

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҚОРШАҒАН ОРТАНЫ ҚОРҒАУ МИНИСТІРЛІГІНІҢ 16.03.2012 ж. № 01460Р МЕМЛЕКЕТТІК ЛИЦЕНЗИЯСЫ

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ МИНИСТЕРСТВА ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ РЕСПУБЛИКИ КАЗАХСТАН № 01460P ОТ 16.03.2012 г.

РҰҚСАТ ЕТІЛГЕН ШЫҒАРЫНДЫЛАР НОРМАТИВТЕРІНІҢ (РШН) ЖОБАСЫ НЫСАН ОПЕРАТОРЫ: «ВОСТОКСЕЛЬХОЗПРОДУКТ» ЖШС НЫСАН: «АУЫЛ ШАРУАШЫЛЫҒЫ ӨНІМДЕРІН ӨНДІРУ ЖӘНЕ ӨҢДЕУ»

ПРОЕКТ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ (НДВ) ОПЕРАТОР ОБЪЕКТА: ТОО «ВОСТОКСЕЛЬХОЗПРОДУКТ» ОБЪЕКТ: «ПРОИЗВОДСТВО И ПЕРЕРАБОТКА СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ»

«Востоксельхозпродукт» ЖШС директоры

Директор

ТОО «Востоксельхозпродукт»

С.А. Глушков

«ЭКО2» ЖШС директори Директор ТОО «ЭКО2»

Е.А. Сидякин

Өскемен 2025 Усть-Каменогорск 2025

СПИСОК ИСПОЛНИТЕЛЕЙ

Ведущий специалист Л. С. Китаева

Инженер-эколог Н. Л. Лелекова

Инженер-эколог А. М. Мұратова

Инженер-эколог Ю. П. Солохина

Инженер-землеустроитель К. И. Измайлова

Инженер-эколог А. С. Кушнер

КИДАТОННА

Настоящий проект нормативов допустимых выбросов (НДВ) ТОО «Востоксельхозпродукт» для объекта «Производство и переработка сельскохозяйственной продукции» разработан на 2026 – 2035 гг., в составе заявки на получение экологического разрешения на воздействие для объектов II категории, в связи с окончанием срока действия Разрешения на эмиссии в окружающую среду №КZ38VDD00063229 от 29.11.2016 года.

Также, с целью оптимизации экологической документации, в рамках настоящего проекта НДВ учтены источники выбросов, включенные в действующее Разрешение на эмиссии В окружающую среду №KZ27VDD00157517 от 28.12.2020 года. Поскольку вышеупомянутые производственной Разрешения относятся К одной площадке, предусмотрено их объединение в одно экологическое разрешение.

Согласно решению по определению категории объекта, оказывающего негативное воздействие на окружающую среду, выданному РГУ «Департамент экологии по Восточно-Казахстанской области» КЭРК МЭГПР РК от 12.09.2021 г. (предоставлено в приложении К) для объекта «ВОСТОКСЕЛЬХОЗПРОДУКТ» определена ІІ категория объекта.

Проект выполнен по данным инвентаризации источников выбросов, проведенной по состоянию работы предприятия на 03.10.2015 г. Бланки инвентаризации представлены в приложении А.

В ходе инвентаризации выявлено следующее:

- маслоцех №1 (ист. №№0001, 0002, 0003, 0004, 0005, 0006, 6001, 6002, 6003, 6004, 6005) ликвидирован и указанные источники выбросов ликвидированы соответвенно.
- маслоцех №2 (ист. №№0009, 0010, 0011, 0012, 0013, 6022, 6023) ликвидирован и указанные источники выбросов 3B ликвидированы соответвенно.
- цех выщелачивания (ист. №№0014, 0015, 0016, 0017, 0018, 0019, 020, 6028, 6029, 6030, 6031, 6032, 6033) ликвидирован и указанные источники выбросов ЗВ ликвидированы соответвенно.
- цех рафинации, дезодорации, розлива и фасовки подсолнечного масла ликвидирован.
- котельная для цеха рафинации (ист. 0026, 6044, 6045) ликвидирована и указанные источники выбросов ЗВ ликвидированы соответвенно.

По данным инвентаризации выбросов вредных веществ в атмосферу и их источников (представлена в приложении А), на объекте в целом на момент инвентаризации действуют 44 источников выбросов вредных веществ, из них 15 организованных и 29 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 30 наименований загрязняющих веществ.

На площадке №1 на момент инвентаризации действуют 28 источников выбросов вредных веществ, из них 9 организованных и 19 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 15 наименований загрязняющих веществ.

На площадке №2 на момент инвентаризации действуют 16 источников выбросов вредных веществ, из них 6 организованных и 10 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 26 наименований загрязняющих веществ.

Адрес места нахождения ЮЛ: Восточно-Казахстанская область, Шемонаихинский район, Первомайская С.О., С.Первомайский, улица Полевая, 1/4.

В рамках настоящего ПДВ рассматриваются две промышленные площадки, расположенные в п.Первомайский:

- Площадка №1, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Полевая, 1;
- Площадка №2, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Скоростная, 4.

Основной деятельностью предприятия является производство подсолнечного масла.

Расчет валовых и максимально разовых выбросов загрязняющих веществ проводился с использованием удельных показателей, т.е. количества выделяемых загрязняющих веществ, приведенных к единицам используемого оборудования, массы расходуемых материалов.

В рамках рассматриваемого НДВ внесены изменения в годовой расход топлива:

- Шелуха в качестве топлива исключена;
- Снижен расход лузги на 1720 тонн в год. Ранее расход лузги составлял 4720 тонн в год в целом по объекту, на данный момент принят расход 3000 т/год;
- Увеличен расход угля на 615 тонн в год. Ранее расход угля составлял 3185 тонн в год в целом по объекту, на данный момент принят расход 3800 т/год.

Практика эксплуатации показала, что использование угля является более эффективным по сравнению с лузгой. Уголь обладает более высокой теплотворной способностью и стабильными показателями сгорания, что обеспечивает устойчивый тепловой режим работы котельного оборудования и повышает энергетическую эффективность процессов. Лузга же, напротив, характеризуется низшей теплотворной способностью и нестабильностью горения, что приводит к увеличению объема несгоревших остатков, необходимости более частой очистки топок и снижению КПД оборудования.

Действующие нормативы выбросов ЗВ согласно Разрешению на эмиссии в окружающую среду №КZ38VDD00063229 от 29.11.2016 года составляют 153,6908522 т/год, а согласно Разрешению на эмиссии в окружающую среду №КZ27VDD00157517 от 28.12.2020 года — 237,30501 т/год. В совокупности действующие нормативы выбросов ЗВ по рассматриваемому объекту составляют 390,9958622 т/год.

Объем выбросов вредных веществ в атмосферу от рассматриваемого объекта ожидается: 370.3122602 т/год, в том числе твердые — 151.708948 т/год, жидкие и газообразные — 218.6033122 т/год. Нормируемые выбросы ожидаются: 368.8025782 т/год, из них твердые 151.704648 т/год, жидкие и газообразные 217.0979302 т/год. Выбросы, не подлежащие нормированию ожидаются: 1.509682 т, из них твердые 0.0043 т, жидкие и газообразные 1.505382 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Объем выбросов вредных веществ в атмосферу от площадки №1 ожидается: 365.885188 т/год, в том числе твердые — 150.673188 т/год, жидкие и газообразные — 215.212 т/год. Нормируемые выбросы ожидаются: 365.356788 т/год, из них твердые 150.672488 т/год, жидкие и газообразные 214.6843 т/год. Выбросы, не подлежащие нормированию ожидаются: 0.5284 т, из них твердые 0.0007 т, жидкие и газообразные 0.5277 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Объем выбросов вредных веществ в атмосферу от площадки №2 ожидается: 4.4270722 т/год, в том числе твердые -1.03576 т/год, жидкие и газообразные -3.3913122 т/год. Нормируемые выбросы ожидаются: 3.4457902 т/год, из них твердые 1.03216 т/год, жидкие и газообразные 2.4136302 т/год. Выбросы, не подлежащие нормированию ожидаются: 0.981282 т, из них твердые 0.0036 т, жидкие и газообразные 0.977682 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Таким образом, по сравнению с действующими нормативами ожидается снижение объема нормируемых выбросов на 22,193284 т/год.

СОДЕРЖАНИЕ	стр
ВВЕДЕНИЕ	8
1 ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ	10
1.1 Карта-схема объекта с нанесенными на нее источниками	10
выбросов загрязняющих веществ в атмосферу	10
1.2 Ситуационная карта – схема района размещения объекта	11
2 ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА	10
ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ	12
2.1 Краткая характеристика технологии производства и	1.6
технологического оборудования	16
2.2 Краткая характеристика существующих установок очистки газов,	
укрупненный анализ их технического состояния и эффективности	28
работы	
2.3 Оценка степени применяемой технологии, технического и	
пылегазоочистного оборудования передовому научно-техническому	28
уровню в стране и мировому опыту	
2.4 Перспектива развития	29
2.5 Параметры выбросов загрязняющих веществ в атмоферу для	20
расчета НДВ	29
2.6 Характеристика аварийных и залповых выбросов	55
2.7 Перечень загрязняющих веществ, выбрасываемых в атмосферу	55
2.8 Обоснование полноты и достоверности исходных данных,	
принятых для расчетов нормативов НДВ	63
3 ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ	64
3.1 Метеорологические характеристики и коэффициенты,	
определяющие условия рассеивания загрязняющих веществ в	64
атмосфере	
3.2 Результаты расчетов уровня загрязнения атмосферы	64
3.3 Предложения по нормативам допустимых выбросов по каждому	7.6
источнику и ингредиенту	76
3.4 Обоснование возможности достижения нормативов с учетом	
использования молоотходной технологии и других планируемых	112
мерориятий	
3.5 Уточнение границ области воздействия объекта	112
3.6 Данные о пределах области воздействия	112
3.7 Информация о расположении зоны заповедников, музеев,	
памятников архитектуры в районе расмещения объекта	112
4 МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ	110
НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯ	113
5 КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ	4.4.4
ДОПУСТИМЫХ ВЫБРОСОВ	114
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	126
ПРИЛОЖЕНИЕ А	128
ПРИЛОЖЕНИЕ Б	156

ПРИЛОЖЕНИЕ В	237
ПРИЛОЖЕНИЕ Г	239
ПРИЛОЖЕНИЕ Д	240
ПРИЛОЖЕНИЕ Е	242
ПРИЛОЖЕНИЕ Ж	257
ПРИЛОЖЕНИЕ 3	260
ПРИЛОЖЕНИЕ И	283
ПРИЛОЖЕНИЕ К	346
ПРИЛОЖЕНИЕ Л	348

ВВЕДЕНИЕ

Настоящий проект нормативов допустимых выбросов (НДВ) ТОО «Востоксельхозпродукт» для объекта «Производство и переработка сельскохозяйственной продукции» разработан на 2026 – 2035 гг., в составе заявки на получение экологического разрешения на воздействие для объектов II категории, в связи с окончанием срока действия Разрешения на эмиссии в окружающую среду №КZ38VDD00063229 от 29.11.2016 года.

Также, с целью оптимизации экологической документации, в рамках настоящего проекта НДВ учтены источники выбросов, включеные в действующее Разрешение на эмиссии в окружающую среду №КZ27VDD00157517 от 28.12.2020 года. Поскольку вышеупомянутые Разрешения относятся к одной производственной площадке, предусмотрено их объединение в одно экологическое разрешение.

Согласно ст. 39 Экологического кодекса РК /1/, к проектам нормативов эмиссий относятся нормативы допустимых выбросов загрязняющих веществ, а также нормативы допустимых сборосов.

Учитывая, что сброс загрязняющих веществ не предусматривается, в настоящем проекте отражены исключительно предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ в атмосферный воздух.

Нормативы допустимых выбросов устанавливаются для отдельного стационарного источника и (или) совокупности стационарных источников, входящих в состав объекта I или II категории, расчетным путем с применением метола моделирования рассеивания приземных концентраций загрязняющих веществ с таким условием, чтобы общая нагрузка на атмосферный воздух в пределах области воздействия не приводила к нарушению установленных экологических нормативов качества окружающей среды или целевых показателей окружающей среды.

Основными нормативными документами для расчёта нормативов допустимых выбросов явились:

- Экологический кодекс Республики Казахстан от 2 января 2021 года N 400-VI /1/;
- «Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий». Приложение № 12 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө/3/;
- «Методика определения нормативов эмиссий в окружающую среду», утвержденная приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63/7/.

Настоящий проект НДВ выполнен ТОО «ЭКО2», государственная лицензия МООС № 01460Р от 16.03.2012 года (представлена в приложении

Ж), тел. 8 (7232) 402-842, +7 708 440 28 42, +7 777 256 26 84, email: eco2@eco2.kz, web: www.eko2.kz.

1 ОБЩИЕ СВЕДЕНИЯ ОБ ОПЕРАТОРЕ

Наименование юридического лица (ЮЛ) оператора объекта: ТОО «ВОСТОКСЕЛЬХОЗПРОДУКТ».

Адрес места нахождения ЮЛ: Восточно-Казахстанская область, Шемонаихинский район, Первомайская С.О., С.Первомайский, улица Полевая, 1/4.

БИН: 000140002188.

Директор: Глушков Сергей Алексеевич.

Основной деятельностью предприятия является производство подсолнечного масла.

В рамках настоящего НДВ рассматриваются две промышленные площадки, расположенные в п.Первомайский:

- Площадка №1, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Полевая, 1;
- Площадка №2, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Скоростная, 4.

Согласно решению по определению категории объекта, оказывающего негативное воздействие на окружающую среду, выданному РГУ «Департамент экологии по Восточно-Казахстанской области» КЭРК МЭГПР РК от 12.09.2021 г. (предоставлено в приложении К) для объекта «ВОСТОКСЕЛЬХОЗПРОДУКТ» определена ІІ категория объекта.

1.1 Карта-схема объекта с нанесенными на нее источниками выбросов загрязняющих веществ в атмосферу

В приложении В представлены карты-схемы площадок предприятия, с указанием номеров источников выбросов загрязняющих веществ.

По данным инвентаризации выбросов вредных веществ в атмосферу и их источников (представлена в приложении А), на объекте в целом на момент инвентаризации действуют 44 источников выбросов вредных веществ, из них 15 организованных и 29 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 30 наименований загрязняющих веществ.

На площадке №1 на момент инвентаризации действуют 28 источников выбросов вредных веществ, из них 9 организованных и 19 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 15 наименований загрязняющих веществ.

На площадке №2 на момент инвентаризации действуют 16 источников выбросов вредных веществ, из них 6 организованных и 10 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 26 наименований загрязняющих веществ.

1.2 Ситуационная карта – схема района размещения объекта

В приложении Г представлена ситуационная карта—схема площадок предприятия с указанием на ней селитебных территорий.

В рамках настоящего НДВ рассматриваются две промышленные площадки, расположенные в п.Первомайский:

- Площадка №1, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Полевая, 1;
- Площадка №2, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Скоростная, 4.

Согласно положительному санитарно-эпидемиологическому заключению №109 от 10.11.2016 года (представлено в приложении Л), СЗЗ для площадки №1 составляет 100 м, для площадки №2 — СЗЗ 100 м, предприятие относится к IV классу опасности.

Ближайшая жилая зона к площадке №1 находится с юго-западной и южной сторон на расстоянии 200 и 300 м соответственно.

Ближайшая жилая зона к площадке №2 находится с юго-западной стороны на расстоянии 700 м.

Согласно результатов расчета приземных концентраций загрязняющих веществ, создаваемых предприятием, превышений ПДКм.р. на границе санитарно-защитной зоны (СЗЗ) и в жилой зоне нет.

2 ХАРАКТЕРИСТИКА ОПЕРАТОРА КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

В рамках настоящего НДВ рассматриваются две промышленные площадки, расположенные в п.Первомайский:

- Площадка №1, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Полевая, 1;
- Площадка №2, расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Скоростная, 4.

По данным инвентаризации выбросов вредных веществ в атмосферу и их источников (представлена в приложении А), на объекте в целом на момент инвентаризации действуют 44 источников выбросов вредных веществ, из них 15 организованных и 29 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 30 наименований загрязняющих веществ.

На площадке №1 на момент инвентаризации действуют 28 источников выбросов вредных веществ, из них 9 организованных и 19 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 15 наименований загрязняющих вешеств.

На площадке №2 на момент инвентаризации действуют 16 источников выбросов вредных веществ, из них 6 организованных и 10 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 26 наименований загрязняющих вешеств.

В таблице 2.1 представлена информация об источниках выбросов загрязняющих веществ соответствии c Разрешением В №KZ38VDD00063229 Разрешением ОТ 29.11.2016 гола И №KZ27VDD00157517 от 28.12.2020 года, а также актуализированные инвентаризации источников ПО результатам выбросов. сведения проведённой по состоянию на 03.10.2015 года.

Таблица 2.1 – Информация об источниках выбросов загрязняющих

	· 1	1	1	
№	Источники выбросов ЗВ,	Источники выбросов ЗВ,	Источник	си выбросов ЗВ,
Π/Π	согласно Разрешению	согласно Разрешению	данным (от 03.10.2015 г.
	№KZ38VDD00063229 от	№KZ27VDD00157517 от		
	29.11.2016 года	28.12.2020 года		
	Номер источника	Номер источника	Номер	Статус
			источника	
1	2	3	4	5
		<u>Площадка №1</u>		
Мас.	лоцех №1			
1	0001		0001	ликвидирован
2	0002		0002	ликвидирован
3	0003		0003	ликвидирован
4	0004		0004	ликвидирован
5	0005		0005	ликвидирован

Продолжение таблицы 2.1 – Информация об источниках выбросов загрязняющих

1	2	3	4	5
6	0006		0006	ликвидирован
7	6001		6001	ликвидирован
8	6004		6004	ликвидирован
9	6005		6005	ликвидирован
10	6002 - законсервирован		6002	ликвидирован
11	6003 - законсервирован		6003	ликвидирован
Cmo	лярное отделение		ı	,, 1
12	6006		6006	действующий
Тока	рное отделение		•	<u>,</u>
13	6007		6007	действующий
Цем	ентные работы			
14	6008		6008	действующий
15	6009		6009	действующий
Цух	сушки			
16	0007		0007	действующий
17	0008		0008	действующий
18	6016		6016	действующий
19	6017		6017	действующий
20	6015 - законсервирован		6015	законсервирован
Скла	ад подсолнечника № 1			
21	6014		6014	действующий
Скла	ад подсолнечника № 2			
22	6018		6018	действующий
Скла	ад подсолнечника № 3			
23	6019		6019	действующий
Скла	ад подсолнечника № 4			
24	6020		6020	действующий
Скла	ад подсолнечника № 5			
25	6025		6025	действующий
Скла	ад подсолнечника № 6			
26	6026		6026	действующий
Скла	ад подсолнечника № 7			
27	6034		6034	действующий
Скла	дд подсолнечника № 8			
28	6035		6035	действующий
Скла	ад подсолнечника № 9			
29	6036		6036	действующий
	лоцех №2		T	
30	0009		0009	ликвидирован
31	0010		0010	ликвидирован
32	0011		0011	ликвидирован
33	0012		0012	ликвидирован
34	0013		0013	ликвидирован
35	6022		6022	ликвидирован
36	6023 - законсервирован		6023	ликвидирован
	выщелачивания		Ι	T
37	0014		0014	ликвидирован
38	0015		0015	ликвидирован
39	0016		0016	ликвидирован

Продолжение таблицы 2.1 – Информация об источниках выбросов загрязняющих

	лишонкиски		1 .	T
1	2	3	4	5
40	0017		0017	ликвидирован
41	0018		0018	ликвидирован
42	0019		0019	ликвидирован
43	0020		0020	ликвидирован
44	6031		6031	ликвидирован
45	6032		6032	ликвидирован
46	6033		6033	ликвидирован
Kom	ельная для цеха рафинации	!		
47	0026		0026	ликвидирован
48	6044		6044	ликвидирован
49	6045		6045	ликвидирован
	остоянки			
50	6046		6046	действующий
51	6047		6047	действующий
	попрессовой цех			
52		6051	6051	действующий
53		0031	0031	действующий
54		0032	0032	действующий
55		0033	0033	действующий
56		0034	0034	действующий
57		0035	0035	действующий
	поэкстрационный цех			
58		0036	0036	действующий
	ельная			
59		0037	0037	действующий
60		6052	6052	действующий
		<u>Площадка №2</u>		
Гара			T	
61	6037		6037	действующий
	ая стоянка		T	
62	6038		6038	действующий
	онтная мастерсткая		T -0.50	
	6039		6039	действующий
64	0022		0022	действующий
65	6040		6040	действующий
66	6042		6042	действующий
67	6043		6043	действующий
АБК			T a a a -	
68	0023		0023	действующий
	рытая автостоянка		T -0.11	
69	6041		6041	действующий
	ιδ ΓCM		10027	
70	0027		0027	действующий
71	0028		0028	действующий
72	0029		0029	действующий
73	0030		0030	действующий
74	6048		6048	действующий

Окончание таблицы 2.1 – Информация об источниках выбросов загрязняющих

1	2	3	4	5
75	6049		6049	действующий
76	6050		6050	действующий

По данным инвентаризации выбросов вредных веществ в атмосферу и их источников (представлена в приложении А), на объекте в целом на момент инвентаризации действуют 44 источников выбросов вредных веществ, из них 15 организованных и 29 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 30 наименований загрязняющих веществ.

На площадке №1 на момент инвентаризации действуют 28 источников выбросов вредных веществ, из них 9 организованных и 19 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 15 наименований загрязняющих веществ.

На площадке №2 на момент инвентаризации действуют 16 источников выбросов вредных веществ, из них 6 организованных и 10 неорганизованных источников выбросов загрзняющих веществ, выбрасывающих в общей сложности 26 наименований загрязняющих веществ.

Объем выбросов вредных веществ в атмосферу от рассматриваемого объекта ожидается: 370.3122602 т/год, в том числе твердые — 151.708948 т/год, жидкие и газообразные — 218.6033122 т/год. Нормируемые выбросы ожидаются: 368.8025782 т/год, из них твердые 151.704648 т/год, жидкие и газообразные 217.0979302 т/год. Выбросы, не подлежащие нормированию ожидаются: 1.509682 т, из них твердые 0.0043 т, жидкие и газообразные 1.505382 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Объем выбросов вредных веществ в атмосферу от площадки №1 ожидается: 365.885188 т/год, в том числе твердые — 150.673188 т/год, жидкие и газообразные — 215.212 т/год. Нормируемые выбросы ожидаются: 365.356788 т/год, из них твердые 150.672488 т/год, жидкие и газообразные 214.6843 т/год. Выбросы, не подлежащие нормированию ожидаются: 0.5284 т, из них твердые 0.0007 т, жидкие и газообразные 0.5277 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Объем выбросов вредных веществ в атмосферу от площадки №2 ожидается: 4.4270722 т/год, в том числе твердые -1.03576 т/год, жидкие и газообразные -3.3913122 т/год. Нормируемые выбросы ожидаются: 3.4457902 т/год, из них твердые 1.03216 т/год, жидкие и газообразные 2.4136302 т/год. Выбросы, не подлежащие нормированию ожидаются: 0.981282 т, из них твердые 0.0036 т, жидкие и газообразные 0.977682 т.

Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

2.1 Краткая характеристика технологии производства и технологического оборудования с точки зрения загрязнения атмосферы

Основной деятельностью предприятия является производство подсолнечного масла.

Площадка №1

Столярное отделение (ист. 6006)

В столярном отделении установлены два деревообрабатывающих станка: строгальный станок (время работы — 292 ч/год); циркулярная пила (время работы — 292 ч/год). При работе деревообрабатывающих станков происходит выделение пыли древесной. Выброс происходит неорганизованно через оконные и дверные проёмы (ист. 6006).

Токарное отделение (ист. 6007)

токарном отделении установлены следующие металлообрабатывающие станки: два токарных станка (время работы каждого -260 ч/год), продольно-фрезерный станок (время работы -260ч/год), сверлильный станок (время работы – 260 ч/год), отрезной станок (время работы – 260 ч/год), заточной станок с диаметром абразивного круга d=250 мм (время работы -260 ч/год), пресс (время работы -260ч/год). В процессе работы пресса выделение загрязняющих веществ не металлообрабатывающих происходит. При работе других происходит выделение взвешенных частиц и пыли абразивной. Выброс загрязняющих веществ происходит неорганизованно через проем ворот (ист. 6007).

Цементные работы (ист. 6008, 6009)

Для строительных и ремонтных нужд предприятия установлена бетономешалка. Загрузка производится вручную. В процессе ремонтных работ применяется цемент — $26\,$ т/год, щебень — $65\,$ т/год, песок — $65\,$ т/год. Во время загрузки цемента, щебня, песка в смеситель происходит выброс пыли неорганической с содержанием $SiO_2\,$ 70-20 %. Выброс пыли осуществляется неорганизованно непосредственно в атмосферу (ист. 6008).

Инертные материалы (песок и щебень), необходимые для приготовления раствора, хранятся на складе. Цемент хранится в мешках, выделение загрязняющих веществ при этом не происходит. Склад песка и щебня находятся на специальной забетонированной площадке открытой с четырех сторон общим размером 10 м² (по 5 м² для одного вида строительного материала). Всего через склад проходит 65 т/год песка и 65

т/год щебня. Процесс формирования и хранения инертных материалов обуславливает выделение в атмосферный воздух пыли неорганической с содержанием SiO_2 70 - 20%. Источник выброса неорганизованный (ист. 6009).

Цех сушки (ист. 0007, 0008, 6016, 6017) (ист. 6015 — законсервирован)

Семена подсолнечника с повышенной влажностью в количестве 12000 т/год доставляются в завальную яму цеха сушки автотранспортом. В процессе разгрузочных работ происходит выделение пыли зерновой. Выброс загрязняющих веществ происходит неорганизованно (ист. 6016).

Подсолнечник из приемной ямы при помощи нории подается в машину предварительной очистки МПО – 30. После очистки подсолнечник в объеме 4600 т поступает на склады №1 и №2 для его временного хранения, а подсолнечник в объеме 6400 т поступает в зерносушилку. Также на зерносушилку поступает и подсолнечник, находящийся на временном хранении в складах №1 и №2. После сушки подсолнечник поступает в отгрузочный бункер, откуда с помощью автотранспорта вывозится для дальнейшего использования. В процессе технологической транспортировки подсолнечника происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6017).

Сушка производится при помощи двух теплогенераторов. В них установлены горелки, работающие на дизтопливе. Общий годовой расход дизельного топлива для теплогенераторов составляет 120 т/год (по 60 т/год на один теплогенератор). Дизельное топливо для теплогенераторов хранится в герметичной расходной емкости, выбросы при этом отсутствуют. В процессе сжигания дизельного топлива в атмосферу выделяются следующие загрязняющие вещества: сажа, диоксид серы, углерод оксид, оксид азота и диоксид азота. Источники выброса организованные, выделение загрязняющих веществ происходит через трубы диаметром 0,3 м на высоте 8 м (ист. 0007, 0008).

Склад подсолнечника № 1 (ист. 6014)

С цеха сушки после предварительной очистки подсолнечник поступает на склад №1 для временного хранения, далее подсолнечник отправляется на сушку в цех сушки. На хранение поступает до 4000 т подсолнечника в год. Склад расположен в закрытом с четырех сторон помещении площадью 385 м². В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6014).

Склад подсолнечника № 2 (ист. 6018)

С цеха сушки после предварительной очистки подсолнечник поступает на склад №2 для временного хранения, далее подсолнечник

отправляется на сушку в цех сушки. На хранение поступает до 1600 т семян подсолнечника в год. Склад расположен в закрытом с четырех сторон помещении общей площадью 385 м². В процессе разгрузочнопогрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6018).

Склад подсолнечника № 3 (ист. 6019)

Склад расположен в закрытом с четырех сторон помещении общей площадью 348 м². На хранение поступает до 1600 т семян подсолнечника в год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6019).

Склад подсолнечника № 4 (ист. 6020)

Склад расположен в закрытом с четырех сторон помещении общей площадью 587 м². На хранение поступает до 1600 т семян подсолнечника в год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение зерновой пыли. Источник выброса неорганизованный (ист. 6020).

Склад подсолнечника № 5 (ист. 6025)

Склад расположен в закрытом с четырех сторон помещении общей площадью 521 м². На хранение поступает до 1600 т семян подсолнечника в год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6025).

Склад подсолнечника № 6 (ист. 6026)

Склад расположен в закрытом с четырех сторон помещении общей площадью 393 м². На хранение поступает до 1600 т семян подсолнечника в год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6026).

Склад подсолнечника № 7 (ист. 6034)

Склад расположен в закрытом с четырех сторон помещении общей площадью 912 м². На хранение поступает до 1600 т семян подсолнечника в год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6034).

Склад подсолнечника № 8 (ист. 6035)

Склад расположен в закрытом с четырех сторон помещении общей площадью 879 m^2 . На хранение поступает до 1600 т семян подсолнечника в

год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6035).

Склад подсолнечника №9 (ист. 6036)

Склад расположен в закрытом с четырех сторон помещении общей площадью 1001 м². На хранение поступает до 1600 т семян подсолнечника в год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение зерновой пыли. Источник выброса неорганизованный (ист. 6036).

Автостоянки (ист. 6046, 6047)

На территории цеха рафинации имеются две автостоянки. Автостоянка №1 рассчитанная на восемь единиц грузовых автомобилей (бензин). При работе ДВС автотранспорта в атмосферу выделяются оксид углерода, бензин, сернистый ангидрид, оксид азота и диоксид азота. Выброс происходит неорганизованно непосредственно в атмосферу (ист. 6046).

Автостоянка №2 рассчитанная на пять единиц грузовых автомобилей (дизель). При работе ДВС автотранспорта в атмосферу выделяются оксид углерода, керосин, сажа, сернистый ангидрид, оксид азота и диоксид азота. Выброс происходит неорганизованно непосредственно в атмосферу (ист. 6047).

Административно-бытовой корпус

Здание предназначено для размещения в них помещений социальных служб предприятия. К сфере обслуживания трудящихся относятся помещения бытового назначения, а помещения, предназначенные для управления производством и его развития — административным. На данном участке выброс загрязняющих веществ не происходит.

Маслопрессовой цех

Сырьем для производства растительного масла служат семена подсолнечника. По содержанию масла семена подсолнечника относятся к высокомасличной группе.

Плод подсолнечника - семянка, состоит из кожуры (лузги) и белого семени (ядра), покрытого семенной оболочкой. На долю лузги приходится 22-56% от общей массы семянки. Содержание масла в семенах подсолнечника превышает 50 % и в чистом ядре составляет 70%.

Мощность производства маслопрессового цеха составляет 300 т/сут. (переработка сырья - семена подсолнечника). Режим работы маслопрессового цеха - 24 часа (3 смены по 8 часов), 7 дней в неделю.

Подземный загрузочный бункер (ист. 6051)

Семена подсолнечника поступают из зернохранилища, взвешиваются и ссыпаются в подземный загрузочный бункер находящийся в крытом ангаре. Суточная производительность — 300 т/сут. Годовая производительность составит 109500 т/год. При ссыпании сырья (семян) в подземный бункер происходит выброс взвешенных частиц. Выброс загрязняющих веществ происходит неорганизованно через проём ворот (ист. 6051).

Очистка семян от примесей (ист. 0031, 0032)

Из загрузочного бункера сырье поступает на подающий скребковый конвейер, а затем ковшовым элеватором (нория) подается на вибросито, которое используется для предварительного удаления примесей. Скребковый конвейер представляет собой закрытый металлический короб прямоугольного сечения, состоящий из отдельных последовательно соединенных секций. При транспортировке семян скребковым конвейером выделение пыли не происходит. Далее сырье поступает в ковшовый элеватор (нория). Ковшовый элеватор с загрузочным и разгрузочным патрубками выполнены в стальном герметичном кожухе, таким образом, процесс транспортирования сырья ковшовым элеватором выделением пыли не сопровождается.

Методом отсеивающих движений вибросито тщательно удаляет как тяжёлые, так и лёгкие примеси и пыль. Примеси больших размеров удаляются через выпускное отверстие. Лёгкие примеси, пыль проходят через вертикальную всасывающую трубу и удаляются через систему вентиляции: циклонный пылесборник с воздушным шлюзом, вентилятор для удаления пыли. Эффективность очистки циклонного пылесборника 92%. При очистке семян от примесей на вибросите происходит выделение взвешенных частиц. Удаление загрязненного воздуха осуществляется при помощи вентиялтора производительностью 12000 м³/час, через трубу диамтром 500 мм на высоте 15,95 м (ист. 0031).

Далее семена подсолнечника пропускают через магнитный сепаратор, предназначенный для отделения металлов от основной смеси, после чего сырье поступает в гравитационную камнеотборочную машину, используемую для непрерывного удаления камня, что является одним из ключевых аспектов в производстве. В процесс удаления металлов из сырья выброс пыли не происходит, оборудование применяется закрытого типа. Удаления пыли от камнеотборочной машины осуществляется при помощи аспирационной системы оборудованной циклонным пылесборником с воздушным шлюзом и вентилятором для удаления камня. Эффективность очистки циклонного пылесборника составляет 92%. При очистке семян от камня происходит выделение взвешенных частиц. Удаление загрязненного воздуха осуществляется при помощи вентиялтора производительностью 23520 м³/час, через трубу диамтром 680 мм на высоте 15,76 м (ист. 0032).

Шелушение сырья (ист. 0033, 0034)

Очищенные от примесей семена подсолнечника по горизонтальным винтовым конвейерам и ковшовому элеватору подаются в устройство для шелушения. Транспортирующие устройства используются закрытого типа, в связи с чем, на данном этапе выброс пыли не происходит.

Для шелушения семян применяется шелушитель DGBB-2280 с приемным бункером (2 шт.). В процессе шелушения семян происходит выделение взвешенных частиц. Очистка загрязненного воздуха осуществляется при помощи циклона MGXG-205 с эффективностью очистки 92%. Выброс пыли происходит организованно с помощью вентилятора производительность 19300 м³ через трубу диаметром 500 мм на высоте 14,27 м (ист. 0033).

Для разделения лузги и ядра подсолнечника используется малогабаритный рассев MPAQ-210M и сепаратор лузги LACBSMA. В процессе работы оборудования будут выделяться взвешенные частицы. Очистка загрязненного воздуха осуществляется при помощи циклона MGXG-150 с эффективностью очистки 92%. Выброс пыли происходит организованно с помощью вентилятора производительность 19300 м³ через трубу диаметром 700 мм на высоте 14,42 м (ист. 0034).

Лузга закрытым транспортером подаётся на котельную. На котельной лузга совместно с углем сжигается в котле.

Маслопрессование (ист. 0035)

Ядро подсолнечника, по горизонтальному скребковому конвейеру, поступает в горизонтальный смягчающий бак (увлажнитель сырья). Избыточная влага удаляется при помощи влагопоглощающего вентилятора. При транспортировке ядра в смягчающий бак выделение пыли не происходит, оборудование герметичное.

Увлажненное сырье подается в гидравлический паропрокатный станок, где происходит измельчение массы. Далее мятка (измельченная масса) поступает в установку вертикальной варки, в которой за счет влажностно-тепловой обработки достигается оптимальная пластичность продукта и создаются условия для облегчения отжима масла на прессах. В результате такой обработки мятка превращается в мезгу, подготовленную к отжиму масла. На данном этапе выброс загрязняющих веществ не происходит.

Далее мезга попадает в маслобойные прессы (4 шт.). Масло отжимается, а прессуемый материал уплотняется в монолитную массужмых. В процессе отжима масла из мезги происходит выделение акролеина. Выброс загрязняющего вещества происходит организованно с помощью крышного вентилятора ВКР 4,5-0-Ф производительностью 5407 м³/час через трубу диаметром 500 мм на высоте 14,37 м (ист. 0035)

Так как прессовым способом невозможно добиться полного обезжиривания мезги, получаемый жмых направляется на дальнейшую обработку в маслоэкстракционный цех.

Полученное масло поступает в автоматическое шлакоудаляющее устройство (бак-отстойник), затем масло проходит фильтрацию и направляется в бак для чистого сырого масла.

Кроме того, на всем предприятии в качестве моющих и дезинфицирующих средств применяют современные средства нового поколения, экологически безопасные и эффективные. Применение таких дезсредств не сопровождается выделением вредных веществ.

Маслоэкстракционный цех (ист. 0036)

Мощность производства маслоэкстракционного цеха составляет 150 т/сут (переработка сырья - жмых). Режим работы маслоэкстракционного цеха - 24 часа (3 смены по 8 часов), 7 дней в неделю.

С помощью транспортера на экстрактор подается экстрагируемый материал - жмых. Подача осуществляется герметичным конвейером. В процессе транспортировки жмыха выделений загрязняющих веществ не происходит.

В процессе экстракции используется специальный органический растворитель - гексан. Масло, которое находится на поверхности вскрытых клеток, при «омывании» растворителем, легко растворяется в нем. Значительное количество масла находится внутри невскрытых клеток. Извлечение этого масла требует проникновения растворителя внутрь клетки и выхода растворителя наружу. Таким образом, в результате экстракции получают раствор масла в растворителе - мисцелла, и обезжиренный материал - шрот.

Шрот, получаемый на выходе, с помощью транспортера подается в десольвентайзер. Здесь происходит удаление растворителя из шрота. Полученные пары растворителя конденсируют и проводят их рекуперацию для перевода растворителя в жидкое состояние.

Выходящая из экстрактора мисцелла может содержать от 15 до 35% масла, растворенного в экстрагенте, а также некоторые примеси. Обработку мисцеллы проводят в две стадии: очистка мисцеллы, отгонка растворителя - дистилляция мисцеллы.

Для удаления из мисцеллы механических примесей ее фильтруют.

Затем мисцелла подается в дистилляционную секцию. В дистилляторе 1 ступени она нагревается парами растворителя. Часть растворителя переходит в газообразное состояние и в таком виде понемногу извлекается из дистиллятора. На 2 ступени процесса мисцелла нагревается глухим паром для подготовки к третьему этапу обработки окончательной отгонки растворителя с помощью острого пара. Весь этот процесс проходит в вакууме.

После окончания третьей ступени дистилляции масло подается в сушилку. Здесь из него, также с помощью вакуума, окончательно извлекается влага. После этого готовое масло проходит охладитель и теплообменник рекуперации, и подается в специальные емкости для дальнейшего хранения.

При работе маслоэкстракционного оборудования в помещение цеха происходит выделение паров растворителя (гексана). Выброс загрязняющего вещества происходит организованно с помощью крышного вентилятора ВКР 4,5-0-Ф производительностью 5980 м³/час через трубу диаметром 500 мм на высоте 17,2 м (ист. 0036).

Котельная (ист. 0037, 6052)

В данной котельной вырабатывается пар для производства. В котельной установлен паровой котел марки. В качестве топлива для котла используется уголь месторождения Каражыра и лузга подсолнечника. Годовой расход угля составляет 3760 тонн, годовой расход лузги – 2980 тонн. Средняя зольность угля составляет 15,48 %, максимальная 21,0 %, содержание серы: среднее – 0,344 %, максимальное 0,588 %, влажность 14 %, калорийность 19,678 МДж/кг. Зольность шелухи составляет 1,9 %, калорийность 10,1 МДж/кг. В процессе сжигания топлива в атмосферу выделяются: пыль неорганическая: 70-20% двуокиси кремния, взвешенные частицы, диоксид азота, оксид азота, диоксид серы, оксиды углерода. Для загрязнения атмосферы предотвращения предусмотрена загрязненного воздуха в групповом циклоне СЦН300х20 эффективностью очистки 85 %. Выброс загрязняющих веществ происходит организованно через трубу диаметром 1 м на высоте 12 м при помощи дымомоса ДН-9-1500 производительность 14900 м³/час (ист. 0037).

Лузга подается напрямую в котел из маслопрессового цеха закрытым конвейером. Уголь для котла завозится автотранспортом непосредственно в помещение котельной, выгружается перед котлом в приемный бункер. Площадь хранения угля в помещении котельной 10 м². В целом запас угля хранится на действующем складе угля предприятия и доставляется в котельную непосредственно перед использованием. Выброс пыли неорганической: менее 20% SiO₂ происходит неорганизованно (ист. 6052).

Зола во влажном состоянии из котла конвейером удаляется на улицу, на специальную площадку. После выгрузки зола вывозится автотранспортом на склад золы предприятия. Так как зола выгружается во влажном состоянии, пыление в процессе выгрузки и временного хранения не происходит.

Площадка №2

Гараж (ист. 6037)

В гараже осуществляется хранение 12 единиц грузовых автомобилей (бензин). Источниками выделения загрязняющих веществ являются двигатели внутреннего сгорания (ДВС) автотранспорта, в процессе работы которых происходит выброс углерода оксида, диоксида серы, азота диоксида и диоксида азота, бензина. Источник выброса неорганизованный. Выброс происходит через проем гаражных ворот (ист. 6037).

Теплая стоянка (ист. 6038)

На теплой стоянке осуществляется хранение пяти единиц легковых автомобилей (бензин). Источниками выделения загрязняющих веществ являются двигатели внутреннего сгорания (ДВС) автотранспорта, в процессе работы которых происходит выброс углерода оксида, диоксида серы, азота диоксида и диоксида азота, бензина. Источник выброса неорганизованный. Выброс происходит через проем гаражных ворот (ист. 6038).

Ремонтная мастерская (ист. 6039, 0022, 6040, 6042, 6043)

Ремонтная мастерская состоит из 2-х этажей. Первый этаж включает помещения гаража, мастерской, токарного цеха и еще трех помещений. Второй этаж состоит из дополнительных комнат для персонала, источники выброса отсутствуют.

В помещении гаража имеются пять постов ТО и ТР для грузовых автомобилей (бензин). В год осуществляется до 100 ТО и ТР. Выбросы обусловлены работой двигателей автотранспорта при въезде-выезде в бокс на ремонт. Основными загрязняющими веществами, выделяющимися при работе двигателей, являются: оксид углерода, диоксид азота, оксид азота, диоксид серы, керосин, сажа. Для выполнения ремонтных работ в помещении гаража имеются аппараты электросварки и газовой резки. При электросварке используются электроды марки МР-4. Годовой расход электродов МР 4 – 100 кг. При работе электросварочного аппарата в атмосферу выделяются железо (II) оксид, марганец и его соединения и фтористые газообразные соединения. На газовую резку в год расходуется 10 баллонов, что составляет 210 кг пропана. При газовой резке металлов в атмосферу выделяются марганец и его соединения, железо (II) оксид, диоксид азота, оксид углерода. Также в помещении гаража установлены следующие металлообрабатывающие станки: токарный (время работы -260 ч/год), сверлильный (время работы -260 ч/год), два заточных станка с диаметром абразивного круга d=200 мм (время работы каждого – 260 ч/год). В процессе работы металлообрабатывающих станков выделяются взвешенные частицы и пыль абразивная. В гараже также расположена вулканизаторная установка. Здесь производится ремонт автокамер. Время работы составляет 250 ч/год. Количество израсходованных ремонтных материалов (камерная резина) в год составляет 50 кг/год, клея – 50 кг/год. При вулканизации в помещение выделяются: пыль тонко измельченного резинового вулканизата из отходов подошвенных резин, бензин, диоксид серы и оксид углерода. Кроме того, в помещении гаража производится зарядка кислотных аккумуляторных батарей. В год заряжается до 10 аккумуляторов. Одновременно заряжается один аккумулятор. При зарядке в атмосферный воздух выделяются пары серной кислоты. Выброс загрязняющих веществ на данном участке происходит неорганизованно через проем гаражных ворот на высоте 3,5 м (ист. 6039).

В мастерской источники выброса загрязняющих веществ отсутствуют, здесь производится ручная разборка и сборка двигателей.

В токарном цехе расположены следующее металлообрабатывающее станки: станок для расточки коленвалов (время работы — 260 ч/год), токарный (время работы — 260 ч/год), сверлильный (время работы — 260 ч/год) и два заточных станка с диаметром абразивного круга d=200 мм (время работы каждого — 260 ч/год). В процессе работы металлообрабатывающего оборудования выделяются взвешенные частицы и пыль абразивная. Источник выброса неорганизованный. Выброс происходит через проем ворот (ист. 6040).

В одном из помещений ремонтной мастерской на первом этаже установлен теплогенератор, предназначенный для отопления помещений ремонтной мастерской, теплой стоянки и гаража. В качестве топлива используется уголь месторождения Каражыра и пеллеты из лузги подсолнечника. Годовой расход угля составляет 25 тонн, годовой расход 20 тонн. Средняя зольность угля составляет максимальная 21,0%, содержание серы: среднее – 0,34%, максимальное 0,59%, влажность 18%, калорийность 19,26 МДж/кг. Зольность пеллет составляет 1,9%, калорийность 17,09 МДж/кг. В процессе сжигания топлива в атмосферу выделяются: пыль неорганическая: 70-20% двуокиси кремния, взвешенные частицы, диоксид азота, оксид азота, диоксид серы, оксиды Выброс хишоннекрагае веществ происходит углерода. организованно через трубу диаметром 0,15 м на высоте 12 м (ист. 0022).

При хранении пеллет выделение загрязняющих веществ не происходит. Уголь для теплогенератора, установленного в ремонтной мастерской, а также уголь для теплогенератора, установленного в АБК, хранится в помещении закрытом с четырех сторон площадью 6 м^2 . Всего на складе хранится 35 т угля. Выброс пыли неорганической: менее 20% SiO_2 происходит неорганизованно (ист. 6042).

Зола от теплогенераторов, установленных в помещении ремонтной мастерской и в здании АБК, хранится в закрытом с четырех сторон контейнере с размерами 3 х 2 м. Данный склад служит для хранения золы от теплогенератора, установленного в ремонтной мастерской. Выброс

пыли неорганической с содержанием двуокиси кремния 70-20% происходит неорганизованно (ист. 6043).

АБК (ист. 0023)

отопления помещений АБК управления установлен теплогенератор. В качестве топлива используется уголь месторождения Каражыра. Годовой расход угля составляет 15 т/год. Средняя зольность угля составляет 18,06 %, максимальная 21,0 %, содержание серы: среднее – 0,34 %, максимальное 0,59%, влажность 18 %, калорийность 19,26 МДж/кг. процессе сжигания топлива В атмосферу выделяются: неорганическая: 70-20% двуокиси кремния, диоксид азота, оксид азота, оксиды углерода. Выброс загрязняющих серы, осуществляется через трубу диаметром 0,15 м на высоте 9 м. Источник выброса организованный (ист. 0023).

Уголь для теплогенератора, установленного в АБК, хранится на складе угля, расположенном в ремонтной мастерской (ист. 6042).

Зола от теплогенератора, установленного в АБК, поступает на склад золы (контейнер), размещенный около ремонтной мастерской (ист. 6043).

Открытая автостоянка (ист. 6041)

Перед зданием гаража располагается открытая автостоянка на которой осуществляется хранение пяти единиц грузовых автомобилей (дизель) и 12 единиц автотракторной техники (дизель). Источниками выделения загрязняющих веществ являются двигатели внутреннего сгорания (ДВС) автотранспорта, в процессе работы которых происходит выброс углерода оксида, диоксида серы, азота диоксида и диоксида азота, керосина и сажи. Источник выброса неорганизованный (ист. 6041).

Также, на территории имеется склад и кузница. Склад используется для хранения запасных частей, выделение загрязняющих веществ не происходит.

Кузница не эксплуатируется, ввод в эксплуатацию не планируется, источники выброса отсутствуют.

Склад ГСМ (0027, 0028, 0029, 0030,6048, 6049, 6050)

Прием нефтепродуктов в резервный парк ГСМ осуществляется из автомобильных цистерн при помощи сливоналивных устройств. Слив осуществляется насосными агрегатами в резервуары. Хранение нефтепродуктов предусмотрено в резервуарном парке. Резервуарный парк состоит из стальных цилиндрических наземных и заглубленных резервуаров.

На складе имеются следующие типы резервуаров (всего 8 шт.): Заглубленные резервуары (4 шт.):

-
$$V = 50 \text{ м}^3 - 3 \text{ шт.};$$

$$- V = 35 \text{ m}^3 - 1 \text{ m}$$

Наземные горизонтальные резервуары (4 шт.):

- $V = 70 \text{ m}^3 1 \text{ mt.};$
- $V = 50 \text{ м}^3 2 \text{ шт.};$
- $V = 30 \text{ m}^3 1 \text{ m}$ T.

Через рассматриваемый склад ГСМ проходят следующие виды нефтепродуктов:

Тип топлива	Количество топлива					
Тип топлива	т/год	м ³ /год				
Бензин низкооктановый (Аи-80)	60	82,2				
Дизельное масло	10	11,1				
Дизельное топливо	400	520,2				
Итого	470	613,5				

Для хранения *бензина низкооктанового* (*Au-80*) используется заглубленный резервуар объёмом $V = 35 \, \mathrm{m}^3$. Резервуар имеет предохранительный клапан. Всего через склад в год проходит до 60 т (82,2 m^3) бензина низкооктанового (Au-80). При хранении и переливе бензина в атмосферу выбрасываются углеводороды предельные $\mathrm{C}_1\text{-}\mathrm{C}_5$ и $\mathrm{C}_6\text{-}\mathrm{C}_{10}$, углеводороды непредельные (по амиленам), бензол, толуол, ксилол, этилбензол. Выброс загрязняющих веществ происходит через дыхательный клапан диаметром 0,076 м на высоте 1,5 м (ист. 0027).

Для хранения *дизельного масла* используется наземный горизонтальный резервуар $V = 30 \text{ м}^3$. Резервуар имеет герметичный люк, предохранительный клапан. Всего через склад в год проходит до $10 \text{ т} (11,1 \text{ м}^3)$ дизельного масла. При хранении и переливе дизельного масла в атмосферу выбрасывается масло минеральное нефтяное. Выброс загрязняющих веществ происходит через дыхательный клапан диаметром 0,076 м на высоте 4 м (ист. 0028).

Для хранения *дизельного топлива* используется: три наземных горизонтальных резервуара (V = 50 m^3 - 2 шт., V = 70 m^3 - 1 шт.) (ист. 0029); три заглубленных резервуара (V = 50 m^3 - 3 шт.) (ист. 0030). Резервуары имеют герметичные люки, предохранительные клапаны. Всего через склад в год проходит до $400 \text{ т} (520,2 \text{ m}^3)$ дизельного топлива. При хранении и переливе дизельного топлива в атмосферу выбрасываются углеводороды предельные C_{12} - C_{19} и сероводород. Выброс загрязняющих веществ от наземных горизонтальных резервуаров происходит через дыхательные клапаны диаметром 0,076 м на высоте 4 м (ист. 0029). Выброс загрязняющих веществ от заглубленных резервуаров происходит через дыхательные клапаны диаметром 0,076 м на высоте 1,5 м (ист. 0030).

Заправка автотранспорта бензином осуществляется с помощью одного раздаточного аппарата (ист. 6048). Для раздачи дизельного масла используется раздаточный аппарат (ист. 6049). Для заправки автотранспорта дизельным топливом используется другой раздаточный

аппарат (ист. 6050). При заправке автотранспорта бензином в атмосферу выбрасываются углеводороды предельные C_1 - C_5 и C_6 - C_{10} , углеводороды непредельные (по амиленам), бензол, толуол, ксилол, этилбензол. Источник выброса неорганизованный (ист. 6048). При заправке дизельным маслом происходит выделение масла минерального нефтяного (ист. 6049). При заправке автотранспорта дизельным топливом в атмосферу выбрасываются углеводороды предельные C_{12} - C_{19} и сероводород. Источник выброса неорганизованный (ист. 6050).

2.2 Краткая характеристика существующих установок очистки газов, укрупненный анализ их технического состояния и эффективности работы

Площадка №1

Источник выбросов загрязняющих веществ №0031 оборудован системой очистки — Циклон пылесборник, КПД очистки (взвешенные вещества) – 92%.

Источник выбросов загрязняющих веществ №0032 оборудован системой очистки — Циклон пылесборник, КПД очистки (взвешенные вещества) – 92%.

Источник выбросов загрязняющих веществ №0033 оборудован системой очистки – Циклон MGXG-205, КПД очистки (взвешенные вещества) – 92%.

Источник выбросов загрязняющих веществ №0034 оборудован системой очистки – Циклон MGXG-150, КПД очистки (взвешенные вещества) – 92%.

Источник выбросов загрязняющих веществ №0037 оборудован системой очистки — Групповой циклон СЦН300х20, КПД очистки (взвешенные вещества, пыль неорганическая: 70-20% двуокиси кремния) — 85%.

Площадка №2

Установки очистки газов на площадке не предусматриваются, необходимость в их монтаже отсутствует.

2.3 Оценка степени применяемой технологии, технического и пылегазоочистного оборудования передовому научно-техническому уровню в стране и мировому опыту

Применяемая технология пылеподавления соответствуют современному научно-техническому уровню и потенциалу Республики Казахстан.

2.4 Перспектива развития

Ввод новых мощностей и производственных площадей, связанных с увеличением выбросов загрязняющих веществ в атмосферу в период 2026-2035 гг. не планируется.

2.5 Параметры выбросов загрязняющих веществ в атмоферу для расчета НДВ

Параметры выбросов загрязняющих веществ в атмосферу на период эксплуатации ТОО «Востоксельхозпродукт» по объекту «Производство и переработка сельскохозяйственной продукции» для расчета НДВ приняты на основе инвентаризации выбросов вредных веществ в атмосферу и их источников (предоставлена в приложении А) и предоставлены в таблице 2.2.

Таблица 2.2 - Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ в целом по объекту

DOCT	04110	-казахстанская													
		Источник выде	ления	Число	Наименов	зание	Номер	Высо	Диа-	Параме	етры газовозд	ц.смеси	Коорди	инаты ис	гочника
Про		загрязняющих в	еществ	часов	источника	выброса	источ	та	метр	на вых	коде из трубы	и при	на к	арте-схе	ме, м
изв	Цех			рабо-	вредных в	еществ	ника	источ	устья	мако	симальной раз	зовой			
одс		Наименование	Коли-	ты			выбро	ника	трубы		нагрузке		точечного	о источ.	2-го кон
TBO			чест-	В			СОВ	выбро					/1-го кон	нца лин.	/длина, ш
			во,	году				COB,	М	ско-	объем на 1	тем-	/центра г	ілощад-	площадн
			шт.					M		рость	трубу, м3/с	пер.	ного исто	учника	источни
										M/C		oC			
													X1	Y1	X2
1	2	3	4	5	6		7	8	9	10	11	12	13	14	15
															Площадка
005		Сушилка на	1	7200	Труба		0007	8	0.3	3.18	0.2247815	78	520	-27	
		диз.топливе													
005		Q	1	7000	m		0000		0 0	2 10	0 0047015	7.0	F 0 0	4.1	
005		Сушилка на	1	/200	Труба		8000	8	0.3	3.18	0.2247815	78	522	-41	
		диз.топливе													

	Наименование газоочистных	Вещество по кото-		Средняя эксплуат		Наименование	Выброс з	отэшикнего	вещества	
	установок,	рому	газо-		ще-	вещества				1
ца лин.	тип и	произво-	очист	очистки/	ства		r/c	мг/нм3	т/год	Год
ирина	мероприятия	дится	кой,	max.cren						дос-
OFO	по сокращению	газо-	%	очистки%						тиже
ка	выбросов	очистка								ния НДВ
Y2										пдь
16	17	18	19	20	21	22	23	24	25	26
						Азота (IV) диоксид (0.0219	125.265	0.1642	2026
						Азота диоксид) (4)				
						Азот (II) оксид (0.0036	20.591	0.0267	2026
						Азота оксид) (6)		44 440	0 045	0000
						Углерод (Сажа,	0.002	11.440	0.015	2026
						Углерод черный) (583)	0 047	0.60 0.00	0 2500	0006
						Сера диоксид (0.047	268.832	0.3528	2026
						Ангидрид сернистый, Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.1112	636.046	0.8336	2026
						углерод оксид (окись углерода, Угарный	0.1112	050.040	0.0550	2020
						газ) (584)				
						Азота (IV) диоксид (0.0219	125.265	0.1642	2026
						Азота диоксид) (4)	****		*****	
						Азот (II) оксид (0.0036	20.591	0.0267	2026
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.002	11.440	0.015	2026
						Углерод черный) (583)				
					0330	Сера диоксид (0.047	268.832	0.3528	2026
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.1112	636.046	0.8336	2026
						углерода, Угарный				
						газ) (584)				

1	2	3	4	5		5	7	8	9	10	11	12	13	14	15
016		Бытовой	1	1632	Труба		0022	12	0.15	1.7			600	307	
		теплогенератор													
		на угле													
		Бытовой	1	1632											
		теплогенератор													
		на пеллетах													
017		Бытовой	1	1632	Труба		0023	9	0.15	2	0.035343	78	606	396	
		теплогенератор													
		на угле													

16	17	18	19	20	21	22	23	24	25	26
					0301	Азота (IV) диоксид (0.007	299.585	0.1186	2026
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0011	47.078	0.0193	2026
						Азота оксид) (6)				
					0330	Сера диоксид (0.0266	1138.421	0.153	2026
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.0896	3834.683	1.2237	2026
						углерода, Угарный				
						газ) (584)				
					2902	Взвешенные частицы (0.0238	1018.588		
					2908	Пыль неорганическая,	0.0578	2473.713	0.4967	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						Азота (IV) диоксид (0.007	254.647	0.0416	2026
						Азота диоксид) (4)				
						Азот (II) оксид (0.0011	40.016	0.0068	2026
						Азота оксид) (6)				
						Сера диоксид (0.0266	967.660	0.0918	2026
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.0896	3259.486	0.5374	2026
						углерода, Угарный				
						газ) (584)			_	
					2908	Пыль неорганическая,	0.0578	2102.659	0.298	2026

1	2	3	4	5) "BCII" (площадки і 6	7	8	9	10	11	12	13	14	15
019		Резервуар с бензином	1		Дыхательный клапан	0027		0.076			18		163	
019		Резервуар с дизельным маслом	1	8760	Дыхательный клапан	0028	4	0.076	0.6	0.0027219	18	656	122	
019		Наземные горизонтальные резервуары с диз.топливом	3	26280	Дыхательный клапан	0029	4	0.076	0.6	0.0027219	18	648	119	

16	17	18	19	20	21	. Первомаискии)	23	24	25	26
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
					0415	Смесь углеводородов	1.01885	478805.627	0.08386	2026
						предельных С1-С5 (
						Смесь углеводородов	0.24813	116607.980	0.02042	2026
						предельных С6-С10 (
					0501	Пентилены (амилены -	0.03375	15860.715	0.00278	2026
						смесь изомеров) (460)				
						Бензол (64)	0.027			
					0616	Диметилбензол (смесь	0.00203	953.993	0.00017	2026
						о-, м-, п- изомеров)				
						Метилбензол (349)	0.01958			
					l l	Этилбензол (675)	0.00068			
					2735	Масло минеральное	0.00045	176.226	0.00006	2026
						нефтяное (веретенное,				
						машинное, цилиндровое				
						и др.) (716*)				
					0333	Сероводород (0.000012	4.699	0.000007	2026
						Дигидросульфид) (518)				
					2754	Алканы С12-19 /в	0.0043	1683.940	0.0024	2026
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
019		Заглубленные резервуары с диз.топливом	3	26280	Дыхательный клапан	0030	2	0.076	0.6	0.0027219	18	647	131	
010		Вибросито	1	8760	Труба	0031	15.9	0.5	16.97	3.3320595	25	603	50	
010		Гравитационная канеотборная	1	8760	Труба	0032	15.7	0.68	17.99	6.5334096	25	604	33	
010		машина Шелушители	2	17520	Труба	0033	14.3	0.5	27.3	5.360355	25	500	-35	
010		Рассев Сепаратор	1 1	8760 8760	Труба	0034	14.4	0.7	13.93	5.3609048	25	586	1	
010		лузги Маслобойный пресс №1	1	8760	Труба	0035	14.4	0.5	7.65	1.5020775	25	595	62	
		Маслобойный пресс №2	1	8760										
		Маслобойный пресс №3	1	8760										
			1	8760										
011		Маслоэкстракци онное	1	8760	Труба	0036	17.2	0.5	8.46	1.661121	25	598	8	
012		оборудование Паровой котел на лузге	1		Труба	0037	12	1	5.27	4.139058	85	589	41	
		Паровой котел на угле	1	8760										

16	17	18	19	20	21	22	23	24	25	26
						265Π) (10)				
					0333	Сероводород (0.000012	4.699	0.000003	2026
						Дигидросульфид) (518)				
					2754	Алканы С12-19 /в	0.0043	1683.940	0.0009	2026
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
		0.000	1.00	00 00 /00	0000	265Π) (10)	0 000064	0 001	04 500	0006
	Циклон	2902	100	92.00/92.	2902	Взвешенные частицы (0.000064	0.021	24.528	2026
	пылесборник; Циклон	2902	100	00 92.00/92.	2002	116) Взвешенные частицы (0.096	16.039	19.77938	2026
	'	2902	100	00	2902	116)	0.096	16.039	19.77938	2026
	пылесборник;			00		116)				
	Циклон MGXG-	2902	100	92.00/92.	2902	Взвешенные частицы (0.2	40.728	33.8136	2026
	205;			00		116)				
	Циклон MGXG-	2902	100	92.00/92.	2902	Взвешенные частицы (0.56	114.026	47.33904	2026
	150;			00		116)				
					1301	Проп-2-ен-1-аль (0.04	29.068	1.26144	2026
						Акролеин,				
						Акрилальдегид) (474)				
					0403	Гексан (135)	0.035	23.000	1.10376	2026
					0403	Tekcah (133)	0.033	23.000	1.105/0	2020
	Групповой	2902	100	85.00/85.	0301	Азота (IV) диоксид (1.1842	375.184	17.0051	2026
	циклон	2908	100	00		Азота диоксид) (4)				
	СЦН300x20;			85.00/85.	0304	Азот (II) оксид (0.1924	60.957	2.7633	2026
				00		Азота оксид) (6)				
					0330	Сера диоксид (1.3336	422.517	23.2819	2026
						Ангидрид сернистый,				

1	2	3	4	5) "ВСП" (площадки : 6	7	8	9	10	11	12	13	14	15
002	C	трогальный	1	292	Неорганизованный	6006	2				21	409	-81	5
		танок			источник									
	Ц	(иркулярная	1	292										
		ила												
003		окарный	1	260	Неорганизованный	6007	2				21	420	-91	5
		танок №1	1	260	ИСТОЧНИК									
		'окарный станок №2	1	260										
		ланок м2 Гродольно-	1	260										
		рейзерный												
		танок												
		верлильный	1	260										
		танок												
		трезной	1	260										
		танок Заточной	1	260										
		танок d=250		200										
		IM												

16	17	18	19	20	21	22	23	24	25	26
					0337	Сернистый газ, Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный	9.4597	2997.065	166.5142	2026
						газ) (584) Взвешенные частицы (116)	0.7125	225.738	4.2465	2026
						Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	0.9129	289.229	20.0807	2026
5						казахстанских месторождений) (494) Пыль древесная (1039*	0.28		0.2943	2026
5					2902) Взвешенные частицы (116)	0.0484		0.0452	2026
						Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0022		0.0021	2026

1	2 3	4	5	6	7	8	9	10	11	12	13	14	15
004	Засыпка	1	1300	Неорганизованный	6008	2				18	479	-67	5
	цемента			источник									
	Засыпка песка	1	3250										
	Засыпка щебня	1	3250										
004	Склад песка Склад щебня	1 1	8760	Неорганизованный источник	6009	2				18	492	-67	5
006	Склад подсолнечника №1	1	8760	Неорганизованный источник	6014	2.5				21	457	-85	10
005	№1 Разгрузка	1	1200	Неорганизованный	6016	2				18	120	-120	5
	сырья (1200	источник	0010					10	409	120	
	подсолнечника)												
005	Пересыпка	1	1200	Неорганизованный	6017	2				21	497	-91	5
	подсолнечника			источник									
	из ямы в												
	машину очистки												
	Персыпка из	1	640										
	машины очистки												
	в зерносушилку												

16	17	18	19	20	21	22	23	24	25	26
5					2908	Пыль неорганическая,	0.00107		0.00821	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
5					2908	Пыль неорганическая,	0.011876		0.161486	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10					2937	Пыль зерновая /по	0.002178		0.025924	2026
						грибам хранения/ (
5						Пыль зерновая /по	0.000035		0.000151	2026
						грибам хранения/ (
5					2937	Пыль зерновая /по	0.00056		0.002066	2026
						грибам хранения/ (
						487)				

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Пересыпка из зерносушилки в отгрузочный бункер	1	1200										
		Пересыпка из отгрузочного бункера в автотранспорт	1	1200										
006		Склад подсолнечника №2	1	8760	Неорганизованный источник	6018	2.5				21	483	-81	5
006		Склад подсолнечника №3	1	8760	Неорганизованный источник	6019	2.5				21	453	-116	10
006		Склад подсолнечника №4	1	8760	Неорганизованный источник	6020	2.5				21	483	-253	5
006		Склад подсолнечника №5	1	8760	Неорганизованный источник	6025	2.5				21	348	-113	10
006		Склад подсолнечника №6	1	8760	Неорганизованный источник	6026	2.5				21	408	-47	10
006		Склад подсолнечника №7	1	8760	Неорганизованный источник	6034	2.5				21	284	-54	10
006		Склад подсолнечника №8	1	8760	Неорганизованный источник	6035	2.5				21	241	-84	10
006		Склад подсолнечника №9	1	8760	Неорганизованный источник	6036	2.5				21	202	-70	10
014		ДВС грузового автотранспорта	12	11388	Неорганизованный источник	6037	2					636	379	10

16	-казахстанская об	18	19	20	21	.Первомаискии)	23	24	25	26
5					2937	Пыль зерновая /по	0.002178		0.024714	2026
					2301	грибам хранения/ (0.002170		0,021,11	2020
						487)				
10					2937	Пыль зерновая /по	0.001476		0.021771	2026
						грибам хранения/ (487)				
5					2937	Пыль зерновая /по	0.002394		0.036613	2026
					2337	грибам хранения/ (0.002331		0.030013	2020
						487)				
10					2937	Пыль зерновая /по	0.002141		0.032514	2026
						грибам хранения/ (
10					2037	487) Пыль зерновая /по	0.001649		0.024566	2026
10					2937	грибам хранения/ (0.001049		0.024300	2020
						487)				
10					2937	Пыль зерновая /по	0.003642		0.056795	2026
						грибам хранения/ (
1.0					0000	487)	0 000515		0 054546	0006
10					2937	Пыль зерновая /по грибам хранения/ (0.003515		0.054746	2026
						1487)				
10					2937	Пыль зерновая /по	0.003984		0.062322	2026
						грибам хранения/ (
						487)				
10						Азота (IV) диоксид (0.0018		0.0045	2026
						Азота диоксид) (4) Азот (II) оксид (0.0003		0.0007	2026
						Азота оксид) (6)	0.0003		0.0007	2020
						Сера диоксид (0.0004		0.0009	2026

1	2	-Казахстанская 3	4	5) "BCII" (площадки і 6	7	8	9	10	11	12	13	14	15
015		ДВС легковых автомобилей	1	303	Неорганизованный источник	6038	2					616	352	10
016		Токарный станок Сверлильный станок Заточной станок №1 d= 200 мм Заточной станок №2 d= 200 мм	1 1 1			6039	3.5				21	615	327	5
		Электросварочн ый аппартат	1	1000										

16	17	18	19	20	21 22	23	24	25	26
					Ангидрид сернистый, Сернистый газ, Сера 0337 Углерод оксид (Окись	0.2248		0.5095	2026
					углерода, Угарный газ) (584) 2704 Бензин (нефтяной, малосернистый) /в	0.0469		0.0981	2026
10					пересчете на углерод/ 0301 Азота (IV) диоксид (Азота диоксид) (4)	0.0001		0.00022	2026
					0304 Азот (II) оксид (Азота оксид) (6)	0.00002		0.00004	2026
					0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00005		0.00011	2026
					0337 Углерод оксид (Окись углерода, Угарный газ) (584)	0.016		0.0294	2026
					2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/	0.001		0.0019	2026
5					0123 Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0.00077		0.00543	2026
					оксид) (274) 0143 Марганец и его соединения (в пересчете на марганца	0.00004		0.00017	2026
					(IV) оксид) (327) 0301 Азота (IV) диоксид (Азота диоксид) (4)	0.000442		0.002229	2026
					0304 Азот (II) оксид (0.000033		0.000005	2026

		- Nasaxcranckas								1				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Аппарат	1	2500										
		газовой резки												
		Вулканизаторна	1	250										
		я установка												
		Зарядное	5	500										
		устройство												
		Посты ТО и ТР	1	13										
		грузового												
		автотранспорта												
016		Расточной	1	260	Неорганизованный	6040	2.5				21	599	295	5
010		станок			источник		1							
		Токарный	1	260	NIC I O HIMIK									
		СТАНОК		200										
		Станок Сверлильный	1	260										
		Станок		200										
			1	260										
		Заточной	-	∠60										
		станок №1 d=												

16	17	18	19	20	21	. первомаискии)	23	24	25	26
					0322 0330	Азота оксид) (6) Серная кислота (517) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (0.00000475 0.0000333		0.00000171 0.0000053	
						IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.0213751		0.00522309	2026
					0342	Фтористые газообразные соединения /в	0.00001		0.00004	2026
					2704	пересчете на фтор/ (Бензин (нефтяной, малосернистый) /в пересчете на углерод/	0.052988		0.04543	2026
						Взвешенные частицы (0.0075		0.0069	2026
						Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0032		0.003	2026
					2978	Пыль тонко измельченного резинового вулканизата из отходов подошвенных	0.0226		0.0203	2026
5					2930	резин (1090*) Взвешенные частицы (Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0079 0.0032		0.0073 0.003	

1	2	3	4	5	о «вси» (площадки в 6	7	8	9	10	11	12	13	14	15
018		200 мм Заточной станок №2 d= 200 мм ДВС грузового автотранспорта ДВС грузового автотранспорта	1 5 12		Неорганизованный источник	6041	2					402	418	10
016		Склад угля	1		Неорганизованный источник	6042	2.5				21	560	288	5
016		Склад золы (от теплогенератор а на угле) Склад золы (от теплогенератор а на пеллетах)	1		источник	6043	2				18	564	297	10

16	-Казахстанская об 17	18	19	20	21	.Первомаискии)	23	24	25	26
10						Азота (IV) диоксид (0.0125		0.0338	2026
					0304	Азота диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0.0021		0.0055	2026
					0328	Углерод (Сажа, Углерод черный) (583)	0.0013		0.0036	2026
					0330	Сера диоксид (Ангидрид сернистый,	0.0021		0.0062	2026
						Сернистый газ, Сера (IV) оксид) (516)				
						Углерод оксид (Окись углерода, Угарный	0.0843		0.2369	2026
						газ) (584)				
						Керосин (654*)	0.0145		0.0464	
5					2909	Пыль неорганическая,	0.0000062		0.000109	2026
						содержащая двуокись				
						кремния в %: менее 20				
						(доломит, пыль				
						цементного				
						производства -				
						известняк, мел,				
						огарки, сырьевая				
						смесь, пыль				
						вращающихся печей,				
						боксит) (495*)				
10					2902	Взвешенные частицы (0.000024		0.000423	2026
						116)				
					2908	Пыль неорганическая,	0.000047		0.000828	2026
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				

1	2	З	4	5	всп (площадки п	7	8	9	10	11	12	13	14	15
013		ДВС грузового автотранспорта	8		Неорганизованный источник	6046	2		10		10	490		10
013		ДВС грузового автотранспорта	5	2010	Неорганизованный источник	6047	2					513	9	10
019		Раздаточный аппарат для	1	2920	Неорганизованный источник	6048	2				18	657	187	5

16	-казахстанская об	18	19	20	21	.Первомаискии)	23	24	25	26
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				
10						Азота (IV) диоксид (0.0014		0.0039	2026
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0002		0.0006	2026
						Азота оксид) (6)				
					0330	Сера диоксид (0.0001		0.0004	2026
						Ангидрид сернистый ,				
						Сернистый газ, Сера (
					0337	Углерод оксид (Окись	0.1592		0.4225	2026
						углерода, Угарный				
						газ) (584)				
					2704	Бензин (нефтяной,	0.0216		0.0564	2026
						малосернистый) /в				
						пересчете на углерод/				
10					0301	Азота (IV) диоксид (0.0032		0.0059	2026
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0005		0.001	2026
						Азота оксид) (6)				
						Углерод (Сажа,	0.0005		0.0007	2026
						Углерод черный) (583)				
						Сера диоксид (0.0005		0.001	2026
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
						Углерод оксид (Окись	0.0177		0.0303	2026
						углерода, Угарный				
						Керосин (654*)	0.0034		0.0057	
5					0415	Смесь углеводородов	0.50942		0.03288	2026
						предельных С1-С5 (

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		бензина												
019		Раздаточный аппарат для диз.масла	1	2920	Неорганизованный источник	6049	2				18	651	179	5
019		Раздаточный аппарат для диз.топлива	1	2920	Неорганизованный источник	6050	2				18	661	177	5
010		Подземный загрузочный бункер	1	8760	Неорганизованный источник	6051	2					584	31	5
012		Склад угля	1		Неорганизованный источник	6052	2					593	30	5

	-Казахстанская об					.Первомайский)				
16	17	18	19	20	21	22	23	24	25	26
						1502*)				
					0416	Смесь углеводородов	0.12407		0.00801	2026
						предельных С6-С10 (
					0501	Пентилены (амилены -	0.01688		0.00109	2026
						смесь изомеров) (460)				
					0602	Бензол (64)	0.0135		0.00087	2026
					0616	Диметилбензол (смесь	0.00101		0.00007	2026
						о-, м-, п- изомеров)				
						(203)				
					0621	Метилбензол (349)	0.00979		0.00063	2026
					0627	Этилбензол (675)	0.00034		0.000022	2026
5					2735	Масло минеральное	0.00009		0.0000071	2026
						нефтяное (веретенное,				
						машинное, цилиндровое				
5					0333	Сероводород (0.000006		0.000039	2026
						Дигидросульфид) (518)				
					2754	Алканы С12-19 /в	0.0022		0.0139	2026
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
5 5					2902	Взвешенные частицы (0.000044		0.00138	
5					2909	Пыль неорганическая,	0.000013		0.00041	2026
						содержащая двуокись				
						кремния в %: менее 20				
						(доломит, пыль				
						цементного				
						производства -				
						известняк, мел,				
						огарки, сырьевая				
						смесь, пыль				

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Окончание таблицы 2.2 - Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ в целом по объекту

				(
16	17	18	19	20	21	22	23	24	25	26
						вращающихся печей, боксит) (495*)				

2.6 Характеристика аварийных и залповых выбросов

Технологические процессы на рассматриваемом объекте исключают возможность залповых и аварийных выбросов загрязняющих веществ в атмосферу. Аварийная ситуация на объекте может возникнуть только в результате неблагоприятных природных воздействий (землетрясение, ураган и т.п.).

Мероприятия по предупреждению производственных аварий и пожаров:

- 1. Наличие согласованных с пожарными частями района оперативных планов пожаротушения и их реальность.
- 2. Обеспечение соблюдения правил охраны труда и пожарной безопасности.
- 3. Исправность оборудования и средств пожаротушения.
- 4. Соответствие объектов требованиям правил технической эксплуатации.
- 5. Организация проведения инженерно-технических мероприятий, направленных на предотвращение потерь человеческих и материальных ценностей.
- 6. Наличие планов ликвидаций аварийных ситуаций и аварий и их согласование с инспектирующими организациями.
- 7. Организация режима охраны, внедрение и совершенствование инженерно-технических средств охраны объектов.

2.7 Перечень загрязняющих веществ, выбрасываемых в атмосферу

Перечни загрязняющих веществ, выбрасываемых в атмосферу, на период эксплуатации ТОО «Востоксельхозпродукт» по объекту «Производство и переработка сельскохозяйственной продукции» для расчета НДВ приняты на основе инвентаризации выбросов вредных веществ в атмосферу и их источников (предоставлена в приложении А) и предоставлены в таблицах 2.3, 2.3.1 и 2.3.2 (по объекту в целом, а также по производственным площадка №1 и №2).

Таблица 2.3 - Перечень загрязняющих веществ, выбрасываемых в атмосферу по объекту в целом

Код	Наименование	ЭНК,	пдк	пдк	·	Класс	Выброс	Выброс	Значение
							вещества	вещества	
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	м/энк
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год	
			вая, мг/м3	мг/м3		ЗВ		(M)	
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в			0.04		3	0.00077	0.00543	0.13575
	пересчете на железо) (диЖелезо								
	триоксид, Железа оксид) (274)								
0143	Марганец и его соединения (в		0.01	0.001		2	0.00004	0.00017	0.17
	пересчете на марганца (IV) оксид)								
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	1.261442	17.544249	438.606225
	диоксид) (4)								
	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	0.204953	2.850645	47.51075
0322	Серная кислота (517)		0.3	0.1		2	0.00000475	0.00000171	0.0000171
0328	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.0058	0.0343	0.686
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	1.4839833	24.2409153	484.818306
	Сернистый газ, Сера (IV) оксид) (
0333	Сероводород (Дигидросульфид) (0.008			2	0.00003	0.000049	0.006125
	518)								
0337	Углерод оксид (Окись углерода,		5	3		4	10.3846751	171.17632309	57.0587744
	Угарный газ) (584)								
0342	Фтористые газообразные соединения		0.02	0.005		2	0.00001	0.00004	0.008
	/в пересчете на фтор/ (617)								
0403	Гексан (135)		60			4	0.035	1.10376	0.018396
l l	Смесь углеводородов предельных				50		1.52827	0.11674	0.0023348
	C1-C5 (1502*)								
l l	Смесь углеводородов предельных				30		0.3722	0.02843	0.00094767
	C6-C10 (1503*)								
0501	Пентилены (амилены - смесь		1.5			4	0.05063	0.00387	0.00258
	изомеров) (460)								
0602	Бензол (64)		0.3	0.1		2	0.0405	0.00309	0.0309
l l	Диметилбензол (смесь о-, м-, п-		0.2			3	0.00304		
	изомеров) (203)								

Продолжение таблицы 2.3 - Перечень загрязняющих веществ, выбрасываемых в атмосферу по объекту в целом

1	очно-Казахстанская область, ТОО "ВС 2	3	4	5	6	7	8	9	10
0621	Метилбензол (349)		0.6			3	0.02937	0.00224	0.00373333
0627	Этилбензол (675)		0.02			3	0.00102	0.000082	0.0041
1301	Проп-2-ен-1-аль (Акролеин,		0.03	0.01		2	0.04	1.26144	126.144
	Акрилальдегид) (474)								
2704	Бензин (нефтяной, малосернистый)		5	1.5		4	0.122488	0.20183	0.13455333
	/в пересчете на углерод/ (60)								
2732	Керосин (654*)				1.2		0.0179	0.0521	0.04341667
2735	Масло минеральное нефтяное (0.05		0.00054	0.0000671	0.001342
	веретенное, машинное, цилиндровое								
2754	Алканы С12-19 /в пересчете на С/		1			4	0.0108	0.0172	0.0172
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
	Взвешенные частицы (116)		0.5	0.15		3	1.656232		866.38482
	Пыль неорганическая, содержащая		0.3	0.1		3	1.041493	21.045924	210.45924
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)		٥	0.15		3	0 0000100	0 000510	0 00046
	Пыль неорганическая, содержащая		0.5	0.15		3	0.0000192	0.000519	0.00346
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного производства - известняк, мел,								
	производства - известняк, мел, огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)								
	Пыль абразивная (Корунд белый,				0.04		0.0086	0.0081	0.2025
	Монокорунд) (1027*)				0.04		0.0000	0.0001	0.2023
	Пыль древесная (1039*)				0.1		0.28	0.2943	2.943
	Пыль зерновая /по грибам		0.5	0.15	Ŭ·1	3	0.023752		2.28121333
	хранения/ (487)			0.10		Ü	0.020702	0.012102	
	Пыль тонко измельченного				0.1		0.0226	0.0203	0.203
	резинового вулканизата из отходов								

Окончание таблицы 2.3 - Перечень загрязняющих веществ, выбрасываемых в атмосферу по объекту в целом

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	4	5	6	7	8	9	10
	подошвенных резин (1090*)								
	всего:						18.62616235	370.3122602	2237.88188

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р.

или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица 2.3.1 - Перечень загрязняющих веществ, выбрасываемых в атмосферу по производственной площадке №1

Код	Наименование	ЭНК,	пдк	пдк		Класс	Выброс	Выброс	Значение
							вещества	вещества	
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	м/энк
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год	
			вая, мг/м3	мг/м3		ЗВ		(M)	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	1.2326	17.3433	433.5825
	диоксид) (4)								
0304	Азот (II) оксид (Азота оксид) (6)		0.4			3	0.2003		46.9716667
0328	Углерод (Сажа, Углерод черный) (0.15			3	0.0045	0.0307	0.614
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	1.4282	23.9889	479.778
	Сернистый газ, Сера (IV) оксид) (
	Углерод оксид (Окись углерода,		5	3		4	9.859	168.6342	56.2114
	Угарный газ) (584)								
0403	Гексан (135)		60			4	0.035		
1301	Проп-2-ен-1-аль (Акролеин,		0.03	0.01		2	0.04	1.26144	126.144
	Акрилальдегид) (474)								
2704	Бензин (нефтяной, малосернистый)		5	1.5		4	0.0216	0.0564	0.0376
	/в пересчете на углерод/ (60)								
	Керосин (654*)				1.2		0.0034	0.0057	0.00475
2902	Взвешенные частицы (116)		0.5			3	1.617008		865.020667
2908	Пыль неорганическая, содержащая		0.3	0.1		3	0.925846	20.250396	202.50396
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая, содержащая		0.5	0.15		3	0.000013	0.00041	0.00273333
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного								
	производства - известняк, мел,								
	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)								

Окончание таблицы 2.3.1 - Перечень загрязняющих веществ, выбрасываемых в атмосферу по производственной площадке №1

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	4	5	6	7	8	9	10
2930	Пыль абразивная (Корунд белый,				0.04		0.0022	0.0021	0.0525
	Монокорунд) (1027*)								
2936	Пыль древесная (1039*)				0.1		0.28	0.2943	2.943
2937	Пыль зерновая /по грибам		0.5	0.15		3	0.023752	0.342182	2.28121333
	хранения/ (487)								
·	всего:						15.673419	365.885188	2216.16639

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р.

или (при отсутствии ПДКм.р.) ОБУВ

2. Способ сортировки: по возрастанию кода ЗВ (колонка 1)

Таблица 2.3.2 - Перечень загрязняющих веществ, выбрасываемых в атмосферу по производственной площадке №2

Код	Наименование	ЭНК,	ПДК	пдк		Класс	Выброс	Выброс	Значение
							вещества	вещества	
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом	м/энк
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год	
			вая, мг/м3	мг/м3		ЗВ		(M)	
1	2	3	4	5	6	7	8	9	10
0123	Железо (II, III) оксиды (в			0.04		3	0.00077	0.00543	0.13575
	пересчете на железо) (диЖелезо								
	триоксид, Железа оксид) (274)								
0143	Марганец и его соединения (в		0.01	0.001		2	0.00004	0.00017	0.17
	пересчете на марганца (IV) оксид)								
	(327)								
0301	Азота (IV) диоксид (Азота		0.2	0.04		2	0.028842	0.200949	5.023725
	диоксид) (4)								
0304	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	0.004653		0.53908333
0322	Серная кислота (517)		0.3	0.1		2	0.00000475	0.00000171	0.0000171
	Углерод (Сажа, Углерод черный) (0.15	0.05		3	0.0013	0.0036	0.072
	583)								
0330	Сера диоксид (Ангидрид сернистый,		0.5	0.05		3	0.0557833	0.2520153	5.040306
	Сернистый газ, Сера (IV) оксид) (
	Сероводород (Дигидросульфид) (0.008			2	0.00003		
	Углерод оксид (Окись углерода,		5	3		4	0.5256751	2.54212309	0.84737436
	Угарный газ) (584)								
0342	Фтористые газообразные соединения		0.02	0.005		2	0.00001	0.00004	0.008
	/в пересчете на фтор/ (617)								
	Смесь углеводородов предельных				50		1.52827	0.11674	0.0023348
	C1-C5 (1502*)								
	Смесь углеводородов предельных				30		0.3722	0.02843	0.00094767
	C6-C10 (1503*)								
	Пентилены (амилены - смесь		1.5			4	0.05063	0.00387	0.00258
	изомеров) (460)								
	Бензол (64)		0.3			2	0.0405		
	Диметилбензол (смесь о-, м-, п-		0.2			3	0.00304	0.00024	0.0012
	изомеров) (203)								
0621	Метилбензол (349)		0.6			3	0.02937	0.00224	0.00373333

Окончание таблицы 2.3.2 - Перечень загрязняющих веществ, выбрасываемых в атмосферу по производственной площадке №2

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	4	5	6	7	8	9	10
0627	Этилбензол (675)		0.02			3	0.00102	0.000082	0.0041
2704	Бензин (нефтяной, малосернистый)		5	1.5		4	0.100888	0.14543	0.09695333
	/в пересчете на углерод/ (60)								
2732	Керосин (654*)				1.2		0.0145	0.0464	0.03866667
2735	Масло минеральное нефтяное (0.05		0.00054	0.0000671	0.001342
	веретенное, машинное, цилиндровое								
2754	Алканы С12-19 /в пересчете на С/		1			4	0.0108	0.0172	0.0172
	(Углеводороды предельные С12-С19								
	(в пересчете на С); Растворитель								
2902	Взвешенные частицы (116)		0.5	0.15		3	0.039224	0.204623	1.36415333
2908	Пыль неорганическая, содержащая		0.3	0.1		3	0.115647	0.795528	7.95528
	двуокись кремния в %: 70-20 (
	шамот, цемент, пыль цементного								
	производства - глина, глинистый								
	сланец, доменный шлак, песок,								
	клинкер, зола, кремнезем, зола								
	углей казахстанских								
	месторождений) (494)								
2909	Пыль неорганическая, содержащая		0.5	0.15		3	0.0000062	0.000109	0.00072667
	двуокись кремния в %: менее 20 (
	доломит, пыль цементного								
	производства - известняк, мел,								
	огарки, сырьевая смесь, пыль								
	вращающихся печей, боксит) (495*)								
2930	Пыль абразивная (Корунд белый,				0.04		0.0064	0.006	0.15
	Монокорунд) (1027*)								
2978	Пыль тонко измельченного				0.1		0.0226	0.0203	0.203
	резинового вулканизата из отходов								
	подошвенных резин (1090*)								
	всего:						2.95274335	4.4270722	21.7154986

Примечания: 1. В колонке 9: "М" - выброс ЗВ,т/год; при отсутствии ЭНК используется ПДКс.с. или (при отсутствии ПДКс.с.) ПДКм.р. или (при отсутствии ПДКм.р.) ОБУВ

^{2.} Способ сортировки: по возрастанию кода ЗВ (колонка 1)

2.8 Обоснование полноты и достоверности исходных данных, принятых для расчетов нормативов НДВ

Согласно п. 12 Методики определения нормативов /7/, перечень источников выбросов и их характеристики определяются для проектируемых объектов — на основе проектной информации, для действующих объектов — на основе инвентаризации выбросов вредных веществ в атмосферу и их источников.

Настоящий проект нормативов допустимых выбросов (НДВ) ТОО «Востоксельхозпродукт» для объекта «Производство и переработка сельскохозяйственной продукции» разработан в составе заявки на получение экологического разрешения на воздействие для объектов II категории, в связи с окончанием срока действия Разрешения на эмиссии в окружающую среду №КZ38VDD00063229 от 29.11.2016 года.

Также, с целью оптимизации экологической документации, в рамках настоящего проекта НДВ учтены источники выбросов, включеные в Разрешение действующее на эмиссии В окружающую среду №KZ27VDD00157517 от 28.12.2020 года. Поскольку вышеупомянутые Разрешения относятся одной производственной площадке, К предусмотрено их объединение в одно экологическое разрешение.

Проект выполнен по данным инвентаризации источников выбросов, проведенной по состоянию работы предприятия на 03.10.2015 г. Бланки инвентаризации представлены в приложении А.

Предлагаемые к утверждению нормативы эмиссий были определены расчётно-теоретическим методом на максимальную нагрузку оборудования, согласно действующим методическим указаниям. Расчеты представлены в приложении Б.

3 ПРОВЕДЕНИЕ РАСЧЕТОВ РАССЕИВАНИЯ

3.1 Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере

Метеорологические характеристики и коэффициенты для района размещения предприятия, в соответствии с требованиями методики расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий /3/, согласно сведениям письма РГП «Казгидромет» №34-03-01-21/232 от 14.02.2025 г. (представлено в приложении Д), приведены в таблице 3.1.

Таблица 3.1 – Коэффициенты, определяющие условия

рассеивания загрязняющих веществ в атмосфере

рассеивания загрязняющих веществ в атмос	фере	
Наименование характеристики	Размерность	Величина
Коэффициент, зависящий от	C*M*	200
стратификации атмосферы	град	200
Коэффициент рельефа местности		1.0
Коэффициент скорости оседания вредных веществ в		
атмосфере:		
- для газообразных веществ		1.0
- для взвешенных веществ при эффективности		
улавливания		
90 %		2.0
75-90 %		2.5
при отсутствии газоочистки		3.0
Средняя роза ветров:		
$^{\circ}$ C		25
CB		11
В		4
ЮВ	0/	9
Ю	%	26
ЮЗ		9
3		5
C3		12
ШТИЛЬ		25
Среднемаксимальная температура наиболее жаркого	°C	127.6
месяца (июль)		+27,6
Среднеминимальная температура наиболее холодного	°C	21.0
месяца (январь)		-21,0
Средняя скорость ветра за год	M/C	2,3
Скорость ветра, повторяемость превышения которой	25/0	7
составляет 5% (по многолетним данным)	м/с	/

3.2 Результаты расчетов уровня загрязнения атмосферы

Расчет концентраций вредных веществ в приземном слое атмосферы проводился с использованием программного комплекса «Эра» на ПЭВМ. В программном комплексе «Эра», для расчёта приземных концентраций используется расчётный блок ЛБЭД-РК, согласованный с Главной

геофизической обсерваторией им. А.И. Воейкова и рекомендованный к применению в Республике Казахстан. Программный комплекс реализует методику расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий /3/.

Расчёт приземных концентраций проводился для максимальновозможного числа одновременно работающих источников загрязнения атмосферы при их максимальной нагрузке.

В расчётах рассеивания критериями качества атмосферного воздуха являются максимально-разовые предельно допустимые концентрации (ПДКм.р.).

Климатические данные учтены в соответствии с данными Казгидромета.

Расчёт рассеивания загрязняющих веществ в атмосфере заключается в определении приземных концентраций и основных вкладчиков в узлах расчётного прямоугольника 1 при направлении ветра с перебором через 10 градусов и скорости ветра перебором 05; 1; 1,5 м/с.

Неблагоприятные направления ветра (град.) и скорости (м/с) определены в каждом узле поиска.

Каждому источнику, в зависимости от объёма газов, температуры и высоты трубы, соответствует своя так называемая опасная скорость ветра, при которой дымовой факел на определённом расстоянии прижимается к земле, создавая наибольшую величину приземной концентрации. Группе источников соответствует опасная средневзвешенная скорость ветра.

Справка РГП «Казгидромет» от 09.10.2025 г. об отсутствии наблюдений и невозможности предоставления фоновых концентраций загрязняющих веществ в атмосферном воздухе п.Первомайский Шемонаихинского района Восточно-Казахстанской области в приложении Д.

Согласно РД 52.04.186-89, ориентировочные значения фоновой концентрации примесей (мг/м3) для городов с разной численностью населения, представлены ниже.

Численность		Лиокени	Диоксид	Оксид
населения,	Пыль	Диоксид серы	азота	, ,
тыс. жителей		серы	a301a	углерода
250-125	0,4	0,05	0,03	1,5
125-50	0,3	0,05	0,015	0,8
50-10	0,2	0,02	0,008	0,4
Менее 10	0	0	0	0

Так как п. Первомайский относится к населенным пунктам с численностью населения менее 10 тыс. человек, то фоновые концентрации в расчете рассеивания загрязняющих веществ в приземном слое атмосферы не учитываются.

Размер расчётного прямоугольника на период эксплуатации производственной площадки №1 выбран 2200 х 2400 м из условия включения полной картины влияния рассматриваемого объекта. Для анализа рассеивания загрязняющих веществ в приземном слое атмосферы зоны влияния шаг расчётных точек по осям координат X и Y выбран 50 м. За центр расчётного прямоугольника принята точка на карте-схеме с координатами X = 97, Y= -386 (местная система координат).

Размер расчётного прямоугольника на период эксплуатации производственной площадки №2 выбран 1800 х 2300 м из условия включения полной картины влияния рассматриваемого объекта. Для анализа рассеивания загрязняющих веществ в приземном слое атмосферы зоны влияния шаг расчётных точек по осям координат X и Y выбран 50 м. За центр расчётного прямоугольника принята точка на карте-схеме с координатами X = 90, Y = -191 (местная система координат).

Максимальные приземные концентрации загрязняющих веществ площадки №1 на границе санитарно-защитной зоны — 100 м, по результатам расчета рассеивания выбросов, составили:

- 0.9862598 ПДК (0301 Диоксид азота);
- 0.0810326 ПДК (0304 Азота оксид);
- 0.4741727 ПДК (0330 Сера диоксид);
- 0.3194419 ПДК (0337 Углерод оксид);
- 0.3503527 ПДК (1301 Проп-2-ен-1-аль);
- 0.7312009 ПДК (2902 Взвешенные частицы);
- $0.9714376~\Pi$ ДК ($2908_{}$ Пыль неорганическая, содержащая двуокись кремния в %: 70-20);
 - 0.9589625 ПДК (2936_Пыль древесная).

Максимальные приземные концентрации загрязняющих веществ площадки №2 на границе санитарно-защитной зоны — 100 м, по результатам расчета рассеивания выбросов, составили:

- 0.1563692 ПДК (0301 Диоксид азота);
- 0.0840231 ПДК (0304 Азота оксид);
- 0.1500419 ПДК (0337_Углерод оксид);
- 0.3719057 ПДК (0602_Бензол);
- 0.3050002 ПДК (2908_Пыль неорганическая, содержащая двуокись кремния в %: 70-20);
 - 0.2874807 ПДК (2930 Пыль абривная);
 - 0.3778808 ПДК (2978_Пыль тонко измельченного вулканизата).

Результаты расчёта приземных концентраций в графическом виде на период эксплуатации приведены в приложении Е.

Анализируя результаты проведенного расчета рассеивания загрязняющих веществ в атмосфере, можно сделать вывод, что превышений ПДК ЗВ на период эксплуатации на границе СЗЗ не будет.

Необходимость расчёта приземных концентраций загрязняющих веществ определена согласно методике расчета концентраций вредных

веществ в атмосферном воздухе от выбросов предприятий. Результаты определения необходимости расчета приземных концентраций по веществам на период эксплуатацию представлены в таблицах 3.2 (по производственной площадке N2).

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы в период эксплуатации производственной площадки №1 представлен в таблице 3.4, производственной площадки №2 – в таклице 3.5.

Таблица 3.2 - Определение необходимости расчетов приземных концентраций по веществам по производственной площадке №1

Восточ	Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)											
Код	Наименование	ПДК	пдк	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	Необхо-				
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная		димость				
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе				
ства		мг/м3	мг/м3	УВ , мг/м3	(M)	(H)	для Н<10	RNH				
								расчетов				
1	2	3	4	5	6	7	8	9				
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		0.2003	11.8	0.0424	Да				
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.0045	7.33	0.030	Нет				
0337	Углерод оксид (Окись углерода, Угарный	5			9.859	-	0.1681	Да				
0403	Гексан (135)	60			0.035	17.2	0.000033915	Нет				
1301	Проп-2-ен-1-аль (Акролеин,	0.03	0.01		0.04	14.4	0.0926	Да				
	Акрилальдегид)											
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		0.0216	2	0.0043	Нет				
	пересчете на углерод/ (60)											
	Керосин (654*)			1.2	0.0034	2	0.0028	Нет				
2902	Взвешенные частицы (116)	0.5	0.15		1.617008	13	0.2481	Да				
2908	Пыль неорганическая, содержащая	0.3	0.1		0.925846	11.9	0.2602	Да				
	двуокись											
	кремния в %: 70-20 (шамот, цемент, пыль											
	цементного производства - глина,											
	глинистый сланец, доменный шлак, песок,											
	клинкер, зола, кремнезем, зола углей											
	казахстанских месторождений) (494)											
2909	Пыль неорганическая, содержащая	0.5	0.15		0.000013	2	0.000026	Нет				
	двуокись кремния в %: менее 20											
	(доломит, пыль цементного производства											
	– известняк, мел, огарки, сырьевая											
	смесь, пыль вращающихся печей, боксит)											
2930	Пыль абразивная (Корунд белый,			0.04	0.0022	2	0.055	Нет				
	Монокорунд) (1027*)											
	Пыль древесная (1039*)			0.1	0.28		2.800	1 1-				
2937	Пыль зерновая /по грибам хранения/	0.5	1		0.023752	Į l	0.0475	Нет				
	Вещества, облад							,				
	Азота (IV) диоксид (Азота диоксид) (4)	0.2			1.2326		0.5214					
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		1.4282	11.7	0.2435	Да				

Окончание таблицы 3.2 - Определение необходимости расчетов приземных концентраций по веществам по производственной площадке №1

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	4	5	6	7	8	9
	Сернистый газ, Сера (IV) оксид) (516)							

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно

быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма (Hi*Mi) / Сумма (Mi), где Hi - фактическая высота ИЗА, Mi - выброс Hi - Mi -

2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

Таблица 3.3 - Определение необходимости расчетов приземных концентраций по веществам по производственной площадке №2

Восто	чно-Казахстанская область, ТОО "ВСП" (пло	ощадки в	п.Первомай	іский)				
Код	Наименование	ПДК	пдк	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	димость
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	ув , мг/м3	(M)	(H)	для H<10	RNH
								расчетов
1	2	3	4	5	6	7	8	9
0123	Железо (II, III) оксиды (в пересчете на		0.04		0.00077	3.5	0.0019	Нет
	железо) (диЖелезо триоксид, Железа							
	оксид)							
0143	Марганец и его соединения (в пересчете	0.01	0.001		0.00004	3.5	0.004	Нет
	на марганца (IV) оксид)							
	Азот (II) оксид (Азота оксид) (6)	0.4			0.004653	6.03	0.0116	Нет
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.0013	2	0.0087	Нет
0337	Углерод оксид (Окись углерода, Угарный	5	3		0.5256751	4.96	0.1051	Да
	газ) (584)							
	Смесь углеводородов предельных С1-С5			50	1.52827	2	0.0306	Нет
0416	Смесь углеводородов предельных С6-С10			30	0.3722	2	0.0124	Нет
	Пентилены (амилены - смесь изомеров)	1.5			0.05063		0.0338	
	Бензол (64)	0.3	0.1		0.0405	2	0.135	Да
0616	Диметилбензол (смесь о-, м-, п-	0.2			0.00304	2	0.0152	Нет
	изомеров)							
	Метилбензол (349)	0.6			0.02937		0.049	
	Этилбензол (675)	0.02			0.00102		0.051	
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		0.100888	2.79	0.0202	Нет
	пересчете на углерод/ (60)							
	Керосин (654*)			1.2			0.0121	
2735	Масло минеральное нефтяное (веретенное,			0.05	0.00054	3.67	0.0108	Нет
	машинное, цилиндровое и др.) (716*)							
2754	Алканы С12-19 /в пересчете на С/ (1			0.0108	2.8	0.0108	Нет
	Углеводороды предельные C12-C19 (в							
	пересчете на С); Растворитель РПК-265П)							
	(
	10)							

Окончание таблицы 3.3 - Определение необходимости расчетов приземных концентраций по веществам по произв. площадке №2

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	4	5	6	7	8	9
2902	Взвешенные частицы (116)	0.5	0.15		0.039224	8.46	0.0784	Нет
2908	Пыль неорганическая, содержащая	0.3	0.1		0.115647	10.5	0.0367	Да
	двуокись							
	кремния в %: 70-20 (шамот, цемент, пыль							
	цементного производства - глина,							
	глинистый сланец, доменный шлак, песок,							
	клинкер, зола, кремнезем, зола углей							
	казахстанских месторождений) (494)							
2909	Пыль неорганическая, содержащая	0.5	0.15		0.0000062	2.5	0.0000124	Нет
	двуокись							
	кремния в %: менее 20 (доломит, пыль							
	цементного производства - известняк,							
	мел,							
	огарки, сырьевая смесь, пыль							
	вращающихся							
2930	печей, боксит) (495*)			0.04	0.0064	3	0.160	По
2930	Пыль абразивная (Корунд белый,			0.04	0.0064	3	0.160	Да
2978	Монокорунд) (1027*)			0.1	0.0226	3.5	0.226	Ла
2970	Пыль тонко измельченного резинового вулканизата из отходов подошвенных			0.1	0.0220	3.3	0.220	да
	резин							
	(1090*)							
	Вещества, облада	I I I I I I I I I I I I I I I I I I I	I KTOM CVMM	I эрного вре	I Одеот воздейс	твия	l l	
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.2			0.028842		0.1442	Да
0322	Серная кислота (517)	0.3	0.1		0.00000475	3.5	0.000015833	Нет
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		0.0557833	10.1	0.011	Да
	Сернистый газ, Сера (IV) оксид) (516)							
0333	Сероводород (Дигидросульфид) (518)	0.008			0.00003	2.8	0.0038	Нет
	Фтористые газообразные соединения /в	0.02	0.005		0.00001	3.5	0.0005	Нет
	пересчете на фтор/ (617)							

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно

быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Cумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с

2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

Таблица 3.4 - Перечень источников, дающих наибольшие вклады в уровень загрязнения по производственной площадке №1

Код вещества / группы	Наименование вещества	Расчетная максимальная приземная концентрация (общая и без учета фона) доля ПДК / мг/м3						цающие вклад в втрацию	Принадлежность источника (производство, цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	, , , , , , , , , , ,
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
		Загрязн		ства:					
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.322479/0.0644958	0.9862598/0.197252	286/-629	709/204	0037	92.9	91.7	Площадка №1. Котельная для производства
						0007		3.7	Площадка №1. Цех сушки
						0008			Площадка №1. Цех сушки
0304	Азот (II) оксид (Азота оксид) (6)	0.0264945/0.0105978	0.0810326/0.0324131	286/-629	709/204	0037	93	91.8	Площадка №1. Котельная для производства
						0007		3.7	Площадка №1. Цех сушки
						0008	3.1		Площадка №1. Цех сушки
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (0.153543/0.0767715	0.4741727/0.2370863	240/-608	709/204	0037	88.7	87	Площадка №1. Котельная для производства
	516)					0007	5.4	6.5	Площадка №1. Цех сушки
0337	Углерод оксид (Окись	0.1072601/0.5363004	0.3194419/1.5972096	-99/-223	792/86	0008 0037	5.7 90.2	6.4 90.8	Площадка №1. Площадка №1.
	углерода, Угарный газ) (584)								Котельная для производства
						6046	5.9	6.1	Площадка №1. Автостоянки

Окончание таблицы 3.4 - Перечень источников, дающих наибольшие вклады в уровень загрязнения по производственной площадке №1

1	2	3	4	5	6	7	8	9	10
1301	Проп-2-ен-1-аль (Акролеин,	0.0564734/0.0016942	0.3503527/0.0105106	-99/-223	506/208	0035	100		Площадка №1. Маслопрессовый
2902	Акрилальдегид) (474) Взвешенные частицы (116)	0.1931436/0.0965718	0.7312009/0.3656004	-99/-223	709/204	0037	43.6		цех Площадка №1. Котельная для
						0034	32.8		производства Площадка №1. Маслопрессовый цех
						0033	13	5.9	Площадка №1. Маслопрессовый цех
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей	0.196708/0.0590124	0.9714376/0.2914313	286/-629	506/208	0037	97.7		Площадка №1. Котельная для производства
2936	Пыль древесная (1039*)	0.1426873/0.0142687	0.9589625/0.0958963	-99/-223	258/-265	6006	100	100	Площадка №1. Столярное отделение

Таблица 3.5 - Перечень источников, дающих наибольшие вклады в уровень загрязнения по производственной площадке №2

Код вещества / группы	Наименование вещества	Расчетная максим концентрация (общая доля ПДК		с макси	аты точек мальной ой конц.	наибо	ники, д льший в концен	клад в	Принадлежность источника (производство, цех, участок)
суммации		в жилой	на границе	в жилой	на грани	N	% BK	лада	
		зоне	санитарно -	зоне	це СЗЗ	ист.			
			защитной зоны	X/Y	X/Y		ЖЗ	C33	
1	2	3	4	5	6	7	8	9	10
0301	Азота (IV) диоксид (Азота диоксид) (4)	Загрязн 0.0152322/0.0030464	яющие веще 0.1563692/0.0312738	тва:	291/522	6041	74.7	98.2	Площадка №2. Открытая автостоянка
						0023	9.5		Площадка №2. АБК
						6037	7.7		Площадка №2. Гараж
0330	Сера диоксид (Ангидрид сернистый, Сернистый	0.0065485/0.0032743	0.0840231/0.0420116	-152/ -104	636/523	0023	50.3	72.1	Площадка №2. АБК
	газ, Сера (IV) оксид) (516)					0022	46.5	26.2	Площадка №2. Ремонтная мастерская
0337	Углерод оксид (Окись углерода, Угарный газ)	0.0114949/0.0574746	0.1500419/0.7502094	-152/ -104	679/506	6037	57.3	81.9	Площадка №2. Гараж
	(584)					0023	7	6.1	Площадка №2. АБК
						0022		5.1	Площадка №2. Ремонтная мастерская
						6041	23		Площадка №2. Открытая автостоянка
0602	Бензол (64)	0.022125/0.0066375	0.3719057/0.1115717	-99/-223	524/156	0027	67.2	73.3	Площадка №2. Склад ГСМ
						6048	32.8	26.7	Площадка №2. Склад ГСМ

Окончание таблицы 3.5 - Перечень источников, дающих наибольшие вклады в уровень загрязнения по производственной площадке №2

1	2	3	4	5	6	7	8	9	10
2908	Пыль неорганическая, содержащая двуокись	0.0134725/0.0040418	0.3050002/0.0915001	-152/ -104	616/528	0023	47.5		Площадка №2. АБК
	кремния в %: 70-20 (шамот, цемент, пыль					0022	52.4	27.4	Площадка №2. Ремонтная
	цементного производства								мастерская
	- глина, глинистый сланец, доменный шлак,								
	песок, клинкер, зола, кремнезем, зола углей								
	казахстанских								
2930	месторождений) (494) Пыль абразивная (Корунд	0.0107383/0.0004295	0.2874807/0.0114992	-152/	524/156	6040	55.5	64.7	Площадка №2.
	белый, Монокорунд) (1027*)			-104					Ремонтная мастерская
	1027					6039	44.5		Площадка №2.
									Ремонтная мастерская
2978	Пыль тонко	0.0134844/0.0013484	0.3778808/0.0377881	-152/ -104	770/335	6039	100		Площадка №2. Ремонтная
	измельченного резинового вулканизата			-104					мастерская
	из отходов подошвенных резин (1090*)								

3.3 Предложения по нормативам допустимых выбросов по каждому источнику и ингредиенту

Нормативы допустимых выбросов устанавливаются для всех штатных (регламентных) условий эксплуатации стационарных источников, входящих в состав объекта I или II категорий, при их максимальной нагрузке (мощности), предусмотренной проектными и техническими документами, в том числе при условии нормального (регламентного) функционирования всех систем и устройств вентиляции и установок очистки газа /1/.

Нормативы допустимых выбросов объекта I или II категории устанавливаются для условий его нормального функционирования с учетом перспективы развития, то есть загрузки оборудования и режимов устройства эксплуатации, включая систем И вентиляции его пылегазоочистного оборудования, предусмотренных технологическим регламентом. При этом, для действующих объектов I или II категории фактическая максимальная нагрузка оборудования последние три года в пределах показателей, установленных проектом, за исключением случаев технологически неизбежного сжигания газа /1/.

Нормативы допустимых выбросов устанавливаются для отдельного стационарного источника и (или) совокупности стационарных источников, входящих в состав объекта I или II категории /1/.

Согласно п. 5 ст. 202 Экологического Кодекса РК нормативы допустимых выбросов устанавливаются для каждого загрязняющего вещества, включенного в перечень загрязняющих веществ, в виде:

- массовой концентрации загрязняющего вещества (мг/м3), как массы загрязняющего вещества в единице объема сухих отходящих газов;
 - скорости массового потока загрязняющего вещества (г/с).

Для обеспечения соблюдения установленных нормативов допустимой совокупной антропогенной нагрузки на атмосферный воздух наряду с нормативами допустимых выбросов устанавливаются годовые лимиты на выбросы (т/год) для каждого стационарного источника.

Предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ на период эксплуатации разработаны на 2026-2035 годы.

Объем выбросов вредных веществ в атмосферу от рассматриваемого объекта ожидается: 370.3122602 т/год, в том числе твердые — 151.708948 т/год, жидкие и газообразные — 218.6033122 т/год. Нормируемые выбросы ожидаются: 368.8025782 т/год, из них твердые 151.704648 т/год, жидкие и газообразные 217.0979302 т/год. Выбросы, не подлежащие нормированию ожидаются: 1.509682 т, из них твердые 0.0043 т, жидкие и газообразные 1.505382 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Объем выбросов вредных веществ в атмосферу от площадки №1 ожидается: 365.885188 т/год, в том числе твердые — 150.673188 т/год, жидкие и газообразные — 215.212 т/год. Нормируемые выбросы ожидаются: 365.356788 т/год, из них твердые 150.672488 т/год, жидкие и газообразные 214.6843 т/год. Выбросы, не подлежащие нормированию ожидаются: 0.5284 т, из них твердые 0.0007 т, жидкие и газообразные 0.5277 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Объем выбросов вредных веществ в атмосферу от площадки №2 ожидается: 4.4270722 т/год, в том числе твердые -1.03576 т/год, жидкие и газообразные -3.3913122 т/год. Нормируемые выбросы ожидаются: 3.4457902 т/год, из них твердые 1.03216 т/год, жидкие и газообразные 2.4136302 т/год. Выбросы, не подлежащие нормированию ожидаются: 0.981282 т, из них твердые 0.0036 т, жидкие и газообразные 0.977682 т. Согласно п.6 Методики определения нормативов /7/, выбросы от передвижных источников не подлежат нормированию.

Предложения по нормативам НДВ на период эксплуатации в целом по объекту приведены в таблице 3.6, по производственной площадке \mathbb{N}^{1} – в таблице 3.6.1, по производственной площадке \mathbb{N}^{2} - в таблице 3.6.2.

Расчеты выбросов загрязняющих веществ на период эксплуатации представлены в приложении Б.

Таблица 3.6 - Предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ в атмосферу по объекту в целом на 2026-2035 гг.

READINETOXABEEN-UNPUTOUG	Ho-				хишикнгкдльг в	веществ		
Производство цех, участок	мер ис- точ- ника	существующее положение			период эксплуатации 2026-2035 годы		Į В	год дос- тиже
Код и наименование		r/c	т/год	r/c	т/год	r/c	т/год	пия
загрязняющего вещества	2	3	Δ	5	6	7	8	НДВ 9
Τ		3	7	о пинне источники	•	/	Ö	9
**0123, Железо (II, III) OKCI	THE OR HANACHAM						
Площадка №1. Маслоцех	0005			-	лд _	_	l _	.1
№1			0.00015					
Площадка №1. Маслоцех №2	0013	0.00077	0.00543	-	-	-	_	
Итого:		0.00154	0.01086	-	-	-	_	
**0143, Марганец и его	соедин	нения (в пересч		(IV) оксид)	lI			1
Площадка №1. Маслоцех №1	0005	0.00004	0.00017	-	-	-	_	
Площадка №1. Маслоцех №2	0013	0.00004	0.00017	-	-	-	_	
Итого:		0.00008	0.00034	-	-	-	_	
**0301, Азота (IV) диок	сид (А		(4)		<u> </u>		<u> </u>	1
Площадка №1. Маслоцех №1	0003	0.0169	0.3186	-	-	-	-	
Площадка №1. Маслоцех №1	0004	0.0169	0.3186	-	-	-	_	
Площадка №1. Маслоцех №1	0005	0.00024	0.0022	-	-	-	_	
Площадка №1. Маслоцех №1	0006	0.003	0.0054	-	-	-	_	
Площадка №1. Цех сушки	0007			0.0219		0.0219		
Площадка №1. Цех сушки	0008	0.0219	0.1642	0.0219	0.1642	0.0219	0.1642	202

восточно-казахстанская с	2	3	илощадки в п.пеј	<u>5</u>	6	7	8	9
площадка №1. Маслоцех	0011	0.0276	0.6371	J	0	1	0	9
minoщадка №1. Machonex №2	0011	0.02/6	0.03/1	_	_	_	_	
№2 Площадка №1. Маслоцех	0012	0.003	0.0054		_	_	_	
Nº2	0012	0.005	0.0034		_			
№2 Площадка №1. Маслоцех	0013	0.00024	0.0022		_	_	_	
№2	0013	0.00024	0.0022	_				
Площадка №1. Цех	0017	0.097	3.9259	_	_	_	_	
выщелачивания								
Площадка №1. Цех	0020	0.005	0.0086	_	_	_	_	
выщелачивания								
Площадка №1. Котельная	0026	0.2038	4.7442	_	_	_	_	
для цеха								
Площадка №1. Котельная	0037	1.1842	9.5706	1.1842	17.0051	1.1842	17.0051	2026
для производства								
Площадка №2. Ремонтная	0022	0.007	0.1046	0.007	0.1186	0.007	0.1186	2026
мастерская								
Площадка №2. АБК	0023	0.007	0.0416	0.007	0.0416	0.007	0.0416	2026
Итого:		1.61568	20.0134	1.242	17.4937	1.242	17.4937	
**0304, Азот (II) оксид		а оксид) (6)	·		•			
Площадка №1. Маслоцех	0003	0.0027	0.0518	-	-	-	-	
Nº 1								
Площадка №1. Маслоцех	0004	0.0027	0.0518	-	-	-	-	
Nº 1								
Площадка №1. Маслоцех	0006	0.0005	0.0009	-	_	_	_	
Nº1								
Площадка №1. Цех сушки	0007	0.0036		0.0036				
Площадка №1. Цех сушки	0008	0.0036		0.0036	0.0267	0.0036	0.0267	2026
Площадка №1. Маслоцех	0011	0.0045	0.1035	-	_	_	_	
Nº 2	0010	0 0005	0 0000					
Площадка №1. Маслоцех	0012	0.0005	0.0009	_	_	_	_	
№2 ————————————————————————————————————	0015	0 01 50	0 6070					
Площадка №1. Цех	0017	0.0158	0.6379	-	_	_	_	
выщелачивания								

1	2	3	4	5	6	7	8	9
Площадка №1. Цех	0020	0.0008	0.0014	-	-	-	_	
выщелачивания								
Площадка №1. Котельная	0026	0.0331	0.771	-	-	-	_	
для цеха								
Площадка №1. Котельная	0037	0.1924	1.5553	0.1924	2.7633	0.1924	2.7633	2026
для производства								
Площадка №2. Ремонтная	0022	0.0011	0.017	0.0011	0.0193	0.0011	0.0193	2026
мастерская								
Площадка №2. АБК	0023	0.0011	0.0068	0.0011				
Итого:		0.2624	3.2517	0.2018	2.8428	0.2018	2.8428	
**0328, Углерод (Сажа, 3		_			1	1	1	
Площадка №1. Цех сушки	0007	0.002						
Площадка №1. Цех сушки	0008	0.002	0.015	0.002				
NTOPO:		0.004	0.03	0.004	0.03	0.004	0.03	
** 0330, Сера диоксид (Ан			_	_	<u>'</u>	1	1	
Площадка №1. Цех сушки	0007	0.047		0.047				
Площадка №1. Цех сушки	8000	0.047		0.047	0.3528	0.047	0.3528	2026
Площадка №1. Цех	0017	0.3717	4.59	-	-	_	-	
выщелачивания								
Площадка №1. Котельная	0026	0.6691	7.344	-	-	_	-	
для цеха								
Площадка №1. Котельная	0037	1.3336	7.4304	1.3336	23.2819	1.3336	23.2819	2026
для производства								
Площадка №2. Ремонтная	0022	0.0266	0.1224	0.0266	0.153	0.0266	0.153	2026
мастерская								
Площадка №2. АБК	0023	0.0266		0.0266				
Итого:		2.5216	20.2842	1.4808	24.2323	1.4808	24.2323	

1	2	3	4	5	6	7	8	9
**0333 , Сероводород (Ди	гидрос	ульфид) (518)						
Площадка №2. Склад ГСМ	0029	0.000012	0.000007	0.000012	0.000007	0.000012	0.000007	2026
Площадка №2. Склад ГСМ	0030	0.000012	0.000003	0.000012	0.000003	0.000012	0.000003	2026
Итого:		0.000024	0.00001	0.000024	0.00001	0.000024	0.00001	
**0337 , Углерод оксид (Окись	углерода, Угарі	ный газ) (584)					
Площадка №1. Маслоцех	0003	0.1067	2.0119	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0004	0.1067	2.0119	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0005	0.00024	0.00218	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0006	0.0194	0.0339	_	_	_	_	
Nº 1								
Площадка №1. Цех сушки	0007	0.1112	0.8336	0.1112	0.8336	0.1112	0.8336	2026
Площадка №1. Цех сушки	0008	0.1112	0.8336	0.1112	0.8336	0.1112	0.8336	2026
Площадка №1. Маслоцех	0011	0.1745	4.0238	_	_	_	_	
№2								
Площадка №1. Маслоцех	0012	0.0194	0.0339	_	_	_	_	
Nº 2								
Площадка №1. Маслоцех	0013	0.00024	0.00218	_	_	_	_	
Nº2								
Площадка №1. Цех	0017	1.2538	39.1725	_	_	_	_	
выщелачивания								
Площадка №1. Цех	0020	0.0328	0.0574	_	_	_	_	
выщелачивания								
Площадка №1. Котельная	0026	2.2569	47.7564	_	_	_	_	
для цеха								
Площадка №1. Котельная	0037	9.4597	79.3117	9.4597	166.5142	9.4597	166.5142	2026
для производства								
Площадка №2. Ремонтная	0022	0.0896	1.0446	0.0896	1.2237	0.0896	1.2237	2026
мастерская								

Doctofilo Rasaxcianckas C				-		T _		
1	2	3	4	5	6	7	8	9
Площадка №2. АБК	0023	0.0896	0.5374	0.0896	0.5374		0.5374	
Итого:		13.83198	177.66696	9.8613	169.9425	9.8613	169.9425	
**0342 , Фтористые газооб	бразны	е соединения /в	в пересчете на	фтор/ (617)				
Площадка №1. Маслоцех	0005	0.00001	0.00004	_	_	_	_	1
Nº 1								
Площадка №1. Маслоцех	0013	0.00001	0.00004	_	_	_	_	
Nº 2								
Итого:		0.00002	0.00008	_	_	_	_	
**0403 , Гексан (135)								1
Площадка №1.	0036	0.035	1.10376	0.035	1.10376	0.035	1.10376	2026
Маслоэкстракционный								
пех								
Итого:		0.035	1.10376	0.035	1.10376	0.035	1.10376	
**0415 , Смесь углеводоро	олов п	редельных С1-С5	5 (1502*)					<u> </u>
Площадка №2. Склад ГСМ				1.01885	0.08386	1.01885	0.08386	2026
NTOPO:	0027	1.01885					0.08386	1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.01000	0.00000	1.01000	0.00000	1.01000	0.00000	
**0416, Смесь углеводоро	L DE Π	nenenthay C6-C1	In (1503*)					1
Площадка №2. Склад ГСМ	0027	0.24813		0.24813	0.02042	0.24813	0.02042	2026
MTOPO:	0027	0.24813	0.02042				0.02042	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.21013	0.02012	0.21013	0.02012	0.21013	0.02012	
**0501, Пентилены (амиле	בענו –	CMACE MROMADOR)	(460)					<u> </u>
Площадка №2. Склад ГСМ	0027	0.03375	0.00278	0.03375	0.00278	0.03375	0.00278	1 2026
MTOPO:	0027	0.03375	0.00278				0.00278	
MIOTO:		0.03373	0.00270	0.03373	0.00270	0.03373	0.00270	
**0602 , Бензол (64)	<u> </u>							<u> </u>
Площадка №2. Склад ГСМ	0027	0.027	0.00222	0.027	0.00222	0.027	0.00222	2026
	0027	0.027					0.00222	
Итого:		0.02/	0.00222	0.027	0.00222	0.02/	0.00222	

1	2	3	4	5	6	7	8	9
**0616, Диметилбензол (смесь	о-, м-, п- изом	иеров) (203)					•
Площадка №2. Склад ГСМ	0027	0.00203	0.00017	0.00203	0.00017	0.00203	0.00017	2026
Итого:		0.00203	0.00017	0.00203	0.00017	0.00203	0.00017	
**0621, Метилбензол (34	9)							
лощадка №1. Цех	0018	0.2436	0.005	-	-	-	_	
выщелачивания								
Площадка №1. Цех	0019	0.01556	0.00022	-	_	_	_	
выщелачивания								
Площадка №2. Склад ГСМ	0027	0.01958	0.00161	0.01958	0.00161	0.01958	0.00161	2026
Итого:		0.27874	0.00683	0.01958	0.00161	0.01958	0.00161	
**0627 , Этилбензол (675)							
Площадка №2. Склад ГСМ	0027	0.00068	0.00006	0.00068	0.00006	0.00068	0.00006	2026
Итого:		0.00068	0.00006	0.00068	0.00006	0.00068	0.00006	
**1042, Бутан-1-ол (Бут	иловый	спирт) (102)						
Площадка №1. Цех	0018	0.0441	0.0009	-	-	-	_	
выщелачивания								
Площадка №1. Цех	0019	0.00584	0.00008	-	-	-	_	
выщелачивания								
Итого:		0.04994	0.00098	-	_	-	-	
**1061, Этанол (Этиловы	 й спир	oт) (667)						
Площадка №1. Цех	0018		0.0076	-	-	-	_	
выщелачивания								
Площадка №1. Цех	0019	0.01167	0.00017	-	-	-	-	
выщелачивания								
Итого:		0.39347	0.00777	_	-	_	_	

DOCTORIO RUSUNCTUTICRUM C	7011401	B/ 100 B011 (1	шощадия в и : пе	рвомалогали				
1	2	3	4	5	6	7	8	9
**1210 , Бутилацетат (Уко	сусной	кислоты бутило	овый эфир) (110)				
Площадка №1. Цех	0018	0.0353	0.0007	_	_	-	-	
выщелачивания								
Площадка №1. Цех	0019	0.00584	0.00008	-	-	-	_	
выщелачивания								
Итого:		0.04114	0.00078	_	-	_	-	
**1301, Проп-2-ен-1-аль	(Акрс	леин, Акрилаль;	дегид) (474)					
Площадка №1.	0035	0.04	1.26144	0.04	1.26144	0.04	1.26144	2026
Маслопрессовый цех								
Итого:		0.04	1.26144	0.04	1.26144	0.04	1.26144	
**2735 , Масло минерально	ое неф	тяное (веретен	ное, машинное,	цилиндровое и				
Площадка №2. Склад ГСМ	0028	0.00045	0.00006	0.00045	0.00006	0.00045	0.00006	2026
Итого:		0.00045	0.00006	0.00045	0.00006	0.00045	0.00006	
**2754 , Алканы C12-19 /в	в пере	есчете на С/ (У	глеводороды пре	дельные C12-C1	9		•	
Площадка №2. Склад ГСМ	0029	0.0043	0.0024	0.0043	0.0024	0.0043	0.0024	2026
Площадка №2. Склад ГСМ	0030	0.0043	0.0009	0.0043	0.0009	0.0043	0.0009	2026
MTOPO:		0.0086	0.0033	0.0086	0.0033	0.0086	0.0033	
**2902 , Взвешенные части	ицы (1	16)					1	
Площадка №1. Маслоцех	0003		1.9713	_	_	-	_	
Nº 1								
Площадка №1. Маслоцех	0004	0.1045	1.9713	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0005	0.0032	0.003	_	_	-	-	
Nº 1								
Площадка №1. Маслоцех	0006	0.019	0.0333	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0011	0.171	3.9425	_	_	_	_	
№2								
L		1			l .	l		

1	2	3	4	5	6	7	8	9
Площадка №1. Маслоцех	0012	0.019	0.0333	-	-	_	_	
Nº2								
Площадка №1. Маслоцех	0013	0.0013	0.0012	-	-	_	_	
Nº2								
Площадка №1. Цех	0014	0.00245	0.003704	-	_	_	_	
выщелачивания								
Площадка №1. Цех	0015	0.0105	0.015876	-	-	-	-	
выщелачивания								
Площадка №1. Цех	0016	0.0015	0.002268	-	-	-	-	
выщелачивания								
Площадка №1. Цех	0017	0.0665	1.425	-	-	-	-	
выщелачивания								
Площадка №1. Цех	0020	0.019	0.0333	-	-	-	-	
выщелачивания								
Площадка №1. Котельная	0026	0.0496	0.236	-	-	_	_	
для цеха								
Площадка №1.	0031	0.000064	24.528	0.000064	24.528	0.000064	24.528	2026
Маслопрессовый цех								
Площадка №1.	0032	0.096	19.77938	0.096	19.77938	0.096	19.77938	2026
Маслопрессовый цех								
Площадка №1.	0033	0.2	33.8136	0.2	33.8136	0.2	33.8136	2026
Маслопрессовый цех								
Площадка №1.	0034	0.56	47.33904	0.56	47.33904	0.56	47.33904	2026
Маслопрессовый цех		0 5105	5 0010	0 5105		0 5405		
Площадка №1. Котельная	0037	0.7125	5.2013	0.7125	4.2465	0.7125	4.2465	2026
для производства	0000	0 0000	0 10	0 0000	0 10	0 0000	0 10	0000
Площадка №2. Ремонтная	0022	0.0238	0.19	0.0238	0.19	0.0238	0.19	2026
мастерская		0 1 6 4 4 1 4	140 502260	1 500064	100 00050	1 500064	100 00050	
Итого:		2.164414	140.523368	1.592364	129.89652	1.592364	129.89652	

1	2	3	4	5	6	7	8	9
**2908 , Пыль неорганичес				%: 70-20 (шамо	PΤ			_
Площадка №1. Цех	0017	0.1617	2.9799	_	-	-	-	
выщелачивания								
Площадка №1. Котельная	0026	0.5477	8.9722	_	-	-	-	
для цеха								
Площадка №1. Котельная	0037	0.9129	6.4087	0.9129	20.0807	0.9129	20.0807	2026
для производства								
Площадка №2. Ремонтная	0022	0.0578	0.3973	0.0578	0.4967	0.0578	0.4967	2026
мастерская								
Площадка №2. АБК	0023	0.0578		0.0578				
NTOPO:		1.7379	19.0561	1.0285	20.8754	1.0285	20.8754	
**2930, Пыль абразивная	(Кору							
Площадка №1. Маслоцех	0005	0.0022	0.0021	_	-	-	-	
Nº1								
Итого:		0.0022	0.0021	_	-	-	-	
**2937 , Пыль зерновая /г		_		i		· •		
Площадка №1. Маслоцех №1	0001	0.064	0.9953	_	_	_	-	
Площадка №1. Маслоцех №1	0002	0.062	0.9633	-	-	-	-	
Площадка №1. Маслоцех №2	0009	0.063	0.9789	-	-	_	-	
Площадка №1. Маслоцех	0010	0.063	0.9795	_	-	_	-	
№2		_	_					
Итого:		0.252	3.917	-	_	_	-	
Итого по организованным источникам:		24.571618	387.250548	16.844858	367.79291	16.844858	367.79291	

1	2	3	4	5	6	7	8	9
			Неорганизов	анные источники	1:			
**0123, Железо (II, III)	окси	ды (в пересчет		иЖелезо триокси	<u></u> 1Д			
Площадка №1. Цех	6033	0.00077	0.00543	-	-	_	_	
выщелачивания								
Площадка №2. Ремонтная	6039	0.00077	0.00543	0.00077	0.00543	0.00077	0.00543	2026
мастерская								
Итого:		0.00154	0.01086	0.00077	0.00543	0.00077	0.00543	
**0143, Марганец и его								
Площадка №1. Цех	6033	0.00004	0.00017	-	-	-	-	
выщелачивания								
Площадка №2. Ремонтная	6039	0.00004	0.00017	0.00004	0.00017	0.00004	0.00017	2026
мастерская								
Итого:		0.00008	0.00034	0.00004	0.00017	0.00004	0.00017	
	L							
**0301, Азота (IV) диоко				 	ı		İ	ı
Площадка №1. Цех	6033	0.00024	0.0022	-	-	_	_	
выщелачивания				0 00001				0000
Площадка №2. Ремонтная	6039	0.00024	0.0022	0.00024	0.0022	0.00024	0.0022	2026
мастерская		0 00040	0 0044	0 00004	0 0000	0 00004	0 0000	
Итого:		0.00048	0.0044	0.00024	0.0022	0.00024	0.0022	
**0322 , Серная кислота	(517)							
Площадка №2. Ремонтная	6039	0.00000475	0.00000171	0.00000475	0.00000171	0.00000475	0.00000171	2026
мастерская	0039	0.00000473	0.00000171	0.00000473	0.000001/1	0.00000475	0.00000171	2020
Итого:		0.00000475	0.00000171	0.00000475	0.00000171	0.00000475	0.00000171	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.00000170	0.0000171	0.00000170	0.00000171	0.00000170	0.0000171	
**0330, Сера диоксид (A	гидри Немири	и сернистый. Се	ернистый газ. С	ера (IV) оксид)				I
Площадка №2. Ремонтная	6039			. =	0.0000003	0.000003	0.0000003	2026
мастерская								
NTOPO:		0.0000003	0.0000003	0.0000003	0.000003	0.0000003	0.0000003	

DUCTUANO-KasaxCTanCkas (JOJIACT	b, 100 bcii (ii	пощадки в п.пе	рвомаискии)				
1	2	3	4	5	6	7	8	9
**0333 , Сероводород (Ди:	гидрос	ульфид) (518)						
Площадка №2. Склад ГСМ	6050		0.000039	0.000006	0.000039	0.000006	0.000039	2026
Итого:		0.000006	0.000039	0.000006	0.000039	0.000006	0.000039	
**0337 , Углерод оксид (Экись	углерода, Угарн	ный газ) (584)					
Площадка №1. Цех	6033		0.00218	-	_	-	_	
выщелачивания								
Площадка №2. Ремонтная	6039	0.0002401	0.00218009	0.0002401	0.00218009	0.0002401	0.00218009	2026
мастерская								
Итого:		0.0004801	0.00436009	0.0002401	0.00218009	0.0002401	0.00218009	
**0342 , Фтористые газоо	бразны	е соединения /в	в пересчете на	фтор/ (617)				
Площадка №1. Цех	6033	0.00001	0.00004	_	_	-	-	
выщелачивания								
Площадка №2. Ремонтная	6039	0.00001	0.00004	0.00001	0.00004	0.00001	0.00004	2026
мастерская								
Итого:		0.00002	0.00008	0.00001	0.00004	0.00001	0.00004	
**0415 , Смесь углеводор				_				
Площадка №2. Склад ГСМ	6048		0.03288					
Итого:		0.50942	0.03288	0.50942	0.03288	0.50942	0.03288	
** 0416, Смесь углеводор	одов п	редельных С6-С1	LO (1503*)					
Площадка №2. Склад ГСМ	6048	0.12407	0.00801	0.12407	0.00801	0.12407	0.00801	2026
Итого:		0.12407	0.00801	0.12407	0.00801	0.12407	0.00801	
**0501 , Пентилены (амил								•
Площадка №2. Склад ГСМ	6048							1
NTOPO:		0.01688	0.00109	0.01688	0.00109	0.01688	0.00109	

1	2	3	4	5	9	7	8	9
**0602, Бензол (6	4)	·						•
Площадка №2. Скла	д ГСМ 604	0.0135	0.00087	0.0135	0.00087	0.0135	0.00087	2026
MTOPO:		0.0135	0.00087	0.0135	0.00087	0.0135	0.00087	
**0616 , Диметилбе	нзол (смесь	о-, м-, п- изог	меров) (203)					
Площадка №2. Скла	д ГСМ 604	0.00101	0.00007	0.00101	0.00007	0.00101	0.00007	2026
NTOPO:		0.00101	0.00007	0.00101	0.00007	0.00101	0.00007	
**0621, Метилбенз	ол (349)							
Площадка №2. Скла	д ГСМ 604	0.00979	0.00063	0.00979	0.00063	0.00979	0.00063	2026
Итого:		0.00979	0.00063	0.00979	0.00063	0.00979	0.00063	
**0627, Этилбензо	л (675)							
Площадка №2. Скла	д ГСМ 604						0.000022	
Итого:		0.00034	0.000022	0.00034	0.000022	0.00034	0.000022	
**2704, Бензин (н	<u> </u>	<u> </u>	пересчете на у	тлерод/ (60)				
Площадка №2. Ремо	нтная 603	9 0.05	0.045	0.05	0.045	0.05	0.045	2026
мастерская								
Итого:		0.05	0.045	0.05	0.045	0.05	0.045	
**2735 , Масло мин	<u> </u>	<u> </u>	ное, машинное,	цилиндровое и				1
Площадка №2. Скла	д ГСМ 604	9 0.00009	0.0000071	0.00009	0.0000071	0.00009	0.0000071	2026
Итого:		0.00009	0.0000071	0.00009	0.0000071	0.00009	0.0000071	
**2754 , Алканы C1	<u>I</u> 2-19 /в пер	<u> </u>	I глеводороды пре	дельные C12-C19	9			
Площадка №2. Скла	1				0.0139	0.0022	0.0139	2026
MTOFO:		0.0022	0.0139	0.0022	0.0139	0.0022	0.0139	

1	2	3	4	5	6	7	8	9
**2902 , Взвешенные части	ицы (1	16)						1
Площадка №1. Маслоцех №1	6004	0.040768	1.28566	-	-	-	-	
Площадка №1. Маслоцех №1	6005	0.0046	0.0043	-	-	_	-	
Площадка №1. Токарное	6007	0.0484	0.0452	0.0484	0.0452	0.0484	0.0452	2026
отделение Площадка №1. Цех	6030	0.0001	0.000151	-	_	_	-	
выщелачивания Площадка №1. Цех	6032	0.016576	0.522741	-	_	_	-	
выщелачивания Площадка №1. Цех	6033	0.0032	0.003	-	_	_	-	
выщелачивания Площадка №1. Котельная	6045	0.004107	0.129518	_	_	_	_	
для цеха Площадка №1.	6051	0.000044	0.00138	0.000044	0.00138	0.000044	0.00138	2026
Маслопрессовый цех								
Площадка №2. Ремонтная мастерская	6039	0.0075		0.0075			0.0069	
Площадка №2. Ремонтная мастерская	6040	0.0079	0.0073	0.0079	0.0073	0.0079	0.0073	2026
Площадка №2. Ремонтная мастерская	6043	0.000024	0.000423	0.000024	0.000423	0.000024	0.000423	2026
Итого:		0.133219	2.006573	0.063868	0.061203	0.063868	0.061203	
**2908, Пыль неорганичес	ская,	содержащая двус	I	%: 70-20 (шам	I ЭТ			<u> </u>
Площадка №1. Бетонные работы	6008	0.00107				0.00107	0.00821	2026
Площадка №1. Бетонные работы	6009	0.011876	0.161486	0.011876	0.161486	0.011876	0.161486	2026
Площадка №1. Цех вышелачивания	6032	0.016576	0.522741	-	_	_	-	

Восточно-Казахстанская с	област	ь, тоо "всп" (I	площадки в п.пе	рвомаискии)				
1	2	3	4	5	6	7	8	9
Площадка №1. Котельная	6045	0.007467	0.235479	-	-	-	-	
для цеха								
Площадка №2. Ремонтная	6043	0.000047	0.000828	0.000047	0.000828	0.000047	0.000828	2026
мастерская								
Итого:		0.037036	0.928744	0.012993	0.170524	0.012993	0.170524	
**2909 , Пыль неорганиче	ская,	содержащая дву	окись кремния в	%: менее 20				
Площадка №1. Цех	6031	0.000268	0.008452	-	_	_	_	
выщелачивания								
Площадка №1. Котельная	6044	0.000288	0.009082	-	_	-	_	
для цеха								
Площадка №1. Котельная	6052	0.000013	0.00041	0.000013	0.00041	0.000013	0.00041	2026
для производства								
Площадка №2. Ремонтная	6042	0.0000062	0.000109	0.0000062	0.000109	0.0000062	0.000109	2026
мастерская								
Итого:		0.0005752	0.018053	0.0000192	0.000519	0.0000192	0.000519	
**2930, Пыль абразивная		үнд белый, Моно		,	i	•	•	
Площадка №1. Маслоцех №1	6005	0.0022	0.0021	-	-	-	_	
	6007	0.0022	0.0021	0.0022	0.0021	0.0022	0.0021	2026
Площадка №1. Токарное	8007	0.0022	0.0021	0.0022	0.0021	0.0022	0.0021	2026
отделение	6033	0 0000	0 0001					
Площадка №1. Цех	6033	0.0022	0.0021	_	_	_	_	
выщелачивания Площадка №2. Ремонтная	6039	0.0032	0.003	0.0032	0.003	0.0032	0.003	2026
1 1 1	0039	0.0032	0.003	0.0032	0.003	0.0032	0.003	2020
мастерская	6040	0.0032	0.003	0.0032	0.003	0.0032	0.003	2026
Площадка №2. Ремонтная	0040	0.0032	0.003	0.0032	0.003	0.0032	0.003	2026
мастерская Итого:		0.013	0.0123	0.0086	0.0081	0.0086	0.0081	
MITOTO.		0.013	0.0123	0.0088	0.0061	0.0000	0.0061	
**2936 , Пыль древесная	1 (1039*	<u> </u> 						1
Площадка №1. Столярное	6006		0.2943	0.28	0.2943	0.28	0.2943	2026
отделение	0000	0.20	0.2343	0.20	0.2913	3.20	0.2343	2020
Итого:		0.28	0.2943	0.28	0.2943	0.28	0.2943	
	1	, , , , ,				3,1=4		

1	2	3	4	5	6	7	8	9
**2937, Пыль зерновая /г	10 гри	бам хранения/	(487)					
Площадка №1. Маслоцех	6001	0.000035	0.000151	-	_	_	-	
Nº 1								
Площадка №1. Цех сушки	6016	0.000035	0.000151	0.000035	0.000151	0.000035	0.000151	2026
Площадка №1. Цех сушки	6017	0.00056	0.002066	0.00056	0.002066	0.00056	0.002066	2026
Площадка №1. Склады	6014	0.002178	0.025924	0.002178	0.025924	0.002178	0.025924	2026
семян								
Площадка №1. Склады	6018	0.002178	0.024714	0.002178	0.024714	0.002178	0.024714	2026
СЕМЯН								
Площадка №1. Склады	6019	0.001476	0.021771	0.001476	0.021771	0.001476	0.021771	2026
СЕМЯН								
Площадка №1. Склады	6020	0.002394	0.036613	0.002394	0.036613	0.002394	0.036613	2026
СЕМЯН								
Площадка №1. Склады	6025	0.002141	0.032514	0.002141	0.032514	0.002141	0.032514	2026
СЕМЯН								
Площадка №1. Склады	6026	0.001649	0.024566	0.001649	0.024566	0.001649	0.024566	2026
СЕМЯН								
Площадка №1. Склады	6034	0.003642	0.056795	0.003642	0.056795	0.003642	0.056795	2026
СЕМЯН								
Площадка №1. Склады	6035	0.003515	0.054746	0.003515	0.054746	0.003515	0.054746	2026
Семян								
Площадка №1. Склады	6036	0.003984	0.062322	0.003984	0.062322	0.003984	0.062322	2026
СЕМЯН								
Площадка №1. Маслоцех	6022	0.000035	0.000151	-	-	-	-	
Nº2								
NTOPO:		0.023822	0.342484	0.023752	0.342182	0.023752	0.342182	:[

1	2	3	4	5	6	7	8	9
**2978, Пыль тонко изме:	пьченн	ого резинового	вулканизата из	отходов				
Площадка №2. Ремонтная	6039	0.0226	0.0203	0.0226	0.0203	0.0226	0.0203	2026
мастерская								
Итого:		0.0226	0.0203	0.0226	0.0203	0.0226	0.0203	
Итого по неорганизованн	М	1.24016335	3.7453142	1.14044335	1.0096682	1.14044335	1.0096682	
источникам:			•				•	
Всего по объекту:		25.81178135	390.9958622	17.98530135	368.8025782	17.98530135	368.8025782	

Таблица 3.6.1 - Предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ в атмосферу по производственной площадке N1 на 2026-2035 гг.

Восточно-Казахстанская		ь, тоо "всп" (г	ілощадки в п.пе	овомаискии)				
	Ho-		Нор	омативы выбросс	хищикнгкдгьг в	веществ		
	мер							
Производство	ис-	существующе	е положение	период эк	сплуатации			год
цех, участок	точ-			2026-20	35 годы	н Д	ĮВ	дос-
	ника							тиже
Код и наименование		r/c	т/год	r/c	т/год	г/с	т/год	ния
загрязняющего вещества								ндв
1	2	3	4	5	6	7	8	9
			Организова	нные источники	:			
**0123, Железо (II, III) окси	ды (в пересчет	е на железо) (д	иЖелезо триокс	ид			
Площадка №1. Маслоцех	0005	0.00077	0.00543	_	_	_	_	-
Nº 1								
Площадка №1. Маслоцех	0013	0.00077	0.00543	_	_	_	_	-
Nº2								
Итого:		0.00154	0.01086	_	_	-	_	-
**0143, Марганец и его	соедин	ения (в пересч	ете на марганца	(IV) оксид)				
Площадка №1. Маслоцех	0005	0.00004	0.00017	-	_	-	_	-
Nº 1								
Площадка №1. Маслоцех	0013	0.00004	0.00017	-	-	-	_	-
Nº2								
Итого:		0.00008	0.00034	-	-	-	_	-
**0301, Азота (IV) диок								
Площадка №1. Маслоцех	0003	0.0169	0.3186	-	-	-	_	-
Nº 1								
Площадка №1. Маслоцех	0004	0.0169	0.3186	-	-	-	_	-
№ 1								
Площадка №1. Маслоцех	0005	0.00024	0.0022	-	-	-	_	-
Nº 1								
Площадка №1. Маслоцех	0006	0.003	0.0054	-	-	-	_	-
Nº 1								
Площадка №1. Цех сушки	0007	0.0219		0.0219			0.1642	
Площадка №1. Цех сушки	0008	0.0219	0.1642	0.0219	0.1642	0.0219	0.1642	2026

1	2	3	4	5	6	7	8	9
Площадка №1. Маслоцех	0011	0.0276	0.6371	-	-	-	-	
Nº2								
Площадка №1. Маслоцех	0012	0.003	0.0054	-	-	-	-	
Nº2								
Площадка №1. Маслоцех	0013	0.00024	0.0022	-	-	-	-	
№2								
Площадка №1. Цех	0017	0.097	3.9259	-	-	-	-	
выщелачивания								
Площадка №1. Цех	0020	0.005	0.0086	_	-	-	_	
выщелачивания	0000							
Площадка №1. Котельная	0026	0.2038	4.7442	_	_	_	_	
для цеха	0000	1 1040	0 5506	1 1010	15 0051	1 1040	15 0051	0000
Площадка №1. Котельная	0037	1.1842	9.5706	1.1842	17.0051	1.1842	17.0051	2026
для производства		1 (01(0	10 0670	1 000	17 2225	1 000	17 2225	
Итого:		1.60168	19.8672	1.228	17.3335	1.228	17.3335	
**0304, Азот (II) оксид	(Азот	а оксид) (6)						
Площадка №1. Маслоцех	0003	0.0027	0.0518	_	_	_	-	
Nº 1								
Площадка №1. Маслоцех	0004	0.0027	0.0518	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0006	0.0005	0.0009	_	_	_	_	
Nº 1								
Площадка №1. Цех сушки	0007	0.0036	0.0267	0.0036	0.0267	0.0036	0.0267	2026
Площадка №1. Цех сушки	0008	0.0036	0.0267	0.0036	0.0267	0.0036	0.0267	2026
Площадка №1. Маслоцех	0011	0.0045	0.1035	-	_	_	_	
Nº2								
Площадка №1. Маслоцех	0012	0.0005	0.0009	-	_	_	_	
Nº2								
Площадка №1. Цех	0017	0.0158	0.6379	-	_	-	-	
выщелачивания								

Восточно-Казахстанская с	област	ь, тоо "всп" (г	площадки в п.пе	рвомаискии)				
1	2	3	4	5	6	7	8	9
Площадка №1. Цех	0020	0.0008	0.0014	-	-	-	-	
выщелачивания								
Площадка №1. Котельная	0026	0.0331	0.771	_	_	_	_	
для цеха								
Площадка №1. Котельная	0037	0.1924	1.5553	0.1924	2.7633	0.1924	2.7633	2026
для производства								
Итого:		0.2602	3.2279	0.1996	2.8167	0.1996	2.8167	
**0328, Углерод (Сажа, X	Углерс	рд черный) (583))				•	
Площадка №1. Цех сушки	0007	0.002	0.015	0.002	0.015	0.002	0.015	2026
Площадка №1. Цех сушки	0008	0.002	0.015	0.002	0.015	0.002	0.015	2026
Итого:		0.004	0.03	0.004	0.03	0.004	0.03	
**0330 , Сера диоксид (А	нгидри	д сернистый, Се	ернистый газ, С	ера (IV) оксид)		l .	
Площадка №1. Цех сушки	0007				0.3528	0.047	0.3528	2026
Площадка №1. Цех сушки	0008	0.047	0.3528	0.047	0.3528	0.047	0.3528	2026
Площадка №1. Цех	0017	0.3717	4.59	_	_	_	_	
выщелачивания								
Площадка №1. Котельная	0026	0.6691	7.344	_	_	_	_	
для цеха								
Площадка №1. Котельная	0037	1.3336	7.4304	1.3336	23.2819	1.3336	23.2819	2026
для производства								
MTOPO:		2.4684	20.07	1.4276	23.9875	1.4276	23.9875	
**0337 , Углерод оксид (Экись	углерода, Угарі	ный газ) (584)				•	
Площадка №1. Маслоцех	0003			_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0004	0.1067	2.0119	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0005	0.00024	0.00218	_	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0006	0.0194	0.0339	_	_	_	_	
Nº 1								

1	2	3	4	5	6	7	8	9
Площадка №1. Цех сушки	0007	0.1112	0.8336	0.1112	0.8336	0.1112	0.8336	2026
Площадка №1. Цех сушки	0008	0.1112	0.8336	0.1112	0.8336	0.1112	0.8336	2026
Площадка №1. Маслоцех №2	0011	0.1745	4.0238	_	-	_	-	
Площадка №1. Маслоцех №2	0012	0.0194	0.0339	-	-	-	_	
Площадка №1. Маслоцех №2	0013	0.00024	0.00218	-	-	-	_	
Площадка №1. Цех выщелачивания	0017	1.2538	39.1725	-	-	-	_	
Площадка №1. Цех выщелачивания	0020	0.0328	0.0574	-	-	-	_	
Площадка №1. Котельная для цеха	0026	2.2569	47.7564	-	-	-	_	
Площадка №1. Котельная для производства	0037	9.4597	79.3117	9.4597	166.5142	9.4597	166.5142	2026
Итого:		13.65278	176.08496	9.6821	168.1814	9.6821	168.1814	
**0342, Фтористые газооб	т Празны	е соединения /	в пересчете на	Фтор/ (617)				I.
Площадка №1. Маслоцех №1	0005	0.00001		= =	-	-	-	
Площадка №1. Маслоцех №2	0013	0.00001	0.00004	-	-	_	_	
Итого:		0.00002	0.00008	-	-	-	_	
**0403, Гексан (135)	l 000cl	0.025	1 10276	0.025	1 10276	1 0 025	1 10276	1 2026
Площадка №1. Маслоэкстракционный	0036	0.035	1.10376	0.035	1.10376	0.035	1.10376	2026
цех Итого:		0.035	1.10376	0.035	1.10376	0.035	1.10376	

восточно-казахстанская с	JOJIACT	ь, 100 всп (I	площадки в п.пе	рвомаискии)				
1	2	3	4	5	6	7	8	9
**0621 , Метилбензол (34	9)							
Площадка №1. Цех	0018	0.2436	0.005	-	_	_	-	1
выщелачивания								
Площадка №1. Цех	0019	0.01556	0.00022	-	_	-	-	
выщелачивания								
Итого:		0.25916	0.00522	-	_	-	-	
**1042, Бутан-1-ол (Бут	иловый	спирт) (102)						
Площадка №1. Цех	0018	0.0441	0.0009	-	_	-	-	
выщелачивания								
Площадка №1. Цех	0019	0.00584	0.00008	-	-	-	-	
выщелачивания								
NTOPO:		0.04994	0.00098	-	-	-	-	
**1061, Этанол (Этиловы	й спир							
Площадка №1. Цех	0018	0.3818	0.0076	-	-	-	-	
выщелачивания								
Площадка №1. Цех	0019	0.01167	0.00017	-	-	-	-	
выщелачивания								
Итого:		0.39347			_	-	_	
**1210 , Бутилацетат (Ук								
Площадка №1. Цех	0018	0.0353	0.0007	-	-	-	-	1
выщелачивания								
Площадка №1. Цех	0019	0.00584	0.00008	-	-	_	-	
выщелачивания								
Итого:		0.04114	0.00078	-	_	-	-	
**1301, Проп-2-ен-1-аль		леин, Акрилаль,			1	1	1	
Площадка №1.	0035	0.04	1.26144	0.04	1.26144	0.04	1.26144	2026
Маслопрессовый цех						_		
Итого:		0.04	1.26144	0.04	1.26144	0.04	1.26144	1
								İ

DOCTOTIO RASARCIANCKAN (7031461	E, 100 Bon (1	шощадия в п.пс	рвеманенин	T	T		
1	2	3	4	5	6	7	8	9
**2902, Взвешенные част	ицы (1	.16)						
Площадка №1. Маслоцех	0003	0.1045	1.9713	-	_	_	_	
Nº 1								
Площадка №1. Маслоцех	0004	0.1045	1.9713	-	_	_	_	
Nº 1								
Площадка №1. Маслоцех №1	0005	0.0032	0.003	-	_	_	_	
Площадка №1. Маслоцех №1	0006	0.019	0.0333	-	-	_	_	
Площадка №1. Маслоцех №2	0011	0.171	3.9425	-	-	_	_	
Площадка №1. Маслоцех №2	0012	0.019	0.0333	-	-	_	_	
№2 Площадка №1. Маслоцех №2	0013	0.0013	0.0012	-	_	_	_	
№2 Площадка №1. Цех	0014	0.00245	0.003704	_	_	_	_	
выщелачивания	0011	3,00210	0.000,01					
Площадка №1. Цех	0015	0.0105	0.015876	-	-	_	_	
выщелачивания								i
Площадка №1. Цех	0016	0.0015	0.002268	-	_	_	-	i
выщелачивания								
Площадка №1. Цех	0017	0.0665	1.425	_	_	_	_	i
выщелачивания								
Площадка №1. Цех	0020	0.019	0.0333	-	-	_	_	ł
выщелачивания								i
Площадка №1. Котельная	0026	0.0496	0.236	-	_	-	_	i
для цеха								i
Площадка №1.	0031	0.000064	24.528	0.000064	24.528	0.000064	24.528	2026
Маслопрессовый цех								l
Площадка №1.	0032	0.096	19.77938	0.096	19.77938	0.096	19.77938	2026
Маслопрессовый цех								
Площадка №1.	0033	0.2	33.8136	0.2	33.8136	0.2	33.8136	2026
Маслопрессовый цех								

1	2	3	4	5	6	7	8	9
Площадка №1.	0034	0.56	47.33904	0.56	47.33904	0.56	47.33904	2026
Маслопрессовый цех								
Площадка №1. Котельная	0037	0.7125	5.2013	0.7125	4.2465	0.7125	4.2465	2026
для производства								
Итого:		2.140614	140.333368	1.568564	129.70652	1.568564	129.70652	
**2908 , Пыль неорганиче	CK3d	Сопержащая пвус	OKNCP KDEWHNA B	%· 70-20 (mayo) т			
Площадка №1. Цех	0017			-	_	_	_	
выщелачивания	001	0.101	2.37.33					
Площадка №1. Котельная	0026	0.5477	8.9722	_	_	_	_	
для цеха								
Площадка №1. Котельная	0037	0.9129	6.4087	0.9129	20.0807	0.9129	20.0807	2026
для производства								
Итого:		1.6223	18.3608	0.9129	20.0807	0.9129	20.0807	
**2930 , Пыль абразивная	i (Kopy	I ил белый. Моног	корунд) (1027*)					
Площадка №1. Маслоцех	0005			-	-	-	_	
Nº 1								
Итого:		0.0022	0.0021	-	-	-	-	
**2937 , Пыль зерновая /	′по гри	бам хранения/	(487)					I
Площадка №1. Маслоцех	0001	0.064	0.9953	-	-	-	_	
Nº 1								
Площадка №1. Маслоцех №1	0002	0.062	0.9633	-	-	-	_	
Площадка №1. Маслоцех	0009	0.063	0.9789	_	_	_	_	
Nº2								
Площадка №1. Маслоцех	0010	0.063	0.9795	_	_	_	_	
Nº2								
Итого:		0.252	3.917	-	-	-	_	
Итого по организованны	1	22.824524	384.284558	15.097764	364.50152	15.097764	364.50152	
источникам:				·	·	·		

1	2	3	4	5	6	7	8	9
			Неорганизов	анные источник	и:			•
**0123, Железо (II, III)			е на железо) (д	иЖелезо триокс	ид			
Площадка №1. Цех	6033	0.00077	0.00543	_	-	-	_	
выщелачивания				_	-	-	_	
Итого:		0.00077	0.00543	-	-	-	-	
**0143 , Марганец и его о	соедин	ения (в пересч	ете на марганца	(IV) оксид)				
Площадка №1. Цех	6033				_	-	_	
выщелачивания								
Итого:		0.00004	0.00017	-	-	_	-	
**0301, Азота (IV) диоко	<u>I</u> Сид (А	L Азота диоксид)	(4)					
Площадка №1. Цех	6033			_	_	_	_	
выщелачивания				_	_	_	_	
NTOPO:		0.00024	0.0022	-	_	-	-	
**0337, Углерод оксид (C	 Экись	<u> </u> углерода, Угар	<u> </u> ный газ) (584)					
Площадка №1. Цех	6033	0.00024	0.00218	_	_	-	_	
выщелачивания								
Итого:		0.00024	0.00218	-	_	_	-	
**0342, Фтористые газооб	<u>I</u> бразнь	I	<u>I </u>	Фтор/ (617)				1
Площадка №1. Цех	6033				_	-	_	
выщелачивания								
Итого:		0.00001	0.00004	-	_	_	-	
**2902 , Взвешенные часті	<u>I</u> ицы (1	<u> </u> .16)						-
Площадка №1. Маслоцех	6004		1.28566	_	_	_	_	ĺ
Nº 1								
Площадка №1. Маслоцех	6005	0.0046	0.0043	_	_	_	-	
Nº 1								
Площадка №1. Токарное	6007	0.0484	0.0452	0.0484	0.0452	0.0484	0.0452	2026
отделение								

1	2	3	4	5	6	7	8	9
Площадка №1. Цех	6030	0.0001	0.000151					
выщелачивания	0030	0.0001	0.000131					
Площадка №1. Цех	6032	0.016576	0.522741	_	_	_	_	
выщелачивания	0002	0.010070	0.022711					
Площадка №1. Цех	6033	0.0032	0.003	_	_	_	_	
выщелачивания	0000	0.0001	0.000					
Площадка №1. Котельная	6045	0.004107	0.129518	_	_	_	_	
для цеха								
Площадка №1.	6051	0.000044	0.00138	0.000044	0.00138	0.000044	0.00138	2026
Маслопрессовый цех					*****			
NTOPO:		0.117795	1.99195	0.048444	0.04658	0.048444	0.04658	
**2908 , Пыль неорганичес	ская,	содержащая дву	окись кремния в	%: 70-20 (шамо	T T	L		
Площадка №1. Бетонные	6008	0.00107		0.00107		0.00107	0.00821	2026
работы								
Площадка №1. Бетонные	6009	0.011876	0.161486	0.011876	0.161486	0.011876	0.161486	2026
работы								
Площадка №1. Цех	6032	0.016576	0.522741	_	_	_	_	
выщелачивания								
Площадка №1. Котельная	6045	0.007467	0.235479	_	-	_	-	
для цеха								
Итого:		0.037036	0.928744	0.012946	0.169696	0.012946	0.169696	
**2909 , Пыль неорганичес	ская,	содержащая дву	окись кремния в	%: менее 20				
Площадка №1. Цех	6031	0.000268	0.008452	-	-	_	-	
выщелачивания								
Площадка №1. Котельная	6044	0.000288	0.009082	-	-	-	-	
для цеха								
Площадка №1. Котельная	6052	0.000013	0.00041	0.000013	0.00041	0.000013	0.00041	2026
для производства								
Итого:		0.000569	0.017944	0.000013	0.00041	0.000013	0.00041	

Восточно-Казахстанская о	JOJIACT	b, TOO "BCII" (I	ілощадки в п.пе	рвомаискии)				
1	2	3	4	5	6	7	8	9
**2930, Пыль абразивная		ид белый , Моно						
Площадка №1. Маслоцех №1	6005	0.0022	0.0021	_	-	_	-	
Площадка №1. Токарное отделение	6007	0.0022	0.0021	0.0022	0.0021	0.0022	0.0021	2026
Площадка №1. Цех	6033	0.0022	0.0021	-	-	_	-	
выщелачивания Итого:		0.0066	0.0063	0.0022	0.0021	0.0022	0.0021	
**2936 , Пыль древесная	(1039*	<u> </u> 						
Площадка №1. Столярное отделение	6006		0.2943	0.28	0.2943	0.28	0.2943	2026
Итого:		0.28	0.2943	0.28	0.2943	0.28	0.2943	
**2937, Пыль зерновая /	по гри	ı ıбам хранения/	(487)					
Площадка №1. Маслоцех №1	6001	0.000035	0.000151	-	-	_	-	
Площадка №1. Цех сушки	6016							
Площадка №1. Цех сушки Площадка №1. Склады	6017 6014	0.00056 0.002178					0.002066 0.025924	
семян Площадка №1. Склады	6018	0.002178	0.024714	0.002178	0.024714	0.002178	0.024714	2026
семян Площадка №1. Склады	6019	0.001476	0.021771	0.001476	0.021771	0.001476	0.021771	2026
семян Площадка №1. Склады	6020	0.002394	0.036613	0.002394	0.036613	0.002394	0.036613	2026
семян Площадка №1. Склады	6025	0.002141	0.032514	0.002141	0.032514	0.002141	0.032514	2026
семян Площадка №1. Склады	6026	0.001649	0.024566	0.001649	0.024566	0.001649	0.024566	2026
семян Площадка №1. Склады	6034	0.003642	0.056795	0.003642	0.056795	0.003642	0.056795	2026
семян								

Всего по объекту:	i	23.291599	387.875472	15.465119	365.356788	15.465119	365.356788	
источникам:		·						
Итого по неорганизован	ым	0.467075	3.590914	0.367355	0.855268	0.367355	0.855268	
Итого:		0.023822	0.342484	0.023752	0.342182	0.023752	0.342182	
Площадка №1. Маслоцех №2	6022	0.000035	0.000151	-	_	-	-	
семян Площадка №1. Склады семян	6036	0.003984	0.062322	0.003984	0.062322	0.003984	0.062322	2026
Площадка №1. Склады	6035	0.003515	0.054746	0.003515	0.054746	0.003515	0.054746	2026
1	2	3	4	5	6	7	8	9

Таблица 3.6.2 - Предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ в атмосферу по произодственной площадке $\mathbb{N}2$ на 2026-2035 гг.

	Но- мер		Нормативы выбросов загрязняющих веществ						
Производство цех, участок	ис- точ- ника	существующе	е положение		период эксплуатации 2026-2035 годы		В	год дос- тиже	
Код и наименование		r/c	т/год	r/c	т/год	r/c	т/год	ния	
загрязняющего вещества								НДВ	
1	2	3	4	5	6	7	8	9	
			Организова	нные источники					
**0301, Азота (IV) диок			(4)						
Площадка №2. Ремонтная	0022	0.007	0.1046	0.007	0.1186	0.007	0.1186	2026	
мастерская									
Площадка №2. АБК	0023	0.007	0.0416	0.007	0.0416	0.007	0.0416		
Итого:		0.014	0.1462	0.014	0.1602	0.014	0.1602		
**0304, Азот (II) оксид	TOEA)	а оксид) (6)							
Площадка №2. Ремонтная мастерская	0022	0.0011	0.017	0.0011	0.0193	0.0011	0.0193	2026	
Площадка №2. АБК	0023	0.0011	0.0068	0.0011	0.0068	0.0011	0.0068	2026	
Итого:		0.0022	0.0238	0.0022	0.0261	0.0022	0.0261		
**0330, Сера диоксид (A	 нгидри	д сернистый, С	ернистый газ, С	 epa (IV) оксид)					
Площадка №2. Ремонтная мастерская	0022	0.0266		0.0266	0.153	0.0266	0.153	2026	
Площадка №2. АБК	0023	0.0266	0.0918	0.0266	0.0918	0.0266	0.0918	2026	
Итого:		0.0532	0.2142	0.0532	0.2448	0.0532	0.2448		
**0333 , Сероводород (Ди	I гидрос	ульфид) (518)							
Площадка №2. Склад ГСМ	0029	0.000012	0.000007	0.000012	0.000007	0.000012	0.000007	2026	
Площадка №2. Склад ГСМ	0030	0.000012	0.000003	0.000012	0.000003	0.000012	0.000003	2026	
Итого:		0.000024	0.00001	0.000024	0.00001	0.000024	0.00001		

1	2	3	4	5	6	7	8	9
**0337 , Углерод оксид (Окись	углерода, Угарі	ный газ) (584)					
Площадка №2. Ремонтная	0022	0.0896	1.0446	0.0896	1.2237	0.0896	1.2237	2026
мастерская								
Площадка №2. АБК	0023		0.5374	0.0896	0.5374	0.0896	0.5374	2026
Итого:		0.1792	1.582	0.1792	1.7611	0.1792	1.7611	
**0415 , Смесь углеводор	одов г	і іредельных С1-С	5 (1502*)					_
Площадка №2. Склад ГСМ	0027	1.01885	0.08386	1.01885	0.08386	1.01885	0.08386	2026
Итого:		1.01885	0.08386	1.01885	0.08386	1.01885	0.08386	
**0416 , Смесь углеводор								
Площадка №2. Склад ГСМ	0027	0.24813	0.02042	0.24813	0.02042	0.24813	0.02042	2026
Итого:		0.24813	0.02042	0.24813	0.02042	0.24813	0.02042	
**0501 , Пентилены (амил								_
Площадка №2. Склад ГСМ	0027			0.03375	0.00278	0.03375	0.00278	
Итого:		0.03375	0.00278	0.03375	0.00278	0.03375	0.00278	
**0602, Бензол (64)								
Площадка №2. Склад ГСМ	0027	0.027	0.00222	0.027	0.00222	0.027	0.00222	2026
Итого:		0.027	0.00222	0.027	0.00222	0.027	0.00222	
**0616, Диметилбензол (смесь	о-, м-, п- изою				I		
Площадка №2. Склад ГСМ	0027		0.00017	0.00203	0.00017	0.00203	0.00017	
Итого:		0.00203	0.00017	0.00203	0.00017	0.00203	0.00017	
**0621, Метилбензол (34	9)							
Площадка №2. Склад ГСМ	0027			0.01958	0.00161	0.01958	0.00161	
Итого:		0.27874	0.00683	0.01958	0.00161	0.01958	0.00161	

восточно-казахстанская с	Ollaci	b, 100 bcn (1.	ілощадки в п.пер	рвомаискии)				
1	2	3	4	5	6	7	8	9
**0627, Этилбензол (675))							
Площадка №2. Склад ГСМ	0027	0.00068	0.00006	0.00068	0.00006	0.00068	0.00006	2026
Итого:		0.00068	0.00006	0.00068	0.00006	0.00068	0.00006	
**2735, Масло минерально	ое неф	тяное (веретен	ное, машинное,	цилиндровое и				
Площадка №2. Склад ГСМ	0028	0.00045	0.00006	0.00045	0.00006	0.00045	0.00006	2026
Итого:		0.00045	0.00006	0.00045	0.00006	0.00045	0.00006	
**2754 , Алканы C12-19 /в	з пере	счете на С/ (У	глеводороды пре	дельные С12-С19	9			
Площадка №2. Склад ГСМ	0029	0.0043	0.0024	0.0043	0.0024	0.0043	0.0024	
Площадка №2. Склад ГСМ	0030	0.0043	0.0009	0.0043		0.0043	0.0009	2026
NTOPO:		0.0086	0.0033	0.0086	0.0033	0.0086	0.0033	
**2902, Взвешенные части	ицы (1	16)						_
Площадка №2. Ремонтная	0022	0.0238	0.19	0.0238	0.19	0.0238	0.19	2026
мастерская								
MTOPO:		2.164414	140.523368	1.592364	129.89652	1.592364	129.89652	
**2908 , Пыль неорганичес	ская,	содержащая дву		%: 70-20 (шамо				-
Площадка №2. Ремонтная	0022	0.0578	0.3973	0.0578	0.4967	0.0578	0.4967	2026
мастерская								
Площадка №2. АБК	0023	0.0578	0.298	0.0578		0.0578	0.298	2026
MTOPO:		1.7379	19.0561	1.0285	20.8754	1.0285	20.8754	
Итого по организованным		1.747094	2.96599	1.747094	3.29139	1.747094	3.29139	
источникам:								

1	2	3	4	5	6	7	8	9
			Неорганизов	анные источник	4 :			
**0123, Железо (II, III) окси	ды (в пересчет	е на железо) (д	иЖелезо триокс	ид			
Площадка №2. Ремонтная	6039	0.00077	0.00543	0.00077	0.00543	0.00077	0.00543	2026
мастерская								
Итого:		0.00077	0.00543	0.00077	0.00543	0.00077	0.00543	
**0143, Марганец и его					i i	,		
Площадка №2. Ремонтная	6039	0.00004	0.00017	0.00004	0.00017	0.00004	0.00017	2026
мастерская								
Итого:		0.00004	0.00017	0.00004	0.00017	0.00004	0.00017	
±±0201 7.5 (TT7)	(7		(1)					<u> </u>
**0301, Азота (IV) диок				0 00004	0.0022	0 00004	0.0022	Lanac
Площадка №2. Ремонтная	6039	0.00024	0.0022	0.00024	0.0022	0.00024	0.0022	2026
мастерская Итого:		0.00024	0.0022	0.00024	0.0022	0.00024	0.0022	
JIIOIO.		0.00024	0.0022	0.00024	0.0022	0.00024	0.0022	
**0322 , Серная кислота	(517)							
Площадка №2. Ремонтная	6039	0.00000475	0.00000171	0.00000475	0.00000171	0.00000475	0.00000171	2026
мастерская								
Итого:		0.00000475	0.00000171	0.00000475	0.00000171	0.00000475	0.00000171	
								<u> </u>
**0330, Сера диоксид (A:			-			i		
Площадка №2. Ремонтная	6039	0.0000003	0.0000003	0.0000003	0.0000003	0.0000003	0.0000003	2026
мастерская								
Итого:		0.0000003	0.0000003	0.0000003	0.0000003	0.0000003	0.0000003	
**0222 Canananana / H		(E10)						<u> </u>
**0333, Сероводород (Ди:	гидрос 6050		0.000039	0.000006	0.000039	0.000006	0.000039	2026
Площадка №2. Склад ГСМ Итого:	6030	0.000006	0.000039			0.000006	0.000039	
MITOTO.		0.00000	0.000039	0.00000	0.000039	0.000006	0.000039	ĺ
	1							1

Продолжение таблицы 3.6.2 - Предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ в атмосферу по произодственной площадке №2 на 2026-2035 гг.

1	2	3	4	5	6	7	8	9
**0337 , Углерод оксид (Экись	углерода, Угари	ный газ) (584)	•	•	•		
Площадка №2. Ремонтная	6039			0.0002401	0.00218009	0.0002401	0.00218009	2026
мастерская								
Итого:		0.0002401	0.00218009	0.0002401	0.00218009	0.0002401	0.00218009	
**0342, Фтористые газоо					,	i		•
Площадка №2. Ремонтная	6039	0.00001	0.00004	0.00001	0.00004	0.00001	0.00004	2026
мастерская								
Итого:		0.00001	0.00004	0.00001	0.00004	0.00001	0.00004	
**0415, Смесь углеводоро	Ι Σποв г	 пелельных С1-С	5 (1502*)					
Площадка №2. Склад ГСМ	6048			0.50942	0.03288	0.50942	0.03288	2026
Итого:		0.50942		0.50942	0.03288	0.50942	0.03288	
**0416, Смесь углеводор			10 (1503*)					
Площадка №2. Склад ГСМ	6048		0.00801	0.12407	0.00801	0.12407	0.00801	2026
Итого:		0.12407	0.00801	0.12407	0.00801	0.12407	0.00801	
**0501 , Пентилены (амил	<u> </u> ены -	смесь изомеров	(460)					
Площадка №2. Склад ГСМ	6048			0.01688	0.00109	0.01688	0.00109	2026
Итого:		0.01688	0.00109	0.01688	0.00109	0.01688	0.00109	
**0602, Бензол (64)								
Площадка №2. Склад ГСМ	6048	0.0135	0.00087	0.0135	0.00087	0.0135	0.00087	2026
Итого:	0040	0.0135	0.00087	0.0135	0.00087	0.0135	0.00087	2020
, , , , , , , , , , , , , , , , , , ,		0.0133	0.00007	0.0133	0.00007	0.0133	0.00007	
**0616, Диметилбензол (смесь	о-, м-, п- изов	меров) (203)					
Площадка №2. Склад ГСМ	6048	0.00101	0.00007	0.00101	0.00007	0.00101	0.00007	2026
Итого:		0.00101	0.00007	0.00101	0.00007	0.00101	0.00007	

Продолжение таблицы 3.6.2 - Предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ в атмосферу по произодственной площадке №2 на 2026-2035 гг.

DOCTOGHO-RASAXCTAHCKAS C			влощадия в п.пе					
1	2	3	4	5	6	7	8	9
**0621 , Метилбензол (349	9)							
Площадка №2. Склад ГСМ	6048	0.00979	0.00063	0.00979	0.00063	0.00979	0.00063	2026
Итого:		0.00979	0.00063	0.00979	0.00063	0.00979	0.00063	
I								
**0627, Этилбензол (675)								•
Площадка №2. Склад ГСМ	6048	0.00034	0.000022	0.00034	0.000022	0.00034	0.000022	2026
Итого:		0.00034	0.000022	0.00034	0.000022	0.00034	0.000022	
I								
**2704 , Бензин (нефтяной	́ı, мал	посернистый) /в	пересчете на у	глерод/ (60)				•
Площадка №2. Ремонтная	6039	0.05	0.045	0.05	0.045	0.05	0.045	2026
мастерская								
Итого:		0.05	0.045	0.05	0.045	0.05	0.045	
**2735, Масло минерально	е неф	ртяное (веретен	ное, машинное,	цилиндровое и				
Площадка №2. Склад ГСМ	6049	0.00009	0.0000071	0.00009	0.0000071	0.00009	0.0000071	2026
Итого:		0.00009	0.0000071	0.00009	0.0000071	0.00009	0.0000071	
**2754 , Алканы C12-19 /г	в пере	есчете на С/ (У:	глеводороды пре	дельные С12-С1	9			•
Площадка №2. Склад ГСМ	6050		0.0139	0.0022	0.0139	0.0022	0.0139	2026
Итого:		0.0022	0.0139	0.0022	0.0139	0.0022	0.0139	
**2902 , Взвешенные части	1цы (1	16)						•
Площадка №2. Ремонтная	6039	0.0075	0.0069	0.0075	0.0069	0.0075	0.0069	2026
мастерская								
Площадка №2. Ремонтная	6040	0.0079	0.0073	0.0079	0.0073	0.0079	0.0073	2026
мастерская								
Площадка №2. Ремонтная	6043	0.000024	0.000423	0.000024	0.000423	0.000024	0.000423	2026
мастерская								
Итого:		0.015424	0.014623	0.015424	0.014623	0.015424	0.014623	

Окончание таблицы 3.6.2 - Предлагаемые к утверждению нормативы допустимых выбросов загрязняющих веществ в атмосферу по произодственной площадке $\mathbb{N}2$ на 2026-2035 гг.

Итого по неористочникам:	рганизованнь	IM	0.77308835	0.1544002	0.77308835	0.1544002	0.77308835	0.1544002	1
7			0 77200005	0.1544000	0 77200005	0.1544000	0 77200005	0 1544000	
мастерская Итоі	70:		0.0226	0.0203	0.0226	0.0203	0.0226	0.0203	
Площадка №2.		6039				0.0203	0.0226	0.0203	202
**2978, Пыль	тонко измел	іьченн	ого резинового	вулканизата из	ОТХОДОВ				
мастерская Итоі	70:		0.0064	0.006	0.0064	0.006	0.0064	0.006	
Площадка №2. мастерская	Ремонтная	6040	0.0032	0.003	0.0032	0.003	0.0032	0.003	2026
мастерская	_		0.5555		0 0 0 0 0 0 0				
Площадка №2.	-	6039			0.0032	0.003	0.0032	0.003	202
**2930, Пыль	абразивная	(Kony	нд белый, Моно	 корунд) (1027*)					
мастерская Итоі	70:		0.0000062	0.000109	0.0000062	0.000109	0.0000062	0.000109	
Площадка №2.	Ремонтная	6042	0.0000062	0.000109	0.0000062	0.000109	0.0000062	0.000109	202
		i e		окись кремния в					
мастерская Итог	70:		0.000047	0.000828	0.000047	0.000828	0.000047	0.000828	
Площадка №2.	Ремонтная	6043	0.000047	0.000828	0.000047	0.000828	0.000047	0.000828	202
**2908, Пыль	неорганичес			окись кремния в					
1 **2908, Пыль	неорганичес	2 ская,	3 содержащая двус	4 экись кремния в	5 %: 70-20 (шам	6	7	8	

3.4 Обоснование возможности достижения нормативов с учетом использования малоотходной технологии и других планируемых мерориятий

С точки зрения выбросов в атмосферный воздух, предлагаемый производственный процесс является малоотходным, в связи с чем, внедрение дополнительных малоотходных и безотходных технологий в рамках данного проекта не предусматривается.

Общая концентрация загрязняющих веществ в период эксплуатации, на границе санитарно-защитной зоны (100 метров) и на границе ближайшей жилой зоны, не превысит допустимых норм.

3.5 Уточнение границ области воздействия объекта

Согласно положительному санитарно-эпидемиологическому заключению №109 от 10.11.2016 года (представлено в приложении Л), СЗЗ для площадки №1 составляет 100 м, для площадки №2 — СЗЗ 100 м, предприятие относится к IV классу опасности.

Ближайшая жилая зона к площадке №1 находится с юго-западной и южной сторон на расстоянии 200 и 300 м соответственно.

Ближайшая жилая зона к площадке №2 находится с юго-западной стороны на расстоянии 700 м.

Согласно результатов расчета приземных концентраций загрязняющих веществ, создаваемых предприятием, превышений ПДКм.р. на границе санитарно-защитной зоны (СЗЗ) и в жилой зоне нет.

3.6 Данные о пределах области воздействия

Область воздействия объекта ограничена санитарно-защитной зоной (100 метров) площадки №1 и площадки №2.

3.7 Информация о расположении зоны заповедников, музеев, памятников архитектуры в районе размещения объекта

В непосредственной близости к территории рассматриваемого объекта исторические памятники, охраняемые объекты, археологические ценности, а также особо охраняемые и ценные природные комплексы (заповедники, заказники, памятники природы) отсутствуют.

4 МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ВЫБРОСОВ ПРИ НЕБЛАГОПРИЯТНЫХ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЯ

Под регулированием выбросов вредных веществ в атмосферу понимается их кратковременное сокращение в периоды НМУ, предотвращающее высокий уровень загрязнения воздуха. Регулирование выбросов осуществляется с учетом прогноза НМУ на основе предупреждений о возможном опасном росте концентраций примесей в воздухе с целью его предотвращения.

Прогноз загрязнения атмосферы и регулирования выбросов являются важной составной частью всего комплекса мероприятий по обеспечению чистоты воздушного бассейна. Эти работы особенно необходимы в городах и поселках с относительно высоким средним уровнем загрязнения воздуха, поскольку принятие мер по его снижению требует, как правило, больших усилий и времени, а эффект от регулирования примесей может быть практически незамедлительным. Мероприятия разрабатываются на всех предприятиях, имеющих источники выбросов вредных веществ в атмосферу.

При разработке мероприятий по кратковременному сокращению выбросов в периоды НМУ необходимо учитывать следующее:

- мероприятия должны быть достаточно эффективными и практически выполнимыми;
- мероприятия должны учитывать специфику конкретных производств;
- осуществление разработанных мероприятий, как правило, не должно сопровождаться сокращением производства.

Согласно сведениям РГП «Казгидромет» /13/, в районе расположения объекта случаи особо неблагоприятных метеорологических условий не прогнозируются, в связи с чем, мероприятия по регулированию выбросов при НМУ не разрабатываются.

5 КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ

Согласно ст. 282 Экологического Кодекса РК, операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль.

Производственный мониторинг воздушного бассейна, как элемент производственного экологического контроля, включает в себя следующие направления деятельности:

- наблюдение за параметрами технологических процессов (операционный мониторинг);
- наблюдения за количеством, качеством эмиссий и их изменением (мониторинг эмиссий);
 - оценку состояния атмосферного воздуха (мониторинг воздействия).

Операционный мониторинг (мониторинг производственного процесса) включает в себя наблюдения за параметрами технологических процессов, обеспечивающих работу в штатном режиме, для подтверждения того, что показатели деятельности организации находятся в диапазоне, который считается целесообразным для надлежащей эксплуатации и соблюдения условий тех.регламента данного производства. Эти параметры обычно отслеживаются датчиками давления, температур, влажности, освещения и т.д. Содержание операционного мониторинга определяется оператором.

Мониторинг эмиссий загрязняющих веществ в атмосферу на источниках выбросов выполняется для контроля соблюдения установленных нормативов допустимых выбросов (НДВ).

Все источники, подлежащие контролю, делятся на две категории. К первой категории относятся источники, вносящие наиболее существенный вклад в загрязнение воздуха, которые должны контролироваться систематически.

К источникам первой категории относятся:

- 1) создающие приземные концентрации больше 0,5 ПДК;
- 2) выбрасывающие основные загрязняющие вещества: диоксид азота, диоксид серы, оксид углерода;
- 3) на которых установлена пылегазоочистная аппаратура с КПД < 75%.

Ко второй - более мелкие источники, которые могут контролироваться эпизодически.

Контрольное определение мощности выбросов от организованных источников должно проводиться не реже одного раза в год. При этом контролю подвергаются источники относящиеся к первой категории для которых $C_{\text{макс}}/\Pi \text{Д} K_{\text{м.р.}} > 0,5$ выполняется неравенство:

$$M/(\Pi Д K_{M,p.} * H) > 0.01$$

А также источники, на которых установлена пылегазоочистная аппаратура с КПД > 75 %. При одновременном выполнении для них условий:

$$(C_{\text{макс}}/\Pi \angle K_{\text{м.p}}) * [100/(100\text{-КП}\angle I)] > 0,5$$
 $(M/\Pi \angle K_{\text{м.p}} * H) * [100/(100\text{-КП}\angle I)] > 0,01$

где: M — максимальный массовый выброс загрязняющих веществ из источника, г/с;

 $C_{\text{макс}}$ - максимальное удельное загрязнение, мг/м³;

ПДКм.р.- максимально разовая предельно допустимая концентрация, мг/м³;

Н - высота источника выброса, м;

КПД – коэффициент полезного действия пылегазоочистного оборудования, %.

Согласно 203 Экологического кодекса PK. CT. мониторинг соблюдения нормативов допустимых выбросов стационарного источника и (или) совокупности стационарных источников осуществляется путем измерений в соответствии с утвержденным перечнем измерений, относящихся к государственному регулированию. При невозможности проведения мониторинга путем измерений допускается применение расчетного метода.

На период эксплуатации в таблице 5.1 представлен расчет категории источников, подлежащих контролю.

План-график контроля за соблюдением нормативов ДВ на период эксплуатации площадки №1 отображен в таблице 5.2, площадки №2 – в таблице 5.3.

Ответственность за проведение контроля за соблюдением нормативов допустимых выбросов возлагается на оператора объекта.

Выбросы не должны превышать установленного для источника контрольного значения НДВ в г/с.

Результаты выполняемого периодически контроля включаются в технические отчеты предприятия по форме 2-ТП (воздух), учитываются при оценке его деятельности.

Таблица 5.1 - Расчет категории источников, подлежащих контролю на период эксплуатации по объекту в целом

Восто	ино-Казахстанская область ,	TOO "BC	П" (плоц	цадки в	в п.Первомай	СКИЙ)				
Номер	Наименование	Высота	КПД	Код	ПДКм.р	Macca	M*100	Максимальная	См*100	Катего-
исто-	источника	источ-	очистн.	веще-	(ОБУВ,	выброса (М)		приземная		рия
чника	выброса	ника,	сооруж.	ства	10*ПДКс.с.)	с учетом	ПДК*Н* (100-	концентрация	ПДК* (100-	источ-
		M	양		мг/м3	очистки, г/с	-КПД)	(См) мг/м3	КПД)	ника
1	2	3	4	5	6	7	8	9	10	11
					Площадка	1				
0007	Труба	8		0301	0.2	0.0219	0.011	0.0515	0.2575	2
				0304	0.4	0.0036	0.0009	0.0085	0.0213	2
				0328	0.15	0.002	0.0013		0.094	2
				0330	0.5	0.047	0.0094	0.1106	0.2212	2
				0337	5	0.1112	0.0022	0.2616	0.0523	2
8000	Труба	8		0301	0.2	0.0219	0.011	0.0515	0.2575	2
				0304	0.4	0.0036	0.0009	0.0085	0.0213	2
				0328	0.15	0.002	0.0013	0.0141	0.094	2
				0330	0.5	0.047	0.0094	0.1106	0.2212	2 2 2 2 2
				0337	5	0.1112	0.0022	0.2616	0.0523	2
0022	Труба	12		0301	0.2	0.007	0.0029	0.0158	0.079	2
				0304	0.4	0.0011	0.0002	0.0025	0.0063	2
				0330	0.5	0.0266	0.0044	0.0599	0.1198	
				0337	5	0.0896	0.0015	0.2018	0.0404	2
				2902	0.5	0.0238	0.004	0.1608	0.3216	2
				2908	0.3	0.0578	0.0161	0.3906	1.302	1
0023	Труба	9		0301	0.2	0.007	0.0035	0.0286	0.143	2
				0304	0.4	0.0011	0.0003	0.0045	0.0113	2
				0330	0.5	0.0266	0.0053	0.1085	0.217	2
				0337	5	0.0896	0.0018	0.3655	0.0731	2
				2908	0.3	0.0578	0.0193	0.7073	2.3577	1
0027	Дыхательный клапан	2		0415	*50	1.01885	0.002	36.3898	0.7278	2
				0416	*30	0.24813	0.0008	8.8623	0.2954	2
				0501	1.5	0.03375	0.0023	1.2054	0.8036	2
				0602	0.3	0.027	0.009	0.9643	3.2143	2
				0616	0.2	0.00203	0.001	0.0725	0.3625	2
				0621	0.6	0.01958	0.0033		1.1655	2
				0627	0.02	0.00068	0.0034	0.0243	1.215	2
0028	Дыхательный клапан	4		2735	*0.05	0.00045			0.064	2
0029	Дыхательный клапан	4		0333	0.008	0.000012	0.0002	0.0001	0.0125	2

Продолжение таблицы 5.1 - Расчет категории источников, подлежащих контролю на период эксплуатации по объекту в целом Восточно-Казахстанская область, ТОО "ВСП" (плошалки в п.Первомайский)

	чно-Казахстанская область, '				з п.Первомай					
1	2	3	4	5	6	7	8	9	10	11
				2754	1	0.0043	0.0004	0.0305	0.0305	2
0030	Дыхательный клапан	2		0333	0.008	0.000012	0.0002	0.0004	0.05	2
				2754	1	0.0043	0.0004	0.1536	0.1536	2
0031	Труба	15.9	92	2902	0.5	0.000064	0.0001	0.00002	0.0005	2
0032	Труба	15.7	92	2902	0.5	0.096	0.1529	0.0193	0.4825	2
0033	Труба	14.3	92	2902	0.5	0.2	0.3497	0.0351	0.8775	1
0034	Труба	14.4	92	2902	0.5	0.56	0.4611	0.2175	2.5789	1
0035	Труба	14.4		1301	0.03	0.04	0.0926	0.0143	0.4767	2
0036	Труба	17.2		0403	60	0.035	0.00003	0.0082	0.0001	2
0037	Труба	12		0301	0.2	1.1842	0.4934	0.2008	1.004	1
				0304	0.4	0.1924	0.0401	0.0326	0.0815	2
				0330	0.5	1.3336	0.2223	0.2261	0.4522	2
				0337	5	9.4597	0.1577	1.6037	0.3207	2
			85	2902	0.5	0.7125	0.7917	0.302	4.0267	1
			85	2908	0.3	0.9129	1.6906	0.3869	8.5978	1
6006	Неорганизованный источник	2		2936	*0.1	0.28	0.28	30.0019	300.019	1
6007	Неорганизованный источник	2		2902	0.5	0.0484	0.0097	5.186	10.372	2
				2930	*0.04	0.0022	0.0055	0.2357	5.8925	2
6008	Неорганизованный источник	2		2908	0.3	0.00107	0.0004	0.1147	0.3823	2
6009	Неорганизованный источник	2		2908	0.3	0.011876	0.004	1.2725	4.2417	2
6014	Неорганизованный источник	2.5		2937	0.5	0.002178	0.0004	0.1387	0.2774	2
6016	Неорганизованный источник	2		2937	0.5	0.000035	0.00001	0.0038	0.0076	2
6017	Неорганизованный источник	2		2937	0.5	0.00056	0.0001	0.06	0.12	2
6018	Неорганизованный источник	2.5		2937	0.5	0.002178	0.0004	0.1387	0.2774	2
6019	Неорганизованный источник	2.5		2937	0.5	0.001476	0.0003	0.094	0.188	2
6020	Неорганизованный источник	2.5		2937	0.5	0.002394	0.0005	0.1524	0.3048	2
6025	Неорганизованный источник	2.5		2937	0.5	0.002141	0.0004	0.1363	0.2726	2
6026	Неорганизованный источник	2.5		2937	0.5	0.001649	0.0003	0.105	0.21	2
6034	Неорганизованный источник	2.5		2937	0.5	0.003642	0.0007	0.2318	0.4636	2
6035	Неорганизованный источник	2.5		2937	0.5	0.003515	0.0007	0.2238	0.4476	2
6036	Неорганизованный источник	2.5		2937	0.5	0.003984	0.0008	0.2536	0.5072	2
6039	Неорганизованный источник	3.5		0123	**0.04	0.00077	0.0002	0.0224	0.056	2
	_			0143	0.01	0.00004	0.0004	0.0012	0.12	2
				0301	0.2	0.00024	0.0001	0.0023	0.0115	2
				0322	0.3	0.00000475	0.000002	0.0001	0.0002	2
				0330	0.5	0.0000003	0.0000001	0.00003	0.00001	2

Окончание таблицы 5.1 - Расчет категории источников, подлежащих контролю на период эксплуатации по объекту в целом

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	4	5	6	7	8	9	10	11
				0337	5	0.0002401	0.00001	0.0023	0.0005	2
				0342	0.02	0.00001	0.0001	0.0001	0.005	2
				2704	5	0.05	0.001	0.4839	0.0968	2
				2902	0.5	0.0075	0.0015	0.2178	0.4356	2
				2930	*0.04	0.0032	0.008	0.0929	2.3225	2
				2978	*0.1	0.0226	0.0226	0.6562	6.562	1
6040	Неорганизованный источник	2.5		2902	0.5	0.0079	0.0016	0.5029	1.0058	2
				2930	*0.04	0.0032	0.008	0.2037	5.0925	2
6042	Неорганизованный источник	2.5		2909	0.5	0.0000062	0.000001	0.0004	0.0008	2
6043	Неорганизованный источник	2		2902	0.5	0.000024	0.00001	0.0026	0.0052	2
				2908	0.3	0.000047	0.00002	0.005	0.0167	2
6048	Неорганизованный источник	2		0415	*50	0.50942	0.001	18.1947	0.3639	2
				0416	*30	0.12407	0.0004	4.4313	0.1477	2
				0501	1.5	0.01688	0.0011	0.6029	0.4019	2
				0602	0.3	0.0135	0.0045	0.4822	1.6073	2
				0616	0.2	0.00101	0.0005	0.0361	0.1805	2
				0621	0.6	0.00979	0.0016	0.3497	0.5828	2
				0627	0.02	0.00034	0.0017	0.0121	0.605	2
6049	Неорганизованный источник	2		2735	*0.05	0.00009	0.0002	0.0032	0.064	2
6050	Неорганизованный источник	2		0333	0.008	0.000006	0.0001	0.0002	0.025	2
				2754	1	0.0022	0.0002	0.0786	0.0786	2
6051	Неорганизованный источник	2		2902	0.5	0.000044	0.00001	0.0047	0.0094	2
6052	Неорганизованный источник	2		2909	0.5	0.000013	0.000003	0.0014	0.0028	2

Примечания: 1. М и См умножаются на 100/100-КПД только при значении КПД очистки >75%. (ОНД-90, Iч., п.5.6.3)

^{2.} К 1-й категории относятся источники с См/ПДК>0.5 и М/(ПДК*Н)>0.01. При Н<10м принимают Н=10. (ОНД-90, Iч., п.5.6.3)

^{3.} В случае отсутствия ПДКм.р. в колонке 6 указывается "*" - для значения ОБУВ, "**" - для ПДКс.с

^{4.} Способ сортировки: по возрастанию кода ИЗА и кода ЗВ

Таблица 5.2 - План-график контроля на предприятии за соблюдением нормативов ДВ на период эксплуатации площадки №1

N	-казахстанская ооласть			Норматив до	-	TC	Методика
источ-	Производство,	Контролируемое	Периодичность	выбро	СОВ	Кем	проведе-
ника	цех, участок.	вещество	контроля			осуществляет	RNH
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
0007	Площадка №1. Цех	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.0219	125.264503		0003
	сушки	4)					
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.0036	20.5914251		0003
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.002	11.4396806		0003
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	0.047	268.832495		0003
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.1112	636.046243		0003
		Угарный газ) (584)					
0008	Площадка №1. Цех	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.0219	125.264503		0003
	сушки	4)					
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.0036	20.5914251		0003
		Углерод (Сажа, Углерод черный) (583)	1 раз/ кварт	0.002	11.4396806		0003
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	0.047	268.832495		0003
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.1112	636.046243		0003
		Угарный газ) (584)					
0031	Площадка №1.	Взвешенные частицы (116)	1 раз/ кварт	0.000064	0.02096625		0003
	Маслопрессовый цех						
0032	Площадка №1.	Взвешенные частицы (116)	1 раз/ кварт	0.096	16.0392835		0003
	Маслопрессовый цех						
0033	Площадка №1.	Взвешенные частицы (116)	1 раз/ кварт	0.2	40.7277164		0003
	Маслопрессовый цех						
0034	Площадка №1.	Взвешенные частицы (116)	1 раз/ кварт	0.56	114.025911		0003
	Маслопрессовый цех						
	Площадка №1.	Проп-2-ен-1-аль (Акролеин,	1 раз/ кварт	0.04	29.0684094		0003
	Маслопрессовый цех	Акрилальдегид) (474)					
0036	Площадка №1.	Гексан (135)	1 раз/ кварт	0.035	22.9996058		0003
	Маслоэкстракционный						

Продолжение таблицы 5.2 - План-график контроля на предприятии за соблюдением нормативов ДВ на период эксплуатации площадки $\mathbb{N}1$

1	2	3	5	6	7	8	9
	цех						
0037	Площадка №1.	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	1.1842	375.183667		0003
	Котельная для	4)					
	производства						
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.1924	60.9570491		0003
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	1.3336	422.51726		0003
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,	1 раз/ кварт	9.4597	2997.06548		0003
		Угарный газ) (584)					
		Взвешенные частицы (116)	1 раз/ кварт	0.7125			0003
		Пыль неорганическая, содержащая	1 раз/ кварт	0.9129	289.229159		0003
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
6006	Площадка №1.	Пыль древесная (1039*)	1 раз/ кварт	0.28			
6007	Столярное отделение	711.6	1 /	0 0404			0000
6007	Площадка №1.	Взвешенные частицы (116)	1 раз/ кварт	0.0484			0003
	Токарное отделение		1 /	0.0000			0000
		Пыль абразивная (Корунд белый,	1 раз/ кварт	0.0022			0003
6000	H = 0 No 1	Монокорунд) (1027*)	1	0.00107			0003
	Площадка №1.	Пыль неорганическая, содержащая	1 раз/ кварт	0.00107			0003
	Бетонные работы	двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства - глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
6009	Площадка №1.	Пыль неорганическая, содержащая	1 раз/ кварт	0.011876			0003
	Бетонные работы	двуокись кремния в %: 70-20 (шамот,	- Pas/ Kbapi	0.011070			
	Lordinac pacora	цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					

Окончание таблицы 5.2 - План-график контроля на предприятии за соблюдением нормативов ДВ на период эксплуатации площадки №1

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	5	6	7	8	9
		кремнезем, зола углей казахстанских месторождений) (494)					
6014	Площадка №1. Склады	Пыль зерновая /по грибам хранения/ (1 раз/ кварт	0.002178			0003
6016	семян Площадка №1. Цех сушки	487) Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.000035			0003
6017	Площадка №1. Цех сушки	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.00056			0003
6018	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.002178			0003
6019	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.001476			0003
6020	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.002394			0003
6025	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.002141			0003
6026	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.001649			0003
6034	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.003642			0003
6035	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.003515			0003
6036	Площадка №1. Склады семян	Пыль зерновая /по грибам хранения/ (487)	1 раз/ кварт	0.003984			0003
6051	Площадка №1. Маслопрессовый цех	Взвешенные частицы (116)	1 раз/ кварт	0.000044			0003
6052	Площадка №1. Котельная для производства	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства	1 раз/ кварт	0.000013			0003
	проповодотва	- известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)					

примечание:

Методики проведения контроля: 0003 - Расчетным методом.

Таблица 5.3 – План-график контроля на предприятии за соблюдением нормативов ДВ на период эксплуатации площадки \mathbb{N}^2

N		, 100 всп (площадки в п.первоманскии)	_	Норматив до	-		Методика
источ-	Производство,	Контролируемое	Периодичность	выбро	COB	Кем	проведе-
ника	цех, участок.	вещество	контроля			осуществляет	RNH
						ся контроль	контроля
				r/c	мг/м3		
1	2	3	5	6	7	8	9
0022	Площадка №2.	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.007	299.584576	i	0003
	Ремонтная мастерская	4)					
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.0011	47.0775762		0003
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	0.0266	1138.42139		0003
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.0896	3834.68257		0003
		Угарный газ) (584)					
		Взвешенные частицы (116)	1 раз/ кварт	0.0238	1018.58756		0003
		Пыль неорганическая, содержащая	1 раз/ кварт	0.0578	2473.71264	:	0003
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
0023	Площадка №2. АБК	Азота (IV) диоксид (Азота диоксид) (1 раз/ кварт	0.007	254.647313		0003
		4)					
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.0011	40.0160064		0003
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	0.0266	967.659791		0003
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.0896	3259.48561		0003
		Угарный газ) (584)					
		Пыль неорганическая, содержащая	1 раз/ кварт	0.0578	2102.65925		0003
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					

Продолжение таблицы 5.3 - План-график контроля на предприятии за соблюдением нормативов ДВ на период эксплуатации площадки №2

1	2	3	5	6	7	8	9
		месторождений) (494)					
0027	Площадка №2. Склад ГСМ	Смесь углеводородов предельных C1-C5 (1502*)	1 раз/ кварт	1.01885	478805.627		0003
		Смесь углеводородов предельных C6-C10 (1503*)	1 раз/ кварт	0.24813	116607.98		0003
		Пентилены (амилены - смесь изомеров) (460)	1 раз/ кварт	0.03375	15860.7154		0003
		Бензол (64)	1 раз/ кварт	0.027	12688.5723		0003
		Диметилбензол (смесь о-, м-, п- изомеров) (203)	1 раз/ кварт	0.00203	953.992661		0003
		Метилбензол (349)	1 раз/ кварт	0.01958	9201.56468		0003
		Этилбензол (675)	1 раз/ кварт	0.00068	319.564044		0003
0028	Площадка №2. Склад	Масло минеральное нефтяное (1 раз/ кварт	0.00045	176.226287		0003
	ГСМ	веретенное, машинное, цилиндровое и др.) (716*)					
0029	Площадка №2. Склад ГСМ	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000012	4.69936764		0003
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.0043	1683.94007		0003
0030	Площадка №2. Склад ГСМ	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000012	4.69936764		0003
		Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК- 265П) (10)	1 раз/ кварт	0.0043	1683.94007		0003
6039	Площадка №2. Ремонтная мастерская	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	1 раз/ кварт	0.00077			0003
		оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (1 раз/ кварт	0.00004			0003
		327) Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.00024			0003

Продолжение таблицы 5.3 - План-график контроля на предприятии за соблюдением нормативов ДВ на период эксплуатации площадки №2

1	2	3	5	6	7	8	9
		Серная кислота (517)	1 раз/ кварт	0.00000475			0003
		Сера диоксид (Ангидрид сернистый,	1 раз/ кварт	0.0000003			0003
		Сернистый газ, Сера (IV) оксид) (516)					
		Углерод оксид (Окись углерода,	1 раз/ кварт	0.0002401			0003
		Угарный газ) (584)					
		Фтористые газообразные соединения /в	1 раз/ кварт	0.00001			0003
		пересчете на фтор/ (617)					
		Бензин (нефтяной, малосернистый) /в	1 раз/ кварт	0.05			0003
		пересчете на углерод/ (60)					
		Взвешенные частицы (116)	1 раз/ кварт	0.0075			0003
		Пыль абразивная (Корунд белый,	1 раз/ кварт	0.0032			0003
		Монокорунд) (1027*)					
		Пыль тонко измельченного резинового	1 раз/ кварт	0.0226			0003
		вулканизата из отходов подошвенных					
		резин (1090*)					
6040	Площадка №2.	Взвешенные частицы (116)	1 раз/ кварт	0.0079			0003
	Ремонтная мастерская						
		Пыль абразивная (Корунд белый,	1 раз/ кварт	0.0032			0003
		Монокорунд) (1027*)					
6042	Площадка №2.	Пыль неорганическая, содержащая	1 раз/ кварт	0.0000062			0003
	Ремонтная мастерская	двуокись кремния в %: менее 20 (
		доломит, пыль цементного производства					
		- известняк, мел, огарки, сырьевая					
		смесь, пыль вращающихся печей,					
		боксит) (495*)					
6043	Площадка №2.	Взвешенные частицы (116)	1 раз/ кварт	0.000024			0003
	Ремонтная мастерская						
		Пыль неорганическая, содержащая	1 раз/ кварт	0.000047			0003
		двуокись кремния в %: 70-20 (шамот,					
		цемент, пыль цементного производства					
		- глина, глинистый сланец, доменный					
		шлак, песок, клинкер, зола,					
		кремнезем, зола углей казахстанских					
		месторождений) (494)					
6048	Площадка №2. Склад	Смесь углеводородов предельных С1-С5	1 раз/ кварт	0.50942			0003

Окончание таблицы 5.3 - План-график контроля на предприятии за соблюдением нормативов ДВ на период эксплуатации площадки №2

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

1	2	3	5	6	7	8	9
	ГСМ	(1502*)					
		Смесь углеводородов предельных C6-C10	1 раз/ кварт	0.12407			0003
		(1503*)					
		Пентилены (амилены - смесь изомеров)	1 раз/ кварт	0.01688			0003
		(460)					
		Бензол (64)	1 раз/ кварт	0.0135			0003
		Диметилбензол (смесь о-, м-, п-	1 раз/ кварт	0.00101			0003
		изомеров) (203)					
		Метилбензол (349)	1 раз/ кварт	0.00979			0003
		Этилбензол (675)	1 раз/ кварт	0.00034			0003
6049	Площадка №2. Склад	Масло минеральное нефтяное (1 раз/ кварт	0.00009			0003
	ГСМ	веретенное, машинное, цилиндровое и					
		др.) (716*)					
6050	Площадка №2. Склад ГСМ	Сероводород (Дигидросульфид) (518)	1 раз/ кварт	0.000006			0003
		Алканы С12-19 /в пересчете на С/ (1 раз/ кварт	0.0022			0003
		Углеводороды предельные С12-С19 (в					
		пересчете на С); Растворитель РПК-					
		265Π) (10)					

ПРИМЕЧАНИЕ:

Методики проведения контроля: 0003 - Расчетным методом.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- Экологический кодекс Республики Казахстан от 2 января 2021 года № 400-VI
- 2. РНД 211.2.02.03-2004 Методика расчёта выбросов загрязняющих веществ в атмосферу при сварочных работах (по величинам удельных выбросов), Астана,2004.
- 3. «Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий». Приложение № 12 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.
- 4. Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и газов. Утверждены приказом Министра охраны окружающей среды Республики Казахстан от 29.07.2011 № 196-п.
- 5. Санитарные правила « Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» утверждённые приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года № ҚР ДСМ-2.
- 6. СП РК 2.04-01-2017 «Строительная климатология».
- 7. Методика определения нормативов эмиссий в окружающую среду, утвержденная приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63.
- 8. Методика расчета нормативов выбросов от неорганизованных источников. Приложение №8 к приказу Министра окружающей среды и водных ресурсов Республики Казахстан от 12 июня 2014 года № 221-Ө.
- 9. РНД 211.2.02.06-2004 Методика расчета выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). Астана, 2004 г.

- 10. Методика расчета выбросов загрязняющих веществ от предприятий по производству строительных материалов. МООС РК, республиканский нормативный документ. Астана, 2008 г.
- 11. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы: "КазЭКОЭКСП",1996.
- 12. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий. Приложение №3 к приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 г. № 100-п.
- 13. Информационный бюллетень о состоянии окружающей среды по Восточно-Казахстанской и Абайской областям за 2 квартал 2025 год. Министерства экологии и природных ресурсов Республики Казахстан Филиал РГП «Казгидромет» по Восточно-Казахстанской и Абайской областям.
- 14. Методические указания расчета выбросов вредных веществ в атмосферу предприятиями пищевой промышленности. Приложение к Приказу Министра ООС РК № 204-Ө от 05 августа 2011 года
- 15. Методика по расчету выбросов загрязняющих веществ в атмосферу предприятиями деревообрабатывающей промышленности. РНД 211.2.02.08-2004. Астана, 2004 г
- 16. Методика расчёта выбросов вредных веществ от предприятий дорожно-строительной отрасли, в том числе от асфальтобетонных заводов. Астана 2008 г

ПРИЛОЖЕНИЕ А

УТВЕРЖДАЮ

Директор ТОО «Востоксельхозпродукт» С.А.Глушков

(Фамилия, имя, отчество

(при его наличии))

(подпись) М.П.

03" октября 2025 г

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

1. Источники выделения вредных (загрязняющих) веществ

	Horron	Herren	Harmananan		Droves	2250E1		Vos sposiioso	Количество
	Номер	Номер	Наименование		-	работы		Код вредного	
Наименование	источ-	источ-	источника	Наименование	NCTO	иника	Наименование	вещества	загрязняющего
производства	ника	ника	выделения	выпускаемой	выделен	ния,час	загрязняющего	(ЭНК , ПДК	вещества,
номер цеха,	загряз	выде-	хишикнграгы	продукции			вещества	или ОБУВ) и	отходящего
участка	нения	ления	веществ		В	за		наименование	от источника
	атм-ры				сутки	год			выделения,
									т/год
А	1	2	3	4	5	6	7	8	9
(002) Площадка	6006	6006 01	Строгальный	Обработка	1	292	Пыль древесная (1039*)	2936(1039*)	0.1703
№1. Столярное			станок	дерева					
отделение									
	6006	6006 02	Циркулярная	Обработка	1	292	Пыль древесная (1039*)	2936 (1039*)	0.124
			пила	дерева			_		
(003) Площадка	6007	6007 01	Токарный станок	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.0012
№1. Токарное			Nº 1	металла					
отделение									
	6007	6007 02	Токарный станок	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.0012
			Nº2	металла			, , ,		
	6007	6007 03	Продольно-	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.0005
			фрейзерный	металла					
			станок						
	6007	6007 04	Сверлильный	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.0013

А	1	2	3	4	5	6	7	8	9
			станок	металла					
	6007	6007 05	Отрезной станок	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.038
				металла					
	6007	6007 06	Заточной станок	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.003
			d=250 мм	металла			Пыль абразивная (Корунд	2930 (1027*)	0.0021
							белый, Монокорунд) (1027*)		
(004) Площадка	6008	6008 01	Засыпка цемента	Засыпка	5	1300	Пыль неорганическая,	2908 (494)	0.002875
№1. Бетонные				цемента			содержащая двуокись		
работы							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6008	6008 02	Засыпка песка	Засыпка	10	3250	Пыль неорганическая,	2908 (494)	0.004493
				песка			содержащая двуокись		
							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6008	6008 03	Засыпка щебня	Засыпка	10	3250	Пыль неорганическая,	2908 (494)	0.000842
				щебня			содержащая двуокись		
							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	6009	6009 01	Склад песка	Пересыпка и	24	8760	Пыль неорганическая,	2908 (494)	0.097421

А	1	2	3	4	5	6	7	8	9
				хранение песка			содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		
	6009	6009 02	Склад щебня	Пересыпка и хранение щебня	24	8760	месторождении) (494) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0.064065
(005) Площадка №1. Цех сушки	0007	0007 01	Сушилка на диз.	Теплоэнергия на	24	7200	месторождении (494) Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.1642
				технологичес кие нужды			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0267
							Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.015
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.3528
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.8336
	0008	0008 01	Сушилка на диз.	Теплоэнергия на	24	7200	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.1642
			TOTIVINE	технологичес			диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0267
				кие нужды			Углерод (Сажа, Углерод черный) (583)	0328 (583)	0.015

А	1	2	ТОО "ВСП" (площа 3	4	5	6	7	8	9
			-			-	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.3528
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.8336
	6016	6016 01	Разгрузка сырья (подсолнечника)	Разгрузка подсолнечник а	4	1200	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.000151
	6017	6017 01	Пересыпка подсолнечника из ямы в машину очистки	Пересыпка подсолнечник а	4	1200	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.000756
	6017	6017 02	Персыпка из машины очистки в зерносушилку	Пересыпка подсолнечник а	2.2	640	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.000403
	6017	6017 03	Пересыпка из зерносушилки в отгрузочный бункер	Пересыпка подсолнечник а	4	1200	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.000756
	6017	6017 04	Пересыпка из отгрузочного бункера в автотранспорт	Пересыпка подсолнечник а	4	1200	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.000151
(006) Площадка №1. Склады семян	6014	6014 01	Склад подсолнечника №1	Пересыпка и хранение семян подсолнечник	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.025924
	6018	6018 01	Склад подсолнечника №2	а Пересыпка и хранение семян подсолнечник	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.024714
	6019	6019 01	Склад подсолнечника №3	а Пересыпка и хранение семян	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.021771

A	1	2	3	4	5	6	7	8	9
	6020	6020 01	Склад подсолнечника №4	подсолнечник а Пересыпка и хранение семян	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.036613
	6025	6025 01	Склад подсолнечника №5	подсолнечник а Пересыпка и хранение семян	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.032514
	6026	6026 01	Склад подсолнечника №6	подсолнечник а Пересыпка и хранение семян	24		Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.024566
	6034	6034 01	Склад подсолнечника №7	подсолнечник а Пересыпка и хранение семян	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.056795
	6035	6035 01	Склад подсолнечника №8	подсолнечник а Пересыпка и хранение семян	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.054746
	6036	6036 01	Склад подсолнечника №9	подсолнечник а Пересыпка и хранение семян	24	8760	Пыль зерновая /по грибам хранения/ (487)	2937 (487)	0.062322
(010) Площадка №1. Маслопрессовый	0031	0031 01	Вибросито	подсолнечник а Очистка семян от примесей	24	8760	Взвешенные частицы (116)	2902 (116)	306.6
цех	0032	0032 01	Гравитационная	Удаление	24	8760	Взвешенные частицы (116)	2902 (116)	247.24225

A	1	2	ТОО "ВСП" (площа 3	4	5	6	7	8	9
	_		канеотборная машина	камня					-
	0033	0033 01	Шелушители	Шелушение семян	48	17520	Взвешенные частицы (116)	2902 (116)	422.67
	0034	0034 01	Рассев	Разделение лузги и ядра	24	8760	Взвешенные частицы (116)	2902 (116)	253.602
	0034	0034 02	Сепаратор лузги	Разделение лузги и ядра	24	8760	Взвешенные частицы (116)	2902 (116)	27.05088
	0035	0035 01	Маслобойный пресс №1	Отжим масла	24		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.31536
	0035	0035 02		Отжим масла	24		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.31536
	0035	0035 03		Отжим масла	24		Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.31536
	0035	0035 04		Отжим масла	24	8760	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	1301 (474)	0.31536
	6051	6051 01	Подземный загрузочный бункер	Разрузка подсолнечник а	24		Взвешенные частицы (116)	2902 (116)	0.00138
(011) Площадка №1. Маслоэкстракци онный цех	0036	0036 01	Маслоэкстракцио нное оборудование	Экстракция	24	8760	Гексан (135)	0403 (135)	1.10376
· ·	0037	0037 01	Паровой котел на лузге	Теплоэнергия пля	24	8760	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	4.5749
для производства				производстве			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.7434
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	28.8941
							Взвешенные частицы (116)	2902 (116)	28.31
	0037	0037 02	Паровой котел на угле	Теплоэнергия для	24	8760	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	12.4302
				производстве нных нужд			Азот (II) оксид (Азота оксид) (6)	0304(6)	2.0199
							Сера диоксид (Ангидрид сернистый, Сернистый газ,	0330 (516)	23.2819

A	1	2	3	4	5	6	7	8	9
							Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	137.6201
							Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	133.871333333
	6052	6052 01	Склад угля	Хранение и пересыпка угля	24	8760	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства – известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)	2909 (495*)	0.00041
(013) Площадка №1.	6046	6046 01	ДВС грузового автотранспорта	ДВС грузового	13.6	4968	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0039
Автостоянки				автотранспор та			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0006
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.0004
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.4225
							Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	2704 (60)	0.0564
	6047	6047 01	ДВС грузового автотранспорта	ДВС грузового	5.5	2010	пересчете на углерод/ (60) Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0059

A	1	2	3	4	5	6	7	8	9
				автотранспор			Азот (II) оксид (Азота	0304(6)	0.001
				та			оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.0007
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.001
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)	0227 (504)	0 0202
							Углерод оксид (Окись	0337 (584)	0.0303
							углерода, Угарный газ) (584)		
							Керосин (654*)	2732 (654*)	0.0057
(014) Площадка	6037	6037 01	ДВС грузового	ЛВС	31.2	11300	Азота (IV) диоксид (Азота	0301(4)	0.0037
№2. Гараж	0037	0037 01	автотранспорта	грузового	31.2	11300	диоксид) (4)	0301(4)	0.0043
WZ: Tapak			автогранспорта	автотранспор			Азот (II) оксид (Азота	0304(6)	0.0007
				та			оксид) (6)	0001(0)	J. 20007
							Сера диоксид (Ангидрид	0330 (516)	0.0009
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.5095
							углерода, Угарный газ) (
							584)		
							Бензин (нефтяной,	2704 (60)	0.0981
							малосернистый) /в		
		1					пересчете на углерод/ (60)		
(015) Площадка	6038	6038 01	ДВС легковых	ДВС легковых	0.83	303	Азота (IV) диоксид (Азота	0301(4)	0.00022
№2. Теплая			автомобилей	автомобилей			диоксид) (4)	000476	0 00004
стоянка							Азот (II) оксид (Азота	0304(6)	0.00004
							оксид) (6) Сера диоксид (Ангидрид	0330 (516)	0.00011
							сера диоксид (Ангидрид сернистый, Сернистый,	0330 (316)	0.00011
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.0294
							углерод оксид (окись		0.0234
							584)		
							Бензин (нефтяной,	2704 (60)	0.0019
							малосернистый) /в		
							пересчете на углерод/ (60)		

А	1	2	3	4	5	6	7	8	9
(016) Площадка	0022	0022 01	Бытовой	Теплоэнергия	8	1632	Азота (IV) диоксид (Азота	0301(4)	0.0694
№2. Ремонтная			теплогенератор				диоксид) (4)		
мастерская			на угле				Азот (II) оксид (Азота	0304(6)	0.0113
							оксид) (6)		
							Сера диоксид (Ангидрид	0330 (516)	0.153
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.8956
							углерода, Угарный газ) (
							584)		
							Пыль неорганическая,	2908 (494)	0.4967
							содержащая двуокись		
							кремния в %: 70-20 (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, доменный		
							шлак, песок, клинкер,		
							зола, кремнезем, зола		
							углей казахстанских		
							месторождений) (494)		
	0022	0022 02	Бытовой	Теплоэнергия	8		Азота (IV) диоксид (Азота	0301(4)	0.0492
			теплогенератор				диоксид) (4)		
			на пеллетах				Азот (II) оксид (Азота	0304(6)	0.008
							оксид) (6)		
							Углерод оксид (Окись	0337 (584)	0.3281
							углерода, Угарный газ) (
							584)	0000 (110)	0.10
		6000 01	_				Взвешенные частицы (116)	2902 (116)	0.19
	6039	6039 01	Токарный станок	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.0012
		6000 00	_	металла		0.60	- 4110	0000 (110)	0 0010
	6039	6039 02	Сверлильный	Обработка	1	260	Взвешенные частицы (116)	2902 (116)	0.0013
	6020	6020 02	станок	металла	1	0.00	P	2002 (116)	0.0000
	6039	6039 03	Заточной станок	Обработка	1		Взвешенные частицы (116)	2902 (116)	0.0022
			№1 d=200 мм	металла			Пыль абразивная (Корунд	2930 (1027*)	0.0015
	C020	6020 04	na	055	1		белый, Монокорунд) (1027*)	2002 (110)	0 0000
	6039	6039 04	Заточной станок	Обработка	1		Взвешенные частицы (116)	2902 (116)	0.0022
			Nº2 d=200 мм	металла			Пыль абразивная (Корунд	2930 (1027*)	0.0015

A	1	2	3	4	5	6	7	8	9
	6039	6039 05	Электросварочны й аппартат	Электросварк	4	1000	белый, Монокорунд) (1027*) Железо (II, III) оксиды (в пересчете на железо) (0123(274)	0.00099
							диЖелезо триоксид, Железа оксид) (274) Марганец и его соединения	0143(327)	0.00011
							(в пересчете на марганца (IV) оксид) (327)		
							Фтористые газообразные соединения /в пересчете на фтор/ (617)	0342 (617)	0.00004
	6039	6039 06	Аппарат газовой резки	Газовая резка	8	2500	Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа оксид) (274)	0123 (274)	0.00444
							Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0143 (327)	0.00006
							Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0022
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.00218
	6039	6039 07	Вулканизаторная установка	Ремонт резинотехнич еских	1		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.0000003
				изделий			Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.0000009
							Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	2704 (60)	0.045
							Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (1090*)	2978 (1090*)	0.0203
	6039	6039 08	Зарядное	Зарядка	50	500	Серная кислота (517)	0322 (517)	0.00000171

A	1	2	3	4	5	6	7	8	9
			устройство	кислотных аккумуляторо					
	6039	6039 09	Посты ТО и ТР	в ДВС	0.13	13	Азота (IV) диоксид (Азота	0301(4)	0.000029
			грузового автотранспорта	автотранспор та			диоксид) (4) Азот (II) оксид (Азота оксид) (6)	0304(6)	0.000005
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.000005
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.003043
							Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	2704 (60)	0.00043
	6040	6040 01	Расточной станок	Обработка металла	1		Взвешенные частицы (116)	2902 (116)	0.0004
	6040	6040 02	Токарный станок	Обработка металла	1	260	Взвешенные частицы (116)	2902 (116)	0.0012
	6040	6040 03	Сверлильный станок	Обработка металла	1	260	Взвешенные частицы (116)	2902 (116)	0.0013
	6040	6040 04	Заточной станок №1 d=200 мм	Обработка металла	1		Взвешенные частицы (116) Пыль абразивная (Корунд белый, Монокорунд) (1027*)	2902 (116) 2930 (1027*)	0.0022 0.0015
	6040	6040 05	Заточной станок №2 d=200 мм	Обработка металла	1	260	Взвешенные частицы (116) Пыль абразивная (Корунд белый, Монокорунд) (1027*)	2902 (116) 2930 (1027*)	0.0022 0.0015
	6042	6042 01	Склад угля	Пересыпка и хранение угля	24	4896	Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства – известняк,	2909 (495*)	0.000109
	6043	6043 01	Склад золы (от	Пересыпка и	24		мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*) Пыль неорганическая,	2908 (494)	0.000828

А	1	2	3	4	5	6	7	8	9
			теплогенератора на угле)	хранение золы			содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		
	6043	6043 02	Склад золы (от теплогенератора на пеллетах)	Пересыпка и хранение золы	24		Взвешенные частицы (116)	2902 (116)	0.000423
(017) Площадка №2. АБК	0023	0023 01	Бытовой теплогенератор	Теплоэнергия	8	1632	Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0416
			на угле				Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0068
							Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0330 (516)	0.0918
							Углерод оксид (Окись углерода, Угарный газ) (584)	0337 (584)	0.5374
							Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	2908 (494)	0.298
(018) Площадка №2. Открытая	6041	6041 01	ДВС грузового автотранспорта	ДВС грузового	5.5		месторождении) (494) Азота (IV) диоксид (Азота диоксид) (4)	0301(4)	0.0154
автостоянка				автотранспор та			Азот (II) оксид (Азота оксид) (6)	0304(6)	0.0025
							Углерод (Сажа, Углерод	0328 (583)	0.0013

А	1	2	3	4	5	6	7	8	9
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.0015
							сернистый, Сернистый газ,		
							Сера (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.0739
							углерода, Угарный газ) (
							584)		
							Керосин (654*)	2732 (654*)	0.0101
	6041	6041 02	ДВС грузового	ДВС	43.2	30960	Азота (IV) диоксид (Азота	0301(4)	0.0184
			автотранспорта	грузового			диоксид) (4)		
				автотранспор			Азот (II) оксид (Азота	0304(6)	0.003
				та			оксид) (6)		
							Углерод (Сажа, Углерод	0328 (583)	0.0023
							черный) (583)		
							Сера диоксид (Ангидрид	0330 (516)	0.0047
							сернистый, Сернистый газ,		
							Cepa (IV) оксид) (516)		
							Углерод оксид (Окись	0337 (584)	0.163
							углерода, Угарный газ) (
							584)		
(010) -	0000	0000 01			0.4		Керосин (654*)	2732 (654*)	0.0363
	0027	002/ 01	Резервуар с	Хранение	24		Смесь углеводородов	0415 (1502*)	0.08386
№2. Склад ГСМ			бензином	бензина			предельных C1-C5 (1502*)	0.41.6.(1.50.2.4.)	0 00040
							Смесь углеводородов	0416(1503*)	0.02042
							предельных C6-C10 (1503*) Пентилены (амилены - смесь	0501(460)	0.00278
							изомеров) (460)	0301 (460)	0.00276
							Бензол (64)	0602(64)	0.00222
							Диметилбензол (смесь о-,	0616 (203)	0.00222
							м-, п- изомеров) (203)	0010(203)	0.00017
							Метилбензол (349)	0621 (349)	0.00161
							Этилбензол (675)	0627 (675)	0.00006
	0028	0028 01	Резервуар с	Хранение	24		Масло минеральное нефтяное	2735 (716*)	0.00006
			дизельным	дизельного			(веретенное, машинное,	, , , , , ,	
			маслом	масла			цилиндровое и др.) (716*)		
	0029	0029 01	Наземные	Хранение	72		Сероводород (0333 (518)	0.000007
			горизонтальные	диз.топлива			Дигидросульфид) (518)	, ,	

Восточно-Казахстанская область, ТОО "ВСП" (площадки в п.Первомайский)

A	1	2	3	4	5	6	7	8	9
			резервуары с				Алканы С12-19 /в пересчете	2754(10)	0.0024
			диз.топливом				на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	0030	0030 01	Заглубленные	Хранение	72	26280	Сероводород (0333 (518)	0.000003
			резервуары с	диз.топлива			Дигидросульфид) (518)		
			диз.топливом				Алканы С12-19 /в пересчете	2754 (10)	0.0009
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		
	6048	6048 01	Раздаточный	Отпуск	8	2920	Смесь углеводородов	0415 (1502*)	0.03288
			аппарат для	бензина			предельных С1-С5 (1502*)		
			бензина				Смесь углеводородов	0416(1503*)	0.00801
							предельных С6-С10 (1503*)		
							Пентилены (амилены - смесь	0501(460)	0.00109
							изомеров) (460)		
							Бензол (64)	0602(64)	0.00087
							Диметилбензол (смесь о-,	0616(203)	0.00007
							м-, п- изомеров) (203)		
							Метилбензол (349)	0621 (349)	0.00063
							Этилбензол (675)	0627 (675)	0.000022
	6049	6049 01	Раздаточный	Отпуск масла	8	2920	Масло минеральное нефтяное	2735 (716*)	0.0000071
			аппарат для				(веретенное, машинное,		
			диз.масла				цилиндровое и др.) (716*)		
	6050	6050 01	Раздаточный	Отпуск диз.	8	2920	Сероводород (0333 (518)	0.000039
			аппарат для	топлива			Дигидросульфид) (518)		
			диз.топлива				Алканы С12-19 /в пересчете	2754 (10)	0.0139
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (
							10)		

Примечание: В графе 8 в скобках (без "*") указан код ЗВ из таблицы 1 Приложения 1 к Приказу Министерства национальной экономики РК от 28.02.2015 г. №168 (список ПДК), со "*" указан код ЗВ из таблицы 2 вышеуказанного Приложения (список ОБУВ).

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ 2. Характеристика источников загрязнения атмосферного воздуха

Номер источ ника	гоч источн.загрязнен.			ры газовоздушно оде источника за		Код загряз- няющего вещества		Количество загрязняющих веществ, выбрасываемых в атмосферу	
заг-	Высота	Диаметр,	Скорость	Объемный	Темпе-	(ЭНК, ПДК	Наименование ЗВ		1 10
ряз- нения	М	размер сечения устья, м	M/C	расход, м3/с	ратура , С	или ОБУВ)		Максимальное, г/с	Суммарное, т/год
1	2	3	4	5	6	7	7a	8	9
					 Площадка	 №1. Столярное «	ртделение		
6006	2				21	2936 (1039*)	Пыль древесная (1039*)	0.28	0.2943
	l .	ļ ī			Площадка	№1. Токарное о	т тделение	1	
6007	2				21	2902 (116) 2930 (1027*)	Взвешенные частицы (116) Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0484 0.0022	0.0452 0.0021
			 		 Площадк	 а №1. Бетонные	 работы		
6008	2				18	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент,	0.00107	0.00821
							пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола,		
							кремнезем, зола углей казахстанских месторождений) (494)		
6009	2				18	2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного	0.011876	0.161486

2. Характеристика источников загрязнения атмосферного воздуха

1	2	анская обла 3	4	"ВСП" (площадки в 5	6	7	7a	8	9
							производства - глина, глинистый сланец, доменный		
							шлак, песок, клинкер, зола,		
							кремнезем, зола углей		
							казахстанских месторождений) (494)		
							месторождении) (494)		
	, , 1 1	· 	, I	' 	Плоц	цадка №1. Цех	сушки	' ' I I	
0007	8	0.3	3.18	0.2247815	78	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0219	0.1642
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0036	0.0267
					0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.002	0.015	
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый,	0.047	0.3528
							Cepa (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.1112	0.8336
0008	8	0.3	3.18	0.2247815	78	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0219	0.1642
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0036	0.0267
						0328 (583)	Углерод (Сажа, Углерод черный) (583)	0.002	0.015
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый,	0.047	0.3528
							Сера (IV) оксид) (516)		
						0337 (584)	Углерод оксид (Окись	0.1112	0.8336
							углерода, Угарный газ) (584)		
6016	2				18	2937 (487)	Пыль зерновая /по грибам хранения/ (487)	0.000035	0.000151
6017	2				21	2937 (487)	Пыль зерновая /по грибам хранения/ (487)	0.00056	0.002066

2. Характеристика источников загрязнения атмосферного воздуха

1	2	танская обла 3	4	"ВСП" (площадки в	6	7	7a	8	9
	2	3	4	J	0	/	/ d	0	9
	1 1	I	I		Ппош	 адка №1. Скла	 	I	
	1 1	I	i	I	ПЛОЩ	ідка №1. СКЛО 	ды семян	I	
6014	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.002178	0.025924
							хранения/ (487)		
6018	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.002178	0.024714
							хранения/ (487)		
6019	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.001476	0.021771
							хранения/ (487)		
6020	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.002394	0.036613
							хранения/ (487)		
6025	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.002141	0.032514
6026	2.5				21	2937 (487)	хранения/ (487)	0.001649	0.024566
0020	2.5				21	2937 (407)	Пыль зерновая /по грибам хранения/ (487)	0.001649	0.024366
6034	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.003642	0.056795
0051	2.3				21	2337 (107)	хранения/ (487)	0.003012	0.000790
6035	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.003515	0.054746
						, ,	хранения/ (487)		
6036	2.5				21	2937 (487)	Пыль зерновая /по грибам	0.003984	0.062322
							хранения/ (487)		
		1		I	Ілощадка	. №1. Маслопр	рессовый цех	1	
0001	15 0	0 5	16 07	2 2200505	0.5	0000 (116)	(11.6)	0 000064	04 500
0031 0032	15.9 15.7	0.5	16.97 17.99	3.3320595 6.5334096	25 25	2902 (116) 2902 (116)	Взвешенные частицы (116)	0.000064	24.528 19.77938
0032	14.3	0.68	27.3	5.360355	25 25	2902 (116)	Взвешенные частицы (116) Взвешенные частицы (116)	0.096	33.8136
0033	14.3	0.3	13.93	5.3609048	25	2902 (116)	Взвешенные частицы (116)	0.56	47.33904
0034	14.4	0.5	7.65	1.5020775	25	1301 (474)	Проп-2-ен-1-аль (Акролеин,	0.04	1.26144
0055	1 1 1	0.3	7.00	1.3020773	20	1501 (1/1)	Акрилальдегид) (474)	0.01	1.20111
6051	2					2902 (116)	Взвешенные частицы (116)	0.000044	0.00138
] -					(==0)			
				Пло	щадка №	1. Маслоэкст	ракционный цех	ı I	
			1						
0036	17.2	0.5	8.46	1.661121	25	0403 (135)	Гексан (135)	0.035	1.10376
			ļ						
				Площа	адка №1.	Котельная д	цля производства		

				"ВСП" (площадки					
1	2	3	4	5	6	7	7a	8	9
0037	12	1	5.27	4.139058	85	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	1.1842	17.0051
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.1924	2.7633
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1.3336	23.2819
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	9.4597	166.5142
						2902 (116) 2908 (494)	Взвешенные частицы (116) Пыль неорганическая,	0.7125 0.9129	4.2465 20.0807
6052	2					2909 (495*)	содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся печей, боксит) (495*)	0.000013	0.00041
	1				ПОП	цадка №1. Автос 	тоянки		
6046	2					0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0014	0.0039
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0002	0.0006

1	2	3	4	5	6		7	7a	8	9
						0330	(516)	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.0001	0.0004
						0337	(584)	Сера (IV) оксид) (516) Углерод оксид (Окись	0.1592	0.4225
								углерода, Угарный газ) (584)		
						2704	(60)	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.0216	0.0564
6047	2					0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0032	0.0059
						0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.0005	0.001
						0328	(583)	Углерод (Сажа, Углерод черный) (583)	0.0005	0.0007
						0330	(516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0005	0.001
						0337	(584)	Углерод оксид (Окись углерода, Угарный газ) (0.0177	0.0303
						2732	(654*)	Керосин (654*)	0.0034	0.0057
	! ! ! !		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		П	I лощадка I	a №2. Гај	pax	ı	
6037	2					0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0018	0.0045
						0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.0003	0.0007
						0330	(516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0004	0.0009
						0337	(584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.2248	0.5095
						2704	(60)	Бензин (нефтяной, малосернистый) /в пересчете	0.0469	0.0981

1	2	3	4	5	6	7	7a	8	9
							на углерод/ (60)		
l	l		l		Площад	 ка №2. Теплая	 : стоянка	I	
6038	2					0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.0001	0.00022
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.00002	0.00004
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ,	0.00005	0.00011
						0337 (584)	Сера (IV) оксид) (516) Углерод оксид (Окись углерода, Угарный газ) (584)	0.016	0.0294
						2704 (60)	Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.001	0.0019
	l			Пл	пощадка	 №2. Ремонтная	мастерская	<u> </u>	
0022	12	0.15	1.7	0.0300416	78	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.007	0.1186
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0011	0.0193
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0266	0.153
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0896	1.2237
						2902 (116) 2908 (494)	Взвешенные частицы (116) Пыль неорганическая, содержащая двуокись кремния	0.0238 0.0578	0.19 0.4967
							в %: 70-20 (шамот, цемент, пыль цементного		
							производства - глина, глинистый сланец, доменный		

1	2	3	4	5	6		7	7a	8	9
								шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских		
6039	3.5				21	0123	(274)	месторождений) (494) Железо (II, III) оксиды (в пересчете на железо) (диЖелезо триоксид, Железа	0.00077	0.00543
						0143	(327)	оксид) (274) Марганец и его соединения (в пересчете на марганца (IV) оксид) (327)	0.00004	0.00017
						0301	(4)	Азота (IV) диоксид (Азота диоксид) (4)	0.000442	0.002229
						0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.000033	0.000005
						0322 0330	. ,	Серная кислота (517) Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00000475 0.0000333	0.00000171 0.0000053
						0337	(584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0213751	0.00522309
						0342	(617)	Фтористые газообразные соединения /в пересчете на фтор/ (617)	0.00001	0.00004
						2704	(60)	фтор/ (017) Бензин (нефтяной, малосернистый) /в пересчете на углерод/ (60)	0.052988	0.04543
						2902	(116)	Взвешенные частицы (116)	0.0075	0.0069
							(1027*)	Пыль абразивная (Корунд белый, Монокорунд) (1027*)	0.0032	0.003
						2978	(1090*)	Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (1090*)	0.0226	0.0203
6040	2.5				21	2902 2930	(116) (1027*)	Взвешенные частицы (116) Пыль абразивная (Корунд	0.0079 0.0032	0.0073 0.003

1	2	3	4	5	6	7	7a	8	9
6042	2.5				21	2909 (495*)	белый, Монокорунд) (1027*) Пыль неорганическая, содержащая двуокись кремния в %: менее 20 (доломит, пыль цементного производства - известняк, мел, огарки, сырьевая смесь, пыль вращающихся	0.0000062	0.000109
6043	2				18	2902 (116) 2908 (494)	печей, боксит) (495*) Взвешенные частицы (116) Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.000024 0.000047	0.000423 0.000828
		1				 Площадка №2.	ABK	l	
0023	9	0.15	2	0.035343	78	0301 (4)	Азота (IV) диоксид (Азота диоксид) (4)	0.007	0.0416
						0304 (6)	Азот (II) оксид (Азота оксид) (6)	0.0011	0.0068
						0330 (516)	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.0266	0.0918
						0337 (584)	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0896	0.5374
						2908 (494)	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного	0.0578	0.298

		анская облас 3		"ВСП" (площадки в	6 11.11eps	I	, ועוע. 7	7a		
1	2	3	4	5	6		/		8	9
								производства - глина,		
								глинистый сланец, доменный		
								шлак, песок, клинкер, зола,		
								кремнезем, зола углей		
								казахстанских		
								месторождений) (494)		
	1 1	l	1	П П	пощадка	Nº2. O⊤	крытая а	втостоянка	l 	
6041	2					0301	(4)	Азота (IV) диоксид (Азота	0.0125	0.0338
								диоксид) (4)		
						0304	(6)	Азот (II) оксид (Азота оксид) (6)	0.0021	0.0055
						0328	(583)	Углерод (Сажа, Углерод	0.0013	0.0036
								черный) (583)		
						0330	(516)	Сера диоксид (Ангидрид	0.0021	0.0062
								сернистый, Сернистый газ,		
								Сера (IV) оксид) (516)		
						0337	(584)	Углерод оксид (Окись	0.0843	0.2369
								углерода, Угарный газ) (
								584)		
						2732	(654*)	Керосин (654*)	0.0145	0.0464
				 	Плоі	 щадка 1	№2. Скла;	I цГСМ		
0027	2	0.076	0.5	0.0022682	18	0415	(1502*)	Смесь углеводородов предельных С1-С5 (1502*)	1.01885	0.08386
						0416	(1503*)	Смесь углеводородов	0.24813	0.02042
								предельных С6-С10 (1503*)		
						0501	(460)	Пентилены (амилены - смесь	0.03375	0.00278
						0602	(64)	изомеров) (460) Бензол (64)	0.027	0.00222
						0616		1	0.00203	0.00222
						0010	(203)	Диметилбензол (смесь о-, м- , п- изомеров) (203)	0.00203	0.00017
						0621	(349)	Метилбензол (349)	0.01958	0.00161
						0627	(675)	Этилбензол (675)	0.00068	0.00006
0028	4	0.076	0.6	0.0027219	18	2735	(716*)	Масло минеральное нефтяное	0.00045	0.00006

2. Характеристика источников загрязнения атмосферного воздуха Восточно-Казахстанская область. ТОО "ВСП" (плошалки в п.Первомайский)

		танская обл				вомаискии)	T =		
1	2	3	4	5	6	7	7a	8	9
0029	4	0.076	0.6	0.0027219	18	0333 (518)	(веретенное, машинное, цилиндровое и др.) (716*) Сероводород (0.000012	0.000007
							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0043	0.0024
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
0000		0 0 7 6	0 6	0 000001010	1.0	0000 (510)	Растворитель РПК-265П) (10)	0.000010	0 00000
0030	2	0.076	0.6	0.0027219	18	0333 (518)	Сероводород (0.000012	0.000003
						0.554 (1.0)	Дигидросульфид) (518)	0 0040	0 0000
						2754 (10)	Алканы С12-19 /в пересчете	0.0043	0.0009
							на С/ (Углеводороды		
							предельные C12-C19 (в пересчете на C);		
							Пересчете на С/, Растворитель РПК-265П) (10)		
6048	2				18	0415 (1502*)	Смесь углеводородов	0.50942	0.03288
0040	2				10		предельных С1-С5 (1502*)		
						0416 (1503*)	Смесь углеводородов	0.12407	0.00801
							предельных С6-С10 (1503*)		
						0501 (460)	Пентилены (амилены - смесь изомеров) (460)	0.01688	0.00109
						0602 (64)	Бензол (64)	0.0135	0.00087
						0616 (203)	Диметилбензол (смесь о-, м-	0.00101	0.00007
1						, , , ,	, п- изомеров) (203)		
						0621 (349)	Метилбензол (349)	0.00979	0.00063
						0627 (675)	Этилбензол (675)	0.00034	0.000022
6049	2				18	2735 (716*)	Масло минеральное нефтяное	0.00009	0.0000071
							(веретенное, машинное,		
							цилиндровое и др.) (716*)		
6050	2				18	0333 (518)	Сероводород (0.000006	0.000039
							Дигидросульфид) (518)		
						2754 (10)	Алканы С12-19 /в пересчете	0.0022	0.0139
							на С/ (Углеводороды		
							предельные С12-С19 (в		
							пересчете на С);		
							Растворитель РПК-265П) (10)		

Примечание: В графе 7 в скобках (без "*") указан код 3В из таблицы 1 Приложения 1 к Приказу Министерства национальной экономики РК от 28.02.2015 г. №168 (список ПДК), со "*" указан код 3В из таблицы 2 вышеуказанного Приложения (список ОБУВ).

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ

3. Показатели работы пылегазоочистного оборудования (ПГО)

Номер	Наименование и тип	КПД аппа	ратов, %	Код	Коэффициент
источника	пылегазоулавливающего			загрязняющего	обеспеченности
выделения	оборудования	Проектный	Фактичес-	вещества по	K(1),%
			кий	котор.проис-	
				ходит очистка	
1	2	3	4	5	6
	Площадка №1	. Маслопрессоя	вый цех		
0031 01	Циклон пылесборник	92	92	2902	100
0032 01	Циклон пылесборник	92	92	2902	100
0033 01	Циклон MGXG-205	92	92	2902	100
0034 01	Циклон MGXG-150	92	92	2902	100
	Площадка №1. Ко	тельная для пр	ооизводства	•	
0037 01	Групповой циклон СЦН300х20	85	85	2902	100
0037 02	Групповой циклон СЦН300х20	85	85	2908	100

БЛАНК ИНВЕНТАРИЗАЦИИ ВЫБРОСОВ ВРЕДНЫХ (ЗАГРЯЗНЯЮЩИХ) ВЕЩЕСТВ В АТМОСФЕРНЫЙ ВОЗДУХ И ИХ ИСТОЧНИКОВ 4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год

Код	чно-Казахстанская область, ТОО	"ВСП" (площадкі Количество	и в п.первомаи В том		Из по	ступивших на о	чистку	Всего
заг-	Наименование	хишикнекстье				v	v	выброшено
-екд	загрязняющего	веществ	выбрасыва-	поступает	выброшено	уловлено и	обезврежено	В
няющ	вещества	отходящих от	ется без	на	В	-	-	атмосферу
веще		источника	очистки	очистку	атмосферу	фактически	из них ути-	
ства		выделения			_		лизировано	
1	2	3	4	5	6	7	8	9
			Пл	ощадка:01				
	В С Е Г О по площадке: 01	1639.87150353	247.5759202	1392.29558333	122.73634	1269.55924333	0	370.3122602
	в том числе:							
	твердые:	1421.26819133	28.972608	1392.29558333	122.73634	1269.55924333	0	151.708948
	из них:							
0123	Железо (II, III) оксиды (в	0.00543	0.00543	0	0	0	0	0.00543
	пересчете на железо) (
	диЖелезо триоксид, Железа							
	оксид) (274)							
0143	Марганец и его соединения (в	0.00017	0.00017	0	0	0	0	0.00017
	пересчете на марганца (IV)							
	оксид) (327)							
0328	Углерод (Сажа, Углерод	0.0343	0.0343	0	0	0	0	0.0343
	черный) (583)							
	Взвешенные частицы (116)	1285.726333					0	129.957723
2908	Пыль неорганическая,	134.836557333	0.965224	133.871333333	20.0807	113.790633333	0	21.045924
	содержащая двуокись кремния в							
	%: 70-20 (шамот, цемент, пыль							
	цементного производства -							
	глина, глинистый сланец,							
	доменный шлак, песок,							
	клинкер, зола, кремнезем,							
	зола углей казахстанских							
0000	месторождений) (494)	0 000=10	0.000=10		_			0 000=10
2909	Пыль неорганическая,	0.000519	0.000519	0	0	0	0	0.000519

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год

1	чно-Казахстанская область, TOO	3	4	5	6	7	8	9
	содержащая двуокись кремния в							
	%: менее 20 (доломит, пыль							
	цементного производства -							
	известняк, мел, огарки,							
	сырьевая смесь, пыль							
	вращающихся печей, боксит) (
	495*)							
2930	Пыль абразивная (Корунд	0.0081	0.0081	0	0	0	0	0.0081
	белый, Монокорунд) (1027*)							
2936	Пыль древесная (1039*)	0.2943	0.2943	0	0	0	0	0.2943
2937	Пыль зерновая /по грибам	0.342182	0.342182	0	0	0	0	0.342182
	хранения/ (487)							
2978	Пыль тонко измельченного	0.0203	0.0203	0	0	0	0	0.0203
	резинового вулканизата из							
	отходов подошвенных резин (
	1090*)							
	Газообразные, жидкие:	218.6033122	218.6033122	0	0	0	0	218.6033122
	N3 HNX:			_	_	_	_	
0301	Азота (IV) диоксид (Азота	17.544249	17.544249	0	0	0	0	17.544249
	диоксид) (4)							
0304	Азот (II) оксид (Азота оксид)	2.850645	2.850645	0	0	0	0	2.850645
0000	(6)	0 00000171	0 000001 11				0	0.00000181
	Серная кислота (517)	0.00000171	0.00000171	0	0	0	0	0.00000171
0330	Сера диоксид (Ангидрид	24.2409153	24.2409153	0	0	0	0	24.2409153
	сернистый, Сернистый газ,							
0000	Сера (IV) оксид) (516)	0 000040	0 000040	0	0	0	0	0 000040
0333	Сероводород (Дигидросульфид)	0.000049	0.000049	U	U	Ü	U	0.000049
0007	(518)	171 1760000	171 1760000	0	0	0	0	171 17620200
0337	Углерод оксид (Окись	171.17632309	171.17632309	U	U	Ü	U	171.17632309
0240	углерода, Угарный газ) (584)	0 00004	0 00004	0	0	0	0	0 00004
0342	Фтористые газообразные	0.00004	0.00004	U	U	Ü	U	0.00004
	соединения /в пересчете на							
0.400	фтор/ (617)	1 10076	1 10276			^	0	1 10276
0403	Гексан (135)	1.10376	1.10376	U	Ü	0	Ü	1.10376

4. Суммарные выбросы вредных (загрязняющих) веществ в атмосферу, их очистка и утилизация в целом по предприятию, т/год

DOCTO	чно-казахстанская область, тоо	всп (площадкі	и в п.первомаи	СКИИ)				
1	2	3	4	5	6	7	8	9
0415	Смесь углеводородов	0.11674	0.11674	0	0	0	0	0.11674
	предельных С1-С5 (1502*)							
0416	Смесь углеводородов	0.02843	0.02843	0	0	0	0	0.02843
	предельных С6-С10 (1503*)							
0501	Пентилены (амилены - смесь	0.00387	0.00387	0	0	0	0	0.00387
	изомеров) (460)							
0602	Бензол (64)	0.00309	0.00309	0	0	0	0	0.00309
0616	Диметилбензол (смесь о-, м-,	0.00024	0.00024	0	0	0	0	0.00024
	п- изомеров) (203)							
0621	Метилбензол (349)	0.00224	0.00224	0	0	0	0	0.00224
0627	Этилбензол (675)	0.000082	0.000082	0	0	0	0	0.000082
1301	Проп-2-ен-1-аль (Акролеин,	1.26144	1.26144	0	0	0	0	1.26144
	Акрилальдегид) (474)							
2704	Бензин (нефтяной,	0.20183	0.20183	0	0	0	0	0.20183
	малосернистый) /в пересчете							
	на углерод/ (60)							
2732	Керосин (654*)	0.0521	0.0521	0	0	0	0	0.0521
2735	Масло минеральное нефтяное (0.0000671	0.0000671	0	0	0	0	0.0000671
	веретенное, машинное,							
	цилиндровое и др.) (716*)							
2754	Алканы С12-19 /в пересчете на	0.0172	0.0172	0	0	0	0	0.0172
	С/ (Углеводороды предельные							
	С12-С19 (в пересчете на С);							
	Растворитель РПК-265П) (10)							

ПРИЛОЖЕНИЕ Б

РАСЧЕТЫ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ

Б.1 Расчет выброса вредных веществ от пересыпки сырья (семян подсолнечника) (ист.6016, 6017, 6051)

Площадка №1

Цех сушки. Семена подсолнечника с повышенной влажностью в количестве 12000 т/год доставляются в завальную яму цеха сушки автотранспортом. Выброс загрязняющих веществ происходит неорганизованно (ист. 6016).

Подсолнечник из приемной ямы при помощи нории подается в машину предварительной очистки МПО – 30. После очистки подсолнечник в объеме 4600 т поступает на склады №1 и №2 для его временного хранения, а подсолнечник в объеме 6400 т поступает в зерносушилку. Также на зерносушилку поступает и подсолнечник, находящийся на временном хранении в складах №1 и №2. После сушки подсолнечник поступает в отгрузочный бункер, откуда с помощью автотранспорта вывозится для дальнейшего использования. Источник выброса неорганизованный (ист. 6017).

Максимально-разовый объем пылевыделений при погрузочноразгрузочных работах рассчитывается по формуле /8/:

Мсек =
$$\underline{k_1} \times \underline{k_2} \times \underline{k_3} \times \underline{k_4} \times \underline{k_5} \times \underline{k_7} \times \underline{k_8} \times \underline{k_9} \times \underline{B'} \times \underline{G} \times \underline{4} \times \underline{10^6} (1-\eta)$$
, г/с 3600

А валовый выброс по формуле /8/:

Мгод =
$$k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G$$
 год х (1- η), т/год

где

- k1 весовая доля пылевой фракции в материале (таблица 3.1.1) /8/. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;
- k_2 доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1 1 /8/). Проверка фактического дисперсного состава пыли и уточнение значения кг производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки отбора пробы;
- k_3 коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 /8/;
- k_4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1 .3 /8/);
- k_5 коэффициент, учитывающий влажность материала (таблица 3.1.4) /8/. Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d \leq 1 мм);
 - k₇ коэффициент, учитывающий крупность материала (таблица 3.1.5) /8/;

 k_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6) /8/. При использовании иных типов перегрузочных устройств k_8 =1;

 k_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k_9 =0,2 при единовременном сбросе материала весом до 10 т, и k_9 =0,1 - свыше 10 т. В остальных случаях k_9 =1 /8/;

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1/7) /8/;

Gчас - производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gгод - суммарное количество перерабатываемого материала в течение года, т/год; η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8) /8/.

Цех сушки:

Расчет пыли зерновой при разгрузке сырья (семян подсолнечника) (ист. 6016):

 $M_{cer} = 0.01 \times 0.03 \times 1.0 \times 0.005 \times 0.1 \times 0.6 \times 1.0 \times 0.2 \times 0.7 \times 10 \times 10^6 \times (1-0)/3600 = 0.000035 \text{ r/c}$

 $M_{\text{год}}$ = 0,01 x 0,03 x 1,0 x 0,005 x 0,1 x 0,6 x 1,0 x 0,2 x 0,7 x 12000 x (1-0) = 0,000151 т/год

Расчет пыли зерновой при пересыпки подсолнечника из ямы на очистку (ист. 6017):

 $M_{cek} = 0.01 \text{ x } 0.03 \text{ x } 1.0 \text{ x } 0.005 \text{ x } 0.1 \text{ x } 0.6 \text{ x } 1.0 \text{ x } 1 \text{ x } 0.7 \text{ x } 10 \text{ x } 10^6 \text{ x}$ x(1-0)/3600 = 0.000175 g/c

 $M_{\rm rog}$ = 0,01 x 0,03 x 1,0 x 0,005 x 0,1 x 0,6 x 1,0 x 1 x 0,7 x 12000 x (1-0) = 0,000756 т/год

Расчет пыли зерновой при пересыпки подсолнечника из машины очистки в зерносушилку (ист. 6017):

 $M_{cer} = 0.01 \text{ x } 0.03 \text{ x } 1.0 \text{ x } 0.005 \text{ x } 0.1 \text{ x } 0.6 \text{ x } 1.0 \text{ x } 1.0 \text{ x } 10^6 \text{ x}$ x(1-0)/3600 = 0.000175 r/c

 $M_{\text{год}} = 0.01 \text{ x } 0.03 \text{ x } 1.0 \text{ x } 0.005 \text{ x } 0.1 \text{ x } 0.6 \text{ x } 1.0 \text{ x } 1 \text{ x } 0.7 \text{ x } 6400 \text{ x } (1-0) = 0.000403 \text{ т/год}$

Расчет пыли зерновой при пересыпки подсолнечника из зерносушилки в отгрузочный бункер (ист. 6017):

 $M_{cer} = 0.01 \times 0.03 \times 1.0 \times 0.005 \times 0.1 \times 0.6 \times 1.0 \times 1 \times 0.7 \times 10 \times 10^6 \times (1-0)/3600 = 0.000175 \text{ r/c}$

 $M_{\text{год}} = 0.01 \text{ x } 0.03 \text{ x } 1.0 \text{ x } 0.005 \text{ x } 0.1 \text{ x } 0.6 \text{ x } 1.0 \text{ x } 1 \text{ x } 0.7 \text{ x } 12000 \text{ x } (1-0) = 0.000756$ т/год

Расчет пыли зерновой при пересыпки подсолнечника из отгрузочного бункера в автотранспорт (ист. 6017):

 $M_{\text{cek}} = 0.01 \text{ x } 0.03 \text{ x } 1.0 \text{ x } 0.005 \text{ x } 0.1 \text{ x } 0.6 \text{ x } 1.0 \text{ x } 0.2 \text{ x } 0.7 \text{ x } 10 \text{ x } 10^6 \text{ x}$ x(1-0)/3600 = 0.000035 r/c

 $M_{\text{год}}$ = 0,01 x 0,03 x 1,0 x 0,005 x 0,1 x 0,6 x 1,0 x 0,2 x 0,7 x 12000 x (1-0) = 0,000151 т/год

Расчет взвешенных частиц при пересыпке семян подсолнечника (ист. 6051) идентичен расчету выбросов при пересыпке семян подсолнечника (ист. 6016).

Результаты расчета выбросов от пересыпки сырья (семян подсолнечника) (ист. 6016, 6017, 6051) представлены в таблице Б.1.

Таблица Б.1 - Результаты расчета выбросов от пересыпки сельскохозяйственной продукции

Наимен. источника	№ ист.	k ₁	k ₂	k ₃	\mathbf{k}_4	k ₅	k ₆	k ₇	k ₈	k ₉	B`	$G_{\text{\tiny qac}}$	Gгод	q`	S, m ²	Наименование загрязняющего вещества	Выб	росы
																	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
										цадка								
Разгрузка сырья																		
Разгрузка сырья в яму	6016	0,01	0,03	1,0	0,005	0,1	-	0,6	1,0	0,2	0,7	10	12000	-	-	Пыль зерновая	0,000035	0,000151
Итого по ист. 6016									рго по ист. 6016:	0,000035	0,000151							
Пересыпка из ямы на очистку	6017	0,01	0,03	1,0	0,005	0,1	-	0,6	1,0	1	0,7	10	12000	-	-	Пыль зерновая	0,000175	0,000756
Пересыпка из машины очистки в зерносушилку	6017	0,01	0,03	1,0	0,005	0,1	-	0,6	1,0	1	0,7	10	6400	-	-	Пыль зерновая	0,000175	0,000403
Пересыпка из зерносушилки в отгрузочный бункер	6017	0,01	0,03	1,0	0,005	0,1	-	0,6	1,0	1	0,7	10	12000	-	-	Пыль зерновая	0,000175	0,000756
Пересыпка из отгрузочного бункера в автотранспорт	6017	0,01	0,03	1,0	0,005	0,1	-	0,6	1,0	0,2	0,7	10	12000 Пыль зерновая				0,000035	0,000151
															Ито	ого по ист. 6017:	0,000560	0,002066
					•			M	аслопр	рессов	ый цех	r				,		
Подземный загрузочный бункер	6051	0,01	0,03	1,0	0,005	0,1	-	0,6	1,0	0,2	0,7	12,5	109500	-	-	Взвешенные частицы	0,000044	0,001380
					•									•	Ито	ого по ист. 6051:	0,000044	0,001380

Б.2 Расчет выброса вредных веществ от процесса очистки семян подсолнечника от примесей (вибросито) (ист. 0031)

Из загрузочного бункера сырье поступает на подающий скребковый конвейер, а затем ковшовым элеватором (нория) подается на вибросито, которое используется для предварительного удаления примесей.

При очистке семян от примесей на вибросите происходит выделение взвешенных частиц (ист. 0031).

Выбросы загрязняющих веществ рассчитываются по формулам:

Максимальные выбросы загрязняющих веществ от размольнодробильных и просеивающих аппаратов, оснащенных пылеуловителями в составе системы пневмотранспорта /14/:

$$M_{cek} = \frac{0,001*C*(100-f)*(1-0,01*g)}{(100-F)}, \text{ r/c}$$

Годовые выбросы загрязняющих веществ от размольно-дробильных и просеивающих аппаратов, оснащенных пылеуловителями в составе системы пневмотранспорта:

$$M_{_{200}} = \frac{K*\Pi*(100-f)*(1-0.01g)}{(100-F)*10^6}$$
, т/год (6.3.4)

- где C максимальное количество выброса загрязняющего вещества, отходящего от стационарного источника, мг/с (таблица 6.3.1) /14/;
- g минимальное паспортное значение эффективности используемой системы пылеулавливания, %;
 - f минимальное значение эффективности используемой системы пылеулавливания, %;
 - F- эффективность технологической системы пылеулавливания, % (таблица 6.1) /14/;
- K удельное количество выбросов загрязняющего вещества, отходящего от стационарного источника, г/кг продукта (таблица 6.3.1) /14/;
 - Π годовая производительность оборудования по исходному сырью, кг/год.

Расчет выбросов взвешенных частиц при очистке семян подсолнечника на вибросите (ист. 0031).

$$M_{cek} = 0.001 \times 0.8 \times (100 - 92) \times (1-0.01 \times 92) = 0.000064 \text{ r/c}$$

$$(100 - 92)$$

$$M_{\text{год}} = \underline{2,8 \text{ x } 109500\ 000\ \text{x } (100-92)\ \text{x } (1\text{-}0,01\ \text{x } 92)} = 24,528\ \text{т/год}$$
 (100 – 92) х 10^6

Результаты расчета выбросов от вибросита (ист. 0031) представлены в таблице Б.2.

Таблица Б.2 - Выбросы вредных веществ от вибросита

		•		Эффекти	вность используемой	і системы			Выбр	осы
№ ист.	Наимено ва-ние оборудо- вания	Наиме- нование вещества	С – максимальное количество выброса загрязняющег о вещества, отходящего от стационарного источника, мг/с	f — минимальное значение эффективности используемой системы пылеулавливания , %	g — минимальное паспортное значение эффективности используемой системы пылеулавливания , %	F- эффективность технологической системы пылеулавливания , %	К – удельное количество выбросов загрязняющег о вещества, отходящего от стационарного источника, г/кг продукта	П – годовая производительность оборудовани я по исходному сырью, кг/год	Макси- мальное количеств о вредных веществ в выбросах, г/с	т/год
1	2	3	6	7	8	9	11	12	13	14
					Маслопрессовый ц	ex				
0031	Виброси то	Взвешенны е частицы	0,8	92	92	92	2,8	109500000	0,000064	24,528

Б.3 Расчет выбросов загрязняющих веществ от гравитационной камнеотборочной машины (ист. 0032)

Сырье поступает в гравитационную камнеотборочную машину, используемую для непрерывного удаления камня, что является одним из ключевых аспектов в производстве. Удаления пыли от камнеотборочной машины осуществляется при помощи аспирационной системы оборудованной циклонным пылесборником (поз. 25) с воздушным шлюзом и вентилятор для удаления камня (поз.27). При очистке семян от камня происходит выделение взвешенных частиц (ист. 0032).

Количество пыли отходящей от оборудования рассчитывается по следующим формулам /14/:

$$Me = \frac{T * Q_n * Z_n * t_n}{1000} * (1- \eta);$$
 т/год

Mc=Zn * (1- η);
$$\Gamma/c$$

где T – годовой период работы предприятия, сут/год;

- Q_n количество воздуха, поступающего в пылеуловитель от n—ой аспирационной или пневмотранспортной установки (тыс.м³/час), определяется замерами или по справочным данным из таблиц 15.1, 15.2 /14/;
- Z_n концентрация пыли в воздухе, поступающем в пылеуловитель от n—ой аспирационной или пневмотранспортной установки (г/м³), определяется замерами или рассчитывается по формуле 16.4 (принимаются согласно таблицы 15.4) /14/;
- t_n время работы в течении суток n-ой аспирационной или пневмотранспортной установки, час/сут.
- η коэффициент пылеотделения (КПД) циклона, определяется инструментальными замерами или по паспортным данным завода изготовителя.

Расчет выбросов взвешенных частиц от камнеотборочной машины (ист. 0032):

$${
m M}_{
m rog} = {
m 365~x~23,52~x~1,2~x~24} {
m ~x~(1-0,92)} = {
m 19,77938~t/rog}$$

$$M_{cek} = 1.2 \text{ x } (1-0.92) = 0.096 \text{ r/c}$$

Результаты расчета выбросов от камнеотборочной машины (ист. 0032) представлены в таблице 2.3.

Таблица Б.3 - Выбросы вредных веществ от камнеотборочной машины

Наименова- Наиме- Т – годовой Оп – количество		-	~	1.1	- n	Ţ,		
	Наиме-	T – годовой	Qn – количество	Ζπ –	tn – время работы	η – коэффициент	Выбј	росы
ние оборудо-	нование	период	воздуха,	концентрация	в течении суток п-	пылеотделения	Макси-	т/год
вания	вещества	работы	поступающего в	пыли в воздухе,	ой аспирационной	(КПД) циклона,	мальное	
		предприяти	пылеуловитель от	поступающем в	или	определяется	количес	
		я, сут/год	п-ой	пылеуловитель от	пневмотранспортн	инструментальны	ТВО	
			аспирационной	п–ой	ой установки,	ми замерами или	вредных	
			или	аспирационной	час/сут.	по паспортным	веществ	
			пневмотранспортн	или		данным завода	В	
			ой установки	пневмотранспортн		изготовителя,	выброса	
			(тыс.м3/час)	ой установки		доли единицы	х, г/c	
				(г/м3)			ŕ	
2	3	4	5	6	7	8	9	10
			Мас	глопрессовый цех				
Гравитационн	Раранизми							
ая		265	22.52	1.2	24	0.02	0.006	19,77938
камнеотборна		303	23,32	1,2	24	0,92	0,096	19,77938
я машина	частицы							
	2 Гравитационн ая камнеотборна	равитационн ая камнеотборна вания вещества вещества вещества вещества вещества вещества вания вещества вания вещества вания в вещества вания в вещества вания в вещества вания в вещества вания в вещества вания в вещества вания в вещества в в в в в в в в в в в в в в в в в в	ние оборудования вещества период работы предприяти я, сут/год 2 3 4 Гравитационн ая камнеотборна камие вещества период работы предприяти я, сут/год	ние оборудования нование вещества период работы предприяти я, сут/год воздуха, поступающего в пылеуловитель от п-ой аспирационной или пневмотранспортн ой установки (тыс.м3/час) 2 3 4 5 Гравитационн ая камнеотборна Взвешенн ые частицы 365 23,52	ние оборудования нование вещества период работы предприяти я, сут/год воздуха, поступающего в пыли в воздухе, поступающем в пыли в воздухе, поступающем в пылеуловитель от аспирационной или пневмотранспортн ой установки (тыс.м3/час) поступающем в пылеуловитель от поступающем в пылеуловительный в пылеуловительный в пылеуловительный в пылеуловительный в пылеуловительный в п	ние оборудования нование вания нование вещества период работы предприяти я, сут/год воздуха, поступающего в пылеуловитель от аспирационной или пневмотранспортн ой установки (тыс.м3/час) концентрация пыли в воздухе, поступающем в пылеуловитель от аспирационной или пневмотранспортн ой установки (г/м3) в течении суток пой аспирационной или пневмотранспортн ой установки (г/м3) 2 3 4 5 6 7 Маслопрессовый цех Гравитационна ая камнеотборна ые частицы 365 23,52 1,2 24	ние оборудования нование вания нование вещества период работы предприяти я, сут/год воздуха, поступающего в пылеуловитель от п—ой аспирационной или пневмотранспортн ой установки (г/м3) концентрация пыли в воздухе, поступающем в пыле в воздухе, поступающем в пылеуловитель от п—ой аспирационной или пневмотранспортн ой установки (г/м3) в течении суток п-ой аспирационной или пневмотранспортн ой установки, поступающем в пыле уловитель от п—ой аспирационной или пневмотранспортн ой установки (г/м3) в течении суток п-ой аспирационной или пневмотранспортн ой установки, поступающем в пыле уловитель от п—ой аспирационной или по паспортным изототовителя, доли единицы 2 3 4 5 6 7 8 Гравитационн ая камнеотборна ые частины 365 23,52 1,2 24 0,92	ние оборудования нование вания период работы предприяти я, сут/год воздуха, поступающего в пылеуловитель от аспирационной или пневмотранспортн ой установки (г/м3) концентрация пыли в воздухе, поступающем в пылеуловитель от п-ой аспирационной или пневмотранспортн ой установки (г/м3) в течении суток пой аспирационной или пневмотранспортн ой установки, (КПД) циклона, определяется инструментальны ми замерами или пневмотранспортн ой установки (г/м3) в течении суток пой аспирационной или пневмотранспортн ой установки, (г/м3) маслои единицы Максимальное количес тво и или пневмотранспортн ой установки (г/м3) 2 3 4 5 6 7 8 9 Травитационна ая камнеотборна вые частицы 365 23,52 1,2 24 0,92 0,096

Б.4 Расчет выбросов загрязняющих веществ от шелушителей (ист. 0033)

Для шелушения семян будет применяться шелушитель DGBB-2280 с приемным бункером (2 шт.). В процессе шелушения семян происходит выделение взвешенных частиц. Очистка загрязненного воздуха осуществляется при помощи циклона MGXG-205 с эффективностью очистки 92 %. Выброс пыли происходит организованно с помощью вентилятора производительность 19300 м³ через трубу диаметром 500 мм на высоте 14,27 м (ист. 0033).

Количество пыли отходящей от оборудования рассчитывается по следующим формулам /14/:

$$Me = \frac{T * Q_n * Z_n * t_n}{1000} * (1- \eta);$$
 т/год

Mc=Zn * (1-
$$\eta$$
); Γ/c

где T – годовой период работы предприятия, сут/год;

- Q_n количество воздуха, поступающего в пылеуловитель от n—ой аспирационной или пневмотранспортной установки (тыс.м³/час), определяется замерами или по справочным данным из таблиц 15.1, 15.2 /14/;
- Z_n концентрация пыли в воздухе, поступающем в пылеуловитель от n—ой аспирационной или пневмотранспортной установки (г/м³), определяется замерами или рассчитывается по формуле 16.4 (принимаются согласно таблицы 15.4) /14/;
- t_n время работы в течении суток n-ой аспирационной или пневмотранспортной установки, час/сут.
- η коэффициент пылеотделения (КПД) циклона, определяется инструментальными замерами или по паспортным данным завода изготовителя.

Расчет выбросов взвешенных частиц от шелушителей (ист. 0033): Обём воздуха посткпающий на шелушителя сотавляет 19300 м^3 /час

Шелушитель № 1,2:

$$M_{\text{год}} = \underline{365 \text{ x } 19,3\text{x } 2,5\text{x}24} \text{ x } (1\text{-}0,92) = 33,8136 \text{ т/год}$$

$$M_{cek} = 2.5 \text{ x } (1-0.92) = 0.2 \text{ r/c}$$

Результаты расчета выбросов от шелушителей (ист. 0033) представлены в таблице 2.4.

Таблица Б.4 - Выбросы вредных веществ от шелушителей

		1		Qn – количество	Zп – концентрация		η – коэффициент	Выбро	осы
№ ист.	Наименова- ние оборудо- вания	Наиме- нование вещества	Т – годовой период работы предприяти я, сут/год	воздуха, поступающего в пылеуловитель от п-ой аспирационной или пневмотранспортн ой установки (тыс.м3/час)	пыли в воздухе, поступающем в пылеуловитель от п-ой аспирационной или пневмотранспортн ой установки (г/м3)	tn — время работы в течении суток пой аспирационной или пневмотранспортной установки, час/сут.	пылеотделения (КПД) циклона, определяется инструментальны ми замерами или по паспортным данным завода изготовителя, доли единицы	Макси- мальное количеств о вредных веществ в выбросах, г/с	т/год
1	2	3	4	5	6	7	8	9	10
				Ma	слопрессовый цех				
003	Шелушител и	Взвешенн ые частицы	365	19,3	2,5	24	0,92	0,2	33,813 6

Б.5 Расчет выбросов загрязняющих веществ от рассева и сепаратора лузги (ист. 0034)

Для разделения лузги и ядра подсолнечника используется малогабаритный рассев MPAQ-210M и сепаратор лузги LACBSMA. В процессе работы оборудования будут выделяться взвешенные частицы. Очистка загрязненного воздуха осуществляется при помощи циклона MGXG-150 с эффективностью очистки 92 %. Выброс пыли происходит организованно с помощью вентилятора производительность 19300 м³ через трубу диаметром 700 мм на высоте 14,42 м (ист. 0034).

Количество пыли отходящей от оборудования рассчитывается по следующим формулам /14/:

$$M \varepsilon = \frac{T * Q_n * Z_n * t_n}{1000} * (1- \eta);$$
 т/год

Mc=Zn x (1-
$$\eta$$
); Γ /c

где T – годовой период работы предприятия, сут/год;

- Q_n количество воздуха, поступающего в пылеуловитель от n—ой аспирационной или пневмотранспортной установки (тыс.м³/час), определяется замерами или по справочным данным из таблиц 15.1, 15.2 /14/;
- Z_n концентрация пыли в воздухе, поступающем в пылеуловитель от n—ой аспирационной или пневмотранспортной установки (г/м³), определяется замерами или рассчитывается по формуле 16.4 (принимаются согласно таблицы 15.4) /14/;
- t_n время работы в течении суток n-ой аспирационной или пневмотранспортной установки, час/сут.
- η коэффициент пылеотделения (КПД) циклона, определяется инструментальными замерами или по паспортным данным завода изготовителя.

Малогабаритный рассев MPAQ-210M и сепаратор лузги LACBSMA оборудованы одним вентилятором производительность 19300 м³. Количество подоваемого воздуха между двумя аппаратоми делется пополам.

Расчет выбросов взвешенных частиц от рассева (ист. 0034):

$$M_{\text{год}} = \underline{365 \text{ x } 9,65 \text{ x } 3 \text{ x } 24} \text{ x } (1\text{-}0,92) = 20,28816 \text{ т/год} \ 1000$$
 $M_{\text{сек}} = 3 \text{ x } (1\text{-}0,92) = 0,24 \text{ г/с}$

Расчет выбросов взвешенных частиц от сепаратора лузги (ист. 0034):

$$M_{\text{год}} = \underline{365 \times 9,65 \times 4 \times 24} \times (1\text{-}0,92) = 27,05088 \text{ т/год}$$
 1000

$$M_{cek} = 4 \text{ x } (1-0.92) = 0.32 \text{ r/c}$$

Результаты расчета выбросов от рассева и сепаратора лузги (ист. 0034) представлены в таблице 2.5.

Таблица Б.5 - Выбросы вредных веществ от шелушителей

	•	•						Выбр	осы
№ ист.	Наименова- ние оборудо- вания	Наиме- нование вещества	Т – годовой период работы предприятия, сут/год	Qn — количество воздуха, поступающего в пылеуловитель от пой аспирационной или пневмотранспортной установки (тыс.м3/час)	Zп — концентрация пыли в воздухе, поступающем в пылеуловитель от пой аспирационной или пневмотранспортной установки (г/м3)	tn – время работы в течении суток п-ой аспирационной или пневмотранспортной установки, час/сут.	η – коэффициент пылеотделения (КПД) циклона, определяется инструментальными замерами или по паспортным данным завода изготовителя, доли единицы	Макси- мальное количество вредных веществ в выбросах, г/с	т/год
1	2	3	4	5	6	7	8	9	10
				M	Гаслопрессовый цех				
0024	Рассев	Взвешенные частицы	365	9,65	3	24	0,92	0,24	20,28816
0034	Сепаратор Взвешенные лузги частицы		365	9,65	4	24	0,92	0,32	27,05088

Б.6 Расчет выбросов загрязняющих веществ от маслобойных прессов (ист. 0035)

Мезга попадает в маслобойные прессы (4 шт.). Масло отжимается, а прессуемый материал уплотняется в монолитную массу-жмых. В процессе отжима масла из мезги происходит выделение акролеина (ист. 0035).

Выбросы загрязняющих веществ рассчитываются по формуле /14/:

$$M_{_{\mathcal{Z}O\partial}} = \frac{C*T*3600}{10^6}*(1-\eta)$$
 , т/год
$$M_{_{\mathcal{Z}EK}} = C*(1-\eta)$$
 , г/сек

где C — удельное количество выбросов загрязняющего вещества, отходящего от стационарного источника, г/сек;

T — фактическое время работы оборудования, час/год;

 η — степень очистки.

Удельные выбросы загрязняющих веществ (*C*), образующиеся от оборудования данного производства, приведены в таблице 12.1 /14/.

Расчет выбросов акролеина от маслобойных прессов (ист. 0034):

$${
m M}_{
m rog} = {0.01~{
m x}~8760~{
m x}~3600} {
m x}~(1\mbox{-}0) = 0.31536~{
m T/год}$$

$$M_{\text{cek}} = 0.01 \text{ x (1-0)} = 0.01 \text{ r/c}$$

Результаты расчета выбросов от маслобойных прессов (ист. 0035) представлены в таблице 2.6.

Таблица Б.6 - Выбросы вредных веществ от маслобойных прессов

Tuosinia B.o	выоросы вредных вещ		•	C		Выбро	осы
№ ист.	Наименова-ние оборудо-вания	Наиме- нование вещества	Т – фактическое время работы оборудования, час/год	С – удельное количество выбросов загрязняющего вещества, отходящего от стационарного источника, г/сек	η – степень очистки	Макси-мальное количество вредных веществ в выбросах, г/с	т/год
1	2	3	4	5	6	9	10
			Маслон	прессовый цех			
	Маслобойный пресс № 1	акролеин	8760	0,01	0	0,01	0,31536
0025	Маслобойный пресс № 2	акролеин	8760	0,01	0	0,01	0,31536
0035	Маслобойный пресс № 3	акролеин	8760	0,01	0	0,01	0,31536
	Маслобойный пресс № 4	акролеин	8760	0,01	0	0,01	0,31536
				Ито	ого по ист. 0035:	0,04	1,26144

Б.7 Расчет выбросов загрязняющих веществ от маслоэкстракционного производства (ист. 0036)

Маслоэкстракционный цех. Мощность производства маслоэкстракционного цеха составляет 150 т/сут (переработка сырья - жмых). Режим работы маслоэкстракционного цеха - 24 часа (3 смены по 8 часов), 7 дней в неделю.

С помощью транспортера на экстрактор подается экстрагируемый материал - жмых. В процессе экстракции используется специальный органический растворитель (гексан). Масло, которое находится на поверхности вскрытых клеток, при «омывании» растворителем, легко растворяется в нем. Значительное количество масла находится внутри невскрытых клеток. Извлечение этого масла требует проникновения растворителя внутрь клетки и выхода растворителя наружу. Таким образом, в результате экстракции получают раствор масла в растворителе - мисцелла, и обезжиренный материал - шрот.

Шрот, получаемый на выходе, с помощью транспортера подается в десольвентайзер. Здесь происходит удаление растворителя из шрота. Полученные пары растворителя конденсируют и проводят их рекуперацию для перевода растворителя в жидкое состояние.

Выходящая из экстрактора мисцелла может содержать от 15 до 35% масла, растворенного в экстрагенте, а также некоторые примеси. Обработку мисцеллы проводят в две стадии: очистка мисцеллы, отгонка растворителя - дистилляция мисцеллы.

Для удаления из мисцеллы механических примесей ее фильтруют.

Затем мисцелла подается в дистилляционную секцию. В дистилляторе 1 ступени она нагревается парами растворителя. Часть растворителя переходит в газообразное состояние и в таком виде понемногу извлекается из дистиллятора. На 2 ступени процесса мисцелла нагревается глухим паром для подготовки к третьему этапу обработки - окончательной отгонки растворителя с помощью острого пара. Весь этот процесс проходит в вакууме.

После окончания третьей ступени дистилляции масло подается в сушилку. Здесь из него, также с помощью вакуума, окончательно извлекается влага. После этого готовое масло проходит охладитель и теплообменник рекуперации, и подается в специальные емкости для дальнейшего хранения.

При работе маслоэкстракционного оборудования в помещение цеха происходит выделение паров растворителя (гексана). Выброс загрязняющего вещества происходит организованно с помощью крышного вентилятора ВКР 4,5-0-Ф производительностью 5980 м³/час через трубу диаметром 500 мм на высоте 17,2 м (ист. 0036).

Выбросы загрязняющих веществ рассчитываются по формуле (12.1) и (12.2)/14/:

$$M_{_{{\it coo}}}=rac{C*T*3600}{10^6}*(1-\eta)$$
, т/год
$$M_{_{{\it cek}}}=C*(1-\eta)$$
, г/сек

гле

C— удельное количество выбросов загрязняющего вещества, отходящего от стационарного источника, г/сек;

T — фактическое время работы оборудования, час/год;

 η — степень очистки.

Удельные выбросы загрязняющих веществ (C), образующиеся от оборудования данного производства, приведены в таблице 12.1/14/.

Расчет выбросов гексана при применении растворителя от маслоэкстракционного производства (ист. 0037):

$$M_{coo} = \frac{0.035 * 8760 * 3600}{10^6} * (1-0) = 1,10376 \text{ т/год}$$
 $M_{coo} = 0.035 * (1-0) = 0.035 \text{ г/сек}$

Результаты расчета выбросов и исходные данные представлены в таблице 2.7.

Таблица Б.7 - Результаты расчета выбросов загрязняющих веществ от маслоэкстракционного производства

	Наименование производства,	Удельное количество выбросов	Фактическое время	Степень очистки,	В	ые загрязняющие ещества сан (0403)
№ ист.	оборудования	загрязняющего вещества, отходящего	работы	n	г/с	т/год
	осорудования	от стационарного источника (C), г/сек	оборудования, ч/год	"	г/сек	т/год
1	2	3	4	5	6	7
		Маслоэкстр	ракционный цех			
0036	Маслоэкстракционное оборудование	0,035	8760	0	0,0350	1,10376

Б.8 Расчет выбросов загрязняющих веществ от теплогенераторов на топливных пеллетах и от теплогенераторов на угле (ист. 0022, 0023, 0037).

Площадка №1

В котельной установлен паровой котел. В качестве топлива для котла используется уголь месторождения Каражыра и лузга подсолнечника. Годовой расход угля составляет 3760 тонн, годовой расход лузги – 2980 тонн. Средняя зольность угля составляет 15,48 %, максимальная 21,0 %, содержание серы: среднее -0.344 %, максимальное 0.588 %, влажность 14%, калорийность 19,678 МДж/кг. Зольность шелухи составляет 1,9 %, калорийность 10,1 МДж/кг. В процессе сжигания топлива в атмосферу выделяются: пыль неорганическая: 70-20% двуокиси кремния, взвешенные частицы, диоксид азота, оксид азота, диоксид серы, оксиды углерода. Для загрязнения атмосферы предусмотрена предотвращения загрязненного воздуха в групповом циклоне СЦН300х20 эффективностью очистки 85 %. Выброс загрязняющих веществ происходит организованно через трубу диаметром 1 м на высоте 12 м при помощи дымомоса ДН-9-1500 производительность 14900 м3/час (ист. 0037).

Площадка №2

Ремонтная мастерская. В одном из помещений ремонтной мастерской на первом этаже установлен теплогенератор, предназначенный для отопления помещений ремонтной мастерской, теплой стоянки и гаража. В качестве топлива используется уголь месторождения Каражыра и пеллеты из лузги подсолнечника. Годовой расход угля составляет 25 тонн, годовой расход пеллет – 20 тонн. Средняя зольность угля составляет 18,06 %, максимальная 21,0 %, содержание серы: среднее – 0,34 %, максимальное 0,59%, влажность 18 %, калорийность 19,26 МДж/кг. Зольность пеллет составляет 1,9 %, калорийность 17,09 МДж/кг. Выброс загрязняющих веществ происходит организованно через трубу диаметром 0,15 м на высоте 12 м (ист. 0022).

АБК. Для отопления помещений АБК управления установлен теплогенератор. В качестве топлива используется уголь месторождения Каражыра. Годовой расход угля составляет 15 т/год. Средняя зольность угля составляет 18,06 %, максимальная 21,0 %, содержание серы: среднее — 0,34 %, максимальное 0,59%, влажность 18 %, калорийность 19,26 МДж/кг. Выброс загрязняющих веществ осуществляется через трубу диаметром 0,15 м на высоте 9 м. Источник выброса организованный (ист. 0023).

Пересчёт характеристик топлива произведен в соответствии с литературой «Тепловой расчёт котельных агрегатов (нормативный метод М.: «Энергии», 1973).

Выбросы твердых веществ определяем по формуле /11/:

$$M_{TB} = B \times A^{P} \times f \times (1-n_{3}), \Gamma/c, T/год$$

где B — расход топлива, г/с, т/год; A^P — зольность сжигаемого топлива, %.

f – коэффициент, характеризующий тип топки и вид топлива /11/;

 η_{3} – доля твердых частиц, улавливаемых в пылеосадительном борове, η_{3} = 0.

Выбросы оксидов серы, в пересчете на диоксид серы, определяем по формуле /11/:

$$Mso = 0.02 \text{ x B x S}^P \text{ x } (1-n'_{so}) \text{ x } (1-n''_{so}), \Gamma/c, T/год,$$

где n'_{so} – доля окислов серы, связываемых летучей золой топлива, для угля $n'_{so} = 0.1 / 11/;$

n"_{so} = 0 – доля окислов серы, улавливаемых в газоуловителе;

 S^{P} – содержание серы в топливе, %.

Количество оксида углерода, выбрасываемого в атмосферу (г/с, т/год) при сжигании жидкого и твердого топлива рассчитывают по формуле /11/:

$$Mco = 0.001 \times C_{co} \times B \times (1-q^4/100), \Gamma/c, T/год$$

где: C_{co} – выход окиси углерода при сжигании топлива, кг на тонну топлива; q4 – потери тепла вследствие механической неполноты сгорания топлива q4=7 /11/.

$$C_{co} = q^3 x R x QH,$$

где: q^3 – потери тепла вследствие химической неполноты сгорания топлива $q^3 = 2.0 / 11/;$

R — коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива, обусловленную наличием в продуктах неполного сгорания оксида углерода, для твердого $R=1,0\ /11/;$

Количество оксидов азота, выбрасываемых в атмосферу (т/год, г/с), рассчитывают по формуле /11/:

Mno =
$$0.001 \times B \times QH \times Kno \times (1-b)$$
,

где Qн – теплота сгорания натурального топлива, МДж/кг;

Кпо — параметр, характеризующий количество окислов азота в кг, образующихся на один ГДж тепла, принимается по рис.2.1/11/;

b – коэффициент, учитывающий степень снижения выбросов окислов азота в результате применения технических средств. Для котла b=0.

«Методики определения эмиссий Согласно нормативов В окружающую среду» /7, п.1.21/, при расчете загрязнения атмосферы и определении выбросов для всех видов технологических процессов и транспортных средств следует учитывать полную или частичную трансформацию поступающих в атмосферу окислов азота. Для этого установленное по расчету или инструментальными замерами количество выбросов окислов азота (M_{NOx}) в пересчете на NO_2 разделяется на составляющие оксид азота (NO) и диоксид азота (NO₂). Коэффициенты трансформации от NO_x принимаются на уровне максимальной установленной трансформации, т.е. 0,8 – для NO₂ и 0,13 – для NO. Тогда раздельные выбросы будут определяться по формулам:

$$M_{
m NO2\;cek.} = 0.8~{
m x}~M_{
m NOx\;cek.}, M_{
m NO2\;rog.} = 0.8~{
m x}~M_{
m NOx\;rog.}, \ M_{
m NO\;cek.} = 0.13~{
m x}~M_{
m NOx\;cek.}, M_{
m NO\;rog.} = 0.13~{
m x}~M_{
m NOx\;rog.}$$

В качестве примера приводим расчет выбросов от теплогенератора, установленного помещении ремонтной мастерской (ист. 0022) при использования угля:

Выбросы твердых частиц

Расчет выбросов пыли неорганической: 70-20% двуокиси кремния от теплогенератора (ист. 0022):

$$Mc = 2.5 \times 21.0 \times 0.0011 \times (1-0) = 0.0578 \text{ г/c}$$

 $Mr = 25 \times 18.06 \times 0.0011 \times (1-0) = 0.4967 \text{ т/год}$

Выбросы диоксида серы

Расчет выбросов диоксида серы от теплогенератора (ист. 0022):

$$Mc = 0.02 \times 2.5 \times 0.59 \times (1-0.1) \times (1-0) = 0.0266 \text{ г/c}$$
 $M\Gamma = 0.02 \times 25 \times 0.34 \times (1-0.1) \times (1-0) = 0.153 \text{ т/год}$

Выбросы оксида углерода

Расчет выбросов оксида углерода от теплогенератора (ист. 0022):

$$C_{co} = 2 \text{ x } 1 \text{ x } 19,26 = 38,52 \text{ кг/т}$$
 $Mc = 0,001 \text{ x } 38,52 \text{ x } 2,5 \text{ x } (1-7/100) = 0,0896 \text{ г/с}$
 $Mr = 0,001 \text{ x } 38,52 \text{ x } 25 \text{ x } (1-7/100) = 0,8956 \text{ т/год}$

Выбросы окислов азота

Расчет выбросов окислов азота от теплогенератора (ист. 0022):

$$M_{NOx} = 0.001 \text{ x } 2.5 \text{ x } 19.26 \text{ x } 0.18 \text{ x } (1-0) = 0.0087 \text{ г/с}$$
 $M_{NOx} = 0.001 \text{ x } 25 \text{ x } 19.26 \text{ x } 0.18 \text{ x } (1-0) = 0.0867 \text{ т/год}$

Расчет выбросов оксида азота:

$$M_{NO \text{ cek.}} = 0.13 \text{ x } 0.0087 = 0.0011$$

$$M_{\text{NO rog.}} = 0.13 \times 0.0867 = 0.0113$$

Расчет выбросов диоксида азота:

$$M_{NO2 \; cek.} = 0.8 \; x \; 0.0087 = 0.0070 \; r/c$$

$$M_{
m NO2\ rog}$$
 = 0,8 x 0,0867 = 0,0694 т/год

Результаты расчета выбросов загрязняющих веществ при сжигании топлива в теплогенераторах и котлах по предприятию в целом сведены в таблицу Б.8.

Таблица Б.8 - Результаты расчета выбросов загрязняющих веществ от теплогенераторов

№ ис т	Источник выделения вредных веществ	Едини цы измере ния	Расх од топл ива	Ap, %	f	η	SP, %	n's o	n" so	q 3	R	Qn	Cco	q 4	K no	b	Взвешен ные частицы	Пыль неорганиче ская: 70- 20% SiO2	SO_2	СО	NO_x	NO	NO ₂
1	2	3	4	5	6	7	8	9	10	1	1 2	13	14	1 5	16	1 7		18	19	20	21	22	23
	<u>Площадка №1</u>														<u>I</u>								
									K	Come	льн	ая для	произв	одсп	<i>ва</i>								
	Паровой г/с 500 1,9 0,00 0, 1 1 1 10,1 10,1 4 0, 19 0 котел на														0	0,7125	-	-	4,848	0,959 5	0,12 47	0,767 6	
00	котел на лузге	т/год	2980	1,9	0,00	0, 85	-	-	-	1	1	10,1	10,1	4	0, 19	0	4,2465	-	-	28,89 41	5,718 6	0,74 34	4,574 9
37	Паровой	г/с	126	21	0,00 23	0, 85	0,5 88	0, 1	0	2	1	19,6 78	39,3 56	7	0, 21	0		0,9129	1,333 6	4,611 7	0,520 7	0,06 77	0,416 6
	котел на угле	т/год	3760	15, 48	0,00 23	0, 85	0,3 44	0, 1	0	2	1	19,6 78	39,3 56	7	0, 21	0		20,0807	23,28 19	137,6 201	15,53 77	2,01 99	12,43 02
Ит	ого по ист.	г/с									0,7125	0,9129	1,333	9,459 7	1,480 2	0,19 24	1,184 2						
NI I	0037:	т/год															4,2465	20,0807	23,28 19	166,5 142	21,25 63	2,76 33	17,00 51
											П	лощад	ка №2						17	1.2	00		
										Pe	мон	тная м	астер	ская									
	Бытовой теплогене	г/с	2,5	21	0,00 11	0	0,5 9	0, 1	0	2	1	19,2 6	38,5 2	7	0, 18	0	-	0,0578	0,026 6	0,089 6	0,008 7	0,00 11	0,007
00	ратор на угле	т/год	25	18, 06	0,00 11	0	0,3 4	0, 1	0	2	1	19,2 6	38,5 2	7	0, 18	0	-	0,4967	0,153	0,895 6	0,086 7	0,01 13	0,069
22	Бытовой теплогене	г/с	2,5	1,9	0,00	0	-	-	- 1	1	1	17,0 9	17,0 9	4	0, 18	0	0,0238	-	-	0,041	0,007	0,00 10	0,006
	ратор на пеллетах	т/год	20	1,9	0,00 5	0	-	-	1	1	1	17,0 9	17,0 9	4	0, 18	0	0,1900	1	-	0,328 1	0,061 5	0,00 80	0,049
Ит	того по ист.									0,0238	0,0578	0,026 6	0,089 6		0,00 11	0,007							
	0022:	т/год															0,1900	0,4967	0,153	1,223		0,01	0,118

																			0	7		93	6
	АБК																						
00	Бытовой теплогене	г/с	2,5	21	0,00 11	0	0,5 9	0, 1	0	2	1	19,2 6	38,5 2	7	0, 18	0	-	0,0578	0,026 6	0,089 6	0,008 7	0,00 11	0,007
23	ратор на угле	т/год	15	18, 06	0,00 11	0	0,3 4	0, 1	0	2	1	19,2 6	38,5 2	7	0, 18	0	-	0,2980	0,091	0,537 4	0,052 0	0,00 68	0,041 6

Б.9 Расчет неорганизованных выбросов загрязняющих веществ от складов угля и золы (ист. 6052, 6042, 6043)

Площадка №1

Лузга подается напрямую в котел из маслопрессового цеха закрытым конвейером. Уголь для котла завозится автотранспортом непосредственно в помещение котельной, выгружается перед котлом в приемный бункер. Площадь хранения угля в помещении котельной 10 м². В целом запас угля хранится на действующем складе угля предприятия и доставляется в котельную непосредственно перед использованием. Выброс пыли неорганической: менее 20% SiO₂ происходит неорганизованно (ист. 6052).

Площадка №2

Ремонтная При хранении мастерская. пеллет загрязняющих веществ не происходит. Уголь для теплогенератора, ремонтной мастерской, установленного В a также теплогенератора, установленного в АБК, хранится в помещении закрытом с четырех сторон площадью 6 м². Всего на складе хранится 35 т угля. Выброс пыли происходит неорганизованно (ист. 6042). Зола от теплогенераторов, установленных в помещении ремонтной мастерской и в здании АБК, хранится в закрытом с четырех сторон контейнере с размерами 3 х 2 м. Данный склад служит для хранения золы от теплогенератора, установленного в ремонтной мастерской. Выброс пыли происходит неорганизованно (ист. 6043).

Максимально-разовый выброс загрязняющих веществ определяется /8/:

$$Q_{C} = A + B = \frac{k_{1} \times k_{2} \times k_{3} \times k_{4} \times k_{5} \times k_{7} \times G \times 10^{6} \times B'}{3600} + k_{3} \times k_{4} \times k_{5} \times k_{6} \times k_{7} \times q' \times F, \varepsilon/c$$

где А – выбросы при переработке (ссыпка, перевалка, перемещение) материала, г/с;

В – выбросы при статическом хранении материала;

k1 — весовая доля пылевой фракции в материале. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм /8/;

k2 – доля пыли (от всей массы пыли), переходящая в аэрозоль /8/;

k3 – коэффициент, учитывающий местные метеоусловия /8, табл. 2/;

k4 — коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования /8, табл. 3/;

k5 – коэффициент, учитывающий влажность материала /8, табл. 4/;

к6 - коэффициент, учитывающий профиль поверхности складируемого материала и

$$F_{\Phi AKT}$$

определяемый как соотношение F . Значение k6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения;

k7 – коэффициент, учитывающий крупность материала /8, табл. 5/;

Fфакт – фактическая поверхность материала с учетом рельефа его сечения (учитывать только площадь, на которой производятся погрузочно-разгрузочные работы);

F – поверхность пыления в плане, M^2 ;

q' – унос пыли с одного квадратного метра фактической поверхности в условиях /8, табл. 6/;

G – суммарное количество перерабатываемого материала, т/ч;

В' – коэффициент, учитывающий высоту пересыпки /8, табл. 7/;

Валовой выброс определяется:

$$Q_{\Gamma} = N \times Q_{C} \times t \times 3600 \times 10^{-6} \times \eta, m/cod$$

где

N – период хранения угля, золы.

 Q_{C} – максимально разовый выброс, г/с;

t – время хранения, ч.

В качестве примера приводим расчет выбросов пыли неорганической с содержанием SiO_2 ниже 20% от склада угля (ист. 6042).

- формирование:

A =
$$(0.03 \times 0.02 \times 1.0 \times 0.005 \times 0.01 \times 0.2 \times 5 \times 10^6 \times 0.7) / 3600 = 0.0000058 \text{ r/c}$$

- хранение:

$$B = 1.0 \times 0.005 \times 0.01 \times 1.4 \times 0.2 \times 0.005 \times 6 = 0.0000004 \, \text{r/c}$$

Максимально-разовый выброс:

$$Q_C = 0.0000058 + 0.0000004 = 0.0000062 \text{ r/c}$$

Валовой выброс пыли неорганической с содержанием SiO_2 ниже 20% равен:

$$Q_{\Gamma} = 204 \times 0,0000062 \times 24 \times 3600 \times 10^{-6} = 0,000109$$
 т/год

Расчет выбросов пыли неорганической с содержанием SiO_2 70-20% от склада золы (от сжигания угля) (ист. 6043):

- формирование:

A =
$$(0.06 \times 0.04 \times 1.0 \times 0.005 \times 0.8 \times 1.0 \times 0.001 \times 10^6 \times 0.7) / 3600 = 0.000002$$
 г/с

- хранение:

$$B = 1.0 \times 0.005 \times 0.8 \times 1.4 \times 1.0 \times 0.002 \times 4 = 0.000045 \text{ r/c}$$

Максимально-разовый выброс:

$$Q_C = 0.000002 + 0.000045 = 0.000047 \, \Gamma/c$$

Валовой выброс пыли неорганической с содержанием SiO_2 70-20% равен:

$$Q_{\Gamma} = 204 \times 0,000047 \times 24 \times 3600 \times 10^{-6} = 0,000828$$
 т/год

Расчет выбросов пыли неорганической с содержанием SiO_2 70-20% от склада золы (от сжигания пеллет) (ист. 6043):

- формирование:

A =
$$(0.06 \times 0.04 \times 1.0 \times 0.005 \times 0.8 \times 1.0 \times 0.001 \times 10^6 \times 0.7) / 3600 = 0.000002$$
 г/с

- хранение:

$$B = 1.0 \times 0.005 \times 0.8 \times 1.4 \times 1.0 \times 0.002 \times 2 = 0.000022 \text{ r/c}$$

Максимально-разовый выброс:

$$Q_C = 0.000002 + 0.000022 = 0.000024 \, \Gamma/c$$

Валовой выброс пыли неорганической с содержанием SiO_2 70-20% равен:

 $Q_{\Gamma} = 204 \times 0,000024 \times 24 \times 3600 \times 10^{-6} = 0,000423$ т/год

Исходные данные и результаты расчетов выбросов сведены в таблицу Б.9.

Таблица Б.9 - Результаты расчета выбросов загрязняющих веществ от складов угля и золы

Наимен. источника	<u>№</u> ист.	\mathbf{k}_1	\mathbf{k}_2	k ₃	к ₄	k ₅	k_6	k ₇	G, т/ч	B`	q`	F, m ²	Наименование загрязняющего вещества	Вы	бросы
													Бещеетви	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
<u>Площадка №1</u>															
	Котельная для производства Склад угля														
	Склад угля														
формиров	6052	0,03	0,02	1	0,005	0,01	-	0,2	10	0,7	-	-	Пыль неорганическая: менее 20% SiO2	0,000012	0.000410
хранение	0032	-	-	1	0,005	0,01	1,4	0,2	-	-	0,005	10	Пыль неорганическая: менее 20% SiO2	0,000001	0,000410
													Итого по ист. 6052:	0,000013	0,000410
									Площад	ка №2	1				
								Ремо	нтная л	мастер	ская				
									Склад	угля					
формиров	6042	0,03	0,02	1	0,005	0,01	-	0,2	5	0,7	-	-	Пыль неорганическая: менее 20% SiO2	0,0000058	0,000109
хранение	0042	1	-	1	0,005	0,01	1,4	0,2	-	-	0,005	6	Пыль неорганическая: менее 20% SiO2	0,0000004	0,000109
													Итого по ист. 6042:	0,0000062	0,000109

Окончание таблицы Б.9 - Результаты расчета выбросов загрязняющих веществ от складов угля и золы

Наимен. источника	№ ист.	\mathbf{k}_1	\mathbf{k}_2	k ₃	k_4	\mathbf{k}_{5}	k_6	k ₇	G, т/ч	B`	q`	F, m ²	Наименование загрязняющего вещества	Вь	пбросы
													вещества	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Склад золы															
формиров	6042	0,06	0,04	1	0,005	0,8	-	1	0,001	0,7	-	-	Пыль неорганическая:70- 20% SiO2	0,000002	0.00022
хранение 6043	1 0043	-	-	1	0,005	0,8	1,4	1	-	-	0,002	4	Пыль неорганическая: 70-20% SiO2	0,000045	0,000828
						Итого	пыли н	еорга	ническо	й:70-20)% двуо	киси кј	ремния по ист. 6043:	0,000047	0,000828
формиров	6043	0,06	0,04	1	0,005	0,8	-	1	0,001	0,7	-	-	Взвешенные частицы	0,000002	0,000423
хранение 60	0043	-	-	1	0,005	0,8	1,4	1	-	-	0,002	2	Взвешенные частицы	0,000022	0,000423
										Итог	о взвеш	енных	частиц по ист. 6043:	0,000024	0,000423

Б.10 Расчет выбросов загрязняющих веществ при работе металлообрабатывающих станков (ист. 6007, 6039, 6040)

Площадка №1.

Токарное отделение. В токарном отделении установлены следующие металлообрабатывающие станки: два токарных станка (время работы каждого -260 ч/год), продольно-фрезерный станок (время работы -260 ч/год), сверлильный станок (время работы -260 ч/год), отрезной станок (время работы -260 ч/год), заточной станок с диаметром абразивного круга d=250 мм (время работы -260 ч/год), пресс (время работы -260 ч/год). Выброс загрязняющих веществ происходит неорганизованно через проем ворот (ист. 6007).

Площадка №2

Ремонтная мастерская. Помещение гаража. В помещении гаража установлены следующие металлообрабатывающие станки: токарный (время работы -260 ч/год), сверлильный (время работы -260 ч/год), два заточных станка с диаметром абразивного круга d=200 мм (время работы каждого -260 ч/год). Выброс загрязняющих веществ на данном участке происходит неорганизованно через проем гаражных ворот на высоте 3,5 м (ист. 6039).

Ремонтная мастерская. Токарный цех. В токарном цехе расположены следующее металлообрабатывающее станки: станок для расточки коленвалов (время работы — 260 ч/год), токарный (время работы — 260 ч/год), сверлильный (время работы — 260 ч/год) и два заточных станка с диаметром абразивного круга d=200 мм (время работы каждого — 260 ч/год). Источник выброса неорганизованный. Выброс происходит через проем ворот на высоте 2,5 м (ист. 6040).

Валовой выброс для источников выделения не оборудованных местными отсосами /9/:

$$M_{\text{год}} = \frac{3600 \text{ x k x Q x T}}{10^6}$$
 , т/год

гле

 $k - \kappa оэффициент гравитационного оседания, <math>k = 0.2 / 9/;$

Q – удельный выброс пыли технологическим оборудованием, г/с /9/;

Т – фактический годовой фонд времени работы одной единицы оборудования, час;

Максимально разовый выброс для источников выделения не обеспеченных местными отсосами:

$$M_{cek} = k \times Q$$
, Γ/c

В качестве примера приводим расчёт выбросов загрязняющих веществ от токарного станка №1 (ист. 6007): Взвешенные частицы:

$$M_{\text{сек}} = 0.2 \text{ x } 0.0063 = 0.0013 \text{ г/c}$$
 $M_{\text{год}} = \underbrace{3600 \text{ x } 0.2 \text{ x } 0.0063 \text{ x } 260}_{10^6} = 0.0012 \text{ т/год}$

Результаты выбросов от металлообрабатывающих станков приведены в таблице Б.10.

Таблица Б.10 - Результаты расчёта выбросов загрязняющих веществ от металлообрабатывающих станков

Наименование	No							Выб	росы
станка	источ-	Загрязняющее	0 7/2	T,	1	N, кВт		г/с	т/год
1	ника 2	вещество 3	Q, Γ/c 4	ч 5	k,n 6	7	η 8	9	1/10д
1			⊥ a.№1		- C		Ü	,	10
Токарный станок №1		Взвешенные частицы	0,0063	260	0,2			0,0013	0,0012
Токарный станок №2		Взвешенные частицы	0,0063	260	0,2			0,0013	0,0012
Продольно- фрезерный станок	6007	Взвешенные частицы	0,0029	260	0,2			0,0006	0,0005
Сверлильный станок	6007	Взвешенные частицы	0,007	260	0,2			0,0014	0,0013
Отрезной станок		Взвешенные частицы	0,203	260	0,2			0,0406	0,0380
Заточной станок		Взвешенные частицы	0,016	260	0,2			0,0032	0,0030
d=250 мм		Пыль абразивная	0,011		0,2			0,0022	0,0021
Итого и	ет 6007			Пыл	ь абр	азивн	ая	0,0022	0,0021
111010 N				ешен	ные ч	іастиі	цы	0,0484	0,0452
	Pe	•	Помеще	гние го	граж	a		1	
Токарный станок		Взвешенные частицы	0,0063	260	0,2			0,0013	0,0012
Сверлильный станок		Взвешенные частицы	0,007	260	0,2			0,0014	0,0013
Заточной станок	6039	Взвешенные частицы	0,012	260	0,2			0,0024	0,0022
№1 d=200 мм		Пыль абразивная	0,008		0,2			0,0016	0,0015
Заточной станок №2 d=200 мм		Взвешенные частицы	0,012	260	0,2			0,0024	0,0022
JNYZ U-ZUU MM		Взвешенные частицы 0,0063 260 0,2 0,0013 0,0			0,0015				
Итого и	ст. 6039								0,0030
11101011	21,000)		Взв	ешен	ные ч	іастиі	ЦЫ	0,0075	0,0069

Окончание таблицы Б.10 - Результаты расчёта выбросов загрязняющих веществ от металлообрабатывающих станков

<u> </u>		1 '	1						
Наименование	№							Выб	росы
станка	источ-	Загрязняющее		Τ,		N,			
Станка	ника	вещество	Q, Γ/c	Ч	k,n	кВт	η	Γ/c	т/год
1	2	3	4	5	6	7	8	9	10
		Токарны	й цех	•	•	•			
Расточной		Взвешенные	0.0021	260	0.2			0.0004	0.0004
станок		частицы	0,0021	260	0,2			0,0004	0,0004
Towardy		Взвешенные	0,0063	260	0,2			0,0013	0,0012
Токарный станок		частицы	0,0003	260	0,2			0,0013	0,0012
Сверлильный		Взвешенные	0.007	260	0.2			0,0014	0,0013
станок		частицы	0,007	260	0,2			0,0014	0,0013
n v	6040	Взвешенные	0,012		0,2			0,0024	0,0022
Заточной станок		частицы	0,012	260	0,2			0,0024	0,0022
№1 d=200 мм		Пыль абразивная	0,008		0,2			0,0016	0,0015
2		Взвешенные	0.012		0.2			0.0024	0.0022
Заточной станок		частицы	0,012	260	0,2			0,0024	0,0022
№2 d=200 мм		Пыль абразивная	0,008		0,2			0,0016	0,0015
II	(040		•	Пыл	ь абр	азивн	ая	0,0032	0,0030
Итого и	CT. 0040		Взв	ешен	ные ч	настиі	ĮЫ	0,0079	0,0073

Б.11 Расчет выбросов загрязняющих веществ в процессе проведения электросварочных работ (ист. 6039)

Площадка №2

Ремонтная мастерская. Помещение гаража. Для выполнения ремонтных работ в помещении гаража установлены аппараты электросварки и газовой резки. При электросварке используются электроды марки МР-4. Годовой расход электродов МР 4 – 100 кг. Выброс загрязняющих веществ на данном участке происходит неорганизованно через проем гаражных ворот на высоте 3,5 м (ист. 6039).

Валовое количество загрязняющих веществ выбрасываемых в атмосферу в процессе сварки определяют по формуле /2/:

$$M_{\text{год}} = \underline{B}_{\underline{\text{год}}} \, \underline{x} \, \underline{K}^{\underline{x}}_{\underline{m}} \, \underline{x} \, (1 - \underline{\eta}), \, \, \text{т/год}$$

гле:

 $B_{\text{год}}$ – расход применяемого сырья и материалов, кг/год;

 K_{m}^{x} - удельный показатель выброса загрязняющего вещества «х» на единицу массы расходуемых материалов, г/кг /2/;

 η — степень очистки воздуха в соответствующем аппарате, которым снабжается группа технологических агрегатов.

Максимально разовый выброс загрязняющих веществ, выбрасываемых в атмосферу в процессах сварки, определяют по формуле /2/:

$$M_{cek} = \frac{K_{m}^{x} \underline{x} \underline{B}_{\underline{uac}}}{3600} x (1 - \eta), \ r/c$$

гле:

 $\underline{B}_{\text{час}}$ - фактический максимальный расход применяемых сырья и материалов, с учётом дискретности работы оборудования, кг/час.

В качестве примера приводим расчет выбросов железо (II) оксида от сварочного аппарата при использовании электродов MP-4 (ист. 6039):

$$M_{cek} = \frac{9.9 \times 0.1}{3600} x (1-0) = 0.00028 \text{ g/c}$$

$${
m M}_{
m rog}=\ {100,0\ x\ 9,9\over 10^6}\ {
m x\ (1-0)}=0{,}00099{
m \ T/год}$$

Удельные выделения и результаты расчета приведены в таблице Б.11.

Таблица Б.11 - Результаты расчета выделения загрязняющих веществ при электросварочных

работах

puoon				Наименован	ние загрязняющих коды	х веществ и их
№ ист	Тип элек- трода	Расход электродов, кг	Ед. измерения	железо (II) оксид (0123)	марганец и его соединения (0143)	фтористые газообразные соединения (0342)
1	2	3	4	5	6	7
		У	ДЕЛЬНЫЕ І	выделения		
	MP-4		г/кг	9,9	1,1	0,4
		В	ЫБРОСЫ В А	АТМОСФЕРУ		
			<u>Площа</u>	цка №2		
	·	Ремонтна	я мастерска	я. Помещение	гаража	
6039	MP-4	0,1	г/с	0,00028	0,00003	0,00001
0039	IVII -4	100,0	т/год	0,00099	0,00011	0,00004

Б.12 Расчеты выбросов загрязняющих веществ при газовой резке металлов (ист. 6039)

Площадка №2

Ремонтная мастерская. Помещение гаража. Для выполнения ремонтных работ в помещении гаража имеются аппараты газовой резки. На газовую резку в год расходуется 10 баллонов, что составляет 210 кг пропана. Выброс загрязняющих веществ на данном участке происходит неорганизованно через проем гаражных ворот на высоте 3,5 м (ист. 6039).

Количество загрязняющих веществ, выбрасываемых в воздушный бассейн при резке металлов, определяют на длину реза (г/м).

Количество образующихся при газовой резке пыли и газов принято характеризовать удельными выделениями, отнесенными к 1 м разрезаемого материала. На 100 м разрезаемой углеродистой стали толщиной 10 мм в среднем расходуется один баллон пропана. В один баллон заправляется 21 кг пропана.

Валовой выброс на длину реза определяется /2/:

$$M_{\text{год}} = \frac{K_{\delta}^{\ x} \ x \ L_{\text{год}}}{10^6} \, x \, (1 - \eta), \, \text{т/год}$$

гле:

 $K_{\delta}^{\ x}$ - удельный показатель выброса загрязняющих веществ «х» на длину реза, при толщине разрезаемого металла δ , г/м /2/;

 $L_{\text{тод}}$ - длина реза, м/год.

 η - степень очистки воздуха газоочистным оборудованием (в долях единицы), $\eta = 0$. Максимально разовый выброс на длину реза определяется:

$$M_{\text{cek}} = \frac{K_{\delta}^{x} \times L_{\text{uac}}}{3600} \times (1 - \eta), \, \Gamma/c$$

где

 $L_{\text{час}}$ – длина реза, м/час.

В качестве примера приводим расчет выбросов загрязняющих веществ при газовой резке углеродистой стали толщиной 10 мм (ист. 6039):

Железо (II) оксид:
$$M_{\text{сек}} = \underline{4,44 \times 0,4}_{\text{х}} \times (1-0) = 0,00049 \text{ г/с}$$

$$3600$$

$$M_{\text{год}} = \underline{4,44 \times 1000}_{\text{10}^6} \times (1-0) = 0,00444 \text{ т/год}$$

Марганец и его соединения:
$$M_{\text{сек}} = \underbrace{0,06 \text{ x } 0,4}_{3600} \text{ x } (1-0) = 0,00001 \text{ г/c}$$

$${
m M}_{
m rog}={0.06~{
m x}~1000\over 10^6}~{
m x}~(1-0)=0.00006~{
m T/год}$$

Диоксид азота:
$$M_{\text{сек}} = \underbrace{2,2 \text{ x } 0,4}_{3600} \text{ x } (1-0) = 0,00024 \text{ г/c}$$

$$3600$$

$$M_{\text{год}} = \underbrace{2,2 \text{ x } 1000}_{10^6} \text{ x } (1-0) = 0,00220 \text{ т/год}$$

Оксид углерода:
$$M_{\text{сек}} = \underbrace{2,18 \times 0,4}_{3600} \times (1-0) = 0,00024 \text{ г/с}$$

$$3600$$

$$M_{\text{год}} = \underbrace{2,18 \times 1000}_{10^6} \times (1-0) = 0,00218 \text{ т/год}$$

Удельные выделения и результаты расчета приведены в таблице Б.12.

Таблица Б.12 - Годовые и секундные выбросы загрязняющих веществ при газовой резке

№ ист.	Вид	Длина	Ед.		Выделяемые	вредности	
	исполь-	резки	изме-	железо (II)	марганец	диоксид	оксид
	зуемого	металла,	рения	оксид	и его	азота	углерода
	газа	M		(0123)	соеди-	(0301)	(0337)
					нения		
					(0143)		
1	2	3	4	5	6	7	8
		•	УДЕЛЬНЫ	Е ВЫДЕЛЕН	Р КИ		
	пропан		Γ/M	4,44	0,06	2,2	2,18
		Е	ВЫБРОСЫ	В АТМОСФЕ	ЕРУ		
			Плог	цадка №2			
		Ремонтн	ая мастер	ская. Помеще	ение гаража		
	Γ	азорезка (рас	ход пропан	на 210 кг/год и	или 10 баллон	юв)	
6039	пропон	0,4	г/с	0,00049	0,00001	0,00024	0,00024
0039	пропан	1000	т/год	0,00444	0,00006	0,00220	0,00218

Б.13 выбросов Расчет загрязняющих веществ $\mathbf{0T}$ деревообрабатывающих станков (ист. 6006)

Площадка №1

Столярное отделение. В столярном отделении установлены два деревообрабатывающих станка: строгальный станок (время работы – 292 ч/год); циркулярная пила (время работы – 292 ч/год). Выброс происходит неорганизованно через оконные и дверные проёмы (ист. 6006).

Для источников выбросов, не оборудованных системой местных отсосов, количество пыли, поступающей в атмосферу, определяется по формулам /15/:

Максимально выброс древесной разовый ПЫЛИ OT деревообрабатывающих станков:

$$M_{cek} = k \times Q, \Gamma/c$$

Валовой выброс древесной пыли от деревообрабатывающих станков: $M_{\text{год}} = \underline{k \ x \ Q \ x \ T \ x \ 3600}, \, \text{т/год}$

$$M_{\text{год}} = \underline{k \times Q \times T \times 3600}, \text{ т/год}$$

гле:

k – коэффициент гравитационного оседания пыли, для древесной пыли k = 0.2;

Q – удельный показатель пылеобразования на единицу оборудования, г/с /15/;

Т – фактический годовой фонд работы одной единицы оборудования, ч.

В качестве примера приводим расчёт выброса древесной пыли от строгального станка (ист. 6006):

$$M_{\text{год}} = \frac{0.2 \times 0.81 \times 292 \times 3600}{10^6} = 0.1703 \text{ т/год}$$
 $M_{\text{сек}} = 0.2 \times 0.81 = 0.1620 \text{ г/с}$

Расчёт выброса древесной пыли от циркулярной пилы (ист. 6006):

$$M_{\text{год}} = \ \underline{0.2 \times 0.59 \times 292 \times 3600} = 0.1240 \text{ т/год}$$

$$M_{cek} = 0.2 \times 0.59 = 0.1180 \text{ g/c}$$

Удельные выделения и результаты расчёта выбросов загрязняющих веществ от деревообрабатывающих станков приведены в таблице Б.13.

Таблица Б.13 - Выбросы от деревообрабатывающих станков

	HER BITE BETEPOTET OF	<u>` </u>	1				
№ ист.	Наименование станков	К, Кэф	Удельные выделения, г/с	Число часов работы в год, ч	η	Выбросы,	Выбросы, т/год
1	2	3	4	5	6	7	8
		Плог	цадка №1				
		Столярн	ое отделени	e			
6006	Строгальный станок	0,2	0,81	292		0,1620	0,1703
0000	Циркулярная пила	0,2	0,59	292		0,1180	0,1240
		•	Итого	по ист.60	06:	0,2800	0,2943

Б.14 Расчет выбросов вредных веществ, при использовании инертных материалов (ист. 6008)

Площадка №1

Цементные работы. Для строительных и ремонтных нужд предприятия на площадке возле маслоцеха № 1 установлена бетономешалка. Загрузка производится вручную. В процессе ремонтных работ применяется цемент – 26 т/год, щебень – 65 т/год, песок – 65 т/год. Выброс пыли осуществляется неорганизованно непосредственно в атмосферу (ист. 6008).

Максимально-разовый объем пылевыделений при погрузочно-разгрузочных работах рассчитывается по формуле /8/:

Мсек =
$$\underline{k_1} \times \underline{k_2} \times \underline{k_3} \times \underline{k_4} \times \underline{k_5} \times \underline{k_7} \times \underline{k_8} \times \underline{k_9} \times \underline{B'} \times \underline{G} \times \underline{4} \times \underline{10^6} (1-\eta)$$
, г/с 3600

А валовый выброс по формуле /8/:

Мгод =
$$k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G$$
 год $\times (1-\eta)$, $\times \pi$

где

k1 — весовая доля пылевой фракции в материале. (таблица 3.1.1) /8/. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

 k_2 - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1 1 /8/). Проверка фактического дисперсного состава пыли и уточнение значения кг производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки отбора пробы;

 k_3 - коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 /8/;

 k_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1 .3 /8/);

 k_5 - коэффициент, учитывающий влажность материала (таблица 3.1.4) /8/. Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d \leq 1 мм);

k₇ - коэффициент, учитывающий крупность материала (таблица 3.1.5) /8/;

 k_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6) /8/. При использовании иных типов перегрузочных устройств k_8 =1;

 k_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k_9 =0,2 при единовременном сбросе материала весом до 10 т, и k_9 =0,1 - свыше 10 т. В остальных случаях k_9 =1 /8/;

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1/7) /8/;

Gчас - производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gгод - суммарное количество перерабатываемого материала в течение года, т/год;

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8) /8/.

Расчет выбросов пыли неорганической: 70-20% двуокиси кремния

при засыпке цемента в бетономешалку (ист. 6008):

Мсек = $(0.04 \times 0.03 \times 1.2 \times 1.0 \times 0.8 \times 0.8 \times 1.0 \times 0.2 \times 0.6 \times 0.02 \times 10^6 \times (1-0))/3600 = 0.000614$ г/сек

Мгод = 0,04 x 0,03 x 1,2 x 1,0 x 0,8 x 0,8 x 1,0 x 0,2 x 0,6 x 26 x (1-0) = 0,002875 т/год

Расчет выбросов пыли неорганической: 70-20% двуокиси кремния при засыпке песка в бетономешалку (ист. 6008):

Мсек = $(0.05 \times 0.03 \times 1.2 \times 1.0 \times 0.4 \times 0.8 \times 1.0 \times 0.2 \times 0.6 \times 0.02 \times 10^6 \times (1-0))/3600 = 0.000384$ г/сек

Мгод = 0,05 x 0,03 x 1,2 x 1,0 x 0,4 x 0,8 x 1,0 x 0,2 x 0,6 x 65 x (1-0) = 0,004493 т/год

Расчет выбросов пыли неорганической: 70-20% двуокиси кремния при засыпке щебня в бетономешалку (ист. 6008):

Мсек = $(0.03 \times 0.015 \times 1.2 \times 1.0 \times 0.4 \times 0.5 \times 1.0 \times 0.2 \times 0.6 \times 0.02 \times 10^6 \times (1-0))/3600 = 0.000072$ г/сек

Мгод = 0,03 x 0,015 x 1,2 x 1,0 x 0,4 x 0,5 x 1,0 x 0,2 x 0,6 x 65 x (1-0) = 0,000842 т/год

Результаты расчета выбросов пыли неорганической с содержанием SiO_2 70-20 % при загрузке инертных материалов в бетономешалку (ист. 6008) представлено в таблице Б.14.

Таблица Б.14 - Результаты расчета выбросов от засыпки материалов в бетономешалки

Наимен. источника	№ ист.	k ₁	\mathbf{k}_2	k ₃	\mathbf{k}_4	k ₅	k ₇	\mathbf{k}_8	k_9	В`	$G_{ ext{\tiny час}}$	Gгод	Наименование загрязняющего вещества		росы			
														г/с	т/год			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
								Площа	<u>дка №1</u>									
Бетонные работы																		
Цемент		0,04	0,03	1,2	1,000	0,8	0,8	1	0,2	0,6	0,02	26	Пыль неорганическая с содержанием двуокиси кремния 70-20% Пыль неорганическая с	0,000614	0,002875			
Песок	6008	0,05	0,03	1,2	1,000	0,4	0,8	1	0,2	0,6	0,02	65,0	содержанием двуокиси кремния 70-20%	0,000384	0,004493			
Щебень		0,03	0,015	1,2	1,000	0,4	0,5	1	0,2	0,6	0,02	65,0	Пыль неорганическая с содержанием двуокиси кремния 70-20%	0,000072 0,00084				
													Итого по ист.6008:	0,001070	0,008210			

Б.10 Расчет неорганизованных выбросов загрязняющих веществ от складов инертных материалов (ист. 6009)

<u>Площадка №1</u>

Цементные работы. Инертные материалы (песок и щебень), необходимые для приготовления раствора, хранятся на складе. Цемент хранится в мешках, выделение загрязняющих веществ при этом не происходит. Склад песка и щебня находятся на специальной забетонированной площадке открытой с четырех сторон общим размером 10 м² (по 5 м² для одного вида строительного материала). Всего через склад проходит 65 т/год песка и 65 т/год щебня. Источник выброса неорганизованный (ист. 6009).

Максимально-разовый объем пылевыделений при погрузочноразгрузочных работах рассчитывается по формуле /8/:

$$M_{\text{сек}} = \underline{k_1} \times \underline{k_2} \times \underline{k_3} \times \underline{k_4} \times \underline{k_5} \times \underline{k_7} \times \underline{k_8} \times \underline{k_9} \times \underline{B'} \times \underline{G} \text{ час } \times \underline{10^6} \text{ (1-η)}, \ \Gamma/c$$

А валовый выброс по формуле /8/:

$$M_{\text{год}} = k_1 \times k_2 \times k_3 \times k_4 \times k_5 \times k_7 \times k_8 \times k_9 \times B' \times G \text{ год x (1- η), т/год$$

где

 k_1 — весовая доля пылевой фракции в материале. (таблица 3.1.1) /8/. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;

 k_2 - доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1 1 /8/). Проверка фактического дисперсного состава пыли и уточнение значения кг производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки отбора пробы;

 k_3 - коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 /8/;

 k_4 - коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1 .3 /8/);

 k_5 - коэффициент, учитывающий влажность материала (таблица 3.1.4) /8/. Под влажностью понимается влажность его пылевой и мелкозернистой фракции (d \leq 1 мм);

 k_7 - коэффициент, учитывающий крупность материала (таблица 3.1.5) /8/;

 k_8 - поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6) /8/. При использовании иных типов перегрузочных устройств k_8 =1;

 k_9 - поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k_9 =0,2 при единовременном сбросе материала весом до 10 т, и k_9 =0,1 - свыше 10 т. В остальных случаях k_9 =1 /8/;

В' - коэффициент, учитывающий высоту пересыпки (таблица 3.1/7) /8/;

Gчас - производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gгод - суммарное количество перерабатываемого материала в течение года, т/год; η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8) /8/.

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле /8/:

$$M_{cek} = k_3 \times k_4 \times k_5 \times k_6 \times k_7 \times q \times S$$
, Γ/c

где

 k_6 - коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: $\underline{S}_{\phi akT}$

?

гле:

 $S_{\phi a \kappa T}$ - фактическая поверхность материала с учетом рельефа его сечения, м 2 ;

S - поверхность пыления в плане, M^2 ;

Значение k_6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения /8/;

q' - унос пыли с одного квадратного метра фактической поверхности, r/m^2xc , в условиях когда k_3 =1; k_5 =1 (таблица 3.1.1) /8/;

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле /8/:

$$M_{\rm rog}$$
 = 0,0864 x k_3 x k_4 x k_5 x k_6 x k_7 x q x S x [365-($T_{\rm cn}$ + $T_{\rm g}$))] x (1- η),т/год

где

Тсп - количество дней с устойчивым снежным покровом, 142 дня;

Тд - количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\mathcal{I}} = \frac{2 * T_{\underline{\pi}}^{\mathbf{I}}}{24}$$
, дней

где $T^{\pi}_{\ \pi}$ - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам) = 430 часов.

Максимальное количество пыли поступающее в атмосферу со склада определяется по формуле /8/:

$$M_{ce\kappa} = M_{ce\kappa}^n + M_{ce\kappa}^{co}, \epsilon/ce\kappa$$

где

 $M_{\it cek}^{\it n}$ - максимальный разовый выброс при погрузке и разгрузке соответственно, рассчитывается по формуле 3.1.1/8/.

 $M_{\it cek}^{\it co}$,- максимальный разовый выброс при сдувании с поверхности, по формуле 3.2.3 /8/.

Валовые выбросы твердых частиц в атмосферу определяются как сумма выбросов при разгрузке материала, при сдувании с пылящей поверхности и отгрузке материала /8/:

$$M_{\text{год}} = M^{\text{p}}_{\text{год}} + M^{\text{n}}_{\text{год}} + M^{\text{сд}}_{\text{год}},$$
т/год

 M^{p}_{rog} и M^{n}_{rog} - количество твердых частиц, выделяющихся при разгрузке и погрузке материала, соответственно, т/год, рассчитывается по формуле 3.1.2 /8/;

 ${
m M}^{
m ca}_{
m rog}$ - количество твердых частиц, сдуваемых с поверхности, т/год, рассчитывается по формуле 3.2.5 /8/.

В качестве примера приводим расчет выбросов загрязняющих веществ от склада песка:

При погрузочно-разгрузочных работах:

Расчет выбросов пыли неорганической с содержанием двуокиси кремния 70-20% от склада песка (ист. 6009):

 $M_{cek} = (0.05 \times 0.03 \times 1.2 \times 1.0 \times 0.4 \times 0.8 \times 1 \times 0.2 \times 0.7 \times 0.1 \times 10^6)/3600 = 0.00224 \text{ r/c}$

 ${
m M}_{
m rog} = 0{,}05$ x 0,03 x 1,2 x 1,0 x 0,4 x 0,8 x 1 x 0,2 x 0,7 x 65 x 2 = 0,010483 т/год

С поверхности склада:

Приводим расчет выбросов пыли неорганической с содержанием двуокиси кремния 70-20% от склада песка (ист. 6009):

$$M_{cex} = 1.2 \text{ x } 1.0 \text{ x } 0.4 \text{ x } 1.4 \text{ x } 0.8 \text{ x } 0.002 \text{ x } 5 = 0.005376 \text{ r/c}$$

 $M_{rog} = 0.0864 \text{ x } 1.2 \text{ x } 1.0 \text{ x } 0.4 \text{ x } 1.4 \text{ x } 0.8 \text{ x } 0.002 \text{ x } 5 \text{ x } [365-(142 + 35.83)] = 0.086938$ т/год

Максимальное количество пыли поступающее в атмосферу со склада составляет:

$$M_{\text{сек}} = 0.00224 + 0.005376 = 0.007616 \text{ г/сек}$$

Валовые выбросы твердых частиц в атмосферу составляют:

$$M_{\text{год}} = 0.010483 + 0.086938 = 0.097421$$
 т/год

Результаты расчета выбросов от складов песка и щебня представлены в таблице Б.15.

Таблица Б.15 - Результаты расчета выбросов от складов инертных материалов

Наимен. источника	№ ист.	\mathbf{k}_1	k_2	k ₃	k_4	k ₅	k ₆	k ₇	k_8	k ₉	B`	G_{qa}	Gro Д	q`	S, M ²	Наименование загрязняющего	Вы	бросы
																вещества	г/с	т/год
1	2	3	4	5	6	7	8	9	1 0	11	12	13	14	15	16	17	18	19
												ка №1						
									Бе	етон	ное о	тделе	ние					
										Cı	слад г	іеска						
формир	6009	0,05	0,03	1, 2	1,00 0	0, 4	-	0, 8	1	0, 2	0, 7	0,1	65	-	-	Пыль неорганическая с содержанием двуокиси кремния 70-20%	0,002240	0,010483
хранение	- 6009	-	-	1, 2	1,00	0, 4	1, 4	0, 8			-	-		0,00	5	Пыль неорганическая с содержанием двуокиси кремния 70-20%	0,005376	0,086938
																0,007616	0,097421	
	Склад щебня																	
формир	6009	0,03	0,01	1, 2	1,00	0, 4	-	0, 5	1	0, 2	0, 7	0,1	65	1	1	Пыль неорганическая с содержанием двуокиси кремния 70-20%	0,00042	0,001966
хранение	7 0009	-	-	1, 2	1,00	0, 4	1, 6	0, 5			-	-		0,00	5	Пыль неорганическая с содержанием двуокиси кремния 70-20%	0,00384	0,062099
		_			_							_	_				0,00426	0,064065
																Итого по ист.6009:	0,01187 6000	0,16148600

Б.16 выбросов Расчет загрязняющих веществ $\mathbf{0T}$ теплогенераторов зерносушилки на дизельном топливе (ист. 0007, 0008)

Площадка №1

Цех сушки. Сушка производится при помощи двух теплогенераторов. В них установлены горелки, работающие на дизтопливе. Общий годовой расход дизельного топлива для теплогенераторов составляет 120 т/год (по 50 т/год на один теплогенератор). Источники выброса организованные, выделение загрязняющих веществ происходит через трубы диаметром 0,3 м на высоте 8 м (ист. 0007, 0008).

В качестве примера приводим расчет выбросов от теплогенератора на дизельном топливе (ист. 0007):

Выбросы твердых веществ (летучая зола и недогоревшее топливо) определяется по формуле /11/:

$$M_{ms} = B \times A^P \times f \times (1 - \eta_3), \varepsilon/c, m/cod$$

B – расход топлива, г/с, т/год; где:

 A^{P} – зольность сжигаемого топлива, A = 0.025 %;

f – коэффициент, характеризующий тип топки и вид топлива, f=0,01 /11/,

 η — доля твердых частиц, улавливаемых в золоуловителе, $\eta = 0$;

Расчет выбросов сажи от теплогенератора при сжигании дизельного топлива (ист. 0007):

$$M_{\scriptscriptstyle TB}$$
 = 8,0 x 0,025 x 0,01 x (1-0) = 0,0020 г/с $M_{\scriptscriptstyle TB}$ = 60 x 0,025 x 0,01 x (1-0) = 0,0150 т/год

Выбросы оксидов серы, в пересчете на диоксид серы, определяем по формуле /1/:

Mso =
$$0.02 \times B \times S^P \times (1-n'_{so}) \times (1-n''_{so}), \Gamma/c, T/год,$$

где n'_{so} – доля окислов серы, связываемых летучей золой топлива, для диз.топлива $n'_{so} = 0.02/11/;$

 $n''_{so} = 0$ — доля окислов серы, улавливаемых в газоуловителе; S^P — содержание серы в топливе, %. (Приложение 2.1 /11/).

Расчет выбросов диоксида серы от теплогенератора при сжигании дизельного топлива (ист. 0007):

$$Mc = 0.02 \times 8.0 \times 0.3 \times (1-0.02) \times (1-0) = 0.0470 \text{ г/c}$$
 $M\Gamma = 0.02 \times 60 \times 0.3 \times (1-0.02) \times (1-0) = 0.3528 \text{ т/год}$

Количество оксида углерода, выбрасываемого в атмосферу (г/с, т/год) при сжигании жидкого и твердого топлива рассчитывают по формуле /11/:

$$Mco = 0.001 x C_{co} x B x (1-q^4/100), г/c, т/год$$

где: C_{co} – выход окиси углерода при сжигании топлива, кг на тонну топлива; q4 – потери тепла вследствие механической неполноты сгорания топлива q4=0 /11/.

$$C_{co} = q^3 x R x QH,$$

где: q^3 — потери тепла вследствие химической неполноты сгорания топлива $q^3 = 0.5 / 11/;$

R — коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива, обусловленную наличием в продуктах неполного сгорания оксида углерода, для дизельного топлива R = 0.65 / 11/;

Qн – теплота сгорания натурального топлива, МДж/кг (табл. 6.5).

Расчет выбросов <u>оксида углерода</u> от теплогенератора при сжигании дизельного топлива (ист. 0007):

$$C_{co} = 0.5 \times 0.65 \times 42,75 = 13,8938 \text{ kg/t}$$

$$Mc = 0.001 \text{ x } 13.8938 \text{ x } 8.0 \text{ x } (1 - 0/100) = 0.1112 \text{ г/c}$$
 $Mr = 0.001 \text{ x } 13.8938 \text{ x } 60 \text{ x } (1 - 0/100) = 0.8336 \text{ т/год}$

Количество окислов азота, выбрасываемых в атмосферу (т/год, г/с), рассчитывают по формуле /11/:

$$M_{NOx} = 0.001 \text{ x B x QH x } K_{NOx} \text{ x (1-b)},$$

где Qн – теплота сгорания натурального топлива, МДж/кг;

Кпо — параметр, характеризующий количество окислов азота в кг, образующихся на один Γ Дж тепла, принимается по рис.2.1 /11/;

b – коэффициент, учитывающий степень снижения выбросов окислов азота в результате применения технических средств. Для котла b=0.

Согласно «Методики определения нормативов эмиссий В окружающую среду» /7, п.1.21/, при расчете загрязнения атмосферы и определении выбросов для всех видов технологических процессов и транспортных средств следует учитывать полную или частичную трансформацию поступающих в атмосферу окислов азота. Для этого установленное по расчету или инструментальными замерами количество выбросов окислов азота (M_{NOx}) в пересчете на NO_2 разделяется на составляющие оксид азота (NO) и диоксид азота (NO₂). Коэффициенты трансформации от NO_x принимаются на уровне максимальной установленной трансформации, т.е. $0.8 - для NO_2$ и 0.13 - для NO. Тогда раздельные выбросы будут определяться по формулам:

$$M_{NO2 \text{ сек.}} = 0.8 \text{ x } M_{NOx \text{ сек.}}, M_{NO2 \text{ год.}} = 0.8 \text{ x } M_{NOx \text{ год.}},$$

$$M_{NO \text{ cek.}} = 0.13 \text{ x } M_{NO \text{ cek.}}, M_{NO \text{ год.}} = 0.13 \text{ x } M_{NO \text{ год.}}$$

Расчет выбросов <u>окислов азота</u> от теплогенератора при сжигании дизельного топлива (ист. 0007):

$$M_{NOx} = 0.001 \text{ x } 8.0 \text{ x } 42.75 \text{ x } 0.08 \text{ x } (1-0) = 0.0274 \text{ r/c}$$

$$M_{NOx} = 0.001 \text{ x } 60 \text{ x } 42.75 \text{ x } 0.08 \text{ x } (1-0) = 0.2052 \text{ т/год.}$$

Расчет выбросов оксида азота:

$$M_{NO \text{ cek.}} = 0.13 \times 0.0274 = 0.0036$$

$$M_{\text{NO rog.}} = 0.13 \times 0.2052 = 0.0267.$$

Расчет выбросов диоксида азота:

$$M_{NO2 \text{ cek.}} = 0.8 \text{ x } 0.0274 = 0.0219 \text{ g/c}$$

$$M_{NO2 \text{ год}} = 0.8 \text{ x } 0.2052 = 0.1642 \text{ т/год.}$$

Расчет выбросов от второго теплогенератора на дизельном топливе (ист. 0008) идентичен.

Результаты расчета выбросов загрязняющих веществ от теплогенераторов зерносушилки, работающих на дизельном топливе (ист. 0007, 0008) сведены в таблицу Б.16.

Таблица Б.16 - Результаты расчета выбросов от теплогенератора (зерносушилки) на диз. топливе

№ ист	Источник выделения вредных веществ	Единицы измерения	Расход топлива	Ap, %	f	η	SP, %	n'so	n"so	q3
1	2	3	4	5	6	7	8	9	10	11
			<u>II</u>	лощадка №1	•					
				Цех сушки						
0007	200110011111111111	г/с	8	0,025	0,01	0	0,3	0,02	0	0,5
0007	Зерносушилка	т/год	60	0,025	0,01	0	0,3	0,02	0	0,5
0008	200110011111111111	г/с	8	0,025	0,01	0	0,3	0,02	0	0,5
0008	Зерносушилка	т/год	60	0,025	0,01	0	0,3	0,02	0	0,5

Окончание таблицы Б.16 - Результаты расчета выбросов от теплогенератора (зерносушилки) на диз. топливе

						1 \ 1	, , , ,				
R	Qn	Cco	q4	Kno	b	C	SO_2	СО	NO _x	NO	NO_2
12	13	14	15	16	17	18	19	20	21	22	23
						-					
0,65	42,75	13,8938	0	0,08	0	0,0020	0,0470	0,1112	0,0274	0,0036	0,0219
0,65	42,75	13,8938	0	0,08	0	0,0150	0,3528	0,8336	0,2052	0,0267	0,1642
0,65	42,75	13,8938	0	0,08	0	0,0020	0,0470	0,1112	0,0274	0,0036	0,0219
0,65	42,75	13,8938	0	0,08	0	0,0150	0,3528	0,8336	0,2052	0,0267	0,1642

Б.17 Расчет выброса вредных веществ от складов сельхозпродукции (ист. 6014, 6018, 6019, 6020, 6025, 6026, 6034, 6035, 6036)

Площадка №1

Склад подсолнечника № 1. С цеха сушки после предварительной очистки подсолнечник поступает на склад №1 для временного хранения, далее подсолнечник отправляется на сушку в цех сушки. На хранение поступает до 4000 т подсолнечника в год. Склад расположен в закрытом с четырех сторон помещении площадью 385 м². Источник выброса неорганизованный (ист. 6014).

Склад подсолнечника № 2. С цеха сушки после предварительной очистки подсолнечник поступает на склад №2 для временного хранения, далее подсолнечник отправляется на сушку в цех сушки. На хранение поступает до 1600 т семян подсолнечника в год. Склад расположен в закрытом с четырех сторон помещении общей площадью 385 м^2 . Источник выброса неорганизованный (ист. 6018).

Склад подсолнечника № 3. Склад расположен в закрытом с четырех сторон помещении общей площадью 348 м². На хранение поступает до 1600 т семян подсолнечника в год. В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источник выброса неорганизованный (ист. 6019).

Склад подсолнечника № 4. Склад расположен в закрытом с четырех сторон помещении общей площадью 587 м². На хранение поступает до 1600 т семян подсолнечника в год. Источник выброса неорганизованный (ист. 6020).

Склад подсолнечника № 5. Склад расположен в закрытом с четырех сторон помещении общей площадью 521 м². На хранение поступает до 1600 т семян подсолнечника в год. Источник выброса неорганизованный (ист. 6025).

Склад подсолнечника № 6. Склад расположен в закрытом с четырех сторон помещении общей площадью 393 м². На хранение поступает до 1600 т семян подсолнечника в год. Источник выброса неорганизованный (ист. 6026).

Склад подсолнечника № 7. Склад расположен в закрытом с четырех сторон помещении общей площадью 912 м². На хранение поступает до 1600 т семян подсолнечника в год. Источник выброса неорганизованный (ист. 6034).

Склад подсолнечника № 8. Склад расположен в закрытом с четырех сторон помещении общей площадью 879 м². На хранение поступает до 1600 т семян подсолнечника в год. Источник выброса неорганизованный (ист. 6035).

Склад подсолнечника №9. Склад расположен в закрытом с четырех сторон помещении общей площадью 1001 м². На хранение поступает до

1600 т семян подсолнечника в год. Источник выброса неорганизованный (ист. 6036).

Максимально-разовый объем пылевыделений при погрузочноразгрузочных работах рассчитывается по формуле /8/:

Мсек =
$$\underline{k_1} \times \underline{k_2} \times \underline{k_3} \times \underline{k_4} \times \underline{k_5} \times \underline{k_7} \times \underline{k_8} \times \underline{k_9} \times \underline{B'} \times \underline{G} \times \underline{4} \times \underline{10^6} (1-\eta)$$
, г/с 3600

А валовый выброс по формуле /8/:

Мгод =
$$k_1$$
 x k_2 x k_3 x k_4 x k_5 x k_7 x k_8 x k_9 x B' x G год x (1- η), т/год

где

- k1 весовая доля пылевой фракции в материале (таблица 3.1.1) /8/. Определяется путем отмывки и просева средней пробы с выделением фракции пыли размером 0-200 мкм;
- k_2 доля пыли с размерами частиц 0-50 мкм (от всей массы пыли), переходящая в аэрозоль (таблица 3.1 1 /8/). Проверка фактического дисперсного состава пыли и уточнение значения кг производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки отбора пробы;
- k_3 коэффициент, учитывающий местные метеоусловия (таблица 3.1.2), с учетом пункта 2.6 /8/;
- k_4 коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования (таблица 3.1 .3 /8/);
- k_5 коэффициент, учитывающий влажность материала (таблица 3.1.4) /8/. Под влажностью понимается влажность его пылевой и мелкозернистой фракции ($d \le 1$ мм);
 - k_7 коэффициент, учитывающий крупность материала (таблица 3.1.5) /8/;
- k_8 поправочный коэффициент для различных материалов в зависимости от типа грейфера (таблица 3.1.6) /8/. При использовании иных типов перегрузочных устройств k_8 =1;
- k_9 поправочный коэффициент при мощном залповом сбросе материала при разгрузке автосамосвала. Принимается k_9 =0,2 при единовременном сбросе материала весом до 10 т, и k_9 =0,1 свыше 10 т. В остальных случаях k_9 =1 /8/;
 - В' коэффициент, учитывающий высоту пересыпки (таблица 3.1/7) /8/;
- Gчас производительность узла пересыпки или количество перерабатываемого материала, т/ч;

Gгод - суммарное количество перерабатываемого материала в течение года, т/год;

η - эффективность средств пылеподавления, в долях единицы (таблица 3.1.8) /8/.

Максимальный разовый выброс пыли, поступающий в атмосферу с поверхности склада, рассчитывается по формуле /8/:

$$M_{\text{cek}} = k_3 \; x \; k_4 \; x \; k_5 \; x \; k_6 \; x \; k_7 \; x \; q \; x \; S$$
 , Γ/c

где

 k_6 - коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение: $\underline{S}_{\text{факт}}$

S

где:

 $S_{\phi a \kappa \tau}$ - фактическая поверхность материала с учетом рельефа его сечения, м²;

S - поверхность пыления в плане, M^2 ;

Значение k_6 колеблется в пределах 1,3-1,6 в зависимости от крупности материала и степени заполнения /8/;

q' - унос пыли с одного квадратного метра фактической поверхности, r/m^2xc , в условиях когда $k_3=1$; $k_5=1$ (таблица 3.1.1) /8/.

Количество твердых частиц, сдуваемых с поверхности склада, рассчитывается по формуле /8/:

$$M_{\text{год}} = 0.0864 \text{ x k}_3 \text{ x k}_4 \text{ x k}_5 \text{ x k}_6 \text{ x k}_7 \text{ x q x S x } [365\text{-}(T_{\text{сп}} + T_{\text{д}}))] \text{ x } (1-\eta),$$
т/год

где

Тсп - количество дней с устойчивым снежным покровом, 142 дня;

Тд - количество дней с осадками в виде дождя, рассчитывается по формуле:

$$T_{\text{Д}} = \frac{2 * T_{\underline{\pi}}^{\text{Д}}}{24}$$
, дней

где T_{π}^{A} - суммарная продолжительность осадков в виде дождя в зоне проведения работ за рассматриваемый период, час (запрашивается в территориальных органах Казгидромета, либо определяется по климатическим справочникам) = 430 часов.

Максимальное количество пыли поступающее в атмосферу со склада определяется по формуле /8/:

$$M_{ce\kappa} = M_{ce\kappa}^n + M_{ce\kappa}^{co}, \epsilon/ce\kappa$$

где

 $M_{\it cek}^{\it n}$ - максимальный разовый выброс при погрузке и разгрузке соответственно, рассчитывается по формуле 3.1.1 /8/.

 $M_{\it cek}^{\it co}$,- максимальный разовый выброс при сдувании с поверхности, по формуле 3.2.3 /8/.

Валовые выбросы твердых частиц в атмосферу определяются как сумма выбросов при разгрузке материала, при сдувании с пылящей поверхности и отгрузке материала /8/:

$$M_{\text{гол}} = M^{p}_{\text{гол}} + M^{n}_{\text{гол}} + M^{c_{\text{д}}}_{\text{гол}}, \text{ т/год}$$

где

 M^{p}_{rog} и M^{n}_{rog} - количество твердых частиц, выделяющихся при разгрузке и погрузке материала, соответственно, т/год, рассчитывается по формуле 3.1.2 /8/;

 $M^{c_{\rm I}}_{\rm год}$ - количество твердых частиц, сдуваемых с поверхности, т/год, рассчитывается по формуле 3.2.5 /8/.

<u>В качестве примера приводим расчет выбросов от склада</u> подсолнечника №1 (ист. 6014):

 $M_{cek} = 0.01 \times 0.03 \times 1.0 \times 0.005 \times 0.4 \times 0.6 \times 1.0 \times 1.0 \times 0.7 \times 10 \times 10^6 \times 1.0 \times 0.007 \text{ r/c}$

 ${
m M}_{
m rog}$ = 0,01 x 0,03 x 1,0 x 0,005 x 0,4 x 0,6 x 1,0 x 1,0 x 0,7 x 4000 x 2 x (1-0) = 0,002016 т/год

$$M_{cek} = 1.0 \times 0.005 \times 0.4 \times 1.6 \times 0.6 \times 0.002 \times 385 = 0.001478 \, \text{r/c}$$

 M_{rog} = 0,0864 x 1,0 x 0,005 x 0,4 x 1,6 x 0,6 x 0,002 x 385 x [365-(142 + 35,83))] x (1-0) = 0,023908 т/год

Максимальное количество пыли поступающее в атмосферу со склада составляет:

$$M_{cek} = 0.0007 + 0.001478 = 0.002178 \text{ r/cek}$$

Валовые выбросы твердых частиц в атмосферу составляют: $M_{\text{год}} = 0,002016 + 0,023908 = 0,025924$ т/год.

Результаты расчета выбросов от складов сельхозпродукции (ист. 6014, 6018-6020, 6025, 6026, 6034-6036) по предприятию в целом представлены в таблице Б.17.

Таблица Б.17 - Результаты расчета выбросов от склада сельскохозяйственной продукции

таолица В.1	1 100	· · · · · · · · · · · · · · · · · · ·		I DESCRIPTION	D OT CICIO	да селье			n npon,	П						1		
Наимен. источника	№ ист.	\mathbf{k}_1	\mathbf{k}_2	k ₃	\mathbf{k}_4	\mathbf{k}_{5}	\mathbf{k}_{6}	\mathbf{k}_7	\mathbf{k}_8	k 9	В`	$G_{\scriptscriptstyle \Psi ac}$	Gгод	q`	S, m ²	Наименование загрязняющего вещества	Выбр	осы
																	г/с	т/год
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
									Плош	адка Л	<u>01</u>							
								Скл	ад подс	олнечн	ика №1	1						
формиров	6014	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	1	0,7	10	4000	-	-	Пыль зерновая	0,000700	0,002016
хранение	0014	ı	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	385	Пыль зерновая	0,001478	0,023908
															Ит	ого по ист.6014:	0,0021780	0,025924
								Скл	ад подс	олнечн	ика №2	2						
формиров	6018	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	1	0,7	10	1600	-	-	Пыль зерновая	0,000700	0,000806
хранение	0018	-	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	385	Пыль зерновая	0,001478	0,023908
									•	•					Ит	ого по ист.6018:	0,0021780	0,024714
								Скл	ад подс	олнечн	ика №3	3						
формиров	6019	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	0,2	0,7	10	1600	-	-	Пыль зерновая	0,000140	0,000161
хранение	0017	į	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	348	Пыль зерновая	0,001336	0,021610
															Ит	ого по ист.6019:	0,0014760	0,021771
								Скл	ад подс	олнечн	ика №	1						
формиров	6020	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	0,2	0,7	10	1600	-	-	Пыль зерновая	0,000140	0,000161
хранение	0020	-	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	587	Пыль зерновая	0,002254	0,036452
															Ит	ого по ист.6020:	0,0023940	0,036613
								Скл	ад подс	олнечн	ика №	5						
формиров	6025	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	0,2	0,7	10	1600	-	=	Пыль зерновая	0,000140	0,000161
хранение	6025	-	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	521	Пыль зерновая	0,002001	0,032353
											•				Ит	ого по ист.6025:	0,0021410	0,032514

								Скл	ад подс	олнечн	ика №	<u> </u>						
формиров	6026	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	0,2	0,7	10	1600	-	-	Пыль зерновая	0,000140	0,000161
хранение	6026	-	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	393	Пыль зерновая	0,001509	0,024405
Итого по ист.6026:													0,0016490	0,024566				
	Склад подстолнечника №7																	
формиров	6034	0,01	0,03	1,0	0,005	0,4	ı	0,6	1,0	0,2	0,7	10	1600	ı	ı	Пыль зерновая	0,000140	0,000161
хранение	0034	-	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	912	Пыль зерновая	0,003502	0,056634
Итого по ист.6034:												0,0036420	0,056795					
								Скл	ад подс	олнечн	ика №	}						
формиров	(025	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	0,2	0,7	10	1600	1	-	Пыль зерновая	0,000140	0,000161
хранение	6035	-	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	879	Пыль зерновая	0,003375	0,054585
										I.	l .				Ит	ого по ист.6035:	0,0035150	0,054746
								Скл	ад подс	олнечн	ика №)						
формиров	(026	0,01	0,03	1,0	0,005	0,4	-	0,6	1,0	0,2	0,7	10	1600	-	-	Пыль зерновая	0,000140	0,000161
хранение	6036	-	-	1,0	0,005	0,4	1,6	0,6			-	-		0,002	1001	Пыль зерновая	0,003844	0,062161
Итого по ист.6036:												0,0039840	0,062322					

Б.18 Расчет выбросов вредных веществ от двигателей внутреннего сгорания автомобильной техники, находящейся на постах ТО и ТР (ист. 6039)

Площадка №2

Ремонтная мастерская. В помещении гаража имеются пять постов ТО и ТР для грузовых автомобилей (бензин). В год осуществляется до 100 ТО и ТР. Выбросы обусловлены работой двигателей автотранспорта при въезде-выезде в бокс на ремонт. Выброс загрязняющих веществ на данном участке происходит неорганизованно через проем гаражных ворот на высоте 3,5 м (ист. 6039).

В процессе работы двигателей автомобилей происходит выброс углерода оксида, азота диоксида, азота оксида, серы диоксида и углеводородов (по бензину и керосину) и сажи в атмосферу.

Валовой выброс загрязняющих веществ для помещений с тупиковыми постами рассчитывается по формуле /12/:

$$M_{20\partial} = (2 \times M_L \times S_t + M_{pr} \times T_{pr}) \times N_k \times 10^{-6}, m/20\partial$$

где M_L – пробеговый выброс 3B, г/км (таблица 3.10-3.12 /12/

 S_{t} – расстояние от ворот помещения до поста TO и TP, км;

 M_{pr} – удельный выброс 3B при прогреве, г/мин (таблица 3.10-3.12 /12/);

 T_{pr} – время прогрева, T_{pr} =1,5 мин /12/;

 N_k – количество ТО и TP, проведенных в течение года для каждого типа автомобилей;

Максимально разовый выброс i-го вещества для тупиковых постов, рассчитывается по формуле /12/:

$$M_c = (M_L \times S_t + 0.5 \times M_{pr} \times T_{pr}) \times N_{tk} / 3600, \varepsilon / c$$

где Ntk – наибольшее количество автомобилей, въезжающих в зону и выезжающих из зоны TO и TP в течение часа;

Значения удельных выбросов ML и Mpr принимаются для теплого периода года.

Углеводороды (СН), поступающие в атмосферу от автотранспорта и дорожной техники при работе на различных видах топлива, необходимо классифицировать, следующим образом:

- на дизельном и газодизельном топливе по керосину;
- на бензине по бензину;
- на сжатом природном газе по метану;
- на сжиженном нефтяном газе по углеводородам С1-С5.

Согласно «Методики определения нормативов эмиссий в окружающую среду» /7, п.1.21/, при расчете загрязнения атмосферы и

определении выбросов для всех видов технологических процессов и транспортных средств следует учитывать полную или частичную трансформацию поступающих в атмосферу окислов азота. Для этого установленное по расчету или инструментальными замерами количество выбросов окислов азота (M_{NOx}) в пересчете на NO_2 разделяется на составляющие оксид азота (NO) и диоксид азота (NO_2) . Коэффициенты трансформации от NO_x принимаются на уровне максимальной установленной трансформации, т.е. 0.8- для NO_2 и 0.13- для NO. Тогда раздельные выбросы будут определяться по формулам:

$$M_{
m NO2~cek.} = 0.8~{
m x}~M_{
m NOx~cek.}, M_{
m NO2~rog.} = 0.8~{
m x}~M_{
m NOx~rog.}, M_{
m NO~cek.} = 0.13~{
m x}~M_{
m NOx~cek.}, M_{
m NO~rog.} = 0.13~{
m x}~M_{
m NOx~rog.}$$

В качестве примера приводим расчет выброса загрязняющих веществ от постов ТО и ТР в ремонтной мастерской (ист. 6039):

Грузовые автомобили грузоподъемностью свыше 2 до 5 тонн (бензин):

Расчет выброса СО (0337):

$$M_{\text{сек}} = (37.3 \text{ x } 0.04 + 0.5 \text{ x } 18.3 \text{ x } 1.5) \text{ x } 5/3600 = 0.021135 \text{ г/с}$$
 $M_{\text{гол}} = (2 \text{ x } 37.3 \text{ x } 0.04 + 18.3 \text{ x } 1.5) \text{ x } 100 \text{ x } 10^{-6} = 0.003043 \text{ т/год}$

Расчет выброса СН по бензину (2704):

$$M_{\text{сек}} = (6.9 \text{ x } 0.04 + 0.5 \text{ x } 2.5 \text{ x } 1.5) \text{ x } 5/3600 = 0.002988 \text{ г/с}$$
 $M_{\text{год}} = (2 \text{ x } 6.9 \text{ x } 0.04 + 2.5 \text{ x } 1.5) \text{ x } 100 \text{ x } 10^{-6} = 0.000430 \text{ т/год}$

Расчет выброса NO_x (0301, 0304):

$$M_{\text{сек}} = (0.8 \text{ x } 0.04 + 0.5 \text{ x } 0.2 \text{ x } 1.5) \text{ x } 5/3600 = 0.000253 \text{ г/с}$$
 $M_{\text{год}} = (2 \text{ x } 0.8 \text{ x } 0.04 + 0.2 \text{ x } 1.5) \text{ x } 100 \text{ x } 10^{-6} = 0.000036 \text{ т/год}$

$$M_{\text{сек}}$$
 (NO₂) = 0,8 x 0,000253 = 0,000202 г/с $M_{\text{год}}$ (NO₂) = 0,8 x 0,000036 = 0,000029 т/год

$$M_{\text{сек}}$$
 (NO) = 0,13 x 0,000253 = 0,000033 г/с $M_{\text{год}}$ (NO) = 0,13 x 0,000036 = 0,000005 т/год

Расчет выброса SO_2 (0330):

$$M_{\text{сек}} = (0.19 \text{ x } 0.04 + 0.5 \text{ x } 0.022 \text{ x } 1.5) \text{ x } 5/3600 = 0.000033 \text{ г/с}$$
 $M_{\text{год}} = (2 \text{ x } 0.19 \text{ x } 0.04 + 0.022 \text{ x } 1.5) \text{ x } 100 \text{ x } 10^{-6} = 0.000005 \text{ т/год}$

Исходные данные и результаты расчета выброса загрязняющих веществ от грузовых автомобилей, находящегося на посту ТО в ремонтной мастерской (ист. 6039) (площадка №2) представлены в таблице Б.18.

Таблица Б.18 - Результаты расчетов выбросов загрязняющих веществ от автотранспорта на постах ТО и ТР

					Удельные выбросы									
№ ист.	Тип подвиж-ного состава	Кол-во ТО и ТР за	кол-во	St, km	CO (0337)		СН		NOx		SO2 (0330)		время прог- рева,	
		год			ML, Γ/κΜ	М _{рг} , г/мин	ML, Γ/κΜ	$ m M_{pr}, \ m \Gamma/MИH$	ML, Γ/κΜ	$ m M_{pr}, \ m _{\Gamma/MИН}$	ML, Γ/κΜ	$ m M_{pr}, \ m _{\Gamma/MИН}$	Т _{рг,} мин	
1	2	3	4		6	7	8	9	10	11	12	13	16	
	Площадка №2													
	Ремонтная мастерская													
6039	Грузовые автомобили, грузоподъемностью свыше 2 до 5 т (бензин)	100	5	0,04	37,3	18,3	6,9	2,5	0,8	0,2	0,19	0,022	1,5	

Окончание таблицы Б.18 - Результаты расчетов выбросов загрязняющих веществ от автотранспорта на постах ТО и ТР,

Выбросы												
CO (0337)		NOx		NO (0304)		NO ₂ (0301)		SO2	(0330)	СН (бензин) (2704)		
г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	г/с	т/год	
17	18	19	20	21	22	23	24	25	26	27	28	
Площадка №2												
Ремонтная мастерская												
0,021135	0,003043	0,000253	0,000036	0,000033	0,000005	0,000202	0,000029	0,000033	0,000005	0,002988	0,000430	

Б.19 Расчет выбросов вредных веществ от двигателей внутреннего сгорания автомобильной техники (ист. 6046, 6047, 6037, 6038, 6041)

Площадка №1

Автостоянки. На территории цеха рафинации имеются две автостоянки. Автостоянка №1 рассчитанная на восемь единиц грузовых автомобилей (бензин). Выброс происходит неорганизованно непосредственно в атмосферу (ист. 6046).

Автостоянка №2 рассчитанная на пять единиц грузовых автомобилей (дизель). Выброс происходит неорганизованно непосредственно в атмосферу (ист. 6047).

Площадка №2

Гараж. В гараже осуществляется хранение 12 единиц грузовых автомобилей (бензин). Источник выброса неорганизованный. Выброс происходит через проем гаражных ворот на высоте 3,5 м (ист. 6037).

Теплая стоянка. На теплой стоянке осуществляется хранение пяти единиц легковых автомобилей (бензин). Источник выброса неорганизованный. Выброс происходит через проем гаражных ворот на высоте 3,5 м (ист. 6038).

Открытая автостоянка. Перед зданием гаража располагается открытая автостоянка на которой осуществляется хранение пяти единиц грузовых автомобилей (дизель) и 12 единиц автотракторной техники (дизель). Источник выброса неорганизованный (ист. 6041).

Выбросы оксида углерода, оксида азота, диоксида азота, углеводородов (по бензину), диоксида серы одним автомобилем к-й группы в день при выезде с территории или помещения стоянки \mathbf{M}_{11k} и въезде \mathbf{M}_{21k} рассчитываются по формулам /12/:

$$M_{1ik} = m_{npik} \cdot t_{np} + m_{Lik} \cdot L_1 + m_{xxik} \cdot t_{xx1}, z$$

$$M_{2ik} = m_{Lik} \cdot L_2 + m_{xxik} \cdot t_{xx2}, z$$

 $m_{\rm noik}\,$ - удельный выброс i-го вещества при прогреве двигателя автомобиля к-й группы, г/мин;

 $m_{\rm Lik}$ - пробеговый выброс і-го вещества, автомобилем к-й группы при движении со скоростью 10--20 км/час, г/км;

 m_{xxik} - удельный выброс і-го вещества при работе двигателя автомобиля к-й группы на холостом ходу, г/мин;

 t_{np} - время прогрева двигателя, мин;

где

 L_1 , L_2 - пробег автомобиля по территории стоянки, км:

 t_{xx1}, t_{xx2} - время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на неё (мин).

Значения удельных выбросов загрязняющих веществ m_{npik} , m_{Lik} , и m_{xxik} для различных типов автомобилей представлены в табл. $2.1 \div 2.7 / 12 / ...$

Таблица — Время прогрева двигателя t_{np} в зависимости от температуры воздуха (открытые и закрытые не отапливаемые стоянки)

	Время прогрева t _{пр} , мин.										
Категория	выше	ниже	ниже -	ниже -	ниже -	ниже -	ниже				
автомобиля	5°C	5°C	5°C	10°C	15°C	20°C	-25°C				
		до-5°С	до -10°С	до -15°С	до -20°С	до -25°С					
Легковой	3	4	10	15	15	20	20				
автомобиль	3	4	10	13	13	20					
Грузовой											
автомобиль	4	6	12	20	25	30	30				
и автобус											

Пробег автомобиля к-ой группы по территории или помещению стоянки в день определяется путем замера пути (L_1) ,проходимого автомобилем от центра площадки, выделенной для стоянки данной группы автомобилей, до выездных ворот (при выезде) и от выездных ворот до центра стоянки (L_2) при въезде.

Валовой выброс і-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле /12/:

$$M_{j}^{i} = \sum_{k=1}^{k} \alpha_{B} (M_{1ik} + M_{2ik}) N_{k} D_{p} 10^{-6}, m/200$$

где $\alpha_{\rm B}$ - коэффициент выпуска (выезда);

 N_{K} - количество автомобилей к-й группы на территории или в помещении стоянки за расчетный период;

 D_p - количество дней работы в расчетном периоде (холодном, теплом, переходном);

j - период года (T - теплый, П - переходный, X - холодный); для холодного периода расчет M_i выполняется для каждого месяца

$$\alpha_{\scriptscriptstyle B} = \frac{N_{\scriptscriptstyle \scriptscriptstyle K\!B}}{N_{\scriptscriptstyle \scriptscriptstyle K}},$$

где $N_{\mbox{\tiny KB}}$ - среднее за расчетный период количество автомобилей к-й группы, выезжающих в течение суток со стоянки.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются /12/:

$$M_{i} = M_{i}^{T} + M_{i}^{\Pi} + M_{i}^{X}, m/200$$

Максимально разовый выброс і-го вещества G_i определяется по формуле /12/:

$$G_{i} = \frac{\sum_{k=1}^{p} \left(m_{npik} t_{np} + m_{Lik} L_{1} + m_{xxik} t_{xx1} \right) N_{k}^{'}}{3600}, \varepsilon/c$$

где

 N_k - количество автомобилей k-ой группы, выезжающих со стоянки за 1 час, характеризующийся максимальной интенсивностью выезда автомобилей.

Максимально разовый выброс рассчитывается для месяца с наиболее низкой среднемесячной температурой.

Углеводороды (СН), поступающие в атмосферу от автотранспорта и дорожной техники при работе на различных видах топлива, необходимо классифицировать, следующим образом:

- на дизельном и газодизельном топливе по керосину;
- на бензине по бензину;
- на сжатом природном газе по метану;
- на сжиженном нефтяном газе по углеводородам С1-С5.

Согласно «Методики определения нормативов эмиссий окружающую среду» /7, п.1.21/, при расчете загрязнения атмосферы и определении выбросов для всех видов технологических процессов и средств следует учитывать полную или частичную транспортных трансформацию поступающих в атмосферу окислов азота. Для этого установленное по расчету или инструментальными замерами количество выбросов окислов азота (M_{NOx}) в пересчете на NO_2 разделяется на составляющие оксид азота (NO) и диоксид азота (NO₂). Коэффициенты принимаются на уровне максимальной трансформации от NO_x установленной трансформации, т.е. $0.8 - \text{для NO}_2$ и 0.13 - для NO. Тогда раздельные выбросы будут определяться по формулам:

$$M_{
m NO2\;cek.} = 0.8\; {
m x}\; M_{
m NOx\;cek.}, M_{
m NO2\;rog.} = 0.8\; {
m x}\; M_{
m NOx\;rog.}, \ M_{
m NO\;cek.} = 0.13\; {
m x}\; M_{
m NOx\;cek.}, M_{
m NO\;rog.} = 0.13\; {
m x}\; M_{
m NOx\;rog.}$$

В качестве примера приводим расчет выбросов вредных веществ от двигателей внутреннего сгорания легковых автомобилей на теплой стоянке (ист. 6038):

Расчета выброса СО от ист. 6038:

Теплый период (Т)

$$M_{lik} = 2.9 \times 3.0 + 9.3 \times 0.02 + 1.9 \times 1.0 = 10,786 \Gamma$$

 $M_{2ik} = 9.3 \times 0.02 + 1.9 \times 1.0 = 2,086 \Gamma$

Холодный период (Х)

$$M_{lik} = 3.7 \text{ x } 15.0 + 11.7 \text{ x } 0.02 + 1.9 \text{ x } 1.0 = 57.634 \text{ }\Gamma$$

 $M_{2ik} = 21.3 \text{ x } 0.02 + 1.9 \text{ x } 1.0 = 2.134 \text{ }\Gamma$

$$M_T = 0.5 \text{ x} (10.786 + 2.086) \text{ x} 5 \text{ x} 214 \text{ x} 10^{-6} = 0.00688 \text{ т/год}$$

$$M_x = 0.5 \text{ x } (57,634 + 2,134) \text{ x } 5 \text{ x } 151 \text{ x } 10^{-6} = 0.02256 \text{ т/год}$$

$$M_i = 0.00688 + 0.02256 = 0.0294$$
 т/год

$$G_i = (3.7 \times 15.0 + 11.7 \times 0.02 + 1.9 \times 1.0) \times 1/3600 = 0.016 \, \text{F/c}$$

Выбросы СН (по бензину) от ист. 6038:

Теплый период (Т)

$$M_{lik} = 0.18 \times 3.0 + 1.4 \times 0.02 + 0.15 \times 1.0 = 0.718 \Gamma$$

$$M_{2ik}$$
 = 1,4 x 0,02 + 0,15 x 1,0 = 0,178 Γ

Холодный период (Х)

$$M_{lik}$$
 = 0,22 x 15,0 + 2,1 x 0,02 + 0,15 x 1,0 = 3,492 Γ

$$M_{2ik} = 2.1 \times 0.02 + 0.15 \times 1.0 = 0.192 \Gamma$$

$$M_{\text{\tiny T}} = 0.5 \text{ x } (0.718 + 0.178) \text{ x 5 x 214 x } 10^{-6} = 0.00048 \text{ т/год}$$

$$M_x = 0.5 \text{ x } (3.492 + 0.192) \text{ x 5 x } 151 \text{ x } 10^{-6} = 0.00139 \text{ т/год}$$

$$M_i = 0,00048 + 0,00139 = 0,0019$$
 т/год

$$G_i = 0.22 \times 15.0 + 2.1 \times 0.02 + 0.15 \times 1.0) \times 1/3600 = 0.001 \text{ g/c}$$

Выбросы NOx от ист. 6038:

Теплый период (Т)

$$M_{lik}$$
 = 0,03 x 3,0 + 0,24 x 0,02+ 0,03 x 1,0 = 0,125 Γ

$$M_{2ik} = 0.24 \times 0.02 + 0.03 \times 1.0 = 0.035 \Gamma$$

Холодный период (Х)

$$M_{lik} = 0.03 \times 15.0 + 0.24 \times 0.02 + 0.03 \times 1.0 = 0.485 \Gamma$$

$$M_{2ik} = 0.24 \times 0.02 + 0.03 \times 1.0 = 0.035 \Gamma$$

$$M_{\scriptscriptstyle T}$$
 = 0,5 x (0,125 + 0,035) x 5 x 214 x $10^{\text{--6}}$ = 0,000086 т/год

$$M_x$$
 = 0,5 x (0,485 + 0,035) x 5 x 151 x 10⁻⁶ = 0,000196 т/год

$$M_{\rm i} = 0{,}000086 + 0{,}000196 = 0{,}00028$$
 т/год

$$G_i = (0.03 \times 15.0 + 0.24 \times 0.02 + 0.03 \times 1.0) \times 1/3600 = 0.00013 \text{ r/c}$$

$$M_{cek}$$
 (NO₂) = 0.8 x 0.00013 = 0.0001 г/с

$$M_{\text{год}}$$
 (NO₂) = 0,8 х 0,00028 = 0,00022 т/год

$$M_{\text{сек}}$$
 (NO) = 0.13 x 0.00013 = 0.00002 г/с

$$M_{\text{год}}$$
 (NO) = 0,13 x 0,00028 = 0,00004 т/год

Выбросы SO_2 от ист. 6038:

Теплый период (Т)

$$M_{lik} = 0.011 \text{ x } 3.0 + 0.057 \text{ x } 0.02 + 0.01 \text{ x } 1.0 = 0.044 \text{ } \Gamma$$

$$M_{2ik} = 0.057 \times 0.02 + 0.01 \times 1.0 = 0.011 \Gamma$$

Холодный период (Х)

$$M_{lik}\!=0,\!012~x~15,\!0+0,\!071~x~0,\!02+0,\!01~x~1,\!0=0,\!191~\Gamma$$

$$M_{2ik} = 0.071 \times 0.02 + 0.01 \times 1.0 = 0.011 \Gamma$$

$$M_{\scriptscriptstyle T}$$
 = 0,5 x (0,044 + 0,011) x 5 x 214 x 10^{-6} = 0,000029 т/год

$$M_x = 0.5 \text{ x } (0.191 + 0.011) \text{ x 5 x 151 x } 10^{-6} = 0.000076 \text{ т/год}$$

$$M_i = 0.000029 + 0.000076 = 0.00011$$
 т/год

$$G_i = (0.012 \times 15.0 + 0.071 \times 0.02 + 0.01 \times 1.0) \times 1/3600 = 0.00005 \text{ r/c}$$

Результаты расчета выброса загрязняющих веществ от автотранспорта предприятия (ист. 6046, 6047, 6037, 6038, 6041) представлены в таблице Б.19.

Таблица Б.19 - Исходные данные и результаты расчета выброса загрязняющих веществ от автотранспорта

Марран Берни		ица В.19 - ИСЛО				емя	Время		Ì	л-во					ный вы				Выброс 1 г	машины, і	7		
Risection Ris		' '	автомоб	илей по	дви	ателя	хол. ходу,	кол- во,	ДН	ей,	во за 1 час,	-					ход,			возі М	врат, ^{2ik}	Объем 1	зыброса
Trysobale abronogement 15 15 15 15 15 15 15 1			,	,	Т	X	$=txx_2$		Т	X			Т	X	Т	X	г/ми	Т	X	Т	X	г/с	т/год
Прузовые автомобили грузоподъемность оснавательности прузовые автомобили грузоподъемность оснавие 2 до 5 т, бензин 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
604 604 7 Грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузовые автомобили грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин грузоподъемность го свыше 2 до 5 т, бензин го го го го го го го го го го го го го																							
604 грузовые автомобили грузопольемность о сыше 2 до 5 т, остань на таку в трузовые автомобили грузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузовые автомобили грузопольемность осыше 2 до 5 т, остань на таку в трузоване на таку в трузопольемность осыше 2 до 5 т, остань на таку в трузоване на таку в трузопольемность осыше 2 до 5 т, остань на таку в трузоване на таку в трузопольемность осыше 2 до 5 т, остань на таку в трузоване на таку в трузопольемность осыше 2 до 5 т, остань на таку в трузопа на таку в трузопа на таку в трузова на таку в трузопа на таку в трузопа на таку в трузова на таку в трузова на таку в трузопа на таку в трузопа на та		<u> </u>	1		1	1	1	1	1	1	AB	гостоянка		ı	20	27	ı	70.70	572.04	10.70	10.04	ı	T 0.422
604 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6												CO	15	28,1	29, 7	37,	10,2					0,1592	0,422 5
604 6 об 6 об 6 об 6 об 6 об 6 об 6 об 6 о		Грузовые											1,5	3,8	5,5	6,9	1,7	7,81	77,838	1,81	1,838	0,0216	0,056 4
Ко свыше 2 до 5 т, бензин Ко свыше 2 до 5 т, бензин Ком сензин Ода и прузовые автомобили грузоподъемность и освыше 2 до 5 т, го свыше 2 до 5 т, го		грузоподъемность	0,02	0,02	4	20	1	8	21 4		1	SO ₂	0,02				0,02	0,103	0,524	0,023	0,024	0,0001	0,000 4
604 7 Прузовые автомобили грузоподъемность ю свыше 2 до 5 т, го сыше 2												NOx	0,2	0,3	0,8	0,8	0,2	1,016	6,216	0,216	0,216		0,004 9
Борганс Прузовые автомобили грузоподъемность по свыше 2 до 5 т, Ода и до до до до до до до до до до до до до												NO											0,000 6
604 7 Грузовые автомобили грузоподъемность ю свыше 2 до 5 т, 0,02 0,02 4 20 1 5 21 d l l l l l l l l l l l l l l l l l l												NO ₂											0,003
604 7 Грузовые автомобили грузоподъемность ю свыше 2 до 5 т, 0,02 0,02 4 20 1 5 21 1 5 4 1 1 1 SO2 0,07 0,8 0,3 0,4 0,9 0,072 0,3 0,4 0,072 0,3 0,6 0,7 0,8 0,3 0,4 0,072 0,02 0,08 0,2 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,072 0,02 0,08 0,3 0,4 0,4 0,072 0,02 0,08 0,3 0,4 0,4 0,072 0,02 0,08 0,3 0,4 0,4 0,072 0,02 0,08 0,3 0,4 0,4 0,072 0,02 0,08 0,3 0,4 0,4 0,072 0,02 0,08 0,3 0,4 0,4 0,072 0,03 0,08 0,3 0,4 0,4 0,072 0,03 0,08 0,08 0,08 0,08 0,08 0,005 0,08 0,08 0,08 0,08 0,005 0,08 0,08 0,08 0,08 0,005 0,08 0,08 0,08 0,08 0,08 0,08 0,005 0,08 0,08 0,08 0,08 0,08 0,08 0,005 0,08 0,08 0,08 0,08 0,08 0,08 0,08			•	•		•		•			AB	гостоянка											•
604 7 Грузовые автомобили грузоподъемность ю свыше 2 до 5 т, 0,02 0,02 4 20 1 5 21 4 15 1 1 SO2 0,07 2 6 9 9 9 0,072 2 6 6 9 9 9 0,072 0,368 1,802 0,08 0,20 0,008 0,20 0,008 0,000 0,00												СО	1,9	3,1	3,5	4,3	1,5	9,17	63,586	1,57	1,586	0,0177	0,030
604 7 автомобили грузоподъемность ю свыше 2 до 5 т, 0,02 0,02 4 20 1 5 21 4 15 1 1 C 0,02 0,02 0,08 0,02 0,02 0,008 0,08 0,008 0,08 0,082 0,0005													0,3	0,6	0,7	0,8	0,25	1,464	12,266	0,264	0,266	0,0034	0,005 7
7 грузоподъемность о о,02 о,02 4 20 1 5 4 1 1 SO ₂ 0,07 0,08 0,3 0,4 9 0,072 0,368 1,802 0,08 0,082 0,0005	604								21	15		С	0,02	0,08	0,2	0,3	0,02	0,104	1,626	0,024	0,026	0,0005	0,000 7
THEORY			0,02	0,02	4	20	1	5	4		1	SO ₂					0,072	0,368	1,802	0,08	0,082	0,0005	0,001
NOx 0,5 0,7 2,6 2,6 0,5 2,552 14,552 0,552 0,0040		дизель										NOx	0,5	0,7	2,6	2,6	0,5	2,552	14,552	0,552	0,552	0,0040	0,007 4
NO 0,0005												NO										0,0005	0,001
NO ₂ 0,0032 Площадка №2																						0,0032	0,005 9

											Гараж											
											СО	18	19,5	47,4	59,3	13,5	86,448	404,68 6	14,448	14,686	0,2248	0,5095
	Грузовые										СН (бензин)	2,6	4,1	8,7	10,3	2,2	12,774	84,406	2,374	2,406	0,0469	0,0981
6037	автомобили грузоподъемность	0,02	0,02	4	20	1	12	214	151	2	SO ₂	0,028	0,032	0,18	0,22	0,029	0,145	0,673	0,033	0,033	0,0004	0,0009
	ю свыше 5 до 8 т, бензин										NOx	0,2	0,2	1	1	0,2	1,02	4,220	0,22	0,22	0,0023	0,0056
											NO										0,0003	0,0007
											NO ₂										0,0018	0,0045
			•		1	•		1			Теплая стоя	нка		•								•
											CO	2,9	3,7	9,3	11,7	1,9	10,786	57,634	2,086	2,134	0,0160	0,0294
											СН (бензин)	0,18	0,22	1,4	2,1	0,15	0,718	3,492	0,178	0,192	0,0010	0,0019
6038	Легковые автомобили свыше	0.02	0,02	3	15	1	5	214	151	1	SO ₂	0,011	0,012	0,057	0,071	0,01	0,044	0,191	0,011	0,011	0,0000 5	0,0001 1
	1,8 до 3,5 т, бензин	-,	.,,,,								NOx	0,03	0,03	0,24	0,24	0,03	0,125	0,485	0,035	0,035	0,0001	0,0002 8
											NO										0,0000	0,0000 4
											NO ₂										0,0001	0,0002
				•		•				От	крытая автос	тоянка	•		•	•	•	•	•			•
											СО	3	8,2	6,1	7,4	2,9	15,022	167,04 8	3,022	3,048	0,0464	0,0739
											СН (керосин)	0,4	1,1	1	1,2	0,45	2,07	22,474	0,47	0,474	0,0062	0,0101
50.45	Грузовые	0.00		_			_	211			С	0,04	0,16	0,3	0,4	0,04	0,206	3,248	0,046	0,048	0,0009	0,0013
6041	автомобили, 8-16 т, дизель	0,02	0,02	4	20	1	5	214	151	1	SO2	0,113	0,136	0,54	0,67	0,1	0,5628	2,8334	0,1108	0,1134	0,0008	0,0015
											NOx	1	2	4	4	1	5,08	41,080	1,08	1,08	0,0114	0,0192
											NO										0,0015	0,0025
											NO ₂										0,0091	0,0154 0

Б.20 Ремонт резинотехнических изделий (ист. 6039)

Площадка №2

Ремонтная мастерская. Помещение гаража. В гараже расположена вулканизаторная установка. Здесь производится ремонт автокамер. Время работы составляет 250 ч/год. Количество израсходованных ремонтных материалов (камерная резина) в год составляет 50 кг/год, клея — 50 кг/год. Выброс загрязняющих веществ на данном участке происходит неорганизованно через проем гаражных ворот (ист. 6039).

При обработке местных повреждений (шероховке) резинотехнических изделий выделяются пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (резиновая пыль). При приготовлении клея, промазке клеем и сушке выделяются пары бензина. При вулканизации выделяется диоксид серы.

Для расчета выбросов загрязняющих веществ необходимо иметь следующие исходные данные:

- удельные выделения загрязняющих веществ при ремонте резинотехнических изделий;
- количество расходуемых за год материалов (клей, бензин, резина для ремонта);
 - время работы шероховальных станков в день.

Валовые выделения пыли от единицы оборудования рассчитываются по формуле /12/:

$$M_{zo\partial} = q \times t \times 3600 \times 10^{-6}, m/zo\partial$$

- где q удельное выделение пыли, при работе единицы оборудования (табл. 4.6/12/), г/с;
 - t среднее «чистое» время работы шероховального станка в год, ч/год, t=250 ч/год.

Валовые выбросы бензина, углерода оксида и диоксида серы определяются по формуле /17/:

$$M_{cod} = q \times B \times 10^{-6}, m/cod$$

- где q удельное выделение загрязняющего вещества, г/кг ремонтных материалов, клея в процессе его нанесения с последующей сушкой и вулканизацией (табл. 4.7 /12/);
 - B количество израсходованных ремонтных материалов в год, кг, B = 50 кг.

Максимально разовый выброс бензина определяется по формуле:

$$M_c = \frac{q \times B}{t \times 3600}, \varepsilon/c$$

- где B количество израсходованного бензина в день, кг, B = 0,2 кг;
 - t время, затрачиваемое на приготовление, нанесение и сушку клея в день, час, t=1 ч.

Максимально разовый выброс углерода оксида и диоксида серы определяется по формуле:

$$M_c = \frac{M_{zoo} \times 10^6}{t \times 3600}, z/c$$

где t – «чистое» время вулканизации на одном станке в год, час.

Таблица – Удельное выделение пыли при шероховке*

Наименование операции	Наименование выделяемых загрязняющих веществ	Удельное выделение при работе единицы оборудования, г/с
Шероховка мест повреждения камер	пыль тонко измельченного резинового вулканизата из отходов подошвенных резин	0,0226

Таблица — Удельные выделения загрязняющих веществ в процессе ремонта резинотехнических изделий /12/

Операция технологического	Применяемые вещества и	Выделяемые загр	рязняющие вещества
процесса	материалы	наименование	удельное количество (q), г/кг
Приготовление, нанесение и сушка клея	технический каучук, бензин	бензин	900
Вулканизация камер	вулканизированная	диоксид серы	0,0054
1	камерная резина	углерода оксид	0,0018

В качестве примера приводим расчёт выбросов загрязняющих веществ в процессе ремонта резинотехнических изделий (ист. 6039):

- пыль тонко измельченного резинового вулканизата из отходов подошвенных резин:

$$M_{\text{год}} = 0.0226 \text{ x } 250 \text{ x } 3600 \text{ x } 10^{-6} = 0.0203 \text{ т/год}$$

$$M_{cek} = 0.0226 \, \Gamma/c$$

- бензин:

$$M_{\text{год}} = 900 \text{ x } 50 \text{ x } 10^{-6} = 0{,}045 \text{ т/год}$$

$$M_c = 900 \times 0.2/(1 \times 3600) = 0.05 \text{ g/c}$$

- углерода оксид:

$$\dot{M}_{\text{год}} = 0.0018 \text{ x } 50 \text{ x } 10^{-6} = 0.00000009 \text{ т/год}$$

$$M_c = 0.00000009 \times 10^6 / (250 \times 3600) = 0.0000001 \text{ r/c}$$

- диоксид серы:

$$M_{\text{гол}} = 0.0054 \text{ x } 50 \text{ x } 10^{-6} = 0.0000003 \text{ т/год}$$

$$M_c = 0.0000003 \times 10^6/(250 \times 3600) = 0.0000003 \text{ r/c}$$

Результаты расчетов выбросов при ремонте резинотехнических изделий сведены в таблицу Б.20.

Таблица Б.20 - Результаты расчета выбросов при проведении ремонта резинотехнических изделий

	Удельны	е валовые	выбросы	[Выб	бросы вре	дных веществ	
№ ист.	Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин, г/с	Бензин, г/кг	СО, г/кг	SO ₂ , Γ/κΓ	Продол- жительность работы, ч/год	Количество израсходованных ремонтных материалов, кг/год	Количество израсходованного бензина в день, кг/день	Ед. изме- рения	Пыль тонко измельченного резинового вулканизата из отходов подошвенных резин (2978)	Бензин (2704)	CO (0337)	SO ₂ (0330)
1	2	3	4	5	6	7	8	9	10	11	12	13
						Площадка	<u>№2</u>					
						Ремонтная ма	стерская					
6039	0,0226	900	0,0018	0,0054	250	50	0,2	г/с	0,0226	0,0500	0,0000001	0,00000030
0039	0,0226	900	0,0018	0,0034	230	50	0,2	т/год	0,0203	0,0450	0,00000009	0,00000030

Б.21 Расчет выбросов загрязняющих веществ при зарядке аккумуляторов (ист. 6039)

Площадка №2

Ремонтная мастерская. Помещение гаража. В помещении гаража производится зарядка кислотных аккумуляторных батарей. В год заряжается до 10 аккумуляторов. Одновременно заряжается один аккумулятор. Выброс загрязняющих веществ на данном участке происходит неорганизованно через проем гаражных ворот на высоте 3,5 м (ист. 6039).

Во время зарядки аккумуляторных батарей выделяются /12/:

- серная кислота - при зарядке кислотных аккумуляторов.

Для расчета выбросов серной кислоты на аккумуляторном участке используется удельное выделение аэрозоля серной кислоты, которое для свинцовых аккумуляторов принято равным 1 мг/А в ч.

Валовой выброс серной кислоты подсчитывается по формуле /12/:

$$M_{200} = 0.9 \cdot q \cdot Q_1 \cdot a_1 \cdot 10^{-9}, \, m/cod$$

где g - удельное выделение серной кислоты принятое равным 1 мг/А. ч /12/.

 ${\sf Q}_1$ - номинальная емкость каждого типа аккумуляторных батарей, обслуживаемых предприятием, ${\sf A}$ ч;

 a_1 - количество проведенных зарядок батарей соответствующей емкости за год (по данным учета на предприятии).

Расчет максимально разового выброса серной кислоты производится исходя из условий, что мощность зарядных устройств используется с максимальной нагрузкой. При этом сначала определяется валовой выброс за день /12/:

$$M_{cvm} = 0.9 * q * (Q \cdot n') * 10^{-9}, m/день$$

Q - номинальная емкость наиболее емких аккумуляторных батарей, имеющихся на предприятии;

 ${\bf n}^{'}$ - максимальное количество вышеуказанных батарей, которые можно одновременно подсоединять к зарядному устройству.

Максимально разовый выброс серной кислоты определяется по формуле /12/:

$$G_{pas}^{A} = \frac{M_{cym} \cdot 10^{6}}{3600 \cdot t}, z/c$$

где t - цикл проведения зарядки в день. Принимаем m = 10 час.

Расчет выброса серной кислоты при зарядке кислотных аккумуляторов:

$$M_{\rm i}=0.9~{
m x}~1~{
m x}~190~{
m x}~10~{
m x}~10^{-9}=\underline{0,00000171}$$
 т/год $M_{
m cyr}=0.9~{
m x}~1~{
m x}~(190~{
m x}~1)~{
m x}~10^{-9}=0,000000171$ т/день

$$G_{\text{pas}} = \underline{0,000000171 \ x \ 10}^6 = \underline{0,00000475} \ \text{r/c} \\ 3600 \ x \ 10$$

Исходные данные и результаты расчетов сведены в таблицу Б.21.

Таблица Б.21 - Результаты расчета выбросов загрязняющих веществ при зарядке аккумуляторов

				· 1 / ·	, , ,				
							Выбро	ос серной кислоть	ı (0322)
№ ист.	Время зарядки 1-го аккум., t, ч	Тип аккумулятора	Кол-во заряжаемых аккум., а _{1,} шт/год	Емкость, Q_1 , A^* ч	Выделя- ющиеся вещества	q, мг/А в час	т/день	г/с	т/год
				Площадка	<u>№2</u>				
				Ремонтная мас	терская				
6039	10	кислотный	10	190	H ₂ SO ₄ (0322)	1	0,000000171	0,00000475	0,00000171

Б.22 Расчет выбросов загрязняющих веществ от двигателей внутреннего сгорания автотракторной техники (ист. 6041)

Площадка №2

Открытая автостоянка. Перед зданием гаража располагается открытая автостоянка на которой осуществляется хранение 12 единиц автотракторной техники (дизель). Источник выброса неорганизованный (ист. 6041).

Расчет выбросов от дорожно-строительных машин (ДМ) проводится по основным загрязняющим веществам, содержащимся в отработавших газах дизельных и пусковых бензиновых двигателей: углерода оксид (СО), углеводороды (СН), азота оксид (в пересчете на NO_2), твердые частицы (сажа - С), ангидрид сернистый (серы диоксид - SO_2).

Все рассматриваемые в данном разделе ДМ условно разбиты на категории в зависимости от номинальной мощности установленного дизельного двигателя. Запуск дизельных двигателей, установленных на ДМ (кроме 1-й категории), часто производится с помощью пусковых 2-х тактных бензиновых двигателей или пусковых установок с 4-х тактными бензиновыми двигателями. На их долю приходится значительная часть суммарных вредных выбросов за период запуска, прогрева и выезда машин с территории предприятия.

Максимальный разовый и валовой выброс загрязняющих веществ при выбранной расчетной схеме 1 определяются только для территории или помещения стоянки, а при схеме 2 - определяются для каждой стоянки автомобилей и для каждого внутреннего проезда.

Расчеты выбросов по расчетной схеме 1.

Выброс загрязняющих веществ при выезде с территории предприятия (M_1) и возврате (M_2) одной дорожной машины в день рассчитывается по формулам /16/:

$$M_l = M_{pu} \times T_{pu} + M_{pr} \times T_{pr} + ML \times Tvl + M_{xx} \times T_x, \Gamma$$

$$M_2 = ML \times Tv2 + M_{xx} \times T_x$$
, Γ

где

 M_{pu} - удельный выброс вещества пусковым двигателем, г/мин. (таблица 4.1) /16/;

 T_{pu} - время работы пускового двигателя, мин. (таблица 4.3) /18/;

М_{рг} - удельный выброс вещества при прогреве двигателя автомобиля, г/мин. (таблица 4.5) /16/;

 T_{pr} - время прогрева двигателя, мин, (таблица 4.4 /18/);

 \dot{M}_{xx} - удельный выброс вещества при работе двигателя на холостом ходу, г/мин. (таблица 4.2) /16/:

 T_x - время работы двигателя на холостом ходу, мин. $T_x = 1$ мин;

ML - удельный выброс при движении по территории стоянки с условно постоянной скоростью, г/мин. (таблица 4.6) /16/;

Tv1, Tv2 - время движения машины по территории стоянки при выезде и возврате, мин.

Валовой выброс вещества автомобилями данной группы рассчитывается раздельно для каждого периода по формуле:

$$Mi = A \times (M1 + M2) \times Nk \times Dn \times 10^{-6}$$
, т/период

где А - коэффициент выпуска (выезда);

Nk - количество автомобилей данной группы за расчетный период, штук;

Dn - количество рабочих дней в расчетном периоде (холодном, теплом, переходном).

Для определения общего валового выброса Мігод валовые выбросы одноименных веществ по периодам года суммируются:

$$M_{iron} = M_i^t + M_i^x + M_i^n;$$
 т/год

Максимальный разовый выброс вещества рассчитывается для каждого периода по формуле /16/:

$$M_{1cek} = max(Ml,M2) \times N_{kl}/3600 \Gamma/c$$

где max(M1,M2) - максимум из выбросов вещества при выезде и въезде автомобиля данной группы,

Nk1 - наибольшее количество автомобилей данной группы, выезжающих со стоянки (въезжающих на стоянку) в течение 1 часа.

Из полученных значений M_{1cek} для разных групп автомобилей и расчетных периодов выбирается максимальное.

Если в течение часа выезжают (въезжают) автомобили разных групп, то их разовые выбросы суммируются.

Величина Трг практически одинакова для различных категорий машин, но существенно изменяется в зависимости от температуры воздуха (таблица 4,4) /16/.

Так как по мере прогрева двигателя выбросы СО, СН и С уменьшаются, величина Мрг представляет собой оценку среднего удельного выброса за время прогрева Трг.

Периоды года (холодный, теплый, переходный) определяются по величине среднемесячной температуры. Месяцы, в которых среднемесячная температура ниже - 5 °С, относятся к холодному периоду, месяцы со среднемесячной температурой выше +5 0 C - к теплому периоду и с температурой от -5 0 C до + 5 0 C - к переходному. Для находящихся разных климатических предприятий, В продолжительность условных периодов будет разной. Влияние периода года учитывается только для выезжающей техники, хранящейся при температуре окружающей среды.

Количество рабочих дней в расчетном периоде (Dn) зависит от режима работы предприятий и длительности периодов со средней температурой ниже от -5 0 C до 5 0 C, выше 5 0 C, Длительность расчетных периодов для каждого региона и среднемесячная температура принимается по Справочнику по климату или по данным РГП "Казгидромет".

Расчет выбросов для ДМ, хранящихся на закрытых отапливаемых стоянках, производится по показателям, характеризующим теплый период года, для всего расчетного периода.

Время пуска дизельного двигателя с помощью пусковых двигателей и установок T_{pu} также зависит от температуры окружающей среды и принимается по таблице $4.3\ /16/$.

В переходный период значения выбросов CO, CH, C и SO_2 должны умножаться на коэффициент 0.9 от значений для холодного периода. Выбросы NOx равны выбросам в холодный период.

Время, затрачиваемое ДМ при движении по территории предприятия Tv1, Tv2, определяется путем деления пути, проходимого машиной от центра площадки, выделенной для стоянки данной группы машин, до выездных ворот (при выезде) и от въездных ворот до центра стоянки (при возврате) на среднюю скорость движения по территории предприятия. Средние скорости при въезде и выезде приведены в таблице 4.7 /16/.

При расчете загрязнения атмосферы и определении выбросов для всех видов технологических процессов и транспортных средств следует учитывать полную или частичную трансформацию поступающих в атмосферу окислов азота. Для этого установленное по расчету или инструментальными замерами количество выбросов окислов азота (M_{NOx}) в пересчете на NO_2 разделяется на составляющие оксид азота (NO) и диоксид азота (NO_2). Коэффициенты трансформации от NO_x принимаются на уровне максимальной установленной трансформации, т.е. 0.8- для NO_2 и 0.13- для NO. Тогда раздельные выбросы будут определяться по формулам:

$$M_{
m NO2\;cek.} = 0.8\; {
m x}\; M_{
m NOx\;cek.}, \, M_{
m NO2\;rog.} = 0.8\; {
m x}\; M_{
m NOx\;rog.}, \, M_{
m NO\;cek.} = 0.13\; {
m x}\; M_{
m NOx\;cek.}, \, M_{
m NO\;rog.} = 0.13\; {
m x}\; M_{
m NOx\;rog.}$$

В качестве примера приводим расчёт выброса загрязняющих веществ от автотракторной техники (ист. 6041):

CO (03<u>37):</u>

Тёплый период:

$$M_1 = 23.3 \times 1 + 1.4 \times 2 + 0.77 \times 1 + 1.44 \times 1 = 28.31 \Gamma$$

$$M_2 = 0.77 \times 1 + 1.44 \times 1 = 2.21 \Gamma$$

Холодный период:

$$M_1$$
 = 23,3 x 4 + 2,8 x 20 + 0,94 x 1 + 1,44 x 1 = 151,58 Γ

$$M_2 = 0.94 \times 1 + 1.44 \times 1 = 2.38 \Gamma$$

Переходный период:

$$M_1 = (23.3 \times 4 + 2.8 \times 20 + 0.94 \times 1 + 1.44 \times 1) \times 0.9 = 136.42 \Gamma$$

$$M_2 = (0.94 \times 1 + 1.44 \times 1) \times 0.9 = 2.14 \Gamma$$

Валовой выброс вещества автомобилями данной группы для холодного периода не ведется. Расчет валовых выбросов для теплого и переходного периода представлен ниже:

Тёплый период:

$$Mi = 1 \text{ x } (28,31 + 2,21) \text{ x } 12 \text{ x } 150 \text{ x } 10^{-6} = 0,05494 \text{ т/период}$$

Переходный период:

$$Mi = 1 x (136,42 + 2,14) x 12 x 65 x $10^{-6} = 0,10808$ т/период$$

$$M_{\text{ігод}} = 0.05494 + 0.10808 = 0.163$$
 т/год $M_{\text{1сек}} = 136.42$ х $1/3600 = 0.0379$ г/с

СН (по керосину) (2732):

Тёплый период:

$$M_1 = 5.8 \times 1 + 0.18 \times 2 + 0.26 \times 1 + 0.318 \times 1 = 6.6 \Gamma$$

$$M_2 = 0.26 \times 1 + 0.18 \times 1 = 0.44 \Gamma$$

Холодный период:

$$M_1 = 5.8 \times 4 + 0.47 \times 20 + 0.31 \times 1 + 0.18 \times 1 = 33.09 \Gamma$$

$$M_2 = 0.31 \times 1 + 0.18 \times 1 = 0.49 \Gamma$$

Переходный период:

$$M_1 = (5.8 \times 4 + 0.47 \times 20 + 0.31 \times 1 + 0.18 \times 1) \times 0.9 = 29.78 \text{ }\Gamma$$

$$M_2 = (0.31 \times 1 + 0.18 \times 1) \times 0.9 = 0.44 \Gamma$$

Валовой выброс вещества автомобилями данной группы для каждого периода:

Тёплый период:

$$Mi = 1 \text{ x } (6,6 + 0,44) \text{ x } 12 \text{ x } 150 \text{ x } 10^{-6} = 0,0127 \text{ т/период}$$

Переходный период:

$$Mi = 1 \times (29,78 + 0,44) \times 12 \times 65 \times 10^{-6} = 0,0236 \text{ т/период}$$

$$M_{\text{iron}} = 0.0127 + 0.00236 = 0.00363 \text{ т/год}$$

$$M_{1cek} = 29,78 \text{ x } 1/3600 = 0,0083 \text{ r/c}$$

C (0328):

Тёплый период:

$$M_1 = 0.029 \times 1 + 0.058 \times 2 + 0.12 \times 1 + 0.058 \times 1 = 0.32 \Gamma$$

$$M_2 = 0.12 \text{ x } 1 + 0.058 \text{ x } 1 = 0.18 \text{ g}$$

Холодный период:

$$M_{l} = 0.029 \ x \ 4 + 0.072 \ x \ 20 + 0.15 \ x \ 1 + 0.058 \ x \ 1 = 1.76 \ \Gamma$$

$$M_2 = 0.15 \text{ x } 1 + 0.058 \text{ x } 1 = 0.21 \text{ } \Gamma$$

Переходный период:

$$M_1 = (0.029 \times 4 + 0.072 \times 20 + 0.15 \times 1 + 0.058 \times 1) \times 0.9 = 1.59 \Gamma$$

$$M_2 = (0.15 \times 1 + 0.058 \times 1) \times 0.9 = 0.19 \Gamma$$

Валовой выброс вещества автомобилями данной группы для каждого периода:

Тёплый период:

$$Mi = 1 \text{ x } (0.32 + 0.18) \text{ x } 12 \text{ x } 150 \text{ x } 10^{-6} = 0.0009 \text{ т/период}$$

Переходный период:

$$Mi = 1 x (1,59 + 0,19) x 12 x 65 x 10^{-6} = 0,0014 т/период$$

$$M_{\rm irog} = 0{,}0009 + 0{,}0014 = 0{,}0023$$
 т/год

$$M_{1cek} = 1,59 \text{ x } 1/3600 = 0,0004 \text{ r/c}$$

Сера диоксид (0330):

Тёплый период:

$$M_1 = 0 \times 1 + 0.04 \times 2 + 0.17 \times 1 + 0.04 \times 1 = 0.29 \Gamma$$

$$M_2 = 0.17 \times 1 + 0.04 \times 1 = 0.21 \Gamma$$

Холодный период:

$$M_1 = 0 \times 4 + 0.24 \times 20 + 0.25 \times 1 + 0.04 \times 1 = 5.09 \Gamma$$

$$M_2 = 0.25 \text{ x } 1 + 0.04 \text{ x } 1 = 0.29 \text{ r}$$

Переходный период:

$$M_1 = (0 \times 4 + 0.24 \times 20 + 0.25 \times 1 + 0.04 \times 1) \times 0.9 = 4.58 \Gamma$$

$$M_2 = (0.25 \times 1 + 0.04 \times 1) \times 0.9 = 0.26 \Gamma$$

Валовой выброс вещества автомобилями данной группы для каждого периода:

Тёплый период:

$$Mi = 1 \times (0.29 + 0.21) \times 12 \times 150 \times 10^{-6} = 0.0009 \text{ т/период}$$

Переходный период:

$$Mi = 1 \text{ x } (4.58 + 0.26) \text{ x } 12 \text{ x } 65 \text{ x } 10^{-6} = 0.0038 \text{ т/период}$$

$$M_{\text{irog}} = 0,0009 + 0,0038 = 0,0047$$
 т/год

$$M_{1cek} = 4.58 \text{ x } 1/3600 = 0.0013 \text{ r/c}$$

NOx (0301, 0304):

Тёплый период:

$$M_1 = 1.2 \times 1 + 0.29 \times 2 + 1.49 \times 1 + 0.29 \times 1 = 3.56 \text{ }\Gamma$$

$$M_2 = 1,49 \times 1 + 0,29 \times 1 = 1,78 \Gamma$$

Холодный период:

$$M_1 = 1.2 \times 4 + 0.44 \times 20 + 1.49 \times 1 + 0.29 \times 1 = 15.38 \Gamma$$

$$M_2 = 1,49 \text{ x } 1 + 0,29 \text{ x } 1 = 1,78 \text{ } \Gamma$$

Переходный период:

$$M_l$$
 = 15,38 Γ

$$M_2 = 1.78 \text{ }\Gamma$$

Валовой выброс вещества автомобилями данной группы для каждого периода:

Тёплый период:

$$Mi = 1 \text{ x } (3.56 + 1.78) \text{ x } 12 \text{ x } 150 \text{ x } 10^{-6} = 0.0096 \text{ т/период}$$

Переходный период:

$$Mi = 1 \times (15,38 + 1,78) \times 12 \times 65 \times 10^{-6} = 0.0134$$
 т/период

$$M_{\text{ігод}} = 0,0096 + 0,0134 = 0,023$$
 т/год

$$M_{1cek} = 15,38 \text{ x } 1/3600 = 0,0043 \text{ r/c}$$

Mceκ (NO₂) =
$$0.8 \times 0.0043 = 0.0034 \text{ г/c}$$

Мсек (NO) =
$$0.13 \times 0.0043 = 0.0006 \, \text{г/c}$$

Мгод (NO) =
$$0.13 \times 0.023 = 0.003$$
 т/год

Результаты расчета выброса загрязняющих веществ от автотракторной техники представлены в таблице Б.22.

Таблица Б.22 - Исходные данные и результаты расчета выброса загрязняющих веществ от автотракторной техники

№ ист.	Тип подвижного состава	Время д техни терри	вижения ки по	Время п	прогрева пин, мин	Время работы на хол. ходу,	Время р	аботы пуо (вигателя, Три, мин	скового	Наибольш. кол-во, за 1 час	Кол-в	о рабочих Dn, шт	дней,	Кол-во за расч. период,
		(выезд), Tvl, мин	(въезд), Tv2, мин	Т	X	Тх, мин	Т	X	П	Νκ1, шт.	Т	X	П	N _к шт.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
						<u>Пло</u>	щадка №	<u>l</u>						
						Откры	тая стоян	ка						
6041	Автотрак- торная техника, дизель,	1	1	2	20	1	1	4	2	1	150	0	65	12

Окончание таблицы Б.22 - Исходные данные и результаты расчета выброса загрязняющих веществ от автотракторной техники

			Удельный	й выброс				В	ыброс 1 ма	шины, г				
При- месь:	пуско- выми двигате-	_	грев, г/мин		ение, /мин,	хол. ход, Мхх,		выезд, $ m M_1$			возврат, M_2		Объем ві	ыброса
	лями (M _{pu})	Т	X	Т	X	г/мин	Т	X	П	T	X	П	г/с	т/год
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
CO	23,3	1,4	2,8	0,77	0,94	1,44	28,31	151,58	136,42	2,21	2,38	2,14	0,0379	0,1630
СН (Керосин)	5,80	0,18	0,47	0,26	0,31	0,18	6,6	33,09	29,78	0,44	0,49	0,44	0,0083	0,0363
С	0,029	0,058	0,072	0,12	0,15	0,058	0,32	1,76	1,59	0,18	0,21	0,19	0,0004	0,0023
SO_2		0,04	0,24	0,17	0,25	0,04	0,29	5,09	4,58	0,21	0,29	0,26	0,0013	0,0047
NOx	1,2	0,29	0,44	1,49	1,49	0,29	3,56	15,38	15,38	1,78	1,78	1,78	0,0043	0,0230
NO													0,0006	0,0030
NO_2													0,0034	0,0184

Б.23 Расчет выделения загрязняющих веществ от резервуаров для хранения нефтепродуктов и раздаточных аппаратов (ист. 0027, 0030, 6048-6050)

Площадка №2

Склад ГСМ. Прием нефтепродуктов в резервный парк ГСМ осуществляется из автомобильных цистерн при помощи сливоналивных устройств. Слив осуществляется насосными агрегатами в резервуары. Хранение нефтепродуктов предусмотрено в резервуарном парке. Резервуарный парк состоит из стальных цилиндрических наземных и заглубленных резервуаров.

На складе имеются следующие типы резервуаров (всего 8 шт.):

Заглубленные резервуары (4 шт.):

- $-V = 50 \text{ m}^3 3 \text{ iiit.};$
- $V = 35 \text{ m}^3 1 \text{ шт.}$

Наземные горизонтальные резервуары (4 шт.):

- $V = 70 \text{ m}^3 1 \text{ mt.};$
- $V = 50 \text{ m}^3 2 \text{ m} \text{T}$.;
- $V = 30 \text{ м}^3 1 \text{ шт.}$

Через рассматриваемый склад ГСМ проходят следующие виды нефтепродуктов:

Тин тонниро	Количест	во топлива
Тип топлива	т/год	м ³ /год
Бензин низкооктановый (Аи-80)	60	82,2
Дизельное масло	10	11,1
Дизельное топливо	400	520,2
Итого	470	613,5

Для хранения *бензина низкооктанового* (Au-80) используется заглубленный резервуар объёмом V = 35 м³. Резервуар имеет предохранительный клапан. Всего через склад в год проходит до 60 т (82,2 м³) бензина низкооктанового (Au-80). Выброс загрязняющих веществ происходит через дыхательный клапан диаметром 0,076 м на высоте 1,5 м (ист. 0027).

Для хранения *дизельного масла* используется наземный горизонтальный резервуар $V = 30 \text{ м}^3$. Резервуар имеет герметичный люк, предохранительный клапан. Всего через склад в год проходит до $10 \text{ т} (11,1 \text{ м}^3)$ дизельного масла. Выброс загрязняющих веществ происходит через дыхательный клапан диаметром 0,076 м на высоте 4 м (ист. 0028).

Для хранения *дизельного топлива* используется: три наземных горизонтальных резервуара (V = 50 m^3 - 2 шт., V = 70 m^3 - 1 шт.) (ист. 0029); три заглубленных резервуара (V = 50 m^3 - 3 шт.) (ист. 0030). Резервуары имеют герметичные люки, предохранительные клапаны. Всего через склад в год проходит до $400 \text{ т} (520,2 \text{ m}^3)$ дизельного топлива. Выброс

загрязняющих веществ от наземных горизонтальных резервуаров происходит через дыхательные клапаны диаметром 0,076 м на высоте 4 м (ист. 0029). Выброс загрязняющих веществ от заглубленных резервуаров происходит через дыхательные клапаны диаметром 0,076 м на высоте 1,5 м (ист. 0030).

Заправка автотранспорта бензином осуществляется с помощью одного раздаточного аппарата (ист. 6048). Для раздачи дизельного масла используется раздаточный аппарат (ист. 6049). Для заправки автотранспорта дизельным топливом используется другой раздаточный аппарат (ист. 6050).

Валовый выброс паров при хранении нефтепродуктов определяется по формуле (т/год) /4/:

$$G = (Уоз x Воз + Увл x Ввл) * $K_p^{Max} x 10^{-6} + Gxp x Кнп x Np$$$

где Уоз, Увл – средние удельные выбросы из резервуара в соответствующий период года, Γ/T ;

Кнп, $K_p^{\text{мах}}$ – опытные коэффициенты;

Np – количество резервуаров, шт.

Воз, Ввл - количество жидкости, закачиваемое врезервуары, в соответствующий период года, т;

 ${\rm Gxp}-{\rm выбросы}$ паров нефтепродуктов при хранении бензина автомобильного в одном резервуаре, т/год.

В качестве примера приводим расчёт выделения ЗВ от резервуара с бензином (ист. 0027):

$$G = (780 \times 30 + 1100 \times 30) \times 0.8 \times 10^{-6} + 0.066 \times 1.0 \times 1 = 0.11112$$
 т/год

Расчёт выделения 3B от резервуара с дизельным маслом (ист. 0028): $G = (0.2 \text{ x } 5+0.2 \text{ x } 5) \text{ x } 1.0 \text{ x } 10^{-6}+0.22 \text{ x } 0.00027 \text{ x } 1 = 0.00006 \text{ т/год}$

Расчёт выделения 3B от наземных резервуаров с дизельным топливом (ист. 0029):

$$G = (1.9 \times 106 + 2.6 \times 106) \times 1.0 \times 10^{-6} + 0.22 \times 0.0029 \times 3 = 0.00239$$
 т/год

Расчёт выделения ЗВ от заглубленных резервуаров с дизельным топливом (ист. 0030):

$$G = (1.9 \times 94 + 2.6 \times 94) \times 0.8 \times 10^{-6} + 0.066 \times 0.0029 \times 3 = 0.00091 \text{ т/год}$$

Определение максимального выброса производится по следующей формуле (г/c) /4/:

$$M = (C1 \times K_p^{Max} \times V_q^{Max})/3600$$

где C1 – концентрация паров нефтепродуктов в резервуаре, г/м³; $V_{\rm q}^{\rm max}$ – максимальный объем паровоздушной смеси, вытесняемой из резервуара во время его закачки, м³/час.

Расчёт выделения ЗВ от резервуаров с бензином (ист. 0027):

$$M = (972 \times 1.0 \times 5)/3600 = 1.35 \text{ r/c}$$

Расчёт выделения ЗВ от резервуаров с маслом (ист. 0028):

$$M = (0.324 \times 1 \times 5)/3600 = 0.00045 \text{ r/c}$$

Расчёт выделения ЗВ от наземных резервуаров с дизтопливом (ист. 0029):

$$M = (3.14 \times 1 \times 5)/3600 = 0.00436 \text{ r/c}$$

Расчёт выделения ЗВ от заглубленных резервуаров с дизтопливом (ист. 0030):

$$M = (3,14 \times 1 \times 5)/3600 = 0,00436 \text{ r/c}$$

Максимальные выбросы при заполнении баков автомобилей через ТРК расчитываются по формуле /4/:

$$M_{6.a/M} = (C_{6.a/M}^{Max} \times Ve_{II})/3600, \Gamma/c$$

где Vсл — фактический максимальный расход топлива через ТРК (с учетом пропускной способности ТРК), $M^3/4$;

 $C_{6.a/m}^{\quad Max}$ — максимальная концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении баков автомобилей, г/м³.

Расчет от бензинового раздаточного аппарата (ист. 6048):

$$M_{6,a/M} = (972 \times 2.5)/3600 = 0.675 \text{ r/c}$$

Расчет от аппарата для отпуска масла (ист. 6049):

$$M_{6.a/M} = (0.324 \text{ x } 1.0)/3600 = 0.00009 \text{ r/c}$$

Расчет от дизельного раздаточного аппарата (ист. 6050):

$$M_{6.a/m} = (3.14 \text{ x } 2.5)/3600 = 0.0022 \text{ r/c}$$

Годовые выбросы (Gтрк) паров нефтепродуктов от ТРК при заправке рассчитываются как сумма выбросов из баков автомобилей (Gб.a.) и выбросов от проливов нефтепродуктов на поверхность (Gпр.a):

$$Gтрк = Gб.a. + Gпр.a, т/год$$

Значение Сб.а. рассчитывается по формуле /4/:

Gб.а. =
$$(C_6^{o3} \times Qo3 + C_6^{BJ} \times QBJ) \times 10^{-6}$$
, т/год

где C_6^{o3} , $C_6^{\text{вл}}$ — концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении баков автомобилей в осенне-зимний, весенне-летний период соответственно, г/м³.

J - удельные выбросы при проливах, Γ/M^3 . Для автобензинов **J**=125, дизтоплив = 50, масел = 12.5.

Значение Gпр., а вычисляется по формуле /4/:

Gпр.a =
$$0.5 \times J \times (Q_{03} + Q_{BJ}) \times 10^{-6}$$
, т/год

Расчет от бензинового раздаточного аппарата (ист. 6048): Gб.a. = $(420 \times 41.1 + 515 \times 41.1) \times 10^{-6} = 0.03843 \text{ т/год}$ Gпр.a = $0.5 \times 125 \times (41.1 + 41.1) \times 10^{-6} = 0.00514 \text{ т/год}$ Gтрк = 0.03843 + 0.00514 = 0.04357 т/год

Расчет от аппарата для отпуска масла (ист. 6049): Gб.a. = $(0.2 \times 5.55 + 0.2 \times 5.55) \times 10^{-6} = 0.000002 \text{ т/год}$ Gпр.a = $0.5 \times 12.5 \times (5.55 + 5.55) \times 10^{-6} = 0.000069 \text{ т/год}$ Gтрк = 0.000002 + 0.000069 = 0.0000071 т/год

Расчет от дизельного раздаточного аппарата (ист. 6050): Gб.a. = $(1.6 \times 260.1 + 2.2 \times 260.1) \times 10^{-6} = 0.00099 \text{ т/год}$ Gпр.a = $0.5 \times 50 \times (260.1 + 260.1) \times 10^{-6} = 0.013005 \text{ т/год}$ Gтрк = 0.00099 + 0.013005 = 0.014 т/год

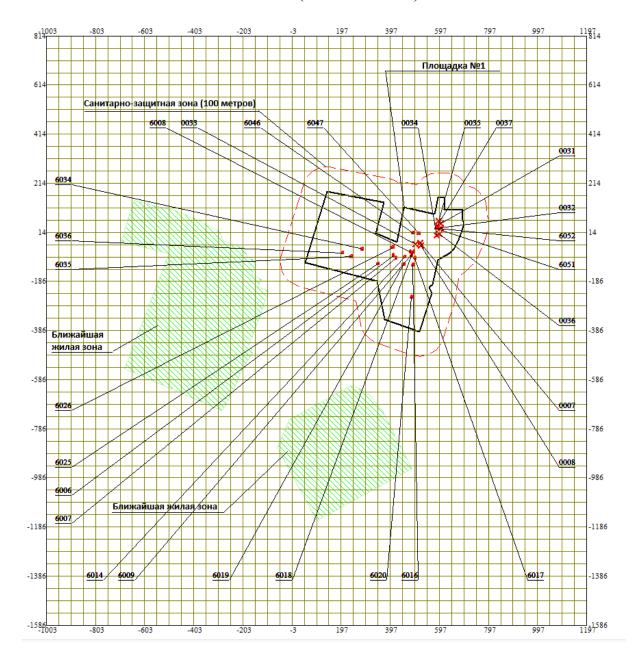
Идентификация состава выбросов от резервуаров для хранения нефтепродуктов и раздаточных аппаратов и результаты расчетов представлены в таблице Б.25.

Таблица Б.23	– Иденти	ифекация (состава в	ыбросов от скл	іада ГСМ	I и резулі	ьтаты рас	четов	
				Уг	леводоро	оды			
Определяем	Γ	Іредельны	ie			Арома	тические		
ый параметр	C1-C5 (0415)	C12- C19 (2754)	C6- C10 (0416)	Непредельн ые (0501)	бензо л (0602)	толуо л (0621)	ксило л (0616)	этилбенз ол (0627)	Сероводор од (0333)
1	2	3	4	5	6	7	8	9	10
	1		I	Площадк	a №2	1	I		
				Склады І	СМ				
Заглубленный низкооктанов ист.0027			80) –	M =	1,35	г/с	G =	0,11112	т/год
Сі мас %	75,47	-	18,38	2,5	2	1,45	0,15	0,05	-
Mi, r/c	1,018 85	-	0,248 13	0,03375	0,027 00	0,019 58	0,002 03	0,00068	-
Gi, т/год	0,083 86	-	0,020 42	0,00278	0,002 22	0,001 61	0,000 17	0,00006	-
Наземные гор с дизельным				M =	0,004 36	г/с	G =	0,00239	т/год
Сі мас %	_	99,57	-	-		(0,15		0,28
Mi, r/c	-	0,0043	-	-			*		0,000012
Gi, т/год	-	0,0024	-	-			*		0,000007
Заглубленные топливом – и		ары с дизе	ельным	M =	0,004 36	г/с	G =	0,00091	т/год
Сі мас %	_	99,57	-	-		(0,15		0,28
Mi, r/c	-	0,0043	-	-			*		0,000012
Gi, т/год	-	0,0009	-	-			*		0,000003
ТРК бензиног	вая – ист	. 6048	•	M =	0,675	г/с	G =	0,04357	т/год
Сі мас %	75,47	-	18,38	2,5	2	1,45	0,15	0,05	-
Mi, r/c	0,509 42	-	0,124 07	0,01688	0,013 50	0,009 79	0,001 01	0,00034	-
Gi, т/год	0,032 88	-	0,008 01	0,00109	0,000 87	0,000 63	0,000 07	0,000022	-
ТРК дизельна	ля — ист. (6050		M =	0,002	г/с	G =	0,014	т/год
Сі мас %	_	99,57	_	-		(0,15		0,28
Mi, r/c	-	0,0022 00	-	-			*		0,000006
Gi, т/год	-	0,0139 00	-	-			*		0,000039

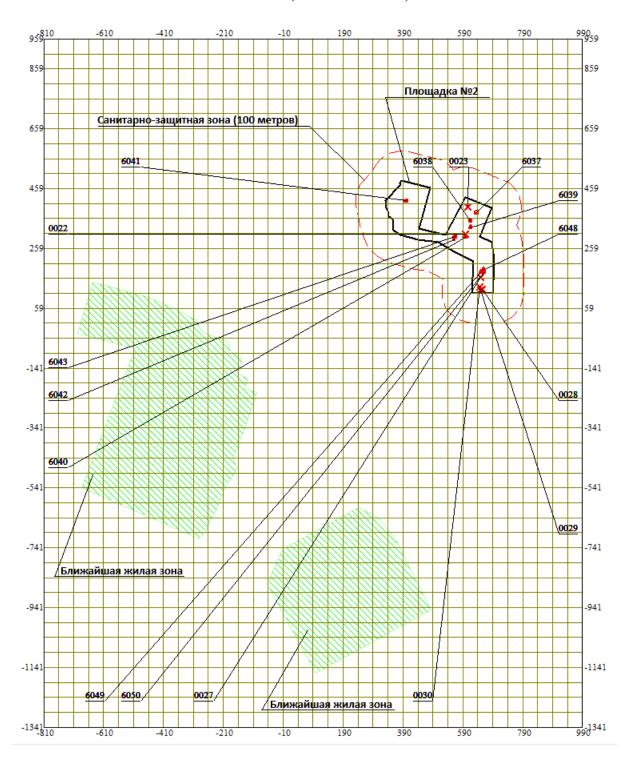
Резервуар с маслом - ист. 0028:

M = 0.00045 r/c

G = 0,00006 т/год


Аппарат для отпуска масла - ист. 6049

 $M_{6.a/M} = 0,00009 \ \Gamma/c$


Gтрк = 0,0000071 т/год

ПРИЛОЖЕНИЕ В

Карта-схема объекта, с отображением источников выбросов загрязняющих веществ (площадка №1)

Карта-схема объекта, с отображением источников выбросов загрязняющих веществ (площадка №2)

ПРИЛОЖЕНИЕ Г Ситуационная карта—схема района расположения объекта

ПРИЛОЖЕНИЕ Д

«ҚАЗГИДРОМЕТ» РМК РГП «КАЗГИДРОМЕТ»

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ЭКОЛОГИЯ, ЖӘНЕ ТАБИҒИ РЕСУРСТАР МИНИСТРЛІГІ МИНИСТЕРСТВО
ЭКОЛОГИИ И
ПРИРОДНЫХ
РЕСУРСОВ
РЕСПУБЛИКИ
КАЗАХСТАН

09.10.2025

- 1. Город -
- 2. Адрес Восточно-Казахстанская область, Шемонаихинский район, посёлок Первомайский
- 4. Организация, запрашивающая фон ТОО \"ВСП\"
- 5. Объект, для которого устанавливается фон **Производство и переработка сельскохозяйственной продукции**
- 6. Разрабатываемый проект НДВ
 - Перечень вредных веществ, по которым устанавливается фон: Взвешанные частицы РМ2.5, Взвешанные частицы РМ10, Азота диоксид, Взвеш.в-ва,
- Диоксид серы, Сульфаты, Углерода оксид, Азота оксид, Озон, Сероводород, Фенол, Фтористый водород, Хлор, Водород хлористый, Углеводороды, Свинец, Аммиак, Кислота серная, Формальдегид, Мышьяк, Хром,

В связи с отсутствием наблюдений за состоянием атмосферного воздуха в Восточно-Казахстанская область, Шемонаихинский район, посёлок Первомайский выдача справки о фоновых концентрациях загрязняющих веществ в атмосферном воздухе не представляется возможным.

Приложение к запросу №6 от 3 февраля 2025 года

Информация о климатических метеорологических характеристиках в г.Шемонаиха Шемонаихинского района ВКО по многолетним данным МС Шемонаиха.

- Среднемаксимальная температура воздуха наиболее жаркого месяца (июль): плюс 27,6°С.
- Среднеминимальная температура воздуха наиболее холодного месяца (январь): минус 21,0°С.
- 3. Скорость ветра, повторяемость превышения которой составляет 5%: 7 м/с.

4. Повторяемость направлений ветра и штилей, %:

C	CB	В	ЮВ	Ю	Ю3	3	C3	штиль
25	11	4	9	26	9	4	12	25

5. Среднегодовая скорость ветра: 2,3 м/с.

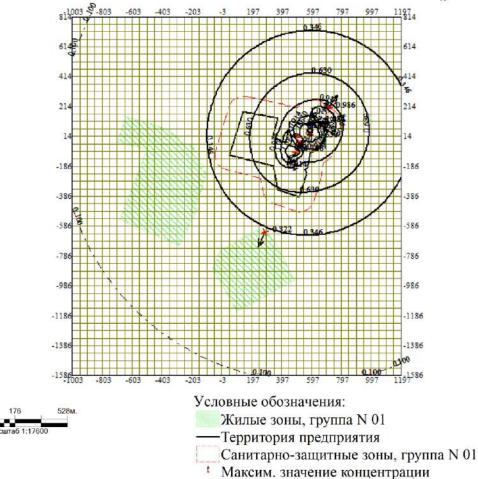
Примечание: в связи с отсутствием наблюдательного пункта в с.Половинка, с.Камышинка Шемонаихинского района ВКО, информация предоставлена по данным ближайшей метеостанции Шемонаиха.

Начальник ОМАМ

Ш. Базарова

ПРИЛОЖЕНИЕ Е

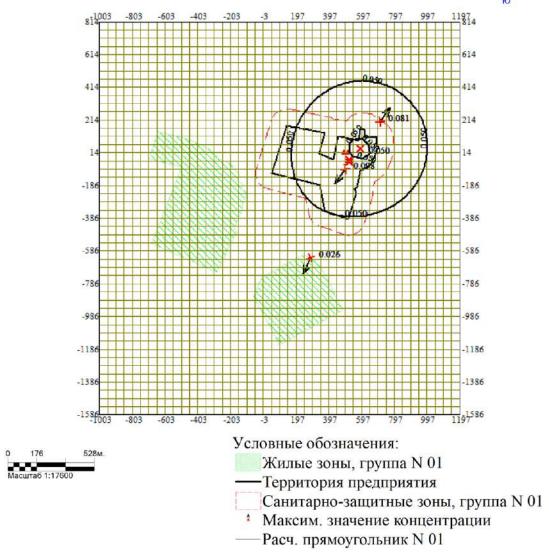
Результаты расчёта приземных концентраций в графическом виде (площадка №1)


Город: 003 Восточно-Казахстанская область

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

ПК ЭРА v3.0, Модель: MPK-2014

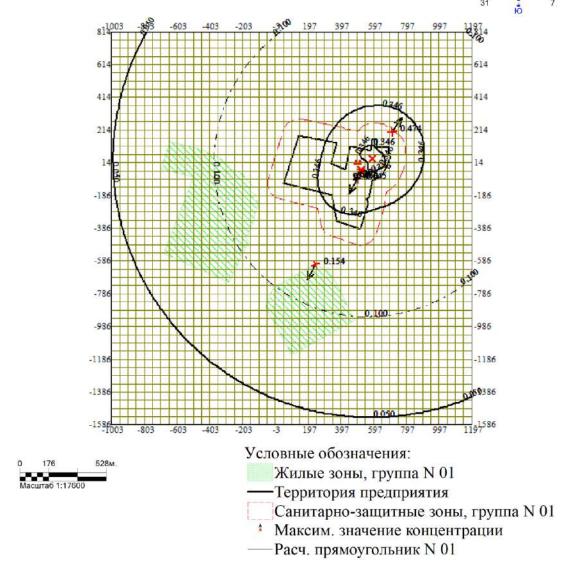
0301 Азота (IV) диоксид (Азота диоксид) (4)


Расч. прямоугольник N 01

Макс концентрация 1.1864692 ПДК достигается в точке x=497 y=-86 При опасном направлении 34° и опасной скорости ветра 1.62 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

ПК ЭРА v3.0, Модель: MPК-2014 0304 Азот (II) оксид (Азота оксид) (6)

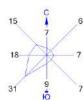


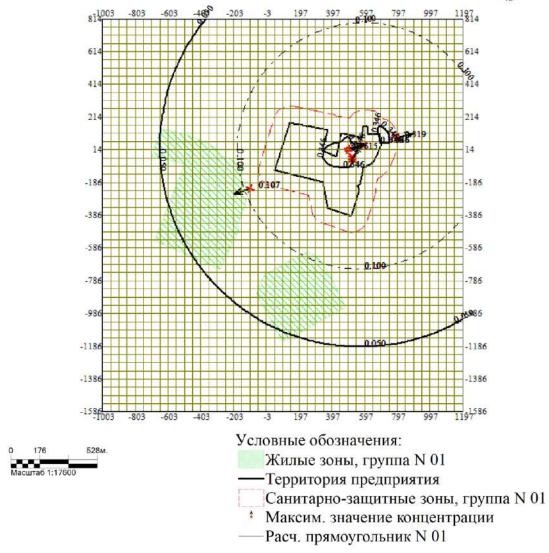
Макс концентрация 0.0975331 ПДК достигается в точке x= 497 y= -86 При опасном направлении 34° и опасной скорости ветра 1.62 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

ПК ЭРА v3.0, Модель: MPК-2014

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид (516)

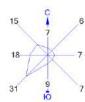


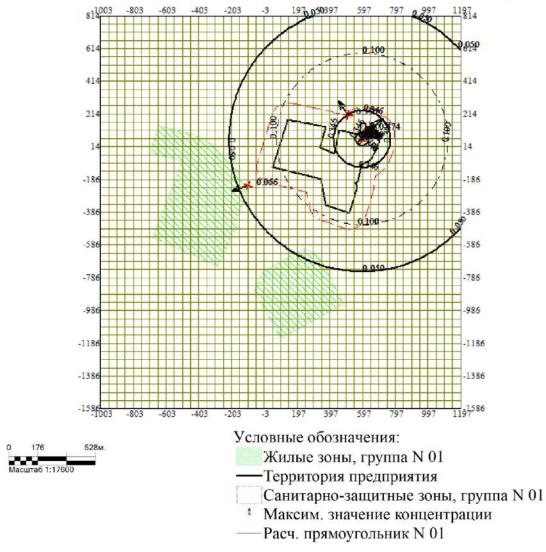

Макс концентрация 0.6450167 ПДК достигается в точке x=497~y=-86 При опасном направлении 32° и опасной скорости ветра 1.45 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Объект : 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

ПК ЭРА v3.0, Модель: MPК-2014

0337 Углерод оксид (Окись углерода, Угарный газ) (584)

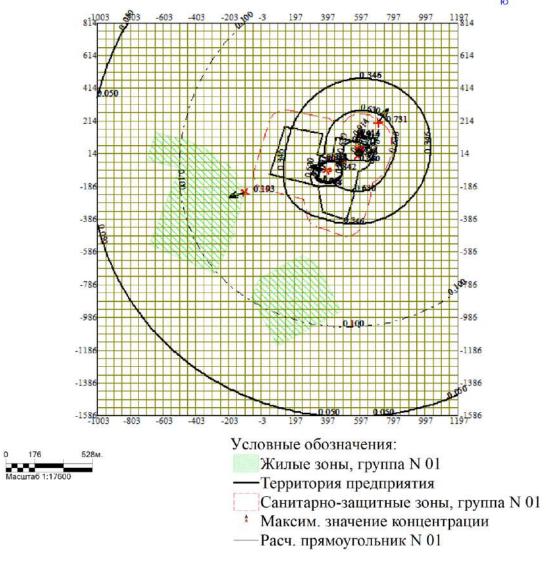



Макс концентрация 0.6151703 ПДК достигается в точке x= 497 y= 14 При опасном направлении 249° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

ПК ЭРА v3.0, Модель: MPК-2014

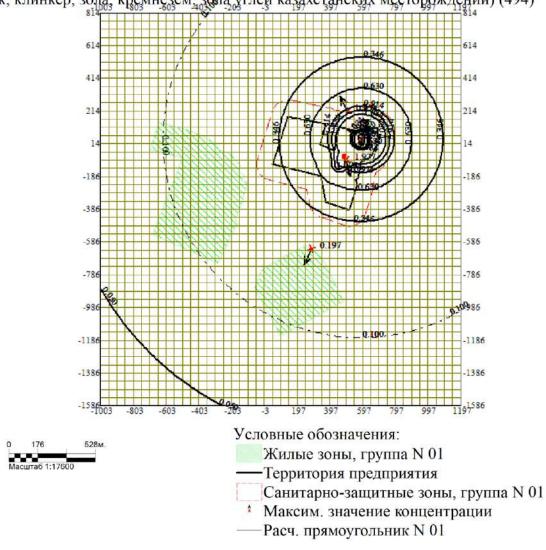
1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)



Макс концентрация 0.4738167 ПДК достигается в точке x= 647 y= 114 При опасном направлении 225° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

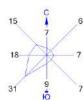
ПК ЭРА v3.0, Модель: MPK-2014 2902 Взвешенные частицы (116)

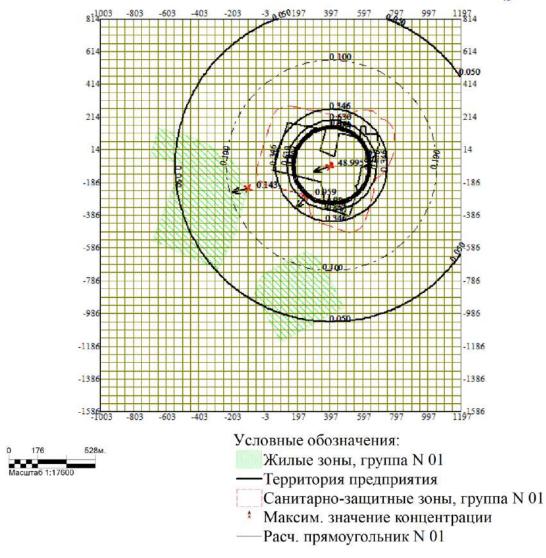


Макс концентрация 3.8416741 ПДК достигается в точке x= 397 y= -86 При опасном направлении 103° и опасной скорости ветра 0.75 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

ПК ЭРА v3.0, Модель: MPK-2014


2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зода, кремнезем, зода углей казахстанских месторождений) (494)



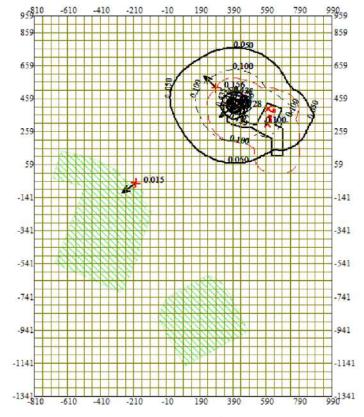
Макс концентрация 1.9765255 ПДК достигается в точке x= 497 y= -86 При опасном направлении 346° и опасной скорости ветра 0.67 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 8

ПК ЭРА v3.0, Модель: MPK-2014 2936 Пыль древесная (1039*)

Макс концентрация 48.9950294 ПДК достигается в точке x= 397 y= -86 При опасном направлении 69° и опасной скорости ветра 0.58 м/с Расчетный прямоугольник № 1, ширина 2200 м, высота 2400 м, шаг расчетной сетки 50 м, количество расчетных точек 45*49 Расчёт на существующее положение.

Результаты расчёта приземных концентраций в графическом виде (площадка №2)

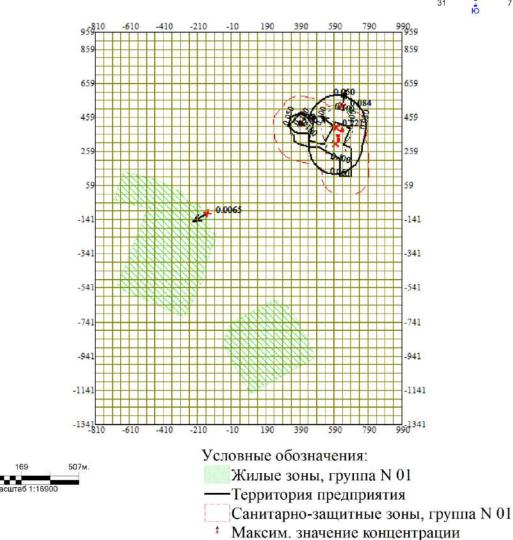

Город: 003 Восточно-Казахстанская область

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 7

ПК ЭРА v3.0, Модель: MPK-2014

0301 Азота (IV) диоксид (Азота диоксид) (4)

0 169 507м Масштаб 1:16900 Условные обозначения:

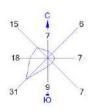

- Жилые зоны, группа N 01
- Территория предприятия
- Санитарно-защитные зоны, группа N 01
- * Максим. значение концентрации
- Расч. прямоугольник N 01

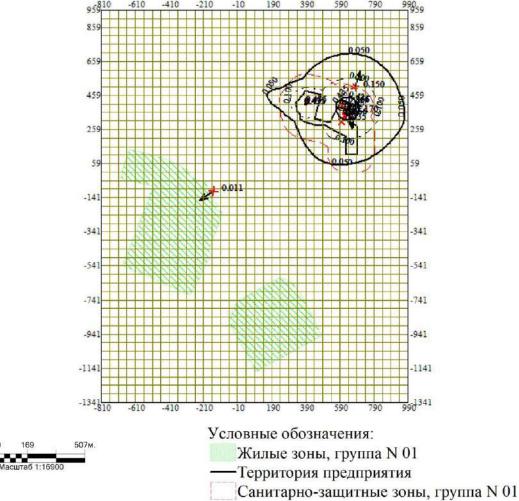
Макс концентрация 1.7276206 ПДК достигается в точке x=390 y=409 При опасном направлении 53° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 1800 м, высота 2300 м, шаг расчетной сетки 50 м, количество расчетных точек 37*47 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 7

ПК ЭРА v3.0, Модель: MPK-2014

0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид (516)

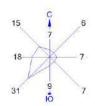

Расч. прямоугольник N 01

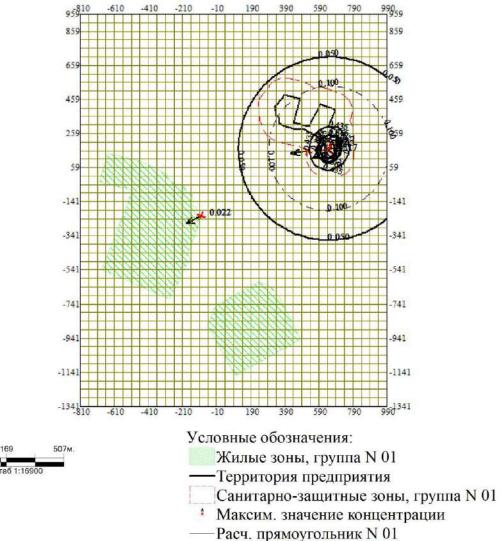

Макс концентрация 0.2214213 ПДК достигается в точке x= 590 y= 409 При опасном направлении 128° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 1800 м, высота 2300 м, шаг расчетной сетки 50 м, количество расчетных точек 37*47 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 7

ПК ЭРА v3.0, Модель: MPК-2014

0337 Углерод оксид (Окись углерода, Угарный газ) (584)

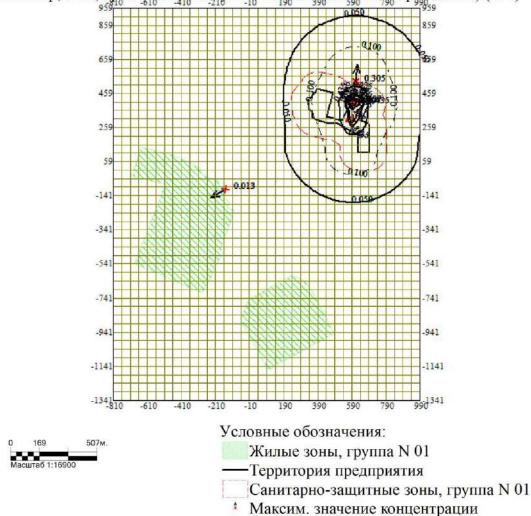

Максим. значение концентрации
 Расч. прямоугольник N 01


Макс концентрация 1.1696049 ПДК достигается в точке x= 640 y= 359 При опасном направлении 349° и опасной скорости ветра 0.53 м/с Расчетный прямоугольник № 1, ширина 1800 м, высота 2300 м, шаг расчетной сетки 50 м, количество расчетных точек 37*47 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 7

ПК ЭРА v3.0, Модель: MPК-2014

0602 Бензол (64)

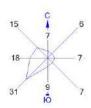


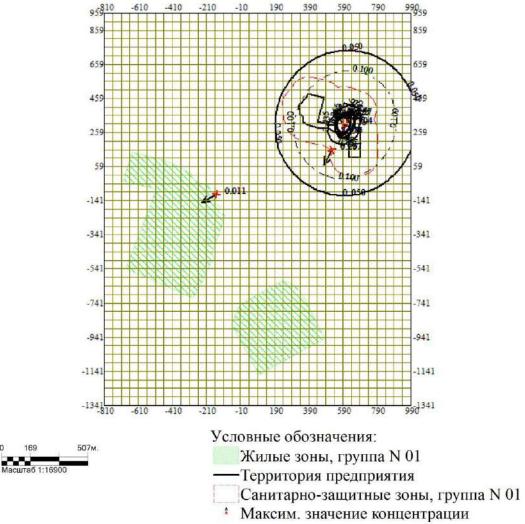
Макс концентрация 3.3169179 ПДК достигается в точке x= 640 y= 159 При опасном направлении 64° и опасной скорости ветра 0.5 м/с Расчетный прямоугольник № 1, ширина 1800 м, высота 2300 м, шаг расчетной сетки 50 м, количество расчетных точек 37*47 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 7

ПК ЭРА v3.0, Модель: MPK-2014

2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола, углей казахстанских месторождений) (494)


Макс концентрация 1.9971255 ПДК достигается в точке x= 590 y= 409 При опасном направлении 128° и опасной скорости ветра 0.57 м/с Расчетный прямоугольник № 1, ширина 1800 м, высота 2300 м, шаг расчетной сетки 50 м, количество расчетных точек 37*47 Расчёт на существующее положение.

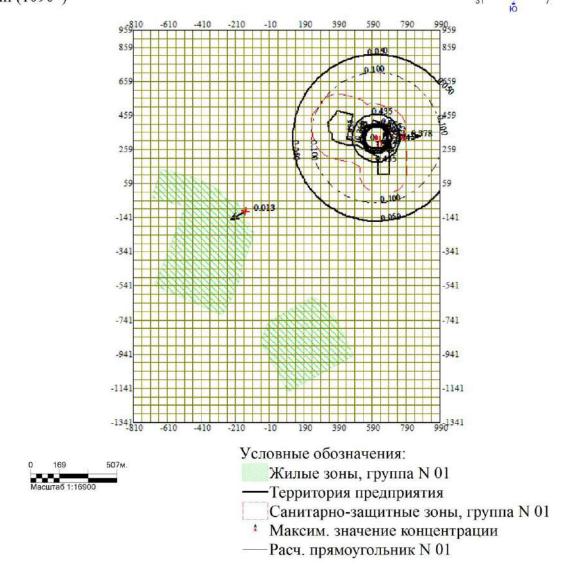

Расч. прямоугольник N 01

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 7

ПК ЭРА v3.0, Модель: MPК-2014

2930 Пыль абразивная (Корунд белый, Монокорунд) (1027*)

Расч. прямоугольник N 01


Макс концентрация 3.3040619 ПДК достигается в точке x= 590 y= 309 При опасном направлении 147° и опасной скорости ветра 0.6 м/с Расчетный прямоугольник № 1, ширина 1800 м, высота 2300 м, шаг расчетной сетки 50 м, количество расчетных точек 37*47 Расчёт на существующее положение.

Объект: 0010 ТОО "ВСП" (площадки в п.Первомайский) Вар.№ 7

ПК ЭРА v3.0, Модель: MPK-2014

2978 Пыль тонко измельченного резинового вулканизата из отходов подощвенных

резин (1090*)

Макс концентрация 3.4741449 ПДК достигается в точке x = 640 y = 309При опасном направлении 307° и опасной скорости ветра 0.67 м/с Расчетный прямоугольник № 1, ширина 1800 м, высота 2300 м, шаг расчетной сетки 50 м, количество расчетных точек 37*47 Расчёт на существующее положение.

ПРИЛОЖЕНИЕ Ж

1-1 12001025

ГОСУДАРСТВЕННАЯ ЛИЦЕНЗИЯ

Выдана Товаришество с ограниченной ответственностью "ЭКО2"

Восточно-казахстанская область Г.УСТЬ-КАМЕНОГОРСК, улица ДЗЕРЖИНСКОГО,

24, 51, PHH: 181600281351

(полное наименование, местонахождение, реквизиты юридического лица /

полностью фамилия, имя, отчество физического лица)

на занятие Выполнение работ и оказание услуг в области охраны окружающей

(наименование вида деятельности (действия) в соответствии с Законом

Республики Казахстан «О лицензировании»)

Особые условия действия лицензии лицензия действительна на территории Республики Казахстан

(в соответствии со статьей 9 Закона Республики Казахстан «О лицензировании»)

Орган, выдавший лицензию

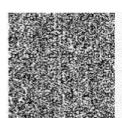
Номер лицензии

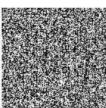
Министерство охраны окружающей среды Республики Казахстан.

Комитет экологического регулирования и контроля

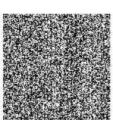
(полное наименование государственного органа лицензирования)

Руководитель (уполномоченное лицо)


ТАУТЕЕВ АУЕСБЕК ЗПАШЕВИЧ


(фамилия и инициалы руководителя (уполномоченного лица) органа, выдавшего

лицензию)


Дата выдачи лицензии 16.03.2012

Город г.Астана 01460P

румент согласно пункту 1 статья / эм. от / ян и документу на бумажном носителе.

12001025 Страница 1 из 2

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ **ЛИЦЕНЗИИ**

01460P Номер лицензии

Дата выдачи лицензии 16.03.2012

Перечень лицензируемых видов работ и услуг, входящих в состав лицензируемого вида деятельности

ТАУТЕЕВ АУЕСБЕК ЗПАШЕВИЧ

- Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

Орган, выдавший приложение к

Руководитель (уполномоченное

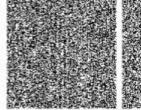
лицо)

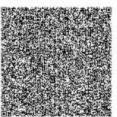
Дата выдачи приложения к

лицензии

Номер приложения к лицензии

001


16.03.2012


01460P

Министерство охраны окружающей среды Республики Казахстан.

Комитет экологического регулирования и контроля

Город г.Астана

12001025 Страница 2 из 2

ПРИЛОЖЕНИЕ К ГОСУДАРСТВЕННОЙ ЛИЦЕНЗИИ

Номер лицензии 01460Р

Дата выдачи лицензии 16.03.2012

Филиалы,

представительства

(полное наименование, местонахождение, реквизиты)

Производственная база

(местонахождение)

Орган, выдавший приложение к лицензии Министерство охраны окружающей среды Республики Казахстан. Комитет экологического регулирования и

контроля

(полное наименование органа, выдавшего приложение к лицензии)

Руководитель (уполномоченное лицо)

ТАУТЕЕВ АУЕСБЕК ЗПАШЕВИЧ

(фамилия и инициалы руководителя (уполномоченного лица) органа,

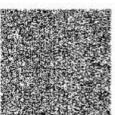
01460P

выдавшего лицензию)

Дата выдачи приложения к

лицензии

16.03.2012


Номер приложения к

лицензии

001

Город г.Астана

Берстин құмат «Энепроман құрсат эмен энепромак ынфалық колтайв турсан»—1962 жылы 2 дынардын қырақтар жақстар Робоныя 1 тармағына сайыс сөлек сөлек тасыныңтағы құматор Деминій деярияк соғылық правит 1 сөлек 2 39% от 7 ливира 1961 года —6% деявермены деяриясы бере аналықтарыны декурсину на Бүменгин колтост.

ПРИЛОЖЕНИЕ 3

1 - 4

Немірі: KZ38VDD00063229

Шығыс Қазақстан облысының әкімшілігі

Шығыс Қазақстан облысының Табиғи ресурстар және табиғатты пайдалануды реттеу басқармасы

I, II және III санаттағы объектілеріне коршаған ортаға эмиссияларға РҰҚСАТ

Табигатты пайдаланушының атауы:

"ВОСТОКСЕЛЬХОЗПРОДУКТ-" жауапкершілігі шектеулі серіктестігі 071809, Қазақстан Республикасы, Шығыс Қазақстан облысы, Шемонаиха ауданы, Первомай а.о., Первомайский а., Металлургов көшесі, № 1/9 үй.

(индекс, почтовый адрес)

Жеке сәйкестендіру нөмірі/бизнес-сәйкестендіру нөмірі:

000140002188

Өндірістік объектінің атауы;

"ВОСТОКСЕЛЬХОЗПРОДУКТ" ЖШС

Өндірістік объектінің орналасқан жері:

Шығыс Қазақстан облысы, Шемонанха ауданы, Первомай а.о., Первомайский а. улица Полевая, І

Шығыс Қазақстан облысы, Шемонаиха ауданы, Первомай а.о., Первомайский а. улица Скоростная, 4

Табиғат пайдаланудың мынадай шарттарын сақтау:

і. Ластаушы заттардың шығарындыларын мыналардан аспайтын көлемдерде жүргізу:

ZU O MBIRBI	9.23824794644809 тонн
2017 жылы	153,6908522 тониа
2018 жылы	153,6908522 тонна
2019 жылы	153,6908522 тонно
2020 жылы	153,6908522 токна
2021 жылы	153.6908522 тонна
2022 жылы	153,6908522 TOHHA
2023 жылы	153,6908522 тонна
2024 жылы	153.6908522 тонна
2025 жылы	153,6908522 тонна
2026 жылы	тонна

2. Ластаушы заттардың төгінділерін мыналардан аспайтын көлемдерде жүргізу:

2016 жылы	тонна
2017 жылы	тонна
2018 жылы	тонна
2019 жылы	тонна
2020 жылы	тонна
2021 жылы	70 нна
2022 жылы	тонна
2023 жылы	тонна
2024 жылы	тонна
	тонна
2026 жылы	тонна

3. Өндіріс және тұтыну қалдықтарын орналастыруды мыналардан аспайтын көлемдерде жүргізу:

2016 жылы	TORRE
2017 жылы	
2018 жылы	
2019 жылы	тония
2020 жылы	гонна
2021 жылы	тонна
2022 жылы	тонна
2023 жылы	тонна
2024 жылы	тонна
	тонна
2026 жылы	

4. Күкірт орналастыруды мыналардан аспайтын көлемдерде жүргізу:

2016 жылы	тонна
2017 жылы	тонна
2018 жылы	тонна
2019 жылы	тонна
2020 жылы	
2021 жылы	тонна
2022 жылы	тонна
2023 жылы	тонна
2024 жылы	тонна
2025 жылы	тонна
2026 жылы	тонна

2-4

5.Осы I, II және III санаттағы объектілеріне қоршаған ортаға эмиссияларға рұқсаттың (бұдан әрі – I, II және III санаттағы объектілеріне рұңсат) 1 косымшасына сәйкес қоршаған ортаға эмиссия нормативтері жобалары, ревонструкция немесе кайта құрылатын кәсіпорын объектілері жобаларының коршаған ортаға әсерді бағалау бөлімдері эмиссия нормативтерінің ингридненттері бойынша (заттар) мемлекеттік эколегиялық сараптаманың он көртымылыкы негізінде осы рұқсатты белгіленген эмиссия (шығарындылар, тегінділер, калдыктар, құқірт) лимиттерін асырмау. 6.Осы I, II және III санаттағы объектілеріне рұқсаттың 3 косымшасына сәйкес тәбиғат пайдалану шарттары. 7.Осы I, II және III санаттағы объектілеріне рұқсаттың 3 косымшасына сәйкес Рұқсаттың колдинылу кезеніне келісілген көршаған ортаны көрғау жаніндегі іс-шаралар жөспарын, сөмеспарын көрмеспарын ортаға эмиссияларды өтендету бойынша, жобалау құжаттамасымен белгіленген, мемлекеттік якологиялық сараптаманын оң көрытындысымен карастырылған іс-шаралар жөспарын, сонымен катар объектілеріне рұқсаттың колданылу мерзімі 10.12.2016 жылдан 31.12.2025 жылға дейін. Ескертие:

І. ІІ және ІІІ санаттағы объектілеріне рұқсатта бөлгіленген эмиссиялар лимиттері, жалпы эмиссиялар колемі және ингредиенттер (заттар) бойынша осы І. ІІ және ІІІ санаттағы объектілеріне рұқсат берілген күннен бастап қолдамысқа енеді және Қоршаған ортаға эмиссияларға рұқсат беру үшін құжаттардың нысандарын және оларды толтыру тару булымында і 19 тармағында көрсетілген формула бойынша есептеледі. І. ІІ және ІІІ санаттағы объектілеріне рұқса тәлілектардын және осы І. ІІ және ІІІ санаттағы объектілеріне рұқсатта көрсетілген табиғат пайдылану шарттары өзгергенсе аспи колдалық аболым. Осы І. ІІ және ІІІ санаттағы объектілеріне рұқсаттын ажырамас бөлігі болып табылады.

Бөлімнің басшысы

Акмырза Айнур Ерболовна

(жеке қолы)

Тегі, аты, әкесінінің аты (әкесінің аты болған жағдайда)

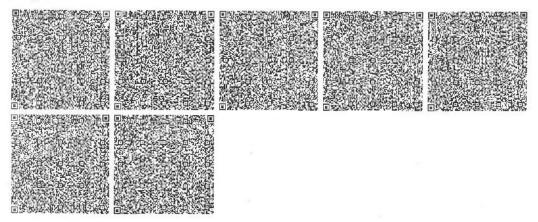
Берілген орны: Өскемен к

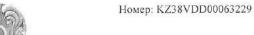
Берілген күні: 29.11.2016 ж.

Қоршаған ортаға эмиссияларға рұксатқа I қосымша

à

Қоршаған ортаға эмиссия нормативтері жобалары, реконструкция немесе қайта құрылатын кәсіпорын объектілері жобаларының қоршаған ортаға әсерді бағалау бөлімдері эмиссия нормативтерінің ингридиенттері бойынша (заттар) мемлекеттік экологиялық сараптаманың оң қортындысы


№	Мемлекеттік экологиялық сараптама қорытындыларының атауы	Мемлекеттік экологиялық сараптама қорытынды номері және берілген күні				
Шығарынд	цылар					
1	«ВОСТОКСЕЛЬХОЗПРОДУКТ», Первомайский ауылы» ЖШС үшін арналған шектеулі рұқсат етілген шығарындылардың нормативтер жобасына берілген мемлекеттік экологиялық сараптама қорытындысы	№KZ58VDC00055093 18.11.2016 ж.				
Төгінділер	· ·					
Қалдықтар	ды орналастыру					
Күкіртті о	оналастыру					


2 Қосымша қоршаған ортаға эмиссияларға рұқсатқа

Табиғат пайдалану шарттары

- 1. Ластаушы заттардың эмиссия нормативтерін қадағалау.
- 2. Қоршаған ортаны қорғау жолындағы іс-шаралар жоспарына сәйкес қоршаған ортаны қорғау іс-шараларын орындау.
- 3. Тоқсан сайын келесі тоқсанның бірінші айының 10 күніне дейін Шығыс Қазақстан облысы табиғи ресурстар және табиғат пайдалануды реттеу басқармасына қоршаған ортаны қорғау бойынша шараларының бағдарламасы (жоспары) және табиғат пайдаланудың негізгі шарттарын орындау бойынша есеп тапсыру.
- Тоқсан сайын келесі тоқсанның бірінші айының 10 күніне дейін Шығыс Қазақстан облысы табиғи ресурстар және табиғат пайдалануды реттеу басқармасына шығарындыларды орналастыру бойынша есеп тапсыру.

Акимат Восточно-Казахстанской области

Управление природных ресурсов и регулирования природопользования Восточно-Казахстанской области

РАЗРЕШЕНИЕ

на эмиссни в окружающую среду для объектов I, II и III категорий

Наименование природопользователя:

	(индекс, почтовый адрес)	
Индивидуальный идентификационный н	омер/бизнес-идентификационный номер:	000140002188
Наименование производственного объек	та: ТОО "ВОСТОКСЕЛЬХОЗПРО	ДУКТ"
местонахождение производственного об	бъекта:	
Восточно-Казахстанская область. Шемо	наихинский район, Первомайский с.о., с.Г	Іервомайский улица Полевая. І
	1. The state of the section of the s	
юсточно-Казахстанская область, Шемо	наихинский район, Первомайский с.о., с.Г	тервомайский улица Скоростная, 4
	Соблюдать следующие условия природопо	льзования:
1.0		
1. Производить выбросы загрязняющих вец		
в <u> 2016</u> го		
	лду <u>153.6908522</u> тоин лду <u>153.6908522</u> тоин	
в 2018 го		
в <u>2019</u> го в 2020 го		
B 2020 FG	5ДУ 153,6908522 ТОНН	
	152 6000572	
в 2021 го		
в <u>2021</u> го в <u>2022</u> го	рду153,6908522 тоин	
B 2021 FG B 2022 FG B 2023 FG	рду <u>153,6908522</u> тоян рду <u>153,6908522</u> тоян	
B 2021 FG 8 2022 FG 8 2023 FG 8 2024 FG	лду <u>153,6908522</u> тоян лду <u>153,6908522</u> тоян лду <u>153,6908522</u> тоян	
B 2021 FG B 2022 FG B 2023 FG B 2024 FG B 2025 FG	рду 153.6908522 тоян рду 153.6908522 тоян рду 153.6908522 тоян рду 153.6908522 тоян	
B 2021 F0 B 2022 f0 B 2023 f0 B 2025 f0 B 2025 f0 B 2026 f0	лу 153.6908522 тонн 133.6908522 тонн 2019 153.6908522 тонн 2019 153.6908522 тонн 2019 тонн	
B 2021 F0 B 2022 F0 B 2023 F0 B 2024 F0 B 2025 F0	лу 153.6908522 тонн 133.6908522 тонн 2019 153.6908522 тонн 2019 153.6908522 тонн 2019 тонн	
в 2021 гг в 2022 гг в 2023 гг в 2024 гг в 2025 гг в 2025 гг в 2026 гг 2. Производить сбросы загрязивющих веще	лу 153.6908522 тонн 133.6908522 тонн 2019 153.6908522 тонн 2019 153.6908522 тонн 2019 тонн	
в 2021 го в 2022 го в 2023 го в 2024 го в 2025 го в 2026 го в 2026 го в 2026 го в 2026 го	лу 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522 тонн 153,6908522	
в 2021 го в 2022 го в 2023 го в 2024 го в 2025 го в 2025 го 2 Производить сбросы загрязияющих веше в 2016 го в 2017 го в 2018 го в 2017 го в 2018 го	лу 153.6908522 тонн 153.6908522 тонн 202 153.6908522 тонн 2030 153.6908522 тонн 2030 153.6908522 тонн 2030 тонн 2030 тонн 2030 тонн 2040 тонн 2040 тонн 2040 тонн 2040 тонн	.
в 2021 го в 2022 го в 2023 го в 2024 го в 2025 го в 2025 го 2 Производить сбросы загрязияноших веше в 2016 го в 2017 го в 2018 го в 2017 го в 2018 го	лу 153.6908522 тонн лу 153.6908522 тонн лу 153.6908522 тонн лу 153.6908522 тонн лу 153.6908522 тонн лу тонн лу тонн лу тонн лу тонн	ž.
в 2021 го в 2022 го в 2023 го в 2023 го в 2025 го в 2026 го 2. Производить обросы загрязияющих веще в 2016 го в 2017 го в 2018 го в 2018 го в 2018 го в 2018 го в 2018 го	лу 153.6908522 тонн 153.6908522 тонн 202 153.6908522 тонн 2030 153.6908522 тонн 2030 153.6908522 тонн 2030 тонн 2030 тонн 2030 тонн 2040 тонн 2040 тонн 2040 тонн 2040 тонн	ž.
В 2021 го 8 2022 го 8 2023 го 8 2024 го 8 2025 го 8 2025 го 8 2026 го 2. Производить обросы загрязияющих веще 8 2017 го 8 2018 го 8 2019 го 8 2020 го	лу 153.6908522 тоян рау 153.6908522 тоян рау 153.6908522 тоян рау 153.6908522 тоян лау 153.6908522 тоян лау 153.6908522 тоян лон тонн	ì.
В 2021 го в 2022 го в 2023 го в 2023 го в 2024 го в 2025 го в 2026 го го 2. Производить обросы загрязияющих веще в 2016 го в 2017 го в 2018 го в 2020 го в 2021 го в 2021 го в 2021 го в 2021 го в 2021 го в 2021 го	лу 153.6908522 тонн рау то	ž.
В 2021 го 8 2022 го 8 2023 го 8 2024 го 8 2025 го 8 2026 го 8 2026 го 8 2026 го 8 2026 го 8 2026 го 8 2027 го 8 2016 го 8 2017 го 8 2019 го 8 2019 го 8 2021 го 8 2021 го 8 2020 го 8 2020 го 8 2020 го 8 2021 го 8 2021 го 8 2021 го 8 2022 го 8 2022 го 8 2022 го 8 2022 го 8 2022 го 8 2022 го 8 2023 го 8 2023 го	лу 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.690852	S.
В	лу 153.6908522 тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян рау тоян	ì.
В	лу 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.6908522 тонн 153.690852	ì.

B_	2016 году	тонн
8_	2017 году	тонн
8_	2018 roay	тонн
8_	2019 году	тонн
B	2020 году	тонн
	2021 году	
	2022 roay	
8_	2023 году	тонн
8	2024 году	тони
	2025 году	
	2026 голу	

4. Производить размещение серы в объемах , не превышающих:

2 - 4

4. Производить размещение серы в объемах, не превышающих:

8_	2016 году	тонн
4_	2017 году	тонн
8_	2018 году	тони
11_	2019 году	тонн
8_	2020 году	тонн
8_	2021 году	тонн
В	2022 году	тони
8	2023 году	тонн
В	2024 году	тонн
В	2025 году	тонн
	2025 conv	тонн

5 Не превышать лимиты эмиссий (выбросы, отходы, сера), установленные в настоящем Разрешении на эмиссии в окружающую среду для объектов I, II и III категории (далее – Разрешение для объектов I, II и III категорий) на основании положительных заключений государственной экплогической экспертизы на пормативы эмиссий по ингредиентом (веществам), представленные в проектах нормативов эмиссий в окружающую среду, проектах ремострациска объектов предприятий согласно приложению I к настоящему Разрешению для объектов I, II и III категорий.

6 Условия природиольнования согласно приложению 2 к настоящему Разрешению для объектов приложению I к настоящему Разрешению для объектов I, II и III категорий.

7 Выпольять согласования настоящемо Разрешения для объектов I, II и III категорий, на период действия настоящему Разрешения для объектов I, II и III категорий, на период действия настоящему Разрешения для объектов I, II и III категорий, на период действия настоящего Разрешения для объектов I, II и III категорий, на период действия настоящего Разрешения для объектов I, II и III категорий, на период действия настоящего Разрешения для объектов I, II и III категорий, на период действия настоящего Разрешения для объектов I, II и III категорий, на период действия настоящего Разрешения для объектов I, II и III категорий, а также мероприятия по симжению эмиссий в окружающего для услугающего законный для поставления для объектов I, II и III категорий, а также мероприятия по симжению эмиссий в окружающего для услугающего законный для поставления для объектов I, II и III категорий, а также мероприятия по симжению законным для объектов I, II и III категорий, а также мероприятия по симжению законным для объектов I, II и III категорий, а также мероприятия по симжению для объектов I, II и III категорий, а также мероприятия по симжению для объектов I, II и III категорий, а также мероприятия по симжению для объектов I, II и III категорий, а также мероприятия по симжение для объектов I, II и III категорий, а также мероприятия по симжение для объе

среду, установленные проектной документацией, предусмотренные положительным экспочением государственной экспортической экспертизы. Срок действия Разрешения для объектов I, II и III категорий с 10.12.2016 года по 31.12.2025 года Примечание:

Примечание:

*Лимиты эмиссий, установленные в настоящем Разрешении для объектов 1, II и III категорий, по валовым объемам эмиссий и ингреднентам (веществам) действуют на период настоящего Разрешения для объектов 1. И и III категорий и рассчитываются по формуле, указанной в пункте 19 Правил заполнения форм документов для выдачи разрешений на заподнение редукающую среду.

Разрешение для объектов 1, II и III категорий зействительно до изменения применяемых технологий и условий природопользования, указанных в

настоящем Разрешения. Приложения 1, 2 и 3 являются неотъемле частью изстолием Разрешения для объектов I, II и III категория

Руководитель отдела

(подпись)

Место выдачи: г. Усть-

Каменогорск

Акмырза Айнур Ерболовна

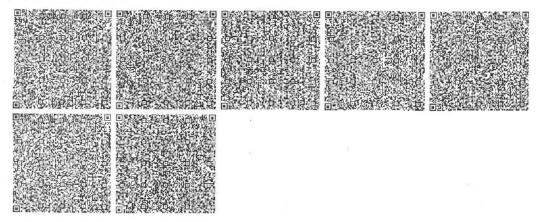
Фамилия, имя, отчество (отчество при наличии)

Дата выдачи: 29.11.2016 г.

Приложение №1 к разрешению на эмиссии в окружающую среду

4

Заключения государственной экологической экспертизы на нормативы эмиссий по ингредиентам (веществам), представленные в проектах нормативов эмиссий в окружающую среду, материалах оценки воздействия на окружающую среду, проектов реконструкции или вновь строящихся объектов предприятий


Nο	Наименование заключение государственной экологической экспертизы	Номер и дата выдачи заключения государственной экологической экспертизы
Выбросы		
1	Заключение государственной экологической экспертизы на «Проект нормативов предельно допустимых выбросов (ПДВ) для ТОО «ВОСТОКСЕЛЬХОЗПРОДУКТ», поселок Первомайский	№KZ58VDC00055093 от 18.11.2016 г.
Сбросы		
Размещение	Отходов	
Размещение	Серы	

Приложение № 2 к разрешению на эмиссии в окружающую среду

Условия природопользования

- 1. Соблюдать нормативы эмиссий загрязняющих веществ.
- 2. Выполнять природоохранные мероприятия согласно плану природоохранных мероприятий.
- Ежеквартально не позднее 10 числа первого месяца, следующего за отчетным кварталом, предоставить отчет по программе мероприятий по охране окружающей среды и отчет по выполнению особых условий природопользования в Управление природных ресурсов и регулирования природопользования ВКО.
- Ежеквартально не позднее 10 числа первого месяца, следующего за отчетным кварталом, предоставить фактические объемы выбросов в Управление природных ресурсов и регулирования природопользования ВКО.

Кәсіпорынның жұмысына қабылдау

20

50

20

20

20

20

50

20

20

20

наурыз айына

Меншік кор

500

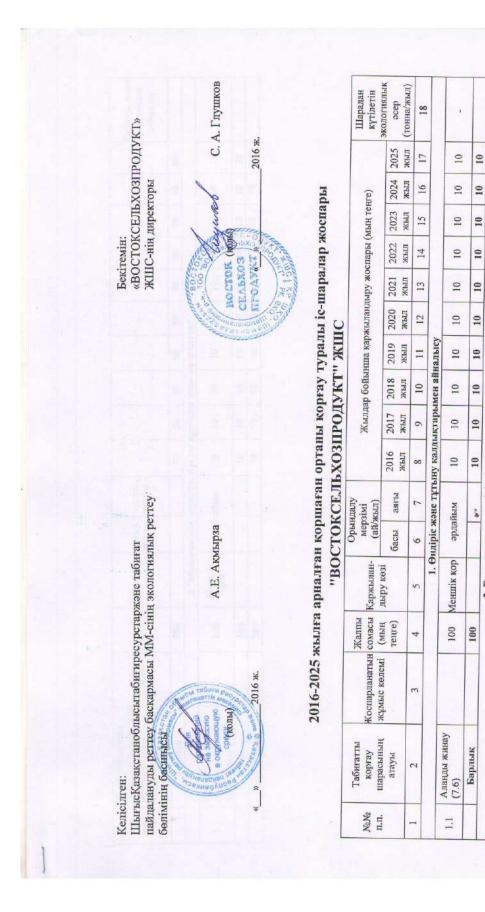
1 дана.

каттау жургізу (. п.10.12)

калдыктарға

калған

2.1


Ондіріс пен

тұтынудан

нічмей

жылсайын,

2. Ғылыми-зерттеушілік, ізденушілік және басқа жұмыстар

Кәсіпорынның жұмысына қабылдау					
250	300		10	10	320
1	20		10	10	70
[ht/]	20		10	10	70
40.	20		10	10	70
1	50		10	10	70
r	50	ray	10	10	70
	50	асихат	10	10	70
	50	н энеж	10	10	70
	50	рттыру	10	10	70
	50	ISIKTE!	10	10	70
тамыз, казан, 2025 ж 2025 ж.		сауаттыл	жылсайын		
тамыз, казан, 2025 ж 2025 ж		PHAJIBIK	жылс		
Меншік кор		3. Экологиялық сауаттылықты арттыру және насихаттау	Меншік кор		
250	750		100	100	950
1 дана.					
Шектеулі мүмкін шығарындыларының нормативтерін жобалау жұмыстары (п.10.11)	Барлык		Қоршаған ортаны жарияланымда үшін тіркеллінізу (11.1)	Барлык	Барлығы
2.2			3.1		

Согласовано: Руководитель отдела экологического регулирования ГУ «Управления природных ресурсов и регулирования природопользования ВКО»

на денесню в обружающую А.Е. Акмырза (водпись): ду Утверждаю:

Директор ТОО «ВОСТОКСЕЛЬХОЗПРОДУКТ»

C. A. Глушков
Вост (полись)
СЕДЬТОВ
ПРОДУКТИ
2016 г.

План мероприятий по охране окружающей среды на 2016-2025 гг.

Ne.Ne n.n.	Наименование мероприятия	ля товаря Объем гланируемых работ	Общая стоимость (тыс.	Источник финанси- рования	выпол	юк шения /год)			План ф	инансиј	оования	по года	м (тыс.т	енге)			Ожидаемый экологический эффект от
				тенге)		начало	конец	2016 год	2017 год	2018 год	2019	2020 год	2021 год	2022	2023	2024	2025
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
				1. (Э бращеі	не с отх	одами і	произво	дства и	потребл	тения			-		1	
1.1	Уборка территории (7.6)		100	Собствен- ные средства	Пост	оянно	10	10	10	10	10	10	10	10	10	10	
	Итого		100				10	10	10	10	10	10	10	10	10	10	

				2. Научно-	исследон	вательски	е, изыся	сательс	сие и др	угие ра	зработь	31				-																									
2.1	Проведение инвентаризации отходов производства и потребления (согд. п.10.12)	н 1 шт.	500	Собствен- ные средства ежего		ежегодно до марта		ежегодно до		50	50	50	50	50	50	50	50	50	Допуск к работе предприятия																						
2.2	Разработка ПДВ (согл.		1.шт	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	Собствен-	2025 год, август	2025 год, октябрь	~	-		#8	1.5		115	•	•	250
	п.10.11)		750	средства	maryer	ORINOPA	50	50	50	50	50	50	50	50	50	300																									
	Итого		1.50			500 MONTH NO.					+																														
					3. Экол	огическое	просве	шение	и пропа	ганда							1																								
3.1	Подписка на экологические издания (11.1)		100	Собствен- ные средства	еже	годно	10	10	10	10	10	10	10	10	10	10																									
_			100				10	10	10	10	10	10	10	10	10	1000																									
	Итого ВСЕГО		950				70	70	70	70	70	70	70	70	70	320																									

Номер: KZ58VDC00055093 Дата: 18.11.2016

«ШЫҒЫС ҚАЗАҚСТАН ОБЛЫСЫ ТАБИҒИ РЕСУРСТАР ЖӘНЕ ТАБИҒАТ ПАЙДАЛАНУДЫ РЕТТЕУ БАСҚАРМАСЫ»

МЕМЛЕКЕТТІК МЕКЕМЕСІ

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«УПРАВЛЕНИЕ ПРИРОДНЫХ
РЕСУРСОВ
И РЕГУЛИРОВАНИЯ
ПРИРОДОПОЛЬЗОВАНИЯ
ВОСТОЧНО-КАЗАХСТАНСКОЙ
ОБЛАСТИ»

К.Либкнехт кошесі, 19, Өскемен қ , ШҚО, Қазақстан Республикасы, 070019, тел.: 8 (7232) 25-73-20, факс: 8 (7232) 25-75-46 e-mail: priemnaya_uprirpyko@akimvko.gov.kz ул. К.Либкнекта, 19, г. Усть-Каменогорск ВКО, Республика Казахстан, 070019, тел.: 8 (7232) 25-73-20, факс: 8 (7232) 25-75-46 e-mail: priemnaya_uprirpvko@akimvko.gov.kz

Товарищество с ограниченной ответственностью «Востоксельхозпродукт»

Заключение государственной экологической экспертизы

на «Проект нормативов предельно допустимых выбросов (ПДВ) для товарищества с ограниченной ответственностью «Востоксельхозпродукт», поселок Первомайский»

Проект разработан индивидуальным предпринимателем Чупилко И.В (государственная лицензия от 31 марта 2008 года № 01795Р).

Заказчик проекта — товарищество с ограниченной ответственностью «Востоксельхозпродукт», Восточно-Казахстанская область, Шемонаихинский район, поселок Первомайский, улица Металлургов, 1/9.

На рассмотрение государственной экологической экспертизы представлен «Проект нормативов предельно допустимых выбросов (ПДВ) для товарищества с ограниченной ответственностью «Востоксельхозпродукт», поселок Первомайский».

Материалы поступили на рассмотрение 9 ноября 2016 года (входящий № 2697).

Общие сведения

Проектная документация для предприятия разработана в связи с окончанием 10 декабря 2016 года срока действия разрешения на эмиссии в окружающую среду, выданного 5 марта 2013 года № 0003289. Нормативы выбросов для предприятия были установлены на 2012-2016 годы в составе проекта нормативов предельно допустимых выбросов заключением государственной экологической экспертизы от 9 декабря 2011 года № 06-07/ЮЛГ-1707.

Основной вид деятельности предприятия – производство подсолнечного масла.

Производительность предприятия по подсолнечному маслу – 21000 т/год, по количеству перерабатываемых семян подсолнечника – 24000 т/год.

Юридический адрес: Шемонаихинский район, поселок Первомайский, улица Металлургов, 1/9.

В состав предприятия входят две площадки, расположенные в поселке Первомайский Шемонаихинского района:

- площадка № 1 находится по улице Полевой, 1. Ближайшие жилые застройки находятся в юго-западном и южном направлениях на расстояниях 370 и 450 м соответственно от крайних источников выбросов;

 площадка № 2 находится по улице Скоростной, 4. Ближайшая жилая застройка находится в юго-западном направлении на расстоянии 860 м от крайних источников выбросов.

Согласно рассматриваемому проекту и заключению Шемонаихинского районного управления по защите прав потребителей от 10 ноября 2016 года № 109 предприятие относится к IV классу опасности, санитарно-защитная зона для площадок № 1 и 2 составляет 100 м.

Площадка № 1. Источниками загрязнения атмосферного воздуха являются: маслоцеха № 1 и 2, столярное и токарное отделения, цементные работы, цех сушки, склады подсолнечника № 1, 2, 3, 4, 5, 6, 7, 8, 9, цех выщелачивания, цех рафинации, дезодорации, розлива и фасовки подсолнечного масла, склад готовой продукции.

Маслоцеха № 1 и 2. Сырье (семена подсолнечника) в суммарном количестве 24000 т/год (по 12000 т/год на каждый цех) грузовым автомобильным транспортом доставляется на расходные склады в завальные ямы, из которых семена подсолнечника нориями поднимаются в сушилки, далее подаются в машины первичной очистки Бурат для калибровки. Крупные семечки подаются в пектусы, оборудованные вытяжными зонтами, для очистки и окончательной калибровки, затем высыпаются в мешки. Мелкие семечки шнековым транспортером подаются обратно в Бурат на дополнительную сушку и очистку, затем в шнековые прессы для отжима масла. Отжатое масло фильтруется и направляется на склад готовой продукции. Жмых после прессов собирается и вывозится автотранспортом в цех выщелачивания растительных жиров. В процессе разгрузочных работ происходит выброс зерновой пыли. Источники выбросов неорганизованные (источники 6001, 6022). В процессе очистки и калибровки семян в атмосферу при помощи вытяжной вентиляции через трубы диаметром 0,3 м на высоте 8 м выделяется пыль зерновая. Источники выбросов организованные (источники 0001, 0002, 0009, 0010).

Сушка производится при помощи трех теплогенераторов (время работы — по 7200 ч/год). В качестве топлива используются отходы подсолнечника (шелуха) в количестве 830 т/год (по 415 т/год на каждый маслоцех). В атмосферу через трубы диаметром 0,3 м на высоте 8 м выделяются диоксид азота, оксид азота, оксид углерода, взвешенные частицы. Источники выбросов организованные (источники 0003, 0004, 0011).

В маслоцехах имеется по одной бане, предназначенной для персонала (время работы — по 2400 ч/год). В качестве топлива используется шелуха в количестве 7 т/год (по 3,5 т/год на каждый цех). В атмосферу через трубы диаметром 0,2 и 0,3 м на высоте 8 м выделяются диоксид азота, оксид азота, оксид углерода, взвешенные частицы. Источники выбросов организованные (источники 0006, 0012).

Зола от теплогенераторов и бань хранится на открытой с четырех сторон

бетонированной площадке размерами 5х3 м. В атмосферу выделяются взвешенные частицы. Источник выброса неорганизованный (источник 6004).

В маслоцехе № 1 расположены слесарные мастерские: в первом помещении установлены заточной и сверлильный станки, во втором помещении — заточной станок, посты электросварки и газовой резки (расход электродов марки MP-4 — 100 кг/год, пропана — 210 кг/год). Из первого помещения в атмосферу через дверной и оконный проемы выделяются взвешенные частицы и пыль абразивная. Источник выброса неорганизованный (источник 6005). Из второго помещения при помощи вытяжного зонта через трубу диаметром 0,3 м на высоте 8 м выделяются оксид железа, марганец и его соединения, диоксид азота, оксид углерода, фтористые газообразные соединения, взвешенные частицы, пыль абразивная. Источник выброса организованный (источник 0005).

Для нужд предприятия в маслоцехе № 2 установлены: токарный станок, аппараты электросварки и газовой резки (расход электродов марки MP-4 — 100 кг/год, пропана — 210 кг/год). В атмосферу через трубу диаметром 0,3 м на высоте 8 м выделяются оксид железа, марганец и его соединения, диоксид азота, оксид углерода, фтористые газообразные соединения, взвешенные частицы. Источник выброса организованный (источник 0013).

Также в маслоцехе № 2 установлено оборудование по изготовлению пеллет из лузги подсолнечника, приобретенное по контракту от 16 мая 2014 года № 2014-001 у предприятия «TACHENG YONGLI TRADE CO., LTD». Плотность готовых пеллет составляет 850 кг/м³. Процесс изготовления пеллет относится к безотходному производству. Источники выбросов отсутствуют.

В столярном отделении установлены строгальный станок и циркулярная пила. При работе станков происходит выделение древесной пыли. Источник выброса неорганизованный (источник 6006).

В токарном отделении установлены: два токарных, продольно-фрезерный, сверлильный, отрезной, заточной станки и пресс. В атмосферу при работе станков выделяются взвешенные частицы и пыль абразивная. Источник выброса неорганизованный (источник 6007). В процессе работы пресса выделений загрязняющих веществ в атмосферу не происходит.

Цементные работы. Для строительных и ремонтных нужд предприятия на площадке возле маслоцеха № 1 установлена бетономешалка. Для проведения работ используются цемент в количестве 26 т/год, щебень в количестве 65 т/год, песок в количестве 65 т/год. Цемент доставляется и хранится в мешках. Песок и щебень хранятся на специальной бетонированной площадке, открытой с четырех сторон, площадью $10 \, \text{м}^2$. В атмосферу выделяется пыль неорганическая с содержанием двуокиси кремния 20-70%. Источники выбросов неорганизованные (источники 6008, 6009).

Цех сушки. Семена подсолнечника с повышенной влажностью в количестве 12000 т/год доставляются автотранспортом в завальную яму, откуда при помощи нории подаются в машину предварительной очистки МПО-30, а затем в зерносушилку. В атмосферу от завальной ямы и зерноочистительной машины выделяется пыль зерновая. Источники выбросов неорганизованные (источники 6016, 6017).

4

Сушка производится при помощи двух теплогенераторов (время работы — по 7200 ч/год). В качестве топлива используется дизельное топливо в общем количестве 120 т/год (по 60 т/год на каждый теплогенератор). Дизельное топливо хранится в герметичной емкости. В атмосферу через трубы диаметром 0,3 м на высоте 8 м выделяются диоксид азота, оксид азота, углерод, диоксид серы, оксид углерода. Источники выбросов организованные (источники 0007, 0008).

Склады подсолнечника № 1, 2, 3, 4, 5, 6, 7, 8, 9. На склад № 1 для хранения поступает до 4000 т подсолнечника в год; на склады № 2, 3, 4, 5, 6, 7, 8, 9 — по 1600 т подсолнечника в год. Склады закрытые, площадями 385, 385, 348, 587, 521, 393, 912, 879, 1001 м^2 . В процессе разгрузочно-погрузочных работ и хранения происходит выделение пыли зерновой. Источники выбросов неорганизованные (источники 6014, 6018, 6019, 6020, 6025, 6026, 6034, 6035, 6036).

Цех выщелачивания. Жмых в количестве 8400 т/год из маслоцехов № 1 и 2 грузится на грузовые автомобили и доставляется в приемный бункер (источник 0014). Из приемного бункера жмых самотеком поступает на норию, откуда подается в промежуточный накопительный бункер емкостью 60 тонн, далее попадает в дозатор и цепным транспортером подается на шнековый питатель (источник 0015). Для выщелачивания остаточного масла из жмыха используется растворитель № 6 (80 м³/год). Процесс выщелачивания происходит в металлическом цилиндре с расположенными внутри 16 кассетами. После завершения выщелачивания мисцелла (смесь растворителя с маслом) подается насосом на фильтр для очистки от грубых примесей. Очищенная мисцелла поступает в емкость для временного хранения, не профильтрованная — поступает на повторное выщелачивание для обработки. Из емкости временного хранения мисцелла подается насосом на выпариватели для удаления растворителя. Испарившийся растворитель направляется на конденсацию, после чего возвращается в технологический цикл. Процесс выщелачивания осуществляется в герметично закрытом оборудовании, что исключает выбросы.

После разгрузки кассеты выщелачивателя влажный шрот скребковым транспортером поступает на шнековый питатель и далее на тостер для выпаривания растворителя и сушки шрота паром до влажности 9%. Шрот с тостера самотеком поступает в скребковый транспортер, далее в промежуточный бункер, откуда при помощи нории подается в отгрузочный бункер (источник 0016). Вывоз шрота осуществляется грузовым автотранспортом для последующей реализации населению и предприятиям. В процессе пересыпки шрота в автотранспорт в атмосферу выделяются взвешенные частицы. Источник выброса неорганизованный (источник 6030).

Масло, освобожденное от растворителя, поступает в цех рафинации для удаления фосфалипидов, воска, красящих веществ, образующихся в процессе технологической переработки семян. Для очистки масло подвергается обработке крепкой фосфорной кислотой и раствором гидроксида натрия, промывается, нагревается до 100°С для осущения, отбеливается глиной, фильтруется, охлаждается в охладителях-вентиляторах, повторно фильтруется для удаления воска. Процесс рафинации проходит в герметично закрытом оборудовании и при эксплуатации оборудования выделений вредных веществ не происходит. После рафинации масло откачивается в емкость для охлаждения, откуда насосом перекачивается в две

емкости объемом по 72 м³. Далее продукция со склада временного хранения готовой продукции отгружается в автотранспорт с последующим вывозом потребителю.

В процессе пересыпки жмыха с автотранспорта в приемный бункер; из приемного бункера на норию, в накопительный бункер, в дозатор, на шнековый питатель, на выщелачиватель; шрота с тостера на транспортер, на норию, в бункер в атмосферу через трубы диаметром 0,25, 0,63, 0,63 м на высоте 3 м выделяются взвешенные частицы. Источники выбросов организованные (источники 0014, 0015, 0016).

Для получения пара в цехе выщелачивания установлены: паровой котел КЕ-2,5 (в работе), два котла Е 1,0-0,9 (оба в резерве). Время работы — 7200 ч/год. В качестве топлива используются уголь Каражиринского месторождения в количестве 750 т/год и пеллеты из лузги подсолнечника в количестве 750 т/год. В атмосферу через трубу диаметром 0,53 м на высоте 24 м после очистки в циклоне ЦН-15 (КПД=80%) выделяются диоксид азота, оксид азота, диоксид серы, оксид углерода, взвешенные частицы, пыль неорганическая с содержанием двуокиси кремния 20-70%. Источник выброса организованный (источник 0017).

Уголь хранится под навесом на складе площадью 25 м², открытом с одной стороны. В атмосферу выделяется пыль неорганическая с содержанием двуокиси кремния ниже 20%. Источник выброса неорганизованный (источник 6031).

Для персонала в здании цеха имеется баня. Время работы — 2400 ч/год. В качестве топлива используются пелетты из лузги подсолнечника в количестве 3,5 т/год. В атмосферу через трубу диаметром 0,15 м на высоте 11 м выделяются диоксид азота, оксид азота, оксид углерода, взвешенные частицы. Источник выброса организованный (источник 0020).

Зола от котла КЕ-2,5 и от бани хранится на бетонированной площадке, открытой с четырех сторон, площадью 12 м^2 . В атмосферу выделяются взвешенные частицы, пыль неорганическая с содержанием двуокиси кремния 20-70%. Источник выброса неорганизованный (источник 6032).

Растворитель № 6 доставляется на склад предприятия автотранспортом и сливается в два заглубленных резервуара емкостью по 20 м³ (один — рабочий, один — аварийный). Годовой объем растворителя — 80 м³ (66,88 т). Перекачка растворителя в цех выщелачивания осуществляется насосом марки YBLR20-25 производительностью 20 м³/час. В атмосферу при хранении через дыхательный клапан резервуара диаметром 0,15 м на высоте 2 м и при перекачке растворителя через трубу диаметром 0,15 на высоте 2 м выделяются метилбензол, бутан-1-ол, этанол, бутилацетат. Источники выбросов организованные (источники 0018, 0019).

В одном из помещений цеха осуществляется техническое обслуживание и ремонт грузового автотранспорта, для проведения ремонтных работ установлены: заточной станок, сварочный пост и аппарат газовой резки (расход электродов марки МР-4 — 100 кг/год, пропана — 210 кг/год). В атмосферу выделяются оксид железа, марганец и его соединения, диоксид азота, оксид азота, диоксид серы, оксид углерода, фтористые газообразные соединения, бензин (нефтяной, малосернистый), взвешенные частицы, пыль абразивная. Источник выброса неорганизованный (источник 6033).

В цехе розлива источники выбросов загрязняющих веществ отсутствуют.

Цех рафинации, дезодорации, розлива и фасовки подсолнечного масла, склад готовой продукции. Нерафинированное масло поступает в цех рафинации из маслоцехов. Процесс рафинации состоит из следующих стадий: гидратация, нейтрализация, отбеливание, вымораживание, дезодорация. Источники выбросов от процесса рафинации отсутствуют.

Пар для цеха рафинации вырабатывается котельной, в которой установлены два паровых двухбарабанных вертикально-водотрубных котла КЕ 4-14 (рабочий) и Е1/9 (резервный). Время работы — 8760 ч/год. В качестве топлива используется уголь Каражиринского месторождения в количестве 1200 т/год и пелетты из лузги подсолнечника в количестве 300 т/год. В атмосферу через трубу диаметром 0,6 м на высоте 21 м после предварительной очистки в групповом циклоне СЦН40-500х4 (КПД=82%) выделяются диоксид азота, оксид азота, диоксид серы, оксид углерода, взвешенные частицы, пыль неорганическая с содержанием двуокиси кремния 20-70%. Источник выброса организованный (источник 0026).

Уголь хранится на открытом с одной стороны складе площадью 72 м², зола хранится на открытой с одной стороны площадке площадью 25 м². В атмосферу выделяются пыль неорганическая с содержанием двуокиси кремния ниже 20% и 20-70%, взвешенные частицы. Источники выбросов неорганизованные (источники 6044, 6045).

На территории цеха имеются две автостоянки, предназначенные для хранения 13 грузовых автомобилей. В атмосферу выделяются диоксид азота, оксид азота, диоксид серы, оксид углерода, бензин (нефтяной, малосернистый), углерод, керосин. Источники выбросов неорганизованные (источники 6046, 6047).

Площадка № 2. Источниками загрязнения атмосферного воздуха являются: гараж, теплая стоянка, открытая автостоянка, ремонтная мастерская, бытовые теплогенераторы, склад горюче-смазочных материалов.

Гараж, теплая стоянка, открытая автостоянка. Гараж предназначен для стоянки 12 грузовых автомобилей, теплая стоянки 5 грузовых автомобилей и 12 единиц автотракторной техники. В процессе работы двигателей внутреннего сгорания автомобилей происходит выброс диоксида азота, оксида азота, диоксида серы, оксида углерода, бензина (нефтяного, малосернистого), углерода, керосина. Источники выбросов неорганизованные (источники 6037, 6038, 6041).

Ремонтная мастерская включает в себя гараж, мастерскую, токарный цех. Помещение гаража рассчитано на пять постов технического обслуживания и ремонта грузовых автомобилей. В течение года осуществляется до 100 ТО и ТР. В гараже установлены: аппараты электросварки и газовой резки (расход электродов марки МР-4 — 100 кг/год, пропана — 210 кг/год), два заточных, токарный, сверлильный станки, вулканизаторная установка для ремонта автокамер (расход резины — 50 кг/год, клея — 50 кг/год). В помещении гаража производится зарядка кислотных аккумуляторных батарей (в год заряжается до 10 аккумуляторов). В атмосферу происходит выброс оксида железа, марганца и его соединений, диоксида азота, оксида азота, серной кислоты, диоксида серы, оксида углерода, фтористых газообразных соединений, бензина (нефтяного, малосернистого), взвешенных

частиц, пыли абразивной, пыли тонко измельченного резинового вулканизата из отходов подошвенных резин. Источник выброса неорганизованный (источник 6039).

В мастерской производится ручная разборка и сборка двигателей. Источники выбросов загрязняющих веществ отсутствуют.

В токарном цехе расположены станки: для расточки коленвалов, токарный, сверлильный, два заточных. В атмосферу выделяются взвешенные частицы и пыль абразивная. Источник выброса неорганизованный (источник 6040).

Бытовые теплогенераторы. Для отопления помещений ремонтной мастерской, теплой стоянки и гаража, а также здания административно-бытового корпуса имеется по одному теплогенератору (время работы — по 1632 ч/год). В качестве топлива для помещений ремонтной мастерской, теплой стоянки и гаража используются уголь Каражиринского месторождения в количестве 20 т/год и пелетты из лузги подсолнечника в количестве 20 т/год, для отопления здания административно-бытового корпуса — уголь Каражиринского месторождения в количестве 15 т/год. В атмосферу через трубы диаметром 0,15 м на высоте 12 и 9 м выделяются диоксид азота, оксид азота, диоксид серы, оксид углерода, пыль неорганическая с содержанием двуокиси кремния 20-70%, взвешенные частицы. Источники выбросов организованные (источники 0022, 0023).

Уголь в количестве 35 т/год хранится в закрытом со всех сторон помещении площадью 6 $\rm m^2$, зола хранится в закрытом контейнере размерами 3х2 м. В атмосферу выделяются пыль неорганическая с содержанием двуокиси кремния ниже 20% и 20-70%, взвешенные частицы. Источники выбросов неорганизованные (источники 6042, 6043).

Склад горюче-смазочных материалов. Прием нефтепродуктов в парк горючесмазочных материалов осуществляется из автомобильных цистерн при помощи сливоналивных устройств. Хранение нефтепродуктов предусмотрено в восьми резервуарах: один заглубленный резервуар объемом 35 м³ для хранения бензина в количестве 60 т/год (82,2 м³/год); один резервуар объемом 30 м³ для хранения дизельного масла в количестве 10 т/год (11,1 м3/год); два наземных резервуара объемом по 50 м³, один наземный резервуар объемом 70 м³, три заглубленных резервуара объемом по 50 м³ для хранения дизельного топлива в объеме 400 т/год (520,2 м³/год). Отпуск нефтепродуктов осуществляется при помощи трех раздаточных аппаратов. В атмосферу при хранении нефтепродуктов через дыхательные клапаны резервуаров диаметром 0,076 м на высоте 1,5 м, при отпуске нефтепродуктов выделяются смесь углеводородов предельных С1-С5, смесь углеводородов предельных С6-С10, пентилены, бензол, ксилол, метилбензол, этилбензол, масло минеральное нефтяное, сероводород, углеводороды предельные C_{12} - C_{19} . Источники выбросов организованные (источники 0027, 0028, 0029, 0030) и неорганизованные (источники 6048, 6049, 6050).

<u>Перспектива развития.</u> Ввод новых производственных мощностей, связанных с увеличением выбросов загрязняющих веществ в атмосферу, а также ликвидация источников выбросов не предусматриваются.

Оценка воздействия деятельности предприятия на атмосферный воздух

Инвентаризация источников выбросов проведена по состоянию на 18 октября 2016 года. При проведении инвентаризации в целом на предприятии выявлено 64 источника выбросов загрязняющих веществ, в том числе: 27 организованных, 37 неорганизованных. Количество наименований выбрасываемых загрязняющих веществ — 31, нормированию подлежат вещества 30 наименований. Суммарные выбросы загрязняющих веществ в целом по предприятию без учета выбросов от автотранспорта составляют 153,6908522 т/год, в том числе: твердых — 30,101912 т/год, газообразных и жидких — 123,5889402 т/год.

Выбросы от автотранспорта на основании статьи 28 Экологического кодекса Республики Казахстан не нормируются и составляют 1,510385 т/год (0,645741 г/с).

Инвентаризационные данные по параметрам выбросов вредных веществ на предприятии получены как инструментальным, так и расчетным методом. При расчете выбросов приняты результаты инструментальных замеров по источникам 0001, 0002, 0009, 0010. Инструментальные замеры проводились аттестационной лабораторией товарищества с ограниченной ответственностью «Лаборатория Атмосфера» (аттестат аккредитации от 25 декабря 2013 года № К. Z. И. 07.0215 (действителен до 25 декабря 2018 года)). Остальные источники выбросов рассчитаны теоретическим методом.

На предприятии для снижения выбросов твердых частиц в атмосферу установлено пылеулавливающее оборудование:

на источнике 0017 (котлы в цехе выщелачивания) — циклон ЦН-15 с КПД очистки 80%;

на источнике 0026 (котельная цеха рафинации) – циклон СЦН40-500х4 с КПД очистки 82%.

Фактическая эффективность очистки в системах пылеулавливания установлена по данным инструментальных замеров аккредитованной лабораторией товарищества с ограниченной ответственностью «Лаборатория Атмосфера» (представлены акты проверки эффективности пылеулавливающих установок от 25 октября 2016 года). Пылеулавливающее оборудование работает эффективно.

Расчет рассеивания загрязняющих веществ в приземном слое атмосферы выполнен на электронно-вычислительной машине с использованием программного комплекса «ЭРА-1.7» в пределах расчетных прямоугольников (для площадки № 1 принят 2200х1700 м, для площадки № 2 принят 1800х1300 м), охватывающих районы размещения рассматриваемых площадок предприятия, их санитарно-защитную зону, а также ближайшие к ним жилые зоны. Расчет проведен в соответствии с нормативным документом РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы» на основании письма Министерства охраны окружающей среды Республики Казахстан от 3 мая 2011 года № 10-02-20/598-И.

Анализ результатов расчета вредных веществ в атмосфере по обеим площадкам показал, что в жилой зоне и на границе санитарно-защитной зоны расчетные приземные концентрации не превышают установленные гигиенические нормативы для атмосферного воздуха населенных мест.

В настоящем проекте наблюдается незначительное увеличение нормируемых выбросов по сравнению с ранее разработанным проектом нормативов предельно допустимых выбросов на 0,721 т/год. На предприятии в рамках реализации рабочего проекта «Цех рафинации, дезодорации, розлива и фасовки подсолнечного масла. Склад готовой продукции по улице Полевой, 1 в поселке Первомайский Шемонаихинского района», на который выдано положительное заключение государственной экологической экспертизы от 24 января 2013 года № 06-07/ЮЛГ-29, добавлен новый цех и, соответственно, новые источники выбросов 0026 (котельная), 6044 (склад угля), 6045 (склад золы), 6046, 6047 (автотранспорт). Нормативы выбросов в рабочем проекте для вышеперечисленных источников были установлены в объеме 80,477482 т/год. Вновь образованный цех введен в эксплуатацию по акту приемочной комиссии от 12 апреля 2013 года.

Суммарно от предприятия, учитывая нормативы выбросов, установленные в составе предыдущего проекта нормативов предельно допустимых выбросов и в составе вышеуказанного рабочего проекта, нормативы выбросов составляют 233,447 т/год. Общее уменьшение выбросов по предприятию на 79,756 т/год связано с частичным использованием на предприятии в качестве основного топлива пеллет из лузги подсолнечника вместо угля. Пеллеты из лузги подсолнечника являются более экологичным видом топлива, так как при сжигании имеют меньшие показатели зольности и выделяют меньшее количество оксида углерода по сравнению с углем.

На предприятии произошли следующие изменения:

- в качестве топлива для теплогенератора цеха сушки (источник 0007) в настоящее время используется дизельное топливо в количестве 60 т/год (ранее использовалось 90 т/год угля и 10 т/год шелухи). Для второго теплогенератора сушки (источник 0008) используется 60 т/год дизельного топлива (ранее использовалось 50 т/год дизельного топлива);
- увеличилось количество подсолнечника, проходящего через каждый из складов № 7, 8, 9 (источники 6034, 6035, 6036), с 1000 до 1600 т/год в связи с увеличением урожайности подсолнечника;
- изменился качественный и количественный состав автотранспорта: на источнике 6037 увеличилось количество грузовых автомобилей с 8 до 12, на источнике 6038 ранее хранилось 12 грузовых автомобилей, сейчас 5 легковых автомобилей, на источнике 6041 ранее хранились 2 грузовых автомобиля и 2 единицы автотракторной техники, сейчас 5 грузовых автомобилей и 12 единиц автотракторной техники;
- ранее склад горюче-смазочных материалов располагался на площадке № 1 и включал в себя четыре наземных резервуара для хранения дизельного топлива и масла (источники 0024, 0025, 6012, 6013). В настоящее время склад не эксплуатируется, источники 0024, 0025, 6012, 6013 ликвидированы. Предприятием приобретен у товарищества с ограниченной ответственностью «МТЦ-Нур» на основании договора купли-продажи от 2 октября 2013 года склад горюче-смазочных материалов по улице Скоростной, 6/1 в поселке Первомайский, который территориально в проекте относен к площадке № 2, что способствовало образованию новых источников 0027, 0028, 0029, 0030, 6048, 6049, 6050.

Приобретенный объект введен в эксплуатацию по акту приемки построенного объекта от 31 декабря 2015 года;

- в связи с приобретением оборудования по изготовлению пеллет из лузги подсолнечника необходимость в хранении угля частично отсутствует, в связи с чем источники 6002, 6003, 6015, 6023 (склады угля) законсервированы;
- источники 6027, 6028, 6029 (кратковременные парковки и подвоз сырья) ликвидированы.

Нормативы предельно допустимых выбросов предложено установить на уровне разработанных проектом на 2016-2025 годы в соответствии с таблицами 1, 2, 3 настоящего заключения.

Таблица 1

Nº	Наименование вредных веществ	Предлагаемые к утверждению и утверждаемые нормативы ПДВ на 2016-2025 годы по площадке № 1				
		r/c	т/год			
	Всего: в том числе:	8,565178	150,570462			
1	оксид железа	0,00231	0,01629			
2	марганец и его соединения	0,00012	0,00051			
3	диоксид азота	0,41772	10,2988			
4	оксид азота	0,0678	1,6726			
5	углерод	0,004	0,03			
6	диоксид серы	1,1348	12,6396			
7	оксид углерода	4,19332	96,77544			
8	фтористые газообразные соединения	0,00003	0,00012			
9	метилбензол	0,25916	0,00522			
10	бутан-1-ол	0,04994	0,00098			
11	этанол	0,39347	0,00777			
12	бутилацетат	0,04114	0,00078			
13	взвешенные частицы	0,689801	11,662618			
14	пыль неорганическая с содержанием двуокиси кремния 20-70%	0,746389	12,880016			
15	пыль неорганическая с содержанием двуокиси кремния ниже 20%	0,000556	0,017534			
16	пыль абразивная	0,0088	0,0084			
17	пыль древесная	0,28	0,2943			
18	пыль зерновая	0,275822	4,259484			

Таблица 2

Nº	Наименование вредных веществ	нормативы ПДВ и	Предлагаемые к утверждению и утверждаемые нормативы ПДВ на 2016-2025 годы по площадке № 2				
		г/с	т/год				
	Всего: в том числе:	2,52018235	3,1203902				
1	оксид железа	0,00077	0,00543				
2	марганец и его соединения	0,00004	0,00017				
3	диоксид азота	0,01424	0,1484				
4	оксид азота	0,0022	0,0238				
5	серная кислота	0,00000475	0,00000171				
6	диоксид серы	0,0532003	0,2142003				
7	сероводород	0,00003	0,000049				
8	оксид углерода	0,1794401	1,58418009				
9	фтористые газообразные соединения	0,00001	0,00004				
10	смесь углеводородов предельных С1-С5	1,52827	0,11674				
11	смесь углеводородов предельных С ₆ -С ₁₀	0,3722	0,02843				

. 11

12	пентилены	0,05063	0,00387
13	бензол	0,0405	0,00309
14	ксилол	0.00304	0,00024
15	метилбензол	0,02937	0,00224
16	этилбензол	0,00102	0,00224
17	бензин (нефтяной, малосернистый)	0,05	0,045
18	масло минеральное нефтяное	0,00054	0,000671
19	углеводороды предельные С12-С19	0,0108	0,0172
20	взвешенные частицы	0,039224	0,204623
21	пыль неорганическая с содержанием двуокиси кремния 20-70%	0,115647	0,696128
22	пыль неорганическая с содержанием двуокиси кремния ниже 20%	0,0000062	0,000109
23	пыль абразивная	0,0064	0,006
24	пыль тонко измельченного резинового вулканизата из отходов подошвенных резин	0,0226	0,0203

Таблица 3

№	Наименование вредных веществ	Предлагаемые к утверждению и утверждаемы нормативы ПДВ на 2016-2025 годы в ЦЕЛОМ по предприятию					
		г/е	т/год				
	Всего: в том числе:	11,08536035	153,6908522				
1	оксид железа	0,00308	0,02172				
2	марганец и его соединения	0,00016	0,00068				
3	диоксид азота	0,43196	10,4472				
4	оксид азота	0.07	1,6964				
5	серная кислота	0,00000475	0,00000171				
6	углерод	0,004	0,03				
7	диоксид серы	1,1880003	12,8538003				
8	сероводород	0,00003	0,000049				
9	оксид углерода	4,3727601	98,35962009				
10	фтористые газообразные соединения	0.00004	0,00016				
11	смесь углеводородов предельных C ₁ -C ₅	1,52827	0,11674				
12	смесь углеводородов предельных С6-С10	0,3722	0,02843				
13	пентилены	0,05063	0,00387				
14	бензол	0,0405	0,00309				
15	ксилол	0,00304	0,00024				
16	метилбензол	0,28853	0,00746				
17	этилбензол	0,00102	0,000082				
18	бутан-1-ол	0,04994	0,00098				
19	этанол	0,39347	0,00777				
20	бутилацетат	0,04114	0,00078				
21	бензин (нефтяной, малосернистый)	0.05	0,045				
22	масло минеральное нефтяное	0,00054	0.0000671				
23	углеводороды предельные С12-С19	0,0108	0,0172				
24	взвешенные частицы	0,729025	11,867241				
25	пыль неорганическая с содержанием двуокиси кремния 20-70%	0,862036	13,576144				
26	пыль неорганическая с содержанием двуокиси кремния ниже 20%	0,0005622	0,017643				
27	пыль абразивная	0,0152	0,0144				
28	пыль древесная	0,28	0,2943				
29	пыль зерновая	0,275822	4,259484				
30	пыль тонко измельченного резинового вулканизата из отходов подошвенных резин	0,0226	0,0203				

12

Выводы

Рассмотрев представленные документы, Управление природных ресурсов и регулирования природопользования Восточно-Казахстанской области согласовывает «Проект нормативов предельно допустимых выбросов (ПДВ) для товарищества с ограниченной ответственностью «Востоксельхозпродукт», поселок Первомайский» (заказчик — товарищество с ограниченной ответственностью «Востоксельхозпродукт»).

Исполнитель: Месяцева Е.О., главный специалист, 257206

ПРИЛОЖЕНИЕ И

1 - 4

Номер: KZ27VDD00157517

Акимат Восточно-Казахстанской области

Управление природных ресурсов и регулирования природопользования Восточно-Казахстанской области

РАЗРЕШЕНИЕ

на эмиссии в окружающую среду

Наименование природопользователя:

(i	индекс, почтовый адрес)	
Индивидуальный идентификационный номер/С	бизнес-идентификационный номер:	000140002188
Наименование производственного объекта:		изводству масложировой продукцин пойон, поселок Первомайский, улица 1/15"(период эксплуатации)
Местонахождение производственного объекта:		
Восточно-Казахстанская область, Шемонанхин строение 1/15	нский район, Первомайский с.о., с.Перв	омайский улица Полевая, строение 1/13
Соблюд	цать следующие условия природопольз	ования:
1. Производить выбросы загрязняющих веществ в	объемах, не превышающих:	
в <u>2020</u> году	2,5935 тонн	
в <u>2021</u> году	237,30501 тонн	
в <u>2022</u> голу	237,30501 тонн	
в <u>2023</u> году	237,30501 тонн	
в <u>2024</u> году	<u>237,30501</u> тонн	
в <u>2025</u> году		
в <u>2026</u> году		
в <u>2027</u> году		
в <u>2028</u> году		
в <u>2029</u> году	<u>237.30501</u> тонн	
в <u>2030</u> году <u></u>	тонн	
2. Производить сбросы загрязняющих веществ в о	бъемах, не превышающих:	
в 2020 году	тонн	
в 2021 году		
в 2022 году		
в 2023 году		
в 2024 году		
2000	тонн	
в 2025 году		
в <u>2025</u> году <u> </u>	тонн	
в <u>2026</u> году в <u>2027</u> году в <u>2028</u> году	тонн	
в <u>2026</u> году в <u>2027</u> году	тонн тонн тонн	

3. Производить размещение отходов производства и потребления в объемах, не превышающих:

В	2020 году	тони
В	2021 году	тон
В	2022 году	тон
В	2023 году	TOHE
В_	2024 году	тон
В	2025 году	тон
	2026 голу	
B	2027 году	тони
В	2028 году	тон
В	2029 году	тоня
В	2030 году	тоны

4. Производить размещение серы в объемах, не превышающих:

2-4

4. Производить размещение серы в объемах , не превышающих:

В_	2020 году	тонн
В_	2021 году	тонн
B_	2022 году	тонн
В_	2023 году	тонн
В_	2024 году	тонн
В	2025 году	тонн
В	2026 году	тонн
В	2027 году	
В	2028 году	тонн
В	2029 году	тонн
_	2030	******

Руководитель отдела	Анфилофьева Наталья Владимировна
(подпись)	Фамилия, имя, отчество (отчество при наличии)
Место выдачи: г.Усть-	Дата выдачи: 28.12.2020 г.
Каменогорск	

в 2030 году ______ тонн

5. Выполнять согласованный план мероприятий по охране окружающей среды, на период действия настоящего Разрешения, а также мероприятия по снижению эмиссий в охружающую среду, установленные проектной документацией, предусмотренные положительным заключением государственной эмологической экспертизы.

6. Выполнять программу производственного экологического контроля на период действия Разрешения.

7. Не превышать лимиты эмиссий (выбросы, сбросы, отходы, сера), установленные в настоящем Разрешении на основании положительных заключений государственной эмологической экспертизы нормативов эмиссий по ингреднентам (веществам) на проекты нормативов эмиссий в окружающию среду, разделы Опенки воздействия в окружающую среду (далес-ОВОС), проектов реконструкции или вновь строящихся объектов предприятий согласно приложению 1 к настоящему Разрешению.

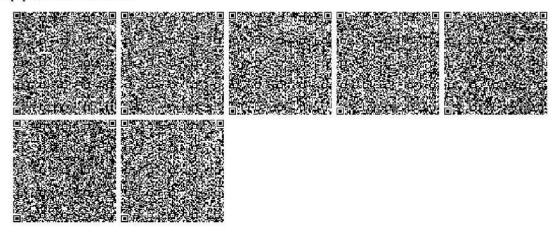
8. Условия природопользования согласно приложению 2 к настоящему Разрешению

Срок действия разрешения на змиссии в окружающую среду с 28. 12. 2020 годя по 3 1.12. 2029 года

Примечание: * Лимиты эмиссий и окружающую среду с 28. 12. 2020 годя по 3 1.12. 2029 года

Примечание: * Тримиты эмиссий, установленные в настоящем Разрешении, по валовым объемам эмиссий и ингреднентам (веществам) действуют со дня выдачи настоящего Разрешения и рассчитываются по формуж, указанной в пункте 6 Правил заполнения форм документов для выдачи разрешений на эмиссии в окружающую среду Разрешения технологий и условий природоповызования, указанных в настоящем Разрешении 1 и 2 являются неотъемлемой частью настоящего Разрешения.

Приложение №1 к разрешению на эмиссии в окружающую среду


Заключение государственной экологической экспертизы нормативов эмиссий по ингредиентам (веществам) на проекты нормативов эмиссий в окружающую среду, разделы ОВОС, проектов реконструкции или вновь строящихся объектов предприятий

No	Наименование заключение государственной экологической экспертизы	Номер и дата выдачи заключения государственной экологической экспертизы
Выбросы		
Î	Заключение по рабочему проекту "Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонанхинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15"	№ЦЭ-0258/20 от 21.05.2020г
Сбросы		
Размещени	е Отходов	
Размещени	е Серы	

Приложение № 2 к разрешению на эмиссии в окружающую среду

Условия природопользования

- 1. Соблюдать нормативы эмиссий загрязняющих веществ.
- 2. Выполнять природоохранные мероприятия согласно плану природоохранных мероприятий.
- 3. Ежеквартально не позднее 10 числа первого месяца, следующего за отчетным кварталом, предоставить отчет по программе мероприятий по охране окружающей среды и отчет по выполнению особых условий природопользования в Управление природных ресурсов и регулирования природопользования ВКО.
- Ежеквартально не позднее 10 числа первого месяца, следующего за отчетным кварталом, предоставить фактические объемы выбросов в Управление природных ресурсов и регулирования природопользования ВКО.

Согласован:	Утверждаю:
Руководитель отдела экологического регулирования ГУ «Управления природных	Дирсктор
ресурсов и регулирования	ТОО «ВОСТОКСЕЛЬХОЗПРОДУКТ»
природопользования ВКО»	Postle
Н. В. Анфилифьева	С. А. Глушков
(noamucs)	CEAREGO, 20 c
20_1.	1 Millians

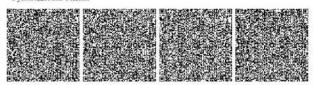
План мероприятий по охране окружающей среды на 2020-2029 гг.

ТОО «ВОСТОКСЕЛЬХОЗПРОДУКТ» Распирение предприятия по процводству масложировой продукции. ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15 (период эксплуатации)

Nicher H.H.	1.0	7 202		-	-		(ne	энод же	шлуатан								
NUMBER OF	Horsessenno:e	Объем	Ofmas			ж выполнения Плак фициализмания он годам (лыс эсигс)											Синаремый
	мерафиятия	планируе мих ребот	(тые тенте)	финанси- розании	HAPSLIN	10(8145)	2020 rag	2021 regi	11111111111	2023 ren	2024 ma	2625 min	00000000	2027 rm	2028 res	2029 reja	энчистически эффект от мероприятия
-	- 4	3	4	3	6	7	8	- 91	10		1.1	12	13	14	.15	1.6-	18
						1. 06	элисине с	отходими и	ронивожен	ж и потреб	ACMIN W						
1.1	Уборка тарриторни (7-6)		130	Собствен- тые средения	Deco	tracents	15	15	15	15	15	15	15	15	15	15	
	Hiero		150	1			15	15	15	14	15	15	15	15	15	15	
					2	Haywen-an	caesanore			no er anazan			3.7	8.5	13	15	
2.1	Parpačovca IUIB (cora: a: 10.11)	Lur	non -	Собствен- ные сремство		2029 гид. морт	-	-	-	н други	Tardesoni		104	-	18	600	Дакуск и рабет
	Hinco		600	11/11/2019			- 0	0.	0	0	- 0	0	- 0	0	.0.	600	
	7-6/11-11					3	Экологич	eccoe mnoc	пенение и	erenerasi'					-0	10310	
	Попинска на эколитеческие изпания (11.1)			Собствен- нас сослетия	Earce	30200	10	10	10	10	10	10	10	10	10	10	8
	Hrore		100				10	10	01	10	10	10	10	10	10	10	
	BCETO		850				25	25	25	25	25	28	26	25	25	625	

Вұл құжат ҚР 2003 жылдың 7 қытарындығы «Электронды құжат және электронды сақын, қол қою» түргін каңын 7 бобы. 1 тармағына сойыс қыза бетекдегі каңын тек. Электрондық құжат үчүн ейсенсе Ел порталында құрытын Электрондың құжат түшінұндысын чичи

Келісілген: Шығыс Қазақстан облысы табиғи ресурстар және табиғат пайдалануды реттеу басқармасы ММ-сінің экологиялық реттеу бөлімінің басшысы	Бекітемін: «ВОСТОКСЕЛЬХОЗПРОДУКТ) ЖПІС директоры
Н. В. Анфилофьева (коль:)	С. Г. Т.
«	20_ x


2020-2029 жылға арналған корплаған ортаны коргау туралы іс-шаралар жоспары «ВОСТОКСЕЛЬХОЗПРОДУКТ» ЖШС. ШҚО, Шемопанха ауланы, Первомайский кенті, Полевая көшесі, 1/13, 1/15 құрылыс мекен-жайы бойынша май-тоң өнімдерін өндіру бойынша кәсіпорынның кеңейтуі

							. (павлала	ину кезе	n(i)							
NN n.n.	Табагаты кергау шарасының атіуы			Қарамалан діндіу міся			Жаллар бейынын каркылындыру жостары (мың теңге)										Шарция кулілелы
					finchi	anni	2020 week	2021 and	2022 sam	2023 mass	2024 sau	2025 ann	2025 was	2027 mail	2028 and	7020 was	эвологіншық исер (тоғна/жысі)
- 1	2	- 3	- 1	- 5	6	7	. 3	9	10	-16		12	13	14	15	36	18
				0 10		L	Эндіріс жа	HETYTHINY	GARMOURP	server affect.	тысу		-				
1.1	Агандыі энтау(7.6)		850	Measure any	эрхэйни		13	15	15	15	18	15	15	15	15	15	
	Supranc		150				15	15	15	15	15	15	15	15	15	15	
						2. Fazin	com-septime	SWILDE, ISS	enymiana is	эте баска к	сумьеста и						*
2.1	Шектерлі мүмісін шығарыншылары өсін еорылгектерін жебалау жұмыстары (п.10.11)	Tanasa.	600	Memoric sogi	ацени, 3029 и	наурын, 7529 ж	-	-	32/	4				(4)	**	eac)	Кастерының жуысы какылду
	Борское		500				- 6	0	- 6			0		- 0	0	690	
						3, 366	101 100 DANC	cayayitanı	Kita apritu	ру жэне на	Betarray			7 77		110070	
XI.	Кариштан ергриск жаражалында үкон трассиялу (14.1)		100	Мехини кор	30cmmism		10	10	10	m	10	10	10	13	16	10	2
	Барсных		100				10	10	.10	30	10	30	10	19	10	10	
	Rep.meras		850				25	26	15	26	25	25	76	25	25	625	

Βρα αρμάνη 8/7 2009 κατορικό Το εκτογρικότει κ «Ποτετροκότει εχένα» και και κατικό εκτογρικόρει εκτίνει από το διαθές το εκτογρικό εκτίνος το εκτογρικότε το εκτίνος το εκτογρικότε το εκτίνος τ

Анфилофьева Наталья Владимировна

Βρα ειρωτι ΚΡ 2003 κατερική 7 εκκετρικεριαν «Πεντερικομα ερματι εκτικε εκκετρικομα ερματι κατικε εκκετρικομα ερματι επικε εκκετρικομα ερματι τρικορια ερματι ερμ

«ШҚО, Шемонаиха ауданы, Первомайский кенті, Полевая көшесі, 1/13, 1/15 құрылыс мекен-жайы бойынша май-тоң өнімдерін өндіру бойынша кәсіпорынның кеңейтуі»

жұмыс жобасы бойынша 21.05.2020 ж. № ЦЭ-0258/20 (оң)

КОРЫТЫНДЫ

ТАПСЫРЫСШЫ:

«Востоксельхозпродукт» ЖШС

БАС ЖОБАЛАУШЫ:

«Vira West» ЖШС, Өскемен қаласы

Павлодар қаласы

АЛҒЫ СӨЗ

«ШҚО, Шемонаиха ауданы, Первомайский кенті, Полевая көшесі, 1/13, 1/15 құрылыс мекен-жайы бойынша май-тоң өнімдерін өндіру бойынша кәсіпорынның кеңейтуі» жұмыс жобасы бойынша осы сараптау қорытындысы «Центр экспертизы РК» ЖШС берілді.

«Центр экспертизы РК» ЖШС рұқсатынсыз осы сараптамалық қорытынды толық немесе ішінара қайта шығаруға, көбейтуге және таратуға берілмейді.

ЗАКЛЮЧЕНИЕ

(положительное) № ЦЭ-0258/20 от 21.05.2020 г.

по рабочему проекту

«Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15»

ЗАКАЗЧИК:

ТОО «Востоксельхозпродукт»

ГЕНПРОЕКТИРОВЩИК:

TOO «Vira West», город Усть-Каменогорск

город Павлодар

ПРЕДИСЛОВИЕ

Данное заключение по рабочему проекту «Расширение предприятия по производству масложировой продукции» по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15, строение 1/15, выдано ТОО «Центр экспертизы РК».

Данное заключение не может быть полностью или частично воспроизведено, тиражировано и распространено без разрешения ТОО «Центр экспертизы РК».

1

1 НАИМЕНОВАНИЕ: рабочий проект «Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15», разработан в 2020 году.

Настоящее заключение выполнено в соответствии с условиями договора №41 от 27.04.2020 г. между ТОО «Центр экспертизы РК» и ТОО «Востоксельхозпродукт».

23АКАЗЧИК: ТОО «Востоксельхозпродукт».

ЗГЕНПРОЕКТИРОВЩИК: TOO «VIrA West», государственная лицензия ГСЛ №16000128 от 11 января 2016 года (II категория), выданная ГУ «Управление государственного архитектурно-строительного контроля Восточно-Казахстанской области». Акимат Восточно-Казахстанской области.

4ИСТОЧНИК ФИНАНСИРОВАНИЯ: негосударственные инвестиции.

5ОСНОВНЫЕ ИСХОДНЫЕ ДАННЫЕ

5.1 Основание для разработки:

- задание на проектирование на разработку рабочего проекта «Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15», утвержденное руководителем ТОО «Востоксельхозпродукт»;
- архитектурно-планировочное задание на проектирование №КZ37VUA00194480 от 06 марта 2020 года рабочего проекта «Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15», выданное ГУ «Отдел строительства, архитектуры и градостроительства Шемонаихинского района»;
- акт право частной собственности на земельный участок площадью 0,6105 га №0804025 от 05 августа 2019 года (кадастровый номер 05-080-037-368), изготовленный Отделом Шемонаихинского района по земельному кадастру и недвижимости филиала НАО «Государственная корпорация «Правительство для граждан» по Восточно-Казахстанской области:
- акт на право временного возмездного (долгосрочного, краткосрочного) землепользования (аренды) земельного участка площадью 0,0600 га №0803401 от 02 августа 2019 года (кадастровый номер 05-080-037-370), изготовленный Отделом Шемонаихинского района по земельному кадастру и недвижимости филиала НАО «Государственная корпорация «Правительство для граждан» по Восточно-Казахстанской области;
- договор купли-продажи земельного участка площадью 0,6105 га №49 от 03 июня 2019 года;
- договор об аренде земельного участка площадью 0,0600 га №58 от 18 июня 2019 года:
- распоряжение ГУ «Аппарат акима поселка Первомайский Шемонаихинского района Восточно-Казахстанской области» №51 от 31 мая 2019 года «О предоставлении товариществу с ограниченной ответственности) «Востоксельхозпродукт» права частной собственности на земельный участок для обслуживания зданий (строений и сооружений) субъектов малого предпринимательства»;
- распоряжение ГУ «Аппарат акима поселка Первомайский Шемонаихинского района Восточно-Казахстанской облас ти» №60 от 17 июня 2019 года «О предоставлении товариществу с ограниченной ответственности) «Востоксельхозпродукт» права

временного возмездного землепользования (аренды) сроком на 5 лет на земельный участок для обслуживания зданий (строений и сооружений) субъектов малого предпринимательства»;

- технический отчет на инженерно-геодезические изыскания, выполненный ТОО «Геологоразведочная компания «Топаз» в 2012 году;
- технический отчет на инженерно-геологические изыскания, выполненный ТОО «Геологоразведочная компания «Топаз» в 2012 году;
 - письмо заказчика о финансировании проекта №7 от 27 апреля 2020 года.

Технические условия:

Проектом не предусмотрено.

5.2 Согласования и заключения заинтересованных организаций

Рабочий проект «Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15», согласован с заинтересованными организациями.

5.3 Перечень документации, представленной на экспертизу

Паспорт рабочего проекта.

Том 1. Общая пояснительная записка.

Том 2. Рабочие чертежи.

Альбом 1. ГП – Генеральный план.

Альбом 2. НВК – Наружный водопровод и канализация.

Альбом 3. ТС – Тепломеханические решения тепловых сетей.

Альбом 4. AP – Архитектурные решения. Маслопрессовый цех.

Альбом 5. АР – Архитектурные решения. Маслоэкстракционный цех.

Альбом 6. АР – Архитектурные решения. Котельная.

Альбом 7. ЮЖ – Конструкции железобетонные. Маслопрессовый цех.

Альбом 8. КЖ – Конструкции железобетонные. Маслоэкстракционный цех.

Альбом 9. ЮК - Конструкции железобетонные. Котельная

Альбом 10. КМ – Конструкции металлические. Маслопрессовый цех.

Альбом 11. КМ – Конструкции металлические. Маслоэкстракционный цех.

Альбом 12. КМ - Конструкции металлические. Котельная.

Альбом 13. ТХ – Технологические решения. Маслопрессовый цех.

Альбом 14. ТХ – Технологические решения. Маслоэкстракционный цех.

Альбом 15. ТХ - Технологические решения. Котельная.

Альбом 16. ПБ – Пожарная безопасность. Маслопрессовый цех.

Альбом 17. ПБ – Пожарная безопасность. Маслоэкстракционный цех.

Альбом 18. ПБ - Пожарная безопасность. Котельная.

Альбом 19. ВК – Водопровод и канализация. Маслопрессовый цех.

Альбом 20. ВК – Водопровод и канализация. Маслоэкстракционный цех.

Альбом 21. ВК – Водопровод и канализация. Котельная.

Альбом 22. ОВ – Отопление и вентиляция. Маслопрессовый цех.

Альбом 23. ОВ – Отопление и вентиляция. Маслоэкстракционный цех.

Альбом 24. ОВ – Отопление и вентиляция. Котельная.

Альбом 25. ЭО – Электричество и освещение. Маслопрессовый цех.

Альбом 26. ЭО – Электричество и освещение. Маслоэкстракционный цех.

Альбом 27. ЭО - Электричество и освещение. Котельная.

Альбом 28. ЭМ – Электросиловое оборудование. Маслопрессовый цех.

Альбом 29. ЭМ - Электросиловое оборудование. Маслоэкстракционный цех.

Том 3. Сметная документация.

Том 4. Проект организации строительства.

ОВОС - Оценка воздействия на окружающую среду.

5.4 Цель и назначение объекта строительства

Целью и задачей проекта является - Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15.

Назначение объекта строительства - объекты сельского хозяйства.

6 ОСНОВНЫЕ ДАННЫЕ ОБЪЕКТА И ПРИНЯТЫЕ ПРОЕКТНЫЕ РЕШЕНИЯ

6.1 Место размещения объекта и характеристика участка строительства

Объект строительства расположен по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15.

Рисунок 1. Ситуационная схема.

Природно-климатические условия района строительства

В соответствии со СП РК 2.04-01-2017, исследуемая территория по климатическому районированию для строительства относится к I климатическому району к подрайону IB, с резко выраженным континентальным режимом.

Рабочий проект разработан для участка строительства со следующими природноклиматическими условиями:

4

- расчетная наружная температура воздуха минус 37,3°C;
- нормативная снеговая нагрузка 150 кг/м²;
- нормативное значение ветрового давления 38 кгс/м²;
- сейсмичность площадки строительства до 7 баллов.

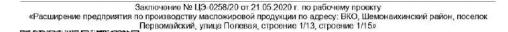
Инженерно-геологические условия площадки строительства

Инженерно-геологические изыскания на площадке проектируемых маслопрессового, маслоэкстракционного цехов и котельной в поселке Первомайский, ВКО выполнены ТОО «Геологоразведочная компания «Топаз», государственная лицензия 08 – ГСЛ №07-01510 от 21 июля 2009 года.

Проходка шурфов осуществлялась механическим способом шурфобуром диаметром 850 мм установки УРБ-2А на базе автомобиля УРАЛ-375М, без крепления с отбором образцов грунта нарушенной структуры (керна) и монолитов — образцов ненарушенной структуры и естественной влажности.

Количество изыскательских выработок (шурфов), принималось исходя из сложности инженерно-геологических условий площадки (I категория - простые), оцененных в процессе предварительного инженерно-геологического рекогносцировочного обследования участка и строительной площадки, размеров её в плане, рекомендуемого среднего расстояния между выработками, согласно СП РК 1.02-105-2014 Инженерные изыскания для строительства. Основные положения.

Глубины шурфов определялись типом и глубиной заложения фундамента, нагрузками на фундамент и нормативной глубиной промерзания грунтов (с заглублением на 2,0 м ниже зоны промерзания), согласно требований СН 225-79 «Инструкции по инженерным изысканиям для гражданского и промышленного строительства», СП РК 1.02-105-2014 Инженерные изыскания для строительства. Основные положения и составляли 4,0-4,2 м. Общий объем проходки 2-х изыскательских шурфов - 8,2 п.м. В непосредственной близости от площадки ранее пройдена гидрогеологическая скважина №1 глубиной 8,0 м - безводная.


В процессе проходки шурфов для лабораторных исследований был произведен отбор монолитов связных глинистых грунтов грунтоносом диаметром 125 мм методом сухого задавливания-обуривания, а также проб обломочных грунтов выветрелой зоны скальных грунтов - для проведения гранулометрического (ситового) анализа.

Физико-механические свойства грунтов, их агрессивность по отношению к бетону и металлам по химическому составу водных вытяжек связных грунтов - исследованы в аккредитованной и аттестованной госстандартами РК химико-грунтоведческой лаборатории ВК ЦИМС ТОО «ГРК «Топаз» (г. Усть-Каменогорск) в соответствии с действующими ГОСТами и СНиПами.

В геолого-литологическом строении строительной площадки принимают участие покровные делювиально-пролювиальные, средне-верхнечетвертичные и современные суглинки ($dpQ_{||\cdot||V}$) и скальные породы палеозоя — песчаники выветрелые и трещиноватые (PZ).

По результатам выполненных инженерно-геологических изысканий в геологолитологическом строении строительной площадки цеха по рафинации и дезодорации подсолнечного масла с поверхности по глубине принимают участие следующие грунты:

0,0 — 0,30-0,50 м - почвенно-растительный слой - гумусированный суглинок, верхнечетвертичный-современный (dpQ_{III-IV}) темно-серого цвета с корнями растений с включением дресвы и щебня до 10%, рыхлый и комковатый, мерзлый.

0,30-0,50 м - 7,50 м - суглинок лессовидный слабоизвестковистый средний, тугопластичный палевого до светло-коричневого цвета, средне-верхнечетвертичный (dpQ_(□,III)) с включением дресвы и щебня до 15%.

7,50 — 8,0 м - скальные породы палеозоя (PZ) - песчаники зеленовато-серые, рассланцованные, выветрелые и трещиноватые. Материнские скальные породы в кровле изменены процессами выветривания до состояния разборной скалы (обломочно-рухляковая пачка зоны коры выветривания). Мощность зоны выветрелых пород на площадке составляет 1,0-1,5 м. Ниже породы более плотные, умеренно трещиноватые.

В разрезе отложений, слагающих строительную площадку, выделяются 2 основных инженерно-геологических элемента (ИГЭ), обладающих различными строительными свойствами.

Первый ИГЭ (1ИГЭ) - суглинок лессовидный слабоизвестковистый светлокоричневый средний, тугопластичный с включением дресвы и щебня до 15%. Вскрытая на площадке шурфами (глубиной 4,0-4,2 м) мощность лессовидных суглинков составляет 3,7-3,9 м. Подошва суглинков по данным гидрогеологической скважины №1 глубиной 8,0 м, пройденной северо-западнее площадки, вскрыта на глубине 7,5 м.

Второй ИГЭ (2ИГЭ) - песчаники зеленовато-серые, рассланцованные, выветрелые и трещиноватые. Материнские скальные породы в кровле изменены процессами выветривания до состояния разборной скалы (обломочно-рухляковая пачка зоны коры выветривания). Мощность зоны выветрелых пород составляет 1,0-1,5 м.

Расчетное сопротивление грунтов зоны коры выветривания скальных пород оценивается: $Ro = 2.5 \ \text{кгс/см}$ (250 кПа).

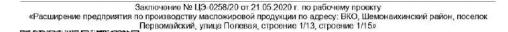
Гранулометрический состав обломочно-рухляковой зоны коры выветривания песчаников по данным ситового анализа характеризуется следующим содержанием фракций, (в %):

щебень 10-100 мм - 60,4;

дресва 2-10 мм - 39,6.

Гидрогеологические условия площадки

Подземные воды, включая и воды спорадического распространения типа «верховодка», изыскательскими выработками до глубины исследований (8,0 м) в толще суглинков и скальных грунтов не вскрывались, поэтому они не будут участвовать в обводнении строительных котлованов и не будут оказывать влияния на основания фундаментов проектируемого цеха.


Негативные инженерно-геологические процессы и явления: заболачивание, карст, провалы поверхности, деформации пучения на близ расположенных участках промышленной застройки химического завода и в границах строительной площадки цеха по рафинации и дезодорации подсолнечного масла в процессе рекогносцировочного инженерно-геологического обследования участка не отмечались.

По сложности инженерно-геологических условий для промышленного строительства площадка относится к І-й категории (простых): условия строительства объекта применительно к ленточным, свайным и сплошным фундаментам благоприятные.

6.2 Проектные решения

6.2.1 Генеральный план

Компоновочное решение генерального плана выполнено из условий выделенной территории, магистралей, проездов, с приведением его к требованиям норм проектирования СП РК 3.01-103-2012/СН РК 3.01-01-2011 «Генеральные планы промышленных предприятий», СН РК 3.01-01-2013/СП РК 3.01-101-2013

«Градостроительство. Планировка и застройка городских и сельских населенных пунктов».

Рассматриваемая территория для проектирования мослопрессового цеха маслоэкстракционного цеха и котельной состоит из двух земельных участков общей площадью 0,8 га (7290,0 м² маслопрессовый и маслоэкстракционный цеха 770,2 м² котельная), расположенных в поселке Первомайский, Шемонаихинский район, ВКО.

Участок характеризуется следующими основными показателями:

- а) рельеф участка пологий с уклоном на запад и юго-запад;
- б) гидрологическая характеристика подземные воды до глубины 8,0 м не вскрыты;
- в) господствующие ветры северные и южные
- г) на участке строений, сооружений нет, имеются зеленые насаждения на северозападе участка;
 - д) участок в прошлом не использовался.

Территория предприятия ТОО «Востоксельходпродукт» имеет строения, сооружения, транспортные, пешеходные пути, производственные площадки, ограждение.

Основной подъезд к территории со стороны улицы Полевая по местному проезду. Выезд на территорию предусмотрен через охраняемые ворота.

Взаимосвязь планировочных элементов осуществляется по автомобильным дорогом (местным проездом) имеющим асфальтобетонное покрытие, а также пешеходным дорожками шириной 1,0 и 1,5 метро с покрытием из декоративной плитки. Проектом приняты усовершенствованные капитальные и облегченные покрытия проездов, площадок и тротуаров.

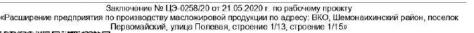
Вертикальная планировка участка выполнена сплошной. Минимальный уклон принят 0,004, максимальный - 0,055. Вертикальная планировка территории выполнена в максимальной увязке с отметками прилегающего существующего рельефа Асфальтобетонное покрытие и мощение тротуарной плиткой спланированы с уклоном, обеспечивающим отвод ливневых и талых вод с территории.

Горизонтальная поверхность участка, включая площадки с травяным покрытием, пешеходные дорожки и автомобильные проезды, решены без уступов.

Вокруг зданий предусмотрен проезд для пожарных машин.

Озеленение территории выполнить ассортиментом газонных трав и цветов, характерных для данного климатического региона.

Кратковременная пор ковко легкового автотранспорта существующая, располагается при въезде на территорию производственной дозы, имеет асфальтобетонное покрытие. Для парковки автомобилей маломобильных групп населения предусмотрено 2 парковочных места.


Наружное освещение выполнено при помощи уличных фонарей о также прожекторов, установленных, но плоскостях стен проектируемого здания.

Твердые бытовые отходы и смет с покрытия планируется собирать в контейнеры для мусора установленные на хозяйственной площадке, имеющей твердое покрытие. Вывоз мусора из контейнеров осуществляется специальным транспортом на полигон ТБО.

Проектом предусмотрены следующие мероприятия по охране земель и окружающей среды:

При проведении планировочных робот плодородный слой почвы использовать для благоустройства участка

Асфальтобетонное покрытие площадок и проездов спланировано с уклоном, обеспечивающим отвод ливневых и талых вод с территории в проектируемую местную ливневую сеть канализации.

Вредных технических примесей, выбрасываемых производственным цехом (через вентиляцию или иными способами) нет, и они отсутствуют в окружающей среде.

При планировочных роботах в местах устройство газона проектные отметки уменьшить на 15 см.

Инженерные внутриплощадочные сети — существующие. Подключение проектируемых объектов к внутриплощадочным инженерным сетям разрабатывается в составе рабочего проекта.

При входах в здание устанавливаются урны для мусора. Очистка производится по мере заполнения.

Исходный материал - Топографическая съёмка М1500. Система координат - местная, высот — Балтийская. Все размеры и расстояния, но чертежах даны в метрах. При планировочных работах в местах устройства газона проектные отметки уменьшить на 15 см.

Основные показатели по генплану:

- общая площадь участка проектирования 8060,2 м²;
- общая площадь застройки 2912,3 м²;
- площадь отмостки 783,5 м²;
- площадь мощения тротуарной плиткой 756,1 м²;
- площадь асфальтобетонного покрытия 2681,6 м²;
- площадь озеленения 926,7 м².

Указания по производству земляных работ

- Земляные работы выполняются согласно ППР, разработанным генеральным подрядчиком.
- Земляные и монтажные работы по прокладке новых сетей производить в присутствии и с разрешения представителей заинтересованных коммунальных служб.

6.2.2 Архитектурно-строительные решения

Маслопрессовый цех

Конструктивная характеристика

Фундамент - монолитный столбчатый.

Несущие конструкции - металлический каркас.

Ограждающие конструкции - стеновые сэндвич-панели, толщиной 100 мм, 150 мм.

Перегородки - гипсокартонные, сэндвич-панели.

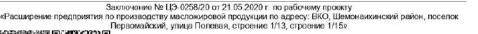
Перекрытие - монолитный железобетон по несъемной опалубке, настил (рифленый лист) по металлическим балкам.

Покрытие - металлические фермы.

Кровля - двускатная.

Покрытие кровли - кровельные сэндвич-панели, толщиной 150 мм, 200 мм.

Заполнение проемов - металлические, металлопластиковые оконные и дверные блоки, деревянные дверные блоки.


Отмостка – бетонная.

Теплоизоляционный слой - минеральная вата, группа горючести - НГ.

Наружная отделка - сэндвич-панели.

Внутренняя отделка.

Стены - сэндвич-панели, профилированный лист с полимерным покрытием, шпатлевка шлифовка поверхности, грунтовка покраска моющейся акриловой матовой краской в 2 слоя, облицовка керамической плиткой, в зависимости от функционального назначения помещений.

Потолок - сэндвич-панели, профилированный лист с полимерным покрытием, подвесной потолок типа «Armstrong» по металлическому каркасу.

Пол - мозаичный бетон, рифленый металлический лист, напольная керамическая плитка с антискользящей поверхностью, ламинат.

Объемно-планировочная характеристика маслопрессового цеха

Основной объем здания маслопрессового цеха правильной прямоугольной формы.

Здание состоит из производственного цеха и АБК.

Производственный цех

Этажность - 1 этаж, производственные площадки на отм. +2,500, +2,850, +3,800, +5,000. +6,900. +8,000. +9.800.

Общие геометрические размеры в осях 5-16, А-Д - 60,00 х 18,00 м.

Общая высота цеха - 11,00 м (до низа металлических ферм).

Состав помещений производственный цех, лестница производственные помещения, коридор, производственные площадки на отм. +2,500, +2,850, +3,800, +5,000, +6,900, +8,000, +9,800.

Административно-бытовой корпус (АБК)

Этажность - 2 этажа.

Общие геометрические размеры в осях 1-5, А-Г - 24,00 х 12,00 м.

Общая высота АБК - 6,00 м (до низа металлических ферм).

Высота помещений АБК - 2,80 - 3,00 м.

Состав помещений:

- на отм. 0,000 тамбуры, лестничные клетки, коридоры, комната уборочного инвентаря, санитарные узлы, комната приема пищи, комнаты для персонала, пред душевые, душевые, комната для курения, помещение, помещение мастерской, помещение мастерской электриков, вестибюль.
- на отм. +3.000 лестничные клетки, коридор, санитарные узлы, комната уборочного инвентаря, комната для курения, офисные помещения, конференц-зал на 35 посадочных мест.

За относительную отметку 0.000 принято отметка чистого пола 1-го этажа.

Относительная отметка 0,000 соответствует абсолютной отметке 354,46.

Степень огнестойкости вновь возводимого здания — IIIa.

Уровень ответственности - II.

Технически не сложный тип объекта.

Класс функциональной пожарной опасности - Ф 5.1.

Категория здания по взрывопожарной и пожарной опасности – В.

Класс конструктивной пожарной опасности - С1.

- Мероприятия для обеспечения доступности маломобильных посетителей
 В соблюдении требований СН РК 3.06-01-2011/СП РК 3.06-101-2012 проектом предусмотрены мероприятия, обеспечивающие беспрепятственный и удобный доступ маломобильных посетителей.
- В качестве проектного решения принято устройство пандуса с шириной полосы движения «в чистоте» 1000 мм и уклоном 8%.

Дверной проем «в чистоте» имеет ширину 1200 мм.

Антисейсмические мероприятия

Руководство нормами предусмотренные СП РК 2.03-30-2017 «Строительство в сейсмических районах (зонах) Республики Казахстан».

Горизонтальная гидроизоляция предусматривается из цементно-песчаного раствора.

Основные показатели по зданию

9

Общая площадь - 2051,00 м². Полезная площадь - 1958,80 м². Строительный объем 14986 м³.

Этажность:

- производственный цех 1 этаж, рабочие площадки;
- АБК 2 этажа.

Площадь застройки (без учета отмостки) - 1327,20 м².

Площадь отмостки - 294,30 м².

Мощность производство маслоэкстракционного цеха – 300 т/сут.

Пояснения к производству работ:

- 1. За относительную отметку 0,000 принята отметка чистого пола 1-го этажа.
- 2. Относительная отметка 0,000 соответствует абсолютной отметке 354,46.
- 3. Согласно заключению, об инженерно-геологических условиях площадки строительство, выполненному ТОО «ГРК «Топаз», в основании фундамента залегает суглинок лессовидный с включением дресвы и щебня до 15%, просадочный / типа, со следующими нормативными характеристиками нормативный угол внутреннего трения ф=20П; нормативное удельное сцепление с=0,2 кгс/см, удельный вес грунта p=27,2. кН/м³, коэффициент пористости e=0,79, пористость 44,0%. Условное расчетное сопротивление грунта для расчета фундамента принято R₀ =18 кгс/см². Категория грунта по сейсмическим свойствам II. По содержанию хлоридов и сульфатов суглинки по отношению к бетонным и железобетонным конструкциям из бетона на обычном портландцементе и группе влажности W4 по хлоридам неагрессивная; по сульфатам неагрессивная. Грунтовые воды изыскательскими выработками до глубины 8,0 м не вскрыты. Нормативная глубина сезонного промерзания суглинков 1,8 м. В случае обнаружения, на отметке заложения фундаментов грунтов, отличных от принятых в проекте, роботы приостановить и поставить в известность проектную организацию.
- 4. Все роботы по устройству основания и фундаментов выполнять в полном соответствии с указаниями СП РК 5.01-101-2013.
- Производство и приемку работ производить в соответствии с требованиями СП РК 5.01-101-2013.
- Под фундамент выполнить подготовку из бетона В7.5 толщиной 100 мм, с размерами, превышающими размеры фундамента, на 100 мм в каждую сторону.
- 7. Не допускается устройство фундаментов на основание из промерзшего грунта и без защиты от увлажнения.
- 8. Грунт под подошвой фундаментов необходимо уплотнить тяжелыми трамбовками, при этом объемный вес скелета уплотненного грунта должен быть не менее 1,6 т/m^3 на глубину 1,5 м.
- 9. Выполнить обмазочную гидроизоляцию фундаментов и фундаментных балок горячим битумом за два раза.
- 10. Обратную засыпку в пазухах фундаментов выполнять сухим местным непучинистым грунтом с тщательным послойным уплотнением до K_{сот} =0,95.
- Монолитный фундамент детонировать непрерывно, после установки всей арматуры.
 - 12. По периметру здания выполнить отмостку 1500 мм.
- 13. Соединение арматуры выполнить при помощи сварки. Сварку элементов производить электродами типа Э42A, ГОСТ 9467-75*.
- 14. При укладке арматуры обеспечить проектную величину защитных слоев установкой бетонных или пластмассовых фиксаторов.

- 15. Арматурные каркасы изготовлять при помощи контактной точечной электросварки. Сварка электродуговая по ГОСТ 5264-80* электродами Э42A по ГОСТ 9467-75*. Катет шва не меньше толщины свариваемых элементов.
- 16. После монтажа конструкций, сварные швы зачистить и произвести окраску стольных элементов эмалью ПФ-115 за два раза по грунтовке ГФ-021.
- Антикоррозионные покрытия, нарушенные при сварке на монтаже, необходимо восстановить.
 - 18. Все закладные изделия покрыть грунтовкой ГФ-021 за два раза.
- 19. Профлист крепить к металлическим балкам самонарезающими болтами, через волну торцы настила в каждой волне.
- Между содой листы профилированного настила крепить заклепками с шагом 250 мм.
 - 21. Площадь профлиста посчитана без учета нахлеста.
- 22. При производстве работ использовать переносные щиты, служащие для равномерной передачи нагрузки на профлист, предотвращения деформаций установленной арматуры и организации путей транспортирования бетона.
- 23. Арматурные сетки вязать в каждом пересечении по месту при помощи вязальной проволоки толщиной 3 мм. Арматуру вязать во всех пересечениях.
- 24. Защитный слой бетона рабочей арматуры плиты принят 25 мм. Концы арматурных стержней должны отстоять от грани элемента не менее 25 мм.
- 25. Стыки арматурных стержней выполнять внахлестку и располагать в разбежку. В одном сечении допускается не более 50% стыков. Длина перепуска для арматурных стержней составит для Ø10 A-III не менее 680 мм.
 - 26. В пределах отверстия стержни разрезать по месту и загнуть в тело плиты.
- 27. Загружение монолитного перекрытия допускается только после набора 100% прочности
- Деформационный шов, при устройстве бетонного пандуса, необходимо заделать битумонизировонной паклей.
- 29. Ферму, балки и ригели приварить к колоннам, сварка электродуговая по ГОСТ 5264-80* электродами Э42А по ГОСТ 9467-75* Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
 - 30. Установку связей необходимо выполнять до установки покрытия.
 - 31. Прогоны П1 приварить на монтаже к опорным уголкам.
- 32. Болты для крепления фахверка, вертикальных и горизонтальных связей нормальной точности М16 класса 5,8 по ГОСТ 7798-70* кроме оговоренных. Материал фермы сталь C245.
 - 33. Все отверстия в деталях выполнить D23 под болт M20, кроме оговоренных.
 - 34. Планки жесткости установить на каждый элемент на ровных расстояниях.
- 35. Перегородки из гипсокартонных листов ГКЛВ по металлическому каркасу, толщиной 75 мм, 100 мм, выполнить согласно СП РК 5.06-11-2004 «Ограждающие конструкции с применением гипсокартонных листов» с однослойной обшивкой и заполнением теплоизоляционным материалом IZOTERM П-75 толщиной 50 мм (НГ -
- 36. Перегородки из гипсокартонных листов ГКЛО по металлическому каркасу толщиной 150 мм, выполнить согласно СП РК 5.06-11-2004 «Ограждающие конструкции с применением гипсокартонных листов» с двухслойной обшивкой и заполнением теплоизоляционным материалом IZOTERM П-75 толщиной 100 мм (НГ негорючие).

- 37. Крепление тяжелого стационарного навесного оборудования (раковины, электрические щиты, навесные пожарные шкафы) рекомендуется предусматривать через закладные детали в виде полос или профиля ПС с закреплением их к стойкам каркаса.
- 38. В местах установки дверной коробки стойки металлического каркаса перегородки рекомендуется усилить деревянными брусками для двери массой до 30 кг или дополнительным металлическим профилем толщиной не менее 2 мм при массе двери долее 30 кг.
- 39. Ограждения кровельные следует изготавливать в соответствии с требованиями настоящего стандарта ГОСТ25772-83. Высота ограждения 600 мм.
- 40. Предусмотреть на кровле устройство снегозадерживающих элементов (на расстоянии 500 мм от кровельного ограждения направление к коньку).
- 41. Двери и окна установить согласно плана спецификации и схем элементов заполнения проемов.
- 42. Предусмотреть заполнение оконных проемов металлопластиковым профилем, отвечающим требованиям пожарной безопасности, через специализированные организации. Все размеры уточнить по месту!
- 43. Для окон, с наружной стороны предусмотреть сливы из оцинкованной стали t=0,8 мм, шириной 200 мм.
 - 44. Полы устроить согласно экспликации полов.
- 45. Внутреннюю отделку помещений выполнить согласно ведомости отделки помещений.
- Строительный мусор складировать на собственной территории с последующим вывозом на полигон ТБО.
- 47. В проекте предусмотрено использование местных строительных материалов, производимых в РК в соответствии с принятым Госстандартом и имеющих соответственный сертификат (приказ №90 от 11 апреля 2000 г. Казстройкомитета о реализации государственной программы импортозамещения в строительстве).

Маслоэкстракционный цех

Конструктивная характеристика

Фундамент - монолитный столбчатый.

Несущие конструкции - металлический каркас.

Ограждающие конструкции - стеновые сэндвич-панели толщиной 100 мм.

Перегородки - гипсокартонные сэндвич-панели.

Перекрытие - монолитный железобетон по несъемной опалубке.

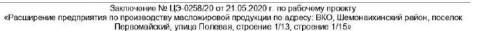
Покрытие - металлические фермы.

Кровля - двускатная.

Покрытие кровли - кровельные сэндвич-панели толщиной 150 мм.

Заполнение проемов - металлические металлопластиковые оконные и дверные блоки, деревянные дверные блоки.

Отмостка – бетонная.


Теплоизоляционный слой - минеральная вата группа горючести - НГ.

Наружная отделка - сэндвич-панели.

Внутренняя отделка:

Стены - сэндвич-панели, профилированный лист с полимерным покрытием, шпатлевка, шлифовка поверхности, грунтовка покраска моющейся акриловой матовой краской в 2 слоя, облицовка керамической плиткой на высоту в h=1,8 м в зависимости от функционального назначения помещений.

Потолок - сэндвич-панели, профилированный лист с полимерным покрытием, подвесной потолок типа «Armstrong» по металлическому каркасу.

Поп - мозаичный бетон

Объемно-планировочная характеристика маслоэкстракционного цеха

Основной объем здания маслоэкстракционного цеха правильной прямоугольной формы.

Этажность - 3 этажа производственные площадки на отм. +2,500, +2.900. +7,800.

Общие геометрические размеры в осях 1/1-5, А-В - 26,50 х 14,00 м.

Высота помещений:

- на отм. 0,000 5,10 м (до низа перекрытия);
- на отм. +5,300 5,00 м (до низа перекрытия);
- на отм. +10,500 4,500 (до низа мет. ферм).

Состав помещений на отм. 0,000 лестничные клетки, тамбур-шлюзы, санитарный узел, комната уборочного инвентаря, производственное помещение, производственные цех, производственные площадки на отм. +2,500, производственные площадки на отм. +2,900, на отм. +5,300 лестничные клетки, тамбур-шлюзы, производственный цех, производственная площадка на отм. +7,800, на отм. +10,500 лестничные клетки, тамбур-шлюзы, производственный цех.

За относительную отметку 0,000 принята отметка чистого пола 1-го этажа.

Относительная отметка 0,000 соответствует абсолютной отметке 355,25.

Степень огнестойкости вновь возводимого здания - IIIa.

Уровень ответственности - II.

Технически не сложный тип объекта.

Класс функциональной пожарной опасности - Ф 5.1.

Категория здания по взрывопожарной и пожарной опасности - А.

Класс конструктивной пожорной опасности - С1.

Антисейсмические мероприятия

Руководство нормами предусмотренные СП РК 2.03-30-2017 «Строительство в сейсмических районах (зонах) Республики Казахстан».

Устройство монолитного перекрытия.

Горизонтальная гидроизоляция предусматривается из цементно-песчаного раствора.

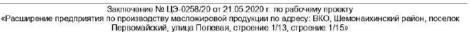
Основные показатели по зданию

Общая площадь - 1062,00 м².

Полезная площадь - 806,70 м².

Строительный объем - 6390,00 м³.

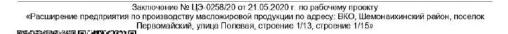
Этажность - 3 этажа рабочие площадки.


Площадь застройки (без учета отмостки) - 410,50 м².

Площадь отмостки - 105,70 м².

Мощность производства маслоэкстракционного цеха - 150 т/сут.

Пояснения к производству работ


- 1. За относительную отметку 0,000 принята отметка чистого пола 1-го этажа.
- 2. Относительная отметка 0,000 соответствует абсолютной отметке 355,25.
- 3. Согласно заключению, об инженерно-геологических условиях площадки строительства выполненному ТОО «ГРК «Топаз», в основании фундамента залегает суглинок лессовидный с включением дресвы и щебня до 15%. просадочный І типа со следующими нормативными характеристиками: нормативный угол внутреннего трения ф=200; нормативное удельное сцепление с=0,2 кгс/см; удельный вес грунта р=27,2 кН/м³, коэффициент пористости e=0,79. пористость 44.0%. Условное расчетное сопротивление грунта для расчета фундамента принято R₀=1,8 кгс/см. Категория грунта по сейсмическим свойствам-II. По содержанию хлоридов и сульфатов суглинки по отношению к бетонным и

железобетонным конструкциям из бетона на обычном портландцементе и группе влажности W4 по хлоридам - неагрессивная; по сульфатам - неагрессивная. Грунтовые воды изыскательскими выработками до глубины 8,0 м не вскрыты. Нормативная глубина сезонного промерзания суглинков – 1,8 м. В случае обнаружения на отметке заложения фундаментов грунтов, отличных от принятых в проекте, работы приостановить и поставить в известность проектную организацию.

- Все работы по устройству основания и фундаментов выполнять в полном соответствии с указаниями СП РК 5.01-101-2013.
- Производство и приемку работ производить в соответствии с требованиями СП РК 5.01-101-2013.
- 6. Под фундамент выполнить подготовку из бетона B7.5 толщиной 100 мм, с размерами, превышающими размеры фундамента на 100 мм в каждую сторону.
- Не допускается устройство фундаментов на основание из промерзшего грунта и без защиты от увлажнения.
- 8. Грунт под подошвой фундаментов необходимо уплотнить тяжелыми трамбовками, при этом объёмный вес скелета уплотненного грунта должен быть не менее 1,6 т/м³ на глубину 1,5 м.
- 9. Выполнить обмазочную гидроизоляцию фундаментов и фундаментных балок горячим битумом за два раза.
- 10. Обратную засыпку в пазухах фундаментов выполнять сухим местным непучинистым грунтом с тщательным послойным уплотнением до K_{cot} =0,95.
- Монолитный фундамент детонировать непрерывно, после установки всей арматуры.
 - 12. По периметру здания выполнить отмостку 1500 мм.
- 13. При укладке арматуры обеспечить проектную величину защитных слоев установкой бетонных или пластмассовых фиксаторов.
- Арматурные каркасы изготовлять при помощи контактной точечной электросварки.
- 15. Сварка электродуговая по ГОСТ 5264-80* электродами 342A по ГОСТ 9467-75*. Катет шва не меньше толщины свариваемых элементов.
- 16. Профлист крепить к металлическим балкам самонарезающими болтами, через волну торцы настила в каждой волне.
- 17. Между собой листы профилированного настила крепить заклепками с шагом 250 мм
- 18. При производстве работ использовать переносные щиты, служащие для равномерной передачи нагрузки на профлист, предотвращения деформаций установленной арматуры и организации путей транспортирования бетона.
- 19. Арматурные сетки вязать в каждом пересечении по месту при помощи вязальной проволоки толщиной 3 мм. Арматуру вязать во всех пересечениях.
- 20. Защитный слой бетона рабочей арматуры плиты принят 25 мм. Концы арматурных стержней должны отстоять от грани элемента не менее 25 мм.
- 21. Стыки арматурных стержней выполнять внахлестку и располагать в разбежку. В одном сечении допускается не долее 50% стыков. Длина перепуска для арматурных стержней составит для Ø10 A-III не менее 680 мм.
 - 22. В пределах отверстия стержни разрезать по месту и загнуть в тела плиты.
- 23. Загружение монолитного перекрытия допускается только после набора 100% прочности.
 - 24. Все закладные изделия покрыть грунтовкой ГФ-021 за два раза.

- 25. Деформационный шов. при устройстве бетонного пандуса бетонного крыльца необходимо заделать битумонизированной паклей.
- 26. Ферму, балки и ригели приварить к колоннам, сварка электродуговая по ГОСТ 5264-80* электродами 342A по ГОСТ 9467-75*. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
- 27. После монтажа конструкций, сварные швы зачистить и произвести окраску стальных элементов эмалью ПФ-115 за два раза по грунтовке ГФ-021.
 - 28. Установку связей необходимо выполнять до установки покрытия.
- 29. В качестве покрытия применить панели типа «Сэндвич» Новосибирского завода сэндвич-панелей НЗСП.
 - 30. Прогоны П1 приварить на монтаже к опорным уголкам.
- 31. Прогоны П2 крепить к каркасу при помощи пластин, в последних сделать отверстие Ø19 под болт M16 по центру детали.
- 32. Боты для крепления фахверка, вертикальных и горизонтальных связей нормальной точности M16 класса 5.8 по ГОСТ 7798-70* кроме оговоренных.
 - 33. Ригель Р1 сварить между собой прерывистым швом 100/100.
- 34. В распорках Рс1 установить планки жесткости поз. 19 на каждый элемент на равных расстояниях.
 - 35. Материал фермы сталь С245. кроме оговоренного.
 - 36. Все отверстия в деталях выполнить П23 под болт М20, кроме оговоренных.
 - 37. Планки жесткости установить на каждый элемент на равных расстояниях.
- 38. Металлические косоуры и лобовые балки лестничных маршей покрыть слоем штукатурки (цементно-песчаной) толщиной 30 мм по металлической сетке №20-2 (ГОСТ 5336-80), согласно требованиям противопожарных норм.
- 39. Антикоррозионные покрытия, нарушенные при сварке на монтаже, необходимо восстановить.
 - 40. Материал лестницы сталь С235.
- 41. Перегородки из гипсокартонных листов ГКЛВ по металлическому каркасу толщиной 75 мм, 100 мм, выполнить согласно СП РК 5.06-11-2004 «Ограждающие конструкции с применением гипсокартонных листов» с однослойной обшивкой и заполнением теплоизоляционным материалом IZOTERM П-75 толщиной 50 мм (НГ негорючие).
- 42. Крепление тяжелого стационарного навесного оборудования (раковины, электрические щиты, навесные пожарные шкафы) рекомендуется предусматривать через закладные детали в виде полос или профиля ПС с закреплением их к стойкам каркаса.
- 43. В местах установки дверной коробки стойки металлического каркаса перегородки рекомендуется усилить деревянными брусками для двери массой до 30 кг или дополнительным металлическим профилем толщиной не менее 2 мм при массе двери долее 30 кг.
- 44. Ограждения кровельные следует изготавливать в соответствии с требованиями настоящего стандарта ГОСТ25772-83. Высота ограждения 600 мм.
- 45. Предусмотреть на кровле устройство снегозадерживающих элементов (на расстоянии 500 мм от кровельного ограждения направление к коньку).
- Двери и окна установить согласно плана спецификации и схем элементов заполнения проемов.
- 47. Предусмотреть заполнение оконных проемов металлопластиковым профилем, отвечающим требованиям пожарной безопасности, через специализированные организации. Все размеры уточнить по месту!

- 48. Для окон, с наружной стороны предусмотреть сливы из оцинкованной стали t=0,8 мм, шириной 200 мм.
 - 49. Полы устроить согласно экспликации полов.
- 50. Внутреннюю отделку помещений выполнить согласно ведомости отделки помещений.
- Строительный мусор складировать на собственной территории с последующим вывозом на полигон ТБО.
- 52. В проекте предусмотрено использование местных строительных материалов, производимых в РК в соответствии с принятым Госстандартом и имеющих соответственный сертификат (приказ №90 от 11 апреля 2000 г. Казстройкомитета о реализации государственной программы импортозамещения в строительстве).

Котельная

Конструктивная характеристика

Фундамент - бетонный монолитный столбчатый.

Несущие конструкции - металлический каркас.

Ограждающие конструкции - стеновые сэндвич-панели, толщиной 100 мм.

Перегородки - гипсокартонные.

Покрытие - металлические фермы.

Кровля – двускатная.

Покрытие кровли - кровельные сэндвич-панели, толщиной 150 мм.

Заполнение проемов - металлические и деревянные дверные блоки, металлопластиковые оконные блоки.

Отмостка - бетонная.

Теплоизоляционный слой - минеральная вата, группа горючести - НГ.

Наружная отделка - сэндвич-панели.

Внутренняя отделка.

Стены - сэндвич-панели, профилированный лист с полимерным покрытием, шпатлевка, шлифовка поверхности, грунтовка покраска моющейся акриловой матовой краской в 2 слоя, облицовка керамической плиткой, в зависимости от функционального назначения помещений.

Потолок - сэндвич-панели, профилированный лист с полимерным покрытием, подвесной потолок типа «Armstrong» по металлическому каркасу.

Пол - цементно-бетонные, напольная керамическая плитка с антискользящей поверхностью.

Объемно-планировочная характеристика маслоэкстракционного цеха

Основной объем здания правильной прямоугольной формы.

Этажность - 1 этаж.

Общие геометрические размеры в осях 1-6, А-В - 30,00 х 12,00 м.

Общая высота котельной - 7,83 м (до низа мет. ферм).

Высота бытовых помещений - 2,80 м.

Состав помещений котельный зал, гардеробная персонала душевая, комната уборочного инвентаря, комната приема пищи, умывальная, туалет, злектрощитовая.

За относительную отметку 0,000 принята отметка чистого пола 1-го этажа.

Относительная отметка 0,000 соответствует абсолютной отметке 358,73.

Степень огнестойкости вновь возводимого здания - IIIa.

Уровень ответственности - II.

Технически не сложный тип объекта.

Класс функциональной пожарной опасности - Ф 5.1.

Категория здания по взрывопожарной и пожарной опасности - Г.

Класс конструктивной пожарной опасности - С1.

Антисейсмические мероприятия

Руководство нормами предусмотренные СП РК 2.03-30-2017 «Строительство в сейсмических районах (зонах) Республики Казахстан».

Горизонтальная гидроизоляция предусматривается из цементно-песчаного раствора.

Основные показатели по зданию

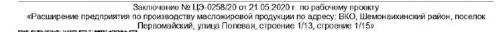
Общая площадь - 374,40 м².

Полезная площадь - 372,00 м².

Строительный объем - 3740,60 м³.

Этажность - 1 этаж.

Площадь застройки (без учета отмостки) - 420,02 м².


Площадь отмостки - 128,90 м².

Паропроизводительность котельной - 10 т/час.

Пояснения к производству работ

- 1. За относительную отметку 0,000 принята отметка чистого пола 1-го этажа.
- 2. Относительная отметка 0,000 соответствует абсолютной отметке 358,73.
- 3. Согласно заключению, об инженерно-геологических условиях площадки строительства выполненному ТОО «ГРК «Топаз», в основании фундамента залегает суглинок лессовидный с включением дресвы и щебня до 15%. просадочный І типа со следующими нормативными характеристиками нормативный угол внутреннего трения φ=200; нормативное удельное сцепление с=0,2 кгс/см²; удельный вес грунта р=27,2 кН/м³, коэффициент пористости e=0,79, пористость 44,0%. Условное расчетное сопротивление грунта для расчета фундамента принято R₀=1,8 кгс/см². Категория грунта по сейсмическим свойствам-И. По содержанию хлоридов и сульфатов суглинки по отношению к бетонным и железобетонным конструкциям из бетона на обычном портландцементе и группе влажности W4 по хлоридам неагрессивная; по сульфатам неагрессивная. Грунтовые воды изыскательскими выработками до глубины 8,0 м не вскрыты. Нормативная глубина сезонного промерзания суглинков 1,8 м. В случае обнаружения на отметке заложения фундаментов грунтов, отличных от принятых в проекте, работы приостановить и поставить в известность проектную организацию.
- Все работы по устройству основания и фундаментов выполнять в полном соответствии с указаниями СП РК 5.01-101-2013.
- Производство и приемку работ производить в соответствии с требованиями СП РК 5.01-101-2013.
- 6. Под фундамент выполнить подготовку из бетона B7.5 толщиной 100 мм, с размерами, превышающими размеры фундамента на 100 мм в каждую сторону.
- 7. Не допускается устройство фундаментов на основание из промерзшего грунта и без защиты от увлажнения
- 8. Грунт под подошвой фундаментов необходимо уплотнить тяжелыми трамбовками, при этом объемный вес скелета уплотненного грунта должен быть не менее 16 т/м³ на глубину 1,5 м.
- 9. Выполнить обмазочную гидроизоляцию фундаментов и фундаментных балок горячим битумом за два раза.
- Обратную засыпку в пазух фундаментов выполнять сухим местным непучинистым грунтом с тщательным послойным уплотнением до К_{сот}=0,95.
- Монолитный фундамент бетонировать непрерывно, после установки всей арматуры.
 - 12. По периметру здания выполнить отмостку 1500 мм.

- 13. Соединение арматуры выполнить при помощи сварки. Сварку элементов производить электродами типа Э42A. ГОСТ 9467-75*.
- 14. При укладке арматуры обеспечить проектную величину защитных слоев установкой бетонных или пластмассовых фиксаторов.
- 15. Арматурные каркасы изготовлять при помощи контактной точечной электросварки. Сварка электродуговая по ГОСТ 5264-80* электродами Э42А по ГОС 9467-75*. Катет шва не меньше толщины свариваемых элементов.
- 16. Деформационный шов, при устройстве бетонного пандуса необходимо заделать битумонизированной паклей.
 - 17. Состав покрытия:
 - бетон класса B20 армированный сеткой по ГОСТ23279-85* 160 мм.
 - бетон класса B7.5 100 мм;
 - 2 слоя полиэтиленовой пленки;
 - уплотненная засыпка из гравия.
 - 18. Все закладные изделия покрыть грунтовкой ГФ-021 за два раза.
- 19. Ферму и ригели приварить к колоннам, сварка электродуговая по ГОСТ5264-80* электродами Э42A по ГОСТ 9467-75*. Высоту катетов сварных швов принимать по наименьшей толщине свариваемых элементов.
- 20. После монтажа конструкций, сварные швы зачистить и произвести окраску стальных элементов эмалью ПФ-115 за два раза по грунтовке ГФ-021.
 - 21. Прогоны П1 приварить на монтаже к опорным уголкам.
 - 22. Материал фермы сталь С245.
 - 23. Все отверстия в деталях выполнить D23 под болт M20, кроме оговоренных.
- 24. Планки жесткости установить на каждый элемент на равных расстояниях. Материал лестницы сталь C245.
- 25. Перегородки из гипсокартонных листов ГКЛВ по металлическому каркасу толщиной 100 мм. выполнить согласно СП РК 5.06-11-2004 «Ограждающие конструкции с применением гипсокартонных листов» с однослойной обшивкой и заполнением теплоизоляционным материалом IZOTERM П-75 толщиной 50 мм (НГ негорючие).
- 26. Перегородки из гипсокартонных листов ГКЛВ по металлическому каркасу толщиной 125 мм, выполнить согласно СП РК 5.06-11-2004 «Ограждающие конструкции с применением гипсокартонных листов» с двухслойной обшивкой и заполнением теплоизоляционным материалом IZOTERM П-75 толщиной 50 мм (НГ негорючие).
- 27. Крепление тяжелого стационарного навесного оборудования (раковины, электрические щиты, навесные пожарные шкафы) рекомендуется предусматривать через закладные детали в виде полос или профиля ПС с закреплением их к стойкам каркаса.
- 28. В местах установки дверной коробки стойки металлического каркаса перегородки рекомендуется усилить деревянными брусками для двери массой до 30 кг или дополнительным металлическим профилем толщиной не менее 2 мм при массе двери более 30 кг.
- 29. Покрытие бытовых помещений выполнить из профилированного листа H57-750-0,8 с 2-х сторонним полимерным покрытием. Общая площадь составляет – 27,20 м².
- 30. Ограждения кровельные следует изготавливать в соответствии с требованиями настоящего стандарта ГОСТ 25772-83. Высота ограждения 600 мм.
- Предусмотреть на кровле устройство снегозадерживающих элементов (на расстоянии 500 мм от кровельного ограждения - направление к коньку).
- 32. По способу водоотвода кровля предусматривается с неорганизованным наружным водостоком согласно СН РК 3.02-37-2013/СП РК 3.02-137-2013 «Крыши и кровли».

- 33. Двери и окна установить согласно плана спецификации и схем элементов заполнения проемов.
- 34. Предусмотреть заполнение оконных проемов металлопластиковым профилем, отвечающим требованиям пожарной безопасности, через специализированные организации. Все размеры уточнить по месту!
- 35. Для окон, с наружной стороны предусмотреть сливы из оцинкованной стали t=0,8 мм шириной 200 мм.
- 36. Группа горючести теплоизоляционного слоя (минеральная вата) HГ (негорючие).
 - 37. Полы устроить согласно экспликации полов.
- 38. Внутреннюю отделку помещений выполнить согласно ведомости отделки помещений.
- Строительный мусор складировать на собственной территории с последующим вывозом на полигон ТБО.
- 40. В проекте предусмотрено использование местных строительных материалов, производимых в РК в соответствии с принятым Госстандартом и имеющих соответственный сертификат (приказ №90 от 11 апреля 2000 г. Казстройкомитета о реализации государственной программы импортозамещения в строительстве).

6.2.3 Технологические решения

Маслопрессовый цех

Мощность производства маслопрессового цеха составляет 300 т/сут. (переработка сырья — семена подсолнечника) Мощность производства экстракционного цеха составляет 150 т/сут. (переработка сырья - жмых).

Режим работы маслопрессового и маслоэкстракционного цеха - 24 часа (3 смены по 8 часов) 7 дней в неделю.

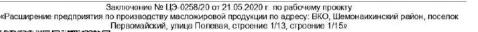
Общее количество рабочих (три смены) в маслопрессовом цехе - 14 человек.

Общее количество рабочих (три смены) в маслоэкстракционном цехе - 13 человек.

Общее количество технического персонала на каждый цех - уборщица - 1 человек, электрик - 1 человек, механик - 1 человек, грузчик - 1 человек.

Итого общее количество работников и технического персонала (три смены) в двух цехах - 14 работников + 13 работников + (4 технических работника x 2 цеха) = 35 человек.

На отм. 0,000 в административно-бытовом корпусе для работников маслопрессового цеха и маслоэкстракционного цеха предусмотрены мужская и женская раздевалки, душевые, санитарные узлы, комната приема пищи, комната для курения, комната уборочного инвентаря.


Мужская и женская раздевалки оборудованы индивидуальными шкафчиками для раздельного хранения личной/специальной одежды и обуви. Стирка и дезинфекция специальной одежды проводится централизованно (по договору), стирка на дому не допускается.

Помещение для приема пищи оснащается столом, стульями, бытовым холодильником, микроволновой печью, электрическим чайником, раковиной.

Санитарные узлы оборудованы раковиной с подводом горячей и холодной воды, оснащены средством для мытья рук, электрической сушилкой.

Хранение моющих, дезинфицирующих средств, предназначенных для уборки помещений, предусматривается в комнате уборочного инвентаря.

На отм. +3,000 в административно-бытовом корпусе предусмотрен конференц-зал на 35 посадочных мест, офисные помещения (администрация) санитарные узлы, комната для курения.

Расчетная внутренняя температура производственных помещений принято +16°C. Расчетная внутренняя температура бытовых помещений принята +18°C.

В маслопрессовом цехе на отм. 0,000, +5,000 предусматривается установка односекционных моечных раковин. Все вновь установленные моечные раковины оснащаются подводкой горячей и холодной воды через смесители.

Помещения маслопрессового цеха и АБК подключаются к внутриплощадочным системам отопления, холодного, горячего водоснабжения и канализации.

Оптимальные условия микроклимата и воздушной среды в производственных помещениях и в помещениях АБК обеспечиваются системами кондиционирования, вентиляции и отопления.

Вентиляция в помещениях АБК предусматривается естественная.

Общее искусственное освещение предусмотрено во всех, без исключения, помещениях, в соответствии с их назначением. Для освещения отдельных функциональных зон и рабочих мест устраивается местное освещение Светильники освещения оснащаются сплошными (закрытыми) плафонами (влаго-пылезащитное исполнение).

Все металлические конструкции покрываются антикоррозийными, влагостойкими составами.

Внутренняя отделка помещений предусматривается из нетоксичных, гладких материалов, светлых тонов, допускающих проведение влажной уборки с использованием моющих и дезинфицирующих средств, разрешенных к применению в Республике Казахстан

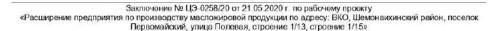
Проектом предусмотрено отделка полов из влагоустойчивых, влагонепроницаемых, нетоксичных материалов, с ровной поверхностью, без выбоин.

В случае чрезвычайной ситуации эвакуация людей из помещений АБК предусматривается через 2 эвакуационных выхода. Эвакуация персонала из производственных помещений предусматривается через ворота.

Твердые бытовые отходы и смет с покрытия планируется собирать в существующий контейнер с крышкой для мусора, установленный на существующей бетонной площадке.

Площадка имеет бетонное водонепроницаемое покрытие, ограждение с трех сторон сплошной глухой стеной высотой 1,8 м. Вывоз мусора из контейнеров осуществляется специальным транспортом на полигон ТБО.

Маслопрессовой цех. Технология производства


Сырьем для производства растительного масла служат семена подсолнечника. По содержанию масла семена подсолнечника относятся к высокомасличной группе.

Плод подсолнечника - семянка состоит из кожуры (лузги) и белого семени (ядра), покрытого семенной оболочкой. На долю лузги приходится 22-56% от общей массы семянки. Содержание масла в семенах подсолнечника превышает 50 % и в чистом ядре составляет 70%.

В производстве растительного масла используются следующие способы извлечения масла механический отжим масла прессованием и экстракция.

Для извлечения масла сначала используют способ прессования, при котором получают ¾ всего масла, а затем экстракционный способ, с помощью которого извлекают остальное масло.

Семена подсолнечника, поступающие из зернохранилища, взвешивают и ссыпают в подземный загрузочный бункер. Из загрузочного бункера сырье поступает на подающий скребковый конвейер, а затем ковшовым элеватором (нория) подается на вибросито, которое используется для предварительного удаления примесей. Методом отсеивающих движений вибросито тщательно удаляет как тяжёлые, так и лёгкие примеси и пыль.

Примеси больших размеров удаляются через выпускное отверстие. Лёгкие примеси, пыль проходят через вертикальную всасывающую трубу и удаляются через систему вентиляции: циклонный пыле сборник с воздушным шлюзом, вентилятор для удаления пыпи

Далее семена подсолнечника пропускают через магнитный сепаратор, предназначенный для отделения металлов от основной смеси, после чего сырье поступает в гравитационную камнеотборочную машину, используемую для непрерывного удаления камня, что является одним из ключевых аспектов в производстве.

Очищенные от примесей семена подсолнечника по горизонтальным винтовым конвейерам и ковшовому элеватору подаются в устройство для шелушения. Для разделения лузги и ядра подсолнечника используется малогабаритный рассев.

Ядро подсолнечника, по горизонтальному скребковому конвейеру поступает в горизонтальный смягчающий бак (увлажнитель сырья). Избыточная влага удаляется при помощи влагопоглощающего вентилятора.

Увлажненное сырье подается в гидравлический паропрокатный станок, где происходит измельчение массы. Далее мятка (измельченная масса) поступает в установку вертикальной варки, в которой за счет влажностно-тепловой обработки достигается оптимальная пластичность продукта и создаются условия для облегчения отжима масла на прессах. В результате такой обработки мятка превращается в мезгу, подготовленную к отжиму масла.

Далее мезга попадает в маслобойные прессы. Масло отжимается, а прессуемый материал уплотняется в монолитную массу-жмых. Ток как прессовым способом невозможно добиться полного обезжиривания мезги, получаемый жмых направляется на дальнейшую обработку в маслоэкстракционный цех.

Полученное масло поступает в автоматическое шлакоудаляющее устройство (бакотстойник), затем масло проходит фильтрацию и направляется в бак для чистого сырого масла.

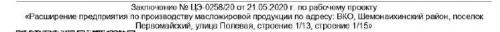
Маслоэкстракционный цех

Мощность производства маслоэкстракционного цеха составляет 150 т/сут. (переработка сырья - жмых).

Режим работы маслоэкстракционного цеха - 24 часа (3 смены по 8 часов) 7 дней в неделю.

В цехе в одну рабочую смену работает 5 человек в две другие смены по 4 человека.

Общее количество технического персонала на цех: уборщица - 1 человек, электрик - 1 человек, механик - 1 человек, грузчик - 1 человек.


Итого общее количество работников и технического персонала (три смены) в маслоэкстракционном цехе: 4 работника х 2 смены + 5 работников х 1 смену + 4 технических работника = 17 человек.

Для работников маслоэкстракционного цеха предусмотрены мужская и женская раздевалки, душевые, комната приема пищи, комната для курения, располагаемые в административно-бытовом корпусе маслопрессового цеха.

Мужская и женская раздевалки оборудованы индивидуальными шкафчиками для раздельного хранения личной/специальной одежды и обуви. Стирка и дезинфекция специальной одежды проводится централизованно (по договору), стирка на дому не допускается.

Помещение для приема пищи оснащается столом, стульями, бытовым холодильником, микроволновой печью, электрическим чайником, раковиной.

На отм. 0,000 маслоэкстракционного цеха предусмотрена вешалка для верхней одежды, санитарный узел и комната уборочного инвентаря. Санитарный узел оборудован

раковиной с подводом горячей и холодной воды, оснащен средством для мытья рук, электрической сушилкой

Хранение моющих, дезинфицирующих средств, предназначенных для уборки помещений, предусматривается в комнате уборочного инвентаря.

Расчетная внутренняя температура производственных помещений принята +16°C.

В маслоэкстракционном цехе на отм. +5,300, +10,500 предусматривается установка односекционных моечных раковин. Все вновь установленные моечные раковины оснащаются подводкой горячей и холодной воды через смесители.

Помещения маслоэкстракционного цеха подключаются к внутриплощадочным системам отопления, холодного, горячего водоснабжения и канализации.

Оптимальные условия микроклимата и воздушной среды в производственных помещениях обеспечиваются системами кондиционирования, вентиляции и отопления.

Общее искусственное освещение предусмотрено во всех, без исключения, помещениях, в соответствии с их назначением. Для освещения отдельных функциональных зон и рабочих мест устраивается местное освещение. Светильники освещения оснащаются сплошными (закрытыми) плафонами (влаго-пылезащитное исполнение).

Все металлические конструкции покрываются антикоррозийными, влагостойкими составами.

Внутренняя отделка помещений предусматривается из нетоксичных, гладких материалов, светлых тонов, допускающих проведение влажной уборки с использованием моющих и дезинфицирующих средств, разрешенных к применению в Республике Казахстан

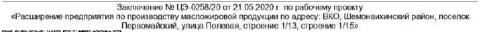
Проектом предусмотрена отделка полов из влагоустойчивых, влагонепроницаемых, нетоксичных материалов, с ровной поверхностью, без выбоин.

В случае возникновения чрезвычайной ситуации эвакуация людей из производственных помещений маслоэкстракционного цеха производится через лестничные клетки, ведущие непосредственно наружу.

ТБО и смет с покрытия планируется собирать в существующий контейнер с крышкой для мусора установленный на существующей бетонной площадке. Площадка имеет бетонное водонепроницаемое покрытие, ограждение с трех сторон сплошной глухой стеной высотой 18 м. Вывоз мусора из контейнеров осуществляется специальным транспортом на полигон ТБО.

Маслоэкстракционный цех. Технология производства

Сырьем для производства растительного масла служат семена подсолнечника.


Для извлечения масла сначала используют способ прессования, при котором получают 3/4 всего масла, а затем экстракционный способ, с помощью которого извлекают остальное масло.

Прессовым способом невозможно добиться полного обезжиривания мезги, получаемый жмых направляется на дальнейшую обработку в маслоэкстракционный цех.

С помощью транспортера на экстрактор подается экстрагируемый материал - жмых.

В процессе экстракции используется специальный органический растворитель. Масло, которое находится на поверхности вскрытых клеток, при «омывании» растворителем, легко растворяется в нем. Значительное количество масла находится внутри невскрытых клеток. Извлечение этого масла требует проникновения растворителя внутрь клетки и выхода растворителя наружу. Таким образом, в результате экстракции получают раствор масла в растворителе - мисцелла и обезжиренный материал - шрот.

Шрот получаемый на выходе, с помощью транспортера подается в десольвентайзер.

Здесь происходит удаление растворителя из шрота. Полученные пары растворителя конденсируют и проводят их рекуперацию для перевода растворителя в жидкое состояние.

Выходящая из экстрактора мисцелла может содержать от 15 до 35% масла растворенного в экстрагенте, а также некоторые примеси. Обработку мисцеллы проводят в две стадии: очистка мисцеллы, отгонка растворителя - дистилляция мисцеллы.

Для удаления из мисцеллы механических примесей ее фильтруют.

Затем мисцелла подается в дистилляционную секцию. В дистилляторе 1 ступени она нагревается парами растворителя. Часть растворителя переходит в газообразное состояние и в таком виде понемногу извлекается из дистиллятора. На 2 ступени процесса мисцелла нагревается глухим паром для подготовки к третьему этапу обработки - окончательной отгонки растворителя с помощью острого пара Весь этот процесс проходит в вакууме.

После окончания третьей ступени дистилляции масло подается в сушилку. Здесь из него, также с помощью вакуума, окончательно извлекается влага. После этого готовое масло проходит охладитель и теплообменник рекуперации, и подается в специальные емкости для дальнейшего хранения.

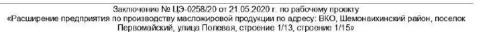
Котельная

Основные параметры однобарабанного вертикального парового котла

Модель котла	DZL 10-125-SW				
Номинальное испарение, т/ч	10				
Номинальное давление пара, Мпа	1,25				
Номинальная температура пара, °С	193,3				
Допустимый диапазон нагрузки	60-100%				
Используемое топливо	Биомасса				
Расход топливо, кг/ч	1800				
Расчетная тепловая эффективность	80%				
Температура выхлопных газов котла	160°C				
Коэффициент избытка воздуха на выхлопе	1,65				
Зона теплового воздействия, м ²	25,8				
Площадь конвективного теплообмена, м ²	206,73				
Площадь поверхности нагрева экономайзера, м ²	130,8				
Эффективная площадь решетки, м ²	10,98				
Объем воды в котле, м ²	17,15				
Общая потребляемая мощность, кВт	107				

В составе данного рабочего проекта разработка раздела ТМ (Тепломеханические решения котельных) не предусмотрена согласно задания на проектирование от заказчика.

Раздел ТМ (Тепломеханические решения котельных) будет разработан отдельным рабочим проектом предприятием-поставщиком данного котельного оборудования.


Паропроизводительность котельной составляет 10 т/час.

Режим работы котельной - 24 часа (3 смены по 8 часов) 7 дней в неделю.

В котельной, в одну рабочую смену работает 2 человека.

Итого общее количество работников (три смены) - 2 работника x 3 смены = 6

Для работников котельной предусмотрена гардеробная, душевая, санитарный узел, комната приема пищи.

Гардеробная персонала оборудована индивидуальными шкафчиками для раздельного хранения личной/специальной одежды и обуви. Стирка и дезинфекция специальной одежды проводится централизованно (по договору) стирка на дому не допускается.

Помещение для приема пищи оснащается столом стульями, бытовым холодильником, микроволновой печью, электрическим чайником, раковиной.

Санитарный узел оборудован раковиной с подводом горячей и холодной воды, оснащен средством для мытья рук. электрической сушилкой.

Хранение моющих, дезинфицирующих средств, предназначенных для уборки помещений, предусматривается в комнате уборочного инвентаря, оборудованной односекционной моечной раковиной, поддоном.

В котельном зале предусматривается установка односекционной моечной раковины. Помещения котельной подключаются к внутриплощадочным системам отопления, холодного, горячего водоснабжения и канализации.

Оптимальные условия микроклимата и воздушной среды в производственных и бытовых помещениях обеспечиваются системами кондиционирования вентиляции и отопления.

Общее искусственное освещение предусмотрено во всех, без исключения, помещениях, в соответствии с их назначением. Для освещения отдельных функциональных зон и рабочих мест устраивается местное освещение. Светильники освещения оснащаются сплошными (закрытыми) плафонами (влаго-пылезащитное исполнение).

Все металлические конструкции покрываются антикоррозийными, влагостойкими составами.

Внутренняя отделка помещений предусматривается из нетоксичных, гладких материалов, светлых тонов, допускающих проведение влажной уборки с использованием моющих и дезинфицирующих средств, разрешенных к применению в Республике Казахстан.

Проектом предусмотрена отделка полов из влагоустойчивых, влагонепроницаемых, нетоксичных материалов, с ровной поверхностью, без выбоин.

В случае возникновения чрезвычайной ситуации эвакуация людей из производственных помещений котельной производится через двери, ведущие непосредственно наружу.

ТБО и смет с покрытия планируется собирать в существующий контейнер с крышкой для мусора, установленный на существующей бетонной площадке. Площадка имеет бетонное водонепроницаемое покрытие, ограждение с трех сторон сплошной глухой стеной высотой 18 м. Вывоз мусора из контейнеров осуществляется специальным транспортом на полигон ТБО.

6.2.4 Инженерное обеспечение, сети и система

Наружные сети водоснабжения и канализации

Рабочий проект разработан на основании СНиП РК 4.01-02-2009 «Водоснабжение Наружные сети и сооружения». СН РК 4.01-03-2011 «Водоотведение. Наружные сети и сооружения».

Наружные сети водоснабжения

Подключение внутренних сетей зданий предусмотрено от поселковых сетей водопровода.

Трубы приняты стальные электросварные прямошовные по ГОСТ 33228-2015 Ø108x4 0

Антикоррозийная изоляция стальных трубопроводов, прокладываемых в земле — типа «Весьма усиленная» пленкой ПИЛ по ТУ 6-19-212-83.

При прокладке сети соблюдены минимальные расстояния до существующих зданий, сооружений и подземных коммуникаций в плане (расстояние в свету от наружной поверхности труб водопровода согласно СНиП РК 3.01-01-2002 табл. 14, 15 до фундаментов опор воздушной линии передач напряжением до 1 кВт — 1,0 м, свыше 1 кВт — 2,0 м).

Расчетный расход воды на наружное пожаротушение составляет 15,0 л/с. Наружное пожаротушение предусматривается от существующих резервуаров градирни.

На наружных стенах зданий размещены указательные знаки пожарного резервуара. Указательные знаки предусмотрены в светоотражательном исполнении согласно СТ РК ГОСТ P12.4.026-2002.

Наружные сети бытовой канализации

Отвод сточных вод предусмотрен в резервуар бытовых сточных вод.

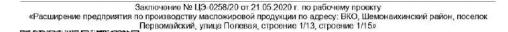
Прокладка сетей - подземная. Предусмотрены трубы из НПВХ по ТУ 2248-050-73011750-2016. На сети канализации в местах изменения направления, а также на прямых участках в зависимости от диаметра предусмотрено устройство смотровых колодцев.

Наружные сети ливневой канализации

Отвод дождевых стоков с тротуара и велодорожки предусмотрен в водоотводные лотки Standart Plastik DN200H280 «Аквасток». В качестве сервисного элемента в котором осаждается мусор и песок, а также переходного элемента от лотков к трубам предусмотрен пескоуловителя Stondart PlastikDN200 «Аквасток».

Закрытая сеть дождевой канализации запроектирована самотечной из труб НПВХ по ТУ2248-050-73011750-2016 Ø200 мм.

Дождевые и талые воды поступают для очистки в пескоилоотделитель EuroHEK 600, затем - в нефтемаслоотделитель EuroPEK Roo NS3 (производительность 3,0 л/с). Сбор очищенных сточных вод предусмотрен в проектируемый резервуар (полезная емкость резервуара - $50,0\,\mathrm{m}^3$).


Технология очистки ливневых сточных вод

Сточная ливневая вода самотеком поступает в регулирующий колодец, который обеспечивает подачу расчетного значения расхода сточной воды на очистные сооружения и отвод излишней воды по обводному трубопроводу. Использование колодца позволяет исключить вымывание взвешенных веществ и нефтепродуктов, обеспечивая тем самым эффективность очистки.

Отделение взвешенных веществ в пескоилоотделителе основано на седиментационном принципе - постепенном осаждении на дно емкости камней, песка и более мелкой фракции взвешенных веществ при достаточном времени отстоя воды.

Очистка воды в нефтемаслоотделителе основана на коалесцентном принципе.

Поступающая вода проходит через коалесцентный модуль - блок гофрированных пластин из специальной олеофильной пластмассы, которая имеет свойство притягивать частицы масла и отталкивать воду. Частицы нефтепродуктов соприкасаются с олеофильной пластиной и слипаются. При увеличении размера капель их скорость подъема растет, и нефтепродукты проходят вверх через отверстия коализатора. Отделившиеся нефтепродукты всплывая на поверхность, образуют единый слой. Развитые поверхности коалесцентного модуля позволяют добиться максимального контакта очищаемой воды и пластин модуля и обеспечить высокую степень очистки воды от нефтепродуктов.

Срок службы коалесцентного фильтра - неограничен, т.к. пластмасса не коррозирует и не меняет своих физических свойств. Коалесцентный модуль не требует замены или регенерации. Техническое обслуживание бензомаслоотделителя заключается в том, что коалесцентный блок изымается из корпуса и промывается струей воды. Степень очистки после бензомаслоотделителя составляет- по нефтепродуктам — 0,3 мг/л, по взвешенным веществам - 20 мг/л.

Промывка коалесцентного модуля проводится водой под давлением, после чего коолесцентный модуль продолжает аффективно работать. Промывка модуля производится на территории предприятия в оцинкованных поддонах. Содранные нефтепродукты вывозятся в места утилизации.

В стандартный комплект поставки нефтемаслоотделителя входит сигнализация OilSET-1000, которая сообщает о необходимости выгрузки отделившихся нефтепродуктов.

Проектом предусмотрено использование очищенных ливневых стоков на полив территории. Осаждающий в пескоилоотделителе осадок периодически откачивается грязевым насосом и вывозится на иловые площадки очистных сооружений. Нефтепродукты, образовавшиеся в результате очистки, утилизируются на асфальтобетонный завод по договору.

Антисейсмические мероприятия

Согласно СНиП РК 4.01-02-2009 п. 18.1 - 15.12 предусмотрены следующие мероприятия:

- 1. Для колодцев:
- в швы между сборными элементами заложить стальные соединительные элементы:
- на сопряжении нижнего кольца с днищем устроить сплошную обойму из монолитного бетона кл. В-15;
- предусмотреть упругую заделку труб с заполнением зазора упругой прокладкой (просмоленная прядь и др.). Зазор между гранью отверстия и трубой принимается не менее 200 мм;
- для увеличения сцепления обоймы со сборной плитой днища перед укладкой ее в дело поверхность сборной плиты днища должна быть очищена от пыли и грязи, пропескоструена и промыто водой.
 - 2. Для трубопроводов:
- на вводах и выпусках трубопроводов из зданий и сооружений предусмотрены гибкие соединения, допускающие угловые и продольные перемещения.

Монтаж сети вести в соответствии с CH PK 4.01-02-2013 Внутренние санитарнотехнические системы, СП PK 4.01-102-2013 Внутренние санитарно-технические системы.

Перед началом работ заказчику уточнить по месту наличие подземных сетей и инженерных коммуникаций, подрядчику получить разрешение на производство земляных работ с оформлением соответствующего ордера — разрешения также в соответствии с МСН 4.02-02-2004 «Тепловые сети», СНиП 4.02.04-2003 «Подземная прокладка».

Тепломеханические решения тепловых сетей

Рабочий проект разработан на основании СП РК 4.02-104-2013 «Тепловые сети». Климатические условия приняты согласно СП РК 2.04-01-2017 «Строительная климатология»:

Расчетная зимняя температура - -37,3 °C;

Скоростной напор ветра - 0,38 кПа;

Глубина промерзания грунта - 1,8 м;

Сейсмичность района - 7 баллов.

Теплоснабжение

Источник теплоснабжения - местная котельная. Резервного теплоисточника нет.

Теплоноситель - вода с температурой 95/70 °C.

Прокладка тепловой сети предусмотрена подземная бесканальная. Трубы приняты из стальных электросварных труб по ГОСТ 33228-2015, группы В, тип 1, термообработанные из стали по ГОСТ 1050-74 * марки 10 с индустриальной тепловой изоляцией из ППУ в полиэтиленовой оболочке. Изоляция на стыки наносится на месте монтажа после сварки трубопроводов и фасонных частей.

При прокладке тепловых сетей бесканальным способом трубы укладываются на песчаное основание толщиной 150-200 мм с песчаной обсыпкой толщиной 150 мм. Укладка труб производится на предварительно утрамбованное основание из песка с коэффициентом уплотнения 0,98. Размер фракции песка - не более 5 мм, коэффициент фильтрации - не менее 5 м/с. Песок не должен содержать крупных включений с острыми кромками, которые могут повредить защитный слой трубопроводов и соединительные муфты. После засыпки песок должен быть утрамбован. Стыки засыпают после гидравлических испытаний и их изоляции.

Для защиты трубы ППУ в полиэтиленовой оболочке при строительстве тепловых камер колодцев и прохода предизолированного трубопровода через фундаменты зданий использованы манжеты стенового ввода.

При бесканальной прокладке над каждой трубой на слой песка укладывается маркировочная сигнальная лента. Ответвления углы поворота трубопроводов при бесканальной прокладке обкладываются амортизирующими прокладками (демпфирующими матами) для обеспечения боковых перемещений.

Обратная засыпка производится послойно с одновременным уплотнением каждого споя

В здании цеха трубопроводы приняты из стальных термообработанных электросварных труб по ГОСТ 33228-2015. Теплоизоляция трубопроводов принята матами из стеклянного штапельного волокна типа «URSA»-M25ф (фольгированная).

Опорожнение трубопроводов предусмотрено в приямок в здании цеха с последующей перекачкой остывшего до 40° теплоносителя насосами в систему ливневой канализации.

Монтаж и приемку в эксплуатацию вести в соответствии с СП РК 4.02.104-2013, СП РК 4.02-104-2013.

Тепловые сети испытать гидравлическим пробным давлением 1,6 Мпа.

Отопление, вентиляция и кондиционирование воздуха

Маслопрессовый цех

Рабочий проект разработан на основании с СП РК 4.02-101-2012 «Отопление, вентиляция и кондиционирование».

Климатические условия приняты согласно СП РК 2.04-01-2017 «Строительная климатология»:

Расчетная зимняя температура - -37,3°C;

Сейсмичность района - 7 баллов.

Отопление

Источник теплоснабжения - местная котельная.

Теплоноситель - вода с температурой 95/70°C.

Система отопления - горизонтальная однотрубная с П-образными стояками.

Прокладка трубопроводов открытая. Трубопроводы приняты из водогазопроводных труб по ГОСТ 3262-75*.

Для труб, проложенных через тамбур, предусмотрена теплоизоляция матами из стеклянного штапельного волокна типа «URSA GEO M-25» толщиной 50,0 мм.

Неизолированные трубы окрасить эмалью в 2 слоя.

В качестве нагревательных приборов приняты алюминиевые радиаторы DECORAL тип FR2 50 с теплоотдачей одной секции 176 Вт. У отопительных приборов предусмотрена установка автоматических терморегуляторов. Удаление воздуха из системы отопления предусмотрено через краны Маевского, установленные в верхних пробках радиаторов.

Для отключения и опорожнения отдельных веток системы отопления предусмотрена установка регулирующей, запорной арматуры и пробно-спускных кроной для опорожнения системы отопления в тепловом узле предусмотрено устройство приямка.

Трубопроводы в местах пересечения перекрытий, внутренних стен и перегородок проложить в гильзах из негорючих материалов, края гильз должны быть на одном уровне с поверхностями стен, перегородок и потолков, но на 30 мм выше поверхности чистого пола.

Заделку зазоров и отверстий в местах прокладки трубопроводов выполнить негорючими материалами, обеспечивая нормируемый предел огнестойкости ограждения.

Условия и порядок проведения испытаний на тепловой эффект систем теплопотребления определяется требованиями действующей нормативно-технической литературы и документации.

Монтаж и приемку в эксплуатацию вести в соответствии со СП РК 4.02.104-2013 и «Тепловые сети».

Вентиляция

Вентиляция здания запроектирована механическая вытяжная совмещенная с естественной.

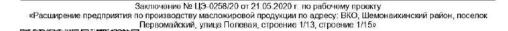
В вспомогательных помещениях вытяжной воздух удаляется из верхней зоны канальными вентиляторами Предусмотрены раздельные системы для санузлов и душей, курительной, административных помещений.

В производственных помещениях вытяжка предусматривается вытяжка при помощи крышных вентиляторов с факельным выбросом на отметках +13,220 и 13,670. Воздухообмен запроектирован 3-х кратный на удаление вредностей.

Приток предусмотрен неорганизованный через неплотности и открываемые проемы, компенсация тепла на нагрев холодного врывающего воздуха учтена в отоплении.

Материал воздуховодов вентиляционных систем принят из листовой оцинкованной стали класса-Н «Нормальные».

Все вытяжные воздуховоды возвышаются выше кровли на 0,7 метра.


После окончания монтажных работ места прохода воздуховодов через стены, перегородки и перекрытия здания уплотнить негорючим материалом обеспечивая нормативный предел огнестойкости пересекаемого ограждения.

Изготовление, монтаж и наладку систем отопления и вентиляции вести в соответствии с СП 73.13330.2012.

Крепление воздуховодов выполнить по серии 5.904-1.

Маслоэкстракционный цех

Данным разделом проекта решается вопрос вентиляции здания маслоэкстракционного цеха в поселке Первомайский Шемонаихинского района, ВКО.

Проект разработан на основании задания на проектирование и в соответствии со следующими нормативными документами: СН РК 4.02-01-2011 и СП РК 4.02-101-2012 «Отопление, вентиляция и кондиционирование воздуха».

Расчетные параметры приняты в соответствии со СП РК2.04-01-2017 «Строительная климатология» для поселка Первомайский:

- холодный период температура минус 37,3 °C, относительная влажность 75%;
- тёплый период температура плюс 26,0 °C, относительная влажность 64 %;
- средняя температура за отопительный период минус 7,2 °C;
- продолжительность отопительного периода 202 суток.

Вентиляция

Вентиляция здания запроектирована механическая вытяжная совмещенная с естественной.

В вспомогательных помещениях вытяжной воздух удаляется из верхней зоны естественно. В помещении технологического зало вытяжка предусматривается при помощи крышного вентилятора с факельным выбросом на отметке +18,000. Воздухообмен запроектирован 3-х кратный на удаление вредностей.

Приток предусмотрен неорганизованный через неплотности и открываемые проемы. Материал воздуховодов вентиляционных систем принят из листовой оцинкованной стали класса-Н «Нормальные».

Все вытяжные воздуховоды возвышаются выше кровли на 0,7 метра.

После окончания монтажных работ места прохода воздуховодов через стены, перегородки и перекрытия здания уплотнить негорючим материалом обеспечивая нормативный предел огнестойкости пересекаемого ограждения.

Изготовление, монтаж и наладку систем отопления и вентиляции вести в соответствии с СП 73.13330.2012. Крепление воздуховодов выполнить по серии 5.904-1.

Котельная

Рабочий проект разработан на основании задания на проектирование, утвержденного заказчиком, а также в соответствии с СП РК 4.02-101-2012 «Отопление, вентиляция и кондиционирование».

Климатические условия приняты согласно СП РК 2.04-01-2017 «Строительная климатология»:

Расчетная зимняя температура - -37,3°C;

Сейсмичность района - 7 баллов.

Отопление

Отопление котельной запроектировано электрическое с помощью инфракрасных обогревателей Теплофон 700 ЭРГНА 0,7/220 (п) с терморегуляторами мощностью 700 Вт. Условия эксплуатации - без надзора.

Водопровод и канализация

Маслопрессовый цех

Рабочий проект разработан на основании задания на проектирование, утвержденного заказчиком, а также СН РК 4.01-01-2011 «Внутренний водопровод и канализация сооружений».

В здании запроектированы следующие системы водопровода и канализации:

- хозяйственно-питьевой-противопожарный В1;
- горячее водоснабжение ТЗ (от электрических водонагревателей);
- бытовая канализация К1;
- производственная канализация.

Сейсмичность района работ - 7 баллов.

Основные показатели по чертежам водопровода и канализации

Наименование системы	Потребный напор на вводе, м	Расчетный расход				Установленная	
		м ³ /сут	м³/ч	л/с	при пожаре, л/с	мощность электродвигателей, кВт	Примеч
Хоз-питьевой-противопожарный водопровод	H _{1pe6} =14,0	7,15	2,43	0,75	21,55		
- хоз-питьевые нужды		0,35	0,13	0,1			
- душевые сетки		6,0	2,0	0,55			
- в т.ч. на уборку помещений		0,8	0,3	0,1			
Бытовая канализация		6,35	2,13	2,25			
Производственная канализация		0,8	0,3	2,2			
Внутреннее пожаротушение	H _{tpe6} =35,0		-	20,8			

<u>Система хозяйственно-питьевого-противопожарного водопровода</u> - кольцевая, запроектирована от поселкового водопровода.

Прокладка разводящих сетей предусмотрена открытая - по конструкциям здания.

Внутренняя водопроводная сеть выполнена из труд стальных водогазопроводных по ГОСТ $3262-75^*$.

В проекте предусмотрен подвод холодной воды к санитарным приборам, а также пожарным кранам. Разводящие участки сети холодного водоснабжения проложены с уклоном 0,002. Изоляция трубопроводов, не предусматривается Неизолированные стальные трубы окрасить эмалью в 2 слоя.

Нормы расхода воды на хозяйственно-питьевые нужды составляет 25,0 л/сут (9,4 л/ч) но 1 работающего, нормы расхода воды на душевые сетки - 500,0 л/сут. Расчетные расходы воды сведены в Таблицу «Основные показатели по чертежам водопровода и канализации». Гидравлический расчет сети внутреннего водопровода холодной воды выполнен по максимальному секундному расходу воды.

Пожаротушение

В здании предусмотрена система внутреннего пожаротушения. Объем цеха - 11,5 тыс. м³, объем АБК - 2,3 тыс. м³, степень огнестойкости здания — IIIа. Расчетный расход воды на пожаротушение в зависимости от высоты компактной части струи и диаметра спрыска составляет 4 струи по 5,2 л/с.

Диаметр пожарного крана с рукавом длиной 20,0 м составляет 65 мм, диаметр спрыска наконечника - 16 мм. Радиус действия пожарного крана — 230 м, напор у пожарного крана - 19,9 м время работы пожарных кранов - 3 ч. В пожарных шкафах предусмотрена возможность размещение двух ручных огнетушителей. Общее количество огнетушителей на здание - 11 шт. порошковых огнетушителей ОП-4 объемом 5,0 л.

Предусмотрена установка пожарных кранов на высоте 1,35 м от уровня пола.

Пожарные краны размещены в опломбированных шкафчиках с отверстиями для проветривания. На дверце шкафа указан буквенный индекс «ПК», порядковый номер и номер телефона ближайшей пожарной части. Внешнее оформление дверцы шкафа включает красный цвет. Пожарный рукав присоединен к крану и стволу.

Расход воды на наружное пожаротушение составляет 15,0 л/с. Наружное пожаротушение предусматривается от существующего резервуара градирни.

Бытовая канализация

Отвод сточных вод предусмотрен в проектируемый водонепроницаемый резервуар.

Внутренние сети запроектированы из полиэтиленовых канализационных труб Ø50-100 мм по ГОСТ22689-2014. Вентиляция сети осуществляется через стояки, выведенные выше кровли на 0,5 м. Прокладка разводящих сетей скрытая - в непроходном канале.

Производственная канализация

Для мокрой уборки полов и сбора проливов в производственных помещениях установлены канализационные трапы 6100 мм.

Внутренние сети запроектированы из полиэтиленовых канализационных труб Ø100 мм по ГОСТ 22689-2014. Прокладка разводящих сетей скрытая - в непроходном канале.

Вентиляция сети осуществляется через стояк, выведенный выше кровли на 0,5 м.

Отвод производственных сточных вод предусмотрен на жироуловитель, далее – в проектируемый водонепроницаемый резервуар производственных сточных вод.

Антисейсмические мероприятия

- 1. Жесткая заделка трубопроводов в конструкциях стен и фундаментов не допускается.
- 2. Отверстия для пропуска труб через конструкции предусмотрены размером, обеспечивающим зазор трубы не менее 0,2 м. заполняемый эластичным водонепроницаемым материалом. Материал заделки минеральная вата марки M-75 с последующей заделкой герметиком.

Маслоэкстракционный цех

Рабочий проект разработан на основании задания на проектирование, утвержденного заказчиком, а также СН РК 4.01-01-2011 «Внутренний водопровод и канализация сооружений».

В здании запроектированы следующие системы водопровода и канализации:

- хозяйственно-питьевой-противопожарный В1;
- горячее водоснабжение ТЗ (от электрических водонагревателей);
- бытовая канализация К1:
- производственная канализация.

Сейсмичность района работ - 7 баллов.

Основные показатели по чертежам водопровода и канализации

Наименование системы	Потребный напор на вводе, м	Расчетный расход				Установленная	
		м ³ /сут	м ³ /ч	л/с	при пожаре, л/с	мощность электродвигателей, кВт	Примеч
Хоз-питьевой-противопожарный водопровод	Нтреб=18,0	0,83	0,32	0,2	21,0		
- в т.ч. на уборку помещений		0,6	0,2	0,1			
Бытовая канализация		0,23	0,12	1,7			
Производственная канализация		0,6	0,2	2,2			
Внутреннее пожаротушение	Нтреб=35,0		-	20,8			

Система хозяйственно-питьевого-противопожарного водопровода

Система хозяйственно-питьевого-противопожарного водопровода - кольцевая, запроектирована от поселкового водопровода.

Прокладка разводящих сетей предусмотрена открытая - по конструкциям здания.

Внутренняя водопроводная сеть выполнена из труб стальных водогазопроводных по ГОСТ 3262-75*.

В проекте предусмотрен подвод холодной воды к санитарным приборам, пожарным краном. Разводящие участки сети холодного водоснабжения проложены с уклоном 0,002.

Изоляция трубопроводов, не предусматривается. Неизолированные стальные трубы окрасить эмалью в 2 слоя.

Нормы расхода воды на хозяйственно-питьевые нужды составляет 25,0 л/сут (9,4 л/ч) на 1 работающего. Расчетные расходы боды сведены в Таблицу «Основные показатели по чертежам водопровода и канализации». Гидравлический расчет сети внутреннего водопровода холодной воды выполнен по максимальному секундному расходу воды.

Пожаротушение

В здании предусмотрена система внутреннего пожаротушения. Объем цеха — 6,25 тыс. м³, степень огнестойкости здания - IIIа. Категория здания по взрывопожарной и пожарной опасности - А. Расчетный расход воды на пожаротушение в зависимости от высоты компактной части струи и диаметра спрыска составляет 4 струи по 5,2 л/с.

Диаметр пожарного крана с рукавом длиной 20,0 м составляет 65 мм, диаметр спрыска наконечника - 16 мм. Радиус действия пожарного крона - 23,0 м. напор у пожарного крана — 19,9 м, время работы пожарных кранов - 3 ч. В пожарных шкафах предусмотрена возможность размещение двух ручных огнетушителей. Общее количество огнетушителей на здание - 6 шт. порошковых огнетушителей ОП-9 объемом 10,0 л.

Предусмотрена установка пожарных кранов, на высоте 1,35 м от уровня пола.

Пожарные кроны размещены в опломбированных шкафчиках с отверстиями для проветривания. На дверце шкафа указан буквенный индекс «ПК», порядковый номер и номер телефона ближайшей пожарной части. Внешнее оформление дверцы шкафа включает красный цвет. Пожарный рукав присоединен к крану и стволу.

Расход воды на наружное пожаротушение определен в соответствии с Техническим регламентом Приложение 7 и составляет 15,0 л/с. Наружное пожаротушение предусматривается от существующего резервуара градирни.

Горячее водоснабжение

Горячее водоснабжение запроектировано от электрических водонагревателей «Ariston».

Бытовая канализация

Отвод сточных вод предусмотрен в проектируемый водонепроницаемый резервуар. Внутренние сети запроектированы из полиэтиленовых канализационных труб Ø50-100 мм по ГОСТ 22689-20%. Вентиляция сети осуществляется через стояк, выведенный выше кровли на 0,5 м. Прокладка разводящих сетей скрытая - в непроходном канале.

Производственная канализация

Для мокрой уборки полов и сбора проливов в производственных помещениях установлены канализационные тропы Ø100 мм.

Внутренние сети запроектированы из полиэтиленовых канализационных труб Ø100 мм по ГОСТ 22689-2014. Прокладка разводящих сетей открытая. Вентиляция сети осуществляется через стояк, выведенный выше кровли на 0,5 м.

Отвод производственных сточных вод предусмотрен на жироуловитель, далее — в проектируемый водонепроницаемый резервуар производственных сточных вод.

Антисейсмические мероприятия

- Жесткая заделка трубопроводов в конструкциях стен и фундаментов не допускается.
- 2. Отверстия для пропуска труб через конструкции предусмотрены размером, обеспечивающим зазор трубы не менее 0,2 м, заполняемый эластичным водонепроницаемым материалом Материал заделки минеральная вата марки М-75 с последующей заделкой герметиком.

Котельная

Рабочий проект разработан на основании задания на проектирование, утвержденного заказчиком, а также СН РК 4.01-01-2011 «Внутренний водопровод и канализация сооружений».

В здании запроектированы следующие системы водопровода и канализации:

- хозяйственно-питьевой водопровод;
- горячее водоснабжение;
- хозяйственно-бытовая канализация;
- производственная канализация.

Сейсмичность района работ - 7 баллов.

Основные показатели по чертежам водопровода и канализации

Наименование системы	Потребный напор на вводе, м	F	асчетн	ый расх	Установленная		
		м³/сут	м³/ч	л/с	при пожаре, л/с	мощность электродвигателей, кВт	Примеч
Хоз-питьевой водопровод	Нтреб=13,0	1,66	0,54	0,28			
Горячее водоснабжение		0,76	0,24	0,14			
Бытовая канализация		1,5	0,5	1,8			
Производственная канализация		0,16	0,04	2,1			

Система хозяйственно-питьевого водопровода

Система хозяйственно-питьевого водопровода - тупиковая, запроектирована от скважины, расположенной на территории производственного комплекса.

Прокладка разводящих сетей предусмотрена открытая - по конструкциям здания.

Внутренняя водопроводная сеть выполнена из труб стальных водогазопроводных по ГОСТ 3262-75*. В проекте предусмотрен подвод холодной воды к санитарным приборам. Изоляция трубопроводов, не предусматривается. Неизолированные стальные трубы окрасить эмалью в 2 слоя.

Нормы расхода воды на хозяйственно-питьевые нужды составляет 14,0 л/сут (5,0 л/ч) на 1 работающего, а также 270 л/сут на 1 душевую сетку. Расчетные расходы воды сведены в Таблицу «Основные показатели по чертежам водопровода и канализации». Гидравлический расчет сети внутреннего водопровода холодной воды выполнен по максимальному секундному расходу воды.

Объем здания — 3616,0 м³; степень огнестойкости — IIIa; категория по пожарной опасности - Г. Система внутреннего пожаротушения не предусматривается.

Расход воды на наружное пожаротушение составляет 10,0 л/с. Наружное пожаротушение предусматривается от существующего пожарного гидранта.

Горячее водоснабжение

Горячее водоснабжение запроектировано от электрических водонагревателей «Ariston».

Бытовая канализация

Отвод сточных вод предусмотрен в проектируемые накопительные емкости.

Внутренние сети запроектированы из полиэтиленовых канализационных труб Ø50-100 мм по ГОСТ 22689-2014. Вентиляция сети осуществляется через стояк, выведенный выше кровли на 0,5 м.

Производственная канализация

Для мокрой уборки полов и сбора проливов в производственных помещениях установлены канализационные тропы Ø100 мм.

Внутренние сети запроектированы из полиэтиленовых канализационных труб Ø100 мм по ГОСТ 22689-2014. Прокладка разводящих сетей открытая. Вентиляция сети осуществляется через стояк, выведенный выше кровли на 0,5 м.

Отвод сточных вод предусмотрен в проектируемые накопительные емкости.

Антисейсмические мероприятия

- Жесткая заделка трубопроводов в конструкциях стен и фундаментов не допускается.
- 2. Отверстия для пропуска труб через конструкции предусмотрены размером, обеспечивающим зазор трубы не менее 0,2 м заполняемый эластичным водонепроницаемым материалом. Материал заделки минеральная вата марки М-75 с последующей заделкой герметиком.

Электрическое освещение (внутреннее)

Маслопрессовый цех

Рабочий проект разработан, на основании СП РК 4.04-106-2013 «Электрооборудование жилых и общественных зданий». СП РК 2.04-104-2012 «Естественное и искусственное освещение» и других нормативных документов, действующих на территории РК.

По степени надежности электроснабжения электроприемники здания относятся ко II категории согласно СП РК 4.04-106-2013.

Проектом предусматриваются общее рабочее и аварийное освещение.

Электроосвещение помещений запроектировано согласно СП РК 2.04-104-2012 и СП РК 3.02-110-2012.

Общее рабочее освещение предусматривается во всех помещениях и выполняется светодиодными светильниками.

Тип светильников выбран в соответствии со средой, в которой они установлены, их назначением и конструктивными особенностями.

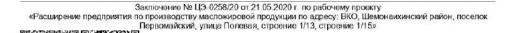
Светильники аварийного освещения на плане обозначены буквой «А».

Типы светильников, нормируемая освещенность указаны на планах.

Управление освещением принято от выключателей, установленных по месту на высоте 0,8 м от пола, а также автоматическими выключателями в пластиковом боксе в помещении охраны для паркинга. В помещениях без естественного освещения, выключатели установлены вне этих помещений.

Групповые розеточные сети и сети освещения выполнены с раздельным подключением на группах и проложены по трехпроводной схеме (L+N+PE) кабелем марки ВВГнг-3х1,5 (сеть освещения) и ВВГчг-3х2,5 (розеточная сеть) открыто по стенам и конструкциям.

Сечения проводников осветительной и силовой сетей выдраны по допустимым нагрузкам и проверены по потере напряжения.


В местах прохода проводов и кабелей через стены кабели должны прокладываться в стальных патрубках.

Распределительные щитки приняты типа ЩРн с автоматическими выключателями ВА47-29 для защиты групповых линий от сверхтоков и токов перегрузки.

На вводе - BA47-29 3P; на отходящих группах выключатели BA47-29 1P (хар-ка B),

Для розеточных групп применены дифференциальные автоматические выключатели АВДТ32 2P 20 A, 30 мА.

Все электромонтажные работы должны быть выполнены согласно ПУЭ РК.

Маслоэкстракционный цех

Рабочий проект разработан на основании СП РК 4.04-106-2013 «Электрооборудование жилых и общественных зданий». СП РК 2.04-104-2012 «Естественное и искусственное По степени надежности электроснабжения электроприемники здания относятся ко II категории согласно СП РК 4.04-106-2013.

Проектом предусматриваются общее рабочее и аварийное освещение.

Электроосвещение помещений запроектировано согласно СП РК 2.04-104-2012 и СП РК 3.02-110-2012.

Общее рабочее освещение предусматривается во всех помещениях и выполняется светодиодными светильниками.

Тип светильников выбран в соответствии со средой в которой они установлены, их назначением и конструктивными особенностями.

Светильники аварийного освещения на плане обозначены буквой «А».

Типы светильников, нормируемая освещенность указаны на планах.

Управление освещением принято от выключателей, установленных по месту на высоте 0,8 м от пола, а также автоматическими выключателями в пластиковом боксе в помещении охраны для паркинга. В помещениях без естественного освещения, выключатели установлены вне этих помещений.

Групповые сети освещения выполнены с раздельным подключением на группах и проложены по трехпроводной схеме (L+N+PE кабелем марки ВВГнг-3х1, 5 (сеть освещения) открыто по стенам и конструкциям.

Сечения проводников осветительной и силовой сетей выдраны по допустимым нагрузкам и проверены по потере напряжения.

В местах прохода проводов и кабелей через стены кабели должны прокладываться в стольных патрубках.

Распределительные щитки приняты типа ЩРн с автоматическими выключателями ВА47-29 для защиты групповых линий от сверхтоков и токов перегрузки.

На вводе - ВА47-29 3P, на отходящих группах выключатели ВА4 7-29 1P (хар-ка C). Все электромонтажные работы должны быть выполнены согласно ПУЭ PK.

Котельная

Рабочий проект разработан на основании СП РК 4.04-106-2013 «Электрооборудование жилых и общественных зданий». СП РК 2.04-104-2012 «Естественное и искусственное освещение» и других нормативных документов, действующих на территории РК.

По степени надежности электроснабжения электроприемники здания относятся ко II категории согласно СП РК 4.04-106-2013.

Проектом предусматриваются общее рабочее и аварийное освещение.

Электроосвещение помещений запроектировано согласно СП РК 2.04-104-2012 и СП РК 3.02-110-2012.

Общее рабочее освещение предусматривается во всех помещениях и выполняется светодиодными светильниками.

Тип светильников выбран в соответствии со средой, в которой они установлены, их назначением и конструктивными особенностями.

Светильники аварийного освещения на плане обозначены буквой «А».

Типы светильников, нормируемая освещенность указаны на планах.

Управление освещением принято от выключателей, установленных по месту на высоте 0,8 м от пола о также автоматическими выключателями в пластиковом боксе. В помещениях без естественного освещения, выключатели установлены вне этих помещений.

Групповые розеточные сети и сети освещения выполнены с раздельным подключением на группах и проложены по трехпроводной схеме (L+N+PE) кабелем марки ВВГнг-3х1,5 (сеть освещения) и ВВГчг-3х2,5 (розеточная сеть) открыто по стенам и конструкциям.

Сечения проводников осветительной и силовой сетей выбраны по допустимым нагрузкам и проверены по потере напряжения. В местах прохода проводов и кабелей через стены кабели должны прокладываться в стальных патрубках.

Распределительные щитки приняты типа ЩРн с автоматическими выключателями ВА47-29 для защиты групповых линий от сверхтоков и токов перегрузки.

На вводе - ВА47-29 ЗР; на отходящих группах выключатели ВА47-29 1Р (хар-ка В).

Для розеточных групп применены дифференциальные автоматические выключатели ABДT32 2P 20 A, 30 мA.

Все электромонтажные работы должны быть выполнены согласно ПУЭ РК.

Силовое электрооборудование

Маслопрессовый цех

Рабочий проект разработан на основании СП РК 4.04-106-2013 «Электрооборудовоние жилых и общественных зданий», СП РК 2.04-104-2012 «Естественное и искусственное освещение» и других нормативных документов, действующих на территории РК.

По степени надежности электроснабжения электроприемники здания относятся ко II категории согласно СП РК 4.04-106-2013.

Проектом предусмотрена установка ВРУ-0.4 кВ для электроснабжения технологического оборудования, вентиляции, освещения.

Распределительные шкафы и щиты приняты навесного исполнения.

Все электроприемники подключены к распределительным шкафам группами с учетом их технологического назначения.

Все сети электроснабжения выполнены пятипроводными с разделенными нулевыми рабочими N- и нулевыми защитными PE-проводникамц начиная от вводов.

Распределительные и групповые сети выполнены кабелями, не распространяющими горение, марки ВВГнг-0,66, проложенными по стенам на скобах, по конструкциям.

Электрические сети рассчитаны по допустимой токовой нагрузке и потере напряжения, защищены от перегрузки и однофазных токов короткого замыкания автоматическими выключателями, установленными в распределительных силовых шкафах.

Заземлению подлежат все нормально нетоковедущие токопроводящие части электрооборудования, которые могут оказаться под напряжением при повреждении изоляции или аварийном состоянии электрооборудования.

Для заземления электрооборудования принята система TN-C-S. Разделение совмещенного PEN проводника на N и PE проводники выполняется в ВРУ-0,4 кВ.

В качестве зануляющих проводников используются четвертые нулевые жилы силовых кабелей при напряжении 380 В и вторые жилы - при напряжении 220 В. В качестве заземляющих проводников используются пятые и третьи жилы силовых кабелей при напряжении 380 В и 220В соответственно. Заземляющие проводники должны быть надежно соединены с внутренним контуром заземления путем сварки или болтового соединения, а с шиной РЕ - только путем надежного болтового соединения.

Здание, согласно СП РК 2.04-103-2013, подлежит молниезащите по III категории. В качестве молниеприемника используется металлическая сетка. Шаг ее ячеек должен быть не более 6x6 м.

Молниеприемная сетка предусмотрена из оцинкованной стальной проволоки диаметром 8 мм и уложена на кровлю под несгораемый или трудносгораемый утеплитель.

Узлы сетки должны быть соединены сваркой Вокруг здания на глубине 0,5 м проложить наружный контур который выполняется полосовой сталью 40х4 мм.

Токоотводы, выполняемые оцинкованной стальной проволокой диаметром 8 мм, от молниеприемной сетки должны быть проложены к заземлите лям не реже чем через 25 м по периметру здания.

В местах присоединения токоотводов следует приварить по одному вертикальному лучевому злектроду длиной 3,0 м, выполненному из стали круглой диаметром 16 мм, L=3000 мм.

Величина импульсного сопротивления от прямых ударов молнии должна быть не более 10 Ом. Если после монтажа величина импульсного сопротивления окажется более 10 Ом, то необходимо забить дополнительные стержни заземлителей.

Сопротивление заземляющего контура для повторного заземления нулевого проводника согласно ПУЭ РК не регламентируется.

После монтажа контура заземления необходимо произвести замер его сопротивления.

Все электромонтажные работы должны быть выполнены согласно ПУЭ РК.

Маслоэкстракционный цех

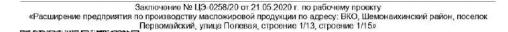
Рабочий проект разработан на основании СП РК 4.04-106-2013 «Электрооборудование жилых и общественных зданий», СП РК 2.04-104-2012 «естественное и искусственное освещение» и других нормативных документов, действующих на территории РК.

По степени надежности электроснабжения электроприемники здания относятся ко II категории согласно СП РК 4.04-106-2013.

Проектом предусмотрена установка ВРУ-0,4 кВ для электроснабжения технологического оборудования, вентиляции, освещения.

Распределительные шкафы и щиты приняты навесного исполнения.

Все электроприемники подключены к распределительным шкафом группами с учетом их технологического назначения.


Все сети электроснабжения выполнены пятипроводными с разделенными нулевыми рабочими N- и нулевыми защитными РЕ-проводниками, начиная от вводов.

Распределительные и групповые сети выполнены кабелями, не распространяющими горение, марки ВВГнг-0,66. проложенными по стенам на скобах, по конструкциям.

Электрические сети рассчитаны по допустимой токовой нагрузке и потере напряжения, защищены от перегрузки и однофазных токов короткого замыкания автоматическими выключателями, установленными в распределительных силовых шкафах

Заземлению подлежат все нормально нетоковедущие токопроводящие части электрооборудования, которые могут оказаться под напряжением при повреждении изоляции или аварийном состоянии электрооборудования.

Для заземления электрооборудования принята система TN-C-S. Разделение совмещенного PEN проводника на N и PE проводники выполняется в ВРУ-0,4 кВ.

В качестве зонуляющих проводников используются четвертые нулевые жилы силовых кабелей при напряжении 380 В и вторые жилы - при напряжении 220 В. В качестве заземляющих проводников используются пятые и третьи жилы силовых кабелей при напряжении 380 В и 220В соответственно. Заземляющие проводники должны быть надежно соединены с внутренним контуром заземления путем сварки или болтового соединения, а с шиной РЕ - только путем надежного болтового соединения.

Здание согласно СП РК 2.04-103-2013, подлежит молниезащите по III категории. В качестве молниеприемника используется металлическая сетка. Шаг ее ячеек должен быть не более 6x6 м.

Молниеприемная сетка предусмотрена из оцинкованной стальной проволоки диаметром 8 мм и уложена на кровлю под несгораемый или трудносгораемый утеплитель.

Узлы сетки должны быть соединены сваркой. Вокруг здания на глубине 0,5 м проложить наружный контур, который выполняется полосовой сталью 40х4 мм.

Токоотводы, выполняемые оцинкованной стальной проволокой диаметром 8 мм, от молниеприемной сетки должны быть проложены к заземлителям не реже чем через 25 м по периметру здания.

В местах присоединения токоотводов следует приварить по одному вертикальному лучевому электроду длиной 3,0 м, выполненному из стали круглой диаметром 16 мм, L=3000 мм.

Величина импульсного сопротивления от прямых ударов молнии должна быть не более 10 Ом. Если после монтажа величина импульсного сопротивления окажется более 10 Ом, то необходимо забить дополнительные стержни заземлителей.

Сопротивление заземляющего контура для повторного заземления нулевого проводника согласно ПУЭ РК не регламентируется.

После монтажа контура заземления необходимо произвести замер его сопротивления.

Все электромонтажные работы должны быть выполнены согласно ПУЭ РК.

6.3 Инженерно-технические мероприятия по предупреждению чрезвычайных и взрывопожароопасных ситуаций

При проектировании рабочего проекта использован Закон Республики Казахстан от 11 апреля 2014 года № 188-V «О гражданской защите», определяющий меры по защите населения, окружающей природной среды и объектов хозяйствования в случае чрезвычайных ситуаций.

На территории строительства отсутствуют взрывоопасные объекты.

При возникновении на рабочих местах пожара необходимо тушить его с применением огнетушителей, сухим песком, накрывая очаги загорания асбестовой или брезентовым полотном.

На объекте должно быть определено лицо, ответственное за сохранность и готовность к действию первичных средств пожаротушения.

Огнетушители должны всегда содержаться в исправном состоянии, периодически осматриваться, проверяться и своевременно перезаряжаться.

Использование первичных средств пожаротушения для хозяйственных и прочих нужд, не связанных с тушением пожара, не допускается.

В случае чрезвычайных ситуаций ликвидация производится учреждениями, осуществляющими деятельность по пожаротушению и проведению аварийноспасательных работ, связанных с ликвидацией пожаров и других чрезвычайных ситуаций на территории объекта.

Дороги, проезды, подъезды и проходы к зданию, подступы к пожарному инвентарю, должны быть всегда свободными, содержаться в исправном состоянии, а зимой – быть очищенными от снега и льда (ППБ РК 2011).

Объект должен быть обеспечен исправными первичными средствами пожаротушения, средствами связи для вызова противопожарной службы и противопожарной автоматикой согласно действующим нормам (ППБ РК 2011).

Ширина коридоров, ширина дверных проемов, длина эвакуационных путей принята по СН РК 2.02-01-2014 «Пожарная безопасность зданий и сооружений».

Наружные эвакуационные двери запроектированы без запоров, которые могут быть открыты изнутри (СН РК 2.02-01-2014, ППБ РК 2011, часть 3, п.2).

Внутренняя отделка стен, потолка и пола помещений предусмотрена из негорючих материалов. На все материалы предоставить сертификаты соответствия с протоколами испытаний. CH PK2.02-01-2014.

Строительно-монтажные работы выполнять согласно правилам пожарной безопасности (ППБС 01-94). Перед началом ведения СМР объект обеспечить противопожарным водоснабжением.

6.4 Оценка воздействия на окружающую среду

Данные по видам и количеству образования отходов, образующихся в процессе выполнения строительных работ приведены в таблице 1.

Нормативы размещения отходов производства и потребления

Табпина №1

			Таблица №1
Наименование отходов	Образование, т/период	Размещение, т/период	Передача сторонним организациям, т/период
1	2	3	4
Период с	гроительства		
Итого:	3,9171		3,9171
В т.ч. отходов производства	0,3731	-	0,3731
Отходов потребления	3,544	-	3,544
Зеленый урс	овень опасност	И	
ТБО	3,544	2	3,544
Древесные отходы	0,1003	-	0,1003
Огарки сварочных электродов	0,0546		0,0546
Янтарный у	овень опасно	сти	***************************************
Тара из-под ЛКМ	0,1823	-	0,1823
Ветошь промасленная	0,0359	=	0,0359
Период з	ксплуатации		*
Итого:	120,225045	-	120,225045
В т.ч. отходов производства	96,044045		96,044045
Отходов потребления	24,181	-	24,181
Зеленый урс	овень опасност	и	14
ТБО	24,181	-	24,181
Люминисцентные лампы (отработанные)	0,0289	-	0,0289
Твердый остаток, образующиеся при извлечении растительных жиров или масел	0,009851	=	0,009851
Остатки, образующиеся при обработке жирных веществ	0,001594	.	0,001594
Зольный остаток и шлак	95,6302		95,6302
	овень опаснос	ти	

Осадок от очистных сооружений (взвешенные вещества)	0,296	28	0,296
Нефтепродукты	0,0775	-	0,0775

Водопотребление. Водоотведение

Водоснабжение на период строительства и эксплуатации будет осуществляться от поселкового водопровода.

Водоотведение на период эксплуатации осуществляется в водонепроницаемый резервуар.

Водоотведение на период СМР осуществляется во временный биотуалет.

Мероприятия по предотвращению загрязнения поверхностных и подземных вод

Поверхностных водоемов в районе расположения проектируемых объектов нет. Следовательно, воздействия на открытые водные источники не будет. На подземные воды могут оказывать влияние: места накопления бытовых и производственных отходов, загрязненные атмосферные осадки. Для предотвращения загрязнения поверхностного стока и подземных вод на территории площадки строительства предусмотрены следующие мероприятия:

- своевременный вывоз хозбытовых сточных вод в разрешенное место;
- бытовые и производственные отходы предусматривается складировать в специальные металлические контейнеры и вывозить спецавтотранспортом на свалку или для утилизации в специализированные организации;
 - регулярная уборка территории от мусора;

Все вышеперечисленные мероприятия позволяют уменьшить возможное влияние на подземные воды в районе размещения рассматриваемого объекта.

Атмосферный воздух

Расчеты по определению необходимости расчета приземных концентраций при проведении работ, проведенные в соответствии с п.5.21. приложения 18 к Приказу 100-П показали, что при проведении работ расчеты приземных концентраций не требуются ни по одному из выбрасываемых веществ.

Нормативы предельно допустимых выбросов на период проведения работ и эксплуатации приняты на уровне расчетных значений и приведены в таблице 2, 3.

Нормативы выбросов загрязняющих веществ в атмосферу на период строительства

Таблица 2

		Нормативы выбросов загрязняющих веществ						
Производство цех, участок	Номер источника выброса	на период СМР		пдв		год достижен ия ПДВ		
		r/c	т/год	г/с	т/год	4 -		
1	2	3	4	5	6	7		
H	еорганиз	ованные	источни	ки	(b)	***		
***диЖелезо триоксид (Железа ок	сид) /в пере	счете на же	пезо/ (0123)					
Площадка работ	6004	0.004057	0.0589	0.004057	0.0589	CMP		
Площадка работ	6006	0.000617	0.010701	0.000617	0.010701	CMP		
Итого:		0.004674	0.069601	0.004674	0.069601			
***Кальций оксид (Негашеная изв	есть) (0128)					17		
Площадка работ	6003	0.000747	0.0001	0.000747	0.0001	CMP		

***Марганец и его соединен Площадка работ	6004	0.000515	0.007149	0.000515	0.007149	CMF
Площадка работ	6006	0.000008	0.000145	0.000008	0.000145	CMF
Лтого:		0.000523	0.007294	0.000523	0.007294	
***Хром /в пересчете на хро	ма (VI) оксил/ (02			0.0000	0.007.207.	-
Площадка работ	6004	0.000025	0.000002	0.000025	0.000002	CMF
***Азот (IV) оксид (Азота ди		0.000020	0.000002	0.000020	0.000002	Oitin
Площадка работ	6004	0.000075	0.000231	0.000075	0.000231	CMF
Площадка работ	6005	0.00061	0.000077	0.00061	0.000077	CMF
Площадка работ	6006	0.000306	0.005302	0.000306	0.005302	CMF
Площадка работ	6012	0.000375	0.011824	0.000375	0.011824	CMF
Итого:	0012	0.001366	0.017434	0.001366	0.017434	Olvii
итого. ***Азот (II) оксид (Азота окс	MD) (0304)	0.001300	0.017434	0.001300	0.017434	ļ.,
Площадка работ	6012	0.000487	0.015371	0.000487	0.015371	CMF
***Углерод (Сажа) (0328)	0012	0.000467	0.013371	0.000487	0.013371	Civii
Площадка работ	6012	0.000064	0.00201	0.000064	0.00201	CMF
***Сера диоксид (Ангидрид			0.00201	0.000004	0.00201	CIVIE
Площадка работ	6012	0.000124	0.003902	0.000124	0.003902	CMF
***Углерод оксид (0337)	0012	0.000124	0.003902	0.000124	0.003902	CIVIE
Площадка работ	6004	0.000369	0.001139	0.000369	0.001139	CMF
	6004	7,317,7,7,7,7,7,7,7	0.001139	0.000303	0.001139	CMF
Площадка работ		0.000303				CMF
Площадка работ	6012 6013	0.000311	0.009814	0.000311	0.009814	CMF
Площадка работ Итого:	0013	0.002081	0.000115	0.002081	0.000113	CIVIE
					0.016322	li.
*** Фтористые газообразны Площадка работ	6004	дрофторид, к 0.00007	0.000083	0.00007	0.000083	CMF
≀тлощадка расот ***Фториды неорганически					0.000063	Civir
Площадка работ	6004	0.000084	0.000089	0.000084	0.000089	CMF
площадка расот ***Полиэтен (Полиэтилен) (0.000064	0.000009	0.000064	0.000069	CIVIE
Площадка работ	6013	0.00104	0.000058	0.00104	0.000058	CMF
площадка расот ***Ксилол (смесь изомеров		0.00104	0.000056	0.00104	0.000056	CIVIF
Площадка работ	6007	0.1058	0.656878	0.1058	0.656878	CMF
площадка расот ***Метилбензол (Толуол) (0		0.1056	0.000076	0.1056	0.000076	CIVIF
	6007	0.0040	0.22245	0.0210	0.22245	CME
Площадка работ ***Бутан-1-ол (Спирт н-бути		0.0218	0.32245	0.0218	0.32245	CMP
	6007	0.0042	0.070004	0.0042	0.070004	CMF
Площадка работ			0.076831	0.0042	0.076831	CIME
***Этан-1,2-диол (Этиленгл			0.00000	0.0000	0.00000	0145
Площадка работ	6007	0.0003	0.00006	0.0003	0.00006	CMP
***2-(2-Этоксиэтокси)этанол					0.00000	0145
Площадка работ	6007	0.0003	0.00006	0.0003	0.00006	CMP
***Бутилацетат (1210)	2007		0.000000	2.222	2 222222	
Площадка работ	6007	0.0073	0.062628	0.0073	0.062628	CMF
***Проп-2-ен-1-аль (Акроле	Annual Contract Contr	0.000015	0.000.175	0.000015	0.000.177	6
Площадка работ	6012	0.000015	0.000473	0.000015	0.000473	CMF
*** Ф ормальдегид (1325)						
Площадка работ	6012	0.000015	0.000473	0.000015	0.000473	CMF
***Пропан-2-он (Ацетон) (1 4						
Площадка работ	6007	0.0467	0.258433	0.0467	0.258433	CMF
**** 2 TOLOGO DO 101-0-0-0	ная киспота) (155	5)				
			-			
Площадка работ	6013	0.00104	0.000058	0.00104	0.000058	CMF
Площадка работ ***Бензин (нефтяной, мало	6013 сернистый) /в пер	0.00104 ресчете на уг	перод/ (2704)		
***Этановая кислота (Уксус Площадка работ ***Бензин (нефтяной, мало Площадка работ	6013	0.00104			0.000058 2.037	CMI

***Керосин (2732)						
Площадка работ	6007	0.1111	0.378	0.1111	0.378	CMP
***Скипидар /в пересчете на угле	род/ (2748)					
Площадка работ	6007	0.0065	0.001	0.0065	0.001	CMP
***Уайт-спирит (2752)				535 5 5		-
Площадка работ	6007	0.0481	0.0685	0.0481	0.0685	CMP
***Углеводороды предельные С1	2-19 /в пере		марный (27	54)		
Плошадка работ	6008	0.07221	0.00104	0.07221	0.00104	CMP
Площадка работ	6012	0.00015	0.00473	0.00015	0.00473	CMP
Итого:	3012	0.07236	0.00577	0.07236	0.00577	Oitii
***Взвешенные частицы (2902)		0.01200	0.00377	0.07200	0.00077	
Площадка работ	6007	0.0075	0.0008	0.0075	0.0008	CMP
Площадка работ	6009	0.0075	0.0205534	0.08752	0.0205534	CMP
Площадка работ	6011	0.000838	0.0002399	0.000838	0.0002399	CMP
Итого:	0011	0.095858	0.0002399	0.095858	0.0002399	Civir
ипою. ***Пыль неорганическая: 70-20%,	DDMOKNON KA				0.0215933	
					0.00404	CMP
Площадка работ	6001	0.00334	0.02481	0.00334	0.02481	5772355
Площадка работ	6002	0.07201	0.32896	0.07201	0.32896	CMP
Площадка работ	6003	0.052	0.005558	0.052	0.005558	CMP
Площадка работ	6004	0.000069	0.0006399	0.000069	0.0006399	CMP
Площадка работ	6011	0.000006	0.0000079	0.000006	0.0000079	CMP
Итого:		0.127425	0.3599758	0.127425	0.3599758	
***Пыль (неорганическая) гипсов					1	
Площадка работ	6003	0.003413	0.001481	0.003413	0.001481	CMP
***Пыль абразивная (Корунд бел						
Площадка работ	6009	0.0034	0.00431	0.0034	0.00431	CMP
***Пыль древесная (2936)	1		· · · · · · · ·		<u> </u>	S
Площадка работ	6010	0.194	0.00072	0.194	0.00072	CMP
Итого по неорганизованным		0.896194	4.3889601	0.896194	4.3889601	
источникам:						
		ванныеи	сточник	1		
***Азот (IV) оксид (Азота диоксид) (0301)				2	V.
Площадка работ	0001	0.000008	0.000238	0.000008	0.000238	CMP
***Азот (II) оксид (Азота оксид) (0:	304)					
Площадка работ	0001	0.00001	0.00031	0.00001	0.00031	CMP
***Углерод (Сажа) (0328)						
Площадка работ	0001	0.000001	0.000041	0.000001	0.000041	CMP
***Сера диоксид (Ангидрид серни	істый) (0330)			to the second se	
Площадка работ	0001	0.000002	0.000079	0.000002	0.000079	CMP
***Углерод оксид (0337)						
Площадка работ	0001	0.000006	0.000198	0.000006	0.000198	CMP
***Проп-2-ен-1-аль (Акролеин) (13	01)					
		0.0000000	0.00001	0.0000003	0.00001	CMP
Плошалка работ	0001	0.0000003		0.000000	0.0000	O.C.
	0001	0.0000003				
***Формальдегид (1325)				0.0000003	0.00001	CMP
*** Формальдегид (1325) Площадка работ	0001	0.0000003	0.00001	0.0000003	0.00001	CMP
***Формальдегид (1325) Площадка работ ***Углеводороды предельные С1	0001 2-19 /в пере	0.0000003 счете на сум	0.00001 марный (27	54)		
***Формальдегид (1325) Площадка работ ***Углеводороды предельные С1 Площадка работ	0001	0.0000003 счете на сум 0.000003	0.00001 імарный (275 0.000095	0.000003	0.000095	
***Формальдегид (1325) Площадка работ ***Углеводороды предельные С1 Площадка работ Итого по организованным	0001 2-19 /в пере	0.0000003 счете на сум	0.00001 марный (27	54)		
Площадка работ ***Формальдегид (1325) Площадка работ ***Углеводороды предельные С1 Площадка работ Итого по организованным источникам:	0001 2-19 /в пере	0.0000003 счете на сум 0.000003 0.0000306	0.00001 марный (27: 0.000095 0.000981	0.000003 0.0000306	0.000095 0.000981	CMP
***Формальдегид (1325) Площадка работ ***Углеводороды предельные С1 Площадка работ Итого по организованным	0001 2-19 /в пере	0.0000003 счете на сум 0.000003	0.00001 імарный (275 0.000095	0.000003	0.000095	

42

Нормативы выбросов загрязняющих веществ в атмосферу на период эксплуатации

Таблица 2

		11				ица 2
		Нормативы выбросов загрязняющих веществ				
Производство цех, участок	Номер источника выброса	на 2021 год		пдв		год достижен ия ПДВ
		r/c	т/год	г/с	т/год	10000
1	2	3	4	5	6	7
	еорганиз	вованные	источни	ки		
***Взвешенные частицы (2902)	- E-37		50 #8			
Маслопрессовый цех	6051	0.000044	0.00138	0.000044	0.00138	CMP
***Пыль неорганическая: ниже 20	% двуокиси	кремния (до	ломит, пыл	ь (2909)	71	
Котельная	6052	0.000013	0.00041	0.000013	0.00041	CMP
Итого по неорганизованным источникам:		0.000057	0.00179	0.000057	0.00179	
	Организо	ванныеи	сточник	1	t.	**
***Азот (IV) оксид (Азота диоксид	(0301)					
Котельная	0037	1.1842	9.5706	1.1842	9.5706	CMP
***Азот (II) оксид (Азота оксид) (0	304)			1000111000000	ly source of the second	
Котельная	0037	0.1924	1.5553	0.1924	1.5553	CMP
***Сера диоксид (Ангидрид серни	істый) (0330)			h.	
Котельная	0037	1.3336	7.4304	1.3336	7.4304	CMP
***Углерод оксид (0337)		1		accon remain		
Котельная	0037	9.4597	79.3117	9.4597	79.3117	CMP
***Гексан (0403)				- E PERCONONIO	1	
Маслоэкстракционный цех	0036	0.035	1.10376	0.035	1.10376	CMP
***Проп-2-ен-1-аль (Акролеин) (13	301)					1
Маслопрессовый цех	0035	0.04	1.26144	0.04	1.26144	CMP
***Взвешенные частицы (2902)						
Маслопрессовый цех	0031	0.000064	24.528	0.000064	24.528	CMP
Маслопрессовый цех	0032	0.096	19.77938	0.096	19.77938	CMP
Маслопрессовый цех	0033	0.2	33.8136	0.2	33.8136	CMP
Маслопрессовый цех	0034	0.56	47.33904	0.56	47.33904	CMP
Котельная	0037	0.7125	5.2013	0.7125	5.2013	CMP
Итого:		1.568564	130.66132	1.568564	130.66132	CMP
***Пыль неорганическая: 70-20%	двуокиси кр	емния (шам	от, цемент. п	ыль (2908)		
Котельная	0037	0.9129	6.4087	0.9129	6.4087	CMP
Итого по организованным источникам:		14.726364	237.30322	14.726364	237.30322	
Всего по предприятию:		14.726421	237.30501	14.726421	237.30501	
Твердые:		2.481521	137.07181	2.481521	137.07181	
Газообразные, жидкие:		12.2449	100.2332	12.2449	100.2332	-

Растительный и животный мир

Учитывая, что проектируемый объект располагается на освоенной территории дополнительного воздействия на растительные сообщества прилегающей территории, на изменение в растительном покрове не будет.

Фауна района размещения проектируемого объекта долгое время находится под воздействием антропогенных факторов (наличия сети автодорог, линий электропередач).

Влияние на наземных животных, связанное с нарушением среды их обитания, произошло в период строительства промышленных предприятий. Поэтому к настоящему моменту животный мир прилегающей территории приспособился к обитанию в условиях открытого ландшафта, в результате сложилось определенное сообщество животных и птиц.

Мест обитания редких животных, занесенных в Красную книгу в рассматриваемом районе. нет.

Дополнительного воздействия на видовой состав, численность фауны, среду обитания, условия размножения, пути миграции в процессе эксплуатации проектируемого объекта не будет.

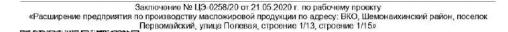
Вырубка зеленых насаждений, а также озеленение рассматриваемого объекта проектом не предусматривается.

Физические воздействия

В районе размещения объекта природные и техногенные источники радиационного загрязнения отсутствуют. Воздействие шума и вибрации, создаваемое строительной техникой, носит непродолжительный характер и не распространяется за пределы площадки ведения работ.

Оценка экологических рисков и рисков для здоровья населения

В связи с отсутствием данных, необходимых для определения рисков на здоровье населения в рамках действующих методик риски заболевания для здоровья населения, проживающих в рассматриваемом регионе на период проведения работ не рассчитывались.


При выполнении всех мер, предусмотренных данным проектом, направленных на снижение влияния на поверхностный сток, подземные воды, земельные ресурсы, атмосферный воздух, воздействие на компоненты окружающей среды оценивается как допустимое и рабочий проект «Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15» в части экологического законодательства соответствует нормам.

6.5 Оценка соответствия рабочего проекта санитарным правилам и гигиеническим нормам

Данный проект предусматривает расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15.

Санитарно-защитная зона согласно «Санитарно-эпидемиологические требования по установлению санитарно-защитной зоны производственных объектов» утвержденного Приказом Министра национальной экономики Республики Казахстан от 20 марта 2015 года №237 объекты капитального ремонта к производственным объектам не относятся, в связи с чем не предусматривает установление санитарно-защитной зоны. Источниками шума на период работ по строительству будут являться строительные работы и работы строительной техники. Средние уровни шума для обычного строительного оборудования находятся в пределах 82-88 дБ. Уровень шума и вибрации не превышает предельно допустимых уровней в жилой зоне. Источников ионизирующего и неионизирующего излучения, электромагнитного и теплового излучения на период строительства и ввода объекта в эксплуатацию не будет. На основании вышеизложенного, физическое воздействие от деятельности объекта оценивается как допустимое.

Результаты расчетов выбросов загрязняющих веществ в атмосферу при реализации проекта показали, что они незначительны, приземные концентрации на границе площадки не превышают ПДК.

Работающие строители обеспечиваются спецодеждой, средствами индивидуальной защиты, бытовыми помещениями, обеспечиваются медицинской аптечкой для оказания первой медицинской помощи. Водоснабжение работающих бутилированная вода. Горячее питание в столовой.

Проект отвечает требованиям:

- «Санитарно-эпидемиологические требования по установлению санитарно-защитой зоны производственных объектов», утвержденные приказом министра национальной экономики РК №237 от 20 марта 2015 года;
- «Гигиенические нормативы к атмосферному воздуху в городских и сельских населенных пунктах», утвержденные приказом министра национальной экономики РК №168 от 28 февраля 2015 года;
- «Гигиенические нормативы к физическим факторам, оказывающим воздействие на человека», утвержденные приказом министра национальной экономики РК №169 от 28 февраля 2015 года;
- «Санитарно-эпидемиологические требования к содержанию и эксплуатации жилых и других помещений, общественных зданий», Приказ Министра национальной экономики РК №125 от 24 февраля 2015 года;
- «Санитарно-эпидемиологические требования к условиям труда и бытового обслуживания при строительстве, реконструкции, ремонте и вводе, эксплуатации объектов строительства», Приказ Министра национальной экономики РК №177 от 28 февраля 2015 года.

6.6 Организация строительства

Маслопрессовый цех

Расчет продолжительности строительства выполнен в соответствии с разделом Г. 1.13 «Пищевая промышленность» СП РК 1.03-101-2013 «Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений» Часть І.

При выполнении расчета учитывается мощность производства – 300 т/сут.

Для расчета принимается метод экстраполяции. В данном расчете рассматривается имеющаяся в нормах (по таблице) мощность 1000-1200 т/сут, с продолжительностью строительства 42 месяца (таблица Г.1.13.1 «Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений в пищевой промышленности», «Маслодобывающие, маргариновые предприятия», позиция в таблице №6.

Уменьшение мощности составит:

 $((1000-300)/1000) \times 100 = 70\%$

Уменьшение нормы продолжительности строительства равно:

70 x 0,75 = 52,50 %

Продолжительность строительства с учетом экстраполяции будет равна:

42 x ((100-52,50)/100) = 19,95 mec.

При выполнении работ в две смены, продолжительность строительства сокращается введением коэффициента 0,9.

 $19,95 \times 0,9 = 17,955 \text{ Mec.}$

Продолжительность строительства объектов, возводимых в районах сейсмичностью 7 баллов, устанавливается с применением коэффициента 1,05 (для объектов промышленного назначения).

Увеличение нормы продолжительности строительства равно:

17,955 x 1,05 = 18,90 mec.

Продолжительность строительства будет равна – 18,90 мес.

Маслоэкстракционный цех

Расчет продолжительности строительства выполнен в соответствии с разделом Г. 1.13 «Пищевая промышленность» СП РК 1.03-101-2013 «Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений» Часть І.

При выполнении расчета учитывается мощность производства – 150 т/сут.

Для расчета принимается метод экстраполяции. В данном расчете рассматривается имеющаяся в нормах (по таблице) мощность 1000-1200 т/сут, с продолжительностью строительства 42 месяца (таблица Г.1.13.1 «Продолжительность строительства и задел в строительстве предприятий, зданий и сооружений в пищевой промышленности», «Маслодобывающие, маргариновые предприятия», позиция в таблице №6 «Маслоэкстракционный завод».

Уменьшение мощности составит:

 $((1000-150)/1000) \times 100 = 85\%$

Уменьшение нормы продолжительности строительства равно:

85 x 0,75=63,75 %

Продолжительность строительства с учетом экстраполяции будет равна:

42 x ((100-63,75)/100) = 15,225 mec.

При выполнении работ в две смены, продолжительность строительства сокращается введением коэффициента 0,9.

15,225 x 0,9 = 13,7025 Mec.

Продолжительность строительства объектов, возводимых в районах сейсмичностью 7 баллов, устанавливается с применением коэффициента 1,05 (для объектов промышленного назначения).

Увеличение нормы продолжительности строительства равно:

13,7025 x 1,05 = 14,40 Mec.

Продолжительность строительства будет равна – 14,40 мес.

<u>Котельная</u>

Расчет продолжительности строительства выполнен в соответствии с разделом Г.1.1 «Электроэнергетика», СП РК 1.03-101-2013 «Продолжительность строительства и задел в строительстве предприятий зданий и сооружений» Часть 1.

При выполнении расчета учитывается паропроизводительность котельной - 10 т/час.

Для расчета принимается метод экстраполяции. В данном расчете рассмотрибается имеющаяся б нормах (по таблице) паропроизводительность 150 т/час, с продолжительностью строительства 16 месяцев (таблица Г.1.1.3 «Продолжительность строительства и задел в строительстве предприятий зданий и сооружений в энергетике», «Паровая котельная закрытого типа», позиция в таблице №2.

Уменьшение мощности составит:

 $((150-10)/150) \times 100 = 93,3\%$

Уменьшение нормы продолжительности строительства равно:

93,3 x 0,75 = 69,975 %

Продолжительность строительства с учетом экстраполяции будет равна:

16 x ((100-69,975)/100) = 4,8 мес.

Продолжительность строительства объектов, возводимых в районах сейсмичностью 7 баллов, устанавливается с применением коэффициента 1,05 (для объектов промышленного назначения).

Увеличение нормы продолжительности строительства равно:

4,8 x 1,05 = 5,0 мес.

Продолжительность строительства будет равна – 5 мес.

До начала строительно-монтажных работ необходимо:

Начало работ предусмотрено в 2020 году.

Распределение инвестиций (заделы) по годам строительства: на 2020 год - 100%.

Безопасность и гигиена труда в строительстве

Руководители организаций, осуществляющие строительство объекта, обязаны обеспечить выполнение требований СН РК 1.03-05-2011 Охрана труда и техника безопасности в строительстве, СП РК 1.03-106-2012 Охрана труда и техника безопасности в строительстве. «Санитарно-эпидемиологические требования к условиям труда и бытового обслуживания при строительстве, реконструкции, ремонте и вводе, эксплуатации объектов строительства» №177 от 28 февраля 2015 и правил работниками этих организаций и привлекаемыми к работе другими лицами.

Рабочие, руководители, специалисты и служащие строительных организаций должны быть обеспечены спец. одеждой, спец. обувью и другими средствами индивидуальной защиты с учетом вида работы и степени риска в количестве не ниже норм, установленных законодательном, или действующими нормами, или выше этих норм в соответствии с заключенным коллективным договором или тарифным соглашением.

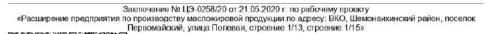
Все лица, находящиеся на строительной площадке, обязаны носить защитные каски по ГОСТ 12.4.087-84. Рабочие и инженерно-технические работники без защитных касок и других необходимых средств индивидуальной защиты к выполнению работ не допускаются.

На строительной площадке предоставляется и обеспечивается следующее обслуживание: санитарные и умывальные помещения, помещения для переодевания, хранения, помещения для принятия пищи и для укрытия людей при перерывах в работе по причине неблагоприятных погодных условий.

Для хранения личной и специальной одежды оборудуются индивидуальные шкафчики.

Выделенные санитарно-бытовые помещения должны иметь естественное проветривание, отопление, канализацию и быть подключенными к внутриплощадочным системам холодного и горячего водоснабжения.

Уборка бытовых помещений проводится ежедневно с применением моющих и дезинфицирующих средств, уборочный инвентарь маркируется, используется по назначению и хранится в специально выделенном месте.


В целях предупреждения возникновения заболеваний, связанных с условиями труда, работники, занятые в строительном производстве, проходят обязательные при поступлении на работу и периодические медицинские осмотры в соответствии с документами государственной системы санитарно-эпидемиологического нормирования.

На каждом объекте строительства необходимо выделять помещения или места для размещения аптечек с медикаментами, носилок, фиксирующих шин, и других средств для оказания первой помощи пострадавшим.

Руководители организаций обязаны обеспечить на строительной площадке и рабочих местах необходимые условия для выполнения подчиненными им рабочими и служащими требований правил и инструкций по охране труда. При возникновении угрозы безопасности лицо, назначенное приказом по организации руководителем работ обязано прекратить работы и принять меры по устранению опасности, а при необходимости обеспечить эвакуацию людей в безопасное место.

При выполнении строительно-монтажных работ на выделенной территории действующего предприятия инструктажи по безопасности и охране труда проводит непосредственный начальник строительной компании.

Организация строительной площадки, участков работ и рабочих мест должны обеспечивать безопасность труда работающих на всех этапах выполнения работ.

При размещении участков работ, опасных производственных рабочих мест, проездов транспортных средств, проходов для людей следует установить опасные для людей зоны, в пределах которых постоянно действуют или потенциально могут действовать опасные факторы

Электросварочные и газопламенные работы

При выполнении электросварочных и газопламенных работ необходимо выполнять требования СН РК 1.03-05-2011 Охрана труда и техника безопасности в строительстве, СП РК 1.03-106-2012 Охрана труда и техника безопасности в строительстве, ГОСТ 12.3.003-86 и ГОСТ 12.3.036-84, а также Санитарных правил при сварке, наплавке и резке металлов, утвержденных Минздравом Республики Казахстан. Кроме того, при выполнении электросварочных работ следует выполнять требования ГОСТ 12.1.013-78, ППБС-01-94, утвержденных ГУПО МВД Республики Казахстан.

Места производства электросварочных и газопламенных работ на данном, а также на ниже расположенных ярусах (при отсутствии несгораемого защитного настила или настила, защищенного несгораемым материалом) должны быть освобождены от сгораемых материалов в радиусе не менее 5 м, а от взрывоопасных материалов и установок (в том числе газовых баллонов и газогенераторов) - 10 м.

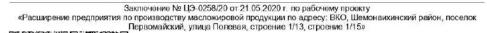
При резке элементов конструкций должны быть приняты меры против случайного обрушения отрезанных элементов.

Производить сварку резку и нагрев открытым пламенем аппаратов, сосудов и трубопроводов, содержащих под давлением любые жидкости или газы, заполненных горючими или вредными веществами, или относящихся к электротехническим устройствам, не допускается без согласования с эксплуатирующей организацией мероприятий по обеспечению безопасности.

Рабочие места сварщиков в помещении при сварке открытой дугой должны быть отделены от смежных рабочих мест и проходов несгораемыми экранами (ширмами, щитами) высотой не менее 1,8 м.

При сварке на открытом воздухе такие ограждения следует ставить в случае одновременной работы нескольких сварщиков вблизи друг от друга и на участках интенсивного движения людей.

Газовые баллоны должны быть предохранены от ударов и действия прямых солнечных лучей, а также удалены от отопительных приборов на допустимое расстояние.


Газовые баллоны надлежит хранить в специальных сухих и проветриваемых помещениях в соответствии с требованиями Требования устройства и безопасной эксплуатации сосудов, работающих под давлением Республики Казахстан. Пустые баллоны следует хранить раздельно от баллонов, наполненных газом.

По окончании работы баллоны с газами должны находиться в специально отведенном для хранения месте, исключающем доступ посторонних лиц, а переносные ацетиленовые генераторы следует освобождать от карбида кальция с последующим удалением его в специально отведенные места.

При эксплуатации, хранении и перемещении кислородных баллонов должны быть обеспечены меры против соприкосновения баллонов и рукавов со смазочными материалами, а также одеждой и обтирочными материалами, имеющими следы масел.

Перемещение газовых баллонов необходимо осуществлять на специально предназначенных для этого тележках, в контейнерах и других устройствах, обеспечивающих устойчивое положение баллонов.

Размещение ацетиленовых генераторов в проездах, местах массового нахождения или прохода людей, а также вблизи мест забора воздуха компрессорами или вентиляторами не допускается.

При осуществлении контроля качества сварных швов с помощью гаммадефектоскопии необходимо выполнять требования Основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующего излучения, утвержденных Минздравом Республики Казахстан.

При контроле качества сварных швов с помощью ультразвука необходимо выполнять правила по технической эксплуатации электроустановок.

Погрузочно-разгрузочные работы

Погрузочно-разгрузочные работы должны производиться, как правило, механизированным способом согласно требованиям Правил устройства и безопасной эксплуатации грузоподъемных кранов, ГОСТ 12.3.009-76 * и СН РК 1.03-05-2011 Охрана труда и техника безопасности в строительстве, СП РК 1.03-106-2012 Охрана труда и техника безопасности в строительстве.

Площадки для погрузочных и разгрузочных работ должны быть спланированы и иметь уклон не более 5. В соответствующих местах необходимо установить надписи: «Въезд», «Выезд», «Разворот» и др.

Грузоподъемные машины, грузозахватные устройства средства контейнеризации и пакетирования, применяемые при выполнении погрузочно-разгрузочных работ, должны удовлетворять требованиям государственных стандартов или технических условий на них.

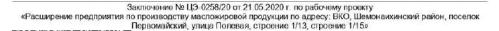
Строповку грузов следует производить инвентарными стропами или специальными грузозахватным и устройствами, изготовленными по утвержденному проекту (чертежу).

Способы строповки должны исключать возможность падения или скольжения застропованного груза.

Владельцем грузоподъемной машины должны быть разработаны способы правильной строповки и закрепки грузов, которым должны быть обучены стропальщики. Графическое изображение способов строповки и зацепки должно быть выдано на руки стропальщикам и крановщикам или вывешено в местах производства работ.

Графическое изображение способов строповки и кантовки грузов и перечень применяемых грузозахватных приспособлений должны быть приведены в технологических регламентах.

Перемещение груза, на который не разработаны схемы строповки, должно производиться в присутствии и под руководством лица ответственного за безопасное производство работ кранами.

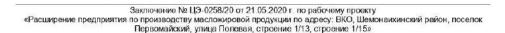

Установка (укладка) грузов на транспортные средства должна обеспечивать устойчивое положение груза при транспортировании и разгрузке.

При выполнении погрузочно-разгрузочных работ не допускается строповка груза, находящегося в неустойчивом положении, а также смещение строповочных приспособлений на приподнятом грузе

Перед погрузкой или разгрузкой панелей, блоков и других сборных конструкций монтажные петли должны быть осмотрены, очищены и при необходимости выправлены без повреждения конструкции.

6.7 Сметная документация

Сметная документация разработана в соответствии с Государственным нормативом по определению сметной стоимости строительства в Республике Казахстан, утвержденным приказом Комитета по делам строительства, жилищно-коммунального хозяйства и управления земельными ресурсами Министерства национальной экономики Республики Казахстан от 14 ноября 2017 года № 249-нк, на основании государственных сметных нормативов и принятых проектных решений.


Сметная документация составлена с использованием программного комплекса «SANA-2015» (версия 20.1 от 20 января 2020 года), по выпуску сметной документации в ценах 1 квартала 2020 года.

При составлении смет использованы:

- Нормативный документ по определению сметной стоимости строительства в Республике Казахстан (Приложение 1 к приказу Председателя Комитета по делам строительства и жилищно-коммунального хозяйства МИР РК от 14.11.2017 г. №249-нк);
- Нормативный документ по определению величины накладных расходов и сметной прибыли в строительстве (Приложение 2 к приказу Председателя Комитета по делам строительства и жилищно-коммунального хозяйства МИР РК от 14.11.2017 г. №249-нк);
- Нормативный документ по определению дополнительных затрат, связанных с решениями проекта организации строительства (Приложение 3 к приказу Председателя Комитета по делам строительства и жилищно-коммунального хозяйства МИР РК от 14.11.2017 г. №249-нк);
- Нормативный документ по определению затрат на инжиниринговые услуги (Приложение 4 к приказу Председателя Комитета по делам строительства и жилищно-коммунального хозяйства МИР РК от 14.11.2017 г. №249-нк), утвержденный приказом Председателя Комитета по делам строительства и жилищно-коммунального хозяйства МИР РК от 11.05.2018 г. №102-нк:
- Изменения и дополнения в приказ председателя Комитета по делам строительства и жилищно-коммунального хозяйства МИР РК от 14.11.2017 г. №249-нк (приказ председателя Комитета по делам строительства и жилищно-коммунального хозяйства МИР РК от 14.12.2018 г. №257-нк. Ввод в действие с 01.01.2019 г.);
- Сборники элементных сметных норм расхода ресурсов на строительные, ремонтно-строительные работы и монтаж оборудования (ЭСН РК 8.04-01-2015, ЭСН РК 8.04-02-2015, ЭСН РК 8.05-01-2015,) с учетом изменений и дополнений;
- Сборник сметных норм затрат на строительство временных зданий и сооружений (НДЗ РК 8.04-05-2015) с учетом изменений и дополнений:
- Сборник сметных норм дополнительных затрат при производстве строительномонтажных работ в зимнее время (НДЗ РК 8.04-06-2015) с учетом изменений и дополнений:
- Сборники сметных цен в текущем уровне на строительные материалы, изделия и конструкции (ССЦ РК 8.04-08-2019). 2020 год;
- Сборник сметных цен в текущем уровне на инженерное оборудование объектов строительства (ССЦ РК 8.04-09-2019). 2020 год;
- Сборник сметных цен в текущем уровне на эксплуатацию строительных машин и механизмов (СЦЭМ РК 8.04-11-2019). 2020 год;
- Сборник сметных цен в текущем уровне на перевозки грузов (СЦПГ РК 8.04-12-2019). 2020 год;
- Сборник сметных тарифных ставок в строительстве (СТС РК 8.04-07-2019). 2020 год

Приняты затраты:

- на временные здания и сооружения в соответствии со Сборником сметных норм затрат на строительство на строительство временных зданий и сооружений (НДЗ РК 8.04-05-2015);
- при производстве строительно-монтажных работ в зимнее время соответствии со Сборником сметных норм дополнительных затрат при производстве строительно-монтажных работ в зимнее время (НДЗ РК 8.04-06-2015).

Сметная стоимость строительства определена в ценах 2020 года с учетом норм задела объема инвестиций и прогнозного уровня инфляции по годам строительства, согласно прогноза социально-экономического развития Республики Казахстан на 2020-2024 годы одобренного на заседании Правительства Республики Казахстан. В текущих ценах 2020 года МРП составляет 2778 тенге.

Налог на добавленную стоимость (НДС) принят в размере, установленном законодательством Республики Казахстан на период, соответствующий периоду строительства, от сметной стоимости строительства.

Территориальный район 16.00 - Восточно-Казахстанская область.

7РЕЗУЛЬТАТЫ ЭКСПЕРТИЗЫ

7.1 Оценка принятых проектных решений

В соответствии с требованиями Правил определения общего порядка отнесения зданий и сооружений к технически и (или) технологически сложным объектам, утвержденных приказом Министра национальной экономики Республики Казахстан от 28 февраля 2015 года №165, а также экспертным центром ТОО «Центр экспертизы РК» был уточнен и установлен в соответствии с Приказом №517 от 20 декабря 2016 года, объект II (нормального) уровня ответственности, не относящихся к технически сложным.

Рабочий проект разработан в соответствии с требованиями задания на проектирование.

Состав и комплектность представленной части рабочего проекта соответствуют требованиям СН РК 1.02-03-2011 «Порядок разработки, согласования, утверждения и состав проектной документации на строительство».

Исходные данные содержат все необходимые данные для разработки рабочего проекта.

Строительные конструкции и материалы приняты: продукции отечественных товаропроизводителей, в соответствии с реализацией государственной программы импортозамещения. Материалы и оборудование, используемые для строительства должны быть сертифицированы и соответствовать стандартам Республики Казахстан.

Основные технико-экономические показатели

n/n	Наименование показателя	Ед. изм.	Показатели заявленные до экспертизы	Показатели рекомендуемые к утверждению	Примечание (+увеличение, -уменьшение)			
1	Общая сметная стоимость строительства в текущих ценах 2020 г., в том числе:	млн. тенге	1849,790	1849,790	±0			
	CMP	млн. тенге	623,659	623,659	±0			
	оборудование	млн. тенге	977,012	977,012	±0			
	прочие затраты	млн. тенге	249,119	249,119	±0			
2	Общая площадь участка	M ²	8060,2	8060,2				
3	Маслопрессовый цех							
	Общая площадь	M ²	2051,00	2051,00				
	Площадь застройки, без отмостки	M ²	1327,20	1327,20				
	Строительный объем	M ³	14986	14986				
	Мощность производства	т/сут	300	300				
	Этажность, в том числе:	этаж	155					
	- производственный цех;	этаж	1	1				

	- АБК.	этаж	2	2				
	Продолжительность строительства	мес.	18,9	18,9				
4	Маслоэкстракционный цех		117					
	Общая площадь	M ²	1062,00	1062,00				
	Площадь застройки, без отмостки	M ²	410,50	410,50				
	Строительный объем	M ³	6390,00	6390,00				
	Мощность производства	т/сут	150	150				
	Этажность	этаж	3	3				
	Продолжительность строительства	мес.	14,4	14,4				
5	Котельная							
	Общая площадь	M ²	374,40	374,40				
	Площадь застройки, без отмостки	M^2	420,02	420,02				
	Строительный объем	M ³	3740,60	3740,60				
	Паропроизводительность	т/час	10	10				
	Этажность	этаж	1	1				
	Продолжительность строительства	мес.	5	5				

8 выводы

1. С учетом внесенных изменений и дополнений рабочий проект «Расширение предприятия по производству масложировой продукции по адресу: ВКО, Шемонаихинский район, поселок Первомайский, улица Полевая, строение 1/13, строение 1/15» соответствует требованиям государственных нормативов, действующих в Республике Казахстан, и рекомендуется к утверждению в установленном порядке со следующими основными экономическими показателями:

общая сметная стоимость строительства

в текущих ценах 2020 г. - 1849,790 млн. тенге;

в том числе:

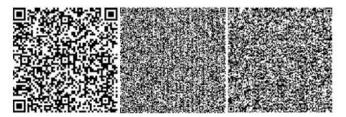
СМР - 623,659 млн. тенге;

оборудование - 977,012 млн. тенге;

прочие затраты - 249,119 млн. тенге;

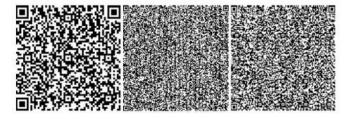
продолжительность работ, в том числе:

маслопрессовый цех - 18,9 мес;

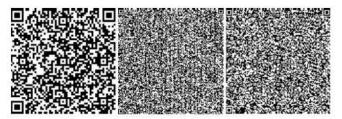

маслоэкстракционный - 14,4 мес;

котельная – 5 мес.

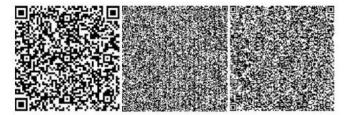
- 2. Заказчику до начала реализации рабочего проекта получить необходимые согласования и заключения контрольно-надзорных органов и заинтересованных организаций.
- 3. Заказчик при приемке документации по рабочему проекту от проектной организации должен проверить ее на соответствие настоящему экспертному заключению.
- 4. Заказчику во исполнение пункта 5 Протокольного решения заседания Правительства Республики Казахстан от 2 февраля 2010 года № 17-56/005-1689, 05-12 при строительстве максимально использовать оборудование, материалы и конструкции отечественных товаропроизводителей.


5. Настоящее экспертное заключение выполнено с учетом исходных данных и утвержденных заказчиком материалов, достоверность которых гарантирована руководителем ТОО «Востоксельхозпродукт». Пилунц С.Г.

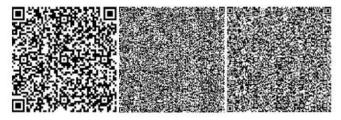
Директор


Пипченко Г.Н.

Эксперт


Ниязмаметова В.Р.

Эксперт


Морозов С.В.

Эксперт

Балашова И.А.

Эксперт

ПРИЛОЖЕНИЕ К

Министерство экологии, геологии и природных ресурсов Республики Казахстан РГУ "Департамент экологии по Восточно-Казахстанской области" Комитета экологического регулирования и контроля Министерства экологии, геологии и природных ресурсов Республики Казахстан

Решение по определению категории объекта, оказывающего негативное воздействие на окружающую среду

«12» сентябрь 2021 г.

Наименование объекта, оказывающего негативное воздействие на окружающую среду: "ТОО "ВОСТОКСЕЛЬХОЗПРОДУКТ"", "10411"

(код основного вида экономической деятельности и наименование (при наличии) объекта, оказывающего негативное воздействие на окружающую среду)

Определена категория объекта: II

(указываются полное и (при наличии) сокращенное наименование, организационно-правовая форма юридического лица, фамилия, имя и (при наличии) отчество индивидуального предпринимателя, наименование и реквизиты документа, удостоверяющего его личность).

Бизнес-идентификационный номер юридического лица / индивидуальный идентификационный номер индивидуального предпринимателя: 000140002188

Идентификационный номер налогоплательщика:

Адрес (место нахождения, почтовый индекс) юридического лица или

место жительства индивидуального предпринимателя: Восточно-Казахстанская область

Адрес (место нахождения) объекта, оказывающего негативное воздействие на окружающую среду: (Восточно-Казахстанская область, Шемонаихинский район, с. Предгорное) ,Восточно-Казахстанская область, Шемонаихинский район, п. Первомайский) ,Восточно-Казахстанская область, Шемонаихинский район, п. Первомайский)

Руководитель: АЛИЕВ ДАНИЯР БАЛТАБАЕВИЧ (фамилия, имя, отчество (при его наличии)) «12» сентябрь 2021 года

подпись:

ПРИЛОЖЕНИЕ Л

Код формы по ОКУД КҰЖЖ бойынша ұйым коды Код организации по ОКПО Қазақстан Республикасы Ұлттық экономика Казакстан Республикасы Ұлттық экономика министрлігі министрінің 2015 жылғы « 30 мамыр дағы 415 бұйрығымен бекітілген № 017/е ныс анды Министерство национальной экономики медициналық құжаттама Республики Казахстан Республикасы Ұлттык Медицинская документация Форма министерлігінің Тұтынушылардың кұқықтарын Утверждена приказом Министра национальной коргау комитеті Шығыс Қазақстан облысы экономики Республики Республики Казахстан Тұғынушылардың кұқықтарын коргау «30» мая 2015 года №№ 415. департаментінің Шемонаиха аудандық тұ ынушылардың кұкықтарын корғау басқармасы PMM» РГУ «Шемонайхинское районное управление по защите прав потребителей Департамента по защите потребителей Восточно-Казахстанской области Комитета по защите прав потребителей Министерства национальной экономики Возпублики Казахотанх Санитариялық-эпидемиологиялық қорытынды Санитарно-эпидемиологическое заключение № 109 «10» 11 ___2016 Санитариялык-эпидемиологиялық сараптау (Санитарно-эпидемиологическая экспертиза) Проект нормативов предельно - допустимых выбросов (ПДВ) для ТОО «Востоксельхозпродукт» (пайдалануға берілетін немесе кайта жаңартылған нысандардың, жобалық құжаттардың, тіршілік ортасы фак орларының, шаруашылық және басқа жұмыстардың, өнімнің, қызметтердің, көліктердің және т.б. атауы) ВКО, Шемонанхинский район, п. Первомайский. полное наименование объекта санитарно – эпидемиологической экспертизы, в соответствии с пунктом 8 статьи 62 Кодекса РК т 18 сентября 2009 года «О здоровье народа и системе здравоохранения». Жүргізілді (Проведена) по заявлению директора ТОО «Востоксельхозпродукт» Глушкова С.А № 112 от 08.11.16 г. өтініш, ұйғарым, қаулы бойынша, жоспарлы және басқа да түрде (күні, нөмірі) по обращению, предписанию, постановлению, плановая и другие (дата, номер) 2. Тапсырыс (өтініш) беруші (Заказчик (заявитель)) ТОО «Востоксельхозпродукт». BKO, Ше монанхинский район, п. Первомайский, ул. Металлургов, 1/9. Шағуашылық жүргізуші субъектінің толық атауы, мекен-жайы, телефоны, жетекшісінің Т.А.Ә.А. (полное наименование хозяйствующего субъекта (принадлежность) , адрес/месторасположение объекта, телефо в Ф.И.О. руководителя) 3.Санитариялық-эпидемиологиялық сараптау жүргізілетін нысанның қолданылу аумағы (Область применения о 5ъект і сані тарно-эпидемиологической экспертизы) Проект нормативов предельно – допустимых выбросов (ПДВ). 4.Жобалар, материалдар дайындалды (Проекты, материалы разработаны (подготовлены)) ИП Чупилко И.В., государственная лицензия МООС 01795Р от 31.03.2008 г., тел. 8 (7232) 53-41-18. 5.Ұсынылган құжаттар (Представленные документы) Общие сведения о предприятии, заявление, свидетельство об учетной регистрации юр. лица; статистическая карточка; реквизиты предприятия; карта - схема площадки с источнаками выбросов, карты изолиний рассеивания загрязняющих веществ в приземном слое атмосферы; фововые концентрации, расчет нормативов ПДВ, контроль за соблюдением нормативов ПДВ. Өнімнің үлгілері ұсынылды (Представлены образцы продукции) не требуются. 7.Басқа ұйымдардың сараптау қорытындысы (егер болса) (Экспертное заключение других организацин (если имеются)) Не дано. Қорытынды берген ұйымның атауы (наименование организации выдавшей заключение) 8.Сараптама жүргізілетін нысанның толық санитариялық-гигиеналық сипаттамасы мен оған берілетін баға (кызметке, урдіске, жағдайға, технологияға, өндіріске, өнімге) (Полная санитарно-гигиеническія

характеристика и оценка объекта экспертизы (услуг, процессов, условий, технологий, произгод продукции))

Основной деятельностью предприятия является — производство подсолнечного масла. Проект ПД выполнен в связи с истечением срока предыдущего проекта ПДВ на основании инвентаризаци источников выбросов вредных (загрязняющих) веществ в атмосферный воздух по состоянию в 18.10.16 года. Расчет нормативов ПДВ выполнен расчетным методом, согласно действующим методикам расчета загрязняющих веществ в атмосфере. Расчет валовых и максимально разовы выбросов загрязняющих веществ проводился с использованием удельных показателей выделяемы вредных веществ, приведенных к единицам используемого оборудования, времени работы и массирасходуемых материалов. При установлении нормативов ПДВ на 2016 -2025 г.г., учитывались физик — географические и климатические условия местности, месторасположение обследуемого предприяти и окружающих его объектов.

9. Курылыс салуға бөлінген жер учаскесінің, қайта жаңартылатын нысанның сипаттамасы (өлшемдер ауданы, топырағының түрі, учаскенің бұрын пайдаланылуы, жерасты суларының тұру биіктігі, батпақтан желдің басымды бағыттары, санитариялық-қорғау аумағының өлшемдері, сумен, канализациямен, жь лумен қам гамасыз ету мүмкіндігі және қоршаған орта мен халық денсаулығына тигізер әсері, дүние тараптары бойынша бағыты)

(Характеристика земельного участка под строительство, объекта реконструкции (размеры, плошади, вид грунта использование участка в прошлом, высота стояния грунтовых вод, наличие заболоченности, господствующие направления ветров, размеры санитарно-защитной зоны, возможность водоснабжения, канализования, теплоснабжения и влияния на окружающую среду и здоровью населения, ориентация по сторонам света).

Юридический адрес ТОО «Востоксельхозпродукт»: Республика Казахстан, Восточно-Казахстанская область, Шемонаихинский район, п. Первомайский, ул. Металлургов, 1/9. Предприятие ТОО «Востоксельхозпродукт» расположено на двух площадках:

- Площадка №1 расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Полевая, 1;
- Площадка №2 расположена по адресу: РК, ВКО, Шемонаихинский район, п. Первомайский, ул. Скоростная, 4.

Ближайшая жилая зона к площадке №1 находится с юго-западной и южной сторон на расстоянии 370 и 450 м соответственно от крайних источников выброса. Ближайшая жилая зона к площадке №2 находится с юго-западной стороны на расстоянии 860 м от крайнего источника выброса.

Основными загрязнителями атмосферы являются: пересыпка сырья (подсолнечника), жмыха, протя; технологическое оборудование маслоцехов; бытовые теплогенераторы и паровые котлы на различных видах топлива; склады угля и золы; металлообрабатывающие станки; аппараты электросварки и газовой резки; деревообрабатывающие станки; бетонные работы; склады инертных материалов; сушилки на диз.топливе; склады зерна; резервуар с растворителем; перекачка растворителя; досты ТО и ТР грузового автотранспорта; ДВС грузовых и легковых автомобилей; ДВС автотракторной техники; вулканизаторная установка; зарядка кислотных аккумуляторов; резервуар с бензином; резервуар с дизельным маслом; резервуары с дизельным топливом; раздаточные аппараты для отпуска ГСМ.

Основными загрязняющими веществами, которые выделяются в процессе работы ТОО «ВОСТОКСЕЛЬХОЗПРОДУКТ» являются: железо (И,Ш) оксиды, марганец и его соединения, азот (П) оксид (азота оксид), углерод (сажа), смесь углеводородов предельных С1-С5, смесь углеводородов предельных С6-С10, пентилены, бензол, ксилол, толуол, этилбензол, спирт н-бутиловый, спирт этиловый, бутилацетат, бензин, керосин, масло минеральное нефтяное, углеводороды предельные С12-19, взвешенные частицы, пыль неорганическая: ниже 20% двуокиси кремния, пыль абразивная, пыль древесная, пыль зерновая, пыль тонко измельченного резинового вулканизата из отходов подошвенных резин, азот (IV) оксид (азота диоксид), серная кислота, сера диоксид (ангидрид серпистый), сероводород, углерод оксид, фтористые газообразные соединения, пыль неорганическая: 70-20% двуокиси кремния.

По данным инвентаризации на предприятии выбрасываются загрязняющие вещества 31 наименования от 64 источников выбросов (25- организованных и 39 неорганизованных). Суммарные выбросы загрязняющих веществ по предприятию составляют – 155,2012372 т/год, в том числе твердые –30.106212 т, жидкие и газообразные – 125,0950252 т. Нормируемые выбросы составляют: 153.6908522 т, в том числе твердые – 30.101912 т, жидкие и газообразные – 123.5889402 т. Ненормируемые вы росы составляют: 1.510385 т, в том числе твердые – 0.0043 т, жидкие и газообразные – 1.506085 т. Сравнение пормативов эмиссий, приведенных в данном проекте (153.6908522 т/год), с нормативами по предыдущему проекту (233.4470645 т/год) показывает, что предлагаемые нормативы ниже ранее установленных. Уменьшение количества выбросов загрязняющих веществ (в данном проекте 153.6908522 т/год, по сравнению с предыдущим проектом нормативов 233.4470645 т/год) на 79,7562123

т/год, связано с использованием на предприятии в качестве основного топлива пеллет из лузг подсолнечника взамен углю. В котельной цеха рафинации для предотвращения загрязнени атмосферы предусмотрена очистка загрязненного воздуха в групповом циклоне СЦН40-500х эффективностью очистки 82 %. В цехе выщелачивания для предотвращения загрязнения атмосферг предусмотрена очистка загрязненного воздуха в циклоне ЦН-15 с эффективностью очистки 80%. Расчет концентраций загрязняющих веществ в приземном слое атмосферы проводился использованием программного комплекса «Эра» на ПЭВМ Pentium-IV., рекомендованный применению в Республике Казахстан. Анализ расчетов показывает, что в зоне влияния площадо предприятия превышений ПДКм.р. на границе СЗЗ и в жилой зоне нет. Согласно положительном санитарно-эпидемиологическому заключению №269/37 от 23.09.2011 г. на предыдущий проект ПДВ положительному санитарно-эпидемнологическому заключению № 635 от 31.08.2012 г. на проек РООС, нормативная С33 для площадки №1 составляет 100 м, для площадки №2 - С33 100 м предприятие относится к IV классу опасности. СЗЗ удовлетворяет требованиям санитарног законодательства Республики Казахстан. План мероприятий по снижению выбросов загрязняющи веществ в атмосферу для рассматриваемого предприятия не разрабатывается, так как предприятие н оказывает существенного влияния на загрязнение атмосферы. Нормативы предельно-допустимы выбросов по отдельным источникам и по предприятию в целом устанавливаются с 2016 по 2025 годы на уровне фактических выбросов. Ликвидация существующих и организация новых источников выбросов загрязняющих веществ в атмосферу в 2016-2025 годах на предприятии не планируется. По состоянию на 18.10.2016 г. на предприятии ТОО «Востоксельхозпродукт» залповых выбросов не зафиксировано. Надлежащая эксплуатация производственной базы предприятия полносты исключает возможность залповых и аварийных выбросов загрязняющих веществ в атмосферу. Пря соблюдении установленных в проекте нормативов ПДВ в атмосферу предприятием ТОО «Востоксельхозпродукт», дополнительного отрицательного влияния на условия проживания в здоровье населения оказываться не будет.

10.3 ертханалық және зертханалық-аспаптық зерттеулер мен сынақтардың хаттамалары, сонымен қатар бас жоспардың, сызбалардың, суреттердің көшірмелері(Протоколы лабораторных и лабораторно-инструментальных исследований и испытаний, а также выкопировки из генеральных планов, чергежей, фото)

Санитариялық-эпидемиологиялық қорытынды Санитарно-эпидемиологическое заключение

Проект нормативов предельно – допустимых выбросов (ПДВ) для ТОО «Востоксельхозпродукт»

ВКО, Шемонаихинский район, п. Первомайский.

(нысанның, шаруашылық жүргізуші субъектінің (керек-жарак) пайдалануға берілетін немесе кайта жаңарты ған нысандардың, жобалық құжаттардың, тіршілік ортасы факторларының, шаруашылық және басқа жұмыстардың, өнімнің, қызметтердің, автокөліктердің және т.б. толық атауы)

(полное наименование объекта санитарно-эпидемиологической экспертизы, в соответствии с пунктом 8 ста ъи 6. Кодекса Республики Казахстан от 18 сентября 2009 года «О здоровье народа и системе здравоохранения»)

санитариялық-эпидемиологиялық сараптама негізінде на основании санитарно-эпидемиологической экспертиз

Санитариялық ережелер мен гигиеналық нормативтерге (санитарным павилам и гигиеническим нормативам)

сай немесе сай еместігін көрсетіңіз (соответствует или не соответствует)

(нужное подчеркнуть)

- СП «Санитарно – эпидемнологические требования по установлению санитарно – защитной зоны производственных объектов», утв. Приказом Министра национальной экономики РК за № 237 от 20.03.15 года.

Ұсыныстар (Предложения):

«Халық денсаулығы және денсаулық сақтау жүйесі туралы» Қазақстан Республикасы Кодекстың не ізінде осы санитариялық-эпидемиологиялық ұйғарымның міндетті түрде күші бар

На основании Колекса Республики Казахстан 18 сентября 2009 года «О здоровье народа и системе здравоохраненату и 193-IV 3РК настоящее санитарно-эпидемиологическое заключение имеет обязательную силу

Местексттік санцтарізільнік Бас дәрігер Гланный государстустукій санитарный врач Шеменархинского района

Hen. Kucamen prog II.M. m. 3-43-81

Попов В.В.