

Проект

нормативов допустимых физических воздействий на природную среду для

Балхашского медеплавильного завода TOO «Kazakhmys Smelting (Казахмыс Смэлтинг)»

г. Астана, 2025г.

Список исполнителей

Исполнители	Подпись	Ф.И.О.
Руководитель	Mod-	Баймашева Ш.М.
Инженер-эколог, ответственный исполнитель (все разделы)	Jul	Байболов Б.К.
Методическое руководство	Auf	Ненахова О.В.

Оглавление

ВВЕДЕНИЕ	4
1. ФАКТОР ШУМОВОГО ВОЗДЕЙСТВИЯ	3
1.1 Шум.	
1.2. Результаты расчетов уровня загрязнения шумового загрязнения	
1.3. Результаты инструментальных измерений физических факторов	
(шум, вибрация)	46
2. РАСЧЁТ СЗЗ ПО ПРОЧИМ ФАКТОРАМ НЕГАТИВНОГО	
ВОЗДЕЙСТВИЯ	57
2.1. Вибрация	
3. ЭЛЕКТРОМАГНИТНОЕ ВОЗДЕЙСТВИЕ	
4. ТЕПЛОВОЕ ЗАГРЯЗНЕНИЕ.	
5. СПИСОК ЛИТЕРАТУРЫ.	

Аннотация

Проект нормативов допустимых физических воздействий на природную среду для Балхашского медеплавильного завода ТОО «Kazakhmys Smelting (Казахмыс Смэлтинг)» разработан впервые.

Настоящий проект разработан в связи с получением Комплексного экологического разрешения на основании ст. 112 ЭК РК.

В соответствии с Правилами определения нормативов допустимого антропогенного воздействия на атмосферный воздух, утверждённых приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 14 сентября 2021 года № 375, для действующих объектов нормативы допустимых физических воздействий устанавливаются на уровнях, установленных в заявлении на получение комплексного экологического разрешения.

Для объектов, в отношении которых выдается комплексное экологическое разрешение, нормативы допустимых физических воздействий устанавливаются на уровнях, не превышающих соответствующих технологических показателей.

Нормативы допустимых физических воздействий определяются оператором самостоятельно при наличии собственной аккредитованной лаборатории либо при ее отсутствии с привлечением сторонних специализированных организаций (аккредитованных лабораторий).

Работа по определению уровня физических воздействий проводилась в два этапа:

- 1. Инвентаризация существующих источников физических воздействий, расположенных на территории предприятия;
- 2. Разработка проекта нормативов допустимых физических воздействий на природную среду.

Инвентаризация источников физических воздействий проводилась в сопровождении инструментальных измерений аккредитованной лабораторией ИЛ ТОО «Noosphere ecology system» (NES) (аттестат аккредитации №KZ.T.07.2173 от 29.03.2024 г. (действительный до 29.03.2029 года).

Нормативы допустимого уровня шумового воздействия, представлены в таблице 5; Нормативы допустимого уровня вибрации, представлены в таблице 7;

Нормативы допустимого уровня электромагнитного излучения, представлены в таблице 9;

Нормативы допустимого уровня теплового загрязнения, представлены в таблице 11.

ВВЕДЕНИЕ

Предприятием разработчиком проекта нормативов физического воздействия на окружающую среду для Балхашского медеплавильного завода TOO «Kazakhmys Smelting (Казахмыс Смэлтинг)» является ТОО «Noosphere ecology system» (NES).

Перечень основных документов, на основании которых разработан проект нормативов физического воздействия на окружающую среду:

- 1. Экологический кодекс Республики Казахстан;
- 2. Правила определения нормативов допустимого антропогенного воздействия на атмосферный воздух, утвержденные приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 14 сентября 2021 года № 375.
- 3. Приказ Министра здравоохранения Республики Казахстан от 16 февраля 2022 года № КР ДСМ-15. Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека.

Разработчик материалов:

проектных

TOO «Noosphere ecology system» (NES)

БИН 230940027185

Юридический адрес:

РК, Карагандинская область, г. Караганда, р-н

Әлихан Бөкейхан, мкр. 23, д. 20/2, кв. 41

KATO: 351011100 Почтовый адрес:

010000, Республика Казахстан, г. Астана, проспект

Абая 53/1 кв. 57

e-mail: llpnes23@gmail.com

Тел: + 7 -777-241-1640

Лицензия на выполнение работ и оказание услуг в области охраны окружающей среды №02698Р от 16.10.2023 г, выданная РГУ «Комитет экологического регулирования и контроля» Министерства экологии и

природных ресурсов РК.

Оператор объекта:

TOO «Kazakhmys Smelting (Казахмыс Смэлтинг)» Республика Казахстан, область Ұлытау, город

Жезказган, Промышленная зона, здание 296,

почтовый индекс 100600.

тел. 8 (71036) 6-22-55, факс 6-34-78

Юр. Адрес: Республика Казахстан, 100300, Карагандинская область, город Балхаш,

ул. Абая 1.

тел: 8-(71036)-6-23-01

Фактический адрес промышленной площадки: РК, Карагандинская область, юго-западная часть г.

Балхаш, промзона

1. ФАКТОР ШУМОВОГО ВОЗДЕЙСТВИЯ.

Источниками вредного физического воздействия на атмосферный воздух и здоровье человека являются: шум, электромагнитное излучение, изменяющие температурные, энергетические, волновые, радиационные и другие физические свойства атмосферного воздуха.

1.1 Шум.

Шум — случайное сочетание звуков различной интенсивности и частоты, мешающий, нежелательный звук. Определяющим фактором шумового загрязнения окружающей среды является воздействие на организм человека (как часть биосферы). Степень вредного воздействия шума зависит от его интенсивности, спектрального состава, времени воздействия, местонахождения человека, характера выполняемой им работы и индивидуальных особенностей человека.

Основными источниками шума внутри зданий и сооружений различного назначения и на площадках промышленных предприятий являются машины, механизмы, средства транспорта, вентиляционные устройства и другое оборудование. При этом, как показывает мировая практика, основной вклад в уровень в уровень шума селитебных территорий вносит движение автотранспорта, который на общем фоне дает до 80% шума.

Предельно допустимый уровень (ПДУ) шума — это уровень фактора, который при ежедневной, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдельные сроки жизни настоящего и последующих поколений. Допустимый уровень шума — это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму. По характеру спектра шума выделяют:

- широкополосный, с непрерывным спектром, шириной более одной октавы;
- тональный, в спектре которого имеются выраженные дискретные тона. Тональный характер шума устанавливается измерением в треть-октавных полосах частот по превышению уровня звукового давления в одной полосе над соседними не менее чем на 10 дБА.

По временным характеристикам шума выделяют:

- постоянный шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБа при измерениях на временной характеристике шумомера «медленно»;
- непостоянный шум, уровень которого за 8-часовой рабочий день, рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА при измерениях на временной характеристике шумомера «медленно».

Непостоянные шумы подразделяют на:

- колеблющийся во времени шум, уровень звука которого непрерывно изменяется во времени;
- прерывистый шум, уровень звука которого ступенчато изменяется (на 5 дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным составляет 1 с и более;
- импульсный шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБАІ и дБА, измеренные, измеренные соответственно на временных характеристиках «импульс» и «медленно», отличается не менее чем на 7 дБ.

Допустимые уровни звукового давления (эквивалентные уровни звукового давления) в дБ в октавных полосах, уровни звука и эквивалентные уровни звука в дБ для жилых и общественных зданий и их территории принимаются в соответствии с Гигиеническими нормативами к физическим факторам, оказывающим воздействие на человека Приказ Министра здравоохранения Республики Казахстан от 16 февраля 2022 года № КР ДСМ-15.

Акустические колебания в диапазоне $16\Gamma_{\rm II}-20~{\rm к}\Gamma_{\rm II}$, воспринимаемые человеком, называются звуковыми, с частотой менее $16~\Gamma_{\rm II}-$ инфразвуковыми, выше $20~{\rm к}\Gamma_{\rm II}-$ практической деятельности, могут изменяться в очень широких пределах на $1016~{\rm pas}$. Измерять интенсивность в таких пределах сложно, а главное — ощущения человека, возникающие при воздействии звуковых волн, пропорциональны логарифму количества энергии раздражителя. Поэтому пользуются логарифмическими величинами — уровнем интенсивности звука $L_{\rm I}$ и уровнем звукового давления $L_{\rm I}$, измеряемыми в децибелах:

Lj = 10lg I / I0 = 20lg P / P0

Где:

I0, P0 — пороги слышимости по интенсивности и давлению (I0 = 10-12Bт/м³; P0 = 2*10-3 Па);

I, P – интенсивность и среднеквадратичное давление данной звуковой волны.

Основным источником шума является технологическое оборудование. Однако в значительной степени распространению уровня шума от данных источников препятствуют стены и перекрытия зданий, в которых они расположены, что позволяет оценивать уровни шума вблизи от данных переделов на уровне нормативного.

Таблица 1 Источники шумового воздействия

№ п/п	Характеристика источников									
1	3									
1	Транспортёр МПЦ №121, 120 на ПВ-1, В-1000 мм, L-105 м.,									
2	Транспортёр МПЦ №123, 122 на ПВ-2, В-1000 мм, L-108 м.									
3	Транспортёр МПЦ №15, 16 (концентрат), В-800 мм, L-108 м.									
4	КВС (путепровод кислородно-воздушной смеси)									
5	Воздуходувка КВ-1, КВ-2									
6	Конвертер №5 (фурмование)									
7	Транспортёр ДШУ №6А В-1000 мм, L-17 м.									
8	Транспортёр ДШУ №6 В-800 мм, L-75 м.									
9	Транспортёр ДШУ №5 В-800 мм, L-30 м.									
10	Транспортёр ДШУ №9 В-800 мм, L-27 м., Транспортёр ДШУ №10 В-800 мм, L-65 м.									
11	Транспортёр ДШУ №11 В-800 мм, L-110 м., Транспортёр ДШУ №12 В-800 мм, L-110 м.									
12	Транспортёр ДШУ №25 В-800 мм, L-51 м.									
13	Транспортёр ДШУ №203 В-800 мм, L-22 м.									
14	Транспортёр ДШУ №204 В-1000 мм, L-100 м.									
15	Транспортёр ДШУ №204А В-800 мм, L-43 м.									
16	Транспортёр ДШУ №308 В-800 мм, L-13 м., Транспортёр ДШУ №309 В-800 мм, L-13 м.									
17	Транспортёр ДШУ №208 В-800 мм, L-72 м., Транспортёр ДШУ №208А В-800 мм, L-72 м.									
18	Транспортёр ДШУ №209 В-800 мм, L-4 м., Транспортёр ДШУ №209А В-800 мм, L-10 м.									

19	Транспортёр ДШУ №109 В-800 мм, L-77 м.
20	Транспортёр ДШУ №19 В-800 мм, L-30 м.
21	Транспортёр ДШУ №18 В-800 мм, L-28 м.
22	Транспортёр ДШУ №110 В-800 мм, L-97 м.
23	Транспортёр ДШУ №111 В-800 мм, L-99 м.
24	Транспортёр ДШУ №112 В-800 мм, L-97 м.
25	ШУМ (шум машина) №2 УБ-120-3
26	ШУМ (шум машина) №4 уст-350/19,5
27	Транспортёр ДШУ №113 В-800 мм, L-97 м.
28	Транспортёр ДШУ №114 В-800 мм, L-95 м.
29	Транспортёр ДШУ №24 В-800 мм, L-48 м.
30	Транспортёр ДШУ №116 В-800 мм, L-51 м., Транспортёр ДШУ №117 В-800 мм, L-51 м.
31	Транспортёр ДШУ №118 В-800 мм, L-100 м., Транспортёр ДШУ №119 В-800 мм, L-100 м.
32	Транспортёр ДШУ №23 В-800 мм, L-46 м.
33	Транспортёр ДШУ №23А В-800 мм, L-14 м.
34	Транспортёр ДШУ №7, 8 В-800 мм, L-17 м.
35	Транспортёр №1 СУ В-800 мм, L-44 м., Транспортёр №2 СУ В-800 мм, L-44,5 м.
36	Транспортёр №3 СУ В-800 мм, L-72,5 м., Транспортёр №4 СУ В-800 мм, L-73 м.
37	Сушильный барабан №1, Д-2800 мм, 14 м.
38	Тарельчатый питатель №1, Д-2200 мм.
39	Дымосос ДН-15, №1
40	Транспортёр пересыпной №29 СУ В-800 мм, L-30 м.,
41	Транспортёр пересыпной №5А СУ В-800 мм, L-11 м.,
42	Транспортёр пересыпной №29А СУ В-800 мм, L-30 м.,
43	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 4-й барабан
44	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 1-й барабан
45	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 2-й барабан
46	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 5-й барабан
47	Тарельчатый питатель №41 СУ
48	Транспортёр №41 СУ В-800 мм, L-68 м.
49	Транспортёр №101 СУ В-800 мм, L-11,5 м.
50	Транспортёр №102 СУ В-800 мм, L-74 м.
51	Тарельчатый питатель №101 СУ
52	Аэраторы (3 шт.) №1, на анодную печь №1
53	Вентилятор приточно-вытяжной №1
54	Аэраторы (3 шт.) №2 на анодную печь №2
55	Вентилятор приточно-вытяжной №2
56	Аэраторы (3 шт.) №3 на анодную печь №3
57	Вентилятор приточно-вытяжной №3
58	Приточная установка №21, №23, №17 (55 кВт)
59	Приточная установка №11 (5,5 кВт)

60	Приточная установка №12 (11 кВт)
61	Приточная установка №14 (55 кВт)
62	Приточная установка №13 (55 кВт)
63	Приточная установка №6 (55 кВт)
64	Приточная установка №5 (11 кВт)
65	Приточная установка №7 (55 кВт)
66	Приточная установка №8 (55 кВт)
67	Приточная установка №9 (55 кВт)
68	Приточная установка №10 (55 кВт)
69	Приточная установка №21, №23, №17 (55 кВт)
70	Циркуляционный насос 1,2
71	Циркуляционный насос 3,4
72	Вакуумный насос 1
73	Вакуумный насос 2,3
74	Циркуляционный насос 5,6
75	Циркуляционный насос 7,8
76	Циркуляционный насос 9,10
77	Циркуляционный насос 11,12
78	Циркуляционный насос 13,14
79	Циркуляционный насос 15,16
80	Циркуляционный насос 17,18
81	Циркуляционный насос 19,20
82	Циркуляционный насос 21,22
83	Циркуляционный насос 23,24
84	Циркуляционный насос 25,26
85	Вытяжной вентилятор с бака 20, 21 (а,б)
86	Вытяжной вентилятор с ОГО (отделения глубокого обезмеживания) на улице
87	Градирня 5 насоса (4 в работе, 1 в резерве) (ХНЗ10/35)
88	Насосы оборотной станции 5АИ225М У2 (3 шт.)
89	Компрессор 2 шт (1 в работе, 1 в резерве)
90	Нагнетатель A SFO-14 (2 шт.)
91	Вентилятор SO ₃ промежуточного абсорбера (на улице)
92	Вентилятор SO ₃ конечного абсорбера (на улице)
93	Насос конечного абсорбера МТН-2488
94	Насос абсорбера А МТН42012 (2 шт.)
95	Насос сушильной кислоты МТН-40012
96	Насос башни охлаждения газа A NEPS 250-200-400 (3 шт.)
97	Насос скруббера Вентури A NEPS 200-150-400 (3 шт.)
98	Градирня 4 вентилятора
99	Насосы NERO 40-25-160 (5 шт.)
100	Насосы ГРАТ 170/40 (7 шт.)

101	Компрессор 2 шт (1 в работе, 1 в резерве)
102	Вентилятор M2DA280SMB2B3W №1 (90 кВт, 2960 об/мин)
103	Вентилятор Вентилятор M2DA280SMB2B3W №2 (90 кВт, 2960 об/мин)
104	Насос №85 АД 160S9 15 кВт, 1500 об/мин
105	Аэратор №1 (отопительный агрегат)
106	Сушильные печи 6 шт. (3 в работе, 3 в резерве)
107	Насос №92 АД 160S5 15 кВт, 1500 об/мин
108	Вентилятор стенной 3 шт. на одной стене
109	Вентилятор стенной 2 шт. на одной стене
110	Насос №78 отметка +4,8 АД 160S5 15 кВт, 1500 об/мин
111	Вентилятор M2DA280SMB2B3W (90 кВт, 2960 об/мин)
112	Вентилятор печи Калдо M2DA280SMB2B3W (90 кВт, 2960 б/мин)
113	Мешалка KPER112M222 кВт, 3000 об/мин
114	Циркуляционный насос АИР132 18,5, кВт, 1500 об/мин
115	Насос Грундфос» №0152, №0153 7,5 кВт (на горячую воду)
	Насос гидравлический K11R225S4 (37 кВт, 1465 об/мин)
116	Насос гидравлический K11R132M4 (18,5 кВт, 1440 об/мин)
	Насос гидравлический K11R180M4 (7,5 кВт, 1440 об/мин)
	для подачи гидравлического масла
	Мешалка АИР 132 (7,5 кВт, 1500 об/мин)
-	Насос АИР180S2 (22 кВт, 3000 об/мин)
119	Насос АИР100 (5,5 кВт, 3000 об/мин)
	Насос AИP180S2 (22 кВт, 3000 об/мин)
	Мешалка ANGA180MB (18,5 кВт, 1470 об/мин)
	Вентилятор сушилки KPER100L2 (3 кВт, 3000 об/мин)
	Мешалки КРЕR112M2 (4 кВт, 3000 об/мин) 2 шт.
124	Мешалки KPER90L2 (2,2 кВт, 3000 об/мин) 4 шт.
125	Вентилятор Ц4-75-11,2-6 Л0 (40000 об/мин)
126	Вентилятор Ц4-75-11,2-6 Пр0 (40000 об/мин)
127	Вентилятор Дн-12,5У-1 Пр90 (36600 об/мин)
128	Вентилятор ВЦ14-46-8-1 (40000 об/мин)
129	Насос «Грундфос» №0142,№0,143
130	Hacoc X80-50-200 №5070
131	Hacoc X65-50-160 №5140
132	Hacoc X80-50-200 №7088
133	Hacoc X80-50-200 №7060
134	Hacoc X80-50-200 №7030
	Hacoc X65-50-160 №3037
-	Циркуляционный насос IWAKI №4092, №4094, №4096
137	Конвейер №1 В-500 мм, L-75 м.
138	Конвейер №2 В-500 мм, L-75 м.

Конвейер №3 В-500 мм, L-85 м.
* '
Конвейер №4 В-500 мм, L-85 м.
Hacoc ΓPAT 170/40 №1,2
Hacoc ΓPAT 170/40 №3,4
Hacoc ΓPAT 170/40 №5,6
Hacoc ΓPAT 170/40 №9,10
Гидроциклон ГРЦ-750 №1,2
Гидроциклон ГРЦ-750 №3,4
Гидроциклон ГРЦ-750 №5,6
Турбокомпрессор К1500 №1, Электродвигатель СТД10000 №5
Турбокомпрессор К1500 №2, Электродвигатель СТД10000 №4
Турбокомпрессор К1500 №3, Электродвигатель СТД10000 №8
Турбокомпрессор К1700 №1, Электродвигатель СТД10000 №7
Турбокомпрессор 4ЦКК №1,2,
Электродвигатель АД1250№1,2
Турбокомпрессор 4ЦКК №3,4,
Электродвигатель АД1250№3,4
Турбокомпрессор 4ГЦ №2,
Электродвигатель АД1250 №5
Турбокомпрессор К-250 №1,
Электродвигатель СТМ 1500 №1

Ниже представлен расчёт шумового загрязнения окружающей среды.

1.2. Результаты расчетов уровня загрязнения шумового загрязнения.

Расчет шумового загрязнения проводился по программе расчета «ЭРА - ШУМ» версия 3.0.

Для проведения расчетов уровня шумового воздействия, взят расчетный прямоугольник размером 4950*3300 м с шагом сетки 330 м, угол между координатной осью 0X и направлением на север составляет 90° .

Вычислением на ЭВМ определен уровень шумового воздействия на границе санитарно-защитной зоны и на границе с жилой зоной.

В расчёте учувствуют все источники шума, расчёт представлен в таблице ниже «Расчёт уровня шума».

Расчеты шума проводились по максимально возможным акустическим воздействиям, при максимальной нагрузке оборудования, с учётом размещения источников шума, проникающего из рабочих помещений. Так же учтено наличие зелёных насаждений, что препятствует к распространению шума.

В соответствии с приложением 2 к приказу Министра национальной экономики Республики Казахстан «Об утверждении Гигиенических нормативов к физическим факторам, оказывающим воздействие на человека Приказ Министра здравоохранения Республики Казахстан от 16 февраля 2022 года № ҚР ДСМ-15 таблица 2 допустимый уровень звука составляет 70 дБ(A). Максимальный уровень шумового загрязнения на расчётном прямоугольнике составляет **35** д**Б**(A), что оценивается как допустимый уровень шума.

Результаты расчетов уровня шумового загрязнения от деятельности предприятия в виде таблиц и ситуационных карт-схем с нанесёнными на них изолиниями, максимальных уровней загрязнения на границе санитарно-защитной зоны и жилой зоны представлены ниже.

Расчетные уровни шума

Объект: 0006, 8, БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)"

Расчетная зона: по прямоугольнику

Среднегеометрическая частота - 125 Гц

Норматив 60 дб(А)

Фон: ОдБ(А)

Максимальное значение: 35дБ(А)

Достигается в точке с координатами: Xm=497; Ym=183

Параметры расчетного прямоугольника

параметры раететного примеутольника										
Nº	Χ	Υ	Ширина,	Длина,	Шаг, м	Узлов				
	центра,	центра,	М	М						
	M	M								
1	992	183	4950	3300	330	16* 11				

Y,M X,M	-1483	-1153	-823	-493	-163	167	497	827	1157	1487	1817	2147	2477	2807	3137	3467
1833	15	16	17	17	18	18	18	16	14	10	11	10	9	8	8	7
1503	16	17	18	19	19	20	20	18	14	8	12	11	10	9	8	7
1173	15	17	19	20	21	22	21	20	13	14	13	11	10	9	9	8
843	16	18	19	22	24	23	24	22	16	2	14	12	11	10	9	8
513	18	19	21	23	26	27	29	19	5	16	14	13	11	10	9	8
183	19	22	24	27	27	32	35	3	2	16	15	13	12	11	9	8
-147	20	22	26	30	35	34	0	6	19	17	15	13	12	11	10	9
-477	20	23	26	32	20	32	9	22	19	17	15	13	12	11	10	9
-807	20	22	24	28	30	28	24	21	19	17	15	13	12	11	10	9
-1137	18	20	22	24	25	24	22	20	18	16	14	13	12	10	9	8
-1467	16	18	20	21	21	21	20	18	17	15	14	12	11	10	9	8

менее= 60 дб(A) - воздействие характеризуется как допустимое более 60 дб(A) - превышение допустимого уровня шума

РАСЧЕТ УРОВНЕЙ ШУМА

Объект: Расчетная зона: по границе СЗ

Таблица 1. **Характеристики источников шума**

1. [ИШ001П] источник проникающего шума из здания - ОГ0002, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты и	Высота, м	
X_s	\mathbf{Y}_{s}	Z_{s}
399	-23	5

Дистанци я	Ф фактор	Ω πpoc	Ур	Уровни звуковой мощности,дБ, на среднегеометрических частотах							Экв. уров	Мах. уров	
замера, м	направ- ленност и	т. угол	31,5Г ц	63Гц	125Г ц	250Г ц	500Г ц	1000Г ц	2000Γ ⊔	4000Г ц	8000F	., дБА	., дБА
0	1	2π	·	•	84	81	78	76	75	67	·	82	

Источник информации: Расчет проникающего шума из помещения

2. [ИШ002П] источник проникающего шума из здания - ОГ0001, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты и	Высота, м	
X_s	Y_s	\mathbf{Z}_{s}
625	244	5

10,111111111111111111111111111111111111													
Дистанци я	Ф фактор	Ω πpoc	Ур	овни зву	ковой м	ощности	,дБ, на с	реднегео	иетричес	ких часто	тах	Экв. уров	Мах. уров
замера, м	направ- ленност и	т. угол	31,5Г ц	63Гц	125Г ц	250Г ц	500Г Ц	1000Г ц	2000Г ц	4000Г ц	8000Г	., дБА	., дБА
0	1	2π			80	74	70	68	65	64		74	

Источник информации: Расчет проникающего шума из помещения

3. [ИШ003П] источник проникающего шума из здания - ОГ0003, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

|--|--|--|

X_s	Y_s	Z_s
286	-232	10

Дистанци я замера, м	Ф фактор направ- ленност и	Ω прос т. угол	31,5Г ц	63Гц	125Г ц	250Г Ц	500Г Ц	1000Г Ц	2000Г Ц	4000Г Ц	8000Г Ц	Экв. уров ., дБА	Мах. уров ., дБА
0	1	2π			63	65	66	63	63	63		70	

Источник информации: Расчет проникающего шума из помещения

4. [ИШ004П] источник проникающего шума из здания - ОГ0004, стена № 4, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты и	сточника, м	Высота, м
$X_{\mathfrak{s}}$	Ys	Z_{s}
-30	96	10

Дистанци я	Ф фактор	Ω προc	Ур	овни зву	ковой мо	ощности	,дБ, на с	реднегео	метричес	ких часто	тах	Экв. уров	Мах. уров
замера, м	направ- ленност и	т. угол	31,5Г ц	63Гц	125Г ц	250Г ц	500Г ц	1000Г ц	2000Г ц	4000Г ц	8000Г	., дБА	., дБА
0	1	2π			73	73	72	71	71	70		77	

Источник информации: Расчет проникающего шума из помещения

5. [ИШ005П] источник проникающего шума из здания - ОГ0005, стена № 1, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты и	сточника, м	Высота, м
X_s	Y_s	\mathbf{Z}_{s}
-151	-405	10

Дистанци я	Ф фактор	Ω πpoc	Ур	овни зву	ковой мо	ощности	дБ, на с	реднегео	иетричес	ких часто	тах	Экв. уров	Мах. уров
замера, м	направ- ленност и	т. угол	31,5Г ц	63Гц	125Г ц	250Г ц	500Г Ц	1000Г Ц	2000Г Ц	4000Г ц	8000Г Ц	., дБА	., дБА
0	1	2π			88	81	79	83	71	68		85	

Источник информации: Расчет проникающего шума из помещения

2. Ограждения

Таблица Здания, сооружения...

2.1

1. [ОГ0001] ЦПШ

Координаты центра здания, м	Высота, м	Длина, м	Ширина, м	
	,			

	X_i	Y_i	Z_i			Угол наклона, град.	Высота над землей, м	
	639	141	5	248,63	135,17	57,3	0	
Nº		Координат	гы стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
INE	X_1	\mathbf{Y}_1	X_2	\mathbf{Y}_2		Оолицовка стен		э средпенный коэффициент звукопоглощения
1	629	0	515	73				Плоские твердые стены (α=0)
2	515	73	649	282				
3	649	282	763	209				
4	763	209	629	0				

Источник информации: не указан

2. [ОГ0002] МПЦ и АО

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона,	Высота над землей, м	
	\mathbf{X}_i	\mathbf{Y}_i	Z_i			град.	compress, m	
	430	-118	5	256,21	151,13	59,3	0	
Nº		Координат	ъ стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
INE	\mathbf{X}_1	\mathbf{Y}_1	X_2	Y_2		Оолицовка стен	l	э средпенный коэффициент звукопоглощения
1	429	-267	299	-190				Плоские твердые стены (α=0)
2	299	-190	430	30				
3	430	30	560	-47				
4	560	-47	429	-267				

Источник информации: не указан

3. [ОГ0003] ЦЭМ

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона,	Высота над землей, м	
	X_i	\mathbf{Y}_{i}	Z_i			град.	SCMFICH, W	
	222	-326	5	227,45	185,96	58,4	0	
Nº		Координат	ы стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN≌	X_1	\mathbf{Y}_1	X_2	Y_2		Оолицовка стен		э средненный коэффициент звукопоглощения
1	84	-374	203	-181				Плоские твердые стены (α=0)
2	203	-181	361	-278				
3	361	-278	242	-472				
4	242	-472	84	-374				

Источник информации: не указан

4. [ОГ0004] СКЦ

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона,	Высота над землей, м	
	\mathbf{X}_i	\mathbf{Y}_i	\mathbf{Z}_i			град.	COMPTON, M	
	5	174	5	169,64	120,54	57,4	0	
Nº		Координат	ъ стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN≌	X_1	\mathbf{Y}_1	X_2	\mathbf{Y}_2		Оолицовка стен		усредненный коэффициент звукопоглощения
1	-92	135	0	278				Плоские твердые стены (α=0)
2	0	278	101	213				
3	101	213	10	70				
4	10	70	-92	135				

Источник информации: не указан

5. [ОГ0005] ДМЦ

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона,	Высота над землей, м	
	\mathbf{X}_i	\mathbf{Y}_i	Z_i			град.	COMPTON, M	
	-74	-415	5	177,59	142,07	59	0	
Nº		Координат	ъ стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN≌	X_1	\mathbf{Y}_1	X_2	Y_2		Оолицовка стен	l	э средненный коэффициент звукопоглощения
1	-181	-455	-90	-303				Плоские твердые стены (α=0)
2	-90	-303	32	-376				
3	32	-376	-59	-528				
4	-59	-528	-181	-455				

Источник информации: не указан

3. Расчеты уровней шума по санзащитной зоне (C33). Номер РП - 001 шаг 330 м.

Поверхность земли: α =0,1 твердая поверхность (асфальт, бетон)

Норматив допустимого шума на

Таблица 3.1. территории

Назначение помещений или территорий	Уровни звукового давления, дБ, на среднегеометрических частотах	

	Время суток, час	31,5Г ц	63Гц	125Г Ц	250Г ц	500Г ц	1000Г Ц	2000Г Ц	4000Г ц	8000Г Ц	Экв. уров ., дБА	Мах. уров ., дБА
22. Территории, непосредственно прилегающие к жилым зданиям, домам отдыха, домам-интернатам для престарелых и инвалидов	с 7 до 23 ч.	90	75	66	59	54	50	47	45	44	55	70

Источник информации: СН РК 2.04-03-2011 "Защита от шума"

Расчетные уровни

Таблица 3.2. шума

	Идентифи-	координа	аты расчетных	точек, м		Ур	овни зву	кового д	авления	, дБ, на с	реднегес	метричес	ских часто	тах	Экв. уров	Мах. уров
Nº	катор PT	X_{p_T}	Y _{pT}	Z _{рт} (высота)	Основной вклад источниками*	31,5Г ц	63Гц	125Г Ц	250Г ц	500Г ц	1000Г Ц	2000Г Ц	4000Г ц	8000Г ц	уров ., дБА	уров ., дБА
1	PT01	-932	139	1,5	ИШ005П-15дБА, ИШ001П-7дБА			23	17	13	13				16	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
2	PT02	-894	216	1,5	ИШ005П-15дБА, ИШ001П-7дБА, ИШ004П-5дБА			23	17	13	13				16	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
3	PT03	-862	309	1,5	ИШ005П-14дБА, ИШ004П-5дБА			22	15	12	12				15	
	<u> </u>		l	· I	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
4	PT04	-831	383	1,5	ИШ005П-14дБА, ИШ004П-5дБА			22	15	11	12				14	
	1 1		ı		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
5	PT05	-796	462	1,5	ИШ005П-13дБА			21	14	10	11				13	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
6	PT06	-752	540	1,5	ИШ005П-13дБА			21	14	10	10				13	
	<u> </u>		l	· I	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
7	PT07	-689	639	1,5	ИШ005П-12дБА			21	13	9	9				12	
	* *		l		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
8	PT08	-597	708	1,5	ИШ005П-12дБА, ИШ004П-6дБА			21	14	10	10				13	
			l		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
9	PT09	-473	785	1,5	ИШ005П-12дБА, ИШ001П-9дБА, ИШ004П-7дБА			23	17	13	10				15	

					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
10	PT10	-396	837	1,5	ИШ005П-11дБА, ИШ001П-9дБА, ИШ004П-7дБА			23	17	13	11				15	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
11	PT11	-324	894	1,5	ИШ005П-11дБА, ИШ001П-9дБА, ИШ004П-5дБА			23	17	13	10				14	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
12	PT12	-261	949	1,5	ИШ005П-10дБА, ИШ001П-9дБА, ИШ004П-5дБА			22	17	13	9				14	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
13	PT13	-200	993	1,5	ИШ005П-10дБА, ИШ001П-9дБА, ИШ004П-4дБА			22	17	12	9				14	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
14	PT14	-109	1053	1,5	ИШ005П-9дБА, ИШ001П-9дБА, ИШ004П-4дБА			22	17	12	8				13	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
15	PT15	-56	1089	1,5	ИШ005П-9дБА, ИШ001П-9дБА, ИШ004П-1дБА			22	17	12	7				13	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
16	PT16	-3	1121	1,5	ИШ001П-9дБА, ИШ005П-9дБА, ИШ004П-1дБА			22	17	12	7				13	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
17	PT17	54	1149	1,5	ИШ001П-9дБА, ИШ005П-8дБА, ИШ004П-0дБА			22	16	12	7				12	
		1		1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
18	PT18	110	1174	1,5	ИШ005П-8дБА, ИШ001П-8дБА			22	16	11	6				12	
		ı		1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
19	PT19	170	1195	1,5	ИШ001П-8дБА, ИШ005П-8дБА			22	16	11	6				12	
		1	1		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
20	PT20	230	1213	1,5	ИШ001П-8дБА, ИШ005П-7дБА			22	16	11	6				11	
		l			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
21	PT21	292	1227	1,5	ИШ001П-8дБА, ИШ005П-6дБА			21	16	11	6				11	
		1	1	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
22	PT22	353	1237	1,5	ИШ001П-8дБА, ИШ005П-6дБА			21	16	11	5				11	
		1	1		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
23	PT23	417	1242	1,5	ИШ001П-8дБА, ИШ005П-6дБА			21	16	11	5				11	
			1	1	1		1						L		1	

					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
24	PT24	478	1244	1,5	ИШ001П-8дБА, ИШ005П-6дБА			21	16	11	5				11	
		l .	l .		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
25	PT25	479	1244	1,5	ИШ001П-8дБА, ИШ005П-6дБА			21	16	11	5				11	
1				ı	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
26	PT26	542	1242	1,5	ИШ001П-7дБА			20	16	10	1				9	
				ı	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
27	PT27	605	1236	1,5	ИШ001П-7дБА			20	15	10	1				9	
L					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	_
28	PT28	667	1227	1,5	ИШ001П-7дБА			20	15	10	1				9	
L					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
29	PT29	728	1212	1,5	ИШ001П-7дБА			20	15	10	1				9	
				<u> </u>	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
30	PT30	789	1195	1,5	ИШ001П-7дБА			20	15	10	1				9	
				1 ,	—————————————————————————————————————	_	-	_	_	-		-	-	-	-	-
31	PT31	848	1173	1,5	ИШ001П-7дБА			20	16	10	1				9	
				<u> </u>	—————————————————————————————————————	-	-	-	-	-	-	-	-	-	-	-
32	PT32	905	1149	1,5				19	13	5						
				,-	I Нет превышений нормативов	_	-	-	_	_		_	_	_	_	
33	PT33	961	1120	1,5				19	13	5						
				,		_	-	_	_	_		_	_	_	_	_
34	PT34	1010	1094	1,5				16	11	1						
				, -	L Нет превышений нормативов	_	-	-	_	_		_	_	-	_	_
35	PT35	1064	1063	1,5				14	8							
				,	—————————————————————————————————————	_	-	_	_	-		-	-	-	-	-
36	PT36	1116	1026	1,5	ИШ005П-1дБА			17	9	2	1				1	
				, -	Нет превышений нормативов	_	_	_	_	_			_	_	_	_
37	PT37	1166	989	1,5	ИШ005П-1дБА			16	8	2	1				1	
<u> </u>				.,0	Нет превышений нормативов	_	_	-		_		_	_	_	_	_
38	PT38	1213	946	1,5	ИШ005П-1дБА			16	8	2	1				1	
		1 .2.0	1 0.0	.,0	Нет превышений нормативов	_	_	_					_	_	-	_
39	PT39	1257	903	1,5	ИШ005П-1дБА		 	16	8	2	1				1	
		.207		1,0	Нет превышений нормативов		_			_					-	
					пот провышении пормативов	_		_	-	-	-		_	-		_

	PT40	1299	855	1,5	ИШ005П-1дБА			16	8	2	1				1	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
41	PT41	1337	806	1,5	ИШ005П-1дБА			16	8	2	1				1	
			I.		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
42	PT42	1373	753	1,5	ИШ005П-1дБА			16	8	2	1				1	
			·		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
43	PT43	1405	700	1,5	ИШ005П-1дБА			16	8	2	1				1	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
44	PT44	1433	643	1,5	ИШ005П-1дБА			16	8	2	1				1	
			<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
45	PT45	1458	586	1,5	ИШ005П-1дБА			16	8	2	1				1	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
46	PT46	1479	526	1,5	ИШ005П-1дБА			16	8	2	1				1	
				l	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
47	PT47	1497	467	1,5	ИШ005П-1дБА			16	8	3	1				1	
				l	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
48	PT48	1511	405	1,5	ИШ005П-1дБА			16	8	3	1				1	
			<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
49	PT49	1520	344	1,5	ИШ005П-2дБА			16	8	3	2				2	
			l .		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
50	PT50	1538	184	1,5	ИШ005П-2дБА			16	9	3	2				2	
			<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
51	PT51	1543	66	1,5	ИШ005П-6дБА			16	9	3	2				6	
			l .		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
52	PT52	1534	-52	1,5	ИШ005П-6дБА			17	9	4	3				6	
				1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
53	PT53	1511	-168	1,5	ИШ005П-7дБА			17	9	4	3				7	
				1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
54	PT54	1474	-281	1,5	ИШ005П-8дБА			17	9	4	4				8	
I			I	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
55	PT55	1424	-389	1,5	ИШ005П-8дБА			17	10	5	5				8	
			I	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-

Нет превышений нормативов	5 9	5 5	10	18			ИШ005П-9дБА	1,5	-490	1362	PT56	56
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов	•	•			
58 РТ58 1266 -652 1,5 ИШ005П-10дБА 18 11 6 6 10 59 РТ59 1213 -759 1,5 ИШ005П-10дБА 18 11 6 6 10 Нет превышений нормативов -	6 9	6 6	10	18			ИШ005П-9дБА	1,5	-555	1317	PT57	57
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов		•			
59 РТ59 1213 -759 1,5 ИШ005П-10дБА 18 11 6 6 10 60 РТ60 1158 -869 1,5 ИШ005П-10дБА 19 11 6 7 10 Нет превышений нормативов -	6 10	6 6	11	18			ИШ005П-10дБА	1,5	-652	1266	PT58	58
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов	•	•			
60 РТ60 1158 -869 1,5 ИШООБП-10дБА 19 11 6 7 10 61 РТ61 1115 -939 1,5 ИШООБП-10дБА 19 11 7 7 10 Нет превышений нормативов -	6 10	6 6	11	18			ИШ005П-10дБА	1,5	-759	1213	PT59	59
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов					
61 РТ61 1115 -939 1,5 ИШ005П-10дБА 19 11 7 7 10 Нет превышений нормативов -	7 10	6 7	11	19			ИШ005П-10дБА	1,5	-869	1158	PT60	60
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов		•			
62 РТ62 1035 -1073 1,5 ИШ005П-10дБА 19 11 7 7 10 Нет превышений нормативов -	7 10	7 7	11	19			ИШ005П-10дБА	1,5	-939	1115	PT61	61
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов	l	l			
63 РТ63 894 -1211 1,5 ИШ005П-11дБА 19 11 7 8 11 Нет превышений нормативов -	7 10	7 7	11	19			ИШ005П-10дБА	1,5	-1073	1035	PT62	62
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов					
64 РТ64 724 -1323 1,5 ИШ005П-11дБА 19 12 8 8 11 Нет превышений нормативов -	8 11	7 8	11	19			ИШ005П-11дБА	1,5	-1211	894	PT63	63
Нет превышений нормативов 65 РТ65 568 -1399 1,5 ИШ005П-12дБА 20 12 8 9 12 Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов	l	l			
65 РТ65 568 -1399 1,5 ИШ005П-12дБА 20 12 8 9 12 Нет превышений нормативов -	8 11	8 8	12	19			ИШ005П-11дБА	1,5	-1323	724	PT64	64
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов	•				
66 РТ66 401 -1434 1,5 ИШ005П-12дБА 20 13 9 10 12 Нет превышений нормативов	9 12	8 9	12	20			ИШ005П-12дБА	1,5	-1399	568	PT65	65
Нет превышений нормативов -			-	-	-	-	Нет превышений нормативов		•			
67 РТ67 192 -1441 1,5 ИШ005П-13дБА 21 13 9 11 13	10 12	9 10	13	20			ИШ005П-12дБА	1,5	-1434	401	PT66	66
			-	-	-	-	Нет превышений нормативов	•				
Нет превышений нормативов	11 13	9 11	13	21			ИШ005П-13дБА	1,5	-1441	192	PT67	67
· · · · · · · · · · · · · · · · · · ·			-	-	-	-	Нет превышений нормативов		•			
68 РТ68 -89 -1427 1,5 ИШ005П-14дБА 21 14 10 12 14	12 14	10 12	14 ′	21			ИШ005П-14дБА	1,5	-1427	-89	PT68	68
Нет превышений нормативов			-	-	-	-	Нет превышений нормативов	I				
69 РТ69 -274 -1406 1,5 ИШ005П-14дБА 22 14 10 12 14	12 14	10 12	14 ′	22			ИШ005П-14дБА	1,5	-1406	-274	PT69	69
Нет превышений нормативов			-	-	-	-	Нет превышений нормативов					
70 РТ70 -381 -1382 1,5 ИШ005П-14дБА 22 14 10 12 14	12 14	10 12	14 ′	22			ИШ005П-14дБА	1,5	-1382	-381	PT70	70
Нет превышений нормативов			-	-	-	-	Нет превышений нормативов	1	1	1		
71 РТ71 -552 -1330 1,5 ИШ005П-14дБА 22 14 10 12 14	12 14	10 12	14 ′	22			ИШ005П-14дБА	1,5	-1330	-552	PT71	71
Нет превышений нормативов			-	-	-	-	Нет превышений нормативов	1	1	l		

72	PT72	-797	-1202	1,5	ИШ005П-14дБА			21	14	10	12				14	
,		•		•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
73	PT73	-902	-1097	1,5	ИШ005П-14дБА			21	14	10	12				14	
•				•	Нет превышений нормативов	-	-	-	-	-		-	-	-	-	-
74	PT74	-1011	-930	1,5	ИШ005П-14дБА			22	14	10	12				14	
,		1			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
75	PT75	-1081	-712	1,5	ИШ005П-15дБА			23	16	12	12				15	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
76	PT76	-1108	-570	1,5	ИШ005П-15дБА			23	16	12	12				15	
				•	Нет превышений нормативов	-	-	-	-	-		-	-	-	-	-
77	PT77	-1110	-383	1,5	ИШ005П-15дБА			23	17	13	13				15	
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
78	PT78	-1061	-188	1,5	ИШ005П-15дБА			23	17	13	13				16	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
79	PT79	-1030	-60	1,5	ИШ005П-15дБА			23	17	13	13				16	
				•	Нет превышений нормативов	-	-	-	-	-		-	-	-	-	-
80	PT80	-992	27	1,5	ИШ005П-15дБА, ИШ001П-5дБА			23	17	13	13				16	
,				•	Нет превышений нормативов	-	-	-	-	-		-	-	-	-	-
81	PT81	-934	139	1,5	ИШ005П-15дБА, ИШ001П-7дБА			23	17	13	13				16	
			·		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
82	PT82	-932	139	1,5	ИШ005П-15дБА, ИШ001П-7дБА			23	17	13	13				16	
		•		•	Нет превышений нормативов	ı	-	-	-	-	-	-	-	-	-	

У источников, вносящих основной вклад звуковому давлению в расчетной точке L_{max} - L_i < 10дБА.

Расчетные максимальные уровни шума по октавным полосам

Таблица 3.3. частот

		Коорди	наты расчетных	точек, м	Мах значение	Нормати в, дБ(А)	Требуетс	Примечание
Nº	Среднегеометрическая частота, Гц	X	Y	Z (высота)	, дБ(А)	В, ДВ(/ 1)	снижени е, дБ(А)	
1	31,5 Гц	-	-	-	-	90	-	
2	63 Гц	-	-	-	-	75	-	
3	125 Гц	-932	139	1,5	23	66	-	
4	250 Гц	-396	837	1,5	17	59	-	
5	500 Гц	-894	216	1,5	13	54	-	

6	1000 Гц	-932	139	1,5	13	50	-	
7	2000 Гц	-932	139	1,5	0	47	-	
8	4000 Гц	-932	139	1,5	0	45	-	
9	8000 Гц		-	-	-	44	-	
10	Экв. уровень	-894	216	1,5	16	55	-	
11	Мах. уровень	-	-	-	-	70	-	

РАСЧЕТ УРОВНЕЙ ШУМА

Объект: Расчетная зона: по территории ЖЗ

Таблица 1. Характеристики источников шума

1. [ИШ001П] источник проникающего шума из здания - ОГ0002, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м
X_s	Y_s	Z_s
399	-23	5

Дистанция замера, м	Ф фактор направ-	Ω прост.		Уровни	звуковой	мощност	и,дБ, на с	реднегеом	етрически	х частотах		Экв. уров.,	Мах. уров.,
	ленности	угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
0	1	2π			84	81	78	76	75	67		82	

Источник информации: Расчет проникающего шума из помещения

2. [ИШ002П] источник проникающего шума из здания - ОГ0001, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м
X_s	Y_s	Z_s
625	244	5

Дистанция замера, м	Ф фактор направ-	Ω прост.		Уровни	звуковой	мощност	и,дБ, на с	реднегеом	етрически	х частотах		Экв. уров.,	Мах. уров.,
·	ленности	угол	31,5Гц	1,5Гц 63Гц 125Гц 250Гц 500Гц 1000Гц 2000Гц 4000Гц 8000Гц						дБА	дБА		
0	1	2π			80	74	70	68	65	64		74	

Источник информации: Расчет проникающего шума из помещения

3. [ИШ003П] источник проникающего шума из здания - ОГ0003, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м				
X_s	\mathbf{Y}_{s}	Z_s				
286	286 -232					

Дистанция замера, м	Ф фактор направ-	Ω прост.		Уровни	звуковой	мощност	и,дБ, на с	реднегеом	етрически	х частотах		Экв. уров.,	Мах. уров.,
	ленности	угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
0	1	2π			63	65	66	63	63	63		70	

Источник информации: Расчет проникающего шума из помещения

4. [ИШ004П] источник проникающего шума из здания - ОГ0004, стена № 4, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м
X_s	Y_s	Z_s
-30	96	10

Дистанция замера, м	Ф фактор направ-	Ω прост.		Уровни :	звуковой	мощност	и,дБ, на с	реднегеом	етрически	х частотах		Экв. уров.,	Мах. уров.,
-	ленности	угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
0	1	2π			73	73	72	71	71	70		77	

Источник информации: Расчет проникающего шума из помещения

5. [ИШ005П] источник проникающего шума из здания - ОГ0005, стена № 1, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Высота, м Уровни звуковой мощности,дБ, на среднегеометрических частотах

X_s	Y_s	Z_s
-151	-405	10

Дистанция замера, м	Ф фактор направ- ленности	Ω прост. угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	Экв. уров., дБА	Мах. уров., дБА
0	1	2π			88	81	79	83	71	68		85	

Источник информации: Расчет проникающего шума из помещения

2. Ограждения

Таблица 2.1 **1. [ОГ0001] ЦПШ** Здания, сооружения...

	Координаты ц	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	\mathbf{X}_i	\mathbf{Y}_{i}	Z_i			' ''	<u> </u>	
	639	141	5	248,63	135,17	57,3	0	
Nº		Координа	ты стен, м			Облицовка стен		Vanaguayy i waakkuuyay ay waayayay
IN⊇	X_1	Y_1	X_2	Y_2		Облицовка стен		Усредненный коэффициент звукопоглощения
1	629	0	515	73				Плоские твердые стены (α=0)
2	515	73	649	282]			
3	649	282	763	209				
4	763	209	629	0]			
1.4								

Источник информации: не указан

2. [ОГ0002] МПЦ и АО

	Координаты це	нтра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	X_i	\mathbf{Y}_i	\mathbf{Z}_i			град.	COMPTON, IN	
	430	-118	5	256,21	151,13	59,3	0	
Nº		Координа	ты стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN≌	X_1	\mathbf{Y}_1	X_2	Y_2		Оолицовка стен		э средненный коэффициент эвукопотлощения
1	429	-267	299	-190				Плоские твердые стены (α=0)
2	299	-190	430	30				
3	430	30	560	-47				
4	560	-47	429	-267				

Источник информации: не указан

3. [ОГ0003] ЦЭМ

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	\mathbf{X}_{i}	\mathbf{Y}_{i}	Z_i			. рад.	consider, in	
	222	-326	5	227,45	185,96	58,4	0	
Nº		Координа	ты стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN≌	X_1	\mathbf{Y}_1	X_2	Y_2		Оолицовка стен		э средненный коэффициент эвукопотлощения
1	84	-374	203	-181				Плоские твердые стены (α=0)
2	203	-181	361	-278				
3	361	-278	242	-472				
4	242	-472	84	-374				

Источник информации: не указан

4. [ОГ0004] СКЦ

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	\mathbf{X}_i	\mathbf{Y}_i	Z_i			- 1		
	5	174	5	169,64	120,54	57,4	0	
Nº		Координаты стен, м				Облицовка стен		Усредненный коэффициент звукопоглощения

	X_1	Y ₁	X_2	Y ₂	
1	-92	135	0	278	Плоские твердые стены (α=0)
2	0	278	101	213	
3	101	213	10	70	
4	10	70	-92	135	

Источник информации: не указан

5. [ОГ0005] ДМЦ

		ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м]
	\mathbf{X}_i	\mathbf{Y}_{i}	Z_i			град.	JONDICH, W	
	-74	-415	5	177,59	142,07	59	0	
Nº		Координа	ты стен, м			Облицовка стен		Vana Tualius iš vaadada uu ali anii vana Tarii va
IN≌	X_1	Y_1	X_2	Y_2		Оолицовка стен		Усредненный коэффициент звукопоглощения
1	-181	-455	-90	-303				Плоские твердые стены (α=0)
2	-90	-303	32	-376				
3	32	-376	-59	-528				
4	-59	-528	-181	-455				

Источник информации: не указан

3. Расчеты уровней шума по жилой зоне (ЖЗ). Номер РП - 001 шаг 330 м.

Поверхность земли: α =0,1 твердая поверхность (асфальт, бетон)

Таблица 3.1. Норматив допустимого шума на территории

	Время суток,		Уровни з	вукового	давления	я, дБ, на с	среднегеом	иетрически	іх частотах	(Экв.	Max.
Назначение помещений или территорий	час	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	уров., дБА	уров., дБА
22. Территории, непосредственно прилегающие к жилым зданиям, домам отдыха, домам-интернатам для престарелых и инвалидов	с 7 до 23 ч.	90	75	66	59	54	50	47	45	44	55	70

Источник информации: СН РК 2.04-03-2011 "Защита от шума"

Таблица 3.2. Расчетные уровни шума

	Идентифи-	координ	наты расчетных	точек, м			Уровни :	ввукового	давлени	я, дБ, на	среднегео	иетрическ	их частотах	(Экв.	Max.
Nº	катор РТ	X_{p_T}	Y_{pT}	Z _{рт} (высота)	Основной вклад источниками*	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	уров., дБА
1	PT01	1728	1294	1,5				12	3							
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
2	PT02	1764	1062	1,5				13	4							
				1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
3	PT03	1770	980	1,5				13	4							
				1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
4	PT04	1771	1446	1,5				12	3							
				1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
5	PT05	1776	897	1,5				14	4							
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
6	PT06	1788	731	1,5				14	5							

							1	1								
7	PT07	1793	1310	1,5	Нет превышений нормативов	-	-	12	3	-	-	-	-	-	-	-
	1 107	1700	1010	1,0	Нет превышений нормативов		-	-	-	_	_	_	_	_	-	
8	PT08	1794	1304	1,5	Пет превышений пормативов		-	12	3	-	-		-	-	-	
	1 100	1704	1004	1,0	Нет превышений нормативов		 	12	0				_		 _	
9	PT09	1798	650	1,5	Пет превышений пормативов		 -	14	5	-	-		-	-	<u> </u>	
9	F 109	1790	030	1,5	Нет превышений нормативов		-	-	-		_		_	_		
10	PT10	1827	436	1,5	Пет превышений нормативов	-	-	14	5	-	-	-	-	-	-	-
10	F110	1027	430	1,5	Нот проришаций пормотирор											
11	PT11	1973	340	1,5	Нет превышений нормативов Г	-	-	14	- 5	-	-	-	-	-	-	-
11	PIII	1973	340	1,5				-								
40	PT12	4004	220	1.5	Нет превышений нормативов Г	-	-	-	-	-	-	-	-	-	-	-
12	PIIZ	1981	320	1,5				14	5							
40	DT40	4000	4.470	1 45	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
13	PT13	1996	1470	1,5				11	2							
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
14	PT14	2042	168	1,5				14	5							
		_	,	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
15	PT15	2044	1772	1,5				10	1							
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
16	PT16	2063	1640	1,5				11	1							
		_			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
17	PT17	2069	1595	1,5				11	1							
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
18	PT18	2095	1419	1,5				11	2							
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
19	PT19	2100	980	1,5				12	3							
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
20	PT20	2123	1310	1,5				11	2							
		1		1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
21	PT21	2128	650	1,5				13	4							
		l	l	I	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
22	PT22	2264	-10	1,5				13	4							
		1	l	l	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
23	PT23	2311	320	1,5				12	3							
		1	l	l	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
24	PT24	2323	1776	1,5				10								
		I .	I .	<u> </u>	Нет превышений нормативов	_	-	-	-	-	-	-	-	-	-	-
25	PT25	2393	1640	1,5				10								
				,-	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	_
26	PT26	2420	195	1,5	,,			12	3							
	20	0	1 .55	.,0	Нет превышений нормативов		-		-	-	_	_	_	_	-	_
27	PT27	2430	980	1,5				11	2							
			1 223	1 .,5	Нет превышений нормативов		-	 	-	_	_	_	_	_	-	_
28	PT28	2453	1310	1,5	Пот провышении пормативов		-	10	1	_					-	
20	. 120	2-100	1010	1,0	Нет превышений нормативов	_	-	-	_	_	_	_	_	_	-	_
29	PT29	2458	650	1,5	пот провышении пормативов		+-	11	2	_		<u> </u>		<u> </u>	-	\vdash
23	1 123	2400	000	1,3	Нет превышений нормативов		-	- ' '	_						-	
30	PT30	2514	320	1,5	пет превышении нормативов	-	 -	12	2	-	-	-	-	-	-	-
30	r 130	2014	320	1,0				12								

					Нет превышений нормативов	_	_	_	l -	_	l -	l -		Ι.	l -	_
31	PT31	2575	400	1,5				11	2							
			1.00	1,0	 Нет превышений нормативов	_	_	-		_	_		_		_	_
32	PT32	2603	1780	1,5	l let ilpessimentini nepilia mises			9								
- 02	1 102	2000	1700	1,0	 Нет превышений нормативов	_	_	_	_	_	_	_	_	_	_	_
33	PT33	2723	1640	1,5	Пет превышении пормативов	-		9				-	_	-		
- 33	F 133	2123	1040	1,5	Нет превышений нормативов											
34	PT34	2752	412	1,5	пет превышении нормативов	-	-	- 11	- 1	-	-	-	-	-	-	-
34	F134	2132	412	1,5												
25	DTOE	0700	000	1.5	Нет превышений нормативов Т	-	-	-	-	-	-	-	-	-	-	-
35	PT35	2760	980	1,5				10								
	D-T-0.0		1010		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
36	PT36	2783	1310	1,5				9								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
37	PT37	2788	650	1,5				10	1							
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
38	PT38	2882	1785	1,5				8								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
39	PT39	2928	425	1,5				10								
		•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
40	PT40	3053	1640	1,5				8								
		I			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
41	PT41	3090	980	1,5				9								
			1	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
42	PT42	3113	1310	1,5				8								
			1	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
43	PT43	3118	650	1,5	<u> </u>			9								
		1		1	Нет превышений нормативов	_	-	-	_	_	_	_	_	_	-	_
44	PT44	3162	1789	1,5				8								
			1100	1,-	Нет превышений нормативов	_	_	-	_	_	_		_		_	-
45	PT45	3186	452	1,5				9								
	1 1 10	0.00	102	1,0	Нет превышений нормативов	_	_	-	_	_	_	_	_	_	_	_
46	PT46	3383	1640	1,5	Пет превышении пормативов	-		7				-	_	-		
40	F 140	3303	1040	1,5	Нет превышений нормативов		_	-	_			_			_	
47	PT47	3420	980	1,5	пет превышении нормативов	-	-	8	-	-	-		-	-	-	-
47	P147	3420	960	1,5												
40	DT40	0.444	4700	1.5	Нет превышений нормативов Т	-	-	-	-	-	-	-	-	-	-	-
48	PT48	3441	1793	1,5				7								
40	DT 40		4040	1 4=	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
49	PT49	3442	1640	1,5				7								
		T	1	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
50	PT50	3442	1465	1,5				7								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
51	PT51	3443	1310	1,5				8								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
52	PT52	3443	1137	1,5				8								
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
53	PT53	3443	980	1,5				8								
	<u> </u>	1	1	<u> </u>	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
54	PT54	3444	808	1,5				8								
							l		L	l	l					l

					Нет превышений нормативов	•	-	-	•	-	-	-	-	-	-	-
55	PT55	3444	650	1,5				8								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
56	PT56	3445	480	1,5				8								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-

У источников, вносящих основной вклад звуковому давлению в расчетной точке Lmax - Li < 10дБА.

Таблица 3.3. Расчетные максимальные уровни шума по октавным полосам частот

	_	Коорди	наты расчетных то	очек, м	Мах значение,	Норматив, дБ(А)	Требуется снижение,	Примечание
Nº	Среднегеометрическая частота, Гц	X	Y	Z (высота)	дБ(А)		дБ(А)	
1	31,5 Гц	-	-	-	-	90	-	
2	63 Гц	-	-	-	-	75	-	
3	125 Гц	1827	436	1,5	14	66	-	
4	250 Гц	1827	436	1,5	5	59	-	
5	500 Гц	1827	436	1,5	0	54	-	
6	1000 Гц	1728	1294	1,5	0	50	-	
7	2000 Гц	1728	1294	1,5	0	47	-	
8	4000 Гц	1728	1294	1,5	0	45	-	
9	8000 Гц	-	-	-	-	44	-	
10	Экв. уровень	1728	1294	1,5	0	55	-	
11	Мах. уровень	-	-	-	-	70	-	

РАСЧЕТ УРОВНЕЙ ШУМА

Объект: Расчетная зона: по прямоугольнику

Таблица 1. Характеристики источников шума

1. [ИШ001П] источник проникающего шума из здания - ОГ0002, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м		
X_s	Y_s	Z_s		
399	399 -23			

Дистанция Max. Ф фактор Ω Экв. Уровни звуковой мощности,дБ, на среднегеометрических частотах уров., дБА уров., дБА направпрост. ленности угол 4000Гц 8000Гц 63Гц 500Гц 1000Гц 2000Гц 0 2π 84 81 78 76 75 67 82

Источник информации: Расчет проникающего шума из помещения

2. [ИШ002П] источник проникающего шума из здания - ОГ0001, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	Координаты источника, м						
X_s	Y_s	Z_s					
625	625 244						

Дистанция замера, м	Ф фактор направ-	Ω πрост.	I Уровни звуковои мошности.дь. на среднегеометрических частотах I								Экв. уров.,	Мах. уров.,	
·	ленности	угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
0	1	2π			80	74	70	68	65	64		74	

Источник информации: Расчет проникающего шума из помещения

3. [ИШ003П] источник проникающего шума из здания - ОГ0003, стена № 2, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м
X_s	Y_s	Z_s
286	-232	10

Дистанция замера, м	Ф фактор направ-	Ω прост.		Уровни звуковой мощности,дБ, на среднегеометрических частотах								Экв. уров.,	Мах. уров.,
·	ленности	угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
0	1	2π			63	65	66	63	63	63		70	

Источник информации: Расчет проникающего шума из помещения

4. [ИШ004П] источник проникающего шума из здания - ОГ0004, стена № 4, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м
X_s	\mathbf{Y}_{s}	Z_s
-30	96	10

Дистанция замера, м	Ф фактор направ-	Ω прост.		Уровни	звуковой	мощност	и,дБ, на с	реднегеом	етрически	х частотах		Экв. уров.,	Мах. уров.,
	ленности	угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
0	1	2π			73	73	72	71	71	70		77	

Источник информации: Расчет проникающего шума из помещения

5. [ИШ005П] источник проникающего шума из здания - ОГ0005, стена № 1, дверь

Тип: точечный. Характер шума: широкополосный, постоянный

Координаты ис	точника, м	Высота, м
X_s	Y_s	Z_s
-151	-405	10

Дистанция замера, м	Ф фактор направ-	Ω прост.		Уровни	звуковой	мощност	и,дБ, на с	реднегеом	етрически	х частотах		Экв. уров.,	Мах. уров.,
• •	ленности	угол	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
0	1	2π			88	81	79	83	71	68		85	

Источник информации: Расчет проникающего шума из помещения

2. Ограждения

Таблица 2.1 Здания, сооружения...

1. [ОГ0001] ЦПШ

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	\mathbf{X}_i	\mathbf{Y}_{i}	Z_i			. рад.	00	
	639	141	5	248,63	135,17	57,3	0	
Nº		Координат	гы стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN≌	X_1	Y_1	X_2	Y_2		Оолицовка стен		э средненный коэффициент звукопоглощения
1	629	0	515	73				Плоские твердые стены (α=0)
2	515	73	649	282				
3	649	282	763	209]			
4	763	209	629	0]			
		209	l	0	<u> </u>			

Источник информации: не указан

2. [ОГ0002] МПЦ и АО

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	X_i	\mathbf{Y}_{i}	Z_i			,,,,,,	,	
	430	-118	5	256,21	151,13	59,3	0	
No		Координат	гы стен, м			05		V
Nº	X_1	Y_1	X_2	Y_2		Облицовка стен		Усредненный коэффициент звукопоглощения

1
2
3
4

Источник информации: не указан

3. [ОГ0003] ЦЭМ

	Координаты ц	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	\mathbf{X}_i	Y_i	Z_i			град.	GOMPION, III	
	222	-326	5	227,45	185,96	58,4	0	
Nº		Координат	гы стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN⊻	X_1	\mathbf{Y}_{1}	X_2	Y_2		Оолицовка стен		э средпенный коэффициент звукопотлощения
1	84	-374	203	-181				Плоские твердые стены (α=0)
2	203	-181	361	-278				
3	361	-278	242	-472				
4	242	-472	84	-374				

Источник информации: не указан

4. [ОГ0004] СКЦ

	Координаты це	ентра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
	\mathbf{X}_i	\mathbf{Y}_{i}	Z_i			. рад.	00	
	5	174	5	169,64	120,54	57,4	0	
Nº		Координат	гы стен, м			Облицовка стен		Усредненный коэффициент звукопоглощения
IN≌	X_1	Y_1	X_2	Y_2		Оолицовка стен		Усредненный коэффициент звукопоглощения
1	-92	135	0	278				Плоские твердые стены (α=0)
2	0	278	101	213				
3	101	213	10	70				
4	10	70	-92	135				

Источник информации: не указан

5. [ОГ0005] ДМЦ

1	нтра здания, м	Высота, м	Длина, м	Ширина, м	Угол наклона, град.	Высота над землей, м	
\mathbf{X}_i	Y_i	\mathbf{Z}_i			трад.	SCWITCH, W	
-74	-415	5	177,59	142,07	59	0	
	Координат	ы стен, м			Облицовка отоц		Усредненный коэффициент звукопоглощения
X_1	\mathbf{Y}_1	X_2	Y_2		Оолицовка стен		э средненный коэффициент звукопотлощения
-181	-455	-90	-303				Плоские твердые стены (α=0)
-90	-303	32	-376				
32	-376	-59	-528				
-59	-528	-181	-455				
	-74 X ₁ -181 -90 32 -59	-74 -415 Координат X ₁ Y ₁ -181 -455 -90 -303 32 -376	-74 Координаты стен, м X1 Y1 X2 -181 -455 -90 -90 -303 32 32 -376 -59 -59 -528 -181	-74 -415 5 177,59 Координаты стен, м X1 Y1 X2 Y2 -181 -455 -90 -303 -90 -303 32 -376 32 -376 -59 -528 -59 -528 -181 -455	-74 -415 5 177,59 142,07 Координаты стен, м X1 Y1 X2 Y2 -181 -455 -90 -303 -90 -303 32 -376 32 -376 -59 -528 -59 -528 -181 -455	X _i Y _i Z _i -74 -415 5 177,59 142,07 59 Координаты стен, м X ₁ Y ₁ X ₂ Y ₂ -181 -455 -90 -303 -90 -303 32 -376 32 -376 -59 -528 -59 -528 -181 -455	Xi Yi Zi -74 -415 5 177,59 142,07 59 0 Координаты стен, м X1 Y1 X2 Y2 -181 -455 -90 -303 -90 -303 32 -376 32 -376 -59 -528 -59 -528 -181 -455

Источник информации: не указан

3. Расчеты уровней шума по расчетному прямоугольнику (РП).

Поверхность земли: α =0,1 твердая поверхность (асфальт, бетон)

Таблица 3.1. Параметры РП

Код	Х центра, м	Ү центра, м	Длина, м	Ширина, м	Шаг, м	Узлов	Высота, м	Примечание
001	992	183	4950	3300	330	16 x 11	1,5	

Таблица 3.2. Норматив допустимого шума на территории

	Время суток,	Уровни звукового давления, дБ, на среднегеометрических частотах										Max.
Назначение помещений или территорий	час	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	уров., дБА	уров., дБА
22. Территории, непосредственно прилегающие к жилым зданиям, домам отдыха, домам-интернатам для престарелых и инвалидов	с 7 до 23 ч.	90	75	66	59	54	50	47	45	44	55	70

Источник информации: CH PK 2.04-03-2011 "Защита от шума"

Таблица 3.3. Расчетные уровни шума

	Идентифи-	координ	координаты расчетных точек, м				Уровни :	звукового	давлени	я, дБ, на с	среднегеог	иетрически	их частотах	(Экв. уров.,	Мах. уров.,
Nº	катор РТ	X_{p_T}	Y_{pT}	Z _{рт} (высота)	Основной вклад источниками*	31,5Гц	63Гц	125Гц	250Гц	500Гц	1000Гц	2000Гц	4000Гц	8000Гц	дБА	дБА
1	PT001	-1483	1833	0				15	8							
	1		•	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
2	PT002	-1153	1833	0				16	9							
	1		•	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
3	PT003	-823	1833	0				17	10							
	1		•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
4	PT004	-493	1833	0				17	11							
	1		•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
5	PT005	-163	1833	0				18	12	1						
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
6	PT006	167	1833	0				18	12	1						
	1		•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
7	PT007	497	1833	0				18	12	1						
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
8	PT008	827	1833	0				16	10	1						
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
9	PT009	1157	1833	0				14	5							
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
10	PT010	1487	1833	0				10	1							
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
11	PT011	1817	1833	0				11	1							
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
12	PT012	2147	1833	0				10								
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
13	PT013	2477	1833	0				9								
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
14	PT014	2807	1833	0				8								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
15	PT015	3137	1833	0				8								
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
16	PT016	3467	1833	0				7								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-

17	PT017	-1483	1503	0		<u> </u>	1	16	9	l						
		1 .00	.000		 Нет превышений нормативов	-	_	-	-	_	_	_	_	_	_	
18	PT018	-1153	1503	0				17	11							
					Нет превышений нормативов	-	-	-	-	_	_	_	_	_	-	_
19	PT019	-823	1503	0	· · · · · ·			18	12	4						
					Нет превышений нормативов	-	-	-	-	_	_	_	-	_	-	-
20	PT020	-493	1503	0	ИШ005П-1дБА			19	13	5	1				1	
					Нет превышений нормативов	-	_	-	-	-	_	_	_	_	-	
21	PT021	-163	1503	0	ИШ001П-3дБА, ИШ005П-1дБА			19	14	7	1				5	
			.000		Нет превышений нормативов	-		-		-	_	_	_	_	-	
22	PT022	167	1503	0	ИШ001П-4дБА, ИШ005П-1дБА			20	14	7	1				6	
					Нет превышений нормативов			_		_	_	_	_	_	_	
23	PT023	497	1503	0	ИШ001П-4дБА			20	14	7					4	
			.000		Нет превышений нормативов	-	_			-	_	_	_	_	_	_
24	PT024	827	1503	0	ИШ001П-4дБА			18	13	5					4	
		02.	.000		Нет превышений нормативов	-	_	-	-		_	_	_	_		_
25	PT025	1157	1503	0	Пот провышении пормативов		_	14	7		_	_	_	_		
		1.07	.000		Нет превышений нормативов	_	_	-		_	_	_	_	_	_	_
26	PT026	1487	1503	0	Пет превышении пормативов	<u> </u>		8			_		_			
20	1 1020	1407	1000		Нет превышений нормативов	_	_									
27	PT027	1817	1503	0	Пет превышении пормативов	- -		12	2	-	-	-	-	_	-	
	1 1027	1017	1000		 Нет превышений нормативов	_		-				_	_	_	_	
28	PT028	2147	1503	0	Пет превышении пормативов	-		11	1	_	_	_	_	_	_	
20	1 1020	2177	1000		Нет превышений нормативов	_	_	- ''		_	_	_	_	_	_	
29	PT029	2477	1503	0	Пет превышении пормативов	-		10	-	-	-	-	-	-	-	
25	1 1023	2711	1303	0	Нет превышений нормативов	_	_	10							_	
30	PT030	2807	1503	0	Пет превышении пормативов	-	-	9	-	-	-	-	-	-	-	-
	1 1000	2007	1000		Нет превышений нормативов	_	_	_		_	_	_	_	_	_	
31	PT031	3137	1503	0	Пет превышении пормативов	-		8		_	_	_	_	_	_	
	1 1001	3137	1000		Нет превышений нормативов			0								
32	PT032	3467	1503	0	Пет превышении пормативов	-		7		_	_	_	_	_	_	
02	1 1002	0407	1000		Нет превышений нормативов	_	_	-								
33	PT033	-1483	1173	0	Пет превышении пормативов	-	_	15	8	1	_	_	_	_	_	
	1 1000	1400	1170		Нет превышений нормативов	_	_	-	-	-	_	_	_	_	_	-
34	PT034	-1153	1173	0	ИШ005П-1дБА		_	17	10	2	1	_	_	_	1	
<u> </u>	1 1004	1100	1173	0	Нет превышений нормативов	_	_	- ''	-	_	<u> </u>	_		_		_
35	PT035	-823	1173	0	ИШ005П-6дБА	-		19	14	8	5	_	_	_	7	
33	1 1000	020	1175		Нет превышений нормативов	_	_			-	-	_	_	_		
36	PT036	-493	1173	0	ИШ005П-8дБА, ИШ001П-4дБА	- -		20	- 15	10	6	-	-		10	-
30	1 1000	730	1113		Нет превышений нормативов	_	_	-	13	-					10	
37	PT037	-163	1173	0	ИШ005П-8дБА, ИШ001П-7дБА	<u> </u>	<u> </u>	21	16	11	7	-	-		12	
31	1 1001	-103	1113		Нет превышений нормативов	_		-	-	-	-	_			14	
38	PT038	167	1173	0	ИШ001П-9дБА, ИШ005П-8дБА	-	-	22	16	- 11	6	-	-	-	12	-
30	1 1000	107	1113												14	
39	PT039	497	1173	0	Нет превышений нормативов ИШ001П-9дБА	-	-	21	- 16	- 11	2	-	-	-	10	-
39	F 1039	491	1113	U					10						10	
40	PT040	827	1173	0	Нет превышений нормативов ИШ001П-8дБА	-	-	20	- 16	10	2	-	-	-	9	-
40	F 1 U4U	021	1113	U												
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-

		_														
41	PT041	1157	1173	0				13	6							
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
42	PT042	1487	1173	0				14	6							
				•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
43	PT043	1817	1173	0				13	3							
	•	•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
44	PT044	2147	1173	0				11	2							
	I		1	l	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
45	PT045	2477	1173	0				10	1							
	I		1	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
46	PT046	2807	1173	0				9								
	L	1	1	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
47	PT047	3137	1173	0				9								
		<u> </u>	1		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
48	PT048	3467	1173	0				8								
		1	ı	<u> </u>	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
49	PT049	-1483	843	0	ИШ005П-2дБА			16	9	5	2				2	
				<u> </u>	Нет превышений нормативов	-	-	-	-		_	-	_	_	-	_
50	PT050	-1153	843	0	ИШ005П-8дБА			18	11	6	6				9	
					Нет превышений нормативов	-	_	-	_		_	_	_	_	_	_
51	PT051	-823	843	0	ИШ005П-10дБА			19	13	9	8				11	
			1 0.0		Нет превышений нормативов	-		-	-		-	_	_	_	_	
52	PT052	-493	843	0	ИШ005П-11дБА, ИШ001П-8дБА,			22	17	13	11				15	
02	1 1002	100	0.0		ИШ004П-5дБА				.,	10					10	
	•	•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
53	PT053	-163	843	0	ИШ005П-12дБА, ИШ001П-11дБА, ИШ004П-8дБА			24	19	15	12				16	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
54	PT054	167	843	0	ИШ001П-12дБА, ИШ004П-8дБА, ИШ002П-7дБА			23	19	14	10				16	
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
55	PT055	497	843	0	ИШ001П-13дБА, ИШ002П-9дБА, ИШ004П-4дБА			24	20	15	11				17	
			•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
56	PT056	827	843	0	ИШ002П-9дБА, ИШ001П-6дБА			22	16	11	6				12	
	•	•	•	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
57	PT057	1157	843	0	ИШ005П-2дБА			16	9	3	2				2	
	I		1	•	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
58	PT058	1487	843	0				2	1							
	<u> </u>	ı	l	ı	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
59	PT059	1817	843	0				14	4							
	<u> </u>	ı	1	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
60	PT060	2147	843	0				12	3							
	ı	1	<u>I</u>	I	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
61	PT061	2477	843	0				11	2							
	I	1	<u> </u>	<u> </u>	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
62	PT062	2807	843	0				10								
	I	1	l	1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
63	PT063	3137	843	0				9								
	l	L	L	L		L	L	L	L		l	<u> </u>	l	l	l	

					Цот провещионий порматиров	. 1	I	I	I		I	I			I	
64	PT064	3467	843	0	Нет превышений нормативов	-	-	8	-	-	-	-	-	-	-	-
		1			— — Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
65	PT065	-1483	513	0	ИШ005П-8дБА			18	11	6	6				9	
,		•			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
66	PT066	-1153	513	0	ИШ005П-10дБА			19	14	9	9				12	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
67	PT067	-823	513	0	ИШ005П-13дБА			21	15	11	12				14	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
68	PT068	-493	513	0	ИШ005П-15дБА			23	17	13	14				17	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
69	PT069	-163	513	0	ИШ005П-16дБА, ИШ004П-15дБА, ИШ001П-14дБА			26	22	19	17	10	1		21	
,		•			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
70	PT070	167	513	0	ИШ001П-18дБА, ИШ004П-15дБА, ИШ002П-11дБА			27	23	19	16	11			21	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
71	PT071	497	513	0	ИШ001П-18дБА, ИШ002П-17дБА, ИШ004П-10дБА			29	25	21	18	13	2		23	
,		•			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
72	PT072	827	513	0	ИШ005П-11дБА, ИШ004П-4дБА			19	12	9	8				11	
l .		•			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
73	PT073	1157	513	0				5	4	1						
1		<u> </u>	<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
74	PT074	1487	513	0	ИШ005П-1дБА			16	8	2	1				1	
		<u> </u>	<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
75	PT075	1817	513	0				14	5							
L		1			— — Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
76	PT076	2147	513	0				13	4							
		1			— — — — — — — — — — — — — — — — — — —	-	-	-	-	-	-	-	-	-	-	-
77	PT077	2477	513	0				11	2							
		<u> </u>	<u> </u>		I Нет превышений нормативов	-	-	 	_		_	_	_	_	_	
78	PT078	2807	513	0				10	1							
		200.	0.0			-	_	-	<u> </u>		_	_	_	_	-	
79	PT079	3137	513	0	Пет превышении пормативов	<u> </u>		9	_		_	_	_	_	_	_
75	1 1070	0107	010			-	_	-	_		_	_	_		_	
80	PT080	3467	513	0	Пет превышении пормативов	<u> </u>	-	8			_	_	_	_		-
00	1 1000	3407	010	U	 Нет превышений нормативов		_	-		_	_	_	_	_	_	_
81	PT081	-1483	183	0	ИШ005П-9дБА	<u> </u>	-	19	14	9	8	-	-	-	10	-
01	F 1 U O 1	-1403	100	0					14							
00	DTOOO	1450	100		Нет превышений нормативов ИШ005П-12дБА, ИШ001П-4дБА	-	-	-	17	- 10	-	-	-	-	-	-
82	PT082	-1153	183	0			-	22	17	12	11				14	
00	DTOOO	000	400		Нет превышений нормативов ИШ005П-16дБА, ИШ001П-8дБА,	-	-	-	-	-	-	-	-	-	-	-
83	PT083	-823	183	0	ИШ004П-7дБА			24	19	16	16				19	
		_	T		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
84	PT084	-493	183	0	ИШ005П-19дБА, ИШ004П-14дБА, ИШ001П-12дБА			27	23	19	20	9			23	
		1			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
85	PT085	-163	183	0	ИШ004П-21дБА, ИШ005П-21дБА			27	23	21	22	16	12		25	
					Нет превышений нормативов	-	-	-	-	•	-	-	-	-	-	-

86	PT086	167	183	0	ИШ001П-25дБА, ИШ004П-23дБА	Τ		32	29	26	24	20	14		29	
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
87	PT087	497	183	0	ИШ002П-25дБА, ИШ001П-23дБА, ИШ005П-16дБА			35	30	26	24	20	15		29	
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
88	PT088	827	183	0				3								
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
89	PT089	1157	183	0				2								
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
90	PT090	1487	183	0	ИШ005П-6дБА			16	9	3	3				6	
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
91	PT091	1817	183	0				15	7	1						
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
92	PT092	2147	183	0				13	4							
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
93	PT093	2477	183	0				12	3							
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
94	PT094	2807	183	0				11	1							
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
95	PT095	3137	183	0				9								
		l			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
96	PT096	3467	183	0				8								
		l			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
97	PT097	-1483	-147	0	ИШ005П-10дБА			20	14	9	9				12	
<u> </u>		l	<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
98	PT098	-1153	-147	0	ИШ005П-14дБА			22	17	13	13				16	
<u> </u>		l	<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
99	PT099	-823	-147	0	ИШ005П-19дБА			26	21	17	18				21	
L		l	<u> </u>		—————————————————————————————————————	-	-	-	-	-	-	-	-	-	-	-
100	PT100	-493	-147	0	ИШ005П-25дБА			30	25	22	25	12			27	
		l			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
101	PT101	-163	-147	0	ИШ005П-30дБА, ИШ004П-20дБА			35	30	28	30	19	13		32	
1		L	1		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
102	PT102	167	-147	0	ИШ001П-26дБА, ИШ005П-25дБА, ИШ003П-20дБА, ИШ004П-19дБА			34	31	28	27	22	16		31	
		•	•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
103	PT103	497	-147	0	РТ внутри ограждения ОГ0002, не рассчитана											
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
104	PT104	827	-147	0	ИШ003П-3дБА			6	4	4					3	
			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
105	PT105	1157	-147	0	ИШ005П-11дБА			19	12	8	7				11	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
106	PT106	1487	-147	0	ИШ005П-7дБА			17	9	4	4				7	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
107	PT107	1817	-147	0	ИШ005П-0дБА			15	7	2						
					Нет превышений нормативов	-	-			-	-	-	-	-	-	-
108	PT108	2147	-147	0				13	5							
<u> </u>			•		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-

109	PT109	2477	-147	0	1	I	I	12	2					ı	1	
109	P1109	24//	-147	0	11			12	3							
440	DT440	0007	4.47		Нет превышений нормативов		-	-	1	-	-	-	-	-	-	-
110	PT110	2807	-147	0	11			11	'							
111	PT111	2427	-147		Нет превышений нормативов	-	-	10	-	-	-	-	-	-	-	-
111	PIIII	3137	-147	0	11											
440	PT112	2407	4.47	0	Нет превышений нормативов		-	-	-	-	-	-	-	-	-	-
112	PIIIZ	3467	-147	0	<u> </u>			9								
440	DT440	4.400	477		Нет превышений нормативов ИШ005П-11дБА	-	-	-	-	-	-	-	-	-	-	-
113	PT113	-1483	-477	0				20	14	9	9				12	
444	PT114	4450	477		Нет превышений нормативов ИШ005П-14дБА	-	-	23	-	-	-	-	-	-	-	-
114	P1114	-1153	-477	0	1			23	17	13	14				16	
445	DT445	000	477	0	Нет превышений нормативов ИШ005П-19дБА		-	-	-	-	-	1	-	-	-	-
115	PT115	-823	-477	0				26	21	18	19				21	
110	DT446	402	477	0	Нет превышений нормативов ИШ005П-27дБА		-	-	-	-	-	-	-	-	-	-
116	PT116	-493	-477	0				32	26	24	27	13	5		29	
117	PT117	-163	-477	0	Нет превышений нормативов ИШ005П-10дБА		-	20	10	6	7	-	-	-	10	-
117	PIIII	-103	-477	U	<u>''</u>				10							
118	PT118	167	-477		Нет превышений нормативов ИШ005П-27дБА	-	-	32	- 25	22	- 26	- 12	4	-	27	-
110	P1110	107	-477	0				32	25	22	20	12	4			
119	PT119	497	-477	0	Нет превышений нормативов ИШ003П-11дБА	-	-	9	9	9	- 6	4	-	-	11	-
119	FIII9	497	-477	U	1			9	9	9	0	4			11	
120	PT120	827	-477	0	Нет превышений нормативов ИШ005П-15дБА	-	-	22	14	11	- 12	-	-	-	- 15	-
120	F1120	027	-477	U	Нет превышений нормативов			22	14							
121	PT121	1157	-477	0	ИШ005П-11дБА	-	-	19	12	- 8	- 8	-	-	-	11	-
121	1 1 1 2 1	1137	-477	U	Нет превышений нормативов	_	_	-	12	0	0				- ''	
122	PT122	1487	-477	0	ИШ005П-7дБА	-	-	17	9	4	4	-	-	-	7	-
122	1 1 1 2 2	1407	-477	0	Нет превышений нормативов	_	_	- ''	-	-	_	_	_	_	_	
123	PT123	1817	-477	0	ИШ005П-0дБА			15	6	2	_	_	_	_	_	-
120	1 1 1 2 0	1017	777	0	Нет превышений нормативов	_		-	-		_	_	_	_	_	_
124	PT124	2147	-477	0	Пет превышении пормативов	_	_	13	5	-	_	_	_	_	_	
121	1 1 1 1 2 1	2117	.,,		Нет превышений нормативов	_	_	-		_	_	_	_	_	_	_
125	PT125	2477	-477	0	Пет превышении пормативов			12	3		_	_	_		_	
120	1 1 120	2,	.,,		Нет превышений нормативов	_	_	-	-	-		_		_	_	
126	PT126	2807	-477	0	Пет превышении пормативов			11	1		_	_	_	_		
120	1 1 120	2007	.,,		Нет превышений нормативов	_	_	-			_	_	_	_	_	
127	PT127	3137	-477	0	Пет превышении пермативев			10			_	_	_	_		
121	1 1 127	0.07	.,,		Нет превышений нормативов	_	_	-	_	_	_	_	-	_	_	_
128	PT128	3467	-477	0	Пот провышении поринативов	<u> </u>	<u> </u>	9						<u> </u>	<u> </u>	
		3.07	,	<u> </u>	Нет превышений нормативов	_	_	-	_	-	_	_	_	_	_	
129	PT129	-1483	-807	0	ИШ005П-10дБА			20	14	9	9				11	
.20		1 100	1 007	<u> </u>	Нет превышений нормативов	_	_	-		-	-	_	_	_	-	
130	PT130	-1153	-807	0	ИШ005П-13дБА			22	16	12	13				15	
1.5.0		1 100			Нет превышений нормативов	_	-	-			-	_	-	_	-	_
131	PT131	-823	-807	0	ИШ005П-17дБА			24	18	15	17				19	
		020	1 337	<u> </u>	Нет превышений нормативов	_	_	- -		-	-	_		_	-	
132	PT132	-493	-807	0	ИШ005П-22дБА			28	22	19	22	7			24	
. 52		.00		<u> </u>	Нет превышений нормативов	_	_	-	-	-	-	-	-	_	-	-
					1.5. провышонии пориштивов		l				1	1	1	I		

400	DT400	400	007		MINOSED SEEL V	ı			00	00	00		_		05	1
133	PT133	-163	-807	0	ИШ005П-25дБА			30	23	20	23	9	1		25	
124	DT404	407	007		Нет превышений нормативов ИШ005П-23дБА	-	-	-	-	-	-	-	-	-	-	-
134	PT134	167	-807	0				28	21	18	21	6			23	
135	PT135	497	-807	0	Нет превышений нормативов ИШ005П-18дБА	-	-	24	- 17	14	- 16	-	-	-	- 18	-
133	Г1100	497	-007	0	Нет превышений нормативов	_			17		10					
136	PT136	827	-807	0	ИШ005П-14дБА	-	-	21	14	10	- 11	-	-	-	- 14	-
130	F 1 130	027	-007	0	Нет превышений нормативов	_	_	-	14	10	''	_			-	_
137	PT137	1157	-807	0	ИШ005П-10дБА	-		19	11	7	7	_	_	_	10	-
137	1 1 107	1137	-007		Нет превышений нормативов	_	_	-	-		-	_	_	_	-	_
138	PT138	1487	-807	0	ИШ005П-6дБА			17	9	4	3	_			6	_
100		1.07	00.		Нет превышений нормативов	_	_				-	_	_	_	_	_
139	PT139	1817	-807	0				15	6	1						
100					Нет превышений нормативов	-	-	-	-		-	_	-	-	-	-
140	PT140	2147	-807	0				13	4							
		1	1	I	Нет превышений нормативов	-	-	-	_	-	-	-	-	-	-	-
141	PT141	2477	-807	0	· · · · · · · · · · · · · · · · · · ·			12	3							
		<u> </u>	<u> </u>	<u>I</u>	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
142	PT142	2807	-807	0				11	1							
		<u> </u>			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
143	PT143	3137	-807	0				10								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
144	PT144	3467	-807	0				9								
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
145	PT145	-1483	-1137	0	ИШ005П-9дБА			18	11	7	7				10	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
146	PT146	-1153	-1137	0	ИШ005П-12дБА			20	14	10	10				13	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
147	PT147	-823	-1137	0	ИШ005П-15дБА			22	16	12	14				16	
				1	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
148	PT148	-493	-1137	0	ИШ005П-17дБА			24	16	13	15				17	
		1	Γ	ı	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
149	PT149	-163	-1137	0	ИШ005П-18дБА			25	17	14	16				18	
				T -	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
150	PT150	167	-1137	0	ИШ005П-17дБА			24	16	13	15				17	
454	DT454	407	4407		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
151	PT151	497	-1137	0	ИШ005П-15дБА			22	14	11	12				15	
450	DT450	007	4407		Нет превышений нормативов ИШ005П-12дБА	-	-	-	-	-	-	-	-	-	- 40	-
152	PT152	827	-1137	0				20	12	8	9				12	
150	DT452	4457	1107		Нет превышений нормативов ИШ005П-9дБА	-	-	- 10	- 10	-	-	-	-	-	-	-
153	PT153	1157	-1137	0				18	10	5	5				9	
154	PT154	1487	-1137	0	Нет превышений нормативов ИШ005П-2дБА	-	-	- 16	- 8	3	2	-	-	-	2	-
134	F110 4	1407	-1131	0				10	O	<u>ა</u>						
155	PT155	1817	-1137	0	Нет превышений нормативов	-	-	14	6	<u>-</u> 1	-	-	-	-	-	-
100	F 1 100	1017	-1131	0	Нет превышений нормативов			14	U	- 1			_			
156	PT156	2147	-1137	0	пет превышении нормативов	-	-	13	4		-	-	-	-	-	-
130	1 1130	2141	-1131	0	Нет превышений нормативов	_	_		-		-	_	_	_	_	_
					пет превышении нормативов	_		-	-	-	-	-	-	-	-	-

157	PT157	2477	-1137	0				12	3						Π	
					Нет превышений нормативов	-	_	-	-	-	_			_	 -	_
158	PT158	2807	-1137	0				10	1							
			<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
159	PT159	3137	-1137	0				9								
		l	<u> </u>		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
160	PT160	3467	-1137	0				8								
		l			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
161	PT161	-1483	-1467	0	ИШ005П-6дБА			16	10	6	5				7	
-		•	'		Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
162	PT162	-1153	-1467	0	ИШ005П-9дБА			18	12	8	8				10	
•					Нет превышений нормативов	-	-	-	-	-	-	-	ı	-	-	•
163	PT163	-823	-1467	0	ИШ005П-11дБА			20	14	10	10				13	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
164	PT164	-493	-1467	0	ИШ005П-13дБА			21	13	9	10				13	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
165	PT165	-163	-1467	0	ИШ005П-14дБА			21	14	10	11				14	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
166	PT166	167	-1467	0	ИШ005П-13дБА			21	13	9	10				13	
					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
167	PT167	497	-1467	0	ИШ005П-12дБА			20	12	8	9				12	
		T			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
168	PT168	827	-1467	0	ИШ005П-9дБА			18	10	6	6				9	
		T			Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
169	PT169	1157	-1467	0	ИШ005П-6дБА			17	8	4	3				6	
4=0					Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
170	PT170	1487	-1467	0	ИШ005П-0дБА			15	7	2						
474	DT474	4047	1407	0	Нет превышений нормативов	-	-	-	-	-	-	-	-	-	-	-
171	PT171	1817	-1467	0				14	5							
470	DT170	04.47	1407	n	Нет превышений нормативов	-	-	- 40	-	-	-	-	-	-	-	-
172	PT172	2147	-1467	Ü				12	3							
170	DT172	2477	1467	0	Нет превышений нормативов	-	-	- 11	-	-	-	-	-	-	-	-
173	PT173	2477	-1467	0	Hot monumers were a			11	2							
174	PT174	2007	1467	0	Нет превышений нормативов	-	-	10	1	-	-	-	-	-	-	-
174	P11/4	2807	-1467	0	Hot monumer was server			10	·							
175	PT175	3137	-1467	0	Нет превышений нормативов	-	-	9	-	-	-	-	-	-	-	-
173	r1113	3131	-1407	U	Нет превышений нормативов	_										
					пет превышении нормативов	-	-	-	-	-	-	-	-	-	-	-

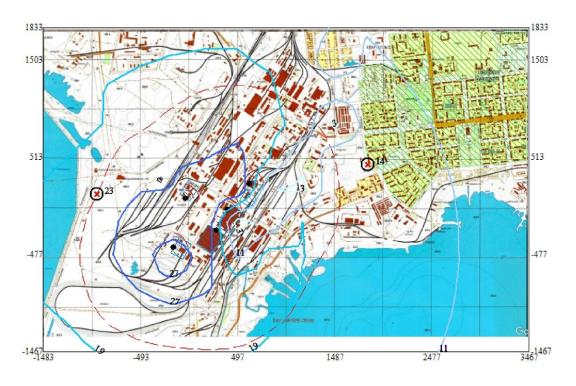
У источников, вносящих основной вклад звуковому давлению в расчетной точке Lmax - Li < 10дБА. Таблица 3.4. Расчетные максимальные уровни шума по октавным полосам частот

	1	Коорди	наты расчетных т	Мах значение,	Норматив, дБ(А)	Требуется снижение,	Примечание	
Nº	Среднегеометрическая частота, Гц	X	Y	Z (высота)	дБ(А)	до(т)	дБ(А)	
1	31,5 Гц	-	-	-	-	90	-	
2	63 Гц	-	-	-	-	75	-	
3	125 Гц	497	183	1,5	35	66	-	
4	250 Гц	167	-147	1,5	31	59	-	
5	500 Гц	-163	-147	1,5	28	54	-	

ТОО «NES» Добывая, сохраняй!

6	1000 Гц	-163	-147	1,5	30	50	-	
7	2000 Гц	167	-147	1,5	22	47	•	
8	4000 Гц	167	-147	1,5	16	45	-	
9	8000 Гц	ı	-	-	-	44	•	
10	Экв. уровень	-163	-147	1,5	32	55	-	
11	Мах. уровень	-	-	-	-	70	-	

Результаты расчетов уровня шума от деятельности предприятия в виде ситуационных карт-схем с нанесёнными на них изолиниями расчетных уровней шума, представлены ниже:

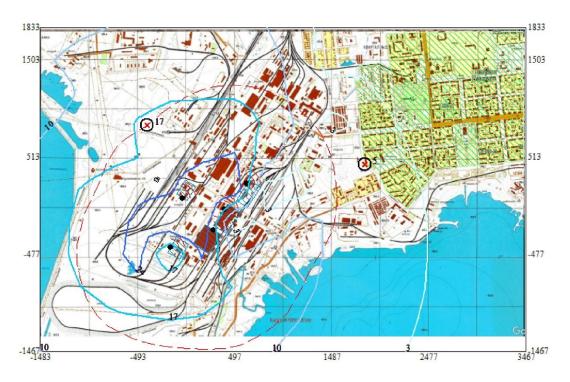

Город: 047 г. Балхаш

Объект: 0006 БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)" Вар.№ 8

ПК ЭРА v3.0, Модель: Расчет уровней шума

N003 Уровень шума на среднегеометрической частоте 125 Гц

	Изофоны в дБ
Жилая зона, группа N 01	3
Производственные здания	1 1
Здания и сооружения	 19
Сан. зона, группа N 01	 27
Максим. уровень шума	
——Расч. прямоугольник N 01	

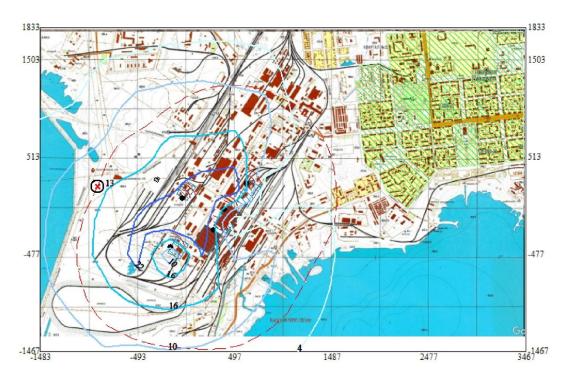

Макс уровень шума 35 дБ достигается в точке x= 497 y= 183 Расчетный прямоугольник № 1, ширина 4950 м, высота 3300 м, шаг расчетной сетки 330 м, количество расчетных точек 16*11

Объект: 0006 БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)" Вар.№ 8

ПК ЭРА v3.0, Модель: Расчет уровней шума

N004 Уровень шума на среднегеометрической частоте 250 Гц

		Изофоны в дБ
	Жилая зона, группа N 01	3
	Производственные здания	1 0
	Здания и сооружения	 17
	Сан. зона, группа N 01	2 4
©	Максим. уровень шума	
-	— Расч. прямоугольник N 01	

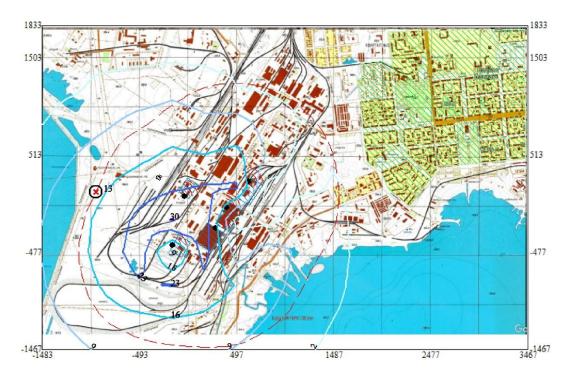

Макс уровень шума 31 дБ достигается в точке $x=167\,$ y= -147 Расчетный прямоугольник № 1, ширина 4950 м, высота 3300 м, шаг расчетной сетки 330 м, количество расчетных точек 16*11

Объект: 0006 БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)" Вар.№ 8

ПК ЭРА v3.0, Модель: Расчет уровней шума

N005 Уровень шума на среднегеометрической частоте 500 Гц

		Изофоны в дБ
	Жилая зона, группа N 01	4
	Производственные здания	1 0
	Здания и сооружения	 16
	Сан. зона, группа N 01	 22
©	Максим. уровень шума	
-	— Расч. прямоугольник N 01	

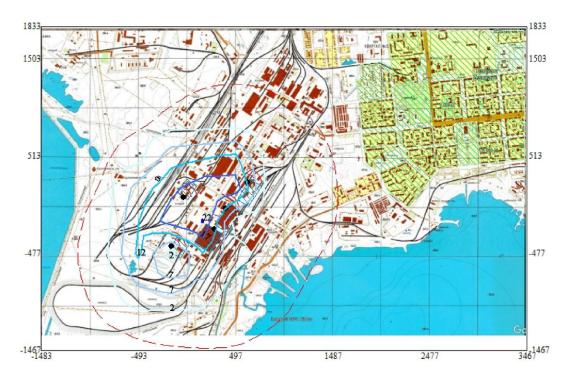

Макс уровень шума 28 дБ достигается в точке x= -163 y= -147 Расчетный прямоугольник № 1, ширина 4950 м, высота 3300 м, шаг расчетной сетки 330 м, количество расчетных точек 16*11

Объект: 0006 БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)" Вар.№ 8

ПК ЭРА v3.0, Модель: Расчет уровней шума

N006 Уровень шума на среднегеометрической частоте 1000 Гц

		Изофоны в дБ
	Жилая зона, группа N 01	2
	Производственные здания	 9
	Здания и сооружения	 16
	Сан. зона, группа N 01	 23
€	Максим. уровень шума	 30
-	— Расч. прямоугольник N 01	

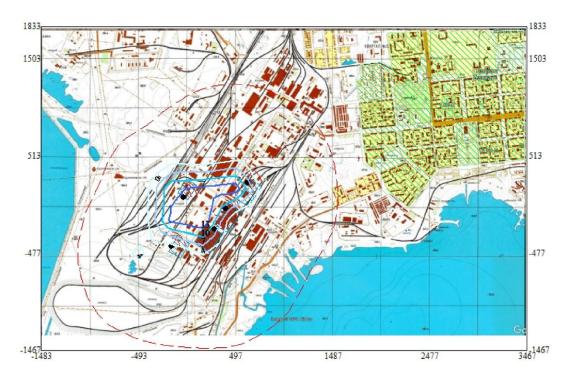

Макс уровень шума 30 дБ достигается в точке x= -163 y= -147 Расчетный прямоугольник № 1, ширина 4950 м, высота 3300 м, шаг расчетной сетки 330 м, количество расчетных точек 16*11

Объект : 0006 БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)" Вар.№ 8

ПК ЭРА v3.0, Модель: Расчет уровней шума

N007 Уровень шума на среднегеометрической частоте 2000 Гц

		Изофоны в дБ
	Жилая зона, группа N 01	2
	Производственные здания	 7
	Здания и сооружения	 12
F	Сан. зона, группа N 01	 17
0	Максим. уровень шума	 22
_	— Раси прамоугольник N ∩1	

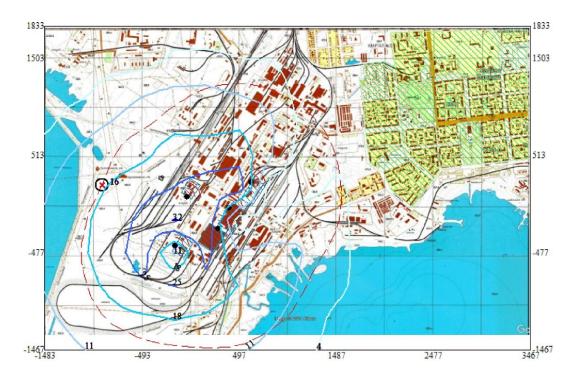

Макс уровень шума 22 дБ достигается в точке x=167~y=-147 Расчетный прямоугольник № 1, ширина 4950 м, высота 3300 м, шаг расчетной сетки 330 м, количество расчетных точек 16*11

Объект : 0006 БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)" Вар.№ 8

ПК ЭРА v3.0, Модель: Расчет уровней шума

N008 Уровень шума на среднегеометрической частоте 4000 Гц

	Изофоны в дБ
Жилая зона, группа N 01	4
Производственные здания	 7
Здания и сооружения	 10
Сан. зона, группа N 01	 13
 Максим. уровень шума 	
—— Расч. прямоугольник N 01	


Макс уровень шума 16 дБ достигается в точке x=167~y=-147 Расчетный прямоугольник № 1, ширина 4950 м, высота 3300 м, шаг расчетной сетки 330 м, количество расчетных точек 16*11

Объект : 0006 БМЗ ТОО "Kazakhmys Smelting (Казахмыс Смэлтинг)" Вар.№ 8

ПК ЭРА v3.0, Модель: Расчет уровней шума

N010 Экв. уровень шума

Макс уровень шума 32 дБ(A) достигается в точке x= -163 y= -147 Расчетный прямоугольник № 1, ширина 4950 м, высота 3300 м, шаг расчетной сетки 330 м, количество расчетных точек 16*11

1.3. Результаты инструментальных измерений физических факторов (шум, вибрация).

Мониторинг физических воздействий на границе СЗЗ осуществляется по следующим точкам:

```
точка №1 (Х=46°50′40,17; У=74°57′32,12) - север;
```

точка №2 ($X=46^{\circ}49'38,93$; $Y=74^{\circ}57'49,02$) - восток;

точка №3 (X= $46^{\circ}50'27,84$; У= $74^{\circ}55'47,99$) – юг;

точка №4 (X=46°48′49,98; У=74°56′32,08) - запад;

точка №5 (X=46°49′08,27; У=74°55′48,36) – северо-запад;

точка №6 ($X=46^{\circ}50'18,00$; $Y=74^{\circ}57'33,00$) — северо-северо-запад;

точка №7 (Х=46°49′42,00; У=75°55′34,00) – северо-восток;

точка №8 (X=46°50′15,00; Y=74°56′03,00) — юго-запад.

Результаты мониторинга состояния физических воздействий (шум, вибрация) за период с *августа 2023 года* – *май 2024 года* сведены в таблицу.

Результаты исследования:

	Определяемый показатель		,			Резу	льтаты	испыт:	аний				ПДУ, ЦК
		Ед изі		т.1	т.2	т.3	т.4	т.5	т.6	т.7	т.8	с 7:00 до 23:00	с 23:00 до 7:00
1	2	3		4	5	6	7	8	9	10	11	12	13
№0	2-08/23-08 от 02 авгус	ста 20	23 г	•									
	Шум	дБа		59,1	57,7	57,0	56,1	54,2	57,3	57,1	59,9	70	60
1			X	73,6	71,8	72,0	70,3	74,5	74,6	71,3	75,6	-	-
1	Вибрация	дБ	Y	72,3	73,9	73,3	71,5	73,7	71,1	75,9	72,4	-	-
	1		Z	72,9	71,2	74,8	70,1	72,2	75,4	73,5	74,8	-	-
№ 1	0-10/23-08 от 10 октя	бря 2	023 1	г.									
	Шум	дБа		57,9	58,5	53,8	57,7	59,4	55,2	56,0	58,3	70	60
2	Вибрация	дБ	X	73,6	74,6	70,7	74,3	70,2	75,5	74,6	78,2	-	1
2			Y	72,2	73,4	72,4	73,7	72,1	77,2	77,4	72,4	-	-
			Z	74,1	74,0	73,2	71,1	70,4	79,7	75,6	75,4	-	-
№3	0-01/24-09 от 30 янва	ря 20	24 г.	•									
	Шум	дБа		55,1	56,8	54,3	54,9	53,2	54,5	55,8	53,7	70	60
3			X	72,0	70,6	73,5	70,8	72,7	71,2	75,4	70,9	-	-
3	Вибрация	дБ	Y	74,2	72,5	74,6	74,1	71,6	73,7	74,8	72,2	-	-
	4 '		Z	71,8	73,0	70,5	74,0	73,3	75,5	70,3	73,3	-	-
№ 3	1-05/24-12 от 31 мая 2	2024 г	`•										
	Шум	дБа		56,6	53,9	58,1	57,5	59,2	57,0	56,6	55,2	70	60
4			X	72,9	73,1	72,6	70,4	73,2	73,0	71,9	72,3	-	1
4	Вибрация	дБ	Y	73,8	72,3	73,9	71,5	70,1	72,1	72,2	73,4	-	1
			Z	74,7	70,6	74,3	74,4	72,6	74,6	74,1	75,5	-	-

По результатам инструментальных замеров, проведённых в период с августа 2023 года — май 2024 года видно, что физические воздействия находятся в пределах допустимых уровней. Протоколы испытаний представлены в приложении 1.

Мониторинг физических воздействий на границе с жилой зоной (ЖЗ) осуществляется по следующим точкам:

точка №1 (Х=46°50′03,24; У=74°58′06,26);

точка №2 (X= $46^{\circ}50'15,63$; У= $74^{\circ}58'11,59$);

точка No3 (X=46°50′44,69; У=74°57′32,47).

Результаты мониторинга состояния физических воздействий (шум, вибрация) за период с <u>августа 2023 года – май 2024 года</u> сведены в таблицу.

Результаты исследования:

	Определяемый показатель				Результаты исі	тытаний		пДУ, ЦК
		Е <i>;</i> из		т.1	т.2	т.3	с 7:00 до 23:00	с 23:00 до 7:00
1	2	3	}	4	5	6	7	8
№	02-08/23-10 от 02 ав	густа	202	3 г.				
	Шум	дБа		57,5	56,3	55,2	70	60
1			X	71,2	72,4	71,4	-	-
1	Вибрация	дБ	Y	71,7	72,6	71,8	-	-
			Z	71,4	72,3	72,2	-	-
№	10-10/23-09 от 10 ок	тябр	я 202	23 г.				
	Шум	дБа		52,4	51,9	53,4	70	60
2	Вибрация	дБ	X	73,1	71,8	72,3	-	-
2			Y	73,4	71,4	72,6	-	-
			Z	72,6	71,6	71,9	-	-
№	30-01/24-10 от 30 ян	варя	202	4 г.				
	Шум	дБа		53,9	53,6	55,9	70	60
3			X	71,6	72,6	73,3	-	-
3	Вибрация	дБ	Y	71,9	72,5	73,1	-	-
	_		Z	72,2	73,1	72,6	-	-
№31-05/24-13 от 31 мая 2024 г.								
	Шум	дБа		54,2	55,2	54,6	70	60
4			X	72,7	74,6	72,9	-	-
4	Вибрация	дБ	Y	72,5	73,1	72,5	-	-
	-	, 1	Z	73,6	73,8	73,4	-	-

По результатам инструментальных замеров, проведённых в период с августа 2023 года — май 2024 года видно, что физические воздействия находятся в пределах допустимых уровней. Протоколы испытаний представлены в приложении 1.

Рисунок 1 Карта-схема с указанием контрольных точек мониторинга физических факторов

Нормативы допустимого уровня шумового воздействия

Таблица 5.

	Источники шума		
№ п/п	(технологические или	Характеристика источников	Уровень шума, дБ
	транспорт)		
1	2	3	4
1	технологический	Транспортёр МПЦ №121, 120 на ПВ-1, В-1000 мм, L-105 м.,	84,9
2	технологический	Транспортёр МПЦ №123, 122 на ПВ-2, В-1000 мм, L-108 м.	84,3
3	технологический	Транспортёр МПЦ №15, 16 (концентрат), В-800 мм, L-108 м.	79,3
4	технологический	КВС (путепровод кислородно-воздушной смеси)	85,7
5	технологический	Воздуходувка КВ-1, КВ-2	94,6
6	технологический	Конвертер №5 (фурмование)	94,1
7	технологический	Транспортёр ДШУ №6А В-1000 мм, L-17 м.	76,1
8	технологический	Транспортёр ДШУ №6 В-800 мм, L-75 м.	82,7
9	технологический	Транспортёр ДШУ №5 В-800 мм, L-30 м.	74,5
10	технологический	Транспортёр ДШУ №9 В-800 мм, L-27 м., Транспортёр ДШУ №10 В-800 мм, L-65 м.	75,9
11	технологический	Транспортёр ДШУ №11 В-800 мм, L-110 м., Транспортёр ДШУ №12 В-800 мм, L-110 м.	74,9
12	технологический	Транспортёр ДШУ №25 В-800 мм, L-51 м.	65,0
13	технологический	Транспортёр ДШУ №203 В-800 мм, L-22 м.	71,2
14	технологический	Транспортёр ДШУ №204 В-1000 мм, L-100 м.	74,5
15	технологический	Транспортёр ДШУ №204А В-800 мм, L-43 м.	60,7
16	технологический	Транспортёр ДШУ №308 В-800 мм, L-13 м., Транспортёр ДШУ №309 В-800 мм, L-13 м.	65,9

17	технологический	Транспортёр ДШУ №208 В-800 мм, L-72 м., Транспортёр ДШУ №208А В-800 мм, L-72 м.	81,9
18	технологический	Транспортёр ДШУ №209 В-800 мм, L-4 м., Транспортёр ДШУ №209А В-800 мм, L-10 м.	68,9
19	технологический	Транспортёр ДШУ №109 В-800 мм, L-77 м.	64,3
20	технологический	Транспортёр ДШУ №19 В-800 мм, L-30 м.	61,6
21	технологический	Транспортёр ДШУ №18 В-800 мм, L-28 м.	60,4
22	технологический	Транспортёр ДШУ №110 В-800 мм, L-97 м.	69,7
23	технологический	Транспортёр ДШУ №111 В-800 мм, L-99 м.	81,1
24	технологический	Транспортёр ДШУ №112 В-800 мм, L-97 м.	80,7
25	технологический	ШУМ (шум машина) №2 УБ-120-3	79,3
26	технологический	ШУМ (шум машина) №4 уст-350/19,5	80,1
27	технологический	Транспортёр ДШУ №113 В-800 мм, L-97 м.	80,7
28	технологический	Транспортёр ДШУ №114 В-800 мм, L-95 м.	81,3
29	технологический	Транспортёр ДШУ №24 В-800 мм, L-48 м.	71,7
30	технологический	Транспортёр ДШУ №116 В-800 мм, L-51 м., Транспортёр ДШУ №117 В-800 мм, L-51 м.	81,9
31	технологический	Транспортёр ДШУ №118 В-800 мм, L-100 м., Транспортёр ДШУ №119 В-800 мм, L-100 м.	82,7
32	технологический	Транспортёр ДШУ №23 В-800 мм, L-46 м.	74,8
33	технологический	Транспортёр ДШУ №23А В-800 мм, L-14 м.	77,5
34	технологический	Транспортёр ДШУ №7, 8 В-800 мм, L-17 м.	80,8
35	технологический	Транспортёр №1 СУ В-800 мм, L-44 м., Транспортёр №2 СУ В-800 мм, L-44,5 м.	65,6

36	технологический	Транспортёр №3 СУ В-800 мм, L-72,5 м., Транспортёр №4 СУ В-800 мм, L-73 м.	73,9
37	технологический	Сушильный барабан №1, Д-2800 мм, 14 м.	76,4
38	технологический	Тарельчатый питатель №1, Д-2200 мм.	74,9
39	технологический	Дымосос ДН-15, №1	82,7
40	технологический	Транспортёр пересыпной №29 СУ В-800 мм, L-30 м.,	75,8
41	технологический	Транспортёр пересыпной №5А СУ В-800 мм, L-11 м.,	79,4
42	технологический	Транспортёр пересыпной №29А СУ В-800 мм, L-30 м.,	63,3
43	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 4-й барабан	69,9
44	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 1-й барабан	70,3
45	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 2-й барабан	66,9
46	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 5-й барабан	68,7
47	технологический	Тарельчатый питатель №41 СУ	75,9
48	технологический	Транспортёр №41 СУ В-800 мм, L-68 м.	76,9
49	технологический	Транспортёр №101 СУ В-800 мм, L-11,5 м.	72,6
50	технологический	Транспортёр №102 СУ В-800 мм, L-74 м.	82,3
51	технологический	Тарельчатый питатель №101 СУ	77,6
52	технологический	Аэраторы (3 шт.) №1, на анодную печь №1	83,9
53	технологический	Вентилятор приточно-вытяжной №1	82,1
54	технологический	Аэраторы (3 шт.) №2 на анодную печь №2	84,2
55	технологический	Вентилятор приточно-вытяжной №2	85,3
56	технологический	Аэраторы (3 шт.) №3 на анодную печь №3	82,2
57	технологический	Вентилятор приточно-вытяжной №3	83,9
58	технологический	Приточная установка №21, №23, №17 (55 кВт)	77,9

59	технологический	Приточная установка №11 (5,5 кВт)	84,9
60	технологический	Приточная установка №12 (11 кВт)	85,2
61	технологический	Приточная установка №14 (55 кВт)	82,1
62	технологический	Приточная установка №13 (55 кВт)	86,3
63	технологический	Приточная установка №6 (55 кВт)	84,2
64	технологический	Приточная установка №5 (11 кВт)	85,3
65	технологический	Приточная установка №7 (55 кВт)	84,6
66	технологический	Приточная установка №8 (55 кВт)	85,6
67	технологический	Приточная установка №9 (55 кВт)	82,1
68	технологический	Приточная установка №10 (55 кВт)	84,9
69	технологический	Приточная установка №21, №23, №17 (55 кВт)	76,1
70	технологический	Циркуляционный насос 1,2	79,2
71	технологический	Циркуляционный насос 3,4	74,3
72	технологический	Вакуумный насос 1	81,2
73	технологический	Вакуумный насос 2,3	80,5
74	технологический	Циркуляционный насос 5,6	89,2
75	технологический	Циркуляционный насос 7,8	80,7
76	технологический	Циркуляционный насос 9,10	82,4
77	технологический	Циркуляционный насос 11,12	77,9
78	технологический	Циркуляционный насос 13,14	75,6
79	технологический	Циркуляционный насос 15,16	83,4
80	технологический	Циркуляционный насос 17,18	85,7
81	технологический	Циркуляционный насос 19,20	82,3
82	технологический	Циркуляционный насос 21,22	83,7

83	технологический	Циркуляционный насос 23,24	82,1
84	технологический	Циркуляционный насос 25,26	84,8
85	технологический	Вытяжной вентилятор с бака 20, 21 (а,б)	67,8
86	технологический	Вытяжной вентилятор с ОГО (отделения глубокого обезмеживания) на улице	62,0
87	технологический	Градирня 5 насоса (4 в работе, 1 в резерве) (ХНЗ10/35)	83,9
88	технологический	Насосы оборотной станции 5АИ225М У2 (3 шт.)	82,9
89	технологический	Компрессор 2 шт (1 в работе, 1 в резерве)	92,0
90	технологический	Нагнетатель A SFO-14 (2 шт.)	102,3
91	технологический	Вентилятор SO ₃ промежуточного абсорбера (на улице)	87,2
92	технологический	Вентилятор SO ₃ конечного абсорбера (на улице)	99,4
93	технологический	Насос конечного абсорбера МТН-2488	84,1
94	технологический	Насос абсорбера А МТН42012 (2 шт.)	88,4
95	технологический	Насос сушильной кислоты МТН-40012	84,4
96	технологический	Насос башни охлаждения газа A NEPS 250-200-400 (3 шт.)	89,6
97	технологический	Насос скруббера Вентури А NEPS 200-150-400 (3 шт.)	85,9
98	технологический	Градирня 4 вентилятора	97,2
99	технологический	Насосы NERO 40-25-160 (5 шт.)	82,8
100	технологический	Насосы ГРАТ 170/40 (7 шт.)	80,6
101	технологический	Компрессор 2 шт (1 в работе, 1 в резерве)	92,2
102	технологический	Вентилятор M2DA280SMB2B3W №1 (90 кВт, 2960 об/мин)	95,3
103	технологический	Вентилятор M2DA280SMB2B3W №2 (90 кВт, 2960 б/мин)	92,1
104	технологический	Насос №85 АД 160S9 15 кВт, 1500 об/мин	81,5
105	технологический	Аэратор №1 (отопительный агрегат)	78,9

106	технологический	Сушильные печи 6 шт. (3 в работе, 3 в резерве)	82,5
107	технологический	Насос №92 АД 160S5 15 кВт, 1500 об/мин	81,7
108	технологический	Вентилятор стенной 3 шт. на одной стене	75,4
109	технологический	Вентилятор стенной 2 шт. на одной стене	77,1
110	технологический	Насос №78 отметка +4,8 АД 160S5 15 кВт, 1500 об/мин	80,4
111	технологический	Вентилятор M2DA280SMB2B3W (90 кВт, 2960 об/мин)	94,3
112	технологический	Вентилятор печи Калдо M2DA280SMB2B3W (90 кВт, 2960 об/мин)	88,5
113	технологический	Мешалка KPER112M222 кВт, 3000 об/мин	77,9
114	технологический	Циркуляционный насос АИР132 18,5, кВт, 1500 об/мин	89,3
115	технологический	Насос Грундфос» №0152, №0153 7,5 кВт (на горячую воду)	77,4
116	технологический	Насос гидравлический K11R225S4 (37 кВт, 1465 об/мин) Насос гидравлический K11R132M4 (18,5 кВт, 1440 об/мин) Насос гидравлический K11R180M4 (7,5 кВт, 1440 об/мин) для подачи гидравлического масла	85,6 84,3 80,1
117	технологический	Мешалка АИР 132 (7,5 кВт, 1500 об/мин)	74,3
118	технологический	Насос АИР180S2 (22 кВт, 3000 об/мин)	85,1
119	технологический	Насос АИР100 (5,5 кВт, 3000 об/мин)	84,7
120	технологический	Насос АИР180S2 (22 кВт, 3000 об/мин)	82,1
121	технологический	Мешалка ANGA180MB (18,5 кВт, 1470 об/мин)	76,1
122	технологический	Вентилятор сушилки KPER100L2 (3 кВт, 3000 об/мин)	79,2
123	технологический	Мешалки KPER112M2 (4 кВт, 3000 об/мин) 2 шт.	75,3
124	технологический	Мешалки KPER90L2 (2,2 кВт, 3000 об/мин) 4 шт.	77,1
125	технологический	Вентилятор Ц4-75-11,2-6 Л0 (40000 об/мин)	80,3
126	технологический	Вентилятор Ц4-75-11,2-6 Пр0 (40000 об/мин)	81,3
127	технологический	Вентилятор Дн-12,5У-1 Пр90 (36600 об/мин)	82,7

128	технологический	Вентилятор ВЦ14-46-8-1 (40000 об/мин)	81,8
129	технологический	Насос «Грундфос» №0142,№0,143	72,3
130	технологический	Hacoc X80-50-200 №5070	75,4
131	технологический	Hacoc X65-50-160 №5140	76,7
132	технологический	Hacoc X80-50-200 №7088	73,3
133	технологический	Hacoc X80-50-200 №7060	74,4
134	технологический	Hacoc X80-50-200 №7030	76,3
135	технологический	Hacoc X65-50-160 №3037	77,8
136	технологический	Циркуляционный насос IWAKI №4092, №4094, №4096	80,2
137	технологический	Конвейер №1 В-500 мм, L-75 м.	63,6
138	технологический	Конвейер №2 В-500 мм, L-75 м.	73,9
139	технологический	Конвейер №3 В-500 мм, L-85 м.	79,8
140	технологический	Конвейер №4 В-500 мм, L-85 м.	80,3
141	технологический	Hacoc ΓPAT 170/40 №1,2	80,2
142	технологический	Hacoc ΓPAT 170/40 №3,4	78,2
143	технологический	Hacoc ΓPAT 170/40 №5,6	79,5
144	технологический	Hacoc ΓPAT 170/40 №9,10	78,6
145	технологический	Гидроциклон ГРЦ-750 №1,2	97,8
146	технологический	Гидроциклон ГРЦ-750 №3,4	98,9
147	технологический	Гидроциклон ГРЦ-750 №5,6	97,4
148	технологический	Турбокомпрессор К1500 №1, Электродвигатель СТД10000 №5	102,6
149	технологический	Турбокомпрессор К1500 №2, Электродвигатель СТД10000 №4	103,7
150	технологический	Турбокомпрессор К1500 №3, Электродвигатель СТД10000 №8	101,8
151	технологический	Турбокомпрессор К1700 №1, Электродвигатель СТД10000 №7	102,7

ТОО «NES» Добывая, сохраняй!

152	технологический	Турбокомпрессор 4ЦКК №1,2, Электродвигатель АД1250№1,2	100,8
153	технологический	Турбокомпрессор 4ЦКК №3,4, Электродвигатель АД1250№3,4	101,6
154	технологический	Турбокомпрессор 4ГЦ №2, Электродвигатель АД1250 №5	103,7
155	технологический	Турбокомпрессор К-250 №1, Электродвигатель СТМ 1500 №1	102,9

2. РАСЧЁТ СЗЗ ПО ПРОЧИМ ФАКТОРАМ НЕГАТИВНОГО ВОЗДЕЙСТВИЯ

2.1. Вибрация.

Вибрация — это колебательные движения системы с упругими связями.

Вибрация как фактор производственной среды встречается в металлообрабатывающей, горнодобывающей, металлургической, машиностроительной, строительной, авиа- и судостроительной промышленностях, в сельском хозяйстве, на транспорте и других отраслях экономики.

По способу передачи человеку-оператору выделяют локальную и общую вибрации.

Локальная вибрация - один из наиболее распространенных профессиональных факторов. Ее источниками являются ручные машины (или ручные механизированные инструменты), органы управления машинами и оборудованием (рукоятки, рулевые колеса, педали), ручные не механизированные инструменты и приспособления (например, различные молотки), а также обрабатываемые детали, которые работающие удерживают в руках. Работа с этим оборудованием связана с воздействием на организм человека вибрации, передающейся через руки, ступни ног или другие части тела.

Технические (конструктивные) меры снижения вибрации - изменение массы тела инструмента, подогрев рукояток, правильно организованный режим труда и отдыха работников.

Оборудование помещений для обогрева при работе на открытых площадках в холодный период года, организация горячего питания, обязательное использование средств индивидуальной защиты.

Общая вибрация — это транспортная вибрация, технологическая вибрация и транспортно-технологическая вибрация. К источникам транспортной вибрации относят: тракторы сельскохозяйственные и промышленные, грузовые автомобили, поезда.

К источникам транспортнотехнологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, шахтные погрузочные машины, самоходные бурильные каретки.

К источникам технологической вибрации относят: станки металло- и деревообрабатывающие, кузнечно-прессовое оборудование, литейные машины, установки химической и нефтехимической промышленности, насосы, компрессоры.

Зона действия вибрации определяется величиной их затухания в упругой среде (грунте) и в среднем эта величина составляет примерно 1 дБ/м. При уровне параметров вибрации 70 дБ, например, создаваемых рельсовым транспортом, примерно на расстоянии 70 м от источника эта вибрация практически исчезает.

Предельно допустимый уровень (ПДУ) вибрации — это уровень фактора, который при ежедневной (крове выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ вибрации не исключает нарушение здоровья у сверхчувствительных лиц.

Допустимый уровень вибрации в жилых и общественных зданиях — это уровень фактора, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к вибрационному воздействию.

Основным источником вибрационного воздействия на БМЗ ТОО «Kazakhmys Smelting (Казахмыс Смэлтинг)» является технологическое оборудование. При этом вибрационное загрязнение среды носит локальный характер и с учетом условий размещения оборудования (на бетонных подушках-фундаментах, способствующих затуханию вибрации) объект не оказывает значительного воздействия на итоговый уровень вибрации на границе санитарно-защитной зоны и на территории жилой застройки. В связи с тем, что жилая зона находится на достаточной удалённости от объекта, воздействия,

таким образом, общее вибрационное воздействие объектов предприятия оценивается как допустимое.

Снижение воздействия вибрации достигается путем снижения собственно вибраций как в источнике их возникновения, так и на путях распространения упругих колебаний в различных средах. Данная задача, в основном, решается конструктивно в процессе начального проектирования различных механизмов.

На данном предприятии больших вибрационных нагрузок нет, но тем не менее, соблюдаются нормы и правила к ограничению времени воздействия вибрации на рабочий персонал.

Воздействие на фоновый уровень вибрации на территории жилой застройки не оказывается. Какие-либо дополнительные мероприятия по защите окружающей среды от воздействия вибрации не требуются.

Источники вибрационного воздействия.

Таблица 6.

No	таолица с
п/п	Характеристика источников
1	3
1	Транспортёр МПЦ №121, 120 на ПВ-1, В-1000 мм, L-105 м.,
2	Транспортёр МПЦ №123, 122 на ПВ-2,-1000 мм, L-108 м.
3	Транспортёр МПЦ №15, 16 (концентрат), В-800 мм, L-108 м.
4	КВС (путепровод кислородно-воздушной смеси)
5	Воздуходувка КВ-1, КВ-2
6	Конвертер №5 (фурмование)
7	Транспортёр ДШУ №6А В-1000 мм, L-17 м.
8	Транспортёр ДШУ №6 В-800 мм, L-75 м.
9	Транспортёр ДШУ №5 В-800 мм, L-30 м.
10	Транспортёр ДШУ №9 В-800 мм, L-27 м., Транспортёр ДШУ №10 В-800 мм, L-65 м.
11	Транспортёр ДШУ №11 В-800 мм, L-110 м., Транспортёр ДШУ №12 В-800 мм, L-110 м.
12	Транспортёр ДШУ №25 В-800 мм, L-51 м.
13	Транспортёр ДШУ №203 В-800 мм, L-22 м.
14	Транспортёр ДШУ №204 В-1000 мм, L-100 м.
15	Транспортёр ДШУ №204А В-800 мм, L-43 м.
16	Транспортёр ДШУ №308 В-800 мм, L-13 м., Транспортёр ДШУ №309 В-800 мм, L-13 м.
17	Транспортёр ДШУ №208 В-800 мм, L-72 м., Транспортёр ДШУ №208А В-800 мм, L-72 м.
18	Транспортёр ДШУ №209 В-800 мм, L-4 м., Транспортёр ДШУ №209А В-800 мм, L-10 м.
19	Транспортёр ДШУ №109 В-800 мм, L-77 м.
20	Транспортёр ДШУ №19 В-800 мм, L-30 м.
21	Транспортёр ДШУ №18 В-800 мм, L-28 м.
22	Транспортёр ДШУ №110 В-800 мм, L-97 м.

23	Транспортёр ДШУ №111 В-800 мм, L-99 м.
24	Транспортёр ДШУ №112 В-800 мм, L-97 м.
25	ШУМ (шум машина) №2 УБ-120-3
26	ШУМ (шум машина) №4 уст-350/19,5
27	Транспортёр ДШУ №113 В-800 мм, L-97 м.
28	Транспортёр ДШУ №114 В-800 мм, L-95 м.
29	Транспортёр ДШУ №24 В-800 мм, L-48 м.
30	Транспортёр ДШУ №116 В-800 мм, L-51 м., Транспортёр ДШУ №117 В-800 мм, L-51 м.
31	Транспортёр ДШУ №118 В-800 мм, L-100 м., Транспортёр ДШУ №119 В-800 мм, L-100 м.
32	Транспортёр ДШУ №23 В-800 мм, L-46 м.
33	Транспортёр ДШУ №23А В-800 мм, L-14 м.
34	Транспортёр ДШУ №7, 8 В-800 мм, L-17 м.
35	Транспортёр №1 СУ В-800 мм, L-44 м., Транспортёр №2 СУ В-800 мм, L-44,5 м.
36	Транспортёр №3 СУ В-800 мм, L-72,5 м., Транспортёр №4 СУ В-800 мм, L-73 м.
37	Сушильный барабан №1, Д-2800 мм, 14 м.
38	Тарельчатый питатель №1, Д-2200 мм.
39	Дымосос ДН-15, №1
40	Транспортёр пересыпной №29 СУ В-800 мм, L-30 м.,
41	Транспортёр пересыпной №5А СУ В-800 мм, L-11 м.,
42	Транспортёр пересыпной №29А СУ В-800 мм, L-30 м.,
43	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 4-й барабан
44	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 1-й барабан
45	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 2-й барабан
46	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 5-й барабан
47	Тарельчатый питатель №41 СУ
48	Транспортёр №41 СУ В-800 мм, L-68 м.
49	Транспортёр №101 СУ В-800 мм, L-11,5 м.
50	Транспортёр №102 СУ В-800 мм, L-74 м.
51	Тарельчатый питатель №101 СУ
52	Аэраторы (3 шт.) №1, на анодную печь №1
53	Вентилятор приточно-вытяжной №1
54	Аэраторы (3 шт.) №2 на анодную печь №2
55	Вентилятор приточно-вытяжной №2
56	Аэраторы (3 шт.) №3 на анодную печь №3
57	Вентилятор приточно-вытяжной №3
58	Приточная установка №21, №23, №17 (55 кВт)
59	Приточная установка №11 (5,5 кВт)
60	Приточная установка №12 (11 кВт)
61	Приточная установка №14 (55 кВт)

62	Приточная установка №13 (55 кВт)
63	Приточная установка №6 (55 кВт)
64	Приточная установка №5 (11 кВт)
65	Приточная установка №7 (55 кВт)
66	Приточная установка №8 (55 кВт)
67	Приточная установка №9 (55 кВт)
68	Приточная установка №10 (55 кВт)
69	Приточная установка №21, №23, №17 (55 кВт)
70	Циркуляционный насос 1,2
71	Циркуляционный насос 3,4
72	Вакуумный насос 1
73	Вакуумный насос 2,3
74	Циркуляционный насос 5,6
75	Циркуляционный насос 7,8
76	Циркуляционный насос 9,10
77	Циркуляционный насос 11,12
78	Циркуляционный насос 13,14
79	Циркуляционный насос 15,16
80	Циркуляционный насос 17,18
81	Циркуляционный насос 19,20
82	Циркуляционный насос 21,22
83	Циркуляционный насос 23,24
84	Циркуляционный насос 25,26
85	Вытяжной вентилятор с бака 20, 21 (а,б)
86	Вытяжной вентилятор с ОГО (отделения глубокого обезмеживания) на улице
87	Градирня 5 насоса (4 в работе, 1 в резерве) (ХНЗ10/35)
88	Насосы оборотной станции 5АИ225М У2 (3 шт.)
89	Компрессор 2 шт (1 в работе, 1 в резерве)
90	Нагнетатель A SFO-14 (2 шт.)
91	Вентилятор SO ₃ промежуточного абсорбера (на улице)
92	Вентилятор SO ₃ конечного абсорбера (на улице)
93	Насос конечного абсорбера МТН-2488
94	Насос абсорбера А МТН42012 (2 шт.)
95	Насос сушильной кислоты МТН-40012
96	Насос башни охлаждения газа A NEPS 250-200-400 (3 шт.)
97	Насос скруббера Вентури А NEPS 200-150-400 (3 шт.)
98	Градирня 4 вентилятора - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 1
99	Насосы NERO 40-25-160 (5 шт.)
100	Насосы ГРАТ 170/40 (7 шт.)
101	Компрессор 2 шт (1 в работе, 1 в резерве)
102	Вентилятор M2DA280SMB2B3W №1 (90 кВт, 2960 об/мин)

103	ентилятор M2DA280SMB2B3W №2 (90 кВт, 2960 об/мин)			
104	Насос №85 АД 160S9 15 кВт, 1500 об/мин			
105	Аэратор №1 (отопительный агрегат)			
106	Сушильные печи 6 шт. (3 в работе, 3 в резерве)			
107	Насос №92 АД 160S5 15 кВт, 1500 об/мин			
108	Вентилятор стенной 3 шт. на одной стене			
109	Вентилятор стенной 2 шт. на одной стене			
110	Насос №78 отметка +4,8 АД 160S5 15 кВт, 1500 об/мин			
111	Вентилятор M2DA280SMB2B3W (90 кВт, 2960 об/мин)			
112	Вентилятор печи Калдо M2DA280SMB2B3W (90 кВт, 2960 об/мин)			
113	Мешалка KPER112M222 кВт, 3000 об/мин			
114	Циркуляционный насос АИР132 18,5, кВт, 1500 об/мин			
115	Насос Грундфос» №0152, №0153 7,5 кВт (на горячую воду)			
	Насос гидравлический K11R225S4 (37 кВт, 1465 об/мин)			
116	Насос гидравлический K11R132M4 (18,5 кВт, 1440 об/мин)			
	Насос гидравлический K11R180M4 (7,5 кВт, 1440 об/мин)			
	для подачи гидравлического масла			
117	Мешалка АИР 132 (7,5 кВт, 1500 об/мин)			
118	Насос АИР180S2 (22 кВт, 3000 об/мин)			
119	Насос АИР100 (5,5 кВт, 3000 об/мин)			
120	Насос АИР180S2 (22 кВт, 3000 об/мин)			
121	Мешалка ANGA180MB (18,5 кВт, 1470 об/мин)			
122	Вентилятор сушилки KPER100L2 (3 кВт, 3000 об/мин)			
123	Мешалки KPER112M2 (4 кВт, 3000 об/мин) 2 шт.			
124	Мешалки KPER90L2 (2,2 кВт, 3000 об/мин) 4 шт.			
125	Вентилятор Ц4-75-11,2-6 Л0 (40000 об/мин)			
126	Вентилятор Ц4-75-11,2-6 Пр0 (40000 об/мин)			
127	Вентилятор Дн-12,5У-1 Пр90 (36600 об/мин)			
128	Вентилятор ВЦ14-46-8-1 (40000 об/мин)			
129	Насос «Грундфос» №0142,№0,143			
130	Hacoc X80-50-200 №5070			
131	Hacoc X65-50-160 №5140			
132	Hacoc X80-50-200 №7088			
133	Hacoc X80-50-200 №7060			
134	Hacoc X80-50-200 №7030			
135	Hacoc X65-50-160 №3037			
136	Циркуляционный насос IWAKI №4092, №4094, №4096			
137	Конвейер №1 В-500 мм, L-75 м.			
138	Конвейер №2 В-500 мм, L-75 м.			
139	Конвейер №3 В-500 мм, L-85 м.			
140	Конвейер №4 В-500 мм, L-85 м.			

141	Hacoc ΓΡΑΤ 170/40 №1,2
142	Hacoc ΓΡΑΤ 170/40 №3,4
143	Hacoc ΓΡΑΤ 170/40 №5,6
144	Hacoc ΓPAT 170/40 №9,10
145	Гидроциклон ГРЦ-750 №1,2
146	Гидроциклон ГРЦ-750 №3,4
147	Гидроциклон ГРЦ-750 №5,6
148	Турбокомпрессор К1500 №1, Электродвигатель СТД10000 №5
149	Турбокомпрессор К1500 №2, Электродвигатель СТД10000 №4
150	Турбокомпрессор К1500 №3, Электродвигатель СТД10000 №8
151	Турбокомпрессор К1700 №1, Электродвигатель СТД10000 №7
152	Турбокомпрессор 4ЦКК №1,2, Электродвигатель АД1250№1,2
153	Турбокомпрессор 4ЦКК №3,4,
	Электродвигатель АД1250№3,4
154	Турбокомпрессор 4ГЦ №2,
	Электродвигатель АД1250 №5
155	Турбокомпрессор К-250 №1,
155	Электродвигатель СТМ 1500 №1

Нормативы допустимого уровня вибрации

Таблица 7.

		T	Таолица 7.
№ п/п	Источники вибрации (технологические или транспорт)	Характеристика источников	Виброускорение, м/с2
1	2	3	4
			X-0,018
1	технологический	Транспортёр МПЦ №121, 120 на ПВ-1, В-1000 мм, L-105 м.,	Y-0,013
			Z-0,010
			X-0.016
2	технологический	Транспортёр МПЦ №123, 122 на ПВ-2, В-1000 мм, L-108 м.	Y-0.011
			Z-0.019
			X- 0.014
3	технологический	Транспортёр МПЦ №15, 16 (концентрат), В-800 мм, L-108 м.	Y- 0.012
			Z- 0.011
			X- 0.011
4	технологический	КВС (путепровод кислородно-воздушной смеси)	Y- 0.012
			Z- 0.013
			X- 0.014
5	технологический	Воздуходувка КВ-1, КВ-2	Y- 0.0078
			Z- 0.012
			X- 0.019
6	технологический	Конвертер №5 (фурмование)	Y- 0.014
			Z- 0.023
			X- 0.016
7	технологический	Транспортёр ДШУ №6А В-1000 мм, L-17 м.	Y- 0.011
			Z- 0.012
			X- 0.023
8	технологический	Транспортёр ДШУ №6 В-800 мм, L-75 м.	Y- 0.018
			Z- 0.030
			X- 0.023
9	технологический	нологический Транспортёр ДШУ №5 В-800 мм, L-30 м.	Y- 0.018
			Z- 0.021
10	технологический	Транспортёр ДШУ №9 В-800 мм, L-27 м., Транспортёр ДШУ №10 В-800 мм, L-65 м.	X- 0.022

			Y- 0.023
			Z- 0.032
			X- 0.027
11	технологический	Транспортёр ДШУ №11 В-800 мм, L-110 м., Транспортёр ДШУ №12 В-800 мм, L-110 м.	Y- 0.018
			Z- 0.031
			X- 1.51
12	технологический	Транспортёр ДШУ №25 В-800 мм, L-51 м.	Y- 1.80
			Z- 3.16
			X- 0.027
13	технологический	Транспортёр ДШУ №203 В-800 мм, L-22 м.	Y- 0.016
			Z- 0.026
			X- 0.029
14	технологический	Транспортёр ДШУ №204 В-1000 мм, L-100 м.	Y- 0.019
			Z- 0.015
			X- 0.033
15	технологический	Транспортёр ДШУ №204А В-800 мм, L-43 м.	Y- 0.023
			Z- 0.026
			X- 0.23
16	технологический	Транспортёр ДШУ №308 В-800 мм, L-13 м., Транспортёр ДШУ №309 В-800 мм, L-13 м.	Y- 0.15
			Z- 0.27
			X- 0.0080
17	технологический	Транспортёр ДШУ №208 В-800 мм, L-72 м., Транспортёр ДШУ №208А В-800 мм, L-72 м.	Y- 0.0089
			Z- 0.0066
			X- 19.1
18	технологический	Транспортёр ДШУ №209 В-800 мм, L-4 м., Транспортёр ДШУ №209А В-800 мм, L-10 м.	Y- 17.4
			Z- 36.3
			X- 0.0093
19	технологический	Транспортёр ДШУ №109 В-800 мм, L-77 м.	Y- 0.0080
			Z- 0.0076
			X- 1.93
20	технологический	Транспортёр ДШУ №19 В-800 мм, L-30 м.	Y- 3.20
			Z- 3.72
			X- 1.68
21	технологический	Транспортёр ДШУ №18 В-800 мм, L-28 м.	Y- 2.72
			Z- 3.31

			X- 3.20
22	технологический	Транспортёр ДШУ №110 В-800 мм, L-97 м.	Y- 2.75
			Z- 4.17
			X- 2.43
23	технологический	Транспортёр ДШУ №111 В-800 мм, L-99 м.	Y- 2.95
			Z- 3.76
			X- 1.86
24	технологический	Транспортёр ДШУ №112 В-800 мм, L-97 м.	Y- 2.37
			Z- 3.47
			X- 0.73
25	технологический	ШУМ (шум машина) №2 УБ-120-3	Y- 0.60
			Z- 0.93
			X- 0.80
26	технологический	ШУМ (шум машина) №4 уст-350/19,5	Y- 0.52
			Z- 1.06
			X- 2.11
27	технологический	Транспортёр ДШУ №113 В-800 мм, L-97 м.	Y- 2.54
			Z- 3.27
			X- 0.010
28	технологический	Транспортёр ДШУ №114 В-800 мм, L-95 м.	Y- 0.0099
			Z- 0.013
			X- 0.030
29	технологический	Транспортёр ДШУ №24 В-800 мм, L-48 м.	Y- 0.034
			Z- 0.023
			X- 0.023
30	технологический	Транспортёр ДШУ №116 В-800 мм, L-51 м., Транспортёр ДШУ №117 В-800 мм, L-51 м.	Y- 0.027
			Z- 0.019
			X- 0.0094
31	технологический	Транспортёр ДШУ №118 В-800 мм, L-100 м., Транспортёр ДШУ №119 В-800 мм, L-100 м.	Y- 0.0082
		1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Z- 0.011
			X- 0.023
32	технологический	Транспортёр ДШУ №23 В-800 мм, L-46 м.	Y- 0.031
J.2		Transfer part 1.20 B 000 mm, B 10 m	Z- 0.029
22	U	T " HUNY M 22 A D 2000 I 14	X- 0.0090
33	технологический	Транспортёр ДШУ №23А В-800 мм, L-14 м.	Y- 0.010
	<u> </u>		

			Z- 0.0075
			X- 0.0072
34	технологический	Транспортёр ДШУ №7, 8 В-800 мм, L-17 м.	Y- 0.0088
			Z- 0.0059
			X- 1.29
35	технологический	Транспортёр №1 СУ В-800 мм, L-44 м., Транспортёр №2 СУ В-800 мм, L-44,5 м.	Y- 4.84
			Z- 10.6
			X- 0.033
36	технологический	Транспортёр №3 СУ В-800 мм, L-72,5 м., Транспортёр №4 СУ В-800 мм, L-73 м.	Y- 0.041
			Z- 0.057
			X- 0.0042
37	технологический	Сушильный барабан №1, Д-2800 мм, 14 м.	Y- 0.0045
			Z- 0.0038
			X- 0.0070
38	технологический	Тарельчатый питатель №1, Д-2200 мм.	Y- 0.0051
			Z- 0.0078
			X- 0.045
39	технологический	Дымосос ДН-15, №1	Y- 0.055
			Z- 0.065
			X- 0.0069
40	технологический	хнологический Транспортёр пересыпной №29 СУ В-800 мм, L-30 м.,	Y- 0.0040
			Z- 0.0059
			X- 0.0090
41	технологический	Транспортёр пересыпной №5А СУ В-800 мм, L-11 м.,	Y- 0.0065
			Z- 0.012
			X- 0.0025
42	технологический	Транспортёр пересыпной №29А СУ В-800 мм, L-30 м.,	Y- 0.0023
			Z- 0.0025
			X- 0.0042
43	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 4-й барабан	Y- 0.0051
			Z- 0.0043
			X- 0.0032
44	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 1-й барабан	Y- 0.0049
			Z- 0.0042

			X- 0.0036
45	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 2-й барабан	Y- 0.0033 Z- 0.0031
			X- 0.0040
46	технологический	Вентилятор приточно-вытяжной (дутьевой) Д-10 на 5-й барабан	Y- 0.0034
			Z- 0.0047
			X- 0.0032
47	технологический	Тарельчатый питатель №41 СУ	Y- 0.0037
			Z- 0.0033
			X- 0.0092
48	технологический	Транспортёр №41 СУ В-800 мм, L-68 м.	Y- 0.0078
			Z- 0.0090
			X- 0.27
49	технологический	Транспортёр №101 СУ В-800 мм, L-11,5 м.	Y- 0.42
			Z- 0.23
			X- 0.012
50	технологический	Транспортёр №102 СУ В-800 мм, L-74 м.	Y- 0.010
			Z- 0.015
			X- 0.0032
51	технологический	Тарельчатый питатель №101 СУ	Y- 0.0033
			Z- 0.0037
			X- 0.0083
52	технологический	Аэраторы (3 шт.) №1, на анодную печь №1	Y- 0.0065
			Z- 0.0090
			X- 0.065
53	технологический	Вентилятор приточно-вытяжной №1	Y- 0.057
			Z- 0.077
			X- 0.0057
54	технологический	Аэраторы (3 шт.) №2 на анодную печь №2	Y- 0.0056
			Z- 0.0065
			X- 0.057
55	технологический	Вентилятор приточно-вытяжной №2	Y- 0.068
			Z- 0.082
7.0	v	A (2) NO 2 NO 2	X- 0.0090
56	технологический	Аэраторы (3 шт.) №3 на анодную печь №3	Y- 0.0058

			Z- 0.0068
			X- 0.062
57	технологический	Вентилятор приточно-вытяжной №3	Y- 0.040
			Z- 0.051
			X- 0.0022
58	технологический	Приточная установка №21, №23, №17 (55 кВт)	Y- 0.0018
			Z- 0.0025
			X- 0.0065
59	технологический	Приточная установка №11 (5,5 кВт)	Y- 0.0080
			Z- 0.0053
			X- 0.0062
60	технологический	Приточная установка №12 (11 кВт)	Y- 0.0046
			Z- 0.0068
			X- 0.0039
61	технологический	Приточная установка №14 (55 кВт)	Y- 0.0046
			Z- 0.0032
			X- 0.0079
62	технологический	Приточная установка №13 (55 кВт)	Y- 0.0058
			Z- 0.0070
			X- 0.0053
63	технологический	Приточная установка №6 (55 кВт)	Y- 0.0045
			Z- 0.0063
			X- 0.0064
64	технологический	Приточная установка №5 (11 кВт)	Y- 0.0055
			Z- 0.0058
			X- 0.0021
65	технологический	Приточная установка №7 (55 кВт)	Y- 0.0019
			Z- 0.0013
			X- 0.0029
66	технологический	Приточная установка №8 (55 кВт)	Y- 0.0018
			Z- 0.0021
			X- 0.0018
67	технологический	Приточная установка №9 (55 кВт)	Y- 0.0026
			Z- 0.0014

		X- 0.0014
технологинеский	Притонная установка №10 (55 кВт)	Y- 0.0014 Y- 0.0019
технологический	Приточная установка лето (33 кВт)	Z- 0.0026
J	H	X- 0.0018
технологическии	Приточная установка №21, №23, №1 / (55 кВт)	Y- 0.0015
		Z- 0.0027
		X- 0.024
технологический	Циркуляционный насос 1,2	Y- 0.019
		Z- 0.029
		X- 0.0065
технологический	Циркуляционный насос 3,4	Y- 0.0053
		Z- 0.0080
		X- 0.0070
технологический	Вакуумный насос 1	Y- 0.0080
		Z- 0.0061
		X- 0.0075
технологический	Вакуумный насос 2.3	Y- 0.0080
		Z- 0.0058
		X- 0.013
технологический	Пиркупационный насос 5.6	Y- 0.013
технологический	Пиркулиционный насос 5,0	Z- 0.015
		X- 0.0076
	II	Y- 0.0076 Y- 0.0087
технологическии	циркуляционный насос 7,8	Z- 0.0068
.,		X- 0.0072
технологический	Циркуляционный насос 9,10	Y- 0.0058
		Z- 0.0091
		X- 0.010
технологический	Циркуляционный насос 11,12	Y- 0.0064
		Z- 0.0098
		X- 0.0092
технологический	ологический Циркуляционный насос 13,14	Y- 0.0059
		Z- 0.0080
	TT	X- 0.0075
технологический	Циркуляционный насос 15,16	Y- 0.0062
	технологический технологический технологический технологический технологический	технологический Приточная установка №21, №23, №17 (55 кВт) технологический Циркуляционный насос 1,2 технологический Вакуумный насос 1 технологический Вакуумный насос 2,3 технологический Циркуляционный насос 5,6 технологический Циркуляционный насос 7,8 технологический Циркуляционный насос 9,10 технологический Циркуляционный насос 11,12 технологический Циркуляционный насос 13,14

			Z- 0.0064
			X- 0.0064
80	технологический	Циркуляционный насос 17,18	Y- 0.0052
			Z- 0.0064
			X- 0.0072
81	технологический	Циркуляционный насос 19,20	Y- 0.0058
			Z- 0.0051
			X- 0.0046
82	технологический	Циркуляционный насос 21,22	Y- 0.0061
			Z- 0.0055
			X- 0.0072
83	технологический	Циркуляционный насос 23,24	Y- 0.0052
			Z- 0.0046
			X- 0.0038
84	технологический	Циркуляционный насос 25,26	Y- 0.0057
			Z- 0.0069
			X- 0.0098
85	технологический	Вытяжной вентилятор с бака 20, 21 (а,б)	Y- 0.010
	221.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.11.22.1	Z- 0.0083	
			X- 0.0052
86	технологический	Вытяжной вентилятор с ОГО (отделения глубокого обезмеживания) на улице	Y- 0.0065
			Z- 0.0040
			X- 0.025
87	технологический	Градирня 5 насоса (4 в работе, 1 в резерве) (ХНЗ10/35)	Y- 0.0059
			Z- 0.029
			X- 0.014
88	технологический	Насосы оборотной станции 5АИ225М У2 (3 шт.)	Y- 0.019
			Z- 0.016
			X- 0.031
89	технологический	Компрессор 2 шт (1 в работе, 1 в резерве)	Y- 0.033
			Z- 0.036
			X- 0.046
90	технологический	Нагнетатель A SFO-14 (2 шт.)	Y- 0.035
			Z- 0.030

			X- 0.060
91	технологический	Вентилятор SO ₃ промежуточного абсорбера (на улице)	Y- 0.046
			Z- 0.057
			X- 0.041
92	технологический	Вентилятор SO ₃ конечного абсорбера (на улице)	Y- 0.037
			Z- 0.030
			X- 0.025
93	технологический	Насос конечного абсорбера МТН-2488	Y- 0.021
			Z- 0.029
			X- 0.18
94	технологический	Насос абсорбера А МТН42012 (2 шт.)	Y- 0.12
			Z- 0.15
			X- 0.027
95	технологический	Насос сушильной кислоты МТН-40012	Y- 0.023
			Z- 0.030
			X- 0.014
96	технологический	Насос башни охлаждения газа A NEPS 250-200-400 (3 шт.)	Y- 0.013
			Z- 0.012
			X- 0.0044
97	технологический	Насос скруббера Вентури А NEPS 200-150-400(3 шт.)	Y- 0.0046
			Z- 0.0042
			X- 0.025
98	технологический	Градирня 4 вентилятора	Y- 0.018
			Z- 0.037
			X-
99	технологический	Насосы NERO 40-25-160 (5 шт.)	Y-
			Z-
			X-
100	технологический	Насосы ГРАТ 170/40 (7 шт.)	Y-
			Z-
			X-
101	технологический	Компрессор 2 шт (1 в работе, 1 в резерве)	Y-
		1 1 —- (F, FF)	Z-
100			X- 0.032
102	технологический	Вентилятор M2DA280SMB2B3W №1 (90 кВт, 2960 об/мин)	
102	телпологический	Dentification 112D/12003111D2D3 11 1121 (70 kD1, 2700 00/Mnn)	Y- 0.018

			Z- 0.024
			X- 0.040
103	технологический	Вентилятор Вентилятор M2DA280SMB2B3W №2 (90 кВт, 2960 об/мин)	Y- 0.022
			Z- 0.027
			X- 0.041
104	технологический	Насос №85 АД 160S9 15 кВт, 1500 об/мин	Y- 0.033
			Z- 0.053
			X- 0.0032
105	технологический	Аэратор №1 (отопительный агрегат)	Y- 0.0042
			Z- 0.0031
			X- 0.0049
106	технологический	Сушильные печи 6 шт. (3 в работе, 3 в резерве)	Y- 0.0040
			Z- 0.0053
			X- 0.0071
107	технологический	Насос №92 АД 160S5 15 кВт, 1500 об/мин	Y- 0.0051
			Z- 0.0065
			X- 0.0078
108	технологический	Вентилятор стенной 3 шт. на одной стене	Y- 0.0037
		Z- 0.0048	
			X- 0.0032
109	технологический	Вентилятор стенной 2 шт. на одной стене	Y- 0.0027
			Z- 0.0029
			X- 0.0066
110	технологический	Насос №78 отметка +4,8 АД 160S5 15 кВт, 1500 об/мин	Y- 0.0051
			Z- 0.0060
			X- 0.029
111	технологический	Вентилятор M2DA280SMB2B3W (90 кВт, 2960 об/мин)	Y- 0.023
			Z- 0.033
			X- 0.019
112	технологический	Вентилятор печи Калдо M2DA280SMB2B3W (90 кВт, 2960 об/мин)	Y- 0.021
			Z- 0.013
			X- 0.027
113	технологический	Мешалка KPER112M222 кВт, 3000 об/мин	Y- 0.021
		, and the second	Z- 0.020

114	технологический	Циркуляционный насос АИР132 18,5, кВт, 1500 об/мин	X- 0.0051 Y- 0.0062 Z- 0.0047
115	технологический	Насос Грундфос» №0152, №01537,5 кВт (на горячую воду)	X- 0.012 Y- 0.010 Z- 0.014
116	технологический	Насос гидравлический K11R225S4 (37 кВт, 1465 об/мин) Насос гидравлический K11R132M4 (18,5 кВт, 1440 об/мин) Насос гидравлический K11R180M4 (7,5 кВт, 1440 об/мин) для подачи гидравлического масла	X-0.013 Y-0.011 Z-0.019
117	технологический	Мешалка АИР 132 (7,5 кВт, 1500 об/мин)	X-0.029 Y-0.018 Z-0.023
118	технологический	Насос АИР180S2 (22 кВт, 3000 об/мин)	X-0.0040 Y-0.0055 Z-0.0048
119	технологический	Насос АИР100 (5,5 кВт, 3000 об/мин)	X-0.0098 Y-0.0058 Z-0.0066
120	технологический	Насос АИР180S2 (22 кВт, 3000 об/мин)	X-0.0077 Y-0.0090 Z-0.010
121	технологический	Мешалка ANGA180MB (18,5 кВт, 1470 об/мин)	X- 0.019 Y- 0.024 Z- 0.015
122	технологический	Вентилятор сушилки KPER100L2 (3 кВт, 3000 об/мин)	X- 0.0074 Y- 0.0091 Z- 0.0067
123	технологический	Мешалки KPER112M2 (4 кВт, 3000 об/мин)2 шт.	X- 0.017 Y- 0.014 Z- 0.020
124	технологический	Мешалки KPER90L2 (2,2 кВт, 3000 об/мин)4 шт.	X- 0.022 Y- 0.017 Z- 0.030
125	технологический	Вентилятор Ц4-75-11,2-6 Л0 (40000 об/мин)	X- 0.028

			Y- 0.0065
			Z- 0.0040
			X- 0.0068
126	технологический	Вентилятор Ц4-75-11,2-6 Пр0 (40000 об/мин)	Y- 0.0054
			Z- 0.0048
			X- 0.0058
127	технологический	Вентилятор Дн-12,5У-1 Пр90 (36600 об/мин)	Y- 0.0040
			Z- 0.0052
			X- 0.0065
128	технологический	Вентилятор ВЦ14-46-8-1 (40000 об/мин)	Y- 0.0051
			Z- 0.0073
			X- 0.011
129	технологический	Насос «Грундфос» №0142,№0,143	Y- 0.010
			Z- 0.016
			X- 0.013
130	технологический	Hacoc X80-50-200 №5070	Y- 0.010
			Z- 0.012
			X- 0.010
131	технологический	Hacoc X65-50-160 №5140	Y- 0.013
			Z- 0.0052
			X- 0.0057
132	технологический	Hacoc X80-50-200 №7088	Y- 0.010
			Z- 0.0060
			X- 0.0081
133	технологический	Hacoc X80-50-200 №7060	Y- 0.010
			Z- 0.0072
			X- 0.0093
134	технологический	Hacoc X80-50-200 №7030	Y- 0.0081
			Z- 0.0057
			X- 0.0051
135	технологический	Hacoc X65-50-160 №3037	Y- 0.0068
			Z- 0.0058
			X- 0.0090
136	технологический	Циркуляционный насос IWAKI №4092, №4094, №4096	Y- 0.0072
			Z- 0.010

	T		
			X- 0.035
137	технологический	Конвейер №1 В-500 мм, L-75 м.	Y- 0.038
			Z- 0.054
			X- 0.033
138	технологический	Конвейер №2 В-500 мм, L-75 м.	Y- 0.041
			Z- 0.057
			X- 0.0064
139	технологический	Конвейер №3 В-500 мм, L-85 м.	Y- 0.0079
			Z- 0.0052
			X- 0.0092
140	технологический	Конвейер №4 В-500 мм, L-85 м.	Y- 0.0088
			Z- 0.010
			X- 0.027
141	технологический	Hacoc ΓPAT 170/40 №1,2	Y- 0.021
			Z- 0.029
			X- 0.012
142	технологический	Hacoc ΓPAT 170/40 №3,4	Y- 0.017
			Z- 0.025
			X- 0.0067
143	технологический	Hacoc ΓPAT 170/40 №5,6	Y- 0.0072
			Z- 0.0052
			X- 0.0060
144	технологический	Hacoc ΓPAT 170/40 №9,10	Y- 0.0065
			Z- 0.0046
			X- 0.036
145	технологический	Гидроциклон ГРЦ-750 №1,2	Y- 0.032
			Z- 0.030
			X- 0.037
146	технологический	Гидроциклон ГРЦ-750 №3,4	Y- 0.033
			Z- 0.031
			X- 0.038
147	технологический	Гидроциклон ГРЦ-750 №5,6	Y- 0.037
	TOMIOSIOI II ICORMI		Z- 0.010
4 10			X- 0.078
148	технологический	Турбокомпрессор К1500 №1, Электродвигатель СТД10000 №5	Y- 0.086
	L		= 0.000

			Z- 0.068
			X- 0.097
149	технологический	Турбокомпрессор К1500 №2, Электродвигатель СТД10000 №4	Y- 0.081
			Z- 0.090
			X- 0.086
150	технологический	Турбокомпрессор К1500 №3, Электродвигатель СТД10000 №8	Y- 0.079
			Z- 0.067
			X- 0.099
151	технологический	Турбокомпрессор К1700 №1, Электродвигатель СТД10000 №7	Y- 0.086
			Z- 0.078
			X- 0.095
152	технологический	Турбокомпрессор 4ЦКК №1,2,Электродвигатель АД1250№1,2	Y- 0.088
			Z- 0.077
			X- 0.098
153	технологический	Турбокомпрессор 4ЦКК №3,4,Электродвигатель АД1250№3,4	Y- 0.085
			Z- 0.076
			X- 0.098
154	технологический	Турбокомпрессор 4ГЦ №2,Электродвигатель АД1250 №5	Y- 0.080
			Z- 0.076
			X- 0.086
155	технологический	Турбокомпрессор К-250 №1,Электродвигатель СТМ 1500 №1	Y- 0.079
			Z- 0.069

3. ЭЛЕКТРОМАГНИТНОЕ ВОЗДЕЙСТВИЕ.

Любое техническое устройство, использующее либо вырабатывающее электрическую энергию, является источником электромагнитных полей (ЭМП), излучаемых во внешнее пространство. Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так сильных ЭМП от отдельных источников (дифференциальный параметр).

К основным источникам ЭМП антропогенного происхождения относятся телевизионные и радиолокационные станции, мощные радиотехнические объекты, промышленное технологическое оборудование, высоковольтные линии электропередач промышленной частоты, термические цеха, плазменные, лазерные и рентгеновские установки, атомные и ядерные реакторы и т.п. Следует отметить техногенные источники электромагнитных и других физических полей специального назначения, применяемые в радиоэлектронном противодействии и размещаемые на стационарных и передвижных объектах на земле, воде, под водой, в воздухе.

Спектральная интенсивность некоторых техногенных источников ЭМП может существенным образом отличаться от эволюционно сложившегося естественного электромагнитного фона, к которым привык человек и другие живые организмы биосферы.

Электромагнитные излучения антропогенных источников («электромагнитное загрязнение») представляют большую сложность с точки зрения, как анализа, так и ограничения интенсивностей облучения. Это обусловлено следующими основными причинами:

- в большинстве случаев невозможно ограничение выбора загрязняющего фактора в окружающую среду;
 - невозможна замена данного фактора на другой, менее токсичный;
 - невозможна «очистка» эфира от нежелательных излучений;
- неприемлем методический подход, состоящий в ограничении ЭМП до природного фона;
- вероятно долговременное воздействие ЭМП (круглосуточно и даже на протяжении ряда лет);
- возможно воздействие на большие контингенты людей, включая детей, стариков и больных;
- трудно статистически описать параметры излучений многих источников, распределенных в пространстве и имеющих различны режимы работы.

ЭМП от отдельных источников могут быть классифицированы по нескольким признакам, наиболее общий из которых – частота ЭМП.

Электромагнитный фон в городских условиях имеет выраженный временный максимум от 10.00 до 22.00, причем в суточном распределении наибольший динамический диапазон изменения электромагнитного фона приходится на зимнее время, а наименьший на лето. Для частотного распределения электромагнитного фона характерна многомодальность. Наиболее характерные полосы частот: 50...1000 Гц (до 20-й гармоники частоты 50 Гц) — энергоснабжение, 1...32 МГц — вещание коротковолновых станций, 66...960 МГц — телевизионное и радиовещание, радиотелефонные системы, радиорелейные линии связи.

Интенсивность фона зависит от:

- географических координат места наблюдения;
- состояния ионосферы;
- излучения Солнца и галактик;
- расписания работы радиостанций;
- интенсивности автомобильного движения;
- близости к электроэнергетическим источникам.

В настоящее время отсутствуют нормативно-правовые акты в области нормирования уровней электромагнитных полей от технологического оборудования. Вследствие этого учет и контроль электромагнитного воздействия объекта на окружающую среду осуществляется путем анализа и сопоставления данных фондовых материалов и научных исследований в данной области.

Нормативный ПДУ напряженности электрического поля в жилых помещениях составляет 500 В/м. Кроме того, определены следующие ПДУ для электрических полей, излучаемых воздушными ЛЭП напряжением 300 кВ и выше:

- внутри жилых зданий -500 B/м;
- на территории зоны жилой застройки -1 кB/м;
- в населенной местности вне зоны жилой застройки, а также на территории огородов и садов $-5~{\rm kB/m}$;
- на участках пересечения высоковольтных линий с автомобильными дорогами категории 1...4-10 кВ/м;
 - в населенной местности 15 кB/м;
- в труднодоступной местности и на участках, специально выгороженных для исключения доступа населения $20~{\rm kB/m}$.

Способ защиты окружающей среды от воздействия ЭМП расстоянием и временем является основным, включающим в себя как технические, так и организационные мероприятия.

На территории рассматриваемого объекта имеются источники электромагнитного воздействия. Ниже перечислены основные источники электромагнитного излучения с указанием фактического уровня излучения. Измерения проводилась непосредственно на источнике электромагнитного излучения, ближайшая жилая зона находится на расстоянии более 1000 м.

Источники электромагнитного излучения

Таблица 8.

	Таолица
No	Характеристика источников
п/п	
1	2
1	Трансформаторная подстанция №3
2	Агрегат 1,2 грубого обезмеживания
3	Трансформаторная подстанция №2
4	Трансформаторная подстанция №1
5	Распределительная установка РУ-1
6	Распределительная установка РУ-2
7	Распределительная установка РУ-3
8	Трансформатор ТМЗ 630/10-74У1 Мощьность трансформатора (630 кВ*А)
9	Трансформатор ТМЗ 630/10-74У1 Мощьность трансформатора (630 кВ*А)
10	Трансформатор Т135 ТМ6300/10/3 Трансформатор Т136 ТМ6300/10/3
11	Трансформатор Т901 ТМ630/10/0,4
	Трансформатор Т902 ТМ630/10/0,4
12	Трансформатор Т133 ТС3Н 630/10/0,4
	Трансформатор Т134 ТС3Н 630/10/0,5

Нормативы уровня электромагнитного излучения Таблица 9.

№ п/п	Источники электромагнитного излучения	Вид излучения	Предельно допустимый уровень электромагнитного излучения
1	2	3	4
1	Трансформаторная подстанция №3	напряженность электрического поля	4,13 В/м
	трансформаторная подстанция №5	напряженность магнитного поля	2,83 мкТл
2	Агрегат 1,2 грубого обезмеживания	напряженность электрического поля	3,16 В/м
	Агрегат 1,2 грубого обезмеживания	напряженность магнитного поля	5,10 мкТл
3	Трансформаторная подстанция №2	напряженность электрического поля	5,1 В/м
3	трансформаторная подстанция №2	напряженность магнитного поля	4,3 мкТл
4	Трансформаторная подстанция №1	напряженность электрического поля	6,8 В/м
7	трансформаторная подстанция №	напряженность магнитного поля	6,1 мкТл
5	Распределительная установка РУ-1	напряженность электрического поля	4,1 В/м
3	т аспределительная установка т 3-1	напряженность магнитного поля	3,7 мкТл
6	Распределительная установка РУ-2	напряженность электрического поля	4,9 В/м
U	т аспределительная установка т 3-2	напряженность магнитного поля	3,8 мкТл
7	Распределительная установка РУ-3	напряженность электрического поля	5,1 В/м
	т аспределительная установка т 3-3	напряженность магнитного поля	6,2 мкТл
8	Трансформатор ТМЗ 630/10-74У1 Мощьность	напряженность электрического поля	4,1 В/м
0	трансформатора (630 кВ*А)	напряженность магнитного поля	5,6 мкТл
9	Трансформатор ТМЗ 630/10-74У1 Мощьность	напряженность электрического поля	4,2 В/м
J	трансформатора (630 кВ*А)	напряженность магнитного поля	5,5 мкТл
10	Трансформатор Т135 ТМ6300/10/3	напряженность электрического поля	5,9 В/м
10	Трансформатор Т136 ТМ6300/10/3	напряженность магнитного поля	7,4 мкТл
11	Трансформатор Т901 ТМ630/10/0,4	напряженность электрического поля	6,3 В/м
	Трансформатор Т902 ТМ630/10/0,4	напряженность магнитного поля	4,79 мкТл
12	Трансформатор Т133 ТС3Н 630/10/0,4	напряженность электрического поля	7,9 В/м
12	Трансформатор Т134 ТС3Н 630/10/0,5	напряженность магнитного поля	6,7 мкТл

Примечание: - Для строящихся или планируемых объектов указывается расчетный уровень; для существующих – фактический уровень электромагнитного излучения. В случае переменных значений указывается максимальный уровень.

Е – электрическое поле (В/м); В – магнитная индукция (мкТл)

4. ТЕПЛОВОЕ ЗАГРЯЗНЕНИЕ.

Тепловое загрязнение — это один из видов физического загрязнения природной среды, характеризующейся периодическим или длительным повышением ее температуры выше естественного уровня. Для урбанизированных территорий характерное проявление теплового загрязнения - образование над ними «тепловой шапки», так называемого «острова тепла», имеющего куполообразную форму. Основные источники теплового загрязнения — выбросы в атмосферу нагретых отработанных газов и воздуха.

Для работы промышленных предприятий требуется энергия. Кроме того, некоторые технологические процессы могут происходить только при повышенных температурах. Глобальный аспект теплового загрязнения связан с парниковым эффектом.

На территории рассматриваемого объекта имеются источники теплового загрязнения. Ниже перечислены основные источники с указанием фактического уровня излучения. Измерения проводилась непосредственно на источнике выбросов.

Источники теплового загрязнения

Таблица 10.

№ п/п	Источники теплового загрязнения	Характеристика источников
1	2	3
1	Сернокислотный цех, источник 0001.	В четырехслойном аппарате осуществляется осушка и окисление технологических газов медеплавильного цеха, с последующей двойной абсорбцией и далее получением товарной серной кислоты. При производстве серной кислоты в атмосферу выбрасывается ГВС.
2	Сернокислотный цех, источник 0002.	Для прогрева катализатора в контактном аппарате используют топку – подогреватель, в котором воздух нагревателя за счет сжигания мазута, топочные газы выбрасываются в атмосферу.
3	Цех подготовки шихты, источник 0059. Сушильный барабан №5.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.
4	Цех подготовки шихты, источник 0060. Сушильный барабан №1.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.
5	Цех подготовки шихты, источник 0061. Сушильный барабан №2.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.
6	Цех подготовки шихты, источник 0062. Сушильный барабан №3.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.
7	Цех подготовки шихты, источник 0063. Сушильный барабан №4.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.
8	Медеплавильный цех, источник 0118. Анодная печь №1	В анодной печи происходит огневое рафинирование меди конвертерного участка. Анодные печи отапливаются мазутом марки М-100. Процесс (разделка, заделка и просушка лётки, загрузка печи, плавление, съём шлака, окисление и другие операции) сопровождаются выделением тепла

9	Медеплавильный цех, источник 0119. Анодная печь №2	В анодные печи происходит огневое рафинирование меди конвертерного участка. Анодные печи отапливаются мазутом марки М-100. Процесс (разделка, заделка и просушка лётки, загрузка печи, плавление, съём шлака, окисление и другие операции) сопровождаются выделением тепла
10	Медеплавильный цех, источник 0120. Анодная печь №3	В анодные печи происходит огневое рафинирование меди конвертерного участка. Анодные печи отапливаются мазутом марки М-100. Процесс (разделка, заделка и просушка лётки, загрузка печи, плавление, съём шлака, окисление и другие операции) сопровождаются выделением тепла
11	Медеплавильный цех, источник 0138. Аспирационные газы отходящие от ПВ-2	Аспирационные газы отходящие от ПВ-2 при загрузке шихты, выгрузке штейна и шлака
12	Драгметальный цех, источник 0142. Аспирационные газы печи Калдо.	Печь Калдо — плавильный агрегат. В печи Калдо происходят процессы плавления, восстановления и конвертирования. Печь работает на дополнительном топливе. Аспирационные газы, отходящие от печи выбрасываются в атмосферу.
13	Драгметальный цех, источник 0205. Технологические газы печи Калдо.	Технологические газы проходят систему газоулавливания и очистку в скруббере Вентури, очищенный газ выбрасывается в атмосферу
14	Медеплавильный цех, источник 0256. Аспирационные газы от печи ПВ – 1 и конвертеров.	На каждом конвертере имеются сооружения, предназначенные для улавливания аспирационных газов, образующихся при введении производственного процесса, - это наклонная и катучие заслонки укрывающие горловину конвертера, аспирационные шторы, при закрытии которых обеспечивается направление аспирационных газов в заборных зонт, находящийся непосредственно над конвертером. Далее за счет обеспечения тягового момента дутьевыми машинами (дымососами) рукавных фильтров, аспирационные газы по газоходу направляются для очистки и далее направляются в газовую трубу высотой 200м

Нормативы допустимого уровня теплового загрязнения.

Таблица 11.

№ п/п	Источники теплового загрязнения	Характеристика источников	Вид теплового загрязнения	Предельно допустимый уровень теплового загрязнения
1	2	3	4	5
1	Сернокислотный цех, источник 0001.	В четырехслойном аппарате осуществляется осушка и окисление технологических газов медеплавильного цеха, с последующей двойной абсорбцией и далее получением товарной серной кислоты. При производстве серной кислоты в атмосферу выбрасывается ГВС.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 60м.	71°C
2	Сернокислотный цех, источник 0002.	Для прогрева катализатора в контактном аппарате используют топку — подогреватель, в котором воздух нагревателя за счет сжигания мазута, топочные газы выбрасываются в атмосферу.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 30м.	250°C
3	Цех подготовки шихты, источник 0059. Сушильный барабан №5.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 25м.	$80^{0}\mathrm{C}$
4	Цех подготовки шихты, источник 0060. Сушильный барабан №1.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 25м.	70 ⁰ C
5	Цех подготовки шихты, источник 0061. Сушильный барабан №2.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент — топочные газы при сжигании мазута.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 25м.	90°C

6	Цех подготовки шихты, источник 0062. Сушильный барабан №3.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 25м.	75°C
7	Цех подготовки шихты, источник 0063. Сушильный барабан №4.	Тепловое загрязнение атмосферы происходит при сушке медного концентрата в сушильном барабане, сушильный агент – топочные газы при сжигании мазута.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 25м.	90°C
8	Медеплавильный цех, источник 0118. Анодная печь №1	В анодной печи происходит огневое рафинирование меди конвертерного участка. Анодные печи отапливаются мазутом марки М-100. Процесс (разделка, заделка и просушка лётки, загрузка печи, плавление, съём шлака, окисление и другие операции) сопровождаются выделением тепла	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 42м.	220 ^o C
9	Медеплавильный цех, источник 0119. Анодная печь №2	В анодные печи происходит огневое рафинирование меди конвертерного участка. Анодные печи отапливаются мазутом марки М-100. Процесс (разделка, заделка и просушка лётки, загрузка печи, плавление, съём шлака, окисление и другие операции) сопровождаются выделением тепла	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 42м.	241 ^o C
10	Медеплавильный цех, источник 0120. Анодная печь №3	В анодные печи происходит огневое рафинирование меди конвертерного участка. Анодные печи отапливаются мазутом марки М-100. Процесс (разделка, заделка и просушка лётки, загрузка печи, плавление, съём шлака, окисление и другие операции) сопровождаются выделением тепла	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 42м.	190°C
11	Медеплавильный цех, источник 0138.	Аспирационные газы отходящие от ПВ-2 при загрузке шихты, выгрузке штейна и шлака	Источник выбросов загрязняющих веществ в атмосферный воздух.	56°C

	Аспирационные газы отходящие от ПВ-2		Выброс происходит через трубу на высоте 160м.	
12	Драгметальный цех, источник 0142. Аспирационные газы печи Калдо.	Печь Калдо – плавильный агрегат. В печи Калдо происходят процессы плавления, восстановления и конвертирования. Печь работает на дополнительном топливе. Аспирационные газы, отходящие от печи выбрасываются в атмосферу.	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 20.	55°C
13	Драгметальный цех, источник 0205. Технологические газы печи Калдо.	Технологические газы проходят систему газоулавливания и очистку в скруббере Вентури, очищенный газ выбрасывается в атмосферу	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс происходит через трубу на высоте 24,3м	$70^{0}\mathrm{C}$
14	Медеплавильный цех, источник 0256. Аспирационные газы от печи ПВ – 1 и конвертеров.	На каждом конвертере имеются сооружения, предназначенные для улавливания аспирационных газов, образующихся при введении производственного процесса, - это наклонная и катучие заслонки укрывающие горловину конвертера, аспирационные шторы, при закрытии которых обеспечивается направление аспирационных газов в заборных зонт, находящийся непосредственно над конвертером. Далее за счет обеспечения тягового момента дутьевыми машинами (дымососами) рукавных фильтров, аспирационные газы по газоходу направляются для очистки и далее направляются в газовую трубу высотой 200м	Источник выбросов загрязняющих веществ в атмосферный воздух. Выброс в происходит через трубу на высоте 200м.	120°C

Примечание.

Для строящихся или планируемых объектов указывается расчетный уровень; для существующих – фактический уровень теплового загрязнения, 0С. Тепловое загрязнение это выбросы тепла в атмосферу и водные ресурсы. В соответствии с РД 52.04.186 -89 выбросы загрязняющих веществ в атмосферу бывают холодные и горячие. Выбросы с разностью значений температуры выбрасываемой газовоздушной смеси (ГВС) и окружающего воздуха. ΔТ < 500С – холодные, ΔТ ≥ 500С – горячие источники.

Предприятия БМЗ не осуществляет сброс сточных вод в водные объекты окружающей среды.

5. СПИСОК ЛИТЕРАТУРЫ.

1	Кодекс Республики Казахстан от 2 января 2021 года № 400-VI «Экологический
	кодекс Республики Казахстан».
2	Правила определения нормативов допустимого антропогенного
	воздействия на атмосферный воздух, утвержденные приказом Министра
	экологии, геологии и природных ресурсов Республики Казахстан от 14
	сентября 2021 года № 375.
3	Приказ Министра здравоохранения Республики Казахстан от 16
	февраля 2022 года № ҚР ДСМ-15. Об утверждении Гигиенических
	нормативов к физическим факторам, оказывающим воздействие на
	человека.