулирование выбросов в атмосферу при НМУ» производство погрузочно-разгрузочных и других работ связанных с повышенным выделением пыли и других загрязняющих веществ необходимо запретить.

К неблагоприятным метеоусловиям относятся:

- температурные инверсии;
- пыльные бури;
- штиль;
- туманы.

Мероприятия на период неблагоприятных метеорологических условий сводятся к следующему:

- приведение в готовность бригады реагирования на аварийные ситуации;
- проверка готовности систем извещения об аварийной ситуации;
- заблаговременное оповещение обслуживающего персонала о методах реагирования на внештатную ситуацию;
- усиление мер по контролю за работой и герметичностью основного технологического оборудования, целостностью системы технологического оборудования в строгом соответствии с технологическим регламентом на период НМУ;

- усиление контроля за выбросами источников, дающих максимальное количество вредных веществ;
- временное прекращение плановых ремонтов, связанных с повышенным выделением вредных веществ в атмосферу;
- при нарастании НМУ прекращение работ, которые могут привести к нарушению техники безопасности (работа на высоте, работа с электрооборудованием и т.д.).

2 ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОСТОЯНИЕ ВОД

<u>Потребность в водных ресурсах для намечаемой деятельности на период</u> строительства и эксплуатации, требования к качеству используемой воды

Период строительства

Источником водоснабжения в период строительства используется привозная вода (питьевая воды на площадке строительства привозная бутилированная вода).

Таблица 11. Водопотребление и водоотведение в период строительства

Havyvayanayyya wamaafiyyaaay	Водопотребл	ление	Водоотве	едение
Наименование потребителей	м ³ /cyт	м ³ /период	м ³ /сут	м ³ /период
	Период строител	ьства		
На хозяйственно-бытовые нужды	0,1	3	0,1	3
ИТОГО:	0,1	3	0,1	3

Система водоотведения санитарно-бытовых помещений строительных площадок осуществляется путем подключения их мобильным туалетным кабинам «Биотуалет», который по мере накопления будет выкачиваться и вывозиться согласно договору специализированной подрядной организации.

Период эксплуатация

В соответствии с техническими условиями, водоснабжение на хозяйственно-питьевые нужды запроектировано от водопровода Д110. Точка подключения-существующий водопроводный колодец. От существующего колодца к зданию запроектирован трубопровод Ø40.

Таблица 12. Водопотребление и водоотведение в период эксплуатации

Have covered water of the series	Водог	потребление	Водоот	ведение
Наименование потребителей	м 3/сут	м ³ /год	м ³ /сут	м ³ /год
	Период экспл	уатации		
На хозяйственно-бытовые нужды	0,1	25,2	0,1	25,2
На технические нужды	0,05	5,05	-	=
ИТОГО:	0,15	30,25	0,1	25,2

Водный баланс на хозяйственно-бытовые и технические нужды в период строительства и эксплуатации представлены в таблице 13 и 14.

Таблица 13. Водный баланс на на хозяйственно-бытовые нужды в период строительства

		Водопотребление, м ³ /период						Водоотведение, м ³ /период				
Производс		Ha	произво	дственн	ые нужды							
		Свежая вода			Повторно	На хозяйстве	Безвозвра		Объем сточной	Производстве	Хозяйстве нно –	Прим
		TBO	О	всег	питьев	ная	используе	бытовые	потреблен		повторно	сточные волы
		o	ОГО	вода	мая вода	нужды	ие		используе мой		воды	
			качеств	1					МОИ			
			a									
Период												
строитель	3	-	-	-	-	3	-	3	-	-	3	-
ства												

Таблица 14. Водный баланс на на хозяйственно-бытовые нужды в период эксплуатации

		Водопотребление, м ³ /период						Водоотведение, м ³ /период				
Производс тво	o	C:	вежая вода в т.ч. питьев	Оборот ная вода	ые нужды Повторно - используе мая вода	На хозяйстве нно –	Безвозвра тное потреблен ие	Всег о	воды	Производстве нные сточные воды	бытовые	Прим е- чание
Период эксплуата ции	30,2 5	0,05	-	5	-	25,2	$0,05^2$	25, 2	-	-	25,2	-

Примечание:

Поверхностные воды

Ближайшим водным объектом к площадке проектируемых работ является река Черная Речка, протекающая в северо-восточном направлении на расстоянии не менее 8 км от участка работ.

Влияние намечаемого объекта на поверхностные и подземные воды не предполагается.

<u>Характеристика водных объектов, потенциально затрагиваемых намечаемой</u> <u>деятельностью (с использованием данных максимально приближенных наблюдательных</u> <u>створов)</u>

Во время строительства водные объекты не затрагиваются

<u>Гидрологический, гидрохимический, ледовый, термический, скоростной режимы</u> водного потока, режимы наносов, опасные явления - паводковые затопления, заторы, наличие шуги, нагонные явления

^{1 –} Подпитка общей системы технического водоснабжения

² – Потери в технологическом процессе.

Наблюдения за качеством поверхностных вод по Атырауской области проводились на 20 створах на 5 водных объектах (реки Жайык, Кигаш, проток Шаронова, протоки Перетаска и Яик).

Мониторинг качества морской воды проводится на следующих 22 прибрежных точках Северного Каспийского моря: морской судоходный канал (2), взморье р. Жайык (5), взморье р. Волга (5), станции острова залива Шалыги (5), п. Жанбай (5).

При изучении поверхностных вод в отбираемых пробах воды определяются 43 гидрохимических показателей качества: визуальные наблюдения, температура, взвешенные вещества, прозрачность, цветность, водородный показатель (рН), растворенный кислород, БПК5, ХПК, сухой остаток, главные ионы солевого состава, биогенные элементы, органические вещества (нефтепродукты, фенолы), тяжелые металлы, пестициды.

Мониторинг за состоянием качества поверхностных и морских вод по гидробиологическим показателям на территории Атырауской области за отчетный период проводился на 4 водных объектах (рек Жайык, Кигаш в протоке Шаронова, и Каспийское море) на 27 створах. Было проанализировано 81 проб на определение острой токсичности исследуемой воды на тестируемый объект.

Основным нормативным документом для оценки качества воды водных объектов Республики Казахстан является «Единая система классификации качества воды в водных объектах» (далее — Единая Классификация). По Единой классификации качество воды оценивается следующим образом (см. таблица 15)

Таблица 15 - Оценка по единой классификации качества воды согласно бюллетени за август 2024 г.

П отистования	Класс кач	нества воды			концентр ация	
Наименование водного объекта	Август 2023 г.	Август 2024г.	Параметры	ед. изм.		
р. Жайык	4 класс	4 класс	Магний	мг/дм³	36,8	
пр.Перетаска	4 класс	4 класс	Магний	мг/дм ³	36,7	
пр.Яик	4 класс	4 класс	Магний	мг/дм ³	39,4	
р.Кигаш	не нормируется (>5 класс)	4 класс	Магний	мг/дм³	31,5	
пр.Шаронова	4 класс	4 класс	Магний	мг/дм³	30,1	

Как видно из таблицы в сравнении с августом 2023 года качество поверхностной воды реки Кигаш с выше 5 класса перешло в 4 класс – улучшилось.

Качество поверхностных вод реки Жайык, протоков Перетаска, Яик и Шаронова существенно не изменилось.

Основными загрязняющими веществами в водных объектах по Атырауской области является магний.

Случаи высокого загрязнения (ВЗ) и экстремально высокого загрязнения (ЭВЗ).

За август 2024 года на территории Атырауской области ВЗ и ЭВЗ не обнаружены.

Река Жайык. *Перифитон*. В обрастаниях перифитона доминировали диатомовые водоросли. Диатомовые водоросли встречались во всех створах. Средний индекс сапробности равен 1,92. Умеренно загрязненная вода.

Зообентос. Зообентос был предоставлен брюхоногими моллюсками. Биотический индекс по Вудивиссу составил-5. Класс воды- третий.

Биотестирование. По данным биотестирования тест-параметр по реке Жайык был предоставлен в последовательном расположения точек наблюдения: поселок Дамба - 0%, г. Атырау 0,5 км ниже сброса КГП «Атырау су арнасы» - 0%, п. Индер «в створе водопоста» - 0%. Полученные данные показывает отсутствие токсического влияния исследуемой воды на тест-объект.

Материал взят с сайта РГП «Казгидромет» https://www.kazhydromet.kz/ru

<u>Оценка возможности изъятия нормативно обоснованного количества воды из</u> <u>поверхностного источника в естественном режиме, без дополнительного регулирования</u> стока

Изьятие из поверхностного источника не планируется

<u>Необходимость и порядок организации зон санитарной охраны; количество и характеристика сбрасываемых сточных вод (с указанием места сброса, конструктивных особенностей выпуска, перечня загрязняющих веществ и их концентраций)</u>

Сброс производственных стоков – отсутствует. Для естественных нужд работников устанавливается надворный биотуалет в непосредственной близости от места проведения работ, для хозяйственно-бытовых сточных вод на территории строительной площадки предусматривается установка специализированной, герметичной емкости для сбора сточных вод. При заполнении на договорной основе со специальной организации вывозится на поля ассенизации.

<u>Обоснование максимально возможного внедрения оборотных систем, повторного</u> <u>использования сточных вод, способы утилизации осадков очистных сооружений</u>

Вывоз сточных вод из герметичной емкости и биотуалетов предусматривается производить мере накопления, специализированной организацией согласно договору.

<u>Предложения по достижению предельно-допустимых сбросов (далее - ПДС), в</u> <u>состав которых должны входить</u>

Сброс сточных вод в поверхностные водоемы при строительстве и эксплуатации не планируется, поэтому разработка проекта ПДС не предусматривается.

<u>Оценка воздействия планируемого объекта на водную среду в процессе</u> <u>строительства и эксплуатации, включая возможное тепловое загрязнение водоема и последствия воздействия отбора воды на экосистему</u>

В процессе строительства и эксплуатации объекта тепловое загрязнение водоема и последствия воздействия отбора воды на экосистему не предусматривается

<u>Оценка изменений русловых процессов, связанных с прокладкой сооружений,</u> строительства мостов, водозаборов и выявление негативных последствий

Изменение русловых процессов, связанных с прокладкой сооружений, строительства мостов, водозаборов не планируется, в связи с чем выявление негативных последствий не будет.

<u>Водоохранные мероприятия, их эффективность, стоимость и очередность</u> реализации

- разгрузку и складирование оборудования и строительных материалов осуществлять на площадках удаленных от водоохранной полосы на расстоянии не менее 100 метров,
- временные стоянки автотранспорта и другой техники организовывать за пределами водоохранной зоны,
- движение автотранспорта и другой техники по склонам долин и при переезде русел осуществлять по имеющимся дорогам и мостовым сооружениям,
- по завершению работ проводить очистку территории от строительного и бытового мусора и нефтепродуктов в случае их разлива, водоснабжение стройки осуществляется только привозной водой, содержать территорию участка в санитарно-чистом состоянии, согласно нормам СЭС и охраны окружающей среды – постоянно;
- после окончания строительства произвести очистку территории;
- не допускать захвата земель водного фонда.

Предусмотренные мероприятия исключают возможность загрязнения водных ресурсов в процессе строительства.

Водоохранные мероприятия не требуется так как влияние на поверхностные воды не предусматривается

Организация экологического мониторинга поверхностных вод

Организация экологического мониторинга не требуется так как влияние на поверхностные воды не предусматривается.

Описание современного состояния эксплуатируемого водоносного горизонта (химический состав, эксплуатационные запасы, защищенность), обеспечение условий для его безопасной эксплуатации, <u>необходимость организации зон санитарной охраны</u> <u>водозаборов</u>

Строительные работы планируется производить вне территории существующих водозаборов, в связи с этим загрязнение поверхностных вод для питьевого значения не планируется.

Оценка влияния объекта в период строительства и эксплуатации на качество и количество подземных вод, вероятность их загрязнения

На период строительства и эксплуатации влияние на качество подземных вод не будет, так как для естественных нужд работников устанавливаются надворные биотуалеты, для хозяйственно-бытовых сточных вод на территории строительной площадки предусматривается установка специализированной, герметичной емкости для сбора сточных вод с последующим вывозом на договорной основе специализированной организацией. Мойка автоколес планируется производить на специально оборудованных местах.

Анализ последствий возможного загрязнения и истощения подземных вод

Существующие условия водоотведения предприятия поддаются изменениям, влияние на поверхностные, подземные воды и на рельеф местности - исключено. Обоснование мероприятий по защите подземных вод от загрязнения и истощения

Для ослабления воздействия на поверхностные и подземные воды:

запрещается сливать и сваливать какие-либо материалы и вещества, получаемые при выполнении работ в водные источники и пониженные места рельефа;

31

- необходимо чтобы все постоянные и временные водотоки и водосбор на строительной площадке и за ее пределами содержались в чистоте, были свободными от мусора и отходов. В случае использования воды для производственных нужд из поверхностных источников подрядчику необходимо выполнить следующие мероприятия:
- при строительстве не допускать применение стокообразующих технологий или процессов;
- при производстве земляных работ не допускать сброс грунта за пределы обозначенной на генплане границы временного отвала. Не допускать беспорядочного складирования изымаемого грунта в акватории реки;
- не допускать базирование специальной строительной техники и автотранспорта на водоохраной зоне и полосе;
- оборудовать место временного нахождения рабочих резервуаром для сбора образующихся хоз бытовых стоков и контейнером для сбора и хранения ТБО

В этом случае влияние при строительстве и эксплуатации объекта на поверхностные и подземные воды практически не будут оказываться.

3 ОЦЕНКА ВОЗДЕЙСТВИЙ НА НЕДРА

<u>Наличие минеральных и сырьевых ресурсов в зоне воздействия намечаемого</u> объекта (запасы и качество)

Строительно-монтажные работы планируется произвести на освонной территории промышленной зоны.

Потребность объекта в сырьевых ресурсах в период строительства и эксплуатации

На период строительства и эксплуатации потребность в минеральных и сырьевых ресурсах данной территории не требуется.

<u>Прогнозирование воздействия добычи минеральных и сырьевых ресурсов на</u> различные компоненты окружающей среды и природные ресурсы

Добыча минеральных и сырьевых ресурсов на территории строительства не планируется.

При проведении операций по недропользованию, добыче и переработке полезных ископаемых должны быть представлены следующие материалы:

Проведение операций по недропользованию, добыче и переработке полезных ископаемых проектом не предусматривается.

<u>Характеристика используемых месторождений (запасы полезных ископаемых, утвержденные Государственной комиссией по запасам полезных ископаемых (ГКЗ), их</u> геологические особенности и другие)

Проведение операций по недропользованию, добыче и переработке полезных ископаемых проектом не предусматривается.

Материалы, подтверждающие возможность извлечения и реализации вредных компонентов, а для наиболее токсичных - способ их захоронения

Проведение операций по недропользованию, добыче и переработке полезных ископаемых проектом не предусматривается.

<u>Радиационная характеристика полезных ископаемых и вскрышных пород</u> (особенно используемых для рекультивации и в производстве строительных материалов)

Проведение операций по недропользованию, добыче и переработке полезных ископаемых проектом не предусматривается.

Рекомендации по составу и размещению режимной сети скважин для изучения, контроля и оценки состояния горных пород и подземных вод в процессе эксплуатации объектов намечаемого строительства

Проведение операций по недропользованию, добыче и переработке полезных ископаемых проектом не предусматривается.

Предложения по максимально-возможному извлечению полезных ископаемых из недр, исключающие снижение запасов подземных ископаемых на соседних участках и в районе их добычи (в результате обводнения, выветривания, окисления, возгорания и так далее)

Проведение операций по недропользованию, добыче и переработке полезных ископаемых проектом не предусматривается.

Оценка возможности захоронения вредных веществ и отходов производства в недра, с предоставлением заключения специализированной научно-исследовательской организации.

Проведение операций по недропользованию, добыче и переработке полезных ископаемых проектом не предусматривается

4 ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

Виды и объемы образования отходов

Период строительства

Огарыши сварочных электродов

Исходные данные:

Расход сварочного материала – 0,07877 т.

Расчет объемов образования огарков сварочных электродов производится по «Методике разработки проектов нормативов предельного размещения отходов производства и потребления» (п. 2.22), Приложение №16 к приказу Министра ООС РК от 18.04.08 г., №100-п:

$$N = M * \alpha$$
, т/год

где N - норма образования огарков сварочных электродов;

M = 0.07877 т - расход сварочного материала;

 $\alpha = 0.015$ - остаток электрода.

Объем образования сварочных огарков при производстве строительных работ составит:

$$N = 0.07877 * 0.015 = 0.00118 \text{ T}$$

Сбор и временное хранение данного вида отходов будет предусмотрено в специальном металлическом контейнере с крышкой. Огарки электродов по мере накопления будут сдаваться на металлолом согласно разовой накладной.

Тара из-под лакокрасочных материалов

Исходные данные:

Объемы используемых материалов:

- грунтовка ГФ-021 0,00007 т;
- уайт-спирит 0,000504 т;
- лак БТ-577 0,0009 т;
- эмаль ПФ-115 -0,0001868 т;

Расчет выполнен согласно п. 2.35 «Методики разработки проектов нормативов предельного размещения отходов производства и потребления, Приложение №16 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п.

Объем образующейся тары из-под лакокрасочных материалов определяется по формуле:

$$N = \sum M_i \cdot n + \sum M_{\kappa i} \cdot \alpha_{i, T/\Gamma O J}$$

где M_i - масса i -го вида тары, M = 0.4 кг;

n - число видов тары;

 $\mathbf{M}_{\mathbf{k}\mathbf{i}}$ - масса краски в і-ой таре, $\mathbf{M}=0.5$ кг;

 α_{i} - содержание остатков краски в i-той таре в долях от $M_{\kappa i}$, принимается равным 0.01-0.05.

$$N = 0.0004 \cdot 4 + (0.00007 + 0.000504 + 0.0009 + 0.0001868) \cdot 0.02 = 0.00163 \text{ T}$$

Данный вид отхода будет образовываться в основном на последних этапах работ. Временное хранение пустой тары из-под ЛКМ будет производиться на территории производственной базы предприятия-подрядчика, выполняющего работы и по окончании реконструкции данный вид отходов либо будет возвращен поставщику ЛКМ, либо передан на специализированный полигон промышленных отходов согласно договору со специализированной организацией.

Коммунальные отходы

Общее годовое накопление бытовых отходов рассчитывается по «Методике разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра ООС РК от 18.04.08 г., №100-п по формуле:

$$M = 0.3 \times 0.25 \times m$$

где М – годовое количество отходов, т/год;

0,3 — удельная санитарная норма образования бытовых отходов на промышленных предприятиях, м 3 /год;

0,25 — средняя плотность отходов, T/M^3 ;

т – численность работающих в сутки, чел.

Количество рабочего персонала составляет -4 человек.

Срок строительства составит 1 мес. Таким образом, объем образования бытовых отходов за весь период строительства составит:

$$M = 0.3 \times 0.25 \times 4 \times 30 / 365 = 0.025$$
 т/период

Период эксплуатации

Зола

При сжигании медицинских отходов в инсинераторе образуется зола.

Согласно Приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314 (классификатор отходов), зола от сжигания отходов относится к неопасным отходам и имеет код 10 01 17.

После утилизации остатки отходов представлены золой. Согласно химического состава, в отходах содержится 75 % органических материалов (выход золы от сжигания отходов составляет 5 %). Таким образом, после утилизации объем образования золы составит:

 $Motx = M\phi x C, \tau/год,$

где Мф - объем сжигаемых отходов, 1152 т/год;

С - содержание негорючих компонентов,

 $Motx = M\phi x 0.05 = 1152 x 0.05 = 57.6 т/год.$

Коммунальные отходы

Общее годовое накопление бытовых отходов рассчитывается по «Методике разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение №16 к приказу Министра ООС РК от 18.04.08 г., №100-п по формуле:

$$M = 0.3 \times 0.25 \times m$$

где М – годовое количество отходов, т/год;

0,3 – удельная санитарная норма образования бытовых отходов на промышленных предприятиях, м³ /год;

0,25 — средняя плотность отходов, T/M^3 ;

т – численность работающих в сутки, чел.

Количество работников в период эксплуатации ориентировочно – 4 человек.

Таким образом, объем образования бытовых отходов составит:

$$M = 0.3 \times 0.25 \times 4 = 0.3$$
 т/год

Коммунальные отходы необходимо будет собирать в специально отведенные для этого емкости временного хранения (контейнеры), которые будут освобождаться по мере накопления.

Временное хранение отходов будет осуществляться не более шести месяцев.

В таблицах 16 и 17 представлены нормативы размещения отходов производства и потребления в период строительства и эксплуатации.

Таблица 16 Лимиты накопления отходов производства и потребления в период строительства.

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
Bcero:	-	0,02781
в том числе отходов производства	-	0,00281
отходов потребления	-	0,025
Опасные отходы		
Тара из-под лакокрасочных материалов 15 01 10 *	-	0,00163
Неопасные отходы		
Огарыши сварочных электродов 12 01 01		0,00118
Коммунальные отходы 20 03 01		0,025
Зеркальные отходы		
-	-	-

Таблица 17 – Лимиты накопления отходов производства и потребления в период эксплуатации.

Наименование отходов	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год
Всего:	-	57,9
в том числе отходов производства	-	57,6
отходов потребления	-	0,3
Опасные отходы		
-	-	-
Неопасные отходы		
Зола 10 01 01	-	57,6
Коммунальные отходы 20 03 01	-	0,3
Зеркальные отходы		
-	-	-

Рекомендации по управлению отходами: накоплению, сбору, транспортировке, восстановлению (подготовке отходов к повторному использованию, переработке, утилизации отходов) или удалению (захоронению, уничтожению), а также вспомогательным операциям: сортировке, обработке, обезвреживанию); технологии по выполнению указанных операций

Под сбором отходов понимается деятельность по организованному приему отходов от физических и юридических лиц специализированными организациями в целях дальнейшего направления таких отходов на восстановление или удаление.

Операции по сбору отходов могут включать в себя вспомогательные операции по сортировке и накоплению отходов в процессе их сбора.

Под накоплением отходов в процессе сбора понимается хранение отходов в специально оборудованных в соответствии с требованиями законодательства Республики Казахстан местах, в которых отходы, вывезенные с места их образования, выгружаются в целях их подготовки к дальнейшей транспортировке на объект, где данные отходы будут подвергнуты операциям по восстановлению или удалению.

Накопление отходов разрешается только в специально установленных и оборудованных в соответствии с требованиями законодательства Республики Казахстан местах (на площадках, в складах, хранилищах, контейнерах и иных объектах хранения).

Лица, осуществляющие операции по сбору отходов, обязаны обеспечить раздельный сбор отходов в соответствии с требованиями настоящего Кодекса.

Сбор отходов производить раздельно, в соответствии с видом отходов, методами их утилизации, реализацией, хранением и размещением отходов.

Для сбора отходов выделить специально отведенные места с установленными контейнерами для сбора отходов.

Хранение отходов в контейнерах позволяет предотвратить утечки, уменьшить уровень их воздействия на окружающую среду, а также воздействие погодных условий на состояние отходов. По мере наполнения тары отходы сортируется вручную, доставляются в соответствующие места временного хранения предприятия. Порядок сбора, сортировки, хранения, утилизации, нейтрализации, реализации, размещения отходов и транспортировки производится в соответствии с требованиями к обращению с отходами по уровням опасности.

Оформление документов на вывоз и погрузку отходов в автотранспорт осуществляет ответственный за обращение с отходами в производственном подразделении.

Отходы, поступившие на площадку для термического обезвреживания, хранятся в специально оборудованных местах, с соблюдение всех требований, не более 6 месяцев.

5 ОЦЕНКА ФИЗИЧЕСКИХ ВОЗДЕЙСТВИЙ НА ОКРУЖАЮЩУЮ СРЕДУ

<u>Оценка возможного теплового, электромагнитного, шумового, воздействия и</u> <u>других типов воздействия, а также их последствий</u>

Вредные физические воздействия подразумевают воздействие шума, вибрации, ионизирующего и неионизирующего излучения, факторов, изменяющих температурные, энергетические, волновые, радиационные и другие физические свойства атмосферного воздуха, влияющих на здоровье человека и окружающую среду (Приказ Министра здравоохранения Республики Казахстан от 16 февраля 2022 года № КР ДСМ-15 Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека).

К вредным физическим воздействиям относятся:

- вибрация;
- производственный шум;
- электромагнитные излучения;
- инфразвуковые и световые поля и пр.

<u>Вибрация</u>

Вибрация – механические колебания в технике (машинах, механизмах, конструкциях, двигателях).

По снижению вибрации в источнике возбуждения выполняются основные мероприятия:

виброизоляция с помощью виброизолирующих опор, упругих прокладок, конструктивных разрывов, резонаторов, кожухов и других;

виброизоляция ограждающих конструкций, устройство резонансных поглотителей, облицовка стен, потолков и пола;

применение виброизолирующих фундаментов для оборудования компрессорных машин, установок, систем вентиляции и кондиционирования воздуха;

рациональные с виброакустической точки зрения строительные и объемно-планировочные решения производственных цехов, помещений и зданий;

конструктивные и технологические мероприятия, направленные на снижение вибрации в источниках ее возбуждения, при разработке новых и модернизации существующих машин, агрегатов и оборудования;

применение невибрирующих технологических процессов и агрегатов, использование наиболее рациональных схем размещения станков и оборудования при реконструкции участков и цехов;

снижение вибрации, возникающей при работе машины или оборудования, путем увеличения жесткости и вибро-демпфирующих свойств конструкций и материалов, стабилизации прочности и других свойств деталей;

рациональное планирование административных помещений, производственных цехов и участков в зданиях, по созданию оптимальной вибрационной и шумовой обстановки на рабочих местах.

Комплекс организационных и лечебно-профилактических мероприятий для обеспечения вибрационной безопасности труда должен включать: профилактические медицинские осмотры работающих лиц; внедрение и соблюдение режимов труда и отдыха для лиц виброопасных профессий, направленных на ограничение времени воздействия вибрации; специальные комплексы производственной гимнастики; использование средств индивидуальной защиты.

Не допускается использование ручных машин и оборудования, генерирующих вибрацию, не по назначению и в режимах, отличающихся от паспортных, а также проведение сверхурочных работ.

Не допускается проводить работы и применять машины и оборудование с показателем превышения вибрации более 12 дБ (4,0 раза) и уровнем звукового давления свыше 135 дБ в любой октавной полосе.

Для снижения реальной вибрационно-шумовой нагрузки и профилактики ее неблагоприятного воздействия, работающие должны использовать средства индивидуальной защиты.

Ионизирующее излучение, энергетические, волновые и другие излучения, приводящие к вредному воздействию на атмосферный воздух, здоровье человека и окружающую среду от проектируемых сооружений отсутствуют

Шум

Шум — беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. При проведении строительных работ, естественно, будет иметь место шумовое воздействие.

Источниками возможного шумового воздействия на окружающую среду в период строительных работ будут строительная техника.

Интенсивность шумовых нагрузок не окажет отрицательного воздействия на жилую зону, в связи с ее отдаленностью.

Электромагнитное излучение

Электромагнитное излучение — это электромагнитные колебания, создаваемые источником естественного, или искусственного происхождения. Основными источниками электромагнитного неионизирующего излучения являются предприятия, или объекты, вырабатывающие, или преобразующие электроэнергию промышленной частоты.

Источником электромагнитного излучения являются существующая комплектная трансформаторная подстанция, проектируемые линии электропередач и вводнораспределительное устройство.

Источники радиоактивных загрязнений

Источники радиоактивного загрязнения на территории объекта не предполагаются.

Источники электромагнитных излучений

Электромагнитное загрязнение – поле, возникающее вблизи источника электромагнитных колебаний и на пути распространения электромагнитных колебаний.

Источники электромагнитного загрязнения на территории объекта не предполагаются.

<u>Характеристика радиационной обстановки в районе работ, выявление природных</u> и техногенных источников радиационного загрязнения

Наблюдения за уровнем гамма излучения на местности осуществлялись ежедневно на 3-х метеорологических станциях (Атырау, Пешной, Кульсары) и 1 автоматическом посту г. Кульсары (ПНЗ № 7).

Средние значения радиационного гамма - фона приземного слоя атмосферы в области находились в пределах 0.09-0.16 мкЗв/ч. В среднем по области радиационный гамма-фон составил 0.12 мкЗв/ч и находился в допустимых пределах.

Мониторинг за радиоактивным загрязнением приземного слоя атмосферы на территории Атырауской области осуществлялся на метеорологической станции Атырау, путем отбора проб воздуха горизонтальными планшетами. На станции проводился пятисуточный отбор проб. Среднесуточная плотность радиоактивных выпадений в приземном слое атмосферы г. Атырау колебалась в пределах 1,4— 2,3 Бк/м2. Средняя величина плотности выпадений составила 1,9 Бк/м2, что не превышает предельнодопустимый уровень.

Материал взят с сайта РГП «Казгидромет» https://www.kazhydromet.kz/ru

6 ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЗЕМЕЛЬНЫЕ РЕСУРСЫ И ПОЧВЫ

Характеристика современного состояния почвенного покрова в зоне воздействия планируемого объекта (почвенная карта с баллами бонитета, водно-физические, химические свойства, загрязнение, нарушение, эрозия, дефляция, плодородие и механический состав почв)

Анализ результатов исследований с учётом возраста, происхождения, номенклатурного вида и состояния грунтов позволяют выделить в пределах участка проектируемого строительства 5 инженерно-геологических элементов (ИГЭ).

Правильность выделения инженерно-геологических элементов была проверена на основании качественной оценки изменчивости показателей физико-механических свойств грунтов.

Коэффициенты вариации физико-механических характеристик не превышают пределов, допустимых ГОСТ 20522-96.

Обобщённые значения показателей физико-механических свойств грунтов выделенных инженерно-геологических элементов приведены в сводной ведомости.

ИГЭ - 1 Насыпной грунт Суглинок серо-коричневый с включением строительного и бытового мусора, залегает повсеместно от поверхности слоем мощностью 0,3 - 0,5 м, абсолютные отметки подошвы -23,86 - -23,30.

ИГЭ - 2 Суглинок тяжелый серого цвета, с прослойками глины и супеси, заилованный, влажный, тугомягкопластичной консистенции, с включением дресвы и битой ракушки, залегает повсеместно в виде слоя мощностью 1,8 - 2,0 м в интервале глубин от 0,3 до 2,3 м, абсолютные отметки подошвы -25,66 - -25,30. В естественных условиях имеет мягкопластичную консистенцию с показателем текучести IL = 0,56-0,71.

Нормативные значения модуля общей деформации и сдвиговых испытаний приведены по определены по СП РК 5.01-102-2013

ИГЭ - 3 Глина легкая пылеватая, темно-серого цвета, влажная, плотная, полутвердая, с включением гнезд карбонатов, с включением ила, залегает повсеместно в виде слоя мощностью 1,1 - 1,5 м в интервале глубин от 2,3 до 3,8 м, абсолютные отметки подошвы -27,16 - -26,40.

В естественных условиях имеет полутвердую и тугопластичную консистенцию с показателем текучести IL=0.18.

Коэффициент пористости по данным лабораторных исследований колеблется в пределах 0,605 - 0,808 (e =0,686).

Нормативные значения прочностных характеристик определены по результатам сдвиговых испытаний.

Нормативные значения модуля общей деформации определены по результатам компрессионных испытаний.

ИГЭ - 4 Глина легкая пылеватая, буро-коричневого цвета с пятнами глины светлосерого цвета, влажная, плотная, полутвердая до тугопластичной, с включением битой ракушки, залегает повсеместно в виде слоя мощностью 1,2 - 2,6 м в интервале глубин от 3,4 до 6,0 м, абсолютные отметки подошвы -29,33 - -28,36. В естественных условиях имеет полутвердую и тугопластичную консистенцию с показателем текучести IL = 0,23.

Коэффициент пористости по данным лабораторных исследований колеблется в пределах 0.587 - 0.685 (e= 0.642).

Нормативные значения прочностных характеристик определены по результатам сдвиговых испытаний.

Нормативные значения модуля общей деформации определены по результатам компрессионных испытаний.

ИГЭ - 5 Супесь песчанистая, серовато-коричневого цвета, сильновлажная, пластичная, глинистая, вскрыт только в скважине 3 и залегает в виде слоя мощностью 1,0 м в интервале глубин от 5,0 до 6,0 м, абсолютная отметка подошвы -29,36. В естественных условиях имеет пластичную консистенцию с показателем текучести IL = 0,75.

Нормативные значения модуля общей деформации и сдвиговых испытаний приведены по определены по СП РК 5.01-102-2013.

Характеристика ожидаемого воздействия на почвенный покров (механические нарушения, химическое загрязнение), изменение свойств почв и грунтов в зоне влияния объекта в результате изменения геохимических процессов, созданием новых форм рельефа, обусловленное перепланировкой поверхности территории, активизацией природных процессов, загрязнением отходами производства и потребления

Антропогенная трансформация почвенного покрова участка вызвана техногенными факторами. Ведущей как по интенсивности, так и по охватываемой площади на территории участка является техногенная деградация почвенного покрова. Техногенная деградация почвенного покрова проявляется в виде линейной - дорожная сеть. Механическое воздействие на почвы характеризуется полным уничтожением почвенного покрова с разрушением исходного микро- и нанорельефа и образованием техногенного рельефа положительных (насыпи, валы) и отрицательных форм (выемки, амбары,

траншеи), сопровождаемым техногенной турбацией (потеря горизонтальной стратификации, уплотнение, перемешивание субстратов разных горизонтов), денудацией (формирование почв с неполным или укороченным профилем) и погребением почв извлеченными на поверхность подстилающими породами. В соответствии с «Инструкцией по осуществлению государственного контроля за охраной и использованием земельных ресурсов» основными критериями оценки деградации почвы, в зависимости от ее типа, являются:

- Перекрытость поверхности почв абиотическими насосами;
- Степень и глубина нарушения земельных ресурсов (провалы, траншеи, карьеры и т.п.;
- Увеличение плотности почвы;
- Опесчаненность верхнего горизонта почвы;
- Уменьшение мощности гнетических горизонтов;
- Уменьшение содержания гумуса и основных элементов питания растений
- Степень развития эрозионных процессов и соотношение эродированных почв;
- Увеличение содержания воднорастворимых солей;
- Изменение состава обменных оснований;
- Изменение уровня почвенно-грунтовых вод;
- Превышение ПДК загрязняющих веществ в контролируемых земельных ресурсах.

Дорожная дигрессия почв является неизбежной составляющей любого вида антропогенного воздействия. Нарушения почвенного покрова в результате транспортных нагрузок проявляются, прежде всего, в деградации физического состояния почв, под которой понимается устойчивое ухудшение их физических свойств, в первую очередь структурного состояния и сложения, приводящее к ухудшению водного, воздушного, питательного режимов и в конечном итоге — к снижению уровня естественного плодородия.

В связи с тем, что строительная площадка объекта расположена на существующей территории, рекультивация земель проектом не предусматривается.

На строительной площадке предусматриваются специальные места для хранения материалов, лакокрасочные материалы и сыпучие строительные материалы, используемые для отделочных работ, будут доставляться в герметичной таре и упаковке.

Для временного хранения образующихся строительных отходов устраивается площадка с твердым покрытием.

Планируемые мероприятия и проектные решения в зоне воздействия по снятию, транспортировке и хранению плодородного слоя почвы и вскрышных пород, по сохранению почвенного покрова на участках, не затрагиваемых непосредственной деятельностью, по восстановлению нарушенного почвенного покрова и приведению территории в состояние, пригодное для первоначального или иного использования (техническая и биологическая рекультивация)

Для эффективной охраны почв от загрязнения и нарушения необходимо разработать план-график конкретных мероприятий, который наряду с имеющимися проектными решениями, направленными на охрану почв, должен включать следующие мероприятия:

- своевременный контроль состояния существующих дорог для транспортировки временных сооружений, оборудования, материалов, людей;
- использование автотранспорта с низким давлением шин;
- принятие мер по оперативной очистке территории, загрязнённой нефтепродуктами и другими загрязнителями;
- неукоснительное выполнение мер по охране земель от загрязнения, разрушения и истощения;
- необходимо неукоснительное соблюдение санитарно-гигиенических требований, норм по хранению ГСМ, утилизации отходов, хранения и транспортировки бытовых и технологических отходов и пр.;
- при проведении планировочных работ в случае возникновения очагов ветровой и водной эрозии после интенсивных механических воздействий на почвенный покров необходима рекультивация нарушенных участков;
- использование в исправном техническом состоянии используемой техники и автотранспорта, для снижения выбросов загрязняющих веществ.

Разработчик: TOO «ABC Engineering»

7 ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНОСТЬ

Современное состояние растительного покрова в зоне воздействия объекта (геоботаническая карта, флористический состав, функциональное значение, продуктивность растительных сообществ, их естественная динамика, пожароопасность, наличие лекарственных, редких, эндемичных и занесенных в Красную книгу видов растений, состояние зеленых насаждений, загрязненность и пораженность растений; сукцессии, происходящие под воздействием современного антропогенного воздействия на растительность)

Растений в Атырауской области насчитывается 945 видов, но наиболее распространеная растительность - петросимония трехтычинковая, лебеда татарская, рогач песчаный, солянка натронная, чумная и облиственная, солянка Паульсена, мортук восточный, клоповник пронзенный, дескуранния Софии. Реже встречаются селитрянка Шобера, гребенщик многоцветковый. Растительность развивается в очень суровых природных условиях: засушливость климата, большие амплитуды колебаний температур, резкий недостаток влаги в сочетании с широкимраспространением засоленных почвообразующих и подстилающих пород, что обусловило преобладанием в составе растительности ксерофитных и мезофитных группировок. Основными компонентами сообществ являются представители семейства маревых (солянки сочные и сухие), сложноцветных (полыни) и злаковых (ерек, ажрек, тростник, кермек, острец, солодка, горчак ползучий, верблюжья колючка обыкновенная и др.).

Основу растительного покрова пустынно-степной подзоны светло-каштановых почв составляют дерновинные злаки (типчак, ковыль Лессинга, ковыли волосатик и сарептский), сочетающиеся с полынями и солянками. Проективное покрытие поверхности почвы не превышает 40-60%.

Проектируемое оборудование и сооружения будут располагаться на территории, характеризуемой как зона настоящих степей, последовательно пересекая ковыльные и типчаковые подзоны.

На светло-каштановых суглинистых почвах распространены типчаковобелоземельнополынные, белоземельнополынно-ковыльно-типчаковые сообщества. На почвах легкого механического состава встречаются еркеково-белоземельнополынные, еркеково-шагыровые пастбища. В результате интенсивного использования ими пастбища засорены молочаем, однолетними солянками.

Характеристика воздействия объекта и сопутствующих производств на растительные сообщества территории, в том числе через воздействие на среду обитания растений; угроза редким, эндемичным видам растений в зоне влияния намечаемой деятельности

Среди выбросов основное место по негативному воздействию на окружающую природную среду занимают пыль неорганическая. Помимо механических воздействий растительность будет испытывать влияние загрязнения атмосферного воздуха выбросами автотранспорта, пыления и т.д. Это влияние в первую очередь проявляется на биохимическом и физиологическом уровнях и происходит как путём прямого действия загрязняющих веществ на ассимиляционный аппарат, так и путём косвенного воздействия через почву. Значительное осаждение пыли на растениях приводит к угнетению фотосинтезирующей функции, снижению содержания хлорофилла в клетках, изменению и отмиранию тканей в отдельных органов растений и даже их полной гибели. Запылённые растения, даже если они и вегетируют, находятся в угнетённом состоянии и испытывают состояние от средней до сильной нарушенности. Накопление же вредных веществ в почве ведет к нарушению роста корневых систем и их минерального питания. В зависимости от погодно-климатических условий, солнечной радиации и влажности почв может изменяться поглотительная способность растения. После завершения работ на участке будет проведена рекультивация, при снятии механических воздействий на почвеннорастительный покров скорость восстановления их будет неодинаковой. Растительность, как более динамичный компонент, будет восстанавливаться быстрее. Наиболее быстро будут восстанавливаться почвы лёгкого механического состава. Скорость восстановления зональных суглинистых почв будет более замедленной и в значительной степени определяться составом растительности. Медленными темпами будет происходит восстановление древесной растительности. Восстановление растительности в результате естественных процессов занимает длительное время от 3-4 лет (для заселения пионерными видами), до 10 лет для формирования сомкнутых сообществ, так как формирование состава и структуры растительных сообществ неразрывно связано с формированием почв.

В целом воздействие на почвенно-растительный покров оценивается как не значительное, а также находящееся в пределах установленных экологических нормативов и не приводящее к необратимым для почвенных экосистем последствиям.

Ожидаемые изменения в растительном покрове (видовой состав, состояние, продуктивность сообществ, оценка адаптивности генотипов, хозяйственное и функциональное значение, загрязненность, пораженность вредителями), в зоне действия объекта и последствия этих изменений для жизни и здоровья населения

На территории строительства объекта воздействие на растительность не будет, так как объект существующий, строительные работы проводятся на селитебной зоне.

Рекомендации по сохранению растительных сообществ, улучшению их состояния, сохранению и воспроизводству флоры, в том числе по сохранению и улучшению среды их обитания

В формировании растительного покрова данной зоны принимает участие целый ряд жизненных форм — травянистых однолетников, двулетников и многолетников, что ставит растительные группировки территории на достаточно высокий восстановительный уровень.

Положительным элементом можно считать также и большую мозаичность растительного покрова, повышающую общую устойчивость фитоценозов. Поэтому при прекращении непосредственного воздействия начинается достаточно быстрое заселение растениями нарушенных участков.

Учитывая возможности местной флоры, при соблюдении соответствующих природоохранных мероприятий, воздействие работ на состояние почвенно-растительного покрова может быть оценено как локальное.

С целью снижения отрицательного техногенного воздействия на почвенно-растительный покров рассматриваемым проектом предусмотрено выполнение экологических требований и проведение природоохранных мероприятий, основными из которых являются:

- осуществление постоянного контроля границ отвода земельных участков. Для охраны почв от нарушения и загрязнения все работы проводить лишь в пределах отведенной во временное пользование территории. Вокруг площадки будут сделаны ограждения;
- рациональное использование земель, выбор оптимальных размеров рабочей зоны при ведении работ. Расположение объектов на площадке должно соответствовать утвержденной схеме расположения оборудования;
- ликвидация выявленных нефтезагрязненных участков;
- охрана растительности, сохранение редких растительных сообществ, флористических комплексов и их местообитания на прилегающих к месту ведения работ территориях;
- использование при проведении работ технически исправного, экологически безопасного оборудования и техники;
- использование удобных и экологически целесообразных подъездных автодорог, запрет езды по нерегламентированным дорогам и бездорожью;
- в местах хранения отходов будет исключена возможность их попадание в почвы;

• с целью контроля и оценки происходящих изменений состояния окружающей среды, прогноза их дальнейшего развития и оценки эффективности применяемых природоохранных мероприятий предусмотрено ведение производственного экологического контроля.

Мероприятия по предотвращению негативных воздействий на биоразнообразие, его минимизации, смягчению, оценка потерь биоразнообразия и мероприятия по их компенсации, а также по мониторингу проведения этих мероприятий и их эффективности

Целью охраны растительного покрова является контроль соблюдения землеотвода площадки предприятия и трассы подъездной дороги в период ведения работ.

Контролируемыми параметрами при мониторинге растительного покрова являются:

- размеры участка расчищенного от растительного покрова при ведении работ; виды нарушений растительного покрова у границ землеотвода при ведении работ.

8 ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЖИВОТНЫЙ МИР

Исходное состояние водной и наземной фауны

Согласно зоогеографическому районированию Казахстана территория Атырауской области относится к пустынной ландшафтной зоне, Средиземноморской подобласти, ИраноТуранской провинции, Туранскому округу, участку Северных Арало-Каспийских пустынь. Согласно литературным данным и результатам проведённых экологических исследований фауна рассматриваемого района представлена:

Беспозвоночные (членистоногие) животные - не менее чем 2443 видами из 1064 родов 135 семейств и 14 отрядов насекомых, и 70 видов из 44 родов 19 семейств 5 отрядов паукообразных.

Животный мир Атырауской области разнообразен. Из млекопитающих (39 видов), кроме общераспространенных грызунов (суслика, зайца, песчанки, тушканчика и др.), водятся хищные звери - волк, корсак, лисица, дикие кошки, ласка и некоторые другие, а также копытные - кабан, джейран и сайга; пресмыкающиеся - гадюки, полоз, уж, несколько видов ящериц и др., амфибии - жабы, лягушки. Основу фауны пресмыкающихся составляют пустынный комплекс — среднеазиатская черепаха (Agrionemys horsfieldi), пискливый (Alsophylax pipiens) и серый (Tenuidactylus russowi) гекконы, такырная (Phrynocephalus helioscopus), ушастая (Ph.mystaceus) круглоголовки и

круглоголовка-вертихвостка (Ph.guttatus), степная агама (Agama sanguinolenta), разноцветная (Eremias arguta) и быстрая (Eremias velox) ящурка, песчаный удавчик (Eryx milliaris) и стрелазмея (Psammophis lineolatum). Водяной уж (Natrix tessellata), четырехполосый (Elaphe quatuorlineata) и узорчатый (Elaphe dione) полозы, щитомордник (Agkisrodon halys) и степная гадюка (Vipera ursinii) имеют широкое интразональное распространение.

В количественном отношении наиболее массовыми в естественных солончаковых, такырных, супесчаных и песчаных биотопах района являются степная агама (А. sanguinolenta), разноцветная ящурка (Е. arguta) и такырная круглоголовка (Ph. helioscopus). Особое место в их распространении занимают преобразованные ландшафты (карьеры, техногенные насыпи и насыпи дорог, участки с удаленным почвенно-растительным слоем).

Наличие редких, исчезающих и занесенных в Красную книгу видов животных

Из птиц, занесенных в Красную Книгу РК, здесь гнездятся каравайка, колпица, малая белая и египетская цапли и султанка.

Прибрежные воды Северо-Восточного Каспия являются местом обитания перелетных водоплавающих птиц. Ряд редких видов, занесенных в Красную Книгу: некоторые виды лебедей, розовый и кудрявый пеликаны, совка, султанка, белая цапля, фламинго.

Характеристика воздействия объекта на видовой состав, численность фауны, ее генофонд, среду обитания, условия размножения, пути миграции и места концентрации животных в процессе строительства и эксплуатации объекта, оценка адаптивности видов

За последние десятилетия по естественным причинам и вследствие влияния антропогенных факторов на рассматриваемой территории изменились как ареалы ряда видов животных, так и их численность.

Антропогенное воздействие на ландшафты повлияло и на пролет птиц в рассматриваемом районе.

Возникшие специфические элементы ландшафта отличаются усложненным рельефом, нарушенным и загрязненным почвенным покровом, разреженной вторичной растительностью. Птиц здесь обычно немного, так как к прочим условиям добавляется еще постоянное присутствие человека и работающей техники.

В результате производственной деятельности техногенное преобразование может оказаться одной из причин, способной сократить места обитания, на которых могут жить в состоянии естественной свободы различные виды животных. При этом возможно как уничтожение или разрушение критических биотопов (мест размножения, нор, гнезд и т.д.), так и подрыв кормовой базы и уничтожение отдельных особей.

Частичная трансформация ландшафта обычно сопровождается загрязнением территории, что обуславливает их совместное действие.

Вместе с тем, производственная деятельность может привести к созданию новых местообитаний (различные насыпи, канавы, карьеры, насыпные грунтовые дороги и т.д.), способствующих проникновению и расселению ряда видов животных на освоенную территорию.

Воздействие на животный мир может быть прямым, косвенным, кумулятивным, остаточным:

- прямое воздействие будет проявляться через вытеснение, сублетальную деградацию здоровья, гибель представителей животного мира;
- косвенное воздействие возможно в результате изменения естественной среды обитания (создание, потеря, улучшение, деградация или разделение), появлении новых видов животных и насекомых;
- кумулятивное воздействие возможно в периодической потери мест обитания связанной с проведением работ в прошлом и будущем;
- остаточное воздействие проявится в интродукции (акклиматизации) чуждых видов животных.

Основными составляющими проявления фактора беспокойства являются шум и вибрация работающей техники и оборудования, передвижение людей и транспортных средств, свет. Факторы беспокойства также могут повлиять на снижение численности популяций различных представителей фауны.

Загрязнение территории ГСМ при работе автотранспорта может вызывать интоксикацию и гибель животных, преимущественно мелких млекопитающих, наземно гнездящихся птиц, насекомых и пресмыкающихся. Вибрация может послужить причиной сублетальной деградации здоровья животных и птиц:

- неудачной беременности, повышения количества выкидышей у млекопитающих;
- снижения кладки яиц у птиц и рептилий;

- меньших кормовых ресурсов близ гнездования/лежки, что приводит к повышенному соперничеству между потомством птиц;
- покидания гнезд.

Возможные нарушения целостности естественных сообществ, среды обитания, условий размножения, воздействие на пути миграции и места концентрации животных, сокращение их видового многообразия в зоне воздействия объекта, оценка последствий этих изменений и нанесенного ущерба окружающей среде

Возможные нарушения целостности естественных сообществ, среды обитания, условий размножения, воздействие на пути миграции и места концентрации животных, сокращения их видового многообразия в зоне воздействия объекта, оценка последствий этих изменений и нанесенного ущерба окружающей среде не будет, так как строительные работы планируется произвести на селитебной зоне.

Мероприятия по предотвращению негативных воздействий на биоразнообразие, его минимизации, смягчению, оценка потерь биоразнообразия и мероприятия по их компенсации, мониторинг проведения этих мероприятий и их эффективности (включая мониторинг уровней шума, загрязнения окружающей среды, неприятных запахов, воздействий света, других негативных воздействий на животных)

Охрана окружающей среды и предотвращение ее загрязнения в процессе ведения работ сводится к определению предполагаемого воздействия на компоненты окружающей природной среды (в т.ч. животный мир), разработке природоохранных мероприятий, сводящих к минимуму возможное воздействие.

Основные мероприятия по минимизации отрицательного антропогенного воздействия на животный мир должны включать:

- инструктаж персонала о недопустимости охоты на животных, бесцельном уничтожении пресмыкающихся;
- строгое соблюдение технологии;
- запрещение кормления и приманки диких животных;
- запрещение браконьерства и любых видов охоты;
- использование техники, освещения, источников шума должно быть ограничено минимумом;
- работы по восстановлению деградированных земель.

Для сохранения среды обитания животных необходимо ограничить количество подъездных дорог.

Рекомендуется предусматривать следующие меры: защита птиц от поражения электрическим током, путем применения "холостых" изоляторов; ограждение всех технологических площадок, исключающее случайное попадание на них животных.

Процессы работ характеризуются высокими темпами работ, минимальной численностью одновременно занятых работников, минимизацией монтажных операций на территории ремонтной базы, высокой квалификацией персонала, минимальной площадью земель, отводимых во временное пользование для технологических и социальных нужд работников на время работ, оптимизация транспортной схемы и др.

Необходимо обратить особое внимание на снижение отрицательного воздействия на особо охраняемые виды животных, занесенных в Красную книгу РК. В частности пропагандировать среди обслуживающего персонала недопустимость отлова и уничтожения пресмыкающихся. Предотвратить фактор беспокойства для птиц в гнездовой период. Проводить разъяснительную работу о предотвращении разорения легкодоступных гнезд и необходимости охраны хищных птиц.

При условии выполнения всех природоохранных мероприятий влияние от деятельности предприятия можно будет свести к минимуму.

9 ОЦЕНКА ВОЗДЕЙСТВИЙ НА ЛАНДШАФТЫ И МЕРЫ ПО ПРЕДОТВРАЩЕНИЮ, МИНИМИЗАЦИИ, СМЯГЧЕНИЮ НЕГАТИВНЫХ ВОЗДЕЙСТВИЙ, ВОССТАНОВЛЕНИЮ ЛАНДШАФТОВ В СЛУЧАЯХ ИХ НАРУШЕНИЯ.

Степной ландшафт состоит из лессовидных суглинков и лессов. Также здесь преобладают гидрослюды, глубже по профилюмонтмориллонит, мало каолинита. В составе встречается большое количество калия (2-4%), кальция, магния, а также зачастую отмечается образование горизонтов аккумуляции карбонатов и гипса.

Гидротермические условия степных ландшафтов зависит от температуры испарения ($t - 25^{\circ}$ C).

Содержание гумуса в составе почвы степных ландшафтов зачастую составляет от 1 до 4%. Реакция почв нейтральная или слабощелочная, накопление глинистых частиц в иллювиальном горизонте отсутствует. Разложение органического вещества и синтез гумуса протекают интенсивно.

Воздействия на ландшафты данным проектом не предусматривается.

10 ОЦЕНКА ВОЗДЕЙСТВИЙ НА СОЦИАЛЬНО-ЭКОНОМИЧЕСКУЮ СРЕДУ

<u>Современные социально-экономические условия жизни местного населения,</u> <u>характеристика его трудовой деятельности</u>

В соответстии с областным бюджетом на 2021-2023 года (Решение Атырауского областного маслихата от 9 декабря 2020 года № 497-VI. Зарегистрировано Департаментом юстиции Атырауской области 28 декабря 2020 года № 4838) областной бюджет на 2021-2023 годы согласно приложениям 1, 2 и 3 соответственно, в том числе на 2021 год был утвержден в следующих объемах:

1) доходы – 466 491 701 тысяч тенге, в том числе:

налоговые поступления – 130 180 130 тысяч тенге;

неналоговые поступления – 14 034 611 тысяч тенге;

поступления от продажи основного капитала – 33 347 тысяч тенге;

поступления трансфертов – 322 243 613 тысяч тенге;

- 2) затраты 471 504 933 тысяч тенге;
- 3) чистое бюджетное кредитование 1 930 301 тысяч тенге, в том числе:

бюджетные кредиты – 12 921 803 тысяч тенге;

погашение бюджетных кредитов – 10 991 502 тысяч тенге;

- 4) сальдо по операциям с финансовыми активами 9 339 тысяч тенге, в том числе: приобретение финансовых активов 21 000 тысяч тенге; поступления от продажи финансовых активов государства 11 661 тысяч тенге;
- 5) дефицит (профицит) бюджета -6 952 872 тысяч тенге;
- 6) финансирование дефицита (использование профицита) бюджета -6 952 872 тысяч тенге:

поступление займов -5591278 тысяч тенге; погашение займов -10209018 тысяч тенге; используемые остатки бюджетных средств -11570612 тысяч тенге.

2. На 2021 год норматив общей суммы поступлений общегосударственных налогов в бюджеты районов и города Атырау был утвержден в следующих объемах:

по корпоративному подоходному налогу:

Индерскому, Кзылкогинскому, Макатскому, Махамбетскому, Жылыойскому районам и городу Атырау — 30%; Исатайскому району — 86%; Курмангазинскому району и собственно-областному бюджету — 100%;

по индивидуальному подоходному налогу с доходов, облагаемых у источника выплаты:

городу Атырау – 50%, Курмангазинскому, Индерскому, Исатайскому, Кзылкогинскому, Макатскому, Махамбетскому, Жылыойскому районам и собственно-областному бюджету – 100%;

по индивидуальному подоходному налогу с доходов, необлагаемых у источника выплаты:

городу Атырау – 50%; Курмангазинскому, Индерскому, Исатайскому, Кзылкогинскому, Макатскому, Махамбетскому, Жылыойскому районам и собственно-областному бюджету – 100%;

по индивидуальному подоходному налогу с доходов иностранных граждан, необлагаемых у источника выплаты:

собственно-областному бюджету – 100%;

по социальному налогу:

Макатскому району -0%, Кзылкогинскому району -60%, городу Атырау -70%, Жылыойскому району -72%, Индерскому району -80%, Махамбетскому району -95%, Курмангазинскому, Исатайскому районам -100%;

собственно-областному бюджету – 100%;

по отчислениям недропользователей на социально-экономическое развитие региона и развитие его инфраструктуры:

собственно-областному бюджету – 100%.

- 3. На 2021 год объемы бюджетных изъятий из районных и городского бюджетов в областной бюджет был предусмотрен в сумме 188 065 255 тысяч тенге, в том числе:
 - с Жылыойского района 35 073 704 тысяч тенге;
 - с города Атырау 152 991 551 тысяч тенге.
- 4. На 2021 год объемы субвенций, передаваемых из областного бюджета в районные бюджеты, был предусмотрен в сумме 21 220 452 тысяч тенге, в том числе:

Курмангазинскому району – 6 162 763 тысяч тенге;

Индерскому району – 4 610 326 тысяч тенге;

Исатайскому району -1676663 тысяч тенге;

Кызылкогинскому району – 4 769 579 тысяч тенге;

Макатскому району – 2 195 211 тысяч тенге;

Махамбетскому району – 1 805 910 тысяч тенге.

Малый и средний бизнес

Атырауская область по общему объему производимой промышленной продукции занимает 1-е место в республике. Бесспорна заслуга малого и среднего бизнеса в развитии области, передает Zakon.kz со ссылкой на официальный сайт премьер-министра РК.

Так, в регионе действует порядка 17,7 тысячи субъектов малого и среднего бизнеса, в которых занято свыше 62,2 тысячи человек.

По данным Агентства РК по статистике, количество активных субъектов малого предпринимательства за январь-ноябрь 2011 года составило 25 802 единиц.

Численность активно занятых в малом предпринимательстве по итогам 11 месяцев текущего года составила 56 075 человек.

Численность активно занятого населения в МСП по Атырауской области в разрезе организационно-правовых форм на предприятиях среднего бизнеса занято 17 тыс. чел. (27% общего количества активно занятых в МСП), на предприятиях малого бизнеса 18,5 тыс. чел. (30%), ИП - 23 тыс. чел. (37%), КФХ - 3,7 тыс. чел. (6%).

Инвестиционные проекты

В Атырауской области будет реализовано четыре крупных инвестиционных проекта. «Основные из них — это строительство газохимического комплекса в районе Карабатана по выпуску 1 млн 250 тысяч тонн полиэтилена и полипропилена,

газоперерабатывающего завода мощностью 1 млрд кубометров газа в год. Работать он будет на попутном газе нефтяного месторождения Кашаган. В сфере сельского хозяйства планируется строительство в Кзылкогинском районе цеха стоимостью 265 млн тенге по переработке 2 тонн молока и молочных продуктов в сутки, строительство в Курмангазинском районе цеха стоимостью 200 млн тенге по переработке рыбы с применением современных технологий.

Занятость

На сегодня для оказания государственных мер содействия занятости действует Программа развития продуктивной занятости и массового предпринимательства на 2017 – 2021 годы «Еңбек» (далее – Программа).

В рамках Программы предусмотрены меры государственной поддержки по следующим направлениям:

- 1) обеспечение участников Программы техническим и профессиональным образованием и краткосрочным профессиональным обучением;
 - 2) развитие массового предпринимательства;
- 3) развитие рынка труда через содействие занятости населения и мобильность трудовых ресурсов.
- 4) реализация комплексных мероприятий национального проекта «Жастар ел тірегі».

Всего в 2019 году трудоустроено в рамках Программы 449 тыс. человек, из них 383 тыс. на постоянную работу или 85%.

В разрезе регионов доля трудоустроенных от числа участников Программы выше в Карагандинской (79%), Жамбылской (77%), Атырауской и Актюбинской (74%) областях.

Наименьшая доля в Мангистауской (48%) области и в городе Нур-Султан (58%).

Количество безработной молодежи уменьшилось в 4 раза и на сегодня при общем уровне безработицы по республике 4,8%, молодежная безработица находится на низком уровне и составляет 3,8% или 84,7 тыс. человек.

Экономически активной частью (рабочая сила) молодежи в возрасте от 15 до 28 лет является 2 млн. 206 тыс. молодых людей, из них занято более 96% (2 млн. 121 тыс. чел.), лиц, не входящих в состав рабочей силы (не являются занятыми или безработными) -1 412 тыс. человек.

Среди занятой молодежи 1 млн.638 тыс. человек или 77% — наемные работники, 483 тыс. человек

В рамках проекта «Жас кәсіпкер» были проведены мероприятия по активному вовлечению молодежи в предпринимательскую деятельность.

Обучение основам предпринимательства в рамках проекта «Бастау Бизнес». В прошлом году на обучение было направлено порядка 40 тыс. человек. Более 26 тыс. человек получили гранты и микрокредиты для реализации новых бизнес идей. В результате молодые не только открыли свой бизнес, но и обеспечили более 100 человек работой, создав новые рабочие места.

Так же, пересмотрены меры государственной поддержки для молодежи и разработаны дополнительно два новых инструмента: проекты «Первое рабочее место» и «Контракт поколений».

Реализация проекта «Первое рабочее место» позволит гражданам, не имеющих опыта работы, трудоустроиться на первое рабочее место.

Проект «Контракт поколений» предусматривает трудоустройство с последующей заменой действующего работника, достигшего пенсионного возраста.

Преимущественное право при трудоустройстве по данным проектам отдается молодежи, трудоспособным членам многодетных и малообеспеченных семей, трудоспособным инвалидам.

Влияние намечаемого объекта на регионально-территориальное природопользование

Влияние планируемого объекта на регионально-территориальное природопользование будет незначительным так как строительные работу временные, выбросы загрязняющих веществ на период строительства составит 0,09534959 г/с, 0,129027692 т/г.

Прогноз изменений социально-экономических условий жизни местного населения при реализации проектных решений объекта (при нормальных условиях эксплуатации объекта и возможных аварийных ситуациях)

Создание новых рабочих мест и сопутствующее этому повышение личных доходов персонала, занятого в реализации проекта, будут неизбежно сопровождаться мероприятиями по улучшению социально-бытовых условий проживания, активизацией сферы обслуживания. Образование новых рабочих мест, повышение доходов части населения, увеличение социально-экономической привлекательности региона, приток приезжих, занятых в рамках проекта, на территорию проектируемых работ являются прямым воздействием на демографическую ситуацию.

<u>Санитарно-эпидемиологическое состояние территории и прогноз его изменений в</u> результате намечаемой деятельности

При проведении строительных работ, выбросы загрязняющих веществ в атмосферу не будут достигать 1 ПДК и воздействовать на здоровье населения. Санитарно-эпидемиологическое состояние территории не измениться. В целом, проведенная оценка воздействия реализации проекта на социально-экономическую среду позволяет сделать вывод, что данный объект не окажет негативного воздействия на социально-экономическую сферу и воздействие проекта в целом будет положительное.

<u>Предложения по регулированию социальных отношений в процессе намечаемой</u> хозяйственной деятельности

Хозяйственная деятельность с использованием рекомендуемых техники и технологий не окажет отрицательного воздействия на санитарно-экологические условия проживания местного населения, обеспечит незначительное воздействие на окружающую среду, при несомненно значимом социально-экономическом эффекте - обеспечение занятости населения с вытекающими из этого другими положительными последствиями (платежи в бюджет, социальная стабильность и др.).

60

11 ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА РЕАЛИЗАЦИИ НАМЕЧАЕМОЙ ДЕЯТЕЛЬНОСТИ В РЕГИОНЕ

<u>Ценность природных комплексов (функциональное значение, особо охраняемые объекты), устойчивость выделенных комплексов (ландшафтов) к воздействию намечаемой деятельности</u>

При разработке раздела ООС были соблюдены основные принципы проведения оценки воздействия на окружающую среду, а именно:

- интеграции (комплексности) рассмотрение вопросов воздействия хозяйственной деятельности на окружающую среду, местное население, сельское хозяйство и промышленность осуществляется в их взаимосвязи с технологическими, техническими, социальными, экономическими планировочными и другими решениями;
- учет экологической ситуации на территории, оказывающейся в зоне влияния деятельности;
- информативность;
- понимание целостного характера проводимых процедур, выполнение их с учетом взаимосвязи возникающих экологических последствий с социальными, экологическими и экономическими факторами.

<u>Комплексная оценка последствий воздействия на окружающую среду при</u> <u>нормальном (без аварий) режиме эксплуатации объекта</u>

При рассмотрении производственной деятельности выявлены источники воздействия на окружающую среду, проведена покомпонентная оценка их воздействия на природные среды и объекты.

Основными компонентами природной среды, подвергающимися значительным по масштабу воздействиям, являются почвенно-растительный покров, воздушный бассейн, подземные воды, недра, флора и фауна района, социальная среда. На основании анализа современной ситуации, принятых проектных решений и их прогнозируемых последствий ниже дается обобщенная схема их воздействия на отдельные среды.

Вероятность аварийных ситуаций (с учетом технического уровня объекта и наличия опасных природных явлений), при этом определяются источники, виды аварийных ситуаций, их повторяемость, зона воздействия

Во избежание возникновения аварийных ситуаций и обеспечения безопасности на всех этапах работ необходимо соблюдение проектных норм. Для снижения степени риска

при организации работ предусмотрены меры по предотвращению (снижению) аварийных ситуаций, которые включают организационные меры, перечень ответственности лиц, план передачи сообщений, подробные данные об аварийной службе и др.

<u>Прогноз последствий аварийных ситуаций для окружающей среды (включая</u> недвижимое имущество и объекты историко-культурного наследия) и население

Под аварией понимается нарушение технологических процессов на производстве, повреждение трубопроводов, емкостей, хранилищ, транспортных средств, приводящее к выбросам сильно действующих ядовитых веществ в атмосферу в количествах, которые могут вызвать массовое поражение людей и животных.

Перечень последствий в результате развития аварийной ситуации включает:

- загрязнение атмосферного воздуха;
- возможность возникновения пожара.

Для предупреждения возникновения аварий необходимо также проведение следующих мероприятий:

- использование технически исправного оборудования;
- своевременное и качественное проведение технического обслуживания и ремонтов;
- проведение контроля технического состояния оборудования;
- повышение уровня технического образования персонала.

<u>Рекомендации по предупреждению аварийных ситуаций и ликвидации их</u> последствий

- минимальное вмешательство в сложившиеся к настоящему времени природные экосистемы;
- использование новейших экологичных природосберегающих технологий;
- сведение к минимуму любых воздействий на окружающую среду в процессе проведения работ;
- полное восстановление нарушенных компонентов окружающей природной среды после завершения работ, если такие нарушения были неизбежны.

Для преодоления последствий возможного загрязнения, предусмотрено проведение мониторинга окружающей среды. По полученным в процессе мониторинга результатам анализа выбросов и погодных условий можно регулировать нагрузки на компоненты окружающей среды.

Заказчик ТОО «АТАКИМ» Разработчик: ТОО «ABC Engineering»

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Экологический Кодекс РК от 2 января 2021 года № 400-VI 3РК.
- Инструкция по организации и проведению экологической оценки. Утверждена Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280.
- Классификатор отходов. Утверждена Приказом и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года № 314
- 4. РНД 211.2.02.05-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов).
- 5. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами, Алматы, 1996
- «Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов», Приложение № 11 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04. 2008 г.
- 7. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005
- 8. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий Приложение № 3 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года № 100 -п.
- 9. Методические указания по расчету выбросов загрязняющих веществ в атмосферу от мусоросжигательных и мусороперерабатывающих заводов, Москва, 1989
- 10. Методические указания по расчету выбросов загрязняющих веществ в атмосферу от установок малой производительности по термической переработке твердых бытовых отходов и промотходов, Москва, 1998
- 11. Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли.

приложения

Приложение 1 – Метеорологическая информация и фоновая справка РГП «КАЗГИДРОМЕТ»

«КАЗГИДРОМЕТ» РМК РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН
РЕСПУБЛИКАСЫ
ЭКОЛОГИЯ,
ЖӘНЕ ТАБИҒИ
РЕСУРСТАР
МИНИСТРЛІГІ

МИНИСТЕРСТВО ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН

21.08.2025

- 1. Город Атырау
- 2. Адрес Атырауская область, Махамбетский район, сельский округ Бейбарыс
- 4. Организация, запрашивающая фон TOO \"ABC Engineering\"
- 5. Объект, для которого устанавливается фон ТОО \"АТАКИМ\"
- 6. Разрабатываемый проект Пакет документов
- 7. Перечень вредных веществ, по которым устанавливается фон: Азота диоксид,
- Взвеш.в-ва, Диоксид серы, Углерода оксид, Азота оксид,

Значения существующих фоновых концентраций

		Концентрация Сф - мг/м³					
Номер поста Примесь		Штиль 0-2	Скорость ветра (3 - U*) м/сек				
		м/сек	север	восток	юг	запад	
	Азота диоксид	0.07	0.17	0.31	0.16	0.17	
Атырау	Взвеш.в-ва	0.27	0.37	0.42	0.27	0.19	
	Диоксид серы	0.066	0.06	0.045	0.076	0.072	
	Углерода оксид	1.894	1.163	1.342	1.267	1.338	
	Азота оксид	0.101	0.646	0.166	0.76	0.269	

Вышеуказанные фоновые концентрации рассчитаны на основании данных наблюдений за 2022-2024 годы.

Приложение 2 – Расчет выбросов загрязняющих веществ в атмосферу в период строительства

Источник № 6001 – Работа со строительными материалами

Расчет выбросов ЗВ . Методика расчета нормативов выбросов от неорганизованных источнико определения выбросов в атмосферу от предприятий по производству строл Приложение №11 к Приказу Министра охраны окружающей среды Респуб 18.04.2008 №100-п Источник № 6001 Песок природный Наименование Обоз Весовая доля пылевой фракции в материале(табл.3.1.1) К1 Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) К3SI Скорость ветра (максимальная), м/с	внач. Зн 0,0 0,1	х матери захстан (пач. 05 02	алов
определения выбросов в атмосферу от предприятий по производству строи Приложение №11 к Приказу Министра охраны окружающей среды Республ 18.04.2008 №100-п Источник № 6001 Песок природный Наименование Обоз Весовая доля пылевой фракции в материале(табл.3.1.1) К1 Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), G3SI Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) К3SI	внач. Зн 0,0 0,1	х матери захстан (пач. 05 02	алов от
Приложение №11 к Приказу Министра охраны окружающей среды Респуб 18.04.2008 №100-п Источник № 6001 Песок природный Наименование Весовая доля пылевой фракции в материале(табл.3.1.1) К1 Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), Скорф,, учитывающий среднегодовую скорость ветра(табл.3.1.2) К3SI	блики Каз знач. Зн 0,0 0,1	захстан (пач. 05 02	ОТ
18.04.2008 №100-п Источник № 6001 Песок природный Наименование Обоз Весовая доля пылевой фракции в материале(табл.3.1.1) К1 Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон К4 Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) К4 Скорость ветра (среднегодовая), G3SI Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) К3SI	знач. Зн 0,0 0,0 0,1	лач. 05 02	
Источник № 6001 Песок природный Наименование Обоз Весовая доля пылевой фракции в материале(табл.3.1.1) К1 Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон К4 Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) К4 Скорость ветра (среднегодовая), G3SI Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) К3SI	0,0	05 02	Ед.изм.
Наименование Весовая доля пылевой фракции в материале(табл.3.1.1) К1 Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) К3SI	0,0	05 02	Ед.изм.
Весовая доля пылевой фракции в материале(табл.3.1.1) К1 Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), G3SI Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2)	0,0	05 02	Ед.изм.
Доля пыли, переходящей в аэрозоль(табл.3.1.1) К2 Коэффициент обеспыливания при грануляции (п. 2.8) КЕ Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), G3SI Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2)	0,0	02	
Коэффициент обеспыливания при грануляции (п. 2.8) Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) КЗSI	0,1		
Степень открытости: с 4-х сторон Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) КЗSI	1	1	
Коэффициент, учитывающий степень защищенности узла(табл.3.1.3) Скорость ветра (среднегодовая), Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) КЗSI			
узла(табл.3.1.3) Скорость ветра (среднегодовая), G3SI Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) K3SI			
Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2) K3SI	D 2		
	R $2,\epsilon$	6	м/с
Скорость ветра (максимальная), м/с G3	R 1,2	2	
	8		1
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2) КЗ	1,7	7	
Коэфф., учитывающий влажность материала(табл.3.1.4) К5	1		1
Размер куска материала G7	2		MM
Коэффициент, учитывающий крупность материала(табл.3.1.5) К7	0,8	8	
Высота падения материала GB	1,5	5	
Коэффициент, учитывающий высоту падения материала(табл.3.1.7)	0,6	6	
Суммарное количество перерабатываемого материала	2		Т/час
Суммарное количество перерабатываемого материала	15	51,84	т/год
Эффективность средств пылеподавления, в долях единицы NJ	0		
Влажность материала VL	0,5	5	%
Расчет			
Примесь 2908 - Пыль неорганическая 70-20%			
Максимально-разовый выброс			
GC = K1 * K2 * K3 * K4 * K5 * K7 * K8 * K9 * KE * B * GMAX *			
10 ^ 6 / 3600 * (1-NJ)	0,0	045333	г/сек
Продолжительность пересыпки в минутах (не более 20)		000000	
Максимальный разовый выброс, с учетом 20-ти минутного			
осреднения,			г/сек
GC = GC * TT * 60 / 1200	0,0	002267	
Валовый выброс пыли			
MC = K1 * K2 * K3SR * K4 * K5 * K7 * K8 * K9 * KE * B * GGOD * (1-NJ)	0.0	008746	

Расчет выбросов ЗВ

. Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

18.04.2008 №100-π			
Источник № 6001 щебень до 40			
Наименование	Обознач.	Знач.	Ед.изм.
Весовая доля пылевой фракции в материале(табл.3.1.1)	K1	0,04	
Доля пыли, переходящей в аэрозоль(табл.3.1.1)	К2	0,02	
Коэффициент обеспыливания при грануляции (п. 2.8)	KE	0,1	
Степень открытости: с 4-х сторон			
Коэффициент, учитывающий степень защищенности узла(табл.3.1.3)	K4	1	
Скорость ветра (среднегодовая),	G3SR	2,6	м/с
Коэфф., учитывающий среднегодовую скорость ветра(табл.3.1.2)	K3SR	1,2	
Скорость ветра (максимальная), м/с	G3	8	
Коэфф., учитывающий максимальную скорость ветра(табл.3.1.2)	K3	1,7	
Коэфф., учитывающий влажность материала(табл.3.1.4)	K5	1	
Размер куска материала	G7	40	MM
Коэффициент, учитывающий крупность материала(табл.3.1.5)	K7	0,5	
Высота падения материала	GB	1,5	
Коэффициент, учитывающий высоту падения материала(табл.3.1.7)	В	0,6	
Суммарное количество перерабатываемого материала		2	Т/час
Суммарное количество перерабатываемого материала		18,88	т/год
Эффективность средств пылеподавления, в долях единицы	NJ	0	
Расчет			
Примесь 2908 - Пыль неорганическая 70-20%	•	•	
Максимально-разовый выброс			
GC = K1 * K2 * K3 * K4 * K5 * K7 * K8 * K9 * KE * B * GMAX *			г/сек
10 ^ 6 / 3600 * (1-NJ)		0,022667	
Продолжительность пересыпки в минутах (не более 20)	TT	1,000000	
Максимальный разовый выброс, с учетом 20-ти минутного осреднения,			г/сек
GC = GC * TT * 60 / 1200		0,001133	
Валовый выброс пыли			
MC = K1 * K2 * K3SR * K4 * K5 * K7 * K8 * K9 * KE * B * GGOD * (1-NJ)		0,000544	т/год

		г/с	т/г
ИТОГО	пыль не органическая	0,003400	0,009290

Источник № 6002-Разработка и засыпка грунта

Источник выделения 01. Работа бульдозера. Засыпка грунта

Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11к Приказу Министра ООС РК от $18.04.2008 \, \text{г.} \, \text{№100}$ - п.

Наименование	Обозн.	Ед. изм.	Кол-во
1. Исходные данные			
Количество переработанного грунта	Gчас	т/час	0,712891667
Плотность грунта	p	т/м3	1,65
Объем грунта	Gгод	Т	256,641
Время работы	t	часы	360,00
Вес. доля пыл. фракции в материале	К1		0,05
Доля пыли переходящая в аэрозоль	К2		0,02
Коэф.учитывающий метеоусловия	К3		1,2
Коэф.учит.местные условия	К4		1
Коэф.учит.влажность материала	К5		0,4
Коэф.учит.крупность материала	К7		0,4
Коэф.учит.высоту пересыпки	В		0,2
Эффективность средств пылеподавления	n	в долях ед-цы	0,5
2.Расчет выбросов			
Примесь: 2908 Пыль неорганическая: 70-20% SiO2			
Максимально-разовый выброс	Мсек	г/с	
MceK = K1*K2*K3*K4*K5*K7*B*G*4ac*106*(1-n)/3600	0,003802		
Валовый выброс	Мгод	т/год	
Мгод = K1*K2*K3*K4*K5*K7*В*Gгод*(1-n)	0,004928		

Источник выделения 01. Работа экскаватора. Разработка грунта

Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов. Приложение №11к Приказу Министра ООС РК от 18.04.2008 г. №100 - п.

Наименование	Обозн.	Ед. изм.	Кол-во
1. Исходные данные			
Количество переработанного грунта	Gчас	т/час	6,3014875
Плотность грунта	p	т/м3	1,65
Объем грунта	Gгод	Т	4537,071
Время работы	t	часы	720,00
Вес. доля пыл. фракции в материале	K1		0,05
Доля пыли переходящая в аэрозоль	К2		0,02
Коэф.учитывающий метеоусловия	К3		1,2
Коэф.учит.местные условия	К4		1
Коэф.учит.влажность материала	K5		0,4
Коэф.учит.крупность материала	К7		0,2

Коэф.учит.высоту пересыпки	В		0,4
Эффективность средств пылеподавления	n	в долях ед-цы	0,5
2.Расчет выбросов			
Примесь: 2908 Пыль неорганическая: 70-20% SiO2			
Максимально-разовый выброс	Мсек	г/с	
$Mce\kappa = K1*K2*K3*K4*K5*K7*B*G*4ac*106*(1-n)/3600$	0,033608		
Валовый выброс	Мгод	т/год	
Mгод = $K1*K2*K3*K4*K5*K7*B*G$ год* $(1-n)$	0,087112		

	г/с	T/Γ
2908	0,037410	0,092040

Источник № 6003— Сварочные работы Источник выделения N 6003 01, Сварочные работы

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, кг/год, В = 78.77

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ = 0.2

Удельное выделение сварочного аэрозоля, г/кг расходуемого материала (табл. 1, 3), GIS = 16.31 в том числе:

Примесь: 0123 Железо (II, III) оксиды (диЖелезо триоксид, Железа оксид) /в пересчете на железо/ (274)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 10.69 Валовый выброс, т/год (5.1), _M_ = GIS \cdot B / 106 = $10.69 \cdot 78.77 / <math>106$ = 0.000842 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot BMAX / 3600 = $10.69 \cdot 0.2 / 3600$ = 0.000594

Примесь: 0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/ (327)

Удельное выделение загрязняющих веществ,

```
г/кг расходуемого материала (табл. 1, 3), GIS = 0.92 Валовый выброс, т/год (5.1), _M_ = GIS \cdot В / 106 = 0.92 \cdot 78.77 / <math>106 = 0.0000725 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot ВМАХ / 3600 = 0.92 \cdot 0.2 / 3600 = 0.0000511
```

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

```
Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 1.4 Валовый выброс, т/год (5.1), _M_ = GIS \cdot B / 106 = 1.4 \cdot 78.77 / 106 = 0.0001103 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot BMAX / 3600 = 1.4 \cdot 0.2 / 3600 = 0.0000778
```

Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фториды неорганические плохо растворимые /в пересчете на фтор/) (615)

```
Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 3.3 Валовый выброс, т/год (5.1), _M_ = GIS \cdot B / 106 = 3.3 \cdot 78.77 / 106 = 0.00026 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot BMAX / 3600 = 3.3 \cdot 0.2 / 3600 = 0.0001833 -------
```

Газы:

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

```
Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 0.75 Валовый выброс, т/год (5.1), _M_ = GIS \cdot В / 106 = 0.75 \cdot 78.77 / 106 = 0.0000591 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot BMAX / 3600 = 0.75 \cdot 0.2 / 3600 = 0.0000417
```

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $r/k\Gamma$ расходуемого материала (табл. 1, 3), GIS = 1.5

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), _M_ = KNO2 · GIS · B / $106 = 0.8 \cdot 1.5 \cdot 78.77 / 106 = 0.0000945$ Максимальный из разовых выброс, г/с (5.2), _G_ = KNO2 · GIS · BMAX / $3600 = 0.8 \cdot 1.5 \cdot 0.2 / 3600 = 0.0000667$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), _M_ = KNO \cdot GIS \cdot B / 106 = 0.13 \cdot 1.5 \cdot 78.77 / 106 = 0.00001536 Максимальный из разовых выброс, г/с (5.2), _G_ = KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 1.5 \cdot 0.2 / 3600 = 0.00001083

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Удельное выделение загрязняющих веществ, г/кг расходуемого материала (табл. 1, 3), GIS = 13.3 Валовый выброс, т/год (5.1), _M_ = GIS \cdot B / 106 = 13.3 \cdot 78.77 / 106 = 0.001048 Максимальный из разовых выброс, г/с (5.2), _G_ = GIS \cdot BMAX / 3600 = 13.3 \cdot 0.2 / 3600 = 0.000739

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0123	Железо (II, III) оксиды (диЖелезо триоксид,	0.000594	0.000842
	Железа оксид) /в пересчете на железо/ (274)		
0143	Марганец и его соединения /в пересчете на	0.0000511	0.0000725
	марганца (IV) оксид/ (327)		
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.0000667	0.0000945
0304	Азот (II) оксид (Азота оксид) (6)	0.00001083	0.00001536
0337	Углерод оксид (Окись углерода, Угарный газ)	0.000739	0.001048
	(584)		
0342	Фтористые газообразные соединения /в пересчете	0.0000417	0.0000591
	на фтор/ (617)		
0344	Фториды неорганические плохо растворимые -	0.0001833	0.00026
	(алюминия фторид, кальция фторид, натрия		
	гексафторалюминат) (Фториды неорганические		
	плохо растворимые /в пересчете на фтор/) (615)		
2908	Пыль неорганическая, содержащая двуокись	0.0000778	0.0001103
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник № 6004–Газосварка Источник выделения N 6004 01, Газосварка

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005

Коэффициент трансформации оксидов азота в NO2, KNO2 = 0.8 Коэффициент трансформации оксидов азота в NO, KNO = 0.13

РАСЧЕТ выбросов ЗВ от сварки металлов

Вид сварки: Газовая сварка стали ацетилен-кислородным пламенем

Расход сварочных материалов, $\kappa \Gamma / \Gamma \text{од}$, B = 0.33

Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX = 0.33

Расчет выбросов оксидов азота:

Газы:

Удельное выделение загрязняющих веществ, $r/k\Gamma$ расходуемого материала (табл. 1, 3), GIS = 22

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), _M_ = KNO2 · GIS · B / $106 = 0.8 \cdot 22 \cdot 0.33$ / 106 = 0.00000581 Максимальный из разовых выброс, г/с (5.2), _G_ = KNO2 · GIS · BMAX / $3600 = 0.8 \cdot 22 \cdot 0.33$ / 3600 = 0.001613

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), _M_ = KNO \cdot GIS \cdot B / 106 = 0.13 \cdot 22 \cdot 0.33 / 106 = 0.000000944 Максимальный из разовых выброс, г/с (5.2), _G_ = KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 22 \cdot 0.33 / 3600 = 0.000262

Вид сварки: Газовая сварка стали с использованием пропан-бутановой смеси Расход сварочных материалов, кг/год, B=0.64 Фактический максимальный расход сварочных материалов, с учетом дискретности работы оборудования, кг/час, BMAX=0.64

Газы:

Расчет выбросов оксидов азота:

Удельное выделение загрязняющих веществ, $r/\kappa r$ расходуемого материала (табл. 1, 3), GIS = 15

С учетом трансформации оксидов азота получаем:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Валовый выброс, т/год (5.1), _M_ = KNO2 · GIS · B / $106 = 0.8 \cdot 15 \cdot 0.64 / 106 = 0.00000768$ Максимальный из разовых выброс, г/с (5.2), _G_ = KNO2 · GIS · BMAX / $3600 = 0.8 \cdot 15 \cdot 0.64 / 3600 = 0.002133$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Валовый выброс, т/год (5.1), _M_ = KNO \cdot GIS \cdot B / 106 = 0.13 \cdot 15 \cdot 0.64 / 106 = 0.000001248 Максимальный из разовых выброс, г/с (5.2), _G_ = KNO \cdot GIS \cdot BMAX / 3600 = 0.13 \cdot 15 \cdot 0.64 / 3600 = 0.000347

ИТОГО:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.002133	0.00001349
0304	Азот (II) оксид (Азота оксид) (6)	0.000347	0.000002192

Источник № 6005 – Медницкие работы

Расчет выбросов ЗВ от неорганизованных источников

Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий Приложение № 3 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008 года № 100 -п.

Источник № 6005 - Медницкие работы. Припои оловянно-свинцовые в чушках бессурьмянистые, марка $\Pi OC30$, $\Pi OC40$, $\Pi OC61$

Исходные данные	Обозн.	Ед. измер.	Значение	
		Свинец и		
	q	его	0,51	
удельное выделение загрязняющего вещества, на 1 сварку		соединения	0,51	
удельное выделение загризниющего вещества, на т сварку	9	(0184)		
		Олова оксид	0,28	
		(0168)	0,28	
масса израсходованного припоя за год	m	КГ	4,743	
годовое время работы оборудования, часов	T		10	
Расчет выбросов:				
Максимально-разовый выброс:				
Мсек=Мгод х 10^6/Т х 3600				
Свинец и его соединения (0184)		г/с	0,00006722	
Олова оксид (0168)		г/с	0,00003694	
Валовый выброс:				
Мгод=q х m/1000000				
Свинец и его соединения (0184)		т/год	0,00000242	
Олова оксид (0168)		т/год	0,00000133	

Источник № 6006 — Покрасочные работы Источник выделения N 6006 01, Покрасочные работы Список литературы: Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка Фактический годовой расход ЛКМ, тонн, MS = 0.00007 Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.07

Марка ЛКМ: Грунтовка ГФ-021

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10-6 = 0.00007 \cdot 45 \cdot 100 \cdot 100 \cdot 10-6 = 0.0000315$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 106) = 0.07 \cdot 45 \cdot 100 \cdot 100 / (3.6 \cdot 106) = 0.00875$

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.000504

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.1

Марка ЛКМ: Растворитель Уайт-спирит

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 100

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 100

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, _M_ = MS · F2 · FPI · DP · 10-6 = $0.000504 \cdot 100 \cdot 100 \cdot 100 \cdot 10$ -6 = 0.000504

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 106) = 0.1 \cdot 100 \cdot 100 \cdot 100 / (3.6 \cdot 106) = 0.0278$

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0009

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.1

Марка ЛКМ: Лак БТ-577

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 63

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 57.4

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10-6 = 0.0009 \cdot 63 \cdot 57.4 \cdot 100 \cdot 10-6 = 0.0003255$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 106) = 0.1 \cdot 63 \cdot 57.4 \cdot 100 / (3.6 \cdot 106) = 0.01005$

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 42.6

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, $_M_=MS \cdot F2 \cdot FPI \cdot DP \cdot 10-6 = 0.0009 \cdot 63 \cdot 42.6 \cdot 100 \cdot 10-6 = 0.0002415$

Максимальный из разовых выброс 3B (5-6), г/с, $_G_=MS1 \cdot F2 \cdot FPI \cdot DP / (3.6 \cdot 106) = 0.1 \cdot 63 \cdot 42.6 \cdot 100 / (3.6 \cdot 106) = 0.00746$

Список литературы:

Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн, MS = 0.0001868

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг, MS1 = 0.1

Марка ЛКМ: Эмаль ПФ-115

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2 = 45

Примесь: 0616 Диметилбензол (смесь о-, м-, п- изомеров) (203)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, _M_ = MS · F2 · FPI · DP · 10-6 = $0.0001868 \cdot 45 \cdot 50 \cdot 100 \cdot 10$ -6 = 0.000042

Максимальный из разовых выброс 3B (5-6), г/c, _G_ = MS1 · F2 · FPI · DP / (3.6 · 106) = $0.1 \cdot 45 \cdot 50 \cdot 100$ / (3.6 · 106) = 0.00625

Примесь: 2752 Уайт-спирит (1294*)

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI = 50

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP = 100

Валовый выброс 3В (3-4), т/год, _M_ = MS · F2 · FPI · DP · 10-6 = $0.0001868 \cdot 45 \cdot 50 \cdot 100 \cdot 10$ -6 = 0.000042

Максимальный из разовых выброс 3B (5-6), г/с, _G_ = MS1 · F2 · FPI · DP / (3.6 · 106) = $0.1 \cdot 45 \cdot 50 \cdot 100$ / (3.6 · 106) = 0.00625

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0616	Диметилбензол (смесь о-, м-, п- изомеров)	0.01005	0.000399
	(203)		
2752	Уайт-спирит (1294*)	0.0278	0.0007875

Источник № 6007– Гидроизоляция битумом

Расчет выбросов ЗВ от неорганизованных источников (Битум)									
Сборник методик по расчету выбросов вредных веществ в атмосферу различными									
производствами, Алматы, 1996									
Источник № 6007 - Битум	Источник № 6007 - Битум								
Исходные данные	Обозн.	Ед. измер.	Значение						
Расход строительного материала	G	тонн/год	16,32						
Время работы в год	T	ч/год	540						
Коэффицент учитывающий убыль минерального	ß		0,21						
материала в виде пыли (п. 6.2.3)	13		0,21						
Убыль материалов (табл. 6.4)	N	%	0,7						
Расчет выбросов:	Углеводоро	оды С12-19							
Максимально-разовый выброс:									
$Mcek = \Pic \times 1000000 / (3600 \times T);$		г/с	0,012341						
Валовый выброс:	Валовый выброс:								
$\Pi c = \beta \times N \times G \times 10-2$		т/г	0,023990						

Приложение 3 – Расчет выбросов загрязняющих веществ в атмосферу в период эксплуатации

Источник загрязнения: 0001

Источник выделения: 0001 01, Печь инсенератор "Веста Плюс" ПИр-0,75

Список литературы:

- 1. Методические указания по расчету выбросов загрязняющих веществ в атмосферу от мусоросжигательных и мусороперерабатывающих заводов, Москва, 1989
- 2. Методические указания по расчету выбросов загрязняющих веществ в атмосферу от установок малой производительности по термической переработке твердых бытовых отходов и промотходов, Москва, 1998
- 3. Данные предприятия-изготовителя установок термодеструкции и термодесорбции в Республике Казахстан ("Форсаж", "Кусто", УЗГ, МЛТП и др.)

Производительность по сжиганию отходов, т/час, В = 0.08

Время работы установки, час/год, Т = 2304

Температура газов, град. C, TR = 1500

Номинальная паропроизводительность котла, т/час, DHOM = 1

Наименование компонента: Промасленная ветошь, опилки, загрязненные нефтепродуктами материалы

Процентное содержание компонента в отходе, %, К = 30

Элементарный состав в рабочей массе отходов (%), теплота (МДж/кг)

Компонент	Углерод	Водород	Кислород	Азот	Cepa	Зола	Влага	Теплота	Состав
Текстиль	40.4	4.9	23.2	3.4	0.1	8	20	15.72	0.67
Масло	86.5	12.6	0.4	0.1	0.4	0.05		41.36	0.17
минеральное									
Сажа	99.1	0.9				0.4		15.07	0.04
Вода		0.15	1.22				100		0.12

Элементарный состав рабочей массы отхода: Промасленная ветошь, опилки, загрязненные нефтепродуктами материалы

Содержание золы в компоненте отхода, % (3), AN = APO1 \cdot (K / 100) = 5.39 \cdot (30 / 100) = 1.617 Содержание влаги в компоненте отхода, % (3), WN = WPO1 \cdot (K / 100) = 25.4 \cdot (30 / 100) = 7.62 Содержание серы в компоненте отхода, % (3), SN = SPO1 \cdot (K / 100) = 0.135 \cdot (30 / 100) = 0.0405 Удельная теплота сгорания компонента отхода МДж/кг (4), QN = QPO1 \cdot (K / 100) = 18.17 \cdot (30 / 100) = 5.45

Наименование компонента: Отработанные масляные, топливные фильтры Процентное содержание компонента в отходе, %, K = 4

Элементарный состав в рабочей массе отходов (%), теплота (МДж/кг)

1	1		, , ,	,,	(r 7	•		
Компонент	Углерод	Водород	Кислород	Азот	Cepa	Зола	Влага	Теплота	Состав
Бумага	27.7	3.7	26.3	0.16	0.14	15	25	9.49	0.387
Пластмасса	55.1	7.6	17.5	0.9	0.3	10.6	8	24.37	0.25
Кожа, резина	65	5	12.6	0.2	0.67	11.6	5	25.79	0.09
Масло	86.5	12.6	0.4	0.1	0.4	0.05		41.36	0.103
минеральное									
Металл						100			0.17

Заказчик TOO «АТАКИМ» Разработчик: TOO «ABC Engineering» Элементарный состав рабочей массы отхода: Отработанные масляные, топливные фильтры Содержание золы в компоненте отхода, % (3), $AN = APO1 \cdot (K / 100) = 26.5 \cdot (4 / 100) = 1.06$ Содержание влаги в компоненте отхода, % (3), $WN = WPO1 \cdot (K / 100) = 12.13 \cdot (4 / 100) = 0.485$ Содержание серы в компоненте отхода, % (3), $SN = SPO1 \cdot (K / 100) = 0.2307 \cdot (4 / 100) = 0.00923$ Удельная теплота сгорания компонента отхода МДж/кг (4), $QN = QPO1 \cdot (K / 100) = 16.34 \cdot (4 / 100) = 0.654$

Наименование компонента: Отработанные воздушные фильтры Процентное содержание компонента в отходе, %, K = 2

Элементарный состав в рабочей массе отходов (%), теплота (МДж/кг)

Компонент	Углерод	Водород	Кислород	Азот	Cepa	Зола	Влага	Теплота	Состав
Бумага	27.7	3.7	26.3	0.16	0.14	15	25	9.49	0.4248
Пластмасса	55.1	7.6	17.5	0.9	0.3	10.6	8	24.37	0.2525
Кожа, резина	65	5	12.6	0.2	0.67	11.6	5	25.79	0.0442
Металл						100			0.2785

Элементарный состав рабочей массы отхода: Отработанные воздушные фильтры Содержание золы в компоненте отхода, % (3), $AN = APO1 \cdot (K / 100) = 37.4 \cdot (2 / 100) = 0.748$ Содержание влаги в компоненте отхода, % (3), $WN = WPO1 \cdot (K / 100) = 12.87 \cdot (2 / 100) = 0.2574$ Содержание серы в компоненте отхода, % (3), $SN = SPO1 \cdot (K / 100) = 0.165 \cdot (2 / 100) = 0.0033$ Удельная теплота сгорания компонента отхода МДж/кг (4), $QN = QPO1 \cdot (K / 100) = 11.32 \cdot (2 / 100) = 0.2264$

Наименование компонента: Отработанные автошины Процентное содержание компонента в отходе, %, K=2

Элементарный состав в рабочей массе отходов (%), теплота (МДж/кг)

Компонент	Углерод	Водород	Кислород	Азот	Cepa	Зола	Влага	Теплота	Состав
Текстиль	40.4	4.9	23.2	3.4	0.1	8	20	15.72	0.045
Кожа, резина	65	5	12.6	0.2	0.67	11.6	5	25.79	0.55
Сажа	99.1	0.9				0.4		15.07	0.33
Металл						100			0.075

Элементарный состав рабочей массы отхода: Отработанные автошины Содержание золы в компоненте отхода, % (3), AN = APO1 \cdot (K / 100) = 14.37 \cdot (2 / 100) = 0.2874 Содержание влаги в компоненте отхода, % (3), WN = WPO1 \cdot (K / 100) = 3.65 \cdot (2 / 100) = 0.073 Содержание серы в компоненте отхода, % (3), SN = SPO1 \cdot (K / 100) = 0.373 \cdot (2 / 100) = 0.00746 Удельная теплота сгорания компонента отхода МДж/кг (4), QN = QPO1 \cdot (K / 100) = 19.87 \cdot (2 / 100) = 0.3974

Наименование компонента: Твердые бытовые отходы Процентное содержание компонента в отходе, %, K = 62

Элементарный состав в рабочей массе отходов (%), теплота (МДж/кг)

Компонент	Углерод	Водород	Кислород	Азот	Cepa	Зола	Влага	Теплота	Состав
Бумага	27.7	3.7	26.3	0.16	0.14	15	25	9.49	0.28
Пищевые	12.6	1.8	8	0.95	0.15	4.5	72	3.43	0.29

отходы									
Текстиль	40.4	4.9	23.2	3.4	0.1	8	20	15.72	0.045
Древесина	40.5	4.8	33.8	0.1		0.8	20	14.48	0.025
Отсев	13.9	1.9	14.1		0.1	50	20	4.6	0.088
Пластмасса	55.1	7.6	17.5	0.9	0.3	10.6	8	24.37	0.04
Зола, шлак	25.2	0.45	0.7		0.45	63.2	10	8.65	0.042
Кожа, резина	65	5	12.6	0.2	0.67	11.6	5	25.79	0.02
Прочее	47	5.3	27.7	0.1	0.2	11.7	8	18.14	0.1
Стекло,						100			0.07
металл,									
камни									

Элементарный состав рабочей массы отхода: Твердые бытовые отходы Содержание золы в компоненте отхода, % (3), $AN = APO1 \cdot (K / 100) = 21.75 \cdot (62 / 100) = 13.49$ Содержание влаги в компоненте отхода, % (3), $WN = WPO1 \cdot (K / 100) = 32.7 \cdot (62 / 100) = 20.27$ Содержание серы в компоненте отхода, % (3), $SN = SPO1 \cdot (K / 100) = 0.1604 \cdot (62 / 100) = 0.0994$ Удельная теплота сгорания компонента отхода МДж/кг (4), $QN = QPO1 \cdot (K / 100) = 8.80000000000001 \cdot (62 / 100) = 5.46$

Элементарный состав рабочей смеси отхода: Содержание золы в рабочей смеси отхода, %, ASM = 17.2 Влажность рабочей смеси отхода, %, WSM = 28.7 Содержание серы в рабочей смеси отхода, %, SSM = 0.16 Теплота сгорания рабочей смеси отхода МДж/кг, QSM = 12.2

Расчет объема продуктов сгорания

Коэффициент избытка воздуха, A=1.1 Доля летучей золы, уносимой из топки, AYH=0.1 Промежуточная переменная в формулу, T=(273+TR)/273=(273+1500)/273=6.5 Количество выбрасываемых дымовых газов, м3/c (6), $V1=0.278\cdot B\cdot ((0.1+1.08\cdot A)\cdot (QSM+6\cdot WSM)/1000+0.0124\cdot WSM)\cdot T=0.278\cdot 0.08\cdot ((0.1+1.08\cdot 1.1)\cdot (12.2+6\cdot 28.7)/1000+0.0124\cdot 28.7)\cdot 6.5=0.0858$

Расчет выбросов летучей золы

Примесь: 2902 Взвешенные частицы (116)

Степень улавливания твердых частиц в золоуловителях, NU3 = 0 Потери с механическим недожогом, %, Q4 = 4 Количество летучей золы выбрасываемой в атмосферу, кг/час (10), M = $103 \cdot \text{AYH} \cdot ((\text{ASM} + \text{Q4} \cdot (\text{QSM} / 32.7)) / 100) \cdot \text{B} \cdot (1-\text{NU3}) = 103 \cdot 0.1 \cdot ((17.2 + 4 \cdot (12.2 / 32.7)) / 100) \cdot 0.08 \cdot (1-0) = 1.495$ Максимальный разовый выброс, г/с, _G_ = M / 3.6 = 1.495 / 3.6 = 0.41527777778 Валовый выброс, т/год, _M_ = M · _T_ / $103 = 1.495 \cdot 2304 / 103 = 3.4444800$

Расчет выбросов оксидов серы

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Производительность установки по сжигаемым отходам, $\kappa r/q$, $B1 = B \cdot 1000 = 0.08 \cdot 1000 = 80$ Доля оксидов серы, связываемых летучей золой, NUS = 0.3

Доля оксидов серы, улавливаемых в сухих золоуловителях, NUSO2 = 0

Количество оксидов серы SO2 и SO3 в пересчете на SO2, кг/час (11), $M = 0.02 \cdot B1 \cdot SSM \cdot (1-1)$

NUS) \cdot (1-NUSO2) = 0.02 \cdot 80 \cdot 0.16 \cdot (1-0.3) \cdot (1-0) = 0.1792

Максимальный разовый выброс, Γ/c , $_G_=M/3.6=0.1792/3.6=0.04977777778$

Валовый выброс, т/год, $M = M \cdot T / 103 = 0.1792 \cdot 2304 / 103 = 0.4128768$

Расчет выбросов оксида углерода

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Количество сжигаемых отходов (годовая производительность), T/T од, $T=B \cdot T=0.08 \cdot 2304=1843$

Коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания отходов, обусловленную наличием в продуктах сгорания CO, R = 1

Потери с химическим недожогом, %, Q3 = 0.1

Выход оксида углерода при сжигании отходов, кг/т (15), CCO = $(Q3 \cdot R \cdot (QSM \cdot 1000)) / 1018 = (0.1 \cdot 1 \cdot (12.2 \cdot 1000)) / 1018 = 1.198$

Количество CO, выбрасываемого в атмосферу с продуктами сгорания, т/год (14), $M = 0.001 \cdot CCO \cdot B1 \cdot (1-Q4/100) = 0.001 \cdot 1.198 \cdot 184.3 \cdot (1-4/100) = 0.212$

Максимальный разовый выброс, г/с, $_G_=(M\cdot 106) / (_T_\cdot 3600) = (0.212\cdot 106) / (2304\cdot 3600) = 0.02555941358$

Валовый выброс, $\tau/год$, M = 0.2120000

Расчет выбросов оксидов азота

Коэф., характеризующий выход оксидов азота, $\kappa \Gamma / \tau$, $\kappa N = 0.16$

Коэф., учитывающий степень дожигания выбросов оксидов азота, NUN = 0

Количество оксидов азота, кг/час (12), $M = B \cdot QSM \cdot KN \cdot (1-NUN) \cdot (1-Q4 / 100) = 0.08 \cdot 12.2 \cdot 0.16 \cdot (1-0) \cdot (1-4 / 100) = 0.15$

Максимальный разовый выброс оксидов азота, Γ/c , G1 = M / 3.6 = 0.15 / 3.6 = 0.0417

Валовый выброс оксидов азота, т/год, $M1 = M \cdot T / 103 = 0.15 \cdot 2304 / 103 = 0.3456$

Коэффициент трансформации оксидов азота в диоксид, согласно п.2.2.5 из [2], KNO2 = 0.8

Коэффициент трансформации оксидов азота в оксид, согласно п.2.2.5 из [2], KNO = 0.13

С учетом трансформации оксидов азота в атмосфере:

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Максимальный разовый выброс, г/с, $_G_=KNO2 \cdot G1 = 0.8 \cdot 0.0417 = 0.0333600$ Валовый выброс, т/год, $M=KNO2 \cdot M1 = 0.8 \cdot 0.3456 = 0.2764800$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Максимальный разовый выброс, г/с, $_G_=KNO\cdot G1=0.13\cdot 0.0417=0.0054210$ Валовый выброс, т/год, $M=KNO\cdot M1=0.13\cdot 0.3456=0.0449280$

Расчет выбросов хлористого водорода

Примесь: 0316 Гидрохлорид (Соляная кислота, Водород хлорид) (163)

Содержание HCl в продуктах сгорания после системы газоочистки, г/м3, CHCL = 0.012 Количество HCl в продуктах сгорания после системы газоочистки, г/с, M = $3.6 \cdot \text{V1} \cdot \text{CHCL} = 3.6 \cdot 0.0858 \cdot 0.012 = 0.00371$

Максимальный разовый выброс, Γ/c , $_G_=0.0037100$

Валовый выброс, т/год, $M = 0.0036 \cdot T \cdot M = 0.0036 \cdot 2304 \cdot 0.00371 = 0.030772224$

Расчет выбросов фтористого водорода

Примесь: 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Содержание HF в продуктах сгорания после системы газоочистки, г/м3, CF = 0.025 Количество HF в продуктах сгорания, г/с, M = $3.6 \cdot \text{V1} \cdot \text{CF} = 3.6 \cdot 0.0858 \cdot 0.025 = 0.00772$ Максимальный разовый выброс, г/с, $_G_ = 0.0077200$

Валовый выброс, т/год, _M_ = $0.0036 \cdot$ _T_ \cdot M = $0.0036 \cdot 2304 \cdot 0.00772 = <math>0.064032768$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.03336	0.27648
0304	Азот (II) оксид (Азота оксид) (6)	0.005421	0.044928
0316	Гидрохлорид (Соляная кислота, Водород хлорид) (163)	0.00371	0.030772224
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0497777778	0.4128768
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.02555941358	0.212
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.00772	0.064032768
2902	Взвешенные частицы (116)	0.41527777778	3.44448

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. п.2. Расчет выбросов вредных веществ при сжигании топлива в котлах производительностью до 30 т/час

Вид топлива, К3 = Жидкое другое (Дизельное топливо и т.п.)

Расход топлива, T/год, BT = 13.3

Расход топлива, Γ/c , BG = 3.2

Марка топлива, М = Дизельное топливо

Низшая теплота сгорания рабочего топлива, ккал/кг (прил. 2.1), QR = 10210

Пересчет в МДж, QR = QR \cdot 0.004187 = 10210 \cdot 0.004187 = 42.75

Средняя зольность топлива, % (прил. 2.1), AR = 0.025

Предельная зольность топлива, % не более (прил. 2.1), A1R = 0.025

Среднее содержание серы в топливе, % (прил. 2.1), SR = 0.3

Предельное содержание серы в топливе, % не более (прил. 2.1), S1R = 0.3

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ АЗОТА

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Номинальная тепловая мощность котлоагрегата, кВт, QN = 1

Фактическая мощность котлоагрегата, кВт, QF = 1

Кол-во окислов азота, кг/1 Гдж тепла (рис. 2.1 или 2.2), KNO = 0.011

Коэфф. снижения выбросов азота в рез-тетехн. решений, B=0

Кол-во окислов азота, кг/1 Гдж тепла (ф-ла 2.7а), KNO = KNO \cdot (QF / QN)0.25 = 0.011 \cdot (1 / 1)0.25 = 0.011

Выброс окислов азота, т/год (ф-ла 2.7), MNOT = $0.001 \cdot BT \cdot QR \cdot KNO \cdot (1-B) = 0.001 \cdot 13.3 \cdot 42.75 \cdot 0.011 \cdot (1-0) = 0.00625$

Выброс окислов азота, г/с (ф-ла 2.7), MNOG = $0.001 \cdot \text{BG} \cdot \text{QR} \cdot \text{KNO} \cdot (1\text{-B}) = 0.001 \cdot 3.2 \cdot 42.75 \cdot 0.011 \cdot (1\text{-0}) = 0.001505$

Выброс азота диоксида (0301), т/год, $_{\rm M}_=0.8\cdot{\rm MNOT}=0.8\cdot0.00625=0.0050000$

Выброс азота диоксида (0301), г/с, $G = 0.8 \cdot MNOG = 0.8 \cdot 0.001505 = 0.0012040$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Выброс азота оксида (0304), т/год, $_{\rm M}$ = 0.13 · MNOT = 0.13 · 0.00625 = 0.0008125 Выброс азота оксида (0304), г/с, $_{\rm G}$ = 0.13 · MNOG = 0.13 · 0.001505 = 0.00019565

РАСЧЕТ ВЫБРОСОВ ОКИСЛОВ СЕРЫ

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Доля окислов серы, связываемых летучей золой топлива (п. 2.2), NSO2 = 0

Содержание сероводорода в топливе, % (прил. 2.1), H2S = 0

Выбросы окислов серы, т/год (ф-ла 2.2), $_{\rm M}$ = 0.02 \cdot BT \cdot SR \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BT = 0.02 \cdot 13.3 \cdot 0.3 \cdot (1-0) + 0.0188 \cdot 0 \cdot 13.3 = 0.0798000

Выбросы окислов серы, г/с (ф-ла 2.2), _G_ = $0.02 \cdot BG \cdot S1R \cdot (1-NSO2) + 0.0188 \cdot H2S \cdot BG = 0.02 \cdot 3.2 \cdot 0.3 \cdot (1-0) + 0.0188 \cdot 0 \cdot 3.2 = 0.0192000$

РАСЧЕТ ВЫБРОСОВ ОКИСИ УГЛЕРОДА

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Потери тепла от механической неполноты сгорания, % (табл. 2.2), Q4 = 0

Тип топки:

Потери тепла от химической неполноты сгорания, % (табл. 2.2), Q3 = 0.5

Коэффициент, учитывающий долю потери тепла, R=0.65

Выход окиси углерода в кг/тонн или кг/тыс.м3 (ф-ла 2.5), CCO = Q3 \cdot R \cdot QR = 0.5 \cdot 0.65 \cdot 42.75 = 13.9

Выбросы окиси углерода, т/год (ф-ла 2.4), $_{\rm M}$ = 0.001 \cdot BT \cdot CCO \cdot (1-Q4 / 100) = 0.001 \cdot 13.3 \cdot 13.9 \cdot (1-0 / 100) = 0.1848700

Выбросы окиси углерода, г/с (ф-ла 2.4), _G_ = $0.001 \cdot \mathrm{BG} \cdot \mathrm{CCO} \cdot (1-\mathrm{Q4} \ / \ 100) = 0.001 \cdot 3.2 \cdot 13.9 \cdot (1-0 \ / \ 100) = 0.0444800$

РАСЧЕТ ВЫБРОСОВ ТВЕРДЫХ ЧАСТИЦ

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Коэффициент (табл. 2.1), F = 0.01

Тип топки:

Выброс твердых частиц, т/год (ф-ла 2.1), $_M_=BT \cdot AR \cdot F=13.3 \cdot 0.025 \cdot 0.01=0.0033250$ Выброс твердых частиц, г/с (ф-ла 2.1), $_G_=BG \cdot A1R \cdot F=3.2 \cdot 0.025 \cdot 0.01=0.0008000$

Итого:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.03336	0.28148

0304	Азот (II) оксид (Азота оксид) (6)	0.005421	0.0457405
0316	Гидрохлорид (Соляная кислота, Водород хлорид) (163)	0.00371	0.030772224
0328	Углерод (Сажа, Углерод черный) (583)	0.0008	0.003325
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0497777778	0.4926768
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.04448	0.39687
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.00772	0.064032768
2902	Взвешенные частицы (116)	0.41527777778	3.44448

Исходные данные	Обозн	Ед.изм	Значения	
Расход топливо				
Количество закачиваемой в резервуар жидкости				
принимается по данным предприятия в осенне-		т/год	6,65	
зимний период	Воз			
Количество закачиваемой в резервуар жидкости				
принимается по данным предприятия в весенне-		т/год	6,65	
летний период	Ввл			
Концентрация паров нефтепродукта в		г/м3	3,14	
резервуаре (Приложение 12)	C1	17M3	3,14	
Максимальный объем паровоздушной смеси,	Vчмах	м3/час	0.0664	
вытесняемой из резервуара во время его закачки	V 4Max	м5/час	0,0664	
Средний удельный выброс из резервуара в	У03	г/т	1,9	
осенне-зимний период (Приложение 12)	y 03	171	1,9	
Средний удельный выброс из резервуара в	Увл	г/т	2,6	
весенне-летний период (Приложение 12)	УВЛ	1/1	2,0	
	7.0		1	
Опытный коэффициент (Приложение 8)	Kpmax		1	
Опытный коэффициент (Приложение 12)	Кнп		0,0029	
Выбросы паров нефтепродуктов при хранении				
топливо в одном резервуаре, принимаются по	Gxp	т/год 0,22		
Приложению 13				
	Np	шт	1	
Количество резервуаров	мр	ШТ	1	
Расчет выбросов:				
гасчет выоросов.				
Максимальный выброс				
		,	0.00005703	
$\mathbf{M} = \frac{\mathbf{C}_1 \times \mathbf{K}_p^{\frac{\mathbf{max}}{p}} \times \mathbf{V}_{\frac{\mathbf{m}}{q}}^{\frac{\mathbf{max}}{q}}}{3600}$		г/с	0,00005792	
Валовый выброс				
C (V D V D) ICMAX 10-6 C V	NI	,	0.000 5 5 7 0 2 7	
$G = (Y_{o3} \times B_{o3} + Y_{BJI} \times B_{BJI}) \times K_p^{max} \times 10^{-6} + G_{XP} \times K_{HIII} \times K_p^{max} \times 10^{-6} + K_{AP} \times K_{AP} $	[₹] N _p	T/F	0,000667925	
	%	г/с	т/г	
Выбросы	70		1/1	
C12-C19	99,72	0,000058	0,000666	
Сероводород	0,28	0,000000162	0,000002	

Источник загрязнения: 6003

Источник выделения: 6003 01, Хранение и погрузка золы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, КОС = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов

Материал: Зола

Весовая доля пылевой фракции в материале (табл.3.1.1), К1 = 0.06

Доля пыли, переходящей в аэрозоль (табл.3.1.1), К2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), M/c, G3SR = 5

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), К3 = 2

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), К5 = 0.9

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.3.1.5), К7 = 0.6

Высота падения материала, м, GB = 0.4

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), В = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 0.02

Суммарное количество перерабатываемого материала, т/год, GGOD = 57.6

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), GC = K1 · K2 · K3 · K4 · K5 · K7 · K8 · K9 · KE · B · GMAX · $106 / 3600 \cdot (1-NJ) = 0.06 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 0.02 \cdot 106 / 3600 \cdot (1-0) =$

0.00576

Продолжительность выброса составляет менее 20 мин согласно п.2.1 применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), TT = 1

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, GC = GC \cdot TT \cdot 60 / $1200 = 0.00576 \cdot 1 \cdot 60$ / 1200 = 0.000288

Валовый выброс, т/год (3.1.2), MC = K1 · K2 · K3SR · K4 · K5 · K7 · K8 · K9 · KE · B · GGOD · (1-NJ) = $0.06 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 57.6 \cdot (1-0) = 0.0358$

Максимальный разовый выброс, Γ/c (3.2.1), G = MAX(G,GC) = 0.000288Сумма выбросов, τ/Γ од (3.2.4), M = M + MC = 0 + 0.0358 = 0.0358

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.0358 = 0.01432$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.000288 = 0.0001152$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0001152	0.01432
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, КОС = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Зола

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), K4 = 1

Скорость ветра (среднегодовая), M/c, G3SR = 5

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), K3 = 2

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.9

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.3.1.5), K7 = 0.6

Поверхность пыления в плане, м2, S = 10

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 60

Продолжительность осадков в виде дождя, часов/год, ТО = 30

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 30 / 24 = 2.5$

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Максимальный разовый выброс, г/с (3.2.3), GC = K3 · K4 · K5 · K6 · K7 · Q · S · (1-NJ) = 2 · 1 · 0.9

 $\cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 10 \cdot (1-0) = 0.0313$

Валовый выброс, т/год (3.2.5), MC = $0.0864 \cdot \text{K3SR} \cdot \text{K4} \cdot \text{K5} \cdot \text{K6} \cdot \text{K7} \cdot \text{Q} \cdot \text{S} \cdot (365\text{-(TSP + TD)}) \cdot (1\text{-NJ}) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 10 \cdot (365\text{-}(60 + 2.5)) \cdot (1\text{-}0) = 0.491$ Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0313 = 0.0313 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.491 = 0.491

С учетом коэффициента гравитационного осаждения Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.491 = 0.1964$ Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0313 = 0.01252$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.01252	0.21072
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6003

Источник выделения: 6003 01, Хранение и погрузка золы

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, КОС = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.1.Погрузочно-разгрузочные работы, пересыпки пылящих материалов Материал: Зола

Весовая доля пылевой фракции в материале (табл.3.1.1), K1 = 0.06

Доля пыли, переходящей в аэрозоль (табл.3.1.1), К2 = 0.04

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), M/c, G3SR = 5

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), К3 = 2

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.9

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.3.1.5), К7 = 0.6

Высота падения материала, м, GB = 0.4

Коэффициент, учитывающий высоту падения материала (табл.3.1.7), В = 0.4

Суммарное количество перерабатываемого материала, т/час, GMAX = 0.02

Суммарное количество перерабатываемого материала, т/год, GGOD = 9.21

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Вид работ: Погрузка

Максимальный разовый выброс, г/с (3.1.1), GC = K1 · K2 · K3 · K4 · K5 · K7 · K8 · K9 · KE · B · GMAX · $106 / 3600 \cdot (1-NJ) = 0.06 \cdot 0.04 \cdot 2 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 0.02 \cdot 106 / 3600 \cdot (1-0) = 0.00576$

Продолжительность выброса составляет менее 20 мин согласно п.2.1 применяется 20-ти минутное осреднение.

Продолжительность пересыпки в минутах (не более 20), TT = 1

Максимальный разовый выброс, с учетом 20-ти минутного осреднения, г/с, GC = GC \cdot TT \cdot 60 / $1200 = 0.00576 \cdot 1 \cdot 60$ / 1200 = 0.000288

Валовый выброс, т/год (3.1.2), MC = K1 · K2 · K3SR · K4 · K5 · K7 · K8 · K9 · KE · B · GGOD · (1-NJ) = $0.06 \cdot 0.04 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 0.6 \cdot 1 \cdot 1 \cdot 1 \cdot 0.4 \cdot 9.21000000000001 \cdot (1-0) = 0.00573$

Максимальный разовый выброс, г/с (3.2.1), G = MAX(G,GC) = 0.000288 Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.00573 = 0.00573

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.00573 = 0.00229$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.000288 = 0.0001152$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.0001152	0.00229
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Список литературы:

Методика расчета нормативов выбросов от неорганизованных источников п. 3 Расчетный метод определения выбросов в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Коэффициент гравитационного осаждения твердых компонентов, п.2.3, KOC = 0.4

Тип источника выделения: Погрузочно-разгрузочные работы, пересыпки, статическое хранение пылящих материалов

п.3.2.Статическое хранение материала

Материал: Зола

Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)

Материал негранулирован. Коэффициент Ке принимается равным 1

Степень открытости: с 4-х сторон

Загрузочный рукав не применяется

Коэффициент, учитывающий степень защищенности узла (табл.3.1.3), К4 = 1

Скорость ветра (среднегодовая), м/с, G3SR = 5

Коэфф., учитывающий среднегодовую скорость ветра (табл.3.1.2), K3SR = 1.2

Скорость ветра (максимальная), M/c, G3 = 12

Коэфф., учитывающий максимальную скорость ветра (табл.3.1.2), К3 = 2

Влажность материала, %, VL = 1

Коэфф., учитывающий влажность материала (табл.3.1.4), K5 = 0.9

Размер куска материала, мм, G7 = 5

Коэффициент, учитывающий крупность материала (табл.3.1.5), К7 = 0.6

Поверхность пыления в плане, м2, S = 10

Коэфф., учитывающий профиль поверхности складируемого материала, К6 = 1.45

Унос материала с 1 м2 фактической поверхности, г/м2*с (табл.3.1.1), Q = 0.002

Количество дней с устойчивым снежным покровом, TSP = 60

Продолжительность осадков в виде дождя, часов/год, ТО = 30

Количество дней с осадками в виде дождя в году, $TD = 2 \cdot TO / 24 = 2 \cdot 30 / 24 = 2.5$

Эффективность средств пылеподавления, в долях единицы, NJ = 0

Максимальный разовый выброс, г/с (3.2.3), GC = K3 · K4 · K5 · K6 · K7 · Q · S · (1-NJ) = 2 · 1 · 0.9 · 1.45 · 0.6 · 0.002 · 10 · (1-0) = 0.0313

Валовый выброс, т/год (3.2.5), MC = $0.0864 \cdot \text{K3SR} \cdot \text{K4} \cdot \text{K5} \cdot \text{K6} \cdot \text{K7} \cdot \text{Q} \cdot \text{S} \cdot (365\text{-(TSP + TD)}) \cdot (1\text{-NJ}) = 0.0864 \cdot 1.2 \cdot 1 \cdot 0.9 \cdot 1.45 \cdot 0.6 \cdot 0.002 \cdot 10 \cdot (365\text{-}(60 + 2.5)) \cdot (1\text{-}0) = 0.491$

Сумма выбросов, г/с (3.2.1, 3.2.2), G = G + GC = 0 + 0.0313 = 0.0313

Сумма выбросов, т/год (3.2.4), M = M + MC = 0 + 0.491 = 0.491

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 0.491 = 0.1964$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 0.0313 = 0.01252$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.01252	0.19869
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

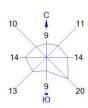
Приложение 4 – Расчет рассеивания загрязняющих веществ в период эксплуатации

Город : 011 Атырау Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1 ПК ЭРА v3.0 Модель: МРК-2014

__ПЛ 2902+2908

Изолинии в долях ПДК Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01

Максим. значение концентрации Расч. прямоугольник N 01

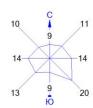

1463 4389м. штаб 1:146300

Макс концентрация 0.0882723 ПДК достигается в точке x= 8000 y= 5000 При опасном направлении 227° и опасной скорости ветра 11.24 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Город : 011 Атырау Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1

ПК ЭРА v3.0 Модель: MPK-2014

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)


Изолинии в долях ПДК Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01 Максим. значение концентрации Расч. прямоугольник N 01

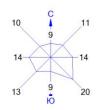
4389м. 1463 Масштаб 1:146300

Макс концентрация 0.0070231 ПДК достигается в точке x= 8000 y= 5000 При опасном направлении 227° и опасной скорости ветра 1.52 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Город : 011 Атырау Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1

ПК ЭРА v3.0 Модель: МРК-2014 0342 Фтористые газообразные соединения /в пересчете на фтор/ (617)

Изолинии в долях ПДК Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01 Максим. значение концентрации


Расч. прямоугольник N 01

4389м. 1463 таб 1:146300

Макс концентрация 0.0272301 ПДК достигается в точке x= 8000 y= 5000 При опасном направлении 227° и опасной скорости ветра 1.52 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Город : 011 Атырау Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1

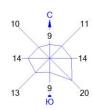
ПК ЭРА v3.0 Модель: МРК-2014 2902 Взвешенные частицы (116)

Изолинии в долях ПДК Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01 Максим. значение концентрации Расч. прямоугольник N 01

Макс концентрация 0.0739531 ПДК достигается в точке x= 8000 y= 5000 При опасном направлении 227° и опасной скорости ветра 5.75 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Город : 011 Атырау
Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1
ПК ЭРА v3.0 Модель: МРК-2014
2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месфорождений) (494)

Изолинии в долях ПДК

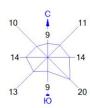

Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01 Максим. значение концентрации Расч. прямоугольник N 01

4389M 1463 габ 1:146300

Макс концентрация 0.0392688 ПДК достигается в точке х= 8000 у= 5000 При опасном направлении 227° и опасной скорости ветра 12 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Город : 011 Атырау Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1 ПК ЭРА v3.0 Модель: MPK-2014

6007 0301+0330


Изолинии в долях ПДК Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01 Максим. значение концентрации Расч. прямоугольник N 01

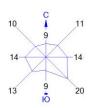


Макс концентрация 0.0187899 ПДК достигается в точке x= 8000 y= 5000 При опасном направлении 227° и опасной скорости ветра 1.52 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Город : 011 Атырау Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1 ПК ЭРА v3.0 Модель: MPK-2014

6041 0330+0342

Изолинии в долях ПДК Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01 Максим. значение концентрации


Расч. прямоугольник N 01

Макс концентрация 0.0342532 ПДК достигается в точке x= 8000 $\,$ y= 5000 При опасном направлении 227 $^{\circ}$ и опасной скорости ветра 1.52 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Город : 011 Атырау Объект : 0057 АТАКИМ Махамбет (проект отчета) Вар.№ 1 ПК ЭРА v3.0 Модель: MPK-2014

6044 0330+0333

Изолинии в долях ПДК Условные обозначения: Жилые зоны, группа N 01 Санитарно-защитные зоны, группа N 01 Максим. значение концентрации Расч. прямоугольник N 01

Макс концентрация 0.0070329 ПДК достигается в точке х= 8000 у= 5000 При опасном направлении 227° и опасной скорости ветра 1.52 м/с Расчетный прямоугольник № 1, ширина 26000 м, высота 13000 м, шаг расчетной сетки 1000 м, количество расчетных точек 27*14 Расчёт на существующее положение.

Приложение 5 – Сводная таблица результатов расчетов в период эксплуатации

Код 3В	Наименование загрязняющих веществ и состав групп суммаций	Cm	РΠ	C33	КЖ	ФТ	Граница области возд.	Колич.ИЗА	ПДКмр (ОБУВ) мг/м3	Класс опасн.
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,0849	0,011767	0,007013	0,000064	нет расч.	нет расч.	1	0,2	2
0304	Азот (II) оксид (Азота оксид) (6)	0,0069	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	1	0,4	3
0316	Гидрохлорид (Соляная кислота, Водород хлорид) (163)	0,0094	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	1	0,2	2
0328	Углерод (Сажа, Углерод черный) (583)	0,0068	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	1	0,15	3
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,0507	0,007023	0,004186	0,000038	нет расч.	нет расч.	1	0,5	3
0333	Сероводород (Дигидросульфид) (518)	0,0007	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	1	0,008	2
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,0045	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	1	5	4
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,1964	0,02723	0,01623	0,000148	нет расч.	нет расч.	1	0,02	2
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0,0021	Cm<0.05	Cm<0.05	Cm<0.05	нет расч.	нет расч.	1	1	4
2902	Взвешенные частицы (116)	1,0567	0,073953	0,048868	0,000151	нет расч.	нет расч.	1	0,5	3
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	4,4717	0,039269	0,014933	0,000028	нет расч.	нет расч.	1	0,3	3
6007	0301 + 0330	0,1355	0,01879	0,011199	0,000102	нет расч.	нет расч.	1		
6041	0330 + 0342	0,2471	0,034253	0,020415	0,000186	нет расч.	нет расч.	1		
6044	0330 + 0333	0,0514	0,007033	0,004193	0,000038	нет расч.	нет расч.	2		
ПЛ	2902 + 2908	3,7397	0,088272	0,057211	0,000168	нет расч.	нет расч.	2		

Приложение 6 – Копия лицензии «ABC Engineering»

17010128

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

<u>05.06.2017 года</u>

Выдана Товарищество с ограниченной ответственностью "ABC Engineering"

090014, Республика Казахстан, Западно-Казахстанская область, Уральск Г.А., г. Уральск, МИКРОРАЙОН ЖАҢА ОРДА, дом № 11., 89., БИН: 150840001620

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

среды

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

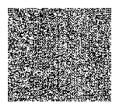
Примечание Неотчуждаемая, класс 1

(отчуждаемость, класс разрешения)

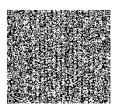
Лицензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства

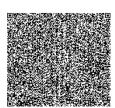
экологического регулирования и контроля министерства энергетики Республики Казахстан» . Министерство энергетики Республики Казахстан.

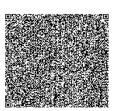
(полное наименование лицензиара)


Руководитель АЛИМБАЕВ АЗАМАТ БАЙМУРЗИНОВИЧ

(уполномоченное лицо) (фамилия, имя, отчество (в случае наличия)


Дата первичной выдачи


Срок действия лицензии


Место выдачи г.Астана

Заказчик TOO «АТАКИМ» Разработчик: TOO «ABC Engineering» 17010128

Страница 1 из 2

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии 01931Р

Дата выдачи лицензии 05.06.2017 год

Подвид(ы) лицензируемого вида деятельности:

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиат Товарищество с ограниченной ответственностью "ABC Engineering"

090014, Республика Казахстан, Западно-Казахстанская область, Уральск Г.А. , г.Уральск, МИКРОРАЙОН ЖАҢА ОРДА, дом № 11., 89., БИН: 150840001620

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Производственная база ТОО «ABC Engineering», Западно-Казахстанская область г.Уральск, мкр

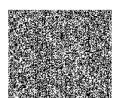
-н Жана Орда, 11 дом, 89 кв.

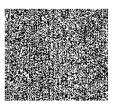
(местонахождение)

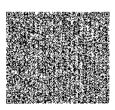
Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства энергетики


экологического регулирования и контроля Министерства энергетики Республики Казахстан» . Министерство энергетики Республики Казахстан.


стан.


(полное наименование органа, выдавшего приложение к лицензии)

Руководитель (уполномоченное лицо) АЛИМБАЕВ АЗАМАТ БАЙМУРЗИНОВИЧ

(фамилия, имя, отчество (в случае наличия)

Осы құжат «Электронды құжат және электрондық шифралық қолтанба туралы» Қазақстан Республикасының 2 (03 жыллы 7 қалғардағы Заңы 7 бабының 1 тармағына сөйкес қағат ясығыштағы құжатпемынды байыны сәйкес қағат ясығыштағы құжатпемынды байынды қаратын қаратын

Заказчик TOO «АТАКИМ» Разработчик: TOO «ABC Engineering»