Товарищество с ограниченной ответственностью «ПолисМунайКурылыс» Товарищество с ограниченной ответственностью «ВМ engineering»

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух для объекта ТОО «ПолисМунайКурылыс» на 2025-2027 год. Корректировка

Директор
TOO «ВМ engineering»

К.Ж. Айтенова

1. СПИСОК ИСПОЛНИТЕЛЕЙ

Должность	Подпись	Ф.И.О
1	2	3
Ответственный исполнитель	al-	Драган А.В.

2. СОСТАВ ПРОЕКТА

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух для объекта ТОО «ПолисМунайКурылыс» на 2025-2027 год. Корректировка состоит из двух частей:

<u>Часть 1</u> – Инвентаризация источников выбросов загрязняющих веществ в атмосферу.

 $\underline{\textit{Часть 2}}$ — Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу.

Первая часть проекта включает в собя: характеристику предприятия, как источника загрязнения атмосферы, краткую характеристику технологии производства и технологического оборудования (описание выпускаемой продукции, основного исходного сырья, расход основного и резервного топлива) с точки зрения загрязнения атмосферы, данные о существующих на предприятии систем пыле-, газоочистки и эффективность их работы, перечень и количественные значения выбросов поступающих в атмосферу загрязняющих веществ, полученных в результате проведения расчетов по утвержденным методическим указаниям по определению выбросов вредных веществ.

Вторая часть проекта включает в себя: предложения по нормативам НДВ по каждому источнику и для каждого ингредиента с учетом полной нагрузки технологического оборудования и сроков достижения предлагаемых нормативов НДВ, мероприятия, направленные на достижение нормативов НДВ, мероприятия, направленные на регулирование выбросов загрязняющих веществ в период НМУ, расчет рассеивания приземных концентраций вредных веществ в атмосферу, выполненный на программном комплексе «ЭРА» версии 3.0, контроль за соблюдением нормативов НДВ на источниках загрязнения атмосферы и на контрольных точках, размер платы за загрязнение атмосферного воздуха в результате производственной деятельности предприятия.

3. АННОТАЦИЯ

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух для объекта ТОО «ПолисМунайКурылыс» на 2025-2027 год. Корректировка, разрабатывается с целью установления нормативов эмиссий, являющихся основой для выдачи экологического разрешения и принятия решения о необходимости проведения технических мероприятий, направленных на снижение негативного действия на атмосферный воздух.

Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу разработан на основании Экологического кодекса (ЭК) Кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK, Экологического кодекса (ЭК) Республики Казахстан.

Методика определения нормативов эмиссий в окружающую среду (далее – Методика) определяет порядок разработки и установления нормативов эмиссий в окружающую среду, в соответствии с подпунктом 1) пункта 2 статьи 27, пунктом 6 статьи 39 Экологического Кодекса Республики Казахстан от 2 января 2021 года и устанавливает способы определения нормативов эмиссий в окружающую среду.

Настоящий проект нормативов НДВ для объектов ТОО «ПолисМунайКурылыс» на 2025-2027 год. Корректировка выполнен ТОО «ВМ engineering» имеющий лицензию на природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности (государственная лицензия на выполнение работ и оказание услуг в области охраны окружающей среды 02223Р от 25.09.2020 год, выданное Республиканским государственным учреждением «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Копия лицензии прилагается в Приложении.

Намечаемая деятельность: «Работа по процессингу производства электроэнергии из ПНГ месторождения «Ю.В.Новобогат» НГДУ «Жайыкмунайгаз». Модернизация».

Основными объектами при модернизации, явилось установка следующего дополнительного оборудования по подготовке топливного газа на площадке ГПЭС:

- Блока подготовки топливного газа 1 ед.;
- Площадка дренажной емкости $V=5m^3-1$ ед.;
- Ёмкость для сбора Ш Φ ЛУ V=10м³ 1 ед.
- Опоры меж площадочных трубопроводов.

Атак же добавились источники при ремонтных работах, такие как сварочные работы и покрасочные работы.

<u>В связи с этим принято решение о корректировке НДВ предприятия. Объемы газа</u> для выработки электроэнергии остались на прежнем уровни.

Намечаемая деятельность отсутствует в Приложении 1 к Экологическому кодексу Республики Казахстан (далее – Кодекс). Согласно ст. 87 Кодекса обязательной государственной экологической экспертизе подлежат проектные документы по строительству и (или) эксплуатации объектов I и II категорий и иные проектные документы, предусмотренные настоящим Кодексом для получения экологических разрешений. В этой связи, на основании п. 3 ст. 49 Кодекса, экологическая оценка по упрощенному порядку проводится для намечаемой и осуществляемой деятельности, не подлежащей обязательной оценке воздействия на окружающую среду при:

- 1) разработке проектов нормативов эмиссий для объектов I и II категорий;
- 2) разработке раздела «Охрана окружающей среды» в составе проектной документации по намечаемой деятельности и при подготовке декларации о воздействии на окружающую среду.

Номер: KZ26VWF00342876 Дата: 05.05.2025г.

В связи с этим разрабатывается проект нормативов НДВ на 2025-2027 год. Корректировка. Копия Заключения прилагается в приложении – Справки предприятия. Площадка ГПЭС (блочно-модульного исполнения) расположена в северной части месторождения «Ю.З. Камышитовое» на отведенной территории (в границах земельного отвода), в районе существующих РП-6кВ и УПН.

Максимальная производительность $\Gamma\Pi \ni C - 350\text{-}400$ нм3/час, производительность $\Gamma\Pi \ni C$ зависит от расхода газа и время работы установки. По данным заказчика расход газа по годам представлен в таблице ниже.

Таблица - Расход газа по годам для выработки электроэнергии

N₂	Годы	Кол-ство газа м3/год на 1-ну ГПЭС рабочию	Кол-ство м3/год ГПЭС от 4 рабочих	Кол-ство м3/год ГПЭС от 1-ой резервной	Общее кол-кство газа м3/год	
1	2	3	4	5	6	
1	2025	3137848,87	12551395,48	288000	12839395,48	
2	2026	2972055,145	11888220,58	288000	12176220,58	
3	2027	2972055,145	11888220,58	288000	12176220,58	
ИТОГО					37191836,64	

При разработке данного проекта учтена производительность предприятия на 2025-2027 гол.

Данный проект в соответствии с требованиями «Приложение 3 к Методике определения нормативов эмиссий в окружающую среду. Рекомендации по оформлению проекта нормативов выбросов загрязняющих веществ» состоит из двух самостоятельных частей:

Часть 1 - Инвентаризация источников выбросов загрязняющих веществ в атмосферу.

Часть 2 - Проект нормативов допустимых выбросов загрязняющих веществ в атмосферу.

В составе разработанного проекта представлены:

- общие сведения о предприятии;
- краткая характеристика технологии производства и основных технологических процессов;
- инвентаризация стационарных и передвижных источников выбросов вредных веществ в атмосферу;
 - характеристика предприятия, как источника загрязнения атмосферы;
- количественные характеристики выбросов в атмосферу на предприятии и предложения по установлению нормативов НДВ;
- расчет величин нормативов НДВ для каждого источника загрязняющих веществ при полной нагрузке технологического оборудования;
- мероприятия, направленные на достижение предлагаемых проектом нормативов НДВ;
- мероприятия, направленные на регулирование выбросов загрязняющих веществ в период HMУ;
- расчет рассеивания приземных концентраций вредных веществ в атмосфере, выполненный на программном комплексе «ЭРА» версии 3.0.
- контроль за соблюдением нормативов НДВ на источниках загрязнения атмосферы и на контрольных точках;
- размер платы за загрязнение атмосферного воздуха в результате производственной деятельностью предприятия.

В рамках данного проекта по требованиям, изложенным на промплощадке предприятия согласно технологической схемы была проведена инвентаризация источников выбросов загрязняющих веществ в атмосферу, которая позволила выявить на предприятии стационарных источников загрязнения атмосферы, определить их

основные параметры и оценить степень негативного воздействия на ОС в результате основной и вспомогательной производственной деятельности предприятия.

Максимально-разовые и валовые выбросы загрязняющих веществ в атмосферу на 2025 год составит: **36,98132 г/сек или 577,2555 т/год,** из них при строительстве **4,1440 г/сек или 0,65775 т/за период строительных работ,** при эксплуатации **32,837319 г/сек или 576,5977 т/год.**

Максимально-разовые и валовые выбросы загрязняющих веществ в атмосферу на 2026-2027 год составит: **32,837319** г/сек или **548,00052** т/год.

В атмосферу будут выделяться загрязняющие вещества 17 наименований.

Качественные и количественные значения выбросов загрязняющих веществ на существующее положение и на перспективные года рассчитаны согласно утвержденным методическим указаниям с учетом основных производственных показателей работы предприятия, предоставленных предприятием — заказчиком.

Сведения об основных характеристиках источников выделения и загрязнения атмосферы, применяемых пылеулавливающих установках, о количестве выбрасываемых и улавливаемых загрязняющих веществ, об имеющимся на предприятии автотранспорте обобщены и приведены в бланках инвентаризации установленной формы.

Во второй части проекта представлены:

- характеристика существующих источников выбросов вредных веществ в атмосферу для предприятия;
- расчеты рассевания приземных концентраций в атмосфере на существующее положение и на перспективу по всем выбрасываемым веществам и группам суммации;
 - нормативы допустимых выбросов предприятия;
 - мероприятия по сокращению выбросов загрязняющих веществ в атмосферу;
 - мероприятия по регулированию выбросов в период НМУ;
- контроль за соблюдением нормативов НДВ на источниках загрязнения и на контрольных точках.

Установление нормативов допустимых выбросов для предприятия ТОО «ПолисМунайКурылыс» производилось посредством проведения методов расчета загрязнения атмосферы промышленными выбросами предприятия с учетом перспектив развития предприятия, физико-географических и климатических условий местности, расположения участков существующей жилой застройки и промплощадок и их взаимного расположения относительно друг друга.

TOO Bce стационарные источники загрязнения атмосферы ГПЭС «ПолисМунайКурылыс» (блочно-модульного базируются на площадки исполнения) расположена в северной части месторождения «Ю.З. Камышитовое» на отведенной территории (в границах земельного отвода), в районе существующих РП-6кВ и УПН на расстоянии 800 метров. Согласно требованиям «Методика определения нормативов эмиссий в окружающую среду (далее – Методика) определяет порядок разработки и установления нормативов эмиссий в окружающую среду, в соответствии с подпунктом 1) пункта 2 статьи 27, пунктом 6 статьи 39 Экологического Кодекса Республики Казахстан от 2 января 2021 года и устанавливает способы определения нормативов эмиссий в окружающую среду» в данном проекте, разработанном в целом для предприятия, расчеты полей концентраций выполнены для всех источников предприятия в целом по рассматриваемой промплощадке.

Расчеты рассеивания максимальных концентраций вредных веществ в приземном слое атмосферы проведены по каждому ингредиенту и группе суммации на 2025-2027 год для всех объектов предприятия в отдельности с учетом фонового загрязнения и показали, что при концентрации загрязняющих веществ, создаваемых производственной деятельностью предприятия, не превышают значений 1ПДК, установленных для населенных мест, растительного и животного мира на границе нормативной санитарно-защитной зоны.

Расчет рассеивания приземных концентраций вредных примесей в атмосферном воздухе для предприятия был выполнен с учетом уточненного по розе ветров нормативного размера санитарно-защитной зоны. В соответствии с нормами «Санитарноэпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № КР ДСМ-2» нормативный размер СЗЗ для рассматриваемого объекта составляет 1000 метров, Согласно Экологического кодекса республики Казахстан Кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК виды намечаемой деятельности и иные критерии, на основании которых осуществляется отнесение объектов, оказывающих негативное воздействие на окружающую среду, согласно Приложение 2 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI ЗРК. Раздел 2. Виды намечаемой деятельности и иные критерии, на основании которых осуществляется отнесение объектов, оказывающих негативное воздействие на окружающую среду, к объектам II категории, 1. Энергетика: энергопроизводящие станции, работающие на газе, с мощностью 10 мегаватт (МВт) и более.

Полнота учета выполненной в рамках проекта НДВ инвентаризации источников загрязнения предприятия совокупности загрязняющих веществ, поступающих и неорганизованных атмосферу из организованных источников выброса осуществлении технологических процессов И хозяйственной деятельности предприятии утверждена руководителем этого предприятия рассматриваемом инвентаризационной части проекта нормативов НДВ, что подтверждает ответственность предприятия за полноту и достоверность представленных данных инвентаризации перед органами государственного контроля.

Местонахождение производственного объекта представлено на рисунках ниже.

Адрес заказчика:

030000, Республика Казахстан, Актюбинская область, г.Актюбе ул.Г.Ибатова, д. 80 ТОО «ПолисМунайКурылыс» БИН070440010727, телефон +87019158898, +7(7132)459395.E-mail pmk042007@gmail.com

Адрес исполнителя:

130000 Мангистауская обл., г. Актау, 28 мкр-н, дом 49 г. 56 кв/офис, ТОО «ВМ engineering», БИН 050840006859 телефон +77058968019. Е-таіl таке-t@mail.ru Гослицензия Министерства охраны окружающей среды 02223P от 25.09.2020 год.

4. СОДЕРЖАНИЕ

1. СПИСОК ИСПОЛНИТЕЛЕЙ	2
2. COCTAB IIPOEKTA	3
3. АННОТАЦИЯ	4
4. СОДЕРЖАНИЕЧАСТЬ I. ИНВЕНТАРИЗАЦИЯ ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИ	
ЧАСТЬ І. ИНВЕНТАРИЗАЦИЯ ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИ. ВЕЩЕСТВ В АТМОСФЕРУ ДЛЯ ОБЪЕКТА ТОО «ПОЛИСМУНАЙКУРЫЛЫС	
НА 2025-2027 ГОД. КОРРЕКТИРОВКА	
5. ВВЕДЕНИЕ	12
6. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ	13
6.1. ПОЧТОВЫЙ АДРЕС ОПЕРАТОРА ОБЪЕКТА, КОЛИЧЕСТВО ПЛОЩАДОК,	
ВЗАИМОРАСПОЛОЖЕНИЕ ОБЪЕКТА	13
6.2. КАРТА-СХЕМА ПРЕДПРИЯТИЯ С НАНЕСЕННЫМИ НА НЕЕ ИСТОЧНИКАМ!	
ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ	
6.3. СИТУАЦИОННАЯ КАРТА-СХЕМА РАЙОНА РАЗМЕЩЕНИЯ ОБЪЕКТА	
РАЗДЕЛ І. ИСТОЧНИКИ ВЫДЕЛЕНИЯ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ	
БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕС	
В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ	
РАЗДЕЛ II. ХАРАКТЕРИСТИКА ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА	
РАЗДЕЛ III. ПОКАЗАТЕЛИ РАБОТЫ ПЫЛЕГАЗООЧИСТНОГО ОБОРУДОВАНИЯ	28
(ПГО)	33
РАЗДЕЛ IV. СУММАРНЫЕ ВЫБРОСЫ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ	<i>33</i>
АТМОСФЕРУ, ИХ ОЧИСТКА И УТИЛИЗАЦИЯ	
РАЗДЕЛ V – АВТОТРАНСПОРТ ПРЕДПРИЯТИЯ	
	50
ЧАСТЬ 2 ПРОЕКТ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ ВРЕДНЫХ	
ВЕЩЕСТВ В АТМОСФЕРУ (НДВ) ДЛЯ ОБЪЕКТА ТОО	
«ПОЛИСМУНАЙКУРЫЛЫС» НА 2025-2027 ГОД. КОРРЕКТИРОВКА	37
7. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ	27
АТМОСФЕРЫ	37
ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ	37
7.1.1. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА И ТЕХНОЛОГИЧЕСКОГО	37
ОБОРУЛОВАНИЯ	37
ОБОРУДОВАНИЯ7.2. ОБЩАЯ ХАРАКТЕРИСТИКА ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ	,31
ВЕЩЕСТВ В АТМОСФЕРУ	
7.2. КРАТКАЯ ХАРАКТЕРИСТИКА СУЩЕСТВУЮЩИХ УСТАНОВОК ОЧИСТКИ	
ГАЗОВ	44
7.3. ОЦЕНКА СТЕПЕНИ ПРИМЕНЯЕМОЙ ТЕХНОЛОГИИ, ТЕХНИЧЕСКОГО И	
ПЫЛЕГАЗООЧИСТНОГО ОБОРУДОВАНИЯ	44
7.4. ПЕРСПЕКТИВА РАЗВИТИЯ	45
7.5. ПАРАМЕТРЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ДЛ	
РАСЧЕТА НДВ ПРЕДСТАВЛЯЮТСЯ В ВИДЕ ТАБЛИЦЫ ПРИЛОЖЕНИЯ 1	46

7.6. ХАРАКТЕРИСТИКА АВАРИИНЫХ И ЗАЛПОВЫХ ВЫБРОСОВ ПРИВОДИТСЯ В
ВИДЕ ТАБЛИЦЫ ПРИЛОЖЕНИЯ 561
7.7. ПЕРЕЧЕНЬ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, ВЫБРАСЫВАЕМЫХ В АТМОСФЕРУ,
ПРЕДСТАВЛЯЮТ В ВИДЕ ТАБЛИЦЫ ПРИЛОЖЕНИЯ 762
7.8. ОБОСНОВАНИЕ ПОЛНОТЫ И ДОСТОВЕРНОСТИ ИСХОДНЫХ ДАННЫХ (Г/С,
Т/ГОД), ПРИНЯТЫХ ДЛЯ РАСЧЕТА НДВ66
8. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ И ПРЕДЛОЖЕНИЯ ПО
НОРМАТИВАМ ДОПУСТИМЫХ ВЫБРОСОВ67
8.1. МЕТЕОРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ И КОЭФФИЦИЕНТЫ,
ОПРЕДЕЛЯЮЩИЕ УСЛОВИЯ РАССЕИВАНИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ67
8.2. РЕЗУЛЬТАТЫ РАСЧЕТОВ УРОВНЯ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ НА
СУЩЕСТВУЮЩИЕ ПОЛОЖЕНИЕ И С УЧЕТОМ ПЕРСПЕКТИВЫ РАЗВИТИЯ69
8.2.1. АНАЛИЗ РЕЗУЛЬТАТОВ РАСЧЕТА РАССЕИВАНИЯ70
8.3. ПРЕДЛОЖЕНИЯ ПО НОРМАТИВАМ ДОПУСТИМЫХ ВЫБРОСОВ (НДВ) ПО
КАЖДОМУ ИСТОЧНИКУ И ИНГРЕДИЕНТУ74
8.4. ОБОСНОВАНИЕ ВОЗМОЖНОСТИ ДОСТИЖЕНИЯ НОРМАТИВОВ С УЧЕТОМ
ИСПОЛЬЗОВАНИЯ МАЛООТХОДНОЙ ТЕХНОЛОГИИ И ДРУГИХ ПЛАНИРУЕМЫХ
ТЕХНОЛОГИЙ
8.5. УТОЧНЕНИЕ ГРАНИЦ ОБЛАСТИ ВОЗДЕЙСТВИЯ ОБЪЕКТА И
КЛАССИФИКАЦИЯ ПО КЛАССУ ОПАСНОСТИ ОБЪЕКТА, САНИТАРНО -
3АЩИТНАЯ ЗОНА
8.6. ДАННЫЕ О ПРЕДЕЛАХ ОБЛАСТИ ВОЗДЕЙСТВИЯ
8.7. ДОКУМЕНТЫ (МАТЕРИАЛЫ), СВИДЕТЕЛЬСТВУЮЩИЕ ОБ УЧЕТЕ
СПЕЦИАЛЬНЫХ ТРЕБОВАНИЙ (ПРИ ИХ НАЛИЧИИ) К КАЧЕСТВУ
АТМОСФЕРНОГО ВОЗДУХА ДЛЯ ДАННОГО РАЙОНА88
9. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ
НЕБЛАГОПРИЯТНЫХ МЕТЕРОЛОГИЧЕСКИХ УСЛОВИЯХ89 9.1. ПЛАН МЕРОПРИЯТИЙ ПО СОКРАЩЕНИЮ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ
ВЕЩЕСТВ В АТМОСФЕРУ В ПЕРИОДЫ НМУ89
9.2. ОБОБЩЕННЫЕ ДАННЫЕ О ВЫБРОСАХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В
АТМОСФЕРУ В ПЕРИОДЫ НМУ90
9.3. КРАТКАЯ ХАРАКТЕРИСТИКА КАЖДОГО КОНКРЕТНОГО МЕРОПРИЯТИЯ С
УЧЕТОМ РЕАЛЬНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ ТЕХНОЛОГИЧЕСКОГО
ОБОРУДОВАНИЯ128 9.4. ОБОСНОВАНИЕ ВОЗМОЖНОГО ДИАПАЗОНА РЕГУЛИРОВАНИЯ ВЫБРОСОВ
ПО КАЖДОМУ МЕРОПРИЯТИЮ
по клидому мы от питто
10. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ
ВЫБРОСОВ
11. РАСЧЕТ ПЛАТЫ ЗА ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ156
44. GWAGOM WOMO W NODA WWW W WOTTOWWYMOD
12. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ160
ПРИЛОЖЕНИЕ 1 - ЛИЦЕНЗИЯ НА ВЫПОЛНЕНИЕ РАБОТ И ОКАЗАНИЕ
УСЛУГ В ОБЛАСТИ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ162
, ,,
ПРИЛОЖЕНИЕ 2167
2.1. РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ПРИ
СТРОИТЕЛЬСТВЕ

2.2. РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ПРИ	
ЭКСПЛУАТАЦИИ НА 2025, 2026, 2027 ГГ	181
2.3. СИТУАЦИОННЫЕ КАРТЫ-СХЕМЫ ИЗОЛИНИЙ РАССЧИТАННЫХ	
МАКСИМАЛЬНЫХ КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ	
ЭКСПЛУАТАЦИИ	244
2.4. РАСЧЕТ ПОЛЕЙ КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ	2 1 1
	261
ЭКСПЛУАТАЦИИ	261
	200
ПРИЛОЖЕНИЕ 3. СПРАВКИ ПРЕДПРИЯТИЯ	298
<u>СПИСОК ТАБЛИЦ</u>	
Таблица 1 - Физико-химические свойства, компонентный состав газа	
Таблица 2 - Расход газа по годам для выработки электроэнергии	
Таблица 3 - Расход газа по годам для выработки электроэнергии по производительности по каждой ГІ	19C.38
Таблица 4 - Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ, при	47
строительствеТаблица 5 - Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ, при эксплуат	
Таблица 5 - Параметры выоросов загрязняющих веществ в атмосферу для расчета ггдь, при эксплуата Таблица 6 - Перечень источников залповых выбросов	
Таблица 6 - Теречень источников залновых выоросов	
Таблица 8 - Перечень загрязняющих веществ, выбрасываемых в атмосферу в период строительства	
Таблица 9 - Перечень загрязняющих веществ, выбрасываемых в атмосферу в период эксплуатации	
Таблица 10 - Средняя температура воздуха °С	
Таблица 11 - Влажность воздуха в %.	
Таблица 12 - Атмосферное давление в мм рт.ст.	67
Таблица 13 - Количество осадков мм, по месяцам и за год.	
Таблица 14 - Среднемесячная и годовая скорость ветра м/сек.	
Таблица 15 - Максимальная и годовая скорость ветра м/сек.	
Таблица 16 - Средняя повторяемость направлений ветра и штилей, %:	
Таблица 17 - Метеорологические характеристики и коэффициенты, определяющие условия рассеиван загрязняющих веществ в атмосфере	ИЯ 20
загрязняющих веществ в атмосфере	
Таблица 19 - Перечень источников, дающих наиоольшие вклады в уровень загрязнения атмосферы Таблица 19 - Лимиты выбросов загрязняющих веществ в атмосферу при строительстве	
Таблица 20 - Лимиты выбросов загрязняющих веществ в атмосферу в период эксплуатации	
Таблица 21 - Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в периоды	
Таблица 22 - Характеристика выбросов вредных веществ в атмосферу в периоды НМУ	122
Таблица 23 - План технических мероприятий по снижению выбросов ЗВ с целью достижения нормати	1 ВОВ
НДВ	
Таблица 24 - План-график контроля на объекте за соблюдением нормативов допустимых выбросов на	
источниках выбросов при СМР	
Таблица 25 - План-график контроля на объекте за соблюдением нормативов допустимых выбросов на	
источниках выбросов при эксплуатацииТаблица 26 - Расчет категории источников, подлежащих контролю	
Таблица 27 - Определение необходимости расчетов приземных концентраций по веществам	
Таблица 28 - Контрольные значения приземных концентраций вредных веществ для контроля нормат	
допустимых выбросов	
Таблица 29 - Максимальная разовая концентрация загрязняющих веществ в расчетных точках (на гра	
СЗЗ, в жилой застройке)	
Таблица 30 - Плата за загрязнение атмосферы	157
СПИСОК РИСУНКОВ	
Рисунок 1 – Обзорная карта района работ	14
Рисунок 2 – Ситуационная карта-схема района работ	14
Рисунок 3 – Карта-схема предприятия с нанесенными на нее источниками выбросов загрязняющих ве	
в атмосферу	
Рисунок 4 - Ситуационная карта-схема расположения объекта с координатами расположения района р	
Рисунок 5 - Генеральный план и Технологическая схема объекта	
Рисунок 6 - Технологическая схема объекта — Рисунок 7 – Роза ветров —	
1 H > 7 H > X H >	

ЧАСТЬ І. ИНВЕНТАРИЗАЦИЯ ИСТОЧНИКОВ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ДЛЯ ОБЪЕКТА ТОО «ПОЛИСМУНАЙКУРЫЛЫС» НА 2025-2027 ГОД. КОРРЕКТИРОВКА.

5. ВВЕДЕНИЕ

Основанием для разработки Проект нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух для объекта ТОО «ПолисМунайКурылыс» на 2025-2027 гг. Корректировка, является Договор между ТОО «ПолисМунайКурылыс» и ТОО «ВМ engineering».

Разработка Проекта нормативов допустимых выбросов загрязняющих веществ в атмосферу с целью установления нормативов НДВ на 2025-2027 год осуществляется в соответствии с требованиями экологического законодательства Республики Казахстан, а также правил и норм, устанавливаемых подзаконными и иными актами, принятыми в развитие законов Республики Казахстан:

- Экологический кодекс (ЭК) Республики Казахстан, Утвержден Указом Президента Республики Казахстан.
- Приложение к приказу Министра охраны окружающей среды Республики Казахстан «Методика определения нормативов эмиссий в окружающую среду» (далее Методика).

Проект выполнен в соответствии с нормативно-методическими документами, которые приведены в разделе «Список использованных источников».

Количественный и качественный состав выбросов вредных веществ в атмосферу определены на основании анализа технологических процессов и расчетов, проведенных в соответствии с отраслевыми нормами технологического проектирования и отраслевыми методическими указаниями и рекомендациями по определению выбросов загрязняющих веществ в атмосферу.

Настоящий проект нормативов НДВ на 2025-2027 год. Корректировка, выполнен ТОО «ВМ engineering» имеющий лицензию на природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности (государственная лицензия на выполнение работ и оказание услуг в области охраны окружающей среды 02223Р от 25.09.2020 год, выданное Республиканским государственным учреждением «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Копия лицензии прилагается в Приложении.

6. ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ

6.1. Почтовый адрес оператора объекта, количество площадок, взаиморасположение объекта

В административном отношении площадка ГПЭС находится в Исатайском районе Атырауской области. Ближайшими населенными пунктами являются железнодорожная станция Аккыстау, расположенные к северо-западу на расстоянии соответственно 16,46 км., до Чапаевское 15,86 км, до Жанбай 30,26 км, до каспийского моря 21,49 км. Расстояние до областного центра г. Атырау составляет 130 км.

Площадка ГПЭС (блочно-модульного исполнения) расположена в северной части месторождения «Ю.З. Камышитовое» на отведенной территории (в границах земельного отвода), в районе существующих РП-6кВ и УПН на расстоянии 800 метров. Плановое положение проектируемой площадки определяется координатами по углам ограждения. Географические координаты расположения площадки 1. Широта: 47° 8'1.98"С / Долгота: 51°11'48.46"В. 2. Широта: 47° 8'4.19"С / Долгота: 51°11'45.67"В. 3. Широта: 47° 8'5.67"С / Долгота: 51°11'48.43"В. 4. Широта: 47° 8'3.43"С / Долгота: 51°11'51.17"В.

Связь с населенными пунктами осуществляется по дорогам с асфальтобетонным и гравийно-щебеночным покрытием. По месторождению грузоперевозки осуществляются по внутрипромысловым автодорогам.

Территория района относится к под зоне северных пустынь. Растительность развивается в очень суровых природных условиях: засушливость климата, большие амплитуды колебаний температур, резкий недостаток влаги в сочетании с широким распространением засоленных почвообразующих и подстилающих пород, что обусловило преобладание в составе растительности ксерофитных и мезофитных группировок. Основными компонентами сообществ являются представители семейства маревых (солянки сочные и сухие), сложноцветных (полыни) и злаковых (еркек, ажрек, тростник, кермек, острец, солодка, горчак ползучий, верблюжья колючка обыкновенная и др.).

На волнистых пространствах с бурыми супесчаными и суглинистыми почвами широкие распространение получили полынь бело земельная и песчаная (шагыр).

Наиболее распространенным пастбищами на бурых почвах являются: бело полынные, еркеково-белополынные, терескеново-белополынные с участием биюргуна, изеня, терескена.

В травостое лугово-бурых почв, помимо полыней и солянок, присутствуют разнотравье. Из разнотравья встречаются горчак ползучий, верблюжья колючка обыкновенная солодка. На засоленных почвах, кроме того ажрек, кермек.

Согласно общепринятому сейсмическому районированию территории Казахстана и СП РК 2.03-30-2017 сейсмичность рассматриваемой территории составляет 6 баллов по шкале MSK-64. Сейсмичность приграничных участков равна 7 баллов.

Рисунок 1 – Обзорная карта района работ

Ситуационная карта-схема района работ представлена на рисунке ниже.

Рисунок 2 – Ситуационная карта-схема района работ

6.2. Карта-схема предприятия с нанесенными на нее источниками выбросов загрязняющих веществ в атмосферу

Карта-схема предприятия с нанесенными на нее источниками выбросов загрязняющих веществ в атмосферу приведены ниже.

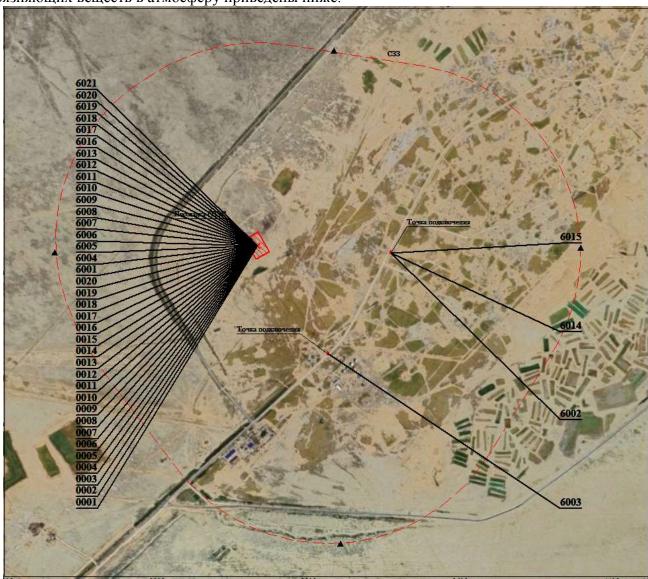


Рисунок 3 – Карта-схема предприятия с нанесенными на нее источниками выбросов загрязняющих веществ в атмосферу

6.3. Ситуационная карта-схема района размещения объекта

Ситуационная карта-схема района размещения объекта приведена ниже.

На терретории площадки ГПЭС, внутри которого будут происходить работы, какие-либо особо охраняемые природные территории, памятники истории и культуры - отсутствуют.

Территорией работ не захватываются охранные зоны памятников истории, археологии и культуры.

Рассматриваемая терретория не попадает ни в одну из охранных зон особо охраняемых природных территорий.

На земельном участке, на котором запланирована реализация объекта, не располагаются особо охраняемые природные территории (ООПТ) и памятники природы федерального, регионального и местногозначений. Отсутствуют объекты культурного наследия. Указанные участки расположены вне зон охраны и защитных зон объектов культурного наследия.

При реализации данных проектных решений предполагается загрязнение атмосферы в процессе эксплуатации газопоршневых генераторов ГПЭС (блочномодульного исполнения) расположена в северной части месторождения «Ю.З. Камышитовое» на отведенной территории (в границах земельного отвода), в районе существующих РП-6кВ и УПН на расстоянии 800 метров.

Весь объем работ планируется выполнить в период 2025-2027 г.

Ситуационная карта-схема расположения объекта с координатами расположения района работ – на рисунке 4.

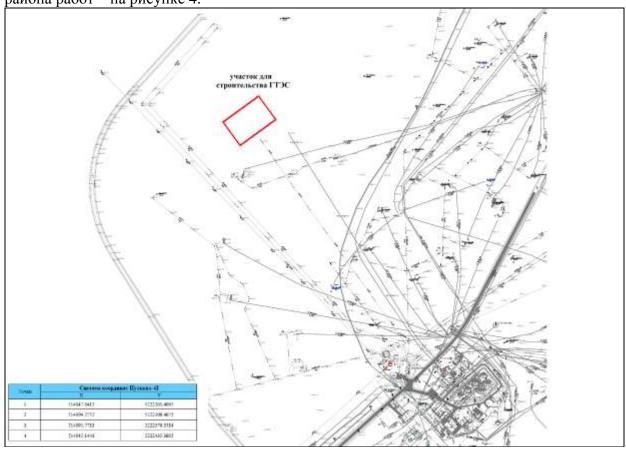
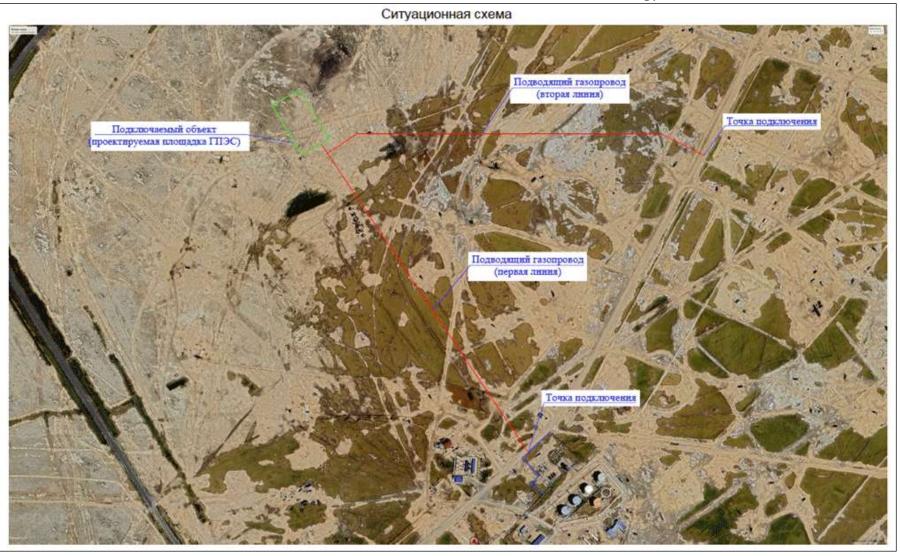
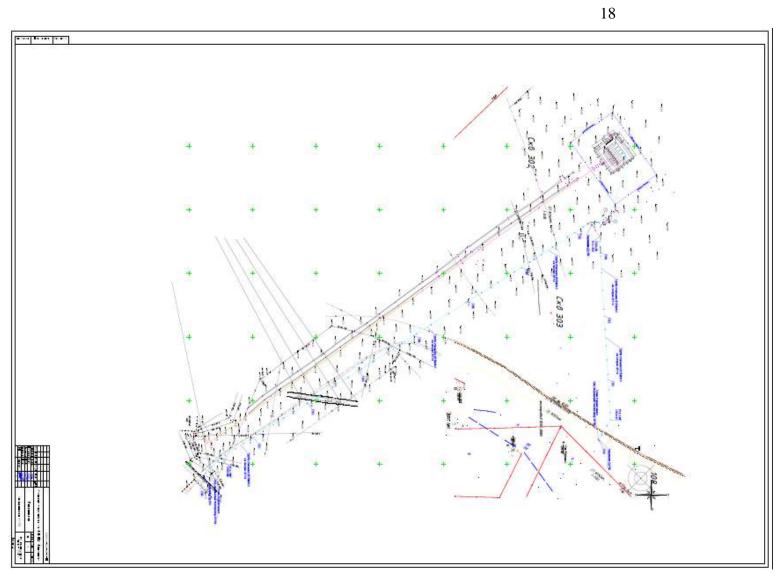





Рисунок 4 - Ситуационная карта-схема расположения объекта с координатами расположения района работ

Генеральный план и Технологическая схема проектируемого объекта представлено ниже.

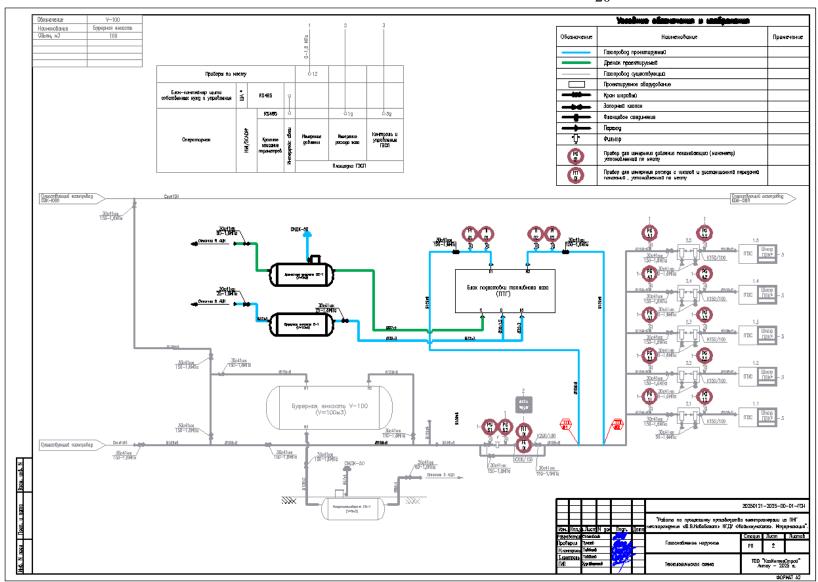


Рисунок 5 - Генеральный план и Технологическая схема объекта

<u>Бланки инвентаризации выбросов вредных веществ в атмосферу</u> <u>представлены в разделе 4 в составе:</u>

- Раздел I Источники выделения вредных веществ.
- Раздел II Характеристика источников загрязнения атмосферы.
- Раздел III Показатели работы газоочистных и пылеулавливающих установок.
- Раздел IV Суммарные выбросы вредных веществ в атмосферу.
- Раздел V Валовые выбросы вредных веществ в атмосферу от передвижных источников.

«УТВЕРЖДАЮ» Директор ТОО «ПолисМунайКурылыс» Билялов Б.Б. «02» 09 2025г.

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

Раздел І. Источники выделения вредных (загрязняющих) веществ

Наименование производства, номер цеха, участка и т.п.	Номер источ- ника загряз- нения атмос- феры	Номер источника выделения	Наименование источника выделения загрязняющих веществ	Наимено- вание выпускае- мой продукции	Время работы источника выделения, час		источника		источника выделения, час		Наименование загрязняющего вещества	Код вредного вещества (ЭНК, ПДК или ОБУВ) и наименование	Количество загрязняю-щего вещества, отходящего от источника выделения, т/год
A	1	2	3	4	5	6	7	8	9				
	1	ı	L	Площадк	a 1	ı		ı					
(001) Площадка ГПЭС	0001	0001 01	ГПЭС-1		24	8000	Азота диоксид	0301	43,051286				
							Азота оксид	0304	6,995834				
							Углерод	0328	0,307509				
							Углерод оксид	0337	54,121617				
							Бенз/а/пирен	0703	0,000007				
							Формальдегид	1325	0,082002				
							Алканы С12-19	2754	30,750919				
	0002	0002 02	Свеча ГПЭС-1		-	0,03	Метан	0410	0,000164				
							Смесь углеводородов предельных C1-C5	0415	0,000062				
							Смесь углеводородов предельных C6-C10	0416	0,000001				
	0003	0003 03	Сапун от ГПЭС-1		24	8000	Масло минеральное нефтяное	2735	4,032				

	0004	0004 04	ГПЭС-2		24	8000	Азота диоксид	0301	43,051286
							Азота оксид	0304	6,995834
							Углерод	0328	0,307509
							Углерод оксид	0337	54,121617
							Бенз/а/пирен	0703	0,000007
							Формальдегид	1325	0,082002
							Алканы С12-19	2754	30,750919
	0005	0005 05	Свеча ГПЭС-2		-	0,03	Метан	0410	0,000164
							Смесь углеводородов предельных C1-C5	0415	0,000062
							Смесь углеводородов предельных C6-C10	0416	0,000001
	0006	0006 06	Сапун от ГПЭС-2		24	8000	Масло минеральное нефтяное	2735	4,032
	0007	0007 07	ГПЭС-3		24	8000	Азота диоксид	0301	43,051286
							Азота оксид	0304	6,995834
							Углерод	0328	0,307509
							Углерод оксид	0337	54,121617
							Бенз/а/пирен	0703	0,000007
							Формальдегид	1325	0,082002
							Алканы С12-19	2754	30,750919
	0008	0008 08	Свеча ГПЭС-3		-	0,03	Метан	0410	0,000164
							Смесь углеводородов предельных C1-C5	0415	0,000062
							Смесь углеводородов предельных C6-C10	0416	0,000001
	0009	0009 09	Сапун от ГПЭС-3		24	8000	Масло минеральное нефтяное	2735	4,032
	0010	0010 10	ГПЭС-4		24	8000	Азота диоксид	0301	43,051286
							Азота оксид	0304	6,995834
							Углерод	0328	0,307509
							Углерод оксид	0337	54,121617

						Бенз/а/пирен	0703	0,000007
						Формальдегид	1325	0,082002
						Алканы С12-19	2754	30,750919
	0011	0011 11	Свеча ГПЭС-4	-	0,03	Метан	0410	0,000164
						Смесь углеводородов предельных C1-C5	0415	0,000062
						Смесь углеводородов предельных C6-C10	0416	0,000001
	0012	0012 12	Сапун от ГПЭС-4	24	8000	Масло минеральное нефтяное	2735	4,032
	0013	0013 13	ГПЭС-5 (резервная)	24	720	Азота диоксид	0301	3,95136
						Азота оксид	0304	0,642096
						Углерод	0328	0,028224
						Углерод оксид	0337	4,967424
						Бенз/а/пирен	0703	0,000001
						Формальдегид	1325	0,007526
						Алканы С12-19	2754	2,8224
	0014	0014 14	Свеча ГПЭС-5	-	0,03	Метан	0410	0,000164
						Смесь углеводородов предельных C1-C5	0415	0,000062
						Смесь углеводородов предельных C6-C10	0416	0,000001
	0015	0015 15	Сапун от ГПЭС-5	24	720	Масло минеральное нефтяное	2735	0,36288
	0016	0016 16	ДЭС (резервная)	24	100	Азота диоксид	0301	0,25568
						Азота оксид	0304	0,041548
						Углерод	0328	0,01598
						Сера диоксид	0330	0,03995
						Углерод оксид	0337	0,20774
						Бенз/а/пирен	0703	0,0000004
						Формальдегид	1325	0,003995
						Алканы С12-19	2754	0,09588

	0017	0017 17	Сапун от ДЭС	24	100	Масло минеральное нефтяное	2735	0,32652
	0018	0018 18	Конденсатосборник V- 5м3	24	8760	Смесь углеводородов предельных C1-C5	0415	0,567
	0019	0019 19	Емкость для хранения дизельного топлива	24	8760	Сероводород	0333	0,00000003
						Алканы С12-19	2754	0,000011
	0020	0020 20	Дренажная емкость ДЕ-1	24	8760	Смесь углеводородов предельных C1-C5	0415	0,007933
						Смесь углеводородов предельных C6-C10	0416	0,003009
	6001	6001 20	Площадка ДЭС	24	8760	Сероводород	0333	0,000046
						Алканы С12-19	2754	0,016516
	6004	6004 23	Площадка газопоршневых электростанции	24	8760	Метан	0410	1,162706
						Смесь углеводородов предельных C1-C5	0415	0,439245
						Смесь углеводородов предельных C6-C10	0416	0,008853
	6005	6005 24	Площадка буферной емкости V-100м3	24	8760	Смесь углеводородов предельных C1-C5	0415	0,004141
	6006	6006 25	Площадка конденсатосборника V-5м3	24	8760	Смесь углеводородов предельных C1-C5	0415	0,008281
	6007	6007 26	Межплощадочные трубопроводы	24	8760	Метан	0410	0,348812
						Смесь углеводородов предельных C1-C5	0415	0,131774
						Смесь углеводородов предельных C6-C10	0416	0,002656

6	6008	6008 21	Насос	24	120	Смесь углеводородов предельных C1-C5	0415	0,00696
						Смесь углеводородов предельных C6-C10	0416	0,00264
6	6009	6009 22	Насос масленный	24	7920	Масло минеральное нефтяное	2735	0,2376
6	6010	6010 23	Насос масленный	24	7920	Масло минеральное нефтяное	2735	0,2376
6	6011	6011 24	Насос масленный	24	7920	Масло минеральное нефтяное	2735	0,2376
6	6012	6012 25	Насос масленный	24	7920	Масло минеральное нефтяное	2735	0,2376
6	6013	6013 26	Насос масленный	24	7920	Масло минеральное нефтяное	2735	0,2376
6	6014	6014 22	Точка подключения ТП-1	24	8760	Смесь углеводородов предельных C1-C5	0415	0,03933
						Смесь углеводородов предельных C6-C10	0416	0,014918
6	6015	6015 23	Точка подключения ТП-2	24	8760	Смесь углеводородов предельных C1-C5	0415	0,03933
						Смесь углеводородов предельных C6-C10	0416	0,014918
6	6016	6016 24	Площадка подготовки топливного газа	24	8760	Смесь углеводородов предельных C1-C5	0415	0,355865
						Смесь углеводородов предельных C6-C10	0416	0,33701
6	6017	6017 25	Площадка дренажной емкости ДЕ-1	24	8760	Смесь углеводородов предельных C1-C5	0415	0,060755
						Смесь углеводородов предельных C6-C10	0416	0,023045

	6018	6018 26	Площадка буферной емкости Е-1	24	8760	Смесь углеводородов предельных C1-C5	0415	0,078659
						Смесь углеводородов предельных C6-C10	0416	0,029836
	6019	6019 27	Площадка насоса	24	8760	Смесь углеводородов предельных C1-C5	0415	0,060755
						Смесь углеводородов предельных C6-C10	0416	0,023045
	6020	6020 28	Покрасочные работы	24	720	Диметилбензол	0616	0,18
						Уайт-спирит	2752	0,09
	6021	6021 29	Сварочные работы	24	400	Железа оксид	0123	0,001674
						Марганец и его соединения	0143	0,000166
(002) Точка подключения №1	6002	6002 6002 21 Точка подключения №1	24	8760	Метан	0410	0,077514	
						Смесь углеводородов предельных C1-C5	0415	0,029283
						Смесь углеводородов предельных C6-C10	0416	0,00059
(003) Точка подключения №2	6003	6003 22	Точка подключения №2	24	8760	Метан	0410	0,077514
						Смесь углеводородов предельных C1-C5	0415	0,029283
						Смесь углеводородов предельных C6-C10	0416	0,00059

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

Раздел II. Характеристика источников загрязнения атмосферного воздуха

Параметры источника загряз-нения		ы источника	Параметры газог	воздушной смеси на вы нника загрязнения					оязняющих веществ, иых в атмосферу
Номер источ- ника загряз- нения	Высота, м	Диаметр, размер сечения устья, м	Скорость, м/с	Объемный расход, м3/с	Температура, С	Код загряз- няющего вещества (ЭНК, ПДК или ОБУВ)	Наименование загрязняющего вещества	Максимальное, г/с	Суммарное,т/год
1	2	3	4	5	6	7	7a	8	9
					П	лощадка ГПЭС			
0001	7	0.377	60,74	6,78	450	0301	Азота диоксид	1,166667	43,051286
						0304	Азота оксид	0,189583	6,995834
						0328	Углерод	0,008102	0,307509
						0337	Углерод оксид	1,472222	54,121617
					0703	Бенз/а/пирен	0,0000002	0,000007	
						1325	Формальдегид	0,002315	0,082002
						2754	Алканы С12-19	0,833333	30,750919
0002	4	0.02	0,74	0,0002	20	0410	Метан	1,36283	0,000164
						0415	Смесь углеводородов предельных C1- C5	0,514848	0,000062
						0416	Смесь углеводородов предельных C6- C10	0,010377	0,000001
0003	5	0.3	0,01	0,0007069	30	2735	Масло минеральное нефтяное	0,14	4,032
0004	7	0.377	60,74	6,78	450	0301	Азота диоксид	1,166667	43,051286
						0304	Азота оксид	0,189583	6,995834
						0328	Углерод	0,008102	0,307509
						0337	Углерод оксид	1,472222	54,121617
						0703	Бенз/а/пирен	0,0000002	0,000007
						1325	Формальдегид	0,002315	0,082002
						2754	Алканы С12-19	0,833333	30,750919

0005	4	0.02	0,74	0,0002	20	0410	Метан	1,36283	0,000164
						0415	Смесь углеводородов предельных C1- C5	0,514848	0,000062
						0416	Смесь углеводородов предельных C6- C10	0,010377	0,000001
0006	5	0.3	0,01	0,0007069	30	2735	Масло минеральное нефтяное	0,14	4,032
0007	7	0.377	60,74	6,78	450	0301	Азота диоксид	1,166667	43,051286
						0304	Азота оксид	0,189583	6,995834
						0328	Углерод	0,008102	0,307509
						0337	Углерод оксид	1,472222	54,121617
						0703	Бенз/а/пирен	0,0000002	0,000007
						1325	Формальдегид	0,002315	0,082002
						2754	Алканы С12-19	0,833333	30,750919
0008	4	0.02	0,74	0,0002	20	0410	Метан	1,36283	0,000164
						0415	Смесь углеводородов предельных C1- C5	0,514848	0,000062
						0416	Смесь углеводородов предельных C6- C10	0,010377	0,000001
0009	5	0.3	0,01	0,0007069	30	2735	Масло минеральное нефтяное	0,14	4,032
0010	7	0.377	60,74	6,78	450	0301	Азота диоксид	1,166667	43,051286
						0304	Азота оксид	0,189583	6,995834
						0328	Углерод	0,008102	0,307509
						0337	Углерод оксид	1,472222	54,121617
						0703	Бенз/а/пирен	0,0000002	0,000007
						1325	Формальдегид	0,002315	0,082002
						2754	Алканы С12-19	0,833333	30,750919
0011	4	0.02	0,74	0,0002	20	0410	Метан	1,36283	0,000164
						0415	Смесь углеводородов предельных C1- C5	0,514848	0,000062
						0416	Смесь углеводородов предельных C6- C10	0,010377	0,000001
0012	5	0.3	0,01	0,0007069	30	2735	Масло минеральное нефтяное	0,14	4,032
0013	7	0.377	60,74	6,7802918	450	0301	Азота диоксид	1,166667	3,95136
						0304	Азота оксид	0,189583	0,642096

						0328	Углерод	0,008102	0,028224
						0337	Углерод оксид	1,472222	4,967424
						0703	Бенз/а/пирен	0,0000002	0,000001
						1325	Формальдегид	0,002315	0,007526
						2754	Алканы С12-19	0,833333	2,8224
0014	4	0.02	0,74	0,0002	20	0410	Метан	1,36283	0,000164
						0415	Смесь углеводородов предельных C1- C5	0,514848	0,000062
						0416	Смесь углеводородов предельных C6- C10	0,010377	0,000001
0015	2	0.3	0,01	0,0007069	30	2735	Масло минеральное нефтяное	0,14	0,36288
0016	3	0.154	98,99	1,8438418	400	0301	Азота диоксид	0,853333	0,25568
						0304	Азота оксид	0,138667	0,041548
						0328	Углерод	0,055556	0,01598
						0330	Сера диоксид	0,133333	0,03995
						0337	Углерод оксид	0,688889	0,20774
						0703	Бенз/а/пирен	0,000001	0,0000004
						1325	Формальдегид	0,013333	0,003995
						2754	Алканы С12-19	0,322222	0,09588
0017	1	0.154	0,01	0,0001863	30	2735	Масло минеральное нефтяное	0,907	0,32652
0018	1	0.154	0,01	0,0001863	30	0415	Смесь углеводородов предельных C1- C5	0,174573	0,567
0019	1	0.154	0,01	0,0001863	30	0333	Сероводород	0,000044	0,00000003
						2754	Алканы С12-19	0,000249	0,000011
0020	2				30	0415	Смесь углеводородов предельных C1- C5	0,000194	0,007933
						0416	Смесь углеводородов предельных C6- C10	0,000074	0,003009
6001	2				30	0333	Сероводород	0,000001	0,000046
						2754	Алканы С12-19	0,000524	0,016516
6004	2				30	0410	Метан	0,036869	1,162706
						0415	Смесь углеводородов предельных C1- C5	0,013928	0,439245

				0416	Смесь углеводородов предельных C6- C10	0,000281	0,008853
6005	2		30	0415	Смесь углеводородов предельных C1- C5	0,000131	0,004141
6006	2		30	0415	Смесь углеводородов предельных C1- C5	0,000263	0,008281
6007	2		30	0410	Метан	0,011061	0,348812
				0415	Смесь углеводородов предельных C1- C5	0,004179	0,131774
				0416	Смесь углеводородов предельных C6- C10	0,000084	0,002656
6008	2		30	0415	Смесь углеводородов предельных C1- C5	0,016111	0,00696
				0416	Смесь углеводородов предельных C6- C10	0,006111	0,00264
6009	2		30	2735	Масло минеральное нефтяное	0,008333	0,2376
6010	2		30	2735	Масло минеральное нефтяное	0,008333	0,2376
6011	2		30	2735	Масло минеральное нефтяное	0,008333	0,2376
6012	2		30	2735	Масло минеральное нефтяное	0,008333	0,2376
6013	2		30	2735	Масло минеральное нефтяное	0,008333	0,2376
6014	2		30	0415	Смесь углеводородов предельных С1-С5	0,001247	0,03933
				0416	Смесь углеводородов предельных С6-	0,000473	0,014918
6015	2		30	0415	Смесь углеводородов предельных C1- C5	0,001247	0,03933
				0416	Смесь углеводородов предельных С6-С10	0,000473	0,014918

6016	2		30	0415	Смесь углеводородов предельных C1- C5	0,011284	0,355865
				0416	Смесь углеводородов предельных C6- C10	0,010687	0,33701
6017	2		30	0415	Смесь углеводородов предельных C1- C5	0,001927	0,060755
				0416	Смесь углеводородов предельных C6- C10	0,000731	0,023045
6018	2		30	0415	Смесь углеводородов предельных C1- C5	0,002494	0,078659
				0416	Смесь углеводородов предельных C6- C10	0,000946	0,029836
6019	019 2	30	0415	Смесь углеводородов предельных C1- C5	0,001927	0,060755	
				0416	Смесь углеводородов предельных C6- C10	0,000731	0,023045
6020	5020 2	30	0616	Диметилбензол	0,5625	0,18	
				2752	Уайт-спирит	0,3125	0,09
6021	2		30	0123	Железа оксид	0,001163	0,001674
				0143	Марганец и его соединения	0,000115	0,000166
			Точк	а подключени	ıя №1	<u>.</u>	
6002	2		30	0410	Метан	0,002458	0,077514
				0415	Смесь углеводородов предельных C1- C5	0,000929	0,029283
				0416	Смесь углеводородов предельных C6- C10	0,000019	0,00059
			Точк	а подключени	ıя №2		
6003	2		30	0410	Метан	0,002458	0,077514
				0415	Смесь углеводородов предельных C1- C5	0,000929	0,029283
				0416	Смесь углеводородов предельных C6- C10	0,000019	0,00059

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

Раздел III. Показатели работы пылегазоочистного оборудования (ПГО)

		КПД аппа	ратов, %	Код ЗВ, по которому проис- ходит очистка	Коэффициент обеспеченности К(1),%					
Номер источника выделения	Наименование и тип пылегазоулавливающего оборудования	Проектный	Фактический							
1	2	3	4	5	6					
	Пылегазоочистное оборудование отсутствует									

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

Раздел IV. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация

Код заг-		Количество	В том чи	исле	Из			
рязняю- щего	Наименование	загрязняющих веществ отходящих				уловлено и	Всего выброшено в	
вещест-ва	загрязняющего вещества	от источников выделения	выбрасы-вается без очистки	поступает на очистку	выброшено в атмосферу	фактически	из них утилизировано	атмосферу 9
1	2	3	4	5	6	7	8	9
Площадка:	01	1	1	•		1		1
ВСЕГО	по площадке: 01	576,5977	576,5977	0	0	0	0	576,5977
	в том числе:							
Тверды	ı e:	1,2761094	1,2761094	0	0	0	0	1,2761094
	из них:							
0123	Железа оксид	0,001674	0,001674	0	0	0	0	0,001674
0143	Марганец и его соединения	0,000166	0,000166	0	0	0	0	0,000166
0328	Углерод	1,27424	1,27424	0	0	0	0	1,27424
0703	Бенз/а/пирен	0,0000294	0,0000294	0	0	0	0	0,0000294
Газооб	разные и жидкие:	575,32158903	575,32158903	0	0	0	0	575,32158903
	из них:							
0301	Азота диоксид	176,412184	176,412184	0	0	0	0	176,412184
0304	Азота оксид	28,66698	28,66698	0	0	0	0	28,66698
0330	Сера диоксид	0,03995	0,03995	0	0	0	0	0,03995
0333	Сероводород	0,00004603	0,00004603	0	0	0	0	0,00004603
0337	Углерод оксид	221,661632	221,661632	0	0	0	0	221,661632
0410	Метан	1,667366	1,667366	0	0	0	0	1,667366
0415	Смесь углеводородов предельных C1-C5	1,858904	1,858904	0	0	0	0	1,858904
0416	Смесь углеводородов предельных C6-C10	0,461115	0,461115	0	0	0	0	0,461115
0616	Диметилбензол	0,18	0,18	0	0	0	0	0,18
1325	Формальдегид	0,339529	0,339529	0	0	0	0	0,339529

2735	Масло минеральное нефтяное	18,0054	18,0054	0	0	0	0	18,0054
2752	Уайт-спирит	0,09	0,09	0	0	0	0	0,09
2754	Алканы С12-19	125,938483	125,938483	0	0	0	0	125,938483

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

Раздел V – Автотранспорт предприятия

Раздел V— Автотранспорт предприятия не заполняется, так как выбросы от автотранспорта не нормируются.

ЧАСТЬ 2 ПРОЕКТ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРУ (НДВ) ДЛЯ ОБЪЕКТА ТОО «ПОЛИСМУНАЙКУРЫЛЫС» НА 2025-2027 ГОД. КОРРЕКТИРОВКА.

7. ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

7.1. Краткая характеристика технологии производства и технологического оборудования

Ранее был выполнен рабочий проект и получено положительное заключение № STEX-0005/2502.05.2025 г., и получено ЭКОЛОГИЧЕСКОЕ РАЗРЕШЕНИЕ на воздействие для объектов II категории №: KZ93VCZ14187683 от 15.07.2025 г., где при корректировке системы электроснабжения были приняты следующие проектные решения:

- Электростанции на базе газопоршневых генераторов ГПЭС 1250 кВт или 1,25 МВт (блочно-модульного исполнения) в количестве 5 ед. (4 рабочих, 1 резерв). Общая мощность в мегаватт 6,25 МВт;
 - Топливный газопровод попутного газа, протяженностью 1,2234 км;
 - Технологические трубопроводы;
 - ВЛ-6 кВ;
 - Площадка буферной емкости V-100м3 (за ограждением).
 - Площадка дренажной емкости V-5 м3.
 - Площадка учета газа.
- Для обеспечения площадки ГПЭС электроэнергией на момент полного останова ГПЭС и для их запуска в работу, проектом предусматривается установка аварийного дизельгенератора (АДГ) мощностью 400 кВА.

Основными объектами при модернизации системы электроснабжения, явилось установка следующего дополнительного оборудования по подготовке топливного газа:

- Блока подготовки топливного газа 1 ед.;
- Площадка дренажной емкости $V=5m^3-1$ ед.;
- Ёмкость для сбора Ш Φ ЛУ V=10м³ 1 ед.
- Опоры меж площадочных трубопроводов.

Атак же добавились источники при ремонтных работах, такие как сварочные работы и покрасочные работы.

В связи с этим принято решение о корректировке НДВ предприятия. Объемы газа для выработки электроэнергии остались на прежнем уровни.

7.1.1. Технология производства и технологического оборудования

Физико-химические свойства, компонентный состав газа и технологические показатели добычи попутного нефтяного газа представлены в таблицах 1 и 2.

Таблица 1 - Физико-химические свойства, компонентный состав газа

№	Компоненты		Единица измерений	
п/п		Мол. %	Объемный %	Macc. %
1	Метан	71,119	71,444	48,623
2	Этан	13,170	13,150	16,860
3	Пропан	8,137	8,054	15,280
4	изо-Бутан	1,620	1,583	4,009
5	н-Бутан	2,853	2,780	7,061
6	нео-Пентан	0,017	0,016	0,052
7	изо-Пентан	0,764	0,732	2,347
8	н-Пентан	0,710	0,675	2,183
9	Гексаны	0,444	0,410	1,630
10	Гептаны	0,152	0,134	0,652
11	Октаны	менее 0,0001	менее 0,0001	менее 0,0001

12	Двуокись углерода	0,131	0,132	0,247
13	Кислород	0,009	0,010	0,013
14	Азот	0,874	0,880	1,043
15	Всего:	100,00	100,00	100,00
	Параметры	Ед. изм.	Резуль	таты
Плотно	ость газа	KΓ/M ³	0,98	30
Относі	ительная плотность (по воздуху)	-	0,81	14
Теплот	га сгорания			
	низшая	M Дж $/$ м 3	46,5	55
	высшая		51,2	24
Число	Воббе,			
	низшее	M Дж $/$ м 3	51,7	70
	высшее		56,7	78

Максимальная производительность $\Gamma\Pi \ni C - 350\text{-}400$ нм3/час, производительность $\Gamma\Pi \ni C$ зависит от расхода газа и время работы установки. По данным заказчика расход газа по годам представлен в таблице 2.

Таблица 2 - Расход газа по годам для выработки электроэнергии

№	Годы	Кол-ство газа м3/год на 1-ну ГПЭС рабочию	Кол-ство м3/год ГПЭС от 4 рабочих	Кол-ство м3/год ГПЭС от 1-ой резервной	Общее кол-кство газа м3/год
1	2	3	4	5	6
1	2025	3137848,87	12551395,48	288000	12839395,48
2	2026	2972055,145	11888220,58	288000	12176220,58
3	2027	2972055,145	11888220,58	288000	12176220,58
ИТОГО					37191836,64

Таблица 3 - Расход газа по годам для выработки электроэнергии по производительности по кажлой ГПЭС

ГПЭС	Годы	Производительность ГПЭС нм3/час	Время работы	Кол-ство газа м3/год на 1-ну ГПЭС
1	2	3	4	5
ГПЭС - 1	2025	392,2311088	8000	3137848,87
ГПЭС - 2	2025	392,2311088	8000	3137848,87
ГПЭС - 3	2025	392,2311088	8000	3137848,87
ГПЭС - 4	2025	392,2311088	8000	3137848,87
ГПЭС - 5	2025	400,0	720	288000
итого:				12839395,48
ГПЭС - 1	2026	371,5068931	8000	2972055,145
ГПЭС - 2	2026	371,5068931	8000	2972055,145
ГПЭС - 3	2026	371,5068931	8000	2972055,145
ГПЭС - 4	2026	371,5068931	8000	2972055,145
ГПЭС - 5	2026	400,0	720	288000
итого:				12176220,58
ГПЭС - 1	2027	371,5068931	8000	2972055,145
ГПЭС - 2	2027	371,5068931	8000	2972055,145
ГПЭС - 3	2027	371,5068931	8000	2972055,145
ГПЭС - 4	2027	371,5068931	8000	2972055,145
ГПЭС - 5	2027	400,0	720	288000
итого:				12176220,58
всего:				37191836,64

Для обеспечения топливным газом на базе газопоршневых электростанций далее - ГПЭС, предусматривается следующих технологических объектов:

- Подводящие топливные газопроводы для ГПЭС;
- Площадка буферной емкости V-100 м³;

- Площадка дренажной емкости V-5 м^3 .
- Площадка учета газа.
- Блока подготовки топливного газа 1 ед.;
- Площадка дренажной емкости V=5м³ 1 ед.;
- Ёмкость для сбора ШФЛУ V=10м³ 1 ед.
- Опоры меж площадочных трубопроводов.

Атак же добавились источники при ремонтных работах такие как сварочные работы и покрасочные работы.

Предусмотренная данным проектом система газоснабжения включает оборудование и трубную обвязку, необходимые для безопасной эксплуатации проектируемых объектов.

Технологические схемы систем газоснабжения

Принципиальные технологические схемы газоснабжения автономных газопоршневых электростанций являются типовыми и представлены на чертежах марки ГСН.

Согласно техническим условиям, подключение газопроводов попутного нефтяного газа, предназначенных для газоснабжения ГПЭС, выполнено от существующих газопроводов от месторождения Юго-восточного Новобогат (ЮВН) и от месторождения Юго-Западное Камышитовое. Сепарации — очистка попутно-нефтяного газа от капельной жидкости производится в буферной емкости V-100 м3. Рабочее давление в точках подключения Рраб = 0,6 МПа. В месте подключения установлена запорная арматура. Транспортировка газа до ГПЭС производится по газопроводу Ø159х5 мм. На проектируемом трубопроводе предусмотрен узел с установкой отсекающей арматуры Ду 150 мм. После буферной емкости V-100 м3 газ поступает на блок подготовки газа и далее через блок-фильтров на входе в существующий ГПЭС.

Для обеспечения очищенным топливным газом на ранее с проектируемой системы электроснабжения на базе газопоршневых электростанций далее - ГПЭС, проектом предусматривается строительство следующих технологических объектов:

- Площадка блока подготовки топливного газа 1 ед.;
- Площадка дренажной емкости V=5м3 1 ед.;
- Площадка ёмкости для сбора ШФЛУ V=10м3 1 ед.;
- Технологические трубопроводы.

Предусмотренная данным проектом система газоснабжения включает оборудование и трубную обвязку, необходимые для безопасной эксплуатации проектируемых объектов.

Сооружения

Состав сооружений, выбор оборудования и его размещение определялся на основании разработанных технологических схем и утвержденного задания на проектирование, с учетом рационального размещения подземных и надземных инженерных сетей с соблюдением санитарных норм, и норм пожаро- взрывобезопасности.

Технологические газопроводы

К технологическим относятся проектируемые трубопроводы в пределах границ существующих площадок модульных технологических комплексов, а также трубопроводы Ø159x6 мм, 108x6 мм обвязки блоков ГПЭС с запорной арматурой и приборами контроля технологических параметров. В комплект блочной поставки ГПЭС входят фильтра для тонкой очистки газа.

Технологические трубопроводы в зависимости от рабочих параметров (давления и температуры) транспортируемых сред согласно CH 527-80 классифицируются:

газопроводы - группа Б(а), ІІ категории.

Газопроводы запроектированы из труб стальных бесшовных горячедеформированных по ГОСТ 8732-78*.

Прокладку трубопроводов по площадкам и межплощадочные трубопроводы выполнить в надземном исполнении на опорах высотой не менее 0,350 метра до низа

трубы с уклоном не менее i=0,002 по потоку среды или не менее i=0,003 против потока среды.

Объем контроля сварных соединений неразрушающими методами для газопроводов согласно требованиям технического регламента «О безопасности оборудования, работающего под избыточным давлением» ТР ТС 032/2013 составляет 100%.

После монтажа газопроводы подлежат испытанию на прочность и проверке на герметичность воздухом. Испытания газопроводов проводить согласно требованиям СН РК 4.03-01-2011. Величина испытательного давления зависит от рабочего давления и составляет:

Рисп=1,5 * Рраб, но не менее 0,2 МПа. Испытательное давление должно быть выдержано в течение 24 часов (испытание на прочность), после чего его снижают до максимального рабочего. Давление испытания на герметичность Рисп=Рраб. Продолжительность испытания 12 часов. Герметичность сварных стыков проверяется обмазкой мыльной эмульсией или одоризацией воздуха.

Антикоррозионная защита надземных трубопроводов и арматуры маслянобитумная лакокрасочными материалами в 2 слоя по грунту $\Gamma\Phi$ -021, в соответствии со CHиП PK 2.01-19- 2004.

Тепловая изоляция надземных трубопроводов и арматуры, — маты URSA марки М-25 (Γ) из стеклянного штапельного волокна, без кэширования, толщиной 60 мм. Покровный слой тепловой изоляции трубопроводов — лист стальной оцинкованный толщиной 0,5 мм по Γ OCT 19904-90.

Трубопроводы и арматура окрашиваются опознавательной краской по ГОСТ 14202-69, обеспечиваются предупреждающими знаками и надписями.

На трубопроводы наносятся стрелки, указывающие направление движения транспортируемой среды.

Арматура должна иметь указатели направления вращения на закрытие и открытие, а также указатели положений с надписями: "Открыть" и "Закрыть". При производстве работ необходимо соблюдать требования СН РК 1.03-05-2011 «Охрана труда и техника безопасности в строительстве».

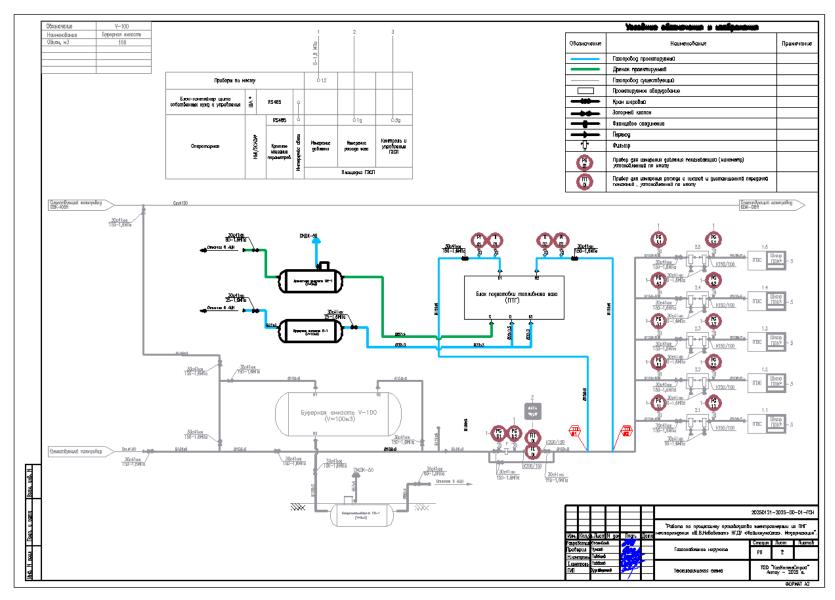


Рисунок 6 - Технологическая схема объекта

7.2. Общая характеристика источников выбросов загрязняющих веществ в атмосферу

Проведение инвентаризации источников выбросов загрязняющих веществ позволяет получить все необходимые данные об имеющихся источниках выделения и загрязнения атмосферы в зависимости от характера производства, о количественных и качественных характеристиках выбрасываемых вредных веществ, об экологических характеристиках применяемых на предприятии оборудования и технологий, т.е. инвентаризация является первой стадией на этапе минимизации негативного воздействия предприятия на атмосферный воздух в результате своей деятельности.

При эксплуатации источниками воздействия на атмосферный воздух будет технологическое оборудование, установки, системы и сооружения основного и вспомогательного производства, необходимые для выработки электроэнергии.

В рамках данного проекта по требованиям, изложенным на промплощадке предприятия согласно технологической схемы была проведена инвентаризация источников выбросов загрязняющих веществ в атмосферу, которая позволила выявить на предприятии стационарных источников загрязнения атмосферы, определить их основные параметры и оценить степень негативного воздействия на ОС в результате основной и вспомогательной производственной деятельности предприятия.

Максимально-разовые и валовые выбросы загрязняющих веществ в атмосферу на 2025 год составит: **36,98132 г/сек или 577,2555 т/год**, из них при строительстве **4,1440 г/сек или 0,65775 т/за период строительных работ**, при эксплуатации **32,837319 г/сек или 576,5977 т/год**.

Максимально-разовые и валовые выбросы загрязняющих веществ в атмосферу на 2026-2027 год составит: **32,837319** г/сек или **548,00052** т/год.

Качественные и количественные значения выбросов загрязняющих веществ на существующее положение и на перспективные года рассчитаны согласно утвержденным методическим указаниям с учетом основных производственных показателей работы предприятия, предоставленных предприятием – заказчиком.

С целью получения достоверных данных о количественном и качественном составе выбросов ВХВ в атмосферу были проведены расчеты выбросов вредных веществ по исходным данным проведенной и утвержденной предприятием инвентаризации источников загрязнения и на основе утвержденных методических указаний с учетом технических характеристик применяемого оборудования и специфики проведения технологических процессов.

Расчет выбросов вредных веществ на 2025-2027 год представлен в Приложении.

Характеристика источников загрязнения атмосферы предприятия

Практически любая производственная деятельность оказывает влияние на качество атмосферного воздуха в районе расположения.

При реализации данных проектных решений предполагается загрязнение атмосферы в процессе строительно-монтажных работ и эксплуатации проектируемого объекта.

Согласно раздела «Охрана окружающей природной среды» к рабочему проекту «Работа по процессингу производства электроэнергии из ПНГ месторождения «Ю.В.Новобогат» НГДУ «Жайыкмунайгаз». Модернизация»:

<u>Характеристика объекта как источника загрязнения атмосферного воздуха</u> при строительстве:

<u>Выбросы от автотранспорта при строительстве несут кратковременный характер</u>. Основными загрязняющими атмосферу веществами при строительстве будут вещества, выделяемые при работе двигателей строительной техники и транспорта, сварочных и покрасочных работах, а также пыль, образуемая при их движении и при осуществлении земляных работ.

Строительная техника и транспорт, которые будут использованы при

строительных работах, являются источниками неорганизованных выбросов.

Необходимое количество ГСМ (дизельное топливо) при строительстве -5,142 т, бензина при строительстве -0,458 т. При сварочных работах будет израсходовано 50 кг электрода. При покраске металлических конструкций будет израсходовано лакокрасочного материала 350 кг.

<u>Источники выделения организованных выбросов в период строительно-</u> монтажных работ:

- компрессор передвижной с дизельным двигателем, номер источника 0001; время работы -60 час;
 - дизельная электростанция, номер источника 0002; время работы 480 час;
- сварочный агрегат, с дизельным двигателем, номер источника 0003; время работы 100 час;
 - битумный котел, номер источника 0004; время работы 24 час.

<u>Источники выделения неорганизованных выбросов в период строительно-</u> монтажных работ:

- бульдозер, номер источника 6001; время работы 80 маш./час;
- автогрейдер, номер источника 6002; время работы 24 маш./час;
- экскаватор, номер источника 6003; время работы 92 маш./час;
- трактор, номер источника 6004; время работы 48 маш./час;
- машина бурильно-крановая с глубиной бурения 3,5 м на автомобиле, номер источника 6005; время работы 4 маш./час;
- транспортировка пылящих материалов автосамосвалы, номер источника 6006; время работы 163 маш./час;
 - автосамосвал (грунт), номер источника 6007; время работы 0,4 маш./час;
 - автосамосвал (щебень), номер источника 6008; время работы 0,2 маш./час;
 - каток и трамбовка, номер источника 6009; время работы 12 маш./час;
 - сварочные работы номер источника 6010; время работы 100 ч.;
 - газосварочные работы номер источника 6011; время работы 144,0 ч.;
 - покрасочные работы номер источника 6012; время работы 360,0 ч.;
 - гидроизоляционные работы номер источника 6013; время работы 96 ч.;
 - шлифовальная машина номер источника 6014; время работы 48,0 ч.;
 - емкости для хранения ГСМ, номер источника 6015; время работы 1440 ч.;
- ДВС машин и механизмов на диз.топливе номер источника 6016; время работы 835 маш.час;
- ДВС машин и механизмов на бензине номер источника 6017; время работы 48 маш.час.

Общее количество источников выбросов загрязняющих веществ в период строительно-монтажных работ составляет 21 ед. в том числе: организованных – 4 ед., неорганизованных - 17 ед.

Общий объем выброса загрязняющих веществ в период строительно-монтажных работ составит: от стационарных источников 4,1440 г/сек или 0,65775 т/за период строительных работ, от передвижных источников 2,31960 г/сек или 1,39680 т/за период строительных работ.

<u>Характеристика объекта как источника загрязнения атмосферного воздуха</u> при эксплуатации:

Источники выделения организованных выбросов в период эксплуатации:

- Газопоршневая электростанция (ГПЭС-1), номер источника 0001;
- Продувочная свеча ГПЭС-1, номер источника 0002;
- Сапун от ГПЭС-1, номер источника 0003;
- Газопоршневая электростанция (ГПЭС-2), номер источника 0004;

- Продувочная свеча ГПЭС-2, номер источника 0005;
- Сапун от ГПЭС-2, номер источника 0006;
- Газопоршневая электростанция (ГПЭС-3), номер источника 0007;
- Продувочная свеча ГПЭС-3, номер источника 0008;
- Сапун от ГПЭС-3, номер источника 0009;
- Газопоршневая электростанция (ГПЭС-4), номер источника 0010;
- Продувочная свеча ГПЭС-4, номер источника 0011;
- Сапун от ГПЭС-4, номер источника 0012;
- Газопоршневая электростанция (ГПЭС-5 резервная), номер источника 0013;
- Продувочная свеча ГПЭС-5, номер источника 0014;
- Сапун от ГПЭС-5, номер источника 0015;
- ДЭС (резервная), номер источника 0016;
- Сапун ДЭС, номер источника 0017;
- Конденсатосборник V-5м3, номер источника 0018;
- Емкость для хранения дизельного топлива, номер источника 0019.
- Дренажная емкость ДЕ-1, номер источника 0020.

Источники выделения неорганизованных выбросов в период эксплуатации:

- Площадка ДЭС (ЗРА и ФС), номер источника 6001;
- Точка подключения №1 (ЗРА и ФС), номер источника 6002;
- Точка подключения №2 (ЗРА и ФС), номер источника 6003;
- Площадка газопоршневых электростанции (ЗРА и ФС), номер источника 6004;
- Площадка буферной емкости V-100м3 (ЗРА и ФС), номер источника 6005;
- Площадка конденсатосборника V-5м3 (3PA и ФС), номер источника 6006;
- Межплощадочные трубопроводы (ЗРА и ФС), номер источника 6007;
- Насос, номер источника 6008;
- Насос масленый, номер источника 6009;
- Насос масленый, номер источника 6010;
- Насос масленый, номер источника 6011;
- Насос масленый, номер источника 6012;
- Насос масленый, номер источника 6013;
- Точка подключения ТП-1 (ЗРА и ФС), номер источника 6014;
- Точка подключения ТП-2 (ЗРА и ФС), номер источника 6015;
- Площадка подготовки топливного газа (ЗРА и ФС), номер источника 6016;
- Площадка дренажной емкости ДЕ-1 (ЗРА и ФС), номер источника 6017;
- Площадка буферной емкости Е-1 (ЗРА и ФС), номер источника 6018;
- Площадка насоса (ЗРА и ФС), номер источника 6019;
- Покрасочные работы, номер источника 6020;
- Сварочные работы, номер источника 6021.

Общее количество источников выбросов загрязняющих веществ в период эксплуатации составляет 41 ед. 20 - организованных и 21 – неорганизованный.

7.2. Краткая характеристика существующих установок очистки газов

Ввиду отсутствия технологии очистки на применяемом оборудовании при строительстве и эксплуатации пылегазоочистное оборудование (ПГОУ) не применяется.

7.3. Оценка степени применяемой технологии, технического и пылегазоочистного оборудования

На предприятии используется техника и оборудование отечественного производства (стран СНГ), отвечающие современному техническому уровню и не

уступающие по своим производственным характеристикам и надежности в эксплуатации зарубежным аналогам.

Оборудование, применяемое при эксплуатации, соответствует международным стандартам в области охраны окружающей среды.

Газопоршневые электростанций далее – ГПЭС/Дизельные установки соответствуют стандартам по эмиссиям ЗВ. При эксплуатации оборудование будет проходит профилактические и капитальные ремонты.

Важнейшими профилактическими мероприятиями следует внедрение современных схем безотходной технологии, новых закрытых процессов и более герметичного, надежного оборудования.

Для сокращения газообразных выбросов предприятием использованы такие способы:

- *Оптимизация работы теплогенерирующей установки* внедрение инновационных технологий сжигания топлива, выбор оптимального режима работы ГПЭС.
- Рассеивание вредных соединений в атмосфере за счет определенной высоты трубы выброса этот метод не влияет на объем выбрасываемых веществ, а обеспечивает их рассеивание на большей площади. В результате концентрация загрязняющих соединений в приземном шаре снижается.

Реализация таких мероприятий позволяет снизить объемы выбросов и концентрацию вредных веществ в воздухе.

7.4. Перспектива развития

Оператором объекта в период реализации производственной деятельности 2025-2027 год предусматривается перспектива развития, связанная со следующими событиями: Электростанции на базе газопоршневых генераторов ГПЭС 1250 кВт или 1,25 МВт (блочно-модульного исполнения) в количестве 5 ед. (4 рабочих, 1 резерв). Общая мощность в мегаватт - 6,25 МВт.

Для обеспечения топливным газом проектируемой системы электроснабжения на базе газопоршневых электростанций далее - ГПЭС, проектом предусматривается строительство (модернизация) следующих технологических объектов:

Существующие объекты:

- Подводящие топливные газопроводы для ГПЭС;
- Площадка буферной емкости V-100 м³;
- Площадка дренажной емкости V-5 м³.
- Площадка учета газа.

Модернизация:

- Блока подготовки топливного газа 1 ед.;
- Площадка дренажной емкости $V=5m^3-1$ ед.;
- Ёмкость для сбора ШФЛУ V=10м³ 1 ед.
- Опоры меж площадочных трубопроводов.

Предусмотренная данным проектом система газоснабжения включает оборудование и трубную обвязку, необходимые для безопасной эксплуатации проектируемых объектов.

Атак же добавились источники при ремонтных работах, такие как сварочные работы и покрасочные работы.

Предприятием с целью реализации намечаемой деятельности, связанной с эксплуатацией ГПЭС, было подготовлено Заявление о намечаемой деятельности и инициирован процесс скрининга воздействия намечаемой деятельности KZ26VWF00342876 от 05.05.2025г.

Намечаемая деятельность отсутствует в Приложении 1 к Экологическому кодексу Республики Казахстан (далее – Кодекс).

Согласно ст. 87 Кодекса обязательной государственной экологической экспертизе подлежат проектные документы по строительству и (или) эксплуатации объектов I и II категорий и иные проектные документы, предусмотренные настоящим Кодексом для получения экологических разрешений.

В этой связи, на основании п. 3 ст. 49 Кодекса, экологическая оценка по упрощенному порядку проводится для намечаемой и осуществляемой деятельности, не подлежащей обязательной оценке воздействия на окружающую среду при:

- 1) разработке проектов нормативов эмиссий для объектов I и II категорий;
- 2) разработке раздела «Охрана окружающей среды» в составе проектной документации по намечаемой деятельности и при подготовке декларации о воздействии на окружающую среду.

7.5. Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ представляются в виде таблицы Приложения 1

Для определения количественных и качественных величин выбросов от объекта, ТОО «ПолисМунайКурылыс» выполнены расчеты по действующим нормативнометодическим документам.

Количественная характеристика, выбрасываемых в атмосферу загрязняющих веществ (т/год) приводится по усредненным годовым значениям в зависимости от изменения режима работы предприятия, технологического процесса и оборудования, материалов и т.д.

Расчеты по определению количества загрязняющих веществ, выбрасываемых в атмосферу источниками выбросов приведены в приложении.

Параметры выбросов загрязняющих веществ в атмосферу для расчета нормативов допустимых выбросов на 2025-2027 г. представлены в таблицах ниже.

Приложение 1 к Методике определения нормативов эмиссий в окружающую среду

		Источники выделен загрязняющих веще							на вых	газовоздушной оде из трубы пр ьно разовой нагр	И			одинаты на re-cxeмe, м		Наименован						загр	Выбросы язняющих ве		
Производство	Цех	Наименование	Кол- во, шт	Число часов работ ы в год	Наименование источника выброса вредных веществ	№ ист- ка выброс а на карте схеме	Высота источни ка выброса, м	Диамет р устья трубы, м	Скорость, м/с (T = 293.15 К, P= 101.3 кПа)	Объемный расход, м3/с (T = 293.15 K, P= 101.3 кПа)	тем- ра, t ⁰ C	точечн источн / 1-г линейн источн цент площа, о источн	ника го ного ника/ гра цдног	2-го конца линейного / длина, ширина площадно го источника	У	ие газоочистны х установок, тип и мероприятия по сокращению выбросов	Вещество по которому производит ся очистка	Коэффициент обеспеченнос ти газоочисткой	Среднеэксплуатацион ная степень очистки/ максимальная степень очистки, %	Код веществ а	Наименование вещества	г/сек	мг/м3	т/год	Год дости - жени я НДВ
1	2	3	4	5	6	7	0	9	10	11	12	13	14	15	1	17	18	19	20	21	22	23	24	25	26
Строительст	строительно-	компрессор	4				0	0,1	9,67	0,0759181		19		13	6	17	16	19	20			0,0916	1205,51	0,00757	
<u>B0</u>	монтажные	передвижной с двигателем	1	60,0	выхлопная труба	0001	2	-,-	.,		400	5	201							0301	диоксид азота	0,0149	196,00	0,00123	2025
+	работы	внутреннего																		0304	азота оксид	0,0078	102,22	0,00066	2025
		сгорания																		0328	углерод	0,0122	161,23	0,00099	2025 2025
	<u>-</u>																			0337	диоксид серы оксид углерода	0,0800	1053,77	0,00660	2025
																						0,0000001	0,00	0,0000000	
																				0703 1325	бенз(а)пирен	0,0017	22,13	0,000132	2025
	<u>-</u>																			2754	формальдегид алканы С12-19	0,0400	526,88	0,003300	2025
	строительно-	дизельная	<u> </u>	400.0		0002		0,1	9,67	0,0759181	400	19	201									0,1373	1205,51	0,118886	
	монтажные	электростанция	1	480,0	выхлопная труба	0002	2		.,	-,	400	5	201							0301	диоксид азота	0,0223	196,00	0,019319	2025 2025
	работы																			0304	азота оксид углерод	0,0117	102,22	0,0103680	2025
	-																			0330	диоксид серы	0,0183	161,23	0,015552	2025
	-																			0337	оксид углерода	0,1200	1053,77	0,103680	2025
	-																			0703		0,0000002	0,000100	0,0000002	2025
	<u> </u>																			1325	бенз(а)пирен формальдегид	0,0025	22,13	0,0020740	2025
																				2754	алканы С12-19	0,0600	526,88	0,051840	2025
	строительно-			100,0		0002	2	0,1	9,67	0,0759181	400	19 5	201							0301		0,1602	1205,51	0,02408	
	монтажные работы	сварочный агрегат дизельный	1	100,0	выхлопная труба	0003	2				400	3	201							0301	диоксид азота азота оксид	0,0260	196,00	0,00391	2025 2025
	раооты	дизельный																		0328	углерод	0,0136	102,22	0,00210	2025
																				0330	диоксид серы	0,0214	161,23	0,00315	2025
	-																			0337	оксид углерода	0,1400	1053,77	0,02100	2025
	-																			0703	бенз(а)пирен	0,0000003	0,00	0,0000000	2025
	_																			1325	формальдегид	0,0029	22,13	0,00042	2025
	-																			2754	алканы С12-19	0,0700	526,88	0,01050	2025
	строительно-	котел битумный	1	24	выхлопная труба	0004	2	0,01	1,6	0,00007	200	19 5	201							0301	диоксид азота	0,0023	1782,53	0,00020	2025
	монтажные работы	(битумные работы)	1	24	выхлопная груба	0004	2	0,01	1,0	0,00007	200	3	201							0330	диоксид серы	0,001736	5220,27	0,00015	2025
	риооты	(OHTYMITALE PROOTES)																		0337	оксид углерода	0,0162	12350,40	0,00140	2025
	<u>-</u>																			0328		0,00029	168067,2	0,000030	
	<u>-</u>	+																1	1	2754	углерод алканы С12-19	0,0058	526,88	0,00050	2025
	строительно-	_		00.0	неорганиз.выбро	6001	2				20	19	201	2	2						пыль неорганическая ниже	0.0002		0.002<000	
	монтажные работы	бульдозер	1	80,0	СЫ	6001	2	площ.	-	-	30	5	201	2	2					2909	20% двуокиси кремния	0,0093		0,0026880	2025
	строительно-		<u> </u>		неорганиз.выбро	***	_					19							1	20	пыль неорганическая ниже	0.0		0.00	
	монтажные	автогрейдер	1	24,0	СЫ	6002	2	площ.	=	-	30	5	201	2	2					2909	20% двуокиси кремния	0,0373		0,0032260	
	работы		+		неорганиз.выбро							19									пыль неорганическая ниже		 		2025
	погрузочные	экскаватор	1	92,0	СЫ	6003	2	площ.	-	-	30	5	201	2	2			+		2909	20% двуокиси кремния	0,0140	-	0,0046370	
	работы строительно-				неорганиз.выбро							19							1		пыль неорганическая ниже				2025
	монтажные	трактор	1	48,0	сы	6004	2	площ.	-	-	30		201	2	2			1	1	2909	20% двуокиси кремния	0,0040	-	0,0006960	
	работы строительно-	машина бурильно-			неорганиз.выбро							19									пыль неорганическая ниже	-			2025
	монтажные	крановая с глубиной бурения 3,5	1	4,0	сы	6005	2	площ.	-	-	30		201	2	2				1	2909	20% двуокиси кремния	0,3333		0,0048000	2025
	работы	м на автомобиле										16													2025
	строительно- монтажные	транспортировка	2	163,0	неорганиз.выбро сы	6006	2	площ.	-	-	30	19 5	201	2	2					2909	пыль неорганическая ниже 20% двуокиси кремния	0,0866		0,0254000	2025
	работы	пылящих материалов																1							2025
	разгрузочные	автосамосвал	1	0,4	неорганиз.выбро сы	6007	2	площ.	_	_	30	19	201	2	2					2909	пыль неорганическая ниже 20% двуокиси кремния	0,9800		0,0014110	2025

		1							1							 		$\overline{}$
работы	(разгрузка)		неорганиз.выбро						19						пыль неорганическая ниже	+ + + + + + + + + + + + + + + + + + + +		2025
	автосамосвал	1 0,2	сы	6008	2	площ.	-	-	30 5	201	2	2		2909	20% двуокиси кремния	0,3267	0,0002350	2025
	(разгрузка)								10									2025
строительно- монтажные	каток и трамбовка	1 12,0	неорганиз.выбро сы	6009	2	площ.	-	-	30 19 5	201	2	2		2909	пыль неорганическая ниже 20% двуокиси кремния	0,00005	0,000002	2025
работы																		2025
сварочные	установка	1 100	неорганиз.выбро сы	6010	2	площ.	-	-	30 19 5	201	2	2		0123	оксид железа	0,00252	0,00045	2025
работы	для ручной													0143	марганец и его соединения	0,00036	0,00006	2025
	дуговой сварки													0342	фтористые газообразные соединения	0,00006	0,00001	2025
газосварочные работы	газосварочные работы	1 144	неорганиз.выбро сы	6011	2	площ.	-	-	30 19 5	201	2	2		0123	оксид железа	0,02030	0,00700	2025
	•													0143	марганец и его соединения	0,00030	0,00011	2025
														0301	диоксид азота	0,01370	0,00390	2025
														0337	оксид углерода	0,01380	0,00480	2025
покрасочные	лакокрасочные	1 360	неорганиз.выбро сы	6012	2	площ.	-	-	30 19 5	201	2	2		616	ксилол	0,562500	0,090000	2025
работы	работы													621	метилбензол	0,097200	0,010000	2025
														1210	бутилацетат	0,139400	0,025100	2025
														2752	уайт-спирит	0,312500	0,045000	2025
														1042	Спирт н-бутиловый	0,055600	0,010000	2025
														1061	Этиловый спирт	0,028300	0,005100	2025
гидроизоляционные	гидроизоляционные	1 24	неорганиз.выбро сы	6013	2	площ.	-	-	30 19 5		2	2		2754	алканы С12-19	0,0058	0,00050	2025
работы	работы																	2025
шлифовальные	шлифовальная	1 48	неорганиз.выбро сы	6014	2	площ.	-	-	30 19 5	201	2	2		2902	взвешенные вещества	0,010400	0,001797	2025
машина	машина													2930	пыль абразивная	0,006800	0,001175	2025
строительно- монтажные	емкости для хранения ГСМ	1 1440	неорганиз.выбро сы	6015	2	площ.	-	-	30 5	201	2	2		2754	алканы С12-19	0,002493	0,000015	2025
работы														0333	сероводород	0.000010	0,0000000	2025
строительно-			неорганиз.выбро	*04.4					19							,,,,,,,,,		
монтажные	автотранспорт,	15 835	сы	6016	2	площ.	-	-	30 5	201	2	2		0337	оксид углерода	0,17110	0,51420	2025
и погрузочно-	строительные машины													0301	диоксид азота	0,06840	0,20570	2025
разгрузочные	и механизмы													2732	керосин	0,05130	0,15430	
работы	на дизтопливе											-		0328	углерод	0,02650	0,07970	2025
										+				0703	бенз(а)пирен	0,0000010	0,0000020	
строительно-			неорганиз.выбро						19	+				0330	диоксид серы	0,03420	0,10280	2025
монтажные	автотранспорт,	1 48	сы	6017	2	площ.	-	-	30 5	201	2	2		0337	оксид углерода	1,59030	0,27480	2025
	строительные машины											\vdash		0301	диоксид азота	0,10590	0,01830	2025
	и механизмы											\vdash		2704	бензин	0,26500	0,04580	2025
	на бензине											\vdash		0328	углерод	0,00170 0,0000006	0,00030	2025
														0703	бенз(а)пирен	0,0000008	0,0000001	2025
														0330	диоксид серы	0,0052	0,0009	2025

Таблица 5 - Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ, при эксплуатации

1 аоли	ца 5 - Парам о	етры выбросов :	загрязняюі	щих вег	цеств в атм	осферу дл 	ія расчет	а НДВ, <u>г</u>	три эксп □	луатациі	И	Koop	пинаттт	сточник	а на			<u> </u>	1						
													карте-с	кеме,м.											
		Источник выд	деления							тры газовозд		точ.ис го ко	онца	2-го ко линей источн	ного	Наименовани						D 5			
		загрязняющих		Число	Наименовани	Номер	Высота			выходе из тру пьно разовой и		линей источ		длин	на,	е газоочистных	Вещество,	Коэффи- циент	Среднеэксплуа -тационная			Выбросы	загрязняющего	э вещества	Год
Произ-	П			часов	е источника	источник а	источник	Диамет р устья				/цен площа,		ширі площа	1114	установок,	по которому	обеспечен	степень	Код	Наименование				дости
водств 0	Цех			работ ы в	выброса вредных	выбросов на карте-	а выбросов,	трубы, м				источ		о источі		тип и мероприятия	производитс я	-ности газо-	очистки/ максимальная	веществ а	вещества				жения
				году	веществ	схеме	M		Скорость	Объемный расход,	Темпе					по сокращению	газоочистка	очисткой, %	степень очистки, %						НДВ
		Наименование	Количество , шт.						, м/с (T = 293.15 K, P= 101.3 кПа)	м3/с (T = 293.15 К, P= 101.3 кПа)	ратура смеси, °C	X1	Y1	X2	Y2	выбросов						г/с	мг/нм3	т/год	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
001	Площадка ГПЭС	ГПЭС-1	1	8000	труба	0001	7	0,377	60,74	6,78	450	254	254							0301	Азота диоксид	1,166667	455,715	43,051286	2025
	THISC											,	3							0304	Азота оксид	0,189583	74,053	6,995834	2025
																				0328	Углерод	0,008102	3,165	0,307509	2025
																				0337	Углерод оксид	1,472222	575,068	54,121617	2025
																				0703	Бенз/а/пирен	0,000000 2	0,00008	0,000007	2025
																				1325	Формальдегид	0,002315	0,904	0,082002	2025
																				2754	Алканы С12- 19	0,833333	325,51	30,750919	2025
001	Площадка ГПЭС	Свеча ГПЭС-1	1	0,03	труба	0002	4	0,02	0,74	0,0002	20	254 7	254 5							0410	Метан	1,36283	7313355,1 3	0,000164	2025
																				0415	Смесь углеводородов	0,514848	2762829,0	0,000062	2025
																					предельных		1		
																				0416	С1-С5 Смесь	0,010377	55686,099	0,000001	2025
																					углеводородов предельных				
001	П	G FFF0G 1		2000	_	0002		0.2	0.01	0.000703	20	254	254							2725	C6-C10	0.14	210011 21	1.022	2025
001	Площадка ГПЭС	Сапун от ГПЭС-1	1	8000	труба	0003	5	0,3	0,01	0,000706 9	30	254 7	254 5							2735	Масло минеральное	0,14	219811,31	4,032	2025
001	Площадка	ГПЭС-2	1	8000	труба	0004	7	0,377	60,74	6,78	450	254	254							0301	нефтяное Азота диоксид	1,166667	455,715	43,051286	2025
	ГПЭС											7	5							0304	Азота оксид	0,189583	74,053	6,995834	2025
																				0328	Углерод	0,008102	3,165	0,307509	2025
																				0337	Углерод оксид	1,472222	575,068	54,121617	2025
																				0703	Бенз/а/пирен	0,000000	0,00008	0,000007	2025
																				1325	Формальдегид	0,002315	0,904	0,082002	2025
																					Алканы С12-	0,833333	325,51	30,750919	
001	Площадка	Свеча ГПЭС-2	1	0,03	труба	0005	4	0,02	0,74	0,0002	20	254								0410	19 Метан	1,36283	7313355,1	0,000164	2025
	ГПЭС											/	5							0415	Смесь	0,514848	2762829,0	0,000062	2025
																					углеводородов предельных		1		
																				0416	C1-C5	0.010277	55 COC 000	0.000001	2025
																				0416	Смесь углеводородов	0,010377	55686,099	0,000001	2025
																					предельных C6-C10				
001	Площадка ГПЭС	Сапун от ГПЭС-2	1	8000	труба	0006	5	0,3	0,01	0,000706	30	254	254 5							2735		0,14	219811,31	4,032	2025
06:		DED G A		06.7.7		0.55				9		,	,								нефтяное	4 4 2		400000	
001	Площадка ГПЭС	ГПЭС-3	1	8000	труба	0007	7	0,377	60,74	6,78	450	254 7	254 5								Азота диоксид	1,166667	455,715	43,051286	
																				0304	Азота оксид	0,189583	74,053	6,995834 0,307509	
																					Углерод Углерод оксид	0,008102 1,472222	3,165 575,068	54,121617	2025
																				0703	Бенз/а/пирен	0,000000	0,00008	0,000007	2025
																						2	·		
																					Формальдегид	0,002315	0,904	0,082002	
																				2754	Алканы С12- 19	0,833333	325,51	30,750919	2025
001	Площадка ГПЭС	Свеча ГПЭС-3	1	0,03	труба	0008	4	0,02	0,74	0,0002	20	254 7	254 5							0410	Метан	1,36283	7313355,1 3	0,000164	2025

	T			1	1								1		1	1	T a	I			
																0415	Смесь углеводородов	0,514848	2762829,0	0,000062	2025
																	предельных		1		
																0416	С1-С5 Смесь	0,010377	55686,099	0,000001	2025
																0416	углеводородов	0,010377	33080,099	0,000001	2023
																	предельных				
001	Площадка	Сапун от ГПЭС-3	1	8000	труба	0009	5	0,3	0,01	0,000706	30	254	254			2735	С6-С10 Масло	0,14	219811,31	4,032	2025
001	ГПЭС	Campin of 1110 C 5	•	0000	19,00	0007		0,5	0,01	9	50	7	5			2755	минеральное	0,11	21,011,01	.,052	2020
001	П	EHOC 4	1	2000		0010	7	0.277	60.74	6.70	450	254	254			0201	нефтяное	1.166667	455 715	42.051296	2025
001	Площадка ГПЭС	ГПЭС-4	1	8000	труба	0010	7	0,377	60,74	6,78	450	254 7	254 5			0301	Азота диоксид	1,166667	455,715	43,051286	
																0304	Азота оксид	0,189583	74,053	6,995834	2025
																0328	Углерод	0,008102	3,165	0,307509	2025
																0337	Углерод оксид	1,472222	575,068	54,121617	2025
																0703	Бенз/а/пирен	0,000000	0,00008	0,000007	2025
																1225	_	2	0.004	0.000000	2025
																1325	Формальдегид	0,002315	0,904	0,082002	2025
																2754	Алканы С12- 19	0,833333	325,51	30,750919	2025
001	Площадка	Свеча ГПЭС-4	1	0,03	труба	0011	4	0,02	0,74	0,0002	20	254	254			0410	• /	1,36283	7313355,1	0,000164	2025
	ГПЭС							.,-	-,-	,	-	7	5					·	3		
																0415	Смесь	0,514848	2762829,0	0,000062	2025
					1												углеводородов предельных		1		
					1											0.47	C1-C5	0.010355	##c0c 000	0.00000	2027
																0416	Смесь углеводородов	0,010377	55686,099	0,000001	2025
																	предельных				
001	Площадка	Сапун от ГПЭС-4	1	8000	труба	0012	5	0,3	0,01	0,000706	30	254	254			2735	С6-С10 Масло	0,14	219811,31	4,032	2025
001	ГПЭС	Callyh 01 1115C-4	1	8000	труба	0012	3	0,3	0,01	9	30	7	5			2733	минеральное	0,14	219011,31	4,032	2023
001		TITOG 5 (720		0012	-	0.255	50.51	6 500001	150	251	251			0201	нефтяное	1.166667	155.505	2.05125	2025
001	Площадка ГПЭС	ГПЭС-5 (резервная)	1	720	труба	0013	7	0,377	60,74	6,780291 8	450	254 7	254 5			0301	Азота диоксид	1,166667	455,695	3,95136	2025
																0304	Азота оксид	0,189583	74,05	0,642096	2025
																0328	Углерод	0,008102	3,165	0,028224	2025
																0337	Углерод оксид	1,472222	575,043	4,967424	2025
																0703	Бенз/а/пирен	0,000000	0,00008	0,000001	2025
																1225	Φ	2	0.004	0.007526	2025
																1325	•	0,002315	0,904	0,007526	2025
																2754	Алканы С12- 19	0,833333	325,496	2,8224	2025
001	Площадка	Свеча ГПЭС-5	1	0,03	труба	0014	4	0,02	0,74	0,0002	20	254	254			0410		1,36283	7313355,1	0,000164	2025
	ГПЭС											7	5			0415	6	0.514040	3	0.000062	2025
																0415	Смесь углеводородов	0,514848	2762829,0 1	0,000062	2025
																	предельных				
																0416	С1-С5 Смесь	0,010377	55686,099	0,000001	2025
																0410	углеводородов	0,010377	33000,077	0,000001	2023
																	предельных С6-С10				
001	Площадка	Сапун от ГПЭС-5	1	720	труба	0015	2	0,3	0,01	0,000706	30	254	254			2735	Масло	0,14	219811,31	0,36288	2025
	ГПЭС									9		7	5				минеральное				
001	Площадка	ДЭС (резервная)	1	100	труба	0016	3	0,154	98,99	1,843841	400	254	254			0301	нефтяное Азота диоксид	0,853333	1140,899	0,25568	2025
551	ГПЭС	(heselamin)	-				Ĭ	3,137	, 0, , , ,	8		7	5					0,138667		0,041548	2025
																0304	Азота оксид		185,397		
																0328	Углерод	0,055556	74,278	0,01598	2025
					1											0330	Сера диоксид	0,133333	178,265	0,03995	2025
					1											0337	Углерод оксид	0,688889	921,039	0,20774	2025
					1											0703	Бенз/а/пирен	0,000001	0,001	0,0000004	2025
					1											1325	Формальдегид	0,013333	17,826	0,003995	2025
					1											2754		0,322222	430,808	0,09588	2025
																	19	·			
001	Площадка ГПЭС	Сапун от ДЭС	1	100	труба	0017	1	0,154	0,01	0,000186	30	254	254 5			2735	Масло	0,907	5403490,7	0,32652	2025
	11150									3		/	3				минеральное нефтяное		,		
001	Площадка	Конденсатосборник	1	8760	дых.клапан	0018	1	0,154	0,01	0,000186	30	254				0415	Смесь	0,174573	1040026,0	0,567	2025
	ГПЭС	V-5м3								3		7	5				углеводородов предельных		1		
														<u> </u>			С1-С5				

001 Пле ГП	лощадка ПЭС лощадка ПЭС лощадка	Емкость для хранения дизельного топлива Дренажная емкость ДЕ-1	1	8760 8760	труба	0019	1	0,154	0,01	0,000186	30	254 7	254 5				0333	Сероводород	0,000044	262,132	0,0000000	2025
001 Пл	лощадка		1	8760																		
001 Пл	лощадка		1	8760													2754	Алканы С12- 19	0,000249	1483,428	0,000011	2025
ГП					дых.клапан	0020	2				30	254 7	254	80	120		0415	Смесь углеводородов предельных	0,000194		0,007933	2025
ГП																	0416	углеводородов предельных	0,000074		0,003009	2025
ГП		Площадка ДЭС	1	8760	ЗРА и ФС	6001	2				30	254	254	80	120		0333	С6-С10 Сероводород	0,000001		0,000046	2025
002 Пж		тыощидки дос	1	0700	31711140	5001	-				50	7	5		120		2754	Алканы С12-	0,000524		0,016516	
	лощадка ПЭС	Точка подключения №1	1	8760	ЗРА и ФС	6002	2				30	325	250	2	2		0410	19 Метан	0,002458		0,077514	2025
																	0415	Смесь углеводородов	0,000929		0,029283	2025
																	0416	предельных С1-С5	0,000019		0,00059	2025
																		углеводородов предельных C6-C10				
	лощадка ПЭС	Точка подключения №2	1	8760	ЗРА и ФС	6003	2				30	292	197 4	2	2		0410	Метан	0,002458		0,077514	2025
																	0415	Смесь углеводородов предельных	0,000929		0,029283	2025
																	0416	C1-C5	0.000010		0.00050	2025
																	0416	Смесь углеводородов	0,000019		0,00059	2025
																		предельных С6-С10				
	лощадка ПЭС	Площадка газопоршневых электростанции	1	8760	ЗРА и ФС	6004	2				30	7	254 5	80	120		0410	Метан	0,036869		1,162706	2025
																	0415	Смесь углеводородов предельных	0,013928		0,439245	2025
																	0416	углеводородов предельных	0,000281		0,008853	2025
001 Пле	лощадка	Площадка	1	8760	ЗРА и ФС	6005	2				30	254	254	80	120		0415	С6-С10 Смесь	0,000131		0,004141	2025
	пэс	буферной емкости V-100м3										7	5					углеводородов предельных C1-C5	0,000		*,***	
	лощадка ПЭС	Площадка конденсатосборник а V-5м3	1	8760	ЗРА и ФС	6006	2				30	7	254 5	80	120		0415	Смесь углеводородов предельных С1-С5	0,000263		0,008281	2025
	лощадка ПЭС	Межплощадочные трубопроводы	1	8760	ЗРА и ФС	6007	2				30	254 7	254	80	120		0410	Метан	0,011061		0,348812	2025
																	0415	Смесь углеводородов предельных С1-С5	0,004179		0,131774	2025
																	0416	Сиесь углеводородов предельных С6-С10	0,000084		0,002656	2025
	лощадка ПЭС	Насос	1	120	неорг.выброс	6008	2				30	254 7	254	80	120		0415	Смесь углеводородов предельных	0,016111		0,00696	2025
																	0416	С1-С5 Смесь углеводородов предельных С6-С10	0,006111		0,00264	2025
	лощадка	Насос масленый	1	7920	неорг.выброс	6009	2				30			80	120		2735	Масло	0,008333		0,2376	2025
ГП	ПЭС											7	5					минеральное нефтяное				

001	Площадка ГПЭС Площадка	Насос масленый	1	7920	неорг.выброс	6010	2	30	254	254	80	120		2735	Масло	0,008333	0,2376	2025
001																		
001	Плошалка								′	3					минеральное нефтяное			
001		Насос масленый	1	7920	HOODE BUIEnce	6011	2	30	254	254	80	120		2735	Масло	0,008333	0,2376	2025
	ГПЭС	пасос масленыи	1	7920	неорг.выброс	0011	2	30	7	5	80	120		2/33	минеральное	0,006333	0,2370	2023
	Thise								,	3					нефтяное			
	Площадка	Насос масленый	1	7920	неорг.выброс	6012	2	30	254	254	80	120		2735	Масло	0,008333	0,2376	2025
001	ГПЭС	Taucoc muchemban	•	,,20	пеоргавиорос	0012	_	50	7	5	00	120		2,33	минеральное	0,000555	0,2370	2020
001									· l						нефтяное			
001	Площадка	Насос масленый	1	7920	неорг.выброс	6013	2	30	254	254	80	120		2735	Масло	0,008333	0,2376	2025
	ГПЭС								7	5					минеральное			
															нефтяное			
001	Площадка	Точка подключения	1	8760	ЗРА и ФС	6014	2	30	325	250	2	2		0415	Смесь	0,001247	0,03933	2025
	ГПЭС	ТП-1							3	7					углеводородов			
															предельных			
														0416	C1-C5	0.000472	0.014010	2025
														0416	Смесь	0,000473	0,014918	2025
															углеводородов предельных			
															С6-С10			
001	Площадка	Точка подключения	1	8760	ЗРА и ФС	6015	2	30	325	250	2	2	+	0415	Смесь	0,001247	0,03933	2025
001	ГПЭС	ТП-2		0700	31711140	0013	-	30	3	7	~	-		0115	углеводородов	0,001217	0,03733	2023
															предельных			
															C1-C5			
														0416	Смесь	0,000473	0,014918	2025
															углеводородов			
															предельных			
															C6-C10			
001	Площадка	Площадка	1	8760	ЗРА и ФС	6016	2	30	254	254	80	120		0415	Смесь	0,011284	0,355865	2025
	ГПЭС	подготовки							7	5					углеводородов			
		топливного газа													предельных C1-C5			
														0416	Смесь	0,010687	0,33701	2025
														0416	углеводородов	0,010087	0,33701	2023
															предельных			
															C6-C10			
001	Площадка	Площадка	1	8760	ЗРА и ФС	6017	2	30	254	254	80	120		0415	Смесь	0,001927	0,060755	2025
	ГПЭС	дренажной емкости							7	5					углеводородов	· ·		
		ДЕ-1													предельных			
															C1-C5			
														0416	Смесь	0,000731	0,023045	2025
															углеводородов			
															предельных			
001	77	П		07.60	204 &C	6010	2	20	254	254	00	120		0.415	C6-C10	0.002404	0.070650	2025
001	Площадка ГПЭС	Площадка	1	8760	ЗРА и ФС	6018	2	30	254	254	80	120		0415	Смесь углеводородов	0,002494	0,078659	2025
	THISC	буферной емкости Е-1							′	3					предельных			
															C1-C5			
														0416	Смесь	0,000946	0,029836	2025
															углеводородов	.,	1,1	
															предельных			
															C6-C10			
001	Площадка	Площадка насоса	1	8760	ЗРА и ФС	6019	2	30	254	254	80	120		0415	Смесь	0,001927	0,060755	2025
	ГПЭС								7	5					углеводородов			
															предельных			
														0.11	C1-C5			
														0416	Смесь	0,000731	0,023045	2025
															углеводородов предельных			
															предельных С6-С10			
001	Площадка	Покрасочные	1	720	неорг.выброс	6020	2	30	254	254	80	120		0616	Диметилбензо	0,5625	0,18	2025
001	ГПЭС	работы	•	, 20	поорг.выорос	0020	2	50	7	5	00			0010	Л	0,3023	0,16	2023
		F							•	-				2752	Уайт-спирит	0,3125	0,09	2025
				400		5021			251	251	0.0	120				·		
0.01	Площадка	Сварочные работы	1	400	неорг.выброс	6021	2	30		254	80	120		0123	Железа оксид	0,001163	0,001674	2025
001	ГПЭС								7	5				0143	Марганец и	0,000115	0,000166	2025
001																		
001															его	0,000115	,,,,,,,	

2026 год							1	1			Koor	рдинаты 1	істочника на										
								Папаметри	газовоздушно	м смаси		карте-с											
Произ- водство Цех	Источник выделения вещест		Число часов работы	наименование	Номер источника выбросов на карте-	Высота источника выбросов,	Диаметр устья трубы,	на вых	тазовоздушно соде из трубы і ьно разовой на	при	го к лине исто /це площ	конца ейного очника ентра (адного	линейного источника / длина, ширина площадного источника	Наименование газоочистных установок, тип и мероприятия	Вещество, по которому производится	Коэффи- циент обеспечен- ности газо-	Среднеэксплуа- тационная степень очистки/ максимальная	Код вещества	Наименование вещества	Выбросы	загрязняющего) вещества	Год дости жени:
	Наименование	Количество, шт.	в году	special some is	схеме	M	M	Скорость, м/с (T = 293.15 K, P= 101.3 кПа)	Объемный расход, м3/с (T = 293.15 K, P= 101.3 кПа)	Температура смеси, оС	X1	У1	X2 Y2	по сокращению выбросов	газоочистка	очисткой,	степень очистки, %			г/с	мг/нм3	т/год	_ ндв
1 2	3	4	5	6	7	8	9	10	11	12	13	14	15 16	17	18	19	20	21	22	23	24	25	26
001	ГПЭС-1	1	8000	труба	0001	7	0,377	60,74	6,78	450	2547	2545						0301	Азота диоксид	1,166667	455,715	40,776597	2026
																		0304	Азота оксид	0,189583	74,053	6,626197	2026
																		0328	Углерод Углерод оксид	0,008102 1,472222	3,165 575,068	0,291261 51,262007	2026
																		0703	Бенз/а/пирен	0,0000002	0,00008	0,000007	2026
																		1325		0,002315	0,904	0,07767	2026
																			Алканы С12-19	0,833333	325,51	29,12614	2026
001	Свеча ГПЭС-1	1	0,03	труба	0002	4	0,02	0,74	0,0002	20	2547	2545						0410	Метан	1,36283	7313355,13	0,000164	2026
																		0415	Смесь углеводородов предельных	0,514848	2762829,01	0,000062	2026
																		0416	С1-С5 Смесь углеводородов предельных	0,010377	55686,099	0,000001	2026
001	Сапун от ГПЭС-1	1	8000	труба	0003	5	0,3	0,01	0,0007069	30	2547	2545						2735	С6-С10 Масло минеральное нефтяное	0,14	219811,31	4,032	2026
001	ГПЭС-2	1	8000	труба	0004	7	0,377	60,74	6,78	450	2547	2545						0301	Азота диоксид	1,166667	455,715	40,776597	2026
																		0304	Азота оксид	0,189583	74,053	6,626197	2026
																		0328	Углерод	0,008102	3,165	0,291261	2026
																		0337 0703	Углерод оксид	1,472222 0,0000002	575,068 0,00008	51,262007 0,000007	2026
																			Бенз/а/пирен Формальдегид	0,0000002	0,00008	0,00007	2026
																			Алканы С12-19	0,833333	325,51	29,12614	2026
001	Свеча ГПЭС-2	1	0,03	труба	0005	4	0,02	0,74	0,0002	20	2547	2545						0410	Метан	1,36283	7313355,13	0,000164	2026
																		0415	Смесь углеводородов предельных	0,514848	2762829,01	0,000062	2026
																		0416	С1-С5 Смесь углеводородов предельных	0,010377	55686,099	0,000001	2026
001	Сапун от ГПЭС-2	1	8000	труба	0006	5	0,3	0,01	0,0007069	30	2547	2545						2735	С6-С10 Масло минеральное нефтяное	0,14	219811,31	4,032	2026
001	ГПЭС-3	1	8000	труба	0007	7	0,377	60,74	6,78	450	2547	2545						0301	Азота диоксид	1,166667	455,715	40,776597	2026
																		0304	Азота оксид	0,189583	74,053	6,626197	2026
																		0328	Углерод	0,008102	3,165	0,291261	2026
																		0337	Углерод оксид	1,472222	575,068	51,262007	2026
																			Бенз/а/пирен	0,0000002	0,00008	0,000007	2026
																		2754	Формальдегид Алканы С12-19	0,002315 0,833333	0,904 325,51	0,07767 29,12614	2026
001	Свеча ГПЭС-3	1	0,03	труба	0008	4	0,02	0,74	0,0002	20	2547	2545							Метан	1,36283	7313355,13	0,000164	2026
																		0415	Смесь углеводородов предельных C1-C5	0,514848	2762829,01	0,000062	2026

																0416	Смесь углеводородов предельных C6-C10	0,010377	55686,099	0,000001	2026
001	Сапун от ГПЭС-3	1	8000	труба	0009	5	0,3	0,01	0,0007069	30	2547	2545				2735		0,14	219811,31	4,032	2026
001	ГПЭС-4	1	8000	труба	0010	7	0,377	60,74	6,78	450	2547	2545				0301	Азота диоксид	1,166667	455,715	40,776597	2026
																0304	Азота оксид	0,189583	74,053	6,626197	2026
																0328	Углерод	0,008102	3,165	0,291261	2026
																0337	Углерод оксид	1,472222	575,068	51,262007	2026
																0703	Бенз/а/пирен	0,0000002	0,00008	0,000007	2026
																1325	Формальдегид	0,002315	0,904	0,07767	2026
																2754	Алканы С12-19	0,833333	325,51	29,12614	2026
001	Свеча ГПЭС-4	1	0,03	труба	0011	4	0,02	0,74	0,0002	20	2547	2545				0410	Метан	1,36283	7313355,13	0,000164	2026
																0415	углеводородов предельных C1-C5	0,514848	2762829,01	0,000062	2026
																0416	углеводородов предельных C6-C10	0,010377	55686,099	0,000001	2026
001	Сапун от ГПЭС-4	1	8000	труба	0012	5	0,3	0,01	0,0007069		2547					2735	Масло минеральное нефтяное	0,14	219811,31	4,032	
001	ГПЭС-5 (резервная)	1	720	труба	0013	7	0,377	60,74	6,7802918	450	2547	2545				0301	Азота диоксид	1,166667	455,695	3,95136	
																0304	Азота оксид	0,189583	74,05	0,642096	2026
																0328	Углерод	0,008102	3,165	0,028224	2026
																0337	Углерод оксид	1,472222	575,043	4,967424	2026
																0703	Бенз/а/пирен	0,0000002	0,00008	0,000001	2026
																1325	Формальдегид	0,002315	0,904	0,007526	2026
001	G FFF0G 5		0.02		0014		0.02	0.54	0.0002	20	25.45	2545				2754	Алканы С12-19	0,833333	325,496	2,8224	2026
001	Свеча ГПЭС-5	1	0,03	труба	0014	4	0,02	0,74	0,0002	20	2547	2545				0410	Метан	1,36283	7313355,13	0,000164	2026
																0415	Смесь углеводородов предельных C1-C5	0,514848	2762829,01	0,000062	2026
																0416		0,010377	55686,099	0,000001	2026
001	Сапун от ГПЭС-5	1	720	труба	0015	2	0,3	0,01	0,0007069	30	2547	2545				2735	Масло минеральное	0,14	219811,31	0,36288	2026
001	ДЭС (резервная)	1	100	труба	0016	3	0,154	98,99	1,8438418	400	2547	2545				0301	нефтяное Азота диоксид	0,853333	1140,899	0,25568	2026
	, , ,			1.7												0304		0,138667	185,397	0,041548	
																0328	Углерод	0,055556	74,278	0,01598	2026
																0330		0,133333	178,265	0,03995	2026
																0337		0,688889	921,039	0,20774	2026
																0703	Бенз/а/пирен	0,000001	0,001	0,0000004	2026
																1325	Формальдегид	0,013333	17,826	0,003995	2026
																2754	Алканы С12-19	0,322222	430,808	0,09588	2026
001	Сапун от ДЭС	1	100	труба	0017	1	0,154	0,01	0,0001863	30	2547	2545				2735	Масло минеральное нефтяное	0,907	5403490,77	0,32652	2026
001	Конденсатосборник V-5м3	1	8760	труба	0018	1	0,154	0,01	0,0001863	30	2547	2545				0415	Смесь углеводородов предельных С1-С5	0,174573	1040026,01	0,567	2026
001	Емкость для хранения дизельного топлива	1	8760	труба	0019	1	0,154	0,01	0,0001863	30	2547	2545					Сероводород	0,000044	·	0,00000003	
																	Алканы С12-19	0,000249	1483,428	0,000011	
001	Дренажная емкость ДЕ-1	1	8760	дых.клапан	0020	2				30	2547	2545	80	120		0415	Смесь углеводородов предельных C1-C5	0,000194		0,007933	2026

												0416	углеводородов	0,000074	0,003009	2026
													предельных С6-С10			
001	Площадка ДЭС	1	8760	ЗРА и ФС	6001	2	30	2547	2545	80	120	0333		0,000001	0,000046	2026
												2754	Алканы С12-19	0,000524	0,016516	2026
002	Точка подключения №1	1	8760	ЗРА и ФС	6002	2	30	3253	2507	2	2	0410		0,002458	0,077514	2026
												0415	углеводородов предельных	0,000929	0,029283	2026
												0416	углеводородов предельных	0,000019	0,00059	2026
003	Точка подключения №2	1	8760	ЗРА и ФС	6003	2	30	2922	1974	2	2	0410	С6-С10 Метан	0,002458	0,077514	2026
												0415	Смесь углеводородов предельных	0,000929	0,029283	2026
												0416	С1-С5 Смесь углеводородов предельных С6-С10	0,000019	0,00059	2026
001	Площадка газопоршневых электростанции	1	8760	ЗРА и ФС	6004	2	30	2547	2545	80	120	0410		0,036869	1,162706	2026
												0415	Смесь углеводородов предельных С1-С5	0,013928	0,439245	2026
												0416	Смесь углеводородов предельных C6-C10	0,000281	0,008853	2026
001	Площадка буферной емкости V-100м3	1	8760	ЗРА и ФС	6005	2	30	2547	2545	80	120	0415		0,000131	0,004141	2026
001	Площадка конденсатосборника V-5м3	1	8760	ЗРА и ФС	6006	2	30	2547	2545	80	120	0415		0,000263	0,008281	2026
001	Межплощадочные трубопроводы	1	8760	ЗРА и ФС	6007	2	30	2547	2545	80	120	0410	Метан	0,011061	0,348812	2026
												0415	Смесь углеводородов предельных С1-С5	0,004179	0,131774	2026
												0416		0,000084	0,002656	2026
001	Насос	1	120	неорг.выброс	6008	2	30	2547	2545	80	120		Смесь углеводородов предельных С1-С5	0,016111	0,00696	
													Смесь углеводородов предельных С6-С10	0,006111	0,00264	
001	Насос масленный	1	7920	неорг.выброс	6009	2				80		2735	минеральное нефтяное	0,008333	0,2376	
001	Насос масленный	1	7920	неорг.выброс	6010	2		2547		80		2735	минеральное нефтяное	0,008333	0,2376	
001	Насос масленный	1	7920	неорг.выброс	6011	2		2547		80	120	2735	минеральное нефтяное	0,008333	0,2376	
001	Насос масленный	1	7920	неорг.выброс	6012	2		2547		80		2735	минеральное нефтяное	0,008333	0,2376	
001	Насос масленный	1	7920	неорг.выброс	6013	2	30	2547	2545	80	120	2735	Масло минеральное нефтяное	0,008333	0,2376	2026

001	Точка подключения	1	8760	ЗРА и ФС	6014	2	30 3253	2507	2	2	0415	Смесь	0,001247	0,03933	2026
	TII-1											углеводородов предельных C1-C5	3,3322.1	3,002.22	
											0416	Смесь углеводородов предельных C6-C10	0,000473	0,014918	2026
001	Точка подключения ТП-2	1	8760	ЗРА и ФС	6015	2	30 3253	2507	2	2	0415	Смесь углеводородов предельных C1-C5	0,001247	0,03933	2026
											0416	Смесь углеводородов предельных C6-C10	0,000473	0,014918	2026
001	Площадка подготовки топливного газа	1	8760	ЗРА и ФС	6016	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,011284	0,355865	2026
											0416	Смесь углеводородов предельных C6-C10	0,010687	0,33701	2026
001	Площадка дренажной емкости ДЕ-1	1	8760	ЗРА и ФС	6017	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,001927	0,060755	2026
											0416	Смесь углеводородов предельных C6-C10	0,000731	0,023045	2026
001	Площадка буферной емкости E-1	1	8760	ЗРА и ФС	6018	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,002494	0,078659	2026
											0416	Смесь углеводородов предельных C6-C10	0,000946	0,029836	2026
001	Площадка насоса	1	8760	ЗРА и ФС	6019	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,001927	0,060755	2026
											0416	Смесь углеводородов предельных C6-C10	0,000731	0,023045	2026
001	Покрасочные работы	1	720	неорг.выброс	6020	2	30 2547	2545	80	120	0616	Диметилбензол	0,5625	0,18	
			1								2752	Уайт-спирит	0,3125	0,09	2026
001	Сварочные работы	1	400	неорг.выброс	6021	2	30 2547	2545	80	120	0123 0143	Железа оксид Марганец и его	0,001163 0,000115	0,001674 0,000166	2026 2026
											0143	соединения	-,	0,000100	

2027 год

2027	год																								
		Источник выделения веществ	-	Число	Наименование	Номер	Высота	Диаметр	на выхо	газовоздушно оде из трубы ьно разовой на	при		нца ного ника	2-го и линей источ дли		Наименование газоочистных установок,	Вещество, по	Коэффи- циент	Среднеэксплуа-			Выбросы	загрязняющего) вещества	Год
Произ- водство	Цех	Наименование	Количество, шт.	часов работы в году	паименование источника выброса вредных веществ	источника выбросов на карте- схеме	источника выбросов, м	устья трубы, м	Скорость, м/с (T = 293.15 K, P= 101.3 кПа)	Объемный расход, м3/с (T = 293.15 K, P= 101.3 кПа)	Темпе- ратура смеси, oC	площа, источ			адного чника	тип и мероприятия по сокращению выбросов	которому производится газоочистка	обеспечен- ности газо- очисткой, %	степень очистки/ максимальная степень очистки, %	Код вещества	Наименование вещества	г/с	мг/нм3	т/год	дости- жения НДВ
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
001		ГПЭС-1	1	8000	труба	0001	7	0,377	60,74	6,78			2545							0301	Азота диоксид	1,166667	455,715	40,776597	2027
																				0304	Азота оксид	0,189583	74,053	6,626197	2027
																				0328	Углерод	0,008102	3,165	0,291261	2027
																				0337	Углерод оксид	1,472222	575,068	51,262007	2027
																				0703	Бенз/а/пирен	0,0000002	0,00008	0,000007	2027
																				1325	Формальдегид	0,002315	0,904	0,07767	2027
																				2754	Алканы С12-19	0,833333	325,51	29,12614	2027
001		Свеча ГПЭС-1	1	0,03	труба	0002	4	0,02	0,74	0,0002	20	2547	2545							0410	Метан	1,36283	7313355,13	0,000164	2027
																				0415	Смесь углеводородов предельных С1-С5	0,514848	2762829,01	0,000062	2027
																				0416	Смесь углеводородов предельных C6-C10	0,010377	55686,099	0,000001	2027
001		Сапун от ГПЭС-1	1	8000	труба	0003	5	0,3	0,01	0,0007069	30	2547	2545							2735	Масло минеральное нефтяное	0,14	219811,31	4,032	2027
001		ГПЭС-2	1	8000	труба	0004	7	0,377	60,74	6,78	450	2547	2545							0301	Азота диоксид	1,166667	455,715	40,776597	2027
																				0304	Азота оксид	0,189583	74,053	6,626197	2027
																				0328	Углерод	0,008102	3,165	0,291261	2027
																				0337	Углерод оксид	1,472222	575,068	51,262007	2027
																				0703	Бенз/а/пирен	0,0000002	0,00008	0,000007	2027
																				1325	Формальдегид	0,002315	0,904	0,07767	2027
001		G PHOG A		0.02		0005		0.02	0.74	0.0002	20	25.45	25.15							2754		0,833333	325,51	29,12614	2027
001		Свеча ГПЭС-2	1	0,03	труба	0005	4	0,02	0,74	0,0002	20	2547	2545								Метан Смесь углеводородов предельных С1-С5	1,36283 0,514848	7313355,13 2762829,01	0,000164	2027
																				0416	Смесь углеводородов предельных C6-C10	0,010377	55686,099	0,000001	2027
001		Сапун от ГПЭС-2	1	8000	труба	0006	5	0,3	0,01	0,0007069	30	2547	2545							2735	Масло минеральное нефтяное	0,14	219811,31	4,032	2027
001		ГПЭС-3	1	8000	труба	0007	7	0,377	60,74	6,78	450	2547	2545								Азота диоксид	1,166667	455,715	40,776597	2027
																				0304	Азота оксид	0,189583	74,053	6,626197	2027
																					Углерод	0,008102	3,165	0,291261	2027
																					Углерод оксид	1,472222	575,068	51,262007	2027
																				1325	Бенз/а/пирен	0,0000002	0,00008	0,000007	2027
																				2754	Формальдегид Алканы C12-19	0,002315	0,904 325,51	29,12614	2027
001		Свеча ГПЭС-3	1	0,03	труба	0008	4	0,02	0,74	0,0002	20	2547	2545								Метан	1,36283	7313355,13	0,000164	
		-								,												0,514848	2762829,01	0,000062	2027

																0416	Смесь углеводородов предельных	0,010377	55686,099	0,000001	2027
001	Сапун от ГПЭС-3	1	8000	труба	0009	5	0,3	0,01	0,0007069	30	2547	2545				2735	С6-С10 Масло минеральное нефтяное	0,14	219811,31	4,032	2027
001	ГПЭС-4	1	8000	труба	0010	7	0,377	60,74	6,78	450	2547	2545				0301	Азота диоксид	1,166667	455,715	40,776597	2027
																0304	Азота оксид	0,189583	74,053	6,626197	2027
																0328	Углерод	0,008102	3,165	0,291261	2027
																0337	Углерод оксид	1,472222	575,068	51,262007	2027
																0703	Бенз/а/пирен	0,0000002	0,00008	0,000007	2027
																1325	Формальдегид	0,002315	0,904	0,07767	2027
																2754	Алканы С12-19	0,833333	325,51	29,12614	2027
001	Свеча ГПЭС-4	1	0,03	труба	0011	4	0,02	0,74	0,0002	20	2547	2545				0410		1,36283	7313355,13	0,000164	2027
																0415	Смесь углеводородов предельных С1-С5	0,514848	2762829,01	0,000062	2027
																0416	углеводородов предельных C6-C10	0,010377	55686,099	0,000001	2027
001	Сапун от ГПЭС-4	1	8000	труба	0012	5	0,3	0,01	0,0007069	30	2547	2545				2735	Масло минеральное нефтяное	0,14	219811,31	4,032	2027
001	ГПЭС-5 (резервная)	1	720	труба	0013	7	0,377	60,74	6,7802918	450	2547	2545				0301		1,166667	455,695	3,95136	2027
																0304		0,189583	74,05	0,642096	2027
																0328		0,008102	3,165	0,028224	2027
																0337	•	1,472222	575,043	4,967424	2027
																0703	_	0,0000002	0,00008	0,000001	2027
																1325	_	0,002315	0,904	0,007526	2027
001	Свеча ГПЭС-5	1	0,03	may 50	0014	4	0,02	0,74	0,0002	20	2547	2545				2754 0410		0,833333 1,36283	325,496 7313355,13	2,8224 0,000164	2027
001	Свеча ГПЭС-5	1	0,03	труба	0014	4	0,02	0,74	0,0002	20	2547	2545				0410		0,514848	2762829,01	0,000164	2027
																0413	углеводородов предельных C1-C5	0,314040	2702029,01	0,00002	2027
																0416	Смесь углеводородов предельных	0,010377	55686,099	0,000001	2027
001	Сапун от ГПЭС-5	1	720	труба	0015	2	0,3	0,01	0,0007069	30	2547	2545				2735	С6-С10 Масло	0,14	219811,31	0,36288	2027
001	ДЭС (резервная)	1		труба	0016	3	0,154	98,99	1,8438418		2547					0301	минеральное нефтяное	0,853333	1140,899	0,25568	
				1.7												0304		0,138667	185,397	0,041548	
																0328		0,055556	74,278	0,01598	2027
																0330	Сера диоксид	0,133333	178,265	0,03995	2027
																0337	Углерод оксид	0,688889	921,039	0,20774	2027
																0703	Бенз/а/пирен	0,000001	0,001	0,0000004	2027
																1325	Формальдегид	0,013333	17,826	0,003995	2027
																2754	Алканы С12-19	0,322222	430,808	0,09588	2027
001	Сапун от ДЭС	1		труба	0017	1	0,154	0,01	0,0001863	30	2547	2545				2735	Масло минеральное нефтяное	0,907	5403490,77	0,32652	2027
001	Конденсатосборник V-5м3	1	8760	труба	0018	1	0,154	0,01	0,0001863	30	2547	2545	_			0415	Смесь углеводородов предельных С1-С5	0,174573	1040026,01	0,567	2027
001	Емкость для хранения дизельного топлива	1	8760	труба	0019	1	0,154	0,01	0,0001863	30	2547	2545					Сероводород	0,000044	262,132	0,00000003	2027
																	Алканы С12-19	0,000249	1483,428	0,000011	
001	Дренажная емкость ДЕ-1	1	8760	дых.клапан	0020	2				30	2547	2545	80	120		0415	Смесь углеводородов предельных C1-C5	0,000194		0,007933	2027

												0416	Смесь углеводородов предельных	0,000074	0,003009	2027
													C6-C10			
001	Площадка ДЭС	1	8760	ЗРА и ФС	6001	2	30	2547	2545	80	120	0333	Сероводород	0,000001	0,000046	2027
												2754	Алканы С12-19	0,000524	0,016516	2027
002	Точка подключения №1	1	8760	ЗРА и ФС	6002	2	30	3253	2507	2	2	0410	Метан	0,002458	0,077514	2027
												0415	углеводородов предельных	0,000929	0,029283	2027
												0416	С1-С5 Смесь углеводородов предельных С6-С10	0,000019	0,00059	2027
003	Точка подключения №2	1	8760	ЗРА и ФС	6003	2	30	2922	1974	2	2	0410		0,002458	0,077514	2027
												0415	Смесь углеводородов предельных С1-С5	0,000929	0,029283	2027
												0416		0,000019	0,00059	2027
001	Площадка газопоршневых электростанции	1	8760	ЗРА и ФС	6004	2	30	2547	2545	80	120	0410	Метан	0,036869	1,162706	2027
												0415	Смесь углеводородов предельных С1-С5	0,013928	0,439245	2027
												0416	Смесь углеводородов предельных C6-C10	0,000281	0,008853	2027
001	Площадка буферной емкости V-100м3	1	8760	ЗРА и ФС	6005	2	30	2547	2545	80	120	0415		0,000131	0,004141	2027
001	Площадка конденсатосборника V-5м3	1	8760	ЗРА и ФС	6006	2	30	2547	2545	80	120	0415		0,000263	0,008281	2027
001	Межплощадочные трубопроводы	1	8760	ЗРА и ФС	6007	2	30	2547	2545	80	120	0410	Метан	0,011061	0,348812	2027
												0415	Смесь углеводородов предельных С1-С5	0,004179	0,131774	2027
												0416		0,000084	0,002656	2027
001	Насос	1	120	неорг.выброс	6008	2	30	2547	2545	80	120		Смесь углеводородов предельных C1-C5	0,016111	0,00696	2027
													Смесь углеводородов предельных C6-C10	0,006111	0,00264	2027
001	Насос масленный	1	7920	неорг.выброс	6009	2	30	2547	2545	80	120	2735	Масло минеральное нефтяное	0,008333	0,2376	2027
001	Насос масленный	1	7920	неорг.выброс	6010	2	30	2547	2545	80	120	2735	Масло минеральное нефтяное	0,008333	0,2376	2027
001	Насос масленный	1	7920	неорг.выброс	6011	2		2547		80	120	2735	Масло минеральное нефтяное	0,008333	0,2376	
001	Насос масленный	1	7920	неорг.выброс	6012	2		2547		80		2735	минеральное нефтяное	0,008333	0,2376	
001	Насос масленный	1	7920	неорг.выброс	6013	2	30	2547	2545	80	120	2735	Масло минеральное нефтяное	0,008333	0,2376	2027

001	Точка подключения ТП-1	1	8760	ЗРА и ФС	6014	2	30 3253	2507	2	2	0415	Смесь углеводородов предельных С1-С5	0,001247	0,03933	2027
											0416	Смесь углеводородов предельных C6-C10	0,000473	0,014918	2027
001	Точка подключения ТП-2	1	8760	ЗРА и ФС	6015	2	30 3253	2507	2	2	0415	Смесь углеводородов предельных C1-C5	0,001247	0,03933	2027
											0416	Смесь углеводородов предельных C6-C10	0,000473	0,014918	2027
001	Площадка подготовки топливного газа	1	8760	ЗРА и ФС	6016	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,011284	0,355865	2027
											0416	Смесь углеводородов предельных C6-C10	0,010687	0,33701	2027
001	Площадка дренажной емкости ДЕ-1	1	8760	ЗРА и ФС	6017	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,001927	0,060755	2027
											0416	Смесь углеводородов предельных C6-C10	0,000731	0,023045	2027
001	Площадка буферной емкости Е-1	1	8760	ЗРА и ФС	6018	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,002494	0,078659	2027
											0416	Смесь углеводородов предельных C6-C10	0,000946	0,029836	2027
001	Площадка насоса	1	8760	ЗРА и ФС	6019	2	30 2547	2545	80	120	0415	Смесь углеводородов предельных C1-C5	0,001927	0,060755	2027
											0416	Смесь углеводородов предельных C6-C10	0,000731	0,023045	2027
001	Покрасочные работы	1	720	неорг.выброс	6020	2	30 2547	2545	80	120	0616	, ,	0,5625	0,18	
001			100		6021		20 2517	2545	00	120	2752		0,3125	0,09	2027
001	Сварочные работы	1	400	неорг.выброс	6021	2	30 2547	2545	80	120	0123	Железа оксид Марганец и его соединения	0,001163 0,000115	0,001674 0,000166	2027

7.6. Характеристика аварийных и залповых выбросов приводится в виде таблицы Приложения 5

При нормировании и установлении нормативов НДВ наряду с выбросами загрязняющих веществ в атмосферу, возникающими в результате производственной деятельности предприятия учету подлежат залповые и аварийные выбросы, характерные для данного вида работ.

Технологическим регламентом данного предприятия, составленным с учетом специфики проведения основных и вспомогательных производственных процессов и технических характеристик применяемого оборудования, наличие на территории предприятия источников залпового выбросов ВХВ не предусматривается.

Возникновение аварийных ситуаций в процессе производственной деятельности предприятия сводится к минимуму при условии правильного ведения производственных процессов и операций в соответствии с технологическим регламентом предприятия и при соблюдении соответствующих мер по техники безопасности и охраны труда. Поэтому на предприятии разработана и внедрена система управления промышленной безопасностью и охраной труда, обеспечивающая:

- производственный контроль за обеспечением промышленной безопасности;
- определение функций, обязанностей и ответственности работников подразделений предприятия по обеспечению промышленной безопасности и охране труда;
- оперативный контроль за обеспечением промышленной безопасности, за безопасным ведением всех видов работ во всех подразделениях предприятия;
- планирование, организацию, координацию и проведение работ по поддержанию необходимого уровня профессиональной подготовленности руководителей и специалистов, производственного персонала предприятия;
- организацию надзора за соблюдением требований по обеспечению промышленной безопасности и охраны труда на предприятии;
- материальное стимулирование работников, совмещающих основные производственные обязанности с надзорными и контрольными функциями по обеспечению промышленной безопасности и охраны труда.

Для каждого производственного подразделения предприятия разработан план локализации аварийных ситуаций, в котором приведены меры и действия персонала по предупреждению аварийных ситуаций, а в случае их возникновения - по локализации и снижению негативного влияния возможных их последствий. Данный план предусматривает:

- обеспечение беспрепятственного доступа аварийных служб к любой точке производственного участка;
- обеспечение объекта оборудованием и транспортными средствами по ограничению и ликвидации аварий;
- наличие на предприятии средств оповещения в случае возникновения аварий всех работников предприятия, в том числе руководителей и специалистов, производственного персонала предприятия;
- регулярные технические осмотры оборудования, замена неисправного оборудования;
- применение материалов, оборудования и арматуры, обеспечивающих надежность эксплуатации.
- проведение испытаний вновь монтируемых систем и оборудования на герметичность;
 - устройство системы пожаротушения;

• обеспечение производства достаточным количеством противопожарного оборудования, средств индивидуальной защиты и медикаментов.

Все технологическое оборудование, средства контроля, управления, сигнализации, связи и противоаварийной автоматической защиты (ПАЗ) предприятия эксплуатируется в соответствии с их паспортными данными, техническими характеристиками и утвержденными инструкциями по эксплуатации. Продолжительная и безопасная эксплуатации оборудования, устройств и приборов обеспечивается, прежде всего, поддержанием их в работоспособном состоянии путем их технического обслуживания и ремонта.

Таким образом, соблюдение соответствующих норм, требований, правил и мер по технике безопасности и правильное выполнение производственных работ в соответствии с утвержденным предприятием технологическим регламентом исключает возникновение любых аварий на производстве.

При нормировании выбросов загрязняющих веществ в атмосферный воздух и установлении нормативов НДВ источники аварийного и залпового выброса не принимались во внимание в виду их отсутствия.

Для залповых выбросов, которые являются составной частью технологического процесса, оценивается разовая и суммарная за год величина (г/с, т/год). Максимальные разовые залповые выбросы (г/с) не нормируются ввиду их кратковременности и в расчетах рассеивания вредных веществ в атмосфере не учитываются. Суммарная за год величина залповых выбросов нормируется при установлении общего годового выброса с учетом штатного (регламентного) режима работы оборудования (т/год).

Приложение 5

к Методике определения нормативов эмиссий в окружающую среду

Наименование Выбросы веществ, г/с Периодичность Наименование Продолжительность Годовая величина производств выброса, час, мин. вещества раз/год по регламент у залповый (цехов) и залповых выброс источников выбросов выбросов 2 3 4 5 6 7

Таблица 6 - Перечень источников залповых выбросов

Примечание - Залповых и аварийных источников выбросов на предприятии в результате производственной деятельности не предвидится.

7.7. Перечень загрязняющих веществ, выбрасываемых в атмосферу, представляют в виде таблицы Приложения 7

Перечень загрязняющих веществ, выбрасываемых в атмосферу, составлен по расчетам выбросов вредных веществ при строительстве эксплуатации предприятия.

Таблицы составлены с помощью программного комплекса «ЭРА 3.0» (фирма «Логос- плюс», г. Новосибирск) на основе расчетов выбросов загрязняющих веществ на 2025-2027г., которые представлены в приложении.

Количественная характеристика выбрасываемых в атмосферу загрязняющих веществ (т/год) приводится по усредненным годовым значениям в зависимости от изменения режима работы предприятий, технологического процесса и оборудования, расхода и характеристик сырья, топлива, реагентов, материала и т.д.

Перечень загрязняющих веществ, выбрасываемых в атмосферу от источников строительства и эксплуатации предприятия приведен в таблице ниже.

При совместном присутствии в воздухе атмосферы веществ, выделяемых в процессе производства предприятий, увеличивается токсичность воздействия этих веществ на окружающую среду и на здоровье человека, т.е. проявляется эффект суммации. Показатель эффекта суммации является одной из характеристик опасности загрязняющих

веществ, выделяемых в атмосферу источниками выбросов. Токсичность воздействия этих веществ на организм человека и окружающую среду увеличивается при их совместном присутствии в воздухе атмосферы. В таблице ниже представлены группы суммации.

Таблица 7 - Таблица групп суммации

тионици.		руни суммиции
Номер	Код	
группы	загряз-	Наименование загрязняющего вещества
сумма-	няющего	паименование загрязняющего вещества
ции	вещества	
1	2	3
Площадка	а:01, Площад	цка 1
6007	0301	Азота диоксид
	0330	Сера диоксид
6037	0333	Сероводород
	1325	Формальдегид
6044	0330	Сера диоксид
	0333	Сероводород

Основную долю вклада в загрязнение атмосферного воздуха вносят выбросы азот диоксид, азота оксид, углерод оксид, масло минеральное нефтяное а наименьший – бензапирен.

Перечень загрязняющих веществ в атмосферу при ведении производственной деятельности предприятия на 2025-2027г. по предприятию представлены в таблицах ниже.

Приложение 7

к Методике определения нормативов эмиссий в окружающую среду

Таблица 8 - Перечень загрязняющих веществ, выбрасываемых в атмосферу в период строительства

Код ЗВ	Наименование загрязняющего вещества	ЭНК, мг/м3	ПДКм.р, мг/м3	ПДКс.с., мг/м3	ОБУВ, мг/м3	Класс опасности ЗВ	Выброс вещества, г/с	Выброс вещества, т/год, (М)
1	2	3	4	5	6	7	8	9
0123	Железо (II, III) оксиды (274)			0,04		3	0,022820	0,0074500
0143	Марганец и его соединения (327)		0,01	0,001		2	0,000660	0,0001700
0301	Азота диоксид (4)		0,2	0,04		2	0,405100	0,1546360
0304	Азота оксид (6)		0,4	0,06		3	0,063200	0,0244590
0328	Углерод (Cажа) (583)		0,15	0,05		3	0,033390	0,0131580
0330	Сера диоксид (516)		0,5	0,05		3	0,053636	0,0198420
0333	Сероводород		0,008			2	0,000010	0,00000004
0337	Углерод оксид (584)		5	3		4	0,370000	0,1374800
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)		0,02	0,005		2	0,000060	0,000010
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)		0,2			3	0,562500	0,0900000
0621	Метилбензол (349)		0,6			3	0,097200	0,0100000
0703	Бенз/а/пирен (54)			0,000001		1	0,0000006	0,00000025
1042	Бутан-1-ол (Бутиловый спирт) (102)		0,1			3	0,055600	0,0100000
1061	Этанол (Этиловый спирт) (667)		5			4	0,028300	0,0051000
1210	Бутилацетат (110)		0,1			4	0,139400	0,0251000
1325	Формальдегид (609)		0,05	0,01		2	0,007100	0,0026260
2752	Уайт-спирит (1294*)				1		0,312500	0,0450000
2754	Алканы С12-19 (10)		1			4	0,184093	0,0666550
2902	Взвешенные частицы (116)		0,5	0,15		3	0,010400	0,001797
2909	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (495*)		0,5	0,15		3	1,791250	0,0430950
2930	Пыль абразивная (1027*)				0,04		0,006800	0,001175
	ВСЕГО:						4,1440	0,65775

Таблица 9 - Перечень загрязняющих веществ, выбрасываемых в атмосферу в период эксплуатации

Код	Наименование	энк,	ПДКм.р,	ПДКс.с.,	обув,	Класс		5 год	202	6 год	202	7 год
3B	загрязняющего вещества	мг/м3	мг/м3	мг/м3	мг/м3	опасности	г/с	т/год	г/с	т/год	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12	13
0123	Железа оксид			0,04		3	0,001163	0,001674	0,001163	0,001674	0,001163	0,001674
0143	Марганец и его соединения		0,01	0,001		2	0,000115	0,000166	0,000115	0,000166	0,000115	0,000166
0301	Азота диоксид		0,2	0,04		2	6,686668	176,412184	6,686668	167,313428	6,686668	167,313428
0304	Азота оксид		0,4	0,06		3	1,086582	28,66698	1,086582	27,188432	1,086582	27,188432
0328	Углерод		0,15	0,05		3	0,096066	1,27424	0,096066	1,209248	0,096066	1,209248
0330	Сера диоксид		0,5	0,05		3	0,133333	0,03995	0,133333	0,03995	0,133333	0,03995
0333	Сероводород		0,008			2	0,000045	0,00004603	0,000045	0,00004603	0,000045	0,00004603
0337	Углерод оксид		5	3		4	8,049999	221,661632	8,049999	210,223192	8,049999	210,223192
0410	Метан				50		6,866996	1,667366	6,866996	1,667366	6,866996	1,667366
0415	Смесь углеводородов предельных C1-C5				50		2,805603	1,858904	2,805603	1,858904	2,805603	1,858904
0416	Смесь углеводородов предельных C6-C10				30		0,072514	0,461115	0,072514	0,461115	0,072514	0,461115
0616	Диметилбензол		0,2			3	0,5625	0,18	0,5625	0,18	0,5625	0,18
0703	Бенз/а/пирен			0,000001		1	0,000002	0,0000294	0,000002	0,0000294	0,000002	0,0000294
1325	Формальдегид		0,05	0,01		2	0,024908	0,339529	0,024908	0,322201	0,024908	0,322201
2735	Масло минеральное нефтяное				0,05		1,648665	18,0054	1,648665	18,0054	1,648665	18,0054
2752	Уайт-спирит				1		0,3125	0,09	0,3125	0,09	0,3125	0,09
2754	Алканы С12-19		1		_	4	4,48966	125,938483	4,48966	119,439367	4,48966	119,439367
	ВСЕГО:			-			32,837319	576,5977	32,837319	548,00052	32,837319	548,00052

7.8. Обоснование полноты и достоверности исходных данных (г/с, т/год), принятых для расчета НДВ

На основании проведенных расчетов, представленных в Приложении 1, а также по исходным данным об используемых материалах, расхода газа и диз.топлива определены количественные и качественные характеристики выбросов загрязняющих веществ в атмосферу расчетным путем по утвержденным в РК нормативным документам.

Определение величин выбросов загрязняющих веществ от оборудования проведено расчетными методами в соответствии со следующими методическими документами представлены в разделе список использованных источников.

Обоснованием полноты и достоверности исходных данных, принятых для расчета нормативов допустимых выбросов, является задание на проектирование полученное от оператора, утвержденная оператором проектная документация, материалы инвентаризации выбросов загрязняющих веществ и их источников; данные первичного учета или данные из форм статической отчетности, данные полученные инструментальными замерами или расчетными и балансовыми методами с указанием перечня методических документов, регламентирующих методы отбора, анализа выброса загрязняющих веществ, паспортные данные производителя оборудования (установки), заключение по результатам оценки воздействия на окружающую среду в соответствии с подпунктом 3) пункта 2 статьи 76 Кодекса или заключение об отсутствии необходимости обязательной оценки воздействия на окружающую среду, с учетом соответствующих значений, указанных в заявлении о намечаемой деятельности в соответствии с подпунктом 9) пункта 2 статьи 68 Кодекса.

8. ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ И ПРЕДЛОЖЕНИЯ ПО НОРМАТИВАМ ДОПУСТИМЫХ ВЫБРОСОВ

8.1. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ

Климат района расположения объекта резко континентальный, сухой, с высокой активностью ветрового режима, большими колебаниями погодных условий в течение года от весьма холодной зимы до очень жаркого лета.

Климат района характеризуется умеренно холодной зимой и продолжительным, сухим, жарким летом.

Температура воздуха. Зима умеренно холодная, малоснежная, преимущественно с пасмурной погодой. Самый холодный месяц январь, средняя температура воздуха днем минус 3° C - минус 5° C, ночью минус 5° C - минус 13° C (минимальная минус 30° C).

Лето сухое и жаркое, как правило, с ясной погодой. Средняя температура воздуха днем плюс 23°C - плюс 27°C (максимальная плюс 43°C), ночью плюс 11°C- плюс 15°C. Осадки выпадают редко, преимущественно в виде кратковременных ливней.

Ветровой режим. район расположения объекта по ветровому давлению относится к III району (до 15 m/cek).

По средней скорости ветра в зимний период район относится к VI району.

Атмосферные осадки. Максимум осадков приходится на зимне-весенний период, а с июня по октябрь осадки практически не выпадают.

Максимальное количество осадков приходится на декабрь-апрель.

Влажность воздуха. Среднегодовая относительная влажность воздуха района работ составляет 52-58%. Наиболее высокие значения она достигает в зимне-весеннее время (78-85%), а наиболее низкие летом (25-30%).

Дефицит влажности в летний период достигает максимальных величин. Наличие большого дефицита влажности при высоких температурах воздуха создает условия для значительного испарения. Засушливый период начинается с июня месяца до октября.

Снежный покров. Рассматриваемый район относится к зоне с неустойчивым снежным покровом. Его высота обычно не превышает 15 см. Глубина промерзания 0,9 м. Для этого района характерно непостоянство условий залегания снежного покрова, чередование бесснежных и относительно многоснежных зим. Средняя продолжительность безморозного периода - 214 дней. Основные параметры климатических характеристик, включающие метеорологические характеристики и коэффициенты (по данным справки Казгидромета), определяющие условия рассеивания загрязняющих веществ в атмосфере систематизированы в таблицах ниже.

Метеорологическая информация по данным АМС Исатай Исатайского района Атырауской области (справка в приложении).

Таблица 10 - Средняя температура воздуха °С. YIII ΙX X XI XII II Ш ΙY YII Год -2,1 10,3 -4,1 5,1 -1,6 ---Таблица 11 - Влажность воздуха в %. \overline{IX} YII YIII X I XI XII III Год 85 43 43 38 55 78 68 63 40 88 84 62 Таблица 12 - Атмосферное давление в мм рт.ст. YIII I Ш YII IX X XI XII Год IY ΥI 776 767 764 763 762 759 761 767 766 762 768 765 Таблица 13 - Количество осадков мм, по месяцам и за год. X ΧI XII Ι II III IY ΥI ΥII YIII IX Год 3,7 20,3 5,4 20,8 10,7 18,2 12,0 43,7 31,6 33,3 18,9 11,3 229,9

Таблица 14 - Среднемесячная и головая скорость ветра м/сек.

	1 4001111	4	редлент		11 1 0 0 0	bun enopo		3 tt 1121 C C 2				
I	II	III	IY	Y	YI	YII	YIII	IX	X	XI	XII	Год
4,3	4,3	4,8	5,0	5,1	4,5	4,7	4,0	3,2	4,2	4,8	5,4	4,5
	Табли	ца 15 - М	Лаксима	льная и	і годов:	ая скорост	гь ветра	м/сек.				
I	II	III	IY	Y	YI	YII	YIII	IX	X	XI	XII	Год
17	18	21	20	21	20	19	17	14	19	22	25	25
	Табли	ца 16 - С	Средняя	повторя	немості	направл	ений ве	тра и п	тилей, %	:		•
С		CB	В	Н	OB	Ю	Ю	O3	3	C	3	Штиль
11		9	19		15	9	1	12	15	10	0	0

Роза ветров показана на рисунке ниже.

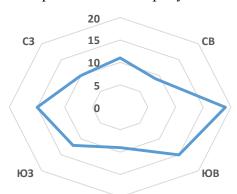


Рисунок 7 – Роза ветров.

Таблица 17 - Метеорологические характеристики и коэффициенты, определяющие условия

pacce	ивания загрязняющих веществ в атмосфере	
№	Наименование характеристик	Величина
п/п	2 2	
1	2	3
1.	Коэффициент, зависящий от стратификации атмосферы, А	200
2.	Коэффициент рельефа местности в городе	1.00
3.	Средняя максимальная температура наружного воздуха наиболее жаркого месяца года, °С	43.0
4.	Средняя температура наружного воздуха наиболее холодного месяца, °C	-5.0
5.	Среднегодовая роза ветров, %	
	С	11.0
	СВ	9.0
	В	19.0
	IOB	15.0
	Ю	9.0
	Ю3	12.0
	3	15.0
	C3	10.0
6.	Среднегодовая скорость ветра, м/с	4.5
7.	Скорость ветра (по средним многолетним данным) повторяемость превышения, которой составляет 5 м/с	25.0

Состояние воздушного бассейна

При выполнении расчетов учитывались метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере и мониторинговых наблюдений на месторождении Ю.З. Камышитовое.

Производственный экологический мониторинг выполняется специалистами ТОО «КМГ Инжиниринг» Испытательный центр Лаборатория экологических исследований и мониторинга согласно программе ПЭК. В настоящем отчете представлены результаты производственного мониторинга окружающей среды, выполненного компанией ТОО «КМГ Инжиниринг» в 1 квартале 2025г. на месторождении Ю.З. Камышитовое.

Таблица - Результаты измерений атмосферного воздуха на границе СЗЗ за І квартал 2025 года.

		1 .1	Наименования	обы е точки отбора
			AB-422/1	AB-422/1
			Ж-1-01	Ж-1-02
			Фактическо	ое значение
CT PK 2.302-2021	мг/м3	0,2	0,003	0,003
	MI/M3	0,4	0,005	0,005
1	мг/м3	0,5	<0,025	<0,025
	ML/M3	0,008	<0,004	<0,004
1	ML/W3	5,0	1,80	1,46
-4215-007-565914009-2009	мг/м3	50,0	0,487	0,461
4215-006-56591409-2009	ME/M3	0,3	< 0.05	<0,05
	-4215-007-565914009-2009	мг/м ³ мг/м ³ мг/м ²	Mr/m³ 0,4 Mr/m³ 0,5 Mr/m³ 0,008 Mr/m³ 5,0 -4215-007-565914009-2009 Mr/m³ 50,0	CT PK 2.302-2021 Mr/m³ 0,2 0,003 Mr/m³ 0,4 0,005 Mr/m³ 0,5 <0,025 Mr/m³ 0,008 <0,004 Mr/m³ 5,0 1,80 -4215-007-565914009-2009 Mr/m³ 50,0 0,487

Таблица - Результаты измерений почвы на месторождении на границе СЗЗ за I квартал 2025 года.

Наименование показателей	НД на метод испытания	Ед.изм.	Идентификационный номер пробы. Наименование точки отбора			
		l [Π-171/1	П-171/2 СЭП-29		
		ĺ	СЭП-28			
			Фактическое значение			
Медь (подвижная форма)	M-03-07-2014	ME/KE	0,282	0,431		
Цинк (подвижная форма)	M-03-07-2014	ме/кг	6,054	5,798		
Свинец (кислоторастворимая форма)	M-03-07-2014	мг/кг	2,650	4,106		
Никель (подвижная форма)	M-03-07-2014	мг/кг	<2,5	0,065		
Массовая доля нефтепродуктов	M 03-03-2012	Mr/kr	79,5	66,8		

8.2. Результаты расчетов уровня загрязнения атмосферы на существующие положение и с учетом перспективы развития

В соответствии с нормами проектирования, в Казахстане для оценки влияния выбросов загрязняющих веществ на качество атмосферного воздуха используется математическое моделирование. Расчет содержания вредных веществ в атмосферном воздухе должен проводиться в соответствии с требованиями «Методики расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий (Приказ Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-⊖).

Загрязнение приземного слоя воздуха, создаваемого выбросами промышленных объектов, зависит от объемов и условий выбросов загрязняющих веществ в атмосферу, природно-климатических условий и особенностей циркуляции атмосферы.

Приземные концентрации загрязняющих веществ в атмосфере определены при наихудших для рассеивания выбросов метеорологических условиях и максимально возможных выбросах от оборудования.

Моделирование рассеивания загрязняющих веществ в приземном слое атмосферы при строительстве скважин на участке, проводилось на персональном компьютере по программному комплексу «ЭРА» версия 3.0, в котором реализованы основные зависимости и положения «Расчета полей концентраций вредных веществ в атмосфере без учета влияния застройки».

Проведенные расчеты по программе позволили получить следующие данные:

- уровни концентрации загрязняющих веществ в приземном слое атмосферы по всем источникам, полученные в узловых точках контролируемой зоны с использованием средних метеорологических данных по 8-ми румбовой розе ветров и при штиле;
 - максимальные концентрации в узлах прямоугольной сетки;
 - степень опасности источников загрязнения;

- поле расчетной площадки с изображением источников и изолиний концентраций.

Расчет приземных концентраций в атмосферном воздухе вредных химических веществ проведен в полном соответствии с методикой расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий.

Значение коэффициента А, зависящего от стратификации атмосферы и соответствующего неблагоприятным метеорологическим условиям, принято в расчетах равным 200.

Для проведения расчета рассеивания загрязняющих веществ при эксплуатации взят расчетный прямоугольник размером 3400x3000 м, с шагом сетки 200 м.

Размеры расчетного прямоугольника и шаг расчетной сетки выбраны с учетом взаимного расположения площадки. Так как район характеризуется относительно ровной местностью с перепадами высот, не превышающими 50 м на 1 км, то поправка на рельеф к значениям концентраций загрязняющих веществ не вводилась. Координаты всех расчетных площадок на карте-схеме выбраны относительно основной системы координат. Для оценки воздействия источников выбросов на атмосферный воздух, концентрации загрязняющих веществ на границе санитарно-защитной зоны (СЗЗ) площадки ГПЭС были сопоставлены с установленными для каждого вещества предельно-допустимыми концентрациями (ПДК) с учетом результатов измерения концентраций загрязняющих веществ с их кратностью относительно ПДК за исследуемый 1 квартал 2025г на границе санитарно-защитной зоны согласно отчета по производственному экологическому контролю месторождения Ю.З. Камышитовое.

Результаты расчетов с картами-схемами изолиний расчетных концентраций приведены в приложении 1 данного проекта.

Справка с РГП «КАЗГИДРОМЕТ» приложена в приложении. В связи с отсутствием наблюдений за состоянием атмосферного воздуха на территории Исатайском районе Атырауской области, выдача справки о фоновых концентрациях загрязняющих веществ в атмосферном воздухе не представляется возможным.

Расчет рассеивания максимальных приземных концентраций загрязняющих веществ, образующихся от источников загрязнения на предприятии, произведен с учетом фоновых концентраций вредных веществ в атмосфере и показал, что при эксплуатации, концентрация на уровне СЗЗ не превысила допустимых нормативов. Результаты расчетов с картами-схемами изолиний расчетных концентраций приведены в приложении 1 данного документа.

8.2.1. Анализ результатов расчета рассеивания

Анализ результатов расчетов показывает, что превышение ПДК загрязняющих веществ на границе нормативной СЗЗ не наблюдается.

	тионици сводния тисянци р	c symbraro	b pac icio	b iipii okei	шушшш			
''	Наименование загрязняющих веществ и состав групп суммаций	Cm	РП 	C33	ΦT	ПДК(ОБУВ) мг/м3	Класс опасн	
<								
0123	железа оксид	0.3115	0.005150	0.000179	0.000173	0.4000000*		
0143	Марганец и его соединения	1.2322	0.020370	0.000710	0.000685	0.0100000	2	
0301	Азота диоксид	2.3363	2.202375	0.696063	0.671332	0.2000000	2	
0304	Азота оксид	0.1898	0.190224	0.067836	0.065827	0.4000000	3	
0328	Углерод	0.0649	0.059088	0.008427	0.008190	0.1500000	3	
0333	Сероводород	0.2009	0.532488	0.500728	0.500707	0.0080000	2	
0337	Углерод оксид	0.1179	0.470410	0.394377	0.393129	5.0000000	4	
0410	Метан	0.8104	0.336775	0.009374	0.008775	50.0000000	I - I	
0415	Смесь углеводородов предельных	0.4572	0.148785	0.004036	0.003792	50.0000000	i - i	
	C1-C5		İ		İ	İ	i i	
0416	Смесь углеводородов предельных	0.0344	Cm<0.05	Cm<0.05	ĺ Cm<0.05	30.0000000	i - i	
	C6-C10						i i	
0616	Диметилбензол	100.4527	7.776788	0.362127	0.352069	0.2000000	i 3 i	
0703	Бенз/а/пирен	0.0240	Cm<0.05	Cm<0.05	Cm<0.05	0.0000100*	i i i	
1325	Формальдегид	0.0185	Cm<0.05	Cm<0.05	Cm<0.05	0.0500000	i ži	
2735	Масло минеральное нефтяное	141.3277	35.60829	0.976766	0.936056	0.0500000	i - i	
2752	Уайт-спирит	11.1614	0.864088	0.040236	0.039119	1.0000000	i - i	
2754	Алканы С12-19	0.3614	0.800329	0.584384	0.580848	1.0000000	4	
07	0301 + 0330	2.3363	2.252375	0.746063	0.721332	1.000000	7	
37	0333 + 1325	0.2194	0.533265	0.506076	0.505852			
44	0330 + 0333	0.2194	0.582488	0.550728	0.550707			

Таблица - Сводная таблица результатов расчетов при эксплуатации.

В качестве критерия для оценки уровня загрязнения атмосферного воздуха применялись значения максимально разовых предельно допустимых концентраций веществ в атмосферном воздухе для населенных мест. Значения ПДК и ОБУВ приняты на основании действующих санитарно-гигиенических нормативов согласно приказа Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70. Зарегистрирован в Министерстве юстиции Республики Казахстан 3 августа 2022 года № 29011 «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций».

Расчет рассеивания выбросов вредных веществ, выделяемых при эксплуатации, показал, что концентрация вредных веществ на уровне C33 не превышает допустимых нормативов.

Приложение 6

к Методике определения нормативов эмиссий в окружающую среду Таблица 18 - Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Код	Наименование вещества	Расчетная максимальная приземная концентрация (общая и без учета фона) доля ПДК / мг/м3		Координаты точек с максимальной приземной конц.		Источники, дающие наибольший вклад в макс. концентрацию			Принадлежность источника	
вещества/группы суммации							% вклада		(производство, цех, участок)	
		в жилой зоне	на границе санитарно- защитной зоны	в жилой зоне X/Y	на гра- нице С33 X/Y	N ист.	ЖЗ	C33	(
1	2	3	4	5	6	7	8	9	10	
Загрязняющие вещества:										
0301	Азота диоксид		0.696063(0.681063)/		1676/	0001		25	Площадка ГПЭС	
			0.139213(0.136213)		1973	0004		25	Площадка ГПЭС	
			вклад п/п=97.8%			0007		25	Площадка ГПЭС	
0304	Азота оксид		0.067836(0.055336)/		1676/	0001		25	Площадка ГПЭС	
			0.027135(0.022134)		1973	0004		25	Площадка ГПЭС	
			вклад п/п=81.6%			0007		25	Площадка ГПЭС	
0333	Сероводород		0.500728(0.000728)/		1676/	0019		97,8	Площадка ГПЭС	
			0.004006(0.000006)		1973					
			вклад п/п= 0.1%							
0337	Углерод оксид		0.394377(0.034377)/		1676/	0001		25	Площадка ГПЭС	
			1.971887(0.171887)		1973	0004		25	Площадка ГПЭС	
			вклад п/п= 8.7%			0007		25	Площадка ГПЭС	
0616	Диметилбензол		0.3621273/0.0724255		1676/	6020		100	Площадка ГПЭС	
					1973					
2735	Масло минеральное нефтяное		0.9767662/0.0488383		1676/	0012		34.2	Площадка ГПЭС	
	•				1973	0006		21.3	Площадка ГПЭС	
						0009		21.3	Площадка ГПЭС	
2754	Алканы С12-19		0.584384(0.097384)/		1676/	0001		25	Площадка ГПЭС	
			0.584384(0.097384)		1973	0004		25	Площадка ГПЭС	
			вклад п/п=16.7%			0007		25	Площадка ГПЭС	
Группы суммации:										
07(31) 0301	Азота диоксид		0.746063(0.681063)		1676/	0001		25	Площадка ГПЭС	
0330	Сера диоксид		вклад п/п=91.3%		1973	0004		25	Площадка ГПЭС	
						0007		25	Площадка ГПЭС	

37(39) 0333	Сероводород	0.506076(0.006076)	1676/	0001	22.2	Площадка ГПЭС
1325	Формальдегид	вклад п/п= 1.2%	1973	0004	22.2	Площадка ГПЭС
				0007	22.2	Площадка ГПЭС
44(30) 0330	Сера диоксид	0.550728(0.000728)	1676/	0019	97,8	Площадка ГПЭС
0333	Сероводород	вклад $\pi/\pi = 0.1\%$	1973			

8.3. Предложения по нормативам допустимых выбросов (НДВ) по каждому источнику и ингредиенту

Проведенная оценка и анализ возможного загрязнения атмосферы в результате производственной деятельности ТОО «ПолисМунайКурылыс» при строительстве и эксплуатации указывают на удовлетворительное состояние качества атмосферного воздуха, характеризующегося отсутствием превышения по каждому загрязняющему компоненту и группе суммации их ПДК, установленных для растительного, животного мира и населения и принимаемых в качестве гигиенических критериев показателе качества.

«Методика определения нормативов эмиссий в окружающую среду», нормативы выбросов определяются как масса (в граммах) вредного вещества, выбрасываемого в единицу времени (секунду). Наряду с максимальными разовыми допустимыми выбросами (г/с) устанавливаются годовые значения допустимых выбросов в тоннах в год (т/год) для каждого источника и предприятия в целом с учетом снижения выбросов загрязняющих веществ в атмосферу согласно плану мероприятий.

Разработка плана специальных мероприятий, направленных на поэтапное снижение выбросов ВХВ в атмосферу, не производилась, так как согласно проведенному сводному расчету приземные концентрации выбрасываемых загрязняющих веществ не превышают предельно-допустимые концентрации, установленные для населенных мест.

Предлагаемые проектом выбросы ЗВ в атмосферу на 2025-2027 г. по предприятию, рассчитанные при полной загрузке технологического оборудованияи его нормальной работы для всех источников загрязнения атмосферы, рекомендуется принять в качестве нормативов НДВ.

Предложения по нормативам НДВ для отдельных источников (Γ / Γ , Γ / Γ 0д) и в целом по предприятию представлены в таблице ниже.

Приложение 4

к Методике определения нормативов эмиссий в окружающую среду Таблица 19 - Лимиты выбросов загрязняющих веществ в атмосферу при строительстве

				Нормативы	выбросов загрязняющих в	еществ		год
Производство цех, участок	Номер источника		цее положение)25 год	на 20)25 год	Н,	ДВ	дос- тиже ния
Код и наименование загрязняющего вещества		г/с	т/год	г/с	т/год	г/с	т/год	ндв
1	2	3	4	5	6	7	8	9
0123, Оксид железа								
Неорганизованные источн	ики							
Строительство	6010	-	-	0,00252	0,00045	0,00252	0,00045	2025
Строительство	6011	-	-	0,0203	0,007	0.0203	0,007	2025
Итого:				0,02282	0,00745	0,02282	0,00745	2025
Всего по загрязняющему веществу:				0,02282	0,00745	0,02282	0,00745	2025
0143, Марганец и его соединения								
Неорганизованные источн	ики							
Строительство	6010	-	-	0,00036	0,00006	0,00036	0,00006	2025
Строительство	6011	-	-	0,0003	0,00011	0,0003	0,00011	2025
Итого:				0,00066	0,00017	0,00066	0,00017	2025
Всего по загрязняющему веществу:				0,00066	0,00017	0,00066	0,00017	2025
0301, Азота диоксид								
Организованные источник	И							
Строительство	0001	-	-	0,0916	0,00757	0,0916	0,00757	2025
Строительство	0002	-	-	0,1373	0,118886	0,1373	0,118886	2025
Строительство	0003	-	-	0,1602	0,02408	0,1602	0,02408	2025
Строительство	0004	-	-	0,0023	0,0002	0,0023	0,0002	2025
Итого:				0,3914	0,150736	0,3914	0,150736	
Неорганизованные источн	ики	1						
Строительство	6011	-	-	0,0137	0.0039	0.0137	0.0039	2025
Итого:				0,0137	0,0039	0,0137	0,0039	2025
Всего по загрязняющему веществу:				0,4051	0,154636	0,4051	0,154636	2025
0304, Азота оксид								
Организованные источник	И							

C	0001	1	1 1		1		<u> </u>	2025
Строительство	0001	-	-	0,0149	0,00123	0,0149	0,00123	2025
Строительство	0002	-	-	0,0223	0,019319	0,0223	0,019319	2025
Строительство	0003	-	-	0,026	0,00391	0,026	0,00391	2025
Итого:				0,0632	0,024459	0,0632	0,024459	2025
Всего по загрязняющему веществу:				0,0632	0,024459	0,0632	0,024459	2025
0328, Углерод								
Организованные источник	И							
Строительство	0001	-	-	0,0078	0,00066	0,0078	0,00066	2025
Строительство	0002	-	-	0,0117	0,010368	0,0117	0,010368	2025
Строительство	0003	-	-	0,0136	0,0021	0,0136	0,0021	2025
Строительство	0004	-	-	0,00029	0,00003	0,00029	0,00003	2025
Итого:				0,03339	0,013158	0,03339	0,013158	2025
Всего по загрязняющему веществу:				0,03339	0,013158	0,03339	0,013158	2025
0330, Сера диоксид								
Организованные источник	И							
Строительство	0001	-	-	0,0122	0,00099	0,0122	0,00099	2025
Строительство	0002	-	-	0,0183	0,015552	0,0183	0,015552	2025
Строительство	0003	-	-	0,0214	0,00315	0,0214	0,00315	2025
Строительство	0004	-	-	0,001736	0,00015	0,001736	0,00015	2025
Итого:				0,053636	0,019842	0,053636	0,019842	2025
Всего по загрязняющему веществу:				0,053636	0,019842	0,053636	0,019842	2025
0333, Сероводород								
Неорганизованные источны	ики							
Строительство	6014	-	-	0,00001	0,00000004	0,00001	0,00000004	2025
Итого:				0,00001	0,00000004	0,00001	0,00000004	2025
Всего по загрязняющему веществу:				0,00001	0,00000004	0,00001	0,00000004	2025
0337, Углерод оксид								
Организованные источник	И							
Строительство	0001	-	-	0,08	0,0066	0,08	0,0066	2025
Строительство	0002	-	-	0,12	0,10368	0,12	0,10368	2025
Строительство	0003	-	-	0,14	0,021	0,14	0,021	2025
Строительство	0004	-	-	0,0162	0,0014	0,0162	0,0014	2025
Итого:				0,3562	0,13268	0,3562	0,13268	

Неорганизованные источни	ки						1	
Строительство	6011	-	_	0.0120	0.0040	0.0120	0.0040	2025
Итого:				0,0138 0,0138	0,0048 0,0048	0,0138 0.0138	0,0048 0,0048	2025
Всего по загрязняющему веществу:				0,37	0,13748	0.37	0,13748	2025
0342, Фтористые газообразные соединен	l ug			0,57	0,13740	0,57	0,13740	2023
Неорганизованные источни								
Строительство	6010	_	_					2025
Итого:	0010			0,00006 0,0006	0,00001 0,00001	0,0006 0,0006	0,00001 0,00001	2025
				,		·	·	
Всего по загрязняющему веществу:				0,00006	0,00001	0,00006	0,00001	2025
0616, Диметилбензол								
Неорганизованные источни								
Строительство	6012	-	-	0,5625	0,09	0,5625	0,09	2025
Итого:				0,5625	0,09	0,5625	0,09	2025
Всего по загрязняющему веществу:				0,5625	0,09	0,5625	0,09	2025
0621, Метилбензол								
Неорганизованные источни	ки							
Строительство	6012	-	-	0,0972	0,01	0,0972	0,01	2025
Итого:				0,0972	0,01	0,0972	0,01	2025
Всего по загрязняющему веществу:				0,0972	0,01	0,0972	0,01	2025
0703, Бенз/а/пирен					·	·		
Организованные источники	ĭ	1						
Строительство	0001	-	-	0,0000001	0,0000001	0,0000001	0,00000001	2025
Строительство	0002	-	-	0,0000001	•	0,0000001	0,0000002	2025
Строительство	0003	_	_	· · · · · · · · · · · · · · · · · · ·	0,0000002	· ·	i i	2025
Итого:	0000			0,0000003 0,0000006	0,00000004 0,00000025	0,0000003 0,0000006	0,00000004 0,00000025	2025
					0,00000025	0,0000006	0,00000025	2025
Всего по загрязняющему веществу:				0,0000006	0,0000025	0,000000	0,0000025	2025
1042, Бутан-1-ол								
Неорганизованные источни		1						
Строительство	6012	-	-	0,0556	0,01	0,0556	0,01	2025
Итого:				0,0556	0,01	0,0556	0,01	2025
Всего по загрязняющему веществу:				0,0556	0,01	0,0556	0,01	2025
1061, Этанол								
Неорганизованные источни	ки							
Строительство	6012	-	-	0,0283	0,0051	0,0283	0,0051	2025

Итого:				0,0283	0,0051	0,0283	0,0051	2025
Всего по загрязняющему веществу:				0,0283	0,0051	0,0283	0,0051	2025
1210, Бутилацетат								
Неорганизованные источни	ки							
Строительство	6012	-	-	0,1394	0,0251	0,1394	0,0251	2025
Итого:				0,1394	0,0251	0,1394	0,0251	2025
Всего по загрязняющему веществу:				0,1394	0,0251	0,1394	0,0251	2025
1325, Формальдегид								
Организованные источники	и							
Строительство	0001	-	-	0,0017	0,000132	0,0017	0,000132	2025
Строительство	0002	-	-	0,0025	0,002074	0,0025	0,002074	2025
Строительство	0003	-	-	0,0029	0,00042	0,0029	0,00042	2025
Итого:				0,0029	0,002626	0,0029	0,002626	2025
Всего по загрязняющему веществу:				0,0071	0,002626	0,0071	0,002626	2025
2752, Уайт-спирит				,		,	,	
Неорганизованные источни	ки							
Строительство	6012	-	-	0,3125	0,045	0,3125	0.045	2025
Итого:				0,3125	0,045	0,3125	0,045	2025
Всего по загрязняющему веществу:				0,3125	0,045	0,3125	0,045	2025
2754, Углеводороды С12-19	1							
Организованные источники	и	<u> </u>						
Строительство	0001	-	-	0.04	0.0033	0.04	0.0033	2025
Строительство	0002	-	-	0,04	0,05184	0,04	0,05184	2025
Строительство	0003	_	_	· · · · · · · · · · · · · · · · · · ·	<u>'</u>	,		2025
Строительство	0004	_	_	0,07 0,0058	0,0105 0,0005	0,07 0,0058	0,0105 0,0005	2025
Итого:	0001		1	0,1758	0,06614	0,1758	0,06614	2023
				0,1738	0,00014	0,1738	0,00014	
Неорганизованные источни		1	-					2025
Строительство	6013	-	-	0,0058	0,0005	0,0058	0,0005	
Строительство	6015	-	-	0,002493	0,000015	0,002493	0,000015	2025
Итого:				0,008293	0,000515	0,008293	0,000515	2025
Всего по загрязняющему веществу:				0,184093	0,066655	0,184093	0,066655	2025
2902, Взвешенные частицы								
Неорганизованные источни		_						
Строительство	6014	-	-	0,0104	0,001797	0,0104	0,001797	2025

Итого:				0,0104	0,001797	0,0104	0,001797	2025
Всего по загрязняющему веществу:				0,0104	0,001797	0,0104	0,001797	2025
2909, Пыль неорганическая								
Неорганизованные источни	ки							
Строительство	6001	-	-	0,0093	0,002688	0,0093	0,002688	2025
Строительство	6002	-	-	0,0373	0,003226	0,0373	0,003226	2025
Строительство	6003	-	-	0,014	0,004637	0,014	0,004637	2025
Строительство	6004	-	-	0,004	0,000696	0,004	0,000696	2025
Строительство	6005	-	-	0,3333	0,0048	0,3333	0,0048	2025
Строительство	6006	-	-	0,0866	0,0254	0,0866	0,0254	2025
Строительство	6007	-	-	0,98	0,001411	0,98	0,001411	2025
Строительство	6008	-	-	0,3267	0,000235	0,3267	0,000235	2025
Строительство	6009	-	-	0,00005	0,000002	0,00005	0,000002	2025
Итого:				1,79125	0,043095	1,79125	0,043095	
Всего по загрязняющему веществу:				1,79125	0,043095	1,79125	0,043095	2025
2930, Пыль абразивная								
Неорганизованные источни	ки							
Строительство	6014	-	-	0,0068	0,001175	0,0068	0,001175	2025
Итого:				0,0068	0,001175	0,0068	0,001175	
Всего по загрязняющему веществу:		-	-	0,00680	0,00118	0,00680	0,00118	2025
Всего по объекту:				4,1440	0,65775	4,1440	0,65775	
Из них:								
Итого по организованным источникам:		-	-	1,0807266	0,40964125	1,0807266	0,40964125	
Итого по неорганизованным источникам	ı:	-	-	3,06328	0,24811	3,06328	0,24811	

Таблица 20 - Лимиты выбросов загрязняющих веществ в атмосферу в период эксплуатации

						Нормативы выбр	росов загрязняющ	их веществ				
Производство цех, участок	Номер источника	поло	твующее жение 25 год	на 202	.5 год	на 202	6 год	на 202	7 год	нд	В	год дос- тиже
Код и наименование загрязняющего вещества		г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	ния НДВ
1	2	3	4	5	6	7	8	9	10	11	12	13
0123, Железа оксид												
Неорганизованны	е источн	ики										
Площадка ГПЭС	6021			0,001163	0,001674	0,001163	0,001674	0,001163	0,001674	0,001163	0,001674	2025
Итого:				0,001163	0,001674	0,001163	0,001674	0,001163	0,001674	0,001163	0,001674	
Всего по загрязняющему веществу:				0,001163	0,001674	0,001163	0,001674	0,001163	0,001674	0,001163	0,001674	2025
0143, Марганец и его соеді	инения			I.			<u></u>	<u> </u>	Į.			
Неорганизованны	е источн	ики										
Площадка ГПЭС	6021			0,000115	0,000166	0,000115	0,000166	0,000115	0,000166	0,000115	0,000166	2025
Итого:				0,000115	0,000166	0,000115	0,000166	0,000115	0,000166	0,000115	0,000166	
Всего по загрязняющему веществу:				0,000115	0,000166	0,000115	0,000166	0,000115	0,000166	0,000115	0,000166	2025
0301, Азота диоксид	<u> </u>		1									
Организованные	источник	И										
Площадка ГПЭС	0001			1,166667	43,051286	1,166667	40,776597	1,166667	40,776597	1,166667	43,051286	2025
Площадка ГПЭС	0004			1,166667	43,051286	1,166667	40,776597	1,166667	40,776597	1,166667	43,051286	2025
Площадка ГПЭС	0007			1,166667	43,051286	1,166667	40,776597	1,166667	40,776597	1,166667	43,051286	2025
Площадка ГПЭС	0010			1,166667	43,051286	1,166667	40,776597	1,166667	40,776597	1,166667	43,051286	2025
Площадка ГПЭС	0013			1,166667	3,95136	1,166667	3,95136	1,166667	3,95136	1,166667	3,95136	2025
Площадка ГПЭС	0016			0,853333	0,25568	0,853333	0,25568	0,853333	0,25568	0,853333	0,25568	2025
Итого:				6,686668	176,412184	6,686668	167,313428	6,686668	167,313428	6,686668	176,412184	
Всего по загрязняющему веществу:				6,686668	176,412184	6,686668	167,313428	6,686668	167,313428	6,686668	176,412184	2025
0304, Азота оксид	<u> </u>		ı. I									
Организованные	источник	И										
Площадка ГПЭС	0001			0,189583	6,995834	0,189583	6,626197	0,189583	6,626197	0,189583	6,995834	2025

Площадка ГПЭС	0004	0,189583	6,995834	0,189583	6,626197	0,189583	6,626197	0,189583	6,995834	2025
Площадка ГПЭС	0007	0,189583	6,995834	0,189583	6,626197	0,189583	6,626197	0,189583	6,995834	2025
Площадка ГПЭС	0010	0,189583	6,995834	0,189583	6,626197	0,189583	6,626197	0,189583	6,995834	2025
Площадка ГПЭС	0013	0,189583	0,642096	0,189583	0,642096	0,189583	0,642096	0,189583	0,642096	2025
Площадка ГПЭС	0016	0,138667	0,041548	0,138667	0,041548	0,138667	0,041548	0,138667	0,041548	2025
Итого:		1,086582	28,66698	1,086582	27,188432	1,086582	27,188432	1,086582	28,66698	
Всего по загрязняющему веществу:		1,086582	28,66698	1,086582	27,188432	1,086582	27,188432	1,086582	28,66698	2025
0328, Углерод										
Организованные и	сточники									
Площадка ГПЭС	0001	0,008102	0,307509	0,008102	0,291261	0,008102	0,291261	0,008102	0,307509	2025
Площадка ГПЭС	0004	0,008102	0,307509	0,008102	0,291261	0,008102	0,291261	0,008102	0,307509	2025
Площадка ГПЭС	0007	0,008102	0,307509	0,008102	0,291261	0,008102	0,291261	0,008102	0,307509	2025
Площадка ГПЭС	0010	0,008102	0,307509	0,008102	0,291261	0,008102	0,291261	0,008102	0,307509	2025
Площадка ГПЭС	0013	0,008102	0,028224	0,008102	0,028224	0,008102	0,028224	0,008102	0,028224	2025
Площадка ГПЭС	0016	0,055556	0,01598	0,055556	0,01598	0,055556	0,01598	0,055556	0,01598	2025
Итого:		0,096066	1,27424	0,096066	1,209248	0,096066	1,209248	0,096066	1,27424	
Всего по загрязняющему веществу:		0,096066	1,27424	0,096066	1,209248	0,096066	1,209248	0,096066	1,27424	2025
0330, Сера диоксид		I								
Организованные и	сточники									
Площадка ГПЭС	0016	0,133333	0,03995	0,133333	0,03995	0,133333	0,03995	0,133333	0,03995	2025
Итого:		0,133333	0,03995	0,133333	0,03995	0,133333	0,03995	0,133333	0,03995	
Всего по загрязняющему веществу:		0,133333	0,03995	0,133333	0,03995	0,133333	0,03995	0,133333	0,03995	2025
0333, Сероводород										
Организованные и	сточники									
Площадка ГПЭС	0019	0,000044	0,00000003	0,000044	0,00000003	0,000044	0,00000003	0,000044	0,00000003	2025
Итого:		0,000044	0,00000003	0,000044	0,00000003	0,000044	0,00000003	0,000044	0,00000003	
Неорганизованны	е источники	i l				l.	l			ı
Площадка ГПЭС	6001	0,000001	0,000046	0,000001	0,000046	0,000001	0,000046	0,000001	0,000046	2025
Итого:		0,000001	0,000046	0,000001	0,000046	0,000001	0,000046	0,000001	0,000046	
Всего по загрязняющему веществу:		0,000045	0,00004603	0,000045	0,00004603	0,000045	0,00004603	0,000045	0,00004603	2025

0337, Углерод оксид											
Организованные	источники										
Площадка ГПЭС	0001		1,472222	54,121617	1,472222	51,262007	1,472222	51,262007	1,472222	54,121617	2025
Площадка ГПЭС	0004		1,472222	54,121617	1,472222	51,262007	1,472222	51,262007	1,472222	54,121617	2025
Площадка ГПЭС	0007		1,472222	54,121617	1,472222	51,262007	1,472222	51,262007	1,472222	54,121617	2025
Площадка ГПЭС	0010		1,472222	54,121617	1,472222	51,262007	1,472222	51,262007	1,472222	54,121617	2025
Площадка ГПЭС	0013		1,472222	4,967424	1,472222	4,967424	1,472222	4,967424	1,472222	4,967424	2025
Площадка ГПЭС	0016		0,688889	0,20774	0,688889	0,20774	0,688889	0,20774	0,688889	0,20774	2025
Итого:			8,049999	221,661632	8,049999	210,223192	8,049999	210,223192	8,049999	221,661632	
Всего по загрязняющему веществу:			8,049999	221,661632	8,049999	210,223192	8,049999	210,223192	8,049999	221,661632	2025
0410, Метан	l l	<u> </u>						<u>l</u>			
Организованные	источники										
Площадка ГПЭС	0002		1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	2025
Площадка ГПЭС	0005		1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	2025
Площадка ГПЭС	0008		1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	2025
Площадка ГПЭС	0011		1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	2025
Площадка ГПЭС	0014		1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	1,36283	0,000164	2025
Итого:			6,81415	0,00082	6,81415	0,00082	6,81415	0,00082	6,81415	0,00082	
Неорганизованны	е источни	ки		•	<u>'</u>		- 1	1			
Площадка ГПЭС	6004		0,036869	1,162706	0,036869	1,162706	0,036869	1,162706	0,036869	1,162706	2025
Площадка ГПЭС	6007		0,011061	0,348812	0,011061	0,348812	0,011061	0,348812	0,011061	0,348812	2025
Точка подключения №1	6002		0,002458	0,077514	0,002458	0,077514	0,002458	0,077514	0,002458	0,077514	2025
Точка подключения №2	6003		0,002458	0,077514	0,002458	0,077514	0,002458	0,077514	0,002458	0,077514	2025
Итого:			0,052846	1,666546	0,052846	1,666546	0,052846	1,666546	0,052846	1,666546	
Всего по загрязняющему веществу:			6,866996	1,667366	6,866996	1,667366	6,866996	1,667366	6,866996	1,667366	2025
0415, Смесь углеводородов	в предельных С	1-C5									
Организованные	источники										
Площадка ГПЭС	0002		0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	2025
Площадка ГПЭС	0005		0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	2025
Площадка ГПЭС	0008		0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	2025
Площадка ГПЭС	0011		0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	2025
Площадка ГПЭС	0014		0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	0,514848	0,000062	2025

										•
Площадка ГПЭС	0018	0,174573	0,567	0,174573	0,567	0,174573	0,567	0,174573	0,567	2025
Площадка ГПЭС	0020	0,000194	0,007933	0,000194	0,007933	0,000194	0,007933	0,000194	0,007933	2025
Итого:		2,749007	0,575243	2,749007	0,575243	2,749007	0,575243	2,749007	0,575243	
Неорганизованны	е источники									
Площадка ГПЭС	6004	0,013928	0,439245	0,013928	0,439245	0,013928	0,439245	0,013928	0,439245	2025
Площадка ГПЭС	6005	0,000131	0,004141	0,000131	0,004141	0,000131	0,004141	0,000131	0,004141	2025
Площадка ГПЭС	6006	0,000263	0,008281	0,000263	0,008281	0,000263	0,008281	0,000263	0,008281	2025
Площадка ГПЭС	6007	0,004179	0,131774	0,004179	0,131774	0,004179	0,131774	0,004179	0,131774	2025
Площадка ГПЭС	6008	0,016111	0,00696	0,016111	0,00696	0,016111	0,00696	0,016111	0,00696	2025
Площадка ГПЭС	6014	0,001247	0,03933	0,001247	0,03933	0,001247	0,03933	0,001247	0,03933	2025
Площадка ГПЭС	6015	0,001247	0,03933	0,001247	0,03933	0,001247	0,03933	0,001247	0,03933	2025
Площадка ГПЭС	6016	0,011284	0,355865	0,011284	0,355865	0,011284	0,355865	0,011284	0,355865	2025
Площадка ГПЭС	6017	0,001927	0,060755	0,001927	0,060755	0,001927	0,060755	0,001927	0,060755	2025
Площадка ГПЭС	6018	0,002494	0,078659	0,002494	0,078659	0,002494	0,078659	0,002494	0,078659	2025
Площадка ГПЭС	6019	0,001927	0,060755	0,001927	0,060755	0,001927	0,060755	0,001927	0,060755	2025
Точка подключения №1	6002	0,000929	0,029283	0,000929	0,029283	0,000929	0,029283	0,000929	0,029283	2025
Точка подключения №2	6003	0,000929	0,029283	0,000929	0,029283	0,000929	0,029283	0,000929	0,029283	2025
Итого:		0,056596	1,283661	0,056596	1,283661	0,056596	1,283661	0,056596	1,283661	
Всего по загрязняющему веществу:		2,805603	1,858904	2,805603	1,858904	2,805603	1,858904	2,805603	1,858904	2025
0416, Смесь углеводородо	в предельных С6-С1	0				l				ı
Организованные	источники									
Площадка ГПЭС	0002	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	2025
Площадка ГПЭС	0005	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	2025
Площадка ГПЭС	0008	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	2025
Площадка ГПЭС	0011	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	2025
Площадка ГПЭС	0014	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	0,010377	0,000001	2025
Площадка ГПЭС	0020	0,000074	0,003009	0,000074	0,003009	0,000074	0,003009	0,000074	0,003009	2025
Итого:		0,051959	0,003014	0,051959	0,003014	0,051959	0,003014	0,051959	0,003014	
Наспрацизорания						•		•		•
пеоблянизовянне	те источники									
•	6004	0,000281	0,008853	0,000281	0,008853	0,000281	0,008853	0,000281	0,008853	2025
Площадка ГПЭС		0,000281 0,000084	0,008853 0,002656	0,000281 0,000084	0,008853 0,002656	0,000281 0,000084	0,008853 0,002656	0,000281 0,000084	0,008853 0,002656	2025 2025
Площадка ГПЭС Площадка ГПЭС Площадка ГПЭС	6004	·	·		-			•	<u> </u>	

Площадка ГПЭС	6015	0,000473	0,014918	0,000473	0,014918	0,000473	0,014918	0,000473	0,014918	2025
Площадка ГПЭС	6016	0,010687	0,33701	0,010687	0,33701	0,010687	0,33701	0,010687	0,33701	2025
Площадка ГПЭС	6017	0,000731	0,023045	0,000731	0,023045	0,000731	0,023045	0,000731	0,023045	2025
Площадка ГПЭС	6018	0,000946	0,029836	0,000946	0,029836	0,000946	0,029836	0,000946	0,029836	2025
Площадка ГПЭС	6019	0,000731	0,023045	0,000731	0,023045	0,000731	0,023045	0,000731	0,023045	2025
Точка подключения №1	6002	0,000019	0,00059	0,000019	0,00059	0,000019	0,00059	0,000019	0,00059	2025
Точка подключения №2	6003	0,000019	0,00059	0,000019	0,00059	0,000019	0,00059	0,000019	0,00059	2025
Итого:		0,020555	0,458101	0,020555	0,458101	0,020555	0,458101	0,020555	0,458101	
Всего по загрязняющему веществу:		0,072514	0,461115	0,072514	0,461115	0,072514	0,461115	0,072514	0,461115	2025
0616, Диметилбензол	l l									
Неорганизованны	е источники									
Площадка ГПЭС	6020	0,5625	0,18	0,5625	0,18	0,5625	0,18	0,5625	0,18	2025
Итого:		0,5625	0,18	0,5625	0,18	0,5625	0,18	0,5625	0,18	
Всего по загрязняющему веществу:		0,5625	0,18	0,5625	0,18	0,5625	0,18	0,5625	0,18	2025
0703, Бенз/а/пирен	T T					ļ	ļ			
Организованные и	сточники									
Площадка ГПЭС	0001	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	2025
Площадка ГПЭС	0004	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	2025
Площадка ГПЭС	0007	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	2025
Площадка ГПЭС	0010	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	0,0000002	0,000007	2025
Площадка ГПЭС	0013	0,0000002	0,000001	0,0000002	0,000001	0,0000002	0,000001	0,0000002	0,000001	2025
Площадка ГПЭС	0016	0,000001	0,0000004	0,000001	0,0000004	0,000001	0,0000004	0,000001	0,0000004	2025
Итого:		0,000002	0,0000294	0,000002	0,0000294	0,000002	0,0000294	0,000002	0,0000294	
Всего по загрязняющему веществу:		0,000002	0,0000294	0,000002	0,0000294	0,000002	0,0000294	0,000002	0,0000294	2025
1325, Формальдегид	I I									
Организованные и	сточники									
Площадка ГПЭС	0001	0,002315	0,082002	0,002315	0,07767	0,002315	0,07767	0,002315	0,082002	2025
Площадка ГПЭС	0004	0,002315	0,082002	0,002315	0,07767	0,002315	0,07767	0,002315	0,082002	2025
Площадка ГПЭС	0007	0,002315	0,082002	0,002315	0,07767	0,002315	0,07767	0,002315	0,082002	2025
Площадка ГПЭС	0010	0,002315	0,082002	0,002315	0,07767	0,002315	0,07767	0,002315	0,082002	2025
Площадка ГПЭС	0013	0,002315	0,007526	0,002315	0,007526	0,002315	0,007526	0,002315	0,007526	2025

Площадка ГПЭС	0016	0,013333	0,003995	0,013333	0,003995	0,013333	0,003995	0,013333	0,003995	2025
Итого:		0,024908	0,339529	0,024908	0,322201	0,024908	0,322201	0,024908	0,339529	
Всего по загрязняющему веществу:		0,024908	0,339529	0,024908	0,322201	0,024908	0,322201	0,024908	0,339529	2025
2735, Масло минеральное	нефтяное	1			l_	l	l			
Организованные и	ІСТОЧНИКИ									
Площадка ГПЭС	0003	0,14	4,032	0,14	4,032	0,14	4,032	0,14	4,032	2025
Площадка ГПЭС	0006	0,14	4,032	0,14	4,032	0,14	4,032	0,14	4,032	2025
Площадка ГПЭС	0009	0,14	4,032	0,14	4,032	0,14	4,032	0,14	4,032	2025
Площадка ГПЭС	0012	0,14	4,032	0,14	4,032	0,14	4,032	0,14	4,032	2025
Площадка ГПЭС	0015	0,14	0,36288	0,14	0,36288	0,14	0,36288	0,14	0,36288	2025
Площадка ГПЭС	0017	0,907	0,32652	0,907	0,32652	0,907	0,32652	0,907	0,32652	2025
Итого:		1,607	16,8174	1,607	16,8174	1,607	16,8174	1,607	16,8174	
Неорганизованны	е источники	1	•	•	·	'	'	'		
Площадка ГПЭС	6009	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	2025
Площадка ГПЭС	6010	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	2025
Площадка ГПЭС	6011	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	2025
Площадка ГПЭС	6012	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	2025
Площадка ГПЭС	6013	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	0,008333	0,2376	2025
Итого:		0,041665	1,188	0,041665	1,188	0,041665	1,188	0,041665	1,188	
Всего по загрязняющему веществу:		1,648665	18,0054	1,648665	18,0054	1,648665	18,0054	1,648665	18,0054	2025
2752, Уайт-спирит		<u> </u>			<u> </u> _					
Неорганизованны	е источники									
Площадка ГПЭС	6020	0,3125	0,09	0,3125	0,09	0,3125	0,09	0,3125	0,09	2025
Итого:		0,3125	0,09	0,3125	0,09	0,3125	0,09	0,3125	0,09	
Всего по загрязняющему веществу:		0,3125	0,09	0,3125	0,09	0,3125	0,09	0,3125	0,09	2025
2754, Алканы С12-19	1	<u> </u>	<u>'</u>	•	L	1	<u> </u>	l .		
Организованные и	тсточники									
Площадка ГПЭС	0001	0,833333	30,750919	0,833333	29,12614	0,833333	29,12614	0,833333	30,750919	2025
Площадка ГПЭС	0004	0,833333	30,750919	0,833333	29,12614	0,833333	29,12614	0,833333	30,750919	2025
Площадка ГПЭС	0007	0,833333	30,750919	0,833333	29,12614	0,833333	29,12614	0,833333	30,750919	2025
Площадка ГПЭС	0010	0,833333	30,750919	0,833333	29,12614	0,833333	29,12614	0,833333	30,750919	2025

Площадка ГПЭС	0013		0,833333	2,8224	0,833333	2,8224	0,833333	2,8224	0,833333	2,8224	2025
Площадка ГПЭС	0016		0,322222	0,09588	0,322222	0,09588	0,322222	0,09588	0,322222	0,09588	2025
Площадка ГПЭС	0019		0,000249	0,000011	0,000249	0,000011	0,000249	0,000011	0,000249	0,000011	2025
Итого:			4,489136	125,921967	4,489136	119,422851	4,489136	119,422851	4,489136	125,921967	
Неорганизованны	е источні	ики									
Площадка ГПЭС	6001		0,000524	0,016516	0,000524	0,016516	0,000524	0,016516	0,000524	0,016516	2025
Итого:			0,000524	0,016516	0,000524	0,016516	0,000524	0,016516	0,000524	0,016516	
Всего по загрязняющему веществу:			4,48966	125,938483	4,48966	119,439367	4,48966	119,439367	4,48966	125,938483	2025
Всего по объекту:			32,837319	576,5977	32,837319	548,00052	32,837319	548,00052	32,837319	576,5977	
Из них:											
Итого по организованным источникам:			31,788854	571,7129884	31,788854	543,1158084	31,788854	543,1158084	31,788854	571,7129884	
Итого по неорганизованны источникам:	IM		1,048465	4,88471	1,048465	4,88471	1,048465	4,88471	1,048465	4,88471	

8.4. Обоснование возможности достижения нормативов с учетом использования малоотходной технологии и других планируемых технологий

Учитывая проведенные расчеты выбросов загрязняющих веществ, рассеивания приземных концентраций следует вывод о достижение нормативов допустимых выбросов (НДВ), которое предполагается в 2025-2027 году.

Оператором объекта использование малоотходной технологии и других мероприятий, в том числе перепрофилирования или сокращения объема производства не предполагается.

8.5. Уточнение границ области воздействия объекта и Классификация по классу опасности объекта, санитарно -защитная зона

Согласно Экологического кодекса республики Казахстан Кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК виды намечаемой деятельности и иные критерии, на основании которых осуществляется отнесение объектов, оказывающих негативное воздействие на окружающую среду, согласно Приложение 2 к Экологическому кодексу Республики Казахстан от 2 января 2021 года № 400-VI ЗРК. Раздел 2. Виды намечаемой деятельности и иные критерии, на основании которых осуществляется отнесение объектов, оказывающих негативное воздействие на окружающую среду, к объектам II категории, 1. Энергетика: энергопроизводящие станции, работающие на газе, с мощностью 10 мегаватт (МВт) и более.

В соответствии с Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» Приказ и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2 размеры санитарно-защитных зон (СЗЗ) предприятий принимаются на основании расчетов рассеивания загрязняющих веществ в атмосфере по утвержденным методикам и в соответствии с классификацией производственных объектов и сооружений.

Критерием для определения размера C33 является соответствие на ее внешней границе и за ее пределами концентрации загрязняющих веществ для атмосферного воздуха населенных мест ПДК и/или ПДУ физического воздействия на атмосферный воздух.

Согласно СанПиН «Для групп объектов, расположенных на общей производственной площадке, устанавливается единая расчетная и окончательно установленная СЗЗ с учетом суммарных выбросов в атмосферный воздух и физического воздействия и рисков всех источников объектов, входящих в единую зону».

Для по процессингу производства электроэнергии из ПНГ месторождения «Ю.В.Новобогат» НГДУ «Жайыкмунайгаз размер санитарно-защитной зоны принят 1000 м., так как данная площадка ГПЭС находится на территории месторождения, для которого установлен размер санитарно-защитной зоны. Размер СЗЗ на период строительства не устанавливается.

В пределах нормативной санитарно-защитной зоны от площадки ГПЭС отсутствуют населенные пункты. На территории СЗЗ предприятия отсутствуют зоны заповедников, санаториев, курортов, к которым предъявляются повышенные требования к качеству атмосферного воздуха.

Приведенные расчеты показывают, что проектируемые работы не окажут существенного воздействия на качество атмосферного воздуха в ближайших населенных пунктах в виду локального характера воздействия указанных источников выбросов. Ближайшими населенными пунктами являются железнодорожная станция Аккыстау, расположенные к северо-западу на расстоянии соответственно 16,46 км., до Чапаевское 15,86 км, до Жанбай 30,26 км.

8.6. Данные о пределах области воздействия

В соответствии с Методикой определения нормативов эмиссий, утв. Приказом МЭГПР РК №63 от 10.03.2021г, пределы области воздействия определяются с учетом экологических нормативов качества (ЭНК). Уполномоченный орган в области охраны окружающей среды обеспечивает разработку и утверждение экологических нормативов качества не позднее 1 января 2023 года (п.1 ст.418 ЭК РК).

До утверждения экологических нормативов качества при регулировании соответствующих отношений вместо экологических нормативов качества применяются гигиенические нормативы, утвержденные государственным органом в сфере санитарно-эпидемиологического благополучия населения в соответствии с законодательством Республики Казахстан в области здравоохранения, а также нормативы состояния природных ресурсов, если такие нормативы установлены в соответствии с законодательством Республики Казахстан по соответствующему виду природных ресурсов (водным, лесным, земельным законодательством Республики Казахстан, законодательством Республики Казахстан об охране, воспроизводстве и использовании животного мира).

8.7. Документы (материалы), свидетельствующие об учете специальных требований (при их наличии) к качеству атмосферного воздуха для данного района.

Согласно имеющимся данным у оператора объекта, в непосредственной близости от объектов зон отдыха (территории заповедников, музеев, памятников архитектуры), санаториев, домов отдыха, лесов, с/х угодий, жилых массивов не имеется.

Соответственно специальных требований (при их наличии) к качеству атмосферного воздуха для данного района не установлено.

9. МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕРОЛОГИЧЕСКИХ УСЛОВИЯХ

9.1. План мероприятий по сокращению выбросов загрязняющих веществ в атмосферу в периоды НМУ

Неблагоприятные метеорологические характеристики способствуют накоплению вредных примесей в приземном слое атмосферы, что влечет за собою возникновение высокого уровня загрязнения атмосферного воздуха. Во избежание этого в эти периоды необходимо предпринимать меры по кратковременному сокращению выбросов ВХВ вплоть до полной остановки производства.

Прогностические сведения о метеорологических условиях, при которых возможно повышение уровня загрязнения воздуха составляется Казгидрометом. Для рассматриваемого района ведения работ характерны следующие НМУ:

- пыльные бури;
- штиль;
- снегопад и метель;
- температурная инверсия;
- высокая относительная влажность.

Необходимо на период НМУ — при сильных ветрах и туманах — совместно с предприятием разрабатываются мероприятия организационно-технического характера по первому и второму режиму работы с учетом особенностей технологических процессов и сопровождающиеся незначительным снижением производительности предприятия.

Согласно «Методических указаний регулирования выбросов при неблагоприятных метеорологических условиях», РД 52.044.52-85 в проекте разработан план мероприятий по снижению выбросов при наступлении неблагоприятных метеорологических условий на I и II режимах работы предприятия. Главное условие выполнение мероприятий при НМУ не должно приводить к нарушению технологического процесса, следствием которого могут явиться аварийные ситуации. Исходя из специфики работы данного предприятия, предложен следующий план мероприятий:

по I и II режиму работы:

- осуществление организационных мероприятий, связанных с особым контролем работы всех технологических процессов и оборудования;
 - усиление контроля за работой измерительных приборов и оборудования;
- прекращение испытания оборудования с целью изменения технологических режимов работы;
 - соблюдение правил техники безопасности и противопожарных норм.

Мероприятия для первого режима разрабатываются при предупреждении о повышения уровня приземных концентраций в 1,5 раза. Их эффективность принимается равной 15-30%.

<u>по III режиму работы:</u>

- проводятся все организационно-технические мероприятия, предусмотренные на 1-2 режим работы;
- максимальное обеспечение соблюдения оптимального режима работы в соответствии с технологическим регламентом;
 - запрет на проведение продувок технологического оборудования.

Мероприятия данного режима составляются с учетом источников и вредных веществ, которые оказывают наиболее значимое влияние на уровень загрязнения атмосферы на границе C33 или ближайшей жилой зоны. Эффективность мероприятий данного режима не менее 30% не более 40%.

9.2. Обобщенные данные о выбросах загрязняющих веществ в атмосферу в периоды НМУ

Загрязнение приземного слоя воздуха, создаваемое выбросами оборудования, в большой степени зависит от метеорологических условий. В отдельные периоды, когда метеорологические условия способствуют накоплению вредных веществ в приземном слое атмосферы, концентрации примесей в воздухе могут резко возрастать. Задача в том, чтобы в эти периоды не допускать возникновения высокого уровня загрязнения.

К неблагоприятным метеорологическим условиям (НМУ) относят: пыльную бурю, гололед, штормовой ветер, туман, штиль. Неблагоприятные метеорологические условия могут помешать нормальному режиму пробной эксплуатации.

Любой из этих неблагоприятных факторов может привести к внештатной ситуации, связанной с риском для жизни обслуживающего персонала и нанесением вреда окружающей природной среде. Поэтому необходимо в период НМУ (в зависимости от тяжести неблагоприятных метеорологических условий) предусмотреть мероприятия, которые должны обеспечить сокращение концентрации загрязняющих веществ в приземном слое атмосферы. При разработке этих мероприятий целесообразно учитывать следующие рекомендации:

- ограничить движение и использование техники на территории.

Мероприятия по регулированию выбросов при НМУ

Загрязнение приземного слоя воздуха, в большей степени зависит от метеорологических условий. В отдельные периоды, когда метеорологические условия способствуют накоплению вредных веществ в приземном слое атмосферы, концентрации примесей в воздухе могут резко возрастать. Задача в том, чтобы в эти периоды не допускать возникновения высокого уровня загрязнения.

К неблагоприятным метеорологическим условиям (НМУ) относят: пыльную бурю, гололед, штормовой ветер, туман, штиль. Неблагоприятные метеорологические условия могут помешать нормальному режиму работы.

Любой из этих неблагоприятных факторов может привести к внештатной ситуации, связанной с риском для жизни обслуживающего персонала и нанесением вреда окружающей природной среде. Поэтому необходимо в период НМУ (в зависимости от тяжести неблагоприятных метеорологических условий) предусмотреть мероприятия, которые должны обеспечить сокращение концентрации загрязняющих веществ в приземном слое атмосферы.

Мероприятия на период неблагоприятных метеорологических условий сводятся к следующему:

- приведение в готовность бригады реагирования на аварийные ситуации;
- проверка готовности систем извещения об аварийной ситуации;
- заблаговременное оповещение обслуживающего персонала о методах реагирования на внештатную ситуацию;
- усиление мер по контролю за работой и герметичностью основного технологического оборудования, целостностью системы технологического оборудования в строгом соответствии с технологическим регламентом на период НМУ;
- усиление контроля за выбросами источников, дающих максимальное количество вредных веществ;
- временное прекращение плановых ремонтов, связанных с повышенным выделением вредных веществ в атмосферу;
- при нарастании НМУ прекращение работ, которые могут привести к нарушению техники безопасности (работа на высоте, работа с электрооборудованием и т.д.).

Согласно Методике по регулированию выбросов при неблагоприятных метеорологических условиях (Приложение 40 к приказу Министра охраны окружающей среды от №298 от 29 ноября 2010 г.) мероприятия по сокращению выбросов

загрязняющих веществ в атмосферу в периоды НМУ разрабатывают предприятия, организации, учреждения, имеющие стационарные источники выбросов, расположенные в населенных пунктах, где подразделениями «Казгидромета» проводятся или, планируется проведение прогнозирования НМУ.

В связи с удаленностью расположения рассматриваемого объекта от населенных пунктов, отсутствием системы наблюдений за качеством атмосферного воздуха и системы оповещения о наступлении НМУ, разработка мероприятий по кратковременному снижению выбросов на период наступления НМУ нецелесообразна.

Эти мероприятия носят организационно-технический характер, они не требуют существенных затрат.

Согласно данным, приведенным на сайте РГП «Казгидромет» (https://www.kazhydromet.kz/ru/ecology/prognoz-nmu-neblagopriyatnye-meteousloviya) прогноз НМУ проводится на территории городов Астана, Актау, Актобе, Алматы, Атырау, Балхаш, Жезказган, Караганда, Кокшетау, Костанай, Кызылорда, Павлодар, Петропавловск, Риддер, Семей, Талдыкорган, Тараз, Темиртау, Уральск, Усть-Каменогорск, Шымкент.

На территории лицензионной площади отсутствуют стационарные посты наблюдения НМУ.

Ввиду того что, гидрометеослужбой Республики Казахстан не проводится прогнозирование неблагоприятных метеорологических условий и, соответственно, отсутствует система оповещения об их наступлении, а также учитывая, что намечаемые работы имеют незначительный валовый выброс вредных веществ в атмосферу, настоящим проектом не разрабатываются специальные мероприятия по снижению выбросов вредных веществ в атмосферу в период НМУ.

Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу и характеристика выбросов вредных веществ в атмосферу в периоды НМУ представлены в таблице ниже.

Приложение 9 к Методике определения нормативов эмиссий в окружающую среду

Таблица 21 - Мероприятия по сокращению выбросов загрязняющих веществ в атмосферу в периоды НМУ

График	Цех,	Мероприятия на	Вещества, по			Характерис	тика ис	сточников	, на которых	проводится	снижени	е выбросов		
работы источника	участок, (номер режима	период неблагоприятных метеорологических	которым проводится сокращение выбросов		Координаті схе				гры газовозду рактеристик				ика и	
	работы предприятия в период НМУ)	условий		Номер на карте-схеме объекта (города)	точечного источника, центра группы источников или одного конца линейного источника	второго конца линейного источника	высота, м	диаметр источника выбросов, м	скорость, м/с	объем, м3/с	температура, ⁰ С	мощность выбросов без учета мероприятий, г/с	мощность выбросов после мероприятий, г/с	Степень эффективности мероприятий, %
					X1/Y1	X2/Y2						MOI	Z	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
					Плош	адка 1								
17 д/год ч/сут	Площадка ГПЭС (1)	Мероприятия при НМУ 1-й степени опасности	Железа оксид	6021	2547 /2545	80/120	2		1,5		30/30	0,001163	0,00098855	15
			Марганец и его соединения									0,000115	0,00009775	15
334 д/год ч/сут		Мероприятия при НМУ 1-й степени опасности	Азота диоксид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,99166695	15
334 д/год ч/сут		Мероприятия при НМУ 1-й степени опасности	Азота диоксид	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,99166695	15
334 д/год ч/сут		Мероприятия при НМУ 1-й степени опасности	Азота диоксид	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,99166695	15

334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота диоксид	0010	2547 /2545	,	7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,99166695	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота диоксид	0013	2547 /2545	,	7	0,377	60,74	6.7802918 /6.7802918	450 /450	1,166667	0,99166695	15
5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота диоксид	0016	2547 /2545	:	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,853333	0,72533305	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота оксид	0001	2547 /2545	,	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,16114555	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота оксид	0004	2547 /2545	,	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,16114555	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота оксид	0007	2547 /2545	,	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,16114555	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота оксид	0010	2547 /2545	,	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,16114555	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота оксид	0013	2547 /2545	,	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,189583	0,16114555	15
5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Азота оксид	0016	2547 /2545	:	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,138667	0,11786695	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод	0001	2547 /2545	,	7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0068867	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод	0004	2547 /2545	,	7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0068867	15

334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0068867	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0068867	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,008102	0,0068867	15
5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,055556	0,0472226	15
		Сера диоксид									0,133333	0,11333305	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Сероводород	0019	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,000044	0,0000374	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Сероводород	6001	2547 /2545	80/120	2		1,5		30/30	0,000001	0,00000085	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод оксид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,2513887	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод оксид	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,2513887	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод оксид	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,2513887	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод оксид	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,2513887	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод оксид	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	1,472222	1,2513887	15

5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Углерод оксид	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,688889	0,58555565	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	1,1584055	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	1,1584055	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	1,1584055	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	1,1584055	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	1,1584055	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	6004	2547 /2545	80/120	2		1,5		30/30	0,036869	0,03133865	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	6007	2547 /2545	80/120	2		1,5		30/30	0,011061	0,00940185	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,4376208	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,4376208	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных С1-С5	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,4376208	15

1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,4376208	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,4376208	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	0018	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,174573	0,14838705	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	0020	2547 /2545	80/120	2				30/30	0,000194	0,0001649	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6004	2547 /2545	80/120	2		1,5		30/30	0,013928	0,0118388	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6005	2547 /2545	80/120	2		1,5		30/30	0,000131	0,00011135	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6006	2547 /2545	80/120	2		1,5		30/30	0,000263	0,00022355	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6007	2547 /2545	80/120	2		1,5		30/30	0,004179	0,00355215	15
5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6008	2547 /2545	80/120	2		1,5		30/30	0,016111	0,01369435	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6014	3253 /2507	2/2	2		1,5		30/30	0,001247	0,00105995	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных С1-С5	6015	3253 /2507	2/2	2		1,5		30/30	0,001247	0,00105995	15

365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6016	2547 /2545	80/120	2		1,5		30/30	0,011284	0,0095914	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6017	2547 /2545	80/120	2		1,5		30/30	0,001927	0,00163795	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6018	2547 /2545	80/120	2		1,5		30/30	0,002494	0,0021199	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C1-C5	6019	2547 /2545	80/120	2		1,5		30/30	0,001927	0,00163795	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,00882045	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,00882045	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,00882045	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,00882045	15
1 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,00882045	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	0020	2547 /2545	80/120	2				30/30	0,000074	0,0000629	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6004	2547 /2545	80/120	2		1,5		30/30	0,000281	0,00023885	15

365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6007	2547 /2545	80/120	2		1,5		30/30	0,000084	0,0000714	15
5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6008	2547 /2545	80/120	2		1,5		30/30	0,006111	0,00519435	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6014	3253 /2507	2/2	2		1,5		30/30	0,000473	0,00040205	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6015	3253 /2507	2/2	2		1,5		30/30	0,000473	0,00040205	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6016	2547 /2545	80/120	2		1,5		30/30	0,010687	0,00908395	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6017	2547 /2545	80/120	2		1,5		30/30	0,000731	0,00062135	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6018	2547 /2545	80/120	2		1,5		30/30	0,000946	0,0008041	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Смесь углеводородов предельных C6-C10	6019	2547 /2545	80/120	2		1,5		30/30	0,000731	0,00062135	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Диметилбензол	6020	2547 /2545	80/120	2		1,5		30/30	0,5625	0,478125	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Бенз/а/пирен	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,0000017	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Бенз/а/пирен	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,0000017	15

334 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Бенз/а/пирен	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,00000017	15
334 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Бенз/а/пирен	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,00000017	15
30 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Бенз/а/пирен	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,0000002	0,0000017	15
5 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Бенз/а/пирен	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,000001	0,00000085	15
334 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Формальдегид	0001	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,00196775	15
334 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Формальдегид	0004	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,00196775	15
334 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Формальдегид	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,00196775	15
334 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Формальдегид	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,00196775	15
30 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Формальдегид	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,002315	0,00196775	15
5 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Формальдегид	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,013333	0,01133305	15
334 д/год ч/сут	HM	ооприятия при У 1-й степени сности	Масло минеральное нефтяное	0003	2547 /2545	5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,119	15

334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	0006	2547 /2545		5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,119	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	0009	2547 /2545		5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,119	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	0012	2547 /2545			0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,119	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	0015	2547 /2545		2	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,119	15
5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	0017	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,907	0,77095	15
330 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	6009	2547 /2545	80/120	2		1,5		30/30	0,008333	0,00708305	15
330 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	6010	2547 /2545	80/120	2		1,5		30/30	0,008333	0,00708305	15
330 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	6011	2547 /2545	80/120	2		1,5		30/30	0,008333	0,00708305	15
330 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	6012	2547 /2545	80/120	2		1,5		30/30	0,008333	0,00708305	15
330 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Масло минеральное нефтяное	6013	2547 /2545	80/120	2		1,5		30/30	0,008333	0,00708305	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Уайт-спирит	6020	2547 /2545	80/120	2		1,5		30/30	0,3125	0,265625	15

334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,70833305	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,70833305	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,70833305	15
334 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,70833305	15
30 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,833333	0,70833305	15
5 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,322222	0,2738887	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	0019	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,000249	0,00021165	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Алканы С12-19	6001	2547 /2545	80/120	2		1,5		30/30	0,000524	0,0004454	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	6002	3253 /2507	2/2	2		1,5		30/30	0,002458	0,0020893	15
		Смесь углеводородов предельных С1-С5									0,000929	0,00078965	15
		Смесь углеводородов предельных С6-С10	-								0,000019	0,00001615	15
365 д/год ч/сут	Мероприятия при НМУ 1-й степени опасности	Метан	6003	2922 /1974	2/2	2		1,5		30/30	0,002458	0,0020893	15

		Смесь углеводородов предельных C1-C5									0,000929	0,00078965	15
		Смесь углеводородов предельных С6-С10									0,000019	0,00001615	15
17 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Железа оксид	6021	2547 /2545	80/120	2		1,5		30/30	0,001163	0,0008141	30
		Марганец и его соединения									0,000115	0,0000805	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота диоксид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,8166669	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота диоксид	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,8166669	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота диоксид	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,8166669	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота диоксид	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,8166669	30
30 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота диоксид	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	1,166667	0,8166669	30
5 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота диоксид	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,853333	0,5973331	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота оксид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1327081	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота оксид	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1327081	30

334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота оксид	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1327081	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота оксид	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1327081	30
30 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота оксид	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,189583	0,1327081	30
5 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Азота оксид	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,138667	0,0970669	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод	0001	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0056714	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод	0004	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0056714	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0056714	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0056714	30
30 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,008102	0,0056714	30
5 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,055556	0,0388892	30
		Сера диоксид								0,133333	0,0933331	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Сероводород	0019	2547 /2545	1	0,154	0,01	0.0001863 /0.0001863	30/30	0,000044	0,0000308	30

365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Сероводород	6001	2547 /2545	80/120	2		1,5		30/30	0,000001	0,0000007	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод оксид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,0305554	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод оксид	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,0305554	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод оксид	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,0305554	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод оксид	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	1,0305554	30
30 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод оксид	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	1,472222	1,0305554	30
5 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Углерод оксид	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,688889	0,4822223	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,953981	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,953981	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,953981	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,953981	30

1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,953981	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	6004	2547 /2545	80/120	2		1,5		30/30	0,036869	0,0258083	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	6007	2547 /2545	80/120	2		1,5		30/30	0,011061	0,0077427	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3603936	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3603936	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3603936	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3603936	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3603936	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	0018	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,174573	0,1222011	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	0020	2547 /2545	80/120	2				30/30	0,000194	0,0001358	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6004	2547 /2545	80/120	2		1,5		30/30	0,013928	0,0097496	30

365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6005	2547 /2545	80/120	2		1,5		30/30	0,000131	0,0000917	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6006	2547 /2545	80/120	2		1,5		30/30	0,000263	0,0001841	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6007	2547 /2545	80/120	2		1,5		30/30	0,004179	0,0029253	30
5 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6008	2547 /2545	80/120	2		1,5		30/30	0,016111	0,0112777	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6014	3253 /2507	2/2	2		1,5		30/30	0,001247	0,0008729	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6015	3253 /2507	2/2	2		1,5		30/30	0,001247	0,0008729	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6016	2547 /2545	80/120	2		1,5		30/30	0,011284	0,0078988	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6017	2547 /2545	80/120	2		1,5		30/30	0,001927	0,0013489	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6018	2547 /2545	80/120	2		1,5		30/30	0,002494	0,0017458	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C1-C5	6019	2547 /2545	80/120	2		1,5		30/30	0,001927	0,0013489	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных С6-С10	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0072639	30

1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0072639	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0072639	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0072639	30
1 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0072639	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	0020	2547 /2545	80/120	2				30/30	0,000074	0,0000518	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	6004	2547 /2545	80/120	2		1,5		30/30	0,000281	0,0001967	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	6007	2547 /2545	80/120	2		1,5		30/30	0,000084	0,0000588	30
5 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	6008	2547 /2545	80/120	2		1,5		30/30	0,006111	0,0042777	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	6014	3253 /2507	2/2	2		1,5		30/30	0,000473	0,0003311	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	6015	3253 /2507	2/2	2		1,5		30/30	0,000473	0,0003311	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Смесь углеводородов предельных C6-C10	6016	2547 /2545	80/120	2		1,5		30/30	0,010687	0,0074809	30

365 д/год ч/сут	HN	ероприятия при ЛУ 2-й степени асности	Смесь углеводородов предельных C6-C10	6017	2547 /2545	80/120	2		1,5		30/30	0,000731	0,0005117	30
365 д/год ч/сут	HN	ероприятия при ЛУ 2-й степени асности	Смесь углеводородов предельных C6-C10	6018	2547 /2545	80/120	2		1,5		30/30	0,000946	0,0006622	30
365 д/год ч/сут	HN	ероприятия при ЛУ 2-й степени асности	Смесь углеводородов предельных C6-C10	6019	2547 /2545	80/120	2		1,5		30/30	0,000731	0,0005117	30
30 д/год ч/сут	HN	ероприятия при ЛУ 2-й степени асности	Диметилбензол	6020	2547 /2545	80/120	2		1,5		30/30	0,5625	0,39375	30
334 д/год ч/сут	HN	ероприятия при ЛУ 2-й степени асности	Бенз/а/пирен	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,0000014	30
334 д/год ч/сут	HN	ероприятия при ЛУ 2-й степени асности	Бенз/а/пирен	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,0000014	30
334 д/год ч/сут	HN	ероприятия при ИУ 2-й степени асности	Бенз/а/пирен	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,00000014	30
334 д/год ч/сут	HN	ероприятия при ИУ 2-й степени асности	Бенз/а/пирен	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,00000014	30
30 д/год ч/сут	HN	ероприятия при ИУ 2-й степени асности	Бенз/а/пирен	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,0000002	0,00000014	30
5 д/год ч/сут	HN	ероприятия при ЛУ 2-й степени асности	Бенз/а/пирен	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,000001	0,0000007	30
334 д/год ч/сут	HN	ероприятия при ИУ 2-й степени асности	Формальдегид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,0016205	30

334 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0004	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,0016205	30
334 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,0016205	30
334 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,0016205	30
30 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,002315	0,0016205	30
5 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,013333	0,0093331	30
334 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0003	2547 /2545	5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,098	30
334 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0006	2547 /2545	5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,098	30
334 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0009	2547 /2545	5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,098	30
334 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0012	2547 /2545		0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,098	30
30 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0015	2547 /2545	2	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,098	30
5 д/год ч/сут	Мероприяти НМУ 2-й ст опасности	0017	2547 /2545	1	0,154	0,01	0.0001863 /0.0001863	30/30	0,907	0,6349	30

330 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Масло минеральное нефтяное	6009	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0058331	30
330 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Масло минеральное нефтяное	6010	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0058331	30
330 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Масло минеральное нефтяное	6011	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0058331	30
330 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Масло минеральное нефтяное	6012	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0058331	30
330 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Масло минеральное нефтяное	6013	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0058331	30
30 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Уайт-спирит	6020	2547 /2545	80/120	2		1,5		30/30	0,3125	0,21875	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,5833331	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,5833331	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,5833331	30
334 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,5833331	30
30 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,833333	0,5833331	30

5 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,322222	0,2255554	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	0019	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,000249	0,0001743	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Алканы С12-19	6001	2547 /2545	80/120	2		1,5		30/30	0,000524	0,0003668	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	6002	3253 /2507	2/2	2		1,5		30/30	0,002458	0,0017206	30
		Смесь углеводородов предельных C1-C5									0,000929	0,0006503	30
		Смесь углеводородов предельных С6-С10									0,000019	0,0000133	30
365 д/год ч/сут	Мероприятия при НМУ 2-й степени опасности	Метан	6003	2922 /1974	2/2	2		1,5		30/30	0,002458	0,0017206	30
		Смесь углеводородов предельных С1-С5									0,000929	0,0006503	30
		Смесь углеводородов предельных С6-С10									0,000019	0,0000133	30
17 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Железа оксид	6021	2547 /2545	80/120	2		1,5		30/30	0,001163	0,0006978	40
		Марганец и его соединения									0,000115	0,000069	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Азота диоксид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,7000002	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Азота диоксид	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,7000002	40

334 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота диоксид	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,7000002	40
334 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота диоксид	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	1,166667	0,7000002	40
30 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота диоксид	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	1,166667	0,7000002	40
5 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота диоксид	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,853333	0,5119998	40
334 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота оксид	0001	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1137498	40
334 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота оксид	0004	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1137498	40
334 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота оксид	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1137498	40
334 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота оксид	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,189583	0,1137498	40
30 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота оксид	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,189583	0,1137498	40
5 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Азота оксид	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,138667	0,0832002	40
334 д/год ч/сут	I	Мероприятия при НМУ 3-й степени опасности	Углерод	0001	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0048612	40

334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0048612	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0048612	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,008102	0,0048612	40
30 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,008102	0,0048612	40
5 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,055556	0,0333336	40
		Сера диоксид									0,133333	0,0799998	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Сероводород	0019	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,000044	0,0000264	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Сероводород	6001	2547 /2545	80/120	2		1,5		30/30	0,000001	0,0000006	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод оксид	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	0,8833332	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод оксид	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	0,8833332	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод оксид	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	0,8833332	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод оксид	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	1,472222	0,8833332	40

30 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод оксид	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	1,472222	0,8833332	40
5 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Углерод оксид	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,688889	0,4133334	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Метан	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,817698	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Метан	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,817698	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Метан	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,817698	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Метан	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,817698	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Метан	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	1,36283	0,817698	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Метан	6004	2547 /2545	80/120	2		1,5		30/30	0,036869	0,0221214	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Метан	6007	2547 /2545	80/120	2		1,5		30/30	0,011061	0,0066366	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3089088	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3089088	40

1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3089088	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3089088	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,514848	0,3089088	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	0018	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,174573	0,1047438	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	0020	2547 /2545	80/120	2				30/30	0,000194	0,0001164	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6004	2547 /2545	80/120	2		1,5		30/30	0,013928	0,0083568	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6005	2547 /2545	80/120	2		1,5		30/30	0,000131	0,0000786	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6006	2547 /2545	80/120	2		1,5		30/30	0,000263	0,0001578	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6007	2547 /2545	80/120	2		1,5		30/30	0,004179	0,0025074	40
5 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6008	2547 /2545	80/120	2		1,5		30/30	0,016111	0,0096666	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6014	3253 /2507	2/2	2		1,5		30/30	0,001247	0,0007482	40

365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6015	3253 /2507	2/2	2		1,5		30/30	0,001247	0,0007482	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6016	2547 /2545	80/120	2		1,5		30/30	0,011284	0,0067704	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6017	2547 /2545	80/120	2		1,5		30/30	0,001927	0,0011562	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6018	2547 /2545	80/120	2		1,5		30/30	0,002494	0,0014964	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C1-C5	6019	2547 /2545	80/120	2		1,5		30/30	0,001927	0,0011562	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C6-C10	0002	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0062262	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C6-C10	0005	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0062262	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C6-C10	0008	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0062262	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C6-C10	0011	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0062262	40
1 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных С6-С10	0014	2547 /2545		4	0,02	0,74	0.0002 /0.0002	20/20	0,010377	0,0062262	40
365 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Смесь углеводородов предельных C6-C10	0020	2547 /2545	80/120	2				30/30	0,000074	0,0000444	40

365 д/год ч/сут	HN	ероприятия при ЛУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6004	2547 /2545	80/120	2		1,5		30/30	0,000281	0,0001686	40
365 д/год ч/сут	HN	ероприятия при ЛУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6007	2547 /2545	80/120	2		1,5		30/30	0,000084	0,0000504	40
5 д/год ч/сут	HN	ероприятия при ЛУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6008	2547 /2545	80/120	2		1,5		30/30	0,006111	0,0036666	40
365 д/год ч/сут	HN	ероприятия при ЛУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6014	3253 /2507	2/2	2		1,5		30/30	0,000473	0,0002838	40
365 д/год ч/сут	HN	ероприятия при ЛУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6015	3253 /2507	2/2	2		1,5		30/30	0,000473	0,0002838	40
365 д/год ч/сут	HN	ероприятия при ИУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6016	2547 /2545	80/120	2		1,5		30/30	0,010687	0,0064122	40
365 д/год ч/сут	HN	ероприятия при ИУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6017	2547 /2545	80/120	2		1,5		30/30	0,000731	0,0004386	40
365 д/год ч/сут	HN	ероприятия при ИУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6018	2547 /2545	80/120	2		1,5		30/30	0,000946	0,0005676	40
365 д/год ч/сут	HN	ероприятия при ИУ 3-й степени асности	Смесь углеводородов предельных C6-C10	6019	2547 /2545	80/120	2		1,5		30/30	0,000731	0,0004386	40
30 д/год ч/сут	HN	ероприятия при ИУ 3-й степени асности	Диметилбензол	6020	2547 /2545	80/120	2		1,5		30/30	0,5625	0,3375	40
334 д/год ч/сут	HN	ероприятия при ИУ 3-й степени асности	Бенз/а/пирен	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,00000012	40

334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Бенз/а/пирен	0004	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,00000012	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Бенз/а/пирен	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,0000012	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Бенз/а/пирен	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,0000002	0,0000012	40
30 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Бенз/а/пирен	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,0000002	0,0000012	40
5 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Бенз/а/пирен	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,000001	0,0000006	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Формальдегид	0001	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,001389	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Формальдегид	0004	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,001389	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Формальдегид	0007	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,001389	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Формальдегид	0010	2547 /2545	7	0,377	60,74	6.78/6.78	450 /450	0,002315	0,001389	40
30 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Формальдегид	0013	2547 /2545	7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,002315	0,001389	40
5 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Формальдегид	0016	2547 /2545	3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,013333	0,0079998	40

334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	0003	2547 /2545		5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,084	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	0006	2547 /2545		5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,084	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	0009	2547 /2545		5	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,084	40
334 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	0012	2547 /2545			0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,084	40
30 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	0015	2547 /2545		2	0,3	0,01	0.0007069 /0.0007069	30/30	0,14	0,084	40
5 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	0017	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,907	0,5442	40
330 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	6009	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0049998	40
330 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	6010	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0049998	40
330 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	6011	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0049998	40
330 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	6012	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0049998	40
330 д/год ч/сут	Мероприятия при НМУ 3-й степени опасности	Масло минеральное нефтяное	6013	2547 /2545	80/120	2		1,5		30/30	0,008333	0,0049998	40

30 д/год ч/сут	H	Мероприятия при МУ 3-й степени пасности	Уайт-спирит	6020	2547 /2545	80/120	2		1,5		30/30	0,3125	0,1875	40
334 д/год ч/сут	H	Лероприятия при ІМУ 3-й степени пасности	Алканы С12-19	0001	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,4999998	40
334 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Алканы С12-19	0004	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,4999998	40
334 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Алканы С12-19	0007	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,4999998	40
334 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Алканы С12-19	0010	2547 /2545		7	0,377	60,74	6.78/6.78	450 /450	0,833333	0,4999998	40
30 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Алканы С12-19	0013	2547 /2545		7	0,377	60,74	6.7802918 /6.7802918	450 /450	0,833333	0,4999998	40
5 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Алканы С12-19	0016	2547 /2545		3	0,154	98,99	1.8438418 /1.8438418	400 /400	0,322222	0,1933332	40
365 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Алканы С12-19	0019	2547 /2545		1	0,154	0,01	0.0001863 /0.0001863	30/30	0,000249	0,0001494	40
365 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Алканы С12-19	6001	2547 /2545	80/120	2		1,5		30/30	0,000524	0,0003144	40
365 д/год ч/сут	H	Мероприятия при ИМУ 3-й степени пасности	Метан	6002	3253 /2507	2/2	2		1,5		30/30	0,002458	0,0014748	40
			Смесь углеводородов предельных С1-С5	_								0,000929	0,0005574	40
			Смесь углеводородов предельных C6-C10	=								0,000019	0,0000114	40

365 д/год	Мероприятия при	Метан	6003	2922 /1974	2/2	2	1,5	30/30	0,002458	0,0014748	40
ч/сут	НМУ 3-й степени										
	опасности										
		Смесь углеводородов предельных C1-C5							0,000929	0,0005574	40
		Смесь углеводородов предельных C6-C10							0,000019	0,0000114	40

Таблица 22 - Характеристика выбросов вредных веществ в атмосферу в периоды НМУ

									Выбросы в атмосфер	у						
	№		П	ри нормальных м	иетеоусл	овиях				Вт	ериоді	ы НМУ				Примечание.
Наименование цеха, участка	источ- ника выброса	Высота источ- ника, м	г/с	т/год	%	г/м3	П	ервый	режим	В	горой	режим	T	ретий ј	режим	Метод контро- ля на
	Быороса		170	1/10Д	%	17M3	г/с	%	г/м3	г/с	%	г/м3	г/с	%	г/м3	источнике
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
							Пл	ощадк	a 1							
							***Желе		ид(0123)							
Площадка ГПЭС	6021	2	0,001163	0,001674	100		0,00098855	15		0,0008141	30		0,0006978	40		
	ВСЕГО:		0,001163	0,001674			0,00098855			0,0008141			0,0006978			
							В том числе п	о град	ациям высот							
	0-10		0,001163	0,001674	100		0,00098855			0,0008141			0,0006978			
	•		'				***Марганец и	его со	единения(0143)							•
Площадка ГПЭС	6021	2	0,000115	0,000166	100	0,04492041881	0,00009775	15	0,03818235599	0,0000805	30	0,03144429317	0,000069	40	0,02695225129	
	ВСЕГО:		0,000115	0,000166			0,00009775			0,0000805			0,000069			
		1			ı		В том числе п	о град	ациям высот							I .
	0-10		0,000115	0,000166	100		0,00009775			0,0000805			0,000069			
		I.			ı		***Азота	диокс	ид(0301)							I
Площадка ГПЭС	0001	7	1,166667	43,051286	17,6	455,714523972	0,99166695	15	387,357345376	0,8166669	30	319,00016678	0,7000002	40	273,428714383	
Площадка ГПЭС	0004	7	1,166667	43,051286	17,4	455,714523972	0,99166695	15	387,357345376	0,8166669	30	319,00016678	0,7000002	40	273,428714383	
Площадка ГПЭС	0007	7	1,166667	43,051286	17,4	455,714523972	0,99166695	15	387,357345376	0,8166669	30	319,00016678	0,7000002	40	273,428714383	
Площадка ГПЭС	0010	7	1,166667	43,051286	17,4	455,694911615	0,99166695	15	387,340674873	0,8166669	30	318,986438131	0,7000002	40	273,416946969	
Площадка ГПЭС	0013	7	1,166667	3,95136	17,4	1559,8242744	0,99166695	15	1325,85063324	0,8166669	30	1091,87699208	0,7000002	40	935,894564643	
Площадка ГПЭС	0016	3	0,853333	0,25568	12,8	333,322397809	0,72533305	15	283,324038137	0,5973331	30	233,325678466	0,5119998	40	199,993438685	
	ВСЕГО:		6,686668	176,412184			5,6836678			4,6806676			4,0120008			
		I.					В том числе п	о град	ациям высот							I
	0-10		6,686668	176,412184	100		5,6836678	_		4,6806676			4,0120008			
	1	1 L			ı	<u> </u>	***A301	а окси	д(0304)							I
Площадка ГПЭС	0001	7	0,189583	6,995834	17,6	74,0534587831	0,16114555	15	62,9454399656	0,1327081	30	51,8374211482	0,1137498	40	44,4320752699	
Площадка ГПЭС	0004	7	0,189583	6,995834	17,4	74,0534587831	0,16114555	15	62,9454399656	0,1327081	30	51,8374211482	0,1137498	40	44,4320752699	
Площадка ГПЭС	0007	7	0,189583	6,995834	17,4	74,0534587831	0,16114555	15	62,9454399656	0,1327081	30	51,8374211482	0,1137498	40	44,4320752699	
Площадка ГПЭС	0010	7	0,189583	6,995834	17,4	74,0502717817	0,16114555	15	62,9427310145	0,1327081	30	51,8351902472	0,1137498	40	44,430163069	

Площадка ГПЭС	0013	7	0.189583	0,642096	17,4	253,470926506	0,16114555	15	215,45028753	0,1327081	30	177,429648555	0,1137498	40	152,082555904	
	0013	3	-,	0,042090	, i	,			46,0402848553	,		,	0,0832002		32,4990246037	
Площадка ГПЭС		3	0,138667	,	12,8	54,1650410062	0,11786695	15	40,0402848553	0,0970669	30	37,9155287043		40	32,4990246037	
	ВСЕГО:		1,086582	28,66698			0,9235947			0,7606074			0,6519492			
							В том числе п	ю град	ациям высот							
	0-10		1,086582	28,66698	100		0,9235947			0,7606074			0,6519492			
			L.		1		***YI	лерод	(0328)			•			'	
Площадка ГПЭС	0001	7	0,008102	0,307509	8,4	3,16474115855	0,0068867	15	2,69002998476	0,0056714	30	2,21531881098	0,0048612	40	1,89884469513	
Площадка ГПЭС	0004	7	0,008102	0,307509	8,4	3,16474115855	0,0068867	15	2,69002998476	0,0056714	30	2,21531881098	0,0048612	40	1,89884469513	
Площадка ГПЭС	0007	7	0,008102	0,307509	8,4	3,16474115855	0,0068867	15	2,69002998476	0,0056714	30	2,21531881098	0,0048612	40	1,89884469513	
Площадка ГПЭС	0010	7	0,008102	0,307509	8,4	3,16460495918	0,0068867	15	2,6899142153	0,0056714	30	2,21522347142	0,0048612	40	1,89876297551	
Площадка ГПЭС	0013	7	0,008102	0,028224	8,4	10,8323079947	0,0068867	15	9,20746179548	0,0056714	30	7,58261559627	0,0048612	40	6,49938479681	
Площадка ГПЭС	0016	3	0,055556	0,01598	58	74,2779193967	0,0472226	15	63,1362314872	0,0388892	30	51,9945435777	0,0333336	40	44,566751638	
	ВСЕГО:		0,096066	1,27424			0,0816561			0,0672462			0,0576396			
	l l	l.				L	В том числе п	ю град	ациям высот		1				L	
	0-10		0,096066	1,27424	100		0,0816561			0,0672462			0,0576396			
		L					***Cepa	диокс	ид(0330)						<u> </u>	
Площадка ГПЭС	0016	3	0,133333	0,03995	100	794336,9727430	0,11333305	15	675186,4268310	0,0933331	30	556035,8809200	0,0799998	40	476602,1836460	
	ВСЕГО:		0,133333	0,03995			0,11333305			0,0933331			0,0799998			
		L					В том числе п	ю град	ациям высот						<u> </u>	
	0-10		0,133333	0,03995	100		0,11333305			0,0933331			0,0799998			
		1					***Cepo	водор	од(0333)						<u> </u>	
Площадка ГПЭС	0019	1	0,000044	0,00000003	97,8		0,0000374	15		0,0000308	30		0,0000264	40		
Площадка ГПЭС	6001	2	0,000001	0,000046	2,2	0,00039061234	0,00000085	15	0,00033202049	0,0000007	30	0,00027342864	0,0000006	40	0,0002343674	
	ВСЕГО:		0,000045	0,00004603			0,00003825			0,0000315			0,000027			
							В том числе п	о град	ашиям высот							
	0-10		0,000045	0,00004603	100		0,00003825	- F		0,0000315			0,000027			
					<u> </u>	<u> </u>	***Углег	OH OF	рип(0337)			<u> </u>				
Площадка ГПЭС	0001	7	1,472222	54,121617	18,2	575,068076761	1,2513887	юд ок 15	488,807865247	1,0305554	30	402,547653733	0,8833332	40	345,040846057	
Площадка ГПЭС	0004	7	1,472222	54,121617	18,3	575,068076761	1,2513887	15	488,807865247	1,0305554	30	402,547653733	0,8833332	40	345,040846057	
Площадка ГПЭС	0007	7	1,472222	54,121617	18,3	575,068076761	1,2513887	15	488,807865247	1,0305554	30	402,547653733	0,8833332	40	345,040846057	
Площадка ГПЭС	0010	7	1,472222	54,121617	18,3	575,043327846	1,2513887	15	488,786828669	1,0305554	30	402,530329492	0,8833332	40	345,025996708	
Площадка ГПЭС	0013	7	1,472222	4,967424	18,3	1968,34882011	1,2513887	15	1673,09649709	1,0305554	30	1377,84417408	0,8833332	40	1181,00929207	
Площадка ГПЭС	0016	3	0,688889	0,20774	8,6	3696785,2930400	0,58555565	15	3142267,4990800	0,4822223	30	2587749,7051300	0,4133334	40	2218071,1758200	
	ВСЕГО:	-	8,049999	221,661632	-,-		6,84249915		,	5,6349993		,	4,8299994		,	
	Belli G.		0,047777	221,001032			3,07277713			5,0547775			7,027777			

							В том числе п	ю град	цациям высот							
	0-10		8,049999	221,661632	100		6,84249915			5,6349993			4,8299994			
	l l	Į.					***M	Іетан(0410)						l	
Площадка ГПЭС	0002	4	1,36283	0,000164	20,1	7313355,1282100	1,1584055	15	6216351,8589700	0,953981	30	5119348,5897400	0,817698	40	4388013,0769200	
Площадка ГПЭС	0005	4	1,36283	0,000164	19,8	7313355,1282100	1,1584055	15	6216351,8589700	0,953981	30	5119348,5897400	0,817698	40	4388013,0769200	
Площадка ГПЭС	0008	4	1,36283	0,000164	19,8	7313355,1282100	1,1584055	15	6216351,8589700	0,953981	30	5119348,5897400	0,817698	40	4388013,0769200	
Площадка ГПЭС	0011	4	1,36283	0,000164	19,8	7313355,1282100	1,1584055	15	6216351,8589700	0,953981	30	5119348,5897400	0,817698	40	4388013,0769200	
Площадка ГПЭС	0014	4	1,36283	0,000164	19,8		1,1584055	15		0,953981	30		0,817698	40		
Площадка ГПЭС	6004	2	0,036869	1,162706	0,5		0,03133865	15		0,0258083	30		0,0221214	40		
Площадка ГПЭС	6007	2	0,011061	0,348812	0,2		0,00940185	15		0,0077427	30		0,0066366	40		
Точка подключения №1	6002	2	0,002458	0,077514			0,0020893	15		0,0017206	30		0,0014748	40		
Точка подключения №2	6003	2	0,002458	0,077514		13190,3663004	0,0020893	15	11211,8113553	0,0017206	30	9233,25641026	0,0014748	40	7914,21978022	
	ВСЕГО:		6,866996	1,667366			5,8369466			4,8068972			4,1201976			
							В том числе п	ю град	дациям высот							
	0-10		6,866996	1,667366	100		5,8369466			4,8068972			4,1201976			
						***См	есь углеводород	ов пр	едельных С1-С5(041:	5)						
Площадка ГПЭС	0002	4	0,514848	0,000062	18,3	2762829,0109900	0,4376208	15	2348404,6593400	0,3603936	30	1933980,3076900	0,3089088	40	1657697,4065900	
Площадка ГПЭС	0005	4	0,514848	0,000062	18,4	2762829,0109900	0,4376208	15	2348404,6593400	0,3603936	30	1933980,3076900	0,3089088	40	1657697,4065900	
Площадка ГПЭС	0008	4	0,514848	0,000062	18,4	2762829,0109900	0,4376208	15	2348404,6593400	0,3603936	30	1933980,3076900	0,3089088	40	1657697,4065900	
Площадка ГПЭС	0011	4	0,514848	0,000062	18,4	2762829,0109900	0,4376208	15	2348404,6593400	0,3603936	30	1933980,3076900	0,3089088	40	1657697,4065900	
Площадка ГПЭС	0014	4	0,514848	0,000062	18,4	3067228,6811400	0,4376208	15	2607144,3789700	0,3603936	30	2147060,0768000	0,3089088	40	1840337,2086900	
Площадка ГПЭС	0018	1	0,174573	0,567	6,2		0,14838705	15		0,1222011	30		0,1047438	40		
Площадка ГПЭС	0020	2	0,000194	0,007933			0,0001649	15		0,0001358	30		0,0001164	40		
Площадка ГПЭС	6004	2	0,013928	0,439245	0,5		0,0118388	15		0,0097496	30		0,0083568	40		
Площадка ГПЭС	6005	2	0,000131	0,004141			0,00011135	15		0,0000917	30		0,0000786	40		
Площадка ГПЭС	6006	2	0,000263	0,008281			0,00022355	15		0,0001841	30		0,0001578	40		
Площадка ГПЭС	6007	2	0,004179	0,131774	0,1		0,00355215	15		0,0029253	30		0,0025074	40		
Площадка ГПЭС	6008	2	0,016111	0,00696	0,6		0,01369435	15		0,0112777	30		0,0096666	40		
Площадка ГПЭС	6014	2	0,001247	0,03933			0,00105995	15		0,0008729	30		0,0007482	40		
Площадка ГПЭС	6015	2	0,001247	0,03933			0,00105995	15		0,0008729	30		0,0007482	40		
Площадка ГПЭС	6016	2	0,011284	0,355865	0,4		0,0095914	15		0,0078988	30		0,0067704	40		
Площадка ГПЭС	6017	2	0,001927	0,060755	0,1		0,00163795	15		0,0013489	30		0,0011562	40		

Площадка ГПЭС	6018	2	0,002494	0,078659	0,1		0,0021199	15		0,0017458	30		0,0014964	40		
Площадка ГПЭС	6019	2	0,001927	0,060755	0,1		0,00163795	15		0,0013489	30		0,0011562	40		
Точка подключения №1	6002	2	0,000929	0,029283			0,00078965	15		0,0006503	30		0,0005574	40		
Точка подключения №2	6003	2	0,000929	0,029283		4985,29304029	0,00078965	15	4237,49908425	0,0006503	30	3489,70512821	0,0005574	40	2991,17582418	
	ВСЕГО:		2,805603	1,858904			2,38476255			1,9639221			1,6833618			
							В том числе г	10 град	цациям высот							
	0-10		2,805603	1,858904	100		2,38476255			1,9639221			1,6833618			
						***Сме	есь углеводород	ов пре	едельных С6-С10(041	16)						
Площадка ГПЭС	0002	4	0,010377	0,000001	14,3	55686,0989011	0,00882045	15	47333,1840659	0,0072639	30	38980,2692308	0,0062262	40	33411,6593407	
Площадка ГПЭС	0005	4	0,010377	0,000001	14,3	55686,0989011	0,00882045	15	47333,1840659	0,0072639	30	38980,2692308	0,0062262	40	33411,6593407	
Площадка ГПЭС	0008	4	0,010377	0,000001	14,3	55686,0989011	0,00882045	15	47333,1840659	0,0072639	30	38980,2692308	0,0062262	40	33411,6593407	
Площадка ГПЭС	0011	4	0,010377	0,000001	14,3	55686,0989011	0,00882045	15	47333,1840659	0,0072639	30	38980,2692308	0,0062262	40	33411,6593407	
Площадка ГПЭС	0014	4	0,010377	0,000001	14,3		0,00882045	15		0,0072639	30		0,0062262	40		
Площадка ГПЭС	0020	2	0,000074	0,003009	0,1		0,0000629	15		0,0000518	30		0,0000444	40		
Площадка ГПЭС	6004	2	0,000281	0,008853	0,4		0,00023885	15		0,0001967	30		0,0001686	40		
Площадка ГПЭС	6007	2	0,000084	0,002656	0,1		0,0000714	15		0,0000588	30		0,0000504	40		
Площадка ГПЭС	6008	2	0,006111	0,00264	8,4		0,00519435	15		0,0042777	30		0,0036666	40		
Площадка ГПЭС	6014	2	0,000473	0,014918	0,7		0,00040205	15		0,0003311	30		0,0002838	40		
Площадка ГПЭС	6015	2	0,000473	0,014918	0,7		0,00040205	15		0,0003311	30		0,0002838	40		
Площадка ГПЭС	6016	2	0,010687	0,33701	14,8		0,00908395	15		0,0074809	30		0,0064122	40		
Площадка ГПЭС	6017	2	0,000731	0,023045	1		0,00062135	15		0,0005117	30		0,0004386	40		
Площадка ГПЭС	6018	2	0,000946	0,029836	1,3		0,0008041	15		0,0006622	30		0,0005676	40		
Площадка ГПЭС	6019	2	0,000731	0,023045	1		0,00062135	15		0,0005117	30		0,0004386	40		
Точка подключения №1	6002	2	0,000019	0,00059			0,00001615	15		0,0000133	30		0,0000114	40		
Точка подключения №2	6003	2	0,000019	0,00059			0,00001615	15		0,0000133	30		0,0000114	40		
	ВСЕГО:		0,072514	0,461115			0,0616369			0,0507598			0,0435084			
							В том числе г	10 град	цациям высот							
	0-10		0,072514	0,461115	100		0,0616369			0,0507598			0,0435084			
	•						***Димет	гилбен	зол(0616)							
Площадка ГПЭС	6020	2	0,5625	0,18	100	219,719439852	0,478125	15	186,761523874	0,39375	30	153,803607897	0,3375	40	131,831663911	
									•							

	ВСЕГО:		0,5625	0,18			0,478125			0,39375			0,3375			
							В том числе г	io rna	ізниям высот							
	0-10		0,5625	0,18	100		0,478125	. о трад	,	0,39375			0,3375			
							***Бенз	/9/пип	eu(0703)							
Площадка ГПЭС	0001	7	0,0000002	0,000007	10	0,00007812247	0,00000017	15	0,0000664041	0,00000014	30	0,00005468573	0,00000012	40	0,00004687348	
Площадка ГПЭС	0004	7	0,0000002	0,000007	10	0,00007812247	0,00000017	15	0,0000664041	0,00000014	30	0,00005468573	0,00000012	40	0,00004687348	
Площадка ГПЭС	0007	7	0,0000002	0,000007	10	0,00007812247	0,00000017	15	0,0000664041	0,00000014	30	0,00005468573	0,00000012	40	0,00004687348	<u> </u>
Площадка ГПЭС	0010	7	0,0000002	0,000007	10	0,00007811911	0,00000017	15	0,00006640124	0,00000014	30	0,00005468337	0,00000012	40	0,00004687146	<u> </u>
Площадка ГПЭС	0013	7	0,0000002	0,000001	10	0,00026739837	0,00000017	15	0,00022728862	0,00000014	30	0,00018717886	0,00000012	40	0,00016043902	<u> </u>
Площадка ГПЭС	0016	3	0,000001	0,0000004	50	0,00039061234	0,00000085	15	0,00033202049	0,0000007	30	0,00027342864	0,0000006	40	0,0002343674	<u> </u>
	ВСЕГО:		0,000002	0,0000294		·	0,0000017			0,0000014			0,0000012		·	<u> </u>
			,	<u> </u>			D									
	0-10		0,000002	0,0000294	100		В том числе г 0,0000017	ю град	цациям высот	0,0000014			0,0000012		<u> </u>	
			*,*****						(1225)							
Плошалка ГПЭС	0001	7	0,002315	0,082002	9,3	0,90426756135	*** Форм 0,00196775	альде 15	гид(1325) 0,76862742715	0,0016205	30	0,63298729294	0,001389	40	0,54256053681	
Плошалка ГПЭС	0004	7	0,002315	0,082002	9,3	0,90426756135	0,00196775	15	0,76862742715	0,0016205	30	0,63298729294	0,001389	40	0,54256053681	
Площадка ГПЭС	0007	7	0,002315	0,082002	9,3	0,90426756135	0,00196775	15	0,76862742715	0,0016205	30	0,63298729294	0,001389	40	0,54256053681	
Плошадка ГПЭС	0010	7	0,002315	0,082002	9,3	0,90422864484	0,00196775	15	0,76859434811	0,0016205	30	0,63296005139	0,001389	40	0,5425371869	
Площадка ГПЭС	0010	7	0,002315	0,007526		3,09513614017	· ·		2,63086571915	0,0016205	30	,	0,001389	40	1,8570816841	
	0013		,	,	9,3	20933,8871625	0,00196775	15	, and the second	,		2,16659529812	,		1,8570810841	<u> </u>
Площадка ГПЭС		3	0,013333	0,003995	53,5	20955,8871025	· ·	15	17793,8040881	0,0093331	30	14653,7210137	0,0079998	40	12360,3322973	
	ВСЕГО:		0,024908	0,339529			0,0211718			0,0174356			0,0149448			i
						Ī	В том числе г	о град	ациям высот						1	
	0-10		0,024908	0,339529	100		0,0211718			0,0174356			0,0149448			<u> </u>
								ально	е нефтяное(2735)							
Площадка ГПЭС	0003	5	0,14	4,032	8,5	219811,3104890	0,119	15	186839,6139160	0,098	30	153867,9173420	0,084	40	131886,7862930	
Площадка ГПЭС	0006	5	0,14	4,032	8,5	219811,3104890	0,119	15	186839,6139160	0,098	30	153867,9173420	0,084	40	131886,7862930	<u> </u>
Площадка ГПЭС	0009	5	0,14	4,032	8,5	219811,3104890	0,119	15	186839,6139160	0,098	30	153867,9173420	0,084	40	131886,7862930	
Площадка ГПЭС	0012		0,14	4,032	8,5	219811,3104890	0,119	15	186839,6139160	0,098	30	153867,9173420	0,084	40	131886,7862930	<u> </u>
Площадка ГПЭС	0015	2	0,14	0,36288	8,5	834055,9065200	0,119	15	708947,5205420	0,098	30	583839,1345640	0,084	40	500433,5439120	
Площадка ГПЭС	0017	1	0,907	0,32652	55		0,77095	15		0,6349	30		0,5442	40		
Площадка ГПЭС	6009	2	0,008333	0,2376	0,5		0,00708305	15		0,0058331	30		0,0049998	40		 [
Площадка ГПЭС	6010	2	0,008333	0,2376	0,5		0,00708305	15		0,0058331	30		0,0049998	40		·
Площадка ГПЭС	6011	2	0,008333	0,2376	0,5		0,00708305	15		0,0058331	30		0,0049998	40		
Площадка ГПЭС	6012	2	0,008333	0,2376	0,5		0,00708305	15		0,0058331	30		0,0049998	40		

Площадка ГПЭС	6013	2	0,008333	0,2376	0,5		0,00708305	15		0,0058331	30		0,0049998	40		
	ВСЕГО:		1,648665	18,0054			1,40136525			1,1540655			0,989199			
				l		·	В том числе п	ю град	цациям высот						<u> </u>	
	0-10		1,648665	18,0054	100		1,40136525			1,1540655			0,989199			
			l .	l.		l	***Уайт	-спир	ит(2752)	I					<u> </u>	
Площадка ГПЭС	6020	2	0,3125	0,09	100	122,066355473	0,265625	15	103,756402152	0,21875	30	85,4464488314	0,1875	40	73,2398132841	
	ВСЕГО:		0,3125	0,09			0,265625			0,21875			0,1875			
			•			•	В том числе п	о град	цациям высот							
	0-10		0,3125	0,09	100		0,265625			0,21875			0,1875	ľ		
			•			•	***Алкан	ы С12	2-19(2754)							
Площадка ГПЭС	0001	7	0,833333	30,750919	18,6	325,510151058	0,70833305	15	276,6836284	0,5833331	30	227,857105741	0,4999998	40	195,306090635	
Площадка ГПЭС	0004	7	0,833333	30,750919	18,6	325,510151058	0,70833305	15	276,6836284	0,5833331	30	227,857105741	0,4999998	40	195,306090635	-
Площадка ГПЭС	0007	7	0,833333	30,750919	18,6	325,510151058	0,70833305	15	276,6836284	0,5833331	30	227,857105741	0,4999998	40	195,306090635	
Площадка ГПЭС	0010	7	0,833333	30,750919	18,6	325,496142242	0,70833305	15	276,671720906	0,5833331	30	227,847299569	0,4999998	40	195,297685345	-
Площадка ГПЭС	0013	7	0,833333	2,8224	18,6	1114,15943201	0,70833305	15	947,035517207	0,5833331	30	779,911602406	0,4999998	40	668,495659205	
Площадка ГПЭС	0016	3	0,322222	0,09588	7,2	1919651,1593600	0,2738887	15	1631703,4854600	0,2255554	30	1343755,8115500	0,1933332	40	1151790,6956200	
Площадка ГПЭС	0019	1	0,000249	0,000011			0,00021165	15		0,0001743	30		0,0001494	40		
Площадка ГПЭС	6001	2	0,000524	0,016516			0,0004454	15		0,0003668	30		0,0003144	40		-
	ВСЕГО:		4,48966	125,938483			3,816211			3,142762			2,693796			-
			•	•		•	В том числе п	о град	цациям высот			-			•	
	0-10		4,48966	125,938483	100		3,816211			3,142762			2,693796			
				•			Всего по	предп	риятию:							
			32,837319	576,59769843			27,91172115	15		22,9861233	30		19,7023914	40		

9.3. Краткая характеристика каждого конкретного мероприятия с учетом реальных условий эксплуатации технологического оборудования

Разработка плана специальных мероприятий, направленных на поэтапное снижение выбросов ВХВ в атмосферу, не производилась, так как согласно проведенному сводному расчету приземные концентрации выбрасываемых загрязняющих веществ не превышают предельно-допустимые концентрации, установленные для населенных мест.

Согласно районированию территории республики по метеорологическому потенциалу загрязнения атмосферы (ПЗА) от низких источников выброса, проведенного КазНИИ Госкомгидромета, территория рассматриваемого предприятия расположена в зоне умеренного потенциала загрязнения.

Ежегодно на предприятии разрабатываются организационно-технические мероприятия, направленные на минимизацию отрицательного влияния выбросов предприятия на общее состояние окружающей среды и предотвращение сверхнормативных и аварийных выбросов вредных веществ в атмосферу.

Основными мероприятиями по уменьшению образования загрязняющих веществ и охране атмосферного воздуха при производственной деятельности предприятия являются:

- выбор режима работы технологического оборудования и технологий, обеспечивающих соблюдение нормативов предельно допустимых выбросов (НДВ) и поддержание уровня загрязнения атмосферного воздуха ниже ПДК;
- проведение работ по ремонту оборудования при благоприятных метеорологических условиях (ветер от населенных пунктов, отсутствие штилей, приземных инверсий, опасных скоростей ветра и т. д.);
- размещение стационарных источников загрязнения атмосферы (двигатели внутреннего сгорания и другое оборудование) с учетом господствующего направления ветра в районе производства работ для обеспечения санитарных норм рабочей и селетебной зон;
- применение оборудования и строительной техники с минимальными выбросами в атмосферу;
- своевременное проведение планово-предупредительных ремонтов и профилактики технологического оборудования;
- упорядоченное движение автотранспорта и другой техники по территории предприятия и разработка оптимальных схем его движения.

Выполнение всех вышеперечисленных мероприятий является важным шагом на пути улучшения экологической ситуации в районе расположения объектов предприятия.

План мероприятий по сокращению выбросов BXB в атмосферу с целью достижения нормативов НДВ представлен в виде таблицы.

<u>Мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух.</u> <u>Внедрение малоотходных и безотходных технологий</u>

С целью охраны окружающей природной среды и обеспечения нормальных условий работы обслуживающего персонала необходимо принять меры по уменьшению выбросов загрязняющих веществ.

В период строительных работ, учитывая, что основными источниками загрязнения атмосферы являются строительная техника и автотранспорт, большинство мер по снижению загрязнения атмосферного воздуха будут связаны с их эксплуатацией.

Основными мерами по снижению выбросов ЗВ будут следующие:

- своевременное и качественное обслуживание техники:
- использование техники и автотранспорта с выбросами ЗВ, соответствующие стандартам;
 - организация движения транспорта;
- сокращение до минимума работы двигателей транспортных средств на холостом ходу;
 - для снижения пыления ограничение по скорости движения транспорта;

- использование качественного дизельного топлива для заправки техники и автотранспорта.
- В период эксплуатации проектируемого объекта основными мероприятиями, направленными на снижение ВЗВ, а также на предупреждение и обеспечение безопасных условий труда являются:
- обеспечение полной герметизации технологического оборудования и трубопроводов путем качественной сборки соединений и проведение гидравлических испытаний;
- контроль сварных стыков физическим методом -100%, в том числе радиографическим не менее 25%;
 - выбор оборудования с учетом его надежности и экономичности;
- выбор материалов и типоразмеров трубопроводов в соответствии с параметрами транспортируемых сред; трубопроводы рассчитываются на прочность и самокомпенсацию;
 - строгое соблюдение всех технологических параметров;
- осуществление постоянного контроля за ходом технологического процесса, измерение расходов, давления, температуры;
- своевременное проведение планово-предупредительного ремонта и профилактики технологического оборудования;
- проведение практических занятий, учебных тревог и других мероприятий с целью обучения персонала методам реагирования на аварийную ситуацию и борьбе с последствиями этих аварий.

9.4. Обоснование возможного диапазона регулирования выбросов по каждому мероприятию

Мероприятия по регулированию выбросов при НМУ

Загрязнение приземного слоя воздуха, создаваемое выбросами строительной техники и транспорта, в большой степени зависит от метеорологических условий. В отдельные периоды, когда метеорологические условия способствуют накоплению вредных веществ в приземном слое атмосферы, концентрации примесей в воздухе могут резко возрастать. Задача в том, чтобы в эти периоды не допускать возникновения высокого уровня загрязнения.

К неблагоприятным метеорологическим условиям (НМУ) относят: пыльную бурю, гололед, штормовой ветер, туман, штиль. Неблагоприятные метеорологические условия могут помешать нормальному режиму строительства.

Любой из этих неблагоприятных факторов может привести к внештатной ситуации, связанной с риском для жизни обслуживающего персонала и нанесением вреда окружающей природной среде. Поэтому необходимо в период НМУ (в зависимости от тяжести неблагоприятных метеорологических условий) предусмотреть мероприятия, которые должны обеспечить сокращение концентрации загрязняющих веществ в приземном слое атмосферы. При разработке этих мероприятий целесообразно учитывать следующие рекомендации:

- ограничить движение и использование строительной техники на территории строительства;
- ограничение или запрещение погрузочно-разгрузочных работ, связанных со значительными неорганизованными выбросами пыли в атмосферу;
- при установлении сухой безветренной погоды осуществлять орошение участков строительства.

Эти мероприятия носят организационно-технический характер, они не требуют существенных затрат.

Приложение 10 к Методике определения нормативов эмиссий в окружающую среду

Таблица 23 - План технических мероприятий по снижению выбросов 3В с целью достижения нормативов НДВ.

Наименование	Наименование	N источ выбро		Значение	выбросог	В	Сроки выпол мероприятий		Затраты на г мероприятий	
мероприятий	вещества	са на карте схеме	до реализаци	ни мероприятия		реализации оприятия		окон-		основ-ная
		объекта	г/сек	т/год	г/сек	т/год	начало	чание	капиталовлож.	деятельность
1	2	3	4	5	6	7	8	9	10	11
			I	Ілощадка 1						
Максимальное	(0301) Азота диоксид	0001	1,17833367	43,48179886	1,166667	43,051286	1кв 2025	4кв		
обеспечение соблюдения оптимального режима	(0304) Азота оксид		0,19147883	7,06579234	0,189583	6,995834		2027		
работы в соответствии с	(0328) Углерод	-	0,00818302	0,31058409	0,008102	0,307509				
технологическим регламентом	(0337) Углерод оксид		1,48694422	54,66283317	1,472222	54,121617				
регламентом	(0703) Бенз/а/пирен		0,000000202	0,00000707	2E-07	0,000007				
	(1325) Формальдегид		0,00233815	0,08282202	0,002315	0,082002				
	(2754) Алканы С12-19		0,84166633	31,05842819	0,833333	30,750919				
	(0410) Метан	0002	1,3764583	0,00016564	1,36283	0,000164				
	(0415) Смесь углеводородов предельных C1-C5		0,51999648	0,00006262	0,514848	0,000062				
	(0416) Смесь углеводородов предельных C6-C10	•	0,01048077	0,00000101	0,010377	0,000001				
	(2735) Масло минеральное нефтяное	0003	0,1414	4,07232	0,14	4,032				
	(0301) Азота диоксид	0004	1,17833367	43,48179886	1,166667	43,051286				
	(0304) Азота оксид	1	0,19147883	7,06579234	0,189583	6,995834				
	(0328) Углерод	1	0,00818302	0,31058409	0,008102	0,307509				
	(0337) Углерод оксид	1	1,48694422	54,66283317	1,472222	54,121617				
	(0703) Бенз/а/пирен	1	0,000000202	0,00000707	2E-07	0,000007				
	(1325) Формальдегид	1	0,00233815	0,08282202	0,002315	0,082002				
	(2754) Алканы С12-19	1	0,84166633	31,05842819	0,833333	30,750919				

(0410) Метан	0005	1,3764583	0,00016564	1,36283	0,000164		
(0415) Смесь углеводородов предельных C1-C5		0,51999648	0,00006262	0,514848	0,000062		
(0416) Смесь углеводородов предельных С6-С10		0,01048077	0,00000101	0,010377	0,000001		
(2735) Масло минеральное нефтяное	0006	0,1414	4,07232	0,14	4,032		
(0301) Азота диоксид	0007	1,17833367	43,48179886	1,166667	43,051286		
(0304) Азота оксид		0,19147883	7,06579234	0,189583	6,995834		
(0328) Углерод		0,00818302	0,31058409	0,008102	0,307509		
(0337) Углерод оксид		1,48694422	54,66283317	1,472222	54,121617		
(0703) Бенз/а/пирен		0,000000202	0,00000707	2E-07	0,000007		
(1325) Формальдегид		0,00233815	0,08282202	0,002315	0,082002		
(2754) Алканы С12-19		0,84166633	31,05842819	0,833333	30,750919		
(0410) Метан	0008	1,3764583	0,00016564	1,36283	0,000164		
(0415) Смесь углеводородов предельных C1-C5		0,51999648	0,00006262	0,514848	0,000062		
(0416) Смесь углеводородов предельных С6-С10		0,01048077	0,00000101	0,010377	0,000001		
(2735) Масло минеральное нефтяное	0009	0,1414	4,07232	0,14	4,032		
(0301) Азота диоксид	0010	1,17833367	43,48179886	1,166667	43,051286		
(0304) Азота оксид		0,19147883	7,06579234	0,189583	6,995834		
(0328) Углерод		0,00818302	0,31058409	0,008102	0,307509		
(0337) Углерод оксид		1,48694422	54,66283317	1,472222	54,121617		
(0703) Бенз/а/пирен		0,000000202	0,00000707	2E-07	0,000007		
(1325) Формальдегид		0,00233815	0,08282202	0,002315	0,082002		
(2754) Алканы С12-19		0,84166633	31,05842819	0,833333	30,750919		
(0410) Метан	0011	1,3764583	0,00016564	1,36283	0,000164		
(0415) Смесь углеводородов предельных C1-C5		0,51999648	0,00006262	0,514848	0,000062		
(0416) Смесь углеводородов предельных С6-С10		0,01048077	0,00000101	0,010377	0,000001		
(2735) Масло минеральное нефтяное	0012	0,1414	4,07232	0,14	4,032		
(0301) Азота диоксид	0013	1,17833367	3,9908736	1,166667	3,95136		
(0304) Азота оксид		0,19147883	0,64851696	0,189583	0,642096		

(0328) Углерод		0,00818302	0,02850624	0,008102	0,028224		
(0337) Углерод оксид	1	1,48694422	5,01709824	1,472222	4,967424		
(0703) Бенз/а/пирен	1	0,000000202	0,00000101	2E-07	0,000001		
(1325) Формальдегид		0,00233815	0,00760126	0,002315	0,007526		
(2754) Алканы С12-19		0,84166633	2,850624	0,833333	2,8224		
(0410) Метан	0014	1,3764583	0,00016564	1,36283	0,000164		
(0415) Смесь углеводородов предельных C1-C5		0,51999648	0,00006262	0,514848	0,000062		
(0416) Смесь углеводородов предельных C6-C10		0,01048077	0,00000101	0,010377	0,000001		
(2735) Масло минеральное нефтяное	0015	0,1414	0,3665088	0,14	0,36288		
(0301) Азота диоксид	0016	0,86186633	0,2582368	0,853333	0,25568		
(0304) Азота оксид		0,14005367	0,04196348	0,138667	0,041548		
(0328) Углерод		0,05611156	0,0161398	0,055556	0,01598		
(0330) Сера диоксид		0,13466633	0,0403495	0,133333	0,03995		
(0337) Углерод оксид		0,69577789	0,2098174	0,688889	0,20774		
(0703) Бенз/а/пирен		0,00000101	0,000000404	0,000001	0,0000004		
(1325) Формальдегид		0,01346633	0,00403495	0,013333	0,003995		
(2754) Алканы С12-19		0,32544422	0,0968388	0,322222	0,09588		
(2735) Масло минеральное нефтяное	0017	0,91607	0,3297852	0,907	0,32652		
(0415) Смесь углеводородов предельных C1-C5	0018	0,17631873	0,57267	0,174573	0,567		
(0333) Сероводород	0019	0,00004444	3,03E-08	0,000044	0,00000003		
(2754) Алканы С12-19		0,00025149	0,00001111	0,000249	0,000011		
(0415) Смесь углеводородов предельных C1-C5	0020	0,00019594	0,00801233	0,000194	0,007933		
(0416) Смесь углеводородов предельных C6-C10		0,00007474	0,00303909	0,000074	0,003009		
(0333) Сероводород	6001	0,00000101	0,00004646	0,000001	0,000046		
(2754) Алканы С12-19	1	0,00052924	0,01668116	0,000524	0,016516		
(0410) Метан	6002	0,00248258	0,07828914	0,002458	0,077514		
(0415) Смесь углеводородов предельных C1-C5		0,00093829	0,02957583	0,000929	0,029283		

(0416) Смесь углеводородов предельных С6-С10		0,00001919	0,0005959	0,000019	0,00059		
		,					
(0410) Метан	6003	0,00248258	0,07828914	0,002458	0,077514		
(0415) Смесь углеводородов предельных С1-С5		0,00093829	0,02957583	0,000929	0,029283		
(0416) Смесь углеводородов предельных C6-C10		0,00001919	0,0005959	0,000019	0,00059		
(0410) Метан	6004	0,03723769	1,17433306	0,036869	1,162706		
(0415) Смесь углеводородов предельных C1-C5		0,01406728	0,44363745	0,013928	0,439245		
(0416) Смесь углеводородов предельных C6-C10		0,00028381	0,00894153	0,000281	0,008853		
(0415) Смесь углеводородов предельных C1-C5	6005	0,00013231	0,00418241	0,000131	0,004141		
	6006	0,00026563	0,00836381	0,000263	0,008281		
(0410) Метан	6007	0,01117161	0,35230012	0,011061	0,348812		
(0415) Смесь углеводородов предельных C1-C5		0,00422079	0,13309174	0,004179	0,131774		
(0416) Смесь углеводородов предельных C6-C10		0,00008484	0,00268256	0,000084	0,002656		
(0415) Смесь углеводородов предельных C1-C5	6008	0,01627211	0,0070296	0,016111	0,00696		
(0416) Смесь углеводородов предельных C6-C10		0,00617211	0,0026664	0,006111	0,00264		
(2735) Масло минеральное нефтяное	6009	0,00841633	0,239976	0,008333	0,2376		
	6010	0,00841633	0,239976	0,008333	0,2376		
	6011	0,00841633	0,239976	0,008333	0,2376		
	6012	0,00841633	0,239976	0,008333	0,2376		
	6013	0,00841633	0,239976	0,008333	0,2376		
(0415) Смесь углеводородов предельных C1-C5	6014	0,00125947	0,0397233	0,001247	0,03933		
(0416) Смесь углеводородов предельных C6-C10		0,00047773	0,01506718	0,000473	0,014918		

(0415) Смесь углеводородов предельных C1-C5	6015	0,00125947	0,0397233	0,001247	0,03933		
(0416) Смесь углеводородов предельных С6-С10		0,00047773	0,01506718	0,000473	0,014918		
(0415) Смесь углеводородов предельных C1-C5	6016	0,01139684	0,35942365	0,011284	0,355865		
(0416) Смесь углеводородов предельных C6-C10		0,01079387	0,3403801	0,010687	0,33701		
(0415) Смесь углеводородов предельных C1-C5	6017	0,00194627	0,06136255	0,001927	0,060755		
(0416) Смесь углеводородов предельных C6-C10		0,00073831	0,02327545	0,000731	0,023045		
(0415) Смесь углеводородов предельных C1-C5	6018	0,00251894	0,07944559	0,002494	0,078659		
(0416) Смесь углеводородов предельных С6-С10		0,00095546	0,03013436	0,000946	0,029836		
(0415) Смесь углеводородов предельных C1-C5	6019	0,00194627	0,06136255	0,001927	0,060755		
(0416) Смесь углеводородов предельных C6-C10		0,00073831	0,02327545	0,000731	0,023045		
(0616) Диметилбензол	6020	0,568125	0,1818	0,5625	0,18		
(2752) Уайт-спирит		0,315625	0,0909	0,3125	0,09		
(0123) Железа оксид	6021	0,00117463	0,00169074	0,001163	0,001674		
(0143) Марганец и его соединения		0,00011615	0,00016766	0,000115	0,000166		
В целом по предприятию в результате реали всех мероприятий:	изации	33,16569219	582,3636754	32,837319	576,5977		

10. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ

Согласно Экологического кодекса республики Казахстан Кодекс Республики Казахстан от 2 января 2021 года № 400-VI ЗРК, говорится о том, что природопользователи в соответствии с требованиями согласно статье 182 Экологического кодекса Республики Казахстан объекты I и II категории обязаны проводить производственный экологический контроль.

В соответствии с требованиями ГОСТ 17.2.3.02-2014 Правила установления допустимых выбросов вредных веществ промышленными предприятиями», предприятия, для которых установлены нормативы эмиссий, должны организовать систему контроля за их соблюдением по графику, утвержденному контролирующими органами.

Контроль за соблюдением нормативов эмиссий возлагается на лицо, ответственное за охрану окружающей среды на предприятии. В соответствии ГОСТ 17.2.3.02-2014 контроль должен осуществляться прямыми инструментальными замерами и расчетным методом.

В соответствии с п. 1 ст. 184 Экологического кодекса РК: «Операторы объектов I и II категорий имеют право самостоятельно определять организационную структуру службы производственного экологического контроля и ответственность персонала за его проведение».

Ввиду этого, проектом предусматривается следующие объемы производственного экологического контроля.

Для данного предприятия рекомендуется ведение производственного контроля за источниками загрязнения атмосферы, в состав которого должны входить:

- соблюдать программу производственного экологического контроля;
- реализовывать условия программы производственного экологического контроля и представлять отчеты по результатам производственного экологического контроля в соответствии с требованиями к отчетности по результатам производственного экологического контроля;
- создать службу производственного экологического контроля либо назначить работника, ответственного за организацию и проведение производственного экологического контроля и взаимодействие с органами государственного экологического контроля;
- систематически оценивать результаты производственного экологического контроля и принимать необходимые меры по устранению выявленных несоответствий требованиям экологического законодательства Республики Казахстан;
- представлять в установленном порядке отчеты по результатам производственного экологического контроля в уполномоченный орган в области охраны окружающей среды;
- в течение трех рабочих дней сообщать в уполномоченный орган в области охраны окружающей среды о фактах нарушения требований экологического законодательства Республики Казахстан, выявленных в ходе осуществления производственного экологического контроля;
- обеспечивать доступ общественности к программам производственного экологического контроля и отчетным данным по производственному экологическому контролю;

Мониторинг воздействия в районе проведения намечаемых работ будет проводиться Расчетно-аналитический метод.

В соответствии с нормативными требованиями на предприятии должен осуществляться производственный контроль, ответственность за проведение которого ложится на руководство предприятия. Контроль за выбросами загрязняющих веществ в атмосферу при строительстве и эксплуатации, можно проводить расчетным методом один

раз в квартал, ответственность за проведение которого ложится на руководство предприятия обслуживающей компании.

План-график контроля на предприятии за соблюдением нормативов НДВ представлен в таблице при СМР и при эксплуатации. Ввиду кратковременности периода работ при строительстве контроль за соблюдением нормативов НДВ необходимо проводить один раз в квартал, при строительстве имеются организованные и неорганизованные источники выбросов, действующие периодически (спецтехника и оборудование), контроль за выбросами сводится к контролю технического состояния данного автотранспорта и спецоборудования.

Приложение 11 к Методике определения нормативов эмиссий в окружающую среду

Таблица 24 - План-график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов при СМР

N исто чника	Производство, цех, участок.	Контролируемое вещество	Периоди чность контроля	Норг выброс г/с	матив сов НДВ мг/м3	Кем осуществляет ся контроль	Методика проведения контроля
1	2	3	4	5	6	7	8
0001	компрессор	диоксид азота	1 раз/ кварт	0,0916	1205,51	Сторонней организацией	расчетный
		азота оксид	1 раз/ кварт	0,0149	196,00	Сторонней организацией	расчетный
		углерод черный	1 раз/ кварт	0,0078	102,22	Сторонней организацией	расчетный
		диоксид серы	1 раз/ кварт	0,0122	161,23	Сторонней организацией	расчетный
		оксид углерода	1 раз/ кварт	0,0800	1053,77	Сторонней организацией	расчетный
		бенз(а)пирен	1 раз/ кварт	0,0000001	0,00	Сторонней организацией	расчетный
		формальдегид	1 раз/ кварт	0,0017	22,13	Сторонней организацией	расчетный
		алканы С12-19	1 раз/ кварт	0,0400	526,88	Сторонней организацией	расчетный
0002	дизельная электростанция	диоксид азота	1 раз/ кварт	0,1373	1205,51	Сторонней организацией	расчетный
		азота оксид	1 раз/ кварт	0,0223	196,00	Сторонней организацией	расчетный
		углерод черный	1 раз/ кварт	0,0117	102,22	Сторонней организацией	расчетный
		диоксид серы	1 раз/ кварт	0,0183	161,23	Сторонней организацией	расчетный
		оксид углерода	1 раз/ кварт	0,1200	1053,77	Сторонней организацией	расчетный
		бенз(а)пирен	1 раз/ кварт	0,00000020	0,0001	Сторонней организацией	расчетный
		формальдегид	1 раз/ кварт	0,0025	22,13	Сторонней организацией	расчетный
		алканы С12-19	1 раз/ кварт	0,0600	526,88	Сторонней организацией	расчетный
0003	сварочный агрегат	диоксид азота	1 раз/ кварт	0,1602	1205,51	Сторонней организацией	расчетный
		азота оксид	1 раз/ кварт	0,0260	196,00	Сторонней организацией	расчетный

		углерод черный	1 раз/ кварт	0,0136	102,22	Сторонней организацией	расчетный
		диоксид серы	1 раз/ кварт	0,0214	161,23	Сторонней организацией	расчетный
		оксид углерода	1 раз/ кварт	0,1400	1053,77	Сторонней организацией	расчетный
		бенз(а)пирен	1 раз/ кварт	0,0000003	0,00	Сторонней организацией	расчетный
		формальдегид	1 раз/ кварт	0,0029	22,13	Сторонней организацией	расчетный
		алканы С12-19	1 раз/ кварт	0,0700	526,88	Сторонней организацией	расчетный
0004	котел битумный	диоксид азота	1 раз/ кварт	0,0023	1782,53	Сторонней организацией	расчетный
		диоксид серы	1 раз/ кварт	0,001736	5220,27	Сторонней организацией	расчетный
		оксид углерода	1 раз/ кварт	0,0162	12350,40	Сторонней организацией	расчетный
		углерод черный	1 раз/ кварт	0,00029	168067,23	Сторонней организацией	расчетный
		алканы С12-19	1 раз/ кварт	0,0058	526,88	Сторонней организацией	расчетный
6001	бульдозер	пыль неорганическая ниже 20%	1 раз/ кварт	0,0093		Сторонней организацией	расчетный
6002	автогрейдер	двуокиси кремния	1 раз/ кварт	0,0373		Сторонней организацией	расчетный
6003	экскаватор	пыль неорганическая ниже 20%	1 раз/ кварт	0,0140		Сторонней организацией	расчетный
6004	трактор	двуокиси кремния	1 раз/ кварт	0,0040		Сторонней организацией	расчетный
6005	машина бурильно-крановая	пыль неорганическая ниже 20%	1 раз/ кварт	0,3333		Сторонней организацией	расчетный
6006	Транспортировка пылящих материалов	двуокиси кремния	1 раз/ кварт	0,0866		Сторонней организацией	расчетный
6007	автосамосвал(разгрузка)	пыль неорганическая ниже 20%	1 раз/ кварт	0,9800		Сторонней организацией	расчетный
6008	автосамосвал(разгрузка)	двуокиси кремния	1 раз/ кварт	0,3267		Сторонней организацией	расчетный
6009	каток и трамбовка	пыль неорганическая ниже 20%	1 раз/ кварт	0,00005		Сторонней организацией	расчетный
6010	Сварочные работы	оксид железа	1 раз/ кварт	0,00252		Сторонней организацией	расчетный
		марганец и его соединения	1 раз/ кварт	0,00036		Сторонней организацией	расчетный
		фтористые газообразные соединения	1 раз/ кварт	0,0006		Сторонней организацией	расчетный
6011	газосварочные работы	оксид железа	1 раз/ кварт	0,02030		Сторонней организацией	расчетный

		марганец и его соединения	1 раз/ кварт	0,00030	Сторонней организацией	расчетный
		диоксид азота	1 раз/ кварт	0,01370	Сторонней организацией	расчетный
		оксид углерода	1 раз/ кварт	0,01380	Сторонней организацией	расчетный
6012	покрасочные работы	ксилол	1 раз/ кварт	0,562500	Сторонней организацией	расчетный
		метилбензол	1 раз/ кварт	0,097200	Сторонней организацией	расчетный
		бутилацетат	1 раз/ кварт	0,139400	Сторонней организацией	расчетный
		уайт-спирит	1 раз/ кварт	0,312500	Сторонней организацией	расчетный
		Спирт н-бутиловый	1 раз/ кварт	0,055600	Сторонней организацией	расчетный
		Этиловый спирт	1 раз/ кварт	0,028300	Сторонней организацией	расчетный
6013	Гидроизоляционные работы	алканы С12-19	1 раз/ кварт	0,0058	Сторонней организацией	расчетный
6014	Шлифовальные машина	взвешенные вещества	1 раз/ кварт	0,010400	Сторонней организацией	расчетный
		пыль абразивная	1 раз/ кварт	0,006800	Сторонней организацией	расчетный
6015	емкости для хранения ГСМ	алканы С12-19	1 раз/ кварт	0,002493	Сторонней организацией	расчетный
		сероводород	1 раз/ кварт	0,000010	Сторонней организацией	расчетный

Таблица 25 - План-график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов при эксплуатации

N исто чника	Производство,	Производство, Контролируемое цех, участок. вещество	Периоди чность	чность выбросов НДВ		Кем осуществляет	Методика проведения контроля
Шика	цел, у петок.	вещеетво	контроля	г/с	мг/м3	ся контроль	контроли
1	2	3	4	5	6	7	8
0001	ГПЭС-1	Азота диоксид	1 раз/ кварт	1,166667	455,714524	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Азота оксид	1 раз/ кварт	0,189583	74,0534588	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Углерод	1 раз/ кварт	0,008102	3,16474116	Сторонней организацией	расчетный
		Углерод оксид	1 раз/ кварт	1,472222	575,068077	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Бенз/а/пирен	1 раз/ кварт	0,0000002	0,00007812	Аккредит.лаб.	расчетный
		Формальдегид	1 раз/ кварт	0,002315	0,90426756	Сторонней организацией	расчетный
		Алканы С12-19	1 раз/ кварт	0,833333	325,510151	Сторонней организацией	расчетный
0002	Свеча ГПЭС-1	Метан	1 раз/ кварт	1,36283	7313355,13	Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,514848	2762829,01	Сторонней организацией	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,010377	55686,0989	Сторонней организацией	расчетный
0003	Сапун от ГПЭС-1	Масло минеральное нефтяное	1 раз/ кварт	0,14	219811,31	Сторонней организацией	расчетный
0004	ГПЭС-2	Азота диоксид	1 раз/ кварт	1,166667	455,714524	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Азота оксид	1 раз/ кварт	0,189583	74,0534588	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Углерод	1 раз/ кварт	0,008102	3,16474116	Сторонней организацией Аккредит.лаб.	расчетный
		Углерод оксид	1 раз/ кварт	1,472222	575,068077	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Бенз/а/пирен	1 раз/ кварт	0,0000002	0,00007812	Сторонней организацией	расчетный
		Формальдегид	1 раз/ кварт	0,002315	0,90426756	Сторонней	расчетный

						организацией	
		Алканы С12-19	1 раз/ кварт	0,833333	325,510151	Сторонней организацией	расчетный
0005	Свеча ГПЭС-2	Метан	1 раз/ кварт	1,36283	7313355,13	Сторонней организацией	расчетный
		Смесь углеводородов предельных С1-С5	1 раз/ кварт	0,514848	2762829,01	Сторонней организацией	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,010377	55686,0989	Сторонней организацией	расчетный
0006	Сапун от ГПЭС-2	Масло минеральное нефтяное	1 раз/ кварт	0,14	219811,31	Сторонней организацией	расчетный
0007	ГПЭС-3	Азота диоксид	1 раз/ кварт	1,166667	455,714524	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Азота оксид	1 раз/ кварт	0,189583	74,0534588	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Углерод	1 раз/ кварт	0,008102	3,16474116	Сторонней организацией Аккредит.лаб.	расчетный
		Углерод оксид	1 раз/ кварт	1,472222	575,068077	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Бенз/а/пирен	1 раз/ кварт	0,0000002	0,00007812	Сторонней организацией	расчетный
		Формальдегид	1 раз/ кварт	0,002315	0,90426756	Сторонней организацией	расчетный
		Алканы С12-19	1 раз/ кварт	0,833333	325,510151	Сторонней организацией	расчетный
0008	Свеча ГПЭС-3	Метан	1 раз/ кварт	1,36283	7313355,13	Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,514848	2762829,01	Сторонней организацией	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,010377	55686,0989	Сторонней организацией	расчетный
0009	Сапун от ГПЭС-3	Масло минеральное нефтяное	1 раз/ кварт	0,14	219811,31	Сторонней организацией	расчетный
0010	ГПЭС-4	Азота диоксид	1 раз/ кварт	1,166667	455,714524	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Азота оксид	1 раз/ кварт	0,189583	74,0534588	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Углерод	1 раз/ кварт	0,008102	3,16474116	Сторонней организацией	расчетный
		Углерод оксид	1 раз/ кварт	1,472222	575,068077	Сторонней организацией	Инструментальный метод

		Бенз/а/пирен	1 раз/ кварт	0,0000002	0,00007812	Сторонней организацией	расчетный
		Формальдегид	1 раз/ кварт	0,002315	0,90426756	Сторонней организацией	расчетный
		Алканы С12-19	1 раз/ кварт	0,833333	325,510151	Сторонней организацией	расчетный
0011	Свеча ГПЭС-4	Метан	1 раз/ кварт	1,36283	7313355,13	Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,514848	2762829,01	Сторонней организацией	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,010377	55686,0989	Сторонней организацией	расчетный
0012	Сапун от ГПЭС-4	Масло минеральное нефтяное	1 раз/ кварт	0,14	219811,31	Сторонней организацией	расчетный
0013	ГПЭС-5 (резервная)	Азота диоксид	1 раз/ кварт	1,166667	455,694912	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Азота оксид	1 раз/ кварт	0,189583	74,0502718	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Углерод	1 раз/ кварт	0,008102	3,16460496	Сторонней организацией Аккредит.лаб.	расчетный
		Углерод оксид	1 раз/ кварт	1,472222	575,043328	Сторонней организацией Аккредит.лаб.	Инструментальный метод
		Бенз/а/пирен	1 раз/ кварт	0,0000002	0,00007812	Сторонней организацией	расчетный
		Формальдегид	1 раз/ кварт	0,002315	0,90422864	Сторонней организацией	расчетный
		Алканы С12-19	1 раз/ кварт	0,833333	325,496142	Сторонней организацией	расчетный
0014	Свеча ГПЭС-5	Метан	1 раз/ кварт	1,36283	7313355,13	Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,514848	2762829,01	Сторонней организацией	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,010377	55686,0989	Сторонней организацией	расчетный
0015	Сапун от ГПЭС-5	Масло минеральное нефтяное	1 раз/ кварт	0,14	219811,31	Сторонней организацией	расчетный
0016	ДЭС (резервная)	Азота диоксид	1 раз/ кварт	0,853333	1140,89927	Сторонней организацией	расчетный
		Азота оксид	1 раз/ кварт	0,138667	185,396649	Сторонней организацией	расчетный
		Углерод	1 раз/ кварт	0,055556	74,2779194	Сторонней организацией	расчетный
		Сера диоксид	1 раз/ кварт	0,133333	178,265135	Сторонней организацией	расчетный

		Углерод оксид	1 раз/ кварт	0,688889	921,038981	Сторонней организацией	расчетный
		Бенз/а/пирен	1 раз/ кварт	0,000001	0,00133699	Сторонней организацией	расчетный
		Формальдегид	1 раз/ кварт	0,013333	17,8261124	Сторонней организацией	расчетный
		Алканы С12-19	1 раз/ кварт	0,322222	430,808189	Сторонней организацией	расчетный
0017	Сапун от ДЭС	Масло минеральное нефтяное	1 раз/ кварт	0,907	5403490,77	Сторонней организацией	расчетный
0018	Конденсатосборник V-5м3	Смесь углеводородов предельных С1-С5	1 раз/ кварт	0,174573	1040026,01	Сторонней организацией	расчетный
0019	Емкость для хранения дизельного топлива	Сероводород	1 раз/ кварт	0,000044	262,131856	Сторонней организацией	расчетный
	TOTAL	Алканы С12-19	1 раз/ кварт	0,000249	1483,42801	Сторонней организацией	расчетный
6001	Площадка ДЭС	Сероводород	1 раз/ кварт	0,000001		Сторонней организацией	расчетный
		Алканы С12-19	1 раз/ кварт	0,000524		Сторонней организацией	расчетный
6002	Точка подключения №1	Метан	1 раз/ кварт	0,002458		Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,000929		Сторонней организацией	расчетный
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0,000019		Сторонней организацией	расчетный
6003	Точка подключения №2	Метан	1 раз/ кварт	0,002458		Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,000929		Сторонней организацией	расчетный
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0,000019		Сторонней организацией	расчетный
6004	Площадка газопоршневых электростанции	Метан	1 раз/ кварт	0,036869		Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,013928		Сторонней организацией	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,000281		Сторонней организацией	расчетный
6005	Площадка буферной емкости V- 100м3	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,000131		Сторонней организацией	расчетный
6006	Площадка конденсатосборника V- 5м3	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,000263		Сторонней организацией	расчетный
6007	Межплощадочные трубопроводы	Метан	1 раз/ кварт	0,011061		Сторонней организацией	расчетный
		Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,004179		Сторонней организацией	расчетный

		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,000084	Сторонней организацией	расчетный
6008	Насос	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,016111	Сторонней организацией Аккредит.лаб.	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,006111	Сторонней организацией Аккредит.лаб.	расчетный
6009	Насос масленый	Масло минеральное нефтяное	1 раз/ кварт	0,008333	Сторонней организацией Аккредит.лаб.	расчетный
6010	Насос масленый	Масло минеральное нефтяное	1 раз/ кварт	0,008333	Сторонней организацией Аккредит.лаб.	расчетный
6011	Насос масленый	Масло минеральное нефтяное	1 раз/ кварт	0,008333	Сторонней организацией Аккредит.лаб.	расчетный
6012	Насос масленый	Масло минеральное нефтяное	1 раз/ кварт	0,008333	Сторонней организацией Аккредит.лаб.	расчетный
6013	Насос масленый	Масло минеральное нефтяное	1 раз/ кварт	0,008333	Сторонней организацией Аккредит.лаб.	расчетный
6014	Точка подключения ТП-1	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,001247	Сторонней организацией Аккредит.лаб.	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,000473	Сторонней организацией Аккредит.лаб.	расчетный
6015	Точка подключения ТП-2	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,001247	Сторонней организацией Аккредит.лаб.	расчетный
		Смесь углеводородов предельных С6-С10	1 раз/ кварт	0,000473	Сторонней организацией Аккредит.лаб.	расчетный

6016	Площадка подготовки топливного газа	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,011284	Сторонней организацией Аккредит.лаб.	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,010687	Сторонней организацией Аккредит.лаб.	расчетный
6017	Площадка дренажной емкости ДЕ- 1	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,001927	Сторонней организацией Аккредит.лаб.	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,000731	Сторонней организацией Аккредит.лаб.	расчетный
6018	Площадка буферной емкости Е-1	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,002494	Сторонней организацией Аккредит.лаб.	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,000946	Сторонней организацией Аккредит.лаб.	расчетный
6019	Площадка насоса	Смесь углеводородов предельных C1-C5	1 раз/ кварт	0,001927	Сторонней организацией Аккредит.лаб.	расчетный
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0,000731	Сторонней организацией Аккредит.лаб.	расчетный
6020	Покрасочные работы	Диметилбензол	1 раз/ кварт	0,5625	Сторонней организацией Аккредит.лаб.	расчетный
		Уайт-спирит	1 раз/ кварт	0,3125	Сторонней организацией Аккредит.лаб.	расчетный
6021	Сварочные работы	Железа оксид	1 раз/ кварт	0,001163	Сторонней организацией Аккредит.лаб.	расчетный
		Марганец и его соединения	1 раз/ кварт	0,000115	Сторонней организацией Аккредит.лаб.	расчетный

Таблица 26 - Расчет категории источников, подлежащих контролю

Номер ИЗА	Наименование источника загрязнения атмосферы	Высота источника, м	КПД очистн. сооруж. %	Код 3В	ПДКм.р (ОБУВ, ПДКс.с.) мг/м3	Масса выброса (М) с учетом очистки, г/с	М*100 ПДК*Н* (100-КПД)	Максимальная приземная концентрация (См) мг/м3	См*100 ПДК*(100- КПД)	Категория источника
1	2	3	4	5	6	7	8	9	10	11
Площад		, ,						1		
0001	труба	7		0301	0,2	1,166667	0,5833	0,1168	0,584	1
				0304	0,4	0,189583	0,0474	0,019	0,0475	2
				0328	0,15	0,008102	0,0054	0,0024	0,016	2
				0337	5	1,472222	0,0294	0,1474	0,0295	2
				0703	**0.000001	0,0000002	0,002	0,0000001	0,01	2
				1325	0,05	0,002315	0,0046	0,0002	0,004	2
				2754	1	0,833333	0,0833	0,0834	0,0834	2
0002	труба	4		0410	*50	1,36283	0,0027	9,6585	0,1932	2
				0415	*50	0,514848	0,001	3,6488	0,073	2
				0416	*30	0,010377	0,00003	0,0735	0,0025	2
0003	труба	5		2735	*0.05	0,14	0,28	0,5895	11,79	1
0004	труба	7		0301	0,2	1,166667	0,5833	0,1168	0,584	1
				0304	0,4	0,189583	0,0474	0,019	0,0475	2
				0328	0,15	0,008102	0,0054	0,0024	0,016	2
				0337	5	1,472222	0,0294	0,1474	0,0295	2
				0703	**0.000001	0,0000002	0,002	0,0000001	0,01	2
				1325	0,05	0,002315	0,0046	0,0002	0,004	2
				2754	1	0,833333	0,0833	0,0834	0,0834	2
0005	труба	4		0410	*50	1,36283	0,0027	9,6585	0,1932	2
				0415	*50	0,514848	0,001	3,6488	0,073	2
				0416	*30	0,010377	0,00003	0,0735	0,0025	2
0006	труба	5		2735	*0.05	0,14	0,28	0,5895	11,79	1
0007	труба	7		0301	0,2	1,166667	0,5833	0,1168	0,584	1

	1	T		0.4	0.400.700	0.04=4	0.040	004==	
			0304	0,4	0,189583	0,0474	0,019	0,0475	2
			0328	0,15	0,008102	0,0054	0,0024	0,016	2
			0337	5	1,472222	0,0294	0,1474	0,0295	2
			0703	**0.000001	0,0000002	0,002	0,0000001	0,01	2
			1325	0,05	0,002315	0,0046	0,0002	0,004	2
			2754	1	0,833333	0,0833	0,0834	0,0834	2
0008	труба	4	0410	*50	1,36283	0,0027	9,6585	0,1932	2
			0415	*50	0,514848	0,001	3,6488	0,073	2
			0416	*30	0,010377	0,00003	0,0735	0,0025	2
0009	труба	5	2735	*0.05	0,14	0,28	0,5895	11,79	1
0010	труба	7	0301	0,2	1,166667	0,5833	0,1168	0,584	1
			0304	0,4	0,189583	0,0474	0,019	0,0475	2
			0328	0,15	0,008102	0,0054	0,0024	0,016	2
			0337	5	1,472222	0,0294	0,1474	0,0295	2
			0703	**0.000001	0,0000002	0,002	0,0000001	0,01	2
			1325	0,05	0,002315	0,0046	0,0002	0,004	2
			2754	1	0,833333	0,0833	0,0834	0,0834	2
0011	труба	4	0410	*50	1,36283	0,0027	9,6585	0,1932	2
			0415	*50	0,514848	0,001	3,6488	0,073	2
			0416	*30	0,010377	0,00003	0,0735	0,0025	2
0012	труба		2735	*0.05	0,14	0,28	5,0003	100,006	1
0013	труба	7	0301	0,2	1,166667	0,5833	0,1168	0,584	1
			0304	0,4	0,189583	0,0474	0,019	0,0475	2
			0328	0,15	0,008102	0,0054	0,0024	0,016	2
			0337	5	1,472222	0,0294	0,1474	0,0295	2
			0703	**0.000001	0,0000002	0,002	0,0000001	0,01	2
			1325	0,05	0,002315	0,0046	0,0002	0,004	2
			2754	1	0,833333	0,0833	0,0834	0,0834	2
0014	труба	4	0410	*50	1,36283	0,0027	9,6585	0,1932	2
			0415	*50	0,514848	0,001	3,6488	0,073	2
			0416	*30	0,010377	0,00003	0,0735	0,0025	2
0015	труба	2	2735	*0.05	0,14	0,28	5,0003	100,006	1

0016	труба	3	0301	0,2	0,853333	0,4267	0,4118	2,059	1
			0304	0,4	0,138667	0,0347	0,0669	0,1673	2
			0328	0,15	0,055556	0,037	0,0804	0,536	1
			0330	0,5	0,133333	0,0267	0,0643	0,1286	2
			0337	5	0,688889	0,0138	0,3324	0,0665	2
			0703	**0.000001	0,000001	0,01	0,000001	0,1	2
			1325	0,05	0,013333	0,0267	0,0064	0,128	2
			2754	1	0,322222	0,0322	0,1555	0,1555	2
0017	труба	1	2735	*0.05	0,907	1,814	32,3949	647,898	1
0018	дых.клапан	1	0415	*50	0,174573	0,0003	6,2351	0,1247	2
0019	труба	1	0333	0,008	0,000044	0,0006	0,0016	0,2	2
			2754	1	0,000249	0,00002	0,0089	0,0089	2
0020	дых.клапан	2	0415	*50	0,000194	0,0000004	0,0069	0,0001	2
			0416	*30	0,000074	0,0000002	0,0026	0,0001	2
6001	ЗРА и ФС	2	0333	0,008	0,000001	0,00001	0,00004	0,005	2
			2754	1	0,000524	0,0001	0,0187	0,0187	2
6002	ЗРА и ФС	2	0410	*50	0,002458	0,00001	0,0878	0,0018	2
			0415	*50	0,000929	0,000002	0,0332	0,0007	2
			0416	*30	0,000019	0,0000001	0,0007	0,00002	2
6003	ЗРА и ФС	2	0410	*50	0,002458	0,00001	0,0878	0,0018	2
			0415	*50	0,000929	0,000002	0,0332	0,0007	2
			0416	*30	0,000019	0,0000001	0,0007	0,00002	2
6004	ЗРА и ФС	2	0410	*50	0,036869	0,0001	1,3168	0,0263	2
			0415	*50	0,013928	0,00003	0,4975	0,01	2
			0416	*30	0,000281	0,000001	0,01	0,0003	2
6005	ЗРА и ФС	2	0415	*50	0,000131	0,0000003	0,0047	0,0001	2
6006	ЗРА и ФС	2	0415	*50	0,000263	0,000001	0,0094	0,0002	2
6007	ЗРА и ФС	2	0410	*50	0,011061	0,00002	0,3951	0,0079	2
			0415	*50	0,004179	0,00001	0,1493	0,003	2
			0416	*30	0,000084	0,0000003	0,003	0,0001	2
6008	неорг.выброс	2	0415	*50	0,016111	0,00003	0,5754	0,0115	2
			0416	*30	0,006111	0,00002	0,2183	0,0073	2

6009	неорг.выброс	2	2735	*0.05	0,008333	0,0167	0,2976	5,952	1
6010	неорг.выброс	2	2735	*0.05	0,008333	0,0167	0,2976	5,952	1
6011	неорг.выброс	2	2735	*0.05	0,008333	0,0167	0,2976	5,952	1
6012	неорг.выброс	2	2735	*0.05	0,008333	0,0167	0,2976	5,952	1
6013	неорг.выброс	2	2735	*0.05	0,008333	0,0167	0,2976	5,952	1
6014	ЗРА и ФС	2	0415	*50	0,001247	0,000002	0,0445	0,0009	2
			0416	*30	0,000473	0,000002	0,0169	0,0006	2
6015	ЗРА и ФС	2	0415	*50	0,001247	0,000002	0,0445	0,0009	2
			0416	*30	0,000473	0,000002	0,0169	0,0006	2
6016	ЗРА и ФС	2	0415	*50	0,011284	0,00002	0,403	0,0081	2
			0416	*30	0,010687	0,00004	0,3817	0,0127	2
6017	ЗРА и ФС	2	0415	*50	0,001927	0,000004	0,0688	0,0014	2
			0416	*30	0,000731	0,000002	0,0261	0,0009	2
6018	ЗРА и ФС	2	0415	*50	0,002494	0,00001	0,0891	0,0018	2
			0416	*30	0,000946	0,000003	0,0338	0,0011	2
6019	ЗРА и ФС	2	0415	*50	0,001927	0,000004	0,0688	0,0014	2
			0416	*30	0,000731	0,000002	0,0261	0,0009	2
6020	неорг.выброс	2	0616	0,2	0,5625	0,2813	20,0905	100,4525	1
			2752	*1	0,3125	0,0313	11,1614	11,1614	1
6021	неорг.выброс	2	0123	**0.04	0,001163	0,0003	0,1246	0,3115	2
			0143	0,01	0,000115	0,0012	0,0123	1,23	2

Примечания: 1. М и См умножаются на 100/100-КПД только при значении КПД очистки >75%. (ОНД-90,Іч.,п.5.6.3)

^{2.} К 1-й категории относятся источники с См/ПДК>0.5 и М/(ПДК*H)>0.01. При H<10м принимают H=10. (ОНД-90,Iч.,п.5.6.3)

^{3.} В случае отсутствия ПДКм.р. в колонке 6 указывается "*" - для значения ОБУВ, "**" - для ПДКс.с

^{4.} Способ сортировки: по возрастанию кода ИЗА и кода ЗВ

Таблица 27 - Определение необходимости расчетов приземных концентраций по веществам

		ПДК	ПДК	ОБУВ	Выброс	Средневзве-	М/(ПДК*Н)	Необхо-
		максим.	средне-	ориентир.	вещества, г/с	шенная высота,	для Н>10	димость
Код ЗВ	Наименование загрязняющего вещества	разовая,	суточная,	безопасн.	(M)	M	М/ПДК	прове-
		мг/м3	мг/м3	УВ,мг/м3		(H)	для Н<10	дения
								расчетов
1	2	3	4	5	6	7	8	9
0123	Железа оксид		0,04		0,001163	2	0,0029	Нет
0143	Марганец и его соединения	0,01	0,001		0,000115	2	0,0115	Нет
0304	Азота оксид	0,4	0,06		1,086582	6,49	2,7165	Да
0328	Углерод	0,15	0,05		0,096066	4,69	0,6404	Да
0337	Углерод оксид	5	3		8,049999	6,66	1,61	Да
0410	Метан			50	6,866996	3,98	0,1373	Да
0415	Смесь углеводородов предельных С1-С5			50	2,805603	3,84	0,0561	Нет
0416	Смесь углеводородов предельных С6-С10			30	0,072514	3,43	0,0024	Нет
0616	Диметилбензол	0,2			0,5625	2	2,8125	Да
0703	Бенз/а/пирен		0,000001		0,000002	5	0,2	Да
2735	Масло минеральное нефтяное			0,05	1,648665	2,76	32,9733	Да
2752	Уайт-спирит			1	0,3125	2	0,3125	Да
2754	Алканы С12-19	1			4,48966	6,71	4,4897	Да
Веществ	а, обладающие эффектом суммарного вредного возде	ействия						
0301	Азота диоксид	0,2	0,04		6,686668	6,49	33,4333	Да
0330	Сера диоксид	0,5	0,05		0,133333	3	0,2667	Да
0333	Сероводород	0,008			0,000045	2	0,0056	Нет
1325	Формальдегид	0,05	0,01		0,024908	4,86	0,4982	Да
_	4 11 4	•	50 3 5DT4 20			0 -	. 0.04 TT. 40 . 0	4 77 .40

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле:Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с

^{2.} При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

Таблица 28 - Контрольные значения приземных концентраций вредных веществ для контроля нормативов допустимых выбросов

Ког	нтрольная точн	a		Эталонные расчетн	ные концентрации при оп	пасной скорости ветра	
Номер	Коорди Х	наты, м	Наименование контролируемого вещества	направление ветра, град.	опасная скорость, м/с	концентрация, мг/м3	
1	2	3	4	5	6	7	
1	2954	3576	Азота диоксид	202	8	0,1271022	
			Азота оксид	202	8	0,0251666	
			Углерод	202	2,39	0,0011784	
			Сероводород	202	0,71	0,0040054	
			Углерод оксид	202	8	1,9566052	
			Метан	202	8	0,4118407	
			Смесь углеводородов предельных С1-С5	202	8	0,1743631	
			Масло минеральное нефтяное	202	8	0,0430761	
			Алканы С12-19	202	8	0,5757256	
2	4257	2535	Азота диоксид	270	2,71	0,0779115	
			Азота оксид	270	2,71	0,0171731	
				Углерод	270	2,39	0,0006587
				Сероводород	270	1,3	0,004003
			Углерод оксид	270	2,71	1,8945311	
			Метан	270	8	0,185388	
			Смесь углеводородов предельных С1-С5	270	8	0,0797298	
			Масло минеральное нефтяное	270	8	0,020423	
			Алканы С12-19	270	2,71	0,5405508	
3	2989	974	Азота диоксид	344	2,78	0,0815901	
			Азота оксид	344	2,77	0,017771	
			Углерод	344	2,39	0,0007068	
			Сероводород	344	1,22	0,0040032	
			Углерод оксид	344	2,77	1,8991747	
			Метан	344	8	0,2016859	
			Смесь углеводородов предельных С1-С5	344	8	0,0865604	

			Масло минеральное нефтяное	344	8	0,0221375
			Алканы С12-19	344	2,77	0,5431815
4	1478	2508	Азота диоксид	88	8	0,1342663
			Азота оксид	88	8	0,0263307
			Углерод	88	2,4	0,0012286
			Сероводород	88	0,71	0,0040057
			Углерод оксид	88	8	1,9656456
			Метан	88	8	0,4387357
			Смесь углеводородов предельных С1-С5	88	8	0,1857327
			Масло минеральное нефтяное	88	8	0,0458871
			Алканы С12-19	88	8	0,5808476

Таблица 29 - Максимальная разовая концентрация загрязняющих веществ в расчетных точках (на границах C33, в жилой застройке)

	Pa	асчетная точ	ка	Расчетная	
TT		Коорди	наты, м.	максимальная	
Наименование вещества	Номер	X	Y	разовая концентрация, доли ПДК	
1	2	3	4	5	
Группа 90 - Расчётны					
1. Существующее пол					
Загрязняющие ве	щества:				
(0123) Железа оксид	1	2954	3576	0.0001635	
	2	4257	2535	0.0000784	
	3 4	2989 1478	974 2508	0.0000856 0.0001731	
		1476	2300	0.0001731	
(0143) Марганец и его соединения	1	2954	3576	0.0006466	
	2	4257	2535	0.0003102	
	3	2989	974	0.0003386	
	4	1478	2508	0.0006848	
(0301) Азота диоксид	1	2954	3576	0.6355108	
(0501) 115014 ANORONA	2	4257	2535	0.3895574	
	3	2989	974	0.4079505	
	4	1478	2508	0.6713316	
(0204) A		2054	2576	0.0620164	
(0304) Азота оксид	1 2	2954 4257	3576 2535	0.0629164 0.0429327	
	3	2989	974	0.0429327	
	4	1478	2508	0.0658268	
(0000) 11		2054	2555	0.0050550	
(0328) Углерод	1	2954 4257	3576 2535	0.0078559 0.0043913	
	2 3	2989	974	0.0043913	
	4	1478	2508	0.0081904	
(0333) Сероводород	1	2954	3576	0.5006792	
(оззз) сероводород	2	4257	2535	0.5003774	
	3	2989	974	0.5004046	
	4	1478	2508	0.5007071	
(0337) Углерод оксид	1	2954	3576	0.391321	
(0557) Утмерод окенд	2	4257	2535	0.3789062	
	3	2989	974	0.3798349	
	4	1478	2508	0.3931291	
(0410) Метан	1	2954	3576	0.0082368	
(0110) Metali	2	4257	2535	0.0037078	
	3	2989	974	0.0040337	
	4	1478	2508	0.0087747	
(0415) Смесь углеводородов предельных С1-С5	1	2954	3576	0.0035579	
(-) Jerrendel eden ubadamanı e. eo	2	4257	2535	0.0016378	
	3	2989	974	0.0017711	
	4	1478	2508	0.0037917	
(0616) Диметилбензол	1	2954	3576	0.3384556	
	2	4257	2535	0.1877875	
	3	2989	974	0.2021602	
	4	1478	2508	0.3520692	
(2735) Масло минеральное нефтяное	1	2954	3576	0.8788561	
Y Y	2	4257	2535	0.4175773	
	3	2989	974	0.4525515	
	4	1478	2508	0.9360559	

(0750) X/ ×	1 .	1 2054	l 2555	0.007.60.60
(2752) Уайт-спирит	1	2954	3576	0.0376062
	2	4257	2535	0.0208653
	3	2989	974	0.0224622
	4	1478	2508	0.0391188
(2754) Алканы С12-19	1	2954	3576	0.5757256
	2	4257	2535	0.5405508
	3	2989	974	0.5431815
	4	1478	2508	0.5808476
F.,				
07(31) (0301) Азота диоксид	г суммации: 1	2954	3576	0.6855108
(0330) Сера диоксид	2	4257	2535	0.4395574
(0330) Сера диоксид		2989	974	
	3 4	2989 1478	2508	0.4579562 0.7213317
37(39) (0333) Сероводород	1	2954	3576	0.5055284
(1325) Формальдегид	2	4257	2535	0.5032852
	3	2989	974	0.5034472
	4	1478	2508	0.5058515
44(30) (0330) Сера диоксид	1	2954	3576	0.5506792
(0333) Сероводород	2	4257	2535	0.5503774
(0333) Сероводород	3	2989	974	0.5504046
	4	1478	2508	0.5507072
	ектива (НДВ)			
	щие вещества:			
(0123) Железа оксид	1	2954	3576	0.0001635
	2	4257	2535	0.0000784
	3	2989	974	0.0000856
	4	1478	2508	0.0001731
(0142) M	1	2954	3576	0.0006466
(0143) Марганец и его соединения	1			
	2	4257	2535	0.0003102
	3	2989	974	0.0003386
	4	1478	2508	0.0006848
(0301) Азота диоксид	1	2954	3576	0.6355108
	2	4257	2535	0.3895574
	3	2989	974	0.4079505
	4	1478	2508	0.6713316
(0304) Азота оксид	1	2954	3576	0.0629164
	2	4257	2535	0.0429327
	3	2989	974	0.0444276
	4	1478	2508	0.0658268
(0328) Углерод	1	2954	3576	0.0078559
(0320) 3 Глерод	2	4257	2535	0.0078339
	3	2989	974	0.0043913
	4	1478	2508	0.0047121
(0333) Сероводород	1	2954	3576	0.5006792
	2	4257	2535	0.5003774
	3	2989	974	0.5004046
	4	1478	2508	0.5007071
(0227) Vergene i eveni	1	2054	2577	0.201221
(0337) Углерод оксид	1	2954	3576	0.391321
	2	4257	2535	0.3789062
	3 4	2989 1478	974 2508	0.3798349 0.3931291
(0.410) M	1	2954	3576	0.0082368
(0410) Metah		4257	2535	0.0037078
(0410) Metah	2			
(0410) Metah	3	2989	974	0.0040337
(0410) Метан				0.0040337 0.0087747

(0415) Смесь углеводородов предельных С1-С5	1	2954	3576	0.0035579
(0413) Смесь утлеводородов предельных ст-сз	2	4257	2535	0.0035377
	3	2989	974	0.0010378
	4	1478	2508	
	4	14/8	2508	0.0037917
(0616) Диметилбензол	1	2954	3576	0.3384556
(0010) Anmennioenson	2	4257	2535	0.1877875
	3	2989	974	0.2021602
	4	1478	2508	0.3520692
	4	14/6	2306	0.3320092
(2735) Масло минеральное нефтяное	1	2954	3576	0.8788561
(2	4257	2535	0.4175773
	3	2989	974	0.4525515
	4	1478	2508	0.9360559
		1470	2300	0.7300337
(2752) Уайт-спирит	1	2954	3576	0.0376062
	2	4257	2535	0.0208653
	3	2989	974	0.0224622
	4	1478	2508	0.0391188
				0.00,000
(2754) Алканы С12-19	1	2954	3576	0.5757256
	2	4257	2535	0.5405508
	3	2989	974	0.5431815
	4	1478	2508	0.5808476
Группы суммаці		1	,	
07(31) (0301) Азота диоксид	1	2954	3576	0.6855108
(0330) Сера диоксид	2	4257	2535	0.4395574
	3	2989	974	0.4579562
	4	1478	2508	0.7213317
27/20\ (0222\ C	1	2054	2576	0.5055204
37(39) (0333) Сероводород	1	2954	3576	0.5055284
(1325) Формальдегид	2	4257	2535	0.5032852
	3	2989	974	0.5034472
	4	1478	2508	0.5058515
44(30) (0330) Сера диоксид	1	2954	3576	0.5506792
(0333) Сероводород	2	4257	2535	0.5503774
(0333) Сероводород	3	2989	2333 974	0.5504046
	4	1478	2508	0.5507072
	4	14/8	2308	0.550/0/2
	l			

11. РАСЧЕТ ПЛАТЫ ЗА ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ

В соответствии с «Экологическим Кодексом РК» вводятся такие экономические методы охраны окружающей среды, как плата за пользование природными ресурсами, плата за загрязнение окружающей среды, за выбросы и сбросы загрязняющих веществ, размещения отходов и т.д.

Стимулирование природопользователей в проведении природоохранных мероприятий, рациональном использовании всего природно-ресурсного потенциала осуществляется с помощью экономического механизма природопользования, предусматривающего систему экологических платежей.

Порядок природопользования в Республике Казахстан предполагает плату инициатора предполагаемой деятельности за воздействие на окружающую среду. Эта плата подразделяется на 2 вида:

Платежи за воздействие на окружающую среду при безаварийной (штатной) деятельности в пределах лимитов на воздействие на окружающую среду;

Платежи за нанесение ущерба от сверхнормативного воздействия при безаварийной (штатной) при превышении лимитов.

Дополнительно существует система штрафов за нарушение природоохранного законодательства, что включает в себя различные аварии и чрезвычайные ситуации. Расчет платежей за нанесение ущерба окружающей среде при аварийных ситуациях основаны на методике расчета штрафов за нарушение природоохранного законодательства.

Здесь рассмотрены виды платежей за фактическое загрязнение природной среды, т.е. такие природоохранные платежи, как плата за выбросы и размещение отходов, которые могут рассматриваться как форма компенсации ухудшения состояния среды и, соответственно, как стоимостное выражение ущерба, пропорциональное интенсивности оказываемого воздействия.

Этот вид платежей можно отнести к регулярным природоохранным платежам, которые устанавливаются на стадии проектирования. Исходя из обзора планируемой деятельности, воздействие на окружающую среду при штатных работах (облагающееся регулярными платежами) будет включать:

- выбросы загрязняющих веществ в воздушную среду;
- размещение (хранение, захоронение) отходов в окружающей природной среде.

Расчеты платежей носят предварительный характер, в связи с тем, что эти ставки за выбросы меняются ежегодно и непосредственные платежи рассчитываются согласно фактическим показателям, а не по проектным решениям.

<u>Расчёт платежей за выбросы загрязняющих веществ в воздушную среду от источников выбросов</u>

Для возмещения экономического ущерба от выбросов вредных веществ в атмосферу взимается плата за загрязнение окружающей среды. Нормативные платы (ставки) за загрязнение природной среды принимаются согласно существующим положениям.

Расчет платы за выбросы от стационарных источников.

Этот вид платежей можно отнести к регулярным природоохранным платежам, которые устанавливаются на стадии проектирования. Исходя из обзора планируемой деятельности, воздействие на окружающую среду при штатных работах будет включать:

- выбросы загрязняющих веществ в воздушную среду.

Ставки платы определяется исходя из размера месячного расчетного показателя, установленного на соответствующий финансовый год законом о республиканском бюджете (далее МРП – 3932 тенге на 2025 г.).

Ставки платы за выбросы загрязняющих веществ от стационарных источников

№ п/п	Виды загрязняющих веществ	Ставки платы за 1 тонну, (МРП)	Ставки платы за 1 килограмм, (МРП)
1	Окислы серы	20	
2	Окислы азота	20	
3	Пыль и зола	10	
4	Свинец и его соединения	3986	
5	Сероводород	124	
6	Фенолы	332	
7	Углеводороды	0,32	
8	Формальдегид	332	
9	Окислы углерода	0,32	
10	Метан	0,02	
11	Сажа	24	
12	Окислы железа	30	
13	Аммиак	24	
14	Хром шестивалентный	798	
15	Окислы меди	598	
16	Бенз(а)пирен		996,6

Ставки платы определяются исходя из размера месячного расчетного показателя, установленного на соответствующий финансовый год Законом о Республиканском бюджете.

Расчёт платежей за выбросы загрязняющих веществ в атмосферу при пробной эксплуатации представлены в таблице ниже.

Таблица 30 - Плата за загрязнение атмосферыРасчёт платежей за выбросы загрязняющих веществ при строительстве

Код загр. веще- ства	Наименование загрязняющего вещества	Количество выбросов ВВ т/год	Ставки платы за 1 тонну	МРП	Плата тенге/год
1	2	3	4	5	6
0123	Железо (II, III) оксиды (274)	0,00745	30	3932	878,802
0143	Марганец и его соединения (327)	0,00017	-	3932	-
0301	Азота (IV) диоксид (Азота диоксид) (4)	0,154636	20	3932	12160,575
0304	Азот (II) оксид (Азота оксид) (6)	0,024459	20	3932	1923,4558
0328	Углерод (Сажа, Углерод черный) (583)	0,013158	24	3932	1241,6941
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0,019842	20	3932	1560,3749
0333	Сероводород	0,00000004	124	3932	0,0195027
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0,13748	0,32	3932	172,98284
0342	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0,00001	-	3932	-
0616	Диметилбензол (смесь о-, м-, п- изомеров) (203)	0,09	-	3932	-
0621	Метилбензол (349)	0,01	-	3932	-
0703	Бенз/а/пирен (3,4-Бензпирен) (54)	0,00000025	996600	3932	979,6578
1042	Бутан-1-ол (Бутиловый спирт) (102)	0,01	-	3932	-
1061	Этанол (Этиловый спирт) (667)	0,0051	-	3932	-
1210	Бутилацетат (Уксусной кислоты бутиловый эфир) (110)	0,0251	-	3932	-
1325	Формальдегид (Метаналь) (609)	0,002626	332	3932	3428,0434
2752	Уайт-спирит (1294*)	0,045	-	3932	-
2754	Алканы С12-19 (10)	0,066655	0,32	3932	83,867987
2902	Взвешенные частицы (116)	0,001797	10	3932	70,65804
2909	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (495*)	0,043095	10	3932	1694,4954

	ВСЕГО	0,65775			24241	
2930	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0,001175	10	3932	46,201	Ì

Расчёт платежей за выбросы загрязняющих веществ при эксплуатации на 2025 год

Код загр. веще- ства	Наименование загрязняющего вещества	Количество выбросов ВВ т/год	Ставки платы за 1 тонну	МРП	Плата тенге/год
1	2	3	4	5	6
0123	Железа оксид	0,001674	30	3932	197,46504
0143	Марганец и его соединения	0,000166	-	3932	-
0301	Азота диоксид	176,412184	20	3932	13873054
0304	Азота оксид	28,66698	20	3932	2254371,3
0328	Углерод	1,27424	24	3932	120247,48
0330	Сера диоксид	0,03995	20	3932	3141,668
0333	Сероводород	0,00004603	124	3932	22,442755
0337	Углерод оксид	221,661632	0,32	3932	278903,53
0410	Метан	1,667366	0,02	3932	131,12166
0415	Смесь углеводородов предельных С1-С5	1,858904	0,32	3932	2338,9474
0416	Смесь углеводородов предельных С6-С10	0,461115	0,32	3932	580,19334
0616	Диметилбензол	0,18	-	3932	-
0703	Бенз/а/пирен	0,0000294	996600	3932	115207,76
1325	Формальдегид	0,339529	332	3932	443229,31
2735	Масло минеральное нефтяное	18,0054	0,32	3932	22655,114
2752	Уайт-спирит	0,09	-	3932	-
2754	Алканы С12-19	125,938483	0,32	3932	158460,84
	ВСЕГО	576,59770			17272541

Расчёт платежей за выбросы загрязняющих веществ при эксплуатации на 2026 год

Код загр. веще- ства	Наименование загрязняющего вещества	Количество выбросов ВВ т/год	Ставки платы за 1 тонну	МРП	Плата тенге/год
1	2	3	4	5	6
0123	Железа оксид	0,001674	30	4325	217,2015
0143	Марганец и его соединения	0,000166	-	4325	-
0301	Азота диоксид	167,313428	20	4325	14472612
0304	Азота оксид	27,188432	20	4325	2351799,4
0328	Углерод	1,209248	24	4325	125519,94
0330	Сера диоксид	0,03995	20	4325	3455,675
0333	Сероводород	0,00004603	124	4325	24,685889
0337	Углерод оксид	210,223192	0,32	4325	290948,9
0410	Метан	1,667366	0,02	4325	144,22716
0415	Смесь углеводородов предельных С1-С5	1,858904	0,32	4325	2572,7231
0416	Смесь углеводородов предельных С6-С10	0,461115	0,32	4325	638,18316
0616	Диметилбензол	0,18	-	4325	-
0703	Бенз/а/пирен	0,0000294	996600	4325	126722,67
1325	Формальдегид	0,322201	332	4325	462648,42
2735	Масло минеральное нефтяное	18,0054	0,32	4325	24919,474
2752	Уайт-спирит	0,09	-	4325	-

	ВСЕГО	548,00052			18027527
2754	Алканы С12-19	119,439367	0,32	4325	165304,08

Расчёт платежей за выбросы загрязняющих веществ при эксплуатации на 2027 год

			1		
Код загр. веще- ства	Наименование загрязняющего вещества	Количество выбросов ВВ т/год	Ставки платы за 1 тонну	МРП	Плата тенге/год
1	2	3	4	5	6
0123	Железа оксид	0,001674	30	4355	218,7081
0143	Марганец и его соединения	0,000166	-	4355	-
0301	Азота диоксид	167,313428	20	4355	14573000
0304	Азота оксид	27,188432	20	4355	2368112,4
0328	Углерод	1,209248	24	4355	126390,6
0330	Сера диоксид	0,03995	20	4355	3479,645
0333	Сероводород	0,00004603	124	4355	24,857121
0337	Углерод оксид	210,223192	0,32	4355	292967,04
0410	Метан	1,667366	0,02	4355	145,22758
0415	Смесь углеводородов предельных С1-С5	1,858904	0,32	4355	2590,5686
0416	Смесь углеводородов предельных С6-С10	0,461115	0,32	4355	642,60986
0616	Диметилбензол	0,18	-	4355	-
0703	Бенз/а/пирен	0,0000294	996600	4355	127601,67
1325	Формальдегид	0,322201	332	4355	465857,54
2735	Масло минеральное нефтяное	18,0054	0,32	4355	25092,325
2752	Уайт-спирит	0,09	-	4355	-
2754	Алканы С12-19	119,439367	0,32	4355	166450,7
	ВСЕГО	548,00052			18152574

12. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Экологическому кодексу РК Кодекс Республики Казахстан от 2 января 2021 года № 400-VI 3PK.
- 2. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 30 июля 2021 года № 280 «Об утверждении Инструкции по организации и проведению экологической оценки».
- 3. Методика определения нормативов эмиссий в окружающую среду. Приказ Министра экологии, геологии и природных ресурсов РК от 10 марта 2021 года № 63.
- 4. Приказ и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан от 6 августа 2021 года №314 «Об утверждении Классификатора отходов».
- 5. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 22 июня 2021 года № 206 «Об утверждении методики расчета лимитов накопления отходов и лимитов захоронения отходов».
- 6. Санитарные правила "Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления" утвержденные приказом и.о. Министра здравоохранения Республики Казахстан от 25 декабря 2020 года № ҚР ДСМ-331/2020.
- 7. Инструкция по определению категории объекта, оказывающего негативное воздействие на окружающую среду. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 13 июля 2021 года № 246.
- 8. Приказ Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70. Зарегистрирован в Министерстве юстиции Республики Казахстан 3 августа 2022 года № 29011 «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций».
- 9. Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека», 11 января 2022 года № ҚР ДСМ-2.
- 10. «Сборник сметных норм и расценок на эксплуатацию строительных машин», Астана, 2003 г.
- 11. "Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004". Астана, 2004 г.
- 12. Методика расчета выбросов вредных веществ от предприятий дорожностроительной отрасли, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.
- 13. Методика расчета нормативов выбросов от неорганизованных источников Приложение № 8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.
- 14. Методика расчета выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004. Астана, 2005.
- 15. Методика расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов). РНД 211.2.02.05-2004. Астана, 2005.
- 16. Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004 Астана, 2004.
- 17. Методическим указаниям расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов.

Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.

- 18. Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014~ г.
- 19. Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров, РНД 211.2.02.09-2004, Астана, 2004г. далее Методика.

ПРИЛОЖЕНИЕ 1 - ЛИПЕНЗИЯ НА ВЫПОЛНЕНИЕ РАБОТ И ОКАЗАНИЕ УСЛУГ В ОБЛАСТИ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

20014195

ЛИЦЕНЗИЯ

25.09.2020 года 02223P

Товарищество с ограниченной ответственностью "BM engineering" Выдана

130000, Республика Казахстан, Мангистауская область, Актау Г.А., г.Актау,

Микрорайон 26, дом № 40, 40 БИН: 050840006859

(полное наименование, местонахождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес -идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Выполнение работ и оказание услуг в области охраны окружающей на занятие

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

Примечание Неотчуждаемая, класс 1

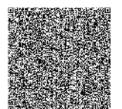
(отчуждаемость, класс разрешения)

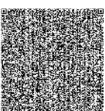
Лицензиар государственное учреждение Республиканское «Комитет

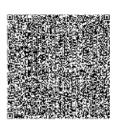
экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство экологии, геологии и природных ресурсов Республики Казахстан.

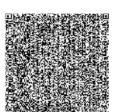
(полное наименование лицензиара)

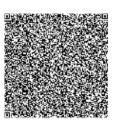
Руководитель Умаров Ермек Касымгалиевич


(уполномоченное лицо)


(фамилия, имя, отчество (в случае наличия)


Дата первичной выдачи


Срок действия лицензии


г.Нур-Султан Место выдачи

20014195 Страница 1 из 2

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 02223Р

Дата выдачи лицензии 25.09.2020 год

Подвид(ы) лицензируемого вида деятельности

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Лицензнат Товарищество с ограниченной ответственностью "BM engineering"

130000, Республика Казахстан, Мангистауская область, Актау Г.А., г.Актау, Микрорайон 26, дом № 40, 40, БИН: 050840006859

(полное наименование, местонамождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филмала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица/

Производственная база г. Актау, 26 мкр., 40 дом, 40 кв.

(местонамождение)

Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казажтан «О разрешениями уведом ления»)

Лицензнар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство

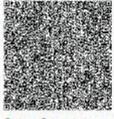
экологии, геологии и природных ресурсов Республики Казахстан.

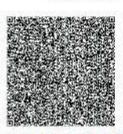
(полное наименование органа, выдавшего приложение к лицензии)

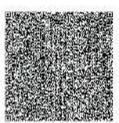
Руководитель

(уполномоченное лицо)

Умаров Ермек Касымгалиевич

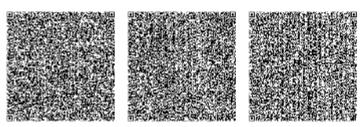

(фамилия, имя, отчество (в случае наличия)


Номер приложения 001


Срок действия

Дата выдачи приложения 25.09.2020

Место выдачи г. Нур-Султан



Осы куркт «Онистронум куркат жини электронулық инфольке қылтанды турклыс Камастан Республикасылынд 100 жылғы 7 кантардығы Заңы 7 байының 1 тарымгына сөйне шағы тасылылығын қыркатына мыңылы біркей, Дашкай документ остансы түрктір 1 статыл 17% от 7 жылғар 200 года (170 жылғарсының кармунент и жылғарының барқын барқын жылғарының барқын жылғарын жылғарының жылғарын жылғарын жылғарын жылғарын жылғарын жылғарын жылғарын жылғарын жылғарын жылғарының жылғарын

(н(жинниженое лиць иди, енциропрововид в дая тревникновию в тактивии кібає сівомі Робицій за йіж как тай робцыва наск кура доминенцих))

Оси куркат «Линстроиды куркат вене электроидых достатеба турьные Казакстан Казакстан Саман 7 кактардагы Зара 7 бабанын 1 тарыагына сайнок курга такакстан куркатын к

20014195 Страница 1 из 2

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 02223Р

Дата выдачи лицензии 25.09.2020 год

Подвид(ы) лицензируемого вида деятельности

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

(наименование подвида лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиат Товарищество с ограниченной ответственностью "BM engineering"

130000, Республика Казахстан, Мангистауская область, Актау Г.А., г.Актау, Микрорайон 26, дом № 40, 40, БИН: 050840006859

(полное наименование, местонаюждение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филиала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Производственная база г. Актау, 26 мкр., 40 дом, 40 кв.

(местоналождение)

Особые условия действия лицензии

(в соответствии со статьей 36 Закона Республики Казамстан «О разрешениями уведом лениям»)

Лицензиар Республиканское государственное учреждение «Комитет экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан». Министерство

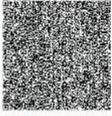
экологии, геологии и природных ресурсов Республики Казахстан.

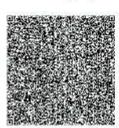
(полное наименование органа, выдавшего приложение к лицензии)

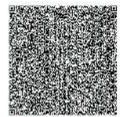
Руководитель Умаров Ермек Касымгалиевич

(уполномоченное лицо)

(фамилия, имя, отчество (в случае наличия)


Номер приложения 001


Срок действия


Дата выдачи 25.09.2020

приложения


Место выдачи г.Нур-Султан

(н(кинниженое зиде дидениндоеруновид в даз ценновнов тоо такит вил избак Закин Республика Милан и ий разращение илх нуверомнених»))

Осы құрат «Оожтрокуы құрат вөне этнетрокуық қофилық қолтақба туралы» Қазақстан Республикасының 200 жылғы 7 қақтарығы Зақы 7 бабалық 1 тарыятын сейесі қаға тысығынгыны құратны маңылы бірад, Дамый доқунчен селезске оқукту 1 статы 7 17% ет 7 шану 200 года "Оо Эметсронның доқунымен ж элемтронный пеферові подпуске" дамаксының дақунымен поситыл.

ПРИЛОЖЕНИЕ 2

2.1. Расчет выбросов загрязняющих веществ в атмосферу при строительстве

Источник выброса	роса 0001 Компрессор передвижной с ДВС							
Удельный расход топлива b, г/кВт*ч	Мощность Р, Квт	Расход отработанных газов G, кг/с	Температура Т, ⁰ С	Плотность газов g ₀ , при 0 ⁰ C, кг/м ³	g,кг/м ³	Объемный расход газов Q, м³/с		
90,0	40	0,0314	450	1,31	0,4946	0,0635		
Расход дизто	плива	В=Ь*k*Р*t*10 ⁻⁶ =		0,22	т/год			
Коэффициент испо	льзования	k=	1	Время работы, час го	д t=	60		
Расчет выбросов в а	тмосферу от С		асчета выбросов 3 211.2.02.04-2005 <i>Р</i>	ВВ в атмосферу от стаці Астана	ионарных дизельнь	іх установок РНД		
Марка двигателя	Мощность Р, кВт	Расход топлива G, т/год	е _{мі} , г/кВт*ч	q _{мі} ,г/кгтоплива	М, г/с	П, т/год		
	40	0,22			М=е _{мі} *Р/3600	П=qмi*G/1000		
Окс	ид углерода		7,2	30	0,080000	0,006600		
Oı	сиды азота		10,3	43	0,114444	0,009460		
	В Т.Ч.	NO2			0,091555	0,007568		
		NO			0,014878	0,001230		
Ал	Алканы С12-19			15	0,040000	0,003300		
Угл	перод (сажа)		0,7	3	0,007778	0,000660		
Ди	оксид серы		1,1	4,5	0,012222	0,000990		
Фо	рмальдегид		0,15	0,6	0,001667	0,000132		
Б	енз/а/пирен		0,000013	0,000055	0,0000001	0,0000001		
Источник выброса	0002	Дизельная элект	ростанция ПЭС-	12M		Объемный		
Удельный расход топлива b, г/кВт*ч	Мощность Р, Квт	Расход отработанных газов G, кг/с	Температура Т, ⁰ С	Плотность газов g₀, при 0 ⁰ С, кг/м ³	g,кг/м³	расход газов Q, м ³ /с		
120,0	60	0,0628	450	1,31	0,4946	0,1270		
Расход дизто	плива	B=Ь*k*P*t*10 ⁻⁶ =		3,456	т/год			
Коэффициент испо Расчет выбросов в а			1 асчета выбросов 3 211.2.02.04-2005 <i>F</i>	Время работы, час го, ЗВ в атмосферу от стаці Астана	· ·	480,0 іх установок РНД		
Марка двигателя	Мощность Р, кВт	Расход топлива G, т/год	е _{мі} , г/кВт*ч	q _{мі} ,г/кгтоплива	М, г/с	П, т/год		

7,2

10,3

3,6

0,7

1,1

0,15

0,000013

3,456

NO2

NO

Оксид углерода

Оксиды азота

Алканы С12-19

Углерод (сажа)

Диоксид серы Формальдегид

Бенз/а/пирен

в т.ч.

М=е_{мі}*Р/3600

30

43

15

3

4,5

0,6

0,000055

0,120000

0,171667

0,137334

0,022317

0,060000

0,011667

0,018333

0,002500

0,0000002

П=qмi*G/1000

0,103680

0,148608

0,118886

0,019319

0,051840

0,010368

0,015552

0,002074

0,0000002

Источник выброса	0003	Сварочный агре	гат дизельный			
Удельный расход топлива b, г/кВт*ч	Мощность Р, Квт	Расход отработанных газов G, кг/с	Температура Т, ⁰ С	Плотность газов g ₀ , при 0 ⁰ C, кг/м ³	g,кг/м ³	Объемный расход газов Q, м³/с
100,0	70	0,0610	450	1,31	0,4946	0,1233
Расход дизто	плива	B=Ь*k*Р*t*10 ⁻⁶ =		0,70	т/год	
Коэффициент испо	ользования	k=	1	Время работы, час го	д t=	100
Расчет выбросов в а	тмосферу от С		асчета выбросов 3 211.2.02.04-2005 <i>Р</i>	ВВ в атмосферу от стац Астана	ионарных дизельнь	ых установок РНД
Марка двигателя	Мощность Р, кВт	Расход топлива G, т/год	е _{мі} , г/кВт*ч	q _{мі} ,г/кгтоплива	М, г/с	П, т/год
	70	0,70			М=е _{мі} *Р/3600	П=qмi*G/1000
Ок	сид углерода		7,2	30	0,140000	0,02100
Oı	ксиды азота		10,3	43	0,200278	0,03010
	В Т.Ч.	NO2			0,160222	0,02408
		NO			0,026036	0,00391
Ал	каны С12-19		3,6	15	0,070000	0,01050
Углерод (сажа) Диоксид серы		0,7	3	0,013611	0,00210	
		1,1	4,5	0,021389	0,00315	
Фс	рмальдегид		0,15	0,6	0,002917	0,00042
Б	енз/а/пирен		0,000013	0,000055	0,000003	0,00000004

Источник загрязнения № 0004 Дымовая труба

Источник выделения. Битумный котел

источник выделения. Битумный котел		
Список литературы: Методика расчета выбросов вредных веществ от предприятий дорожно-строительн Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.0-		ч. АБЗ.
Марка топлива: Дизельное топливо		
Время работы оборудования, ч/год,	Т	24
Зольность топлива, %,	AR	0,025
Сернистость топлива, %,	SR	0,3
Содержание сероводорода в топливе, %,	H2S	0
Низшая теплота сгорания, МДж/кг,	QR	42,75
Расход топлива, т/год, BT = 0.1	BT	0,1
Расход топлива (B _G), л/с	BG	1.16
Примесь: 0330 Сера диоксид (Ангидрид сернистый)		.,
Доля диоксида серы, связываемого летучей золой топлива,	N1SO2	0,02
Валовый выброс, т/год:		,
M = 0.02 * BT * SR * (1-N1SO2) * (1-N2SO2) + 0.0188 * H2S * BT	0.00045	
M= 0.02 * 0.025 * 0.3 -0.02) * (1-0) +0.01 * 0 * 0.1	0,00015	т/год
Максимальный разовый выброс, г/с:		
G = M * 106 / (3600 * T)		
G = 0,0002 * 106/(3600* 24)	0,001736	г/с
Примесь: 0337 Углерод оксид		
Потери теплоты вследствие химической неполноты сгорания топлива, %,	Q3	0,5
Потери теплоты вследствие механической неполноты сгорания топлива, %.	Q4	0
Коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива,	R	0,65
Выход оксида углерода, кг. ССО = Q3 * R * QR	13,9	кг/т
Валовый выброс, т/год:	. 5,5	
M = 0.001 * CCO * BT * (1-Q4 / 100)		_
M= 0.001 * 13.9 * 0.1 * (1* 0 /100)	0,0014	т/год
Максимальный разовый выброс, г/с:		
G = M * 106 / (3600 * T)		
G = 0,0014 *106/(3600* 24)	0,0162	г/с
Примесь: 0301 Aзот (IV) оксид (Азота диоксид)		
<u>примесы. озот языт (ту) оксао (языта саоксао)</u> Производительность установки, т/час,	PUST	0,5
Кол-во окислов азота, кг/1 Гдж тепла,	KNO2	0,047
Кол-во окислов азота, клитидж тегіліа, Коэфф. снижения выбросов азота в результате технических решений, В = 0	B	0,047
Валовый выброс, т/год:	В	0
M = 0.001 * BT * QR * KNO2 * (1-B)		
M= 0,001 * 0,1 * 42,75 * 0,047 *(1-0)	0,0002	т/год
мі- 0,001 0,1 42,73 0,047 (1-0) Максимальный разовый выброс, г/с:		
Максимальный разовый выорос, то. G = M * 106 / (3600 * T)		
, ,	0,0023	г/с
<u>Примесь: 0328 Углерод черный (сажа)</u>		
Валовый выброс, т/год:	+	
M = B _T * 0,025 * 0,01	0,00003	т/год
M = 0,10 * 0,025 * 0,01		-
Максимальный разовый выброс, г/с:		
M = BG * 0,025 * 0,01	0,00029	г/с
M = 1,16 * 0,025 * 0,01	-,	
<u>Примесь: 2754 Алканы С12-19</u>		
Объем производства битума, т/год,	MY	0,5
Валовый выброс, т/год:		
M = (1 * MY) / 1000	0,0005	т/год
M= (1* 0,5)/1000	0,0003	ттод
Максимальный разовый выброс, г/с:		
G = M * 106 / (T * 3600)	0,0058	г/с
G = 0,0005 *106/(24 *3600)	0,0056	1/0
, , , , , , , , , , , , , , , , , , , ,		

Код	Примесь	Выброс г/с	Выброс
			т/год
0301	Азота диоксид	0,002300	0,000200
0330	Диоксид серы	0,001736	0,000150
0337	Углерод оксид	0,016200	0,001400
0328	Углерод (сажа)	0,000290	0,000030
2754	Алканы С12-19	0,005800	0,000500

Источник 6001. Расчет выбросов пыли от работы бульдозера

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет	Результат
п.п.						
1	2	3	4	5	6	7
1	Исходные данные:					
1.1	Количество переработанного грунта	G	т/час	1		
1.2	. ,	V	Т	113		
1.3	Время работы бульдозера	t	час/год	80		
1.4	Средняя плотность грунта	ρ	T/M ³	1,890		
2	<u>Расчет:</u>					
2.1	Объем пылевыделения, где:	g	г/с		$g = P_1*P_2*P_3*P_4*P_5*P_6*B*G*10^6/3600$	0,009333
	Вес. доля пыл. фракции в материале	P_1		0,05		
	Доля пыли переходящая в аэрозоль	P_2		0,03		
	Коэф.учитывающий скорость ветра	P_3		1,4		
	Коэф.учит.влажность материала	P_4		0,1		
	Коэф.учит.крупность материала	P_5		0,8		
	Коэф.учит.местные условия	P_6		0,5		
	Коэф.учит.высоту пересыпки	В		0,4		
2.2	Общее пылевыделение	M	т/год		0,0093 * 80,0 *3600/10 ⁶	0,002688

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6002. Расчет выбросов пыли от работы автогрейдера

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет	Результат
п.п.						
1	2	3	4	5	6	7
1	<u>Исходные данные:</u>					
1.1	Количество переработанного грунта	G	т/час	4		
1.2	Объем грунта	V	Т	87		
1.3	Время работы автогрейдера	t	час/год	24		
1.4	Средняя плотность грунта	ρ	T/M ³	1,890		
2	<u>Расчет:</u>					
2.1	Объем пылевыделения, где:	g	г/с		$g = P_1*P_2*P_3*P_4*P_5*P_6*B*G*10^6/3600$	0,037333
	Вес. доля пыл. фракции в материале	P_1		0,05		
	Доля пыли переходящая в аэрозоль	P_2		0,03		
	Коэф.учитывающий скорость ветра	P_3		1,4		
	Коэф.учит.влажность материала	P_4		0,1		
	Коэф.учит.крупность материала	P ₅		0,8		
	Коэф.учит.местные условия	P_6		0,5		
	Коэф.учит.высоту пересыпки	В		0,4		
2.2	Общее пылевыделение	M	т/год		0,0373 * 24 *3600/10 ⁶	0,003226

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6003. Расчет выбросов пыли от работы экскаватор

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет	Результат
п.п.						
1	2	3	4	5	6	7
1	Исходные данные:					
1.1	Количество переработанного грунта	G	т/час	1		
1.2	Объем работ	V	Т	132		
1.3	Время работы экскаватора	t	час/год	92		
1.4	Средняя плотность грунта	ρ	T/M ³	1,890		
2	<u>Расчет:</u>					
2.1	Объем пылевыделения, где:	g	г/с		$g = P_1*P_2*P_3*P_4*P_5*P_6*B*G*10^6/3600$	0,014000
	Вес. доля пыл. фракции в материале	P ₁		0,05		
	Доля переходящей в аэрозоль пыли	P ₂		0,03		
	Коэф.учитывающий скорость ветра	P_3		1,4		
	Коэф.учит.влажность материала	P_4		0,1		
	Коэф.учит.крупность материала	P ₅		0,8		
	Коэф.учит.местные условия	P_6		0,5		
	Коэф.учит.высоту пересыпки	В		0,6		
2.2	Общее пылевыделение	М	т/год		0,0140 * 92,0 *3600/10 ⁶	0,004637

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6004. Расчет выбросов пыли от работы трактора

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет	Результат
п.п.						
1	2	3	4	5	6	7
1	Исходные данные:					
1.1	Средняя скорость передвижения	V	км/час	10		
1.2	Число ходок транспорта в час	N	ед/час	20		
1.3	Средняя протяженность 1 ходки					
	на участке строительства	L	KM	0,5		
1.4	Число работающих машин на					
	строительном участке	n	ед.	1		
	Время работы всех машин	t	час/год	48,0		
2	<u>Расчет:</u>					
2.1	Объем пылевыделения, где:	$M_{\text{пыль}}^{ \text{сек}}$	г/с		$M_{cek} = (C_1 * C_2 * C_3 \cdot C_6 * N * L * C_7 * g_1)/3600$	0,004028
	Коэф.зависящий от грузоподъемности	C_1		1,0		
	Коэф.учит.ср.скорость передвижения	C_2		1,0		
	Коэф.учит.состояние дорог	C_3		1,0		
	Коэф.учит.влажность материала	C_6		0,1		
	Коэф.учит.долю пыли, унос. в атмосф.	C ₇		0,01		
	Пылевыделение на 1км пробега	g ₁		1450		
2.2	Общее пылевыделение	$M_{\text{пыль}}^{\text{год}}$	т/год		0,0040 * 48,0 *3600/10 ⁶	0,000696

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6005. Расчет выбросов пыли от работы машины бурильно-крановой с глубиной бурения 3,5 м на автомобиле

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет	Результат
п.п.						
1	2	3	4	5	6	7
1	<u>Исходные данные:</u>					
1.1	Количество машин	n	шт.	1		
1.2	Количество пыли, выделяемое при бурении	Z	г/час	8000		
1.3	Эффективность системы пылеочистки					
	на участке строительства	η		0,85		
1.4	Время работы	t	час/год	4		
2	<u>Расчет:</u>					
2.1	Объем пылевыделения	M _{пыль} сек	г/с		$M_{cek} = n*z(1-\eta)/3600$	0,333333
2.2	Общее пылевыделение	$M_{\text{пыль}}^{ \text{год}}$	т/год		0,3333 * 4,0 *3600/10 ⁶	0,004800

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6006. Расчет выбросов пыли при транспортировке пылящих материалов

Расчет проведен по Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Исходные данные:											
				Грунт		шебень и ПГС					
Грузоподъемность	G	=		10		10	T				
Средн. скорость транспортировки	V	=		40		40	км/час				
Число ходок транспорта в час	N	=		0,7		0,7	ед/час				
Дальность возки	L	=		30		30	KM				
Количество материала	M	=		70		25,0	M ³				
				132		68	тонн				
Влажность материала				> 10		> 10	%				
Площадь кузова	F	=		10		10	M ²				
Число работающих машин	n	=		1		1	ед.				
Время работы	t	=		98		65	час				
Теория расчета выброса:											
Выбросы пыли при транспортиров	ке пыл	ящих	материал	ов рассчить	ываются по форм	уле [Методика, с	ф-ла 7]:				
$Q = \frac{C_1 * C_2 * C_3 * N * L * g_1 * C_6 * C_7}{3600} + C$	*C ₅ *($C_6 * g_2$	$*F_1*n$								
					г/сек						
где:						- Th 4	- 01	4.0			
C_1	-				иность транспорта	•		1,3			
C_2	-			•	редвижения [Мето			3,5			
C_3	-				орог [Методика, т	абл. 11]		1			
g ₁	-				робега, г/км			1450			
C_4	-		1 / /		офиль поверхност			1,6			
C_5	-				дува материала [І		12]	1,5			
C_6	-				иатериала [Метод			0,1			
g ₂	-	пыле	евыделени	я с единиц	ы поверхности , г/	′м ² *сек		0,002			
C_7	-	коэф	эффициент, учитывающий долю пыли, уносимой в атмосферу								
Расчет выброса:											
				Грунт	шебень и ПГС	Общее					
Объем пылевыделение	$Q_{nыль}$	сек =		0,0433	0,0433	0,086600	г/сек				
Общее пылевыделение	М пыль	год <u>=</u>		0,0153	0,0101	0,025400	т/год				

Источник 6007. Расчет выбросов пыли при разгрузке автосамосвалов грунта

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет	Результат
п.п.						
1	2	3	4	5	6	7
1	Исходные данные:					
1.1	Производительность разгрузки	G	т/час	300		
1.2	Высота пересыпки	Н	М	2		
1.3	Время разгрузки 1 машины	Т	МИН	2		
1.4	Грузоподъемность		Т	10		
1.5	Время разгрузки всех машин	t	час/год	0,4		
1.6	Объем работ	V	T	132		
2	<u>Расчет:</u>					
2.1	Объем пылевыделения, где:	g	г/с		$g = K_1 * K_2 * K_3 * K_4 * K_5 * K_7 * B * G * 10^6 / 3600$	0,980000
	Вес. доля пыл. фракции в материале	K ₁		0,05		
	Доля пыли, переходящая в аэрозоль	K_2		0,03		
	Коэф.учитывающий метеоусловия	К ₃		1,4		
	Коэф.учитывающий местные условия	K_4		1,0		
	Коэф.учит.влажность материала	K ₅		0,01		
	Коэф.учит. крупность материала	K ₇		0,8		
	Коэф. учит. высоту пересыпки	В		0,7		
2.2	Общее пылевыделение	М	т/год		0,9800 * 0,4 *3600/10 ⁶	0,001411

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6008. Расчет выбросов пыли при разгрузке автосамосвалов щебня и ПГС

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет	Результат
п.п.						
1	2	3	4	5	6	7
1	<u>Исходные данные:</u>					
1.1	Производительность разгрузки	G	т/час	300		
	Высота пересыпки	Н	М	2		
	Время разгрузки 1 машины	Т	МИН	2		
1.4	Грузоподъемность		Т	10		
1.5	Время разгрузки всех машин	t	час/год	0,2		
1.6	Объем работ	V	T	68		
2	<u>Расчет:</u>					
2.1	Объем пылевыделения, где:	g	г/с		$g = K_1 * K_2 * K_3 * K_4 * K_5 * K_7 * B * G * 10^6 / 3600$	0,326667
	Вес. доля пыл. фракции в материале	K ₁		0,04		
	Доля пыли, переходящая в аэрозоль	K_2		0,02		
	Коэф.учитывающий метеоусловия	K ₃		1,4		
	Коэф.учитывающий местные условия	K_4		1,0		
	Коэф.учит.влажность материала	K ₅		0,01		
	Коэф.учит. крупность материала	К ₇		0,5		
	Коэф. учит. высоту пересыпки	В		0,7		
2.2	Общее пылевыделение	М	т/год		0,3267 * 0,2 *3600/10 ⁶	0,000235

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6009. Расчет выбросов пыли при уплотнении грунта (каток и трамбовка) при строительстве (площадки и проезды)

Расчет проведен по Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

1 сходные данные:									
Средняя скорость передвижен	ия	V	=	2	км/час				
Число ходок транспорта в час		N	=	40,0	ед/час				
Средняя протяженность 1 ході	СИ	L	=	0,05	КМ				
Число работающих машин		n	=	1	ед.				
Время работы машин		t	=	12	час/год				
Площадь работ		S	=	0,00004095	KM ²				
еория расчета выброса:									
D. C.						- 50/		1	
Выброс пыли при уплотнении і	рунт	а рассчитыв т	ается	і по следующі І	еи форму	уле [IV	іетодика, ф Г	па / ј: Т	_
$Q = (C_1 * C_2 * C_3 * C_6 * C_7)$	*N*I	*g ,)/3600		г/с					
2 (61 62 63 66 67		1							
где:									
C_{I}	-	коэфф., учи	т. гру	зоподъемнос	ть трансі	порта	[Методика,	табл. 9]	1
C_2	-			ит. скорость					0,6
C ₃	-	коэффицие	нт, уч	ит. состояние	е дорог [Л	Летод	ика, табл. 11	[]	1
C_{δ}	-	коэффицие	нт, уч	ит. влажност	ь матери	ала [N	Летодика, та	бл. 4]	0,01
C_7	•	коэффицие	нт, уч	ит. долю пыл	и, уносим	иой в	атмосферу		0,01
g_I	•	пылевыдел	ения	на 1 км пробе	ега, г/км				1450
асчет выброса:		ı					1		
	_	0.000010							
Объем пылевыделение	Q	0,000048							
Общее пылевыделение	М	0,000002	т/год						

Источник 6010. Расчет выбросов при ручной дуговой сварке штучными электродами

Расчет выбросов ЗВ проведен по "Методике определения эмиссий вредных веществ основным технологическим оборудованием предприятий машиностроения", Приказ МООС №221, 2014 год

Исходные данные:

Расход электродов Э-42А (ОМА-2)	В	=	25,0	КГ
	B_{vac}	=	0,5	кг/час
Удельный показатель свар.аэрозоля:	K_{M}^{κ}	=	9,2	г/кг
в т.ч. показатель оксид железа	K ^K _M	=	8,37	г/кг
показатель соед.марганца	K ^K _M	=	0,83	г/кг
Степень очистки воздуха в аппарате	η	=	0	
Время сварочных работ	t	=	50	маш-час

Теория расчета выброса:

Максимальные разовый выброс ЗВ от свар. агрегата рассчитывается согласно таблице 4.1 Приложения 1:

$$\frac{B_{uac} * K_{_M}^x}{3600}*(1-\eta)$$
 где B_{uac} - расход применяемого сырья и материалов, кг/час; $K_{_M}^\kappa$ - удельный показатель выброса 3В "х" на единицу массы расходуемых сырья и материалов, г/кг η степень очистки воздуха в соответствующем аппарате

Валовое кол-во 3В,выбрасываемое от свар. агрегата, рассчитывается по следующей формуле:

$$\frac{B*K_{_{_{M}}}^{^{x}}}{10^{\,6}}*(1-\eta)$$
 где в - расход применяемого сырья и материалов, кг/пер.стр.

Расчет выброса:

Выбрасываемое	Код		Расчет	г/сек		Расчет	T/DOD OTO
вещество	вещества		1 40401	1/Cek		т/пер.стр.	
Fe ₂ O ₃	0123	0,50 *	8,37 * (1-0) / 3600 =	0,001163	25,0 *	$8,37 * (1-0) / 10^{\circ} =$	0,000209
Mn	0143	0,50 *	0,83 * (1-0) / 3600 =	0,000115	25,0 *	$0.83 * (1-0) / 10^6 =$	0,000021

Источник 6010. Расчет выбросов при ручной дуговой сварке штучными электродами

Расчет выбросов ЗВ проведен по "Методике определения эмиссий вредных веществ основным технологическим оборудованием предприятий машиностроения", Приказ МООС №221, 2014 год

Исходные данные:

Расход электродов Э-46 (МР-3)	В	=	25,0	КГ
	$B_{\text{\tiny 4ac}}$	=	0,5	кг/час
Удельный показатель свар.аэрозоля:	K_{M}^{κ}	=	11,50	г/кг
в т.ч. показатель оксид железа	K_{M}^{κ}	=	9,77	г/кг
показатель соед.марганца	K_{M}^{κ}	=	1,73	г/кг
Удельный показатель фтор. водорода	K_{M}^{κ}	=	0,4	г/кг
Степень очистки воздуха в аппарате	η	=	0	
Время сварочных работ	t	=	50	маш-час

Теория расчета выброса:

Максимальные разовый выброс ЗВ от свар. агрегата рассчитывается согласно таблице 4.1 Приложения 1:

$$\frac{B_{uac} * K_{_M}^x}{3600}*(1-\eta)$$
 где $B_{_{Vac}}$ - расход применяемого сырья и материалов, кг/час; $K_{_M}^\kappa$ - удельный показатель выброса 3В "х" на единицу массы расходуемых сырья и материалов, г/кг η степень очистки воздуха в соответствующем аппарате

Валовое кол-во ЗВ,выбрасываемое от свар. агрегата, рассчитывается по следующей формуле:

$$\frac{B*K_{_{_{M}}}^{^{x}}}{10^{^{6}}}*\left(1-\eta\right)$$
 где **в** - расход применяемого сырья и материалов, кг/пер.стр.

Расчет выброса:

Выбрасываемое	Код		Расчет	г/сек		Расчет	т/пер.стр.
вещество	вещества		1 40401	1/CEK		1 40-101	тлер.стр.
Fe ₂ O ₃	0123	0,50 *	9,77 * (1-0) / 3600 =	0,001357	25,0 *	$9,77 * (1-0) / 10^{\circ} =$	0,000244
Mn	0143	0,50 *	1,73 * (1-0) / 3600 =	0,000240	25,0 *	1,73 * (1-0) / 10 ⁶ =	0,000043
FH	0342	0,50 *	0,40 * (1-0) / 3600 =	0,000056	25,0 *	$0,40 * (1-0) / 10^6 =$	0,000010

Источник №6011 - Газосварочные работы

_	·	ыбросов загрязняющих веще	еств в атмос	феру при св	арочных	работах РНД	211.2.0	2.03-2004 <i>г</i>	•				
1	Газосварка с использованием Пропан-бут	<u>ановой смеси</u>											
	Время работы сварочного поста составляе								24	часа			
	Расход применяемого сырья и материалов								8	кг/год			
	Фактический максимальный расход примен								0,333333	кг/час			
	Удельный показатель выброса загрязняюш					(16,99	г/час			
		Примесь: 030							15	г/кг			
	Удельный показатель выброса загрязняющего веществ на единицу массы расходуемых сырья и материалов К* _m												
	Максимольный разовый выброс, r/c Мсек= K_m^* Вчас/3600 Мсек= 15 * 0,333333 / 360												
	Валовый выброс ЗВ, т/год	Мгод=К ^х _м *Вгод/10 ⁶	Мгод=	15	*	8	/	10	0,0001	т/год			
2	Газовая сварка стали <u>Ацетиленокислоро</u>	<u>дным пламенем</u>											
	Время работы сварочного поста составляе	т в год							24	часа			
	Расход применяемого сырья и материалов	, Вгод							6	кг/год			
	Фактический максимальный расход примен					ания Вчас			0,25	кг/час			
		Примесь: 030											
	Удельный показатель выброса загрязняюш	его вещества на единицу массь	і расходуемого	сырья и мате	ериалов К	x · m			22	г/кг			
	Максимольный разовый выброс, г/с	Мсек==К ^x _m *Вчас/3600	Мсек=	22	*	0,25	/	3600	0,0015	г/сек			
	Валовый выброс ЗВ, т/год	Мгод=К ^х _м *Вгод/10 ⁶	Мгод=	22	*	6	/	10	0,0001	т/год			
3	Расчет выбросов при газовой резке												
	Время работы сварочного поста составляе	т в год							96	часов			
	Удельное выделение сварочного аэрозоля	Gт							74	г/ч			
		Примесь: 0123 Же	лезо (II, III) окс	:иды (Желез	а Оксид)								
	Удельное выделение Ст								72,9	г/кг			
	Максимольный разовый выброс, г/с	G=GT/3600	G=	72,9	/	3600			0,0203	г/сек			
	Валовый выброс ЗВ, т/год	M=Gτ*T/1000000	Мгод=	72,9	*	96	/	10	0,0070	т/год			
		Примесь: 014	13 Марганец и	его соедине	ния								
	Удельное выделение Gт								1,1	г/кг			
	Максимольный разовый выброс, г/с	G=GT/3600	G=	1,1	/	3600			0,0003	г/сек			
	Валовый выброс ЗВ, т/год	M=GT*T/1000000	Мгод=	1,1	*	96	/	10	0,00011	т/год			
		Примесь: 0301 /	Азот (IV) окси	д (Азота ди	оксид)					1			
	Удельное выделение Ст				,				39	г/кг			
	Максимольный разовый выброс, г/с	G=GT/3600	G=	39 39	*	3600	,	40	0,0108	г/сек			
	Валовый выброс 3В, т/год	M=GT*T/1000000	Мгод= сь: 0337 Угле р		-	96	/	10	0,0037	т/год			
	Удельное выделение Ст	Приме	CB. USST FEITER	OU OKCUO					49.5	г/кг			
	Максимольный разовый выброс, г/с	G=GT/3600	G=	49.5	- /	3600			0,0138	г/сек			
	Валовый выброс 3В, т/год	M=GT*T/1000000	Мгод=	49.5	*	96	/	10	0.0048	т/год			
	раловый выорос эр, 1/10Д	W=G1~1/1000000	ійі од=	49,5		90	/	10	0,0048	1/10Д			

Результаты расчета выбросов представлены в таблицы:

Код	Примесь	Выброс г/с	Выброс т/год
0123	Железо оксид	0,020300	0,007000
0143	Марганец и его соединения	0,000300	0,0001100
0301	Азот оксид (Азота диоксид)	0,013700	0,003900
0337	Углерод оксид	0,013800	0,004800

Источник № 6012 Покрасочные работы.

Расчет проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004

1. Определение выбросов нелетучей части аэрозоля ЛКМ при нанесении

2. Определение выбросов летучих компонентов ЛКМ

$$M_{\text{общ}} = M_{\text{окр}} + M_{\text{суш}}, \text{ т/год}$$

$$M_{_{ ext{cyuu}}}^{x} = rac{m_{_{M}} imes f_{_{p}} imes \delta_{_{p}}^{''} imes \delta_{_{x}}}{10^{6} imes 3.6} imes (1-\eta), \qquad M_{_{ ext{cyuu}}}^{x} = rac{m_{_{\phi}} imes f_{_{p}} imes \delta_{_{p}}^{''} imes \delta_{_{x}}}{10^{6}} imes (1-\eta), \qquad T$$
год

$$M_{o\kappa p}^{x} = \frac{m_{\scriptscriptstyle M} \times f_{\scriptscriptstyle p} \times \delta_{\scriptscriptstyle p}^{'} \times \delta_{\scriptscriptstyle x}}{10^{6} \times 3.6} \times (1 - \eta), \qquad M_{o\kappa p}^{x} = \frac{m_{\scriptscriptstyle \phi} \times f_{\scriptscriptstyle p} \times \delta_{\scriptscriptstyle p}^{'} \times \delta_{\scriptscriptstyle x}}{10^{6}} \times (1 - \eta),$$

г/сек т/год

исходные данные								
наименован	расход	f _p	способ	d _a	d′ _p	d″ _p		
ие	т/год	кг/час	%	нанесени	%	%	%	
ГФ-021	0,100	2,0	45	кистью		28	72	

Расчет							
состав	d _x	время, час		наименование	Резул	тьтат	
летучей части	%	окраски	сушки	вещества	г/сек	т/год	
ксилол	100	50,0	150	ксилол	0,2500	0,0450	

	Исходные данные							
наименован	расход		f _p	способ	d _a	d′ _p	d″ _p	
ие	т/год	кг/час	%	нанесени	%	%	%	
ПФ-115	0,200	5,0	45	кистью		28	72	

Расчет состав d_x время, час наименование Результат летучей окраски сушки % г/сек т/год части вещества 0,3125 0,0450 уайт-спирит 50 40,00 120,0 уайт-спирит 0,3125 0,0450 ксилол ксилол

Всего по источнику:						
	Наименование ЗВ	г/сек	т/год			
	уайт-спирит	0,312500	0,045000			
	ксилол	0,562500	0,090000			

Источник №6012. Расчет выбросов загрязняющих веществ от лакокрасочных работ

Расчет проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов. РНД 211.2.02.05-2004" Астана

Исходные данные:

Проектный годовой расход ЛКМ (Растворитель)	m_{Φ}	=	0,050	т/год
			0,278	г/сек
Время выполнения работ	t	=	50	час/год
Содержание компонента "х" в летучей части ЛКМ				
Толуол	$d_{\scriptscriptstyle T}$	=	20	%,мас
Спирт н-бутиловый	d _{с н/б}	=	20	%,мас
Этиловый спирт	d _{a.c.}	=	10	%,мас
Бутилацетат	d_{6}	=	50	%,мас
Доля летучей части (растворителя) в ЛКМ	f_p	=	100	%,мас
Доля растворителя в ЛКМ, выделившегося при окраске	ď,	=	25	%,мас
Доля растворителя в ЛКМ, выделившегося при сушке	ď"p	=	75	%,мас
Степень очистки воздуха газоочистным оборудованием	h	=	0	дол.ед.

Теория расчета выброса:

Выброс индивидуальных летучих компонентов ЛКМ рассчитывается по формулам:

Расчет выбросов:

Выбрасываемое вещество	Код вещества	Расчет (окраска поверхности)	г/с	Расчет (окраска поверхности)	т/пер.стр.
Толуол	0621	0,278 * 100 * 25 * 20 * (1- 0)/ 1000000 =	0,0139	0,0139 * 50 *3,6E-03=	0,0025
Спирт н-бутиловый	1042	0,278 * 100 * 25 * 20 * (1- 0)/ 1000000 =	0,0139	0,0139 * 50 *3,6E-03=	0,0025
Этиловый спирт	1061	0,278 * 100 * 25 * 10 * (1- 0)/ 1000000 =	0,0072	0,0072 * 50 *3,6E-03=	0,0013
Бутилацетат	1210	0,278 * 100 * 25 * 50 * (1- 0)/ 1000000 =	0,0350	0,0350 * 50 *3,6E-03=	0,0063

Выбрасываемое Код		Расчет (сушка поверхности)	г/с Расчет (сушка поверхно		т/пер.стр.	
вещество	вещества			Расчет (сушка поверхности))	
Толуол	0621	0,278 * 100 * 75 * 20 * (1- 0)/ 1000000 =	0,0833	0,0833 * 50 *3,6E-03=	0,0075	
Спирт н-бутиловый	1042	0,278 * 100 * 75 * 20 * (1- 0)/ 1000000 =	0,0417	0,0417 * 50 *3,6E-03=	0,0075	
Этиловый спирт	1061	0,278 * 100 * 75 * 10 * (1- 0)/ 1000000 =	0,0211	0,0211 * 50 *3,6E-03=	0,0038	
Бутилацетат	1210	0,278 * 100 * 75 * 50 * (1- 0)/ 1000000 =	0,1044	0,1044 * 50 *3,6E-03=	0,0188	

Выбрасываемое	Код	Общий выброс	
вещество	вещества	г/с	т/пер.стр.
Толуол	0621	0,097200	0,010000
Спирт н-бутиловый	1042	0,055600	0,010000
Этиловый спирт	1061	0,028300	0,005100
Бутилацетат	1210	0,139400	0,025100

Источник №6013 - Гидроизоляционные работы

Список литературы: Методика расчета выбросов вредных веществ от предприятий дорожно-строительной отрасли, в т.ч. АБЗ. Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п.

приложение № 12 к приказу министра охраны окружающей среды Респуолики казахстан от 16.04.2006 № 100-п.					
Объем производства битума, т/год,	MY	0,5			
Время работы оборудования, ч/год,	Т	24			
<u> Примесь: 2754 Алканы С12-19</u>					
Объем производства битума, т/год,	MY	0,5			
Валовый выброс, т/год:					
M = (1 * MY) / 1000	0,0005	т/год			
M= (1* 0,5)/1000	0,0005	1/10Д			
Максимальный разовый выброс, г/с:					
G = M * 106 / (T * 3600)	0,0058	г/с			
G = 0,0005 *106/(24 *3600)	0,0056	1/0			

Код	Примесь	Выброс г/с	Выброс
			т/год
2754	Алканы С12-19	0,005800	0,000500

Источник №6014 - Шлифовальная машина

Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке								
металло	металлов (по величинам удельных выбросов) РНД 211.2.02.06-2004 Астана, 2004							
	$M_{cek} = k * Q, c$							
	$M_{200} = 3600 * k * Q * T * 10^{-6}, m/200$							
Код ЗВ	Наименование ЗВ	T	k	Q	s/c	т/год		
2902	Взвешенные			0.052	0.010400	0.001797		
2902	вещества	48	8 0,2	0,052	0,010400	0,001797		
2930	Пыль абразивная	.0	5,2	0,034	0,006800	0,001175		

Источник №6015 - Емкости для хранения ГСМ

Расчет выбросов ЗВ проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров, Астана", 2004 г. - далее Методика

Исходные данные:

Объем слитого дизтоплива из а/цистерны в емкость	V _{cл}	=	4	м ³ /час
Удельный вес дизтоплива	r	=	0,84	т/м ³
Кол-во закачиваемого в емкость нефтепродукта в осенне-зимний период	Qoз	=	5,34	Т
Кол-во закачиваемого в емкость нефтепродукта в весенне-летний период	Qвл	=	5,34	Т
Состав дизтоплива:	H ₂ S	=	0,28	%
	C ₁₂ -C ₁₉	=	99,72	%
Время работы в год	Т	=	1440	час
Температура выхода паров	t	=	20	°C

Теория расчета выброса:

Максимальные выбросы из емкости рассчитываются по формуле 7.2.1:

где	$M=C_p^{max} * V_{cn}/3600$ г/сек C_p^{max} -макс.конц-ция паров нефтепрод.в паровозд.смеси при заполнении рез-ров[Прилож.15]	2,25	г/м ³
	Годовые выбросы от емкости при закачке рассчитываются по формуле 7.2.4:		
	$G = (C_p^{o3} * Q_{o3} + C_p^{BA} * Q_{BA}) * 10^{-6}$ (выбросы при проливе отсутствуют)		
где	$C_p^{\text{ os}}$ -конц-ция паров нефтепродукта в паровозд смеси в осенне-зимний период[Прилож. 15] $C_p^{\text{ вл}}$ -конц-ция паров нефтепродукта в паровозд смеси в весенне-летний период[Прилож. 15]	1,19 1,60	г/м ³ г/м ³

Расчет выбросов:

Выбрасываемое вещество	Код 3В	Расчет максимального выброса	г/сек
H ₂ S	0333	=(2,25 * 4 / 3600) * 0,28 / 100	0,00001
C ₁₂ -C ₁₉	2754	=(2,25 * 4 / 3600) * 99,7 / 100	0,002493

Выбрасываемое вещество	Код 3В		т/год			
H ₂ S	0333	=((1,19 *	5,34 +	1,6 * 5,34) /10 ⁻⁶ *	0,28 / 100	0,0000004
C ₁₂ -C ₁₉	2754	=((1,19 *	5,34 +	1,6 * 5,34) /10 ⁻⁶ *	99,72 / 100	0,000015

Источник 6016. Расчет выбросов ВЗВ от дорожно-строительной техники, работающей на дизельном топливе

Nº	Наименование	Обозн.	Ед. изм.	Кол-во	Расчет			Результат		
п.п.										
1	2	3	4	5			6			7
1	Исходные данные: _									
1.1	Расход дизтоплива		кг/час	6,16						
1.2	Время работы		час/год	835						
1.3	Удельный вес дизтоплива		кг/м ³	840						
2	Расчет:									
2.1.	Согласно справочным данным, количество									
	токсических веществ									
	при сгорании 1 кг	g_{co}	г/кг	100						
	дизтоплива в двигателях	9 _{NO2}	г/кг	40						
	внутреннего сгорания	9сн	г/кг	30						
	составляет:	9 _{саж.}	г/кг	15,5						
		9бенз(а)пирен	г/кг	0,00032						
		gso ₂	г/кг	20						
2.2.	Количество сжигаемого									
	топлива на территории	В	кг/год	5142						
2.3.	Количество выбросов:	Q_{CO}	т/год		5142	*	100	/	1000000	0,5142
			г/с		0,5142	/	835	/3600*	1000000	0,1711
		Q_{NO2}	т/год		5142	*	40	/	1000000	0,2057
			г/с		0,2057	/	835	/3600*	1000000	0,0684
		Q_{CH}	т/год		5142	*	30	/	1000000	0,1543
			г/с		0,1543	/	835	/3600*	1000000	0,0513
		$Q_{cax.}$	т/год		5142	*	15,5	/	1000000	0,0797
			г/с		0,0797	/	835	/3600*	1000000	0,0265
		Q _{бенз(а)пир}	т/год		5142	*	0,00032	/	1000000	,
			г/с		0,0000020	/	835	/3600*	1000000	0,000001
		Qso ₂	т/год		5142	*	20	/	1000000	0,1028
			г/с		0,1028	/	835	/3600*	1000000	0,0342

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

Источник 6017. Расчет выбросов ВЗВ от поливомоечной машины, работающей на неэтилированном бензине

Nº	Наименование	. Обозн.	Ед. изм.		ванном осном	Расч	ет		Результат
п.п.									
1	2	3	4	5		6			7
1.	Исходные данные:								
	Расход неэтил.бензина		кг/час	9,54					
	Время работы		час/год	48,0					
	Удельный вес бензина		κΓ/M ³	760					
2.	Расчет:								
	Согласно справочных								
	данных, количество токсических веществ								
	при сгорании 1 кг	g_{co}	г/кг	600					
	неэтил.бензина в двигателях	9 _{NO2}	г/кг	40					
	внутреннего сгорания	9сн	г/кг	100					
	составляет:	9саж.	г/кг	0,58					
		9бенз(а)пирен	г/кг	0,00023					
		gso ₂	г/кг	2					
	Количество сжигаемого								
	топлива	В	кг/год	458					
	Количество выбросов	Q_{CO}	т/год		458	*	600	/1000000	0,2748
	•		г/с		0,2748	/3600/	48	*1000000	1,5903
		Q_{NO2}	т/год		458	*	40	/1000000	0,0183
			г/с		0,0183	/3600/	48	*1000000	0,1059
		Q_{CH}	т/год		458	*	100	/1000000	0,0458
			г/с		0,0458	/3600/	48	*1000000	0,2650
		Qсаж.	т/год		458	*	0,58	/1000000	0,0003
			г/с		0,000300	/3600/	48	*1000000	0,0017
		$Q_{бензопир}$	т/год		458	*	0,0002	/1000000	0,000001
			г/с		0,0000001	/3600/	48	*1000000	0,000006
		Qso_2	т/год		458	*	2	/1000000	0,0009
			г/с		0,000900	/3600/	48	*1000000	0,0052

Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө

2.2. Расчет выбросов загрязняющих веществ в атмосферу при эксплуатации на 2025, 2026 , 2027 гг.

Расчеты на 2025 год

Источник №0001 - Газопоршневая электростанция (ГПЭС-1)

		Расход и т	гемпература отработа	анных газов		
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с
307,5	1250	3,3519	450	1,31	0,49465	6,7762
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	3075	т/год	
Расход	газа м ³ /год	3137848,87	Удельный вес газа	0,980		
Коэфо	фициент использова	ния k =	1	Время работы,	часов в год t =	8000
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год
	1250	3075		топлива	M=eMi*P/3600	П=qMi*G/1000
	Оксиды азота в т.ч.		4,2	17,5	1,458333	53,814108
0301	Диоксид азота (NO2	2)			1,166667	43,051286
0304	Оксид азота (NO)				0,189583	6,995834
0328	Сажа (С)		0,02	0,100	0,008102	0,307509
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	54,121617
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007
1325	Формальдегид (СН2	O)	0,007	0,027	0,002315	0,082002
2754	Углеводороды С12-	C19	2,4	10	0,833333	30,750919
Методика	п расчета выбросов		веществ в атмосфер 02.04-2004. Астана,		ых дизельных ус	тановок. РНД

^{*-} для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-1. Источник №0002

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исх	однь	е данны	e:
Диаметр свечи	d	=	0,02	М
Высота свечи	h	=	4	М
Длина участка газопровода	L	=	3	М
Диаметр газопровода	D	=	0,108	М
Количество продувок	n	=	1	раз/год
Продолжительность сброса	t	=	120	сек
Время сброса за год			0,03	час/год
Плотность газа	ρ	=	0,980	т/м ³

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	м3
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	10 Метан 9		71.444	1,362830	г/сек
0410	IVIETAH	%	71,444	0,000164	т/год
0415	0445 Продоли на устародарски С. С		26.00	0,514848	г/сек
0415	Предельные углеводороды С ₁ -С ₅	%	26,99	0,000062	т/год
0416	116 Предельные углеводороды С ₆ -С ₁₀ %		0.544	0,010377	г/сек
0416	Предельные углеводороды С ₆ -С ₁₀	70	0,544	0,000001	т/год

Источник загрязнения N 0003, Выхлопная труба Источник выделения, Сапун ГПЭС-1

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с,	$oldsymbol{arrho}$	0,14
Максимальный разовый выброс, г/с, $G = Q$	$oldsymbol{G}$	0,14

Валовый выброс, т/год , _*M*_ = *Q* * _*T*_ * *3600* * _*KOLIV*_ / *10* ^ 6

111010.			
Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.140000	4.032000

Источник №0004 - Газопоршневая электростанция (ГПЭС-2)

	Расход и температура отработанных газов										
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с					
307,5	1250	3,3519	450	1,31	0,49465	6,7762					
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	3075	т/год						
Расход	газа м ³ /год	3137848,87	Удельный вес газа	0,980							
Коэф	фициент использова	ния k =	1	Время работы,	часов в год t =	8000					
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qМі ,г/кг	М, г/с	П, т/год					
	1250	3075		топлива	M=eMi*P/3600	П=qMi*G/1000					
	Оксиды азота в т.ч.	•	4,2	17,5	1,458333	53,814108					
0301	Диоксид азота (NO	2)			1,166667	43,051286					
0304	Оксид азота (NO)				0,189583	6,995834					
0328	Сажа (С)		0,02	0,100	0,008102	0,307509					
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	54,121617					
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007					
1325	Формальдегид (СН	2O)	0,007	0,027	0,002315	0,082002					
2754	Углеводороды С12-	C19	2,4	10	0,833333	30,750919					

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-2. Источник №0005

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исх	однь	ые данны	e:
Диаметр свечи	d	=	0,02	М
Высота свечи	h	=	4	М
Длина участка газопровода	L	=	3	М
Диаметр газопровода	D	=	0,108	М
Количество продувок	n	=	1	раз/год
Продолжительность сброса	t	=	120	сек
Время сброса за год			0,03	час/год
Плотность газа	ρ	=	0,980	т/м ³

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	м3
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Ро	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	/	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	0410 Метан %		71.444	1,362830	г/сек
0410			71,444	0,000164	т/год
0415	0415 Предельные углеводороды C ₁ -C ₅ %	26,99	0,514848	г/сек	
0415		70	20,99	0,000062	т/год
0416	Предельные углеводороды C ₆ -C ₁₀	%	0,544	0,010377	г/сек
0416		%	0,544	0,000001	т/год

Источник загрязнения N 0006, Выхлопная труба Источник выделения, Сапун ГПЭС-2

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на $\Gamma\Pi \Theta C$

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с,	$oldsymbol{arrho}$	0,14
Максимальный разовый выброс, г/с, $G = Q$	\boldsymbol{G}	0,14

Валовый выброс, т/год , $_M_$ = $Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	4,032000

Источник №0007 - Газопоршневая электростанция (ГПЭС-3)

	Расход и температура отработанных газов								
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с			
307,5	1250	3,3519	450	1,31	0,49465	6,7762			
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	3075	т/год				
Расход	газа м ³ /год	3137848,87	Удельный вес газа	0,980					
Коэф	фициент использова	ния k =	1	Время работы,	часов в год t =	8000			
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qМі ,г/кг	М, г/с	П, т/год			
	1250	3075		топлива	M=eMi*P/3600	П=qMi*G/1000			
	Оксиды азота в т.ч.	•	4,2	17,5	1,458333	53,814108			
0301	Диоксид азота (NO	2)			1,166667	43,051286			
0304	Оксид азота (NO)				0,189583	6,995834			
0328	Сажа (С)		0,02	0,100	0,008102	0,307509			
0337	Оксид углерода (СО)		4,24	17,6	1,472222	54,121617			
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007			
1325	Формальдегид (CH ₂ O)		0,007	0,027	0,002315	0,082002			
2754	Углеводороды С12-	C19	2,4	10	0,833333	30,750919			

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-3. Источник №0008

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:				
Диаметр свечи	d	=	0,02	М
Высота свечи	h	=	4	М
Длина участка газопровода	L	=	3	М
Диаметр газопровода	D	=	0,108	М
Количество продувок	n	=	1	раз/год
Продолжительность сброса	t	=	120	сек
Время сброса за год			0,03	час/год
Плотность газа	ρ	=	0,980	т/м ³

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	м3
где: Vk - геометрический объем газопровода	Vk	=	0,027	мЗ
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МΠа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МΠа
	tn	=	20	°C
	Z	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	II	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	0/	% 71,444 1,362830 0,000164	г/сек	
	INICIAH	/0		0,000164	т/год
0415	Прополицио успородороди в С	%	26,99	0,514848	г/сек
0415	Предельные углеводороды С₁-С₅		20,99	0,000062	т/год
0416	Предельные углеводороды С ₆ -С ₁₀	%	0,544	0,010377	г/сек
0410		70	0,344	0,000001	т/год

Источник загрязнения N 0009, Выхлопная труба Источник выделения, Сапун ГПЭС-3

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с,	$oldsymbol{arrho}$	0,14
Максимальный разовый выброс, г/с, $G = Q$	$oldsymbol{G}$	0,14

Валовый выброс, т/год , _*M*_ = *Q* * _*T*_ * *3600* * _*KOLIV*_ / *10* ^ 6

111010.			
Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.140000	4.032000

Источник №0010 - Газопоршневая электростанция (ГПЭС-4)

		Расход и	гемпература отработа	анных газов		
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с
307,5	1250	3,3519	450	1,31	0,49465	6,7762
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	3075	т/год	
Расход	газа м ³ /год	3137848,87	Удельный вес газа	0,980		
Коэф	фициент использова	ния k =	1	Время работы,	часов в год t =	8000
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qМі ,г/кг	М, г/с	П, т/год
	1250	3075		топлива	M=eMi*P/3600	П=qMi*G/1000
	Оксиды азота в т.ч.	•	4,2	17,5	1,458333	53,814108
0301	Диоксид азота (NO	2)			1,166667	43,051286
0304	Оксид азота (NO)				0,189583	6,995834
0328	Сажа (С)		0,02	0,100	0,008102	0,307509
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	54,121617
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007
1325	Формальдегид (CH ₂ O)		0,007	0,027	0,002315	0,082002
2754	Углеводороды С12-	C19	2,4	10	0,833333	30,750919

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-4. Источник №0011

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исхо	дны	е данные	:
_			0.00	
Диаметр свечи	d	=	0,02	М
Высота свечи	h	=	4	M
Длина участка газопровода	L	=	3	M
Диаметр газопровода	D	=	0,108	M
Количество продувок	n	=	1	раз/год
Продолжительность сброса	t	=	120	сек
Время сброса за год			0,03	час/год
Плотность газа	ρ	=	0,980	т/м ³

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	мЗ
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Ро	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	1	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	V	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	0410 Метан		71.444	1,362830	г/сек
0410	INICIAH	%	7 1, 444	0,000164	т/год
0415	Пропольные услововороды С	%	26,99	0,514848	г/сек
0415	Предельные углеводороды C ₁ -C ₅	/0	20,99	0,000062	т/год
0416	Пропольные услововороды С	%	0,544	0,010377	г/сек
0410	Предельные углеводороды С ₆ -С ₁₀		0,544	0,000001	т/год

Источник загрязнения N 0012, Выхлопная труба Источник выделения, Сапун ГПЭС-4

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q G 0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	4,032000

Источник №0013 - Газопоршневая электростанция (ГПЭС-5 резервная)

		Расход и т	гемпература отработ:	анных газов		
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	$=1,31 \text{KF/M}^3$		Объемный расход газов Q, м ³ /с
313,6	1250	3,4182	450	1,31	0,49465	6,9105
Кол-во	1	Р-д д/т В=І	b*k*P*t*10 ⁻⁶ =	282	т/год	
Расход	цгаза м ³ /год	288000	Удельный вес газа	0,980		
Коэфо	фициент использова	ния k =	1	Время работы, часов в год t		720
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год
	1250	282		топлива	M=eMi*P/3600	П=qMi*G/1000
	Оксиды азота в т.ч.		4,2	17,5	1,458333	4,939200
0301	Диоксид азота (NO	2)			1,166667	3,951360
0304	Оксид азота (NO)				0,189583	0,642096
0328	Сажа (С)		0,02	0,100	0,008102	0,028224
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	4,967424
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000001
1325	Формальдегид (СН2	2O)	0,007	0,027	0,002315	0,007526
2754	Углеводороды С12-	C19	2,4	10	0,833333	2,822400

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД
211.2.02.04-2004. Астана, 2004 г.

- лля стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по СО на 20%

^{*-} для стационарныйх установок работающих на природном газе значения выбросов по табл.1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-5. Источник №0014

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исх	однь	не данны	e:
_				
Диаметр свечи	d	=	0,02	М
Высота свечи	h	=	4	М
Длина участка газопровода	L	=	3	М
Диаметр газопровода	D	=	0,108	М
Количество продувок	n	=	1	раз/год
Продолжительность сброса	t	=	120	сек
Время сброса за год			0,03	час/год
Плотность газа	ρ	=	0,980	т/м ³

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	мЗ
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,980	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	/	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	%	71.444	1,362830	г/сек
0410	INICIAH	/0	71,444	0,000164	т/год
0415	Прополицио услововороди в С	%	26,99	0,514848	г/сек
0413	Предельные углеводороды C ₁ -C ₅	/0	20,99	0,000062	т/год
0416	Прополицио услововороди в С	%	0,54	0,010377	г/сек
0410	Предельные углеводороды С ₆ -С ₁₀	/0	0,34	0,000001	т/год

Источник загрязнения N 0015, Выхлопная труба Источник выделения, Сапун ГПЭС-5

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год T 720 Общее количество суфлеров, шт. , KOLIV 1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q G 0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	0,362880

Дизельный генератор резервный. Источник №0016

Расчет выбросов загрязняющих веществ от дизельных установок проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок", Астана, 2004 г. - далее Методика.

Исходные данные:

Мощность агрегата	Рэ	=	400	кВт
Загрузка генератора			100	%
Общий расход топлива	В	=	7,99	т/год
		•	79,9	кг/ч
	b	=	200	г/кВт*ч
Время работы	Т	=	100	час/год
Длина трубы	L	=	305	MM
Диаметр	d	=	0,154	М
Температура газов	t	=	400	°C
Плотность дизтоплива			0,85	T/M ³

Выбрасываемое вещество	Выброс, г/кВт·ч (еі)	Выброс, г/кг (qi)
Углерода оксид	6,2	26
Азота диоксид	9,6*0,8	40*0,8
Азота оксид	9,6*0,13	40*0,13
Углеводороды C ₁₂ -C ₁₉	2,9	12
Сажа	0,5	2
Серы диоксид	1,2	5
Формальдегид	0,12	0,5
Бенз(а)пирен	0,000012	0,000055

Теория расчета выбросов:

Расчет максимально разового выброса (г/с) определяется по формуле [Методика, ф-ла 1]:

Mi = (1/3600) · ei · Рэ где:

еі - выброс і-го вредного вещества на единицу полезной работы д. установки (г/кВт-ч) [Методика, табл.1,2];

Рэ - эксплуатационная мощность стационарной дизельной установки (кВт).

Расчет валового выброса (т/год) производится по формуле [Методика, ф-ла 2]:

 $\Gamma i = (1/1000) \cdot qi \cdot B$ где:

qi - выброс i-го вредного вещества, приходящегося на 1 кг диз.топлива (г/кг) [Методика, табл.3,4];

В - расход топлива генератором (т/год).

Расчет отработавших газов (кг/с) от стационарной дизельной установки определяется [Методика, ф-ла АЗ Прил. А]:

G ≈ 8.72 · 10⁻⁶ · b · Рэ

где:

b - расход топлива генератором (г/кВт*час).

Уделный вес отработавших газов рассчитывается по формуле [Методика, ф-ла А5 Прил. А]:

 $\gamma_{or} = \gamma 0_{or}/(1+T_{or}/273)$

где:

 γO_{or} - удельный вес отработавших газов при температуре равной 0°С (γO_{or} = 1,31 кг/м³);

T_{or} - температура отработавших газов, К.

Объемный расход отработавших газов (м³/с) определяется по формуле [Методика, ф-ла А4 Прил. А]:

V = G/ v

Скорость выхода отработавших газов (м/с) определяется по формуле:

 $w=(4*V)/(3.14*d^2)$

Выбрасываемое вещество	Код вещества	Расчет	г/с	Расчет	т/год
CO	0337	1/3600 * 6,2 * 1,0 * 400 =	0,688889	1/1000* 26 * 7,99 =	0,207740
NO ₂	0301	1/3600 * 9,6*0,8 * 1,0 * 400 =	0,853333	1/1000* 40*0,8 * 7,99 =	0,255680
NO	0304	1/3600 * 9,6*0,13 * 1,0 * 400 =	0,138667	1/1000* 40*0,13 * 7,99 =	0,041548
C ₁₂ -C ₁₉	2754	1/3600 * 2,9 * 1,0 * 400 =	0,322222	1/1000* 12 * 7,99 =	0,095880
С	0328	1/3600 * 0,5 * 1,0 * 400 =	0,055556	1/1000* 2 * 7,99 =	0,015980
SO ₂	0330	1/3600 * 1,2 * 1,0 * 400 =	0,133333	1/1000* 5 * 7,99 =	0,039950
CH ₂ O	1325	1/3600 * 0,12 * 1,0 * 400 =	0,013333	1/1000* 0,5 * 7,99 =	0,003995
Б(а)П	0703	1/3600 * 0,000012 * 1,0 * 400 =	0,000001	1/1000* 0,000055 * 7,99 =	0,0000004

Источник загрязнения N 0017, Выхлопная труба Источник выделения, Сапун ДЭС

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ДЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год T 100 Общее количество суфлеров, шт. , KOLIV 1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,907 Максимальный разовый выброс, г/с, G = Q G 0,907

Валовый выброс, т/год , $_M_$ = $Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,907000	0,326520

Выбросы 3В от конденсатосборника. Источник №0018

Расчет выбросов 3В проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров, РНД 211.2.02.09-2004, Астана, 2004г. - далее Методика

Исходные данные:

Объем конденсатосборника	Vp	=	5	M^3
Количество смеси, закачиваемое в конденсатосборник	В	=	100	т/год
Годовая оборачиваемость конденсатосборника (B/(p*Vp)	n	=	20	раз
Давление насыщенных паров при температуре 38°C	P ₃₈	=	500	мм.рт.ст.
Максимальный объем паровоздушной смеси,				
вытесняемый из конденсатосборника во время его закачки	$V_{\rm q}^{\rm max}$	=	0,2	м ³ /час
Диаметр свечи	d	=	0,057	М
Высота свечи	Н	=	5	М
Молекулярная масса паров конденсата	m	=	90	г/моль
Плотность смеси	ρ	=	0,98	T/M^3
Состав смеси:				
УВ предельные С1-С5		=	100	%

Теория расчета выброса:

Валовые выбросы паров (газов) нефтей и бензинов рассчитываются по формулам: **Максимальные выбросы,** *a/ceк*:

$$M = \frac{0.163 * P_{38} * m * K_t^{\text{max}} * K_p^{\text{max}} * K_B * V_u^{\text{max}}}{10^4}$$

Годовые выбросы, т/год:

$$G = \frac{0.294 * P_{38} * m * (K_t^{\text{max}} * K_B + K_t^{\text{min}}) * K_P^{cp} * K_{OE} * B}{10^7 * \rho_{MC}}$$

где,	Поправочный коэффициент	K_t^{min}	=	1,40
	Поправочный коэффициент	K_t^{max}	=	1,40
	Поправочный коэффициент	K_p^cp	=	0,60
	Поправочный коэффициент	K_p^max	=	0,85
	Поправочный коэффициент	Кв	=	1,00
	Коэффициент оборачиваемости	Коб	=	2 50

Всего	М, г/сек	G, т/год
	0,174573	0,567000
в т.ч. по компонентам:		
УВ предельные С1-С5 (0415)	0,174573	0,567000

$V = V_{\rm q}^{\rm max}/3600$	0,2 /3600	0,0001	м ³ /сек
$W = 4*V/(3,14*d^2)$	4*0,0403/(3,14*0,25*0,25)	0,0218	м/с

Емкость для хранения дизельного топлива. Источник №0019

Расчет выбросов 3В проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров, Астана", 2004 г. - далее Методика

Исходные данные:

Объем емкости	V _{сл}	=	25	м ³ /час
Объем слитого нефтепродукта из а/цистерны в емкость	V _{сл}	=	0,4	м ³ /час
Удельный вес дизтоплива	r	=	0,84	т/м ³
Диаметр дыхательного клапана	d	=	0,2	M
Высота дыхательного клапана	Н	=	2	M
Кол-во закачиваемого в емкость нефтепродукта в осенне-зимний период	Qoз	=	3,995	T
Кол-во закачиваемого в емкость нефтепродукта в весенне-летний период	Qвл	=	3,995	T
Состав дизтоплива:	H ₂ S	=	0,28	%
	C_{12} - C_{19}	=	99,72	%
Время работы в год	T	=	8760	час
Температура выхода паров	t	=	20	°C

Теория расчета выброса:

Максимальные выбросы из емкости рассчитываются по формуле 7.2.1:

 $M=C_p^{max}*V_{cn}$ / 3600 г/сек где C_p^{max} -макс.конц-ция паров нефтепрод.в паровозд.смеси при заполнении рез-ров[Прилож.15] 2,25 г/м³

Годовые выбросы от емкости при закачке рассчитываются по формуле 7.2.4:

 $G = (C_p^{o_3} * Q_{o_3} + C_p^{B_N} * Q_{B_N}) * 10^{-6}$ (выбросы при проливе отсутствуют)

где C_p^{o3} -конц-ция паров нефтепродукта в паровозд.смеси в осенне-зимний период[Прилож. 15] 1,19 г/м³ C_p^{BJ} -конц-ция паров нефтепродукта в паровозд.смеси в весенне-летний период[Прилож. 15] 1,60 г/м³

Выбрасываемое вещество	Код 3В		Расчет ма	г/сек	
H₂S	0333	=(2,25 *	25 / 3600) * 0,28 / 100	0,000044
C ₁₂ -C ₁₉	2754	=(2,25 *	25 / 3600) * 99,7 / 100	0,000249

Выбрасываемое вещество	Код 3В		Расчет валового выброса				т/год	
H ₂ S	0333	=((1,19 *	3,995 +	1,6 *	4) /10 ⁻⁶ *	0,28 / 100	0,00000003
C ₁₂ -C ₁₉	2754	=((1,19 *	3,995 +	1,6 *	4) /10 ⁻⁶ *	99,72 / 100	0,000011

Расчет выбросов от неорганизованных источников

				Колич	І ество	Площадка
№ п.п	Наименование	Обозн.	Един. изм.	Расчет. вел-на	Расчет. доля упл.	дэс
				утечки	потер. герм.	6001
1	Исходные данные:					
	Количество выбросов:					
	3PA:					
	тяжелые углеводороды	Пзд	кг/час	0,006588	0,070	
	ФС:					
	тяжелые углеводороды	Пфд	кг/час	0,000288	0,020	
	Время работы		час/год			8760
	Дизтопливо:					
	Количество ЗРА		ШТ			4
	Количество ФС		ШТ			8
2	Расчет: $M_{HV} = \sum_{j=1}^l M_{HV_j}$	$=\sum_{j=1}^l\sum_{i=1}^m g$	$g_{Hij} \times n_i \times n_i$	$c_{HM} imes c_{ji}$		
	Дизтопливо:					
			кг/час			0,001891
			г/с			0,000525
			т/год			0,016563
3	Идентификация выбросов					
2754	Углеводороды С ₁₂ -С ₁₉	s/c	99,72	%		0,000524
		т/год				0,016516
0333	Сероводород	s/c	0,28	%		0,000001
	-	т/год				0,000046

Расчет выполнен по Методическим указаниям расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.

Расчет выбросов 3В в атмосферу от неорганизованных источников

		Пока	затели				•			ика выбро	ca				
		Расчет.	Расчет.	60	02	60	03	60	004	60	05	60	06	60	07
Наименование		вел-на утечки У ,	доля уплот- ний, потер.	Точ подклю		To	нка чения 2		цадка ошневых		цадка рной		цадка нсато-		цадочные роводы
		r/c	гермет-ть, Д		THE I	подклю	TOTIFIA Z		станции		V-100м3		ка V-5м3	грусси	роводы
Исходные данные:															
Газ															
Количество ЗРА		0,00583	0,293	1	2		2		80						9
Количество ФС		0,0002	0,030	4	4		4		60)				8
Время работы ЗРА и ФС, час/год				87	'60	87	60	87	'60					87	60
Конденсат															
Количество ЗРА		0,00183	0,070								1		2		
Количество ФС		0,00008	0,020								2		4		
Время работы ЗРА и ФС, час/год										87	60	87	60		
Расчет:															
Ү=Nзра*Узра*Дзра+Nфс*Уфс*Дфс															
Общие выбросы по площадкам:															
Всего выбросов , в том числе:	%			г/с	т/год	r/c	т/год	r/c	т/год	r/c	т/год	r/c	т/год	г/с	т/год
Газ	99			0,003440	0,108496	0,003440	0,108496	0,051606	1,627437				-	0,015482	0,488231
Метан	71,444			0,002458	0,077514	0,002458	0,077514	0,036869	1,162706		-		-	0,011061	0,348812
Предельные углеводороды С ₁ -С ₅	26,99			0,000929	0,029283	0,000929	0,029283	0,013928	0,439245	-		-		0,004179	0,131774
Предельные углеводороды C ₆ -C ₁₀	0,544			0,000019	0,000590	0,000019	0,000590	0,000281	0,008853	-		-		0,000084	0,002656
Конденсат	100			-					-	0,000131	0,004141	0,000263	0,008281		-
Предельные углеводороды С ₁ -С ₅	100			-	-				-	0,000131	0,004141	0,000263	0,008281		

Расчет выполнен по Методическим указаниям расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.

Выбросы 3В от дренажной емкости 5м³. Источник №0020

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров, РНД 211.2.02.09-2004, Астана, 2004г. - далее Методика

Исходные	данные:			
Объем резервуара	Vp	=	5	M ³
Количество жидкости, закачиваемое в резервуар	В	=	50	т/год
Годовая оборачиваемость резервуара (B/(p*Vp)	n	=	12	раз
Давление насыщенных паров при температуре 38°C	P ₃₈	=	18,5	мм.рт.ст.
Максимальный объем паровоздушной смеси,				
вытесняемый из резервуара во время его закачки	V_{q}^{max}	=	0,01	м ³ /час
Диаметр дыхательного клапана	d	=	0,15	М
Высота дыхательного клапана	Н	=	5	М
Молекулярная масса паров	m	=	111	г/моль
Плотность жидкости	ρ	=	0,84	T/M ³
Состав:				
УВ предельные С1-С5		=	72,5	%
УВ предельные С6-С10		=	27,5	%

Теория расчета выброса:

Валовые выбросы паров (газов) нефтей и бензинов рассчитываются по формулам:

Максимальные выбросы, г/сек:

$$M = \frac{0.163 * P_{38} * m * K_t^{\text{max}} * K_p^{\text{max}} * K_B * V_u^{\text{max}}}{10^4}$$

Годовые выбросы, т/год:

$$G = \frac{0.294 * P_{38} * m * (K_t^{\text{max}} * K_B + K_t^{\text{min}}) * K_P^{cp} * K_{OE} * B}{10^7 * \rho_{\infty}}$$

где,

Поправочный коэффициент	K_t^{min}	=	0,74
Поправочный коэффициент	K_t^{max}	=	1,00
Поправочный коэффициент	K_p^cp	=	0,70
Поправочный коэффициент	K_p^max	=	0,80
Поправочный коэффициент	Кв	=	1,00
Коэффициент оборачиваемости	Коб	=	2,50

Всего	М, г/сек	G, т/год						
	0,000268	0,010943						
в т.ч. по компонентам:								
Углеводороды C ₁ -C ₅ (0415)	0,000194	0,007933						
Углеводороды C ₆ -C ₁₀ (0416)	0,000074	0,003009						

$V = V_{\rm q}^{\rm max}/3600$	0,01 /3600	0,000003	м³/сек
$W = 4*V/(3,14*d^2)$	4*0,0403/(3,14*0,25*0,25)	0,0002	м/с

Расчет выбросов 3В от насоса. Источник №6008

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 5 $\rm m^3/\rm yac$ Время работы T = 120 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

 $M36 = q * n * t * 10^{-3}$

где q - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.08

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
C ₁ -C ₅	72,5	0415	-	0,08 * 1 /3,6 * 0,725 =	0,016111	= 0,08 * 1 * 120 * 10 ⁻³ * 0,725 =	0,006960
C ₆ -C ₁₀	27,5	0416	=	0,08 * 1 /3,6 * 0,275 =	0,006111	= 0,08 * 1 * 120 ^{* 10°} * 0,275 =	0,002640

Расчет выбросов 3В от масленного насоса. Источник №6009

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

Mзв = q * n / 3,6

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

Mзв = $q * n * t * 10^{-3}$

где **q** - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	=	0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6010

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

Мзв =
$$q * n / 3,6$$

Расчет выбросов 3В т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M38 = q * n * t * 10^{-3}$$

где ${m q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1) q = 0,03

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6011

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 $\rm m^3$ /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

Мзв =
$$q * n * t * 10^{-3}$$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

	Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
Mad	сло минеральное, нефтяное	100	2735	=	0.03 * 1 / 3.6 * 1.000 =	0.008333	= 0.03 * 1 * 7920 * 10 ⁻³ * 1.000 =	0.237600

Расчет выбросов ЗВ от масленного насоса. Источник №6012

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

M38 = q * n / 3,6

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M38 = q * n * t * 10^{-3}$$

где **q** - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6013

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 $\rm m^3/vac$ Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

Мзв =
$$q * n / 3,6$$

Расчет выбросов 3В т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

Мзв =
$$q * n * t * 10^{-3}$$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

				-			4,000	4,500	4,0507	:	4,000	:
							-	-	4,000	4,000	-	4
			l	-					4,000	4,000		4
L				-			-	-	4,000	4,000		4,000
Γ	*	Designations See Spi t CG	-				¢mm.	(MIN	desse.	(MMA	-	¢mm.
			_				44444	44444	4224	44400	4000	\$MAKE.
			_				(ALLOY	(AMD)	(HILL)	4222	(11111	(AMP)
							444	QUINN	41544	44444	essen.	441145
_	Para anama in Magazana para andro a spagara di angara magazana a para pagara pagadan (AS) a grandon di ana. Nyama a gara Maraya apan agarang agar											

Источник № 6020 Покрасочные работы.

Расчет проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004

1. Определение выбросов нелетучей части аэрозоля ЛКМ при нанесении

$$M^a_{_{\mathit{H.OKP}}} = rac{m_{_{\!M}} imes \mathcal{S}_a imes (100 - f_{_p})}{10^4 imes 3.6} imes (1 - \eta), \qquad \qquad M^a_{_{\mathit{H.OKP}}} = rac{m_{_{\!\!M}} imes \mathcal{S}_a imes (100 - f_{_p})}{10^4} imes (1 - \eta), \qquad \qquad T/$$
год

2. Определение выбросов летучих компонентов ЛКМ

$$M_{\text{общ}} = M_{\text{окр}} + M_{\text{суш}}, \text{ т/год}$$

$$M_{o\kappa p}^{x} = \frac{m_{_{M}} \times f_{_{p}} \times \delta_{_{p}}^{'} \times \delta_{_{x}}}{10^{6} \times 3.6} \times (1 - \eta), \qquad M_{o\kappa p}^{x} = \frac{m_{_{\phi}} \times f_{_{p}} \times \delta_{_{p}}^{'} \times \delta_{_{x}}}{10^{6}} \times (1 - \eta),$$

т/год Исходные данные способ d''_p расход f_p d_a d_p' наименован нанесени % т/год кг/час % % % 0,200 45 28 72 ГФ-021 2,0 кистью Расчет состав время, час

	^	•	•	Hariwellobalire	ı cayı	ibiai						
летучей части	%	окраски	сушки	вещества	г/сек	т/год						
ксилол	100	100,0	300	ксилол	0,2500	0,0900						
	Исходные данные											

	походные данные									
наименован	расход		f _p	способ	d _a	d'_{p}	d″ _p			
ие	т/год	кг/час	%	нанесени	%	%	%			
ПФ-115	0,400	5,0	45	кистью		28	72			
	·		•	•		•				

	Расчет										
состав	d _x	врем	ия, час	наименование	Результат						
летучей части	%	окраски	сушки	вещества	г/сек	т/год					
уайт-спирит	50	80,00	240,0	уайт-спирит	0,3125	0,0900					
ксилол	50			ксилол	0,3125	0,0900					

Всего п	о источн	ику:
Наименование ЗВ	г/сек	т/год
уайт-спирит	0,312500	0,090000
ксилол	0,562500	0,180000

Источник 6021. Расчет выбросов при ручной дуговой сварке штучными электродами

Расчет выбросов 3В проведен по "Методике определения эмиссий вредных веществ основным технологическим оборудованием предприятий машиностроения", Приказ МООС №221, 2014 год

Исходные данные:

Расход электродов Э-42A (OMA-2)	В	=	200,0	КГ
	B_{vac}	=	0,5	кг/час
Удельный показатель свар.аэрозоля:	K_{M}^{κ}	=	9,2	г/кг
в т.ч. показатель оксид железа	K_{M}^{κ}	=	8,37	г/кг
показатель соед.марганца	K_{M}^{κ}	=	0,83	г/кг
Степень очистки воздуха в аппарате	η	=	0	
Время сварочных работ	t	=	400	час

Теория расчета выброса:

Максимальные разовый выброс ЗВ от свар. агрегата рассчитывается согласно таблице 4.1 Приложения 1:

$$\frac{B_{\textit{час}} * K_{_{M}}^{\textit{x}}}{3600}*(1-\eta)$$
 где
$$B_{\textit{час}} * - \text{расход применяемого сырья и материалов, кг/час;}$$
 удельный показатель выброса 3В "x" на единицу массы расходуемых сырья и материалов, г/кг
$$\eta = \frac{K_{_{M}} * - \text{расход применяемого сырья и материалов, кг/час;}}{\eta}$$
 степень очистки воздуха в соответствующем аппарате

Валовое кол-во 3В,выбрасываемое от свар. агрегата, рассчитывается по следующей формуле:

$$rac{B*K_{_{_{M}}}^{^{x}}}{10^{^{6}}}*ig(1-\etaig)$$
 где $_{_{_{\!B}}}$ - расход применяемого сырья и материалов, кг/пер.стр.

Выбрасываемое	Код		Расчет	г/сек		Расчет	т/год	
вещество	вещества		1 40401	17000		1 40-01		
Fe ₂ O ₃	0123	0,50 *	8,37 * (1-0) / 3600	= 0,001163	200,0 *	$8,37 * (1-0) / 10^{\circ} =$	0,001674	
Mn	0143	0,50 *	0,83 * (1-0) / 3600	= 0,000115	200,0 *	0,83 * (1-0) / 10 ⁶ =	0,000166	

Расчеты на 2026 год

Расчет выбросов 3В от продувочной свечи ГПЭС-1. Источник №0002

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:										
Диаметр свечи	d	=	0,02	М						
Высота свечи	h	=	4	М						
Длина участка газопровода	L	=	3	М						
Диаметр газопровода	D	=	0,108	М						
Количество продувок	n	=	1	раз/год						
Продолжительность сброса	t	=	120	сек						
Время сброса за год			0,03	час/год						
Плотность газа	ρ	=	0,980	T/M ³						

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	мЗ
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Объем газа, поступающего в атмосферу	V	=	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	11	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	11	0,000229	т/год
	M	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	%	71.444	1,362830	г/сек
0410	Melan		71,444	0,000164	т/год
0415	Предельные углеводороды C ₁ -C ₅	%	26,99	0,514848	г/сек
0413		/0	20,99	0,000062	т/год
0416	Предельные углеводороды С ₆ -С ₁₀	%	0,544	0,010377	г/сек
0416			0,544	0,000001	т/год

Источник №0001 - Газопоршневая электростанция (ГПЭС-1)

	Расход и температура отработанных газов											
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с						
291,3	1250	3,1747	450	1,31	0,49465	6,4182						
Кол-во	1	Р-д д/т В=1	b*k*P*t*10 ⁻⁶ =	2913	т/год							
Расход	цгаза м ³ /год	2972055,145	Удельный вес газа	0,980								
Коэфо	фициент использова	ния k=	1	Время работы,	часов в год t =	8000						
Марка двигателя	Мощность Р, кВт Расход топлива G, т		еМі, г/кВт.ч	Мі, г/кВт.ч qМі ,г/кг		П, т/год						
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000						
	Оксиды азота в т.ч.		4,2	17,5	1,458333	50,970746						
0301	Диоксид азота (NO2	2)			1,166667	40,776597						
0304	Оксид азота (NO)				0,189583	6,626197						
0328	Сажа (С)		0,02	0,100	0,008102	0,291261						
0337	Оксид углерода (СС))	4,24	17,6	1,472222	51,262007						
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007						
1325	Формальдегид (СН2	2O)	0,007	0,027	0,002315	0,077670						
2754	Углеводороды С12-	C19	2,4	10	0,833333	29,126140						

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

Источник загрязнения N 0003, Выхлопная труба Источник выделения, Сапун ГПЭС-1

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q G 0,14

Валовый выброс, т/год , $_M_ = Q * _T_ * 3600 * _KOLIV_ / 10 ^ 6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	4,032000

^{*-} для стационарныйх установок работающих на природном газе значения выбросов по табл.1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Источник №0004 - Газопоршневая электростанция (ГПЭС-2)

		Расход и	гемпература отработа	анных газов		
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с
291,3	1250	3,1747	450	1,31	0,49465	6,4182
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	2913	т/год	
Расход	газа м ³ /год	2972055,145	Удельный вес газа	0,980		
Коэф	фициент использова	ния k =	1	Время работы,	часов в год t =	8000
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qМі ,г/кг	М, г/с	П, т/год
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000
	Оксиды азота в т.ч.		4,2	17,5	1,458333	50,970746
0301	Диоксид азота (NO	2)			1,166667	40,776597
0304	Оксид азота (NO)				0,189583	6,626197
0328	Сажа (С)		0,02	0,100	0,008102	0,291261
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	51,262007
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007
1325	Формальдегид (СН	2O)	0,007	0,027	0,002315	0,077670
2754	Углеводороды С12-	C19	2,4	10	0,833333	29,126140

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-2. Источник №0005

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исх	однь	іе данны	e:
_				
Диаметр свечи	d	=	0,02	M
Высота свечи	h	=	4	M
Длина участка газопровода	L	=	3	M
Диаметр газопровода	D	=	0,108	M
Количество продувок	n	=	1	раз/год
Продолжительность сброса	t	=	120	сек
Время сброса за год			0,03	час/год
Плотность газа	ρ	=	0,980	т/м ³

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	м3
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	1	120	*	1	=	0,0002	м ³ /год
		=			0,028	/	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	M	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	V	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	%	71.444	1,362830	г/сек
0410	INICIAH	/0	71,444	0,000164	т/год
0415		%	26.00	0,514848	г/сек
0415	Предельные углеводороды C ₁ -C ₅	%	26,99	0,000062	т/год
0416	Прополицио успородороди и С. С.	%	0.544	0,010377	г/сек
0416	Предельные углеводороды С ₆ -С ₁₀	70	0,544	0,000001	т/год

Источник загрязнения N 0006, Выхлопная труба

Источник выделения, Сапун ГПЭС-2

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г	/c, <i>Q</i>	0,14
Максимальный разовый выброс, г/с, G	=Q	0,14

Валовый выброс, т/год , _*M*_ = *Q* * _*T*_ * *3600* * _*KOLIV*_ / *10* ^ *6*

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	4,032000

Источник №0007 - Газопоршневая электростанция (ГПЭС-3)

		Расход и	гемпература отработа	анных газов		
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с
291,3	1250	3,1747	450	1,31	0,49465	6,4182
Кол-во	1	Р-д д/т В=І	b*k*P*t*10 ⁻⁶ =	2913	т/год	
Расход	цгаза м ³ /год	2972055,145	Удельный вес газа	0,980		
	фициент использова	ния k =	1	Время работы,	часов в год t =	8000
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000
	Оксиды азота в т.ч.		4,2	17,5	1,458333	50,970746
0301	Диоксид азота (NO	2)			1,166667	40,776597
0304	Оксид азота (NO)				0,189583	6,626197
0328	Сажа (С)		0,02	0,100	0,008102	0,291261
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	51,262007
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007
1325	Формальдегид (СН2	(O)	0,007	0,027	0,002315	0,077670
2754	Углеводороды С12-	C19	2,4	10	0,833333	29,126140

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-3. Источник №0008

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:					
Диаметр свечи	d	=	0,02	М	
Высота свечи	h	=	4	M	
Длина участка газопровода	L	=	3	М	
Диаметр газопровода	D	=	0,108	М	
Количество продувок	n	=	1	раз/год	
Продолжительность сброса	t	=	120	сек	
Время сброса за год			0,03	час/год	
Плотность газа	ρ	=	0,980	т/м ³	

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V	=	0,028	м3
Vk	=	0,027	м3
Po	=	0,2	МПа
to	=	20	°C
Pa	=	0,2	МПа
tn	=	20	°C
Z	=	0,98	
	Po to Pa	Vk = Po = to = Pa = tn =	Vk = 0,027 Po = 0,2 to = 20 Pa = 0,2 tn = 20

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	II	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	%	71.444	1,362830	г/сек
0410			71,444	0,000164	т/год
0415	0415 Предельные углеводороды С ₁ -С ₅	%	26.00	0,514848	г/сек
0415			26,99	0,000062	т/год
0416	Предельные углеводороды С ₆ -С ₁₀	0/	0.544	0,010377	г/сек
0410		%	0,544	0,000001	т/год

Источник загрязнения N 0009, Выхлопная труба Источник выделения, Сапун ГПЭС-3

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на $\Gamma\Pi \ni C$

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

-	-	-	,	-		
Удельный выброс при дол	ивке масла	а, г/с,			${\it Q}$	0,14
Максимальный разовый в	ыброс, г/с,	G = Q			\boldsymbol{G}	0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	4,032000

Источник №0010 - Газопоршневая электростанция (ГПЭС-4)

	Расход и температура отработанных газов										
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с					
291,3	1250	3,1747	450	1,31	0,49465	6,4182					
Кол-во	1	Р-д д/т В=1	o*k*P*t*10 ⁻⁶ =	2913	т/год						
Расход	газа м ³ /год	2972055,145	Удельный вес газа	0,980							
Коэфо	рициент использова	ния k =	1	Время работы,	часов в год t =	8000					
Марка двигателя	Мощность Р, кВт	Расход топлива	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год					
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000					
	Оксиды азота в т.ч.		4,2	17,5	1,458333	50,970746					
0301	Диоксид азота (NO	2)			1,166667	40,776597					
0304	Оксид азота (NO)				0,189583	6,626197					
0328	Сажа (С)		0,02	0,100	0,008102	0,291261					
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	51,262007					
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007					
1325	Формальдегид (CH ₂ O)		0,007	0,027	0,002315	0,077670					
2754	2754 Углеводороды C12-C19		2,4	10	0,833333	29,126140					
Методика	Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД										

211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-4. Источник №0011

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:								
Диаметр свечи	d	=	0,02	М				
Высота свечи	h	=	4	М				
Длина участка газопровода	L	=	3	М				
Диаметр газопровода	D	=	0,108	М				
Количество продувок	n	=	1	раз/год				
Продолжительность сброса	t	=	120	сек				
Время сброса за год			0,03	час/год				
Плотность газа	ρ	=	0,980	т/м ³				

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	м3
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	1	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	%	71.444	1,362830	г/сек
0410	IVIETAH	70	71,444	0,000164	т/год
0415	Предельные углеводороды С ₁ -С ₅	%	26,99	0,514848	г/сек
		/0	20,99	0,000062	т/год
0416	Предельные углеводороды С ₆ -С ₁₀	%	0,544	0,010377	г/сек
		70	0,544	0.000001	т/год

Источник загрязнения N 0012, Выхлопная труба Источник выделения, Сапун ГПЭС-4

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с,	${\it Q}$	0,14
Максимальный разовый выброс, г/с, $G = Q$	$oldsymbol{G}$	0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	4,032000

Источник №0013 - Газопоршневая электростанция (ГПЭС-5 резервная)

	Расход и температура отработанных газов											
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с						
313,6	1250	3,4182	450	1,31	0,49465	6,9105						
Кол-во	1	Р-д д/т В=1	b*k*P*t*10 ⁻⁶ =	282	т/год							
Расход	цгаза м ³ /год	288000	Удельный вес газа	0,980								
Коэфо	фициент использова	ния k =	1	Время работы,	часов в год t =	720						
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год						
	1250	282		топлива	M=eMi*P/3600	П=qMi*G/1000						
	Оксиды азота в т.ч.		4,2	17,5	1,458333	4,939200						
0301	Диоксид азота (NO	2)			1,166667	3,951360						
0304	Оксид азота (NO)				0,189583	0,642096						
0328	Сажа (С)		0,02	0,100	0,008102	0,028224						
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	4,967424						
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000001						
1325	Формальдегид (СН2	2O)	0,007	0,027	0,002315	0,007526						
2754	754 Углеводороды С12-С19		2,4	10	0,833333	2,822400						

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-5. Источник №0014

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исходные данные:							
Диаметр свечи	d	=	0,02	М				
Высота свечи	h	=	4	М				
Длина участка газопровода	L	=	3	М				
Диаметр газопровода	D	=	0,108	М				
Количество продувок	n	=	1	раз/год				
Продолжительность сброса	t	=	120	сек				
Время сброса за год			0,03	час/год				
Плотность газа	ρ	=	0,980	T/M^3				

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	мЗ
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Ро	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,980	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	/	120		0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	V	=4*	0.0002	1	(3.14	*	0.0004) =	0.7439	м/сек

0410	10 Метан	%	71.444	1,362830	г/сек
0410	IVIETAH	/0	71,444	0,000164	т/год
0415	0445 Продолжино условодоводи С. С.			0,514848	г/сек
0415	Предельные углеводороды C ₁ -C ₅	%	26,99	0,000062	т/год
0416	0416 Предельные углеводороды С ₆ -С ₁₀		0,54	0,010377	г/сек
0416			0,54	0,000001	т/год

Источник загрязнения N 0015, Выхлопная труба Источник выделения, Сапун ГПЭС-5

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год T 720 Общее количество суфлеров, шт. , KOLIV 1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q G 0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0.140000	0,362880

Дизельный генератор резервный. Источник №0016

Расчет выбросов загрязняющих веществ от дизельных установок проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок", Астана, 2004 г. - далее Методика.

Исходные данные:

Мощность агрегата	Рэ	=	400	кВт
Загрузка генератора			100	%
Общий расход топлива	В	=	7,99	т/год
			79,9	кг/ч
	b	=	200	г/кВт*ч
Время работы	Т	=	100	час/год
Длина трубы	L	=	305	MM
Диаметр	d	=	0,154	М
Температура газов	t	=	400	°C
Плотность дизтоплива			0,85	т/м ³

Выбрасываемое вещество	Выброс, г/кВт·ч (ei)	Выброс, г/кг (qi)
Углерода оксид	6,2	26
Азота диоксид	9,6*0,8	40*0,8
Азота оксид	9,6*0,13	40*0,13
Углеводороды С ₁₂ -С ₁₉	2,9	12
Сажа	0,5	2
Серы диоксид	1,2	5
Формальдегид	0,12	0,5
Бенз(а)пирен	0,000012	0,000055

Теория расчета выбросов:

Расчет максимально разового выброса (г/с) определяется по формуле [Методика, ф-ла 1]:

Mi = (1/3600) · ei · Рэ где

еі - выброс і-го вредного вещества на единицу полезной работы д. установки (г/кВт·ч) [Методика, табл.1,2];

Рэ - эксплуатационная мощность стационарной дизельной установки (кВт).

Расчет валового выброса (т/год) производится по формуле [Методика, ф-ла 2]:

 $\Gamma i = (1/1000) \cdot qi \cdot B$ где:

qi - выброс i-го вредного вещества, приходящегося на 1 кг диз.топлива (г/кг) [Методика, табл.3,4];

В - расход топлива генератором (т/год).

Расчет отработавших газов (кг/с) от стационарной дизельной установки определяется [Методика, ф-ла АЗ Прил. А]:

G ≈ 8.72 · 10⁻⁶ · b · Pэ

где:

b - расход топлива генератором (г/кВт*час).

Уделный вес отработавших газов рассчитывается по формуле [Методика, ф-ла А5 Прил. А]:

 $\gamma_{or} = \gamma 0_{or}/(1+T_{or}/273)$

где:

 γO_{or} - удельный вес отработавших газов при температуре равной 0°С (γO_{or} = 1,31 кг/м³);

T_{or} - температура отработавших газов, К.

Объемный расход отработавших газов (м³/c) определяется по формуле [Методика, ф-ла А4 Прил. A]:

V = G/ v

Скорость выхода отработавших газов (м/с) определяется по формуле:

 $w=(4*V)/(3.14*d^2)$

Выбрасываемое вещество	Код вещества		F	Расч	ет			г/с		Pa	сче	т		т/год
CO	0337	1/3600 *	6,2	*	1,0 *	400	=	0,688889	1/1000*	26	*	7,99	=	0,207740
NO ₂	0301	1/3600 *	9,6*0,8	*	1,0 *	400	=	0,853333	1/1000*	40*0,8	*	7,99		0,255680
NO	0304	1/3600 *	9,6*0,13	*	1,0 *	400	=	0,138667	1/1000*	40*0,13	*	7,99		0,041548
C ₁₂ -C ₁₉	2754	1/3600 *	2,9	*	1,0 *	400	=	0,322222	1/1000*	12	*	7,99	=	0,095880
С	0328	1/3600 *	0,5	*	1,0 *	400	=	0,055556	1/1000*	2	*	7,99		0,015980
SO ₂	0330	1/3600 *	1,2	*	1,0 *	400	=	0,133333	1/1000*	5	*	7,99	=	0,039950
CH ₂ O	1325	1/3600 *	0,12	*	1,0 *	400	=	0,013333	1/1000*	0,5	*	7,99	=	0,003995
Б(а)П	0703	1/3600 *	0,000012	*	1,0 *	400	=	0,000001	1/1000*	0,000055	*	7,99	=	0,0000004

Источник загрязнения N 0017, Выхлопная труба Источник выделения, Сапун ДЭС

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ДЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год T 100 Общее количество суфлеров, шт. , KOLIV 1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,907 Максимальный разовый выброс, г/с, G = Q G 0,907

Валовый выброс, т/год , $_M_$ = $Q*_T_*3600*_KOLIV_/10^6$

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,907000	0,326520

Выбросы 3В от конденсатосборника. Источник №0018

Расчет выбросов 3В проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров, РНД 211.2.02.09-2004, Астана, 2004г. - далее Методика

Исходные данные:

Объем конденсатосборника	Vp	=	5	M^3
Количество смеси, закачиваемое в конденсатосборник	В	=	100	т/год
Годовая оборачиваемость конденсатосборника (B/(p*Vp)	n	=	20	раз
Давление насыщенных паров при температуре 38°C	P ₃₈	=	500	мм.рт.ст.
Максимальный объем паровоздушной смеси,				
вытесняемый из конденсатосборника во время его закачки	$V_{\rm q}^{}$	=	0,2	м ³ /час
Диаметр свечи	d	=	0,057	М
Высота свечи	Н	=	5	М
Молекулярная масса паров конденсата	m	=	90	г/моль
Плотность смеси	ρ	=	0,98	т/м ³
Состав смеси:				
УВ предельные С1-С5		=	100	%

Теория расчета выброса:

Валовые выбросы паров (газов) нефтей и бензинов рассчитываются по формулам:

Максимальные выбросы, г/сек:

$$M = \frac{0.163 * P_{38} * m * K_t^{\text{max}} * K_p^{\text{max}} * K_B * V_u^{\text{max}}}{10^4}$$

Годовые выбросы, т/год:

$$G = \frac{0.294 * P_{38} * m * (K_t^{\text{max}} * K_B + K_t^{\text{min}}) * K_P^{cp} * K_{OE} * B}{10^7 * \rho_{MC}}$$

где,	Поправочный коэффициент	K_t	^{min} =	1,40
	Поправочный коэффициент	K _t	max =	1,40
	Поправочный коэффициент	K,	cp =	0,60
	Поправочный коэффициент	K_p	max =	0,85
	Поправочный коэффициент	K	(в =	1,00
	Коэффициент оборачиваемости	Ко	об =	2,50

Всего	М, г/сек	G, т/год
	0,174573	0,567000
в т.ч. по компонентам:		
УВ предельные С1-С5 (0415)	0,174573	0,567000

$V = V_{y}^{\text{max}}/3600$	0,2 /3600	0,0001	м ³ /сек
$W = 4*V/(3,14*d^2)$	4*0,0403/(3,14*0,25*0,25)	0,0218	м/с

Емкость для хранения дизельного топлива. Источник №0019

Расчет выбросов 3В проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров, Астана", 2004 г. - далее Методика

Исходные данные:

Объем емкости	V _{сл}	=	25	м ³ /час
Объем слитого нефтепродукта из а/цистерны в емкость	V _{сл}	=	0,4	м ³ /час
Удельный вес дизтоплива	r	=	0,84	т/м ³
Диаметр дыхательного клапана	d	=	0,2	М
Высота дыхательного клапана	Н	=	2	М
Кол-во закачиваемого в емкость нефтепродукта в осенне-зимний период	Qo3	=	3,995	T
Кол-во закачиваемого в емкость нефтепродукта в весенне-летний период	Qвл	=	3,995	T
Состав дизтоплива:	H ₂ S	=	0,28	%
	C_{12} - C_{19}	=	99,72	%
Время работы в год	Т	=	8760	час
Температура выхода паров	t	=	20	°C

Теория расчета выброса:

Максимальные выбросы из емкости рассчитываются по формуле 7.2.1:

 $M=C_p^{max}*V_{cn}$ / 3600 г/сек где C_p^{max} -макс.конц-ция паров нефтепрод.в паровозд.смеси при заполнении рез-ров[Прилож.15] 2,25 г/м³

Годовые выбросы от емкости при закачке рассчитываются по формуле 7.2.4:

 $G = (C_p^{o3} * Q_{o3} + C_p^{B\pi} * Q_{B\pi}) * 10^{-6}$ (выбросы при проливе отсутствуют)

где C_p^{o3} -конц-ция паров нефтепродукта в паровозд.смеси в осенне-зимний период[Прилож. 15] 1,19 г/м³ C_p^{BJ} -конц-ция паров нефтепродукта в паровозд.смеси в весенне-летний период[Прилож. 15] 1,60 г/м³

Выбрасываемое вещество	Код 3В	Расчет максимал	ьного выброса	г/сек
H ₂ S	0333	=(2,25 * 25 /	3600) * 0,28 / 100	0,000044
C ₁₂ -C ₁₉	2754	=(2,25 * 25 /	3600) * 99,7 / 100	0,000249

Выбрасываемое вещество	Код 3В		Расчет валового выброса								
H ₂ S	0333	=((1,19 *	3,995 +	1,6 *	4) /10 ⁻⁶ *	0,28 / 100	0,0000003			
C ₁₂ -C ₁₉	2754	=((1,19 *	3,995 +	1,6 *	4) /10 ⁻⁶ *	99,72 / 100	0,000011			

$$V = 0.4 / 3600$$
 = 0,0001 M^3/cek = 0,0001 M/c

Расчет выбросов от неорганизованных источников

				Колич	нество	Площадка				
№ п.п	Наименование	Обозн.	Един. изм.	Расчет. вел-на	Расчет. доля упл.	дэс				
				утечки	потер. герм.	6001				
1	Исходные данные:									
	Количество выбросов:									
	3PA:									
	тяжелые углеводороды	Пзд	кг/час	0,006588	0,070					
	ΦC :									
	тяжелые углеводороды	Пфд	кг/час	0,000288	0,020					
	Время работы		час/год			8760				
	Дизтопливо:									
	Количество ЗРА		шт			4				
	Количество ФС		ШТ			8				
2	Pасчет: $M_{H\!\mathcal{Y}} = \sum_{j=1}^l M_{H\!\mathcal{X}_j} = \sum_{j=1}^l \sum_{i=1}^m g_{H\!\mathcal{X}_j} \times n_i \times x_{H\!\mathcal{X}_i} \times c_{ji}$									
	Дизтопливо:									
			кг/час			0,001891				
			г/с			0,000525				
			т/год			0,016563				
3	Идентификация выбросов									
2754	Углеводороды С ₁₂ -С ₁₉	s/c	99,72	%		0,000524				
		т/год				0,016516				
0333	Сероводород	s/c	0,28	%		0,000001				
		т/год				0,000046				

Расчет выполнен по Методическим указаниям расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.

Расчет выбросов 3В в атмосферу от неорганизованных источников

		Пока	затели							ика выброс	ca										
		Расчет.	Расчет.	60	02	60	03		004		05	60	06	60	07						
Наименование		вел-на утечки У , г/с	доля уплот- ний, потер. гермет-ть, Д	подклю	Точка Точка подключения 1 подключения				1 подключения 2 газопоршневых		подключения 2		ия 1 подключения 2		газопоршневых		Площадка буферной емкости V-100м3		цадка нсато- ка V-5м3		цадочные роводы
Исходные данные:																					
Газ																					
Количество ЗРА		0,00583	0,293	2	2		2	3	80					9	9						
Количество ФС		0,0002	0,030	4	4		4		60	()			1							
Время работы ЗРА и ФС, час/год				87	8760		60	8760						8760							
Конденсат																					
Количество ЗРА		0,00183	0,070								1	2	2								
Количество ФС		0,00008	0,020								2	4	1								
Время работы ЗРА и ФС, час/год								8760		60	8760										
Расчет:																					
Ү=Nзра*Узра*Дзра+Nфс*Уфс*Дфс																					
Общие выбросы по площадкам:																					
Всего выбросов , в том числе:	%			r/c	т/год	r/c	т/год	r/c	т/год	r/c	т/год	r/c	т/год	r/c	т/год						
Газ	99			0,003440	0,108496	0,003440	0,108496	0,051606	1,627437				-	0,015482	0,488231						
Метан	71,444			0,002458	0,077514	0,002458	0,077514	0,036869	1,162706				-	0,011061	0,348812						
Предельные углеводороды С ₁ -С ₅	26,99			0,000929	0,029283	0,000929	0,029283	0,013928	0,439245	•	-			0,004179	0,131774						
Предельные углеводороды C ₆ -C ₁₀	0,544			0,000019	0,000590	0,000019	0,000590	0,000281	0,008853	-	-	-		0,000084	0,002656						
Конденсат	100			-		-			-	0,000131	0,004141	0,000263	0,008281		-						
Предельные углеводороды C ₁ -C ₅	100								-	0,000131	0,004141	0,000263	0,008281	•	-						

Расчет выполнен по Методическим указаниям расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.

Выбросы 3В от дренажной емкости 5м³. Источник №0020

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров, РНД 211.2.02.09-2004, Астана, 2004г. - далее Методика

Исходные	данные:			
Объем резервуара	Vp	=	5	M ³
Количество жидкости, закачиваемое в резервуар	В	=	50	т/год
Годовая оборачиваемость резервуара (B/(p*Vp)	n	=	12	раз
Давление насыщенных паров при температуре 38°C	P ₃₈	=	18,5	мм.рт.ст.
Максимальный объем паровоздушной смеси,				
вытесняемый из резервуара во время его закачки	V_{q}^{max}	=	0,01	м ³ /час
Диаметр дыхательного клапана	d	=	0,15	М
Высота дыхательного клапана	Н	=	5	М
Молекулярная масса паров	m	=	111	г/моль
Плотность жидкости	ρ	=	0,84	т/м ³
Состав:				
УВ предельные С1-С5		=	72,5	%
УВ предельные С6-С10		=	27,5	%

Теория расчета выброса:

Валовые выбросы паров (газов) нефтей и бензинов рассчитываются по формулам:

Максимальные выбросы, г/сек:

$$M = \frac{0.163 * P_{38} * m * K_t^{\text{max}} * K_p^{\text{max}} * K_B * V_u^{\text{max}}}{10^4}$$

Годовые выбросы, т/год:

$$G = \frac{0.294 * P_{38} * m * (K_t^{\text{max}} * K_B + K_t^{\text{min}}) * K_P^{cp} * K_{OE} * B}{10^7 * \rho_{\infty}}$$

где,

Поправочный коэффициент	K_t^{min}	=	0,74
Поправочный коэффициент	K_t^{max}	=	1,00
Поправочный коэффициент	K_p^{cp}	=	0,70
Поправочный коэффициент	K_p^{max}	=	0,80
Поправочный коэффициент	Кв	=	1,00
Коэффициент оборачиваемости	Коб	=	2,50

Всего	М, г/сек	G, т/год
	0,000268	0,010943
в т.ч. по компонентам:		
Углеводороды C ₁ -C ₅ (0415)	0,000194	0,007933
Углеводороды C ₆ -C ₁₀ (0416)	0,000074	0,003009

$V = V_{\rm q}^{\rm max}/3600$	0,01 /3600	0,000003	м³/сек
$W = 4*V/(3,14*d^2)$	4*0,0403/(3,14*0,25*0,25)	0,0002	м/с

Расчет выбросов 3В от насоса. Источник №6008

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 5 $\rm m^3/\rm yac$ Время работы T = 120 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

 $M36 = q * n * t * 10^{-3}$

где *q* - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.08

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
C ₁ -C ₅	72,5	0415	-	0,08 * 1 /3,6 * 0,725 =	0,016111	= 0,08 * 1 * 120 * 10 ⁻³ * 0,725 =	0,006960
C ₆ -C ₁₀	27,5	0416	=	0,08 * 1 /3,6 * 0,275 =	0,006111	= 0,08 * 1 * 120 ^{* 10°} * 0,275 =	0,002640

Расчет выбросов 3В от масленного насоса. Источник №6009

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M$$
зв = $q * n * t * 10^{-3}$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	=	0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6010

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M38 = q * n * t * 10^{-3}$$

где ${m q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1) q = 0,03

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6011

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 $\rm m^3$ /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M36 = q * n * t * 10^{-3}$$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

	Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
Mad	сло минеральное, нефтяное	100	2735	=	0.03 * 1 / 3.6 * 1.000 =	0.008333	= 0.03 * 1 * 7920 * 10 ⁻³ * 1.000 =	0.237600

Расчет выбросов ЗВ от масленного насоса. Источник №6012

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M38 = q * n / 3,6$$

Расчет выбросов 3В т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M38 = q * n * t * 10^{-3}$$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6013

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 $\rm m^3/vac$ Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

Мзв =
$$q * n / 3,6$$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M$$
зв = $q * n * t * 10^{-3}$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

ر با المحمول المحمول المحمول المحمول المحمول المحمول المحمول المحمول المحمول المحمول المحمول المحمول المحمول ا - المحمول

Источник № 6020 Покрасочные работы.

Расчет проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004

1. Определение выбросов нелетучей части аэрозоля ЛКМ при нанесении

$$M^a_{\scriptscriptstyle H.OKP} = rac{m_{\scriptscriptstyle M} imes \delta_a imes (100-f_{\scriptscriptstyle p})}{10^4 imes 3.6} imes (1-\eta), \qquad \qquad M^a_{\scriptscriptstyle H.OKP} = rac{m_{\scriptscriptstyle \phi} imes \delta_a imes (100-f_{\scriptscriptstyle p})}{10^4} imes (1-\eta), \qquad \qquad T/год$$

2. Определение выбросов летучих компонентов ЛКМ

$$M_{\text{общ}} = M_{\text{окр}} + M_{\text{суш}}$$
, т/год

$$M_{o\kappa p}^{x} = \frac{m_{_{M}} \times f_{_{p}} \times \delta_{_{p}}^{'} \times \delta_{_{x}}}{10^{6} \times 3.6} \times (1 - \eta), \qquad M_{o\kappa p}^{x} = \frac{m_{_{\phi}} \times f_{_{p}} \times \delta_{_{p}}^{'} \times \delta_{_{x}}}{10^{6}} \times (1 - \eta),$$

т/год Исходные данные способ d''_p расход fp d_p' d_a наименован нанесени т/год кг/час % % % % 0,200 45 28 72 ΓΦ-021 2,0 кистью Расчет состав время, час d_x наименование Результат летучей окраски сушки % вещества г/сек т/год части 100,0 ксилол 100 300 ксилол 0,2500 0,0900

		Исход	дные данн	ые			
наименован	расход		f _p	способ	d _a	d' _p	d"p
ие	т/год	кг/час	%	нанесени	%	%	%
ПФ-115	0.400	5.0	45	кистью		28	72

Расчет состав

	u _x	Брем	іл, час	наименование	Результат		
летучей части	%	окраски	сушки	вещества	г/сек	т/год	
уайт-спирит	50	80,00	240,0	уайт-спирит	0,3125	0,0900	
ксилол	50			ксилол	0,3125	0,0900	
	Всего по источнику:						

всего по источнику.						
Наименование 3В	г/сек	т/год				
уайт-спирит	0,312500	0,090000				
ксилол	0,562500	0,180000				

Источник 6021. Расчет выбросов при ручной дуговой сварке штучными электродами

Расчет выбросов 3В проведен по "Методике определения эмиссий вредных веществ основным технологическим оборудованием предприятий машиностроения", Приказ МООС №221, 2014 год

Исходные данные:

Расход электродов Э-42А (ОМА-2)	В	=	200,0	КГ
	B_{vac}	=	0,5	кг/час
Удельный показатель свар.аэрозоля:	K_{M}^{κ}	=	9,2	г/кг
в т.ч. показатель оксид железа	K_{M}^{κ}	=	8,37	г/кг
показатель соед.марганца	K_{M}^{K}	=	0,83	г/кг
Степень очистки воздуха в аппарате	η	=	0	
Время сварочных работ	t	=	400	час

Теория расчета выброса:

Максимальные разовый выброс ЗВ от свар. агрегата рассчитывается согласно таблице 4.1 Приложения 1:

$$\frac{B_{\textit{час}} * K_{_{M}}^{\textit{x}}}{3600}*(1-\eta) \qquad \qquad \text{где} \\ \textbf{\textit{B}}_{\textit{час}} & \textbf{-} \quad \text{расход применяемого сырья и материалов, кг/час;} \\ \textbf{\textit{K}}_{_{M}}^{\textit{K}} & \textbf{-} \quad \text{удельный показатель выброса 3B "x" на единицу массы расходуемых сырья и материалов, г/кг} \\ \textbf{\textit{\eta}} & \text{степень очистки воздуха в соответствующем аппарате}$$

Валовое кол-во 3В,выбрасываемое от свар. агрегата, рассчитывается по следующей формуле:

$$rac{B*K_{_{_{M}}}^{^{x}}}{10^{^{6}}}*ig(1-\etaig)$$
 где в - расход применяемого сырья и материалов, кг/пер.стр.

Выбрасываемое	Код		Расчет	г/сек		Расчет	т/гол
вещество	вещества		1 40401	1/CGK		т/год	
Fe ₂ O ₃	0123	0,50 *	8,37 * (1-0) / 3600	= 0,001163	200,0 *	$8,37 * (1-0) / 10^{\circ} =$	0,001674
Mn	0143	0,50 *	0,83 * (1-0) / 3600	= 0,000115	200,0 *	$0.83 * (1-0) / 10^6 =$	0,000166

Расчеты на 2027 год

Расчет выбросов 3В от продувочной свечи ГПЭС-1. Источник №0002

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:								
Диаметр свечи	d	=	0,02	М				
Высота свечи	h	=	4	M				
Длина участка газопровода	L	=	3	М				
Диаметр газопровода	D	=	0,108	M				
Количество продувок	n	=	1	раз/год				
Продолжительность сброса	t	=	120	сек				
Время сброса за год			0,03	час/год				
Плотность газа	ρ	=	0,980	т/м ³				

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	мЗ
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Объем газа, поступающего в атмосферу	V	=	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120		0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98		0,000229	т/год
	M	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	0410 Метан		71.444	1,362830	г/сек
0410			71,444	0,000164	т/год
0415	0415 Program III IO VERGODORO II I C. C.		26,99	0,514848	г/сек
0413	Предельные углеводороды С ₁ -С ₅	%	20,99	0,000062	т/год
0416	Предельные углеводороды С ₆ -С ₁₀	%	0,544	0,010377	г/сек
0416			0,544	0,000001	т/год

Источник №0001 - Газопоршневая электростанция (ГПЭС-1)

	Расход и температура отработанных газов								
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с			
291,3	1250	3,1747	450	1,31	0,49465	6,4182			
Кол-во	1	Р-д д/т В=1	b*k*P*t*10 ⁻⁶ =	2913	т/год				
Расход	цгаза м ³ /год	2972055,145	Удельный вес газа	0,980					
Коэфо	Коэффициент использования k =		1	Время работы,	часов в год t =	8000			
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год			
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000			
	Оксиды азота в т.ч.		4,2	17,5	1,458333	50,970746			
0301	Диоксид азота (NO2	2)			1,166667	40,776597			
0304	Оксид азота (NO)				0,189583	6,626197			
0328	Сажа (С)		0,02	0,100	0,008102	0,291261			
0337	Оксид углерода (СО)		4,24	17,6	1,472222	51,262007			
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007			
1325	Формальдегид (СН2	2O)	0,007	0,027	0,002315	0,077670			
2754	Углеводороды С12-	C19	2,4	10	0,833333	29,126140			

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

Источник загрязнения N 0003, Выхлопная труба Источник выделения, Сапун ГПЭС-1

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, $\boldsymbol{\varrho}$ 0,14 \boldsymbol{G} 0,14 Максимальный разовый выброс, г/с, G = QВаловый выброс, т/год , $_M_ = Q * _T_ * 3600 * _KOLIV_ / 10 ^ 6$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год	
2735	Масло минеральное нефтяное	0,140000	4,032000	

^{*-} для стационарныйх установок работающих на природном газе значения выбросов по табл.1 и 3 уменьшены по СО на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Источник №0004 - Газопоршневая электростанция (ГПЭС-2)

	Расход и температура отработанных газов								
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с			
291,3	1250	3,1747	450	1,31	0,49465	6,4182			
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	2913	т/год				
Расход	газа м ³ /год	2972055,145	Удельный вес газа	0,980					
Коэф	Коэффициент использования k =		1	Время работы,	часов в год t =	8000			
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qМі ,г/кг	М, г/с	П, т/год			
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000			
	Оксиды азота в т.ч.		4,2	17,5	1,458333	50,970746			
0301	Диоксид азота (NO	2)			1,166667	40,776597			
0304	Оксид азота (NO)				0,189583	6,626197			
0328	Сажа (С)		0,02	0,100	0,008102	0,291261			
0337	Оксид углерода (СО)		4,24	17,6	1,472222	51,262007			
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007			
1325	Формальдегид (CH ₂ O)		0,007	0,027	0,002315	0,077670			
2754	Углеводороды С12-	C19	2,4	10	0,833333	29,126140			

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-2. Источник №0005

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исходные данные:						
Диаметр свечи	d	=	0,02	M			
Высота свечи	h	=	4	М			
Длина участка газопровода	L	=	3	М			
Диаметр газопровода	D	=	0,108	М			
Количество продувок	n	=	1	раз/год			
Продолжительность сброса	t	=	120	сек			
Время сброса за год			0,03	час/год			
Плотность газа	ρ	=	0,980	т/м ³			

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	м3
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Ро	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	1	120	*	1	=	0,0002	м ³ /год
		=			0,028	/	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	M	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	%	71.444	1,362830	г/сек
0410	IVIETAN	/0	71,444	0,000164	т/год
0415	0415 Предельные углеводороды С ₁ -С ₅ %		26.00	0,514848	г/сек
0415	Предельные углеводороды С ₁ -С ₅	70	26,99	0,000062	т/год
0416	Предельные углеводороды C ₆ -C ₁₀	%	0.544	0,010377	г/сек
0416		70	0,344	0,000001	т/год

Источник загрязнения N 0006, Выхлопная труба

Источник выделения, Сапун ГПЭС-2

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q G 0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год	
2735	Масло минеральное нефтяное	0,140000	4,032000	

Источник №0007 - Газопоршневая электростанция (ГПЭС-3)

	Расход и температура отработанных газов									
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с				
291,3	1250	3,1747	450	1,31	0,49465	6,4182				
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	2913	т/год					
Расход	цгаза м ³ /год	2972055,145	Удельный вес газа	0,980						
Коэфо	фициент использова	ния k =	1	Время работы, часов в год t =		8000				
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год				
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000				
	Оксиды азота в т.ч.		4,2	17,5	1,458333	50,970746				
0301	Диоксид азота (NO	2)			1,166667	40,776597				
0304	Оксид азота (NO)				0,189583	6,626197				
0328	Сажа (С)		0,02	0,100	0,008102	0,291261				
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	51,262007				
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007				
1325	Формальдегид (СН2	2O)	0,007	0,027	0,002315	0,077670				
2754	Углеводороды С12-	C19	2,4	10	0,833333	29,126140				

 $211.2.02.04-2004.~Acmaнa, 2004~\varepsilon.$ *- для стационарныйх установок работающих на природном газе значения выбросов по табл.1 и 3 уменьшены по CO на 20%,

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД

^{*-} для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%. Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-3. Источник №0008

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:					
Диаметр свечи	d	=	0,02	М	
Высота свечи	h	=	4	M	
Длина участка газопровода	L	=	3	М	
Диаметр газопровода	D	=	0,108	М	
Количество продувок	n	=	1	раз/год	
Продолжительность сброса	t	=	120	сек	
Время сброса за год			0,03	час/год	
Плотность газа	ρ	=	0,980	т/м ³	

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	м3
где: Vk - геометрический объем газопровода	Vk	=	0,027	мЗ
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Ро	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Ζ	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	/	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	1	(3,14	*	0,0004) =	0,7439	м/сек

0410	0 Метан %		71.444	1,362830	г/сек
0410	IVIETAH	/0	71,444	0,000164	т/год
0415	Подолици услововования	%	26.00	0,514848	г/сек
0415	Предельные углеводороды С ₁ -С ₅	70	26,99	0,000062	т/год
0416	0446		0.544	0,010377	г/сек
0416	Предельные углеводороды C ₆ -C ₁₀	%	0,544	0,000001	т/год

Источник загрязнения N 0009, Выхлопная труба Источник выделения, Сапун ГПЭС-3

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на $\Gamma\Pi \ni C$

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q 6 0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год	
2735	Масло минеральное нефтяное	0,140000	4,032000	

Источник №0010 - Газопоршневая электростанция (ГПЭС-4)

		Расход и	гемпература отработа	анных газов		
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с
291,3	1250	3,1747	450	1,31	0,49465	6,4182
Кол-во	1	Р-д д/т В=І	o*k*P*t*10 ⁻⁶ =	2913	т/год	
Расход	цгаза м ³ /год	2972055,145	Удельный вес газа	0,980		
Коэф	Коэффициент использования k =		1	Время работы,	часов в год t =	8000
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qМі ,г/кг	М, г/с	П, т/год
	1250	2913		топлива	M=eMi*P/3600	П=qMi*G/1000
	Оксиды азота в т.ч.	•	4,2	17,5	1,458333	50,970746
0301	Диоксид азота (NO	2)			1,166667	40,776597
0304	Оксид азота (NO)				0,189583	6,626197
0328	Сажа (С)		0,02	0,100	0,008102	0,291261
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	51,262007
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000007
1325	Формальдегид (СН	2O)	0,007	0,027	0,002315	0,077670
2754	Углеводороды С12-	C19	2,4	10	0,833333	29,126140

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-4. Источник №0011

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

Исходные данные:								
Диаметр свечи	d	=	0,02	М				
Высота свечи	h	=	4	М				
Длина участка газопровода	L	=	3	M				
Диаметр газопровода	D	=	0,108	M				
Количество продувок	n	=	1	раз/год				
Продолжительность сброса	t	=	120	сек				
Время сброса за год			0,03	час/год				
Плотность газа	ρ	=	0,980	T/M^3				

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	мЗ
где: Vk - геометрический объем газопровода	Vk	=	0,027	мЗ
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Po	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Ζ	=	0,98	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	1	120	*	1	=	0,0002	м ³ /год
		=			0,028	1	120	=	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶	=	1,907550	г/сек
Скорость выброса	V	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	Метан	%	71.444	1,362830	г/сек
U410 IMETAH	IVIETAH	70	71,444	0,000164	т/год
0415	Предельные углеводороды С ₁ -С ₅	%	26,99	0,514848	г/сек
0413			20,99	0,000062	т/год
0416	Предельные углеводороды С ₆ -С ₁₀	%	0,544	0,010377	г/сек
0416		/0	0,544	0,000001	т/год

Источник загрязнения N 0012, Выхлопная труба Источник выделения, Сапун ГПЭС-4

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год	T	8000
Общее количество суфлеров, шт.,	KOLIV	1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q G 0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год
2735	Масло минеральное нефтяное	0,140000	4,032000

Источник №0013 - Газопоршневая электростанция (ГПЭС-5 резервная)

		Расход и	гемпература отработ:	анных газов		
Уд. расход газа b, г/кВт.ч	Мощность Р, кВт	Расход отработанных газов G, кг/с	Температура Т,°С	Плотность газов при 0° C, g_0 =1,31кг/м ³	Уд. вес отработ. газов g, кг/м ³	Объемный расход газов Q, м ³ /с
313,6	1250	3,4182	450	1,31	0,49465	6,9105
Кол-во	1	Р-д д/т В=1	b*k*P*t*10 ⁻⁶ =	282	т/год	
Расход	цгаза м ³ /год	288000	Удельный вес газа	0,980		
Коэфо	фициент использова	ния k =	1	Время работы,	часов в год t =	720
Марка двигателя	Мощность Р, кВт	Расход топлива G, т	еМі, г/кВт.ч	qMi ,г/кг	М, г/с	П, т/год
	1250	282		топлива	M=eMi*P/3600	П=qMi*G/1000
	Оксиды азота в т.ч.		4,2	17,5	1,458333	4,939200
0301	Диоксид азота (NO	2)			1,166667	3,951360
0304	Оксид азота (NO)				0,189583	0,642096
0328	Сажа (С)		0,02	0,100	0,008102	0,028224
0337	Оксид углерода (СС	0)	4,24	17,6	1,472222	4,967424
0703	Бенз(а)пирен		0,0000006	0,000002	0,0000002	0,000001
1325	Формальдегид (СН2	2O)	0,007	0,027	0,002315	0,007526
2754	2754 Углеводороды C12-C19		2,4	10	0,833333	2,822400

Методика расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок. РНД 211.2.02.04-2004. Астана, 2004 г.

^{*}- для стационарныйх установок работающих на природном газе значения выбросов по табл. 1 и 3 уменьшены по CO на 20%, Nox в 2 раза, C, CH2O в 15 раз и БП в 20 раз

Расчет выбросов 3В от продувочной свечи ГПЭС-5. Источник №0014

Расчет проведен согласно "Методике расчета выбросов 3B в атмосферу на объектах транспорта и хранения газа", 2014 г.

	Исходные данные:							
Диаметр свечи	d	=	0,02	М				
Высота свечи	h	=	4	М				
Длина участка газопровода	L	=	3	М				
Диаметр газопровода	D	=	0,108	М				
Количество продувок	n	=	1	раз/год				
Продолжительность сброса	t	=	120	сек				
Время сброса за год			0,03	час/год				
Плотность газа	ρ	=	0,980	т/м ³				

Теория расчета выброса:

Объем газа при продувке определяется по формуле 3.1 Методики:

V = Vk * Pa * (to + 273) / (Po * (tn + 273) *Z)	V	=	0,028	мЗ
где: Vk - геометрический объем газопровода	Vk	=	0,027	м3
$Vk = \pi D^2 / 4 * L$				
Атмосферное давление	Ро	=	0,2	МПа
Температура газа при 0°C	to	=	20	°C
Давление и темп-ра в оборудовании	Pa	=	0,2	МПа
	tn	=	20	°C
	Z	=	0,980	

Расчет выбросов:

Объем газа, поступающего в атмосферу	V	=	0,028	1	120	*	1	=	0,0002	м ³ /год
		=			0,028	/	120	II	0,0002	м ³ /сек
Весовое количество газа	Γ	=			0,0002	*	0,98	=	0,000229	т/год
	М	=	0,0002	*	0,98	*	10 ⁶		1,907550	г/сек
Скорость выброса	٧	=4*	0,0002	/	(3,14	*	0,0004) =	0,7439	м/сек

0410	0410 Метан		71.444	1,362830	г/сек
0410			71,444	0,000164	т/год
0415	Прополицио услововороди в С	%	26.99	0,514848	г/сек
0415	Предельные углеводороды C ₁ -C ₅	/0	20,99	0,000062	т/год
0416	Поспольные успородороды С	%	0,54	0,010377	г/сек
0410	Предельные углеводороды С ₆ -С ₁₀		0,54	0,000001	т/год

Источник загрязнения N 0015, Выхлопная труба Источник выделения, Сапун ГПЭС-5

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ГПЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год T 720 Общее количество суфлеров, шт. , KOLIV 1

<u>Примесь: 2735 Масло минеральное нефтяное (716*)</u>

Удельный выброс при доливке масла, г/с, Q 0,14 Максимальный разовый выброс, г/с, G = Q G 0,14

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^6$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год	
2735	Масло минеральное нефтяное	0,140000	0,362880	

Дизельный генератор резервный. Источник №0016

Расчет выбросов загрязняющих веществ от дизельных установок проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу от стационарных дизельных установок", Астана, 2004 г. - далее Методика.

Исходные данные:

	_			_
Мощность агрегата	Рэ	=	400	кВт
Загрузка генератора			100	%
Общий расход топлива	В	=	7,99	т/год
			79,9	кг/ч
	b	=	200	г/кВт*ч
Время работы	Т	=	100	час/год
Длина трубы	L	=	305	MM
Диаметр	d	=	0,154	M
Температура газов	t	=	400	°C
Плотность дизтоплива			0,85	т/м ³

Выбрасываемое вещество	Выброс, г/кВт·ч (ei)	Выброс, г/кг (qi)
Углерода оксид	6,2	26
Азота диоксид	9,6*0,8	40*0,8
Азота оксид	9,6*0,13	40*0,13
Углеводороды С ₁₂ -С ₁₉	2,9	12
Сажа	0,5	2
Серы диоксид	1,2	5
Формальдегид	0,12	0,5
Бенз(а)пирен	0,000012	0,000055

Теория расчета выбросов:

Расчет максимально разового выброса (г/с) определяется по формуле [Методика, ф-ла 1]:

Mi = (1/3600) · ei · Рэ где

еі - выброс і-го вредного вещества на единицу полезной работы д. установки (г/кВт·ч) [Методика, табл.1,2];

Рэ - эксплуатационная мощность стационарной дизельной установки (кВт).

Расчет валового выброса (т/год) производится по формуле [Методика, ф-ла 2]:

 $\Gamma i = (1/1000) \cdot qi \cdot B$ где:

qi - выброс i-го вредного вещества, приходящегося на 1 кг диз.топлива (г/кг) [Методика, табл.3,4];

В - расход топлива генератором (т/год).

Расчет отработавших газов (кг/с) от стационарной дизельной установки определяется [Методика, ф-ла АЗ Прил. А]:

G ≈ 8.72 · 10⁻⁶ · b · Pэ

где:

b - расход топлива генератором (г/кВт*час).

Уделный вес отработавших газов рассчитывается по формуле [Методика, ф-ла А5 Прил. А]:

 $\gamma_{or} = \gamma 0_{or}/(1+T_{or}/273)$

где:

 γO_{or} - удельный вес отработавших газов при температуре равной 0°С (γO_{or} = 1,31 кг/м³);

Т_{ог} - температура отработавших газов, К.

Объемный расход отработавших газов (м³/c) определяется по формуле [Методика, ф-ла A4 Прил. A]:

V = G/ v

Скорость выхода отработавших газов (м/с) определяется по формуле:

 $w=(4*V)/(3.14*d^2)$

Выбрасываемое вещество	Код вещества		Расчет					Pa	счет		т/год
CO	0337	1/3600 *	6,2	*	1,0 * 400	=	0,688889	1/1000* 26	* 7,99	=	0,207740
NO ₂	0301	1/3600 *	9,6*0,8	*	1,0 * 400	=	0,853333	1/1000* 40*0,8	* 7,99	=	0,255680
NO	0304	1/3600 *	9,6*0,13	*	1,0 * 400	=	0,138667	1/1000* 40*0,13	* 7,99	=	0,041548
C ₁₂ -C ₁₉	2754	1/3600 *	2,9	*	1,0 * 400	=	0,322222	1/1000* 12	* 7,99	=	0,095880
С	0328	1/3600 *	0,5	*	1,0 * 400	=	0,055556	1/1000* 2	* 7,99	=	0,015980
SO ₂	0330	1/3600 *	1,2	*	1,0 * 400	=	0,133333	1/1000* 5	* 7,99	=	0,039950
CH₂O	1325	1/3600 *	0,12	*	1,0 * 400	=	0,013333	1/1000* 0,5	* 7,99	=	0,003995
Б(а)П	0703	1/3600 *	0,000012	*	1,0 * 400	=	0,000001	1/1000* 0,000055	* 7,99	=	0,0000004

Источник загрязнения N 0017, Выхлопная труба Источник выделения, Сапун ДЭС

Расчет выбросов загрязняющих веществ в атмосферу производился, используя данные по удельному расходу доливаемого масла на ДЭС

Вид нефтепродукта: Масло

Время работы, используемое на доливку масла час/год T 100 Общее количество суфлеров, шт. , KOLIV 1

Примесь: 2735 Масло минеральное нефтяное (716*)

Удельный выброс при доливке масла, г/с, Q 0,907 Максимальный разовый выброс, г/с, G = Q G 0,907

Валовый выброс, т/год , $_M_$ = $Q*_T_*3600*_KOLIV_/10^6$

Итого:

Код	Примесь	Выброс г/с	Выброс т/год	
2735	Масло минеральное нефтяное	0,907000	0,326520	

Выбросы 3В от конденсатосборника. Источник №0018

Расчет выбросов 3В проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров, РНД 211.2.02.09-2004, Астана, 2004г. - далее Методика

Исходные данные:

Объем конденсатосборника	Vp	=	5	M^3
Количество смеси, закачиваемое в конденсатосборник	В	=	100	т/год
Годовая оборачиваемость конденсатосборника (B/(p*Vp)	n	=	20	раз
Давление насыщенных паров при температуре 38°C	P ₃₈	=	500	мм.рт.ст.
Максимальный объем паровоздушной смеси,				
вытесняемый из конденсатосборника во время его закачки	V_{q}^{max}	=	0,2	м ³ /час
Диаметр свечи	d	=	0,057	М
Высота свечи	Н	=	5	M
Молекулярная масса паров конденсата	m	=	90	г/моль
Плотность смеси	ρ	=	0,98	т/м ³
Состав смеси:				
УВ предельные С1-С5		=	100	%

Теория расчета выброса:

Валовые выбросы паров (газов) нефтей и бензинов рассчитываются по формулам:

Максимальные выбросы, г/сек:

$$M = \frac{0.163 * P_{38} * m * K_t^{\text{max}} * K_p^{\text{max}} * K_B * V_u^{\text{max}}}{10^4}$$

Годовые выбросы, т/год:

$$G = \frac{0.294 * P_{38} * m * (K_t^{\text{max}} * K_B + K_t^{\text{min}}) * K_p^{cp} * K_{OB} * B}{10^7 * \rho_{MC}}$$

где,	Поправочный коэффициент	K_t^{min}	=	1,40
	Поправочный коэффициент	K_t^{max}	=	1,40
	Поправочный коэффициент	K_p^{cp}	=	0,60
	Поправочный коэффициент	K_p^max	=	0,85
	Поправочный коэффициент	Кв	=	1,00
	Коэффициент оборачиваемости	Коб	=	2,50

Всего	М, г/сек	G, т/год
	0,174573	0,567000
в т.ч. по компонентам:		
УВ предельные С1-С5 (0415)	0,174573	0,567000

$V = V_{y}^{\text{max}}/3600$	0,2 /3600	0,0001	м ³ /сек
$W = 4*V/(3,14*d^2)$	4*0,0403/(3,14*0,25*0,25)	0,0218	м/с

Емкость для хранения дизельного топлива. Источник №0019

Расчет выбросов 3В проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров, Астана", 2004 г. - далее Методика

Исходные данные:

Объем емкости	V _{сл}	=	25	м ³ /час
Объем слитого нефтепродукта из а/цистерны в емкость	V _{cл}	=	0,4	м ³ /час
Удельный вес дизтоплива	r	=	0,84	т/м ³
Диаметр дыхательного клапана	d	=	0,2	M
Высота дыхательного клапана	Н	=	2	M
Кол-во закачиваемого в емкость нефтепродукта в осенне-зимний период	Qoз	=	3,995	T
Кол-во закачиваемого в емкость нефтепродукта в весенне-летний период	Qвл	=	3,995	T
Состав дизтоплива:	H ₂ S	=	0,28	%
	C_{12} - C_{19}	=	99,72	%
Время работы в год	T	=	8760	час
Температура выхода паров	t	=	20	°C

Теория расчета выброса:

Максимальные выбросы из емкости рассчитываются по формуле 7.2.1:

 $M=C_p^{max} * V_{cn} / 3600$ г/сек где C_p^{max} -макс.конц-ция паров нефтепрод.в паровозд.смеси при заполнении рез-ров[Прилож.15] 2,25 г/м³

Годовые выбросы от емкости при закачке рассчитываются по формуле 7.2.4:

G = (C_p^{o3} * Q_{o3} + C_p^{B\pi} * Q_{B\pi}) *10⁻⁶ (выбросы при проливе отсутствуют)

где C_p^{o3} -конц-ция паров нефтепродукта в паровозд.смеси в осенне-зимний период[Прилож. 15] 1,19 г/м³ C_p^{BJ} -конц-ция паров нефтепродукта в паровозд.смеси в весенне-летний период[Прилож. 15] 1,60 г/м³

Выбрасываемое вещество	Код 3В		Расчет максимального выброса			
H ₂ S	0333	=(2,25 *	25 / 3600) * 0,28 / 100	0,000044	
C ₁₂ -C ₁₉	2754	=(2,25 *	25 / 3600) * 99,7 / 100	0,000249	

Выбрасываемое вещество	Код 3В		Расчет валового выброса					
H₂S	0333	=((1,19 *	3,995 +	1,6 *	4) /10 ⁻⁶ *	0,28 / 100	0,0000003
C ₁₂ -C ₁₉	2754	=((1,19 *	3,995 +	1,6 *	4) /10 ⁻⁶ *	99,72 / 100	0,000011

$$V = 0.4 / 3600$$
 = 0,0001 M^3/cek
 $W = 4 * 0,00011 / (3,14 * = * =) = 0,004 $M/c$$

Расчет выбросов от неорганизованных источников

				Колич	ество	Площадка
№ п.п	Наименование	Обозн.	Един. изм.	Расчет. вел-на	Расчет. доля упл.	дэс
				утечки	потер. герм.	6001
1	Исходные данные:					
	Количество выбросов:					
	3PA:					
	тяжелые углеводороды	Пзд	кг/час	0,006588	0,070	
	ФС:					
	тяжелые углеводороды	Пфд	кг/час	0,000288	0,020	
	Время работы		час/год			8760
	Дизтопливо:					
	Количество ЗРА		ШТ			4
	Количество ФС		ШТ			8
	$M = \sum_{i=1}^{l} M_i$	- \(\sum_{\text{\tin}}\text{\ti}\text{\texi{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}}\\ \tittt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}\\ \text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\texi}\tilit{\text{\texit{\text{\texi}\til\tilit{\text{\texi}\tilit{\text{\texi{\text{\texi}\tex{\texi{\texi{\texi{\texi{\texi}\texit{\texi{\texi{\texi{\t	י אע אי	· ×c		
_	Расчет: $M_{H\!V} = \sum_{j=1} M_{H\!M_j}$	ځې پې ت	5 <i>Hilj</i> ^ ^{ 1	·HM ^∪ji		
2	•	J=1 2=1			1	
	Дизтопливо:					
			кг/час			0,001891
			r/c			0,000525
			т/год			0,016563
3	Идентификация выбросов					
2754	Углеводороды С ₁₂ -С ₁₉	s/c	99,72	%		0,000524
		т/год				0,016516
0333	Сероводород	s/c	0,28	%		0,000001
		т/год				0,000046

Расчет выполнен по Методическим указаниям расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.

Расчет выбросов 3В в атмосферу от неорганизованных источников

		Пока	затели	•						ика выброс	ca				
		Расчет.	Расчет.	60	02	60	03		004		05	60	06	6007	
Наименование		вел-на утечки У , г/с	доля уплот- ний, потер. гермет-ть, Д	Точ подклю		Точ подклю	нка чения 2	газопор	цадка ошневых останции		цадка рной V-100м3	конде	цадка нсато- ка V-5м3	Межплоц трубоп	цадочные роводы
Исходные данные:															
Газ															
Количество ЗРА		0,00583	0,293	2	2		2		80					9	
Количество ФС		0,0002	0,030	4	ļ.		4		60	()				8
Время работы ЗРА и ФС, час/год				87	60	87	60	87	' 60					87	60
Конденсат															
Количество ЗРА		0,00183	0,070								1		2		
Количество ФС		0,00008	0,020								2		1		
Время работы ЗРА и ФС, час/год										87	60	87	60		
Расчет:															
Ү=Nзра*Узра*Дзра+Nфс*Уфс*Дфс															
Общие выбросы по площадкам:															
Всего выбросов , в том числе:	%			r/c	т/год	r/c	т/год	r/c	т/год	г/с	т/год	r/c	т/год	r/c	т/год
Газ	99			0,003440	0,108496	0,003440	0,108496	0,051606	1,627437		-		-		
Метан	71,444			0,002458	0,077514	0,002458	0,077514	0,036869	1,162706	-	-	-	-	0,011061	0,348812
Предельные углеводороды С₁-С₅	26,99			0,000929	0,029283	0,000929	0,029283	0,013928	0,439245				-	0,004179	0,131774
Предельные углеводороды C ₆ -C ₁₀	0,544			0,000019	0,000590	0,000019	0,000590	0,000281	0,008853	-		-	-	0,000084	0,002656
Конденсат	100			-	-	-			-	0,000131	0,004141	0,000263	0,008281		-
Предельные углеводороды C ₁ -C ₅	100			-			-		-	0,000131	0,004141	0,000263	0,008281	•	

Расчет выполнен по Методическим указаниям расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Приложение к приказу Министра охраны окружающей среды Республики Казахстан от 29 июля 2011 года № 196-п.

Выбросы 3В от дренажной емкости 5м³. Источник №0020

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров, РНД 211.2.02.09-2004, Астана, 2004г. - далее Методика

Исходные	данные:			
Объем резервуара	Vp	=	5	M ³
Количество жидкости, закачиваемое в резервуар	В	=	50	т/год
Годовая оборачиваемость резервуара (B/(p*Vp)	n	=	12	раз
Давление насыщенных паров при температуре 38°C	P ₃₈	=	18,5	мм.рт.ст.
Максимальный объем паровоздушной смеси,				
вытесняемый из резервуара во время его закачки	V_{q}^{max}	=	0,01	м ³ /час
Диаметр дыхательного клапана	d	=	0,15	М
Высота дыхательного клапана	Н	=	5	М
Молекулярная масса паров	m	=	111	г/моль
Плотность жидкости	ρ	=	0,84	т/м ³
Состав:				
УВ предельные С1-С5		=	72,5	%
УВ предельные С6-С10		=	27,5	%

Теория расчета выброса:

Валовые выбросы паров (газов) нефтей и бензинов рассчитываются по формулам:

Максимальные выбросы, г/сек:

$$M = \frac{0.163 * P_{38} * m * K_t^{\text{max}} * K_p^{\text{max}} * K_B * V_u^{\text{max}}}{10^4}$$

Годовые выбросы, т/год:

$$G = \frac{0.294 * P_{38} * m * (K_t^{\text{max}} * K_B + K_t^{\text{min}}) * K_P^{cp} * K_{OE} * B}{10^7 * \rho_{\infty}}$$

где,

Поправочный коэффициент	K_t^{min}	=	0,74
Поправочный коэффициент	K_t^{max}	=	1,00
Поправочный коэффициент	K_p^{cp}	=	0,70
Поправочный коэффициент	K_p^{max}	=	0,80
Поправочный коэффициент	Кв	=	1,00
Коэффициент оборачиваемости	Коб	=	2,50

Всего	М, г/сек	G, т/год						
	0,000268	0,010943						
в т.ч. по компонентам:								
Углеводороды C ₁ -C ₅ (0415)	0,000194	0,007933						
Углеводороды C ₆ -C ₁₀ (0416)	0,000074	0,003009						

$V = V_{\rm q}^{\rm max}/3600$	0,01 /3600	0,000003	м³/сек
$W = 4*V/(3,14*d^2)$	4*0,0403/(3,14*0,25*0,25)	0,0002	м/с

Расчет выбросов 3В от насоса. Источник №6008

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 5 $\rm m^3/\rm yac$ Время работы T = 120 $\rm yac/\rm rog$

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

 $M36 = q * n * t * 10^{-3}$

где q - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

a = 0.08

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
C ₁ -C ₅	72,5	0415	-	0,08 * 1 /3,6 * 0,725 =	0,016111	= 0,08 * 1 * 120 * 10 ⁻³ * 0,725 =	0,006960
C ₆ -C ₁₀	27,5	0416	=	0,08 * 1 /3,6 * 0,275 =	0,006111	= 0,08 * 1 * 120 ^{* 10°} * 0,275 =	0,002640

Расчет выбросов 3В от масленного насоса. Источник №6009

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M38 = q * n / 3,6$$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

Мзв =
$$q * n * t * 10^{-3}$$

где **q** - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	=	0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6010

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M38 = q * n * t * 10^{-3}$$

где ${m q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1) q = 0,03

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6011

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 $\rm m^3$ /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

$$M$$
зв = $q * n / 3,6$

Расчет выбросов 3В т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M36 = q * n * t * 10^{-3}$$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

	Выбрасываемое вещество	%	Код вещества		Расчет	г/сек	Расчет	т/год
Mad	сло минеральное, нефтяное	100	2735	=	0.03 * 1 / 3.6 * 1.000 =	0.008333	= 0.03 * 1 * 7920 * 10 ⁻³ * 1.000 =	0.237600

Расчет выбросов ЗВ от масленного насоса. Источник №6012

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 m^3 /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов ЗВ г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

M38 = q * n / 3,6

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

$$M38 = q * n * t * 10^{-3}$$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Расчет выбросов:

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

Расчет выбросов 3В от масленного насоса. Источник №6013

Расчет выбросов 3B проведен по "Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу от резервуаров РНД 211.2.02.09-2004", Астана, - далее Методика

Исходные данные:

Количество насосов n = 1 шт Производительность Q = 2 $\rm m^3$ /час Время работы T = 7920 час/год

Теория расчета выброса:

Расчет выбросов 3В г/сек от насоса рассчитывается по формуле [Методика, пункт 9]:

Мзв =
$$q * n / 3,6$$

Расчет выбросов ЗВ т/год от насоса рассчитывается по формуле [Методика,пункт 9]:

Мзв =
$$q * n * t * 10^{-3}$$

где ${\it q}$ - удельное количество выбросов на единицу технологического оборудования (Методика, табл 9.1)

q = 0.03

Выбрасываемое вещество	%	Код вещества	Расчет	г/сек	Расчет	т/год
Масло минеральное, нефтяное	100	2735	= 0,03 * 1 /3,6 * 1,000 =	0,008333	= 0,03 * 1 * 7920 * 10 ⁻³ * 1,000 =	0,237600

for some a linguage posterior appearing a superior proper a proper jujeto, (2) s grangest som lynner sporplang appearing a superior sometimes and the superior sometimes and the superior sometimes and the superior sometimes are superior sometimes.

Источник № 6020 Покрасочные работы.

Расчет проведен по "Методике расчета выбросов загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выбросов) РНД 211.2.02.05-2004

1. Определение выбросов нелетучей части аэрозоля ЛКМ при нанесении

$$M^a_{\scriptscriptstyle H.OKP} = rac{m_{\scriptscriptstyle M} imes \delta_a imes (100-f_{\scriptscriptstyle p})}{10^4 imes 3.6} imes (1-\eta), \qquad \qquad M^a_{\scriptscriptstyle H.OKP} = rac{m_{\scriptscriptstyle \phi} imes \delta_a imes (100-f_{\scriptscriptstyle p})}{10^4} imes (1-\eta), \qquad \qquad T/год$$

2. Определение выбросов летучих компонентов ЛКМ

$$M_{\text{общ}} = M_{\text{окр}} + M_{\text{суш}}, \text{т/год}$$

$$M_{\mathit{cyu}}^{x} = \frac{m_{_{M}} imes f_{_{p}} imes \delta_{_{p}}^{''} imes \delta_{_{x}}}{10^{6} imes 3.6} imes (1-\eta), \qquad \qquad M_{\mathit{cyu}}^{x} = \frac{m_{_{\phi}} imes f_{_{p}} imes \delta_{_{p}}^{''} imes \delta_{_{x}}}{10^{6}} imes (1-\eta), \qquad \qquad T$$
Ггод

$$M_{o\kappa p}^{x} = \frac{m_{_{M}} \times f_{_{p}} \times \delta_{_{p}}^{'} \times \delta_{_{x}}}{10^{6} \times 3.6} \times (1 - \eta), \qquad M_{o\kappa p}^{x} = \frac{m_{_{\phi}} \times f_{_{p}} \times \delta_{_{p}}^{'} \times \delta_{_{x}}}{10^{6}} \times (1 - \eta),$$

т/год Исходные данные способ d''_p расход d_p' f_p d_a наименован нанесени т/год кг/час % % % % 0,200 45 28 72 ΓΦ-021 2,0 кистью Расчет состав время, час d_x наименование Результат летучей окраски сушки % вещества г/сек т/год части ксилол 100 100,0 300 ксилол 0,2500 0,0900

исходные данные									
наименован	расход		f _p	способ	d _a	d'p	d''_{p}		
ие	т/год	кг/час	%	нанесени	%	%	%		
ПФ-115	0,400	5,0	45	кистью		28	72		

Расчет состав d_x время, час наименование Результат летучей окраски сушки части % вещества г/сек т/год уайт-спирит 50 00,08 240,0 уайт-спирит 0,3125 0.0900 0,3125 0,0900 ксилол 50 ксилол

всего п	о источн	ику:	
Наименование 3В	г/сек	т/год	
уайт-спирит	0,312500	0,090000	
ксилол	0,562500	0,180000	

Источник 6021. Расчет выбросов при ручной дуговой сварке штучными электродами

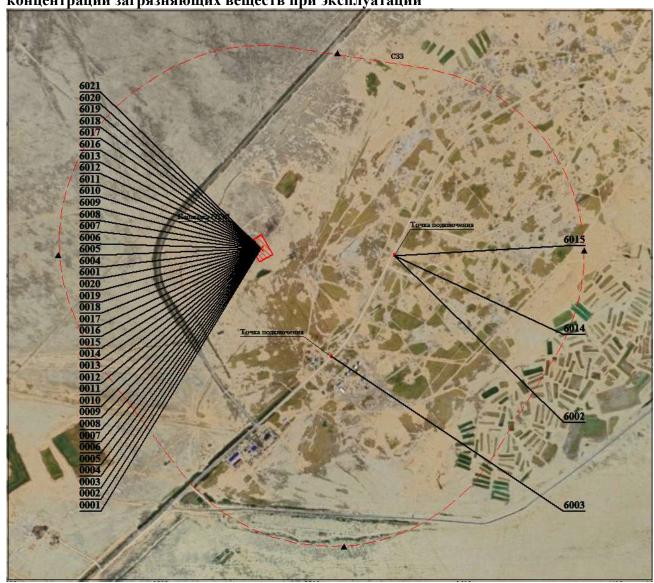
Расчет выбросов 3В проведен по "Методике определения эмиссий вредных веществ основным технологическим оборудованием предприятий машиностроения", Приказ МООС №221, 2014 год

Исходные данные:

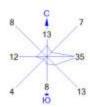
Расход электродов Э-42А (ОМА-2)	В	=	200,0	КГ
	B_{vac}	=	0,5	кг/час
Удельный показатель свар.аэрозоля:	K_{M}^{κ}	=	9,2	г/кг
в т.ч. показатель оксид железа	K_{M}^{κ}	=	8,37	г/кг
показатель соед.марганца	K_{M}^{K}	=	0,83	г/кг
Степень очистки воздуха в аппарате	η	=	0	
Время сварочных работ	t	=	400	час

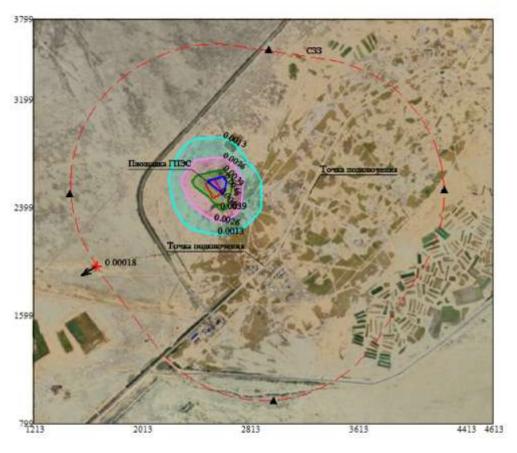
Теория расчета выброса:

Максимальные разовый выброс ЗВ от свар. агрегата рассчитывается согласно таблице 4.1 Приложения 1:


$$\frac{B_{\textit{час}} * K_{_{M}}^{\textit{x}}}{3600}*(1-\eta) \qquad \qquad \text{где} \\ \textbf{\textit{B}}_{\textit{час}} & \textbf{-} \quad \text{расход применяемого сырья и материалов, кг/час;} \\ \textbf{\textit{K}}_{_{M}}^{\textit{K}} & \textbf{-} \quad \text{удельный показатель выброса 3B "x" на единицу массы расходуемых сырья и материалов, г/кг} \\ \textbf{\textit{\eta}} & \text{степень очистки воздуха в соответствующем аппарате}$$

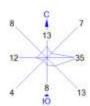
Валовое кол-во 3В,выбрасываемое от свар. агрегата, рассчитывается по следующей формуле:

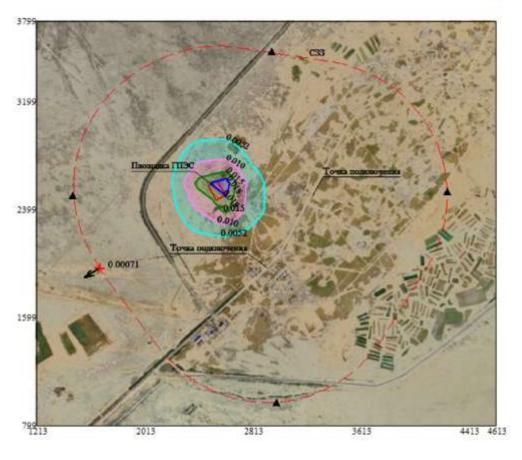

$$\frac{B*K_{_{_{M}}}^{^{x}}}{10^{_{6}}}*(1-\eta)$$
 где в - расход применяемого сырья и материалов, кг/пер.стр.


Выбрасываемое	Код	Расчет		г/сек	Расчет			т/гол	
вещество	вещества		i acaei		1/Cek		i acaei		т/год
Fe ₂ O ₃	0123	0,50 *	8,37 * (1-0) / 3	3600 =	0,001163	200,0 *	8,37 * (1-0) /	10° =	0,001674
Mn	0143	0,50 *	0,83 * (1-0) / 3	3600 =	0,000115	200,0 *	0,83 * (1-0) /	10 ⁶ =	0,000166

2.3. Ситуационные карты-схемы изолиний рассчитанных максимальных концентраций загрязняющих веществ при эксплуатации

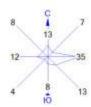
Город : 616 г.Атырау Объект : 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 0123 Железа оксид

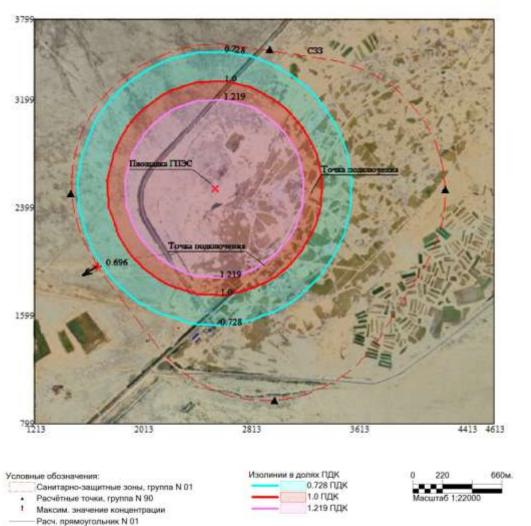




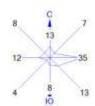
Макс концентрация 0.0051502 ПДК достигается в точке x= 2613 y= 2599 При опасном направлении 236° и опасной скорости ветра 0.73 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

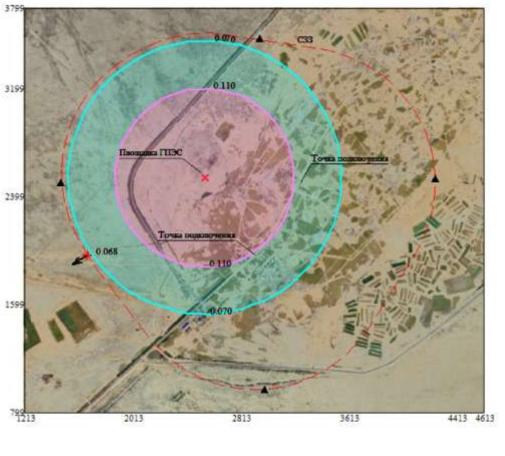
Город : 616 г.Атырау Объект : 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 0143 Марганец и его соединения





Макс концентрация 0.0203704 ПДК достигается в точке x= 2613 y= 2599 При опасном направлении 236° и опасной скорости ветра 0.73 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

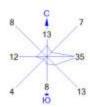

Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: MPK-2014 0301 Азота диоксид

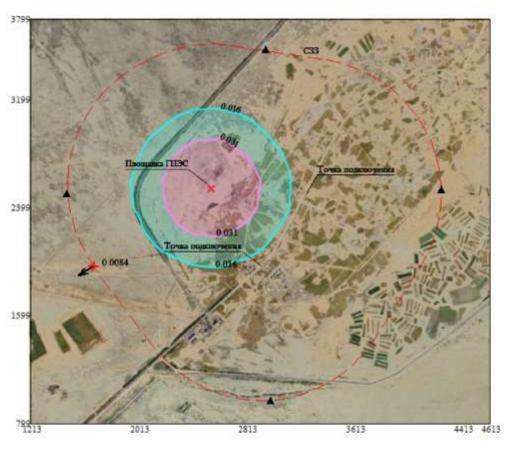


Макс концентрация 2.2023747 ПДК достигается в точке х= 2413 у= 2399 При опасном направлении 43° и опасной скорости ветра 8 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 0304 Азота оксид

Условные обозначения: Санитарно-защитные зоны, группа N 01 Расчётные точки, группа N 90 Максим. значение концентрации Расч. прямоугольник N 01

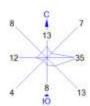

Изолинии в долях ПДК 0.070 ПДК 0.110 ПДК

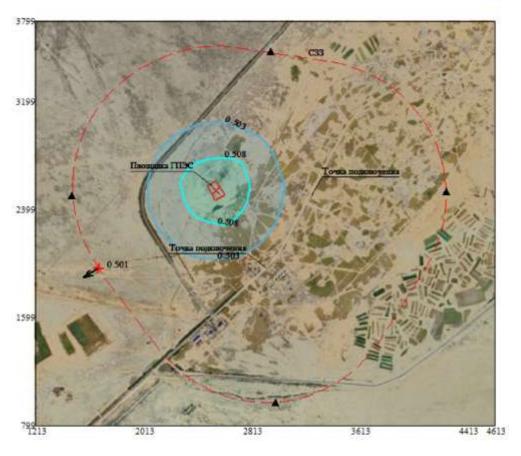

220 660m. сштаб 1:22000

Макс концентрация 0.1902238 ПДК достигается в точке х= 2413 у= 2399 При опасном направлении 43° и опасной скорости ветра 8 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

Город : 616 г.Атырау Объект : 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: MPK-2014

0328 Углерод

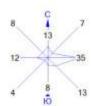

Условные обозначения: Санитарно-защитные зоны, группа N 01 Расчётные точки, группа N 90 Максим. значение концентрации Расч. прямоугольник N 01

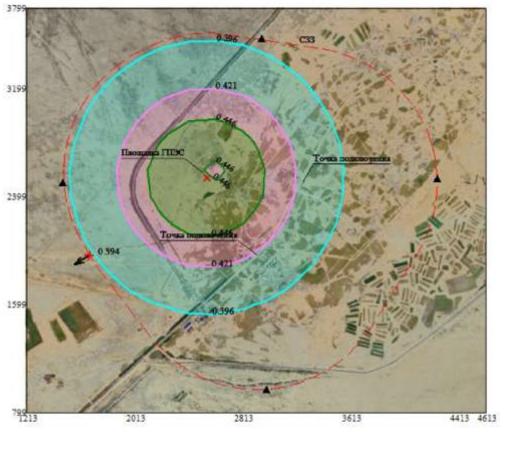

Изолинии в долях ПДК 0.016 ПДК 0.031 ПДК

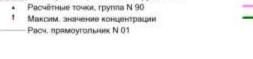
660m. штаб 1:22000

Макс концентрация 0.0590876 ПДК достигается в точке x= 2613 y= 2599 При опасном направлении 231° и опасной скорости ветра 8 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: MPK-2014 0333 Сероводород

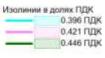

Условные обозначения: Санитарно-защитные зоны, группа N 01 Расчётные точки, группа N 90 Максим. значение концентрации Расч. прямоугольник N 01


Изолинии в долях ПДК 0.503 ПДК 0.508 ПДК

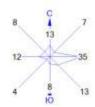

660m. сштаб 1:22000

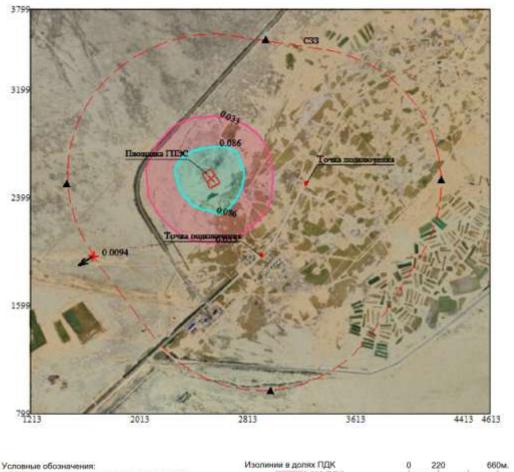
Макс концентрация 0.5324882 ПДК достигается в точке x= 2613 y= 2599 При опасном направлении 231° и опасной скорости ветра 1.08 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

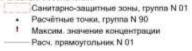
Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 0337 Углерод оксид



Санитарно-защитные зоны, группа N 01

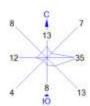

Условные обозначения:

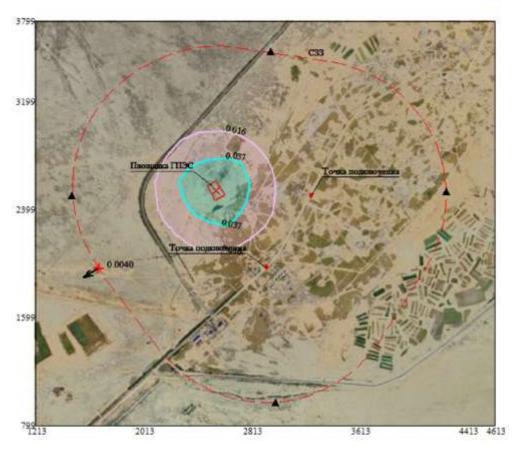




Макс концентрация 0.4704103 ПДК достигается в точке x= 2413 y= 2399 При опасном направлении 43° и опасной скорости ветра 8 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

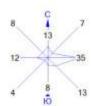
Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014

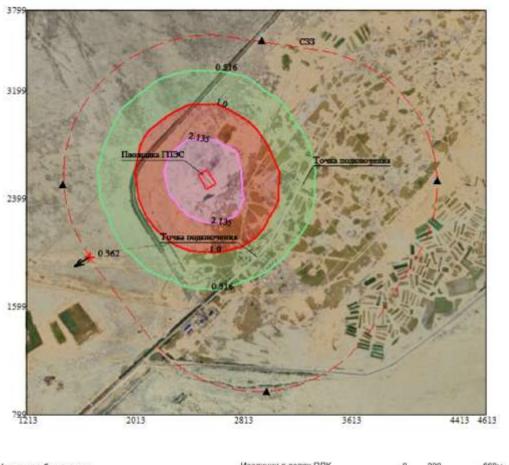


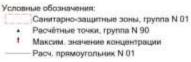


Макс концентрация 0.3367747 ПДК достигается в точке x= 2613 y= 2599 При опасном направлении 231° и опасной скорости ветра 0.73 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 0415 Смесь углеводородов предельных С1-С5

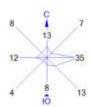

Условные обозначения: Санитарно-защитные зоны, группа N 01 Расчётные точки, группа N 90 Максим. значение концентрации Расч. прямоугольник N 01

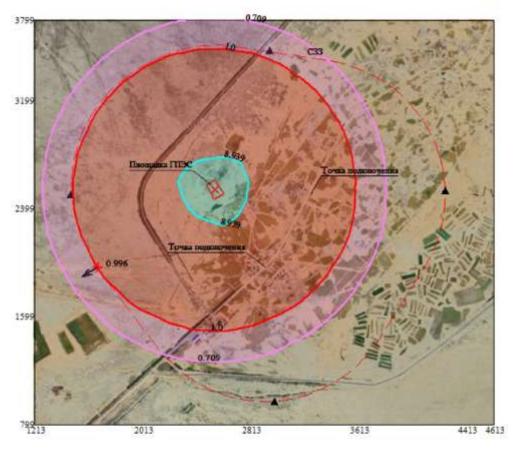

Изолинии в долях ПДК 0.016 ПДК 0.037 ПДК


660m. штаб 1:22000

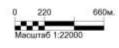
Макс концентрация 0.148785 ПДК достигается в точке х= 2613 у= 2599 При опасном направлении 231° и опасной скорости ветра 0.75 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетных точек 18°16

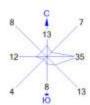
Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 0616 Диметилбензол

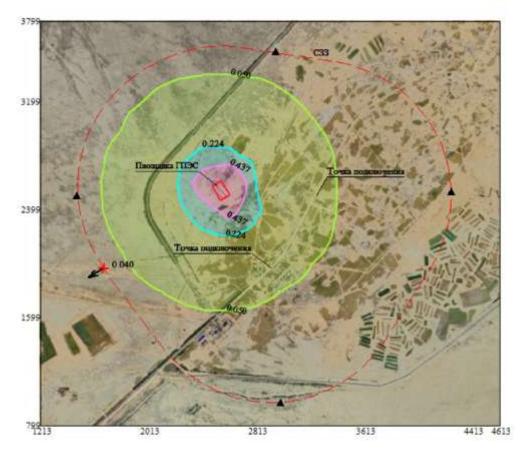


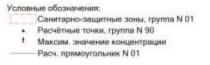


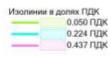
Макс концентрация 7.7767882 ПДК достигается в точке х= 2613 у= 2599 При опасном направлении 231° и опасной скорости ветра 0.56 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16


Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 2735 Масло минеральное нефтяное

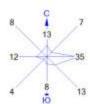

8.939 ПДК

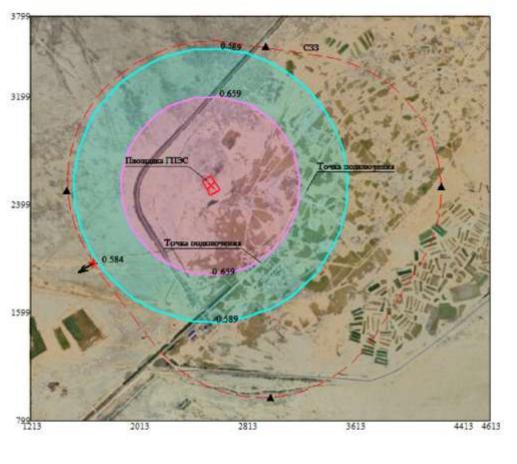





Макс концентрация 36.0449066 ПДК достигается в точке х= 2613 у= 2599 При опасном направлении 231° и опасной скорости ветра 0.77 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетных точек 18*16

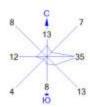
Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 2752 Уайт-спирит

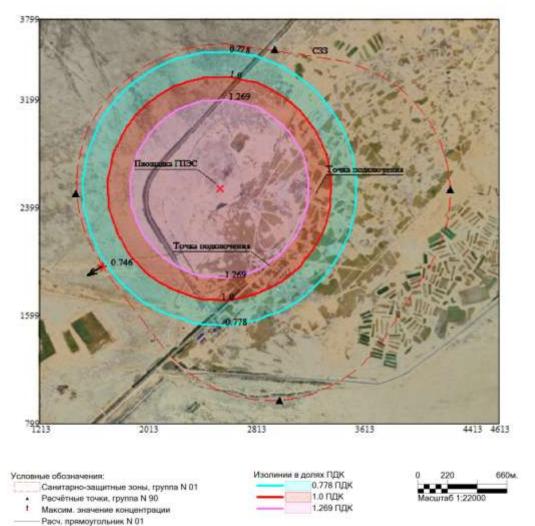




Макс концентрация 0.8640878 ПДК достигается в точке х= 2613 у= 2599 При опасном направлении 231° и опасной скорости ветра 0.56 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

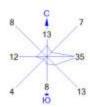
Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 2754 Алканы С12-19

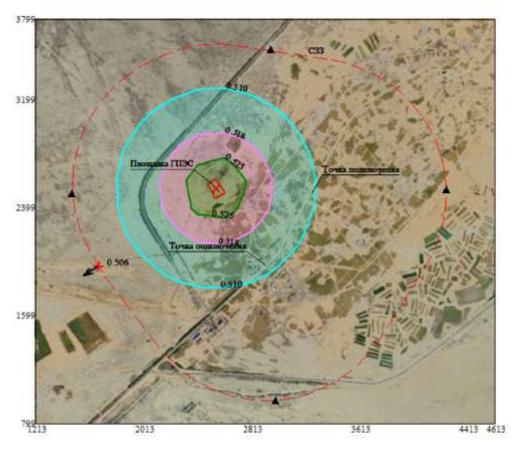

Условные обозначения: Санитарно-защитные зоны, группа N 01 Расчётные точки, группа N 90 Максим. значение концентрации Расч. прямоугольник N 01

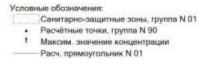

Изолинии в долях ПДК 0.589 ПДК 0.659 ПДК

220 660m. сштаб 1:22000

Макс концентрация 0.8003287 ПДК достигается в точке х= 2413 у= 2399 При опасном направлении 43° и опасной скорости ветра 8 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетных точек 18*16

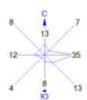

Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: MPK-2014 6007 0301+0330

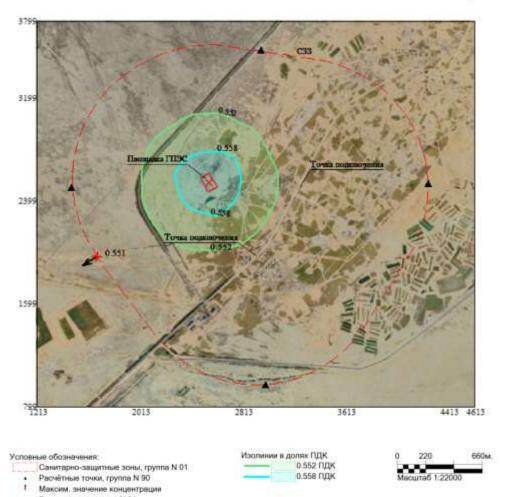




Макс концентрация 2.2523746 ПДК достигается в точке х= 2413 у= 2399 При опасном направлении 43° и опасной скорости ветра 8 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: MPK-2014 6037 0333+1325





Макс концентрация 0.5332647 ПДК достигается в точке x= 2613 y= 2599 При опасном направлении 231° и опасной скорости ветра 1.18 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетной сетки 200 м, количество расчетных точек 18*16

Город: 616 г.Атырау Объект: 0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр Вар.№ 3 ПК ЭРА v3.0 Модель: МРК-2014 6044 0330+0333

Макс концентрация 0.5824882 ПДК достигается в точке х= 2613 у= 2599 При опасном направлении 231° и опасной скорости ветра 1.08 м/с Расчетный прямоугольник № 1, ширина 3400 м, высота 3000 м, шаг расчетных точек 18*16

Расч. прямоугольник N 01

2.4. Расчет полей концентраций загрязняющих веществ при эксплуатации

```
Расчет проведен на ПК "ЭРА" v3.0 фирмы НПП "Логос-Плюс", Новосибирск
        Расчет выполнен ТОО
    | Заключение экспертизы Министерства природных ресурсов и Росгидромета
    | на программу: письмо № 140-09213/20и от 30.11.2020
2. Параметры города
     ПК ЭРА v3.0. Модель: MPK-2014

Название: НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Коэффициент A = 200
        Козфициент A=200 Скорость ветра UMp = 8.0 м/с (для лета 8.0, для зимы 6.0) Средняя скорость ветра = 2.6 м/с
         Температура летняя = 34.8 град.С
Температура зимняя = -11.1 град.С
Коэффициент рельефа = 1.00
         Площадь города = 0.0 кв.км
        Угол между направлением на СЕВЕР и осью X = 90.0 угловых градусов
3. Исходные параметры источников.
     ПК ЭРА v3.0. Модель: MPK-2014
Город :616 г.Атырау.
                         :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
        Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Примесь :0123 - Железа оксид
                           ПДКм.р для примеси 0123 = 0.4 мг/м3 (=10ПДКс.с.)
         Коэффициент рельефа (КР): индивидуальный с источников
        Коэффициент оседания (F): индивидуальный с источников
Код | Тип | H | D | Wo | V1 | T | X1 | Y1 | X2 | Y2 | Alf | F | KP | Ди | Выброс | Соб-П>-«Ис>| ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---и | ---
4. Расчетные параметры См, Им, Хм
     ПК ЭРА v3.0. Модель: MPK-2014
        Город :616 г.Атырау.
                          :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
        Вар.расч. : 3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :0123 - Железа оксид
                           ПДКм.р для примеси 0123 = 0.4 мг/м3 (=10ПДКс.с.)
   - Пля линейных и плошалных источников выброс является суммарным по
       всей площади, а Ст - концентрация одиночного источника,
       расположенного в центре симметрии, с суммарным {\tt M}
  ______
                   |Номер|
 |-п/п-|<0б-п>-<ис>|-----[м]---
 1 |000101 6021| 0.001163| H1 | 0.311537 | 0.50
                                                                                           0.50 |
                                    0.001163 г/с 0.311537 долей ПДК
        Суммарный Mq =
        Сумма См по всем источникам =
            Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета ПК ЭРА v3.0. Модель: MPK-2014
         Город :616 г.Атырау.
                          :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
         Объект
                                     Расч.год: 2025 (СП)
         Вар.расч. :3
                                                                                 Расчет проводился 01.09.2025 23:25
        Сезон :ЛЕТО (температура воздуха 34.8 град.С)
Примесь :0123 - Железа оксид
                           ПДКм.р для примеси 0123 = 0.4 мг/м3 (=10ПДКс.с.)
        Фоновая концентрация не задана
        Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001
         Расчет в фиксированных точках. Группа точек 090
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с
        Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: MPK-2014
         Город :616 г. Атырау.
        Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Примесь :0123 - Железа оксид
                           ПДКм.р для примеси 0123 = 0.4 мг/м3 (=10ПДКс.с.)
        Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001 Всего просчитано точек: 97
         Фоновая концентрация не задана
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
        Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Ump) м/с
```

```
Расшифровка обозначений
           | Qc - суммарная концентрация [доли ПДК]
           | Cc - суммарная концентрация [мг/м.куб]
          | Фоп- опасное направл. ветра [ угл. град.] | Иоп- опасная скорость ветра [ \rm m/c ]
   -Если в расчете один источник, то его вклад и код не печатаются
     2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
     1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468: 2594:
                                    -----:----:----:-
Qc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
     3603: 3575: 3547: 3518: 3490: 3475: 3459: 3436: 3413: 3382: 3352: 3315: 3279: 3235:
     2718: 2899: 3080: 3261: 3441: 3503: 3563: 3622:
                                                      3680: 3736: 3790: 3842:
Qc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
у=
     3143: 3096:
                 3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569: 2508:
                                                                                 2506: 2443:
x= 4025: 4063: 4098: 4130: 4159: 4184: 4205: 4223: 4236: 4246: 4252: 4254: 4254: 4252: 4236:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
     2257: 2197: 2138: 2080: 2024: 1970: 1837: 1704: 1570: 1437: 1385: 1336: 1288: 1244:
    4221: 4205: 4182: 4159: 4128: 4098: 4016: 3933: 3850: 3767: 3730: 3694: 3650: 3608: 3558:
Qc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
v=
     1164: 1129: 1097: 1068: 1043: 1022: 1004:
                                                  991:
                                                        981:
                                                               975:
                                                                     973:
                                                                           973:
                                                                                  975:
                                                                                        991: 1006:
    3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734: 2672:
           ----:---:---:---:
                                    ----:-
                                          ----:--:-
                                                       ----:-
                                                             ----:-
                                                                    ----:---:-
Qc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
    1022: 1045: 1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748: 1868:
    2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
Qc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
     1973: 2077: 2132: 2248: 2369: 2493: 2619:
y=
    1676: 1616: 1587: 1538: 1504: 1486: 1483:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
        Координаты точки : X= 1676.0 м, Y= 1973.0 м
Максимальная суммарная концентрация | Cs=
                                        0.0001794 доли ПДКмр|
                                       0.0000718 мг/м3
  Достигается при опасном направлении
                    и скорости ветра 8.00 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                         вклады_источников_
1 |000101 6021| П1| 0.001163| 0.000179 | 100.0 | 100.0 | 0.154286012

В сумме = 0.000179 | 100.0
3. Исходные параметры источников.
  ПК ЭРА v3.0. Молель: MPK-2014
    Город :616 г.Атырау.
             :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г. Корр.
    Вар.расч. :3 Расч.год: 2025 (СП) Ре
Примесь :0143 - Марганец и его соединения
                                         Расчет проводился 01.09.2025 23:25
              ПДКм.р для примеси 0143 = 0.01 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
```

000101 6021 Π1 2.0 30.0 2547 2545 80 120 30 3.0 1.000 0 0.0001150

```
4. Расчетные параметры См, Им, Хм
    ПК ЭРА v3.0. Модель: MPK-2014
        Горол
                       :616 г.Атырау.
       Объект
                       :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
       Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :0143 - Марганец и его соединения
                         ПДКм.р для примеси 0143 = 0.01 мг/м3
| - Для линейных и площадных источников выброс является суммарным по
      всей площади, а Ст - концентрация одиночного источника,
      расположенного в центре симметрии, с суммарным M
      1 |000101 6021| 0.000115| TI | 1.232220 | 0.50 | 5.7
       Суммарный Мq = 0.000115 г/с
                                                             1.232220 долей ПДК
       Сумма См по всем источникам =
           Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
    ПК ЭРА v3.0. Модель: MPK-2014
Город :616 г.Атырау.
        Объект
                       :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
       Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 
Сезон :ЛЕТО (температура воздуха 34.8 град.С)
        Примесь :0143 - Марганец и его соединения
                        ПДКм.р для примеси 0143 = 0.01 мг/м3
       Фоновая концентрация не задана
       Расчет по прямоугольнику 001 : 3400х3000 с шагом 200
        Расчет по границе санзоны. Покрытие РП 001 Расчет в фиксированных точках. Группа точек 090
        Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
        Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с
        Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
9. Результаты расчета по границе санзоны.
    ПК ЭРА v3.0. Модель: MPK-2014
       Собъект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
       Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Примесь :0143 - Марганец и его соединения
                        ПДКм.р для примеси 0143 = 0.01 мг/м3
        Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
       Всего просчитано точек: 97
        Фоновая концентрация не задана
       Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
       Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Ump) м/с
                                    _Расшифровка_обозначений
                      Qc - суммарная концентрация [доли ПДК]
                     Сс - суммарная концентрация [мг/м.куб]
                      Фоп- опасное направл. ветра [ угл. град.]
                   | Uon- опасная скорость ветра [ м/с
      -Если в расчете один источник, то его вклад и код не печатаются
         2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483:
        1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468: 2594:
 x=
Qc : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
         3603: 3575: 354
                                    47: 3518: 3490: 3475: 3459:
--:----:-
                                                                                        3436: 3413: 3382: 3352: 3315: 3279: 3235:
                               3547:
y=
 x= 2718: 2899: 3080: 3261: 3441: 3503: 3563: 3622: 3680: 3736: 3790: 3842: 3891: 3939: 3983:
Qc: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000
         3143: 3096: 3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569: 2508: 2506: 2443: 2319:
y=
x= 4025: 4063: 4098: 4130: 4159: 4184: 4205: 4223: 4236: 4246: 4252: 4254: 4254: 4252: 4236:
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
```

Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:

x= 4221: 4205: 4182: 4159: 4128: 4098: 4016: 3933: 3850: 3767: 3730: 3694: 3650: 3608: 3558:

1704: 1570: 1437: 1385: 1336: 1288:

2257: 2197: 2138: 2080: 2024: 1970: 1837:

v=

```
Qc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
1164 1129 1097 1068 1043 1022 1004 991 981 975 973 973 975 991 1006
v=
                        ----:-
                                          ----:-
                                                 ---:-
                                                       ---:-
                                                             ---:-
    3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734: 2672:
Qc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
     1022: 1045: 1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748:
y=
 x= 2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
           ----:---:---:---:
                                   -----:----:-
                                               -----:----:-
                                                           ----:
Qc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
     1973: 2077: 2132: 2248: 2369: 2493: 2619:
                       ----:-
    1676 1616 1587 1538 1504 1486 1483
-----:---:---:
Qc : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Cc : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.000:
 Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
       Координаты точки : X= 1676.0 м, Y= 1973.0 м
Максимальная суммарная концентрация | Cs=
                                     0.0000071 мг/м3
Достигается при опасном направлении 57 град.
и скорости ветра 8.00 м/с
Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада
                          _вклады_источников_
3. Исходные параметры источников.
  ПК ЭРА v3.0. Модель: MPK-2014
    Город :616 г.Атырау.
Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
    Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Примесь :0301 - Азота диоксид
             ПДКм.р для примеси 0301 = 0.2 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
                                                                  Y2
              Н
                   D
                       | Wo |
                                                    Y1
                                                           X2
                                                                        |Alf| F | KP |Ди| Выброс
<06~ID>
000101 0001 T 7.0 0.38 60.74 6.78 450.0

000101 0007 T 7.0 0.38 60.74 6.78 450.0

000101 0007 T 7.0 0.38 60.74 6.78 450.0

000101 0010 T 7.0 0.38 60.74 6.78 450.0
                                                                            1.0 1.000 0 1.166667
1.0 1.000 0 1.166667
1.0 1.000 0 1.166667
1.0 1.000 0 1.166667
                                         2547 2545
                                             2547
                                                     2545
                                             2547
                                                     2545
                                             2547
                                                     2545
4. Расчетные параметры См, Uм, Хм
  ПК ЭРА v3.0. Модель: MPK-2014
    Город
          :616 г.Атырау.
    Объект
             :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
    Вар.расч. :3
                  Расч.год: 2025 (СП)
                                       Расчет проводился 01.09.2025 23:25
            :ЛЕТО (температура воздуха 34.8 град.С)
    Примесь
            :0301 - Азота пиоксип
             ПДКм.р для примеси 0301 = 0.2 мг/м3
```

1	Ист	очники			Их рас	четные	е парам	метры
Номер	Код	M	Тип	1	Cm	1	Um	Xm
-m/m- <c< td=""><td>б-п>-<и</td><td>> </td><td> </td><td>- -[дол</td><td>и ПДК]</td><td>- [1</td><td>м/c]</td><td>[M]</td></c<>	б-п>-<и	>		- -[дол	и ПДК]	- [1	м/c]	[M]
1 00	0101 000	1.1	66667 T	0.	584082	1 :	9.56	230.2
2 00	0101 000	04 1.1	56667 T	0.	584082	1 !	9.56	230.2
3 0 0	0101 000	7 1.1	56667 T	0.	584082	1 !	9.56	230.2
4 00	0101 001	1.1	66667 T	0.	584082	1 !	9.56	230.2
~ ~ ~ ~ ~ ~ ~ ~	~~~~~~	~~~~~~	~~~~~~	~~~~~	~~~~	~~~~	~~~~~	~~~~~~~~
Сумы	арный Мо	4.6	66668 г/с					
Сумм	иа См по	всем исто	никам =	2.	336327	долеі	й ПДК	
1	Среднев	ввешенная	опасная с	корость	ветра	= !	9.56 м/	/c
1								

5. Управляющие параметры расчета ПК ЭРА v3.0. Молель: MPK-2014

Город :616 г.Атырау.

Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Расчет проводился 01.09.2025 23:25

ООБЕКТ .0001 ндв зв в атмосферным воздух для об вар.расч.: 3 Расч.год: 2025 (СП) Расчет : Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :0301 - Азота диоксид

ПДКм.р для примеси 0301 = 0.2 мг/м3

Фоновая концентрация на постах (в мг/м3 / долях ПДК)

```
Северное | Восточное
IBEIIIECTBAL II<=2M/C
                  |направление |направление |направление |
 0301 |
           0.00300001
                      0.00300001
                                  0.00300001
                                              0.00300001
                                                          0.00300001
                     0.0150000|
                                  0.0150000| 0.0150000|
           0.0150000|
                                                          0.01500001
```

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001 Расчет в фиксированных точках. Группа точек 090 Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с Средневзвешенная опасная скорость ветра Ucв= 9.56 м/c

9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: МРК-2014 Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Расчет проводился 01.09.2025 23:25

Вар.расч. :3 Расч.год: 2025 (СП) Примесь :0301 - Азота диоксид

ПДКм.р для примеси 0301 = 0.2 мг/м3

Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001

Всего просчитано точек: 97

Запрошен учет дифференцированного фона с постов для новых источников

Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Ump) м/с

Расшифровка_обозначений

| Ос - суммарная концентрация [доли ПДК] Сс - суммарная концентрация [мг/м.куб] Сф - фоновая концентрация [доли ПДК] Фоп- опасное направл. ветра [угл. град.] Uon- опасная скорость ветра [| Ви - вклад ИСТОЧНИКА в Ос [доли ПДК] | Ки - код источника для верхней строки Ви

2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616: y= 1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468: 2594: ----: ----: ----;----;----;----;----;----;----;----; Qc : 0.674: 0.671: 0.668: 0.669: 0.669: 0.669: 0.672: 0.676: 0.679: 0.679: 0.675: 0.673: 0.671: 0.670: 0.667: Cc : 0.135: 0.134: 0.134: 0.134: 0.134: 0.134: 0.134: 0.135: 0.136: 0.136: 0.135: 0.135: 0.134: 0.134: 0.133: Co : 0.015: 0.01 121 : 134 : 148 : 152 : 156: 107 : 114: 128 : 141 : Uon: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : Ви : 0.165: 0.164: 0.163: 0.163: 0.164: 0.164: 0.164: 0.165: 0.166: 0.166: 0.165: 0.165: 0.164: 0.164: 0.163: Ки: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0.165: 0.164: 0.163: 0.163: 0.164: 0.164: 0.164: 0.165: 0.166: 0.166: 0.165: 0.165: 0.165: 0.164: 0.164: 0.163 Ки : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : Ви: 0.165: 0.164: 0.163: 0.163: 0.164: 0.164: 0.164: 0.165: 0.166: 0.166: 0.165: 0.165: 0.164: 0.164: 0.163: Ки : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 3603: 3575: 3547: 3518: 3490: 3475: 3459: 3436: 3413: 3382: 3352: 3315: 3279: 3235: x= 2718: 2899: 3080: 3261: 3441: 3503: 3563: 3622: 3680: 3736: 3790: 3842: 3891: 3939: Qc : 0.669: 0.654: 0.616: 0.561: 0.505: 0.494: 0.483: 0.473: 0.463: 0.456: 0.448: 0.441: 0.434: 0.428: 0.422: : 0.134: 0.131: 0.123: 0.112: 0.101: 0.099: 0.097: 0.095: 0.093: 0.091: 0.090: 0.088: 0.087: 0.086: 0.084 Co : 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 199 : 208: 216: 223: 226: 228: 230: 233: 235: 237: 239: 241: 244: 246: Фоп: 189: Uon: 8.00 : 8.00 : 8.00 : 8.00 : 3.13 : 3.09 : 3.05 : 3.03 : 2.99 : 2.96 : 2.93 : 2.90 : 2.87 : 2.84 : 2.81 Ви : 0.164: 0.160: 0.150: 0.136: 0.123: 0.120: 0.117: 0.115: 0.112: 0.110: 0.108: 0.106: 0.105: 0.103: 0.102: Ки : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 :

ви:	0.164:	0.160:	0.150:	U.136:	0.123:	0.120:	0.11/:	0.115:	0.112:	0.110:	0.108:	0.106:	0.105:	0.103:	0.102:
Ки:	0004 :	0004:	0004:	0004 :	0004:	0004 :	0004:	0004:	0004:	0004:	0004:	0004 :	0004 :	0004:	0004 :
Ви :	0.164:	0.160:	0.150:	0.136:	0.123:	0.120:	0.117:	0.115:	0.112:	0.110:	0.108:	0.106:	0.105:	0.103:	0.102:
Ки:	0007:	0007:	0007 :	0007 :	0007:	0007 :	0007:	0007:	0007:	0007:	0007:	0007:	0007:	0007 :	0007 :
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
y=	3143:	3096:	3042:	2990:	2932:	2876:	2815:	2757:	2693:	2633:	2569:	2508:	2506:	2443:	2319:
			:												
x=	4025:	4063:	4098:	4130:	4159:	4184:	4205:	4223:	4236:	4246:	4252:	4254:	4254:	4252:	4236:
	•	-	:	-	-	-	-	-	-				-	-	-
2			0.409:												
			0.082:												
			0.015:												
			252 :												
Uon:	2.82 :	2.80 :	2.78 :	2.76 :	2.74 :	2.73 :	2.72 :	2.72 :	2.72 :	2.71 :	2.71 :	2.71 :	2.71 :	2.71 :	2.71 :
:	:	:				:									:
			0.098:												
			0001 :												
			0.098:												
			0004 :												
			0.098:												
Ки :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :

Ви: 0.164: 0.160: 0.150: 0.136: 0.123: 0.120: 0.117: 0.115: 0.112: 0.110: 0.108: 0.106: 0.105: 0.103: 0.102:

```
2257: 2197: 2138: 2080:
                                                                                                           2024: 1970: 1837: 1704: 1570: 1437: 1385: 1336: 1288:
                                                               4182:
                                                                                                           4128:
                                                                                                                                                        4016:
                                                                                                                                                                              3933:
                                                                                                                                                                                                   3850:
                                                                                                                                                                                                                                                 3730:
Qc : 0.392: 0.393: 0.396: 0.397: 0.400: 0.403: 0.408: 0.411: 0.409: 0.404: 0.402: 0.399: 0.398: 0.397: 0.397:
                                                                                                       0.080: 0.081: 0.082: 0.082:
                                                                                                                                                                                                 0.082: 0.081: 0.080:
              0.078: 0.079:
                                                           0.079: 0.079:
                                                                                                                                                                                                                                                                    0.080: 0.080: 0.079: 0.079
Co : 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015:
                                                                                                          288 : 290 :
                                                                                                                                                                                                                        312 :
                                                                                                                                                                                                                                               314:
                                                                                                                                                                                                                                                                      317 :
                                        282 :
                                                            284 : 286 :
                                                                                                                                                    296 :
                                                                                                                                                                          301 :
                                                                                                                                                                                                    307 :
                                                                                                                                                                                                                                                                                             319 :
Фоп:
Uon: 2.72 : 2.72 : 2.71 : 2.72 : 2.74 : 2.75 : 2.78 : 2.79 : 2.78 : 2.76 : 2.74 : 2.73 : 2.73 : 2.72 : 2.72
              0.094: 0.095: 0.095: 0.096: 0.096: 0.097: 0.098: 0.099: 0.099: 0.097: 0.097: 0.096: 0.096: 0.095: 0.095:
Ки : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 000
Ки: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0
Ku : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 :
 y=
                                                               1097:
                                                                                     1068:
                                                                                                            1043:
                                                                                                                                 1022:
                                                                                                                                                        1004:
                                                                                                                                                                                  991:
                                                                                                                                                                                                         981:
                                                                                                                                                                                                                              975:
                                                                                                                                                                                                                                                     973:
                                                                                                                                                                                                                                                                           973:
                  3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108:
                                                                                                                                                                                                 3048: 2984: 2923: 2921:
 x=
Qc: 0.396: 0.396: 0.396: 0.397: 0.399: 0.401: 0.403: 0.406: 0.408: 0.411: 0.412: 0.416: 0.425: 0.430:
              0.079: 0.079: 0.079: 0.079: 0.079: 0.080: 0.080: 0.081:
                                                                                                                                                                                                 0.081: 0.082: 0.082: 0.082: 0.083: 0.085: 0.086:
Cc :
\begin{array}{l} C \Phi \ : \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.015; \ 0.01
UOR: 2.71 : 2.71 : 2.71 : 2.74 : 2.72 : 2.73 : 2.74 : 2.75 : 2.76 : 2.78 : 2.79 : 2.79 : 2.81 : 2.83 : 2.85
              0.095: 0.095: 0.095: 0.095: 0.096: 0.096: 0.096: 0.097: 0.098: 0.098: 0.099: 0.099: 0.100: 0.103: 0.104:
Ви :
              0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 :
       : 0.095: 0.095: 0.095: 0.095: 0.096: 0.096: 0.096: 0.097: 0.098: 0.098: 0.099: 0.099: 0.100: 0.103: 0.104: 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 
Ви : 0.095: 0.095: 0.095: 0.095: 0.096: 0.096: 0.096: 0.097: 0.098: 0.098: 0.099: 0.099: 0.100: 0.103: 0.104:
Ки: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
                                                               1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748:
 y=
  x=
                 2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
OC: 0.435: 0.443: 0.449: 0.457: 0.464: 0.474: 0.483: 0.493: 0.504: 0.518: 0.538: 0.592: 0.639: 0.672: 0.690:
Cc: 0.087: 0.089: 0.090: 0.091: 0.093: 0.095: 0.097: 0.099: 0.101: 0.104: 0.108: 0.118: 0.128: 0.134: 0.138:
       : 0.015:
                                    0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015:
                                                                                                                                                                                                                                                                                                                       42 :
Фоп:
                 358:
                                               0:
                                                                    2:
                                                                                           4:
                                                                                                                 7 :
                                                                                                                                        9:
                                                                                                                                                           11 :
                                                                                                                                                                                13:
                                                                                                                                                                                                      16:
                                                                                                                                                                                                                             18:
                                                                                                                                                                                                                                                  21 :
                                                                                                                                                                                                                                                                         27 :
                                                                                                                                                                                                                                                                                                34 :
Uon: 2.87 : 2.90 : 2.93 : 2.96 : 2.99 : 3.03 : 3.05 : 3.09 : 3.13 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00
Ви : 0.105: 0.107: 0.109: 0.110: 0.112: 0.115: 0.117: 0.119: 0.122: 0.126: 0.131: 0.144: 0.156: 0.164: 0.169:
Жи : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 000
Км: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004:
Ви : 0.105: 0.107: 0.109: 0.110: 0.112: 0.115: 0.117: 0.119: 0.122: 0.126: 0.131: 0.144: 0.156: 0.164: 0.169:
Ки : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 :
                  1973: 2077: 2132: 2248: 2369: 2493: 2619:
 y=
                 1676: 1616: 1587: 1538: 1504: 1486: 1483:
              0.696: 0.696: 0.693: 0.686: 0.680: 0.678: 0.674:
Cc : 0.139: 0.139: 0.139: 0.137: 0.136: 0.136: 0.135:
Сф: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015: 0.015:
                                                                                       74 :
                                                                  67 :
                                                                                                              80:
Uon: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00
Ви: 0.170: 0.170: 0.170: 0.168: 0.166: 0.166: 0.165:
Ки: 0001: 0001: 0001: 0001: 0001: 0001: 0001:
        : 0.170: 0.170: 0.170: 0.168: 0.166: 0.166: 0.165:
Кы: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 
Вы: 0.170: 0.170: 0.170: 0.168: 0.166: 0.166: 0.165:
Ки: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
  Результаты расчета в точке максимума
                                                                                                                             ПК ЭРА v3.0. Модель: MPK-2014
                               Координаты точки : X= 1676.0 м, Y= 1973.0 м
 Максимальная суммарная концентрация | Сs= 0.6960626 доли ПДКмр| 0.1392125 мг/м3 |
Достигается при опасном направлении 57 град.
и скорости ветра 8.00 м/с
Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада
                                                                                                _вклады_источников
 |Вклад в%| Сум. %| Коэф.влияния |
       Фоновая концентрация Cf | 0.015000 | 2.2 (Вклад источников 97.8%)|
1 |000101 0001| Т | 1.1667| 0.170266 | 25.0 | 25.0 | 0.145941585
2 |000101 0004| Т | 1.1667| 0.170266 | 25.0 | 50.0 | 0.145941585
                                                                             1.1667|
                                                                                     1.1667| 0.170266 | 25.0
1.1667| 0.170266 | 25.0
cymme = 0.696063 100.0
         3 |000101 0007| T |
                                                                                                                                                                                       75.0 | 0.145941585
        4 |000101 0010| T |
                                                                                                                                                           25.0 | 100.0 | 0.145941585
```

В сумме =

^{3.} Исходные параметры источников.

```
ПК ЭРА v3.0. Модель: MPK-2014
```

:616 г.Атырау. Город

Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч.:3 Расч.год: 2025 (СП) Примесь :0304 - Азота оксид Расчет проводился 01.09.2025 23:25

ПДКм.р для примеси 0304 = 0.4 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код	Тип	Н	D	Wo	V1	Т	X1	Y1	X2	Y2	Alf  F	КР  Д	и  Выброс
<06~U>~ <nc></nc>	~~~   ~~	~M~~	~~M~~	~M/C~	~м3/с~~	градС	~~~M~~~~	~~~M~~~~	~~~M~~~	-   ~~~M~~~	~ rp. ~~~	~~~ ~	~   ~~~ r/c~~
000101 0001	T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0	1.000	0 0.1895830
000101 0004	T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0	1.000	0 0.1895830
000101 0007	T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0	1.000	0 0.1895830
000101 0010	T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0	1.000	0 0.1895830

# 4. Расчетные параметры См, Uм, Xм

ПК ЭРА v3.0. Модель: MPK-2014

:616 г.Атырау. Город

:0001 HДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Объект

Вар.расч. :3

:ЛЕТО (температура воздуха 34.8 град.С) :0304 - Азота оксид Примесь

ПДКм.р для примеси 0304 = 0.4 мг/м3

T	Ист	очники		N:	х расч	етные	парам	етры
Номер	Код	l M	Тип	Cr	n	1	Jm	Xm
-n/n- <	об-п>-<ис	>		-[доли	ПДК]-	[M	/c]	[M]
1  00	00101 000	1  0.189	583  T	0.0	47457	9	.56	230.2
2   00	00101 000	4  0.189	583  T	0.0	47457	1 9	.56	230.2
3   00	00101 000	7  0.189	583  T	0.0	47457	9	.56	230.2
4   00	00101 001	0.189	583  T	0.0	47457	9	.56	230.2
~~~~~	~~~~~~	~~~~~~~	~~~~~~	~~~~~	~~~~~	~~~~	~~~~	~~~~~
Суми	марный Мф	= 0.758	332 г/с					
Суми	иа См по	всем источн	икам =	0.1	89826	долей	ПДК	
1	Средневз	вешенная ог	асная ск	орость і	ветра	= 9	.56 м/	с
1								1

5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

Город

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Объект

Вар.расч. :3

:ЛЕТО (температура воздуха 34.8 град.С) :0304 - Азота оксид

Примесь

ПДКм.р для примеси 0304 = 0.4 мг/м3

Фоновая концентрация на постах (в мг/м3 / долях ПДК)

Код загр	Штиль		Восточное	Южное	Западное
вещества	U<=2м/с на		аправление на	аправление н	аправление
Пост N 001:	X=0, Y=0 0.0050000 0.0125000	0.0050000 0.0125000	0.0050000 0.0125000	0.0050000 0.0125000	0.0050000 0.0125000

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП $\,$ 001 $\,$

Расчет в фиксированных точках. Группа точек 090

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с Средневзвешенная опасная скорость ветра Ucв= 9.56 м/с

9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: MPK-2014

:616 г.Атырау. :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. : 3 Расч.год: 2025 (СП)
Примесь : 0304 - Азота оксид Расчет проводился 01.09.2025 23:25

ПДКм.р для примеси 0304 = 0.4 мг/м3

Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001

Всего просчитано точек: 97

Запрошен учет дифференцированного фона с постов для новых источников

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Ump) м/с

__Расшифровка_обозначений_

	Qc -	суммарная концентрация [доли пдк]	
	Cc -	суммарная концентрация [мг/м.куб]	-1
	Сф -	фоновая концентрация [доли ПДК]	-1
- 1	Φοπ-	опасное направл. ветра [угл. град.]	
	Uoπ-	опасная скорость ветра [м/с]	-1
- 1	Ви -	вклад ИСТОЧНИКА в Qc [доли ПДК]	- 1
	Ки -	код источника для верхней строки Ви	-1

2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616: x= 1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468: 2594:

	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Qc :	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.066:	0.065:
Сф :	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013: 141:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:
			8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00 :	8.00 :	8.00:	
		0.013:		0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	
Ви :	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0001 : 0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:
								0.013:							
								0007:							
								3436:							
x=	2718:	2899:	3080:	3261:	3441:	3503:	3563:	3622:	3680:	3736:	3790:	3842:	3891:	3939:	3983:
								0.050:							
								0.020:							
								230 : 3.06 :							
:	:	:	:	:	:	:	:		:	:	:	:	:	:	:
Ки :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001:	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :
Ки:	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0.009:	0004:	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :
Ки:	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0.009:	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :
	:	:	:	:	:	:	:	2757:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	4223:	:	:	:	:	:	:	:
Cc :	0.018:	0.018:	0.018:	0.018:	0.018:	0.017:	0.017:	0.043:	0.017:	0.017:	0.017:	0.017:	0.017:	0.017:	0.017:
								0.013:							
								1704:							
x=	4221:	4205:	4182:	4159:	4128:	4098:	4016:	3933:	3850:	3767:	3730:	3694:	3650:	3608:	3558:
								0.045:							
								0.018:							
~~~~	~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
								991:							
								3108:							
Qc :	0.043:	0.043:	0.043:	0.043:	0.044:	0.044:	0.044:	0.044:	0.044:	0.044:	0.045:	0.045:	0.045:	0.046:	0.046:
			0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:	0.013:
	1022.	1045.						1246:							
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	2236:	:	:	:	:	:	:	:
Cc :	0.019:	0.019:	0.019:	0.019:	0.020:	0.020:	0.020:	0.051: 0.021:	0.021:	0.021:	0.022:	0.024:	0.025:	0.026:	0.027:
Фоп:	358 :	0 :	2:	4 :	7 :	9 :	11 :	0.013:	16:	18 :	21 :	27 :	34 :	42 :	50 :
:	:	:	:	:	:	:	:	3.09:	:	:	:	:	:	:	:
								0.010: 0001:							
Ви :	0.009:	0.009:	0.009:	0.009:	0.009:	0.009:	0.010:	0.010: 0004:	0.010:	0.010:	0.011:	0.012:	0.013:	0.013:	0.014:
Ви :	0.009:	0.009:	0.009:	0.009:	0.009:	0.009:	0.010:	0.010:	0.010:	0.010:	0.011:	0.012:	0.013:	0.013:	0.014:
								~~~~~							
				2248:											
x=	1676:	1616:	1587:	1538:	1504:	1486:	1483:								
Qc :	0.068:	0.068:	0.068:	0.067:	0.067:	0.066:	0.066:								
Сф :	0.013:	0.013:	0.013:	0.027:	0.013:	0.013:	0.013:								
	8.00 :	8.00:	8.00:	74 : 8.00 :	8.00:	8.00:	8.00:								
	0.014:	0.014:		0.014:	0.014:		0.013:								
				0001 : 0.014:											
				0004:											
Ки:	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :								

```
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
        Координаты точки : X= 1676.0 м, Y= 1973.0 м
```

Максимальная суммарная концентрация | Cs= 0.0678362 доли ПДКмр|

Достигается при опасном направлении 57 град.

и скорости ветра 8.00 м/с

Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада вклады источников

Hom.	Ko	I I	'ип	Выброс	Вклад	Вклад	в%	Сум. %∣	наика. феой	RN
	· <06-Ⅱ>-	- <nc> -</nc>		(pM)	-С[доли ПДК]]	-		b=C/M	
1	Фоновая	концен	трация	Cf	0.012500	18.4 (E	клад	источн	иков 81.6%)	
1	1000101	0001	T	0.1896	0.013834	25.0	1	25.0	0.07297097	1
2	000101	0004	T	0.1896	0.013834	25.0		50.0	0.07297097	/1
3	1000101	00071	T	0.1896	0.013834	25.0		75.0	0.07297097	1
4	000101	0010	T	0.1896	0.013834	25.0		100.0	0.07297097	1
1				В сумме =	0.067836	100.0	1			- 1

3. Исходные параметры источников. ПК ЭРА v3.0. Модель: MPK-2014

:616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Примесь :0328 - Углерод

ПДКм.р для примеси 0328 = 0.15 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код	Тип	Н	D	Wo	V1	T	X1	Y1	X2	Y2	Alf F KP Ди Выброс
<06~U>~ <nc< td=""><td>> ~~~ ~</td><td>~M~~ </td><td>~~M~~</td><td> ~M/C~ </td><td>~м3/с~~</td><td> градС </td><td>$\sim\sim_{M}\sim_{\sim}_{\sim}$</td><td> ~~~M~~~~</td><td> ~~~M~~~</td><td>~ ~~~M~~~</td><td>~ rp. ~~~ ~~~ ~~ ~~r/c~~</td></nc<>	> ~~~ ~	~M~~	~~M~~	~M/C~	~м3/с~~	градС	$\sim\sim_{M}\sim_{\sim}_{\sim}$	~~~M~~~~	~~~M~~~	~ ~~~M~~~	~ rp. ~~~ ~~~ ~~ ~~r/c~~
000101 0003	1 T	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0081020
000101 0004	4 T	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0081020
000101 000	7 T	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0081020
000101 0010	T C	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0081020

4. Расчетные параметры ${\tt Cm,Um,Xm}$

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. : 3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 Сезон :ЛЕТО (температура воздуха 34.8 град.С)

:0328 - Углерод Примесь

ПДКм.р для примеси 0328 = 0.15 мг/м3

1		Источни	KN		N2	r pact	четны	е пара	амет	ры
Номер	Код	Į I	M	Тип	Cr	n		Um		Xm
-n/n-	<об-п>-	- <nc> </nc>			-[доли	пдк]-	- [м/c]-	-	[M]
1	000101	0001	0.0081	.02 T	0.01	L6225		9.56		115.1
2	000101	0004	0.0081	.02 T	0.01	L6225	1	9.56		115.1
3	000101	0007	0.0081	.02 T	0.01	L6225	1	9.56		115.1
4	000101	0010	0.0081	.02 T	0.01	16225	1	9.56		115.1
~~~~~	~~~~~	~~~~~~	~~~~~	~~~~~	~~~~~	~~~~	~~~~	~~~~	~~~~	~~~~~
I Су	имарный	Mq =	0.0324	108 г/с						1
Су	има См	по всем	источни	икам =	0.06	54899	доле	й ПДК		1
1	Средн	невзвещен	ная опа	асная ск	орость в	ветра	=	9.56 1	M/C	1
1										

# 5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: MPK-2014

Город Объект

:616 г.Атырау. :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

:3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:25 :ЛЕТО (температура воздуха 34.8 град.С)

Сезон

Примесь :0328 - Углерод

ПДКм.р для примеси 0328 = 0.15 мг/м3

Фоновая концентрация не задана

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001

Расчет в фиксированных точках. Группа точек 090 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до  $8.0\,\mathrm{(Ump)}$  м/с

Средневзвешенная опасная скорость ветра Ucв= 9.56 м/с

### 9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: MPK-2014

подо

:616 г.Атырау. :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3 Расч.год: 2025 (СП)
Примесь :0328 - Углерод Расчет проводился 01.09.2025 23:25

ПДКм.р для примеси 0328 = 0.15 мг/м3

Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001

Всего просчитано точек: 97

Фоновая концентрация не задана

Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с

```
Расшифровка обозначений
            Qc - суммарная концентрация [доли ПДК]
            Сс - суммарная концентрация [мг/м.куб]
            Фоп- опасное направл. ветра [ угл. град.]
            Uon- опасная скорость ветра [
            Ви - вклад ИСТОЧНИКА в Ос [поли ПЛК]
           Ки - код источника для верхней строки Ви
     2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
y=
     1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468: 2594:
                                     ----:---:---:---:-
Qc: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008:
Cc : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
     3603: 3575: 3547: 3518: 3490: 3475: 3459: 3436: 3413: 3382: 3352:
                                                                           3315: 3279: 3235:
          2899: 3080: 3261: 3441: 3503: 3563: 3622:
                                                       3680: 3736: 3790: 3842:
Qc : 0.008: 0.008: 0.008: 0.007: 0.006: 0.006: 0.006: 0.006: 0.006: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
у=
     3143: 3096:
                  3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569: 2508:
                                                                                 2506:
                                                                                        2443:
    4025: 4063: 4098: 4130: 4159: 4184: 4205: 4223: 4236: 4246: 4252: 4254: 4254: 4252: 4236:
Qc: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
Cc : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
     2257: 2197: 2138: 2080: 2024: 1970: 1837: 1704: 1570: 1437: 1385: 1336: 1288: 1244: 1202:
    4221: 4205: 4182: 4159: 4128: 4098: 4016: 3933: 3850: 3767: 3730: 3694: 3650: 3608: 3558:
Qc : 0.004: 0.004: 0.004: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
v=
     1164: 1129: 1097: 1068: 1043: 1022: 1004:
                                                  991:
                                                         981:
                                                               975:
                                                                      973:
                                                                            973:
                                                                                  975:
                                                                                         991: 1006:
     3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734: 2672:
           ----:---:---:---:
                                    ----:
                                                       ----:-
                                                              ----:---:---:-
Qc : 0.004: 0.004: 0.004: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:
Cc : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
     1022: 1045: 1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748: 1868:
     2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
Qc : 0.005: 0.005: 0.005: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.007: 0.007: 0.007: 0.007: 0.008: 0.008: 0.008:
Cc: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
     1973: 2077: 2132: 2248: 2369: 2493: 2619:
y=
    1676: 1616: 1587: 1538: 1504: 1486: 1483:
Qc: 0.008: 0.008: 0.008: 0.008: 0.008: 0.008:
Cc : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014
        Координаты точки : X= 1676.0 м, Y= 1973.0 м
                                        0.0084269 доли ПДКмр|
Максимальная суммарная концентрация | Сs=
                                        0.0012640 мг/м3
  Достигается при опасном направлении
                    и скорости ветра 2.43 м/с
Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада
                           _вклады_источников_
                      Выброс | Вклад |Вклад в%| Сум. %|
-M-(Mq)--|-С[доли ПДК]|------|-
        Код
               |Тип|
                                  Вклад |Вклад в%| Сум. %| Коэф.влияния
|----|<06-U>-<NC>|---|--
  1 |000101 0001| T |
3. Исходные параметры источников.
  ПК ЭРА v3.0. Модель: MPK-2014
    Город :616 г. Атырау.
    Объект
             :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
                   Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
    Вар.расч. :3
    Примесь :0333 - Сероводород
              ПДКм.р для примеси 0333 = 0.008 мг/м3
```

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

4. Расчетные параметры См, Им, Хм ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

Город

Объект :0001 НДВ вв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

ч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 :ЛЕТО (температура воздуха 34.8 град.С) Расч.год: 2025 (СП) Вар.расч. :3

Сезон

Примесь

:0333 - Сероводород ПДКм.р для примеси 0333 = 0.008 мг/м3

- Для линейных и площадных источни   всей площади, а Сm - концентраци:   расположенного в центре симметри	я одиночного источника,
Источники	Их расчетные параметры
Номер  Код   М  Тип	Cm   Um   Xm
-n/n- <06-n>- <nc>  </nc>	-[доли ПДК]- [м/c] [м]
1  000101 0019  0.000044  T	0.196441   0.50   11.4
2  000101 6001  0.00000100  N1	0.004465   0.50   11.4
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Суммарный Mq = 0.000045 г/с	
Сумма См по всем источникам =	0.200905 долей ПДК
Средневзвешенная опасная ско	орость ветра = 0.50 м/с
1	1

#### 5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: МРК-2014 Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :0333 - Сероводород

ПДКм.р для примеси 0333 = 0.008 мг/м3

#### Фоновая концентрация на постах (в мг/м3 / долях ПДК)

Код загр   вещества	Штиль   U<=2м/с  н	-	Восточное направление	Южное  направление	Западное    направление
Пост N 001	X=0, Y=0				1
0333	0.0040000	0.0040000	0.0040000	0.0040000	0.00400001
i i	0.5000000	0.5000000	0.5000000	0.5000000	0.5000000

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001 Расчет в фиксированных точках. Группа точек 090

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с

## 9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Примесь :0333 - Сероводород Расчет проводился 01.09.2025 23:26

ПДКм.р для примеси 0333 = 0.008 мг/м3

Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001

Всего просчитано точек: 97 Запрошен учет дифференцированного фона с постов для новых источников

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до  $8.0\,\mathrm{(Ump)}\ \mathrm{m/c}$ 

#### __Расшифровка_обозначений_

	Qc -	суммарная концентрация [доли ПДК]	
	Cc -	суммарная концентрация [мг/м.куб]	
1	Сф -	фоновая концентрация [ доли ПДК ]	1
	Φοπ-	опасное направл. ветра [ угл. град.]	1
1	Uon-	опасная скорость ветра [ м/с ]	1
	Ви -	вклад ИСТОЧНИКА в Qc [доли ПДК]	1
1	KM -	код источника для верхней строки Ви	1
~~~~~~			~~~~~~~~~~

-	2619:														
x=	1483:	1496:	1525:	1569:	1627:	1699:	1783:	1878:	1982:	2052:	2107:	2223:	2344:	2468:	2594:
Qc :	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:	0.501:
Сф :	0.500: 94:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:	0.500:
	0.71 :														
Ви :	0.001: 0019:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:

```
3603: 3575: 3547: 3518: 3490: 3475: 3459: 3436: 3413: 3382: 3352:
                                                                                                                                                             3315: 3279: 3235:
                                                                3441:
                                                                                           3563:
                                                                                                        3622:
                                                                                                                     3680:
Qc : 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
                                    0.004: 0.004:
                                                              0.004: 0.004: 0.004: 0.004:
                                                                                                                   0.004: 0.004: 0.004:
                                                                                                                                                           0.004: 0.004: 0.004:
         0.004: 0.004:
Cm : 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
                                                                             226 :
                                                                                         228 :
                                                                                                       230 :
                                                                                                                     233 :
                                                                                                                                 235 :
                                                                                                                                                237 :
                        199 :
                                     208 :
                                                  216 :
                                                                223 :
                                                                                                                                                             239 :
Фоп:
Uon: 0.71 : 0.72 : 0.71 : 0.71 : 0.76 : 0.76 : 0.82 : 0.87 : 0.92 : 0.93 : 0.99 : 0.99 : 1.03 : 1.08 : 1.10
Ви : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.000: 0.000: 0.000: 0.000: 0.000:
Ки : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 :
           3143: 3096: 3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569: 2508:
 v=
                                                                                                                                                                          2506: 2443: 2319:
          4025: 4063: 4098: 4130: 4159: 4184: 4205: 4223: 4236: 4246: 4252: 4254: 4254: 4252: 4236:
 x=
                                                   ----:
                                                                              ----:-
                                                                                           ----:
                                                                                                        ----:
                                                                                                                      ----:-
                                                                                                                                   ----:
Qc : 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
Cc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
C$\tilde{C}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tilde{C}}\tilde{\tild
                                                                             259 :
                                                                                                                                                             271 :
Фоп: 248 : 250 : 252 : 254 : 256 : 259 : 261 : 263 : 265 : 267 : 269 : 271 : 271 : 273 : 278 : 
Uoп: 1.10 : 1.18 : 1.21 : 1.23 : 1.24 : 1.26 : 1.27 : 1.28 : 1.29 : 1.29 : 1.30 : 1.30 : 1.30 : 1.30 : 1.30 :
            2257: 2197:
                                      2138:
                                                  2080:
                                                                2024:
                                                                             1970:
                                                                                           1837:
                                                                                                        1704:
                                                                                                                     1570:
                                                                                                                                  1437:
                                                                                                                                                1385:
                                                                                                                                                             1336:
                                                                                                                                                                           1288:
                                                                                                                                                                                        1244:
 y=
 v=
          4221 • 4205 • 4182 • 4159 • 4128 • 4098 • 4016 • 3933 • 3850 • 3767 • 3730 • 3694 •
                                                                                                                                                                          3650 3608 3558
Qc : 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
Cc : 0.004: 0.004:
                                   0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
     : 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
Фоп: 280 : 282 : 284 : 286 : 288 : 290 : 296 : 301 : 307 : 312 : 314 : 316 : 319 : 321 : 323 : 

Uoп: 1.29 : 1.29 : 1.28 : 1.27 : 1.25 : 1.24 : 1.21 : 1.20 : 1.21 : 1.23 : 1.24 : 1.26 : 1.26 : 1.27 : 1.27 :
            1164: 1129: 1097: 1068: 1043: 1022: 1004:
                                                                                                                        981:
 y=
 x=
           3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921:
                                                                                                                                                                          2858: 2734:
OC: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
Cc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
     : 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
Φοπ: 325 : 327 : 329 : 332 : 334 : 336 : 338 : 340 : 342 : 344 : 347 : 347 : 349 : 353 : 355 : 

Uοπ: 1.28 : 1.28 : 1.28 : 1.27 : 1.26 : 1.26 : 1.25 : 1.24 : 1.23 : 1.21 : 1.19 : 1.19 : 1.11 : 1.08 : 1.07 :
                                                                                                                     1288:
                                                                                                                                                1385:
                        1045:
                                      1068:
                                                   1099:
                                                                1129:
                                                                             1166:
                                                                                           1202:
                                                                                                        1246:
                                                                                                                                  1338:
                                                                                                                                                             1506:
                                                                                                                                                                           1627:
                                                                                                                                                                                        1748:
 y=
          2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
 x =
oc: 0.500: 0.500: 0.500: 0.500: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501:
                                    0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
                                                                                                                   0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
Cc :
                      0.004:
C$\text{$\phi$} : 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500
Фоп:
          358 :
                            0:
                                                      4 :
                                                                    7 :
                                                                                 9:
                                                                                           11 :
                                                                                                         13:
                                                                                                                      16:
                                                                                                                                    18:
                                                                                                                                                 21 :
                                                                                                                                                               27 :
                                                                                                                                                                            34 :
                                                                                                                                                                                         42 :
                                                                                                                                                                                                       50 .
                                                              0.92: 0.87: 0.82: 0.76:
                       0.99: 0.99: 0.93:
                                                                                                                   0.76 : 0.76 :
                                                                                                                                              0.71 : 0.71 : 0.71 : 0.71 : 0.71
         0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
         1973: 2077: 2132: 2248: 2369: 2493: 2619:
  x=
          1676: 1616: 1587: 1538: 1504: 1486: 1483:
Qc : 0.501: 0.501: 0.501: 0.501: 0.501: 0.501: 0.501:
     : 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
Сф : 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
                                                    74 :
                          63 :
                                       67 :
                                                                80:
Фоп:
Uoπ: 0.71 : 0.71 : 0.71 : 0.71 : 0.71 : 0.71 : 0.71
Ви : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Ки : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 : 0019 :
                                                                          ПК ЭРА v3.0. Модель: MPK-2014
  Результаты расчета в точке максимума
                   Координаты точки : X= 1676.0 м, Y= 1973.0 м
 Максимальная суммарная концентрация | Сs= 0.5007281 доли I 0.0040058 мг/м3
                                                                                     0.5007281 доли ПДКмр|
     Достигается при опасном направлении 57 град и скорости ветра 0.71 м/с
                                                                               57 град.
Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада
                                                         _вклады_источников
                                IТипI
                                              Выброс І
                                                                                      ІВклал в% | Сум. % | Коэф.влияния |
                   Кол
                                                                       Вклал
    Фоновая концентрация Сf | 0.500000 | 99.9 (Вклад источников 0.1%)|
1 |000101 0019| Т | 0.00004400| 0.000712 | 97.8 | 97.8 | 16.1819019
В сумме = 0.500712 97.8
Суммарный вклад остальных = 0.000016 2.2
```

3. Исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау.

Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :0337 - Углерод оксид

ПДКм.р для примеси 0337 = 5.0 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код	Тип	H	D	Wo	V1	T	X1	Y1	X2	Y2	Alf F	КР Ди	Выброс
<06~U>~ <nc< td=""><td>> ~~~ ~</td><td>~m~~ </td><td>~~M~~</td><td> ~M/C~ </td><td>~м3/с~~</td><td>градС </td><td>~~~M~~~~</td><td>~~~M~~~~</td><td>~~~M~~~</td><td>~ ~ ~ ~ M ~ ~ ~</td><td>~ rp. ~~~ </td><td>-~~ ~~ </td><td>~~~r/c~~</td></nc<>	> ~~~ ~	~m~~	~~M~~	~M/C~	~м3/с~~	градС	~~~M~~~~	~~~M~~~~	~~~M~~~	~ ~ ~ ~ M ~ ~ ~	~ rp. ~~~	-~~ ~~	~~~r/c~~
000101 0003	1 T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1	.000 0	1.472222
000101 0004	4 T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1	.000 0	1.472222
000101 000	7 T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1	.000 0	1.472222
000101 0010	T C	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1	.000 0	1.472222

4. Расчетные параметры См, Им, Хм

ПК ЭРА v3.0. Модель: MPK-2014

Город

:616 г.Атырау. :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

:3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
:ЛЕТО (температура воздуха 34.8 град.С) Вар.расч. :3

Сезон

:0337 - Углерод оксид Примесь

ПДКм.р для примеси 0337 = 5.0 мг/м3

		Источни	ки		KN	расч	етные	пара	метр	ОЫ
Номер	Код		M	Тип	Cm	l	1	Jm		Xm
-π/π- <c< td=""><td>об−п>-</td><td><nc> </nc></td><td></td><td>- </td><td>-[доли</td><td>ПДК]-</td><td> [M</td><td>/c]</td><td>- </td><td>[м]</td></c<>	об−п>-	<nc> </nc>		-	-[доли	ПДК]-	[M	/c]	-	[м]
1 00	00101	0001	1.47222	2 T	0.02	9482	1 9	.56	1	230.2
2 00	00101	0004	1.47222	2 T	0.02	9482	9	.56	1	230.2
3 00	00101	0007	1.47222	2 T	0.02	9482	9	.56	1	230.2
4 0 0	00101	0010	1.47222	2 T	0.02	9482	9	.56	1	230.2
~~~~~	~~~~	~~~~~	~~~~~~	~~~~~	~~~~~	~~~~	~~~~	~~~~	~~~~	~~~~~
Сумь	иарный	Mq =	5.88888	8 r/c						
Сумь	иа См	по всем	источник	ам =	0.11	7929	долей	ПДК		
	Средн	евзвеше	нная опас	ная ско	рость в	етра	= 9	.56 N	1/c	
	-				-	-				

5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: MPK-2014

пород

:616 г.Атырау. :0001 НДВ эв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :0337 - Углерод оксид Примесь ПДКм.р для примеси 0337 = 5.0 мг/м3

Фоновая концентрация на постах (в мг/м3 / долях ПДК)

	-				
					ападное   равление
Пост N 001: X=					1
0337   1.	.8000000  1	.80000001	1.8000000	1.8000000	1.8000000
0.	.3600000  0	.3600000	0.3600000	0.3600000	0.3600000

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001

Расчет в фиксированных точках. Группа точек 090

Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с Средневзвешенная опасная скорость ветра  $Ucb=9.56\ m/c$ 

9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау. Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. : 3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь : 0337 - Углерод оксид

ПДКм.р для примеси 0337 = 5.0 мг/м3

Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001

Всего просчитано точек: 97

Запрошен учет дифференцированного фона с постов для новых источников Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до  $8.0\,\mathrm{(Ump)}$  м/с

_		гасшифровка_ооозначении	
	Qc -	суммарная концентрация [доли ПДК]	
	Cc -	суммарная концентрация [мг/м.куб]	
	Сф -	фоновая концентрация [ доли ПДК ]	
	Φοπ-	опасное направл. ветра [ угл. град.]	
	Uon-	опасная скорость ветра [ м/с ]	
	Ви -	вклад ИСТОЧНИКА в Qc [доли ПДК]	
- 1	Ки -	код источника для верхней строки Ви	

y= 2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616: ----;-----;----;----;-----:----:-

														2468:	
Qc :	0.393:	0.393:	0.393:	0.393:	0.393:	0.393:	0.393:	0.393:	0.394:	0.394:	0.393:	0.393:	0.393:	0.393:	0.393:
														1.965:	
Фоп:														0.360: 176:	
Uon:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00:	8.00 :	8.00:	8.00:	8.00 :
Bu ·	0 008:							0 008:						0.008:	
														0001:	
														0.008:	
														0.004:	
														0007:	
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	3603:	3575:	3547:	3518:	3490:	3475:	3459:	3436:	3413:	3382:	3352:	3315:	3279:	3235:	3193:
														:	
x=														3939:	
Qc :	0.393:	0.392:	0.390:	0.388:	0.385:	0.384:	0.384:	0.383:	0.383:	0.382:	0.382:	0.381:	0.381:	0.381:	0.381:
														1.904:	
														244 :	
Uon:								3.01:						2.85 :	
Ви:														0.005:	
														0001:	
														0.005: 0004:	
														0.005:	
														0007:	
														2443:	
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
x=														4252:	
Qc :	0.380:	0.380:	0.380:	0.380:	0.379:	0.379:	0.379:	0.379:	0.379:	0.379:	0.379:	0.379:	0.379:	0.379:	0.379:
														1.895:	
														273 :	
Uon:														2.71 :	
: Ви :	0.005:							0.005:						0.005:	
Ки :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :
														0.005: 0004:	
														0.005:	
														0007:	
~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
у=														1244:	
x=														3608:	
														0.379:	
														1.896:	
														0.360:	
								301:						321 •	
:	:	:	:	:	:	:							2./3:		
					0.005:	0 005.			:	:	:		:	2.72 :	:
					0001 .		0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	0.005:	2.72 : : 0.005:	0.005:
	0004	0.005:				0001 :	0.005: 0001:	0.005: 0001:	0.005: 0001:	0.005: 0001:	0.005: 0001:	0.005: 0001:	0.005: 0001:	2.72 :	0.005: 0001:
Bt/r •		0004:	0.005: 0004:	0.005: 0004:	0.005: 0004:	0001 : 0.005: 0004 :	0.005: 0001: 0.005: 0004:	0.005: 0001: 0.005: 0004:	0.005: 0001: 0.005: 0004:	: 0.005: 0001: 0.005: 0004:	: 0.005: 0001: 0.005: 0004:	0.005: 0001: 0.005: 0004:	: 0.005: 0001: 0.005: 0004:	2.72 : 0.005: 0001 : 0.005: 0004 :	: 0.005: 0001: 0.005: 0004:
	0.005:	0004 : 0.005:	0.005: 0004: 0.005:	0.005: 0004: 0.005:	0.005: 0004: 0.005:	0001 : 0.005: 0004 : 0.005:	0.005: 0001: 0.005: 0004: 0.005:	0.005: 0001: 0.005: 0004: 0.005:	: 0.005: 0001: 0.005: 0004: 0.005:	: 0.005: 0001: 0.005: 0004: 0.005:	: 0.005: 0001: 0.005: 0004: 0.005:	0.005: 0001: 0.005: 0004: 0.005:	: 0.005: 0001: 0.005: 0004: 0.005:	2.72 : 0.005: 0001 : 0.005: 0004 : 0.005:	: 0.005: 0001: 0.005: 0004: 0.005:
Ки:	0.005: 0007:	0004 : 0.005: 0007 :	0.005: 0004: 0.005: 0007:	0.005: 0004: 0.005: 0007:	0.005: 0004: 0.005: 0007:	0001 : 0.005: 0004 : 0.005: 0007 :	0.005: 0001: 0.005: 0004: 0.005: 0007:	0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001: 0.005: 0004: 0.005: 0007:	0.005: 0001 : 0.005: 0004 : 0.005: 0007 :	: 0.005: 0001: 0.005: 0004: 0.005: 0007:	2.72 : 0.005: 0001 : 0.005: 0004 :	: 0.005: 0001: 0.005: 0004: 0.005: 0007:
Ки : ~~~~ ——	0.005: 0007: ~~~~~	0004 : 0.005: 0007 : ~~~~~	0.005: 0004: 0.005: 0007: ~~~~~	0.005: 0004: 0.005: 0007: ~~~~~	0.005: 0004: 0.005: 0007: ~~~~~	0001 : 0.005: 0004 : 0.005: 0007 :	0.005: 0001: 0.005: 0004: 0.005: 0007:	0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.72 : 0.005: 0001 : 0.005: 0004 : 0.005: 0007 : ~~~~~~~	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ки : ~~~~ y=	0.005: 0007: ~~~~~~	0004 : 0.005: 0007 : ~~~~~	0.005: 0004: 0.005: 0007: ~~~~~	0.005: 0004: 0.005: 0007: ~~~~~	0.005: 0004: 0.005: 0007: ~~~~~	0001 : 0.005: 0004 : 0.005: 0007 :	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.72 : 0.005: 0001 : 0.005: 0004 : 0.005: 0007 :	: 0.005: 0001: 0.005: 0004: 0.005: 0007:
Ки: ~~~~ y=  x=	0.005: 0007: ~~~~~ 1164: : 3511:	0004 : 0.005: 0007 : ~~~~~ 1129: : 3457:	0.005: 0004: 0.005: 0007: ~~~~~ 1097: : 3405:	0.005: 0004: 0.005: 0007: ~~~~~~ 1068: : 3347:	0.005: 0004: 0.005: 0007: ~~~~~ 1043: : 3291:	0001 : 0.005: 0004 : 0.005: 0007 :: 3230:	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~ 1004: : 3172:	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~ 991: : 3108:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~	0.005: 0001: 0.005: 0004: 0.005: 0007: : 2921:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.72 : 0.005: 0001 : 0.005: 0004 : 0.005: 0007 : ~~~~~~~	: 0.005: 0001: 0.005: 0004: 0.005: 0007:
Ки: ~~~~ y=  x=  Qc:	0.005: 0007: ~~~~~~ 1164: : 3511: : 0.379:	0004 : 0.005: 0007 : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.005: 0004: 0.005: 0007: ~~~~~~ 1097: : 3405: 0.379:	0.005: 0004: 0.005: 0007: ~~~~~~ 1068: : 3347: : 0.379:	0.005: 0004: 0.005: 0007: ~~~~~ 1043: : 3291: 0.379:	0001 : 0.005: 0004 : 0.005: 0007 : 1022: 3230:: 0.379:	0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~ 1004: : 3172: : 0.379:	0.005: 0001: 0.005: 0004: 0.005: 0007: : 3108: : 0.380:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: 0.005: 0001: 0.005: 0004: 0.005: 0007: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	973: : 0.380:	0.005: 0001: 0.005: 0004: 0.005: 0007: : 2921: : 0.380:	975: : 2858: 0.380:	2.72 : 0.005: 0001 : 0.005: 0004 : 0.005: 0007 :: 2734: 0.381:	0.005: 0001: 0.005: 0004: 0.005: 0007: : 2672: 0.381:
Ки:  y=  х=  Qc: Cc:	0.005: 0007: ~~~~~~ 1164: : 3511: : 0.379: 1.896:	0004 : 0.005: 0007 : 7000	0.005: 0004: 0.005: 0007: ~~~~~~ 1097: : 3405: : 0.379: 1.896:	0.005: 0004: 0.005: 0007: ~~~~~~ 1068: 3347: : 0.379: 1.896:	0.005: 0004: 0.005: 0007: ~~~~~ 1043: : 3291: : 0.379: 1.896:	0001 : 0.005: 0004 : 0.005: 0007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 20007 : 200	0.005: 0001: 0.005: 0004: 0.005: 0007: : 3172: 0.379: 1.897:	0.005: 0001: 0.005: 0004: 0.005: 0007: : 3108: 0.380: 1.898:	981: 	975: : 2984: 0.380: 1.899:	973: 	0.005: 0001: 0.005: 0004: 0.005: 0007: : 2921: 0.380: 1.900:	975: 2858: 0.380: 0.005: 0.005: 0007: 275: 2858:	2.72 : 0.005: 0001: 0.005: 0004: 0.005: 0007:	: 0.005: 0001 : 0.005: 0004 : 0.005: 0007 :: 2672:: 0.381: 1.905:
<pre>Kи:</pre>	0.005: 0007: ~~~~~~ 1164: : 3511: : 0.379: 1.896: 0.360: 325:	0004: 0.005: 0007: : 3457: : 0.379: 1.896: 0.360: 327:	0.005: 0004: 0.005: 0007: : 3405: : 0.379: 1.896: 0.360: 329:	0.005: 0004: 0.005: 0007: ~~~~~~ 1068: : 3347: : 0.379: 1.896: 0.360: 332:	0.005: 0004: 0.005: 0007: ~~~~~~ 1043: : 3291: : 0.379: 1.896: 0.360: 334:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 336: 336 :	0.005: 0001: 0.005: 0004: 0007: : 3172: : 0.379: 1.897: 0.360: 338:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3108: 0.380: 1.898: 0.360: 340:	981: 0.380: 0.005: 0.005: 0004: 0.005: 0007: 981: 0.380: 1.899: 0.360: 342:	975: 2984: 0.380: 0.005: 0004: 0.005: 0007: 275: 2984: 0.380: 1.899: 0.360: 344:	973: 	0.005: 0001: 0.005: 0004: 0.005: 0007: 973: 2921: 0.380: 1.900: 0.360: 347:	975: 2858: 0.005: 0.005: 0.005: 0.007: 975: 2858: 0.380: 1.901: 0.360: 349:	2.72: 0.005: 0001: 0.005: 0004: 0.005: 0007:: 2734:: 0.381: 1.903: 0.360: 353:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0
<pre>Kи:</pre>	0.005: 0007: ~~~~~~ 1164: : 3511: : 0.379: 1.896: 0.360: 325:	0004 : 0.005: 0007 : 1129:: 3457:: 0.379: 1.896: 0.360: 327: 2.72:	0.005: 0004: 0.005: 0007: : 3405: : 0.379: 1.896: 0.360: 329: 2.72:	0.005: 0004: 0.005: 0007: ~~~~~~ 1068: : 3347: : 0.379: 1.896: 0.360: 332:	0.005: 0004: 0.005: 0007: : 3291: : 0.379: 1.896: 0.360: 334: 2.72:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 336: 336 :	0.005: 0001: 0.005: 0.005: 0004: 0.005: 0007: 3172: 0.379: 1.897: 0.360: 338: 2.74:	0.005: 0001: 0.005: 0.005: 0007: 	981: 	975: : 0.380: 0.380: 0.380: 1.899: 0.360: 344: 2.77:	973: 2923: 0.380: 0.380: 0.380: 0.380: 0.380: 1.900: 0.360: 347: 2.79:	0.005: 0001: 0.005: 0004: 0.005: 0007: 973: 2921: 0.380: 1.900: 0.360: 347: 2.79:	0.005: 0001: 0.005: 0004: 0.005: 0007: 975: : 2858: 0.380: 1.901: 0.360: 349: 2.81:	2.72 : 0.005: 0001 : 0.005: 0004 : 0.005: 0007 : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: 0.005: 0001: 0.005: 0004: 0.005: 0007:: 2672:: 0.381: 1.905: 0.360: 355: 2.86:
У=  у=  Ос : Сф : Фол: Uon:	0.005: 0007: : 3511: : 0.379: 1.896: 0.360: 325: 2.72: 0.005:	0004: 0.005: 0007: 1129: : 3457: 0.379: 1.896: 0.360: 327: 2.72: 0.005:	0.005: 0004: 0.005: 0.007: : 3405: : 0.379: 1.896: 0.360: 329: 2.72:	0.005: 0004: 0.005: 0007: : 3347: : 0.379: 1.896: 0.360: 332: 2.72: 0.005:	0.005: 0004: 0.005: 0007: 3291: 0.379: 1.896: 0.360: 334: 2.72: 0.005:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 0.379: 1.897: 0.360: 336 : 2.73 : 0.005:	0.005: 0001: 0.005: 0.005: 0007: 1004: : 0.379: 1.897: 0.360: 338: 2.74: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 991: 3108: 0.380: 1.898: 0.360: 2.75: 0.005:	981: 0.300: 0.005: 0.005: 0.005: 0.007: 3048: 0.380: 1.899: 0.360: 342: 2.76: 0.005:	975: 2984: 0.380: 0.005: 0.005: 0.005: 0.007: 2984: 2984: 0.380: 1.899: 0.360: 344: 2.77: 0.005:	973: 2923: 0.380: 0.05: 0.005: 0.005: 0.007: 2923: 2923: 0.380: 1.900: 2.79: 0.005:	0.005: 0001: 0.005: 0.005: 0.007: 973: : 2921: 1.900: 0.360: 347: 2.79: 0.005:	975: 2858: 0.380: 0.005: 0.005: 0.007: 2858: 0.380: 1.901: 0.360: 349: 2.81: 0.005:	2.72 : 0.005: 0001 : 0.005: 0004 : 0.005: 0007 : 2734:: 0.381: 1.903: 0.360: 353 : 2.84 : 0.005:	: 0.005: 0001: 0.005: 0004: 0.005: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0
У= y= y= Qc : Cc : Cф : Фол: Uon: Ви :	0.005: 0007: : 3511: : 0.379: 1.896: 0.360: 325: 2.72: : 0.005: 0001:	0004: 0.005: 0007: 1129:: 0.379: 1.896: 0.360: 327: 2.72: : 0.005: 0001:	0.005: 0004: 0.005: 0007: : 3405: : 0.379: 1.896: 0.360: 329: 2.72: : 0.005:	0.005: 0004: 0.005: 0007: : 3347: 0.379: 1.896: 0.360: 32: 2.72: : 0.005: 0001:	0.005: 0004: 0.005: 0007: : 3291: 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0.001:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 3236: 336: 2.73 : 0.005: 0001	0.005: 0001: 0.005: 0004: 0.005: 0007: 1004: : 0.379: 1.897: 0.360: 338: 2.74: 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 991: : 0.380: 1.898: 0.360: 340: 2.75: : 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048: : 0.380: 1.899: 0.360: 342: 2.76: 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2984: : 0.380: 1.899: 0.360: 344: 2.77: : 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0.005: 2923: : 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0.005:	0.005: 0001: 0.005: 0.005: 0007: 973: 2921: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0.005: 2858: : 0.380: 1.901: 0.360: 349: 2.81: 0.005: 0.005:	2.72 :	: 0.005: 0001: 0.005: 0004: 0.005: 0007: 2672:: 0.381: 1.905: 0.360: 355: 2.86: 0.005: 0001:
У=	0.005: 0007: : 3511: 0.379: 1.896: 0.360: 325: 2.72: 0.005: 0001: 0.005:	0004: 0.005: 0007: 7722: 3457: 0.379: 1.896: 0.360: 327: 2.72: 0.005: 0001: 0.005:	0.005: 0004: 0.005: 0007: 3405: : 3405: : 0.379: 1.896: 0.360: 329: 2.72: 0.005: 0001: 0.005:	0.005: 0004: 0.005: 0007: 7008: 1068: : 3347: : 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0001: 0.005:	0.005: 0004: 0.005: 0007: 3291: : 3291: : 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0001: 0.005:	0001 : 0.005: 0004 : 0.005: 0007 : 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.0004 : 0.005: 0.0004 : 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0005: 0.0	0.005: 0001: 0004: 0.005: 0007: 1004: 3172: 0.379: 1.897: 0.360: 338: 2.74: 0.005: 0.005: 0.005:	0.005: 0001: 0.005: 0007: 0.005: 0007: 3108: 3108: 0.380: 1.898: 0.360: 340: 2.75: 0.005: 0.005: 0.005:	981:	975:	973:	0.005: 0001: 0004: 0.005: 0007: 973: 2921: 0.380: 1.900: 2.79: 0.005: 0.005: 0.005:	975:	2.72 :	: 0.005: 0004: 0.005: 0004: 0.005: 0007: 2672: 0.381: 1.905: 0.360: 355: 2.86: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:
У =	0.005: 0007: 1164: : 0.379: 1.896: 0.360: 2.72: 0.005: 0001: 0.005: 0004:	0004: 0.005: 0007:	0.005: 0004: 0.005: 0007: : 3405: : 0.379: 1.896: 0.360: 329: 2.72: 0.005: 0001: 0.005:	0.005: 0004: 0.005: 0007: : 3347: : 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0001: 0.005:	0.005: 0004: 0.005: 0007: : 3291: : 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0001: 0.005:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 0.379: 1.897: 0.366: 2.73 : 0.005: 0001 : 0.005: 0004 : 0.005:	0.005: 0001: 0.005: 0007: 0.005: 0007: 1004: : 0.379: 1.897: 0.360: 338: 2.74: 0.005: 0.005: 0.005:	0.005: 0001: 0.005: 0007: 0.005: 0007: 991: : 0.380: 1.898: 0.360: 2.75: 0.005: 0001: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048: 	0.005: 0001: 0.005: 0004: 0.005: 0007: 2984: : 0.380: 1.899: 0.360: 344: 2.77: 0.005: 0001: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2923:: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0001: 0.005:	0.005: 0001: 0.005: 0007: 0.005: 0007: 973: : 0.380: 1.900: 0.360: 0.005: 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0.005: 0.007: 2858: 0.380: 1.901: 0.360: 349: 0.005: 0.005: 0.005:	2.72 :	1006: 0.005: 0.005: 0.005: 0.005: 0.005: 0.006: 2672: 0.381: 1.905: 0.360: 355: 2.86: 0.005: 0.005: 0.005: 0.005:
Ки:	0.005: 0007: 1164: : 0.379: 1.896: 0.360: 325: 2.72: 0.005: 0.005: 0.005: 0.005:	0004 : 0.005: 0007 : 3457:: 3457:: 0.379: 1.896: 0.360: 327 : 2.72 : 0.005: 0001 : 0.005: 0005 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:	0.005: 0004: 0.005: 0007: : 3405: : 0.379: 1.896: 0.360: 329: 2.72: 0.005: 0001: 0.005: 0.005:	0.005: 0004: 0.005: 0007: 3347: : 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0.005: 0.005: 0.005:	0.005: 0004: 0.005: 0007: 3291: : 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0.005: 0.005:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 3230: 3230: 3230: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:	0.005: 0001: 0004: 0.005: 0007: 3172: : 0.379: 1.897: 0.360: 338: 2.74: 0.005: 0001: 0.005: 0004:	0.005: 0001: 0004: 0.005: 0007: 3108: 0.380: 1.898: 0.360: 340: 2.75: 0.005: 0.005: 0.005: 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048: : 0.380: 1.899: 0.360: 342: 2.76: 0.005: 0.005: 0.005: 0.005:	: 0.005: 0004: 0.005: 0007: 0.005: 0006: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.0	347: 2.79: 0.005: 0.005: 0.004: 0.005: 0.007: 2923:: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0.005: 0.005: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 973: 2921: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0.005: 0.005: 0.005:	30.005: 0001: 0.005: 0004: 0.005: 0007: 2858: : 0.380: 1.901: 0.360: 349: 2.81: 0.005: 0.005: 0.005: 0.005:	2.72 :	: 0.005: 0001: 0.005: 0004: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.
У=	0.005: 0007: 1164: : 0.379: 1.896: 0.360: 325: 2.72: 0.005: 0001: 0.005: 0004:	0004: 0.005: 0007:: 3457:: 0.379: 1.896: 0.360: 327: 2.72: 0.005: 0001: 0.005: 0004:	0.005: 0004: 0.005: 0007: : 3405: : 0.379: 1.896: 0.360: 329: 2.72: 0.005: 0001: 0.005: 0007:	0.005: 0004: 0.005: 0007: : 3347: : 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0001: 0.005: 0007:	0.005: 0004: 0.005: 0007: : 3291: : 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0001: 0.005: 0007:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 3230: 3230: 336: 2.73 : 0.005: 0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3230: 3	0.005: 0001: 0.005: 0007: 1004:: 3172: 0.379: 1.897: 0.360: 0.005: 0001: 0.005: 0007:	0.005: 0001: 0.005: 0007: 991: : 3108: 0.380: 1.898: 0.360: 2.75: 0.005: 0001: 0.005: 0007:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048: 	0.005: 0001: 0.005: 0004: 0.005: 0007: 2984:: 0.380: 1.899: 0.360: 344: 2.77: 0.005: 0001: 0.005: 0007:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2923:: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0001: 0.005: 0004: 0.005:	0.005: 0001: 0.005: 0007: 973:: 2921:: 0.380: 1.900: 347: 2.79: 0.005: 0001: 0.005: 0004: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0.005: 2858: : 0.380: 1.901: 0.360: 349: 0.005: 0001: 0.005: 0007:	2.72 : 0.005: 0001 : 0.005: 0007 : 2734:: 0.381: 1.903: 0.360: 2.84 : 0.005: 0001 : 0.005: 0007 :	1006: 
У= Qc: Cc: Cф: Фол: Ви: Ки: Ви: Ки: Ки: Ви: Ту= Ту= Ту= Ту= Ту= Ту= Ту= Ту= Ту= Ту=	0.005: 0007: 1164:: 3511:: 0.379: 1.896: 0.360: 325: 2.72: 0.005: 0001: 0.005: 0004: 0.005:	0004: 0.005: 0.007: 2007: 3457: 0.379: 1.896: 0.360: 327: 2.72: 0.005: 0001: 0.005: 0007: 2007: 1045:	0.005: 0004: 0.005: 0007:: 3405:: 0.379: 1.896: 0.360: 329: 2.72: 0.005: 0001: 0.005: 0007: 1068:	0.005: 0004: 0.005: 0007: 1068:: 3347:: 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0004: 0.005: 0007: 0.005:	0.005: 0004: 0.005: 0007: 1043:: 3291: 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0001: 0.005: 0004: 0.005:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 0.379: 1.897: 0.360: 336 : 2.73 : 0.005: 0004 : 0.005: 0007 : 1166: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005	0.005: 0001: 0004: 0.005: 0007: 3172: 0.379: 1.897: 0.360: 338: 2.74: 0.005: 0001: 0.005: 0004: 1.0005: 0007:	0.005: 0001: 0004: 0.005: 0007: 3108: 0.380: 1.898: 0.360: 340: 2.75: 0.005: 0001: 0.005: 0004: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005: 1.005:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048: : 3048: : 0.380: 1.899: 0.360: 342: 2.76: 0.005: 0001: 0.005: 0004:	30.005: 0.005: 0.005: 0.005: 0.005: 0.007: 2984:: 2984:: 0.380: 1.899: 0.360: 344: 2.77: 0.005: 0.001: 0.005: 0.005: 0.007: 1338:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2923:: 2923:: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0001: 0.005: 0004: 0.005:	0.005: 0001: 0.005: 0004: 0.005: 0007:  973:  2921:  0.380: 1.900: 2.79: 0.005: 0001: 0.005: 0004: 0.005:	: 0.005: 0004: 0.005: 0007: 2858:: 0.380: 349: 2.81: 0.005: 0001: 0.005: 0007:	2.72 :	: 0.005: 0004: 0.005: 0007: 2672:: 0.381: 1.905: 0.381: 0.005: 0.001: 0.005: 0.005: 0.005: 0.005: 0.005: 0.007:
Ки:	0.005: 0007: 1164:: 3511:: 0.379: 1.896: 0.360: 325: 2.72: 0.005: 0001: 0.005: 0007:: 1022:: 2612:	0004: 0.005: 0007:	0.005: 0004: 0007: 0007: 3405: 0.379: 1.896: 0.360: 329: 0.005: 0001: 0.005: 0007:	0.005: 0004: 0.005: 0007:: 3347:: 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0001: 0.005: 0007:: 1099:: 2439:	0.005: 0004: 0.005: 0007:: 3291:: 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0001: 0.005: 0007:: 1129:: 2385:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 0.379: 1.897: 0.366: 2.73 : 0.005: 0001 : 0.005: 0007 : 336: 2.333: 336: 2.333: 336: 2.333: 336: 2.333: 336: 2.333: 336: 336: 336: 336: 336: 336: 336:	0.005: 0001: 0.005: 0007: 1004:: 3172: 0.379: 1.897: 0.360: 338: 2.74: 0.005: 0001: 0.005: 0007:	0.005: 0001: 0.005: 0007: 991: 3108: 0.380: 1.898: 0.360: 2.75: 0.005: 0001: 0.005: 0007:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048: 0.380: 1.899: 0.360: 342: 2.76: 0.005: 0001: 0.005: 0007:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2984:: 0.380: 1.899: 0.360: 344: 2.77: 0.005: 0001: 0.005: 0007:: 1338:: 2150:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2923: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0001: 0.005: 0007:	0.005: 0001: 0.005: 0007: 0.005: 0007:  973:: 2921:: 0.380: 1.900: 0.360: 0.005: 0.005: 0.005: 0.005: 0.007:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2858: 0.380: 1.901: 0.360: 349: 2.81: 0.005: 0001: 0.005: 0007:	2.72 :	0.005: 0004: 0.005: 0004: 0.005: 0007: 2672: 0.381: 1.905: 0.360: 355: 2.86: 0.005: 0004: 0.005: 0007: 1868:: 1746:
Ки:	0.005: 0007: 1164:: 3511:: 0.379: 1.896: 0.360: 2.72: 0.005: 0001: 0.005: 0007:: 2612:: 0.381:	0004 : 0.005: 0007 : 3457:: 3457:: 0.379: 0.379: 0.005: 0004 : 0.005: 0007 : 2553:: 2553:: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.005 : 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.005 : 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.005 : 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.005 : 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382: 0.382:	0.005: 0004: 0.005: 0007:: 3405:: 0.379: 1.896: 0.360: 329: 2.72: 0.005: 0001: 0.005: 0007:: 2495:: 0.382:	0.005: 0004: 0.005: 0007: 1068:: 3347:: 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0001: 0.005: 0007:: 2439:: 0.382:	0.005: 0004: 0.005: 0007:: 3291:: 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0001: 0.005: 0007:: 2385:: 0.383:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 3230: 0.379: 1.897: 0.360: 336 : 2.73 : 0.005: 0001 : 0.005: 0007 : 3336: 336: 336: 336: 336: 336: 336:	0.005: 0001: 0004: 0.005: 0007: 3172: 0.379: 0.360: 338: 2.74: 0.005: 0001: 0.005: 0007: 2284:	0.005: 0001: 0004: 0.005: 0007: 3108: 	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048:: 0.380: 1.899: 0.360: 342: 2.76: 0.005: 0001: 0.005: 0007: 1288:: 2192: 0.385:	30.005: 0.005: 0.005: 0.005: 0.005: 0.007: 2984:: 0.380: 1.899: 0.360: 344: 2.77: 0.005: 0.005: 0.007:: 0.380: 334: 2.77: 2.77: 0.005: 0.007:	30.005: 0.005: 0.005: 0.004: 0.005: 0.007: 2923:: 0.380: 1.900: 0.360: 347: 2.79: 0.005: 0.005: 0.007:: 0.385:: 2112: 0.386:	0.005: 0001: 0.005: 0004: 0.005: 0007:  2921:  0.380: 1.900: 2.79: 0.005: 0001: 0.005: 0007:  1506:  2020:	0.005: 0001: 0.005: 0004: 0.005: 0007: 2858:: 0.380: 1.901: 0.360: 349: 2.81: 0.005: 0007:: 1929: 0.391:	2.72 : 0.005: 0001 : 0.005: 0007 : 2734:: 0.381: 1.903: 0.360: 353 : 2.84 : 0.005: 0007 : 0.005: 0007 : 1748: 1837:	1005: 0001   10005: 0004   10005: 0007   1006: 10005: 0007   1006: 0005: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 0006: 000
Ки:	0.005: 0007: 1164:: 3511:: 0.379: 1.896: 0.360: 325: 2.72: 0.005: 0001: 0.005: 0007:: 2612:: 0.381: 1.906: 0.360:	0004: 0.005: 0007:	0.005: 0004: 0007: 0007:: 3405:: 0.379: 1.896: 0.360: 329: 0.005: 0001: 0.005: 0007:: 2495:: 0.382: 1.910: 0.360:	0.005: 0004: 0.005: 0007:: 3347:: 0.379: 1.896: 0.360: 332: 2.72: 0.005: 0001: 0.005: 0007:: 2439:: 0.382: 1.912: 0.360:	0.005: 0004: 0.005: 0007:: 3291:: 0.379: 1.896: 0.360: 334: 2.72: 0.005: 0001: 0.005: 0007:: 2385:: 0.383: 1.913: 0.360:	0001 : 0.005: 0007 : 0.005: 0007 : 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.	0.005: 0001: 0.005: 0007: 1004:	0.005: 0001: 0.005: 0007: 991: 3108: 0.380: 1.898: 0.360: 340: 2.75: 0.005: 0001: 0.005: 0007:	0.005: 0004: 0.005: 0007: 3048:	30.005: 0.005: 0.005: 0.005: 0.005: 0.007: 2984:: 0.380: 1.899: 0.360: 344: 2.77: 0.005: 0001: 0.005: 0007:: 0.388: 1.388:: 0.388: 1.388:: 0.385: 1.927: 0.360:	0.005: 0004: 0.005: 0007: 2923:: 0.380: 1.900: 0.005: 0001: 0.005: 0001: 0.005: 0007:: 0.385:: 0.386: 1.932: 0.360:	0.005: 0001: 0005: 0007: 0007: 973: 2921:: 0.380: 1.900: 0.005: 0.005: 0.005: 0.007:: 2020:: 2020: 0.389: 1.946: 0.360:	0.005: 0004: 0.005: 0007: 2858:: 0.380: 1.901: 0.005: 0001: 0.005: 0007:: 1627:: 1929: 0.391: 1.957: 0.360:	2.72 :	1,005: 0001   1,0005: 0004   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,0005: 0007   1,000
Ки:	0.005: 0007: 1164:: 0.379: 1.896: 0.360: 325: 2.72: 0.005: 0001: 0.005: 0007:: 2612:: 0.381: 1.906: 0.368:	0004 : 0.005: 0007 : 3457:: 3457:: 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0007 : 2.72 : 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005:	0.005: 0004: 0007: 0007:: 3405:: 0.379: 1.896: 0.360: 329: 2.72: 0.005: 0001: 0.005: 0007:: 2495:: 0.382: 1.910: 0.360: 2:	0.005: 0004: 0.005: 0007:: 3347:: 0.379: 1.896: 0.360: 3322: 2.72: 0.005: 0001: 0.005: 0007:: 2439:: 0.382: 1.912: 0.360: 4	0.005: 0004: 0.005: 0007:: 3291:: 0.379: 1.896: 0.360: 334: 2.72: : 0.005: 0007:: 2385:: 0.383: 1.913: 0.360: 7:	0001 : 0.005: 0004 : 0.005: 0007 : 3230: 0.379: 0.366: 2.73 : 0.005: 0007 : 0.005: 0007 : 0.005: 0007 : 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.0	0.005: 0001: 0004: 0.005: 0007: 3172: 3172: 0.379: 0.360: 338: 2.74: 0.005: 0007: 2284:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3108:	0.005: 0001: 0.005: 0004: 0.005: 0007: 3048:: 0.380: 1.899: 0.360: 342: 2.76: 0.005: 0001: 0.005: 0007:: 1288:: 2192: 0.385: 1.923: 0.360: 16:	0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.007:   2984:  :   0.380:   1.899:   0.360:   344:   2.77:   0.005:   0.005:   0.005:   0.007:  :   0.005:   0.005:	0.005:   0001   1.0005:   0007   2.0007:   2923:  :   0.380:   1.900:   0.360:   347   2.79   1.0005:   0.005:   0.005:   0.007:   2.112:   0.386:   1.932:   0.386:   0.386:   1.932:   0.386:   0.386:   0.386:   0.386:   0.386:   0.386:   0.360:   0.386:   0.386:   0.386:   0.360:   0.386:   0.386:   0.386:   0.360:   0.386:   0.386:   0.386:   0.386:   0.360:   0.386:   0.360:   0.386:    0.005: 0001: 0.005: 0004: 0.005: 0007:  973:  2921:  0.380: 1.900: 0.360: 347: 2.79: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0	10.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:   0.005:	2.72 :	1005: 0001   1006: 0005: 0004   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0007   1006: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 0005: 000	

```
Ви: 0.005: 0.005: 0.005: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.006: 0.007: 0.007: 0.007: 0.008: 0.008: 0.009:
\mathtt{K}\mathtt{M} : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 000
Ки: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0004: 0
Ku: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
               1973: 2077: 2132: 2248: 2369: 2493: 2619:
            1676: 1616: 1587: 1538: 1504: 1486: 1483:
 x=
Oc: 0.394: 0.394: 0.394: 0.394: 0.394: 0.393: 0.393:
Cc : 1.972: 1.972: 1.971: 1.969: 1.968: 1.967: 1.966:
Сф: 0.360: 0.360: 0.360: 0.360: 0.360: 0.360: 0.360:
Фоп:
                57:
                                 63:
                                                  67 :
                                                                  74:
                                                                                   80 :
                                                                                                    87 :
Uon: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 :
Ви : 0.009: 0.009: 0.009: 0.008: 0.008: 0.008: 0.008:
Ки: 0001: 0001: 0001: 0001: 0001: 0001
Ви: 0.009: 0.009: 0.009: 0.008: 0.008: 0.008: 0.008: 
Ки: 0004: 0004: 0004: 0004: 0004: 0004: 0004:
Ви : 0.009: 0.009: 0.009: 0.008: 0.008: 0.008: 0.008:
Ки: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
  Результаты расчета в точке максимума
                                                                                             ПК ЭРА v3.0. Модель: MPK-2014
                       Координаты точки : X= 1676.0 м, Y= 1973.0 м
  Максимальная суммарная концентрация | Cs=
                                                                                                           0.3943774 доли ПДКмр|
                                                                                                           1.9718872 MT/M3
     Достигается при опасном направлении 57 град
и скорости ветра 8.00 м/с
                                                                                                    57 град.
Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада
 3. Исходные параметры источников.
       ПК ЭРА v3.0. Модель: MPK-2014
Город :616 г.Атырау.
                                   :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
           Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :0410 - Метан
                                     ПДКм.р для примеси 0410 = 50.0 мг/м3 (ОБУВ)
           Коэффициент рельефа (КР): индивидуальный с источников
           Коэффициент оседания (F): индивидуальный с источников
1.0 1.000 0 1.362830
000101 0005 T
                                          4.0 0.020 0.740
4.0 0.020 0.740
                                                                                   0.0002
                                                                                                       20.0
                                                                                                                            2547
                                                                                                                                                  2545
                                                                                                                                                                                                                   1.0 1.000 0 1.362830
000101 0008 T
                                                                                                                             2547
                                                                                                                                                  2545
                                                                                                                                                                                                                  1.0 1.000 0 1.362830
1.0 1.000 0 1.362830
                                                                                   0.0002
                                                                                                       20.0
                                      4.0 0.020 0.740 0.0002
4.0 0.020 0.740 0.0002
2.0
2.0
000101 0011 T
                                                                                                                             2547
                                                                                                                                                  2545
                                                                                                                                                                         2
2
80
80
000101 6002 Π1
000101 6003 Π1
                                                                                                       30.0
                                                                                                                             3253
                                                                                                                                                 2507
1974
                                                                                                                                                                                               2 0 1.0 1.000 0 0.0024580
2 0 1.0 1.000 0 0.0024580
                                                                                                                            2922
                                                                                                       30.0
                                                                                                                                                                                              120  30  1.0  1.000  0  0.0368690
120  30  1.0  1.000  0  0.0110610
000101 6004 П1
                                           2.0
                                                                                                                             2547
                                                                                                                                                  2545
000101 6007 Π1
                                          2.0
                                                                                                       30.0
                                                                                                                            2547
                                                                                                                                                 2545
4. Расчетные параметры См. Им. Хм
       ПК ЭРА v3.0. Модель: MPK-2014
           Город :616 г.Атырау.
                                   :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
            Объект
            Вар.расч. :3
                                                     Расч.год: 2025 (СП)
                                                                                                              Расчет проводился 01.09.2025 23:26
                                   :ЛЕТО (температура воздуха 34.8 град.С)
           Сезон
                                   :0410 - Метан
           Примесь
                                     ПДКм.р для примеси 0410 = 50.0 мг/м3 (ОБУВ)
```

-   	вс	я линей: ей площа сположе:	ади, а	Ст - к	онцент	раци	одино	чного	ис	точника		оп мино	
~~~	~ ~ ~	~~~~~	~~~~	~~~~~	~~~~	~~~~	~~~~~	~~~~	~~~	~~~~~	~~~	~~~~~	~~
			Источ	ники			M:	x pac	чет	ные пар	аме	гры	
Hon	иер	Ko;	ц [M		Тип	C	m		Um		Xm	
-п/	/п-	<об-п>-	- <nc> </nc>				-[доли	ПДК]	- -	-[м/с]-	- -	[м]	
	1	000101	0002	1.3	52830	T	0.1	93169		0.50	1	22.8	
	2	000101	0005	1.3	52830	T	0.1	93169		0.50		22.8	
	3	000101	00081	1.3	52830	T	0.1	93169		0.50		22.8	
	4	000101	0011	1.3	52830	T	0.1	93169		0.50		22.8	
	5	000101	6002	0.00	2458	П1	0.0	01756	ĺ	0.50	ĺ	11.4	
	6	000101	6003	0.00	2458	П1	0.0	01756		0.50		11.4	
	7	000101	6004	0.03	368691	П1	0.0	26337	ĺ	0.50	Ì	11.4	
1	8	1000101	60071	0.0	11061	П1	0.0	07901	1	0.50	1	11 4	

```
5.504166 r/c
    Суммарный Mq =
    Сумма См по всем источникам =
                                   0.810426 долей ПДК
    -----
       Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
  ПК ЭРА v3.0. Модель: MPK-2014
Город :616 г.Атырау.
    Город
    Объект
             :0001 НДВ вв атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
    Вар.расч. :3
                   Расч.гол: 2025 (СП)
                                          Расчет проводился 01.09.2025 23:26
             :ЛЕТО (температура воздуха 34.8 град.С)
    Примесь
             :0410 - Метан
              ПДКм.р для примеси 0410 = 50.0 мг/м3 (ОБУВ)
    Фоновая концентрация не задана
    Расчет по прямоугольнику 001 : 3400х3000 с шагом 200
    Расчет по границе санзоны. Покрытие РП 001
    Расчет в фиксированных точках. Группа точек 090
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с
    Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: MPK-2014
    Город :616 г.Атырау.
    Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :0410 - Метан
              ПДКм.р для примеси 0410 = 50.0 мг/м3 (ОБУВ)
    Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
    Всего просчитано точек: 97
    Фоновая концентрация не задана
    Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0\,\mathrm{(Ump)}\ \mathrm{m/c}
            Расшифровка_обозначений_
Qc — суммарная концентрация [доли ПДК]
           | Сс - суммарная концентрация [мг/м.куб]
            Ви - вклад ИСТОЧНИКА в Ос [поли ПЛК]
           | Ки - код источника для верхней строки Ви
     2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
     1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468:
Qc : 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009:
Cc: 0.441: 0.438: 0.436: 0.437: 0.437: 0.437: 0.439: 0.442: 0.445: 0.445: 0.442: 0.440: 0.439: 0.438: 0.436:
_y=
     3603: 3575: 3547: 3518: 3490: 3475: 3459: 3436: 3413: 3382: 3352: 3315: 3279: 3235: 3193:
     2718: 2899: 3080: 3261: 3441: 3503: 3563: 3622: 3680: 3736: 3790: 3842: 3891: 3939:
Qc : 0.009: 0.009: 0.008: 0.007: 0.006: 0.006: 0.006: 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.004: 0.004:
Cc : 0.437: 0.426: 0.397: 0.355: 0.308: 0.294: 0.281: 0.270: 0.258: 0.250: 0.241: 0.234: 0.227: 0.221: 0.215:
     3143: 3096: 3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569: 2508: 2506: 2443: 2319:
     4025: 4063: 4098: 4130: 4159: 4184: 4205: 4223: 4236: 4246: 4252: 4254: 4254: 4252: 4236:
           Qc : 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
-Cc : 0.211: 0.206: 0.202: 0.199: 0.195: 0.193: 0.191: 0.190: 0.188: 0.187: 0.187: 0.186: 0.186: 0.186: 0.186:
y=
     2257: 2197: 2138: 2080: 2024: 1970: 1837: 1704: 1570: 1437: 1385: 1336: 1288: 1244: 1202:
    4221: 4205: 4182: 4159: 4128: 4098: 4016: 3933: 3850: 3767: 3730: 3694: 3650: 3608: 3558:
Qc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
Cc: 0.188: 0.189: 0.191: 0.192: 0.195: 0.197: 0.202: 0.204: 0.203: 0.198: 0.196: 0.194: 0.193: 0.192: 0.192:
     1164: 1129: 1097: 1068: 1043: 1022: 1004:
                                                  991:
                                                         981:
                                                               975:
                                                                       973:
                                                                             973: 975:
                                                                                          991: 1006:
 y=
                                                          ---:-
     3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734:
     Qc : 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
Cc : 0.191: 0.191: 0.191: 0.191: 0.192: 0.194: 0.195: 0.197: 0.199: 0.202: 0.205: 0.205: 0.209: 0.218: 0.223:
     1022: 1045: 1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748: 1868:
y=
   2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
     Qc : 0.005: 0.005: 0.005: 0.005: 0.005: 0.005: 0.006: 0.006: 0.006: 0.006: 0.007: 0.008: 0.008: 0.009: 0.009:
```

Cc: 0.228: 0.236: 0.243: 0.251: 0.259: 0.270: 0.281: 0.293: 0.306: 0.322: 0.337: 0.378: 0.414: 0.440: 0.464:

```
y= 1973: 2077: 2132: 2248: 2369: 2493: 2619
x= 1676: 1616: 1587: 1538: 1504: 1486: 1483:
Qc: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.009: 0.0469: 0.469: 0.461: 0.456: 0.443: 0.441:
```

Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= 1676.0 м, Y= 1973.0 м

0.0093738 доли ПДКмр| Максимальная суммарная концентрация $\overline{\mid \text{Cs}=}$ 0.4686887 мг/м3

Достигается при опасном направлении 57 град. и скорости ветра 8.00 м/с

Всего источников: 8. В таблице заказано вкладчиков не более чем с 95% вклада

						ВКЛ	АДЫ_ИСТОЧНИ:	KOI	3						
Hor	м.	Кор	Д	Тип	Выброс		Вклад	I	Вклад в	3 %	Сум.	용	Коэф.вл	кинки	
	<0)б-П>·	- <nc></nc>		M-(Mq)	-	-С[доли ПДК] -				-	b=C	/M	-
	1 00	0101	0002	T	1.36	28	0.002316		24.7	- 1	24.7	7	0.00169	9521	
2	2 00	0101	0005	T	1.36	28	0.002316	- 1	24.7	- 1	49.4	1	0.00169	9521	
(3 00	0101	0008	T	1.36	28	0.002316		24.7	- 1	74.1	L	0.00169	9521	- 1
4	4 00	0101	0011	T	1.36	28	0.002316	- 1	24.7	- 1	98.8	3	0.00169	9521	
1					В сумм	e =	0.009265		98.8						
	C	уммар	рный:	вклад	остальны	x =	0.000109		1.2						

3. Исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау. Объект :0001 НДВ зв в аты

Пород ... 10 г. Агарау.

объекта :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
Примесь :0415 - Смесь углеводородов предельных С1-С5
ПДКМ.р для примеси 0415 = 50.0 мг/м3 (ОБУВ)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код Тип	H D Wo	V1 T	X1	Y1	X2	Y2	Alf F KP Ди Выброс
<06~U>~ <nc> ~~~</nc>	$ \sim\sim\!M\sim\sim \sim\sim\!M\sim\sim \sim\!M/C\sim$	~м3/с~~ градС	~~~M~~~~	$\sim\sim\simM\sim\sim\sim $	~~~M~~~~ ~	~~M~~~	Fp. ~~~ ~~~~ ~~ ~~~ F/C~~
000101 0002 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.5148480
000101 0005 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.5148480
000101 0008 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.5148480
000101 0011 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.5148480
000101 0018 T	1.0 0.15 0.010	0.0002 30.0	2547	2545			1.0 1.000 0 0.1745730
000101 0020 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0001940
000101 6002 П1	2.0	30.0	3253	2507	2	2	0 1.0 1.000 0 0.0009290
000101 6003 П1	2.0	30.0	2922	1974	2	2	0 1.0 1.000 0 0.0009290
000101 6004 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0139280
000101 6005 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0001310
000101 6006 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0002630
000101 6007 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0041790
000101 6008 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0161110
000101 6014 П1	2.0	30.0	3253	2507	2	2	0 1.0 1.000 0 0.0012470
000101 6015 П1	2.0	30.0	3253	2507	2	2	0 1.0 1.000 0 0.0012470
000101 6016 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0112840
000101 6017 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0019270
000101 6018 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0024940
000101 6019 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0019270

4. Расчетные параметры См, Им, Хм

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

ООБЕКТ :0001 ндв 38 в атмосферный воздух для ООБЕКТА 100 полисмунайкурылыс Вар.расч.: 3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С)
Примесь :0415 - Смесь углеводородов предельных С1-С5 ПДКм.р для примеси 0415 = 50.0 мг/м3 (ОБУВ)

- Для линейных и площадных источников выброс является суммарным по всей площади, а Cm - концентрация одиночного источника,											
	сположен			-	г, с суммарным						
l pa	CITOJIOWEI	101.0	в центре сими	метри	г, с суммарным	141					
~~~~. 	~~~~~~	Исто	тники	~~~~	Их расче	гные параю	иетры				
Номер	Кол		I M	ІТип	Cm I	Um	Xm I				
					-[доли ПДК]- ·						
	1000101			I Т	0.072975	0.50	22.8				
	1000101				0.072975	0.50	22.8				
	1000101				0.072975		22.8				
	1000101				0.072975	0.50	22.8				
	000101				0.124703	0.50	11.4				
6	000101				0.000139	0.50	11.4				
7	000101	6002	0.000929	П1	0.000664	0.50	11.4				
8	000101	6003	0.000929	П1	0.000664	0.50	11.4				
9	000101	6004	0.013928	П1	0.009949	0.50	11.4				
10	000101	6005	0.000131	П1	0.000094	0.50	11.4				
11	000101	6006	0.000263	П1	0.000188	0.50	11.4				
12	000101	6007	0.004179	п1	0.002985	0.50	11.4				
I 13	1000101	6008	0.016111	ПП1	0.011509 I	0.50	11.4				
14	000101	6014	0.001247	П1	0.000891	0.50	11.4				
15	000101	6015	0.001247	п1	0.000891	0.50	11.4				

```
0.011284| П1 |
    16 |000101 6016|
                                                                                  0.008061 I
                                                                                                             0.50
                                                                                                                                    11.4
                                               0.001927 | TI |
0.002494 | TI |
           |000101 6017|
                                                                                  0.001377 |
                                                                                                                                    11.4
     18 1000101 60181
                                                                                  0.001782 L
                                                                                                             0.50
                                                                                                                                    11.4
                                               0.001927| П1 |
                                                                                  0.001377 I
     19 | 000101 6019 |
                                              2 290755 E/C
         Суммарный Мq =
                                                                                  0.457170 долей ПДК
         Сумма См по всем источникам =
                Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
      ПК ЭРА v3.0. Модель: MPK-2014
                             :616 г.Атырау.
          Город
                              :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
          Объект
                             3 Расч. год: 2025 (СП) Расчет проводился 01.09.2025 23:26 :ЛЕТО (температура воздуха 34.8 град.С) :0415 - Смесь углеводородов предельных C1-C5
          Сезон
         Примесь
                               ПДКм.р для примеси 0415 = 50.0 мг/м3 (ОБУВ)
         Фоновая концентрация не задана
          Расчет по прямоугольнику 001 : 3400х3000 с шагом 200
          Расчет по границе санзоны. Покрытие РП 001
          Расчет в фиксированных точках. Группа точек 090 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
9. Результаты расчета по границе санзоны.
      ПК ЭРА v3.0. Модель: MPK-2014
          Γοροπ
                              :616 г.Атырау.
                              :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

      Вар.расч.:3
      Расч.год: 2025 (СП)
      Расчет прово;

      Примесь
      :0415
      - Смесь углеводородов предельных С1-С5

                                                                                               Расчет проводился 01.09.2025 23:26
                                ПДКм.р для примеси 0415 = 50.0 мг/м3 (ОБУВ)
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
          Всего просчитано точек: 97
          Фоновая концентрация не задана
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
         Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0\,\mathrm{(Ump)} м/с
                                              _Расшифровка_обозначений
                         | Qc - суммарная концентрация [доли ПДК]
                         | Сс - суммарная концентрация [мг/м.куб]
                            Фоп- опасное направл. ветра [ угл. град.]
                           Uon- опасная скорость ветра [ M/C Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                         | Ки - код источника для верхней строки Ви
            2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
 v=
          1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468: 2594:
 x=
Qc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004:
Cc: 0.191: 0.189: 0.189: 0.189: 0.189: 0.189: 0.189: 0.190: 0.191: 0.192: 0.192: 0.191: 0.190: 0.190: 0.189: 0.188:
            3603: 3575:
                                        3547:
                                                       3518: 3490: 3475: 3459:
                                                                                                                 3436: 3413: 3382:
                                                                                                                                                            3352:
                                                                                                                                                                            3315:
                                                                                                                                                                                          3279: 3235:
 y=
           2718: 2899: 3080: 3261: 3441: 3503: 3563: 3622: 3680: 3736: 3790: 3842: 3891: 3939: 3983:
 x=
                                                                                                                                                   --:--
                                                                        ---:
                                                                                           -:-
                                                                                                        --:-
                                                                                                                                   ---:-
Qc : 0.004: 0.004: 0.003: 0.003: 0.003: 0.003: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.00
                                         3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569: 2508: 2506: 2443:
 y=
           4025: 4063: 4098: 4130: 4159: 4184: 4205: 4223: 4236: 4246: 4252: 4254: 4254: 4252: 4236:
 x=
Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
Cc: 0.092: 0.090: 0.089: 0.087: 0.086: 0.085: 0.084: 0.084: 0.083: 0.083: 0.082: 0.082: 0.082: 0.082: 0.082: 0.082:
                                                                                    1970:
            2257: 2197:
                                         2138:
                                                       2080: 2024:
                                                                                                   1837:
                                                                                                                 1704: 1570:
                                                                                                                                              1437:
                                                                                                                                                             1385:
                                                                                                                                                                            1336:
                                                                                                                                                                                          1288:
                                                                                                                                                                                                        1244:
 V=
          4221: 4205: 4182: 4159: 4128: 4098: 4016: 3933: 3850: 3767: 3730: 3694: 3650: 3608: 3558:
 x=
Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002
           1164: 1129: 1097: 1068: 1043: 1022: 1004:
                                                                                                                   991:
                                                                                                                                   981:
                                                                                                                                                               973:
 y=
           3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734: 2672:
 x=
                                                                                                                                     --:
Qc : 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002:
Cc: 0.084: 0.084: 0.084: 0.084: 0.084: 0.085: 0.086: 0.087: 0.088: 0.089: 0.090: 0.090: 0.092: 0.096: 0.098:
            1022: 1045:
                                        1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748:
 v=
 x= 2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
```

Qc: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.002: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0.004: 0.004: 0.004: Cc: 0.100: 0.103: 0.106: 0.110: 0.113: 0.118: 0.122: 0.127: 0.133: 0.140: 0.146: 0.164: 0.179: 0.190: 0.200: 

y= 1973: 2077: 2132: 2248: 2369: 2493: 2619: ----:-1676: 1616: 1587: 1538: 1504: 1486: 1483: -----:---:----: Qc: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: 0.004: Cc: 0.202: 0.202: 0.201: 0.198: 0.196: 0.192: 0.191:

Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= 1676.0 м, Y= 1973.0 м

Максимальная суммарная концентрация | Cs= 0.0040357 доли ПДКмр| 0.2017869 мг/м3 |

Достигается при опасном направлении 57 град. и скорости ветра 8.00 м/с Всего источников: 19. В таблице заказано вкладчиков не более чем с 95% вклада

ВКЛАДЫ ИСТОЧНИКОВ

|Ном.| Код |Тип| Выброс | Вклад в%| Сум. %| Коэф.влияния |
|----|<Об-П>-<Ис>|---- b=С/М ---| 21.7 | 21.7 | 0.001699521 21.7 | 43.4 | 0.001699521 1 |000101 0002| T | 2 |000101 0005| T | 0.5148| 0.000875 | 0.5148| 0.000875 | 3 |000101 0008| Т | 0.5148| 0.000875 | 21.7 | 65.0 | 0.001699521 4 |000101 0011| Т | 0.5148| 0.000875 | 21.7 | 86.7 | 0.001699521 5 |000101 0018| Т | 0.1746| 0.000416 | 10.3 | 97.0 | 0.002384767 В сумме = 0.003916 97.0 Суммарный вклад остальных = 0.000119 3.0

3. Исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :0416 - Смесь углеводородов предельных C6-C10

ПДКм.р для примеси 0416 = 30.0 мг/м3 (ОБУВ)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код  Тип	H I D I Wo	V1   T	X1	Y1 I	X2 I	Y2	Alf  F   KP  Ди  Выброс
							rp.       r/C
000101 0002 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.0103770
000101 0005 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.0103770
000101 0008 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.0103770
000101 0011 T	4.0 0.020 0.740	0.0002 20.0	2547	2545			1.0 1.000 0 0.0103770
000101 0020 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0000740
000101 6002 П1	2.0	30.0	3253	2507	2	2	0 1.0 1.000 0 0.0000190
000101 6003 П1	2.0	30.0	2922	1974	2	2	0 1.0 1.000 0 0.0000190
000101 6004 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0002810
000101 6007 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0000840
000101 6008 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0061110
000101 6014 П1	2.0	30.0	3253	2507	2	2	0 1.0 1.000 0 0.0004730
000101 6015 П1	2.0	30.0	3253	2507	2	2	0 1.0 1.000 0 0.0004730
000101 6016 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0106870
000101 6017 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0007310
000101 6018 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0009460
000101 6019 П1	2.0	30.0	2547	2545	80	120	30 1.0 1.000 0 0.0007310

4. Расчетные параметры См, Им, Хм

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

:3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 :ЛЕТО (температура воздуха 34.8 град.С)

Сезон Примесь :0416 - Смесь углеводородов предельных С6-С10 ПДКм.р для примеси 0416 = 30.0 мг/м3 (ОБУВ)

_	П													
!	- Для линейных и площадных источников выброс является суммарным по всей площади, а Cm - концентрация одиночного источника,													
1	BC	ей площа	ади, а	a Ст - концент	граци	Я	одиночного	ист	очника	,				
	pac	сположен	ного	в центре сими	иетри	и,	, с суммарны	im M	I					
~	~~~~	~~~~~~	~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ -	~~~~~~~~	~~~	~~~~~	~~~	~~~~~~	~			
			Источ	ники	Их расч	етн	ые пар	амет	гры	- 1				
H	омер	Ko,	ı Ι	M	Тип		Cm		Um		Xm	- 1		
-	п/п-	<об-п>-	- <uc> </uc>			1-	-[доли ПДК]-	-	[M/C]-	-	[м]	-		
1	1	000101	0002	0.010377	T		0.002451		0.50	- 1	22.8			
1	2	000101	00051	0.010377	T	1	0.002451		0.50	- 1	22.8	-		
1	3	000101	00081	0.010377	T	1	0.002451		0.50	- 1	22.8	-		
1	4	000101	0011	0.010377	T		0.002451		0.50	-	22.8			
1	5	000101	0020	0.000074	П1		0.000088		0.50	- 1	11.4			
1	6	000101	6002	0.000019	П1		0.000023	1	0.50	- 1	11.4			
1	7	000101	6003	0.000019	П1		0.000023		0.50	-	11.4	-		
	8	000101	60041	0.000281	П1		0.000335		0.50	- 1	11.4			
1	9	000101	60071	0.000084	П1	1	0.000100		0.50	- 1	11.4	-		
1	10	000101	60081	0.006111	П1		0.007275		0.50	- 1	11.4			
1	11	000101	6014	0.000473	П1	1	0.000563		0.50	- 1	11.4	- [		
1	12	000101	6015	0.000473	П1	1	0.000563	1	0.50	- 1	11.4	Ĺ		
	13	000101	6016	0.010687	П1		0.012723	1	0.50	1	11.4			

```
| 14 |000101 6017|
                        0.000731| П1 |
                                           0.000870 | 0.50 |
                                                                       11.4
   15 |000101 6018|
                        0.000946| П1 |
                                            0.001126 |
                                                        0.50
                      0.000731 | Π1 | 0.000870 |
  16 1000101 60191
  Суммарный Mq =
                        0.062137 г/с
    Сумма См по всем источникам =
                                          0.034366 долей ПДК
         Средневзвешенная опасная скорость ветра =
    Дальнейший расчет нецелесообразен: Сумма См < 0.05 долей ПДК
5. Управляющие параметры расчета
   ПК ЭРА v3.0. Модель: MPK-2014
             :616 г.Атырау.
     Город
                :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
     Объект
     Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
     Сезон :ЛЕТО (температура воздуха 34.8 град.С)
Примесь :О416 - Смесь углеводородов предельных С6-С10
ПДКм.р для примеси 0416 = 30.0 мг/м3 (ОБУВ)
     Фоновая концентрация не задана
     Расчет по прямоугольнику 001 : 3400х3000 с шагом 200
     Расчет по границе санзоны. Покрытие РП 001 Расчет в фиксированных точках. Группа точек 090
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 \, (\text{Ump}) \, \text{ m/c}
     Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с
9. Результаты расчета по границе санзоны.
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :616 г.Атырау.
                :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
     Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :0416 - Смесь углеводородов предельных C6-C10
                 ПДКм.р для примеси 0416 = 30.0 мг/м3 (ОБУВ)
Расчет не проводился: См < 0.05 долей ПДК
3. Исходные параметры источников.
   ПК ЭРА v3.0. Модель: MPK-2014
Город :616 г.Атырау.
     Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
Примесь :0616 - Диметилбензол
                ПДКм.р для примеси 0616 = 0.2 мг/м3
     Коэффициент рельефа (КР): индивидуальный с источников
Коэффициент оседания (F): индивидуальный с источников
| Y2 | Alf| F | KP | Ди| Выброс
000101 6020 П1
                  2.0
                                               30.0
                                                         2547
                                                                   2545
                                                                           80
                                                                                       120 30 1.0 1.000 0 0.5625000
4. Расчетные параметры См, Им, Хм
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :616 г.Атырау.
     . объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
Сезон :ЛЕТО (температура воздуха 34.8 град.С)
Примесь :0616 - Диметилбензол
                 ПДКм.р для примеси 0616 = 0.2 мг/м3
    Для линейных и площадных источников выброс является суммарным по
    всей площади, а Cm - концентрация одиночного источника, расположенного в центре симметрии, с суммарным M
    _____Их расчетные параметры
            1 |000101 6020| 0.562500| \Pi1 | 100.452728 | 0.50 | 11.4
     Суммарный Мq = 0.562500 г/с
     Сумма См по всем источникам =
                                         100.452728 долей ПДК
        Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчета
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :616 г. Атырау.
Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г. Корр.
                       Расч.год: 2025 (СП)
                                                   Расчет проводился 01.09.2025 23:26
                :ЛЕТО (температура воздуха 34.8 град.С)
     Сезон
     Примесь : 0616 - Диметилбензол
                 ПДКм.р для примеси 0616 = 0.2 мг/м3
     Фоновая концентрация не задана
```

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001 Расчет в фиксированных точках. Группа точек 090

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с

9. Результаты расчета по границе санзоны.

```
ПК ЭРА v3.0. Модель: MPK-2014
                              :616 г.Атырау.
                              :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
          Объект
                            :3 Расч.год: 2025 (СП)
:0616 - Диметилбензол
          Вар.расч. :3
                                                                                            Расчет проводился 01.09.2025 23:26
                               ПДКм.р для примеси 0616 = 0.2 мг/м3
          Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
          Всего просчитано точек: 97
          Фоновая концентрация не задана
          Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
          Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с
                                             Расшифровка обозначений
                           Qc - суммарная концентрация [доли ПДК]
                           Сс - суммарная концентрация [мг/м.куб]
                            Фоп- опасное направл. ветра [ угл. град.]
                                                                                            м/с
                           Uon- опасная скорость ветра [
        | -Если в расчете один источник, то его вклад и код не печатаются|
                         2744:
                                       2866:
                                                     2984: 3095: 3198: 3291: 3373:
                                                                                                                           3443:
                                                                                                                                         3483:
                                                                                                                                                       3513: 3561: 3595: 3613:
           1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052:
                                                                                                                                                      2107: 2223: 2344:
  x=
Oc : 0.353: 0.352: 0.352: 0.352: 0.352: 0.353: 0.354: 0.355: 0.356: 0.356: 0.355: 0.354: 0.353: 0.352: 0.352:
      : 0.071: 0.070: 0.070: 0.070: 0.070: 0.071: 0.071: 0.071: 0.071: 0.071: 0.071: 0.071: 0.071: 0.071: 0.070:
                                                                                                                                                      156 :
Фоп: 94: 101: 107: 114: 121: 128: 134: 141: 148: 152: 156: 162: 169: 176: 183: Uon: 0.71: 0.71: 0.71: 0.71: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72: 0.72:
                                        3547: 3518: 3490: 3475:
                                                                                                3459: 3436: 3413: 3382: 3352:
                                                                                                                                                                      3315:
 y=
 x=
           2718: 2899: 3080:
                                                     3261: 3441: 3503: 3563: 3622: 3680: 3736: 3790: 3842:
                                                                                                                                                                                    3891: 3939:
                                                                                                                                                                                                                3983:
OC: 0.352: 0.346: 0.330: 0.308: 0.283: 0.274: 0.265: 0.257: 0.249: 0.243: 0.236: 0.230: 0.224: 0.219: 0.214:
Cc: 0.070: 0.069: 0.066: 0.062: 0.057: 0.055: 0.053: 0.051: 0.050: 0.049: 0.047: 0.046: 0.045: 0.044: 0.043:
                                                                                                                            233 :
                                                      216
                                                                   223 :
                                                                                  226 :
                                                                                                228 :
                                                                                                                                          235 :
                                        208
                                                                                                              230
                                                                                                                                                        237 :
                                                                                                                                                                      239
                                                                                                                                                                                    241
Uon: 0.71 : 0.71 : 0.71 : 0.71 : 0.76 : 0.80 : 0.84 : 0.87 : 0.92 : 0.96 : 0.99 : 1.03 : 1.05 : 1.07 : 1.12 :
            3143: 3096: 3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569: 2508: 2506: 2443:
                                                                                                                                                                                                                2319:
 v=
           4025 4063 4098 4130 4159 4184 4205 4223 4236 4246 4252 4254 4254 4254 4252
                                                                                                                                                                                                                4236
 x=
                                                                                                               ----:
Qc : 0.210: 0.206: 0.203: 0.200: 0.197: 0.195: 0.193: 0.191: 0.190: 0.189: 0.189: 0.188: 0.188: 0.188: 0.189:
Cc: 0.042: 0.041: 0.041: 0.040: 0.039: 0.039: 0.039: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038: 0.038
 y=
            2257: 2197: 2138: 2080: 2024: 1970: 1837: 1704: 1570: 1437: 1385: 1336: 1288: 1244:
            4221: 4205: 4182: 4159: 4128: 4098: 4016: 3933: 3850: 3767: 3730: 3694: 3650: 3608:
Qc : 0.190: 0.191: 0.192: 0.194: 0.196: 0.198: 0.203: 0.204: 0.203: 0.199: 0.197: 0.195: 0.194: 0.193: 0.193:
Cc : 0.038: 0.038: 0.038: 0.039: 0.039: 0.040: 0.041: 0.041: 0.041: 0.040: 0.039: 0.039: 0.039: 0.039: 0.039:
Фоп: 280 : 282 : 284 : 286 : 288 : 290 : 296 : 301 : 307 : 312 : 314 : 316 : 319 : 321 : 323 : 
Uoп: 1.27 : 1.27 : 1.25 : 1.25 : 1.23 : 1.22 : 1.19 : 1.18 : 1.19 : 1.22 : 1.24 : 1.25 : 1.26 : 1.27 : 1.28 :
                                                                                                                              981:
 y=
                         1129:
                                        1097:
                                                      1068:
                                                                   1043:
                                                                                  1022:
                                                                                                1004:
                                                                                                                991:
                                                                                                                                            975:
                                                                                                                                                          973:
                                                                                                                                                                        973:
                                                                                                                                                                                      975:
            3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734:
 x=
Qc : 0.192: 0.192: 0.192: 0.193: 0.194: 0.195: 0.196: 0.198: 0.200: 0.203: 0.205: 0.205: 0.209: 0.216: 0.221:
Cc: 0.038: 0.038: 0.038: 0.039: 0.039: 0.039: 0.039: 0.040: 0.040: 0.041: 0.041: 0.041: 0.042: 0.043: 0.044:
                         327 :
                                                                                                                                                                                   349 :
Фоп: 325 : 327 : 329 : 332 : 334 : 336 : 338 : 340 : 342 : 344 : 347 : 347 : 349 : 353 : 355 : 
Uon: 1.28 : 1.28 : 1.28 : 1.28 : 1.27 : 1.26 : 1.25 : 1.24 : 1.22 : 1.20 : 1.17 : 1.17 : 1.16 : 1.11 : 1.08 :
            1022:
                         1045:
                                        1068:
                                                      1099:
                                                                   1129:
                                                                                  1166:
                                                                                                1202:
                                                                                                              1246:
                                                                                                                            1288:
                                                                                                                                          1338:
                                                                                                                                                        1385:
                                                                                                                                                                      1506:
                                                                                                                                                                                    1627:
                                                                                                                                                                                                  1748:
 v=
           2612: 2553: 2495: 2439: 2385:
                                                                                 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
 x=
Qc : 0.225: 0.231: 0.236: 0.243: 0.250: 0.257: 0.265: 0.273: 0.281: 0.291: 0.299: 0.320: 0.339: 0.353: 0.360: Cc : 0.045: 0.046: 0.047: 0.049: 0.050: 0.051: 0.053: 0.055: 0.056: 0.058: 0.060: 0.064: 0.068: 0.071: 0.072:
                                                                       7 :
                                                                                      9 :
                                                                                                  11 :
                                                                                                               13 :
                              0:
                                                         4:
                                                                                                                              16:
                                                                                                                                            18 :
                                                                                                                                                          21 :
                                                                                                                                                                        27 :
                                                                                                                                                                                      34:
Uon: 1.05 : 1.02 : 0.98 : 0.94 : 0.91 : 0.87 : 0.85 : 0.81 : 0.78 : 0.73 : 0.71 : 0.71 : 0.71 : 0.71 : 0.71 :
           1973: 2077: 2132: 2248: 2369: 2493:
                                                                                                2619:
 v=
           1676 1616 1587 1538 1504 1486 1483
  x=
Qc: 0.362: 0.362: 0.361: 0.358: 0.356: 0.355: 0.353:
Cc : 0.072: 0.072: 0.072: 0.072: 0.071: 0.071: 0.071:
Von: 0.71 : 0.71 : 0.71 : 0.71 : 0.71 : 0.71 : 0.71
```

```
Результаты расчета в точке максимума
                                   ПК ЭРА v3.0. Модель: MPK-2014
        Координаты точки : X= 1676.0 м, Y= 1973.0 м
```

Максимальная суммарная концентрация | Cs= 0.3621273 доли ПДКмр| | 0.0724255 мг/м3 |

Достигается при опасном направлении 57 град и скорости ветра 0.71 м/с 57 град.

Всего источников: 1. В таблице заказано вкладчиков не более чем с 95% вклада

_вклады_источников 

#### 3. Исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014

Город Объект :616 г.Атырау. :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :0703 - Бенз/а/пирен

ПДКм.р для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код	Тип	Н	D	Wo	V1	T	X1	Y1	X2	Y2	Alf  F   KP  Ди  Выброс
<06~II>~<	Mc>   ~~~	~~M~~	~~M~~	~M/C~	~м3/с~~	градС	~~~M~~~~	~~~M~~~~	~~~M~~~	~   ~ ~ ~ M~ ~ ~	~~  rp.   ~~~   ~~~~   ~~   ~~~r/c~~
000101 0	001 T	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0000002
000101 0	004 T	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0000002
000101 0	007 T	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0000002
000101 0	010 т	7.0	0.38	60.74	6.78	450.0	2547	2545			3.0 1.000 0 0.0000002

#### 4. Расчетные параметры См, Им, Хм

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау. Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :0703 - Бенз/а/пирен

ПДКм.р для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)

	No	точн	ики	- 1	Их расчетные параметры								
Номер	Код	- 1	M	Тип	Cm			Um	1	Xm			
-n/n-  <c< td=""><td>об−п&gt;-&lt;и</td><td>tc&gt; </td><td></td><td>  </td><td>-[доли</td><td>пдк]-</td><td>- [N</td><td>i/c]-</td><td>-  </td><td>[M]</td></c<>	об−п>-<и	tc>			-[доли	пдк]-	- [N	i/c]-	-	[M]			
1   00	0101 00	01	0.00000	020  T	0.00	6008	1 9	.56	1	115.1			
2   00	0101 00	04	0.00000	020  T	0.00	6008	1 9	.56	1	115.1			
3   0 0	0101 00	1071	0.00000	020  T	0.00	6008	1 9	.56	1	115.1			
4   00	0101 00	10	0.00000	020  T	0.00	6008	1 9	.56	1	115.1			
~~~~~	~~~~~	~~~~	~~~~~~	~~~~~~~	~~~~~	~~~~	~~~~	~~~~	~~~~	~~~~~			
Сумь	иарный М	iq =	0.00000	080 г/с									
Сумь	иа См по	всем	источн	икам =	0.02	4031	долей	пдк					
	Среднев	звеше	енная оп	асная ско	рость в	етра	= 9	.56	м/с				
Дал	ть нейший	i pact	иет неце.	лесообраз	ен: Сум	ма См	1 < 0	.05	долей	і ПДК			

5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: MPK-2014

Город

:616 г.Атырау. :0001 НДВ эв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :0703 - Бенз/а/пирен

ПДКм.р для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)

Фоновая концентрация не задана

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001

Расчет в фиксированных точках. Группа точек 090 Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Uмp) м/с

Средневзвешенная опасная скорость ветра Ucв= 9.56 м/c

9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: MPK-2014

:616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :0703 - Бенз/а/пирен

ПДКм.р для примеси 0703 = 0.00001 мг/м3 (=10ПДКс.с.)

Расчет не проводился: См < 0.05 долей ПДК

3. Исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3 Расч.год: 2025 (СП)
Примесь :1325 - Формальдегид Расчет проводился 01.09.2025 23:26

ПДКм.р для примеси 1325 = 0.05 мг/м3

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код	Тип	Н	D	Wo	V1	T	X1	Y1	X2	Y2	Alf F KP Ди Выброс
<0б~П>~<Ис	> ~~~ ~	~~M~~	~~M~~	~M/C~	~м3/с~~	градС	~~~M~~~~	~~~M~~~~	~~~M~~~~	~ ~ ~ M~ ~ ~ ·	~ Fp. ~~~ ~~~ ~~ ~~F/C~~
000101 000	1 T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1.000 0 0.0023150
000101 000	4 T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1.000 0 0.0023150
000101 000	7 T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1.000 0 0.0023150
000101 001	0 T	7.0	0.38	60.74	6.78	450.0	2547	2545			1.0 1.000 0 0.0023150

4. Расчетные параметры См, Им, Хм ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3

Сезон Примесь

ПДКм.р для примеси 1325 = 0.05 мг/м3

T		Источ	ники		Их расчетные параметры						
Номер	Код	Ξ I	M	Тип	Cr	n	1	Um	1	Xm	_
-n/n-	<об-п>-	- <nc> </nc>			-[доли	пдк]	- [1	м/с]-		[M]	-
1	000101	0001	0.0023	315 T	0.00	14636	1	9.56	1	230.2	
2	000101	00041	0.0023	315 T	0.00	04636	1	9.56	1	230.2	- 1
3	000101	00071	0.0023	315 T	0.00	14636	1	9.56	1	230.2	
4	000101	0010	0.0023	315 T	0.00	14636	1	9.56	1	230.2	
~~~~~	~~~~~	~~~~	~~~~~~	~~~~~~	~~~~~	~~~~	~~~~	~~~~	~~~~	~~~~~	~
Су	имарныі	й Mq =	0.0092	260 г/с							
Су	има См	по вс	ем источн	икам =	0.01	18544	доле	й ПДН	C		
											-
	Среди	невзве	шенная опа	асная ск	орость в	ветра	=	9.56	M/C		- 1
											-
Д	<b>Цальней</b> і	ший ра	счет нецел	песообра	зен: Сум	има Ст	× ×	0.05	долей	пдк	
1											- 1

5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: МРК-2014 Город :616 г.Атырау.

Объект

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Вар.расч. :3

:ЛЕТО (температура воздуха 34.8 град.С) :1325 - Формальдегид

Примесь

ПДКм.р для примеси 1325 = 0.05 мг/м3

Фоновая концентрация не задана

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200

Расчет по границе санзоны. Покрытие РП 001

Расчет в фиксированных точках. Группа точек 090

Направление ветра: автоматический поиск опасното направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с

Средневзвешенная опасная скорость ветра Ucb= 9.56 м/c

9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

Объект

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

:3 Расч.год: 2025 (СП) :1325 - Формальдегид Вар.расч. :3 Расчет проводился 01.09.2025 23:26

Примесь

ПДКм.р для примеси 1325 = 0.05 мг/м3

Расчет не проводился: См < 0.05 долей ПДК

3. Исходные параметры источников. ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау.

:0001 НДВ в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

Вар.расч. :3 Расч.год: 2025 (СП) Расчет прово
Примесь :2735 - Масло минеральное нефтяное
ПДКм.р для примеси 2735 = 0.05 мг/м3 (ОБУВ) Расчет проводился 01.09.2025 23:26

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код   Тип	H   D   Wo	V1   T	X1	Y1	X2	Y2  Alf	F   КР  Ди  Выброс
<06~U>~ <nc>   ~~~</nc>	~~M~~   ~~M~~   ~M / C	~ ~м3/с~~ градС	C   ~~~M~~~~	~~~M~~~~   ~	~~M~~~   ~~~	м~~~~ гр. -	~~~ ~~~~ ~~T/C~~
000101 0003 T	5.0 0.30 0.01	0 0.0007 30.0	2547	2545		1	1.0 1.000 0 0.1400000
000101 0006 T	5.0 0.30 0.01	0 0.0007 30.0	2547	2545		1	1.0 1.000 0 0.1400000
000101 0009 T	5.0 0.30 0.01	0 0.0007 30.0	2547	2545		1	1.0 1.000 0 0.1400000
000101 0012 T	0.0 0.30 0.01	0 0.0007 30.0	2547	2545		1	1.0 1.000 0 0.1400000
000101 6009 П1	2.0	30.0	2547	2545	80	120 30 1	1.0 1.000 0 0.0083330
000101 6010 π1	2 0	30 0	2547	2545	8.0	120 30 1	. 0 1 000 0 0 0083330

4. Расчетные параметры См, Uм, Хм

ПК ЭРА v3.0. Модель: MPK-2014 Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Объект

```
Расчет проводился 01.09.2025 23:26
            Вар.расч. :3
                                   :ЛЕТО (температура воздуха 34.8 град.С)
            Сезон
                                    :2735 - Масло минеральное нефтяное ПДКм.р для примеси 2735 = 0.05 мг/м3 (ОБУВ)
| - Для линейных и площадных источников выброс является суммарным по
          всей площади, а Cm - концентрация одиночного источника,
         расположенного в центре симметрии, с суммарным М
                                                                                        |____Их расчетные параметры_
                                 Источники_
                                                         М
 Код
                                                                            |Тип |
       Суммарный Mq = 0.576666 г/с
Сумма См по всем источникам = 147.280212 долей ПДК
                   Средневзвешенная опасная скорость ветра = 0.50 м/с
5. Управляющие параметры расчет
       ПК ЭРА v3.0. Модель: MPK-2014
            Город :616 г.Атырау.
                                    :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
            Объект
            Вар.расч. :3
                              :ЛЕТО (температура воздуха 34.8 град.С)
            Примесь
                                   :2735 - Масло минеральное нефтяное
ПДКм.р для примеси 2735 = 0.05 мг/м3 (ОБУВ)
           Фоновая концентрация не задана
            Расчет по прямоугольнику 001 : 3400х3000 с шагом 200
            Расчет по границе санзоны. Покрытие РП 001
            Расчет в фиксированных точках. Группа точек 090
            Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Ump) м/с
            Средневзвешенная опасная скорость ветра Ucв= 0.5 м/c
9. Результаты расчета по границе санзоны. ПК ЭРА v3.0. Модель: MPK-2014
                                   :616 г.Атырау.
                                    :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
            Объект
            Вар.расч. :3 Расч.год: 2025 (СП) Расчет прово
Примесь :2735 - Масло минеральное нефтяное
ПДКм.р для примеси 2735 = 0.05 мг/м3 (ОБУВ)
                                                                                                                 Расчет проводился 01.09.2025 23:26
            Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
            Всего просчитано точек: 97
            Фоновая концентрация не задана
           Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с
                                                       Расшифровка обозначений
                                 Qc - суммарная концентрация [доли ПДК]
                               | Сс - суммарная концентрация [мг/м.куб]
                                 Фоп- опасное направл. ветра [ угл. град.]
                                Uon- опасная скорость ветра [ M/C ] Ви - вклад ИСТОЧНИКА в QC [доли ПДК]
                              | Ки - код источника для верхней строки Ви |
              2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
 v=
              1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468:
                                                                                                     ----:----:-
Qc : 0.959: 0.953: 0.950: 0.951: 0.951: 0.952: 0.956: 0.963: 0.968: 0.968: 0.962: 0.959: 0.955: 0.952: 0.948:
Cc : 0.048: 0.048: 0.047: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048: 0.048:
                                                                                  121 : 128 :
Φοπ: 94 : 101 : 107 : 114 : 121 : 128 : 134 : 141 : 148 : 152 : 156 : 162 : 169 : 176 : 183

Uοπ: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00
                                                                                                                                                                                                                                                              183 •
Ви : 0.321: 0.320: 0.318: 0.319: 0.319: 0.319: 0.320: 0.322: 0.324: 0.324: 0.322: 0.321: 0.320: 0.319: 0.318:
Ки : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012 : 0012
Ви: 0.200: 0.199: 0.198: 0.198: 0.199: 0.199: 0.200: 0.201: 0.202: 0.202: 0.201: 0.200: 0.199: 0.199: 0.198:
                       : 0006 : 0006 : 0006 : 0006 : 0006 : 0006 : 0006 : 0006 : 0006 : 0006 : 0006 : 0006
 \begin{array}{l} \mathtt{BM} : 0.200 \colon 0.199 \colon 0.198 \colon 0.198 \colon 0.199 \colon 0.199 \colon 0.199 \colon 0.200 \colon 0.201 \colon 0.202 \colon 0.202 \colon 0.201 \colon 0.200 \colon 0.199 \colon 0.199 \colon 0.198 \colon \\ \mathtt{KM} : 0009 : 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \colon 0009 \: 0009 \: 0009 \: 0009 \: 0009 \: 0009 \: 0009 \: 0009 \: 00
               3603: 3575: 3547: 3518: 3490: 3475: 3459: 3436: 3413: 3382: 3352: 3315: 3279: 3235: 3193:
 y=
 x= 2718: 2899: 3080: 3261: 3441: 3503: 3563: 3622: 3680: 3736: 3790: 3842: 3891: 3939: 3983:
                                                                                                                                                        ----:
Qc : 0.951: 0.927: 0.864: 0.778: 0.684: 0.648: 0.624: 0.601: 0.579: 0.563: 0.545: 0.530: 0.515: 0.502: 0.491:
Cc: 0.048: 0.046: 0.043: 0.039: 0.034: 0.032: 0.031: 0.030: 0.029: 0.028: 0.027: 0.026: 0.026: 0.025: 0.025:
                                                                                                                                   230 :
                                               208 :
                                                               216 :
                                                                                  223 : 226 :
                                                                                                                  228 :
                                                                                                                                                    233 :
                                                                                                                                                                      235 :
                                                                                                                                                                                       237 :
                                                                                                                                                                                                         239 :
                                                                                                                                                                                                                           241 :
Uon: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 :
Bu : 0.319: 0.311: 0.290: 0.262: 0.233: 0.224: 0.216: 0.209: 0.202: 0.197: 0.191: 0.186: 0.182: 0.178: 0.175: Ku : 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012: 0012:
```

Расч.гол: 2025 (СП)

Ки : Ки :	0.199: 0006 : 0.199: 0009 :	0006 : 0.193: 0009 :	0006 : 0.180: 0009 :	0006 : 0.162: 0009 :	0006 : 0.142: 0009 :	0006 : 0.133: 0009 :	0006 : 0.128: 0009 :	0006 : 0.123: 0009 :	0006 : 0.118: 0009 :	0006 : 0.114: 0009 :	0006 : 0.111: 0009 :	0006 : 0.107: 0009 :	0006 : 0.104: 0009 :	0006 : 0.101: 0009 :	0006 : 0.099: 0009 :
	3143:														
x=	4025:	4063:	4098:	4130:	4159:	4184:	4205:	4223:	4236:	4246:	4252:	4254:	4254:	4252:	4236:
Qc : Сс : Фоп:	0.482: 0.024: 248: 8.00:	0.472: 0.024: 250:	0.464: 0.023: 252: 8.00:	0.456: 0.023: 254: 8.00:	0.449: 0.022: 256: 8.00:	0.444: 0.022: 259: 8.00:	0.440: 0.022: 261: 8.00:	0.436: 0.022: 263:	0.434: 0.022: 265: 8.00:	0.431: 0.022: 267: 8.00:	0.429: 0.021: 269: 8.00:	0.428: 0.021: 271: 8.00:	0.428: 0.021: 271: 8.00:	0.427: 0.021: 273: 8.00:	0.429: 0.021: 278:
Ки : Ви : Ки : Ви :	0.172: 0012: 0.097: 0006: 0.097: 0009:	0.169: 0012: 0.094: 0006: 0.094: 0009:	0.166: 0012: 0.093: 0006: 0.093: 0009:	0.164: 0012: 0.091: 0006: 0.091: 0009:	0.162: 0012: 0.089: 0006: 0.089: 0009:	0.160: 0012: 0.088: 0006: 0.088: 0009:	0.159: 0012: 0.087: 0006: 0.087: 0009:	0.158: 0012: 0.086: 0006: 0.086: 0009:	0.157: 0012: 0.086: 0006: 0.086: 0009:	0.157: 0012: 0.085: 0006: 0.085: 0009:	0.156: 0012: 0.085: 0006: 0.085: 0009:	0.156: 0012: 0.085: 0006: 0.085: 0009:	0.156: 0012: 0.085: 0006: 0.085: 0009:	0.155: 0012: 0.085: 0006: 0.085: 0009:	0012 : 0.085: 0006 : 0.085: 0009 :
	2257:	2197:	2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:	1385:	1336:	1288:	1244:	1202:
x=	4221:	4205:	4182:	4159:	4128:	4098:	4016:	3933:	3850:	3767:	3730:	3694:	3650:	3608:	3558:
Qc : Сс : Фоп:	0.432: 0.022: 280: 8.00:	0.434: 0.022: 282:	0.438: 0.022: 284:	0.441: 0.022: 286:	0.447: 0.022: 288:	0.452: 0.023: 290:	0.463: 0.023: 296:	0.468: 0.023: 301:	0.465: 0.023: 307:	0.455: 0.023: 312:	0.450: 0.022: 314:	0.445: 0.022: 317:	0.444: 0.022: 319:	0.441: 0.022: 321:	0.440: 0.022: 323:
Ки : Ви : Ки : Ви :	: 0.157: 0012: 0.086: 0006: 0.086: 0009:	0.157: 0012: 0.086: 0006: 0.086: 0009:	0.159: 0012: 0.087: 0006: 0.087: 0009:	0.160: 0012: 0.088: 0006: 0.088: 0009:	0.161: 0012: 0.089: 0006: 0.089: 0009:	0012 : 0.090: 0006 : 0.090: 0009 :	0.166: 0012: 0.092: 0006: 0.092: 0009:	0.168: 0012: 0.093: 0006: 0.093: 0009:	0.167: 0012: 0.093: 0006: 0.093: 0009:	0.164: 0012: 0.091: 0006: 0.091: 0009:	0.162: 0012: 0.090: 0006: 0.090: 0009:	0.161: 0012: 0.088: 0006: 0.088: 0009:	0.160: 0012: 0.088: 0006: 0.088: 0009:	0.159: 0012: 0.088: 0006: 0.088: 0009:	0.159: 0012: 0.087: 0006: 0.087: 0009:
	1164:														
	3511:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Qc : Сc : Фоп:	0.439: 0.022: 325: 8.00:	0.439: 0.022: 327: 8.00:	0.438: 0.022: 329: 8.00:	0.439: 0.022: 332: 8.00:	0.442: 0.022: 334: 8.00:	0.445: 0.022: 336:	0.448: 0.022: 338: 8.00:	: 0.453: 0.023: 340: 8.00:	0.458: 0.023: 342: 8.00:	0.463: 0.023: 344: 8.00:	0.469: 0.023: 347: 8.00:	0.470: 0.023: 347: 8.00:	0.478: 0.024: 349: 8.00:	0.497: 0.025: 353: 8.00:	0.508: 0.025: 355:
Ки : Ви : Ки :	0.159: 0012: 0.087: 0006: 0.087: 0009:	0.159: 0012: 0.087: 0006: 0.087: 0009:	0.159: 0012: 0.087: 0006: 0.087: 0009:	0.159: 0012: 0.087: 0006: 0.087: 0009:	0.160: 0012: 0.088: 0006: 0.088: 0009:	0.161: 0012 : 0.089: 0006 : 0.089:	0.162: 0012: 0.089: 0006: 0.089: 0009:	0.163: 0012: 0.090: 0006: 0.090: 0009:	0.164: 0012: 0.091: 0006: 0.091: 0009:	0.166: 0012: 0.092: 0006: 0.092: 0009:	0.168: 0012: 0.094: 0006: 0.094: 0009:	0.168: 0012: 0.094: 0006: 0.094: 0009:	0.171: 0012 : 0.096: 0006 : 0.096: 0009 :	0.176: 0012: 0.100: 0006: 0.100: 0009:	0012 : 0.102: 0006 : 0.102: 0009 :
	1022:														
	2612:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Qc : Cc : Фол: Uoл:	0.518: 0.026: 358: 8.00:	0.534: 0.027: 0: 8.00:	0.548: 0.027: 2: 8.00:	0.565: 0.028: 4: 8.00:	0.580: 0.029: 7: 8.00:	0.603: 0.030: 9: 8.00:	0.623: 0.031: 11: 8.00:	0.645: 0.032: 13: 8.00:	0.681: 0.034: 16: 8.00:	0.713: 0.036: 18: 8.00:	0.743: 0.037: 21: 8.00:	0.827: 0.041: 27: 8.00:	0.901: 0.045: 34: 8.00:	0.956: 0.048: 42: 8.00:	0.986: 0.049: 50:
Ки : Ви : Ки : Ви : Ки :	: 0.183: 0012: 0.105: 0006: 0.105: 0009:	0.188: 0012 : 0.108: 0006 : 0.108: 0009 :	0.192: 0012: 0.111: 0006: 0.111: 0009:	0012 : 0.115: 0006 : 0.115: 0009 :	0.202: 0012: 0.118: 0006: 0.118: 0009:	0012 : 0.123: 0006 : 0.123: 0009 :	0.216: 0012: 0.127: 0006: 0.127: 0009:	0012 : 0.132: 0006 : 0.132: 0009 :	0.232: 0012: 0.141: 0006: 0.141: 0009:	0.242: 0012: 0.148: 0006: 0.148: 0009:	0.251: 0012: 0.154: 0006: 0.154: 0009:	0.278: 0012: 0.172: 0006: 0.172: 0009:	0.302: 0012: 0.188: 0006: 0.188: 0009:	0.321: 0012: 0.200: 0006: 0.200: 0009:	0012 : 0.206: 0006 : 0.206: 0009 :
	1973:														
x=	1676:	1616:	1587:	1538:	1504:	1486:	1483:								
Qc : Cc : Фоп:	0.996: 0.050: 57: 8.00:	0.996: 0.050: 63:	0.991: 0.050: 67: 8.00:	0.979: 0.049: 74: 8.00:	0.970: 0.048: 80: 8.00:	0.965: 0.048: 87: 8.00:	0.959: 0.048: 94: 8.00:								
Ви : Ки : Ки : Ви : Ки :	: 0.334: 0012: 0.208: 0006: 0.208: 0009:	0.334: 0012 : 0.208: 0006 : 0.208: 0009 :	0.332: 0012: 0.207: 0006: 0.207: 0009:	0012 : 0.205: 0006 : 0.205: 0009 :	0.325: 0012: 0.203: 0006: 0.203: 0009:	0.323: 0012: 0.202: 0006: 0.202: 0009:	0.321: 0012: 0.200: 0006: 0.200: 0009:								

Результаты расчета в точке максимума  $\,$  ПК ЭРА v3.0. Модель: MPK-2014  $\,$  Координаты точки : X= 1676.0 м, Y= 1973.0 м

Максимальная суммарная концентрация | Cs= 0.9957211 доли ПДКмр| 0.0497861 мг/м3 |

```
57 град.
Достигается при опасном направлении
                  и скорости ветра 8.00 м/с
```

Всего источников: 6. В таблице заказано вкладчиков не более чем с 95% вклада

```
___ВКЛАДЫ_ИСТОЧНИКОВ__
рос | Вклад |Вкл
|Вклад в%| Сум. %| Коэф.влияния |
  1 |000101 0012| T | 0.1400|
                                   0.333867 |
                                               33.5 | 33.5 |
                                                                 2.3847671
                                   0.207981 | 20.9 | 54.4 |
0.207981 | 20.9 | 75.3 |
  2 |000101 0006| T |
                         0.1400|
                                                                 1.4855807
                       0.1400|
  3 |000101 0009| T |
      000101 0009| Т | 0.1400| 0.207981 | 20.9 | 75.3 |
000101 0003| Т | 0.1400| 0.207981 | 20.9 | 96.2 |
В сумме = 0.957811 96.2
Суммарный вклад остальных = 0.037910 3.8
                                                                 1.4855807
                                                               1.4855807
  4 |000101 0003| T |
```

3. Исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :2752 - Уайт-спирит Объект

ПДКм.р для примеси 2752 = 1.0 мг/м3 (ОБУВ)

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код	Тип	Н	1	D	Wo	V1		T	X1	Y1		X2	Y2	Alf	F	KP	Ди	Выброс
<06~U>~ <nc< td=""><td>&gt;   ~~~   ~</td><td>~M~~</td><td>-   ~</td><td>~M~~</td><td> ~M/C~</td><td> ~m3/c~</td><td>~   rŗ</td><td>радС</td><td>  ~~~M~~~~</td><td>  ~~~M~~~</td><td>~   ~</td><td>~~~M~~~~</td><td>  ~~~M~~~~</td><td>/ rp.</td><td>  ~~~</td><td>  ~~~~</td><td> ~~ </td><td>~~~r/c~~</td></nc<>	>   ~~~   ~	~M~~	-   ~	~M~~	~M/C~	~m3/c~	~   rŗ	радС	~~~M~~~~	~~~M~~~	~   ~	~~~M~~~~	~~~M~~~~	/ rp.	~~~	~~~~	~~	~~~r/c~~
000101 602	0 П1	2.0	)				3	30.0	2547	254	5	80	120	30	1.0	1.00	0 0	0.3125000

4. Расчетные параметры См, Uм, Хм

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Объект

Сезон :ЛЕТО (температура воздуха 34.8 град.С) Примесь :2752 - Уайт-спирит

ПДКм.р для примеси 2752 = 1.0 мг/м3 (ОБУВ)

~~~~~	~~~~~	.~~~~~	.~~~~~	~~~~~~~	. с сумма	>	~~~~~	~~~~~~
		Источни	іки	1	Их р	асчетн	ые параі	метры
Номер	Код	<u> </u>	M	Тип	Cm	1	Um	Xm
-n/n- <	об-п>-	- <nc> </nc>		-	-[доли ПД	K]-	[M/C]	[M]
1 0	00101	6020	0.3125	00 П1	11.1614	14	0.50	11.4
~~~~~	~~~~	~~~~~	~~~~~~	~~~~~~	~~~~~~	~~~~	~~~~~	~~~~~~
Сумі	марный	í Mq =	0.3125	00 г/с				
Cvm	ма См	по всем	источни	кам =	11.1614	14 дол	ей ПДК	

5. Управляющие параметры расчета

ПК ЭРА v3.0. Модель: МРК-2014 Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 :ЛЕТО (температура воздуха 34.8 град.С)

Сезон

:2752 - Уайт-спирит

ПДКм.р для примеси 2752 = 1.0 мг/м3 (ОБУВ)

Фоновая концентрация не задана

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200

Расчет по границе санзоны. Покрытие РП 001 Расчет в фиксированных точках. Группа точек 090

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с

Средневзвешенная опасная скорость ветра Ucв= 0.5 м/с

9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: MPK-2014
Город :616 г.Атырау.
Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Примесь :2752 - Уайт-спирит Расчет проводился 01.09.2025 23:26

ПДКм.р для примеси 2752 = 1.0 мг/м3 (ОБУВ)

Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001

Всего просчитано точек: 97

Фоновая концентрация не задана

Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Ump) м/с

	1	Qc -	T								
	1	Cc -	суммарна	ая концент	рация	[MF/M.E	суб]		- 1		
	1	Φοπ-	опасное	направл.	ветра	[ угл.	град	[.]			
	1	Uon-	опасная	скорость	ветра	[ M,	/c	]	- 1		
	~~~~~~								~ ~	~~~~~~~	
- 1	-Если в	расче	те один	источник,	то е	го вклад	цик	од	не	печатаются	1

```
2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
     1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468:
Qc : 0.039: 0.039: 0.039: 0.039: 0.039: 0.039: 0.039: 0.039: 0.040: 0.040: 0.039: 0.039: 0.039: 0.039: 0.039:
Cc : 0.039: 0.039: 0.039: 0.039: 0.039: 0.039: 0.039: 0.039: 0.040: 0.040: 0.039: 0.039: 0.039: 0.039: 0.039:
     3603: 3575: 3547: 3518: 3490: 3475: 3459: 3436: 3413: 3382: 3352: 3315:
                                                                                 3279 •
                                                                                        3235 •
     2718: 2899: 3080: 3261: 3441: 3503: 3563: 3622: 3680: 3736: 3790: 3842: 3891: 3939: 3983:
           ----:
                                    ----:---:-
                                                              ----:---:---:---:---:-
Qc : 0.039: 0.038: 0.037: 0.034: 0.031: 0.030: 0.029: 0.029: 0.028: 0.027: 0.026: 0.026: 0.025: 0.024: 0.024:
Cc : 0.039: 0.038: 0.037: 0.034: 0.031: 0.030: 0.029: 0.029: 0.028: 0.027: 0.026: 0.026: 0.025: 0.024: 0.024:
     3143: 3096:
                 3042: 2990: 2932: 2876: 2815: 2757: 2693: 2633: 2569:
                                                                           2508 2506 2443 2319
 x=
          4063: 4098: 4130: 4159: 4184: 4205: 4223: 4236: 4246: 4252: 4254: 4254:
Qc : 0.023: 0.023: 0.023: 0.022: 0.022: 0.022: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021:
Cc: 0.023: 0.023: 0.023: 0.022: 0.022: 0.022: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021: 0.021:
у=
____
     2257: 2197: 2138: 2080: 2024: 1970: 1837: 1704: 1570: 1437: 1385: 1336: 1288:
                                                                                        1244:
    4221: 4205: 4182: 4159: 4128: 4098: 4016: 3933: 3850: 3767: 3730: 3694: 3650: 3608: 3558:
                                           -----
                                                        ____-
Qc : 0.021: 0.021: 0.021: 0.022: 0.022: 0.022: 0.023: 0.023: 0.023: 0.022: 0.022: 0.022: 0.022: 0.021: 0.021:
Cc : 0.021: 0.021: 0.021: 0.022: 0.022: 0.022: 0.023: 0.023: 0.023: 0.022: 0.022: 0.022: 0.022: 0.021: 0.021: 0.021:
     1164: 1129: 1097: 1068: 1043: 1022: 1004:
                                                  991:
                                                         981:
                                                               975: 973:
                                                                            973.
                                                                                  975.
                                                                                         991 •
                                                                                              1006.
     3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734: 2672:
Qc : 0.021: 0.021: 0.021: 0.021: 0.022: 0.022: 0.022: 0.022: 0.022: 0.023: 0.023: 0.023: 0.023: 0.023: 0.024: 0.025:
Cc: 0.021: 0.021: 0.021: 0.021: 0.022: 0.022: 0.022: 0.022: 0.022: 0.023: 0.023: 0.023: 0.023: 0.024: 0.025:
     1022: 1045: 1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748: 1868:
v=
     2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
           ----:
                                     Qc : 0.025: 0.026: 0.026: 0.027: 0.028: 0.029: 0.029: 0.030: 0.031: 0.032: 0.033: 0.036: 0.038: 0.039: 0.040:
Cc : 0.025: 0.026: 0.026: 0.027: 0.028: 0.029: 0.029: 0.030: 0.031: 0.032: 0.033: 0.036: 0.038: 0.039: 0.040:
     1973: 2077: 2132: 2248: 2369: 2493: 2619:
    1676: 1616: 1587: 1538: 1504: 1486: 1483:
_____;__;__;___;
Qc: 0.040: 0.040: 0.040: 0.040: 0.040: 0.039: 0.039:
Cc : 0.040: 0.040: 0.040: 0.040: 0.040: 0.039: 0.039:
                                   ПК ЭРА v3.0. Модель: MPK-2014
Результаты расчета в точке максимума
        Координаты точки : X= 1676.0 м, Y= 1973.0 м
Максимальная суммарная концентрация | Cs= 0.0402364 доли 1 0.0402364 мг/м3
                                         0.0402364 доли ПДКмр|
  Достигается при опасном направлении
                                       57 град.
и скорости ветра 0.71\,\mathrm{M/c} Всего источников: 1. В таблице заказано вкладчиков не более чем с 95\% вклада
                           _вклады_источников_
1 |000101 6020| П1| 0.3125| 0.040236 | 100.0 | 100.0 | 0.128756374
В сумме = 0.040236 | 100.0
3. Исходные параметры источников.
  ПК ЭРА v3.0. Модель: MPK-2014
    Город :616 г.Атырау.
Объект :0001 НДВ эв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
    Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Примесь :2754 - Алканы C12-19
              ПДКм.р для примеси 2754 = 1.0 мг/м3
    Коэффициент рельефа (КР): индивидуальный с источников
    Коэффициент оседания (F): индивидуальный с источников
                Н
                     D
                           Wo
                                              X1
                                                       Υ1
                                                              X2
                                                                           |Alf| F | KP |Ди| Выброс
6.78 450.0 2547
000101 0001 T
                7.0
                    0.38 60.74
                                                                                1.0 1.000 0 0.8333330
000101 0004 Т
                7.0 0.38 60.74
                                 6.78 450.0
                                               2547
                                                       2545
                                                                                1.0 1.000 0 0.8333330
                               6.78 450.0
6.78 450.0
                7.0 0.38 60.74
000101 0007 T
                                               2547
                                                       2545
                                                                                1.0 1.000 0 0.8333330
             7.0
000101 0010 T
                    0.38 60.74
                                               2547
                                                       2545
                                                                                1.0 1.000 0 0.8333330
              1.0 0.15 0.010 0.0002 30.0
2.0 30.0
000101 0019 Т
                                               2547
                                                       2545
                                                                                1.0 1.000 0 0.0002490
```

2547

2545

8.0

120 30 1.0 1.000 0 0.0005240

000101 6001 П1

```
4. Расчетные параметры См, Им, Хм
   ПК ЭРА v3.0. Модель: MPK-2014
     Город
               :616 г.Атырау.
                :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
     Объект
               :3 Расч.год: 2025 (СП) Расчет :
:ЛЕТО (температура воздуха 34.8 град.С)
     Вар.расч. :3
                                                  Расчет проводился 01.09.2025 23:26
     Сезон
     Примесь :2754 - Алканы C12-19
                ПДКм.р для примеси 2754 = 1.0 мг/м3
| - Для линейных и площадных источников выброс является суммарным по
    всей плошади, а Ст - концентрация одиночного источника,
    расположенного в центре симметрии, с суммарным М
    _|____Их расчетные параметры
| Источники | Их расчетные параметры
| Номер | Код | М | Тип | Ст | Um | Xm | -п/п-|<oб-п>-<uc>
                                           оли пдас, .
0.083440 |
   1 |000101 0001| 0.8333333| T |
2 |000101 0004| 0.8333333| T |
                                                         9.56 | 230.2
9.56 | 230.2
                        0.8333333| T |
0.8333333| T |
                                           0.083440 |
   2 | 1000101 0007 | 0.833333 | T | 0.083440 | 4 | 1000101 0010 | 0.833333 | T | 0.083440 | 5 | 1000101 0019 | 0.000249 | T | 0.008893 | 6 | 1000101 6001 | 0.000524 | П1 | 0.018715 |
                                                         9.56
                                                                    230.2
                                                         9.56 | 230.2

9.50 | 230.2

0.50 | 11.4

0.50 | 11.4
                                           0.083440
                                          0.083440 ,
0.008893 | 0.50
     Суммарный Мд =
                        3.334105 r/c
     Сумма См по всем источникам =
                                           0.361370 долей ПДК
        Средневзвешенная опасная скорость ветра = 8.87 м/с
5. Управляющие параметры расчета
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :616 г.Атырау.
                :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
     Вар.расч. :3 Расч.год: 2025 (СП) Расчет :
Сезон :ЛЕТО (температура воздуха 34.8 град.С)
Примесь :2754 — Алканы C12-19
                                                  Расчет проводился 01.09.2025 23:26
                ПДКм.р для примеси 2754 = 1.0 мг/м3
     Фоновая концентрация на постах (в мг/м3 / долях ПДК)
 -----
|Код загр| Штиль | Северное | Восточное | Южное | Западное |
|вещества| U<=2м/с |направление |направление |направление |
           | Пост N 001: X=0, Y=0
| 2754 | 0.4870000| 0.4870000| 0.4870000| | | 0.4870000| 0.4870000| 0.4870000|
                                         0.4870000| 0.4870000|
0.4870000| 0.4870000|
                                                                      0.48700001
                                                                     0.48700001
     Расчет по прямоугольнику 001 : 3400х3000 с шагом 200
     Расчет по границе санзоны. Покрытие РП 001
     Расчет в фиксированных точках. Группа точек 090
     Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Ump) м/с Средневзвешенная опасная скорость ветра Ucb=8.87 м/с
9. Результаты расчета по границе санзоны.
   ПК ЭРА v3.0. Модель: MPK-2014
     Город :616 г. Атырау.
                :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
               :3 Расч.год: 2025 (СП)
:2754 - Алканы C12-19
     Вар.расч. :3
                                                  Расчет проводился 01.09.2025 23:26
     Примесь
                ПДКм.р для примеси 2754 = 1.0 мг/м3
     Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
     Всего просчитано точек: 97
     Всего просчитать от осек. У Запрошен учет дифференцированного фона с постов для новых источников Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
     Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0 (Ump) м/с
                        Расшифровка обозначений
             | Qc - суммарная концентрация [доли ПДК]
| Cc - суммарная концентрация [мг/м.куб]
              Сф - фоновая концентрация [ доли ПДК ]
              | Ви - вклад ИСТОЧНИКА в Ос [доли ПДК]
             | Ки - код источника для верхней строки Ви |
     2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
y=
     1483: 1496: 1525: 1569: 1627: 1699: 1783: 1878: 1982: 2052: 2107: 2223: 2344: 2468:
Qc : 0.581: 0.581: 0.580: 0.581: 0.581: 0.581: 0.581: 0.582: 0.582: 0.582: 0.582: 0.581: 0.581: 0.581: 0.581: 0.580:
Cc : 0.581: 0.581: 0.580: 0.581: 0.581: 0.581: 0.581: 0.582: 0.582: 0.582: 0.581: 0.581: 0.581: 0.581: 0.580:
CD: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487:
                     107 :
                                    121 :
                                            128 :
                                                   134 :
                                                           141 :
                                                                  148 :
                                                                          152 :
                                                                                  156 :
Фоп:
Uoπ: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 :
Ви : 0.024: 0.023: 0.023: 0.023: 0.023: 0.023: 0.023: 0.024: 0.024: 0.024: 0.024: 0.024: 0.023: 0.023: 0.023: 0.023:
```

Км: 0001: 0

 $\mathtt{K}_{\mathtt{M}} : 0007 :$

	3603:	2575.	25.47.	2510.	3/00.	2475.	2/50.	2/26.	2/12.	2202.	2252.	2215.	2270.	2225.	2102.
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	2718:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	0.581: 0.581:														
	0.487: 189:														
	8.00:		8.00 :	8.00 :	3.15 :	3.09:	3.04 :	3.01 :	2.98:	2.95 :	2.92 :	2.89 :	2.87 :		
	0.023:			0.019:	0.018:	0.017:	0.017:	0.016:	0.016:	0.016:	0.015:	0.015:	0.015:		
	0.001:														
Ки:	0004:	0004 :	0004:	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :
Ки :	0.023: 0007:	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :
	~~~~~														
	3143:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	4025:														
	0.545: 0.545:														
Сф :	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:
	248 : 2.81 :														
: Ви :	0.014:	0.014:		0.014:					0.014:					0.013:	0.013:
	0001 : 0.014:														
Ки:	0004:	0004 :	0004:	0004 :	0004 :	0004 :	0004 :	0004:	0004 :	0004 :	0004 :	0004 :	0004 :	0004:	0004 :
Κи :	0.014: 0007:	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :
~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	2257:														
	4221:														
	0.541: 0.541:														
Сф :	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:
	280 : 2.72 :														
ви :	0.013:	0.014:		0.014:		0.014:					0.014:			0.014:	0.014:
Ки:	0001 : 0.013:	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :
Ки :	0004:	0004 :	0004 :	0004 :	0004 :	0004 :	0004:	0004 :	0004:	0004:	0004 :	0004 :	0004:	0004:	0004 :
	0.013: 0007:														
~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	1164:														
	3511:														
	0.541: 0.541:														
Сф :	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:
	325 : 2.72 :														
: Ви :	0.014:					0.014:									0.015:
	0001 : 0.014:														
Ки:	0004:	0004 :	0004:	0004:	0004 :	0004 :	0004:	0004:	0004:	0004:	0004:	0004 :	0004:	0004:	0004 :
	0.014: 0007:														
~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
	1022:														
x=	2612:	2553:	2495:	2439:	2385:	2333:	2284:	2236:	2192:	2150:	2112:	2020:	1929:	1837:	1746:
Qc :	0.547:	0.548:	0.549:	0.550:	0.551:	0.553:	0.554:	0.555:	0.557:	0.559:	0.562:	0.570:	0.576:	0.581:	0.584:
Сф :	0.547: 0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:	0.487:
	358 : 2.87 :														
:	0.015:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ки :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :	0001 :
	0.015: 0004:														
Ви:	0.015: 0007:	0.015:	0.016:	0.016:	0.016:	0.016:	0.017:	0.017:	0.017:	0.018:	0.019:	0.021:	0.022:	0.023:	0.024:
	.~~~~~														
	1973:														
x=	1676:	1616:	1587:	1538:	1504:	1486:	1483:								
	:	:	:	:	:	:	:								

```
Oc : 0.584: 0.584: 0.584: 0.583: 0.582: 0.582: 0.581:
Cc: 0.584: 0.584: 0.584: 0.583: 0.582: 0.582: 0.581:
Сф: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: 0.487: Фоп: 57: 63: 67: 74: 80: 87: 94:
Uon: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 :
Ви: 0.024: 0.024: 0.024: 0.024: 0.024: 0.024: 0.024:
Ки : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 :
Ви : 0.024: 0.024: 0.024: 0.024: 0.024: 0.024: 0.024:
Ки: 0004: 0004: 0004: 0004: 0004: 0004: 0004:
Ви : 0.024: 0.024: 0.024: 0.024: 0.024: 0.024: 0.024:
Ки: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
 Результаты расчета в точке максимума   ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= 1676.0 м, Y= 1973.0 м
 Максимальная суммарная концентрация | Cs=
                                                                             0.5843838 доли ПДКмр|
                                                                             0.5843838 мг/м3
    Достигается при опасном направлении 57 град. и скорости ветра 8.00 м/с
Всего источников: 6. В таблице заказано вкладчиков не более чем с 95% вклада вклады источников
|Вклад в%| Сум. %| Коэф.влияния |
3. Исходные параметры источников.
     ПК ЭРА v3.0. Модель: MPK-2014
        СЯРА V3.0. MOДЕЛЬ: MFK-2014
Город :616 г.Атырау.
Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
Группа суммации :6007=0301 Азота диоксид
                                             0330
        Коэффициент рельефа (КР): индивидуальный с источников
        Коэффициент оседания (F): индивидуальный с источников
                                                                                                      Y1 | X2 | Y2 |Alf| F | KP |Ди| Выброс
                                                               V1 I
                                                                                       X1
                   ІТипі Н
                                   I D I Wol
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06~ID>
<06
------ Примесь 0301------
000101 0001 Т 7.0 0.38 60.74 6.78
000101 0004 Т 7.0 0.38 60.74 6.78
000101 0007 Т 7.0 0.38 60.74 6.78
000101 0010 Т 7.0 0.38 60.74 6.78
                                                            6.78 450.0
                                                                                                         2545
                                                                                                                                                         1.0 1.000 0 1.166667
                                                           6.78 450.0
6.78 450.0
6.78 450.0
6.78 450.0
                                                                                        2547 2545
2547 2545
2547 2545
2547 2545
                                                                                                                                                        1.0 1.000 0 1.166667
1.0 1.000 0 1.166667
1.0 1.000 0 1.166667
                  ----- Примесь 0330-----
4. Расчетные параметры См, Uм, Хм
     ПК ЭРА v3.0. Модель: MPK-2014
        К ЭРА V3.U. МОДЕЛЬ: МРК-2014
Город :616 г.Атырау.
Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26
Сезон :ЛЕТО (температура воздуха 34.8 град.С)
Группа суммации :6007=0301 Азота диоксид
      Для групп суммации выброс Mq = M1/\Pi Д K1 + \ldots + Mn/\Pi Д K n, а суммарная
       концентрация CM = CM1/\Pi ДК1 + ... + CMN/\Pi ДК 
                       |____Их расчетные параметры
 | 1 | 1000101 | 0001| | 5.833335| T | 0.584082 | 9.56 | 230.2 | 2 | 1000101 | 0004| | 5.833335| T | 0.584082 | 9.56 | 230.2 | 3 | 1000101 | 0007| | 5.833335| T | 0.584082 | 9.56 | 230.2 | 4 | 1000101 | 0010| | 5.833335| T | 0.584082 | 9.56 | 230.2 |
        Суммарный Mq = 23.333340 (сумма Mq/\PiДК по всем примесям)
                                                              2.336327 долей ПДК
        Сумма См по всем источникам =
             Средневзвешенная опасная скорость ветра = 9.56 м/с
5. Управляющие параметры расчета
     ПК ЭРА v3.0. Модель: MPK-2014
        Город :616 г.Атырау.
Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
        Вар.расч.: 3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Группа суммации :6007=0301 Азота диоксид
```

0330 Фоновая концентрация на постах (в мг/м3 / долях ПДК)

|Код загр| Штиль | Северное | Восточное | Южное | Западное |

```
|вещества| U<=2м/с |направление |направление |направление |
```

Расчет по прямоугольнику 001 : 3400х3000 с шагом 200 Расчет по границе санзоны. Покрытие РП 001 Расчет в фиксированных точках. Группа точек 090 Направление ветра: автоматический поиск опасного направления от 0 до 360 град. Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с Средневзвешенная опасная скорость ветра Ucb=9.56 м/c

9. Результаты расчета по границе санзоны.

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау. Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Группа суммации :6007=0301 Азота диоксид

0330

Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001 Всего просчитано точек: 97

Запрошен учет дифференцированного фона с постов для новых источников Направление ветра: автоматический поиск опасного направления от 0 до 360 град.

Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с

		Расшифровка обозначении	
T	Qc -	суммарная концентрация [доли ПДК]	T
	Сф -	фоновая концентрация [доли ПДК]	
	Φοπ-	опасное направл. ветра [угл. град.]	
- 1	Uon-	опасная скорость ветра [м/с]	1
	Ви -	вклад ИСТОЧНИКА в Qc [доли ПДК]	- 1
- 1	Ки -	код источника для верхней строки Ви	1

| -При расчете по группе суммации концентр. в мг/м3 не печатается|

-2															3616:
x=	1483:	1496:	1525:	1569:	1627:	1699:	1783:	1878:	1982:	2052:	2107:	2223:	2344:	2468:	
Qc : Сф : Фоп:	0.724: 0.065: 94:	0.721: 0.065: 101: 8.00:	0.718: 0.065: 107: 8.00:	0.719: 0.065: 114: 8.00:	0.719: 0.065: 121: 8.00:	0.719: 0.065: 128:	0.722: 0.065: 134: 8.00:	0.726: 0.065: 141: 8.00:	0.729: 0.065: 148: 8.00:	0.729: 0.065: 152: 8.00:	0.725: 0.065: 156: 8.00:	0.723: 0.065: 162: 8.00:	0.721: 0.065: 169: 8.00:	0.720: 0.065: 176: 8.00:	0.717: 0.065: 183: 8.00:
Ки: Ви: Ки: Ки:	0.165: 0001: 0.165: 0004: 0.165: 0007:	0.164: 0001: 0.164: 0004: 0.164: 0007:	0.163: 0001: 0.163: 0004: 0.163: 0007:	0.163: 0001: 0.163: 0004: 0.163: 0007:	0.164: 0001: 0.164: 0004: 0.164: 0007:	0.164: 0001: 0.164: 0004: 0.164:	0.164: 0001: 0.164: 0004: 0.164: 0007:	0.165: 0001: 0.165: 0004: 0.165: 0007:	0.166: 0001: 0.166: 0004: 0.166: 0007:	0.166: 0001: 0.166: 0004: 0.166: 0007:	0.165: 0001: 0.165: 0004: 0.165: 0007:	0.165: 0001: 0.165: 0004: 0.165: 0007:	0.164: 0001: 0.164: 0004: 0.164: 0007:	0.164: 0001: 0.164: 0004: 0.164: 0007:	0.163: 0001: 0.163: 0004: 0.163: 0007:
						3475:									
x=	2718:	2899:	3080:	3261:	3441:	3503:	3563:	3622:	3680:	3736:	3790:	3842:	3891:	3939:	3983:
Qc : Сф : Фоп:	0.719: 0.065: 189:	0.704: 0.065: 199: 8.00:	0.666: 0.065: 208: 8.00:	0.611: 0.065: 216: 8.00:	0.555: 0.065: 223: 3.13:	0.544: 0.065: 226: 3.09:	0.533: 0.065: 228: 3.05:	0.523: 0.065: 230: 3.06:	0.513: 0.065: 233: 2.99:	0.506: 0.065: 235: 2.96:	0.498: 0.065: 237: 2.93:	0.491: 0.065: 239: 2.90:	0.484: 0.065: 241: 2.87:	0.478: 0.065: 244: 2.84:	0.472: 0.065: 246: 2.81:
Ки: Ви: Ви: Ки:	0.164: 0001: 0.164: 0004: 0.164: 0007:	0.160: 0001: 0.160: 0004: 0.160: 0007:	0.150: 0001: 0.150: 0004: 0.150: 0007:	0.136: 0001: 0.136: 0004: 0.136: 0007:	0.123: 0001 : 0.123: 0004 : 0.123: 0007 :	0.120: 0001: 0.120: 0004: 0.120: 0007:	0.117: 0001 : 0.117: 0004 : 0.117: 0007 :	0.115: 0001: 0.115: 0004: 0.115: 0007:	0.112: 0001: 0.112: 0004: 0.112: 0007:	0.110: 0001: 0.110: 0004: 0.110: 0007:	0.108: 0001: 0.108: 0004: 0.108: 0007:	0.106: 0001 : 0.106: 0004 : 0.106: 0007 :	0.105: 0001: 0.105: 0004: 0.105: 0007:	0.103: 0001: 0.103: 0004: 0.103: 0007:	0.102: 0001: 0.102: 0004: 0.102: 0007:
						2876:									
	:	:	:	:	:	4184:	:	:	:	:	:	:	:	:	:
Qc : Сф : Фоп:	0.468: 0.065: 248: 2.82:	0.463: 0.065: 250: 2.78:	0.459: 0.065: 252: 2.77:	0.455: 0.065: 254: 2.76:	0.451: 0.065: 257: 2.74:	0.449: 0.065: 259: 2.73:	0.447: 0.065: 261: 2.72:	0.444: 0.065: 263: 2.72:	0.443: 0.065: 265: 2.72:	0.442: 0.065: 267: 2.71:	0.441: 0.065: 269: 2.71:	0.440: 0.065: 271: 2.71:	0.440: 0.065: 271: 2.71:	0.440: 0.065: 273: 2.71:	0.441: 0.065: 278: 2.71:
Ки: Ви: Ки: Ки:	0001 : 0.101: 0004 : 0.101: 0007 :	0.099: 0001 : 0.099: 0004 : 0.099: 0007 :	0.098: 0001: 0.098: 0004: 0.098: 0007:	0.097: 0001: 0.097: 0004: 0.097: 0007:	0.097: 0001: 0.097: 0004: 0.097: 0007:	: 0.096: 0001: 0.096: 0004: 0.096: 0007:	0.095: 0001: 0.095: 0004: 0.095: 0007:	0.095: 0001: 0.095: 0004: 0.095: 0007:	0.095: 0001: 0.095: 0004: 0.095: 0007:	0.094: 0001: 0.094: 0004: 0.094: 0007:	0.094: 0001: 0.094: 0004: 0.094: 0007:	0.094: 0001: 0.094: 0004: 0.094: 0007:	0.094: 0001: 0.094: 0004: 0.094: 0.097:	0.094: 0001: 0.094: 0004: 0.094: 0.097:	0.094: 0001: 0.094: 0004: 0.094: 0007:
						1970:									
x=						4098:	4016:	3933:		3767:	3730:	3694:	3650:	3608:	3558:

```
Qc : 0.442: 0.443: 0.446: 0.447: 0.450: 0.453: 0.458: 0.461: 0.459: 0.454: 0.452: 0.449: 0.448: 0.447: 0.447:
Cp : 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065:
Φσπ: 280 : 282 : 284 : 286 : 288 : 290 : 296 : 301 : 307 : 312 : 314 : 317 : 319 : 321 : 323 : 

Uoπ: 2.72 : 2.72 : 2.72 : 2.72 : 2.74 : 2.75 : 2.77 : 2.79 : 2.77 : 2.76 : 2.74 : 2.73 : 2.73 : 2.72 : 2.72
                                282 :
                                                                                                                                                                                                                               317 :
 ви: 0.094: 0.095: 0.095: 0.096: 0.096: 0.097: 0.098: 0.099: 0.099: 0.097: 0.097: 0.096: 0.096: 0.095: 0.095:
Кы : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 :
       : 0.094: 0.095: 0.095: 0.096: 0.096: 0.097: 0.098: 0.099: 0.099: 0.097: 0.097: 0.096: 0.096: 0.095: 0.095:
Ки : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0005 : 0.095 : 0.095 : 0.096 : 0.096 : 0.097 : 0.098 : 0.099 : 0.099 : 0.097 : 0.097 : 0.096 : 0.096 : 0.095 : 0.095 : 0.095 : 0.095 : 0.096 : 0.096 : 0.096 : 0.095 : 0.095 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.096 : 0.
 Ки: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
                1164: 1129: 1097: 1068: 1043: 1022: 1004:
                                                                                                                                                                                            975:
                                                                                                                                                                                                                973:
                                                                                                                                                                                                                                   973:
                                                                                                                                                                                                                                                     975:
  V=
                                                                                                                                                      991:
                                                                                                                                                                          981:
   x= 3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734: 2672:
                                                                                                              ----:-
                                                                                                                                ----:-
                                                                                                                                                    ----:-
                                                                                                                                                                     ----:-
                                                                                                                                                                                                            ----:-
 Qc : 0.446: 0.446: 0.446: 0.446: 0.447: 0.449: 0.451: 0.453: 0.456: 0.458: 0.461: 0.462: 0.466: 0.475: 0.480:
Сф : 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.0
 Uon: 2.72 : 2.72 : 2.72 : 2.72 : 2.72 : 2.73 : 2.74 : 2.75 : 2.76 : 2.77 : 2.79 : 2.79 : 2.81 : 2.83 : 2.85
 Ви: 0.095: 0.095: 0.095: 0.095: 0.096: 0.096: 0.096: 0.097: 0.098: 0.098: 0.099: 0.099: 0.100: 0.103: 0.104:
Кы : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : Вы : 0.095: 0.095: 0.095: 0.095: 0.096: 0.096: 0.096: 0.097: 0.098: 0.098: 0.099: 0.099: 0.100: 0.103: 0.104:
 Km : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 :
Ви : 0.095: 0.095: 0.095: 0.095: 0.096: 0.096: 0.096: 0.096: 0.097: 0.098: 0.098: 0.099: 0.099: 0.100: 0.103: 0.104: Ки : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 
                                                     1068:
                                                                        1099: 1129:
                                                                                                             1166:
                                                                                                                                1202:
                                                                                                                                                    1246: 1288:
                                                                                                                                                                                         1338:
                                                                                                                                                                                                            1385:
                                                                                                                                                                                                                               1506:
                                                                                                                                                                                                                                                   1627:
  v=
  x=
             2612: 2553: 2495: 2439: 2385: 2383: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
 Qc: 0.485: 0.493: 0.499: 0.507: 0.514: 0.524: 0.533: 0.543: 0.554: 0.568: 0.588: 0.642: 0.689: 0.722: 0.740:
 Cp : 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065: 0.065:
Uon: 2.87 : 2.90 : 2.93 : 2.96 : 2.99 : 3.03 : 3.05 : 3.09 : 3.13 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00
 Ви : 0.105: 0.107: 0.109: 0.110: 0.112: 0.115: 0.117: 0.119: 0.122: 0.126: 0.131: 0.144: 0.156: 0.164: 0.169:
Ки : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 0001 : 000
 Ки : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 :
 Bu : 0.105; 0.107; 0.109; 0.110; 0.112; 0.115; 0.117; 0.119; 0.122; 0.126; 0.131; 0.144; 0.156; 0.164; 0.169;
 Ки : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 : 0007 :
                1973: 2077: 2132: 2248: 2369: 2493: 2619:
               1676: 1616: 1587: 1538: 1504: 1486: 1483:
   x=
 Qc: 0.746: 0.746: 0.743: 0.736: 0.730: 0.728: 0.724:
 Сф : 0.065: 0.065: 0.065: 0.065: 0.065: 0.065:
                                   63 :
                                                      67 :
                                                                         74 :
                                                                                            80:
                  57:
                                                                                                               87 :
 Φοπ:
 Uon: 8.00 :
                               8.00: 8.00: 8.00: 8.00: 8.00: 8.00
 Ви : 0.170: 0.170: 0.170: 0.168: 0.166: 0.166: 0.165:
 Ки: 0001: 0001: 0001: 0001: 0001: 0001: 0001:
 Ви : 0.170: 0.170: 0.170: 0.168: 0.166: 0.166: 0.165:
 Ки: 0004: 0004: 0004: 0004: 0004: 0004: 0004:
 Ви : 0.170: 0.170: 0.170: 0.168: 0.166: 0.166: 0.165
 Ки: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
  Результаты расчета в точке максимума
                                                                                                          ПК ЭРА v3.0. Модель: MPK-2014
                           Координаты точки : X= 1676.0 м, Y= 1973.0 м
  Максимальная суммарная концентрация | Cs=
                                                                                                                        0.7460626 доли ПДКмр|
                                                                                                     Достигается при опасном направлении 57 град.
                                                             и скорости ветра 8.00 м/с
м скорости ветра 0.00 ж/о В сворости ветра 0.00 ж/о Всего источников: 4. В таблице заказано вкладчиков не более чем с 95% вклада вклады_источников
 3. Исходные параметры источников.
        ПК ЭРА v3.0. Модель: MPK-2014
                                        :616 г.Атырау.
                                      :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
             Объект
              Вар.расч. :3
                                                         Расч.год: 2025 (СП)
                                                                                                                     Расчет проводился 01.09.2025 23:26
             Группа суммации :6037=0333 Сероводород
                                                                        1325 Формальдегид
             Коэффициент рельефа (КР): индивидуальный с источников
             Коэффициент оседания (F): индивидуальный с источников
                            | ТИП | Н | D | Wo | V1 | Т | X1 | Y1 | X2 | Y2 | Alf | F | КР | ДИ | Выброс
           Кол
```

```
<06~П>~<Uc>|~~m~~|~~m~~|~m/c~|~m3/c~~|rpagC|~~m~~~|~~m~~~|~~~m~~~~|~~~m~~~~|~~~m~~~~|~~~m~~~~|rp.|~~~|rp.~~~|~~~|~~~r/c~~
                          ----- Примесь 0333-----
                                                                                                                                2547 2545 1.0 1.000 0 0.000010
2547 2545 80 120 30 1.0 1.000 0 0.000010
000101 0019 T 1.0 0.15 0.010 0.0002 30.0 000101 6001 П1 2.0 30.0
------ Примесь 1325------
000101 0001 Т 7.0 0.38 60.74 6.78 450.0
000101 0004 Т 7.0 0.38 60.74 6.78 450.0
000101 0007 Т 7.0 0.38 60.74 6.78 450.0
000101 0010 Т 7.0 0.38 60.74 6.78 450.0
                                                                                                                                2547 2545
2547 2545
2547 2545
2547 2545
                                                                                                                                                                                                                            1 0 1 000 0 0 0023150
                                                                                                                                                                                                                            1.0 1.000 0 0.0023150
                                                                                                                                                                                                                           1.0 1.000 0 0.0023150
1.0 1.000 0 0.0023150
                                                                                                                                 2547
4. Расчетные параметры См, Им, Хм
       ПК ЭРА v3.0. Модель: MPK-2014
            Город :616 г.Атырау.
                                    :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
             Объект
            Бар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Группа суммации :6037=0333 Сероводород
                                                                 1325 Формальдегид
| - Для групп суммации выброс Mq = M1/ПДК1 +...+ Mn/ПДКn, а суммарная | концентрация См = Cм1/ПДК1 +...+ Смn/ПДКn
    - Для линейных и площадных источников выброс является суммарным по
         всей площади, а Cm - концентрация одиночного источника, расположенного в центре симметрии, с суммарным М
                                                                 -
                                                                                          _____Их расчетные параметры
                                 Источники
 | Номер | Код | Mq | Тип | Cm | Um | | -п/п-|<06-п>-<uc>
|-п/п-|<06-п>-<uc>
|-п/п-|<uc>
|
                                                                                                                                     Um |
                                                                                                                                                            ---[M]---
         ~~~~~~~~~
       Суммарный Mq = 0.190825 (сумма Mq/ПДК по всем примесям)
Сумма См по всем источникам = 0.219449 долей ПДК
                   Средневзвешенная опасная скорость ветра = 1.27 м/с
5. Управляющие параметры расчета
        ПК ЭРА v3.0. Модель: MPK-2014
            Город :616 г.Атырау.
                                    :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
             Объект
            Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С) Группа суммации :6037=0333 Сероводород
                                                                  1325 Формальдегид
              Фоновая концентрация на постах (в мг/м3 / долях ПДК)
                                                       | Северное | Восточное |
|Код загр|
                                Штиль
                                                                                                                                Южное
                                                                                                                                                             Запалное І
                                                  | Северное | Восточное | мжное | солоднос | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление | направление |
|вещества| U<=2м/с
 -----
 |Пост N 001: X=0, Y=0
     0333 | 0.0040000| 0.0040000| 0.0040000| 0.0040000| 0.0040000| | 0.5000000| 0.5000000| 0.5000000|
             Расчет по прямоугольнику 001 : 3400х3000 с шагом 200
             Расчет по границе санзоны. Покрытие РП 001
             Расчет в фиксированных точках. Группа точек 090
             Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0(Uмp) м/с Средневзвешенная опасная скорость ветра Ucb=1.27 м/с
9. Результаты расчета по границе санзоны.
       ПК ЭРА v3.0. Модель: MPK-2014
            Город :616 г.Атырау.
Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.
            Вар.расч. :3 Расч.год: 2025 (СП) Группа суммации :6037=0333 Сероводород
                                                                                                                     Расчет проводился 01.09.2025 23:26
                                                                 1325 Формальдегид
             Расчет проводился по всем санитарным зонам внутри расч. прямоугольника 001
             Всего просчитано точек: 97
            Запрошен учет дифференцированного фона с постов для новых источников Направление ветра: автоматический поиск опасного направления от 0 до 360 град.
            Скорость ветра: автоматический поиск опасной скорости от 0.5 до 8.0\,\mathrm{(Ump)} м/с
                                                         _Расшифровка_обозначений
                              | Qc - суммарная концентрация [доли ПДК]
                               | Сф - фоновая концентрация [ доли ПДК ]
                                  Фоп- опасное направл. ветра [ угл. град.]
                               | Uon- опасная скорость ветра [ M/C | Ви - вклад ИСТОЧНИКА в Qc [доли ПДК]
                               | Ки - код источника для верхней строки Ви
           | -При расчете по группе суммации концентр. в мг/м3 не печатается|
 y= 2619: 2744: 2866: 2984: 3095: 3198: 3291: 3373: 3443: 3483: 3513: 3561: 3595: 3613: 3616:
                                                                                   ----:-
                                                                                                     ----:---:-
                                                                                                                                         ----:-
                                                                                                                                                          ----:-
```

															2594:
Qc :	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:	0.506:
Фоп:	94 :	101 :	107 :	114 :	121 :	128 :	134 :	141 :	148 :	152 :	156 :	162 :	169 :	176 :	183 : 8.00 :
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
															0001 : 0.001:
Ви:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0004:
	0007:														0007:
y=															3193:
x=	2718:	2899:	3080:	3261:	3441:	3503:	3563:	3622:	3680:	3736:	3790:	3842:	3891:	3939:	3983:
Qc :		0.506:	0.505:	0.505:	0.504:	0.504:	0.504:	0.504:	0.504:	0.504:	0.504:	0.504:	0.504:	0.504:	0.504:
Фоп:	189 :	199 :	208 :	216 :	223 :	226 :	228 :	230 :	233 :	235 :	237 :	239 :	241 :	244 :	246 : 2.81 :
Ви :											0.001:				0.001:
	0001:														0001:
Ки:	0004:	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004 :	0004:	0004 :	0004 :	0004 :	0004 :	0004:	0004:
Ки:		0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :	0007 :
															2319:
x=	4025:	4063:	4098:	4130:	4159:	4184:	4205:	4223:	4236:	4246:	4252:	4254:	4254:	4252:	4236:
Qc :	0.504:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503:	0.503: 0.500:
Фоп:	248 : 2.79 :	250 : 2.77 :	252 : 2.76 :	254 :	256 : 2.72 :	259 : 2.72 :	261 : 2.71 :	263 :	265 : 2.69 :	267 : 2.69 :	269 : 2.69 :	271 : 2.68 :	271 :	273 : 2.68 :	278 : 2.69 :
Ви:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	
Ви :	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:
Ви :	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:	0.001:
	~~~~~														
			2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:	1385:	1336:	1288:	1244:	1202:
x=	4221:	: 4205:	2138: : 4182:	2080: : 4159:	2024: : 4128:	1970: : 4098:	1837: : 4016:	1704: : 3933:	1570: : 3850:	1437: : 3767:	1385: : 3730:	1336: : 3694:	1288: : 3650:	1244: : 3608:	1202:
x=  Qc :	4221: : 0.503:	4205: : 0.503:	2138: : 4182: : 0.503:	2080: : 4159: : 0.503:	2024: : 4128: : 0.503:	1970: : 4098: : 0.503:	1837: : 4016: : 0.503:	1704: : 3933: : 0.503:	1570: : 3850: : 0.503:	1437: : 3767: : 0.503:	1385: : 3730: : 0.503:	1336: : 3694: : 0.503:	1288: : 3650: : 0.503:	1244: : 3608: : 0.503:	1202: : 3558:
х=  Qc : Сф : Фол:	4221: : 0.503: 0.500: 280:	4205: : 0.503: 0.500: 282:	2138: : 4182: : 0.503: 0.500: 284: 2.70:	2080: : 4159: : 0.503: 0.500: 286: 2.71:	2024: : 4128: : 0.503: 0.500: 288: 2.72:	1970: : 4098: : 0.503: 0.500: 290: 2.72:	1837: : 4016: : 0.503: 0.500: 296: 2.75:	1704: : 3933: 0.503: 0.500: 301: 2.76:	1570: : 3850: : 0.503: 0.500: 307: 2.76:	1437: : 3767: 0.503: 0.500: 312: 2.72:	1385: : 3730: 0.503: 0.500: 314: 2.72:	1336: : 3694: : 0.503: 0.500: 317: 2.72:	1288: : 3650: 0.503: 0.500: 319: 2.71:	1244: : 3608: : 0.503: 0.500: 321:	1202: : 3558: : 0.503:
x=  Qc : Сф : Фоп: Uoп: Ви :	4221: : 0.503: 0.500: 280: 2.69:	4205: : 0.503: 0.500: 282: 2.70: :	2138: : 4182: : 0.503: 0.500: 284: 2.70: 0.001:	2080: : 4159: : 0.503: 0.500: 286: 2.71:	2024: : 4128: : 0.503: 0.500: 288: 2.72:	1970: : 4098: : 0.503: 0.500: 290: 2.72:	1837: : 4016: : 0.503: 0.500: 296: 2.75:	1704: : 3933: : 0.503: 0.500: 301: 2.76:	1570: : 3850: 0.503: 0.500: 307: 2.76:	1437: : 3767: : 0.503: 0.500: 312: 2.72:	1385: : 3730: : 0.503: 0.500: 314: 2.72:	1336: : 3694: : 0.503: 0.500: 317: 2.72:	1288: : 3650: : 0.503: 0.500: 319: 2.71:	1244: : 3608: : 0.503: 0.500: 321: 2.71:	1202: : 3558: : 0.503: 0.500: 323: 2.71: :
x=  Qc : Сф : Фоп: Uoп: Ви : Ки :	4221: 0.503: 0.500: 280: 2.69: 0.001: 0.001: 0.001:	4205: : 0.503: 0.500: 282: 2.70: 0.001: 0.001: 0.001:	2138: : 4182: : 0.503: 0.500: 284: 2.70: 0.001: 0.001: 0.001:	2080: : 4159: : 0.503: 0.500: 286: 2.71: 0.001: 0.001:	2024: : 4128: : 0.503: 0.500: 288: 2.72: : 0.001: 0001: 0.001:	1970: : 4098: : 0.503: 0.500: 290: 2.72: 0.001: 0.001:	1837: : 4016: : 0.503: 0.500: 296: 2.75: : 0.001: 0001:	1704: : 3933: : 0.503: 0.500: 301: 2.76: : 0.001: 0.001:	1570: : 3850: : 0.503: 0.500: 307: 2.76: : 0.001: 0.001:	1437: : 3767: : 0.503: 0.500: 312: 2.72: : 0.001: 0001: 0.001:	1385: : 3730: : 0.503: 0.500: 314: 2.72: 0.001: 0.001:	1336: : 3694: : 0.503: 0.500: 317: 2.72: 0.001: 0.001:	1288: : 3650: : 0.503: 0.500: 319: 2.71: 0.001: 0.001:	1244: : 3608: : 0.503: 0.500: 321: 2.71: 0.001: 0.001:	1202: : 3558: : 0.503: 0.500: 323: 2.71: : 0.001: 0.001:
x= Qc: Cф: Фоп: Uoп: Ви: Ви: Ки: Ви:	4221: 0.503: 0.500: 280: 2.69: 0.001: 0.001: 0.004: 0.001:	4205: : 0.503: 0.500: 282: 2.70: 0.001: 0.001: 0.001: 0.004: 0.001:	2138: : 4182: : 0.503: 0.500: 284: 2.70: 0.001: 0001: 0.001: 0.001:	2080: : 4159: : 0.500: 286: 2.71: : 0.001: 0001: 0.001: 0.001:	2024: 	1970:: 4098:: 0.503: 290: 2.72: : 0.001: 0001: 0.001: 0.001:	1837:: 4016:: 0.503: 0.500: 296: 2.75: : 0.001: 0001: 0.001: 0.001: 0.001:	1704:: 3933:: 0.503: 0.500: 301: 2.76: : 0.001: 0001: 00004: 0.001:	1570:: 3850:: 0.503: 0.500: 307: 2.76: : 0.001: 0001: 0001: 0004: 0.001:	1437:: 3767: 0.503: 0.500: 312: 2.72: 0.001: 0001: 0.001: 0.001: 0.001:	1385: : 3730: : 0.503: 0.503: 2.72: : 0.001: 0001: 0.001: 0.001:	1336: : 3694: : 0.500: 317: 2.72: : 0.001: 0001: 0.001: 0.001:	1288: : 3650: : 0.503: 0.500: 319: 2.71: 0.001: 0001: 0.001: 0.001: 0.001:	1244: : 3608: : 0.503: 0.500: 321: 2.71: 0.001: 0001: 0001: 0.001: 0.001:	1202: : 3558: : 0.503: 0.500: 323: 2.71: 0.001: 0.001: 0.001: 0.001:
х=  Qc : Сф : Фоп: Uoп: Ви : Ки : Ви : Ки :	4221: 0.503: 0.503: 280: 280: 2.69: 0.001: 0.001: 0.001: 0.004: 0.001: 0.007:	4205: : 0.503: 0.500: 282: 2.70: 0.001: 0.001: 0.001: 0.004: 0.001: 0.007:	2138: : 4182: : 0.500: 284: 2.70: 0.001: 0.001: 0.001: 0.001:	2080: : 4159: : 0.503: 0.500: 286: 2.71: 0.001: 0.001: 0.001: 0.001:	2024: : 4128: : 0.503: 0.500: 288: 2.72: 0.001: 0.001: 0.001: 0.001:	1970:: 4098:: 0.503: 0.500: 290: 2.72: 0.001: 0.001: 0.001: 0.001: 0.001:	1837: : 4016: : 0.503: 0.500: 296: 2.75: 0.001: 0.001: 0.001: 0.001:	1704:: 3933: 0.500: 301: 2.76: 0.001: 0.001: 0.001: 0.001: 0.007:	1570: : 3850: : 0.503: 0.500: 307: 2.76: 0.001: 0.001: 0.001: 0.001:	1437:: 3767:: 0.503: 0.500: 312: 2.72: 0.001: 0001: 0.001: 0.001: 0.001:	1385: : 3730: 0.503: 0.500: 314: 2.72: 0.001: 0001: 0.001: 0.001:	1336: : 3694: : 0.503: 0.500: 317: 2.72: 0.001: 0.001: 0.001: 0.001:	1288: : 3650: 0.503: 0.500: 319: 2.71: 0.001: 0.001: 0.001: 0.001:	1244: : 3608: : 0.503: 0.500: 321: 2.71: 0.001: 0.001: 0.001: 0.001:	1202: : 3558: : 0.503: 0.500: 323: 2.71: : 0.001: 0.001: 0.001:
x= Qc: Cф: Фоп: Uon: Ви: Ки: Ви: Ки: Ки:	4221: 4221: 0.503: 0.500: 280: 2.69: 0.001: 0001: 0.001: 0004: 0.001:	4205:	2138:: 4182:: 0.503: 0.500: 284: 2.70: 0.001: 0001: 0.001: 0007:	2080:: 4159: 0.503: 0.500: 286: 2.71: 0.001: 0.001: 0.001: 0.007:	2024:	1970:: 4098:: 0.503: 0.500: 290: 2.72: 0.001: 0.001: 0.001: 0.007:	1837:: 4016:: 0.503: 0.500: 296: 2.75: : 0.001: 0.001: 0.001: 0.007:	1704:: 3933:: 0.500: 301: 2.76: : 0.001: 0001: 0.001: 0007:	1570:: 3850:: 0.503: 0.500: 307: 2.76: : 0.001: 0001: 0.001: 0.001: 0.007:	1437:: 3767: 0.503: 0.500: 312: 2.72: 0.001: 0.001: 0.001: 0.007:	1385:: 3730: 0.500: 314: 2.72: 0.001: 0.001: 0.001: 0.007:	1336:: 3694:: 0.503: 0.500: 317: 2.72: : 0.001: 0.001: 0.001: 0.001:	1288:: 3650: 0.500: 319: 2.71: 0.001: 0.001: 0.001: 0.007:	1244:: 3608:: 0.503: 0.500: 321: 2.71: 0.001: 0.001: 0.001: 0.007:	1202:: 3558:: 0.503: 0.500: 323: 2.71: 0.001: 0.001: 0.001: 0.001:
x= Qc : Cф : Фоп: Uoп: Ви : Ки : Ви : Ки : x=	4221: 0.503: 0.500: 280: 2.69: 0.001: 0.001: 0.001: 0.007:	4205:  0.503: 0.500: 282: 2.70: 0.001: 0.001: 0.001: 0.007: 1129:: 3457:	2138:	2080:	2024:	1970:	1837:	1704:: 3933: 0.503: 0.503: 0.500: 301: 2.76: 0.001: 0001: 0004: 0004: 0007: 991: 3108:	1570:: 3850: 0.503: 0.500: 307: 2.76: 0.001: 0001: 0.001: 0007: 981:: 3048:	1437:	1385:: 3730: 0.503: 0.500: 314: 2.72: 0.001: 0001: 0.001: 0007:	1336:: 3694: 0.503: 0.500: 317: 2.72: 0.001: 0001: 0.001: 0007:	1288: : 3650: 0.503: 0.500: 319: 2.71: 0.001: 0.001: 0.001: 0.007: 	1244: 	1202:: 3558: 0.503: 0.500: 323: 2.71: 0.001: 0.001: 0.004: 0.007:: 1006:: 2672:
х=	4221:	4205:	2138:	2080:	2024:	1970:	1837:	1704: 3933: 0.503: 0.500: 301: 2.76: 0.001: 0.001: 0.001: 0.001: 3108:: 3108:: 0.503: 0.503:	1570:	1437: 0.503: 0.500: 312: 2.72: 0.001: 0.001: 0.001: 0.001: 2984:: 2984: 0.503: 0.503:	1385:: 3730: 0.503: 0.500: 314: 2.72: 0.001: 0.001: 0.001: 0.001: 2923:: 2923: 0.503: 0.503:	1336:: 3694:: 0.503: 0.500: 317: 2.72: 0.001: 0.001: 0.001: 0.001: 0.007: 2921:: 0.503: 0.503:	1288:: 3650:: 0.503: 0.500: 319: 2.71: 0.001: 0.001: 0.001: 0.001: 2858:: 2858:: 0.504:	1244:	1202:: 0.503: 0.500: 323: 2.71: 0.001: 0.001: 0.001: 0.001: 1006:: 2672:: 0.504: 0.5004:
	4221:: 0.503: 0.500: 280: 2.69: 0.001: 0.001: 0.001: 0.007:: 3511:: 0.503: 0.500: 325: 2.70:	4205:	2138:	2080:	2024:	1970:	1837:: 4016:: 0.503: 0.500: 296: 2.75: 0.001: 0001: 0.001: 0007:: 3172:: 0.503: 0.500: 338: 2.72:	1704:: 3933:: 0.503: 0.500: 301: 2.76: : 0.001: 0001: 0.001: 0.007:: 3108:: 0.503: 0.500: 340: 2.72:	1570:: 3850: 0.503: 0.500: 307: 2.76: 0.001: 0001: 0.001: 0007: 981:: 3048: 0.503: 0.500: 342: 2.73:	1437: 3767: 0.503: 0.500: 312: 2.72: 0.001: 0.001: 0.001: 0.007: 2984: 0.503: 0.500: 344: 2.75:	1385:: 3730: 0.503: 0.500: 314: 2.72: 0.001: 0001: 0.001: 0007: 973:: 0.503: 0.500: 347: 2.77:	1336:	1288:: 3650: 0.500: 319: 2.71: 0.001: 0.001: 0.001: 0.007: 2858:: 0.504: 0.500: 349: 2.78:	1244:	1202:: 0.503: 0.500: 323: 2.71: 0.001: 0.001: 0.001: 0.007:: 2672: 0.504:
x= Qc: Qc: Cф: EM: EM: EM: EM: EM: EM: EM: EM: EM: EM	4221:	4205:	2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:: 3767: 0.503: 0.500: 312: 2.72: 0.001: 0001: 0.001: 0.007:: 2984:: 0.503: 0.500: 344: 2.75: 0.001:	1385:: 3730:: 0.503: 0.503: 0.500: 314: 2.72: 0.001: 0001: 0.001: 0.001: 0.007:: 2923:: 0.503: 0.503: 0.500: 2.77: : 0.001:	1336:	1288:	1244:	1202:
x= Qc: Qc: Qo: Qo: Von: Xx: Xx: Xx: Xx: Xx: Xx: Xx: Xx: Xx: Xx	4221:	4205:	2138:: 4182:: 0.503: 0.500: 284: 2.70: 0.001: 0.001: 0.001: 0.007:: 3405:: 0.503: 0.500: 329: 2.70: : 0.001: 0.001: 0.001: 0.001:	2080:	2024:	1970:: 4098:: 0.503: 0.500: 290: 2.72: 0.001: 0001: 0.001: 0007:: 3230:: 0.503: 0.500: 336: 2.72: 0.001: 0.001: 0.001:	1837:: 4016: 0.500: 296: 2.75: 0.001: 0.001: 0.001: 0.007:: 3172:: 0.503: 0.500: 338: 2.72: : 0.001: 0.001: 0.001:	1704:: 3933:: 0.503: 0.500: 301: 2.76: : 0.001: 0007: 0.001: 0007: 3108:: 0.503: 0.500: 340: 2.72: : 0.001: 0001: 0.001:	1570:: 3850: 0.500: 307: 2.76: 0.001: 0.001: 0.001: 0.007:: 3048:: 0.503: 0.500: 342: 2.73: 0.001: 0.001: 0.001: 0.001:	1437:: 3767: 0.503: 0.500: 312: 2.72: 0.001: 0.001: 0.001: 0.007: 2984:: 0.503: 0.500: 344: 2.75: 0.001: 0.001: 0.001: 0.001:	1385:: 3730: 0.500: 314: 2.72: 0.001: 0.001: 0.001: 0.007:: 2923:: 0.503: 0.500: 347: 2.77: : 0.001: 0.001: 0.001: 0.001:	1336:: 3694: 0.500: 317: 2.72: 0.001: 0.001: 0.001: 0.007:: 2921:: 0.503: 0.500: 347: 2.77: : 0.001: 0.001: 0.001: 0.001: 0.001:	1288:: 3650: 0.500: 319: 0.001: 0.001: 0.001: 0.007: 2858:: 0.504: 0.500: 349: 2.78: 0.500: 349: 2.78: 0.001: 0.001: 0.001:	1244:: 3608:: 0.503: 0.500: 321: 2.71: 0.001: 0.001: 0.001: 0.007:: 2734:: 0.504: 0.500: 353: 2.82: 0.001: 0.001: 0.001:	1202:: 0.503: 0.500: 323: 2.71: 0.001: 0.001: 0.001: 0.007:: 2672:: 0.504: 0.500: 355: 2.84: 0.001: 0.001: 0.001: 0.001: 0.001:
x= Qc: Cф: Cф: Cф: Cф: Cф: Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Compa	### 4221:	4205:	2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:	1385:: 3730: 0.503: 0.503: 0.500: 314: 2.72: 0.001: 0001: 0.001: 0007:: 2923:: 0.500: 347: 2.77: 0.001: 0001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1336:	1288:	1244:	1202:
x=  Qc: Qc: Qb: Qo: Uon: Xu: Xu: Xu: Xu: Xu: Xu: Xu: Xu: Xu: Xu	4221:	4205:	2138:	2080:	2024:	1970:: 4098:: 0.503: 0.500: 290: 2.72: 0.001: 0001: 0.001: 0007:: 3230:: 0.503: 0.500: 3366: 2.72: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1837:: 4016:: 0.503: 0.500: 296: 2.75: 0.001: 0001: 0.001: 0007:: 3172:: 0.503: 0.500: 338: 2.72: : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1704:: 3933:: 0.503: 0.500: 301: 2.76: : 0.001: 0001: 0007:: 3108:: 0.503: 0.500: 340: 2.72: 0.001: 0001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1570:: 3850:: 0.503: 0.500: 307: 2.76: 0.001: 0001: 0.001: 0007:: 3048:: 0.503: 0.500: 342: 2.73: 0.001: 0.001: 0.001: 0.001: 0.001:	1437:	1385:: 3730: 0.500: 314: 2.72: 0.001: 0.001: 0.007: 2923:: 0.503: 0.500: 347: 2.77: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1336:: 3694: 0.503: 0.500: 317: 2.72: 0.001: 0001: 0.001: 0007:: 2921:: 0.503: 0.500: 347: 2.77: : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1288:: 3650: 0.500: 319: 2.71: 0.001: 0.001: 0.007: 2858:: 0.504: 0.500: 349: 2.78: 0.500: 349: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1244:: 3608:: 0.503: 0.5001: 2.71: 0.001: 0.001: 0.007:: 2734:: 0.504: 0.500: 353: 2.82: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1202:: 0.503: 0.500: 323: 2.71: 0.001: 0.001: 0.001: 0.007:: 2672:: 0.500: 355: 2.84: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.0001: 0.0001: 0.0001: 0.0001: 0.0001: 0.0001: 0.0001: 0.0001: 0.0001:
x=  Qc: Qc: Qb: Su: Su: Su: Su: Su: Su: Su: Su: Su: Su	4221:	4205:	2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:	1385:	1336:	1288:	1244:	1202:
x= Qc: Qc: Qc: Qc: Qc: Qc: Qc: Qc: Qc: Qc:	4221:	1129: 3457: 0.001: 0004: 0.001: 0007: 3457: 0.500: 327: 0.500: 327: 0.500: 327: 0.001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001:	2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:	1385:: 3730:: 0.503: 0.500: 314: 2.72: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1336:	1288:	1244:	1202:
x=  Qc: Qc: Qo: Qo: Qo: Qo: Qo: Qo: Qo: Qo: Qo: Qo	# 4221:	4205:	2138:	2080:	2024:	1970:	1837:: 4016:: 0.503: 0.500: 296: 2.75: 0.001: 0001: 0007:: 0.503: 0.500: 3172:: 0.503: 0.500: 338: 2.72: 0.001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001:	1704:: 3933:: 0.503: 0.500: 301: 2.76: 0.001: 0004: 0.001: 0007: 3108:: 0.500: 340: 2.72: 0.001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001:	1570:: 3850:: 0.503: 0.500: 307: 2.76: 0.001: 0001: 0007:: 3048:: 0.503: 0.500: 342: 2.73: 0.001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001:	1437:	1385:: 3730: 0.500: 314: 2.72: 0.001: 0001: 0007:: 0.500: 347: 2.77: 0.001: 0001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1336:	1288:: 3650: 0.500: 319: 2.71: 0.001: 0.001: 0.007: 2858:: 0.504: 0.500: 349: 2.78: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1244:	1202:
x= Qc: Qc: Qc: Qc: Qc: Qc: Qc: Qc: Qc: Qc:	4221:	4205:	2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:	1385:: 3730:: 0.503: 0.500: 314: 2.72: 0.001: 0001: 0.001: 0007:: 0.503: 0.503: 0.503: 0.500: 2077: 1385:: 0.505: 0.500: 2112: 0.505:	1336:	1288:	1244:	1202:
X =   Qc : Cф : Cф : Cф : Cф : Cф : Cф : Cф : C	# 4221:	4205:	2138:	2080:	2024:	1970:	1837:	1704:	1570:	1437:	1385:	1336:	1288:	1244:	1202:
X =   QC : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф : C ф	# 4221:	4205:	2138:	2080:	2024:	1970:	1837:	1704:	1570:: 3850:: 0.503: 0.500: 307: 2.76: 0.001: 0001: 0.001: 0007:	1437:	1385:: 3730: 0.503: 0.500: 314: 2.72: 0.001: 0.001: 0.007: 2923:: 0.503: 0.500: 347: 2.77: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:	1336:	1288:	1244:	1202:

Ku: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 0007: 00

```
1973: 2077: 2132: 2248: 2369: 2493: 2619:
   v=
   x= 1676. 1616. 1587. 1538. 1504. 1486. 1483.
                              ---:--
                                                                ----:--
                                                                                                ---:--
                                                                                                                                 ---:--
                                                                                                                                                                  ----:-
 Qc: 0.506: 0.506: 0.506: 0.506: 0.506: 0.506: 0.506:
Сф: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500: 0.500:
                                                                 63 :
                                                                                          67 :
                                                                                                                                   74 :
Фоп:
                                                                                                                                                                 80 :
Uon: 8.00 : 8.00 : 8.00 : 8.00 : 8.00 : 8.00 :
 Ви : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Ки: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 0001: 
Ви: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Ки : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0004 : 0001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0.001 : 0
 Ки: 0007: 0007: 0007: 0007: 0007: 0007: 0007:
```

Результаты расчета в точке максимума ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= 1676.0 м, Y= 1973.0 м

Максимальная суммарная концентрация | Cs= 0.5060757 доли ПДКмр|

Достигается при опасном направлении 57 град и скорости ветра 8.00 м/с 57 град.

Всего источников: 6. В таблице заказано вкладчиков не более чем с 95% вклада

ВКЛАДЫ_ИСТОЧНИКОВ_ Выброс | Вклад |Вн | Ном. | Код | Тип | Выброс | Вклад | Вклад в% | Сум. % | Коэф.влияния | ---- | <06-П>| Моновая концентрация Сf | 0.500000 | 98.8 (Вклад источников 1.2%) | 1 | 1000101 0001 | T | 0.0463 | 0.001351 | 22.2 | 22.2 | 0.029188393 | 2 | 1000101 0004 | T | 0.0463 | 0.001351 | 22.2 | 44.5 | 0.029188393 | 3 | 1000101 0007 | T | 0.0463 | 0.001351 | 22.2 | 66.7 | 0.029188393 | 3 | 1000101 0007 | T | 0.0463 | 0.001351 | 22.2 | 66.7 | 0.029188393 | 3 | 1000101 0010 | T | 0.0463 | 0.001351 | 22.2 | 89.0 | 0.029188393 | 5 | 1000101 0010 | T | 0.0463 | 0.001351 | 22.2 | 89.0 | 0.029188393 | 5 | 1000101 0010 | T | 0.005500 | 0.000656 | 10.8 | 99.8 | 0.119238369 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 | 0.001351 |Вклад в%| Сум. %| Коэф.влияния | Код | Тип | -

3. Исходные параметры источников.

ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау. Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26

Группа суммации :6044=0330

0333 Сероводород

Коэффициент рельефа (КР): индивидуальный с источников Коэффициент оседания (F): индивидуальный с источников

Код  Тип	H   D   Wo   V1	T   X1	Y1	X2   Y2	Alf  F   KP  Ди  Выброс
<06~U>~ <nc>   ~~~   ~</nc>	~~m~~ ~~m~~ ~m/c~ ~m3/c	~~ градС ~~~м^	~~~   ~~~M~~~~	~~~M~~~~   ~~~M~~~	~ Fp. ~~~ ~~~ ~~F/C~~
	Примесь 0330	_			
	Примесь 0333	-			
000101 0019 T	1.0 0.15 0.010 0.00	02 30.0 2	547 2545		1.0 1.000 0 0.0000440
000101 6001 П1	2.0	30.0 2	547 2545	80 12	0 30 1.0 1.000 0 0.0000010

4. Расчетные параметры См, Uм, Хм ПК ЭРА v3.0. Модель: MPK-2014

Город :616 г.Атырау.

Объект :0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр.

Вар.расч. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 Сезон :ЛЕТО (температура воздуха 34.8 град.С)

Группа суммации :6044=0330

0333 Сероволорол

- Для групп суммации выброс Mq = M1   концентрация См = Cм1/ПДК1 ++	
- Для линейных и площадных источник	ов выброс является суммарным по
всей площади, а Cm - концентрация	одиночного источника,
расположенного в центре симметрии	, с суммарным М
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Источники	Их расчетные параметры
Номер Код Ма Тип	Cm Um Xm
-n/n- <o6-n>-<uc> </uc></o6-n>	
1 000101 0019 0.005500 T	
2 000101 6001 0.000125 M1	0.004465 0.50 11.4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Суммарный Mq = 0.005625 (сум	2
Сумма См по всем источникам =	0.200905 долей ПДК
Средневзвешенная опасная ско	рость ветра = 0.50 м/с
1	

```
5. Управляющие параметры расчета
  ПК ЭРА v3.0. Модель: MPK-2014
```

Город :616 г.Атырау.

:0001 НДВ зв в атмосферный воздух для объекта ТОО ПолисМунайКурылыс на 2025-2027г.Корр. :3 Расч.год: 2025 (СП) Расчет проводился 01.09.2025 23:26 :ЛЕТО (температура воздуха 34.8 град.С) Объект

Вар.расч. :3

Группа суммации :6044=0330

0333 Сероводород

AUHUB.														
  Код загр														
вещества		нал	правлени	ие  нап	равление	напр	авление	напраі	вление	1				
Пост N 001   0330           0333	0.0250 0.0500 0.0040 0.5000	000   000   000	0.05000 0.00400 0.50000	)   000   000	0.050000 0.004000 0.500000	0 0 0 0	.0500000 .0040000 .5000000	0.0	0500000 0040000 5000000	 				
Расчет Расчет Направ: Скорос		ице сан рованны тра: ан : автом ая опас та по н ель: Мі	нзоны. Г ых точка втоматич матическ сная ско границе РК-2014	Покрыти ах. Гру неский кий пои орость	е РП 00 ппа точе поиск ог ск опасн ветра Uo	01 ж 090 масного мой ско	направл рости от				ц.			
Объект Вар.ра	:000 сч. :3 суммаци	1 НДВ : Расч	зв в аты ч.год: 2 4=0330		Π)						с на 20	25-2027	r.Kopp.	
Bcero i	проводи просчита	но точ	ек: 97							a 001				
Направа	ен учет ление ве ть ветра	тра: а	автомати	ический	поиск с	пасног	о направ	ления	от 0 до		ад.			
CROPOC	ть ветра				начений	юи ско	рости от	: 0.5 до	3 0.0 (0.	мр) м/с				
		суммари	ная конц	_ центрац	ия [доли ия [доли [ дој		1 1							
					pa [ yrj									
	Uoп-	опасная вклад I	CKOPOO	сть вет КА в	ра [ Qc [долю	м/с г ПДК]	]							
.~~~~~	Uoп-   Ви -   Ки -	опасная вклад I код ист	т скорос ИСТОЧНИН гочника	сть вет КА в для ве	ра [ Qc [доли рхней ст	м/с пДК] гроки	]     Ви   ~~~~	.~~~~						
-При	Uoп-   Ви -   Ки -	опасная вклад I код ист	я скорос ИСТОЧНИН гочника ппе сумы	сть вет КА в для ве мации к	ра [ Qc [доли рхней ст онцентр.	м/с и ПДК] гроки :	]   Ви   ~~~~ м3 не пе	чатает	ся					
у= 2619:	Uoп-   Ви -   Ки - ~~ расчете ~~~~~~	опасная вклад I код ист по груг ~~~~~~	я скорос ИСТОЧНИН ГОЧНИКА ППЕ СУММ	СТЬ ВЕТ КА В для ве мации к 	ра [ Qc [доли рхней ст онцентр. ~~~~~	м/с пПДК] гроки в мг/г	]     Ви     ~~~~   м3 не пе   ~~~~~	з443:	З483:					
у= 2619: : x= 1483:	Uon-   Bu -   Ku - ~~ pacvere ~~~~~~ 2744: :- 1496:	опасная вклад I код ист по груг ~~~~~ 2866: ———:- 1525:	я скорос ИСТОЧНИК гочника ппе сумы 2984: : 1569:	СТЬ ВЕТ КА В ДЛЯ ВЕ 4аЦИИ К 	ра [ Qc [доли рхней ст онцентр. ~~~~~~  3198: ———:- 1699:	м/с пПДК] гроки в мг/г ггогогогогогогогогогогогогогогогогог	]   Bu   ~~~~ M3 He Пе ~~~~~~ 3373: : 1878:	3443: : 1982:	3483: : 2052:	: 2107:	: 2223:	2344:	2468:	2594
y= 2619: x= 1483: Qc: 0.551: Cc: 0.550:	Uon-   Bu -   Ku - ~~ pacчeтe ~~~~~~ 2744: : 1496: 0.551: 0.550:	опасная вклад I код ист по груп ~~~~~ 2866: ———: 0.551: 0.550:	де скорос источника ппе сумм 2984: 1569: : 0.551: 0.550:	СТЬ ВЕТ КА в для ве мации к ~~~~~ 3095: 1627: 0.551: 0.550:	ра [ Qc [доль рхней ст онцентр. 3198: : 1699: 0.551: 0.550:	м/с п ПДК] гроки 1 В мг/1 2291: 1783: : 0.551: 0.550:	]   Ви   Ви   м3 не пе 3373: : 1878: 0.551: 0.550:	3443: : 1982: 0.551: 0.550:	3483: : 2052: : 0.551: 0.550:	2107: : 0.551: 0.550:	2223: : 0.551: 0.550:	2344: : 0.551: 0.550:	2468: : 0.551: 0.550:	2594  0.551 0.550
у= 2619: x= 1483: 	Uon-   Bu -   Ku - ~~ pacvere ~~~~ 1496: : 0.551: 0.550: 101: 0.71:	опасная вклад I код ист по груп ~~~~~~ 2866: : 1525: : 0.551: 0.550: 107: 0.71:	2984: 1569: 0.550: 114: 0.71:	СТЬ ВЕТ КА В для ве 4ации к 3095: 1627: 0.551: 0.551: 0.550: 121: 0.71:	ра [ QC [доли рхней ст онцентр. 3198: 1699: 0.551: 0.550: 128: 0.71:	м/с пПДК] проки : в мг/л 3291: : 1783: : 0.551: 0.551: 0.71:	]                         	3443: : 1982: : 0.551: 0.550: 148: 0.71:	3483: : 2052: : 0.551: 0.550: 152: 0.71:	2107: 2107: 0.551: 0.550: 156: 0.71:	2223: : 0.551: 0.550: 162: 0.71:	2344: : 0.551: 0.550: 169: 0.71:	2468: : 0.551: 0.550: 176: 0.71:	2594 0.551 0.550 182 0.72
y= 2619: x= 1483: Qc: 0.550: Cp: 0.550: Pon: 94:	Uon-   Bu -   Ku - ~~ pacvere ~~~~~ 2744: : 1496: : 0.551: 0.550: 101:	ОПАСНАЯ I КОД ИСТ	2984: 	ЗО95: 	ра [ QC [доли рхней ст онцентр. 3198:: 1699: 0.551: 0.550: 128: 0.71:	м/с пПДК] гроки в мг/г 2991: 1783: 1783: 0.551: 0.550: 134: 0.71:	3373: :- 1878: :- 0.551: 0.550: 141: 0.71:	3443: : 1982: : 0.551: 0.550: 148: 0.71:	3483: : 2052: : 0.551: 0.550: 152: 0.71:	2107: 0.551: 0.550: 156: 0.71:	2223: 0.551: 0.550: 162: 0.71:	2344: : 0.551: 0.550: 169: 0.71:	2468: : 0.551: 0.550: 176: 0.71:	2594  0.551 0.550 182 0.72
y= 2619: x= 1483: Qc: 0.551: Cφ: 0.550: Φοπ: 94: Uoπ: 0.71: :	Uon-   Bu -   Ku -   Xu -   Z744:   Z744:   Uon-   Uon-	опасная вклад I код ист по груг 2866: : 1525: : 0.551: 0.551: 0.71: 0.71:	2984: : 1569: : 0.551: 0.71: :	СТЬ ВЕТ КА В ДЛЯ ВЕ 444ЦИИ К 3095: 1627: 1627: 0.551: 0.551: 0.71: : 0.001: 0.001:	ра [ Qc [долирхней ст Онцентр.  3198:: 1699:: 0.551: 0.550: 128: 0.71: : 0.001:	м/с пПДК] гроки : в мг/г 3291: 1783: 0.551: 0.551: 0.71: 0.001:	]	3443: : 1982: 0.551: 0.550: 148: 0.71: 0.001:	3483: : 2052: 0.551: 0.550: 152: 0.71: 0.001: 0019:	2107: 0.551: 0.550: 156: 0.71: : 0.001: 0019:	2223: 0.551: 0.550: 162: 0.71: : 0.001: 0019:	2344: : 0.551: 0.550: 169: 0.71: :	2468: : 0.551: 0.550: 176: 0.71: 0.001:	2594  0.551 0.550 182 0.72 0.001 0019
y= 2619: x= 1483: 	Uon-   Bu -   Ku -   Ku -   2744: 	опасная вклад I код ист по груг ~~~~~ 2866: : 0.551: 0.550: 107: 0.71: 0.001:	2984: : 1569: : 0.551: 0.550: 114: 0.71: 0.001: 0.0019:	СТЬ ВЕТ (А В ДЛЯ ВЕ ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 445 ДЛЯ ВЕ 550 121 121 121 121 121 121 121 121 121 12	ра [ QC [доли рхней ст  онцентр.  3198:: 1699:: 0.551: 0.550: 128: 0.71: 0.001: 0019:	м/с пПДК] гроки В мг/г 3291: : 1783: : 0.551: 0.550: 134: 0.71: 0.001: 0.001:	Ви   Ви   м3 не пе 3373: : 0.551: 0.550: 141: 0.71: 0.001: 0.001:	3443: : 1982: : 0.551: 0.550: 148: 0.71: 0.001:	3483: 2052: 2055: 0.551: 0.550: 152: 0.71: 0.001:	2107: : 0.551: 0.550: 156: 0.71: 0.001: 0019:	2223: 0.551: 0.550: 162: 0.71: 0.001: 0019:	2344: : 0.551: 0.550: 169: 0.71: 0.001: 0019:	2468: : 0.551: 0.550: 176: 0.71: 0.001: 0019:	2594  0.551 0.550 182 0.72 0.001 0019
y= 2619: x= 1483: Qc: 0.551: Сф: 0.550: Фоп: 94: : Ви: 0.001: Ки: 0019: y= 3603: x= 2718:	Uon-   Bu -   Ku -   Ku -   2744: 	опасная вклад I код ист по груп 2866: : 0.551: 0.550: 107: 0.71: 0.001: 0.0019: 3547: : 3080:	де скороси деточника 2984: 2984: 1569: 0.551: 0.550: 114: 0.71: 0.001: 0.001: 3518: 3261:	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ МАЦИИ К МОТО (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	ра [ QC [доли рхней ст  онцентр.  3198: 0.551: 0.550: 128: 0.71: 0.001: 0019: 3475:: 3503:	м/с пДК] гроки В мг/л 3291: : 1783: : 0.551: 0.550: 134: 0.71: 0.001: 0.0019:	]	3443: 1982: 0.551: 0.555: 148: 0.001: 0.001: 3413: 3680:	3483: 2052: 2052: 0.551: 0.550: 152: 0.71: 0.001: 0019: 3382:	2107: 0.551: 0.550: 156: 0.71: 0.001: 0.0019:	2223: 0.551: 0.550: 162: 0.71: 0.001: 0.0019:	2344: : 0.551: 0.550: 169: 0.71: 0.001: 0019:	2468: : 0.551: 0.550: 176: 0.71: 0.001: 0019:	2594  0.551 0.550 182 0.72 0.001 0019 
y= 2619: x= 1483: x= 1483: Qc: 0.551: Сф: 0.550: Uon: 0.71: Ви: 0.001: Ки: 0019:	Uon-   Bu -   Ku -   Ku -   2744: 	опасная вклад I код ист 2866: : 1525: 0.551: 0.550: 107: 0.71: 0.001: 0.0019: : 3547: : 3080:	де скорос источник гочника ппе сумм гочника ппе сумм гочника ппе сумм гочника пле сумм гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по гочника по	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 Д	ра [ QC [долирхней ст QC [долирхней ст Онцентр.  3198:	м/с пДК] гроки в мг/л 3291: : 0.550: 134: 0.71: 0.001: 0.001: 3459: 3563:	3373:	3443: 1982: 0.551: 0.550: 148: 0.71: 0.001: 0.001: 3413:	3483: : 2052: : 0.551: 0.550: 152: 0.71: 0.001: 0019:	2107: 0.551: 0.551: 0.556: 0.71: : 0.001: 0019: 3352: 3790:	2223:	2344:: 0.551: 0.550: 169: 0.71: : 0.001: 0.0019:: 3279:: 3891:	2468: : 0.551: 0.550: 176: 0.71: : 0.001: 0019: : 3235:	2594  0.551 0.550 182 0.72 0.001 0019 
y= 2619: x= 1483: x= 1483: Qc: 0.551: Cф: 0.550: Bu: 0.001: Ku: 0019: y= 3603: x= 2718: Qc: 0.551: Cф: 0.550:	Uon-   Bu -   Ku -   Ku -   2744: 	опасная вклад I код ист по груг 2866: : 1525: 0.550: 107: 0.71: 0.001: 0.0019: 3547: 3080: : 3080:	де скороси деточника 2984: 2984: 1569: 0.551: 0.550: 114: 0.71: 0.001: 3518: 3261: 0.550:	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ МАЦИИ К МОТО (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	ра [ Qc [долирхней ст Qc [долирхней ст онцентр.  3198:	м/с пПДК] гроки в мг/л 3291: : 1783: 0.551: 0.550: 134: 0.71: 0.001: 0.0019: 3459: 3563: 0.551:	Ви	3443: : 1982: 0.551: 0.550: 148: 0.71: 0.001: 0.0019: 3413:  3680: 0.550: 0.550:	3483: 2052: 0.551: 0.550: 152: 0.71: 0.001: 0019: 3382: 3736: 0.550: 0.550:	2107: 0.551: 0.550: 156: 0.71: 0.001: 0019: 3352:: 3790: 0.550: 0.550:	2223: 0.551: 0.550: 162: 0.71: 0.001: 0019: 3315:: 3842: 0.550: 0.550:	2344:: 0.551: 0.550: 169: 0.71: 0.001: 0019:: 3891: 0.550: 0.550:	2468:: 0.551: 0.550: 176: 0.71: 0.001: 0019:: 3235:: 3339: 0.550: 0.550:	2594 
y= 2619: x= 1483:	Uon-   Bu -   Ku -   Ku -   2744: 	опасная вклад I код ист 2866: : 0.551: 0.550: 107: 0.71: 0.001: 3547: : 3080: : 0.551: 0.550: 208: 0.550:	де скоросо де скоросо де скоросо де скоросо де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гочника де сумми гоч	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 544 Д	ра [ Qc [долирхней ст Qc [долирхней ст Онцентр.  3198:: 1699: 0.551: 0.550: 128: 0.71: 28: 0.0019: 3475:: 3503:: 0.550: 226: 0.76:	м/с пДК] гроки в мг/г 3291: 1783: 1783: 0.551: 0.550: 134: 0.001: 3459: 3563: 0.551: 0.550: 228: 0.82:	Ви     Ви     3373:	3443: : 1982: : 0.551: 0.50: 148: 0.71: 0.001: 0019: : 3413: : 3680: 0.551: 0.551: 0.551: 0.551: 0.551:	3483:: 2052:: 0.551: 0.550: 152: 0.71: 0.001: 0019: 3382:: 3736: 0.550: 0.550: 0.550: 0.550: 0.550:	2107: 2107: 0.551: 0.550: 156: 0.71: 0.001: 0019: 3352: 3790: 0.550: 0.550: 237: 0.99:	2223:  0.551: 0.550: 162: 0.71: 0.001: 0019: 3315: 3842: 0.550: 0.550: 239: 0.99:	2344:	2468:	2594  0.551 0.550 182 0.72 0.001 0019  3193  0.550 0.550 0.550 246
y= 2619:	Uon-   Bu -   Ku -   Ku -   Z744: 	опасная вклад I код ист 2866: : 1525: 0.551: 0.71: 0.001: 3547: : 3080: 0.550: 208: 0.555: 0.551: 0.001:	де скороси деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника деточника	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ 4441414 К 4441414 К 5441414 К 6441414 К 6441414 К 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K 64414 K	ра [ QC [доли рхней ст  3198:  3198:  3198:  3198:  0.551: 0.550: 128: 0.71: 0.001: 3475:  3503:  0.550: 226: 0.76: 0.76: 0.76: 0.001:	м/с пДК] гроки в мг/г 3291: : 0.550: 134: 0.71: 0.001: 3459: : 3563: 0.550: 228: 0.82: 0.001:		3443: : 1982: : 0.551: 0.001: 0.001: 3413: : 3680: : 0.555: 0.555: 0.001: 0.001: 0.550: 3413: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.550: : 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.55	3483:: 2052:: 0.551: 0.550: 152: 0.71: 0.001: 0019: 3382:: 3736: 0.550: 0.550: 0.550: 0.93: 0.000: 0019:	2107: 2107: 2107: 0.551: 0.550: 156: 0.71: 0.001: 0019: 3352: 3790: 0.550: 0.550: 0.550: 237: 0.99: 0.000: 0.000: 0019:	2223:  0.551: 0.550: 162: 0.001: 0019:  3315:  3842: 0.550: 0.550: 0.550: 0.99: 0.000: 0.000: 0019:	2344:	2468:	2594 0.551 0.550 182 0.72 0.001 0019 3193  3983  0.550 0.550 246 1.10
y= 2619: x= 1483: Qc: 0.551: Cф: 0.550: фол: 94: Uon: 0.71: Bu: 0.001: Ku: 0019: x= 2718: Qc: 0.551: Cф: 0.550: фол: 189: Uon: 0.71: : Bu: 0.001: Ku: 0019:	Uon-   Bu -   Ku -   Ku -   Constant   Constant     Constant   Constant   Constant     Constant   Constant     Constant   Constant   Constant     Constant   Constant   Constant     Constant   Constant   Constant     Constant   Constant   Consta	ОПАСНАЯ ВКЛАД I КОД ИСТ  100 груг  2866:: 1525: 0.551: 0.5551: 107: 0.001: 0019: 3080:: 0.551: 0.550: 208: 0.71: 0.550: 208: 0.71: 0.001:	2984:  2984:  2984:  1569:  0.551: 0.550: 114: 0.71: 2001: 0.001: 0.550: 216: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71: 0.71:	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ МАЦИИ К МОТО (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	ра [ Qc [долирхней ст Qc [долирхней ст онцентр.  3198:	м/с пПДК] гроки В мг/л 3291: : 1783: : 0.551: 0.550: 134 : 0.71 : 0.001: 0019 : 3563: : 0.550: 228 : 0.82 : 0.001:	Ви   Name of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	3443: : 0.551: 0.550: 148: 0.71: 0.001: 0.0019: 3413: : 3680: 0.550: 233: 0.92: 0.000: 0.0019:	3483:: 2052:	2107:  0.551: 0.550: 156: 0.71: 0.001: 0019:  3352: 3790: 0.550: 237: 0.99: 0.000: 0.000: 0019:	2223:  0.551: 0.550: 162: 0.71: 0.001: 0019:  3315:  3842:  0.550: 239: 0.99: 0.000: 0019:	2344:	2468:	2594  0.551 0.550 182 0.72 0.001 0019 
y= 2619: x= 1483: Qc: 0.551: Cф: 0.550: Bu: 0.001: Ku: 0019: y= 3603: x= 2718: Qc: 0.551: Qc: 0.551: Ku: 0019: x= 2718: y= 3603: y= 3603: y= 3603: y= 3603: y= 3603: y= 3603: y= 3603: y= 3603: y= 3603: y= 3603: y= 3603:	Uon-   Bu -   Ku -   Ku -   2744: 	опасная вклад I код ист по груг 2866:: 1525:: 0.551: 0.550: 107: 3047:: 3080:: 0.550: 208: 0.71: : 0.001: 0.001:	де скоросо источник гочника ппе сумм гочника ппе сумм гочника ппе сумм гочника пле сумм гочника по по по по по по по по по по по по по	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 444 ДЛЯ ВЕ 544 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ ВЕ 545 ДЛЯ В	ра [ Qc [долирхней ст Qc [долирхней ст Онцентр.  3198:	м/с пДК] гроки в мг/г 3291: : 1783: 0.551: 0.550: 134: 0.0019: 3459: : 3563: 0.551: 0.550: 228: 0.82: 228: 0.82:	Ви     Ви     3373:	3443: 1982: 0.551: 0.001: 0.001: 0.001: 0.551: 0.005: 3413: 3680: 3680: 0.5551: 0.5551: 0.550: 233: 0.92: 0.000: 2693:	3483:: 2052:: 0.551: 0.550: 152: 0.71: 0.001: 0.0019:: 3382:: 0.550: 0.550: 235: 0.93: 0.000: 0019:	2107: 2107: 2107: 0.551: 0.550: 156: 0.71: 0.001: 0019: 3352:: 0.550: 0.550: 237: 0.99: 0.000: 0019:	2223:  0.551: 0.550: 162: 0.001: 0019:  3315:: 0.550: 0.550: 239: 0.99: 0.000: 0019:	2344:	2468:  0.551: 0.550: 176: 0.71: 0.001: 0019:  3235:: 0.550: 0.550: 244: 1.08:	2594 0.551 0.550 182 0.72 0.001 0019 3193  0.550 0.550 0.550 1.10
y= 2619: x= 1483: x= 1483: Qc: 0.551: Cф: 0.550: Bu: 0.001: Ku: 0019: y= 3603: y= 2718: Qc: 0.551: Qc: 0.551: Cф: 0.550: bon: 189: Uon: 0.71: Bu: 0.001: Sq: 0.550: bon: 189: Uon: 0.71: Bu: 0.001: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: Sq: 0.550: S	Uon-   Bu -   Ku -   Ku -   Constant   Constant     Constant   Constant   Constant     Constant   Constant     Constant   Constant     Constant   Constant     Constant   Constant   Constant     Constant   Constant     Constant   Constant     Constant   Constant     Co	опасная вклад I код ист по груп 2866:: 1525:: 1525: 0.551: 0.550: 107: 3001: 0.0019:	де скоросо источника гочника ппе суммине суммине суммине суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине по суммине	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ДЕ ДЕ ДРЕ ДРЕ ДРЕ ДРЕ ДРЕ ДРЕ ДРЕ ДРЕ Д	ра [ Qc [долг pxней ст  онцентр.  3198:  1699:  0.551: 0.550: 128: 0.71: 2876:  0.001: 0.550: 226: 0.76: 0.001: 0.001: 2876:  4184:	м/с пПДК] гроки в мг/и 3291: 1783: 0.550: 0.550: 134: 0.71: 0.001: 0.0019: 3459: 0.550: 228: 0.550: 228: 0.001: 0.550: 228: 0.550: 228: 0.550: 228: 0.550:	3373:: 1878:: 0.551: 0.550: 141: 0.71: 0.001: 0019:: 0.550: 230: 0.87: 0.001: 0019: 2757: 4223:	3443: : 0.551: 0.550: 148: 0.71: 0.001: 3413: : 3680: : 0.550: 233: 0.92: 0.000: 0.001: 0.40: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 233: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550:	3483:: 2052:: 0.551: 0.550: 152: 0.71: : 0.001: 0019: 3382:: 3736:: 0.550: 235: 0.93: 0.000: 0019:	2107: 2107: 0.551: 0.550: 156: 0.71: 0.001: 0.0019: 23790: 0.550: 237: 0.99: 0.000: 0.000: 0.0019:	2223:  0.551: 0.550: 162: 0.71: 0.001: 3315: 3842: 0.550: 239: 0.99: 0.000: 0019:	2344:	2468:  0.551: 0.550: 176: 0.71: 0.001: 0019:  3235: 3939: 0.550: 244: 1.08: : : : 2443: 4252:	2594  0.551 0.550 182 0.72 0.001 3193 3983 -0.550 0.550 246 1.10
y= 2619: x= 1483: Qc: 0.551: Cф: 0.550: Фол: 94: Uon: 0.71: Bu: 0.001: Ku: 0019: x= 2718: ————————————————————————————————————	Uon-   Bu -   Ku -   Ku -   2744: 	ОПАСНАЯ ВКЛЯД I КОД ИСТ 1525:	де скоросо источник гочника ппе сумм гочника ппе сумм гочника ппе сумм гочника пле сумм гочника пле сумм гочника пле сумм гочника пле сумм гочника пле сумм гочника пле сумм гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле гочника пле	СТЬ ВЕТ (A В ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛЯ ВЕ ДЛ	ра [ Qc [доли pxней ст  3198:  3198:  1699:  0.551: 0.550: 128: 0.71: 2876:  0.550: 226: 0.76: 0.76: 2876:  4184:  0.550: 0.550:	м/с пДК] гроки в мг/г 3291: 1783: 0.550: 10.550: 134: 0.71: 0.001: 0.001: 0.550: 228: 0.82: 0.82: 0.82: 4205: 4205: 0.550:	3373:	3443:: 0.551: 0.5551: 0.5550: 148: 0.71: 0.001: 0.0019:: 3680:: 0.550: 233: 0.92: 0.000: 0.0019:	3483:: 2052:: 0.551: 0.550: 152: 0.71: : 0.001: 3382:: 3736:: 0.550: 235: 0.000: 0019:	2107: 2107: 0.551: 0.550: 156: 0.71: 0.001: 0.0019: 3352: 3790: 0.550: 237: 0.99: 0.000: 0.000: 2569: 4252: 0.550: 0.550:	2223:  0.551: 0.550: 162: 0.71: 0.001: 3315:  3842: 0.550: 0.550: 239: 0.000: 0.000: 0.000: 2508: 4254: 0.550: 0.550:	2344:	2468:	2594  0.551 0.550 182 0.72 0.001 3193  0.550 0.550 246 1.10

Qc: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550

x= 3511: 3457: 3405: 3347: 3291: 3230: 3172: 3108: 3048: 2984: 2923: 2921: 2858: 2734: 2672:

991:

----:

-----:---:-

973:

975:

991: 1006:

981: 975: 973:

----:

----:----:-

1164: 1129: 1097: 1068: 1043: 1022: 1004:

y=

```
Qc: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550:
Cp : 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550:
Фоп: 325 : 327 : 329 : 332 : 334 : 336 : 338 : 340 : 342 : 344 : 347 : 347 : 349 : 353 : 355 : 
Uoп: 1.28 : 1.28 : 1.28 : 1.27 : 1.26 : 1.26 : 1.25 : 1.24 : 1.23 : 1.21 : 1.19 : 1.19 : 1.11 : 1.08 : 1.07 :
              1022: 1045: 1068: 1099: 1129: 1166: 1202: 1246: 1288: 1338: 1385: 1506: 1627: 1748: 1868:
 y=
             2612: 2553: 2495: 2439: 2385: 2333: 2284: 2236: 2192: 2150: 2112: 2020: 1929: 1837: 1746:
 x=
Qc : 0.550: 0.550: 0.550: 0.550: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551: 0.551:
C \underline{\Phi} \ : \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 \colon \ 0.550 
Φοπ: 358: 0 : 2 : 4 : 7 : 9 : 11 : 13 : 16 : 18 : 21 : 27 : 34 : 42 : 50 : Uoπ: 1.03 : 0.99 : 0.99 : 0.93 : 0.92 : 0.87 : 0.82 : 0.76 : 0.76 : 0.76 : 0.71 : 0.71 : 0.71 : 0.71 : 0.71
Bu : 0.000: 0.000: 0.000: 0.000: 0.000: 0.000: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.00
            1973: 2077: 2132: 2248: 2369: 2493: 2619:
 V=
 x= 1676: 1616: 1587: 1538: 1504: 1486: 1483:
                                                                      ----:-
Qc : 0.551: 0.551: 0.551: 0.551: 0.551: 0.551:
Сф: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550: 0.550:
                                                      67 :
                                                                       74 :
Фоп:
                                   63:
                                                                                          80:
Uon: 0.71 : 0.71 : 0.71 : 0.71 : 0.71 : 0.71
Ви : 0.001: 0.001: 0.001: 0.001: 0.001: 0.001: 0.001:
Ku: 0019: 0019: 0019: 0019: 0019: 0019: 0019:
```

Результаты расчета в точке максимума  $\,$  ПК ЭРА v3.0. Модель: MPK-2014 Координаты точки : X= 1676.0 м, Y= 1973.0 м

Максимальная суммарная концентрация | Cs= 0.5507281 доли ПДКмр|

Достигается при опасном направлении 57 град. и скорости ветра 0.71 м/с

Всего источников: 2. В таблице заказано вкладчиков не более чем с 95% вклада вклады источников

### ПРИЛОЖЕНИЕ 3. СПРАВКИ ПРЕДПРИЯТИЯ

## «КАЗГИДРОМЕТ» РМК

# РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ МИНИСТЕРСТВО ЭКОЛОГИИ И ПРИРОДНЫХ РЕСУРСОВ РЕСПУБЛИКИ КАЗАХСТАН

#### 18.03.2025

- 1. Город -
- 2. Адрес Атырауская область, Исатайский район
- 4. Организация, запрашивающая фон ТОО «ПолисМунайКурылыс»
- Объект, для которого устанавливается фон Проектируемая площадка ГПЭС Разрабатываемый проект - «Работа по процессингу производства
- 6. электроэнергии из ПНГ месторождения «Ю.В.Новобогат» НГДУ «Жайыкмунайгаз», Корректировка»
- Перечень вредных веществ, по которым устанавливается фон: Азота диоксид, Взвеш.в-ва, Диоксид серы, Углерода оксид, Углеводороды,

В связи с отсутствием наблюдений за состоянием атмосферного воздуха в Атырауская область, Исатайский район, выдача справки о фоновых концентрациях загрязняющих веществ в атмосферном воздухе не представляется возможным.

## Приложение-1

## 1 Метеорологическая информация за 2024г. по данным АМС Исатай Исатайского района Атырауской области

## 1. Средняя температура воздуха °С.

	Ι	II	III	ΙΥ	Y	YI	YΠ	YIII	IX	X	XI	XII	Год
-4,	1	-2,1	10,3	-	-	-	-	-	-	-	5,1	-1,6	-

### 2. Влажность воздуха в %.

I	П	III	IΥ	Y	YI	YII	YIII	IX	X	XI	XII	Год
68	85	63	53	43	40	43	38	55	78	88	84	62

## 3. Атмосферное давление в мм рт.ст.

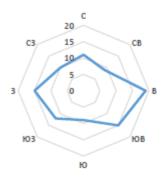
I	II	Ш	IΥ	Y	YI	YΠ	YIII	IX	X	XI	XII	Год
776	767	764	763	762	760	759	761	767	766	762	768	765

### 4. Количество осадков мм, по месяцам и за год.

I	П	Ш	IΥ	Y	YI	YII	YIII	IX	X	XI	XII	Год
3,7	20,3	5,4	20,8	10,7	18,2	12,0	43,7	31,6	33,3	18,9	11,3	229,9

### 5. Среднемесячная и годовая скорость ветра м/сек.

I	П	Ш	IΥ	Y	YI	YII	YIII	IX	X	XI	XII	Год
4,3	4,3	4,8	5,0	5,1	4,5	4,7	4,0	3,2	4,2	4,8	5,4	4,5


### 6. Максимальная и годовая скорость ветра м/сек.

I	П	III	IΥ	Y	YI	YII	YIII	IX	X	XI	XII	Год
17	18	21	20	21	20	19	17	14	19	22	25	25

## 7. Средняя повторяемость направлений ветра и штилей, %:

C	СВ	В	ЮВ	ю	Ю3	3	C3	Штиль
11	9	19	15	9	12	15	10	0

### 8. Роза ветров.



Прилижение №4 и договору № 2024 года

Календарный графия на выполнение работ на процессииту производства электропосрени из ШИГ м/р "ЮВИ" ИГДУ "Жайыкмунайгаз

-1	STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY		(Trans. 200)		FIX DESCRIPTION																							
50 1	parameter bayer beat.	Sinces, sel-	14816, 10960	Ayunta mein			фінраль		MACH		argen			vah		2000		579	HOU			ralas .	mortes		roefys.			ote-
1	fallens sa spoortraary spani SE23 "Walkanayusiras", k t	CONTRA CINCIPAT CONTRACTO DE PRÉSE	eprasion 700 s	Lesk JOHE.	202 EF, 783	Cores	manand	Cores	255-25,55	Cross	83195.33	Cross	manual	Cyvisa	sales, of	Cretes	mores, sil	Cross	scores, ad	Come	nzm,a).	Cress	more.v3	Crrea	far second	Cross	шо-ы,эй	Comm
1	NH	(28167054)	10.57	815 540 OTE 28		hite		638		796		100	146130136	79 40 789 22	1004754.84	79 413 75 53	1.604724.44	79-40-729-53	(401524.41	21 443 759.81	) 894 924 64	79 447 779-73	110410141	29 440 759,53	1 600 104.44	20.643.755.75	1406.024.41	79-417-791
,	10	12.179.329.58	6120	64273201870	1.010.005.01	50 226 167 89	1104-007.00	30225 101.81	1.014.665.05	29/256/90/009	1.074.083.02	39 220 M/CAN	1 004 985 50	39 230 909 89	1 934 (87.0)	30 226 900 88	1.914/2017	10.220.104.83	THE PROPERTY.	51224-9116	1114-007.05	51 J36 NO E0	1004 647 07	51 T34 509.8V	1301000	50.226,501.89	1004/00337	
,	ner	12 (78-220-58	49.50	att the via to	Interested.	EU 216 VIV BY	1101/02/04	10 234 100 49	2 014 685 95	(9.2%-900.89	(19)4 (48)68	59.235-907.85	1074543-04	51/22/19/49	1034 (45.15	No 226-101 99	110418518	50 226 101 88	3 81) 4 (1) 5 (2)	51.151/49/30	1073014143	20220-009.88	1704 (4535	38 235 988 89	131468538	51/224 507 19	100108516	50 225 VET S
	lare	JT 191 RMASH		1 840 995 913.48	1009.078.66	100 453 039,79	2.029.378,14	100-453-819.79	1.025.378.68	100 453 819,70	1009 370136	188 455 829.79	3634294.52	(79 897 879.30)	310429433	179 NF7 ST9636	343828439	(79.89) 576.02	31H2H3	179 897 379.42	нини	178-107-175-31	168425653	\$2,478,788+7.1	343929633	179 887 879,32	3434,294,53	\$19 MIT 57%.
×	age sas			220 039 569.68		13 081 486.27		13 666 69630		12 354 48831		12 054 458.27		31 817 195.63		21 597 19432		11 597 709.53		29.597.709,62		27,567 199,52		21 597 706,52		21 597 769.52		21 297 769.2
,	House c HUIC			1.061 915 423.32		112.50K378.14		111 168 378 36		112 598 279,34		112.548.378.16		201 415 201.04		281 485 200.84		201 402 200.20		201 985 200,64		201 495 200,04		201 dd 20144 (2016)		281 485 28684		311 495 2083



