TOO «Integra Construction KZ» TOO «Жетісу Жерқойнауы»

РАЗДЕЛ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

к Плану горных работ по добыче общераспространенных полезных ископаемых на 3 участках, расположенных в Сарыагашском (№1Б, №1А-Р) и Келесском (№10А) районах Туркестанской области используемых в строительстве «под ключ» железнодорожной линии Дарбаза-Государственная граница с Узбекистаном

Список исполнителей

Ф.И.О.

Руководитель Исполнитель Рахметов А.Т. Байгометова Д.С.

ТОО «Жетісу-Жерқойнауы»

г. Алматы

Тел: 8 7075919301

e-mail: zh.zherkoinauy@mail.ru

СОДЕРЖАНИЕ

	РИДИТОННА	6
	ВВЕДЕНИЕ	8
1	ОБЩИЕ СВЕДЕНИЯО РАЙОНЕ РАБОТ	9
2	ГОРНОТЕХНИЧЕСКИЕ УСЛОВИЯ ОТРАБОТКИ	13
	УЧАСТКОВ	
3	ОЦЕНКА ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ	48
3.1	Состояние воздушного бассейна	48
3.2	Метеорологические характеристики и коэффициенты,	48
	определяющие условия рассеивания загрязняющих веществ	
3.3	Характеристика источников выбросов загрязняющих веществ в	50
	атмосферу	
3.4	Обоснование полноты и достоверности исходных данных,	52
	принятых для расчётов нормативов НДВ	
3.5	Расчет выбросов загрязняющих веществ в атмосферу	53
	при проведении работ	
3.6	Перечень возможных загрязняющих веществ,	63
	выбрасываемых в атмосферу	
3.7	Параметры выбросов загрязняющих веществ в атмосферу	65
	для расчета НДВ	
3.8	Определение размеров санитарно-защитной зоны	70
3.9	Проведение расчетов рассеивания и определение приземистых	70
	концентраций	
3.10	Анализ результатов расчетов, определения норм ПДВ	73
3.11	Контроль за соблюдением нормативов НДВ	77
3.12	Характеристика аварийных и залповых выбросов	77
3.13	Мероприятия по регулированию выбросов при	78
2 1 4	неблагоприятных метеорологических условиях	70
3.14	Мероприятия по сокращению выбросов	78
3.15	Внедрение малоотходных и безотходных технологий, а также	79
	специальные мероприятия по предотвращению (сокращению)	
3.16	выбросов в атмосферный воздух	79
3.10	Предложения по организации мониторинга и контроля за состоянием атмосферного воздуха	19
4	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ПОВЕРХНОСТНЫЕИ	82
7	ПОДЗЕМНЫЕ ВОДЫ	02
4.1	Гидрография	82
4.2	Оценка воздействия проектируемых работ на поверхностные	82
1.2	воды	02
4.3	Водоснабжение и водопотребление	83
4.4	Мероприятия по охране водных ресурсов	84
5	ОЦЕНКА ВОЗДЕЙСТВИЯ НА НЕДРА	86
5.1	Наличие минеральных и сырьевых ресурсов в зоне воздействия	86
	намечаемого объекта	
5.2	Потребность объекта в минеральных и сырьевых ресурсах в	86
	период строительства и эксплуатации (виды, объемы,	
	источники получения)	

5.3	Прогнозирование воздействия добычи минеральных и	86
	сырьевых ресурсов на различные компоненты окружающей	
	среды и природные ресурсы	
5.4	Обоснование природоохранных мероприятий по	87
	регулированию водного режима и использованию нарушенных	
	территорий	
5.5	Характеристика используемых месторождений (запасы	88
	полезных ископаемых, их геологические особенности и другое)	
5.6	Радиационная характеристика полезных ископаемых и	88
	вскрышных пород (особенно используемых для рекультивации	
	и в производстве строительных материалов)	
5.7	Рекомендации по составу и размещению режимной сети	89
	скважин для изучения, контроля и оценки состояния горных	
	пород и подземных вод в процессе эксплуатации объектов	
	намечаемого строительства	
5.8	Предложения по максимально возможному извлечению	89
	полезных ископаемых из недр, исключающие снижение	
	запасов подземных ископаемых на соседних участках и в	
	районе их добычи (в результате обводнения, выветривания,	
	окисления, возгорания)	
5.9	Оценка возможности захоронения вредных веществ и отходов	90
	производства в недра	
6	ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ	91
6.1	Расчет образования производственных отходов	91
6.2	Расчет образования твердо-бытовых отходов	92
6.3	Система управления отходами производства и потребления при	94
0.0	проведении работ	
7	ОЦЕНКА ФИЗИЧЕСКОГО ВОЗДЕЙСТВИЯ	96
7.1	Критерии оценки радиологической обстановки	96
7.2	Акустическое воздействие	96
7.3	Вибрационное воздействие	97
7.4	Электромагнитные воздействия	98
8	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ПОЧВЕННЫЙ ПОКРОВ	100
8.1	Современное состояние почвенного покрова	100
8.2	Оценка воздействие проектируемых работ на почвенный	100
O. _	покров	100
8.3	Рекомендуемые мероприятия по минимизации негативного	101
0.5	воздействия на почвенный покров	101
9	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ГЕОЛОГИЧЕСКУЮ СРЕДУ	103
9.1	Природоохранные мероприятия по охране недр	103
10	ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНЫЙ ПОКРОВ	104
10.1	Характеристика растительного покрова	106
10.1	Оценка воздействия проектируемых работ на растительный	107
10.2		107
10.3	Покров	107
10.3	Рекомендуемые мероприятия по минимизации негативного воздействия на растительный покров	10/
11	ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ МИР	109
11.1	Современное состояние животного мира	109
11.1	Собременное состояние животного мира	107

11.2	Характеристика неблагоприятного антропогенного воздействия на животный мир	109
11.3	1	110
11.3	Меры по снижению воздействия на животный мир	110
12	при реализации проекта ОЦЕНКА ВОЗДЕЙСТВИЕ НА ЛАНДШАФТЫ И МЕРЫ ПО	111
12	ПРЕДОТВРАЩЕНИЮ, МИНИМИЗАЦИИ, СМЯГЧЕНИЮ	111
	НЕГАТИВНЫХ ВОЗДЕЙСТВИЙ, ВОССТАНОВЛЕНИЮ	
	ЛАНДШАФТОВ В СЛУЧАЯХ ИХ НАРУШЕНИЯ	
13	СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СРЕДА	113
14	ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА	115
14.1	Обзор возможных аварийных ситуаций	115
14.2	Причины возникновения аварийных ситуаций	116
14.3	Оценка риска аварийных ситуаций	116
14.4	Мероприятия по снижению экологического риска	117
14.5	Рекомендации по предотвращению аварийных ситуаций	118
15	КОМПЛЕКСНАЯ ОЦЕНКА ВОЗДЕЙСТВИЯ	119
10	ПРОЕКТИРУЕМЫХ РАБОТ НА ОКРУЖАЮЩУЮ СРЕДУ И	117
	МЕРОПРИЯТИЯ ПО ИХ СМЯГЧЕНИЮ	
15.1	Программа (план) мероприятий по охране окружающей среды	121
16	ПРОГРАММА УПРАВЛЕНИЯ ОТХОДАМИ	123
16.1	Цель, задачи и целевые показателей	123
16.2	Основные направления, пути достижения поставленной цели и	123
	соответствующие меры	
16.3	Необходимые ресурсы и источники их финансирования	124
16.4	План мероприятий по реализации программы	125
17	ПРОГРАММА ПРОИЗВОДСТВЕННОГО	126
	ЭКОЛОГИЧЕСКОГО КОНТРОЛЯ	
17.1	Целевое назначение ПЭК	126
17.2	Методика проведения ПЭК	127
18	ПРЕДВАРИТЕЛЬНЫЕ РАСЧЕТЫ ПЛАТЫ ЗА ЭМИССИИ В	129
	ОКРУЖАЮЩУЮ СРЕДУ	
СПИСОК	ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	131
ПРИЛОЖ	РИНЗ	133

АННОТАЦИЯ

Настоящий раздел «Охрана окружающей среды» разработан к Плану горных работ по добыче общераспространенных полезных ископаемых на 3 участках, расположенных в Сарыагашском (№1Б, №1А-Р) и Келесском (№10А) районах Туркестанской области используемых в строительстве «под ключ» железнодорожной линии Дарбаза-Государственная граница с Узбекистаном, с целью оценки влияния объекта на окружающую среду и установления нормативов природопользования.

Основанием для разработки Раздела «Охраны окружающей среды» (РООС) является План горных работ по добыче общераспространенных полезных ископаемых на 3 участках, расположенных в Сарыагашском (№1Б, №1А-Р) и Келесском (№10А) районах Туркестанской области используемых в строительстве «под ключ» железнодорожной линии Дарбаза-Государственная граница с Узбекистаном.

Основная цель настоящего плана горных работ проведение добычных работ с целью извлечения грунтов, используемых для строительства «под ключ» железнодорожной линии Дарбаза — Государственная граница с Узбекистаном.

Участки общераспространенных полезных ископаемых (грунтов) находятся в Сарыагашском и Келесском районах Туркестанской области, в непосредственной близости от проектируемой железной дороги, Дарбаза — Государственная граница с Узбекистаном, на расстоянии от 7 до 17 км от казахстано-узбекистанской границы.

На территории участков добычных работ выявлены 2 организованных источника, 14 неорганизованных источников вредных веществ в атмосферу.

Всего в атмосферный воздух выделяются вредные вещества 11 наименований загрязняющих веществ 1-4 класса опасности (диоксид азота, оксид азота, сажа (углерод), сера диоксид, углерод оксид, проп-2-ен-1-аль (акролеин), керосин, формальдегид, алканы C12-C19, пыль неорганическая сод.SiO2 от 20-70%) из них четыре вещества образуют две группы суммации (азота диоксид + сера диоксид, сероводород + формальдегид).

Суммарный выброс по площадкам составляет:

Сарыагашский район:

на 2025-2026 гг: валовый — 32.83949848 т/г, максимально-разовый — 5.51645332 г/с;

Келесский район:

на 2025-2026 гг: валовый — 12.36209924 т/г, максимально-разовый — 5.48646832 г/с.

Раздел «Охраны окружающей среды» (РООС) выполнен в соответствии с требованиями Экологического Кодекса Республики Казахстан и согласно «Инструкции по организации и проведению экологической оценки»,

утвержденный приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 280 от 30 июля 2021 г.

Согласно п. 12. главы 3 «Инструкции по составлению плана горных работ» № 351 от 18.05.2018 года «План горных работ включает оценку воздействия планируемой деятельности на окружающую среду и содержит Раздел «Охрана окружающей среды».

Основная цель РООС — оценка всех факторов воздействия на компоненты окружающей среды (ОС), прогноз изменения качества ОС при реализации проекта с учётом исходного её состояния, выработка рекомендаций по снижению или ликвидации различных видов негативных воздействий на компоненты окружающей среды и здоровье населения.

В состав РООС входят следующие обязательные разделы:

- детальная информация о природных условиях территории, на которой планируется хозяйственная деятельность;
 - характеристика социально-экономических условий территории;
 - характеристика намечаемой деятельности;
- оценка воздействия проектируемых работ на состояние основных компонентов окружающей среды;
- рекомендуемый состав природоохранных мероприятий, включая план действий в аварийных ситуациях.

ВВЕДЕНИЕ

Основанием для разработки проекта являются:

- Исходные данные, выданные заказчиком для разработки проекта:
- 1. Техническое задание на составление плана горных работ на 3 участках №1Б,№1А-Р, №1ОА;
- 2. Письмо МД «Центрказнедра» о постановке Минеральных Запасов на государственный учет;
- 3. Картограммы площадей проведения добычи общераспространенных полезных ископаемых;
- 4. Письмо ответ РГУ "Комитет лесного хозяйства и животного мира Министерства экологии и природных ресурсов Республики Казахстан";
- 5. Письмо ответ РГУ «Арало Сырдарьинская бассейновая инспекция по регулированию использования и охране водных ресурсов»;
- 6. Государственная лицензия №02687Р выданная «Комитетом экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан», Министерством экологии и природных ресурсов РК 17 августа 2023 года, для ТОО «Жетісу-Жерқойнауы» на выполнение работ и оказание услуг в области охраны окружающей среды.

І. ОБЩИЕ СВЕДЕНИЯ

Наименование оператора: TOO «IntegraConstruction KZ».

Юридический адрес: РК, г. Астана, р-н «Есиль», ул. Д.Конаев, д.12/1.

БИН: 050840000334

Генеральный директор Рахимтаев Д.С.

Участки общераспространенных полезных ископаемых (грунтов) расположены в Сарыагашском (№1Б, №1А-Р) и Келесском (№10А) районах Туркестанской области, в непосредственной близости от проектируемой железной дороги, Дарбаза — Государственная граница с Узбекистаном, на расстоянии от 7 до 17 км от казахстано-узбекистанской границы, на территории листов: K-42-XXII, K-42-XXVII (рис. 1.1).

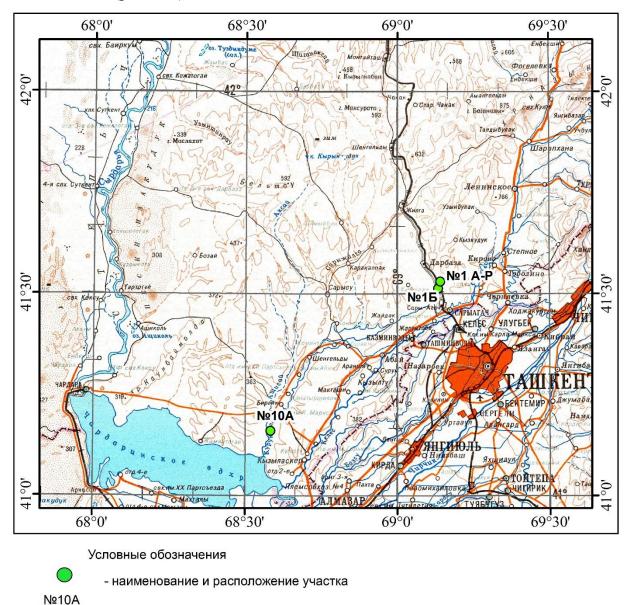


Рис.1.1 Обзорная карта расположения участков №1 Б, №1 А-Р и №10 А Масштаб 1:1 000 000

Туркестанская область (до 2018 года Южно-Казахстанская область) – область в южной части Казахстана, на границе с Узбекистаном. Административный центр области – город Туркестан.

Граничит на западе с Кызылординской, на севере – с Улытауской, на востоке – с Жамбылской областями.

Площадь области составляет 116 280 км². Население, по состоянию на 2025 год, составляет 2,15 млн человек.

В административно-территориальную структуру области входят 14 районов и 3 города областного значения, крупнейшие города — Туркестан, Кентау, Сарыагаш, Арыс.

Сарыагашский район - административная единица на юге Туркестанской области. Административный центр — город Сарыагаш. Численность населения - 186,1 тыс. человек (2019г.). Крупные населённые пункты: г. Сарыагаш, с. Жибек-Жолы.

Образован в 1939 году под названием Сарыагачский район. В 1992 году в ходе реформ по уменьшению административных единиц, Сарыагашский район был объединён с Келесским районом с райцентром в селе Абай.

В связи с густонаселённостью Сарыагашского района Указом Президента Республики Казахстан от 5 июня 2018 года из его состава выделен Келесский район с административным центром в селе Абай.

Келесский район — район на юге Туркестанской области. Население по состоянию на 2019 год составило — 142,3 тыс. человек. Район включает в себя 12 сельских округов.

Рельеф территории района расположения участков слаборасчленённый, холмисто-равнинный с уклоном на юго-запад к Чардаринскому водохранилищу. Заболоченные участки, овраги и крутые склоны на территории участков отсутствуют.

Климат территории района участков континентальный, отличается высокими летними температурами, при сравнительно низких зимних, малым количеством осадков в год (192,9мм, апрель-октябрь -53,5 мм, ноябрь — март - 139,4мм), при почти полном отсутствии их летом и в начале осени, сухостью воздуха и малой облачностью в теплое время года. Зима обычно теплая, преимущественно с пасмурной погодой. Температура воздуха днем 2°-6°, ночью - 3°... -6°. В суровые зимы морозы могут достигать-33°. Осадки выпадают в виде дождя и снега, устойчивый снежный покров образуется не ежегодно; толщина снега 10-15 см (редко до 30-40 см).

Весна — с неустойчивой погодой. Весной выпадает более 30% годового количества осадков, почти все в виде дождей. Температура воздуха $12^{\circ}-20^{\circ}$, ночью бывают заморозки до $-6^{\circ}...$ -23°. Лето — жаркое и сухое, температура воздуха днем достигает $30^{\circ}-35^{\circ}$, иногда до 40° , на поверхности почти $60^{\circ}-80^{\circ}$,

ночью опускается до 20°-25°. Дожди бывают редко, 1-3 раза за сезон. Относительная влажность воздуха около 30%. Осень — сухая с ясной погодой. Осадки выпадают, главным образом, в ноябре, в виде дождей. Температура днем 10°-19°, ночью бывают заморозки.

Ветры в течении года преимущественно западные, северные и северозападные, преобладающая скорость 1-3 м/с. Летом иногда дует сильный (15-20 м/с) юго-западный ветер, несущий массу песка и пыли.

Самыми крупными водными артериями Туркестанской области являются реки Сырдарья и Чирчик. Сырдарья в виду большого водозабора не судоходна. Ширина реки 200-700 м, глубина 2-6 м, скорость течения 0,8-1 м/с. Дно песчаное, берега преимущественно обрывистые.

Русло извилистое с многочисленными мелями и намывными островами.

Половодье продолжается с марта по август, межень – с сентября по февраль. На реке построено Чардаринское водохранилище, наибольшая глубина которого 14 м, дно – вязкое. Площадь акватории – 900 кв.км.

Река Чирчик имеет много рукавов шириной до 70 м, глубиной 0,5-3,0 м, скорость течения - 0,7-1,2 м/с. Дно песчано-галечниковое, берега обрывистые высотой до 2 м.

Наиболее близкими к участкам, но менее крупными, являются реки Куруккелес и Келес. Река Келес имеет ширину 20-26 м, глубину 0,5-1,2 м, скорость течения — 0,8 м/с. Берега обрывистые от 1 до 6 м. Дно галечниковое, много бродов глубиной до 0,5 м. Остальные реки имеют ширину до 25 м, глубину до 3 м. Замерзают реки редко и на короткий срок (январь-февраль).

Большая часть территории покрыта полукустарниковой растительностью (полынь, янтак) и травами (осока, мятлик и др.). В пойме рек имеются тугайные рощи (жиде, реже — тополь, ива). В населенных пунктах и их окрестностях имеются сады, виноградники, вдоль дорог и арыков — древесные обсадки. Орошаемые поля заняты преимущественно под хлопчатник, рис, подсолнечник, пшеницу.

Животный мир, в основном представлен различными видами птиц, грызунами, пресмыкающимися.

Ближайшие населённые пункты участков Бирлик, Дарбаза, Ердаулет, Алгабас, город Сарыагаш.

Туркестанская область — самый густонаселённый регион Казахстана. Область является крупным производителем и поставщиком хлопка, кожевенного сырья, растительного масла, фруктов, овощей, винограда, бахчевых, макаронных, табачных изделий, алкогольной и безалкогольной продукции.

Область по республике занимает первое место по запасам урана, третье – по фосфоритам и железной руде, кроме того, богата баритовыми, угольными,

полиметаллическими месторождениями и минеральными сырьевыми ресурсами для производства строительных материалов.

На территории Туркестанской области находятся Аксу-Жабаглинский государственный природный заповедник (основанный в 1926 г.), Каратауский государственный природный заповедник (2004 г.), Сайрам-Угамский государственный национальный природный парк (2006 г). Область также славится своими лечебно-оздоровительными санаториями. В Сарыагашском районе их насчитывается около тридцати.

Район работ относится к - V дорожно-климатической зоне. Климатический район IV Γ .

Географические координаты угловых точек участков представлены ниже, в таблице 1.

Координаты угловых точек участков

Таблица 1

Наименование участка №№ угловых точек Географические координаты северная широта долгота Площадь участка, км²/га 1 41° 30′ 49,27″ 69° 07′ 59,96″ 41° 30′ 46,48″ 69° 08′ 10,161″ 41° 30′ 39,42″ 69° 08′ 12,21″ 41° 30′ 34,89″ 69° 08′ 12,21″ 0,1434/14,34 0,1434/14,34 №1Б 5 41° 30′ 23,81″ 69° 08′ 10,05″ 64′ 30′ 23,81″ 69° 08′ 10,05″ 0,1434/14,34 0,1434/14		1	Т		таолица т
участка 1	Наименование	$N_{\underline{0}}N_{\underline{0}}$	Географическ	ие координаты	
1 41° 30′ 49,27″ 69° 07′ 59,96″ 2 41° 30′ 46,48″ 69° 08′ 01,61″ 3 41° 30′ 34,89″ 69° 08′ 12,21″ 4 41° 30′ 34,89″ 69° 08′ 12,21″ 6 41° 30′ 23,81″ 69° 08′ 12,81″ 7 41° 30′ 31,97″ 69° 08′ 10,05″ 8 41° 30′ 47,88″ 69° 07′ 56,41″ 9 41° 30′ 47,88″ 69° 08′ 39,21″ 3 41° 31′ 51,98″ 69° 08′ 39,21″ 3 41° 31′ 39,66″ 69° 08′ 33,921″ 3 41° 31′ 39,66″ 69° 08′ 33,921″ 6 41° 30′ 32,10,52″ 69° 08′ 39,21″ 6 41° 31′ 54,01″ 69° 08′ 33,98″ 5 41° 31′ 54,01″ 69° 08′ 35,98″ 2 41° 31′ 54,01″ 69° 08′ 35,98″ 2 41° 31′ 54,01″ 69° 08′ 35,98″ 2 41° 31′ 54,01″ 69° 08′ 34,38″ 5 41° 31′ 38,93″ 69° 08′ 39,22″ 6 41° 31′ 54,01″ 69° 08′ 30,82″ 2 41° 09′ 38,42″ 68° 35′ 00,85″ 2 41° 09′ 38,42″ 68° 35′ 00,85″ 2 41° 09′ 29,49″ 68° 35′ 01,14″ 6 41° 09′ 29,49″ 68° 35′ 01,14″ 6 41° 09′ 29,49″ 68° 35′ 11,41″ 7 41° 09′ 35,19″ 68° 35′ 13,49″ 9 41° 09′ 39,05″ 68° 35′ 13,49″ 9 41° 09′ 39,05″ 68° 35′ 10,72″ 68° 35′ 10,72″ 68° 35′ 10,05″ 68° 35		угловых	северная	восточная	
Nº16 2	y ideika	точек	широта	долгота	км²/га
Nº16 3		1	41° 30' 49,27"	69° 07' 59,96"	
Nº16 4 41° 30′ 34,89″ 69° 08′ 16,41″ 5 41° 30′ 26,56″ 69° 08′ 20,88″ 6 41° 30′ 23,81″ 69° 08′ 10,05″ 8 41° 30′ 43,60″ 69° 07′ 56,41″ 9 41° 30′ 47,88″ 69° 08′ 27,06″ 2 41° 31′ 50,59″ 69° 08′ 39,21″ 3 41° 31′ 39,66″ 69° 08′ 39,21″ 6 41° 32′ 10,52″ 69° 08′ 30,82″ 1 41° 09′ 39,92″ 68° 35′ 00,85″ 2 41° 09′ 29,49″ 68° 35′ 01,14″ 5 41° 09′ 32,89″ 68° 35′ 13,91″ 8 41° 09′ 39,05″ 68° 35′ 13,49″ 9 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″ 1 41° 09′ 39,05″ 68° 35′ 11,05″		2	41° 30' 46,48"	69° 08' 01,61"	
Nº16 5		3	41° 30' 39,42"	69° 08' 12,21"	
6 41° 30' 23,81" 69° 08' 14,13" 7 41° 30' 31,97" 69° 08' 10,05" 8 41° 30' 43,60" 69° 07' 56,41" 9 41° 30' 47,88" 69° 07' 56,60" 1 41° 31' 51,98" 69° 08' 39,21" 3 41° 31' 39,66" 69° 08' 39,21" 3 41° 31' 38,93" 69° 08' 38,98" 5 41° 31' 54,01" 69° 08' 30,82" 1 41° 09' 39,92" 68° 35' 00,85" 2 41° 09' 29,73" 68° 34' 59,05" 3 41° 09' 29,49" 68° 35' 01,14" 6 41° 09' 29,49" 68° 35' 01,14" 7 41° 09' 32,89" 68° 35' 13,91" 8 41° 09' 35,19" 68° 35' 13,91" 8 41° 09' 39,05" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		4	41° 30′ 34,89″	69° 08' 16,41"	
7 41° 30' 31,97" 69° 08' 10,05" 8 41° 30' 43,60" 69° 07' 56,41" 9 41° 30' 47,88" 69° 07' 56,60" 1 41° 31' 51,98" 69° 08' 27,06" 2 41° 31' 50,59" 69° 08' 39,21" 3 41° 31' 39,66" 69° 08' 36,98" 4 41° 31' 38,93" 69° 08' 43,38" 5 41° 31' 54,01" 69° 08' 50,41" 6 41° 32' 10,52" 69° 08' 30,82" 1 41° 09' 39,92" 68° 35' 00,85" 2 41° 09' 38,42" 68° 34' 59,05" 3 41° 09' 29,73" 68° 34' 57,42" 5 41° 09' 29,49" 68° 35' 01,14" 6 41° 09' 32,89" 68° 35' 01,14" 7 41° 09' 32,89" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"	№1Б	5	41° 30' 26,56"	69° 08' 20,88"	0,1434/14,34
8		6	41° 30' 23,81"	69° 08' 14,13"	
9 41° 30′ 47,88″ 69° 07′ 56,60″ 1 41° 31′ 51,98″ 69° 08′ 27,06″ 2 41° 31′ 50,59″ 69° 08′ 39,21″ 3 41° 31′ 39,66″ 69° 08′ 36,98″ 4 41° 31′ 38,93″ 69° 08′ 43,38″ 5 41° 31′ 54,01″ 69° 08′ 50,41″ 6 41° 32′ 10,52″ 69° 08′ 30,82″ 1 41° 09′ 39,92″ 68° 35′ 00,85″ 2 41° 09′ 29,73″ 68° 34′ 59,05″ 3 41° 09′ 29,49″ 68° 35′ 01,14″ 5 41° 09′ 32,89″ 68° 35′ 11,14″ 6 41° 09′ 35,19″ 68° 35′ 13,49″ 7 41° 09′ 39,05″ 68° 35′ 13,49″ 9 41° 09′ 40,46″ 68° 35′ 08,72″ 10 41° 09′ 40,46″ 68° 35′ 08,72″		7	41° 30' 31,97"	69° 08' 10,05"	
1 41° 31' 51,98" 69° 08' 27,06" 2 41° 31' 50,59" 69° 08' 39,21" 3 41° 31' 39,66" 69° 08' 36,98" 4 41° 31' 38,93" 69° 08' 43,38" 5 41° 31' 54,01" 69° 08' 50,41" 6 41° 32' 10,52" 69° 08' 30,82" 1 41° 09' 39,92" 68° 35' 00,85" 2 41° 09' 38,42" 68° 34' 59,05" 3 41° 09' 29,73" 68° 34' 57,42" 5 41° 09' 29,49" 68° 35' 01,14" 6 41° 09' 32,89" 68° 35' 01,14" 7 41° 09' 32,89" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,91" 8 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		8	41° 30' 43,60"	69° 07' 56,41"	
Nola-P 2		9	41° 30' 47,88"	69° 07' 56,60"	
Nº1A-P 3		1	41° 31' 51,98"	69° 08' 27,06"	
Nº1A-P 4		2	41° 31' 50,59"	69° 08' 39,21"	
No 10A A		3	41° 31' 39,66"	69° 08' 36,98"	0.2400/24.00
6 41° 32' 10,52" 69° 08' 30,82" 1 41° 09' 39,92" 68° 35' 00,85" 2 41° 09' 38,42" 68° 34' 59,05" 3 41° 09' 29,73" 68° 34' 54,68" 4 41° 09' 28,28" 68° 34' 57,42" 5 41° 09' 29,49" 68° 35' 01,14" 6 41° 09' 32,89" 68° 35' 08,17" 7 41° 09' 35,19" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"	№1A-P	4	41° 31' 38,93"	69° 08' 43,38"	0,2499/24,99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	41° 31' 54,01"	69° 08' 50,41"	
2 41° 09' 38,42" 68° 34' 59,05" 3 41° 09' 29,73" 68° 34' 54,68" 4 41° 09' 28,28" 68° 34' 57,42" 5 41° 09' 29,49" 68° 35' 01,14" 6 41° 09' 32,89" 68° 35' 08,17" 7 41° 09' 35,19" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		6	41° 32' 10,52"	69° 08' 30,82"	
3 41° 09' 29,73" 68° 34' 54,68" 4 41° 09' 28,28" 68° 34' 57,42" 5 41° 09' 29,49" 68° 35' 01,14" 6 41° 09' 32,89" 68° 35' 08,17" 7 41° 09' 35,19" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		1	41° 09' 39,92"	68° 35' 00,85"	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	41° 09' 38,42"	68° 34' 59,05"	
5 41° 09' 29,49" 68° 35' 01,14" 6 41° 09' 32,89" 68° 35' 08,17" 7 41° 09' 35,19" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		3	41° 09' 29,73"	68° 34' 54,68"	
№10A 6 41° 09' 32,89" 68° 35' 08,17" 7 41° 09' 35,19" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		4	41° 09' 28,28"	68° 34' 57,42"	
Nº10A 6 41° 09' 32,89" 68° 35' 08,17" 7 41° 09' 35,19" 68° 35' 13,91" 8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		5	41° 09' 29,49"	68° 35' 01,14"	0.0061/0.61
8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"	№ 10A	6	41° 09' 32,89"	68° 35' 08,17"	0,0901/9,01
8 41° 09' 36,25" 68° 35' 13,49" 9 41° 09' 39,05" 68° 35' 11,05" 10 41° 09' 40,46" 68° 35' 08,72"		7		•	
10 41° 09' 40,46" 68° 35' 08,72"		8	41° 09' 36,25"	68° 35' 13,49"	
		9	41° 09' 39,05"	68° 35' 11,05"	
		10	41° 09' 40,46"	68° 35' 08,72"	
	Итого: 3 участка	-	-	-	0,4894/48,94

Схемы участков с расположением разведочных скважин приводятся ниже на основе космоснимков (рис. 1.2-1.4)

- € с-1(1)местоположение и номер разведочной скважины, в скобках -
 - , угловые точки участка;
 - граница (контур) участка

Рис 1.2 Схема участка №1Б с расположением скважин

- © с-1(1)местоположение и номер разведочной скважины, в скобках угловые точки участка;
 - граница (контур) участка

Puc 1.3 Схема участка №1A-Р с расположением скважин

 $lacktriangledown_{c-1(1)}$ местоположение и номер разведочной скважины, в скобках -

угловые точки участка;

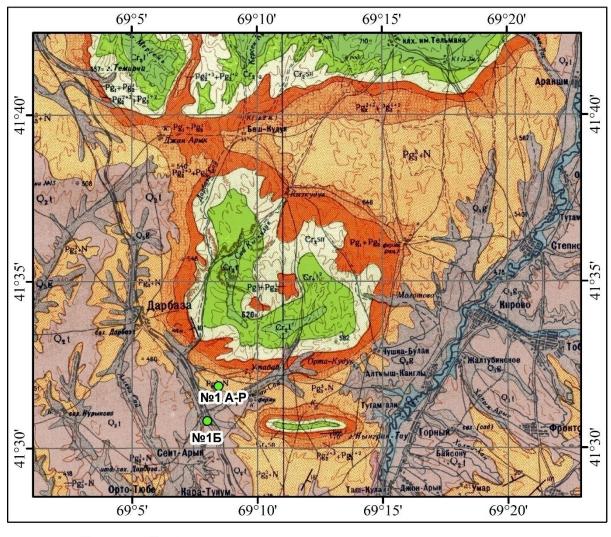
- граница (контур) участка

Puc 1.4 Схема участка №10A с расположением скважин

Жилых массивов, промышленных зон, лесов сельскохозяйственных угодий, селитебных территорий, зон отдыха, территории заповедников, ООПТ, музеев, памятников архтектуры, санаториев, домов отдыха и т.д., граничащих с проектируемыми участками нет.

Срок разработки участков - 2 года (2025-2026 гг.).

Число рабочих дней в году -252. Продолжительность рабочей смены 7 часов, количество рабочих смен в сутки -2. Для отдыха и приема пищи, будут использоваться передвижные вагончики.

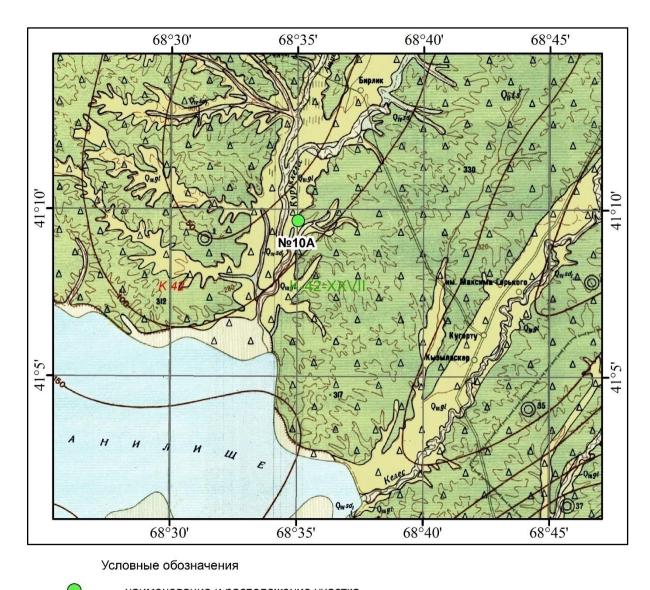

Учитывая характер работы, строительство зданий и сооружений на участках добычи не предусматривается. Количество работающих –33 чел.

II. Геологическое строение участков

В региональном плане район работ (расположения участков) находится в пределах аккумулятивной равнины Сырдарьинской впадины.

В геологическом строении территории *(рис. 2.1-2.3)*, юго-западной части листа K-42-XXII и северной части листа K-42-XXVII, принимают участие меловые, третичные и четвертичные отложения, описанные ниже.

Детальное описание четвертичных отложений, к которым приурочены участки приведено ниже.


Условные обозначения

- наименование и расположение участка
 №1Б

Рис. 2.1 Геологическая карта расположения участков №1Б и №1А-Р. Выкопировка из геологической карты К-42-ХХІІ. Масштаб 1:200 000

Четвертичные отложения.

Четвертичные отложения широко распространены на площади района и континентальными-аллювиальными представлены исключительно делювиально-пролювиальными осадками. Аллювий горных рек образован галечниками конгломератами современных долин и древних делювиальные И пролювиальные образования представлены лёссом лёссовидными мелкозернистыми осадками вблизи горных склонов с линзами гравия и щебня.

— - наименование и расположение участка №10A

Рис. 2.2 Геологическая карта расположения участка №10А. Выкопировка из геологической карты K-42-XXVII. Масштаб 1:200 000

Среднечетвертичные отложения. Ташкентский комплекс (Q_2t)

Наиболее широкое развитие среди четвертичных отложений имеют отложения ташкентского комплекса. Они представлены главным образом лёссом, супесями и суглинками лёссовидного облика, иногда с прослоями пылеватого мелкозернистого песка, галечниками и конгломератами в основании. К этом комплексу отнесены участки отложения участков №1Б и №1А-Р

Отложения ташкентского комплекса залегают на размытой поверхности нанайского комплекса и неогеновых отложений.

Ташкентская терраса в горах находит свое продолжение в ряде террас, выделенных Н.И. Толстихиным, Е.В. Ивановым, Ю.А. Скворцовым и Н.П. Васильковским (1938, 1951). К ним относятся ІІ и І надугамские, угамская, сыджакская и кызыл-суйская террасы. На равнине все эти террасы сливаются в единый покров и образуют основную толщу (в основном лёссового) шлейфа

Приташкентского района. Местами под воздействием новейших тектонических движений на равнине в толщах отложений ташкентского комплекса имеют место локальные поверхности размыва, но все они обычно носят узко местный характер.

В западной части Чулей под песчаным массивом Алка-Кулькум отложения ташкентского комплекса представлены более грубым составом. Здесь преобладают супеси и суглинки лёссовидного облика, содержащие прослои мелкозернистого пылеватого песка в виде линз, которые часто выклиниваются по простиранию.

Мощность конгломератов ташкентского комплекса на описываемой территории достигает 1,8 м, за пределами описываемой площади мощность их увеличивается до 20-25 м и более.

В долине р. Сырдарьи отложения ташкентского комплекса вскрываются под более молодыми на глубине свыше 40 м. Представлены они пепельно-серыми мелкозернистыми аллювиальными песками, с прослоями иловатого суглинка и крупнозернистого песка с гравием. Мощность их здесь не превышает 10 м.

Рис.2.3 Условные обозначения к геологическим картам.

Верхнечетвертичные отложения. Голодностепский комплекс (Q_3g).

Отложению голодностепского комплекса на описываемой площади предшествовал значительный размыв, в процессе которого в Чулях и в предгорной равнине были образованы долины, заполненные отложениями

голодностепского комплекса. К этому комплексу отнесены отложения участка №10A.

Отложения ЭТОГО комплекса представлены аллювиальными, пролювиальными и делювиальными образованиями и их переходными группами. отложения голодностепского комплекса представлены осадками хуысанской террасы (выделенной Н.И. Толстихиным), местами широко распространенной. В описываемом районе эта терраса продолжается довольно узкими прерывающимися полосами по долинам сухих логов. Значительная часть отложений голодностепского комплекса оказалась размыта последующей эрозией. Этим, по-видимому, и объясняется незначительное их развитие по долинам рр. Келес и Курук-Келес.

В долине р. Сырдарьи отложения голодностепского комплекса погребены под отложениями сырдарьинского и вскрываются лишь у западной рамки листа скважинами на глубине 30-32 м. Они залегают на размытой поверхности отложений ташкентского комплекса и континентальных верхнетретичных отложений (Pg₃sm-N) и представлены серым песком, с линзами сизовато-серого суглинка, иловатой глины и крупнозернистого песка. В виде включений у основания толщи встречаются зерна гравия. Мощность их не превышает 10 м.

Современные отложения. Сырдарынский комплекс (Q_4s) .

Отложения сырдарьинского комплекса являются наиболее молодыми образованиями четвертичного покрова. Они слагают пойму, I и IIнадпойменные террасы Сырдарьи и соответствующие им террасы всех логов, простирающейся к югу Чулей и пролювиальной равнины и имеют здесь повсеместное распространение.

Среди указанных отложений наиболее широкое распространение и наибольшую мощность имеют отложения абайской террасы. Они слагают основную часть сырдарьинского комплекса на равнинных пространствах Приташкентского района и выделяются как наиболее ранние образования

Участки строительных грунтов, имеют разные площади и конфигурацию. Ниже приводится краткая характеристика геологического строения участков:

- Участок №1Б. По отношению к железной дороге «Дарбаза — Государственная граница с Узбекистаном», участок находится в пределах участка Дарбаза-Сарыагаш, в 150 м вправо от ж/д линии, на расстоянии 2 км севернее посёлка Алгабас.

Конфигурация участка — многоугольник, вытянутый в юго-восточном направлении, со сторонами 90-175X875-880 м, площадью 14,34 га. (рис.1.2, 2.4).

В геоморфологическом отношении участок располагается на слабовсхолмлённой, слабонаклонной на северо-запад поверхности. Относительные превышения до 18,7 метров (абсолютные отметки – 422,0-403,3м).

Продуктивная толща участка сложена среднечетвертичными (Q_2t) суглинками твёрдыми, полутвердыми, дресвяными твердыми, мощностью 3,4-3,8 м.

Перекрываются продуктивные образования почвенно-растительным слоем и некондиционными суглинками тугопластичными, мощностью от 0,2 до 0,6м.

П	U	10 1 E	~ ^	1
Полсчет спелних	мошностей по	VUACTKV NOIL T	риведен в таблице 2.	
ттоде тет ередиил	мощностен по	y luciny starb in	риводон в таблице 2.	т.

NºNº		мощность родуктивной толщи, м		Мощность вскрыши,м	
скв.	суглинок	всего	ПРС	суглинок	Всего,м
1	2	3	4	5	6
1	3,8	3,8	0,2	-	0,2
2	3,8	3,8	0,2	-	0,2
3	3,8	3,8	0,2	-	0,2
4	3,8	3,8	0,2	-	0,2
5	3,8	3,8	0,2	-	0,2
6	3,5	3,5	0,2	0,3	0,5
7	3,4	3,4	0,2	0,4	0,6
8	3,8	3,8	0,2	-	0,2
9	3,8	3,8	0,2	-	0,2
10	3,8	3,8	0,2	-	0,2
сумма	37,3	37,3	2,0	0,7	2,7
среднее	3,73	3,73	0,20	0,07	0,27

Подстилающие образования выработками не вскрыты. Грунтовые воды не встречены.

Измеренные ресурсы (Measured) составляют - 534,88 тысм³. За вычетом потерь 20,22 тысм³ (табл. 3.8.1) доказанные запасы (Proved) составляют - 514,66 тысм³. Объем вскрыши - 38,72 тысм³.

- Участок №1А-Р. По отношению к железной дороге «Дарбаза — Государственная граница с Узбекистаном», участок находится в пределах участка Дарбаза-Сарыагаш, в 1,3 км влево от ж/д линии, на расстоянии 1 км юговосточнее посёлка Ердаулет.

Конфигурация участка — многоугольник г-образной формы, со сторонами от 280 м до 680 м, площадью 24,99 га. (рис. 1.3, 2.5).

В геоморфологическом отношении участок располагается на слабовсхолмлённой, слабонаклонной на юг поверхности. Относительные превышения до 18.9 метров (абсолютные отметки -428.9-410.0 м).

Продуктивная толща участка сложена среднечетвертичными (Q_2t) суглинками твёрдыми, полутвердыми, твердыми с дресвой, мощностью 2,0-3,8 м, дресвяным грунтом, мощностью 1,5м.

Перекрываются продуктивные образования почвенно-растительным слоем, мощностью 0,2м.

Подсчет средних мощностей по участку №1А-Р приведен в таблице 2.2

NºNº		мощность продуктивной толщи, м		
скв.	суглинок	дресва	всего	ПРС
1	2	3	4	5
1	2,5	-	2,5	0,2
2	3,8	1	3,8	0,2
3	2,8	1	2,8	0,2
6	3,3	1	3,3	0,2
7	2,4	1	2,4	0,2
8	2,0	1	2,0	0,2
9	3,8	1	3,8	0,2
10	2,3	1,5	3,8	0,2
11	2,8	1	2,8	0,2
12	3,8	1	3,8	0,2
13	3,8	-	3,8	0,2
сумма	33,3	1,5	34,8	2,2
среднее	3,03	0,14	3,17	0,20

Продуктивные образования подстилаются глиной твердой с дресвой, вскрытой мощностью 0,0-1,8 м. Грунтовые воды на участке не вскрыты.

Измеренные ресурсы (Measured) составляют - 792,18 тысм³. За вычетом потерь 20,75 тысм³ (табл. 3.8.1) доказанные запасы (Proved) составляют - 771,43 тысм³. Объем вскрыши - 49,98 тысм³.

- **Участок №10А.** Участок находится в пределах участка Сарыагаш-Мактаарал, на расстоянии 7,8 км юго-западнее посёлка Бирлик.

Конфигурация участка — многоугольная, со сторонами от 34 до 287м, площадью 9,61 га. (puc.1.4, 2.6).

В геоморфологическом отношении участок располагается на относительно всхолмлённой поверхности. Относительные превышения до 14 метров (абсолютные отметки – 269-283 м).

Продуктивная толща участка сложена верхнечетвертичными (Q_3gl) отложениями в виде суглинка твердого, мощностью 1,4-15,5 м. Разведка проведена до горизонта 268,0 м.

Перекрываются продуктивные образования почвенно-растительным слоем, мощностью 0,2 м.

Подсчет средних мощностей по участку №10А приведен в таблице 2.3.

<u>№№</u> скв.	мощность продуктивной толщи, м		мощность вскрыши, м
CKD.	Суглинок всего		ПРС
1	2	3	4
1	3,3	3,3	0,2
2	1,9	1,9	0,2

3	1,5	1,5	0,2
4	1,4	1,4	0,2
5	1,7	1,7	0,2
6	3,1	3,1	0,2
7	4,2	4,2	0,2
8	5,3	5,3	0,2
9	8,1	8,1	0,2
10	11,3	11,3	0,2
11	11,0	11,0	0,2
12	6,6	6,6	0,2
13	15,5	15,5	0,2
сумма	74,9	74,9	2,6
среднее	5,76	5,76	0,20

Подстилающие образования выработками не вскрыты. Грунтовые воды на участке не вскрыты.

Измеренные ресурсы (Measured) составляют - 553,68 тыс м³. За вычетом потерь 27,96 тыс м³ (табл. 3.8.1) доказанные запасы (Proved) составляют - 525,72тыс м³. Объем вскрыши - 19,22 тыс м³.

Качественные показатели литологических разностей грунтов приведены ниже.

Суглинки, являясь разновидностью глинистого грунта, связного подкласса вскрыты на всех трёх участках.

Характеризуются числом пластичности, принимающим средние от 7,1-11,6 (лёгкие).

По относительному содержанию органических частиц суглинки относятся к минеральным, т.к. органические частицы отсутствуют.

Содержание песчаной фракции варьирует в среднем от 52,0% до 75,8%, что позволяет характеризовать суглинки как песчанистые (\geq 40%).

В суглинках участка №1Б (скв.-6) присутствует значительное количество щебенисто-дресвяной составляющей - 33,8%, - вследствие чего, суглинки классифицируются как дресвяные (от 25 до 50% вкл.). На участке №1А-Р вскрыты суглинки с содержанием щебенисто-дресвяной составляющей от 15,2 до 16,6%, классифицированные как с дресвой (от 15 до 25%).

По показателю текучести суглинки продуктивной толщи — твёрдые (<0) и полутвёрдые (0,04-0,14).

Средние значения природной влажности варьируют от 3,4 до 12,6%.

Плотность грунта — от 1,57 г/см³ до 2,02 г/см³; скелета — от 1,50 г/см³ до 1,73 г/см³, плотность частиц грунта — от 2,70 г/см³ до 2,71 г/см³.

Степень коррозионной активности к стали — средняя (22,1-43,1 ом/м) и высокая (2,7-18,1 ом/м).

По результатам водной вытяжки суглинки от неагрессивных до сильноагрессивных. Тип и степень засоления хлоридное, сульфатное среднее и слабое.

Объёмный вес естественного грунта 1,63-2,02 г/см³; скелета 1,56-1,85 г/см³. Оптимальная влажность уплотнённого грунта от 15,0 до 20,3%; объёмный вес уплотнённого грунта от 1,99 до 2,10 г/см³, скелета уплотнённого грунта от 1,64 до 1,83 г/см³, при требуемом, при: K-0,95-1,56-1,74г/см³; K-0,98-1,61-1,79 г/см³. Коэффициент относительного уплотнения при этом составит 0,92-1,12/0,92-1,15.

Суглинки могут использоваться для отсыпки земляного полотна железной дороги. Должна постоянно контролироваться влажность. При отклонениях естественной влажности суглинка от оптимальной, необходимо производить их сушку или увлажнение.

Дресвяные грунты, являясь разновидностью крупнообломочного грунта, дисперсного класса, несвязного подкласса, осадочного типа, вскрыты на участке $Nollar_2$ 1.

Среднее содержание частиц размером от 2 до 200 ммсоставило -57,8%. В связи с содержанием фракции >2 мм более 50% - грунт отнесён к дресвяному.

Природная влажность составляет 9,9%.

В связи с содержанием фракции <0,1 мм -3,6% (менее 15%), грунт является дренирующим (>0,5 м/сутки).

Степень коррозионной активности к стали – высокая (удельное сопротивление 5,7 ом/м).

По результатам водной вытяжки грунты сильноагрессивные, по степени засоления грунты незасоленные.

Дресвяный грунт может использоваться для сооружения земляного полотна без ограничений.

По радиационно-гигиенической оценке, продуктивные образования обладают эффективной удельной активностью: участок №1Б -74,0±18Бк/кг; участок №1А-Р - 81,0±20Бк/кг; участок №1ОА - 62,0±18Бк/кг и отвечают требованиям гигиенических нормативов «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» утвержденным Приказом Министра Здравоохранения РК №ДСМ-71 от 02.08.22г.).

III. Горная часть

Таблица 3.1 График погашения Доказанных Минеральных запасов ((Proved)) по годам

No	Цанманаранна	Запасы	Год	ды/ %
п/ п	Наименование участка	тыс.м ³	2025Γ/50	2026Γ/50
1	№1Б	514,66	257,33	257,33
2	№1A-P	771,43	385,71	385,72

3	№10A	525,72	262,86	262,86
	Всего	1811,81	905,90	905,91

3.1 Гидрогеологические и горно-геологические условия, обоснование способа разработки

Гидрогеологические условия разработки участков оцениваются по обводненности горных выработок (карьеров), техноэкономическим показателям борьбы с водопритоком и мероприятиями по охране окружающей среды.

Подземные воды до глубины проведения разведки, а в дальнейшем и отработки по участкам - не выявлены. Глубина отработки участков ожидается: по участку №1Б от 3,6 м до 4,0 м (средняя -3,73 м); по участку №1А-Р от 2,2 м до 4,0 м (средняя -3,17 м); по участку №1ОА от 1,6м до 15,7м (средняя -5,76 м до горизонта 268 м).

Приток воды в карьеры за счет дренирования подземных вод не ожидается и может происходить только за счет выпадения атмосферных осадков и снеготаяния.

Гидрогеологические условия участков следует считать простыми.

Для определения водопритока в карьеры, принимаем максимальную сумму годовых осадков — 192.9 мм.

Исходя из того, что временной период, формирующий объем вод паводкового периода, это ноябрь - март, т.е. за 5 месяцев аккумулируется 139,4 мм. (0,1394 м) осадков.

Расчет притока воды за счет ливневых осадков, выпадающих непосредственно на площади карьера, выполнен исходя из среднего значения осадков за апрель-октябрь, среднее количество (сумма) осадков за апрель-октябрь -53,5 мм (0,0535 м).

Расчет притока воды в паводковый период за счет снеготаяния атмосферных (твердых) осадков, выпадающих непосредственно на площадь карьера, выполнен по формуле 3/1:

$$Q = \frac{F*N}{T} (3/1)$$

где:

Q– водоприток в карьер, м 3 /сут;

F – площадь карьера по верху;

N – максимальное количество эффективных осадков (0,1394м);

T — период откачки снеготалых вод, принимается равным 15 суткам (средняя продолжительность таяния снега).

Величина возможного водопритока за счет ливневых дождей (за период апрель-октябрь определяется по формуле (3/2):

$$Q = \frac{F*N}{T} (3/2)$$

где:

F - площадь карьера по верху.

N - максимальное количество эффективных осадков (0,0535м);

Т-количество суток теплого периода – 210

Результаты расчета водопритоков в карьеры приведены ниже, в таблице 3.1.1.

Хозяйственно-питьевое водоснабжение на период отработки участков будет производиться из водопроводных сетей поселков Алгабас, Ердаулет, Бирлик.

Результаты расчета водопритоков в карьеры

Наименование Площадь водоприток $м^3/час$ M^3/cyT участка карьера л/сек 5 За счет таяния твердых стоков №1Б 143400 1332,7 15,4 55,5 249900 №1A-P 2322,4 96,8 26,9

893,1

37.2

10.3

Разовый приток за счет ливневых дождей №1Б 143400 36,5 1,5 0,4№1A-P 249900 63,7 0,7 2,6 96100 0,3 №10A 24,5 1.0

96100

Горно-геологические условия продуктивных и вскрышных образований представляются простыми и благоприятными для разработки открытым, механизированным способом, без предварительного рыхления:

1. залегание субгоризонтальное;

№10A

- 2. рельеф слабо расчлененный, с незначительными превышениями;
- 3. глубина отработки средняя от 3,17 до 5,76 м;
- 4. вскрышными породами является почвенно-растительный слой, по трудности разработки относящийся к «9а», мощностью 0,1-0,2 м;
 - 5. категории по трудности экскавации I (суглинки), -II (дресвяный грунт);
- 6. категории и способы разработки грунта I-IV (ручной способ отработки и механизированный);

Селективная отработка не предусматривается.

В таблице 3.1.2 приведено распределение грунтов по трудности их разработки.

Таблица 3.1.1

Распределение грунтов по трудности разработки

Наименование продуктивных образований	Наименование участка	Группа разработки
1	2	3
Суглинок	№1Б, №1А-Р, №10A	35в
Дресвяный грунт	№1A-P	14

3.2 Вскрытие запасов

Планом принят следующий порядок ведения горных работ по участкам:

- снятие и перемещение пород вскрыши на начальном этапе отработки в бурты (в контуре горного отвода), с последующим перемещением во временный внутренний отвал на отработанной площади карьеров.
- выемка (снятие) продуктивных образований (грунта) экскаватором и погрузка в автотранспорт;
- транспортировка материала к участку возведения земляного полотна (строительным участком);

Основные параметры вскрытия:

• вскрытие и разработка участков (месторождений) будет производиться одним уступом;

высота добычного уступа – до 5 метров;

- проходка разрезной траншеи шириной 19,0 м. исходя из технических характеристик экскаватора, при условии максимального радиуса копаниясоставляющего 9,5м, рабочего угла откоса борта 40° и небольшой высоте добычного уступа;
 - карьеры по объему добычи относятся к мелким [2] (§ 2.1.5.). Показатели и параметры элементов разработки приведены в таблице 3.2.1 Таблица 3.2.1

Параметры разработки карьеров

No	Vo		эриссти			
п/п	Наименование показателей	Ед. изм.	№1Б	№1A-P	№10A	Всего
1	2	3	4	5	6	7
1	Угол рабочего уступа карьера	град.	40	40	40	40
2	Угол устойчивого уступа карьера	град.	35	35	35	35
3	Площадь	га	14,34	24,99	9,61	48,94
4	Высота уступа	M	3,73	3,17	5,76	
1	2	3	4	5	6	7
5	Коэффициент разрыхления	M^3/M^3	1,2	1,2	1,2	1,2
6	Ресурсы	T. M ³	534,88	792,18	553,68	1880,74

7	Потери	т.м ³	20,22	20,75	27,96	68,93
8	Объем добычи (запасы)	т.м ³	514,66	771,43	525,72	1811,81
9	Вскрыша	T.M ³	38,72	49,98	19,22	107,92

3.3. Вскрышные работы

Вскрышные породы участков, представленные супесчано-суглинистыми, слабо гумусированными образованиями, с корнями растений мощностью 0.2 м составляют в объеме 97.88 тыс.м³. Кроме того по участку №1Б в скважинах №6 и №7 под почвенно- растительным слоем вскрыт слойтугопластичных суглинков мощностью 0.3-0.4 м объемом 10.04 тыс.м³. Общий объем вскрыши составляет 107.92 тыс.м³.

Данные образования бульдозерами Т-130 на начальном этапе отработки собираются в бурты, а затем при создании отработанного пространства формируются отвалы внутреннего заложения. В дальнейшем вскрышные образования используются при рекультивации карьера.

Данная схема уменьшает затраты как по вывозу вскрышных пород за пределы карьеров во временный отвал, так и по их ввозу из отвала в отработанный карьер для рекультивации, кроме того, позволит не вовлекать дополнительные территории под размещение вскрышных пород.

Удаление годового объема вскрышных пород производится пропорционально добычным работам

3.4 Добычные работы

Ведение добычных работ по участкам предусматривается с применением горного и транспортного оборудования, соответствующего требованиям безопасности согласно Закону РК «О безопасности машин и оборудования», подтвержденного сертификатами или декларацией соответствия Таможенного союза и имеющего разрешения к применению на территории Казахстана.

Ведение добычных работ по участкам предусматривается с применением одноковшового экскаватора с обратной лопатой ЕТ-25, погрузкой на автосамосвалы HOVOZZ3257 N3847A грузоподъемностью 25тн. (строительного участка), с последующей доставкой материала к месту назначения (участку строительства железной дороги).

На первом этапе добычных работ экскаватор обратной лопатой формирует разрезную траншею шириной 19 м., отрабатывая запасы на всю мощности продуктивной толщи по всей длине (ширине) карьера, с оставлением съезда (заезда) в карьер шириной 8 м и уклоном 0,15%. Съезд (заезд) в карьер гасится в последний месяц отработки

Безопасное расстояние до края выработанного пространства, на которое может подъезжать любое транспортное средство, в том числе и экскаватор, рассчитывается по формуле:

$$\Pi_6 = H_*(\text{ctg}\phi\text{-ctgd}), \quad (3.4.1)$$

где:

 Π_{6} – ширина зоны безопасности;

H-высота уступа (расчет произведен по максимальной высоте уступа-5,76 м.);

ф – угол устойчивого борта карьера (см. табл.3.4.1);

d – угол рабочего уступа карьера (см. табл. 3.4.1)

Таблица.3.4.1

Таблица расчета ширины зоны безопасности

	Угол устойчивого	Угол	Расчетные	Предохр.
Наименование		рабочего	показатели ширины	вала
материала	уступа,	•	полосы безопасности	(высота-В
матернала	уступа, град., ф	уступа, град., d	$(\Pi_{6)}$	ширина-
			для H = 5,76	Ш)
глинистый,	тый,			В - не
щебенистый	35	40	1,3	менее 1,0м
грунт				Ш - 1,5м

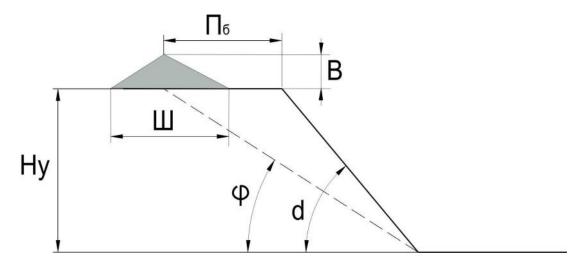


Рис.3.4.1 Схема уступа

При разработке месторождений (участков), геолого-маркшейдерской службе следует проводить наблюдения, предусмотренные «Инструкцией по наблюдению за деформациями бортов, откосов уступов и отвалов на карьерах и разработке мероприятий по их устойчивости». По результатам наблюдений, при необходимости, проводить корректировку углов наклона бортов карьеров.

3.5 Транспортировка горной массы из карьеров

Транспортировка горной массы из карьеров до места использования сырья будет осуществляться организацией непосредственно ведущей стрительство железной дороги, в связи, с чем автосамосвалы не входят в штат горного участка (карьеров). Техника, осуществляющая данный производственный представлена автосамосвалами HOWO ZZ3257 N3847 Агрузоподъемностью 25 тн. Незначительная глубина карьеров не предусматривает обустройства внутрикарьерных дорог.

3.6 Отвальное хозяйство

Временные породные отвалы по участкам грунта формируются после создания отработанного пространства карьеров на начальном этапе в непосредственной близости от въездной траншеи. При этом вскрышные породы из временных буртов начальной отработки перемещаются погрузчиком на отработанное пространство. В последующем вскрыша снимается и складируется параллельно добычным работам на выработанную площадь с отставанием на ~ 10 м., во избежание загрязнения продуктивных образований. Данная схема уменьшает затраты как по вывозу вскрышных пород за пределы карьеров во временные отвалы, так и по их ввозу из отвалов в отработанные карьеры для рекультивации, кроме того, позволит не вовлекать дополнительные территории под размещение вскрышных образований.

Площадки бульдозерных отвалов должны иметь по всему фронту разгрузки поперечный уклон не менее 3 градусов. Для ограничения движения машин задним ходом разгрузочные площадки должны иметь предохранительную стенку (вал) высотой не менее 1 метра для автомобилей грузоподъемностью свыше 10 тонн.

3.7 Вспомогательные работы

Для выполнения работ по зачистке рабочих площадок, подъездов к экскаватору, а также чистке подъездных дорог к карьерам от породы и снега принимается бульдозер и погрузчик. Пылеподавление предусматривается посредством орошения подъездных дорог и рабочей зоны два раза в смену поливочной машиной на базе КАМАЗ с емкостью резервуара 10 м³.

3.8 Показатели потерь и разубоживания

Проектные показатели эксплуатационных потерь по участкам апробируются в процессе добычи.

Теоретический расчет потерь при переводе Минеральных Ресурсов (Measured) в Минеральные Запасы (Proved) приведен в геологическом отчете.

При этом учитывались ниже перечисленные потери:

- в целях исключения засорения продуктивной толщи вскрышными породами при добыче, возникаютпотери полезного ископаемого при зачистке кровли залежи, которые зависят от площади вскрываемого полезного ископаемого и усредненной мощности дополнительно срезаемого слоя (0,01м);
- при транспортировке, разгрузке -0.4% от перевозимого полезного ископаемого [1] (*таблица 2.13.*) за минусом потерь при зачистке и в бортах карьеров;
- потери в бортах карьера зависят от мощности полезного ископаемого и периметра карьера.

Разубоживание полезного ископаемого принято равным нулю, так как внутренняя вскрыша отсутствует.

Расчет и показатели потерь при отработке запасов представлены в таблице 3.8.1.

Таблица 3.8.1

Расчет потерь на отработку участков грунта Потери Периметр борта карьера, проекция сечения, α, м Минеральные Ресурсы, Σ Тыс.м3 Мощность средняя, Горизонтальная Площадь В Транс-Зачист-% Всего портибортах ка ровка карьера 3 4 7 9 6 8 10 №1 Б 143400 534,88 3,73 2016 4,45 1,43 2,07 16,72 20,22 3,78 №1 A-P 249900 792,18 3,17 2530 3,78 3,10 15,15 20,75 2,62 2,50 №10 A 1259 2,11 96100 553,68 5,76 6,86 0,96 24,89 27,96 5,05 Итого по 3 участкам 489400 1880,74 4,89 7,28 56,76 68,93 3,66

3.9 Производительность, срок существования и режим работы карьеров

Режим работы предприятия:

- круглогодичный, 2 года;
- число рабочих дней в году -252;
- неделя прерывная с одним выходным днем;
- число смен в сутки -2;

продолжительность смены – 7 часов.

Развитие и планирование горных работ будет уточняться в зависимости от сложившегося графика основного строительства.

Календарный график горных работ представлен в таблице 3.9.1

Таблица 3.9.1 Календарный график горных работ

Год	Мин.	Потери	Добыча, тыс.м ³				
	ресурсы,	тыс.м ³	Мин.запасы	Вскрыша	горная		
	тыс.м ³		тыс.м ³		масса		
1	2	3	4	5	6		
		$\mathbf{y}_{\mathbf{q}}$	асток №1Б				
Всего	534,88	20,22	514,66	38,72	553,38		
2025	267,44	10,11	257,33	19,36	276,69		
2026	267,44	10,11	257,33	19,36	276,68		
		Уча	сток №1А-Р				
Всего	792,18	20,75	771,43	49,98	821,41		
2025	396,08	10,37	385,71	24,99	410,70		
2026	396,10	10,38	385,72	24,99	410,71		
		Уч	асток №10А				
Всего	553,68	27,96	525,72	19,22	544,94		
2025	276,84	13,98	262,86	9,61	272,47		
2026	276,84	13,98	262,86	9,61	272,47		
	Итого по 3 участкам						
Всего	1880,74	68,93	1811,81	107,92	1919,73		
2025	940,36	34,46	905,90	53,96	959,86		
2026	940,38	34,47	905,91	53,96	959,87		

3.10 Геолого-маркшейдерская служба

При ТОО «IntegraConstructionKZ», выполняющем работы по обустройству земляного полотна под железнодорожные пути (строительство «под ключ» железнодорожной линии Дарбаза — Государственная граница с Узбекистаном), имеется геолого-маркшейдерская служба.

В обязанности данной службы входит как геолого-маркшейдерское обслуживание работ связанных непосредственно с реконструкцией железной дороги, так и обслуживание карьеров настоящего Плана. В обязанности геолого-маркшейдерской службы входит учет движения запасов полезного ископаемого, отработанных пространств, потерь и разубоживания. Данной службой ведется маркшейдерская документация, журналы учета и отчетности при горных работах.

Кроме того, как уже было отмечено выше (гл. 3.4) геолого-маркшейдерской службе следует постоянно проводить наблюдения, предусмотренные «Инструкцией по наблюдению за деформациями бортов, откосов уступов и

отвалов на карьерах и разработке мероприятий по их устойчивости». По результатам наблюдений, при необходимости, проводить корректировку углов наклона бортов карьера.

IV. Горно-механическая часть

Для выполнения объёмов по приведенному порядку горных работ рекомендуются следующие типы горного и транспортного оборудования, соответствующие требованиям безопасности согласно Закону РК «О безопасности машин и оборудования», подтвержденных сертификатами или декларацией соответствия Таможенного союза и имеющими разрешение к применению на территории Казахстана (образцы рекомендуемой техники в приложении 2):

- бульдозер T-130 3 шт;
- \bullet фронтальный погрузчик Кировец К-3060 (емкость ковша 3,5м³) 3 шт;
 - экскаватор ET-25 (емкость ковша 1,25 м³) 3 шт;
- автосамосвал HOVOZZ3257N3847A (грузоподъемностью 25 тонн) 11 единиц (в штате строительного участка);
- поливочная машина на базе KAMA3 3 шт. (в штате строительного участка).
 - Дизельная электростанция ПСМ АД-30 3 шт.

Количество оборудования определено из расчета годового объема добычи, а именно 905,91тыс.м³.

Роль экскаватора сводится исключительно к разработке и погрузке грунта в автосамосвалы. Производительность одноковшового экскаватора и время необходимое для выполнения проектируемого объёма горных работ приведены в ниже следующих расчётах:

На - сменная норма выработки экскаватора при погрузке в автосамосвал

 T_{cm} - продолжительность смены, мин. - 420

 $T_{\text{п-}3}$ -время на выполнение подготовительно-заключительных операций, мин - 35

 $T_{\text{л-H}}$. - время на личные надобности, мин -10

 Q_{K} - объём горной массы в целике в одном ковше экскаватора, м $^{3}-0.9$

па- число ковшей, с учетом коэффициента разрыхления 1,33 - 8

 $T_{\text{п-c}}.\text{-}$ время погрузки в транспортные емкости, мин $-\,2.9$

 $T_{\rm y.n}$ - время установки автосамосвала под погрузку, мин -0.5

Суточная норма выработки экскаватора (две смены) при погрузке в автосамосвал - 1588 м³. Эта норма выработки обеспечивает выемку годового объема горной массы (905,91 тыс.м³) одним экскаватором в течение 570,5 рабочих дней, следовательно минимальное количество экскаваторов для отгрузки в течение года составит 2,3 единицы. В проекте принимается 3 единицы по одному на каждый участок.

Бульдозер выполняет работы по снятию маломощного материала внешней вскрыши и перемещению их в бурты, зачищает рабочую площадку для грунтовую дорогу для транспортировки грунта и вскрышных экскаватора, образований. В случае встречи экскаватором пород более плотных, в задачу бульдозера входит ИХ предварительное рыхление рыхлителем. Рекультивационные работы (равномерное распределение поверхности отработанной плоскости карьера ранее изъятого материала вскрышных пород), выполаживание уступа бортов карьера возлагаются также на бульдозер. В связи с небольшим объемом работ, расчет количества бульдозеров не приводится, а принимается за единицу на каждый участок.

Фронтальный погрузчик необходим для транспортировки пород вскрыши в отвал и обратно, может участвовать, при необходимости, в погрузке горной массы в автосамосвалы и зачистке рабочих поверхностей карьера. В связи с небольшим объемом работ, расчет количества фронтальных погрузчиков не приводится, а принимается также за единицу на каждый участок.

Автосамосвалы будут использоваться для транспортировки строительного грунта из забоя карьера на площадку основного строительства. Автосамосвалы входят непосредственно в состав участка по строительству. Ниже приводится расчет производительности автосамосвала.

Для транспортировки горной массы, из карьеров до участков капитального ремонта дорог, будут использованы автосамосвалы HOWO ZZ3257 N3847A грузоподъемностью 25тн.

<u>Расчет количества</u> автосамосвалов на максимальный годовой объем перевозки грунта

Количество рейсов в час, $P = (V \ge x \ 1,8) : 252,0:2:7,0:20,0 \ x \ 1,15$

где:

 V_{2} — годовой объем вывозимой с карьера горной массы, м³ ($V_{2} = 905910 \text{ м}^{3}$);

1.8 – усредненная объемная масса в целике, тн/м³;

252,0 - количество рабочих дней в сезоне (время работы экскаватора);

2 – количество смен в сутках;

7,0 — продолжительность рабочей смены, (6,5 часов перевозка горной массы +0,5 час на подготовку, проверку техники);

20,0— грузоподъемность с учетом к-та заполнения 25 х 0,8 = 20,0 тн;

1,15 – коэф. учитывающий время на погрузоразгрузочные работы.

P = (905910 x 1,8):252,0:2:7,0:20,0 x 1,15=26,6 рейсов/час

Продолжительность 1 рейса,

 $T = L:V+K_u$; T=12/40+5=23,0мин/рейс

Где

L – расстояние транспортировки в оба конца, 12км.;

V – средняя скорость движения, 40км/ч;

 K_u – время погрузо-разгрузочных работ

Количество машино-рейсов в час составит: 60:23=2,6

Потребное количество машин составит: 26,6/2,6=10,2 (принимаем 11 единиц).

V. Электротехническая часть

Отдаленность участков от действующих электроустановок, а также кратковременность работы на карьерах (в течение двух сезонов) делает нерациональным подведение электроэнергии отЛЭП для освещения карьеров, стоянки техники, и передвижного вагончика сторожей. В темное время суток работы на участке добычи строительных материалов не проводятся. В качестве источника освещения карьера, передвижного вагончика сторожей и стоянки техники будет использована дизельная электростанция. Расчет мощности дизельной электростанции приведен ниже.

Согласно требованиям технического регламента проектом принято общее освещение района ведения горных работ с минимальной освещенностью Emin=0,5 лк. Расчет ведется методом наложения изолюкс на район ведения горных работ.

Определить суммарный световой поток:

$$\sum F = \sum F_{MMH} \cdot S_{OC} \cdot k_3 \cdot k_{II} = 0.5 \cdot 2000 \cdot 1.4 \cdot 1.5 = 21000 \quad \text{AM}, (5.1)$$

Гле:

 Σ FMИН — требуемая освещенность для отдельных участков, Σ FMИН= 0,5 лк;

SOC – площадь освещаемого участка, $SOC = 20000 \text{ м}^2$;

k3 – коэффициент запаса, k3 = 1,4;

 $k\Pi$ – коэффициент, учитывающий потери света, $k\Pi$ = 1,5.

Освещение осуществляется светильниками типа $\Pi 3C-45$ с мощностью лампы 1000Bt.

Определяем требуемое количество прожекторов:

$$N_{MP} = \frac{\sum F}{F_{\pi} \cdot \eta_{MP}} = \frac{21000}{21000 \cdot 0.35} = 2.8 \approx 3 \quad um,$$
 (5.2),

Где:

 $F\Pi$ – световой поток лампы прожектора, $F\Pi$ = 21000 лм; $\eta\Pi P$ - к.п.д. прожектора, $\eta\Pi P$ = 0,35.

Высота установки прожектора:

$$h\Pi P2 = IMAX / 300 = 140000 / 300 = 22 M; (4.22),$$

где IMAX — максимальная сила света прожектора, IMAX = 140000 кд.

Необходимая мощность трансформатора (дизель-электростанции):

$$S_{TP} = \frac{F_{\pi} \cdot 10^{-3}}{\eta_C \cdot \eta_{oC} \cdot \cos \theta_{oC}} = \frac{21000 \cdot 10^{-3}}{0.95 \cdot 1 \cdot 1} = 22 \quad \kappa Bm;$$
(5.3)

Где:

 $\eta C - \kappa$.п.д. осветительной сети, $\eta C = 0.95$;

 η OC – к.п.д. светильников, η OC = 1;

 $\cos\theta$ OC – коэффициент мощности ламп, $\cos\theta$ OC = 1

Необходимо обеспечить сопротивление цепи заземления ≤ 4Ом [3](п.2299). Самый простой способ заключается в подключении провода сечением 4-6 мм к зазамляющей клеме на генераторе. Провод подсоединяется к медному или железному 1,5 м стержню, который можно забить в почву рядом с генератором.

Для освещения карьеров, стоянки техники и передвижного вагончика сторожа выбираем 6 дизельных электростанций ПСМ АД-30 с нижеприведенными параметрами (по одной на каждый участок):

- -номинальное напряжение 230-400 В;
- -мощность дизельной электростанции 30-34 кВт.

VI. Экономическая часть

6.1 Технико-экономическая часть

Исходя из объёма добычи, срока отработки участков, системы разработки, проектные решения по организации труда рабочих и управления производством приняты с учётом выполнения комплекса работ, предусмотренных технологическим процессом добычи грунта.

Общая численность производственного персонала определена, при круглогодичном режиме работы:

- -число рабочих дней в году -252;
- неделя прерывная с одним выходным днем;
- число смен в сутки -2;
- продолжительность смены 7 часов.

Штатное расписание работников горного участка (карьера) представлено ниже в таблице 6.1

Таблица 6.1 Штатное расписание работников горного участка

№	побочна маста профассии	ророди	кол-во	списочная численность, чел.			
п.п.			ед. тех-	1 смена	2 смена	Всего	
1	2	3	4	5	6	7	
1.	Машинист экскаватора	5	3	3	3	6	
2.	Машинист бульдозера	5	3	3	3	6	
3.	Машинист погрузчика	5	3	3	3	6	
4.	Горнорабочий-электрослесарь	оклад	-	3	-	3	
5.	Сторож	оклад	-	-	3	3	
	ИТОГО рабочі	AX:		12	12	24	
6.	Горный мастер	Оклад	-	3	3	6	
7.	Экономист-бухгалтер Оклад -		-	1*		1*	
8.	Участковый геолог Оклад -		1*		1*		
9.	Участковый маркшейдер Оклад -		1*		1*		
	ИТОГО ИТР	6	3	9			
	ВСЕГО работни	18	15	33			

Примечание: *Геологическое, маркшейдерское и бухгалтерскоэкономическое обслуживание, мелких карьеров осуществляется соответствующими специалистами производственных объединений, в состав которых они входят.

Обслуживающий персонал общий для всех видов работ. В обязанности ИТР карьера входит организация и контроль над ведением горных работ в целом по карьерам.

Основные технико-экономические показатели разработки 3 участков, приведены в таблице 6.2

 Таблица 6.2

 Основные технико-экономические показатели горного участка

No	№ участка	Объем, тыс.м ³					
<u>П</u> /П		Мин.	потари	Мин.	DOI:01 HHO	горная	
11/11		ресурсы	потери	запасы	вскрыша	масса	
1	2	3	4	5	6	7	
1	№1Б	534,88	20,22	514,66	38,72	553,38	
2	№1A-P	792,18	20,75	771,43	49,98	821,41	
3	№10A	553,68	27,96	525,72	19,22	544,94	
	Итого	1880,74	68,93	1811,81	107,92	1919,73	

Исходными данными для определения эффективности разработки участков послужили результаты геологоразведочных работ, технологических и

маркетинговых исследований, а также технические возможности «Недропользователя».

Приобретение горно-добычной техники не предусматривается т. к. таковая имеется у «Недропользователя», при необходимости часть недостающей горно-добычной техники будет арендована.

Затраты на добычу.

Расчет затрат на добычу грунта произведен прямым счетом исходя из производительности применяемого оборудования, годовой потребности в грунте строительного участка.

Затраты на добычу составляют – 43,5тенге/м³

Затраты на вскрышные работы составляют – 43,5тенге/м³

Примечание: Затраты без учета фонда заработной платы.

Таблица 6.3 Затраты на добычу 1м^3 горной массы

1 1	
Наименование	Величина
1	2
Экскавация тг/м³	14,0
Затраты материалов на добычу 1м³ горной массы в т.ч:	29,5
Γ CM, $T\Gamma$ / M^3	25,0
Запчасти, тг/м³	3,0
Общехозяйственные расходы	1,5
1	2
Итого затраты на добычу 1м³ грунта в тенге	43,5
Итого затраты на вскрышные работы 1м ³ в тенге	43,5

Фонд заработной платы

Годовой фонд заработной платы формируется из расчета 15,0 тенге на ${\rm M}^3$ горной массы.

Стоимость готовой продукции

К расчету ТЭО принята *условная стоимость* продукции карьера (внутри зачетная цена между горным и строительным участками при положительной рентабельности) -160 тенге/м³ грунта.

Налогообложение по недропользованию

Налогообложение предприятия предусматривается в соответствии с Налоговым законодательством Республики Казахстан.

Ставка налога на добычу продуктивных образований (глинистые и щебеночные грунты) принимается в размере: $0.015~\mathrm{MP\Pi}$ за $1.0\mathrm{m}^3$, (статья 748 Налогового кодекса). МРП на $2025\mathrm{г}$ - $3932~\mathrm{тенг}$ е, на $2026\mathrm{r}$ - $4325~\mathrm{тенг}$ е.

Специальные платежи и налоги недропользователей:

- подписной бонус в данном случае не уплачивается, так как право на добычу оформлено на основании коммерческого обнаружения (статья 725 Налогового кодекса);

- плата за пользование земельным участком на основании Акта временного пользования земельным участком из расчета 450 МРП за 1 км², (статья 563 Налогового кодекса);
- обеспечение обязательств по ликвидации (ст.219 п.1,2 Кодекса РК «О Недрах и недропользовании»).

Показатели рентабельности проекта

Оценка экономической эффективности разработки участков проводилась по следующим экономическим показателям, соответствующим требованиям общепринятой мировой практики экономической оценки месторождений полезных ископаемых:

- Чистая прибыль (прибыль валовая за минусом налоговых отчислений, не зависящих от прибыли).
- Денежные потоки (годовой денежный поток определяется как разница между полученным совокупным годовым доходом и затратами, произведёнными по деятельности, осуществляемой в рамках добычи).
- Срок окупаемости капитальных вложений (время, необходимое для покрытия затрат по проекту за счёт дохода от этого проекта).

Разработка участков является экономически эффективной при условной цене на продукцию (грунт для реконструкции железной дороги, внутри зачетная цена между горным и строительным участком) -155,0 тенге/м³.

Геолого-экономическая оценка эффективности разработки месторождений выполнялась, с целью определения только специальных налогов и платежей по недропользованию, так как расходы по добыче грунтов являются частью комплексных затрат по «Проекту строительство «под ключ» железнодорожной линии Дарбаза — Государственная граница с Узбекистаном» Участки (месторождения) будут разрабатываться независимо от рентабельности их освоения.

7.3 Ликвидация последствий недропользования

При прекращении права недропользования на добычу, Недропользователь 8 месяцев осуществить ликвидацию своей должен в срок не позднее деятельности, ЧТО означает удаление ИЛИ ликвидацию сооружений использованных в процессе деятельности Подрядчика оборудования, территории и приведение последней в состояние, пригодное для дальнейшего использования по прямому назначению. По истечении восьми месяцев после прекращения действия лицензии, не вывезенные с территории участка добычи твердые полезные ископаемые признаются включенными в состав недр и подлежат ликвидации в соответствии со статьей 218 Кодекса о недрах.

Как уже было отмечено выше, отработка запасов будет осуществляться карьерами, не выходящим за пределы контуров угловых точек площади, подсчета

запасов. Строительство временных зданий и сооружений планом горных работ не предусмотрено.

Воздействие открытой добычи на природный ландшафт проявляется, прежде всего, в полном изменении структуры поверхностного слоя земной коры. Вследствие этого, территории, нарушенные карьерами, в течение многих лет представляют собой открытые, лишенные всякой растительности участки, служащие источником загрязнения почвы, воздуха, воды. В сочетании со специфическим рельефом, образуемым в результате производственной деятельности карьера, они приобретают мрачный облик «индустриальных пустынь», характерных для многих добывающих районов.

Наиболее эффективной мерой снижения отрицательного влияния открытых горных разработок на окружающую среду, является своевременная рекультивация нарушенных земель, которая обеспечивает не только создание оптимальных ландшафтов с соответствующей организацией территории, флорой, фауной, но и способствует надежной охране воздушного бассейна и водных ресурсов. При этом, техническая рекультивация карьеров рассматривается как неотъемлемая часть процесса горного производства, а качество и организация рекультивационных работ – как один из показателей культуры производства.

В соответствии с нормативными документами ликвидация объектов недропользования осуществляется путем проведения технической и при необходимости биологической рекультивации нарушенных земель.

В связи с тем, что временно изъятые земли участков были использованы только как пастбища, а литературные данные и результаты анализов говорят о низкой плодородной ценности почв, настоящим планом рекомендуется проведение только технического этапа рекультивации отработанных карьеров.

Рассмотрим основные компоненты планирования ликвидации последствий недропользования на участке добычи общераспространенных полезных ископаемых в соответствии с ниже приведенной схемой (рис.7.3.1).

Цель ликвидации — возвращение участка недр в жизнеспособное состояние и насколько возможно, в состояние самодостаточной экосистемы, совместимой с окружающей средой и деятельностью человека.

Принципы ликвидации - представляют собой руководство по разработке задач ликвидации.

В основе ликвидации лежат следующие принципы: физической и химической стабильности, долгосрочного пассивного обслуживания, землепользования. Сущность принципов изложена ниже:

1) принцип физической стабильности, характеризующей любой объект участка недр, подлежащий ликвидации, отстающий после её завершения, в физически устойчивом состоянии, обеспечивающим то, что грунт не будет

разрушаться или оседать, либо сдвигаться от первоначального размещения под действием природных экстремальных явлений или разрушающих сил.

Ликвидация является успешной, если все физические структуры не представляют опасности для человека, животного мира, водной флоры и фауны, или состоянию окружающей среды;

2) принцип химической стабильности, характеризующий участок недр, подлежащий ликвидации, остающийся после её завершения, в химически устойчивом состоянии, когда химические вещества, выделяемые из таких компонентов, не представляют угрозу жизни и здоровью населения, диких животных и безопасности окружающей среды, в долгосрочной перспективе не способны ухудшить качество воды, почво-грунта и воздуха;

Рис. 7.3.1 Схема планирования ликвидации

3) принцип долгосрочного пассивного обслуживания, характеризующий любой объект участка недр, подлежащий ликвидации, остающийся после её завершения, в состоянии не требующим долгосрочного обслуживания.

Пребывание объектов участков недр, подлежащих ликвидации, в состоянии физической и химической стабильности служит показателем соответствия этому принципу;

4) принцип землепользования, характеризующий пребывание земель, затронутых недропользованием и являющихся объектом ликвидации, в состоянии, совместимом с другими землями, водными объектами, включая эстетический аспект.

Задачами ликвидации карьеров будут являться:

- ограничение доступа на объекты, для безопасности людей и диких животных;
- приведение бортов карьеров в физическое и геотехническое стабильное состояние;
- уровень запыленности безопасен для людей, растительности, водных организмов и диких животных.

Варианты ликвидации – набор альтернативных подходов к ликвидации каждого объекта участка недр.

Эти задачи можно решить по следующим вариантам:

Вариант 1. Блокировка путей доступа к открытому карьеру насыпями, чтобы не оказывать отрицательного влияния на нестабильные уклоны бортов карьера;

Вариант 2. Засыпка карьера с использованием пустых пород;

Вариант 3. Затопление карьера;

Вариант 4. Выполаживание бортов карьера до устойчивого состояния и покрытие отработанной поверхности и бортов карьера породами вскрыши, представленными слабогумуссированными суглинками и супесями с редкой корневой системой травянистых растений.

При реализации первого варианта могут быть решены задачи по ограничению доступа в карьер людей и диких животных, а также изоляция неустойчивых бортов карьера до их естественного обрушения до безопасного состояния.

Однако для осуществления этого варианта потребуется дополнительный объем грунта для обваловки карьера, при этом площадь самого карьера будет изъята из пастбищных угодий.

Вариант второй неприемлем, так как отсутствует инертный материал необходимый для засыпки.

Вариант третий также не осуществим по причине засушливого климата, дефицита влаги, наклонной поверхности дна карьера, хорошей водопроницаемости пород.

Четвертый наиболее предпочтительный вариант ликвидации карьера для достижения поставленных задач (а именно безопасного состояния для людей и

животных, стабильного состояния откосов и низкого уровня запыленности) предполагает нижеперечисленные мероприятия:

- снятие потенциально плодородного слоя почвы с площади карьера и площади выполаживания бортов карьера;
 - сглаживание откосов (бортов) карьера до угла 10°;
- нанесение потенциально плодородного слоя почвы (пород вскрыши) на подготовленную поверхность;
 - планировка поверхности;
 - уплотнение и прикатывание.

Схема мероприятий по ликвидации сводится к рекультивационным работам и приведена на рисунке 7.3.2

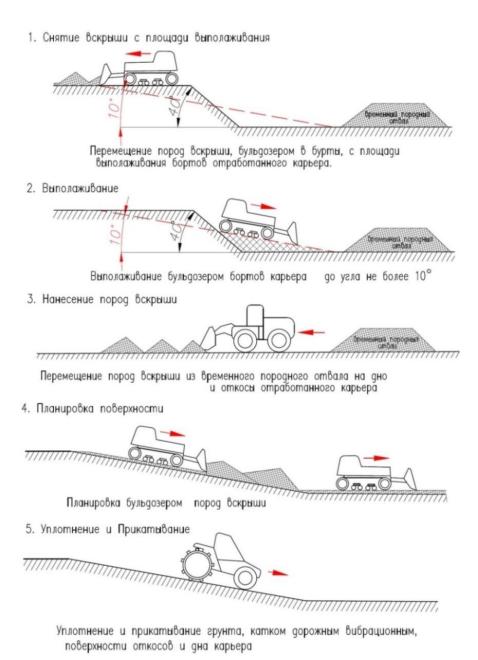


Рис. 7.3.2 Принципиальная схема рекультивации

Количественным критерием безопасного состояния для людей и животных, стабильного состояния откосов и низкого уровня запыленности служит угол выполаживания бортов карьера до 10° . Качественным критерием — визуальное соответствие микрорельефа окружающему ландшафту и самозарастание нарушенной и рекультивированной площади карьера степной (полупустынной) растительностью в течение 2 сезонов.

Более детально мероприятия будут рассмотрены в «Проекте рекультивации» разработанном в соответствии с приказом исполняющего обязанности Министра национальной экономики Республики Казахстан от 17 апреля 2015 года №346 «Об утверждении Инструкции по разработке проектов рекультивации нарушенных земель».

Ликвидация последствий операций на участке добычи будет считаться завершенной после подписания акта ликвидации лицом, право недропользования которого прекращено, и комиссией, создаваемой уполномоченным органом в области твердых полезных ископаемых из представителей уполномоченных органов в области охраны окружающей среды, промышленной безопасности, санитарно-эпидемиологического благополучия населения и местных исполнительных органов областей, городов республиканского значения, столицы, и собственником земельного участка или землепользователем, если ликвидация осуществляется на земельном участке, находящемся в частной собственности, постоянном или долгосрочном временном возмездном землепользовании.

Ниже приводятся ориентировочные расчеты объемов и затрат по предлагаемому варианту ликвидации карьеров.

Объемы работ по техническому этапу рекультивации напрямую зависят от объема вскрышных работ сформированных в процессе добычи (формирование отвалов вскрышных работ производится на этапе добычи), мощности вскрыши, мощности продуктивных образований, периметра карьера, ширины полосы выполаживания бортов карьера до угла 10°.

При вычислении планируемых объемов рекультивации использовались производные от формул треугольника в зависимости от мощности продуктивной толщи при выполаживании бортов карьера с 45°, 40°, 35° и 30° до 10° и основные параметры карьера, а именно:

```
tg(Б) - tg(В)
В= Н ------;
2tg(В) x tg(Б)
для 45° B=2,34H; для 40° B=2,24H; для 35° B=2,12H; для 30° В=1,97H
Ѕв=РхВ; Vв=РхВхh;
tg(Б) - tg(В)
Ѕ= H² ------;
δtg(В) x tg(Б)
для 45° S =0,58H²; для 40° S =0,56H²; для 35° S =0,53H²; для 30° S =0,49H²
```

 $V_{\Gamma p} = S_X P_X$; $S = S_0 + S_B$; $V = V_0 + V_B$, где:

Р – периметр карьера; В – ширина полосы выполаживания;

h – средняя мощность вскрыши; H – средняя мощность грунта;

 S_0 – площадь карьера; S_B – площадь полосы выполаживания;

S – общая площадь рекультивации;

 V_0 – объем вскрышных пород, сформированный на этапе добычи;

Vв – объем вскрышных пород, сформированный с полосы выполаживания;

V – общий объем вскрышных пород, участвующий в рекультивации;

Vгр — объем грунта, полученный при выполаживании бортов карьера до угла 10° ; tg(B) — тангенс устойчивого угла борта карьера $(45^\circ, 40^\circ, 35^\circ \text{ или } 30^\circ)$; tg(B) — тангенс угла выполаживания (10°)

Так как в процессе добычных работ планируется приведение устойчивых бортов карьеров до угла 35°, настоящим планом ликвидации предусматривается выполаживание бортов карьеров с угла 35° до угла 10°.

В связи с малыми объемами работ по перемещению грунта (пород временного отвала) и планировке на карьерах и учитывая, что технический этап рекультивации планируется провести в теплый период года, календарный план рекультивационных и ликвидационных мероприятий не составляется.

Приобретение дополнительной техники не предусматривается т. к. таковая в необходимом количестве имеется у «Недропользователя». Насыпной грунт прикатывается кулачковым катком, а планировка поверхности берм и дна карьера осуществляется бульдозером.

Технологические схемы производства работ выбирались с учетом факторов, влияющих на производительность конкретного комплекса машин и механизмов, обеспечивающие высокую интенсивность и оптимальные сроки рекультивационных и ликвидационных работ.

Сменная производительность бульдозера в плотном теле при разработке грунта с перемещением определяется согласно «Нормам технологического проектирования предприятий промышленности нерудных строительных материалов» Приложение V «Методика расчета производительности бульдозеров»:

$$\Pi_{\text{B.CM}} = \frac{60 \cdot T_{\text{CM}} \cdot V \cdot K_{y} \cdot K_{O} \cdot K_{\Pi} \cdot K_{B}}{K_{P} \cdot T_{U}}, \ M^{3}/c_{M}$$

Где V – объем грунта в разрыхленном состоянии, перемещаемый отвалов бульдозера, ${\rm M}^3$;

$$V = \frac{I \cdot h \cdot a}{2}, M^3$$

1 – длина отвала бульдозера, м;

h – высота отвала бульдозера, м;

а – ширина призмы перемещаемого грунта, м;

$$\dot{a} = \frac{h}{tq\delta}$$
, M

 δ – угол естественного откоса грунта (30 – 40°);

$$\dot{a} = \frac{1,14}{0,83} = 1,37$$

$$V = \frac{4,1 \cdot 1,14 \cdot 1,37}{2} = 3,2i^{-3}$$

 $K_{\rm Y}$ – коэффициент, учитывающий уклон на участке работы бульдозера, 0,95;

К_О – коэффициент, учитывающий увеличение производительности при работе бульдозера с открылками, 1,15;

 K_{Π} — коэффициент, учитывающий потери породы в процессе ее перемещения, 0,9;

К_В – коэффициент использования бульдозера во времени, 0,8;

КР – коэффициент разрыхления грунта, 1,25;

 T_{II} – продолжительность одного цикла, с;

$$T_{\perp} = \frac{I_1}{V_1} + \frac{I_2}{V_2} + \frac{(I_1 + I_2)}{V_3} + t_{\sqcap} + 2t_{P}, c$$

 l_1 – длина пути резания грунта, м;

 v_1 – скорость перемещения бульдозера при резании грунта, м/с;

 l_2 – расстояние транспортирования грунта, м;

 v_2 – скорость движения бульдозера с грунтом, м/с;

 v_3 – скорость холостого (обратного) хода, м/с;

 t_{Π} – время переключения скоростей, с;

 t_P – время одного разворота трактора, с.

Значения необходимых величин для расчета продолжительности цикла бульдозера сведены в таблицу 7.3.2.

Таблица 7.3.2

Значения расчетных величин Элементы Тп Мощность бульдозера, Наименование грунта l_1 ν_1 ν_3 t_Π $t_{\rm P}$ кВт(л.с.) 7 0,67 1.0 1.5 ПСП 120(160) 10

$$T_{II} = \frac{7}{0,67} + \frac{16}{1} + \frac{(7+16)}{1,5} + 9 + 2 \cdot 10 = 70,8c$$

$$\Pi_{\mathit{B.CM}} = \frac{60 \cdot 480 \cdot 3,2 \cdot 0,95 \cdot 1,15 \cdot 0,9 \cdot 0,8}{1,25 \cdot 70,8} = 820 \, \textit{м}^3 \, / \, \textit{смену}$$

Таким образом сменная производительность бульдозера в плотном теле при производстве дополнительной вскрыши (9,7 тыс.м³), при выполаживании бортов карьера до 10° (50,4 тыс.м³) и нанесении пород вскрыши с планировкой поверхности (117,62 тыс.м³) будет составлять $\Pi_{\text{Б.см}}$ = 820 м³/см. Затраты маш/см бульдозера на перемещение 177720 м³ породы составят 216,73 маш/см.

Следовательно, минимальное количество бульдозеров для перемещения породы в течение 1 месяца, при двухсменной работе составит 5,16 единицы.

Производительность катка определяется по формуле:

$$\Pi_{K} = \frac{L_{B*V*(Tc-T\Pi 3)}}{K\Pi p},$$

где:

 L_B — ширина вальца колебания — 2,1 м.;

V – скорость катка – 3,0 км/ч;

Tc - продолжительность смены – 8 часов;

Т пз. – время на подготовительно-заключительные операции – 1 час;

Кпр — количество проходов в одной заходке — 2.

$$\Pi \kappa = \frac{2.1*3000*(8-1)}{2} = 22050 \text{ m}^2/\text{cm}.$$

 $\Pi \kappa = \frac{2,1*3000*(8-1)}{2} = 22050 \text{ м}^2/\text{см}.$ Количество маш/смен $= \frac{S \text{ прикатывания}}{\Pi \kappa} = \frac{537600}{22050} = 24,38 \text{ маш/см}.$

Следовательно, минимальное количество катков для прикатывания породы в течение 1 месяца при двухсменной работе составит 0,58 единицы.

Перечень перечисленных технологических операций по обоснованному выше четвертому варианту технического этапа ликвидации, выполаживание бортов карьеров до устойчивого состояния и покрытие отработанной поверхности бортов карьеров породами вскрыши, представленными слабогумуссированными суглинками с редкой корневой системой травянистых растений, позволяют выполнить мероприятия технической рекультивации в полном объеме.

7.3.1 Прогнозные остаточные явления

Прогнозируемыми показателями являются:

- физическая и геотехническая стабильность карьеров, отсутствие эрозионных явления, оползней, провалов;
- соблюдение на границе СЗЗ карьера гигиенических нормативов К атмосферному воздуху в городских и сельских населенных пунктах;
- в течение первых 2-3 лет после завершения работ по рекультивации произойдет самозарастание поверхности местными засухоустойчивыми растениями;
 - остаточное загрязнение и захламление территории отсутствует.

7.3.2 Ориентировочный расчет затрат на проведение рекультивации

Исходя из намеченных объемов технической рекультивации, учитывая, все факторы (природные, экономической целесообразности и т.д.), проведение технического этапа рекультивации планируется в течение одного месяца.

Необходимое количество техники при этом составит: бульдозеров - 5,16 единицы, катков - 0,58 единицы.

Исходя из стоимости машино-смены используемой техники, учитывающей заработную плату машиниста (6 разряд), стоимость ГСМ и расходных материалов, амортизацию оборудования и др., затраты составляют бульдозер (Т-130) – 5,847 тыс. тенге маш/час; каток дорожный вибрационный (CLG616)– 4,460 тыс. тенге маш/час.

Общие прямые затраты на рекультивацию 3 участков составляют 11008,51 тыс. тенге.

VIII. Промышленная безопасность плана горных работ

8.1 Требования промышленной безопасности

При проведении работ по добыче необходимо руководствоваться нормативными документами в области промышленной безопасности, с учетом требований которых составлен план горных работ, а именно:

- «Правилами обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы», утвержденными приказом Министра по инвестициям и развитию Республики Казахстан от 30.12.2014г №352;
- «Санитарные правила «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровья человека», утверждены приказом и.о. Министра здравоохранения Республики Казахстан от 11 января 2022 года №КР ДСМ-2
- «Санитарно-эпидемиологические требования к зданиям и сооружениям производственного назначения» утвержденные приказом Министра национальной экономики Республики Казахстан от 28 февраля 2015 года, №174;
- «Санитарными правилами организации технологических процессов и гигиенические требования к производственному оборудованию» (№1.01.002-94);
- «Предельно-допустимыми концентрациями (ПДК) вредных веществ в воздухе рабочей зоны» (1.02.011-94);
- «Санитарными нормами допустимых уровней шума на рабочих местах» (№1.02.007-94);
 - «Санитарными нормами вибрации рабочих мест» (01.02.012-94);
- -«Санитарными нормами микроклимата производственных помещений» (1.02.006-94) и др.

8.2 План по предупреждению и ликвидации аварии

8.2.1 Планирование и проведение мероприятий по предупреждению и ликвидации аварий

Под руководством технического руководителя по карьерам разрабатывается план предупреждения и ликвидации аварий, в котором предусматривается проведение первоочередных мер по вывозу людей из угрожающих участков, а также мер по быстрейшей ликвидации последствий аварий и восстановлению нормальной работы предприятия.

Ответственность за составление плана, своевременность внесения в него изменений и дополнений, пересмотр (не реже одного раза в год) несет начальник карьера.

Руководителем работ по ликвидации аварий является начальник карьера. В его обязанности входит:

- Немедленное выполнение мероприятий, предусмотренных оперативной частью плана ликвидации аварий;
 - Нахождение постоянно на командном пункте ликвидации аварий;
 - Выявление числа рабочих, застигнутых аварией;
 - Руководство работами, согласно плана ликвидации аварий;
 - Принятие информации о ходе спасательных работ;
 - Ведение оперативного журнала;
- Осуществление контроля за своевременным принятием мер по спасению людей;
 - Организация врачебной помощи пострадавшим;
 - Слежение за исправностью электромеханического оборудования.
 - Проверка, вызвана ли пожарная команда (в случае пожара);
 - Обеспечение транспортом в достаточном количестве;
- Организация доставки необходимого оборудования и материалов для ликвидации аварии.

8.2.2 Приостановка работ в случае возникновения аварийной ситуации

При отработке месторождений грунтов методом экскавации, без предварительного рыхления буро-взрывным способом, возможны следующие виды аварий и их возникновения: обрушение бортов карьера, пожар на промплощадке, завал дороги, угроза затопления карьеров и промплощадки паводковыми и талыми водами.

В случае возникновения угрозы жизни и здоровья работников, незамедлительно приостанавливаются работы и принимаются меры по выводу

людей в безопасное место и осуществляются мероприятия, для выявления и ликвидации опасности (согласно плана предупреждения и ликвидации аварий).

Ниже в таблице 8.2.1 представлены основные мероприятия по спасению людей и ликвидации приведенного возможного вида аварий.

Таблица 8.2.1 Оперативная часть плана ликвидации аварии

№ п.п	Виды аварий и места их возникнове ния 2 Обруше- ние бортов карьера	Мероприятия по спасению людей и ликвидации аварий 3 Начальник карьера, узнав об обрушении борта в карьере, докладывает директору и принимает следующие меры: А) Выводит людей и оборудование	Лица, ответственные за выполнение мероприятий и исполнители 4 Директор, начальник карьера, бригадир, машинист	Места нахождения средств для спасения людей и ликвидации аварий 5 Бульдозер находятся на промплощадке Средства для спасения людей
		из зоны обрушения. Если в зону обрушения попали люди осуществляют их спасение, вызывает на место аварии скорую помощь, принимает меры для освобождения оборудования, попавшего в завал, используя бульдозер	бульдозера	(лопаты, ломы, и др.)
2.	Пожар на пром. площадке	Обнаружив пожар на промплощадке, технологической линии начальник карьера организует тушение пожара огнетушителями, помощь пострадавшим, вызывает пожарную команду	начальник карьера, Зам. начальника ПБ, бригадир, машинист бульдозера	Противопожарн ый инвентарь (огнетушители, ведра, лопаты, ломы) — находятся на пожарных щитах
3.	Завал дороги	Зам. начальника ПБ, узнав о завале на дороге, оценивает обстановку и если под завал попали люди, техника, сообщает директору и приступает к ликвидации аварии	Начальник карьера, Зам. начальника ПБ, бригадир, машинист бульдозера	Бульдозер находятся на территории карьера.

4.	Угроза	Начальник карьера, узнав об	начальник	Бульдозер
	затопления	угрозе затопления промплощадки	карьера, Зам.	находится на
	карьера и	талыми водами, ливневыми	начальник ПБ,	промплощадке.
	промпло-	водами сообщает об этом	бригадир,	
	щадки	директору и приступает к выводу	машинист	
	паводковы	людей и техники из	бульдозера	
	ми и	предполагаемой зоны затопления,		
	талыми	используют технику для отвода		
	водами	воды в дренажную систему.		

8.2.3 Использование машин и оборудования при производстве добычных работ

Для выполнения объёмов по приведенному порядку горных работ рекомендуются типы горного и транспортного оборудования, соответствующие требованиям безопасности согласно Закону РК «О безопасности машин и оборудования», подтвержденных сертификатами или декларацией соответствия Таможенного союза и имеющими разрешение к применению на территории Казахстана. Перед началом каждой смены техническим надзором проводится осмотр всего оборудования и механизмов. К производству работ допускается только исправное оборудование, машины и механизмы. Не разрешается работать в спецодежде с длинными полами и широкими рукавами, а также в без Рукава расстёгнутой или пуговиц. спецодежде не должны иметь болтающихся завязок, а спецодежда – иметь разорванные и свисающие места.

Ведение добычных работ на участке будет осуществляться с применением одноковшового экскаватора с обратной лопатой ET-25, погрузкой на автосамосвалы HOVOZZ3257 N3847A грузоподъемностью 25тн., с последующей доставкой материала к месту назначения (участку реконструкции дороги).

Учитывая временный характер работ, на участке не предусматривается строительство временных зданий и сооружений.

8.2.4 Учет, хранение, транспортировка и использование BM и опасных химических веществ

Учитывая технологию ведения добычных работ на карьерах, экскавация без предварительного рыхления взрывным способом, учет, хранение и транспортировка взрывчатых веществ и опасных химических веществ не предусматривается, в виду того, что данные материалы не используются.

8.2.5 Специальные мероприятия по прогнозированию и предупреждению внезапных прорывов воды, выбросов газов, горных ударов.

Слабо расчлененный характер поверхности участков, незначительная глубина отработки до 5,0 м, отсутствие грунтовых вод и засушливый климат района исключают вероятность внезапных прорывов воды, выбросов газов, горных ударов.

8.2.6 Пополнение технической документации

Геолого-маркшейдерская служба, сменный технический надзор ежедневно проводит наблюдения за состоянием бортов и добычных забоев, предусмотренные «Инструкцией по наблюдению за деформациями бортов, откосов уступов и отвалов на карьерах и разработке мероприятий по их устойчивости» данные заносятся в соответствующий журнал. По результатам наблюдений, при необходимости, проводится своевременная корректировка углов наклона бортов карьера, зачистка берм безопасности и рабочих площадок.

Геолого-маркшейдерская служба ведет учет движения запасов полезного ископаемого, отработанных пространств, потерь и разубоживания. Данной службой ведется маркшейдерская документация, журналы учета и отчетности при горных работах. По мере продвижения горных работ службой ТБ и ОТ выполняется своевременное пополнение технической документации и плана предупреждения и ликвидации аварий

8.2.7 Иные требования

В порядке проведения мероприятий по охране труда и техники безопасности в карьере должны производиться основные мероприятия:

- Контроль за выполнением правил ведения горных работ, за величиной углов рабочих уступов, размерами рабочих площадок, высоты уступов.
- Содержание в надлежащем порядке рабочих площадок, горнотранспортного оборудования, автодороги. Рабочие площадки периодически должны очищаться от снега. В летнее время не допускать опыления дорог и подъездов к рабочим местам.
- Для всех горнорабочих, занятых на открытых работах, оборудование помещения обогрева в холодное время и укрытие от атмосферных осадков.
- Снабжение рабочих кипяченой водой. Персонал, обслуживающий питьевое снабжение, должен ежемесячно подвергаться медицинскому осмотру и обследованию.
- В карьере необходимо иметь в достаточном количестве аптечки и другие средства для оказания первой помощи.

- Широко популяризировать среди рабочих правила безопасности путем распространения специальных брошюр, плакатов, развешивая их на видных местах, правил обращения с механизмами, инструментом, правил противопожарных мероприятий, тушения пожара и список пожарного инвентаря, а также правил оказания доврачебной помощи потерпевшим.
- В соответствии с утвержденным проектом на производство отдельных видов горных работ составлять паспорта, где помимо основных параметров давать указания по производству работ и основные моменты инструкций безопасного ведении работ по профессиям.
- Административно-технический персонал обязан выполнять все мероприятия, необходимые для создания безопасной работы, следить за выполнением установленных положений, инструкций и правил по технике безопасности и охране труда.
- Ежеквартально проводить повторный инструктаж рабочих, как в части безопасности, так и технически грамотного обращения с эксплуатируемыми машинами и механизмами.
- Следить за состоянием оборудования, своевременно останавливая его для профилактического и планово-предупредительного ремонта.
- Устанавливать тщательное наблюдение и изучение состояния и поведения пород в бортах карьеров с целью своевременного предотвращения обвалов.
- Наблюдение за выполнением правил безопасности на карьерах осуществляется начальником или сменным мастером, имеющим право ведения горных работ.
- Освещать места работы экскаваторов и других механизмов, а также дороги в темное время суток в соответствии с действующими нормами искусственного освещения.
- Предусмотреть ежеквартальный отбор проб для производства лабораторных анализов на содержание пыли в рудничной атмосфере карьеров (погрузка породы, работе бульдозера, движения автомобиля).
- Карьер оборудуется связью и сигнализацией, обеспечивающими контроль и управление технологическими процессами, безопасностью работ, которые осуществляются посредством мобильной связи.
- Вокруг производственных площадок объекта открытых горных работ устанавливается санитарно-защитная зона, размеры которой, согласно Согласно Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» от 11 января 2022 года № КР ДСМ-2, СЗЗ для участков по добыче осадочных пород открытой разработкой составляет 100 м (приложение-1, раздел-4, пункт-17, подпункт-5). Класс санитарной опасности IV.

Согласно пп. 7.11, п.7, раздела 2, приложения 2 Экологического кодекса Республики Казахстан добыча и переработка общераспространенных полезных ископаемых свыше 10 тыс. тонн в год относится ко II категории.

- Проезжие дороги располагаются за пределами границ скатывания кусков породы с откосов отвалов. На отвалах устанавливаются предупредительные надписи об опасности нахождения людей на откосах, вблизи их основания и в местах разгрузки транспортных средств.
- Автомобили и транспортные средства разгружаются на отвале в местах, предусмотренных паспортом, вне призмы обрушения (сползания) породы. Размеры призмы устанавливаются работниками маркшейдерской службы организации и регулярно доводятся до сведения лиц, работающих на отвале.
- На отвалах устанавливаются схемы движения автомобилей и транспортных средств. Зона разгрузки обозначается с обеих сторон знаками в виде изображения автосамосвала с поднятым кузовом с указателями

направления разгрузки.

- Техническое обслуживание и ремонт горнотранспортной техники осуществляется на базе ТОО «Integra Construction KZ» в сроки предусмотренные заводом изготовителем, по графику утвержденному техническим руководителем предприятия
- Ремонт карьерного оборудования, экскаваторов, бульдозеров допускается производить на рабочих площадках уступов, при условии размещения их вне зоны возможного обрушения и воздействия взрывных работ. Площадки спланированы и имеют подъездные пути. Данные ремонтные работы производятся по наряд-допуску.
- В целях предупреждения и профилактике профессиональных заболеваний инженерно-технический персонал и рабочие проходят ежегодное медицинское обследование и обеспечиваются средствами индивидуальной защиты в соответствии с нижеприведенной таблицей 8.2.2.

Таблица 8.2.2 Средства индивидуальной защиты

№ п/п	Наименования	Ед. изм	Кол-во
1	2	3	4
1	– сапоги формовые ГОСТ 13385-78	пар.	3
2	– перчатки бесшовные ТУ 38-105977	пар.	3
3	-Щиток для защиты глаз и лица при эл.сварке	шт.	3
4	Аптечки первой помощи	шт.	9
5	Носилки складные	шт.	3
6	Каски защитные «Шахтер» ГОСТ 12.4.091-80	шт.	30

7	Противошумные наушники	шт.	30
8	Защитные очки ГОСТ 12.4.03-85		30
9	Противопылевые респираторы «Лепесток»	шт.	3000
10	Пояс предохранительный монтёрский	шт.	3

3. ОЦЕНКА ВОЗДЕЙСТВИЯ НА АТМОСФЕРНЫЙ ВОЗДУХ

3.1 Состояние воздушного бассейна

Атмосферный воздух является одним из главных и значительных компонентов окружающей среды. В мероприятиях, связанных с охраной окружающей среды, особое место занимает защита атмосферного воздуха от загрязнений. Большое значение для санитарной охраны атмосферного воздуха имеют выявление новых источников загрязнения воздушного бассейна, учет проектируемых, строящихся и реконструируемых объектов, нормирование предельно допустимых концентраций и на их основе предельно допустимых выбросов для проектируемых работ.

Загрязнение воздушного бассейна определяется взаимодействием природно-климатического потенциала и техногенной нагрузки региона. Основными природно-климатическими факторами, определяющими длительность сохранения загрязнений в местах размещения их источников, является ветровой режим, наличие температурных инверсий, количество и характер выпадения осадков, туманы и радиационный режим.

Степень воздействия техногенных факторов на загрязнение воздушного бассейна определяется уровнем развития промышленности.

Наблюдения за фоновым загрязнением в районе дислокации участков проведения добычных работ отсутствуют.

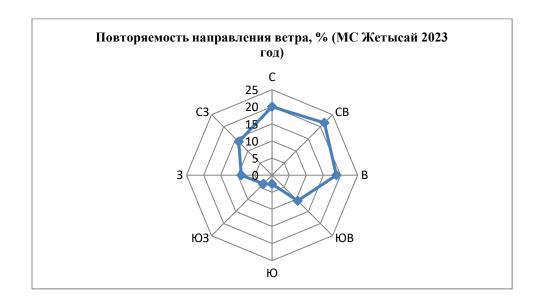
3.2 Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ

Климатические условия области, неоднородной по рельефу (пустыни, предгорья и горы) и имеющей большую протяженность территории по широте, отличаются крайним разнообразием. Климат характеризуется ярко выраженной континентальностью, сухостью и обилием тепла. Высокая континентальность проявляется в резких температурных контрастах дня и ночи, зимы и лета.

Продолжительность теплого периода со средней суточной температурой воздуха выше 0° С колеблется от 250 в северной части области до 320 в южной. Лето повсеместно в области жаркое, длинное и исключительно сухое. Средняя температура самого жаркого месяца — июля — колеблется в пределах 20-30° С. Абсолютный максимум 51° С (Кызылкум). Зима в области короткая, с частыми оттепелями, мягкая. Самый холодный месяц — январь, средняя температура которого -9,6° С на севере области и -0,9° С на юге. Абсолютный минимум температуры воздуха -43° С (Тасты).

Засушливость – одна из основных отличительных черт климата области. Годовое количество осадков в равнинной части области составляет 150-250 мм, в

предгорьях оно увеличивается до 400-600 мм и более, в горных районах (на высоте более 1000 м над уровнем моря) — до 750 мм и более. По сезонам года осадки распределяются крайне неравномерно. Отмечаются два максимума осадков: главный, резко выраженный, - весной и второстепенный — осенью. Лето очень сухое.


В горных районах на температурный режим и обеспеченность осадками, кроме высоты местности, большое влияние оказывают форма рельефа и экспозиция склонов. Поэтому даже на небольших территориях, но при сильно изрезанном рельефе климатические условия сильно различаются.

Для района характерны сильные, почти беспрерывно дующие ветры. Преобладающее направление ветра восточное и юго-восточное, средняя скорость ветра около 3,5 м/с. Нередки пыльные бури. Среднее число дней с пыльной бурей – 18,3, в основном, в летний период года. Максимальная скорость ветра- 26 м/с, порывы 30 м/с. Число дней с метелями 3,3 дней в год. Наибольшие скорости ветра характерны для восточных районов. Там, где рельеф очень расчленен, преобладают местные ветры.

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфереприведены в таблице 2.1.1

Таблица 2.1.1 Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации	200
атмосферы, А	
Коэффициент рельефа местности в городе	1
Средняя максимальная температура наружного	+38,8
воздуха наиболее жаркого месяца года, град.С	
Средняя температура наружного воздуха наиболее	-12,7
холодного месяца (для котельных, работа ющих по	
отопительному графику), град С-	
Среднегодовая роза ветров, %	
C	20.0
СВ	21.6
В	18.8
ЮВ	10.6
Ю	2.6
ЮЗ	3.6
3	9.0
C3	13.8
Штиль	18.8
Среднегодовая скорость ветра, м/с	1.6
Скорость ветра (по средним многолетним данным),	4
повторяемость превышения которой составляет 5 %,	
M/C	

Наблюдения за фоновым загрязнением в районе дислокации участков проведения добычных работ отсутствуют.

В связи с удаленностью населенных пунктов от участков проведения добычных работ, расчет рассеивания вредных веществ в приземном слое атмосферы осуществляется без учета фонового загрязнения.

3.3 Характеристика источников выбросов загрязняющих веществ в атмосферу

Основными источниками загрязнения атмосферного воздуха при производстве работ являются карьерные работы - вскрышные работы (снятие почвенно-растительного слоя), выемочно-погрузочные работы, карьерный транспорт.

Отвалообразование - складирование почвенно-растительного слоя (ПРС).

Используемый автотранспорт при проведении работ, являются передвижными источниками. Расчеты платы за загрязнение атмосферного воздуха от передвижных источников производятся по фактически использованному объему ГСМ и осуществляются по месту их регистрации.

Объемы работ по снятию ПРС и добыче грунтовых резервов на 2025 г. в соответствии с календарным графиком горных работ:

Сарыагашский район («№1Б, №1А-Р»):

- Снятие и перемещение ПРС в отвалы 24,98 м³/год
- Добыча грунтов 462,85 м³/год

Келесский район («№10А»):

- Снятие и перемещение ПРС в отвалы 9,61 ${\rm M}^3/{\rm год}$
- Добыча грунтов $262,86 \text{ м}^3/\text{год}$

Объемы работ по снятию ПРС и добыче грунтовых резервов на 2026 г. в соответствии с календарным графиком горных работ:

Сарыагашский район («№1Б, №1А-Р»):

- Снятие и перемещение ПРС в отвалы 24,98 м³/год
- Добыча грунтов $462,85 \text{ м}^3/\text{год}$

Келесский район («№10А»):

- Снятие и перемещение ПРС в отвалы $9,61 \text{ м}^3/\text{год}$
- Добыча грунтов $262,86 \text{ м}^3/\text{год}$

Основными источниками выделений вредных веществ в атмосферу являются следующие источники:

Сарыагашский район («№1Б, №1А-Р»):

Организованный источник 0003 001 – Дизельный генератор

Для освещения участков добычи предусматривается дизельный генератор мощностью 34 кВт/час. Дизельный генератор оборудован дымовой трубой высотой 1 м, диаметром 0,1 м. Время работы — 7056 маш/час (из расчета: на каждом участке 2 генератор, 14 часов в день, 252 дня).

При работе дизель генератора выделяются продукты горения топлива: диоксид азота, оксид азота, оксид углерода, алканы C12-C19, углерод (сажа), сера диоксид, формальдегид, бенз(а)пирен.

Неорганизованный источник 6003 002 — Вскрыша породы бульдозером (снятие и перемещение плодородного слоя почвы в бурты)

Почвенно-растительный слой земли перемещается бульдозером в бурты.

Общее количество перемещаемой земли составляет:

<u>на 2025 г.</u> - до 44350 м 3 /год или 79830 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 798 час/год.

<u>на 2026 г.</u> - до 44350 м 3 /год или 79830 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 798 час/год.

При перемещении грунта бульдозером в бурты выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6003 003 — **Перемещение вскрышной породы в отвалы**

С помощью погрузчика ПРС из буртов перемещается на отработанную поверхность карьера, образовывая временный отвал ПРС.

Общее количество перемещаемой земли составляет:

<u>на 2025 г.</u> - до 44350 м 3 /год или 79830 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 798 час/год.

<u>на 2026 г.</u> - до 44350 м 3 /год или 79830 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 798 час/год.

При перемещении грунта бульдозером в бурты выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6002 004 — **Отвал вскрышных пород** (породный отвал)

На территории карьера формируется временный отвал ПРС в непосредственной близости от въездной траншеи, внутри карьера. Поверхность пыления — 1000 м^2 , время работы склада — 8760 час/год. При хранении породы в атмосферный воздух выделяется пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6002 005 — Выемочно-погрузочные работы

С помощью экскаватора осуществляется погрузка материала в автосамосвалы.

Проектируется добыча:

<u>на 2025 гг.</u> - до 643040 $м^3$ или 1157472 т пород. Производительность экскаватора 300 т/час, общее количество времени составит 3858 час/год.

<u>на 2026 г.</u> - до 643050 м 3 или 1157490 т пород. Производительность экскаватора 300 т/час, общее количество времени составит 3858 час/год.

При работе поста выемочно-погрузочных работ экскаватором в атмосферный воздух выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6003 006 — Выбросы пыли при автотранспортных работах

Количество времени - 3528 час/год. При движении автотранспорта на территории участков в атмосферный воздух выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6003 007 — **Заправка дизтопливом.** Для обеспечения дизельным топливом карьерной техники и дизельного генератора используется топливозаправщик. Ориентировочная годовая потребность дизельного топлива составит - 240 m^3 /год: в осенне-зимний период — 60 m^3 /период, в весенне-летний период — 180 m^3 /период.

При заправке техники производятся выбросы: алканы С12-19 и сероводород.

Неорганизованный источник 6003 008-ДВС.

В период проведения добычных работ на территории карьера будет работать механизированная техника, такие как бульдозер (2 ед.), экскаватор (2 ед.), погрузчик (2 ед.), автосамосвал (7 ед.), работающие на дизельном топливе. При работе спецтехники в атмосферный воздух выделяются выхлопные газы: углерод оксид, алканы C12-C19, диоксид азота, оксид азота, углерод (сажа), сера диоксид.

Келесский район («№10А»):

Организованный источник 0004 001 – Дизельный генератор

Для освещения участков добычи предусматривается дизельный генератор мощностью 34 кВт/час. Дизельный генератор оборудован дымовой трубой высотой 1 м, диаметром 0,1 м. Время работы — 3528 маш/час (из расчета: на каждом участке 1 генератор, 14 часов в день, 252 дня).

При работе дизель генератора выделяются продукты горения топлива: диоксид азота, оксид азота, оксид углерода, алканы C12-C19, углерод (сажа), сера диоксид, формальдегид, бенз(а)пирен.

Неорганизованный источник 6004 002 — Вскрыша породы бульдозером (снятие и перемещение плодородного слоя почвы в бурты)

Почвенно-растительный слой земли перемещается бульдозером в бурты.

Общее количество перемещаемой земли составляет:

<u>на 2025 г.</u> - до 9610 м 3 /год или 17298 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 173 час/год.

<u>на 2026 г.</u> - до 9610 м 3 /год или 17298 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 173 час/год.

При перемещении грунта бульдозером в бурты выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6004 003 — Перемещение вскрышной породы в отвалы

С помощью погрузчика ПРС из буртов перемещается на отработанную поверхность карьера, образовывая временный отвал ПРС.

Общее количество перемещаемой земли составляет:

<u>на 2025 г.</u> - до 9610 м 3 /год или 17298 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 173 час/год.

до 9610 м 3 /год или 17298 т/год. Производительность бульдозера 100 т/час, годовое время на разработку ПРС составит 173 час/год.

При перемещении грунта бульдозером в бурты выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6004 004 — Отвал вскрышных пород (породный отвал)

На территории карьера формируется временный отвал ПРС в непосредственной близости от въездной траншеи, внутри карьера. Поверхность пыления -500 м^2 , время работы склада -8760 час/год. При хранении породы в атмосферный воздух выделяется пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6004 005 — Выемочно-погрузочные работы

С помощью экскаватора осуществляется погрузка материала в автосамосвалы.

Проектируется добыча:

<u>на 2025 гг.</u> - до 262860 м 3 или 473148 т пород. Производительность экскаватора 300 т/час, общее количество времени составит 1577 час/год.

<u>на 2026 г.</u> - до 262860 м 3 или 473148 т пород. Производительность экскаватора 300 т/час, общее количество времени составит 1577 час/год.

При работе поста выемочно-погрузочных работ экскаватором в атмосферный воздух выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6004 006 — Выбросы пыли при автотранспортных работах

Количество времени - 3528 час/год. При движении автотранспорта на территории участков в атмосферный воздух выделяются пыль неорганическая, содержащая двуокись кремния в %: 70-20.

Неорганизованный источник 6004 007 — **Заправка дизтопливом.** Для обеспечения дизельным топливом карьерной техники и дизельного генератора используется топливозаправщик. Ориентировочная годовая потребность дизельного топлива составит - 120 m^3 /год: в осенне-зимний период — 30 m^3 /период, в весенне-летний период — 90 m^3 /период.

При заправке техники производятся выбросы: алканы С12-19 и сероводород.

Неорганизованный источник 6004 008-ДВС.

В период проведения добычных работ на территории карьера будет работать механизированная техника, такие как бульдозер (1 ед.), экскаватор (1 ед.), погрузчик (1 ед.), автосамосвал (4 ед.), работающие на дизельном топливе. При работе спецтехники в атмосферный воздух выделяются выхлопные газы: углерод оксид, алканы C12-C19, диоксид азота, оксид азота, углерод (сажа), сера диоксид.

3.4 Обоснование полноты и достоверности исходных данных, принятых для расчётов нормативов НДВ

Количество выделяющихся загрязняющих веществ рассчитывалось по утвержденным Министерством ООС РК методикам; для процесса рассеивания загрязняющих веществ применялись наибольшие максимально-разовые величины, определённые теоретическим методом:

- Сборник методик по расчету выбросов загрязняющих веществ в атмосферу различными производствами», Алматы, 1996 г. (Утвержден приказом Министра охраны окружающей среды № 61-П от 24.02.2004 г.);
- Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов», Приложение № 11 к приказу МООС РК № 100-п от 18.04.2008 г.

- Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г.

3.5 Расчет выбросов загрязняющих веществ в атмосферу при проведении работ

Сарыагашский район («№1Б, №1А-Р»):

Источник загрязнения: 0003, Организованный источник Источник выделения: 001, Дизельный генератор

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX}=3$ Годовой расход дизельного топлива, т/год, $G_{FGGO}=21$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathcal{J}}=30$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathcal{J}}$ / $3600=3\cdot30$ / 3600=0.025 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathcal{J}}$ / $10^3=21\cdot30$ / $10^3=0.63$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\it 3}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\it 3}}$ / $3600=3\cdot 1.2$ / 3600=0.001 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\it 3}}$ / $10^3=21\cdot 1.2$ / $10^3=0.0252$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\Large \mathcal{I}}}=39$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\Large \mathcal{I}}}$ / $3600=3\cdot39$ / 3600=0.0325 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\Large \mathcal{I}}}$ / $10^3=21\cdot39$ / $10^3=0.819$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathcal{F}}=10$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathcal{F}}$ / $3600=3\cdot 10$ / 3600=0.00833 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathcal{F}}$ / $10^3=21\cdot 10$ / $10^3=0.21$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\it 3}}=25$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\it 3}}$ / $3600=3\cdot 25$ / 3600=0.02083 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\it 3}}$ / $10^3=21\cdot 25$ / $10^3=0.525$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\it 7}}=12$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\it 7}}/3600=3\cdot 12/3600=0.01$ Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\it 7}}/10^3=21\cdot 12/10^3=0.252$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\it 3}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\it 3}}$ / $3600=3\cdot 1.2$ / 3600=0.001 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\it 3}}$ / $10^3=21\cdot 1.2$ / $10^3=0.0252$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathcal{J}}=5$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathcal{J}}$ / $3600=3\cdot5$ / 3600=0.00417 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathcal{J}}$ / $10^3=21\cdot5$ / $10^3=0.105$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.025	0.63
0304	Азот (II) оксид (Азота оксид) (6)	0.0325	0.819
0328	Углерод (Сажа, Углерод черный) (583)	0.00417	0.105
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.00833	0.21
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.02083	0.525
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.001	0.0252
1325	Формальдегид (Метаналь) (609)	0.001	0.0252
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	0.01	0.252

Источник загрязнения: 6003, Неорганизованный источник Источник выделения: 002, Вскрыша породы бульдозером (снятие и перемещение плодородного слоя почвы в бурты)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 1.3

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), К4 = 1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.5

Доля пылевой фракции в материале(табл.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 100

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6$

$$B/3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 10^6 \cdot 0.4/3600 = 4$$

Время работы узла переработки <u>в 2025-2026 гг</u>, часов, RT2 = 798

 $RT2 = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 0.4 \cdot 798 = 9.58$

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 9.58 = 3.832$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 4 = 1.6$

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Год	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	2025-2026	1.6	3.832
	двуокись кремния в %: 70-20 (шамот,			
	цемент, пыль цементного производства -			
	глина, глинистый сланец, доменный			
	шлак, песок, клинкер, зола, кремнезем,			
	зола углей казахстанских			
	месторождений) (494)			

Источник загрязнения: 6003, Неорганизованный источник

Источник выделения: 003, Перемещение вскрышной породы в отвалы

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \, №100$ -п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 1.3

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), **К4** = 1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.5

Доля пылевой фракции в материале(табл.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 100

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6$

$$B/3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 10^6 \cdot 0.5/3600 = 5$$

Время работы узла переработки <u>в 2025-2026 гг</u>, часов, RT2 = 798

$$RT2 = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 0.5 \cdot 798 = 11.97$$

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 11.97 = 4.788$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 5 = 2$

Код	Наименование ЗВ	Γοὸ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	2025-2026	2	4.788
	двуокись кремния в %: 70-20 (шамот,			
	цемент, пыль цементного производства -			
	глина, глинистый сланец, доменный			
	шлак, песок, клинкер, зола, кремнезем,			
	зола углей казахстанских			
	месторождений) (494)			

Источник загрязнения: 6003, Неорганизованный источник Источник выделения: 004, Отвал вскрышных пород (породный отвал)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.2

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 1.3

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), К4 = 1

Размер куска материала, мм, G7 = 500

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.2

Поверхность пыления в плане, м2, F = 1000

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.004

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F = 12.2 \times 12.$

 $1.2 \cdot 1 \cdot 0.2 \cdot 1.45 \cdot 0.2 \cdot 0.004 \cdot 1000 = 0.2784$

Время работы склада в году, часов, RT = 8760

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1 \cdot 1 \cdot 0.2 \cdot 1.45 \cdot 0.2 \cdot 0.004 \cdot 1000 \cdot 8760 \cdot 0.0036 = 7.32$

Максимальный разовый выброс, г/сек, G = 0.2784

Валовый выброс , т/год , M = 7.32

Тип аппарата очистки: Гидрообеспыливание

Степень пылеочистки, % (табл.4.1), **КРD** = 85

Максимальный из разовых выбросов, с очисткой, г/с, $G = _G_ \cdot (100-_KPD_) / 100 = 0.2784 \cdot (100-85) / 100 = 0.04176$

Валовый выброс, с очисткой, т/год, $M = M \cdot (100- \text{ KPD}) / 100 = 7.32 \cdot (100-85) / 100 = 1.098$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.04176	1.098
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6003, Неорганизованный источник Источник выделения: 005, Выемочно-погрузочные работы

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Вид работ: Выемочно-погрузочные работы

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Доля пылевой фракции в материале(табл.1), P1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), P2 = 0.02

Скорость ветра в зоне работы экскаватора (средняя), м/с, G3SR = 1.3

Коэфф. учитывающий среднюю скорость ветра (табл. 2), P3SR = 1

Скорость ветра в зоне работы экскаватора (максимальная), м/с, G3 = 3

Коэфф. учитывающий максимальную скорость ветра(табл.2), P3 = 1.2

Коэффициент, учитывающий местные условия(табл.3), P6 = 0.3

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала(табл.5), P5 = 0.4

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.6

Количество перерабатываемой экскаватором породы, т/час, G = 300

Максимальный разовый выброс, г/с (8), $_{G_{-}}$ = $P1 \cdot P2 \cdot P3 \cdot K5 \cdot P5 \cdot P6 \cdot B \cdot G \cdot 10^6$ / $3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 0.6 \cdot 0.4 \cdot 0.3 \cdot 0.6 \cdot 300 \cdot 10^6$ / 3600 = 4.32

Время работы узла переработки <u>в 2025-2026 гг</u>, часов, RT2 = 3858 Валовый выброс, т/год, $_M_=P1 \cdot P2 \cdot P3SR \cdot K5 \cdot P5 \cdot P6 \cdot B \cdot G \cdot RT = 0.05 \cdot 0.02 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 0.3 \cdot 0.6 \cdot 300 \cdot 3858 = 50$

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 50 = 20.0$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 4.32 = 1.728$

Код	Наименование ЗВ	Год	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	2025-2026	1.728	20.0
	двуокись кремния в %: 70-20 (шамот,			
	цемент, пыль цементного производства -			
	глина, глинистый сланец, доменный			
	шлак, песок, клинкер, зола, кремнезем,			
	зола углей казахстанских			
	месторождений) (494)			

Источник загрязнения: 6003, Неорганизованный источник Источник выделения: 006, Выбросы пыли при автотранспортных работах

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Вид работ: Автотранспортные работы

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Число автомашин, работающих в карьере, N = 5

Число ходок (туда и обратно) всего транспорта в час, N1 = 5

Средняя протяженность 1 ходки в пределах карьера, км, L = 1

Средняя грузопод'емность единицы автотранспорта, т, G1 = 25

Коэфф. учитывающий среднюю грузопод'емность автотранспорта(табл.9), C1 = 1.9

Средняя скорость движения транспорта в карьере, км/ч, $G2 = N1 \cdot L / N = 5 \cdot 1 / 5 = 1$

Данные о скорости движения 1 км/ч отсутствуют в таблице 010

Коэфф. учитывающий среднюю скорость движения транспорта в карьере(табл.10), C2 = 0.6

Коэфф. состояния дорог (1 - для грунтовых, 0.5 - для щебеночных, 0.1 - щебеночных,

обработанных)(табл.11), C3 = 1

Средняя площадь грузовой платформы, м2, F = 15

Коэфф., учитывающий профиль поверхности материала (1.3-1.6), C4 = 1.45

Скорость обдувки материала, м/с, G5 = 1.3

Коэфф. учитывающий скорость обдувки материала(табл.12), C5 = 1

Пылевыделение с единицы фактической поверхности материала, г/м2*с, Q2 = 0.004

Коэфф. учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Количество рабочих часов в году, RT = 3528

Максимальный разовый выброс пыли, г/сек (7), $G = (C1 \cdot C2 \cdot C3 \cdot K5 \cdot N1 \cdot L \cdot C7 \cdot 1450)$

$$3600 + C4 \cdot C5 \cdot K5 \cdot Q2 \cdot F \cdot N$$
 = $(1.9 \cdot 0.6 \cdot 1 \cdot 0.6 \cdot 5 \cdot 1 \cdot 0.01 \cdot 1450 / 3600 + 1.45 \cdot 1 \cdot 0.6 \cdot 1.45 \cdot$

 $0.004 \cdot 15 \cdot 5) = 0.275$

Валовый выброс пыли, т/год, $M = 0.0036 \cdot G \cdot RT = 0.0036 \cdot 0.275 \cdot 3528 = 3.49$

Тип аппарата очистки: Гидрообеспыливание

Степень пылеочистки, % (табл.4.1), **КРD** = 85

Максимальный из разовых выбросов, с очисткой, г/с, $G = _G_ \cdot (100-_KPD_) / 100 = 0.275 \cdot (100-85) / 100 = 0.04125$

Валовый выброс, с очисткой, т/год, $M = M \cdot (100 - \text{KPD}) / 100 = 3.49 \cdot (100 - 85) / 100 = 0.5235$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.04125	0.5235
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		

сланец, доме	нный шлак, песок, клинкер, зола,	
кремнезем, зо	ола углей казахстанских	
месторожден	ий) (494)	

Источник загрязнения: 6003, Неорганизованный источник Источник выделения: 007, Заправка дизтопливом

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от ТРК

Климатическая зона: третья - южные области РК (прил. 17)

Нефтепродукт: Дизельное топливо

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.92

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 60

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), CAMOZ = 1.98

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 180

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, $\Gamma/M3$ (Прил. 15), CAMVL = 2.66

Производительность одного рукава ТРК (с учетом дискретности работы), м3/час, *VTRK* = 2.4

Количество одновременно работающих рукавов ТРК, отпускающих нефтепродукт, шт., NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (7.1.2), $GB = NN \cdot CMAX \cdot VTRK$

 $3600 = 1 \cdot 3.92 \cdot 2.4 / 3600 = 0.002613$

Выбросы при закачке в баки автомобилей, т/год (7.1.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot$

QVL) $\cdot 10^{-6} = (1.98 \cdot 60 + 2.66 \cdot 180) \cdot 10^{-6} = 0.000598$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (7.1.8), $MPRA = 0.5 \cdot J \cdot (QOZ + 1.8)$

QVL) $\cdot 10^{-6} = 0.5 \cdot 50 \cdot (60 + 180) \cdot 10^{-6} = 0.006$

Валовый выброс, т/год (7.1.6), MTRK = MBA + MPRA = 0.000598 + 0.006 = 0.0066

Полагаем, G = 0.002613

Полагаем, M = 0.0066

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация 3В в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.0066 / 100 = 0.00658$

Максимальный из разовых выброс, г/с (4.2.4), $_{G}$ = $CI \cdot G / 100 = 99.72 \cdot 0.002613 / 100 = 0.002606$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 0.28 \cdot 0.0066 / 100 = 0.00001848$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.002613 / 100 = 0.00000732$

	Код	Наименование ЗВ	Выброс г/с	Выброс т/год
--	-----	-----------------	------------	--------------

0333	Сероводород (Дигидросульфид) (518)	0.00000732	0.00001848
2754	Алканы С12-19 /в пересчете на С/	0.002606	0.00658
	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 6003, Неорганизованный источник

Источник выделения: 008, ДВС

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от $18.04.2008 \ \text{№}100$ -п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Tun M	Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)									
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шт		шm.	км	км	мин	км	км	мин	
162	6	0.10	6	0.1	0.1	0.1	0.1	0.1	0.1	
<i>3B</i>	Mxx	, .	Ml,		г/c			т/год		
	г/ми	нг	/км							
0337	2.9	6.6	66			0.00607		(0.000177	
2732	0.45	1.0)8		(0.000978		0.	0000285	
0301	1	4				0.00272		0.	0000793	
0304	1	4			(0.000442		0.0	0001288	
0328	0.04	0.3	36		0.	0002893		0.0	0000844	
0330	0.1	0.6	503		(0.000496		0.0	0001445	

	Тип машины: Грузовые автомобили дизельные свыше 16 п								
Dn,	Nk,	A	Nk1	<i>L1</i> ,	L1n,	Txs,	<i>L2</i> ,	L2n,	Txm,
cym	шm		ит.	км	км	мин	км	км	мин
162	7	0.10	7	0.1	0.1	0.1	0.1	0.1	0.1
<i>3B</i>	Mx	<i>x</i> ,	Ml,	z/c				т/год	
	г/ми	ин г	г/км						
0337	2.9	8.3	37			0.00861		(0.000251
2732	0.45	1.1	17			0.00122		0.	0000356
0301	1	4.5	5			0.00353		(0.000103
0304	1	4.5	5	0.000573			0.00001673		
0328	0.04	0.4	15		(0.000418		0.	0000122
0330	0.1	0.8	373	0.00082				0.0	0002393

	ВСЕГО по периоду: Переходный период (t>-5 и t<5)							
Код	Примесь	Выброс г/с	Выброс т/год					
0337	Углерод оксид (Окись углерода, Угарный	0.01468	0.000428					
	газ) (584)							
2732	Керосин (654*)	0.002198	0.0000641					
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00625	0.0001823					
0328	Углерод (Сажа, Углерод черный) (583)	0.0007073	0.00002064					
0330	Сера диоксид (Ангидрид сернистый,	0.001316	0.00003838					
	Сернистый газ, Сера (IV) оксид) (516)							
0304	Азот (II) оксид (Азота оксид) (6)	0.001015	0.00002961					

Выбросы по периоду: Теплый период (t>5)

Tun M	Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)									
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	L2,	L2n,	Txm,	
cym	шт		шm.	КМ	км	мин	КМ	км	мин	
90	6	0.10	6	0.1	0.1	0.1	0.1	0.1	0.1	
<i>3B</i>	Mx.	x,	Ml,		г/c			т/год		
	г/мі	ин	г/км							
0337	2.9	6.	1			0.00564		0.	0000914	
2732	0.45	1			(0.000917		0.0	0001485	
0301	1	4				0.00272		0.	0000441	
0304	1	4			(0.000442		0.0	0000716	
0328	0.04	0.	3		0.	0002433		0.0	0000394	
0330	0.1	0.	54		(0.000447		0.0	0000725	

	Тип машины: Грузовые автомобили дизельные свыше 16 т (С								
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	<i>L2</i> ,	L2n,	Txm,
cym	шm		шm.	км	км	мин	км	км	мин
90	7	0.10	7	0.1	0.1	0.1	0.1	0.1	0.1
<i>3B</i>	Mx	x,	Ml,	z/c				т/год	
	г/мі	ин	г/км						
0337	2.9	7.	5		0.00784			(0.000127
2732	0.45	1.	1			0.00116		0.0	0001877
0301	1	4.	5	0.00353				0.0000572	
0304	1	4.	5	0.000573			0.0000093		
0328	0.04	0.	4	•	(0.000373	0.00000605		
0330	0.1	0.	78	•	(0.000737		0.0	0001193

	ВСЕГО по периоду: Теплый период (t>5)								
Код	Примесь	Выброс г/с	Выброс т/год						
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.01348	0.0002184						
2732	Керосин (654*)	0.002077	0.00003362						
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00625	0.0001013						
0328	Углерод (Сажа, Углерод черный) (583)	0.0006163	0.00000999						
0330	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	0.001184	0.00001918						
0304	Азот (II) оксид (Азота оксид) (6)	0.001015	0.00001646						

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.00625	0.0002836
0304	Азот (II) оксид (Азота оксид) (6)	0.001015	0.00004607
0328	Углерод (Сажа, Углерод черный) (583)	0.0007073	0.00003063
0330	Сера диоксид (Ангидрид сернистый, Сернистый	0.001316	0.00005756
	газ, Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ)	0.01468	0.0006464
	(584)		
2732	Керосин (654*)	0.002198	0.00009772

Максимальные разовые выбросы достигнуты в переходный период

Келесский район («№10А»):

Источник загрязнения: 0004, Организованный источник

Источник выделения: 001, Дизельный генератор

Список литературы:

1. Методика расчета нормативов выбросов вредных веществ от стационарных дизельных установок

Приложение №9 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Г

Максимальный расход диз. топлива установкой, кг/час, $G_{FJMAX} = 3$

Годовой расход дизельного топлива, т/год, $G_{FGGO}=11$

Примесь: 0301 Азота (IV) диоксид (Азота диоксид) (4)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\it 3}}=30$

Максимальный разовый выброс, г/с, $_G_ = G_{FJMAX} \cdot E_{\mathcal{F}} / 3600 = 3 \cdot 30 / 3600 = 0.025$

Валовый выброс, т/год, $_M_ = G_{FGGO} \cdot E_{\reffent{9}} / 10^3 = 11 \cdot 30 / 10^3 = 0.33$

Примесь: 1325 Формальдегид (Метаналь) (609)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathbf{q}} = 1.2$

Максимальный разовый выброс, г/с, $_G_ = G_{FJMAX} \cdot E_{\reff} / 3600 = 3 \cdot 1.2 / 3600 = 0.001$

Валовый выброс, т/год, $_M_ = G_{FGGO} \cdot E_{\ref{eq:constraint}} / 10^3 = 11 \cdot 1.2 / 10^3 = 0.0132$

Примесь: 0304 Азот (II) оксид (Азота оксид) (6)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathbf{q}} = 39$

Максимальный разовый выброс, г/с, $_G_ = G_{FJMAX} \cdot E_{\reff} / 3600 = 3 \cdot 39 / 3600 = 0.0325$

Валовый выброс, т/год, $_M_ = G_{FGGO} \cdot E_{\cite{G}} / 10^3 = 11 \cdot 39 / 10^3 = 0.429$

Примесь: 0330 Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\it 3}}=10$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\it 3}}$ / $3600=3\cdot 10$ / 3600=0.00833 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\it 3}}$ / $10^3=11\cdot 10$ / $10^3=0.11$

Примесь: 0337 Углерод оксид (Окись углерода, Угарный газ) (584)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\Large \mathcal{I}}}=25$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\Large \mathcal{I}}}$ / $3600=3\cdot25$ / 3600=0.02083 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\Large \mathcal{I}}}$ / $10^3=11\cdot25$ / $10^3=0.275$

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mbox{\it 3}}=12$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mbox{\it 3}}$ / $3600=3\cdot12$ / 3600=0.01 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mbox{\it 3}}$ / $10^3=11\cdot12$ / $10^3=0.132$

Примесь: 1301 Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathcal{J}}=1.2$ Максимальный разовый выброс, г/с, $_G_=G_{FJMAX}\cdot E_{\mathcal{J}}$ / $3600=3\cdot1.2$ / 3600=0.001 Валовый выброс, т/год, $_M_=G_{FGGO}\cdot E_{\mathcal{J}}$ / $10^3=11\cdot1.2$ / $10^3=0.0132$

Примесь: 0328 Углерод (Сажа, Углерод черный) (583)

Оценочное значение среднециклового выброса, г/кг топлива (табл.4), $E_{\mathcal{J}}=5$ Максимальный разовый выброс, г/с, $_{-}G_{-}=G_{FJMAX}\cdot E_{\mathcal{J}}$ / $3600=3\cdot5$ / 3600=0.00417 Валовый выброс, т/год, $_{-}M_{-}=G_{FGGO}\cdot E_{\mathcal{J}}$ / $10^{3}=11\cdot5$ / $10^{3}=0.055$

Итоговая таблица:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.025	0.33
0304	Азот (II) оксид (Азота оксид) (6)	0.0325	0.429
0328	Углерод (Сажа, Углерод черный) (583)	0.00417	0.055
0330	Сера диоксид (Ангидрид сернистый,	0.00833	0.11
	Сернистый газ, Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный	0.02083	0.275
	газ) (584)		
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид)	0.001	0.0132
	(474)		
1325	Формальдегид (Метаналь) (609)	0.001	0.0132
2754	Алканы С12-19 /в пересчете на С/	0.01	0.132
	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-265П)		
	(10)		

Источник загрязнения: 6004, Неорганизованный источник Источник выделения: 002, Вскрыша породы бульдозером (снятие и перемещение плодородного слоя почвы в бурты)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 1.3

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/c, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.5

Доля пылевой фракции в материале(табл.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 100

Высота падения материала, м, GB = 0.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.4

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6$

$$B/3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 10^6 \cdot 0.4/3600 = 4$$

Время работы узла переработки *в 2025-2026 гг*, часов, RT2 = 173

Валовый выброс пыли при переработке, т/год (1), $MC = K1 \cdot K2 \cdot K3SR \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot B$

 $RT2 = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 0.4 \cdot 173 = 2.076$

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 2.076 = 0.8304$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 4 = 1.6$

Код	Наименование ЗВ	Год	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	2025-2026	1.6	0.8304
	двуокись кремния в %: 70-20 (шамот,			
	цемент, пыль цементного производства -			
	глина, глинистый сланец, доменный			
	шлак, песок, клинкер, зола, кремнезем,			
	зола углей казахстанских			

месторождений)	(494)		

Источник загрязнения: 6004, Неорганизованный источник Источник выделения: 003, Перемещение вскрышной породы в отвалы

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Операция: Переработка

Скорость ветра (среднегодовая), м/с, G3SR = 1.3

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/c, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), K4 = 1

Размер куска материала, мм, G7 = 20

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.5

Доля пылевой фракции в материале(табл.1), K1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), K2 = 0.02

Суммарное количество перерабатываемого материала, т/час, G = 100

Высота падения материала, м, GB = 1

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.5

Макс. разовый выброс пыли при переработке, г/с (1), $GC = K1 \cdot K2 \cdot K3 \cdot K4 \cdot K5 \cdot K7 \cdot G \cdot 10^6$

$$B/3600 = 0.05 \cdot 0.02 \cdot 1.2 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 10^6 \cdot 0.5/3600 = 5$$

Время работы узла переработки *в* 2025-2026 гг, часов, RT2 = 173

 $RT2 = 0.05 \cdot 0.02 \cdot 1 \cdot 1 \cdot 0.6 \cdot 0.5 \cdot 100 \cdot 0.5 \cdot 173 = 2.595$

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 2.595 = 1.038$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 5 = 2$

Код	Наименование ЗВ	Год	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	2025-2026	2	1.038
	двуокись кремния в %: 70-20 (шамот,			
	цемент, пыль цементного производства -			
	глина, глинистый сланец, доменный			

 		T
шлак, песок, клинкер, зола, кремнезем,		
зола углей казахстанских		
месторождений) (494)		

Источник загрязнения: 6004, Неорганизованный источник Источник выделения: 004, Отвал вскрышных пород (породный отвал)

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Склады, хвостохранилища, узлы пересыпки пылящих материалов

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Влажность материала, %, VL = 8

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.2

Операция: Хранение

Скорость ветра (среднегодовая), м/с, G3SR = 1.3

Коэфф., учитывающий среднегодовую скорость ветра(табл.2), K3SR = 1

Скорость ветра (максимальная), м/с, G3 = 3

Коэфф., учитывающий максимальную скорость ветра(табл.2), K3 = 1.2

Коэффициент, учитывающий степень защищенности узла(табл.3), К4 = 1

Размер куска материала, мм, G7 = 500

Коэффициент, учитывающий крупность материала(табл.5), K7 = 0.2

Поверхность пыления в плане, м2, F = 500

Коэфф., учитывающий профиль поверхности складируемого материала, K6 = 1.45

Унос пыли с 1 м2 фактической поверхности материала, г/м2*сек, Q = 0.004

Максимальный разовый выброс пыли при хранении, г/с (1), $GC = K3 \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F =$

 $1.2 \cdot 1 \cdot 0.2 \cdot 1.45 \cdot 0.2 \cdot 0.004 \cdot 500 = 0.1392$

Время работы склада в году, часов, RT = 8760

Валовый выброс пыли при хранении, т/год (1), $MC = K3SR \cdot K4 \cdot K5 \cdot K6 \cdot K7 \cdot Q \cdot F \cdot RT \cdot$

 $0.0036 = 1 \cdot 1 \cdot 0.2 \cdot 1.45 \cdot 0.2 \cdot 0.004 \cdot 500 \cdot 8760 \cdot 0.0036 = 3.66$

Максимальный разовый выброс, г/сек, G = 0.1392

Валовый выброс, т/год, M = 3.66

Тип аппарата очистки: Гидрообеспыливание

Степень пылеочистки, % (табл.4.1), **КРD** = 85

Максимальный из разовых выбросов, с очисткой, г/с, $G = _G_ \cdot (100-_KPD_) / 100 = 0.1392 \cdot (100-85) / 100 = 0.02088$

Валовый выброс, с очисткой, т/год, $M = M \cdot (100- \text{ KPD}) / 100 = 3.66 \cdot (100-85) / 100 = 0.549$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.02088	0.549

кремния в %: 70-20 (шамот, цемент, пыль	
цементного производства - глина, глинистый	
сланец, доменный шлак, песок, клинкер, зола,	
кремнезем, зола углей казахстанских	
месторождений) (494)	

Источник загрязнения: 6004, Неорганизованный источник Источник выделения: 005, Выемочно-погрузочные работы

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

Вид работ: Выемочно-погрузочные работы

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Доля пылевой фракции в материале(табл.1), P1 = 0.05

Доля пыли, переходящей в аэрозоль(табл.1), P2 = 0.02

Скорость ветра в зоне работы экскаватора (средняя), м/с, G3SR = 1.3

Коэфф. учитывающий среднюю скорость ветра(табл.2), P3SR = 1

Скорость ветра в зоне работы экскаватора (максимальная), м/с, G3 = 3

Коэфф. учитывающий максимальную скорость ветра(табл.2), P3 = 1.2

Коэффициент, учитывающий местные условия(табл.3), P6 = 0.3

Размер куска материала, мм, G7 = 100

Коэффициент, учитывающий крупность материала(табл.5), P5 = 0.4

Высота падения материала, м, GB = 1.5

Коэффициент, учитывающий высоту падения материала(табл.7), B = 0.6

Количество перерабатываемой экскаватором породы, т/час, G = 300

Максимальный разовый выброс, г/с (8), $_{\mathbf{G}} = P1 \cdot P2 \cdot P3 \cdot K5 \cdot P5 \cdot P6 \cdot B \cdot G \cdot 10^{6}$ / 3600 = 0.05 · 0.02 · 1.2 · 0.6 · 0.4 · 0.3 · 0.6 · 300 · 10⁶ / 3600 = 4.32

Время работы узла переработки $\underline{a\ 2025-2026\ 22}$, часов, RT2=1577

Валовый выброс, т/год, $\underline{M} = P\overline{1 \cdot P2 \cdot P3SR \cdot K5 \cdot P5 \cdot P6 \cdot B \cdot G \cdot RT} = 0.05 \cdot 0.02 \cdot 1 \cdot 0.6 \cdot 0.4 \cdot 0.3 \cdot 0.6 \cdot 300 \cdot 1577 = 20.44$

С учетом коэффициента гравитационного осаждения

Валовый выброс, т/год, $M = KOC \cdot M = 0.4 \cdot 20.44 = 8.176$

Максимальный разовый выброс, $G = KOC \cdot G = 0.4 \cdot 4.32 = 1.728$

Код	Наименование 3В	Год	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая	2025-2026	1.728	8.176

двуокись кремния в %: 70-20 (шамот,	
цемент, пыль цементного производства -	
глина, глинистый сланец, доменный	
шлак, песок, клинкер, зола, кремнезем,	
зола углей казахстанских	
месторождений) (494)	

Источник загрязнения: 6004, Неорганизованный источник Источник выделения: 006, Выбросы пыли при автотранспортных работах

Список литературы:

- 1. Методика расчета нормативов выбросов от неорганизованных источников Приложение №8 к Приказу Министра охраны окружающей среды и водных ресурсов Республики Казахстан от 12.06.2014 г. № 221-Ґ
- 2. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов Приложение №11 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

Тип источника выделения: Карьер

<u>Примесь: 2908 Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)</u>

```
Вид работ: Автотранспортные работы
```

Влажность материала, %, VL = 5

Коэфф., учитывающий влажность материала(табл.4), K5 = 0.6

Число автомашин, работающих в карьере, N = 4

Число ходок (туда и обратно) всего транспорта в час, N1 = 2

Средняя протяженность 1 ходки в пределах карьера, км, L=1

Средняя грузопод'емность единицы автотранспорта, т, G1 = 25

Коэфф. учитывающий среднюю грузопод'емность автотранспорта(табл.9), C1 = 1.9

Средняя скорость движения транспорта в карьере, км/ч, $G2 = N1 \cdot L / N = 2 \cdot 1 / 4 = 0.5$

Данные о скорости движения 1 км/ч отсутствуют в таблице 010

Коэфф. учитывающий среднюю скорость движения транспорта в карьере(табл.10), C2 = 0.6

Коэфф. состояния дорог (1 - для грунтовых, 0.5 - для щебеночных, 0.1 - щебеночных,

обработанных)(табл.11), C3 = 1

Средняя площадь грузовой платформы, м2, F = 15

Коэфф., учитывающий профиль поверхности материала (1.3-1.6), C4 = 1.45

Скорость обдувки материала, м/с, G5 = 1.3

Коэфф. учитывающий скорость обдувки материала(табл.12), C5 = 1

Пылевыделение с единицы фактической поверхности материала, г/м2*с, Q2 = 0.004

Коэфф. учитывающий долю пыли, уносимой в атмосферу, C7 = 0.01

Количество рабочих часов в году, RT = 3528

Максимальный разовый выброс пыли, г/сек (7), $_{G}$ = ($C1 \cdot C2 \cdot C3 \cdot K5 \cdot N1 \cdot L \cdot C7 \cdot 1450$ / $3600 + C4 \cdot C5 \cdot K5 \cdot Q2 \cdot F \cdot N$) = ($1.9 \cdot 0.6 \cdot 1 \cdot 0.6 \cdot 2 \cdot 1 \cdot 0.01 \cdot 1450$ / $3600 + 1.45 \cdot 1 \cdot 0.6 \cdot 2 \cdot 1 \cdot 0.01 \cdot 1450$ / $3600 + 1.45 \cdot 1 \cdot 0.6 \cdot 2 \cdot 1 \cdot 0.01 \cdot 1450$

 $0.004 \cdot 15 \cdot 4) = 0.2143$

Валовый выброс пыли, т/год, $M = 0.0036 \cdot G \cdot RT = 0.0036 \cdot 0.2143 \cdot 3528 = 2.72$

Тип аппарата очистки: Гидрообеспыливание

Степень пылеочистки, %(табл.4.1), **КРD** = **85**

Максимальный из разовых выбросов, с очисткой, г/с, $G = _G_ \cdot (100-_KPD_) / 100 = 0.2143 \cdot (100-85) / 100 = 0.032145$

Валовый выброс, с очисткой, т/год, $M = M \cdot (100 - \text{KPD}) / 100 = 2.72 \cdot (100 - 85) / 100 = 0.408$

Итого выбросы от источника выделения:

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
2908	Пыль неорганическая, содержащая двуокись	0.032145	0.408
	кремния в %: 70-20 (шамот, цемент, пыль		
	цементного производства - глина, глинистый		
	сланец, доменный шлак, песок, клинкер, зола,		
	кремнезем, зола углей казахстанских		
	месторождений) (494)		

Источник загрязнения: 6004, Неорганизованный источник

Источник выделения: 007, Заправка дизтопливом

Список литературы:

Методические указания расчета выбросов от предприятий, осуществляющих хранение и реализацию нефтепродуктов (нефтебазы, АЗС) и других жидкостей и и газов. Приложение к приказу МООС РК от 29.07.2011 №196

Выбросы от ТРК

Климатическая зона: третья - южные области РК (прил. 17)

Нефтепродукт: Дизельное топливо

Максимальная концентрация паров нефтепродукта при заполнении

баков автомашин, г/м3 (Прил. 12), CMAX = 3.92

Количество отпускаемого нефтепродукта в осенне-зимний период, м3, QOZ = 30

Концентрация паров нефтепродукта при заполнении

баков автомашин в осенне-зимний период, г/м3(Прил. 15), CAMOZ = 1.98

Количество отпускаемого нефтепродукта в весенне-летний период, м3, QVL = 90

Концентрация паров нефтепродукта при заполнении

баков автомашин в весенне-летний период, г/м3(Прил. 15), CAMVL = 2.66

Производительность одного рукава ТРК (с учетом дискретности работы), м3/час, VTRK = 2.4

Количество одновременно работающих рукавов ТРК, отпускающих нефтепродукт, шт., NN = 1

Максимальный из разовых выброс при заполнении баков, г/с (7.1.2), $GB = NN \cdot CMAX \cdot VTRK$

 $3600 = 1 \cdot 3.92 \cdot 2.4 / 3600 = 0.002613$

Выбросы при закачке в баки автомобилей, т/год (7.1.7), $MBA = (CAMOZ \cdot QOZ + CAMVL \cdot QOZ + QOZ + CAMVL \cdot QOZ + QOZ + CAMVL \cdot QOZ + QOZ +$

$$QVL$$
) $\cdot 10^{-6} = (1.98 \cdot 30 + 2.66 \cdot 90) \cdot 10^{-6} = 0.000299$

Удельный выброс при проливах, г/м3, J = 50

Выбросы паров нефтепродукта при проливах на ТРК, т/год (7.1.8), $MPRA = 0.5 \cdot J \cdot (QOZ + 1.18)$

$$QVL$$
) $\cdot 10^{-6} = 0.5 \cdot 50 \cdot (30 + 90) \cdot 10^{-6} = 0.003$

Баловый выброс, т/год (7.1.6), MTRK = MBA + MPRA = 0.000299 + 0.003 = 0.0033

Полагаем, G = 0.002613

Полагаем, M = 0.0033

<u>Примесь: 2754 Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)</u>

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 99.72

Валовый выброс, т/год (4.2.5), $M = CI \cdot M / 100 = 99.72 \cdot 0.0033 / 100 = 0.00329$

Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 99.72 \cdot 0.002613 / 100 = 0.002606$

Примесь: 0333 Сероводород (Дигидросульфид) (518)

Концентрация ЗВ в парах, % масс(Прил. 14), CI = 0.28 Валовый выброс, т/год (4.2.5), $_M_ = CI \cdot M / 100 = 0.28 \cdot 0.0033 / 100 = 0.00000924$ Максимальный из разовых выброс, г/с (4.2.4), $_G_ = CI \cdot G / 100 = 0.28 \cdot 0.002613 / 100 = 0.00000732$

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0333	Сероводород (Дигидросульфид) (518)	0.00000732	0.00000924
2754	Алканы С12-19 /в пересчете на С/	0.002606	0.00329
	(Углеводороды предельные С12-С19 (в		
	пересчете на С); Растворитель РПК-265П) (10)		

Источник загрязнения: 6004, Неорганизованный источник

Источник выделения: 008, ДВС

Список литературы:

- 1. Методика расчета выбросов загрязняющих веществ от автотранспортных предприятий (раздел 3) Приложение №3 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п
- 2. Методика расчета выбросов загрязняющих веществ от предприятий дорожно-строительной отрасли (раздел 4)

Приложение №12 к Приказу Министра охраны окружающей среды Республики Казахстан от 18.04.2008 №100-п

РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ПРИ РАБОТЕ И ДВИЖЕНИИ АВТОМОБИЛЕЙ ПО ТЕРРИТОРИИ

РЕЗУЛЬТАТЫ РАСЧЕТА

Выбросы по периоду: Переходный период (t>-5 и t<5)

Tun M	Тип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)												
Dn,	Nk,	A		Nk1	<i>L1</i> ,	L1n,	Txs,	<i>L2</i> ,	L2n,	Txm,			
cym	шт			шт.	КМ	км	мин	КМ	КМ	мин			
162	3	0.	.10	3	0.1	0.1	0.1	0.1	0.1	0.1			
<i>3B</i>	B Mxx		Ml,		Ixx,		z/c			т/год			
	г/мин г/км		г/км		ин г/км								
0337	2.9		6.6	6	0.00303				0.	0000885			
2732	0.45		1.0	8		(0.000489		0.0	0001426			
0301	1		4			0.00136			0.	0000397			
0304	04 1 4 0.000221		4		1 4		0.000221			0.0000645			
0328	0.04	0.36		6	0.0001447			0.00000422					
0330	0.1		0.6	03		(0.000248		0.00000723				

	Тип машины: Грузовые автомобили дизельные свыше 16 т (СНГ)										
Dn,	Nk,	\boldsymbol{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	<i>L2</i> ,	L2n,	Txm,		
cym	шm		ит.	км	км	мин	км	км	мин		
162	4	0.1	0 4	0.1	0.1	0.1	0.1	0.1	0.1		
<i>3B</i>	Mxx,		Ml,	2/c		т/год					
	г/м	ин	г/км								

0337	2.9	8.37	0.00492	0.0001435	
2732	0.45	1.17	0.000698	0.00002035	
0301	1	4.5	0.002016	0.0000588	
0304	1	4.5	0.0003276	0.00000956	
0328	0.04	0.45	0.000239	0.00000697	
0330	0.1	0.873	0.000469	0.00001367	

	ВСЕГО по периоду: Переходно	ый период (t>-5 и t<5	")
Код	Примесь	Выброс г/с	Выброс т/год
0337	Углерод оксид (Окись углерода, Угарный	0.007953	0.000232
	газ) (584)		
2732	Керосин (654*)	0.001187	0.00003461
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.003376	0.0000985
0328	Углерод (Сажа, Углерод черный) (583)	0.0003837	0.00001119
0330	Сера диоксид (Ангидрид сернистый,	0.000717	0.0000209
	Сернистый газ, Сера (IV) оксид) (516)		
0304	Азот (II) оксид (Азота оксид) (6)	0.0005486	0.00001601

Выбросы по периоду: Теплый период (t>5)

Tun M	ип машины: Грузовые автомобили дизельные свыше 8 до 16 т (СНГ)												
Dn,	Nk,	\overline{A}	Nk1	<i>L1</i> ,	L1n,	Txs,	<i>L2</i> ,	L2n,	Txm,				
cym	шт		шт.	км	км	мин	км	км	мин				
90	3	0.10	3	0.1	0.1	0.1	0.1	0.1	0.1				
<i>3B</i>	Mx:	Mxx, Ml, z/c			т/год								
	г/ми	ıн	г/км										
0337	2.9	6.	1			0.00282		0.	0000457				
2732	0.45	1			(0.000458		0.0	0000743				
0301	1	4				0.00136		0.0	0002203				
0304	1	4		0.000221		0.00000358							
0328	0.04	0.	3		0.0001217			0.0	0000197				
0330	0.1	0.	54		0.	0002237		0.0	0000362				

	Тип машины: Грузовые автомобили дизельные свыше 16 m (СНГ) Dn, Nk, A Nk1 L1, L1n, Txs, L2, L2n, Txm,													
Dn,			Nk1	<i>L1</i> ,	L1n, Txs,		<i>L2</i> ,	L2, L2n,						
cym	шт		um.		км	км	мин	км	км	мин				
90	4	0.	.10	4	0.1	0.1	0.1	0.1	0.1	0.1				
<i>3B</i>	Mx	cx,	Ì	Ml,		г/c			т/год					
	г/м	ин	г	/км										
0337	2.9		7.5				0.00448		0.	0000725				
2732	0.45		1.1			(0.000662		0.0	0001073				
0301	1		4.5			(0.002016		0.	0000327				
0304	1		4.5		0.0003276				0.0	0000532				
0328	0.04		0.4		0.0002133				0.00					
0330	0.1		0.7	8		(0.000421		0.0	0000682				

	ВСЕГО по периоду: Теплый период (t>5)												
Код	Примесь	Выброс г/с	Выброс т/год										
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	0.0073	0.0001182										

2732	Керосин (654*)	0.00112	0.00001816
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.003376	0.00005473
0328	Углерод (Сажа, Углерод черный) (583)	0.000335	0.000005426
0330	Сера диоксид (Ангидрид сернистый,	0.0006447	0.00001044
	Сернистый газ, Сера (IV) оксид) (516)		
0304	Азот (II) оксид (Азота оксид) (6)	0.0005486	0.0000089

ИТОГО ВЫБРОСЫ ОТ СТОЯНКИ АВТОМОБИЛЕЙ

Код	Наименование ЗВ	Выброс г/с	Выброс т/год
0301	Азота (IV) диоксид (Азота диоксид) (4)	0.003376	0.00015323
0304	Азот (II) оксид (Азота оксид) (6)	0.0005486	0.00002491
0328	Углерод (Сажа, Углерод черный) (583)	0.0003837	0.000016616
0330	Сера диоксид (Ангидрид сернистый, Сернистый	0.000717	0.00003134
	газ, Сера (IV) оксид) (516)		
0337	Углерод оксид (Окись углерода, Угарный газ)	0.007953	0.0003502
	(584)		
2732	Керосин (654*)	0.001187	0.00005277

Максимальные разовые выбросы достигнуты в переходный период

3.6 Перечень возможных загрязняющих веществ, выбрасываемых в атмосферу

Перечень ЗВ составлен для всего рассматриваемого предприятия. Перечень загрязняющих веществ в атмосферу составлен с учетом требований, утвержденных Приказом Министра здравоохранения Республики Казахстан от 2 августа 2022 года № ҚР ДСМ-70 «Об утверждении Гигиенических нормативов к атмосферному воздуху в городских и сельских населенных пунктах, на территориях промышленных организаций».

Перечень загрязняющих веществ, выбрасываемых в атмосферу

Туркестанская область, Интегра 3 уч Келесский район уч №10А на 25-26 гг

Код	Наименование	ЭНК,	пдк	ПДК		Класс	Выброс вещества	Выброс вещества
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год
			вая, мг/м3	мг/м3		ЗВ		(M)
1	2	3	4	5	6	7	8	9
	Азота (IV) диоксид (Азота диоксид) (4)		0.2	0.04		2	0.028376	0.33015323
	Азот (II) оксид (Азота оксид) (6)		0.4	0.06		3	0.0330486	0.42902491
0328	Углерод (Сажа, Углерод черный) (583)		0.15	0.05		3	0.0045537	0.055016616
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0.5	0.05		3	0.009047	0.11003134
	Сероводород (Дигидросульфид) (518)		0.008			2	0.00000732	0.00000924
	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	0.028783	0.2753502
	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)		0.03	0.01		2	0.001	0.0132
1325	Формальдегид (Метаналь) (609) Керосин (654*)		0.05	0.01	1.2	2	0.001 0.001187	
2754	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)		1			4	0.012606	0.13529
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		0.3	0.1		3	5.381025	
	всего:						5.50063362	12.362728306

Туркестанская область, Интегра 3 уч Сарыагашский район ("№1Б, №1А-Р") на 25-26 гг

Код	Наименование	ЭНК,	ПДК	ПДК		Класс	Выброс вещества	Выброс вещества
ЗВ	загрязняющего вещества	мг/м3	максималь-	среднесу-	ОБУВ,	опас-	с учетом	с учетом
			ная разо-	точная,	мг/м3	ности	очистки, г/с	очистки, т/год
			вая, мг/м3	мг/м3		ЗВ		(M)
1	2	3	4	5	6	7	8	9
	Азота (IV) диоксид (Азота диоксид) (4)		0.2	0.04		2	0.03125	0.6302836
	Азот (II) оксид (Азота оксид) (6)		0.4			3	0.033515	0.81904607
	Углерод (Сажа, Углерод черный) (583)		0.15	0.05		3	0.0048773	0.10503063
	Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)		0.5			3	0.009646	
II.	Сероводород (Дигидросульфид) (518)		0.008			2	0.00000732	0.00001848
	Углерод оксид (Окись углерода, Угарный газ) (584)		5	3		4	0.03551	0.5256464
	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)		0.03	0.01		2	0.001	0.0252
	Формальдегид (Метаналь) (609) Керосин (654*)		0.05	0.01	1.2	2	0.001 0.002198	
	Алканы $C12-19$ /в пересчете на $C/$ (Углеводороды предельные $C12-C19$ (в пересчете на C); Растворитель $P\Pi K-265\Pi$) (10)		1			4	0.012606	0.25858
	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)		0.3	0.1		3	5.41101	
	всего:						5.54261962	32.84066046

3.7 Параметры выбросов загрязняющих веществ в атмосферу для расчета **НДВ**

Высоты источников выброса и площади определялись по проектным данным. Температура определялась по СНиПу. Дополнительные параметры принимались согласно проектных данных заказчика.

Параметры выбросов загрязняющих веществ в атмосферу представлены в таблице 3.7.1.

Параметры выбросов загрязняющих веществ в атмосферу

Туркестанская область, Интегра 3 уч Келесский район уч $\mathbb{N}10A$ на 25-26 гг

турк	еста	нская область,	инлетф	<u>a 3 yu</u>	и келесскии раион у			0-20 11	1					
		Источник выде.	ления	Число	Наименование	Номер	Высо	Диа-	Параме	етры газовозд	ц.смеси	Коорді	инаты ис	гочника
Про		загрязняющих в	еществ	часов	источника выброса	источ	та	метр	на вых	коде из трубь	и при	на к	арте-схе	еме, м
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	зовой			
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	о источ.	2-го кон
TBO			чест-	В		СОВ	выбро					/1-го кон	нца лин.	/длина, ш
			во,	году	,		COB,	М	ско-	объем на 1	тем-	/центра г	площад-	площадн
			шт.				М		рость	трубу, м3/с	пер.	ного исто	очника	источни
									M/C		oС			
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Дизельный	1		Организованный	0004	1	0.1	12.73	0.0999814	450	126	142	
		генератор			источник									
001		D	-			COO 4					27 0	105	1 4 1	-
001		Вскрыша породы	1		Неорганизованный	6004	2	1	1		37.8	125	141	Ι Τ

	Наименование	Вещество	Коэфф	Средняя	Код		Выброс з	агрязняющего	вешества	
	газоочистных	по кото-	обесп	эксплуат		Наименование		[···	,	
	установок,	рому	газо-		ще-	вещества				
ца лин.	тип и	произво-	очист	очистки/		·	г/с	мг/нм3	т/год	Год
ирина	мероприятия	дится	кой,	тах.степ			, -	, -	, -, -	дос-
OFO	по сокращению	газо-	ે લ	очистки%						тиже
ка	выбросов	очистка								пия
	11									ндв
Y2										
16	17	18	19	20	21	22	23	24	25	26
					0301	Азота (IV) диоксид (0.025	662.211	0.33	
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0325	860.874	0.429	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.00417	110.457	0.055	
						Углерод черный) (583)				
					0330	Сера диоксид (0.00833	220.649	0.11	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.02083	551.754	0.275	
						углерода, Угарный				
						ras) (584)				
					1301	Проп-2-ен-1-аль (0.001	26.488	0.0132	
						Акролеин,				
						Акрилальдегид) (474)				
					1325	Формальдегид (0.001	26.488	0.0132	
						Метаналь) (609)				
					2754	Алканы С12-19 /в	0.01	264.884	0.132	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1					0301	Азота (IV) диоксид (0.003376		0.00015323	

Туркестанская область, Интегра 3 уч Келесский район уч \$10A на 25-26 гг

					и Келесскии раион у						1.0	10		4-
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		бульдозером (источник									
		снятие и												
		перемещение												
		плодородног)												
		Перемещение	1											
		вскрышной												
		породы в												
		отвалы												
		Отвал	1											
		вскрышных												
		пород (
		породный												
		отвал)												
		Выемочно-	1											
		погрузочные												
		работы												
		Выбросы пыли	1											
		при												
		автотранспортн												
		ых работах												
		Заправка	1											
		дизтопливом												
		ДВС	1											

16	17	18	19	20	21	22	23	24	25	26
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0005486		0.00002491	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.0003837		0.000016616	
						Углерод черный) (583)				
					0330	Сера диоксид (0.000717		0.00003134	
						Ангидрид сернистый ,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0333	Сероводород (0.00000732		0.00000924	
						Дигидросульфид) (518)				
					0337	Углерод оксид (Окись	0.007953		0.0003502	
						углерода, Угарный				
						ras) (584)				
					2732	Керосин (654*)	0.001187		0.00005277	
						Алканы C12-19 /в	0.002606		0.00329	
						пересчете на С/ (
						- Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265π) (10)				
					2908	Пыль неорганическая,	5.381025		11.0014	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
						клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				

Туркестанская область, Интегра 3 уч Сарыагашский район ("№1Б, №1А-Р") на 25-26 гг

турк	еста	нская область,	интегр	а 3 уч	и Сарыагашский райс	H ("NiT	.B, NºI <i>A</i>	<u>и-Б.,)</u> н	ia 25-2	26 FF				
		Источник выде:		Число		Номер				етры газовозд		Коорді	инаты ис	точника
Про		загрязняющих ве	еществ	часов	источника выброса	источ	та	метр		коде из трубы		на к	арте-схе	еме, м
изв	Цех			рабо-	вредных веществ	ника	источ	устья	мак	симальной раз	вовой			
одс		Наименование	Коли-	ты		выбро	ника	трубы		нагрузке		точечного	источ.	2-го кон
TBO			чест-	В		СОВ	выбро					/1-го кон	нца лин.	/длина, ш
			во,	году	•		COB,	М	CKO-	объем на 1	тем-	/центра г	площад-	площадн
			шт.				M		рость	трубу, м3/с	пер.	ного исто	очника	источни
									M/C		oC			
												X1	Y1	X2
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
001		Дизельный	1		Организованный	0003	1	0.1	12.73	0.0999814	450	126	142	
		генератор			источник									
				1										
001		Вскрыша породы	1		Неорганизованный	6003	2				37.8	125	141	1

	Наименование газоочистных	Вещество	Коэфф обесп	Средняя эксплуат	Код ве-	Наименование	Выброс за	отэшикнгкить	вещества	
ца лин.	установок, тип и	рому	газо-	степень	ще-	вещества	r/c	мг/нм3	т/год	Гол
ирина	мероприятия	дится	кой,	max.cren	СТВа		1/0	MI / IIMS	171ОД	дос-
ого	по сокращению	газо-	кои , %	очистки%						тиже
ка	выбросов	очистка	O	OTHCIRMS						ния
Kα	выоросов	Очистка								НДВ
Y2										пдо
16	17	18	19	20	21	22	23	24	25	26
					0301	Азота (IV) диоксид (0.025	662.211	0.63	
						Азота диоксид) (4)				
					0304	Азот (II) оксид (0.0325	860.874	0.819	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.00417	110.457	0.105	
						Углерод черный) (583)				
					0330	Сера диоксид (0.00833	220.649	0.21	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0337	Углерод оксид (Окись	0.02083	551.754	0.525	
						углерода, Угарный				
						газ) (584)				
					1301	Проп-2-ен-1-аль (0.001	26.488	0.0252	
						Акролеин,				
						Акрилальдегид) (474)				
					1325	Формальдегид (0.001	26.488	0.0252	
						Метаналь) (609)				
					2754	Алканы С12-19 /в	0.01	264.884	0.252	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
1	Гравитац;	2908	100	63.28/	0301	Азота (IV) диоксид (0.00625		0.0002836	

Туркестанская область, Интегра 3 уч Сарыагашский район ("№1Б, №1А-Р") на 25-26 гг

			интетр		. Сарыагашскии раио									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		бульдозером (источник									
		снятие и												
		перемещение												
		плодородног)												
		Перемещение	1											
		вскрышной												
		породы в												
		отвалы												
		Отвал	1											
		вскрышных												
		пород (
		породный												
		отвал)												
		Выемочно-	1											
		погрузочные												
		работы												
		Выбросы пыли	1											
		при												
		автотранспортн												
		ых работах												
		Заправка	1											
		дизтопливом												
		двс	1											

16	17	18	19	20	21	22	23	24	25	26
				100.0		Азота диоксид) (4)				
					0304	Азот (II) оксид (0.001015		0.00004607	
						Азота оксид) (6)				
					0328	Углерод (Сажа,	0.0007073		0.00003063	
						Углерод черный) (583)				
					0330	Сера диоксид (0.001316		0.00005756	
						Ангидрид сернистый,				
						Сернистый газ, Сера (
						IV) оксид) (516)				
					0333	Сероводород (0.00000732		0.00001848	
						Дигидросульфид) (518)				
					0337	Углерод оксид (Окись	0.01468		0.0006464	
						углерода, Угарный				
						газ) (584)				
					2732	Керосин (654*)	0.002198		0.00009772	
					2754	Алканы С12-19 /в	0.002606		0.00658	
						пересчете на С/ (
						Углеводороды				
						предельные С12-С19 (в				
						пересчете на С);				
						Растворитель РПК-				
						265Π) (10)				
					2908	Пыль неорганическая,	5.41101		30.2415	
						содержащая двуокись				
						кремния в %: 70-20 (
						шамот, цемент, пыль				
						цементного				
						производства - глина,				
						глинистый сланец,				
						доменный шлак, песок,				
			1			клинкер, зола,				
						кремнезем, зола углей				
						казахстанских				
						месторождений) (494)				

3.8 Определение размеров санитарно-защитной зоны

Согласно Санитарных правил «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» от 11 января 2022 года № ҚР ДСМ-2, СЗЗ для участков по добыче осадочных пород открытой разработкой составляет — 100 м (приложение-1, раздел-4, пункт-17, подпункт-5). Класс санитарной опасности — IV.

Согласно пп. 7.11, п.7, раздела 2, приложения 2 Экологического кодекса Республики Казахстан добыча и переработка общераспространенных полезных ископаемых свыше 10 тыс. тонн в год относится ко II категории.

Уровень приземных концентраций для вредных веществ определяется машинными расчетами по программе УПРЗ «Эра». Расчетами установлено, что приземные концентрации вредных веществ, создаваемые выбросами объекта на границе СЗЗ не превышают допустимых значений 1 ПДК.

Ближайшие населенные пункты:

- с. Жанама, расположенное в 92,5 км северо-западнее от участка.
- с. Бесколь, расположенное в 3,8 км северо-восточнее от участка.
- с. Казахстан, расположенное в 6,3 км юго-восточнее от участка.

3.9 Проведение расчетов рассеивания и определение приземистых концентраций

Расчеты величин концентраций вредных веществ в приземном слое атмосферы существующее положение $(C\Pi)$ $(\Pi);$ на И перспективу метеорологические определяющие характеристики, условия рассеивания загрязняющих веществ (ЗВ) в атмосфере, карта-схема с расположением зданий и источников загрязнения атмосферы; ситуационный план местности; нормативы ПДВ для всех ингредиентов, загрязняющих атмосферу; сроки их достижения и другие разделы, соответствующие требуемому объему РООС выполнены с использованием программы УПРЗ «ЭРА».

Программа рекомендована Главной геофизической обсерваторией им. А.И. Воейкова для расчетов рассеивания вредных веществ согласно и утверждена Министерством природных ресурсов и охраны окружающей среды РК.

Обоснование перечня ингредиентов, по которым необходимо производить расчет приземных концентраций, приведено в таблице 3.9.1.

Определение необходимости расчетов приземных концентраций

уч №10А

уч N:10	A							
Код	Наименование	пдк	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	димость
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ,мг/м3	(M)	(H)	для Н<10	пия
								расчетов
1	2	3	4	5	6	7	8	9
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		0.0330486	2	0.0826	Нет
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.0045537	2	0.0304	Нет
0337	Углерод оксид (Окись углерода, Угарный	5	3		0.028783	2	0.0058	Нет
	газ) (584)							
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид)	0.03	0.01		0.001	2	0.0333	Нет
	(474)							
2732	Керосин (654*)			1.2	0.001187		0.001	_
2754	Алканы C12-19 /в пересчете на C/ (1			0.012606	2	0.0126	Нет
	Углеводороды предельные С12-С19 (в							
	пересчете на С); Растворитель РПК-265П) (
	10)					_		
2908	Пыль неорганическая, содержащая двуокись	0.3	0.1		5.381025	2	17.9368	Да
	кремния в %: 70-20 (шамот, цемент, пыль							
	цементного производства - глина,							
	глинистый сланец, доменный шлак, песок,							
	клинкер, зола, кремнезем, зола углей							
	казахстанских месторождений) (494)				l			1
0001	Вещества, обла		i e	1			0 1 4 1 0	
	Азота (IV) диоксид (Азота диоксид) (4)	0.2			0.028376		0.1419	
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		0.009047	2	0.0181	Нет
0000	Сернистый газ, Сера (IV) оксид) (516)	0 000			0 00000730		0 0000	TT
0333	Сероводород (Дигидросульфид) (518)	0.008			0.00000732	_	0.0009	_
1325	Формальдегид (Метаналь) (609)	0.05	0.01		0.001	2	0.020	Нет

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с
2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

уч №1Б

Код	Наименование	ПДК	пдк	ОБУВ	Выброс	Средневзве-	М/(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	димость
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ,мг/м3	(M)	(H)	для Н<10	пия
								расчетов
1	2	3	4	5	6	7	8	9
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		0.0330486	2	0.0826	Нет
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.0045537	2	0.0304	Нет
0337	Углерод оксид (Окись углерода, Угарный газ) (584)	5	3		0.028783	2	0.0058	Нет
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид) (474)	0.03	0.01		0.001	2	0.0333	Нет
2732	Керосин (654*)			1.2	0.001187	2	0.001	Нет
	Алканы C12-19 /в пересчете на C/ (Углеводороды предельные C12-C19 (в пересчете на C); Растворитель РПК-265П) (10)	1			0.012606	2	0.0126	Нет
	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	0.3			5.381025	2	17.9368	Да
0001	Вещества, обла			:			l 0 1 4 1 0	
	Азота (IV) диоксид (Азота диоксид) (4)	0.2			0.028376		0.1419	
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		0.009047	2	0.0181	Нет
	Сернистый газ, Сера (IV) оксид) (516) Сероводород (Дигидросульфид) (518)	0.008			0.00000732	2 2	0.0009	
1325	Формальдегид (Метаналь) (609)	0.05	0.01		0.001	۷	0.020	Нет

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с
2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

уч №1А-Р

J	· -							
Код	Наименование	ПДК	ПДК	ОБУВ	Выброс	Средневзве-	М∕(ПДК*Н)	Необхо-
загр.	вещества	максим.	средне-	ориентир.	вещества	шенная	для Н>10	димость
веще-		разовая,	суточная,	безопасн.	r/c	высота, м	м/пдк	проведе
ства		мг/м3	мг/м3	УВ , мг/м3	(M)	(H)	для Н<10	ния
								расчетов
1	2	3	4	5	6	7	8	9
0304	Азот (II) оксид (Азота оксид) (6)	0.4	0.06		0.0330486	2	0.0826	Нет
0328	Углерод (Сажа, Углерод черный) (583)	0.15	0.05		0.0045537	2	0.0304	Нет
0337	Углерод оксид (Окись углерода, Угарный	5	3		0.028783	2	0.0058	Нет
	газ) (584)							
1301	Проп-2-ен-1-аль (Акролеин, Акрилальдегид)	0.03	0.01		0.001	2	0.0333	Нет
	(474)							
	Керосин (654*)			1.2	0.001187	2	0.001	Нет
	Алканы С12-19 /в пересчете на С/ (1			0.012606	2	0.0126	Нет
	Углеводороды предельные С12-С19 (в							
	пересчете на С); Растворитель РПК-265П) (
	10)							
2908	Пыль неорганическая, содержащая двуокись	0.3	0.1		5.381025	2	17.9368	Да
	кремния в %: 70-20 (шамот, цемент, пыль							
	цементного производства - глина,							
	глинистый сланец, доменный шлак, песок,							
	клинкер, зола, кремнезем, зола углей							
	казахстанских месторождений) (494)							
	Вещества, обла						1	i
	Азота (IV) диоксид (Азота диоксид) (4)	0.2			0.028376		0.1419	Да
0330	Сера диоксид (Ангидрид сернистый,	0.5	0.05		0.009047	2	0.0181	Нет
	Сернистый газ, Сера (IV) оксид) (516)							
	Сероводород (Дигидросульфид) (518)	0.008			0.00000732		0.0009	_
1325	Формальдегид (Метаналь) (609)	0.05	0.01		0.001	2	0.020	Нет

Примечания: 1. Необходимость расчетов концентраций определяется согласно п.58 МРК-2014. Значение параметра в колонке 8 должно быть >0.01 при H>10 и >0.1 при H<10, где H - средневзвешенная высота ИЗА, которая определяется по стандартной формуле: Сумма(Hi*Mi)/Сумма(Mi), где Hi - фактическая высота ИЗА, Mi - выброс ЗВ, г/с
2. При отсутствии ПДКм.р. берется ОБУВ, при отсутствии ОБУВ - ПДКс.с.

СВОДНАЯ ТАБЛИЦА РЕЗУЛЬТАТОВ РАСЧЕТОВ

Интегра №10A PP

Код 3В	Наименование загрязняющих веществ и состав групп суммаций	Cm	РП	C33	ЕЖ	ФТ	Колич.ИЗА	ПДКмр (ОБУВ) мг/м3	Класс опасн.
0301	Азота (IV) диоксид (Азота диоксид) (4)	1,6856	1,281161	0,251814	нет расч.	нет расч.	2	0,2	2
2908	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	80,8283	21,63411	0,954243	нет расч.	нет расч.	1	0,3	3
6007	0301 + 0330	1,8811	1,437598	0,283856	нет расч.	нет расч.	2		

Примечания:

- **1.** Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- **2.** Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК- 2014
- **3.** Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "С33" (по санитарно-защитной зоне), "Ж3" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек), на границе области воздействия и зоне "Территория предприятия" приведены в долях ПДКмр.

Интегра "№1Б, №1А-Р" РР

Ко, ЗВ	<u> </u>	Ст	РП	C33	ЕЖ	ФТ	Колич.ИЗА	ПДКмр (ОБУВ) мг/м3	Класс опасн.
030	1 Азота (IV) диоксид (Азота диоксид) (4)	2,1988	1,506593	0,278596	нет расч.	нет расч.	2	0,2	2
290	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	75,5694	20,22654	0,892157	нет расч.	нет расч.	1	0,3	3
600	7 0301 + 0330	2,4372	1,684035	0,312871	нет расч.	нет расч.	2		

Примечания:

- 1. Таблица отсортирована по увеличению значений по коду загрязняющих веществ
- **2.** Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДКмр) только для модели МРК-2014
- **3.** Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "С33" (по санитарно-защитной зоне), "Ж3" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек), на границе области воздействия и зоне "Территория предприятия" приведены в долях ПДКмр.

3.10 Анализ результатов расчетов, определения норм ПДВ

На существующее положение был произведен расчет рассеивания вредностей по ингредиентам и группе суммации и определение приземных концентраций. Целью расчета было определение максимально возможных концентраций на границе санитарно-защитной зоны. Расчет загрязнения атмосферы проводился с использованием программы УПРЗ "Эра". Расчет полей концентрации загрязняющих веществ на существующее положение.

При проведении расчетов рассеивания на период проведения работ был принят расчетный прямоугольники 1500х1500 м. с расчетным шагом 150 м.

Расчет рассеивания был проведен на летний период времени года. Проведенный расчет полей максимальных приземных концентраций вредных веществ позволил определить концентрации и проверить их соответствие нормативным значениям. Результаты расчетов представлены таблицами и картами рассеивания, имеющими иллюстрированный характер. Степень загрязнения каждой примесью оценивалась по максимальным приземным концентрациям, создаваемым на границе СЗЗ.

Согласно таблицы 4.6 анализ расчетов показал, что приземные концентрации, создаваемые собственными выбросами, по всем рассчитываемым веществам на границе санитарно защитной зоны не превышают ПДК, и могут быть предложены в качестве норм НДВ.

Предлагаемые нормативы выбросов на 2025-2026 гг., принятые на уровне расчетных данных, приведены в таблице 3.10.1.

Нормативы выбросов загрязняющих веществ в атмосферу

Туркестанская область,	Интег	ра 3 уч Келесс:	кий район уч №	10A										
	Ho-		Нормативы выбросов загрязняющих веществ											
	мер													
Производство	NC-							год						
цех, участок	точ-	на 202	25 год	на 202	6 год	н д	В	дос-						
	ника							тиже						
Код и наименование		г/с	т/год	r/c	т/год	r/c	т/год	ния						
загрязняющего вещества								НДВ						
1	2	3	4	5	6	7	8	9						
**0301, Азота (IV) дио	ксид	(Азота диоксид)	(4)											
Организован	ные	источн	ики											
Основное	0004	0.025	0.33		0.33	0.025	0.33	2025						
Итого:		0.025	0.33	0.025	0.33	0.025	0.33	3						
Всего по		0.025	0.33	0.025	0.33	0.025	0.33	2025						
загрязняющему														
веществу:														
**0304, Азот (II) окси	д (Азс	та оксид) (6)						•						
Организован	ные	источн	ики											
Основное	0004	0.0325	0.429	0.0325	0.429	0.0325	0.429	2025						
Итого:		0.0325	0.429	0.0325	0.429	0.0325	0.429)						
Всего по		0.0325	0.429	0.0325	0.429	0.0325	0.429	2025						
загрязняющему														
веществу:														
**0328, Углерод (Сажа,	_	-												
Организован	н ы е													
Основное	0004	0.00417	0.055	0.00417	0.055	0.00417	0.055							
NTOPO:		0.00417	0.055	0.00417	0.055	0.00417	0.055	5						
Всего по		0.00417	0.055	0.00417	0.055	0.00417	0.055	2025						
загрязняющему														
веществу:														
**0330 , Сера диоксид (Ангидр	оид сернистый,	Сернистый газ,	Cepa (IV) окс	ид)									
Организован	ные	источн												
Основное	0004			0.00833	0.11	0.00833	0.11	2025						
Итого:		0.00833	0.11	0.00833	0.11	0.00833	0.11							
Всего по		0.00833	0.11	0.00833	0.11	0.00833	0.11	2025						

загрязняющему	1 1		l i	İ				1 1
веществу:								
**0333, Сероводород (Ди	(FI(FD)	\						
Неорганизова								
Основное	1 6004			0.00000732	0.00000924	0.00000732	0.00000924	2025
NTOPO:	0004	0.00000732					0.00000924	1
MTOTO:		0.00000732	0.00000924	0.00000732	0.00000924	0.00000732	0.00000924	
Всего по		0.00000732	0.00000924	0.00000732	0.00000924	0.00000732	0.00000924	2025
загрязняющему								
веществу:								
**0337 , Углерод оксид	(Окись	углерода, Уга	арный газ) (584)				
Организовани	ные	источн	ики					
Основное	0004	0.02083	0.275	0.02083	0.275	0.02083	0.275	2025
Итого:		0.02083	0.275	0.02083	0.275	0.02083	0.275	
Всего по		0.02083	0.275	0.02083	0.275	0.02083	0.275	2025
загрязняющему								
веществу:								
**1301, Проп-2-ен-1-аль	(Arr	олеин. Акрилал	льлегил) (474)					l
Организовани								
Основное	0004			0.001	0.0132	0.001	0.0132	2025
MTOPO:	0001	0.001					0.0132	
711010.		0.001	0.0102	0.001	0.0102	0.001	0.0102	
Всего по		0.001	0.0132	0.001	0.0132	0.001	0.0132	2025
загрязняющему		0.001	0.0102	0.001	0.0102	0.001	0.0102	2020
веществу:								
**1325, Формальдегид (N	I Истаца	Lπ ₅) (609)						l
Организованн		источн	T4 T2 T4					
Основное	0004			0.001	0.0132	0.001	0.0132	2025
Итого:	0001	0.001		0.001			0.0132	
итого.		0.001	0.0132	0.001	0.0132	0.001	0.0132	
Всего по		0.001	0.0132	0.001	0.0132	0.001	0.0132	2025
		0.001	0.0132	0.001	0.0132	0.001	0.0132	2023
загрязняющему веществу:								
**2754, Алканы C12-19	/	10000000000000000000000000000000000000	(17====================================		C1 0			
0 рганизованн				редельные С12-	C19			
=	и ы е 0004			0.01	0.132	0.01	0.132	1 2025
Основное Итого:	0004	0.01						
			1	0.01	0.132	0.01	0.132	ļ ļ
Неорганизова				0 000000	0.00329	0 00000	0.00329	اعمما
Основное	6004							
Итого:		0.002606	0.00329	0.002606	0.00329	0.002606	0.00329	
Dana		0 01000	0 10500	0 01000	0 10500	0 01000	0 10500	2005
Всего по		0.012606	0.13529	0.012606	0.13529	0.012606	0.13529	2025
загрязняющему				ļ				

веществу:									
**2908, Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот									
Неорганизованные источники									
Основное	6004	5.381025	11.0014	5.381025	11.0014	5.381025	11.0014	2025	
Итого:		5.381025	11.0014	5.381025	11.0014	5.381025	11.0014		
Всего по		5.381025	11.0014	5.381025	11.0014	5.381025	11.0014	2025	
загрязняющему									
веществу:									
Всего по объекту:		5.48646832	12.36209924	5.48646832	12.36209924	5.48646832	12.36209924		
из них:									
Итого по организованным		0.10283	1.3574	0.10283	1.3574	0.10283	1.3574		
источникам:		•	·	·		•	·	•	
Итого по неорганизованным		5.38363832	11.00469924	5.38363832	11.00469924	5.38363832	11.00469924		
источникам:		•	·	·		•	·		

Туркестанская область, Интегра 3 уч Сарыагашский район ("№1Б, №1А-Р")

Туркестанская область,	интег	ра 3 уч Сарыаг						
	Ho-	Нормативы выбросов загрязняющих веществ						
	мер				1			
Производство	NC-							год
цех, участок	TOY-	на 202	25 год	на 202	26 год	н д	В	дос-
	ника							тиже
Код и наименование		r/c	т/год	r/c	т/год	r/c	т/год	ния
загрязняющего вещества	à							НДВ
1	2	3	4	5	6	7	8	9
**0301, Азота (IV) дис			(4)					
Организован	н ы е							
Основное	0003	0.025	0.63	0.025	0.63	0.025	0.63	202
Итого:		0.025	0.63	0.025	0.63	0.025	0.63	3
Всего по		0.025	0.63	0.025	0.63	0.025	0.63	202
загрязняющему								
веществу:								
**0304, Asor (II) okci	лд (Азо	та оксид) (6)			l l	Į.		Į.
Организован			ики					
Основное	0003	i i	0.819	0.0325	0.819	0.0325	0.819	202
Итого:		0.0325	0.819	0.0325		0.0325	0.819	
Всего по		0.0325	0.819	0.0325	0.819	0.0325	0.819	202
загрязняющему				*****		*****		
веществу:								
**0328 , Углерод (Сажа,	Углег	ол черный) (58	3)			L		1
Организован								
Основное	0003		0.105	0.00417	0.105	0.00417	0.105	202
Итого:		0.00417	0.105	0.00417		0.00417	0.105	
Всего по		0.00417	0.105	0.00417	0.105	0.00417	0.105	202
загрязняющему								
веществу:								
**0330 , Сера диоксид	 (Ангилг	ил сернистый.	Сернистый газ.	Cepa (IV) orc	!ил)			
Организован	_	источн	=	10pa (11) One	· /			
Основное	0003		0.21	0.00833	0.21	0.00833	n 21	202
MTOPO:	0003	0.00833	0.21	0.00833		0.00833	0.21	
MITOT.O.		0.00033	0.21	0.00033	0.21	0.00033	0.21	-
Всего по		0.00833	0.21	0.00833	0.21	0.00833	0 21	202
		0.00033	0.21	0.00033	0.21	0.00033	0.21	. 202
загрязняющему								
веществу: **0333, Сероводород (Д								

Основное	6003	0.00000732	0.00001848	0.00000732	0.00001848	0.00000732	0.00001848	202
NTOPO:		0.00000732	0.00001848	0.00000732	0.00001848	0.00000732	0.00001848	İ
Всего по		0.00000732	0.00001848	0.00000732	0.00001848	0.00000732	0.00001848	202
загрязняющему								ĺ
веществу:								1
**0337 , Углерод оксид (
Организованн		источни	a.					
Основное	0003	0.02083	0.525	0.02083	0.525	0.02083	0.525	202
NTOPO:		0.02083	0.525	0.02083	0.525	0.02083	0.525	
Всего по		0.02083	0.525	0.02083	0.525	0.02083	0.525	2025
загрязняющему		***************************************	****	***************************************		***************************************		
веществу:								1
**1301, Проп-2-ен-1-аль	(Акр	олеин, Акрилаль	дегид) (474)			<u> </u>		
Организованн	ые	источни	ки					
Основное	0003	0.001	0.0252	0.001	0.0252	0.001	0.0252	2025
NTOPO:		0.001	0.0252	0.001	0.0252	0.001	0.0252	1
Всего по		0.001	0.0252	0.001	0.0252	0.001	0.0252	2025
загрязняющему		0.001	0.0252	0.001	0.0232	0.001	0.0232	2023
веществу:								1
**1325 , Формальдегид (М	Іетана	ль) (609)	II.			<u> </u>		
Организованн		источни	ки					
Основное	0003	0.001	0.0252	0.001	0.0252	0.001	0.0252	2025
Итого:		0.001	0.0252	0.001	0.0252	0.001	0.0252	
Всего по		0.001	0.0252	0.001	0.0252	0.001	0.0252	2025
загрязняющему					******			
веществу:								1
**2754 , Алканы C12-19 /	в пер	есчете на С/ (У	тлеводороды пр	едельные С12-С	19			
Организованн								
Основное	0003	0.01	0.252	0.01	0.252	0.01	0.252	2025
Итого:		0.01	0.252	0.01	0.252	0.01	0.252	ĺ
Неорганизова	нн	ые источ	ники	·	·	·	·	
Основное	6003	0.002606	0.00658	0.002606	0.00658	0.002606	0.00658	2025
Итого:		0.002606	0.00658	0.002606	0.00658	0.002606	0.00658	
Всего по		0.012606	0.25858	0.012606	0.25858	0.012606	0.25858	2025
загрязняющему								1
веществу:								l
**2908, Пыль неорганиче				- 0 - 70 00 /		I		

Основное	6003	5.41101	30.2415	5.41101	30.2415	5.41101	30.2415	2025
Итого:		5.41101	30.2415	5.41101	30.2415	5.41101	30.2415	
Всего по		5.41101	30.2415	5.41101	30.2415	5.41101	30.2415	2025
загрязняющему								
веществу:								
Всего по объекту:		5.51645332	32.83949848	5.51645332	32.83949848	5.51645332	32.83949848	
из них:								
Итого по организованных	IN	0.10283	2.5914	0.10283	2.5914	0.10283	2.5914	
источникам:			•	·	·	·	·	
Итого по неорганизованным		5.41362332	30.24809848	5.41362332	30.24809848	5.41362332	30.24809848	
источникам:			•	·	·	·	·	

3.11 Контроль за соблюдением нормативов НДВ

Контроль за соблюдением нормативов эмиссий загрязняющих веществ в атмосферу возлагается на ответственное лицо, за охрану окружающей среды.

В соответствии с требованиями ГОСТа 17.2.3.02-2014 должен осуществляться балансовым или косвенным (расчетным) методом. Балансовый контроль за выбросами загрязняющих веществ в атмосферу будет осуществляться по количеству сжигаемого топлива и используемого материала при составлении статической отчетности 2ТП-воздух.

Контроль за соблюдением нормативов НДВ будет осуществлен ежеквартально в виде расчетов сумм текущих платежей платы за загрязнение окружающей среды и 1 раз в год статической отчетности 2-ТП «Воздух» представлен в законодательные органы согласно срокам сдачи, предусмотренным Законом Республики Казахстан.

3.12 Характеристика аварийных и залповых выбросов

Основными видами аварий при проведении работ на территории работ могут являться: обрушение бортов карьера, завал дороги, нарушение герметичности или повышение температуры в системах топливоподачи и охлаждения, разлив топлива, пожар, взрыв.

Для предотвращения опасности аварийных выбросов из разрушенных или горящих объектов предусматривается обеспечение прочности и эксплуатационной надежности всех систем объекта.

В плане горных работ предусмотрен ряд мер по технике безопасности, санитарии, пожарной безопасности с целью исключения возникновения аварийных ситуаций.

Меры безопасности предусматривают соблюдение действующих противопожарных и строительных норм и правил на объекте, в том числе:

- соблюдение необходимых расстояний между объектами и опасными участками потенциальных источников возгорания;
- обеспечение беспрепятственного проезда аварийных служб в любой точке производственного участка;
- обучение персонала правилам техники безопасности, пожарной безопасности и соблюдению правил эксплуатации горячих поверхностей.

3.13 Мероприятия по регулированию выбросов при неблагоприятных метеорологических условиях

В период неблагоприятных метеорологических условий, т.е. при поднятой инверсии выше источника, туманах, необходимо осуществлять временные мероприятия по дополнительному снижению выбросов в атмосферу.

Мероприятия выполняются после получения из органов Казгидромета заблаговременного предупреждения. Сюда входят:

- ожидаемая длительность особо неблагоприятных метеорологических условий;
- ожидаемая кратность увеличения приземных концентраций по отношению к фактической.

На основании РД 52.04-52-85 «Методические указания по регулированию выбросов при неблагоприятных метеорологических условиях» разработаны мероприятия по сокращению выбросов загрязняющих веществ в атмосферу на период НМУ. Мероприятия направлены на усиление контроля за соблюдением оптимальных режимов работы, исправности оборудования и запрещение работы оборудования в форсированном режиме. К ним относятся:

- усилить контроль за точным соблюдением технологического регламента производства;
 - запретить работу оборудования на форсированном режиме;
 - усилить контроль за технологическими процессами;
- запретить продувку и чистку оборудования, газоходов, емкостей, в которых хранились загрязняющие вещества, ремонтные работы, связанные с повышенным выделением вредных веществ в атмосферу;
- усилить контроль за местами пересыпки пылящих материалов и других источников пылегазовыделения;
 - предусмотреть пылеподавление при разработке карьера и других работах.

Поэтому, настоящим проектом, в соответствии с РД 52.04-52-85 «Методические указания по регулированию выбросов при неблагоприятных метеорологических условиях», план мероприятий по сокращению выбросов загрязняющих веществ в атмосферу на период НМУ не предусматривается.

3.14 Мероприятия по сокращению выбросов

Сокращение объемов выбросов загрязняющих веществ и снижение их приземных концентраций обеспечивается комплексом планируемых технологических и специальных мероприятий. Основными, принятыми в проекте, мероприятиями, направленными на предотвращение выделения вредных, взрывопожароопасных веществ и обеспечения безопасных условий труда являются:

- содержание в исправном состоянии всего технологического оборудования;

- недопущение аварийных ситуаций, ликвидация последствий случившихся аварийных ситуаций;
 - использование современной техники и оборудования;
 - контроль за соблюдением нормативов эмиссий;
- постоянный контроль за техническим состоянием транспорта и оборудования;
 - тщательная технологическая регламентация по отработке участка;
- упорядоченное движение транспорта и другой техники по территории карьера, разработка оптимальных схем движения;
- орошение пылящей дорожной поверхности, использование поливомоечных машин для подавления пыли;
 - измерение и контроль автотранспорта и спецтехники на токсичность;
- своевременное проведение планово-предупредительных ремонтов и профилактики всего автотранспорта и спецоборудования;
 - соблюдать природоохранное законодательство Республики Казахстан;
- проведение всех видов работ в соответствии с требованиями экологических положений Республики Казахстан, стандартов Компании и т.д.

Соблюдение этих мер позволит избежать ситуаций, при которых возможно превышение нормативов выделения ЗВ в атмосфере.

Принятые проектными решениями природоохранные мероприятия позволяют минимизировать возможные воздействия на атмосферный воздух и проводить работы в рамках разрешенных законодательством Республики Казахстан.

3.15 Внедрение малоотходных и безотходных технологий, а также специальные мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух

В настоящем проекте не используются малоотходные и безотходные технологии, а также специальные мероприятия по предотвращению (сокращению) выбросов в атмосферный воздух на уровне, соответствующем передовому мировому опыту.

3.16 Предложения по организации мониторинга и контроля за состоянием атмосферного воздуха

Производственный мониторинг является элементом производственного экологического контроля, выполняемым для получения объективных данных с установленной периодичностью.

В рамках осуществления производственного экологического контроля выполняются операционный мониторинг, мониторинг эмиссий в окружающую среду и мониторинг воздействия.

Можно выделить три основные функции мониторинга атмосферного воздуха:

- получение первичной информации о содержании вредных веществ в атмосферном воздухе и принятие на основе этой информации решений по уменьшению воздействия на атмосферный воздух;
- получение вторичной информации об эффективности мероприятий, осуществленных на основе первичной информации.

Мониторинг атмосферного воздуха на месторождении будет проводиться по двум направлениям:

- контроль нормативов допустимых выбросов (НДВ) на источниках загрязнения атмосферы;
 - контроль не превышения ПДК загрязняющих веществ на границе СЗЗ.

В соответствии с требованиями Методики определения нормативов эмиссий в окружающую среду, утвержденной Приказом Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63, предприятия, для которых установлены нормативы эмиссий, должны организовать систему контроля за их наблюдением по графику, утвержденному контролирующими органами.

Производственный мониторинг воздушного бассейна включает в себя организацию наблюдений, сбор данных, проведение анализа и оценки воздействия производственной деятельности предприятия на состояние атмосферного воздуха.

Для оценки влияния производственных объектов промышленной площадки на окружающую среду в рамках производственного мониторинга должны быть выполнены работы по изучению загрязнения атмосферного воздуха в зоне влияния предприятия на границе санитарно-защитной зоны.

Все отобранные пробы должны быть метеорологически обеспечены (температура, атмосферное давление, направление и скорость ветра, влажность).

Значения полученных результатов замеров сравниваются с максимально разовыми предельно допустимыми концентрациями (ПДКм.р.).

Мониторинг, включая отбор проб и анализ, выполняется аккредитованными производственными или независимыми лабораториями путем прямых замеров концентрации загрязняющих веществ в атмосферном воздухе. В процессе мониторинга эмиссий проводятся наблюдения за фактическим состоянием загрязнения атмосферного воздуха в установленных точках на границе санитарно-защитной зоны. Учитывая характер каждого источника загрязнения, наиболее целесообразно применение расчетного метода контроля. До проведения

обследования состояния атмосферного воздуха необходимо изучить параметры основного и вспомогательных производственных процессов, наличие залповых или аварийных выбросов и т.д.

Контроль за соблюдением нормативов НДВ на предприятии возлагается, согласно приказу на лицо, ответственное за охрану окружающей среды. Контроль должен осуществляться прямыми инструментальными замерами и расчетным методом.

Для предприятия обязательно ведение производственного контроля за источниками загрязнения атмосферы, в состав которого должны входить:

- первичный учет видов и количества загрязняющих веществ выбрасываемых в атмосферу;
- периодическая отчетностьпо производственному экологическому контролю и фактическим эмиссиям и т.д.;
- передача органам областного управления экологии и санитарноэпидемиологическим службам экстренной информации о превышении установленных нормативов вредных воздействий на атмосферный воздух в результате аварийных ситуаций.

Производственный контроль за источниками загрязнения атмосферы осуществляется службой самого предприятия.

Кроме того, согласно требованиям РНД-06 «Руководство по контролю источников загрязнения атмосферы», на предприятиях должен проводиться инструментально лабораторный контроль.

На период эксплуатации в выбросах, отходящих от источников загрязнения атмосферного воздуха предприятия, содержится 10 загрязняющих веществ: азота диоксид, азота оксид, углерод черный, сера диоксид, сероводород, углерод оксид, проп-2-ен-1-аль, формальдегид, алканы C12-C19, пыль неорганическая, с содержанием двуокиси кремния 70-20%.

Производственный экологический контроль на предприятии будет заключаться в наблюдении за параметрами технологического процесса, для подтверждения того, что показатели деятельности природопользователя находятся в диапазоне, который считается оптимальным в экологическом отношении.

Мониторинг эмиссий (выбросов загрязняющих веществ) будет осуществляться балансовым методом от всех источников ежеквартально. Полученные результаты измерений должны сравниваться с нормативами ПДВ по каждому веществу. Контроль на контрольных точках на границе СЗЗ будет производиться инструментальным методом.

Для повышения достоверности контроля за соблюдением нормативов эмиссий, а также при невозможности прямых методов, могут быть использованы балансовые, технологические или другие методы контроля.

4. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ПОВЕРХНОСТНЫЕ И ПОДЗЕМНЫЕ ВОДЫ

4.1 Гидрография

Арало-Сырдарьинский бассейн занимает площадь около 345 тыс.км² и включает две административные области — Туркестанскую и Кызылординскую. Основной рекой бассейна является река Сырдарья.

Бассейн р. Сырдарья расположен на территории Кыргызстана, Таджикистана, Узбекистана, Казахстана. Площадь бассейна Сырдарьи составляет 219 000 км². Суммарная величина естественных водных ресурсов 36,6 км³. Объём годового стока рек, доходящих до ствола Сырдарьи — 30,8 км³.

Основной рекой бассейна является Сырдарья — самая крупная река Центральной Азии, которая берет начало в горах Тянь-Шаня за пределами Казахстана, в Ферганской долине, в месте слияния рек Нарын и Карадарья.

Общая длина реки от места слияния составляет 2212 км, а от истока Нарына – 3019 км. В пределах Казахстана от Шардаринского водохранилища до Аральского моря длина реки составляет 1627 км, из них на территории Туркестанской области – 346 км, Кызылординской – 1281 км.

Основной объем стока, составляющий 70%, формируется в верхней части бассейна до выхода из Ферганской долины. Сток правобережных притоков выше Шардаринского водохранилища составляет 21-23% от общих водных ресурсов, поступающих в Казахстан.

Доля стока реки Арысь и других рек, стекающих с хребта Каратау, в Казахстане составляет 7-9%. Средний многолетний сток бассейна Сырдарьи равен 40,8 км³/год, в том числе до Шардаринского водохранилища — 38 км³/год. Среднегодовой расход воды в районе г. Кызылорда составляет 673м³/с.

Согласно письма РГУ «Арало Сырдарьинская бассейновая инспекция по регулированию использования и охране водных ресурсов» 19.05.2025 №3Т-2025-01550241 запрашиваемые земельные участки расположены вне водоохранных зон и полос водных объектов (в радиусе более 500 м от земельных участков отсутствуют поверхностные водные объекты), т.е. вне водоохранной зоны и полосы проведение добычи ОПИ не противоречит Водному законодательству РК при соблюдении требований Водного кодекса.

4.2 Оценка воздействия проектируемых работ на поверхностные воды

Проектные работы будут проведены за пределами водоохраной зоны и полос.

При проведении работ будут образовываться бытовые сточные воды. Все бытовые сточные воды будут отводиться в выгребные бетонированные гидроизоляционные ямы, и по мере наполнения будут откачиваться ассенизационной машины и вывозиться на ближайшие очистные сооружения сточных вод.

Проектируемые работы носят локальное воздействие, средней продолжительности, и не могут вызвать негативных отрицательных изменений в природной среде.

4.3 Водоснабжение и водопотребление

Территория проектных работ характеризуются отсутствием сетей водопровода.

Хозяйственно-питьевое водоснабжение на период отработки участков будет производиться из водопроводных сетей поселков Алгабас, Ердаулет, Бирлик.

Расчетный расход воды принят:

- на хозяйственно-питьевые нужды в соответствии со СП РК 4.01-101- 2012, Приложение B-25 л/сут на одного работающего;
- на нужды пылеподавления пылящих поверхностей 0,4 л/м² (таблица 5.3 СНиП РК 4.01-02-2009). Пылеподавление будет производиться в течение теплого периода времени и составит 146 дней.

Расчет водопотребление для пылеподавление дорог:

Площадь поливаемых твердых покрытий составляет 600 м². Твердые покрытия поливают каждый день в теплый период года 146 дней.

$$0,4*600/1000=0,24 \text{ м}^3/\text{сут}$$

 $0,24*146=35,04 \text{ м}^3/\text{период}.$

<u>Расход воды на санитарно-питьевые нужды.</u>Потребление питьевой воды, исходя из требований СП РК 4.01-101-2012, рассчитывалось по норме 25 л в смену на одного работника. Таким образом, на период проведения работ, при 33 работниках, которая будет проходить 252 дня, водопотребление составит:

Расчет:
$$(33x7,3x252)$$
\1000 = 60,71 м³/период

Данные расчеты водопотребления являются теоретическими, практическое потребление многократно меньше.

Балансовая схема водопотребления и водоотведения представлена в таблице 4.3.1.

Таблица 4.3.1 **Балансовая схема водопотребления и водоотведения**

	Водопотребление, м ³ /год					Водоотведение, м ³ /год						
Производство	Всего	На произ	На производственные нужды			нужды						
		Свежая	н вода			нуж					o	
		всего	в том числе питье вого качес тва	Оборотная вода	Повторно используемая вода	На хозяйственно-бытовые	Всего	Объем сточной воды, повторно используемой	Производственные сточные воды	Хозяйственно-бытовые сточные воды	Безвозвратное потребление	Примечание
На период проведения работ												
Хоз- пит.вода	60,71	-	-	-	-	60,71	60,71	-	-	60,71	-	-
Пылеподав ление дорог	35,04	35,04	-	-	-	-	35,04	-	-	-	35,04	-
Итого по предприятию:					60,71	95,75			60,71	35,04		

4.4 Мероприятия по охране водных ресурсов

Проектным решением предусматриваются следующие мероприятия по охране поверхностных и подземных вод:

- заправку ГСМ производить с бензовоза через специальный шланг, для исключения попадании ГСМ в почву применять поддоны;
- бытовые сточные воды отводить в существующие в выгребные бетонированные гидроизоляционные ямы и по мере наполнения откачивать ассенизационной машины и вывозить на ближайшие очистные сооружения сточных вод;
- недопущение загрязнения дождевого стока отходами и строительными материалами, путем организации системы сбора, временного хранения и удаления отходов:
 - своевременная уборка территории от мусора;
- сбор отходов в герметичные контейнеры и своевременный вывоз на специализированные предприятия для размещения или утилизации;
- на примыкающих территориях за пределами отведенной площадки не допускается вырубка кустарников, устройство свалок отходов, складирование материалов, повреждение дерново-растительного покрова;
- исключать загрязнения подземных вод техногенными стоками (утечки масла и дизтоплива от транспортной техники). Для этого своевременно проводить технический осмотр карьерной техники, что исключает возникновения аварийных ситуаций. Производить постоянные наблюдения за автотранспортом и техникой;

- применять оптимальные технологические решения, не оказывающие негативного влияния на окружающую природную среду, и исключающие возможные аварийные ситуации;
- ремонтные работы техники и оборудований производить только в ремонтном участке, отдельно на производственной базе недропользователя;
- добычные работы производить строго в отведенном контуре (участок отведенной для работ). Не выходит за рамки контура участка работ;
- по окончании работ необходимо произвести рекультивацию земель, посев зеленых насаждений (посев трав, деревьев, кустарников и.т.д.), произрастающих в районе месторождения;
- сохранять естественный ландшафт прилегающих к территории участков земли;
- упорядоченное движение транспорта и другой техники по территории участков работ, разработка оптимальных схем движения;
- ознакомить работников о порядке ведения работ, для исключения аварийных ситуаций и возможного загрязнения водной и окружающей среды.

Соблюдение принятых природоохранных мероприятий Компанией – исполнителем при производстве работ по проекту позволяет вести работы с минимальным ущербом для окружающей среды.

Воздействия проектируемых работ на поверхностные и подземные воды будут пренебрежимо малые, локального значения. Эти воздействия не могут вызвать негативныхизменений.

5. ОЦЕНКА ВОЗДЕЙСТВИЯ НА НЕДРА

5.1 Наличие минеральных и сырьевых ресурсов в зоне воздействия намечаемого объекта (запасы и качество)

Отчет по оценке минеральных ресурсов и запасов в соответствии с определениями Кодекса KAZRC и письма МД «Центрказнедра» о постановке Минеральных Запасов на государственный учет запасы по участку составляют: Измеренные ресурсы (Measured) составляют - 1880,74 тысм³, в том числе доказанные запасы (Proved) - 1811,81 тысм³. Объем вскрыши - 107,92 тысм³.

5.2 Потребность объекта в минеральных и сырьевых ресурсах в период строительства и эксплуатации (виды, объемы, источники получения)

Планом горных работ потребность в минерально-сырьевых ресурсах отсутствует.

5.3. Прогнозирование воздействия добычи минеральных и сырьевых ресурсовна различные компоненты окружающей среды и природные ресурсы

Технология разработки проектируемых участков описана в разделе 2, принятые методы разработки обусловлены многолетним опытом разработки аналогичных месторождений, как в регионе, так и за рубежом.

Расположение автомобильных дорог в границах участков недр предусмотрены по рациональной схеме. Добыча будет проводиться открытым способом с внутренним отвалообразованием, с использованием экскаваторов и автосамосвалов.

Воздействие на атмосферный воздух на территории расположения участков будет незначительным и не повлечет за собой необратимых процессов при соблюдении мероприятий, перечисленных в проекте.

Учитывая, что добыча сырья будет осуществляться карьерным способом, с относительно небольшими глубинами, которая может оказывать воздействие только на первый от поверхности водоносный горизонт грунтовых вод, защита возможных ниже лежащих водоносных горизонтов не рассматривается. Временные водотоки появляются только при ливнях, случающихся весной и осенью, и при интенсивном снеготаянии. В условиях климата района разработки месторождения, атмосферные осадки не оказывают серьезного влияния. В виду способа и технологии разработки месторождения, а так же свойств горных пород, мероприятия по специальной изоляции нижележащих горизонтов — не предусмотрены из-за нецелесообразности.

На предприятии будет организована система сбора, накопления, хранения и вывоза отходов.

Вскрышные породы будут размещены в отвале. Отвал вскрышных пород не подвержен окислению и самовозгоранию.

Восстановление почвенно-растительного слоя до состояния, близкого к предшествующему началу работ, произойдет на территории месторождения при соблюдении проектных решений.

Прямого воздействия путем изъятия объектов животного и растительного мира не предусматривается.

Воздействие намечаемой деятельности прогнозируется низкой значимости при соблюдении рекомендуемых проектом природоохранных мероприятий.

5.4 Обоснование природоохранных мероприятий по регулированию водного режима и использованию нарушенных территорий

Работы на объекте планируется проводить в пределах контуров горного отвода.

Технологические процессы в период проведения работ на карьерах не будут выходить за их пределы и позволят исключить воздействие на компоненты окружающей среды.

Участки расположены за пределами водоохранных зон и полос водного объекта.

Намечаемые работы будут производиться с учетом требований «Единых правил охраны недр при разработке месторождений твердых полезных ископаемых» и других руководящих материалов по охране недр при разработке месторождений полезных ископаемых.

Для предотвращения возможных отрицательных воздействий при ведении работ по добыче полезных ископаемых на водные ресурсы, предусмотрено соблюдение водоохранных мероприятий, согласно статей 112,113,114,115 Водного Кодекса Республики Казахстан.

Предусматривается устройство септиков с выгребными ямами, которые периодически дезинфицируются и вычищаются ассенизационными машинами на основании договора со специализированной организацией.

Ежесменно будет производиться контроль за состоянием автотранспорта горной техники карьера перед выездом на участок. Заправка автотранспорта будет осуществляться на специальной площадке с твердым покрытием для исключения возможности пролива топлива на почвы, грунтовые воды и т.д.

5.5 Характеристика используемых месторождений (запасы полезных ископаемых, их геологические особенности и другое)

Исходя из планируемых объемов добычи в период с 2025 - 2026 гг., объем доказанных запасов будет составлять 1811,81 тыс. m^3 .

Проектные потери полезного ископаемого определены исходя из границ проектируемого карьера, горно-геологических условий залегания полезной толщи и системы разработки.

Баланс запасов полезных ископаемых проектируемых участков представлен в таблице 5.5.1.

Таблица 5.5.1

No	Наименование	Ед. изм	Показатели
п/п			
1	Доказанные запасы	тыс. м ³	1811,81
2	Потери	тыс. м ³	68,93
3	Измеренные ресурсы	тыс. м ³	1880,74
4	Коэффициент потерь	%	3,66

Участок работ приурочен к среднечетвертичным отложениям ташкентского комплекса (Q_2t) .

Участок строительных грунтов, имеет разные площади и конфигурацию.

Продуктивная толща участка сложена четвертичными отложениями среднего отдела (Q_2t) в виде твердых суглинков коричневого цвета.

Перекрываются продуктивные образования слабогумусированными супесями твердыми.

Подстилающие породы не вскрыты. Грунтовые воды не вскрыты.

Вскрышные породы участков, представленные супесчано-суглинистыми, слабо гумусированными образованиями, с корнями растений.

5.6. Радиационная характеристика полезных ископаемых и вскрышных пород (особенно используемых для рекультивации и в производстве строительных материалов)

По радиационно-гигиенической оценке, продуктивные образования обладают эффективной удельной активностью: участок №1Б -74,0±18 Бк/кг; участок №1А-Р - 81,0±20 Бк/кг; участок №10А - 62,0±18 Бк/кг и отвечают требованиям гигиенических нормативов «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности» утвержденным Приказом Министра Здравоохранения РК №ДСМ-71 от 02.08.22 г.).

5.7. Рекомендации по составу и размещению режимной сети скважин для изучения, контроля и оценки состояния горных пород и подземных вод в процессе эксплуатации объектов намечаемого строительства

Подземные воды до глубины проведения разведки, а в дальнейшем и отработки по всем участкам не выявлены. Глубина отработки участков ожидается до 4,0 метров.

Поверхностные водоемы и подземные воды (до глубины отработки) отсутствуют.

5.8. Предложения по максимально возможному извлечению полезных ископаемых из недр, исключающие снижение запасов подземных ископаемых на соседних участках и в районе их добычи (в результате обводнения, выветривания, окисления, возгорания)

Очередность отработки запасов месторождений определена горногеологическими условиями залегания полезного ископаемого.

Под выемочной единицей принимается наименьший экономически и технологически оптимальный участок месторождения с достоверным подсчетом исходных запасов, отработка которого осуществляется единой системой разработки и технологической схемой выемки, по которому может быть осуществлен наиболее точный отдельный учет добычи полезного ископаемого.

Параметры выемочной единицы выбраны из условий:

- относительную однородность геологических условий;
- возможность отработки запасов единой системой разработки;
- достаточную достоверность определения запасов;
- возможность первичного учета извлечения полезных ископаемых;

Исходя, из принятой системы отработки и схемы подготовки выемочной единицей данным проектом принимается карьер.

В процессе отработки каждой выемочной единицы необходимо вести полную горно-графическую документацию (составление геологических и маркшейдерских планов и разрезов) для учета движения запасов.

Учет состояния и движения запасов, а также полнота извлечения полезных ископаемых из недр в карьерах осуществляется маркшейдерской и геологической службами.

Маркшейдерская служба производит съемку и замеры горных выработок, в частности замеры и расчеты выемочных единиц, объемов и количества отбитой горной массы, составляет графическую документацию, ведет книгу учета добычи и потерь по выемочным единицам, координирует и оценивает все работы по определению исходных данных.

Геологическая служба производит зарисовки и опробование горных выработок, устанавливает границы контуров рудных тел, периодически

определяют среднюю плотность руды и пород, осуществляет контроль за полнотой выемки полезного ископаемого.

Учет запасов производится в соответствии с требованиями действующих отраслевых инструкций и положений.

5.9. Оценка возможности захоронения вредных веществ и отходов производствав недра

Захоронение вредных веществ и отходов производств в недра не планируется.

6. ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ

Процесс проведения работ сопровождается образованием отходов производства и потребления.

При проведении образуются следующие виды отходы:

- отходы потребления;
- производственные отходы.

Расчет отходов производства и потребления произведен в соответствии с «Методикой разработки проекта нормативов предельного размещения отходов производства и потребления». Приложение № 16 к приказу Министра охраны окружающей среды Республики Казахстан № 100-п от 18.04.2008 г

6.1 Расчет образования отходов потребления

Смешанные коммунальные отходы

Образуются от деятельности рабочих при проведении работ, а также при уборке помещений и территорий. В состав ТБО входят: мусор от уборки, текстиль, стекло, полиэтилен, пластмассы, стеклобой, органика.

Включают сгораемые и несгораемые бытовые отходы. По агрегатному состоянию отходы твердые, по физическим свойствам — в большинстве случаев нерастворимые в воде, пожароопасные, невзрывоопасные, некоррозионноопасные. По химическим свойствам — не обладают реакционной способностью, содержат в своем составе оксиды кремния, углеводороды, органические вещества.

Состав отхода представлен: Fe_2O_3 (C10) - 2%; Al_2O_3 (C01) - 3%; бумага (C81) - 60%; тряпье (C81) - 7%; органика (C81) - 10%; пластмасса (C81) - 12%; SiO_2 (C15) - 6%.

Расчет объемов образования отходов от работников:

При среднегодовой норме твердых бытовых отходов на одно рабочее место - 0.3 м^3 /год, и при удельном весе 0.25, с учетом 33 работников и периоде проведения работ 252 дней, образуется:

Расчем: 33 x 0,3 x 0,25 = 2,475 т/год **Расчем:** (2,475/365) * 252 = 1,7 т/период

По мере образования ТБО и входящие в его состав различные виды отходов (пищевые отходы, пластик, полиэтилен, бумага, стекло) будут складироваться на специально отведенной площадке с твердым покрытием в металлический контейнер и передаваться специализированным предприятиям.

Согласно приложения 1 Классификатора отходов № 314 от 06.08.2021 г. — не опасные. Код отхода - 20 03 01.

6.2 Расчет образования прозводственных отходов

Абсорбенты, фильтровальные материалы, ткани для вытирания, защитная одежда, загрязненные опасными материалами (Ветошь промасленная)

Образуется в процессе использования тряпья для протирки деталей и машин, обтирания рук персонала.

Состав (%): тряпье - 65; нефтепродукты - 20; влага - 15. В своем составе содержат незначительное количество токсичных умеренно опасных веществ — примесей масла, дизтоплива, мазута, так как ветошь применяется для разового употребления.

По агрегатному состоянию отходы твердые, по физическим свойствам – пожароопасные, невзрывоопасные, имеющиеся загрязнения могут растворяться в воде.

Количество отходов принято согласно проекту и ориентировочно составит -0.12 т/период.

Нормативное количество отхода определяется исходя из поступающего количества ветоши (M_0 , т/год), норматива содержания в ветоши масел (M) и влаги (W) по формуле п.2.32 [5]:

$$N = M_0 + M + W_{, T/\Gamma O J,}$$

Где:

 $\mathbf{M} = 0.12 \cdot \mathbf{M_o}$

 $W = 0.15 \cdot M_{\odot}$

Расчем:
$$N = 0.12 + (0.12 * 0.12) + (0.15 * 0.12) = 0.15$$
 т/период

Сбор и временное хранение отходов будет производиться на специальных отведенных местах (металлический контейнер), соответствующих классу опасности отходов, с последующим вывозом на спец. предприятие по договору.

Согласно приложения 1 Классификатора отходов № 314 от 06.08.2021 г. – опасные. Код отхода –15 02 02*.

<u>Отходы от разработки не металлоносных полезных ископаемых</u> (Вскрышные породы)

В процессе проведения добычных работ в карьере на участках образуются вскрышные породы.

Обоснованием полноты и достоверности исходных данных, принятых для расчета предполагаемого количества отходов является План горных работ по добыче общераспространенных полезных ископаемых на 3 участках, расположенных в Сарыагашском (№1Б, №1А-Р) и Келесском (№10А) районах

Туркестанской области используемых в строительстве «под ключ» железнодорожной линии Дарбаза-Государственная граница с Узбекистаном.

Вскрышные породы — горные породы, покрывающие и вмещающие полезное ископаемое, подлежащие выемке и перемещению как отвальный грунт в процессе открытых горных работ, с последующим их использованием для рекультивации.

Обладают следующими свойствами: твердые, не токсичные, не растворимы в воде, не пожароопасные, представленные суглинисто-супесчаным материалом слабо гумусированными, с корнями растений мощностью 0,1 до 0,3 метра.

Объемы образования вскрышной породы приняты согласно календарному плану добычи полезных ископаемых:

Объемы образования вскрышных пород

Показатели	Ен ном	Годы отработки		
Показатели	Ед. изм.	2025 г.	2026 г.	
Растини за наполн	M ³	53960	53960	
Вскрышные породы	тонн	97128	97128	

Снятие и перемещение пород вскрыши на начальном этапе отработки будет осуществляться в бурты с площади отработки, перемещаться на отработанное пространство параллельно фронту добычных работ, с последующим использованием для рекультивации нарушенных участков.

Согласно приложения 1 Классификатора отходов № 314 от 06.08.2021 г. — не опасные. Код отхода — 01 01 02.

Таблица 6.2.1 Лимиты накопления отходов на 2025-2026 г.

2025-2026 гг.					
Наименование отхода	Объем накопленных отходов на существующее положение, тонн/год	Лимит накопления, тонн/год			
1	2	3			
Всего	97129,85	97129,85			
в том числе отходов производства	97128,15	97128,15			
отходов потребления	1,7	1,7			
Опасные отходы					
Абсорбенты, фильтровальные материалы, ткани для вытирания, защитная одежда, загрязненные опасными материалами (Ветошь промасленная) 15 02 02*	0.15	0,15			
Не опасные отходы					
Смешанные коммунальные отходы 20 03 01	1,7	1,7			
Отходы от разработки не металлоносных полезных ископаемых	97128	97128			

(Вскрышные породы) 01 01 02					
Зеркальные					
-	-	-			

Таблица 6.2.2 Лимиты захоронения отходов на 2025-2026 г.

Наименование	Год захоронения	Место	Нормативные	Запрашиваемые
отхода (код)		захоронения	объемы	лимиты
			захоронения	захоронения
			отходов,	отходов,
			тонн/год	тонн/год
Отходы от	2025-2026 гг.	в бурты с	97128	97128
разработки не		площади		
металлоносных		отработки,		
полезных		перемещаться на		
ископаемых		отработанное		
(Вскрышные		пространство		
породы) 01 01 02		параллельно		
		фронту		
		добычных работ		

6.3 Система управления отходами производства и потребления при проведении работ

В соответствии с требованиями Экологического Кодекса Республики Казахстан отходы производства и потребления должны собираться, храниться, обезвреживаться, транспортироваться и захораниваться с учетом их воздействия на окружающую среду.

При проведении работ Заказчик (Подрядчик) обязуется организовать раздельный сбор и вывоз образующихся отходов, в соответствии с требованиями природоохранных законодательств Республики Казахстан. Для этой цели будут использоваться маркированные металлические или пластиковые контейнеры, и специальные емкости, расположенные на специально оборудованных для этого площадках.

Ведение документации и отчетности по обращению с отходами в процессе производства работ должно осуществляться в соответствии с требованиями Экологического Кодекса, проектом и материалами РООС, договора на вывоз отходов для размещения на полигонах и/или специализированных предприятиях.

Минимизация возможного воздействия отходов на компоненты ОС достигается принятием следующих решений:

- сбор и накопление образующихся отходов должны осуществляться раздельно по их видам, физическому агрегатному состоянию, пожаро-, взрывоопасности, другим признакам и в соответствии с установленными классами опасности;

- оснащением площадок контейнерами, тип (конструкция), размер и количество которых обеспечивают накопление отходов с соблюдением санитарно-эпидемиологических правил и нормативов при установленных проектом объемах предельного накопления и периодичности вывоза;
- обустройством открытых площадок накопления отходов (ограждение), оснащением накопителями, исключающими развеивание отходов по территории;
- строгий контроль за временным складированием отходов производства и потребления на территории проектируемого производства в специально отведённых местах;
 - периодически вывоз отходов в спецмашинах в места их утилизации;
- оборудовать специальные площадки для парковки автотранспорта и для временного хранения необходимого оборудования и материалов, используемых при работах;
- очистка территории от мусора и остатков всех видов отходов, а также вывоз контейнеров с ним для утилизации в соответствующие полигоны после завершения работ.

Все отходы будут храниться в изолированных контейнерах, на специально обустроенных площадках, а транспортировка отходов будет проводиться специальным транспортом, значимого негативного воздействия на окружающую среду оказано не будет.

При проведении работ также исключается прямое воздействие отходов на прилегающую территорию и поверхностные воды.

Принятые проектные решения по управлению отходами при проведении работ позволяют минимизировать возможные негативные воздействия на ОС и проводить работы в соответствии природоохранных законодательств Республики Казахстан.

7. ОЦЕНКА ФИЗИЧЕСКОГО ВОЗДЕЙСТВИЯ

7.1. Критерии оценки радиологической обстановки

Радиоактивным загрязнением считается повышение концентраций естественных или природных радионуклидов сверх установленных санитарногигиенических нормативов — предельно допустимых концентраций (ПДК) в окружающей среде (почве, воде, воздухе) или предельно допустимых уровней (ПДУ) излучения, а также сверхнормативные содержания радиоактивных элементов в строительных материалах, на поверхности технологического оборудования и в отходах промышленных производств.

Радиационная безопасность обеспечивается соблюдением действующих республиканских и отраслевых нормативных документов. Основные требования радиационной безопасности предусматривают:

- исключение всякого необоснованного облучения населения и производственного персонала предприятий;
- не превышение установленных предельных доз радиоактивного облучения.

По результатам исследования радиоактивности, все оцененные разновидности грунтов имеют эффективную удельную активность от 60 до 63 Бк/кг, что позволяет их отнести к 1 классу радиационной опасности (I класс Аэфф до 370 Бк/кг) и по радиационным показателям они могут использоваться без ограничений.

При проведении работ на участке работ не используются источники радиационного излучения.

В связи с выше изложенным, специальных мероприятий по радиационной безопасности населения и работающего персонала при эксплуатации месторождений не требуется.

При выполнении работ будут соблюдены все требования в соответствии санитарных правил «Санитарно-эпидемиологические требования к обеспечению радиационной безопасности», утвержденных приказом Министра здравоохранения Республики Казахстан № ҚР ДСМ-275/2020 от 15.12.2020 г.

7.2 Акустическое воздействие

Технологические процессы проведения работ являются источником сильного шумового воздействия на здоровье людей, непосредственно принимающих участие в технологических процессах, а также на флору и фауну.

Интенсивность внешнего шума зависит от типа оборудования, его рабочего органа, вида привода, режима работы и расстояния от места работы. Внешний шум может создаваться при работе механических агрегатов, автотранспорта.

Снижение уровня звука от источника при беспрепятственном распространении происходит примерно на 3 дБ при каждом двукратном увеличении расстояния, снижение пиковых уровней звука происходит примерно на 6 дБ. Поэтому с увеличением расстояния происходит постепенное снижение среднего уровня звука.

Исходя из условий расположения площади работ на большом расстоянии от населенных пунктов, негативного воздействия от шума работающей техники и оборудования, расположенного на его территории – не ожидается.

Оценка уровня шумового воздействия в жилой зоне населенных пунктов проводится по Гигиеническим нормативам к физическим факторам, оказывающим воздействие на человека, утверждены приказом Министра здравоохранения Республики Казахстан № КР ДСМ-15 от 16 февраля 2022 г.

Мероприятия по снижению уровня шума при выполнении технологических процессов сводятся к снижению шума в его источнике, применение, при необходимости, звукоотражающих или звукопоглощающих экранов на пути распространения звука или шумозащитных мероприятий на самом защищаемом объекте.

7.3 Вибрационное воздействие

Под вибрацией понимают механические колебания твердых тел, передающихся телу человека. При превышении уровня такие колебания могут оказывать негативное влияние на здоровье человека и приводить к развитию невротических и неврозоподобных реакций.

Оценка уровня вибрации проводится по Единому санитарноэпидемиологическим и гигиеническим требованиям к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю), утвержденной решением Комиссии таможенного союза № 299 от 28 мая 2010 года (с изменениями и дополнениями на состояние 03.08.2021 г.).

Территория работ располагается за пределами поселка, где отсутствуют жилые дома. На территории работ нет жилых строений. Поэтому вибрационное воздействие от проводимых работ можно считать незначительным, которое не окажет влияния на уровень вибрации населенного пункта.

В период проведения работ для снижения вибрации предусматривается:

- установление гибких связей, упругих прокладок и пружин;
- сокращение времени пребывания в условиях вибрации;
- применение средств индивидуальной защиты (защитные перчатки, рукавицы и защитная обувь).

Уровни вибрации при проведении работ, не будут превышать на рабочих местах не более $0.1 \text{ м/c}^2 (100 \text{ дБ})$ по допустимому уровню виброускорения и не более 0.2 *10-2 м/c (92 дБ) по допустимому уровню виброскорости. Это не окажет

влияния на работающей персонал и, соответственно, уровни вибрации на территории ближайшей жилой застройки не будут превышать допустимых значений, установленных в Единых санитарно-эпидемиологических и гигиенических требованиях к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю) № 299 от 28.05.2010 года (с изменениями и дополнениями на состояние 03.08.2021 г.).

7.4 Электромагнитные воздействия

Оценка уровня электромагнитного воздействия проводится по Гигиеническим нормативам к физическим факторам, оказывающим воздействие на человека, утверждены приказом Министра здравоохранения Республики Казахстан № ҚР ДСМ-15 от 16 февраля 2022 г.

Основными источниками электромагнитного излучения на период будут являться различные виды связи и оборудование.

Уровни электромагнитного излучения при проведении работ не будут превышать значений, определенных ГОСТ 12.1.006-84, что не окажет влияния на работающий персонал, и, соответственно, уровень электромагнитных излучений на территории жилой застройки (более 5 км) не будет превышать допустимых значений, установленных ГН № 169 от 28.02.2015 г.

В период проведения работ предусматривается мероприятия по защите от воздействия электромагнитных полей:

- система защиты, в том числе временем и расстоянием;
- выбор режимов работы излучающего оборудования, обеспечивающих уровень излучения, не превышающий предельно допустимый;
 - ограничение места и времени нахождения людей в зоне действия поля;
 - обозначение и ограждение зон с повышенным уровнем излучения;
 - соблюдение электромагнитной безопасности.

Защита временем применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. Путем обозначения, оповещения и т.п. ограничивается время нахождения людей в зоне выраженного воздействия электромагнитного поля.

Защита расстоянием применяется, в случае если невозможно ослабить воздействие другими мерами, в т.ч. и защитой временем. Метод основан на падении интенсивности излучения, пропорциональном квадрату расстояния до источника. Защита расстоянием положена в основу нормирования санитарно-защитных зон — крайне важного разрыва между источниками поля и жилыми домами, служебными помещениями и т.п.

Границы зон определяются расчетами для каждого конкретного случая размещения излучающей установки при работе её на максимальную мощность излучения. В соответствии с ГОСТ 12.1.026-80 зоны с опасными уровнями

излучения ограждаются, на ограждениях устанавливаются предупреждающие знаки с надписями: «Не входить, опасно!».

Проектные работы не окажет электромагнитные воздействия на работающий персонал и ближайшую жилую застройку территории работ.

Тепловое воздействие от проектных работ не ожидается. В целом, проектируемые работы не окажет физическое воздействие ближайшие населенные пункты.

8. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ПОЧВЕННЫЙ ПОКРОВ

8.1 Современное состояние почвенного покрова

Почвы — это элемент географического ландшафта. Первопричиной образования почв явились живые организмы (главным образом растения и микробы), поселяющиеся в разрушенной выветриванием горной породе.

Происхождение почвы и ее свойства неразрывно связаны с условиями окружающей среды.

Почвенный покров территории Туркестанской области, определяющий качество земель, характеризуется с одной стороны четко выраженной широтной зональностью в распространении типов и подтипов почв, с другой изменением почв с запада на восток в связи усилением в этом направлении аридности климата.

Почвы территории Туркестанской области области сгруппированы на следующие зональные типы и подтипы:

- 1.Серо-бурые почвы пустынной зоны;
- 2.Сероземы северные и южные пустынно-степной зоны;
- 3. Предгорные каштановые почвы пустынно-степной зоны;
- 4. Горные альпийские и субальпийские почвы;
- 5. Горные каштановые почвы (горные коричневые).

В горных системах юга сформировались горные субальпийские почвы и горные каштановые почвы. Кроме равнинных и горных зональных почв на территории Туркестанской области имеют широкое распространение интрозональные почвы: солончаки, солонцы.

Важной особенностью почвенного покрова является неоднородность, большая комплексность связанная с засушливостью климата, рельефом и почвообразующими породами, которая проявляется повсеместно на всей территории области. Неоднородность почвенного покрова существенно снижает продуктивность сельскохозяйственных угодий.

8.2 Оценка воздействие проектируемых работ на почвенный покров

Благоприятные горно-геологический условия эксплуатации месторождения, незначительная вскрыша, горизонтальное залегание продуктивной толщи и характер полезного ископаемого предопределяют возможность разработки участков открытым способом с применением современных средств механизации добычных и погрузочных работ.

В процессе отработки карьеров будет нарушен плодородный слой почвы. Общая площадь нарушенных земель, после полной отработки участков, составит 48,94 га.

На начальном этапе будет производиться снятие плодородного слоя почвы бульдозером в бурты, из буртов ПСП с помощью погрузчика перемещается во временный отвал ПСП на отработанную поверхность карьера и созданием там временного отвала ПСП.

По окончании срока разработки карьера, ПСП будет использован в качестве материала для рекультвационных работ, тем самым восстанавливая плодородие и других полезных свойств земли. После окончания добычных работ на грунтовые карьеры будет разработан отдельный проект рекультивации нарушенных земель с разделом ООС.

На рассматриваемом объекте не будут использовать ядовитые и химически активные вещества, которые при случайных проливах и рассыпании при их транспортировании, могли бы при попадании на почву оказать вредное воздействие на окружающую среду.

8.3 Рекомендуемые мероприятия по минимизации негативного воздействия на почвенный покров

Для минимизации нарушения и загрязнения почв на территории работ необходимо неукоснительное соблюдение следующих правил:

- упорядочить движение автотранспорта по территории работ путем разработки оптимальных схем движения и обучения персонала;
- организовать сбор и вывоз отходов производства и потребления на полигоны по мере заполнения контейнеров и мест временного складирования;
- во избежание разноса отходов контейнеры должны иметь плотные крышки;
- разработать мероприятия для предупреждения утечек топлива и масел при доставке;
- заправку транспорта проводить в строго отведенных оборудованных местах;
- бытовые сточные воды направлять в выгребные ямы и осуществлять своевременный вывоз на очистные сооружения;
 - рациональное размещение подъездных дорог, стоянок автотехники;
- размещение отвалов в местах, непригодных для использования в сельскохозяйственных целях;
- сведение к минимуму ущерба природе и проведение рекультивационных работ в соответствии с проектом.

Проектом предусматривается пылеподавление в теплый период года, при экскавации пород, бульдозерных работах, нагруженной в кузов автосамосвала до выезда с территории карьера орошением водой с помощью поливомоечной машин. Для предотвращения сдувания пыли с поверхности складов ПРС (буртов) предусматривается также орошение их водой.

Проектом предусматривается следующие мероприятия по борьбе с загрязнением окружающей природной среды при работе автотранспорта:

- очистка от просыпей автодорог;
- обработка водой.

В соответствии пунктов 1, 2, 3 статьи 238 Экологического Кодекса при проведении работ необходимо соблюдать следующие экологические требования:

- при использовании земель не допускать загрязнение земель, захламление земной поверхности, деградацию и истощение почв;
- обеспечить снятие и сохранение плодородного слоя почвы, когда это необходимо для предотвращения его безвозвратной утери;
- содержать занимаемые земельные участки в состоянии, пригодном для дальнейшего использования их по назначению;
- до начала работ, связанных с нарушением земель, снять плодородный слой почвы и обеспечить его сохранение и использование в дальнейшем для целей рекультивации нарушенных земель;
 - проводить рекультивацию нарушенных земель;
- запрещается нарушение растительного покрова и почвенного слоя за пределами земельных участков (земель), отведенных в соответствии с законодательством Республики Казахстан под проведение операций по недропользованию, выполнение строительных и других соответствующих работ;
- запрещается снятие плодородного слоя почвы в целях продажи или передачи его в собственность другим лицам.

При соблюдении технологии отработки месторождения в соответствии с проектом, воздействие оценивается как незначительное. Рациональное размещение подъездных дорог, стоянок автотехники, размещение отвалов в местах непригодных для использования в сельскохозяйственных целях, проведение рекультивационных работ позволят снизить до минимума воздействие на земельные ресурсы.

9. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ГЕОЛОГИЧЕСКУЮ СРЕДУ

Геологическая среда - сложная многокомпонентная система, находящаяся в динамическом равновесии. Естественное или антропогенное изменение одного из компонентов может вызвать перестройку всей системы. Это перестройка фактически выражается в развитии геологических, физико-химических и биохимических процессов.

Проектируемые работы состоят из комплекса отдельных технологических операций, значительно отличающихся по своему воздействию на геологическую среду.

Воздействие на геологическую среду территорию проектируемых работ складывается из воздействий на собственно недра.

При строгом соблюдении технологического процесса работ при проведении проектируемых работ не могут оказать существенного негативного воздействия окружающей среде.

Загрязнение почвообразующего субстрата нефтепродуктами и другими химическими соединениями в процессе проведения работ при соблюдении проектных решений не ожидается.

При проведении работ по добыче полезных ископаемых проектом предусматриваются следующие мероприятия:

- для сохранения устойчивости откосов на карьерах обеспечить их эффективным дренажом;
- установить допустимые условия устойчивости общего угла разгона ярусов;
- для укрепления откосов применить способы механического удержания призмы обрушения;
- при работах в зонах возможных обвалов или провалов, вести маркшейдерские инструментальные наблюдения за состоянием бортов и почвы карьера. При обнаружении признаков сдвижения пород работы должны быть прекращены;
- для управления горнопроходческим оборудованием допускается работники, прошедшие подготовку, переподготовку по вопросам промышленной безопасности;
 - предусмотреть устройство нагорных и водоспускных канав;
 - планировать территории вокруг карьера и площадок уступов;
- уклоны, придаваемые канавам, должны гарантировать отсутствие эрозионного размыва;
 - на откосах уступов необходимо предусматривать ливнестоки;
 - предотвращать свободное стекание вод по откосам бортов карьера;

- для сбора стекающих вод устраивать водосборные выработки под подошвой карьера.

При проведении горных работ будет выполняться маркшейдерское обеспечение работ и учет объемов добычи пород по площади и глубине. Выполнение перечисленных мероприятий при добыче позволит свести до минимума его влияние на окружающую среду.

9.1 Природоохранные мероприятия по охране недр

В процессе проведения работ, предусмотренных Проектом, будут выполнены следующие мероприятия:

- ведение мониторинга недр и окружающей среды с целью изучения воздействия на них результатов своей деятельности и принятия мер по своевременному устранению негативного воздействия;
- в случае нанесения ущерба природной среде, ликвидировать допущенные нарушении, провести восстановительные работы и компенсировать нанесенный природе ущерб;
- обеспечение возможной полноты опережающего геологического, гидрогеологического, экологического, технологического и инженерногеологического изучения недр для достоверной оценки величины и структуры запасов полезных ископаемых, месторождений и участков недр, представленных в недропользование;
- обеспечение рационального и комплексного изучения ресурсов недр на этапе разведки и определение возможной полноты извлечения полезных ископаемых;
- обеспечение охраны недр от обводнений, взрывов, обрушений и других стихийных факторов, снижающих их качество и осложняющих разведку;
- обеспечение экологических требований при складировании и размещении промышленных и бытовых отходов для предотвращения их накопления на площадь водосбора и в местах залегания подземных вод.

Учитывая специфический комплекс работ, а именно — добычные работы, вскрышные породы, формирование породного отвала - будет проведен следующий комплекс конкретных мероприятий по охране природной среды:

- снятие почвенного слоя и перемещение его в отвалы и по окончании работ его планировка и укладка;
- засыпка бытовых ям сначала щебнисто-глинистым материалом, а затем покрытие ранее вынутым почвенным слоем.

Исполнитель обязан проводить добычные работы в соответствии с Законодательством РК, в том числе в соответствии с «Правилами безопасности при ведении добычных работ».

Исходя из предусмотренного проектом добычных работ, с целью охраны окружающей среды на участках проявлений предусматривается:

- обеспечить сохранность поверхностного слоя почв участков от загрязнения ГСМ, бытовыми отходами и др.;
- обеспечить прокладывание проездов для автотранспорта и другой техники по участкам с максимальным использованием существующей дорожной сети;
- восстановить (рекультивировать) участки почвенно-растительного слоя, нарушенных при производстве добычных работ.

10. ОЦЕНКА ВОЗДЕЙСТВИЯ НА РАСТИТЕЛЬНЫЙ ПОКРОВ

10.1 Характеристика растительного покрова

Несмотря на однообразные климатические условия и рельеф, состав природных нетрансформированных растительных сообществ достаточно неоднороден. Это связано в первую очередь с мощностью мелкоземистой почвенной толщи, механического состава почв, а также с глубиной залегания легкорастворимых солей.

В южной части территории, прилегающей к хр. Каратау, широкое распространение получили полынно - кейреуковые и кейреуково-полынные сообщества (Artemisia turanica, Salsola orientalis). На относительно пониженных территориях формируются те же полынно-кейреуковые сообщества, но с участием биюргуна (Anabasis salsa), который может образовывать отдельные пятна. На прилегающей к пескам части подгорной равнины на почвах легкого механического состава преобладают кейреуково полынные сообщества с участием саксаула (Haloxylon aphyllum), иногда терескена (Eurotia ceratoides). По неглубоким депрессиям и руслообразным понижениям в составе вышеописанных сообществ встречаются однолетние солянки.

Растительность песков дифференцирована по элементам рельефа. На вершинах гряд и бугров преобладают кустарниковые (терескеново - саксауловые) ассоциации, по склонам - кустарниково полынные (*Artemisia arenaria*). Понижения и котловины выдувания заняты аристидойперистой (*Aristida pennata*), джузгуном (*Calligonum sp.*), граниновей (*Horaninovia*).

Всюду в составе сообществ встречается осочка вздутоплодная (*Carex physodes*). Весной вегетируют эфемеры - бурачок пустынный (*Alyssum desertorum*), мортук (*Eremopyrum bonaepartis*) и др.

На засоленных почвах распространены однолетнесолянковые сообщества среди которых доминируют солянка шерстистая (Salsola lanata), солянка супротивнолистая (Salsola brachiata), шведка линейнолистая (Suaeda linifolia) и др. Сорные эбелековые ассоциации (Ceratocarpus arenarius, C. Turkestanicus) приурочены к местам, связанным с антропогенным происхождением, в основном выпасом скота.

В равнинной части области преобладают полынно-злаковые растения. В долинах Сырдарии и Шу встречаются песчаные саксаульники, камышовые болота с рощами. На горных склонах преобладает древесно-кустарниковая растительность, можжевельник, рощи из дикой яблони, абрикосового дерева, высокогорные районы богаты альпийскими лугами.

Согласно письма РГУ "Комитет лесного хозяйства и животного мира Министерства экологии и природных ресурсов Республики Казахстан" 20.05.2025 NO3T-2025-01427289 и 16.04.2025 NO3T-2025-01073575 территория участков

добычных работ находится вне территории государственного лесного фонда и особо охраняемых природных территорий Туркестанской области.

Лесные насаждения и деревья на территории участка отсутствуют.

10.2 Оценка воздействия проектируемых работ на растительный покров

Воздействие на растительный покров может быть оказано как прямое, так и косвенное.

- В ходе реализации проекта наибольшее воздействие могут оказывать факторы прямого воздействия, связанные с перемещением транспорта:
- механическое нарушение и прямое уничтожение растительного покрова автотранспортом и персоналом;
 - выжигание растительности и применение ядохимикатов;
- возможное запыление и засыпание через атмосферу растительности и, как следствие, ухудшение условий жизнедеятельности растений;
- угнетение и уничтожение растительности в результате химического загрязнения;
- изменение флористического состава растительных сообществ за счет внедрения и изъятия видов.

К факторам косвенного воздействия на растительность при производстве работ можно отнести развитие экзогенных геолого-геоморфологических процессов (плоскостная и линейная эрозия, дефляция и т.д.), развитие и усиление которых будет способствовать сменам растительного покрова.

В целом, остаточные воздействия на растительность в результате осуществления проекта оцениваются - как незначительные по интенсивности, локальные по масштабам и средние по продолжительности.

10.3 Рекомендуемые мероприятия по минимизации негативного воздействия на растительный покров

Проектными решениями предусматриваются следующие основные мероприятия по охране растительного покрова:

- применение современных технологий ведения работ;
- не допускается не предусмотренное проектной документацией сведение древесно-кустарниковой растительности, а также засыпка грунтом корневых шеек и стволов растущих кустарников;
 - не допускается выжигание растительности и применение ядохимикатов;
 - строгая регламентация ведения работ на участке.

Принятые проектными решениями природоохранные мероприятия позволяют минимизировать возможные воздействия на растительный покров и

проводить работы в пределах разрешенных законодательством Республики Казахстан.

11. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЖИВОТНЫЙ МИР

11.1 Современное состояние животного мира

Фауна наземных позвоночных животных исследуемого района достаточна многообразна и представлена 3 видами земноводных, 14 видами пресмыкающихся, 203 видами птиц и 25 видами млекопитающих.

Фауна земноводных и пресмыкающихся прилегающих к проектируемому объекту территорий обеднена в силу экологических условий. Земноводные в исследуемом районе представлены двумя видами жаб — зеленой и серой и озерной лягушкой. Способность жаб переносить значительную сухость воздуха, использовать для икрометания временные водоемы и ночной образ жизни позволяют им заселить данную территорию.

Из широко распространенных видов пресмыкающихся на участках, прилегающих к массиву, наиболее многочисленными из ящериц являются степная агама, токарная круглоголовка и разноцветная ящурка. Из змей наиболее многочисленны обыкновенный и водяной уж, песчаный удавчик. Орнитофауна территории весьма разнообразна и насчитывает около 203 видов птиц, что составляет 41,4% орнитофауны республики.

Исследуемый район исторически служит местом пролета и кратковременных остановок птиц во время весенне-осенних миграций. На зимовке регулярно встречаются следующие виды: филин, белая сова, беркут, черный и рогатый жаворонки, домовой воробей, сорока, галка, грач, серая ворона.

Наиболее разнообразен состав пролетных птиц – 142 вида весной и 74 вида осенью.

11.2 Характеристика неблагоприятного антропогенного воздействия на животный мир

Хозяйственная деятельность в районе работ способна глубоко изменять природную обстановку и может привести к вторичному, уже самопроизвольному, расширению среды активно идущих изменений окружающей среды.

Возникновение антропогенных биогеоценозов, в разной степени отклоняющихся от природной схемы комплексов конкретной зоны, вносит изменения в естественные процессы ландшафтообразования и может вызывать зарождение «агрессивных природных процессов», таких, как дефляция и развевание песков в местах, где была уничтожена дресвено-кустарниковая растительность и стравлен покров трав перевыпасом.

Параллельно с ухудшением состава и снижением обилия растительного покрова местами резко обедняется животное население, что обусловливается выпадением из состава растительных группировок кормовых растений для

некоторых видов, нарушением трофических цепей и общими изменениями экологической обстановки. Этот процесс усиливается неконтролируемым и нерегламентированным по сезонам промыслом крупных млекопитающих и птиц, включая не только охотничьи виды, но и всех крупных по размерам, в том числе, и биологически важных по своей ценотической роли, хищных птиц. Численность крупных хищных птиц заметно сократилась за последние десятилетия.

11.3 Меры по снижению воздействия на животный мир при реализации проекта

Наиболее характерными факторами антропогенного неблагоприятного воздействия на животный мир при проведении работ будет производственный шум, служащий фактором беспокойства для многих видов птиц и млекопитающих являются следующие:

- внедорожное передвижение транспортных средств;
- выбросы токсичных веществ при сжигании топлива.

Для снижения даже кратковременного и незначительного негативного влияния на животный мир, необходимо выполнение следующих мероприятий:

- снижение площадей нарушенных земель;
- организация огражденных мест хранения отходов;
- поддержание в чистоте территории площадок и прилегающих площадей;
- размещение пищевых и других отходов только в специальных контейнерах с последующим вывозом;
- проводить инструктаж персонала о недопустимости охоты на животных и бесцельного уничтожения пресмыкающих (особенно змей);
- исключение проливов ГСМ, опасных для объектов животного мира и среды их обитания и своевременная их ликвидация;
 - ограничить скорость перемещения автотранспорта по территории.

Воздействие на растительный и животный мир оценивается как незначительное, так как территория участков добычных работ размещаются на землях со скудной растительностью и в связи с отсутствием редких исчезающих животныхна данной территории. На проектируемых участках не произойдет обеднение видового состава и существенного сокращения основных групп животных.

12. ОЦЕНКА ВОЗДЕЙСТВИЕ НА ЛАНДШАФТЫ И МЕРЫ ПО ПРЕДОТВРАЩЕНИЮ, МИНИМИЗАЦИИ, СМЯГЧЕНИЮ НЕГАТИВНЫХ ВОЗДЕЙСТВИЙ, ВОССТАНОВЛЕНИЮ ЛАНДШАФТОВ В СЛУЧАЯХ ИХ НАРУШЕНИЯ

Ландшафт рассматриваемой территории будет подвержен нарушению в период проведения проектируемых работ.

Основными факторами воздействия при реализации проектных решений являются следующие виды работ:

- проходка карьеров;
- движение автотранспорта.

Воздействие на ландшафт проявится в:

- нарушении земной поверхности (рельефа);
- изменении физических характеристик земной поверхности;
- изменении визуальных свойств ландшафта.

При проведении намечаемой деятельности техногенное преобразование территории является одной из ведущих причин, способной нарушить места обитания, на которых могут обитать различные виды животных, главным образом мелкие животные.

Растительность в районе, в основном, степная, разнотравно-злаковая. Древесная и кустарниковая растительность непосредственно на прилегающей к территории проектируемого участка отсутствует. Нарушение естественной растительности возникает, в первую очередь, при монтаже оборудования, движении транспортных средств и пр.

Комплекс мероприятий по снижению возможного негативного воздействия:

- Соблюдение требований строительных норм и правил, проектно технологических решений и мероприятий по сохранению биологического разнообразия в процессе эксплуатационных работ.
 - Проведение работ в пределах отведенных промышленных площадок.
- Движение автотранспорта и специальной техники только по временно отведенным для проектируемых работ автодорогам.
 - Исключение операций с отходами за пределами участков.
- Ликвидация последствий возможных аварийных ситуаций, оказывающих влияние на флору и фауну.
- Учитывая, что на территории планируемых работ часть млекопитающих, пресмыкающихся и некоторые виды птиц, ведут ночной образ жизни, необходимо до минимума сократить передвижения автотранспорта в ночное время.
- При планировании транспортных маршрутов и передвижениях по территории следует использовать ранее проложенные дороги и избегать внедорожных передвижений автотранспорта.

• На весь период работ необходимо проведение постоянных мероприятий по своевременному устранению неизбежных загрязнений и промышленно-бытовых отходов со всей площади, затронутой хозяйственной деятельностью.

После завершения работ должны проводиться следующие работы:

- удаление с территории технологической площадки строительного мусора, нефтепродуктов и др. материалов;
 - планировка поверхности;
 - выполнение необходимых мелиоративных и противоэрозионных работ;
- покрытие поверхности плодородным слоем почвы (ГОСТ 17.5.3.04-83 Охрана природы «Общие требования к рекультивации земель»).

Положительным моментом является рекультивация нарушенных земель недропользования, после которой нарушенные участки поверхности достаточно быстро начнут зарастать, тем самым будет восстанавливаться ландшафт территории.

13. СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СРЕДА

Реализация проекта может оказать как положительное, так и отрицательное воздействие на здоровье населения. К прямому положительному воздействию следует отнести повышение качества жизни персонала, задействованного при реализации проекта.

Создание новых рабочих мест и увеличение личных доходов граждан будут сопровождаться мерами по повышению благосостояния и улучшению условий проживания населения. Кроме того, как показывает опыт реализации подобных проектов, создание одного рабочего места на основном производстве обычно сопровождается созданием нескольких рабочих мест в сфере обслуживания.

Создание рабочих мест позволит привлекать на работу местное население, что повлияет на благосостояние ближайших поселков. Рост доходов позволит повысить возможности персонала и местного населения, занятого в проектируемых работах, по самостоятельному улучшению условий жизни, поднять инициативу и творческий потенциал. За счет роста доходов повысится их покупательская способность, соответственно улучшится состояние здоровья людей.

Косвенным положительным воздействием является возможность покупать дорогие эффективные лекарства, получать необходимую платную медицинскую помощь, как на местном, так и на региональном, республиканском уровнях.

Сохранение стабильных рабочих мест, повышение доходов населения, увеличение социально-экономической привлекательности региона, приток приезжих, занятых в рамках проекта, на территорию проектируемых работ являются прямым воздействием на уровень роста инфляции в регионе за счет увеличения спроса на жилье, земельные участки, цен на промышленные, продовольственные товары народного потребления. Наличие спроса в квалифицированном персонале стимулирует развитие образования, науки и технологий в строительной отрасли, применение научно-прикладных разработок и научных исследований в региональных и областных научных центрах.

В целом планируемая деятельность окажет умеренное положительное воздействие на развитие образования и научно-технической сферы в регионе. Повышение уровня жизни вследствие увеличения доходов неизбежно скажется на демографической ситуации. Наличие стабильной, относительно высокооплачиваемой работы, не будет способствовать оттоку местного населения, а наоборот может послужить причиной увеличения интенсивности миграции привлекаемых к работам не местных работников.

Особо охраняемые территории и культурно-исторические памятники. Рассматриваемая территория проектируемых работ находится вне зон с особым природоохранным статусом, на ней отсутствуют зарегистрированные

исторические памятники или объекты, нуждающиеся в специальной охране. Учитывая значительную отдаленность рассматриваемой территории от особо охраняемых природных территорий, планируемая производственная деятельность не окажет никакого влияния на зоны и территории с особым природоохранным статусом.

Лесные насаждения и деревья на территории участков добычных работ отсутствуют.

14. ОЦЕНКА ЭКОЛОГИЧЕСКОГО РИСКА

При проведении работ могут возникнуть различные осложнения и аварии. Борьба с ними требует затрат материальных и трудовых ресурсов, ведет к потере времени, что снижает производительность, повышает стоимость работ, вызывает увеличение продолжительности простоев и ремонтных работ. Поэтому знание причин аварий, мероприятий по их предупреждению, быстрая ликвидация возникших осложнений приобретают большое практическое значение.

Оценка вероятности возникновения аварийной ситуации при осуществлении данного проекта используется для оценки:

- потенциальных событий или опасностей, которые могут привести к аварийной ситуации с вероятным негативным воздействием на окружающую среду;
 - вероятности и возможности реализации таких событий;
- потенциальной величины или масштаба экологических последствий, которые могут возникнуть при реализации события.

14.1 Обзор возможных аварийных ситуаций

Потенциальные опасности, связанные с риском проведения работ, могут возникнуть в результате воздействия, как природных факторов, так и антропогенных.

Под природными факторами понимается разрушительное явление, вызванное геофизическими причинами, которые не контролируются человеком. Иными словами, при возникновении природной чрезвычайной ситуации возникает способность саморазрушения окружающей среды.

Для уменьшения природного риска следует разработать адекватные методы планирования и управления. При этом гибкость планирования и управления должна быть основана на правильном представлении риска, связанном с природными факторами.

К природным факторам относятся:

- землетрясения;
- ураганные ветры;
- повышенные атмосферные осадки.

Под антропогенными факторами — понимается быстрые разрушительные изменения окружающей среды, обусловленные деятельностью человека или созданных им технических устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации.

К антропогенным факторам относятся факторы производственной среды и трудового процесса.

С учетом вероятности возможности возникновения аварийных ситуаций, одним из эффективных методов минимизации ущерба от потенциальных аварий является готовность к ним.

Наиболее вероятными аварийными ситуациями, могущими возникнуть при проведении проектируемых работ, существенным образом повлиять на сложившуюся экологическую ситуацию, являются:

- аварии с автотранспортной техникой;
- аварии и пожары на рабочих местах, разливы ГСМ при проведении работ.

14.2 Причины возникновения аварийных ситуаций

Основные причины возникновения аварийных ситуаций при проведении всех видов работ можно классифицировать по следующим категориям:

- технологические отказы, обусловленные нарушением норм технологического режима производства или отдельных технологических процессов;
- механические отказы, вызванные частичным или полным разрушением или износом технологического оборудования или его деталей;
- организационно-технические отказы, обусловленные прекращением подачи сырья, электроэнергии, ошибками персонала и т.д.;
- чрезвычайные события, обусловленные пожарами, взрывами, в том числе, на соседних объектах;
- стихийные, вызванные стихийными природными бедствиями землетрясения, наводнения, сели и т.д.

14.3 Оценка риска аварийных ситуаций

Экологические риски, связанные с реализацией программы по проведению работ, классифицируются как незначительные по магнитуде, локальные по масштабам действия и непродолжительные по времени. Можно считать, что заложенные в реализацию проекта риски меньше или равны экологическим рискам, связанным с движением транспорта по автодорожным магистралям или проходом сельхозтехники через пастбищные угодья.

Такая оценка степени рисков может быть дана из следующего:

- при осуществлении проекта будут применены приемлемые и основанные на общепринятой мировой практике технологии и природоохранные меры, которые позволят снизить вредное воздействие реализуемого проекта на окружающую природную среду;
- результаты биофизических исследований, проведенные на аналогичных участках, дают достаточно оснований для заключения о возможности предусмотреть эффективные меры по смягчению и добиться ослабления

остаточных воздействий до пренебрежимо малого или незначительного уровня. Смягчающие меры разработаны для того, чтобы соответствующим образом направлять проводимые мероприятия и обеспечить защиту экосистемы, в пределах которой осуществляется предложенная программа проведения проектируемых работ;

- цель мероприятий по смягчению загрязняющих воздействий состоит в том, чтобы допустить чрезмерного или безответственного использования (видоизменения) природных биофизических объектов, приуроченных к ресурсам воздуха, почв, растительного покрова И животного мира рассматриваемой территории;
- план природоохранных мероприятий, включаемый в оценку экологического воздействия, разработан таким образом, чтобы смягчить все факторы воздействия, создаваемые предложенной программой и применяемой для ее реализации технологией;
- смягчающие меры, включенные в план природоохранных мероприятий, включают также порядок действий при возникновении чрезвычайных аварийных ситуаций. Это позволит специально подготовленному персоналу при возникновении аварии эффективно справиться с любой чрезвычайной ситуацией и свести к минимуму возможное вредное воздействие;
- предложенные в плане природоохранных мероприятий смягчающие меры основаны на апробированной международной практике.

14.4 Мероприятия по снижению экологического риска

Важнейшую роль в обеспечении безопасности рабочего персонала и местного населения и охраны окружающей природной среды при проведении работ играет система правил, нормативов, инструкций и стандартов, соблюдение которых обязательно руководителями и всеми сотрудниками при производстве работ.

При проведении работ необходимо уделять первоочередное внимание монтажу, проверке и техническому обслуживанию всех видов оборудования, требуемых в соответствии с правилами техники безопасности и охраны труда, обучению персонала и проведению практических занятий.

Также основное внимание следует уделять таким элементам оборудования и методам обеспечения безопасности, как автотранспорт, противопожарное оборудование, индивидуальные средства защиты, устройство для экстренной эвакуации членов бригады, а также методы и средства ликвидации разливов ГСМ, ликвидация возгорании.

14.5 Рекомендации по предотвращению аварийных ситуаций

Проектом предусматривается соблюдение следующих рекомендации по предотвращению аварийных ситуаций:

- обязательное соблюдение всех правил при проведении работ;
- периодическое проведение инструктажей и занятий по технике безопасности;
 - регулярное проведение учений по тревоге;
 - строгое выполнение проектных решений при проведении работ;
- контроль за наличием спасательного и защитного оборудования и умением персонала им пользоваться;
- своевременное устранение утечки горюче-смазочных веществ во время работы механизмов и дизелей;
 - использование контейнеров для сбора отходов;
- все операции по заправке, хранению, транспортировке горюче-смазочных материалов должны проходить под контролем ответственных лиц и строго придерживаться правил техники безопасности.

15. КОМПЛЕКСНАЯ ОЦЕНКА ВОЗДЕЙСТВИЯ ПРОЕКТИРУЕМЫХ РАБОТ НА ОКРУЖАЮЩУЮ СРЕДУ И МЕРОПРИЯТИЯ ПО ИХ СМЯГЧЕНИЮ

В соответствии с требованиями Экологического Кодекса Республики Казахстан проект намечаемой хозяйственной деятельности должен содержать раздел «Оценка воздействия на окружающую среду (РООС)».

В настоящей работе отражены следующие моменты:

- характеристика современного состояния окружающей среды, включая атмосферу, гидросферу, литосферу, флору и фауну;
- анализ приоритетных по степени антропогенной нагрузки факторов воздействия и характеристики основных загрязнителей окружающей среды;
- прогноз и оценка ожидаемых изменений в окружающей среде и социальной сфере при проведении работ;
- определение социально-экономического ущерба, связанного с техногенными воздействиями при проведении работ;
- рекомендации по необходимым природоохранным мероприятиям в районе проведения работ.

Оценку значимости остаточных последствий можно проводить по следующей шкале:

Величина:

- пренебрежимо малая: без последствий;
- малая: природные ресурсы могут восстановиться в течение 1 сезона;
- незначительная: ресурсы восстановятся, если будут приняты соответствующие природоохранные меры;
- значительная: значительный урон природным ресурсам, требующий интенсивных мер по снижению воздействия.

Зона влияния:

- локального масштаба: воздействия проявляются только в области непосредственной деятельности;
- небольшого масштаба: в радиусе 100 м от границ производственной активности;
- регионального масштаба: воздействие значительно выходит за границы активности.

Продолжительность воздействия:

- короткая: только в течение проводимых работ (срок проведения работ);
- средняя: 1-3 года;
- длительная: больше 3-х лет.

Указанные категории применяются для прогнозирования потенциальных остаточных воздействий, связанных с реализацией проекта работ.

Остаточные воздействия прогнозируются с точки зрения следующих показателей:

- качество воздуха;
- земельные ресурсы, почвы;
- поверхностные и поземные воды;
- растительный покров;
- животный мир;
- землепользование и исторические объекты;
- оценка экологических рисков;
- оценка воздействия на социально-экономическую обстановку.

Качество воздуха. Вредное воздействие на качество воздуха при выполнении работ осуществляется за счет выбросов продуктов горения из стационарных источников припроведении проектируемых работ.

Вместе с тем, выбросы при проведении проектируемых работ не превысят стандартных нормативных уровней, предусмотренных правилами охраны труда.

В масштабе региона заметных воздействий на качество воздуха в связи с производством работ не ожидается. В локальном масштабе может оказать воздействие пыль, образующаяся при движении транспортных средств обеспечения проектируемых работ. Существенного снижения такого воздействия можно добиться контролем скоростей передвижения транспорта.

С учетом ожидаемой низкой интенсивности движения транспорта в период производства работ и открытого проветриваемого характера территории работ, следует считать, что любые воздушные выбросы будут в короткое время рассеиваться.

В целом можно ожидать, что во время выполнения работ потенциальные остаточные воздействия на качество воздуха будут незначительными, локальными и непродолжительными.

Земельные ресурсы, почвы. Воздействия на почвы, вызванные уплотнением, эрозией или колей при проведении проектируемых работ подлежат фиксированию.

Проектом предусматривается использование поддона для исключения утечек ГСМ для исключения возможности проникновения и возникновения вредного воздействия на почвы в результате заправки автотранспорта горючесмазочными материалами. Обеспечить аккуратное обращение и хранение ГСМ и соблюдать все мероприятий по охране окружающей среды.

При соблюдении всех природоохранных требований остаточные воздействия разливов будут незначительными по интенсивности, локальными по масштабам и средними по продолжительности.

Поверхностные и подземные воды. Работы, осуществляемые в рамках проекта не окажут существенного влияния на поверхностную и подземную

гидросферу. В этой связи остаточные факторы воздействия в рамках проекта будут, очевидно, классифицироваться, как пренебрежимо малые, локального значения и непродолжительные.

Растительный покров. Нарушение естественной растительности и пастбищных территорий возможно, в первую очередь, как следствие движения транспортных средств. Потенциальные последствия проекта - результат нарушения поверхности почвы от подъездных путей (вытаптывание) и трамбовка.

При проведении проектируемых работ допустимо нарушение небольших участков растительности в результате передвижения автотранспортной техники.

В целом, остаточные воздействия на растительность в результате осуществления программы по проведению проектируемых работ оцениваются - как незначительные по интенсивности, локальные по масштабам и средние по продолжительности.

Животный мир. Наиболее уязвимые места распространения животных (районы окота животных, гнездования птиц) расположены за пределами площади работ.

Комплекс природоохранных мероприятий, рекомендуемый при реализации проекта (утилизация отходов, организация огражденных мест хранения отходов и др.), позволят минимизировать воздействие работ на фауну региона и среду обитания животных.

Памятники истории и культуры. Наличие каких-либо участков культурноисторического значения на территории работ и прилегающих территориях нет.

Оценка экологического риска. При производстве работ будут иметь место выше рассмотренные возможные аварийные ситуации.

Оценка социально-экономического воздействия. Общий подход к выработке социально-экономической оценки заключается в том, чтобы вскрыть и оценить потенциальные проблемные области, которые могут вызвать обеспокоенность населения зоны проекта и государственных органов, занятых планированием и администрированием на используемой территории. Негативных последствий в социально-экономическом отношении от реализации проекта не предвидится.

15.1 Программа (план) мероприятий по охране окружающей среды

План прирооохранных мероприятий по охране окружающей среды (ППМ OOC) содержит перечень мероприятий, которые будут выполняться в рамках программы для минимизирования воздействий, описанных выше.

Природоохранные мероприятия написаны в виде спецификации проекта и отвечают стандартам, предписанным законами и актами Республики Казахстан.

ППМ ООС определяет вопросы природоохраны и указывает способы защиты окружающей среды при повседневных работах. ППМ ООС содержит описание чрезвычайных мероприятий, мер по утилизации отходов, порядка

контроля и отчетности. Возможно, что события, которые могут произойти в процессе работ, не нашли отражения в этом тексте. Если это будет иметь место, менеджер по ООС отметит действия, приводящие к подобным ситуациям, их возможные последствия и необходимые корректирующие восстановительные меры.

Вопросы природоохраны. Основной проблемой природоохранных мероприятий в отношении почв является недопущение дополнительного загрязнения почв района.

Проектируемые работы приведут к появлению отходов производства и потребления, которые необходимо утилизировать безопасным и экологически приемлемым способом. Временное хранение отходов на территории работ, до их вывоза на полигон, не приведет к загрязнению территории и будет проводиться таким образом, чтобы минимизировать взаимодействие с животным миром.

Планирование B Защита местности. землепользования. эксплуатационный период назначается ответственное лицо за экологию, в обязанности которого входит систематический контроль за состоянием окружающей среды в результате производственной деятельности и принятие оперативных мер по недопущению нежелательных действий и нарушений условий ведения работ, а также ведение мониторинга.

16. ПРОГРАММА УПРАВЛЕНИЯ ОТХОДАМИ

Программа управления отходами составлена в соответствии со ст. 335 Экологического Кодекса Республики Казахстан № 400-VI ЗРК от 02.01.2021 года и приказа и.о. Министра экологии, геологии и природных ресурсов Республики Казахстан № 318 от 09.08.2021 года «Об утверждении Правил разработки программы управления отходами».

Программа управления отходами разрабатывается в виде отдельного тома, где будет указан полный перечень выполняемых работ.

16.1 Цель, задачи и целевые показателей

Цель Программы заключается в достижении установленных показателей, направленных на постепенное снижение воздействия отходов потребления на окружающую среду.

Задачи программы - определить пути достижения поставленной цели наиболее эффективными и экономически обоснованными методами, с прогнозированием достижимых объемов работ в рамках планового периода.

Программой управления отходами на период проведение работ предусматриваются мероприятия, направленные на постепенное снижение негативного воздействия на окружающую среду.

Показатели Программы - количественные и (или) качественные значения, определяющие на определенных этапах ожидаемые результаты реализации комплекса мер, направленных на снижение негативного воздействия отходов производства и потребления на окружающую среду.

Показатели устанавливаются физическими и юридическими лицами самостоятельно с учетом всех производственных факторов, экологической эффективности и экономической целесообразности. Показатели являются контролируемыми и проверяемыми, определяются по этапам реализации Программы.

Основные показатели ПУО. Основные показатели, установленные настоящей программой:

- объем образования отходов, тонн, т/год;
- объем вывоза отходов в специализированные организации, т/год.

Качественные и количественные показатели ПУО. Качественные и количественные показатели программы приняты в соответствии с настоящей РООС.

16.2 Основные направления, пути достижения поставленной цели и соответствующие меры

Мероприятия, обеспечивающие снижение негативного влияния размещаемых отходов на окружающую среду и здоровье населения, с учетом

внедрения прогрессивных малоотходных технологий, лучших достижений науки и практики включают в себя:

- 1) безопасное обращение с отходами и их безопасное отведение, а именно четкое следование предусмотренной проектом технологии складирования отходов;
- 2) проведение исследований (ведение мониторинга объекта размещения, уточнение состава и уровня опасности отходов и т.п.);
- 3) проведение организационных мероприятий (инструктаж персонала, назначение ответственных по операциям обращения с отходами, организация селективного сбора отходов и др.);
- 4) временное складирование отходов только в специально предусмотренных для этого местах;
- 5) своевременный вывоз отходов на специализированные предприятия для утилизации и захоронения.

Таким образом, программой управления отходами предусматриваются мероприятия, направленные на снижение вредного воздействия отходов на окружающую среду.

В состав мероприятий включены следующие:

- 1) Учет объемов образующихся отходов.
- 2) Соблюдение технологии временного складирования отходов.
- 3) Оценка уровня загрязнения окружающей среды токсичными веществами

16.3 Необходимые ресурсы и источники их финансирования

Источником финансирования программы являются собственные средства обучение Компании. Финансирование предусматривается на персонала, за ООС, оплату услуг аккредитованных лабораторий при ответственного производственного мониторинга, соблюдение проведении технологии отходов, поддержание территории работ надлежащем санитарном состоянии, обустройство и поддержание в хорошем состоянии мест временного складирования отходов.

Учет объемов образующихся отходов производится в специальных журналах для каждого вида отходов, которые заполняются по мере образования отходов. Соблюдение правил технологии производства работ обеспечивает исключение возникновения аварийных ситуаций.

С учетом вышеизложенных критериев, а также утвержденных Мероприятий, направленных на снижение влияния образующихся отходов на состояние окружающей среды, представленных в расчетах отходов, сформирован перспективный План мероприятий по реализации программы управления отходами представлен в разделе 14.4.

16.4 План мероприятий по реализации программы

Мероприятия по снижению вредного воздействия отходов на окружающую среду. Основными экологическими мероприятиями по снижению вредного воздействия отходов производства на окружающую среду являются:

- 1. Временное размещение отходов только на специально оборудованных площадках или контейнерах (емкостях).
- 2. Недопущение в процессе эксплуатации проливов, просыпей технологических материалов и немедленное их устранение в случае обнаружения.
 - 3. Недопущение разгерметизации оборудования.
- 4. Обращение с отходами в соответствии с рабочими инструкциями, разработанными и утвержденными в установленном порядке.
- 5. Постоянный визуальный контроль за исправным состоянием накопителей отходов, трубопроводов и площадок временного размещения отходов.
 - 6. Текущий учет объемов образования и размещения отходов.
 - 7. Мониторинг состояния окружающей среды.
- 8. Выполнение всех мероприятий, предусмотренных план-графиком экологического контроля и разрешением на эмиссии в окружающую среду.

План мероприятий по реализации программы. План мероприятий является составной частью Программы и представляет собой комплекс организационных, экономических, научно-технических и других мероприятий, направленных на достижение цели и задач программы с указанием необходимых ресурсов, ответственных исполнителей, форм завершения и сроков исполнения.

План мероприятий по реализации программы составлен по форме, согласно приложению к Правилам разработки программы управления отходами.

При составлении Плана мероприятий использованы следующие основные понятия:

- размещение отходов хранение или захоронение отходов производства и потребления;
- хранение отходов складирование отходов в специально установленных местах для последующей утилизации, переработки и (или) удаления.

17. ПРОГРАММА ПРОИЗВОДСТВЕННОГО ЭКОЛОГИЧЕСКОГО КОНТРОЛЯ

17.1 Целевое назначение ПЭК

В соответствии с требованиями ст. 182 Экологического Кодекса Республики Казахстан «Операторы объектов I и II категорий обязаны осуществлять производственный экологический контроль».

Производственный Мониторинг является элементом производственного экологического контроля, выполняемым для получения объективных данных с установленной периодичностью.

Целями производственного экологического контроля являются:

- получение информации для принятия оператором объекта решений в отношении внутренней экологической политики, контроля и регулирования производственных процессов, потенциально оказывающих воздействие на окружающую среду;
- обеспечение соблюдения требований экологического законодательства Республики Казахстан;
- сведение к минимуму негативного воздействия производственных процессов на окружающую среду, жизнь и (или) здоровье людей;
- повышение эффективности использования природных и энергетических ресурсов;
 - оперативное упреждающее реагирование на нештатные ситуации;
- формирование более высокого уровня экологической информированности и ответственности руководителей и работников оператора объекта;
- информирование общественности об экологической деятельности предприятия;
 - повышение эффективности системы экологического менеджмента.

Программа Производственного Экологического Контроля разрабатывается Оператором объекта в соответствии требований ст. 182-189 Экологического Кодекса Республики Казахстан И «Правил разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и предоставления периодических отчетов по производственного контроля», экологического утвержденной приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 250 от 14.07.2021 г.

Программа Производственного Экологического Контроля разрабатывается в виде отдельного тома, где будет указано полный перечень выполняемых работ.

В рамках данного проекта Программа ПЭК приведена в виде обобщенных данных.

Проведение Производственного Экологического Контроля будет осуществляться по договору между Компанией и Исполнителем (организацией,

имеющей право (Лицензия, аттестат аккредитации) на проведение этого вида работ).

17.2 Методика проведения ПЭК

Производственный Мониторинг является элементом производственного экологического контроля, выполняемым для получения объективных данных с установленной периодичностью.

В рамках осуществления производственного экологического контроля выполняются следующие виды мониторинга:

- операционный мониторинг;
- мониторинг эмиссий в окружающую среду;
- мониторинг воздействия.

Операционный мониторинг (мониторинг производственного процесса) включает в себя наблюдение за параметрами технологического процесса для подтверждения того, что показатели деятельности объекта находятся в диапазоне, который считается целесообразным для его надлежащей проектной эксплуатации и соблюдения условий технологического регламента данного производства. Содержание операционного мониторинга определяется оператором объекта.

Мониторинг эмиссий включает в себя наблюдения за эмиссиями у источника выбросов, для слежения за количеством и качеством эмиссий и их изменением.

Производственный мониторинг эмиссий в окружающую среду и мониторинг воздействия осуществляются лабораториями, аккредитованными в порядке, установленном законодательством Республики Казахстан об аккредитации в области оценки соответствия.

Мониторинг воздействия для Компании не предусматривается, так как территория работ находиться в промышленной зоне города, кроме того, характер проведения работ исключает возможность аварийных эмиссий в окружающую среду.

17.2.1. Операционный мониторинг

Операционный мониторинг будет проводиться на участке работ ежедневно. Он включает в себя слежение за исправностью технологического оборудования, соблюдение последовательности цепи производства. Обязательное слежение за исправностью и правильной работой оборудования.

В рамках операционного мониторинга будет проводиться контроль качества исходного сырья и материалов, для соответствия их требованиям производства.

Кроме того, при проведении операционного мониторинга будут проводиться наблюдения за местами временного хранения отходов, а также за состоянием септика. Слежение за своевременным вывозом отходов и бытовых сточных вод.

Общий контроль за соблюдением всех требований, осуществляется ответственным лицом за экологию. Он же проводит операционный мониторинг.

17.2.2. Мониторинг эмиссий

Мониторинг эмиссий проводится с целью слежения за качеством атмосферного воздуха. Он включает в себя сбор данных за качеством атмосферного воздуха рабочей зоны и качественным и количественным составом выбросов на источнике. Замеры на источниках выбросов и в воздухе рабочей зоны будут проводиться сторонней организацией, аккредитованной в установленном законодательством порядке, по договору. Методики замеров будут определяться в соответствии с действующими нормативными документами, исходя из состава выбросов.

Отчеты по Производственному Экологическому Контролю будут предоставляться в территориальный государственный орган по охране окружающей среде, согласно установленным правилам.

18. ПРЕДВАРИТЕЛЬНЫЕ РАСЧЕТЫ ПЛАТЫ ЗА ЭМИССИИ В ОКРУЖАЮЩУЮ СРЕДУ

Расчет текущих платежей за выбросы загрязняющих веществ в атмосферу производится в соответствии с «Методикой расчета платы за эмиссии в окружающую среду», утвержденной приказом Министра охраны окружающей среды Республики Казахстан № 68-п от 08.04.2009 г.

Расчет платы за выбросы і-го загрязняющего вещества от стационарных источников в пределах нормативов эмиссий осуществляется по следующей формуле:

$$C^{i}_{\beta bl \delta} = H^{i}_{\beta bl \delta} \times \Sigma M^{i}_{\beta bl \delta}$$

где:

 $C^{i}_{\it выб}$. - плата за выбросы і-го загрязняющего вещества от стационарных источников (МРП);

 $H^{i}_{gы\delta}$. - ставка платы за выбросы і-го загрязняющего вещества, установленная в соответствии с налоговым законодательством Республики Казахстан (МРП/тонн);

 ΣM^{i}_{6bl} . - суммарная масса всех разновидностей і-ого загрязняющего вещества, выброшенного в окружающую среду за отчетный период (тонн).

Расчет платы за эмиссии в окружающую среду будет произведен в соответствии главы 69, параграфа 4, ст. 576 Кодекса Республики Казахстан «О налогах и других обязательных платежах в бюджет» № 120-VI 3PK от 25.12.2017 года.

Ставка платы определяется исходя из размера месячного расчетного показателя (МРП) установленного на соответствующий финансовый год Законом РК N 96-IV от 04.12.2008 года «О республиканском бюджете».

Предварительный расчет платы за выбросы от стационарных источников рассчитан только на 2025 год. При предоставлении фактической оплаты сумма платежей будет скорректировано по соответствующему размеру МРП.

Предварительный расчет платы за выбросы от стационарных источников представлен в таблице 16.1-16.2.

Таблица 16.1 Предварительный расчет платежей за выбросы загрязняющих веществ в атмосферу от стационарных источников в Сарыагашском районе

Наименование	Масса выбросов,	Ставка платы за	1 MPΠ	Сумма платежей
веществ	т/год	1 тонну (МРП)		за выбросы, в
				тенге
Азот (IV) оксид	0.63	20	3692	49543,2
Азот (II) оксид	0.819	20	3692	64406,16
Углерод (Сажа)	0.105	24	3692	9908,64
Сера диоксид	0.21	20	3692	16514,4
Сероводород	0.00001848	124	3692	9,01025664

Углерод оксид	0.525	0,32	3692	660,576
Проп-2-ен-1-аль	0.0252	-	3692	-
Формальдегид	0.0252	332	3692	32896,6848
Алканы С12-19	0.25858	0,32	3692	325,355699
Пыль	30.2415		3692	
неорганическая: 70-20% двуокиси		10		
кремния				1189095,78
Всего	32.83949848			1363359,81

Предварительный расчет платы за выбросы от стационарных источников при проведении работ в 2025 год составит 1 363 359,81 тенге.

Таблица 16.2 Предварительный расчет платежей за выбросы загрязняющих веществ в атмосферу от стационарных источников в Келесском районе

Наименование	Масса выбросов,	Ставка платы за	1 MPΠ	Сумма платежей
веществ	т/год	1 тонну (МРП)		за выбросы, в
				тенге
Азот (IV) оксид	0.33	20	3692	25951,2
Азот (II) оксид	0.429	20	3692	33736,56
Углерод (Сажа)	0.055	24	3692	5190,24
Сера диоксид	0.11	20	3692	8650,4
Сероводород	0.00000924	124	3692	4,50512832
Углерод оксид	0.275	0,32	3692	346,016
Проп-2-ен-1-аль	0.0132	-	3692	-
Формальдегид	0.0132	332	3692	17231,5968
Алканы С12-19	0.13529	0,32	3692	170,22729
Пыль	11.0014		3692	
неорганическая:		10		
70-20% двуокиси		10		
кремния				432575,048
Всего	12.36209924			523855,793

Предварительный расчет платы за выбросы от стационарных источников при проведении работ в 2025 год составит 523 855,793 тенге.

В расчете платежей выбросы от сгорания топлива карьерным транспортом не участвует, так как карьерный транспорт относится к передвижным источникам.

При изменении ставки платы и МРП расчет платежей при фактической оплате в 2025-2026 гг. будет скорректирован. Платежи в бюджет от передвижных источников, согласно Налоговому Кодексу РК, глава 69, статья 577, п.4, будут осуществляться по месту их государственной регистрации уполномоченным органом.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Инструкция по организации и проведению экологической оценки, утверждена приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 280 от 30.07.2021 г.
- 2. Экологический Кодекс Республики Казахстан № 400-VI ЗРК от 02.01.2021 г.
- 3. Методика определения нормативов эмиссий в окружающую среду, утверждены приказом Министра экологии, геологии и природных ресурсов Республики Казахстан № 63 от 10.03.2021 года.
- 4. Методика разработки проектов нормативов предельного размещения отходов производства и потребления. Приложение № 16 к приказу МООС РК № 100-п от 18.04.2008 г.
- 5. Методическими указаниями по определению выбросов загрязняющих веществ в атмосферу из резервуаров. РНД211.2.02.09-04.
- 6. Об утверждении Санитарных правил «Санитарноэпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» от 11 января 2022 года № ҚР ДСМ-2.
- 7. Методика расчета нормативов выбросов загрязняющих вещества в атмосферу от предприятий по производству строительных материалов. Приложение № 11 к приказу МООС РК № 100-п от 18.04.2008 г.
- 8. Методика расчета выбросов загрязняющих веществ в атмосферу от предприятий по производству строительных материалов, от 18.04.2008г. №100-п
- 9. СП РК 4.01-101-2012 «Водоснабжение. Наружные сети и сооружения».
- 10. Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий. Утверждена приказом Министра окружающей среды и водных ресурсов РК от 12.06.2014 года № 221-Ө(взамен ОНД-86. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Госкомгидромет. 1987).
- 11. Приказ Министра по инвестициям и развитию Республики Казахстан от 24 мая 2018 года № 386 «Об утверждении Инструкции по составлению плана ликвидации и Методики расчета приблизительной стоимости ликвидации последствий операций по добыче твердых полезных ископаемых».
- 12. СП РК 2.04-01-20217 «Строительная климатология», утвержден приказом Комитета по делам строительства и жилищно-коммунального хозяйства Министерства по инвестициям и развитию Республики Казахстан № 312-НҚ от 20.12.2017 г.

- 13. Приказ и.о. Министра национальной экономики Республики Казахстан от 17 апреля 2015 года № 346 «Об утверждении Инструкции по разработке проектов рекультивации нарушенных земель».
- 14. Приказ и.о.Министра здравоохранения РК от 25.12.2020 г. № ҚР ДСМ-331/2020 Об утверждении СП «Санитарно-эпидемиологические требования к сбору, использованию, применению, обезвреживанию, транспортировке, хранению и захоронению отходов производства и потребления».
 - 15. Об утверждении Классификатора отходов РК от 06.08.2021 г № 314.

Приложения

ЛИЦЕНЗИЯ

17.08.2023 года 02687P

Товарищество ограниченной ответственностью "Жетісу-Выдана

Жерқойнауы"

040900, Республика Казахстан, Алматинская область, Карасайский район, Каскеленская г.а., г.Каскелен, улица Көшек Батыр, дом № 165

БИН: 110440009773

(полное наименование, местонахождение, бизнес-идентификационный юридического лица (в том числе иностранного юридического лица), -идентификационный номер филиала или представительства иностранного юридического лица - в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)

Выполнение работ и оказание услуг в области охраны окружающей на занятие

ср еды

(наименование лицензируемого вида деятельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Особые условия

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешениях и уведомлениях»)

Примечание Неотчуждаемая, класс 1

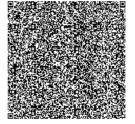
(отчуждаемость, класс разрешения)

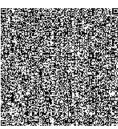
государ ственное учр еждение Лицензиар Республиканское

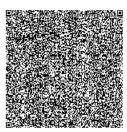
"Комитет экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан". Министерство

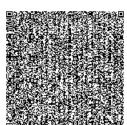
экологии и природных ресурсов Республики Казахстан.

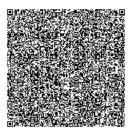
(полное наименование лицензиара)


Руководитель Абдуалиев Айдар (уполномоченное лицо)


(фамилия, имя, отчество (в случае наличия)


Дата первичной выдачи


Срок действия лицензии


Место выдачи <u>г.Астана</u>

ПРИЛОЖЕНИЕ К ЛИЦЕНЗИИ

Номер лицензии 02687Р

Дата выдачи лицензии 17.08.2023 год

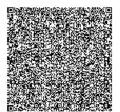
Подвид(ы) лицензируемого вида деятельности

 Природоохранное проектирование, нормирование для 1 категории хозяйственной и иной деятельности

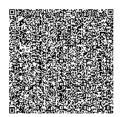
(наимен ование подвида лицензируемого вида деят ельности в соответствии с Законом Республики Казахстан «О разрешениях и уведомлениях»)

Лицензиат

Товарищество с ограниченной ответственностью "Жетісу-Жерқойнауы


040900, Республика Казахстан, Алматинская область, Карасайский район, Каскеленская г.а., г.Каскелен, улица Кешек Батыр, дом № 165, БИН: 110440009773

(полное наименование, местонажождение, бизнес-идентификационный номер юридического лица (в том числе иностранного юридического лица), бизнес-идентификационный номер филмала или представительства иностранного юридического лица — в случае отсутствия бизнес-идентификационного номера у юридического лица/полностью фамилия, имя, отчество (в случае наличия), индивидуальный идентификационный номер физического лица)


Производственная база

г. Алматы, Наурызбайский р-н, мкр Калкаман, дом 5/3, кв.2

(местонахож дение)

Особые условия действия лицензии

Требования безопасности к товарам детского ассортимента, Требования к материалам, реагентам, оборудованию, используемым для водоочистки и водоподготовки, Требования к парфюмернокосметическим средствам и средствам гигиены полости рта, Требования к товарам бытовой химии и лакокрасочным материалам, Требования к полимерным и полимерсодержащим строительным материалам и мебели, Требования безопасности к печатным книгам и другим изделиям полиграфической промышленности, Требования к материалам для изделий (изделиям), контактирующим с кожей человека, одежде, обуви, Требования к продукции, изделиям, являющимся источником ионизирующего излучения, в том числе генерирующего, а также изделиям и товарам, содержащим радиоактивные вещества, Требования к средствам личной гигиены, Требования к пестицидам и агрохимикатам, Требования к материалам и изделиям, изготовленным из полимерных и других материалов, предназначенных для контакта с пищевыми продуктами и средами, Требования к изделиям медицинского назначения и медицинской технике, Требования к химической и нефтехимической продукции производственного назначения, Требования к дезинфицирующим средствам, О безопасности паковки, О безопасности продукции, предназначенной для детей и подростков, О безопасности парфюмернокосметической продукции, Безопасности автомобильных дорог, О безопасности зерна, О безопасности продукции легкой промышленности , О безопасности средств индивидуальной защиты, О безопасности пищевой продукции, Пищевая продукция в части ее маркировки, Технический регламент на соковую продукцию из фруктов и овощей, О безопасности молока и молочной продукции, О безопасности мяса и мясной продукции, О безопасности рыбы и рыбной продукции, О безопасности упакованной питьевой воды, включая природную минеральную воду.

(в соответствии со статьей 36 Закона Республики Казахстан «О разрешенияхи уведомлениях»)

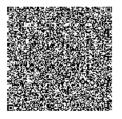
Лицензиар

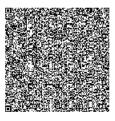
Республиканское государственное учреждение "Комитет экологического регулирования и контроля Министерства экологии и природных ресурсов Республики Казахстан". Министерство экологии и природных ресурсов Республики Казахстан.

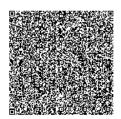
(полное наименование органа, выдавшего приложение к лицензии)

Руководитель (уполномоченное лицо)

Абдуалиев Айдар


(фамилия, имя, отчество (в случае наличия)


Номер приложения 001


Срок действия

Дата выдачи приложения 17.08.2023

Место выдачи г. Астана

