ТОО «ПЕТРОЭКОЦЕНТР-Логистики»

СОГЛАСОВАНО:
НАЧАЛЬНИК
ЛПДС «ПЕТРОПАВЛОВСК»
ФИЛИАЛ АО «ТРАНСНЕФТЬ УРАЛ»

ВАНЬКОВСКИЙ С.И.

2025 Г.

ПРОЕКТ
НОРМАТИВОВ ДОПУСТИМЫХ ВЫБРОСОВ
ЛПДС «Петропавловск» филиал АО «Транснефть-Урал»
(РК, СКО, г. Петропавловск, ул. Темирязева, 25)

РИДИТОННА

В настоящем проекте нормативов предельно допустимых выбросов содержится оценка уровня загрязнения атмосферного воздуха вредными выбросами при работе предприятия на установочную мощность, а также содержатся предложения по нормативам предельно допустимых выбросов (НДВ).

ЛПДС «Петропавловск» филиал АО «Транснефть-Урал» представлено 1 промышленной площадкой в г. Петропавловск, ул. Темирязева, 25.

На период эксплуатации выявлено 59 источников загрязнения атмосферного воздуха, из них 28 неорганизованных.

Загрязнение атмосферного воздуха производится 34 загрязняющими веществами образующими 10 групп суммации, для которых разработаны и предлагаются к установлению нормативы допустимых выбросов.

Суммарный выброс по всем загрязняющим веществам составляет: 10.413356024 г/сек, 13.393740102 т/год. В предыдущем разрешении выброс по всем загрязняющим веществам составлял: 10.406843268 г/сек 13.391556641 т/год. Увеличение выбросов связано с добавлением источника выбросов 6035 — Дверной проём (угловая шлифовальная машинка), не учтённый ранее.

Расчет максимальных приземных концентраций загрязняющих веществ произведен на программе "ЭРА" v. 1.7 фирмы "Логос-Плюс" г. Новосибирск.

В соответствии с Экологическим кодексом Республики Казахстан и Решения по определению категории объекта предприятие относится ко II категории.

По санитарной классификации предприятие относится к третьему классу опасности.

Нормативы устанавливаются на срок до 10 лет и подлежат пересмотру (переутверждению) при изменении экологической обстановки в регионе, появлении новых и уточнении параметров существующих источников загрязнения окружающей природной среды в местных органах по контролю за использованием и охраной окружающей природной среды.

Причины разработки проектной документации – проведение работ по реконструкции и капитальному ремонту на территории предприятия.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	
1.ОБЩИЕ СВЕДЕНИЯ О ПРЕДПРИЯТИИ	. 6
1.1 Общие сведения	. 6
1.2 Краткая характеристика физико-географических и климатических условий района	. 6
1.3. Ситуационный план расположения учреждения	. 8
1.4. Карта-схема учреждения	. 8
1.5. Обоснование принятого размера СЗЗ	. 8
2. ХАРАКТЕРИСТИКА ПРЕДРИЯТИЯ КАК ИСТОЧНИКА	
ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ	
2.1. Характеристика технологии и технологического оборудования	. 21
2.2. Краткая характеристика очистных установок и их	
эффективность работы	. 27
2.3. Перспектива развития предприятия	. 27
2.4. Перечень загрязняющих веществ, выбрасываемых в атмосферу	.27
2.5. Сведения о залповых выбросах	. 29
2.6. Параметры выбросов загрязняющих веществ в атмосферу	
для расчета НДВ	. 29
3. ОБОСНОВАНИЕ ПОЛНОТЫ И ДОСТОВЕРНОСТИ ИСХОДНЫХ ДАННЫХ	. 40
4. ПРОВЕДЕНИЕ РАСЧЕТОВ И ОПРЕДЕЛЕНИЕ	
ПРЕДЛОЖЕНИЙ НОРМАТИВОВ НДВ	. 117
4.1. Характеристика мероприятий по регулированию выбросов в	
периоды особо неблагоприятных метеорологических условий (НМУ) (НМУ)	
4.2. Расчеты и анализ уровня загрязнения атмосферы	
4.3. Предложения по нормативам НДВ	
5. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ НДВ	
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	. 137
ПРИЛОЖЕНИЯ	
Приложение 1. Инвентаризация выбросов загрязняющих веществ в атмосферу	
Приложение 2. Исходные данные	
Приложение 3. Ситуационная карта предприятия	
Приложение 4. Карта-схема предприятия	
Приложение 5. Перечень городов РК прогнозирующихся НМУ	
Приложение 6 Копия государственной лицензии и приложения к государственной лицензи	
ТОО «ПЕТРОЭКОЦЕНТР-Логистики» на выполнение работ и оказание услуг в области ох	
окружающей среды.	
Приложение 7 Копия справки о фоновых концентрациях	
Приложение 8 Копия СЭЗ №73 от 25.09.2014 года	
Приложение 9 Решение по определению категории объекта	
Приложение 10 Расчёт приземных концентраций	. 197

ВВЕДЕНИЕ

Проект нормативов допустимых выбросов разработан на основании Экологического кодекса от 2 января 2021 г, в соответствии с Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 «Об утверждении Методики определения нормативов эмиссий в окружающую среду».

При разработке проекта НДВ использованы основные директивные и нормативные документы, инструкции и методические рекомендации по нормированию качества атмосферного воздуха, указанные в списке использованной литературы.

Заказчик: ЛПДС «Петропавловск» филиал АО «Транснефть-Урал» (150000 СКО, г. Петропавловск, ул. Темирязева, 25. БИН 970941001988)

Разработчик проекта: ТОО «ПЕТРОЭКОЦЕНТР-Логистики» (150000 СКО, г. Петропавловск, ул. Горького, 166. БИН 110940000580 ГЛ № 01437P от 15.11.2011.)

1. ОБЩИЕ СВЕДЕНИЯ О ПРЕДПРИЯТИИ

1.1 Общие сведения о предприятии

Линейная производственно-диспетчерская станция «Петропавловск» (ЛПДС «Петропавловск») филиал АО «Транснефть-Урал» (далее ЛПДС «Петропавловск) представлено 1 промышленной площадкой расположенной по адресу: РК, СКО, г. Петропавловск, ул. Темирязева, 25.

Основным видом деятельности предприятия является

- эксплуатация магистральных нефтепродуктопроводов;
- техническое обслуживание, ремонт (профилактика, осмотр, контроль технического состояния, диагностика состояния сварных швов, соединений и креплений) магистральных трубопроводов, основного и вспомогательного оборудования;
- диагностика оборудования насосно-компрессорных станций и линейной части магистральных трубопроводов.

Сведения о наличии собственных полигонов, хранилищ: Собственных полигонов и хранилищ отходов на предприятии не имеется. Отходы производства и потребления, образующиеся в результате деятельности предприятия, временно складируются в специально отведенных местах. По мере накопления отходы вывозятся и сдаются в специализированные пункты приема.

1.2 Краткая характеристика физико-географических и климатических условий района

Климат резко - континентальный. Нормативная снеговая нагрузка- 0,7 МПа.

Район несейсмичен. Рельеф местности ровный

Значение коэффициента температурной стратификации А, соответствующее неблагоприятным метеорологическим условиям, при которых концентрация вредных веществ в атмосферном воздухе максимальна, принимается равным 200 [4].

Среднегодовая температура воздуха по данным многолетних наблюдений $+2,3^{\circ}$, со средней температурой самого холодного месяца января $-18,1^{\circ}$ С, достигая в самые холодные дни -45° С, средней температурой самого жаркого месяца июля $+24,9^{\circ}$ С, достигая до $+41^{\circ}$ С.

Продолжительность солнечного сияния варьирует от 2000 до 2150 часов. Радиационный баланс около 25-30 ккал/см² в год.

Для Северного Казахстана весьма характерна частая смена воздушных масс, вызывающая неустойчивость погоды. Вторжения континентального арктического воздуха с севера в зимнее время обуславливают резкие понижения температур, а в переходные сезоны при этом отмечаются весенние и осенние заморозки. Именно циркуляция атмосферы является причиной резких колебаний температур и осадков также от года к году.

В зимнее время преобладают антициклональные типы погод с господством ясного неба и устойчивыми отрицательными температурами. Ветры имеют отчетливо выраженную юго-западную направленность со средними скоростями 5,5 м/с. В это время отмечается большое число пасмурных дней и дней с туманом (60-70%).

Весна короткая (20-30 дней), сухая и прохладная, начинается со второй половины апреля. Средние многолетние даты весеннего перехода температур через 5°С приходятся на 20-22 апреля, через 10°С – на 8-10 мая. Осенью переход через 10°С приходится в среднем на 18-20 сентября, а через 5°С – на 5-7 октября. Продолжительность периода со средней суточной температурой воздуха выше 10°С около 130-140 дней, а суммы средних суточных температур воздуха выше 10°С составляют 2000-2200°С. Средняя дата последнего весеннего заморозка около 20 мая (от 16 апреля до 22 июня), первого осеннего – около 20 сентября (19 августа – 12 октября).

В июле-августе преобладает умеренно жаркая и комфортная погода. Число дней с температурой более 30°С в это время в среднем составляет 6-9 в месяц.

Продолжительность безморозного периода около 100-120 дней в году, варьируя от 170 до 80, а период со среднесуточной температурой выше 0°С в среднем около 190 дней.

Среднегодовое количество атмосферных осадков варьирует от 295 мм до 440 мм. В теплую половину года (апрель-октябрь) выпадает до 80-85% годовой нормы с максимумом в июле (45-75 мм). Выпадение осадков сопровождаются грозами со шквалами, ливнями, градом.

Грозовая активность наиболее ярко проявляется в летние месяцы с максимумом в июле (6-9 дней). Средняя продолжительность гроз 2.4 часа. Град наблюдается в теплое время года, выпадает сравнительно редко, иногда полосами шириной в несколько километров. Среднее число дней с градом 1-2, в отдельные годы 4-9. Повышенное туманообразование наблюдается в марте-апреле и декабре.

При среднегодовой сумме осадков 310 мм в год в виде снега выпадает около 100 мм, однако, снегозапасы составляют 23-40 см. Снежный покров устойчив, лежит около 5 месяцев, с ноября по март. Нормативная снеговая нагрузка - 0.7 МПа. Нормативная глубина промерзания грунтов - 2.10 м.

Обобщение данных показывает, что за последние 50 лет происходит некоторое потепление климата с одновременным повышением годовых сумм осадков. Продолжительность наибольшего без дождевого периода в году, повторяющегося примерно один раз в 20 лет, колеблется от 28 до 36 дней. Среднее количество дней в году с атмосферной засухой за период с апреля по октябрь составляет 40-50.

Режим ветров носит материковый характер. Преобладающими являются ветры югозападного направления (около трети всех направлений ветра в течение года). Скоростной напор ветра - 0.3 МПа. Скорость ветра на уровне флюгера – 5.7 м/с.

Наибольшая скорость наблюдается в зимний период (до 6,4 м/с), наименьшая осенью (до 4,7 м/с).

Наибольшая повторяемость направления ветра: в январе - юго-западное, в июле - северо-западное (таблица 1.2).

Таблица 1.2

Метеорологические характеристики и коэффициенты рассеивания загрязняющих веществ в атмосфере

Наименование характеристик	Величина					
Коэффициент, зависящий от стратификации атмосферы, А						
Коэффициент рельефа местности в городе						
Средняя максимальная температура наружного воздуха наиболее жаркого						
месяца года, °С						
Средняя температура наружного воздуха наиболее холодного месяца (для	16.7					
котельных, работающих по отопительному графику), °С	-16,7					
Среднегодовая роза ветров, %						
С	9,0					
СВ	8,0					
В	9,0					
ЮВ	9,0					
Ю	14,0					
Ю3	22,0					
3	18,0					
C3	11,0					
Скорость ветра (по средним многолетним данным):						
повторяемость превышения которой составляет 5 %, м/с	6-10					
среднегодовая	2,9-4,5					

Наименование характеристик	Величина
для зимнего периода	3,0-4,9

1.3 Ситуационный план расположения предприятия

Ситуационная карта- схема расположения участка строительства представлена в Приложении 3.

1.4 Карта- схема предприятия

Карта-схема предприятия с нанесёнными источниками загрязнения атмосферного воздуха представлена в Приложении 4.

1.5 Обоснование принятого размера СЗЗ.

В соответствии с СП №КР ДСМ-2 от 11 января 2022 года «Санитарноэпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» настоящие СП определяют требования к выбору земельного участка, проектированию, строительству, реконструкции, ремонту и вводу в эксплуатацию производственных объектов (далее объект), являющихся источниками воздействия на среду обитания и здоровье человека, а также к классу опасности производственных объектов, требованиям к проектированию и размеру санитарно-защитной зоны (далее - СЗЗ), санитарным разрывам (далее - СР), основаниям для пересмотра этих размеров, методам и порядку их установления, озеленению и ограничению на использование территории СЗЗ.

Согласно пункту 5 настоящих СП, источниками воздействия на среду обитания и здоровье человека являются объекты, для которых уровни создаваемого загрязнения за пределами промышленной площадки превышает 0,1 ПДК и/или ПДУ или вклад в загрязнение жилых зон превышает 0,1 ПДК.

Анализ результатов рассеивания полей приземных концентраций загрязняющих веществ показал, что вышеуказанным условиям удовлетворяют вещества и группы суммации которые превышают 0,1 ПДК за пределами промышленных площадок (таблица 1.5.2.4). Таким образом, предприятие является источником воздействия на среду обитания и здоровье человека.

1.5.1 Пояснительная градостроительной записка ситуации, описанием технологического процесса.

Основным видом деятельности предприятия является

- эксплуатация магистральных нефтепродуктопроводов;
- техническое обслуживание, ремонт (профилактика, осмотр, контроль технического состояния, диагностика состояния сварных швов, соединений и креплений) магистральных трубопроводов, основного и вспомогательного оборудования;
- диагностика оборудования насосно-компрессорных станций и линейной части магистральных трубопроводов.

«Петропавловск» филиал «Транснефть-Урал» ЛПДС AO представлено

промышленной площадкой в г. Петропавловск, ул. Темирязева, 25.

Резервуарный парк общей вместимостью до 40000 м³ дизельного топлива (8 резервуаров по 5000 м³), железнодорожная эстакада для налива нефтепродуктов, очистные сооружения, наливная и магистральная насосная, местный диспетчерский пункт, 2 пожарные насосные, лаборатория, камера приёма скребков, механическая мастерская.

Отопление предприятия централизованное, за счет городских сетей, также на территории производственной площадки осуществляется отопление помещений электричеством (Подстанция ПС-35/6кВ "Наливная", Пожнасосная №2).

Предприятие непосредственно со сторонними объектами и жилой застройкой не граничит. Ближайшая селитебная территория находится в юго-западном направлении на расстоянии 150 метров.

Предприятие не граничит со сторонними предприятиями и жилой застройкой. Строительство новых объектов жилищного и промышленного значения в пределах СЗЗ не планируется.

Загрязнение атмосферного воздуха осуществляется основным и вспомогательным оборудованием, предназначенным для обеспечения функционирования предприятия.

<u>На территории предприятия имеется основное и вспомогательное оборудование.</u> перечень и объем работ которого указан в пункте 2.1 проекта

1.5.2 Размер и границы СЗЗ и их обоснование расчетами рассеивания химического, биологического загрязнения атмосферного воздуха, физического воздействия на атмосферный воздух

Для объектов, являющихся источниками воздействия на среду обитания и здоровье человека, с учетом предусматриваемых мер по уменьшению неблагоприятного влияния различных по природе факторов на среду обитания и здоровье человека в соответствии с санитарной классификацией промышленных объектов и производств устанавливаются размеры СЗЗ, соответствующие классу опасности объекта в соответствии с приложением 1 к Санитарным правилам.

Таблица 1.5.2.1 Класс опасности и размер установленной СЗЗ

Вид производства	Класс опасности	Размер СЗЗ по румбам сторон света, м (от крайних источников)согласно приложения 1 СП №237 и СЭЗ №73 от 25.09.2014 г. (Приложение 8 проекта)							
Линейная производственно-	2 (5 2 5 21)	С	CB	В	ЮВ	Ю	Ю3	3	C3
диспетчерская станция	3 (р.2 п.21)	167,2	486,4	197,6	152	150	150	152	150

Граница СЗЗ и СР обозначается на графических материалах (генеральный план города, схема территориального планирования, топографическая карта, ситуационная схема)».

Граница СЗЗ представлена специальными знаками на ситуационной карте расположения объекта и карте-схеме производственной площадки (Приложение 2).

Обоснование размеров СЗЗ

Физические факторы

Для предприятия СЗЗ установлено согласно Санитарных правил: «Размеры СЗЗ для объектов, являющихся источниками факторов физического воздействия на население, устанавливаются на основании акустических расчетов с учетом места расположения источников и характера создаваемого ими шума, вибрации, ЭМП и других физических факторов. Для установления размеров СЗЗ расчетные параметры подтверждаются натурными измерениями факторов физического воздействия на атмосферный воздух».

Характеристика источника шума и вибрации на предприятии

Основным источником шума, создающим шумовой режим, является: производственное оборудование. Санитарно-гигиеническую оценку шума принято производить по уровню звукового давления (в дБА), уровня звукового давления в октавных полосах со среднегеометрическими частотами от 63 до 8000 Гц (в дБА), эквивалентному уровню звука (в дБА) и по дозе полученного шума персоналом предприятия (в %). Персонал работает при непостоянном шуме. При этом шум нормируется и оценивается по эквивалентному уровню или дозе, исходя из уровней шума в различных точках постоянной рабочей зоны и времени нахождения в этих точках в течение смены. Согласно СП «Санитарно-эпидемиологические требования к атмосферному воздуху в городских и сельских населенных пунктах, почвам и их безопасности, содержанию территорий городских и сельских населенных пунктов, условиям работы с источниками физических факторов, оказывающих воздействие на человека», утвержденные постановлением Правительства

Республики Казахстан от 25 января 2013 года № 168 допустимым уровнем звука на рабочих местах является 80 дБА.

Норма шума на территории жилой застройки регламентируется согласно санитарных правил «Санитарно-эпидемиологические требования к содержанию и эксплуатации жилых и др. помещений, общественных зданий» №1431 от 01.12.11 г.

Ожидаемый уровень шумового воздействия определен по формуле:

 $L = L_A - 15*lgr + 10*lg\Phi - \beta_{\alpha}r/1000 - 10*lg\Omega$

где L_A – уровень звуковой мощности, дБ;

- Ф фактор направленности источника шума (для источников с равномерным излучением Ф=1);
- Ω пространственный угол излучения источника, рад (принимают по таблице 3) [9]. Принят равным 2π .
- r расстояние от акустического центра источника шума до расчетной точки, м (если точное положение акустического центра неизвестно, он принимается совпадающим геометрическим центром);
 - β_{α} затухание звука в атмосфере, дБ/км. Принято равным 6.

Таблица 1.5.2.2 Расчет уровня шумового воздействия

Nº	Количеств о	Тип источников		Разме	p C33	Lmin	Lmax
п/п	источнико в	тип источников	La	min	max	Lillin	Liliax
1	53	Автотранспортные средства – 23 ед. Насосное оборудование – 15 ед. Металлообрабатывающие станки – 9 ед. Бензо и дизельгенераторы–6 ед.	97,24	150	486,4	55,72	46,04

На территории предприятия жилая зона отсутствует, жилая зона непосредственно примыкающая к территории предприятия также отсутствует.

Площадка расстояние до жилой зоны составляет 150 метров в юго-западном направлении.

Таким образом, шумовое воздействие на селитебную территорию отсутствует.

Исходя из всего вышеизложенного, можно сделать вывод, что уровень шума, создаваемый источниками предприятия носит допустимый характер и не ведет к шумовому воздействию на близлежащие жилые постройки.

Таблица 1.5.2.3 Размер СЗЗ согласно расчета уровня шумового воздействия

Вид производства	Класс опасности	Размер СЗЗ по румбам сторон света, м (от крайних источников) согласно СЭЗ №73 от 25.09.2014 г. (Приложение 8 проекта)						⁻ a)	
Линейная производственно-	3 (г.2 п.6)	С	СВ	В	ЮВ	Ю	Ю3	3	C3
диспетчерская станция	3 (1.2 11.0)	167,2	486,4	197,6	152	150	150	152	150

Наряду с шумом опасным и вредным фактором производственной среды, воздействующим на персонал, является вибрация – колебания рабочего места.

По способу передачи вибрация подразделяется на:

- общую (передающуюся через опорные поверхности, на тело сидящего или стоящего человека);
- локальную (передающуюся через руки человека).

По направлению действия вибрация подразделяется на:

- действующую вдоль осей ортогональной системы координат для общей вибрации;
- действующую вдоль осей ортогональной системы координат для локальной вибрации.

По временной характеристике:

- постоянная;
- непостоянная.

Вибрация, подобно шуму, приводит к снижению производительности труда, нарушает деятельность центральной и нервной вегетативной системы, приводит к заболеваниям сердечнососудистой системы.

Вибрации возникают, главным образом, вследствие вращательного или поступательного движения неуравновешенных масс двигателя и механических систем машин.

Параметры вибрации устанавливаются согласно СТ РК 1763-1-2008 «Оценка воздействия общей вибрации на организм человека». Для источников вибрации выявлено следующее:

- характеристика условий труда транспортная вибрация, воздействующая на операторов подвижных самоходных и прицепных машин и транспортных средств при их движении по местности, агрофонам и дорогам, в том числе при их строительстве, а также технологическая вибрация, воздействующая на операторов стационарных машин и оборудования;
- категория вибрации по санитарным нормам и критерий оценки 1 тип (безопасность), а также 3 тип «а» (граница снижения производительности труда);

При работе людей на данных источниках вибрации, у последних незамечено симптомов вибрационной болезни (болевые ощущения в пальцах рук, онемение, а также несистемное головокружение и головные боли). Это в свою очередь подтверждает, что во всем рабочем диапазоне работы источников отклонений от нормы вибрации нет или они носят допустимый характер.

Фактором увеличения уровней шума и вибрации является механический износ технологического оборудования и его узлов, поэтому для предотвращения возможного превышения уровня шума и вибрации должны выполняться следующие мероприятия:

периодическая проверка и ремонт оборудования и механизмов. Источником вибрационного воздействия на предприятии является дизель-генератор.

На границе санитарно-защитной зоны предприятия замеры уровня вибрации не осуществлялись в связи с отсутствием нормативно-правовых актов, устанавливающих предельно допустимый уровень вибрации на границе СЗЗ, а также в связи с отсутствием на территории предприятия и в границе СЗЗ источников, создающих при работе большие динамические нагрузки, которые вызывают распространение вибрации в грунте и строительных конструкциях зданий и сооружений.

Характеристика источников электромагнитного излучения на предприятии

Источники высокочастотных электромагнитных излучений на территории предприятия отсутствуют.

Химические факторы

Расчет рассеивания выполнен при помощи ПК «ЭРА», версия 1.7 (ООО НПП «Логос Плюс», г. Новосибирск, РФ) согласованного Министерством охраны окружающей среды Республики Казахстан.

Данная программа позволяет проводить расчеты разовых концентраций загрязняющих веществ, выбрасываемых точечными, линейными, площадными источниками.

Рассчитываются приземные концентрации, как отдельных веществ, так и групп веществ, обладающих эффектом суммации вредного воздействия. При этом оцениваются как максимальные по направлениям и заданным скоростям ветра концентрации, так и концентрации при фиксированных значениях скорости и направления ветра.

При разработке проекта нормативов предельно допустимых выбросов для <u>предприятия</u> расчет рассеивания выполнен на полную производственную мощность с учетом метеорологических и физико-географических условий (<u>среднегодовая роза ветров, скорость ветра по средним многолетним данным, коэффициент зависящий от</u>

температурной стратификации атмосферы, коэффициент рельефа местности, средняя максимальная температура наружного воздуха наиболее жаркого месяца года, средняя температура наружного воздуха наиболее холодного месяца года), расположения производственного объекта, а также при автоматическом поиске опасных скорости и направления ветра обеспечивающих точность расчетов концентраций.

Построение расчетной санитарно-защитной зоны осуществляется на основании расчетов рассеивания приземных концентраций загрязняющих веществ в атмосферном воздухе по изолинии концентраций со значением 1 ПДК и гарантирует что при расчете по любому загрязняющему веществу или группе суммаций концентрация 1 ПДК будет находиться внутри области ограниченной этой изолинией. Что является верным в соответствии с санитарными правилами — «Критерием для определения размера СЗЗ является одновременное соблюдение следующих условий: не превышение на ее внешней границе и за ее пределами концентрации загрязняющих веществ ПДК максимально разовые или ориентировочный безопасный уровень воздействия (далее — ОБУВ) для атмосферного воздуха населенных мест и (или) ПДУ физического воздействия, а также результаты оценки риска для жизни и здоровья населения (для объектов I и II класса опасности)».

Таблица 1.5.2.4 сводная таблица результатов расчетов :302 г. Петропавловск. Задание :0001 ЛПДС "Петропавловск".

Код ЗВ	· ·		 РП	C33		 ΦΤ			Класс
l	веществ и состав групп суммаций		I			1	AEN	мг/м3	опасн
0123	Железо (II, III) оксиды /в	8.334	 0.5862	0.2430	 0.0657	нет расч.	1	0.4000000*	3
	пересчете на железо/ /277/			l	I		1		
0143	Марганец и его соединения /в	11.431	0.8041	0.3333	0.0901	нет расч.	1	0.0100000	2
1	пересчете на марганца (IV)		1	l	1	1			1
1	оксид/ /33		1	l	1	1			1
0150	Натрий гидроксид /886/	1.918	0.9784	0.2781	0.2370	нет расч.	3	0.0100000	-
0301	Азот (IV) оксид /4/	6.609	1.112	0.6935	0.4252	нет расч.	13	0.2000000	2
0302	Азотная кислота /5/	0.091	0.0467	0.0133	0.0113	нет расч.	3	0.4000000	2
0303		0.018	Cm < 0.05	Cm < 0.05		нет расч.	3	0.200000	4
0304	, , , , , , , , , , , , , , , , , , , ,	2.901	0.5612	0.3524	0.2371	нет расч.	13	0.4000000	3
0316	Гидрохлорид /162/	0.048	Cm < 0.05	Cm < 0.05	Cm < 0.05	нет расч.	3	0.200000	2
0322	Серная кислота /527/	0.007	Cm < 0.05	Cm < 0.05	Cm < 0.05	нет расч.	4	0.3000000	2
0328	Углерод /593/	3.312	0.2824	0.3243	0.1506	нет расч.	7	0.1500000	3
0330	Сера диоксид /526/	0.582	0.1139	0.0745	0.0520	нет расч.	12	0.5000000	3
0333	Сероводород (Дигидросульфид) /	3.316	0.4672	0.4006	0.3201	нет расч.	29	0.0080000	2
	528/						1		1
0337	Углерод оксид /594/	0.597	0.2648	0.2644	0.2479	нет расч.	13	5.0000000	4
0342	Фтористые газообразные	1.116	0.2215	0.0780	0.0338	нет расч.	1	0.0200000	2
1	соединения (в пересчете на фтор)				1		1		1
	/627/				1		1		1
0344	Фториды неорганические плохо	1.474	0.1037	0.0430	0.0116	нет расч.	1	0.2000000	2
1	растворимые - (алюминия фторид,		1	l	1				1
	кальц		1		1				1
0602	Бензол /64/	0.06	0.0306	0.0087	0.0074	нет расч.	3	0.3000000	2
0616	Ксилол (смесь изомеров о-, м-,	0.361	0.3452	0.0920	0.0599	нет расч.	1	0.2000000	3
	π-) /327/				1		1		1
0621	Толуол /567/	0.339	0.3146	0.0839	0.0546	нет расч.	4	0.6000000	3
0906		0.009	Cm < 0.05	Cm < 0.05	Cm < 0.05	нет расч.	3	4.0000000	2
1061	Этанол /678/	0.024	Cm < 0.05	Cm < 0.05	Cm < 0.05	нет расч.	3	5.0000000	4
1119	2-Этоксиэтанол /1526/	0.077	0.0740	0.0197	0.0128	нет расч.	1	0.700000	-
1210	Бутилацетат /110/	0.382	0.3653	0.0974	0.0634	нет расч.	1	0.1000000	4
1301	Проп-2-ен-1-аль /482/	1.068	0.2124	0.1369	0.0924	нет расч.	3	0.0300000	2
1325		0.645	0.1275	•	•	нет расч.		0.0500000	2
1401	Пропан-2-он /478/	0.525		•	•	нет расч.		0.3500000	4
1411	Циклогексанон	3.562	3.406	0.9080	0.5912	нет расч.		0.0400000	3
1555		0.07	0.0358	0.0102		нет расч.		0.200000	3
2704		0.019	Cm < 0.05	Cm < 0.05	Cm < 0.05	нет расч.	6	5.0000000	4
	/в пересчете на углерод/ /60/		I	l	I	1			

2735	Масло минеральное нефтяное	0.273		0.2335		0.1538	0.0559	нет расч.	1	1	0.0500000	-	-
	(веретенное, машинное,												
	цилиндровое и др					1							- 1
2750	Сольвент нафта /1169/	1.663		1.590		0.4238	0.2759	нет расч.	1		0.2000000	-	-
2754	Углеводороды предельные С12-19 /	10.257		1.226		0.7869	0.3090	нет расч.	40		1.0000000	4	4
	в пересчете на суммарный												- 1
	органичес												- 1
2902	Взвешенные частицы р.м. 10 /116/	19.366		1.205		0.4582	0.1337	нет расч.	5		0.3000000	3	3
2908	Пыль неорганическая: 70-20%	207.335		1.539		0.5758	0.5544	нет расч.	7		0.3000000	3	3
	двуокиси кремния (шамот, цемент,					1							- 1
	пыль												- 1
2930	Пыль абразивная /1046/	7.888		0.6686		0.2918	0.1158	нет расч.	2		0.0400000	-	-
03	0303+0333	3.334		0.4672		0.4006	0.3201	нет расч.	32				- 1
04	0303+0333+1325	3.98		0.4672		0.4006	0.3290	нет расч.	36				- 1
05	0303+1325	0.664		0.1275		0.0821	0.0555	нет расч.	7				- 1
28	0322+0330	0.589		0.1141		0.0745	0.0520	нет расч.	16				- 1
30	0330+0333	3.898		0.4852		0.4193	0.3461	нет расч.	41				- 1
31	0301+0330	7.192		1.223		0.7638	0.4772	нет расч.	13				1
35	0330+0342	1.698		0.3033		0.1326	0.0709	нет расч.	13				1
37	0303+0304+0330	3.501		0.6751		0.4262	0.2883	нет расч.	16				- 1
39	0333+1325	3.962		0.4672		0.4006	0.3290	нет расч.	33				1
40	0302+0316+0322	0.147		0.0747		0.0212	0.0181	нет расч.	4	-			- 1

Примечания:

- 1. Таблица отсортирована по увеличению значений кодов веществ.
- 2. Ст сумма по источникам загрязнения максимальных концентраций (в долях ПДК).
- 3. "Звездочка" (*) в графе "ПДК" означает, что соответствующее значение взято по ПДКсс.
- 4. Значения максимальной из разовых концентраций в графах "РП" (по расчетному прямоугольнику), "СЗЗ" (по санитарно-защитной зоне), "ЖЗ" (в жилой зоне), "ФТ" (в заданных группах фиксированных точек) приведены в долях ПДК.

Перечень показателей для проведения лабораторных исследований, который определяется на основании расчетов рассеивания химических веществ, в том числе оценки риска для здоровья населения представлен пунктами 1.5.5 и 1.5.7

Подтверждение соблюдения гигиенических нормативов на границе СЗЗ, осуществляемое самостоятельно силами хозяйствующего субъекта согласно производственного контроля в соответствии с программой натурных исследований и измерений, представленной в проектной документации обоснования СЗЗ представленниже в пункте 1.5.7

По результатам проведенных расчетов рассеивания ЗВ в приземном слое атмосферы, а также предыдущего заключения СЭС размер установленной СЗЗ определен

Таблица 1.5.2.5 Класс опасности предприятия и размер СЗЗ на основании расчетов по

факторам химического загрязнения

Вид производства	Класс опасности	Размер СЗЗ по румбам сторон света, м (от крайних источников) согласно СЭЗ №73 от 25.09.2014 г. (Приложение 8 проекта)					⁻ a)			
Линейная производственно-	3 (г.2 п.6)	С	CB	В	ЮВ	Ю	Ю3	3	C3	
диспетчерская станция	3 (1.2 11.6)	167,2	486,4	197,6	152	150	150	152	150	

Обоснование границ санитарно-защитной зоны по совокупности показателей

По результатам проведенных расчетов рассеивания загрязняющих веществ в приземном слое атмосферы и результатов отбора проб атмосферного воздуха на границе C33 подтверждающих отсутствие превышений ПДК на границе C33, а также учитывая отсутствие источников физического воздействия размер установленной санитарнозащитной зоны по румбам света установлен:

Таблица 1.5.2.6 Класс опасности и размер установленной СЗЗ

Вид производства	Класс опасности	Размер СЗЗ по румбам сторон света, м (от крайних источников) согласно СЭЗ №73 от 25.09.2014 г. (Приложение 8 проекта)						·a)	
Линейная производственно-	3 (г.2 п.6)	С	CB	В	ЮВ	Ю	Ю3	3	C3
диспетчерская станция	3 (1.2 11.6)	167,2	486,4	197,6	152	150	150	152	150

РАЗМЕР СЗЗ УСТАНОВЛЕН ОТ КРАЙНИХ ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ.

Размер СЗЗ установлен при максимальной нагрузке технологического оборудования, с учетом розы ветров и обеспечивает отсутствие превышений предельно-допустимых концентраций (ПДК) загрязняющих веществ (ЗВ), на границе СЗЗ и за ее пределами.

<u>Установленный размер СЗЗ подтверждается результатами проведенных расчетов рассеивания загрязняющих веществ в приземном слое атмосферы, подтверждающих отсутствие превышений ПДК ЗВ в атмосферном воздухе.</u>

1.5.3 Схема СЗЗ с нанесением размеров, источников выбросов

Схема С33 с нанесением размеров, источников выбросов представлена Приложением 2.

1.5.4 Ситуационный план на бумажном и (или) электронном носителях в системах координат, включая системы глобального позиционирования

Ситуационный план на бумажном и (или) электронном носителях в системах координат, включая системы глобального позиционирования представлен Приложением 2.

1.5.5 Материалы по оценке риска здоровью населения

Согласно СП обоснование размеров СЗЗ включает в себя в том числе материалы по оценке риска для жизни и здоровья населения (для объектов 1 и 2 класса опасности).

нке риска для жизни и здоровья населения (для ооъектов 1 и 2 класса опасности).

Поскольку предприятие относится к 3 классу опасности, оценка риска не проводилась

1.5.6 Режим использования и озеленения территории СЗЗ.

В границах СЗЗ не размещаются:

- 1) вновь строящуюся жилую застройку, включая отдельные жилые дома;
- 2) ландшафтно-рекреационные зоны, зоны отдыха, территории курортов, санаториев и домов отдыха;
- 3) вновь создаваемые и организующиеся территории садоводческих товариществ, коллективных или индивидуальных дачных и садово-огородных участков;
- 4) спортивные сооружения, детские площадки, образовательные и детские организации, лечебно-профилактические и оздоровительные организации общего пользования.
- В границах СЗЗ и на территории объектов других отраслей промышленности не размещаются:
- 1) объекты по производству лекарственных веществ, лекарственных средств и/или лекарственных форм, склады сырья и полупродуктов для фармацевтических предприятий;
- 2) объекты пищевых отраслей промышленности, оптовые склады продовольственного сырья и пищевых продуктов;
 - 3) комплексы водопроводных сооружений для подготовки и хранения питьевой воды.
- В границах СЗЗ производственного объекта размещаются здания и сооружения для обслуживания работников указанного объекта, посетителей и для обеспечения деятельности объекта:
- 1) нежилые помещения для дежурного аварийного персонала, помещения для пребывания работающих по вахтовому методу (до 15 календарных дней);
- 2) пожарные депо, бани, прачечные, объекты торговли и общественного питания, гаражи, площадки и сооружения для хранения общественного и индивидуального транспорта, автозаправочные станции, общественные и административные здания, конструкторские бюро, учебные заведения, поликлиники, научно-исследовательские лаборатории, спортивно-оздоровительные сооружения закрытого типа;
- 3) местные и транзитные коммуникации, линии электропередач, электроподстанции, нефте- и газопроводы, артезианские скважины для технического водоснабжения, водоохлаждающие сооружения для подготовки технической воды, насосные станции водоотведений, сооружения оборотного водоснабжения;
- 4) в границах СЗЗ производственного объекта, при обосновании размещаются сельскохозяйственные угодья для выращивания технических культур, неиспользуемых для производства продуктов питания.

СЗЗ для предприятий IV, V классов предусматривает максимальное озеленение - не менее 60% площади, для предприятий II и III класса - не менее 50%, для предприятий имеющих СЗЗ 1000 м и более - не менее 40% ее территории с обязательной организацией полосы древесно-кустарниковых насаждений со стороны жилой застройки. При невозможности выполнения указанного удельного веса озеленения площади СЗЗ (при плотной застройке промышленной площадью (объектами)), допускается озеленение свободных от застройки территорий с обязательным обоснованием в проекте по СЗЗ.

В границах СЗЗ объектов пищевых отраслей промышленности, оптовых складов продовольственного сырья и пищевой продукции, производства лекарственных веществ, лекарственных средств и (или) лекарственных форм, складов сырья и полупродуктов для фармацевтических предприятий, допускается размещение новых профильных, однотипных объектов, при исключении взаимного негативного воздействия на продукцию, среду обитания и здоровье человека.

Автомагистраль, расположенная в границах СЗЗ объекта или прилегающая к СЗЗ не входит в ее размер, а выбросы автомагистрали учитываются в фоновом загрязнении при обосновании размера СЗЗ.

СЗЗ или какая-либо ее часть не рассматриваются как резервная территория объекта для расширения жилой зоны, размещения коллективных или индивидуальных дачных и садово-огородных участков.

Часть C33 рассматривается как резервная территория объекта для расширения производственной зоны при условии наличия проекта обоснования соблюдения ПДК и/или ПДУ на внешней границе существующей C33.

С учетом вышеуказанного в границах СЗЗ предприятия не размещается и не планируются к размещению вновь строящаяся жилая застройка, включая отдельные жилые дома; Ландшафтно-рекреационные зоны, зоны отдыха, территории курортов, санаториев и домов отдыха; Вновь создаваемые и организующиеся территории садоводческих товариществ, коллективных или индивидуальных дачных и садово-огородных участков; Спортивные сооружения, детские площадки, образовательные и детские организации, профилактические и оздоровительные организации общего пользования, а также объекты по производству лекарственных веществ, лекарственных средств и/или лекарственных форм. склады сырья полупродуктов фармацевтических предприятий; объекты пищевых отраслей промышленности, оптовые склады продовольственного сырья и пищевых продуктов; комплексы водопроводных сооружений для подготовки и хранения питьевой воды.

Озеленение территории СЗЗ

Планировочная организация C33 имеет целью основную задачу — защиты воздушной среды населенных пунктов от промышленных загрязнений, что осуществляется путем озеленения территории санитарно-защитной зоны.

Предприятием предусмотрено ежегодное, планомерное озеленение территории санитарно-защитной зоны производственной площадки с целью создания защитного барьера позволяющего снизить негативное влияние оказываемое промышленными выбросами, как на окружающую среду в целом, так и на селитебную территорию в частности.

Площадь озеленения СЗЗ производственных площадок предприятия соответствует требованиям Санитарных правил.

<u>Предприятие ежегодно будет осуществлять высадку древесно-кустарниковых насаждений свободных от застройки территорий.</u>

Мероприятия и средства по озеленению СЗЗ.

Количество саженцев, шт.	План финансирования, тыс. тенге
Ежегодно расширение площадей зеленых насаждений (в том числе устройство газонов и цветников) - не менее 640 шт саженцев на 4 га/год (по 160 саженцев/га)*	10240*

*По факту и в ценах 2022 г. В 2023-2024 г озеленение провести не удалось, т.к. КГУ «Отдел ЖКХ, ПТ и АД акимата г. Петропавловска» не выделил площади для проведения данных работ в связи с составлением дендрологического плана города, по окончании которого будут определены участки для озеленения.

1.5.7 Программа натурных исследований и измерений для подтверждения расчетных размеров C33 с перечнем контролируемых показателей и веществ, контрольных точек, периодичностью контроля и режимом работы объекта.

На основании расчетов рассеивания ЗВ в приземном слое атмосферы и расчетов по факторам физического воздействия, а также на основании оценки риска здоровью населения можно сделать следующие выводы:

На период эксплуатации выявлены 60 источников загрязнения атмосферного воздуха, из них 26 неорганизованных. В процессе функционирования учреждения от установленных источников выделяются вещества 34 наименований образующие 10 групп суммации.

По результатам проведенных расчетов рассеивания данных веществ в приземном слое атмосферы и оценки риска здоровью населения были получены концентрации в рабочей зоне, на границе СЗЗ, которые не превышают гигиенические нормативы по ПДК.

Полученные результаты позволяют судить о том, что в процессе дальнейшего функционирования предприятием не будет нанесен значительный вред окружающей среде и здоровью населения. По итогам оценки риска здоровью населения, воздействие предприятия на окружающую среду (атмосферный воздух) носит допустимый характер, т.е. ни по одному из загрязняющих веществ, превышений предельно допустимых концентраций загрязняющих веществ на границе санитарно-защитной зоны не наблюдается.

1.5.8 Мероприятия по защите населения от воздействия выбросов вредных химических примесей в атмосферный воздух и физического воздействия

Поскольку производственная площадка предприятия не граничат с жилыми массивами и находится на значительном расстоянии от жилой застройки, а анализ уровня воздействия объекта на границе C33 показал отсутствие превышений нормативных показателей, как по выбросам химических примесей, так и по уровню физического воздействия, рекомендуется регулярно производить мониторинг технологических процессов с целью недопущения отклонений от регламента производства, своевременно осуществлять плановый ремонт существующих механизмов. Соблюдение технологии производства и техники безопасности позволит избежать нештатных ситуаций, сверхнормативных выбросов и превышения показателей гигиенических нормативов на границе C33.

2. ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

2.1 Характеристика технологии и технологического оборудования

Предприятие представляет собой комплекс производственных цехов и сооружений, связанных между собой технологическими процессами, предназначенных для удовлетворения собственных нужд в плане организации производственной деятельности.

Площадка предприятия представлена: Резервуарный парк

Основной резервуарный парк для хранения светлых нефтепродуктов представлен парками для хранения дизельного топлива. Резервуары вертикального типа PBC-5000 №№10-17, объём каждой - 5000 м³ (8 ед.).

Общая емкость единовременного хранения составляет 40 000 м³. В качестве буферных ёмкостей при внутрибазовых перекачках дизельного топлива, при необходимости, возможно использование любого свободного резервуара.

Все резервуары в обязательном порядке оснащены следующим технологическим оборудованием:

- приемно-раздаточными патрубками, предназначенными для проведения операций по заполнению и опорожнению резервуаров;
- дыхательными и предохранительными (марка КДС-3000) клапанами, а также аварийными клапанами (марка АКс-500). Дыхательный клапан гарантирует «малые дыхания» резервуара, вызываемые изменением температуры окружающего воздуха или барометрического давления. Предохранительный клапан предназначен для дублирования работы дыхательного клапана в случае выхода последнего из строя (ИЗА №0001-0008), аварийные клапана предназначенные для аварийного сброса внутреннего избыточного давления и вакуума;
 - дренажными устройствами.

Измерение уровня в резервуарах производится автоматически, также возможно осуществлять контрольные замеры через люк замерный с помощью приборов, выполненных в искробезопасном исполнении.

Все резервуары объединены в единый резервуарный парк. Подъем на крыши для обслуживания оборудования, установленного на крыше, предусмотрен по кольцевым и шахтным лестницам. На случай возникновения розлива нефтепродуктов, по периметру парка предусмотрено защитное герметичное ограждение из земляного обвалования высотой 1,8 метра, которое рассчитано на вместимость 100% объема резервуарного парка в случае розлива, включая 50 сантиметров выше уровня аварийного розлива.

Заполнение резервуаров происходит из нефтепродуктопровода, под давлением. Предварительно, перед заполнением резервуарного парка происходит отбор проб в помещении пробоотборной на ряд качественных показателей принимаемых нефтепродуктов, в дальнейшем, в случае положительных результатов анализов и после согласования получаемых объемов с отправляющей стороной, производится прием нефтепродуктов в резервуарный парк.

После положенных сроков отстаивания, и, при необходимости, хранения, в том числе и длительного хранения, нефтепродукты откачиваются с помощью насосного оборудования магистральной насосной дальше по месту конечного прибытия. Часть нефтепродуктов подается на железнодорожную эстакаду с помощью насосного оборудования наливной насосной непосредственно в железнодорожные цистерны.

Магистральная насосная

Для осуществления операций по подаче дизельного топлива для дальнейшей транспортировки в нефтепродуктопровод на площадке предусмотрена магистральная насосная, где установлены магистральные насосы с манифольдом типа НМ 500-800 №1-2 и подпорные насосы типа 8 НДв №1-2, размещенные в приёмке магистральной

насосной, номинальной производительностью 470 м /час каждый, при этом 1 насос каждого типа является резервным. Для предотвращения утечек топлива каждый насос оснащен двумя торцевыми уплотнителями. Манифольд — представляет собой несколько трубопроводов, закреплённых на одном основании, рассчитанных на высокое давление и соединенных по определенной схеме. Для начала работ, производится запуск подпорного насоса на 10 минут для прокачки воздуха и создания необходимого давления в трубопроводе для обеспечения работы основного магистрального насоса. после создания требуемого давления включается магистральный насос. Пуск насоса производится при открытой задвижке на всасывающем трубопроводе. Насосы используются для перекачки дизельного топлива.

Также в помещении магистральной насосной установлены насосы типа НМШ 8/25 (2 ед., 1 рабочий, 1 резервный), задействованные в маслосистеме (для подачи турбинного масла на смазку подшипников магистрального насоса при его работе).

Возле помещения магистральной насосной также установлены вспомогательные насосы типа НВН (2 ед.) производительностью 25 м³/час для откачки нефтепродукта из емкости сбора утечек №10,11 *(ИЗА №6007-6008).*

Вентилирование помещения магистральной насосной предусмотрено посредством работы вентиляторов марки ВЦ 14-46 производительностью по воздуху 13590 м³/час и 15640 м³/час. Устье вентиляционной установки расположено на высоте 8,7 метра и ее диаметр составляет 0,62 метра (ИЗА №0010). Во избежание скопления паров нефтепродуктов в приямке при работе подпорных насосов, здесь также установлена вытяжная вентиляционная установка с вентилятором типа ВЦ9-57 №6 производительностью 7340 м3/час. Устье вентиляционной установки расположено на высоте 8,7 метра и ее диаметр составляет 0,53 метра (ИЗА №0011).

Наливная насосная

Для внутрибазового перемещения нефтепродуктов и для сдачи нефтепродуктов в ТОО «Петропавловская нефтебаза» в наливной насосной установлены насосы типа 12НДсН (2 ед., 1 рабочий, 1 резервный), производительностью 900 м³/час. Также установлен вспомогательный насос типа НВД-50/50 (1 ед.) производительностью 50 м³/час для откачки нефтепродукта из емкости сбора утечек №2. Вентилирование помещения наливной насосной предусмотрено посредством работы вентиляторов марки ВЦ14-46 №4 производительностью по воздуху 2480 м³/час. Устье вентиляционной установки расположено на высоте 4,5 метров и ее диаметр составляет 0,16 метра (ИЗА №0012).

Открытая площадка наливных насосов

Для управления операций по подаче дизельного топлива на железнодорожную эстакаду рядом с местным диспетчерским пунктом (МДП) установлены насосы типа НД1250-65 (2 ед., 1 рабочий, 1 резервный) производительностью 809 м 3 /час (ИЗА №6006). Также установлен вспомогательный насос типа НВД-50/50 (1 ед.) производительностью 50 м 3 /час для откачки нефтепродукта из емкости сбора утечек №1 (ИЗА №6029).

Железнодорожная эстакада

Железнодорожная эстакада - инженерное сооружение, из металлических конструкций из прокатных профилей. Подача вагонов осуществляется на один тупик. Железнодорожная эстакада на 24 вагоноцистерны - двусторонняя, оборудована УНЖ 6-100 АС-02 с шагом, равным шагу устанавливаемых вагонов-цистерн (12 метров).

Прием нефтепродуктов из железнодорожных цистерн на сливоналивной железнодорожной эстакаде технически невозможен, весь объем нефтепродуктов поступает на площадку с нефтепродуктопровода. Для выполнения операций по наливу нефтепродуктов эстакада оборудуется:

• установками герметизированного верхнего налива с отводом паров из зоны налива типа УНЖ 6-100 АС – 02 (24 ед. возможна одновременная работа);

• коллекторами диаметром Ду 150 мм.

Устройство УНЖ 6-100 АС-02, предназначено для герметизированного верхнего налива нефтепродуктов в железнодорожные цистерны с отводом паров из зоны налива. Герметизирующая крышка установки — универсальная, адаптирована ко всем типам железнодорожных цистерн для перевозки нефти и нефтепродуктов. Механизм прижатия расположен на устройстве и обеспечивает прижатие герметизирующей крышки к горловине цистерны как в начале налива так и в процессе просадки цистерны под действием налитого в неё продукта.

Отвод паров производится через отдельный герметичный шарнирный трубопровод (газоотводная линия), не требующий замены в течение срока службы устройства. Часть паров нефтепродуктов, проходя через коллектор, конденсируется и собирается в емкость сбора утечек нефтепродуктов №9. Паровоздушная составляющая отводится через «свечу», устье которой расположено на высоте 12 метров и диаметр ее 0.219 метров (*ИЗА №0013*).

<u>Нефтеловушка</u>

Для сбора несанкционированных утечек нефтепродуктов, а также для отвода дождевых и талых вод и их очистки имеется нефтеловушка закрытого типа объемом 60 м³. Стоки самотеком поступают в ливневую сеть площадки. Очистка производится физическими методами (отстаивание) (ИЗА 6001).

Всплывшие на поверхность нефтепродукты откачиваются в резервуар объемом 9 м³ (ИЗА №0023) с дальнейшей закачкой их в продуктовые резервуары. Очищенные стоки самотеком поступают в емкость дополнительной очистки объемом 64 м³, представляющую собой заглубленную цистерну (ИЗА №0024), дополнительно отстаиваются, затем очищенные дождевые воды при помощи насосного оборудования канализационной насосной станции, находящейся за пределами площадки, поступают в городской канализационный коллектор.

С целью перекачки нефтепродуктов в здании нефтеловушки предусмотрен насос НШ-40 производительностью 19.5 м3/час. Выброс загрязняющих веществ в окружающую среду осуществляется посредством вытяжного устройства производительностью 920 м³/час. Устье вентиляционной установки расположено на высоте 2,5 метра и ее диаметр составляет 0,2 метра (ИЗА №0025).

Сброс коммунальных вод и производственно-дождевых стоков в природные водоемы и водотоки, а также на рельеф местности отсутствует.

Система емкостей сбора утечек

Для исключения розливов нефтепродуктов на площадке филиала существует система емкостей сбора утечек. Емкость сбора утечек представляет собой заглубленную емкость, в которую собирается нефтепродукт (при розливах, при опорожнении магистральных, подпорных, наливных и вспомогательных насосов при подготовке их к ремонту и т.д.). Сбор нефтепродуктов в ёмкости осуществляется самотёком.

На площадке размещено 8 емкостей сбора утечек: РГС№1 (8 м3) - рядом с МДП, РГС№2 (5 м3) - возле наливной насосной, РГС№10,11 (по 25 м3) - возле магистральной насосной, РГС№5 (выведена из эксплуатации), РГС№6, РГС№8 (по 5 м3) - рядом с пробоотборной; РГС№9 (5 м3) - коллектор газоотводной линии железнодорожной эстакады.

Каждая емкость сбора утечек оснащена дыхательным клапаном типа СМДК-50А, устье дыхательного клапана расположено на высоте 1.5 метров от поверхности земли, диаметр устья дыхательного клапана составляет 0.05 метра (ИЗА №0014-0018,0020-0022).

Периодическое опорожнение емкостей сбора утечек (в среднем 1 раз в 2 месяца или по мере заполнения) производится насосами типа НВД 50/50 (РГС №1,№2), а удаленных от насосного оборудования емкостей (РГС №5,№6, №8, №9, №10, №11) - бензовозом модели АКН-10 или мобильным насосным оборудованием №1, 2 (С-569 - 2

ед.) с дальнейшей закачкой в продуктовые резервуары. В среднем за год суммарно с емкостей сбора утечек откачивается не более 50 тонн дизельного топлива.

Вспомогательное производство <u>Мехмастерская</u>

Для осуществления текущего ремонта оборудования на площадке расположено здание мехмастерской, где производится механическая обработка металлических изделий, зарядка аккумуляторов, газовая резка и сварка металлов.

Время работы каждого станка указано в таблице, оборудование работает

неодновременно.

Nº	Наименование оборудования	Количество станков, ед.	Время работы, ч/год
1	Токарно-винторезный станок	1	100
2	Радиально-сверлильный	1	100
3	Обдирочно-шлифовальный, d=350мм	1	100
4	Универсально-токарный	1	200
5	Трубогибочный станок	1	20
6	Отрезной ножовочный станок	1	100
7	Горизонтально-фрезерный	1	100
8	Токарно-винторезный станок	1	100

Вентиляция в помещении мехмастерской - естественная, через дверные проемы высотой 2 метра, шириной 0.8 метра (*ИЗА №6009*). Также от обдирочно-шлифовального станка предусмотрено вытяжное устройство (ВУ-18, ВС-18) производительностью по воздуху 720 м 3 /час (очистная установка ЗИЛ-900м, с КПД – 99,3%), высота и диаметр устья вытяжного устройства 1,5 м и 0,5 м соответственно (*ИЗА №0026*).

Возле здания мехмастерской также проводятся работы углошлифовальными станками (2 ед.). Время работы – до 600 час/год. Работы проводятся на открытой площадке *(ИЗА №6033).*

Участок сварки и газовой резки металлов

Для ремонтных работ на площадке филиала и на линейной части организованы посты сварки (1 стационарный, 2 передвижных), где производится ручная дуговая сварка сталей штучными электродами (УОНИ-13/55, LB-52 U). Расход сварочных материалов составляет 3000 кг/год. Годовой фонд рабочего времени каждого аппарата составляет 6 час/сут, 1296 час/год (суммарно 5184 ч/год) (ИЗА №6010).

Также организованы посты резки металлов (1 стационарный, 2 передвижных). Разрезаемый материал: сталь углеродистая, (толщина материала от 5 - 9, мм.) Максимальная фактическая производительность резки, м/час, ВМАХ=6. Длина резки в год -12000 погонных метров (*ИЗА №6010*).

Аккумуляторный участок

В здании мехмастерской расположен аккумуляторный участок, где производится зарядка аккумуляторных батарей. Номинальная емкость аккумуляторных батарей, 190А.Ч., QN=25. Количество проведенных зарядов за год - 100. Максимальное количество вышеуказанных батарей, присоединяемых одновременно ко всем зарядным устройствам - 2.

Вентилирование помещения производится через вентиляционную шахту, где установлен вентилятор Ц-470, производительностью по воздуху 729 м3/час, высота устья вентиляционной установки на высоте 3,5 метров, диаметр 0,3 метра (ИЗА №0027).

Помещение УОЭО

Осуществляется сушка электродвигателей от влаги в электропечи (без выделения 3B). В помещении используется угловая шлифовальная машинка с

диаметром круга 150 мм, время работы которой 100 час/год. Выброс осуществляется через дверной проём 2х1 м (ИЗА №6035)

Пожарные насосные.

Для тушения пожаров на площадке филиала размещены 2 пожарные насосные. В каждой насосной установлены резервные насосы, работающие от электродвигателей.

Для проверки работы оборудования резервных насосов и их готовности к аварийным ситуациям 1 раз в 10 дней (36 недель), резервные насосы включаются на 2 мин.

Дизельная электростанция

Для исключения перебоев в электроснабжении рядом с помещением мехмастерской установлена дизельгенераторная установка типа ДГА «WOLA» - 1 ед., мощностью 200 кВт, годовой расход дизельного топлива не более 1 тонны. Удельный расход топлива на экспл./номин. режиме работы двигателя 238 г/кВт*ч. Высота дымовой трубы - 3 метра, диаметр устья дымовой трубы - 0.1 метра (ИЗА №0033).

Дизельная электростанция АД 100-Т400 мощностью 100 кВт используется на территории предприятия и на ремонтных работах линейной части продуктопровода. Расход топлива - 30,8 кг/час. В год на дизельную электростанцию расходуется не более 5 т дизельного топлива (ИЗА №0034).

Для исключения перебоев в электроснабжении предусмотрена дизельная электростанция «Champion» - 1 ед., мощностью 3,1 кВт, годовой расход дизельного топлива не более 0,5 тонн. Высота дымовой трубы - 1 метр, диаметр устья дымовой трубы - 0.1 метра (ИЗА №0035).

Автотранспорт

На территории предприятия осуществляется хранение транспортных средств в специально предусмотренных помещениях и на специально отведенной площадке.

Автобокс.

Nº	Наименование	Количество, ед.
1	КАвЗ-4235 (Автобус)	1
2	MT3-82	1
3	ГАЗ-331063 (Валдай)	1
4	ГАЗ-33081 (Чайка)	1
5	Урал-5557 (Пожарная машина)	1

Данные автомобили находятся в боксах круглогодично. В остальные помещения транспорт загоняется на время морозов по необходимости. В боксах имеется приточновытяжная вентиляция. В одном из помещений установлен вертикально-сверлильный станок, время работы которого 100 час/год. Отвод воздуха осуществляется вентустановкой, производительностью 12300 м3/час, диаметром устья 0,45х0,45 м, высотой 1,7 м (ИЗА №0039).

Гараж легковых автомобилей.

Nº	Наименование	Количество, ед.
1	УАЗ Hunter	1
2	УАЗ Pickup	1
3	УАЗ Patriot	1
4	Mitsubishi L200	1
5	Toyota Avensis	1

Параметры дверных проемов: H=3 м, D=3,5 м *(ИЗА №6021-6025)*.

Пожарное депо.

Nº	Наименование	Количество, ед.
1	МАЗ (6317) (Пожарная машина) (МАЗ АЦ-5,0-100 (6317)	1
2	КамАЗ 5662KD АЦ 5,0-100 (Пожарная машина)	1

Параметры дверных проемов: H=3,4 м, D=3,4 м (*ИЗА №6026, 6027*). Выброс также может осществляться посредством принудительной вентиляционной установки (ВУ 21.1), производительностью 1170 м3, высотой 7 м диаметром 0,16 м, однако большую часть времени происходит через дверной проём.

Открытая площадка.

Nº	Наименование оборудования	Количество, ед.
1	Iveco-AMT 633910 (Тягач седельный)	1
2	Б-10М (Бульдозер)	1
3	Hitachi ZX160 (Экскаватор)	1
4	КамАЗ-43118 (Автокран)	1
5	КамАЗ-5350 (Автобус вахтовый)	1
6	КамАЗ-43118 (Передвижная мастерская)	1
7	КамАЗ-43118 (Автоцистерна нефтепромысловая)	1
8	КамАЗ-65222 (Самосвал)	1
9	КамАЗ-43118 (Передвижная насосная установка)	1
10	КамАЗ-43118 (Кран манипулятор)	1
11	Урал-5668 (Вакуумный агрегат)	1

Параметры площадки: L=23 м, B=11 м *(ИЗА №6028).*

Камеры приёма-пуска скребков

Для обеспечения нужд по техническому содержанию и обследованию продуктопроводов на производственной территории расположены **2** камеры приёма скребков и 1 камера пуска скребков (ИЗА №6011-6013).

Испытательная лаборатория

В целях контроля качества поступающих на предприятие нефтепродуктов в помещении испытательной лаборатории установлены 3 вытяжных шкафа и 3 вытяжных зонта, оборудованных вентиляционными установками с производительностью насосов 985 м³/час, 820 м³/час и 785 м³/час соответственно (ИЗА №0036-0038). Высота источников 1-1,5 м, диаметр 0,2 м.

Земляные работы

Территория станции

Для обеспечения надлежащего технического состояния технологического оборудования на территории станции осуществляются земляные работы. Работы по выемке грунта осуществляются экскаватором с максимальной производительностью 10 тонн/час. Годовой фонд времени работы составляет - 1000 час (ИЗА 6014). Работы по перемещению грунта осуществляются бульдозером, время работы составляет 53,48 час/год (ИЗА 6015). Склад временного хранения грунта, функционирование склада осуществляется в период проведения ремонтных работ, параметры склада 10×10 метров (ИЗА 6016).

Линейная часть

Для обеспечения надлежащего технического состояния продуктопровода на участках линии отвода осуществляются земляные работы. Работы по выемке грунта осуществляются экскаватором с максимальной производительностью 10 тонн/час. Годовой фонд времени работы составляет - 2000 час (ИЗА 6030). Работы по перемещению грунта осуществляются бульдозером, время работы составляет 107 час/год (ИЗА 6031). Склад временного хранения грунта, функционирование склада осуществляется в период проведения ремонтных работ, параметры склада 10×20 метров (ИЗА 6032).

Лакокрасочные работы

Для проведения окрасочных работ используются краскопульт, а также валик и кисть. Используемые ЛКМ: грунтовка — 150 кг, эмаль - 270 кг, растворитель (типа сольвент) — 80 кг. Распределение материала между видами окраски — пополам. Работы проводятся на открытых площадках (ИЗА 6034).

2.2 Краткая характеристика очистных установок и эффективность их работы

Таблица 2.2.1 Показатели работы газоочистных и пылеулавливающих установок

Номер	Наименование и тип	КПД апп	аратов, %	Код	Коэффиц	иент обеспе-
источника	пылегазоулавливающего			загрязняющего	ченнос	ги К(1),%
выделения	оборудования	проектный	фактичес-	вещества по		
			кий	котор.проис-	норматив-	фактичес-
				ходит очистка	ный	кий
1	2	3	4	5	6	7
0026 037	ЗИЛ-900м	99.30	99.30	2902	100	100
		99.30	99.30	2930	100	100

2.3 Перспектива развития предприятия

На срок действия разработанных нормативов НДВ расширение, реконструкция, изменение профиля работы, а также ликвидация производства не предусматривается.

2.4 Перечень загрязняющих веществ, выбрасываемых в атмосферу

В атмосферный воздух от источников загрязнения выделяются вещества, перечень которого, с указанием ПДК или ОБУВ, класса опасности, представлен в таблице 2.4.1. В графе 1 указаны коды веществ, присвоенные им при проведении расчетов приземных концентраций на ЭВМ.

Таблица 2.4.1

Перечень загрязняющих веществ, выбрасываемых в атмосферный воздух на существующее положение

Код	Наименование	ПДК	ПДК	ОБУВ	Класс	Выброс	Выброс
загр.	вещества	максим.	средне-	ориентир.	опас-	вещества	вещества,
веще-		разовая,	суточная,	безопасн.	ности	г/с	т/год
ства		мг/м3	мг/м3	УВ,мг/м3			
1	2	3	4	5	6	7	8
0123	диЖелезо триоксид (Железа оксид) /в		0.04		3	0.03111	0.09338
	пересчете на железо/						
0143	Марганец и его соединения /в	0.01	0.001		2	0.0010668	0.00417
	пересчете на марганца (IV) оксид/						
0150	Натрий гидроксид (Натрия			0.01		0.001572	0.04956
	гидроокись; Натр едкий; Сода						
0201	каустическая)	0.2	0.04		_	1 1072512	0.221055
0301	Азот (IV) оксид (Азота диоксид)	0.2			2	1.1973512	0.221055
0302	Азотная кислота /по молекуле HNO3/	0.4			2	0.003	0.094608
0303	Аммиак	0.2			4	0.0002952	0.0093
0304	Азот (II) оксид (Азота оксид)	0.4			3	0.96229832	0.25822925
0316	Соляная кислота	0.2	0.1		2	0.000792	0.02496
0322	Кислота серная	0.3			2	0.0001697	0.0050571
	Углерод (Сажа)	0.15			3	0.2403456	0.032573
	Сера диоксид (Ангидрид сернистый)	0.5			3 2	0.2722159	0.065145
0333 0337	Дигидросульфид (Сероводород)	0.008			4	0.003404904 3.377552	0.021124232 0.238913
0337	Углерод оксид Фтористые газообразные соединения	0.02	0.005		2	0.0006249	0.238913
0342	(гидрофторид, кремний тетрафторид)	0.02	0.003		2	0.0006249	0.002814
	(Тидрофторид, кремнии тетрафторид) (Фтористые соединения газообразные						
	(фтористые соединения газоооразные (фтористый водород,						
	(фтористый водород, четырехфтористый кремний)) /в						
	пересчете на фтор/						
	Фториды неорганические плохо	0.2	0.03		2	0.002751	0.012375
	растворимые - (алюминия фторид,	0.2	0.05		_	0.002731	0.012373
	кальция фторид, натрия						
	гексафторалюминат) (Фтористые						
	соединения: плохо растворимые						
	неорганические фториды (фторид						
	алюминия, фторид кальция,						
	гексафторалюминат натрия)) /в						
	пересчете на фтор/						
0602	Бензол	0.3	0.1		2	0.001476	0.0465
0616	Диметилбензол (Ксилол) (смесь о-,	0.2			3	0.0844	0.041
	м-, п- изомеров)						
	Метилбензол (Толуол)	0.6			3	0.2312866	0.0776
	Углерод тетрахлорид	4	0.7		2	0.002958	0.09324
1061	Этиловый спирт	5			4	0.01002	

1119	Этиловый эфир этиленгликоля			0.7		0.06334	0.0308
1210	Уксусной кислоты бутиловый эфир	0.1			4	0.04466	0.01206
1301	Проп-2-ен-1-аль (Акролеин)	0.03	0.01		2	0.027	0.007817
1325	Метаналь	0.05	0.001		2	0.0270169	0.007817
1401	Пропан-2-он (Ацетон)	0.35			4	0.163962	0.1774
1411	Циклогексанон	0.04			3	0.1666	0.024
1555	Уксусная кислота	0.2	0.06		3	0.001152	0.0363
2704	Бензин (нефтяной, малосернистый) /в	5	1.5		4	0.010411	
	пересчете на углерод/						
2735	Масло минеральное нефтяное			0.05		0.00833	0.263
	(веретенное, машинное, цилиндровое						
	и др.)						
2750	Сольвент нафта			0.2		0.3888	0.056
2754	Углеводороды предельные С12-19 /в	1			4	1.873689	8.0391334
	пересчете на суммарный органический						
	углерод/						
2902	Взвешенные частицы РМ10	0.3			3	0.1353712	0.07768586
2908	Пыль неорганическая: 70-20%	0.3	0.1		3	1.073033	2.936341
	двуокиси кремния (шамот, цемент,						
	пыль цементного производства -						
	глина, глинистый сланец, доменный						
	шлак, песок, клинкер, зола						
	кремнезем и др.)						
2930	Пыль абразивная (Корунд белый;			0.04		0.0053008	0.01782226
	Монокорунд)						
	ВСЕГО:					10.413356024	13.393740102

Выбросы загрязняющих веществ предприятия образуют группы суммации представленные в таблице 2.4.2.

Таблица 2.4.2 Группа суммаций на существующее положение

Номер	Код	
группы	загряз-	Наименование
сумма-	няющего	загрязняющего вещества
ции	вещества	
1	2	3
03	0303	Аммиак /32/
	0333	Сероводород (Дигидросульфид) /528/
04	0303	Аммиак /32/
	0333	Сероводород (Дигидросульфид) /528/
	1325	Формальдегид /619/
05	0303	Аммиак /32/
	1325	Формальдегид /619/
28	0322	Серная кислота /527/
	0330	Сера диоксид /526/
30	0330	Сера диоксид /526/
	0333	Сероводород (Дигидросульфид) /528/
31	0301	Азот (IV) оксид /4/
	0330	Сера диоксид /526/
35	0330	Сера диоксид /526/
	0342	Фтористые газообразные соединения (в пересчете на
		фтор) /627/
37	0303	Аммиак /32/
	0304	Азот (II) оксид /6/
	0330	Сера диоксид /526/
39	0333	Сероводород (Дигидросульфид) /528/
	1325	Формальдегид /619/
40	0302	Азотная кислота /5/
	0316	Гидрохлорид /162/
	0322	Серная кислота /527/

2.5 Сведения о залповых выбросах

Специфика производственной деятельности предприятия исключает проведение залповых и аварийных выбросов.

2.6 Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ

Исходные данные (г/сек, т/год), принятые для расчета нормативов, взяты из форм инвентаризации №1-воздух, которые были выполнены на основании визуальных обследований и расчетным путем с применением отраслевых методик, утвержденных Министерством охраны окружающей среды.

Параметры выбросов загрязняющих веществ приведены в таблице 2.6.

Таблица 2.6

Параметры выбросов загрязняющих веществ в атмосферу для расчета НДВ

_	**			lvv	T **	Ivv	lvv.	<u> </u>									в в атмосфе								I I
Про	Источники в загрязняющи			Число часов	Наименование источника выброса	Чис ло	Но-	Высо та	Диа- метр		тры газовозд.смес оде из ист.выброса		Koop,	динаты на	а карте-схе	ме,м	Наименование газоочистных	Вещества по котор.	Средняя эксплуат	Код	Наименование	Выб	росы загрязняюц	цих веществ	Год дос-
изв		л вещее		рабо-	вредных веществ		ист.		устья	IIU DDIAU	де из нет.выорос	•	точ.ист,/1ко	нца	второг	о конца	установок	производ.	степень	ще-	вещества				тиже
одс	Наименог	вание	Ко-	ТЫ	1 //	выб	выб-	ника	трубы	ско-	объем на 1	тем-	линейного и			точника	и мероприятий	г-очистка	очистки	.1 '	,	г/с	мг/м3	т/год	ния
тво			лич	В		po-		выбро		рость	трубу, м3/с	пер.					по сокращению	к-т обесп	тах.стег						НДВ
			ист	год		ca		са,м	M	м/с		oC	X1	Y1	X2	Y2	выбросов	газоо-й %	очистки%	ó					
1	2 3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	I		l	l		ļ	I		I		1			Deper	 вуарный п	anv		I		Į		I	l	I	ļ
			ĺ	ĺ		1	1		ĺ		1		1	1 030	ј Ј	l l		1		I		1			
001	PBC-5000 №	10	1	8760	Дыхательный		1 0001	12.9	0.25	3.4	0.1668975	26.7	1889	1651						033	3 Дигидросульфид	0.000122	0.731	0.0002864	2025
					клапан															275	(Сероводород)	0.0425	260,620	0.102	2025
																				2/3	1 Углеводороды предельные С12-19 /в	0.0435	260.639	0.102	2025
																					пересчете на				
																					суммарный				
																					органический углерод/				
001	PBC-5000 №	11	1	8760	Дыхательный		1 0002	12.9	0.25	3.4	0.1668975	26.7	1936	1652						033	В Дигидросульфид	0.000122	0.731	0.0002864	2025
001	1200000		1	0,00	клапан		0002	12.7	0.20		0.1000775	20.7	1,500	1002						000	(Сероводород)	0.000122	0.751	0.000200.	
																				275	4 Углеводороды	0.0435	260.639	0.102	2025
																					предельные C12-19 /в пересчете на				
																					суммарный				
																					органический углерод/				
001	PDC 5000 M	10		07.60	, II		1 0002	12.0	0.25	2.4	0.1669075	267	1000	1.650						022) II 1	0.000122	0.721	0.0002064	2025
001	PBC-5000 №	212	1	8/60	Дыхательный клапан		1 0003	12.9	0.25	3.4	0.1668975	26.7	1982	1653						033.	З Дигидросульфид (Сероводород)	0.000122	0.731	0.0002864	2025
					клапан															275	1 Углеводороды	0.0435	260.639	0.102	2025
																					предельные С12-19 /в				
																					пересчете на				
																					суммарный органический углерод/				
																					органи теский утмерод				
001	PBC-5000 №	213	1	8760	Дыхательный		1 0004	12.9	0.25	3.4	0.1668975	26.7	2032	1653						033	3 Дигидросульфид	0.000122	0.731	0.0002864	2025
					клапан															275	(Сероводород) 4 Углеводороды	0.0435	260.639	0.102	2025
																				213	предельные С12-19 /в	0.0433	200.039	0.102	2023
																					пересчете на				
																					суммарный				
																					органический углерод/				
001	PBC-5000 №	14	1	8760	Дыхательный		1 0005	12.9	0.25	3.4	0.1668975	26.7	1888	1700						033	В Дигидросульфид	0.000122	0.731	0.0002864	2025
					клапан																(Сероводород)				
																				275	1 Углеводороды предельные С12-19 /в	0.0435	260.639	0.102	2025
																					пересчете на				
																					суммарный				
																					органический углерод/				
001	PBC-5000 №	15	1	8760) Дыхательный		1 0006	12.9	0.25	3.4	0.1668975	26.7	1935	1702						033	3 Дигидросульфид	0.000122	0.731	0.0002864	2025
301		-		2,50	клапан		2300			2.1		20.7		02							(Сероводород)				
																				275	1 Углеводороды	0.0435	260.639	0.102	2025
																					предельные C12-19 /в пересчете на				
																					суммарный				
																					органический углерод/				
001	PBC-5000 №	16	1	0766) Дыхательный		1 0007	12.0	0.25	2.4	0.1669075	26.7	1982	1704						022	Дирипрости Ат-	0.000122	0.721	0.0002864	2025
001	LPC-2000 ₩	210	1	8/00	дыхательныи клапан		1 000/	12.9	0.25	3.4	0.1668975	20.7	1982	1704						033.	В Дигидросульфид (Сероводород)	0.000122	0.731	0.0002804	2023
																				275	1 Углеводороды	0.0435	260.639	0.102	2025
																					предельные С12-19 /в				
																					пересчете на				
																					суммарный органический углерод/				
001	PBC-5000 №	17	1	8760	Дыхательный		1 0008	12.9	0.25	3.4	0.1668975	26.7	2028	1707						033	З Дигидросульфид	0.000122	0.731	0.0002864	2025
					клапан															275	(Сероводород) 4 Углеводороды	0.0435	260.639	0.102	2025
																				2/3	предельные С12-19 /в	0.0455	200.039	0.102	2023
																					пересчете на				
	1			Ĭ	1			i			1	<u> </u>			<u>. </u>				1		1 1		1	1	

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 17	18	19	20	21	22	23	24	25	26
1 2	3	T .		Ŭ		0	,	10		12	13	14	13	10 17	10	17	20		суммарный	23	24	25	20
																			органический углерод/				
	1	I	1	1	ı	1 1			1	I	ı	1	Магистр	альная насосная	1	1 1	I	İ	1	1	1	1	
002	HM 500-800 №1 HM 500-800 №2 HMШ 8/25	1 1 1	8760 8760	Труба вытяжного устройства (ВЦ14-46 и ВЦ	1	0010	8.7	0.62	12.42	3.7496944	26.7	1787	1669					0333	Дигидросульфид (Сероводород)	0.00044	0.117	0.004352	2025
				9-57)															Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.)	0.00833	2.222	0.263	2025
																			Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.1566	41.763	1.55	2025
002	8 НДв-Нм-Т-Е №1 8 НДв-Нм-Т-Е №2	1 1	8760	Труба вытяжного устройства (ВЦ 9-57)	1	0011	8.7	0.53	9.24	2.0389	26.7	1781	1669					0333	Дигидросульфид (Сероводород)	0.00044	0.216	0.004352	2025
				9-37)															Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.1566	76.806	1.55	2025
	1	1		1	1	1 1	l	l	1		1	1	Нали	вная насосная	1	1 1			1	ı	1	1	
003	НД 1200/65 НД 1200/65	1 1	8760	Труба вытяжного устройства	1	0012	4.5	0.16	34.26	0.6888888	26.7	1778	1669					0333	Дигидросульфид (Сероводород)	0.00044	0.639	0.004352	2025
				(ВЦ14-46 №6)															Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.1566	227.323	1.55	2025
	1						ļ	ļ	!		l	1	Железнод	 цорожная эстакада	1	I I				l	<u> </u>	1	
004	УНЖ 6-100 AC-02 УНЖ 6-100 AC-02	12 12	4942 4942	Устье газоотводной	1	0013	12	0.219	6.64	0.2501193	26.7	2112	1753					0333	Дигидросульфид (Сероводород)	0.00044	1.759	0.0013	2025
				линии															Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.1566	626.101	0.464	2025
	1	1	1	1	j i	1 1	ļ	ļ	1	ı	l i	1	Ёмкос	ги сбора утечек	1	1 1	l I	ļ	I	ı	1	1	
005	РГС №1-8 м3	1	8760	Дыхательный клапан	1	0014	1.5	0.05	2.83	0.0055567	26.7	2068	1602						Дигидросульфид (Сероводород)	0.00000024	0.043	0.0000005	2025
																			Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.000087	15.657	0.000192	2025
005	РГС №2-5 м3	1	8760	Дыхательный	1	0015	1.5	0.05	2.83	0.0055567	26.7	2067	1452					0333	Дигидросульфид	0.00000024	4 0.044	0.000000539	2025
				клапан															(Сероводород) Углеводороды	0.000087	15.657	0.000192	2025
																			предельные C12-19 /в пересчете на суммарный органический углерод/				
005	РГС №9-5 м3	1		Дыхательный	1	0016	1.5	0.05	2.83	0.0055567	26.7	2092	1759					0333	Дигидросульфид	0.00000024	4 0.044	0.000000539	2025
				клапан														2754	(Сероводород) Углеводороды	0.000087	15.657	0.000192	2025

1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
																				предельные С12-19 /в пересчете на суммарный органический углерод/				
005	РГС №10-25 м3	1	8760	Дыхательный	1	0017	2.5	0.15	0.02	0.0002777	26.7	1796	1643						0333	Дигидросульфид	0.000000244	1 0.879	0.00000055	2025
				клапан															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.000087	313.288	0.0001958	2025
005	РГС №11-25 м3	1	8760	Дыхательный	1	0018	2.5	0.15	0.02	0.0002777	26.7	1796	1637						0333	Дигидросульфид	0.000000244	0.879	0.00000055	2025
				клапан															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.000087	313.288	0.0001958	2025
005	РГС №6-5 м3	1	8760	Дыхательный	1	0021	1.5	0.05	2.83	0.0055567	26.7	1830	1951						0333	Дигидросульфид	0.000000244	0.044	0.000000539	2025
				клапан															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.000087	15.657	0.000192	2025
005	РГС №8-5 м3	1	8760	Дыхательный	1	0022	1.5	0.05	2.83	0.0055567	26.7	1811	1952						0333	Дигидросульфид	0.000000244	0.044	0.000000539	2025
				клапан															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.000087	15.657	0.000192	2025
11		1			<u> </u>	ll		[1					ртеловушка	1					_	[1
006	Ёмкость сбора нефтепродуктов	1	8760	Дыхательный клапан	1	0023	4.5	0.1	0.69	0.0054166	26.7	1860	1411							Дигидросульфид (Сероводород)	0.0000048	0.886	0.0000019	2025
	9 m3																		2754	Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.001695	312.927	0.000662	2025
006	Ёмкость сбора	1	8760	Дыхательный клапан	1	0024	2	0.1	0.69	0.0054166	26.7	1845	1396						0333	Дигидросульфид	0.0000048	0.886	0.0000006	2025
	нефтепродуктов 64 м3			ikijalian															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.001695	312.927	0.000217	2025
006	Насос НШ-40	1	6.7	Уплотнения	1	0025	2.5	0.2	8.13	0.25556	26.7	1849	1411						0333	Дигидросульфид	0.0000544	0.213	0.000001176	2025
				оборудования															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.019386	75.857	0.0004188	2025

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 17	18	19 20	21 22	23	24	25	26
'	1	i i		1	ı	i i		í	i	i	i l			хмастерская	1			1	l l	1	i
008	Обдирочно-шлифо	1	100	Труба вытяжного		1 0026	2	0.8	0.4	0.2010624	26.7	1839	1570		ЗИЛ-900м;	2902/100 99.3/99.3	2902 Взвешенные частицы	0.0001512	0.752	0.00005446	2025
	вальный станок			устройства												2930/100 99.3/99.3	PM10	0.0001008	0.501	0.00003626	2025
																	2930 Пыль абразивная (Корунд белый;	0.0001008	0.501	0.00003626	2025
																	Монокорунд)				
	1	l l			ļ	l l	l	ļ	l	ļ		I	AKKVMVJ	 іяторный участок					l	l	l
]									
010	Зарядное устройство	1	1000	Труба вытяжного устройства		1 0027	3.5	0.3	2.86	0.2025	26.7	1840	1538				0322 Кислота серная	0.0000095	0.047	0.0000171	2025
	устронетьо			устронетва																	
								ļ		ļ		ļ	Пизангни	 ня электростанция							
	I	1 1			1				1	1		1	дизсльна	ія электростанция 							
012	Дизельгенератор Wola	1	21	Выхлопная труба		1 0033	3	0.2	2.5	0.07854	26.7	1820	1524				0301 Азот (IV) оксид	0.3969	5053.476	0.030067	2025
	woia																(Азота диоксид) 0304 Азот (II) оксид	0.5159	6568.627	0.039087	2025
																	(Азота оксид)				
																	0328 Углерод (Сажа) 0330 Сера диоксид	0.0661 0.1323	841.609 1684.492	0.005011 0.010022	2025 2025
																	(Ангидрид сернистый)				
																	0337 Углерод оксид 1301 Проп-2-ен-1-аль	0.3307 0.0159	4210.593 202.445	0.025056 0.001203	2025 2025
																	(Акролеин)	0.0139	202.443	0.001203	2023
																	1325 Метаналь	0.0159	202.445	0.001203	2025
																	2754 Углеводороды предельные C12-19 /в	0.1587	2020.626	0.012027	2025
																	пересчете на				
																	суммарный органический углерод/				
																	органический углерод/				
012	Дизельгенератор	1	162	Выхлопная труба		1 0034	2	0.2	2.5	0.0785398	26.7	1819	1573				0301 Азот (IV) оксид	0.2572	3274.773	0.150335	2025
	АД100-Т400																(Азота диоксид) 0304 Азот (II) оксид	0.3344	4257.714	0.195435	2025
																	(Азота оксид)				
																	0328 Углерод (Сажа) 0330 Сера диоксид	0.0429 0.0857	546.220 1091.167	0.025056 0.050112	2025 2025
																	(Ангидрид сернистый)				
																	0337 Углерод оксид	0.2144 0.0103	2729.826	0.125279 0.006013	2025 2025
																	1301 Проп-2-ен-1-аль (Акролеин)	0.0103	131.144	0.000013	2025
																	1325 Метаналь	0.0103	131.144	0.006013	2025
																	2754 Углеводороды предельные C12-19 /в	0.1029	1310.164	0.060134	2025
																	пересчете на				
																	суммарный органический углерод/				
																	органический углерод/				
012	Дизельгенератор	1	200	Выхлопная труба		1 0035	1	0.1	2.5	0.019635	26.7	1819	1566				0301 Азот (IV) оксид	0.0208	1059.333	0.015033	2025
	Champion																(Азота диоксид) 0304 Азот (II) оксид	0.0271	1380.188	0.019544	2025
																	(Азота оксид)				
																	0328 Углерод (Сажа) 0330 Сера диоксид	0.0035 0.0069	178.253 351.413	0.002506 0.005011	2025 2025
																	(Ангидрид сернистый)				
																	0337 Углерод оксид 1301 Проп-2-ен-1-аль	0.0174 0.0008	886.173 40.744	0.012528 0.000601	2025 2025
																	(Акролеин)		40.744	0.00001	
																	1325 Метаналь	0.0008	40.744	0.000601	2025
																	2754 Углеводороды предельные C12-19 /в	0.0083	422.715	0.006013	2025
																	пересчете на				
																	суммарный органический углерод/				
																	органическии углерод/				
	1			I	·	· ·	· I		·	·	i I	· 1	Аналитич	еская лаборатория І	I	I I	· 	I	ĺ	l	i
013	Вытяжной шкаф	1	8760	Труба вытяжного		1 0036	2	0.2	8.71	0.27361	26.7	1967	1359				0150 Натрий гидроксид	0.000786	2.873	0.02478	2025
	№ 1			устройства													(Натрия гидроокись;				

Column C	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
March Marc	1 2		1	-	·		0	,	10	- 11	12	13	17	13	10	17	10	1)	20			23	24	23	20
March Marc			1	6700																					
No. Control of the control of th			1	8760																		0.0015	5 482	0.047304	2025
Column			1	0700																		0.0015	3.402	0.047304	2023
Company Comp		31_1																				0.0001476	0.539	0.00465	2025
Company Comp																							1 447		2025
Column C																				0322 Кис	пота серная				2025
Column C																				0602 Бен	зоп				2025
Col.																				0621 Me	гилбензол (Толуол)				2025
Part																				0906 Угл	ерол тетрахлорил				2025
1 STO Physical Control 1 STO Phys																				1061 Эти	повый спирт				2025
1 STO Physical Control 1 STO Phys																				1401 Про	опан-2-он (Апетон)		6.984		2025
1																									2025
Disconnection 1 Color																				1000 0 10	Julian Kilonota	0.000270	2.100	0.01012	2020
Disconnection 1 Color	013	Вытяжной зонт	1	8760	Труба вытяжного	1	0037	2	0.2	7.25	0.227766	26.7	1968	1375						0150 Нат	рий гилроксил	0.000524	2.301	0.01652	2025
Minterconductric 1 1 1 1 1 1 1 1 1					vстройства			_					-, -,							(На	трия гилроокись:			010 2 00 2	
Description of the control of the			1	8760	Jerponersu															Нат	тр елкий: Сола				
December			1	0,00																					
Part		3123																				0.001	4.390	0.031536	2025
Column																						0.001	1.570	0.031330	2023
0.000 0.00																						0.0000984	0.432	0.0031	2025
Control Region Cont																									2025
Part Control																								2025	
Marting Mart																									2025
Output																				0621 Me	гилбензол (Толуол)		0.712		2025
1.00 1.00																				0021 WE	enou rernavionui				2025
1.00 1.00																				1061 Эти	порый спирт				2025
1 1 1 1 1 1 1 1 1 1																				1401 Up	ловыи спирт				2025
1 1 1 1 1 1 1 1 1 1																				1555 Vr	ученая кнепота				2025
Histogram approaches																			1333 3 KC	усная кислота	0.000364	1.000	0.0121	2023	
Histogram approaches 012	Di manerio ii rirea di	1	9760	Taylo Di imayerono	1	0029	2	0.2	6.04	0.218027	26.7	1079	1275						0150 Hoz	COLUMN THE THE COLUMN	0.000262	1 202	0.00926	2025	
Harp counts Count	013		1			1	0036	2	0.2	0.94	0.216027	20.7	1976	1373								0.000202	1.202	0.00820	2023
Marie Mari		1152			устроиства																				
MT3.82																									
Minimax Mini																						0.0005	2 202	0.015760	2025
BSG Assensia Composition																					0.0003	2.293	0.015/08	2025	
MT3-82																						0.0000402	0.226	0.00155	2025
MT3-82																									2025
0002																				0316 Co.	іяная кислота				2025
Contract																				0322 Кис	слота серная		0.122		2025
1061 Этиновый спирт 0,00167 7,660 0,03266 2025 1071 1071 1071 1072 1 84.3 Труба вытяжного 0,00067 2,922 0,0208 0,0008 2,025 1071 1072 1 84.3 Труба вытяжного 1 0039 2 0,49 18.12 3,4167 26.7 1957 1346 1072 1 84.3 Труба вытяжного 1 0039 2 0,49 18.12 3,4167 26.7 1957 1346 1073 1074 107																				0602 Бен	зол		1.128		2025
1061 Этиновый спирт 0,00167 7,660 0,03266 2025 1071 1071 1071 1072 1 84.3 Труба вытяжного 0,00067 2,922 0,0208 0,0008 2,025 1071 1072 1 84.3 Труба вытяжного 1 0039 2 0,49 18.12 3,4167 26.7 1957 1346 1072 1 84.3 Труба вытяжного 1 0039 2 0,49 18.12 3,4167 26.7 1957 1346 1073 1074 107																				0621 Me	гилбензол (Толуол)		0.372		2025
101																				0906 Угл	ерод тетрахлорид				2025
1555 Nicychian strenora 0.000192 0.881 0.00605 2025																						0.0016/			2025
Антогранспорт (Боке на 11 м/м) 1016 МТЗ-82																				1401 Hpc	опан-2-он (Ацетон)		2.922		2025
1																				1555 Уко	сусная кислота	0.000192	0.881	0.00605	2025
1		ļ		l	-	l	1 1	I	I				ļ A =			. 11/)		Į		1 1					Ĺ
KAB-4235	1	Í			Ī	1	1 1	1	1	ı	1	1	AE I	зтотрансп	юрт (вокс на	111 M/M)	ı	İ		1 1		Ī	1	ı	1
KAB-4235	016	MT2 92		04.2	T		0020	2	0.40	10 12	2 4167	267	1057	1246						0201	om (III) arrayr=	0.0104406	5 602		2025
(Автобус) Г.А.3-31063 (Валдай) Урал-5557 (ПМ) Г.А.3-30063 (Чайка) (Чайка) 1 100 Станок Поберишеный 1 100 Поберишеный 1 100 Поберишен	016		1			1	0039	2	0.49	18.12	3.416/	26.7	195/	1346								0.0194496	3.093		2025
ПАЗ-331063 1 84.3 3 3 3 3 3 3 3 3 3			1	84.3	устроиства																	0.00216056	0.025		2025
Свядай) Урагь 557 (ПМ) 1 84.3 1 1 1 1 1 1 1 1 1			,	04.2																		0.00316056	0.925		2025
Npar-5557 (ПМ) 1 84.3 1 84.3 1 1 100 1 1 100 1 1 1				84.3																		0.0027200	0.002		2025
ГАЗ-33081			,	04.2																0328 УГЛ	ерод (Сажа)		0.802		2025
(Чайка) 1 100 1			1 .																			0.0018/64	0.549		2025
Сверянльный станок 1 100 2025 (Сверянльный станок 1 100 2004 1 100 2025 (Сверяндыный станок 1 100 2025 (Сверяндыный ста			1	84.3																(AH	гидрид сернистый)	0.00662	20.202		2025
Станок Станок Пересчете нуглерод (предължные С12-19 / В пересчете на суммалосернистый) / В пересчете на суммалосернистый) / В пересчете на суммалосернистый органический углерод (предължные С12-19 / В пересчете на суммалосернистый органический углерод (предължные С12-19 / В пересчете на суммалосернистый органический углерод (предължные С12-19 / В пересчете на суммалосернистый) / В пересчете на суммалосернистый (предължные С12-19 / В пересчете на суммалосернистый) / В пересчете на суммалосернистый) / Органический углерод (предължные С12-19 / В пересчете на суммалосернистый) / В пересчете на суммалосернистый) / В пересчете на суммалосерные С12-19 / В пересчете на суммарсы (предължные суммарсы) / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предължные С12-19 / В пересчете на суммарсы (предържа (предътжа (пре		/		100																			28.282		2025
Пефтеловушка 1 4380 Неорганизованный 1 6001 2 26.7 1849 1400 3 4 2754 Углеводороды 2754 Углеводороды 0.016735 4.898 2025 2			1	100																2/04 Бен	зин (нефтяной,	0.00241	0.705		2025
1		станок																		мал	осернистый)/в				
Предельные С12-19 /в пересчете на сумарный органический углерод/ 2902 Взвешенные частицы РМ10 О.00022 О.064 О.0000792 2025																				пер	есчете на углерод/	0.01.6725	4.000		2025
Пересчете на суммарный органический углерод/ 2902 Взвещенные частицы РМ10 0.00022 0.064 0.000792 2025																						0.016735	4.898		2025
1																				1	' '				
1 2902 Органический углерод/ Взвешенные частицы РМ10 0.00022 0.064 0.0000792 2025																									
1 2902 Взвещенные частицы 0.00022 0.064 0.0000792 2025																									
Nedition 1 1 1 1 1 1 1 1 1																									
Нефтеловушка 006 Нефтеловушка 1 4380 Неорганизованный 1 6001 2 26.7 1849 1400 3 4 2754 Углеводороды 0.0031 0.017 2025																						0.00022	0.064	0.0000792	2025
006 Нефтеловушка 1 4380 Неорганизованный 1 6001 2 26.7 1849 1400 3 4 2754 Углеводороды 0.0031 0.017 2025																				PM	10				
006 Нефтеловушка 1 4380 Неорганизованный 1 6001 2 26.7 1849 1400 3 4 2754 Углеводороды 0.0031 0.017 2025		ļ				- 1	1 1								į l					1]
006 Нефтеловушка 1 4380 Неорганизованный 1 6001 2 26.7 1849 1400 3 4 2754 Углеводороды предельные С12-19 /в 0.0031 0.017 2025	1	1	, ,		İ	1	, ,			1		1	i	Hee	фтеловушка	1		i		1 1		İ	1	1	. 1
006 Нефтеловушка 1 4380 Неорганизованный 1 6001 2 26.7 1849 1400 3 4 2754 Углеводороды предельные С12-19 /в 0.0031 0.017 2025					**			_ [0.000		0.015	
предельные С12-19/в	006	Нефтеловушка	1	4380	Неорганизованный	1	6001	2				26.7	1849	1400	3	4				2754 Угл	еводороды	0.0031		0.017	2025
																				пре	дельные С12-19 /в				

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
		•	3											ги сбора утеч				20		пересчете на суммарный органический углерод/	25	21	20	
005	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.	200								267	1051		1					0222	,	0.0000544		0.0000202	2025
005	Мобильное насосное	1	200	Уплотнения оборудования		1 6004	2				26.7	1851	1579	1	1				0333	Дигидросульфид (Сероводород)	0.0000544		0.0000392	2025
	оборудование №1																			Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.019386		0.13961	2025
005	Мобильное	1	200	Уплотнения	1	1 6005	2				26.7	1851	1577	1	1				0333	Дигидросульфид	0.0000544		0.0000392	2025
	насосное оборудование №2			оборудования															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.019386		0.13961	2025
'	1	1	! I	1	i i		1	! ! ! !	ļ Ī	ı İ	i i	Мест	ный дисп	і етчерский пуі	нкт (МДП)	1 1	i I	į.		ļ Ī		ļ Ī	<u> </u>
007	Насос НД1250/65	1		Уплотнения	1	1 6006	2				26.7	2060	1601	1	1				0333	Дигидросульфид	0.0000544		0.0000392	2025
				оборудования															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.019386		0.13961	2025
	I	l		1			ļ			ļ		ļ	Магист	 ральная насос	: ная		1 1	I				I		l
002	Насос НВН	1	8760	Уплотнения		1 6007	,				26.7	1798	1641	1	1				0333	Дигидросульфид	0.00022		0.002176	2025
002	Taleoc Tibit	1	0700	оборудования		0007					20.7	1770	1041						2754	Дипларскультий (Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.0783		0.775	2025
002	Насос НВН	1	8760	Уплотнения	1	1 6008	2				26.7	1799	1636	1	1				0333	Дигидросульфид	0.00022		0.002176	2025
				оборудования															2754	(Сероводород) Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.0783		0.775	2025
'	1	1	! I	1	i i		1	! ! ! !	ļ Ī	ı İ	i i	1	Me	хмастерская	, ,		1 1	i I	i i		ļ Ī		ļ Ī	<u> </u>
008	Токарно-винторе зный станок Радиально-сверл ильный станок Универсально-то карный станок Отрезной станок Токарно-винторе зный станок Горизонтально-ф резерный станок	1 1 1 1 1 1	100 100 200 100 100		1	1 6009	2	0.8	0.48	0.24	26.7	1837	1575	к сварки и ре	зки				2902	Взвешенные частицы РМ10	0.0478	199.167	0.0176622	2025
000			1500				_		0.20	0.200453	25.7	1011			J.K.11				0122	arc.	0.02111	104 222	0.00220	2025
009	Сварочный пост Передвижной сварочный пост	1 1	750			1 6010	2		0.38	0.298452	26.7	1811	1548							диЖелезо триоксид (Железа оксид) /в пересчете на железо/	0.03111	104.238	0.09338	2025
	Передвижной	1	750	1															0143	Марганец и его	0.0010668	3.574	0.00417	2025

1 2	3	4	5	6	7	8	9	10 11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26
	сварочный пост		1000															соединения /в				
	Пост резки металлов	1	1000															пересчете на марганца (IV) оксид/				
	Передвижной	1	500															0301 Азот (IV) оксид	0.0098088	32.866	0.02562	2025
	пост резки металлов	1	500															(Азота диоксид) 0304 Азот (II) оксид	0.00159393	5.341	0.00416325	2025
	Передвижной пост резки	1	300															(Азота оксид) 0337 Углерод оксид	0.021972	73.620	0.07605	2025
	металлов																	0342 Фтористые	0.0006249	2.094	0.002814	2025
																		газообразные соединения (гидрофторид, кремний тетрафторид) (Фтористые соединения газообразные (фтористый водород, четырехфтористый кремний)) /в пересчете на фтор/ Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) (Фтористые	0.002751	9.218	0.012375	2025
												Камера 1	приема скре	бков				соединения: плохо растворимые неорганические фториды (фторид алюминия, фторид кальция, гексафторалюминат натрия)) /в пересчете на фтор/ 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)	0.001167	3.910	0.00525	2025
						1							приема скре	OKOB		1 1						
014	Камера приема скребков №1	1	240	Устье приемной камеры	1	6011	2			26.7	1804	1959	1	1				2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.002583		0.01416	2025
014	Камера приема скребков №2	1	240	Устье приемной камеры	1	6012	2			26.7	1806	1959	1	1				2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.002583		0.01416	2025
014	Камера пуска скребков №3	1		Устье приемной камеры	1	6013	2			26.7	1808	1959	1	1				2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	0.002583		0.01416	2025
	İ					1	J	l		1	1	Земл 	яные работь 	J						1	1	
015	Выемка грунта	1	1000	Нероганизованный	1	6014	2			26.7	1886	1413	1	1				2908 Пыль неорганическая: 70-20% двуокиси	0.023333		0.084	2025

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 22	23	24	25	26
																			кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)				
015	Планировка территории (перемещение грунта)	1	53.48	Нероганизованный	1	6015	2				26.7	1885	1420	5	5				Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)	0.399		0.0768	2025
015	Склад временного хранения грунта	1	8760	Неорганизованный	1	6016	2				26.7	1881	1472	10	10				2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)	0.075733		0.81623	2025
'	1			1	' 	 		' ' I I				Автотран	спорт (Гај	раж легковых	к автомоб	илей)			· · · · · · · · · · · · · · · · · · ·	1	' 	! 	<u> </u>
017	УАЗ Hunter	1	84.3	Дверной проем	1	6021	3	3.5	0.16	1.539384	26.7	1975	1247						0301 Азот (IV) оксид	0.00007664	0.050		2025
																			(Азота диоксид) 0304 Азот (II) оксид	0.00001245	4 0 008		2025
																			(Азота оксид)				
																			0330 Сера диоксид (Ангидрид сернистый)	0.0000208	0.014		2025
																			0337 Углерод оксид	0.00726	4.716		2025
																			2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/	0.000767	0.498		2025
017	УАЗ Pickup	1	84.3	Дверной проем	1	6022	3	3.5	0.16	1.539384	26.7	1975	1243						0301 Азот (IV) оксид	0.00007664	0.050		2025
																			(Азота диоксид) 0304 Азот (II) оксид	0.000012454	4 0.008		2025
																			(Азота оксид)				
																			0330 Сера диоксид (Ангидрид сернистый)	0.0000208	0.014		2025
																			0337 Углерод оксид	0.00726 0.000767	4.716		2025
																			2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/	0.000787	0.498		2025
017	УАЗ Patriot	1	84.3	Дверной проем	1	6023	3	3.5	0.16	1.575	26.7	1975	1239						0301 Азот (IV) оксид	0.00007664	0.049		2025
																			(Азота диоксид) 0304 Азот (II) оксид	0.000012454	4 0 008		2025
																			(Азота оксид)				
																			0330 Сера диоксид (Ангидрид сернистый)	0.0000208	0.013		2025
																			0337 Углерод оксид	0.00726	4.610		2025
																			1325 Метаналь 2704 Бензин (нефтяной,	0.0000169 0.00075	0.011 0.476		2025 2025
																			2/04 Бензин (нефтянои, малосернистый) /в пересчете на углерод/	0.00073	0.470		2023
017	Mitsubishi L200	1	84.3	Дверной проем	1	6024	3	3.5	0.16	1.575	26.7	1975	1235						0301 Азот (IV) оксид	0.00007664	0.049		2025
																			(Азота диоксид) 0304 Азот (II) оксид	0.000012454	4 0.008		2025
																			(Азота оксид)	0.00001243			2023

1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
				Ü				10			10		10	- 10		10				Сера диоксид	0.0000208	0.013		2025
																			0005	(Ангидрид сернистый)	0.0070	1.510		2025
																			0337	Углерод оксид	0.00726	4.610		2025
017	Toyota Avensis	1	84.3	Дверной проем	1	6025	3	3.5	0.16	1.575	26.7	1975	1231						0301	Азот (IV) оксид	0.00007664	0.049		2025
																			0204	(Азота диоксид)	0.00001245	40.000		2025
																			0304	Азот (II) оксид (Азота оксид)	0.00001245	4 0.008		2025
																			0330	Сера диоксид	0.0000208	0.013		2025
																			0005	(Ангидрид сернистый)	0.0070	1.510		2025
																			0337	Углерод оксид Бензин (нефтяной,	0.00726 0.000767	4.610 0.487		2025 2025
																			2704	малосернистый) /в	0.000707	0.407		2023
																				пересчете на углерод/				
			ļ				l	l		l		_	 Автотранспо	ит (Пожа	риое лепо)		1		l		l	I	I	l
					1 1						Ì	r	Твтотраненс	рт (тюжај	рное депо)		1		1					
018	MA3-6317	1	84.3	Дверной проем	1	6026	3.4	3.4	0.19	1.734	26.7	1975	1300						0301	Азот (IV) оксид	0.00028	0.161		2025
																			0304	(Азота диоксид) Азот (II) оксид	0.0000455	0.026		2025
																			0304	(Азота оксид)	0.0000433	0.020		2023
																			0330	Сера диоксид	0.0000638	0.037		2025
																			0337	(Ангидрид сернистый) Углерод оксид	0.0338	19.493		2025
																			2704	Бензин (нефтяной,	0.00495	2.855		2025
																				малосернистый) /в				
																				пересчете на углерод/				
018	КамАЗ-5662 KD	1	84.3	Дверной проем	1	6027	3.4	3.4	0.19	1.734	26.7	1984	1301						0301	Азот (IV) оксид	0.0012336	0.711		2025
																				(Азота диоксид)				
																			0304	Азот (II) оксид (Азота оксид)	0.00020046	0.116		2025
																			0328	Углерод (Сажа)	0.0000667	0.038		2025
																			0330	Сера диоксид	0.0001817	0.105		2025
																			0337	(Ангидрид сернистый) Углерод оксид	0.00405	2.336		2025
																				Углеводороды	0.000492	0.284		2025
																				предельные С12-19 /в				
																				пересчете на суммарный				
																				органический углерод/				
										ļ				(0										
	İ	1 1		İ	1 1	1		1	ı	İ	İ	ABT	готранспорт 	(Открыта	ая площадка) 		I	İ	I]	1	1	I	1
019	Iveco-AMT	1	84.3	Неорганизованный	1	6028	2				26.7	2021	1373	11	1 23					Азот (IV) оксид	0.491296			2025
	633910 (TC)	1	0.4.2																0204	(Азота диоксид)	0.0700256			2025
	Б-10М (Бульдозер)	1	84.3																0304	Азот (II) оксид (Азота оксид)	0.0798356			2025
	Hitachi ZX160	1	84.3																0328	Углерод (Сажа)	0.12504			2025
	(Экскаватор)	4	04.2																0330	Сера диоксид	0.04509			2025
	КамАЗ-43118 (АК)	1	84.3																0337	(Ангидрид сернистый) Углерод оксид	2.6223			2025
	КамАЗ-5350 (АВ)	1	84.3																2754	Углеводороды	0.36317			2025
	КамАЗ-43118 (ПРМ)	1	84.3																	предельные С12-19 /в				
	КамАЗ-43118	1	84.3																	пересчете на суммарный				
	(АЦН)																			органический углерод/				
	КамАЗ-65222 (Самосвал)	1	84.3																					
	КамАЗ-43118	1	84.3																					
	(ПНУ-2)																							
	КамАЗ-43118 (КМУ)	1	84.3																					
	УРАЛ-5668 (BA)	1	84.3																					
	, , ,																							
	I	1 1		I	1 1			l		ļ			Пич	ейная час	 Th		I	l	I	I	I	1	I	1
								1				ĺ			Ĩ									
020	Выемка грунта	1	2000	Неорганизованный	1	6030	2				26.7			1	1				2908	Пыль неорганическая:	0.023333		0.168	2025
																				70-20% двуокиси кремния (шамот,				
	1	<u> </u>		1	1						l l		ı		1		ı	1	1	1	1	1	1	

1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		18	19	20	21	22	23	24	25	26
																					цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)				
020	Планировочные работы (перемещение грунта)	1	107	Неорганизованный	1	6031	2				26.7				5	5					Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)	0.399		0.1536	2025
020	Склад временного хранения грунта	1	8760	Неорганизованный	1	6032	2				26.7		Me	1(20					Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола кремнезем и др.)	0.151467		1.632461	2025
				<u>.</u>	١.				1						ія 						_				
008	УШМ	2	600	Неорганизованный	1	6033	2				26.7	1814	1545	1		1					Взвешенные частицы PM10	0.004		0.02592	2025
																					Пыль абразивная (Корунд белый; Монокорунд)	0.0026		0.01685	2025
	ı]		Ī	i I	 1 1		· 	i I				Лакокр	асочные ра	аботы	Ī		·	I	· I		i I	1	·	i
021	Краскопульт Краскопульт Краскопульт	1 1 1	75 40 135	Неорганизованный)	1	6034	2				26.7	1960	1640) 1		1					Диметилбензол (Ксилол) (смесь о-, м-, п- изомеров)	0.0844		0.041	2025
	Кисть, валик Кисть, валик	1	75 40	5																0621 1119	Метилбензол (Толуол) Этиловый эфир	0.2308 0.06334		0.0623 0.0308	2025 2025
	Кисть, валик	1	135																	1210	этиленгликоля Уксусной кислоты бутиловый эфир	0.04466		0.01206	2025
																				1401	Пропан-2-он (Ацетон)	0.16014		0.05692	2025
																				1411	Циклогексанон	0.1666		0.024	2025
																				2902	Сольвент нафта Взвешенные частицы PM10	0.3888 0.0792		0.056 0.03253	2025 2025
	l]		1		1 I						 -	Ме	 ехмастерска	l aя			1	1	l			1	1	
008	УШМ	1	100	Дверной проём	1	6035	2	1	0.38	0.298452	26.7									2902	Взвешенные частицы РМ10	0.004	13.402	0.00144	2025
																				2930	Пыль абразивная (Корунд белый; Монокорунд)	0.0026	8.712	0.000936	2025

3. ОБОСНОВАНИЕ ПОЛНОТЫ И ДОСТОВЕРНОСТИ ИСХОДНЫХ ДАННЫХ

Расчет выбросов проводился согласно утвержденной нормативно- методической литературы. В описании проведения расчета по каждому типу производства указаны ссылки на методики расчета выбросов.

Все необходимые исходные данные представлены в Приложении 2.

В соответствии с п. 21 Методики определения нормативов эмиссий в окружающую среду утв. Приказом №379-Ө от 11.12.2013 года при расчете рассеивания приземных концентраций а также при установлении нормативов учтена трансформация окислов азота.

Резервуарный парк

<u>Источник загрязнения NN 0001-0008, Дыхательный клапан</u> <u>Источник выделения NN 001-008, PBC-5000 №№10-17</u>

Нефтепродукт, NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), С=3.14

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т ,

BOZ=190000

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY=2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т,

BVL=190000

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч , VC=500

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=5000

Количество резервуаров данного типа, NR=1

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=5.8

GHR=GHR+GHRI*KNP*NR=0+5.8*0.0029*1=0.01682

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3, V=5000

Сумма Ghri*Knp*Nr, GHR=0.01682

Максимальный из разовых выброс, г/с (6.2.1) , G=C*KPMAX*VC/3600=3.14*0.1* 500/3600=0.0436

Среднегодовые выбросы, τ /год (6.2.2) , $M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR = (1.9*190000+2.6*190000)*0.1*10^(-6)+0.01682=0.1023$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=99.72

Валовый выброс, т/год (5.2.5), М =СІ*М/100=99.72*0.1023/100=0.102

Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.0436/100=0.0435

Примесь: 0333 Сероводород (Дигидросульфид) /528/ Концентрация ЗВ в парах, % масс(Прил. 14), CI=0.28 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.1023/100=0.0002864 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.0436/100=0.000122

Магистральная насосная

<u>Источник загрязнения N0010,Труба в/у (ВЦ14-46 и ВЦ 9-57)</u> Источник выделения NN010-011,НМ 500-800 №1,2

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q=0.07

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год , _Т_=8760

Максимальный из разовых выброс, г/с (8.1), $_G_=Q*NN1/3.6=0.07*1/3.6=0.01944$ Валовый выброс, т/год (8.2), $M=(Q*N1*_T_)/1000=(0.07*1*8760)/1000=0.613$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=99.72

Валовый выброс, т/год (5.2.5), _М_=СI*М/100=99.72*0.613/100=0.611

Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.01944/100 =0.0194

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14), CI=0.28

Валовый выброс, т/год (5.2.5), М = CI*M/100=0.28*0.613/100=0.0017164

Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.01944/100= 0.0000544

Источник загрязнения N 0010,Труба в/у (ВЦ14-46 и ВЦ 9-57) Источник выделения N 012,НМШ 8/25

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Нефть, мазут и жидкости с температурой кипения >300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Примесь: 2735 Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) /723/

Удельный выброс, кг/час(табл. 8.1), Q=0.03

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год, Т =8760

Максимальный из разовых выброс, г/с (8.1), _G_=Q*NN1/3.6=0.03*1/3.6=0.00833

Валовый выброс, т/год (8.2), _M_=(Q*N1*_T_)/1000=(0.03*1*8760)/1000=0.263

<u>Источник загрязнения N0011,Труба вытяжного устройства (ВЦ 9-57)</u> <u>Источник выделения NN013-014,8 НДв-Нм-Т-Е №1,2</u>

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q=0.07

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год , _Т_=8760

Максимальный из разовых выброс, г/с (8.1) , _G_=Q*NN1/3.6=0.07*1/3.6=0.01944 Валовый выброс, т/год (8.2) , _M_=(Q*N1*_T_)/1000=(0.07*1*8760)/1000=0.613

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14) , CI=99.72 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.613/100=0.611 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.01944/100 =0.0194

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14) , CI=0.28 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.613/100=0.0017164 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.01944/100= 0.0000544

<u>Источник загрязнения NN6007,6008,Уплотнения оборудования</u> Источник выделения NN035,036,Насос НВН

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q=0.07

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год , _Т_=8760

Максимальный из разовых выброс, г/с (8.1) , _G_=Q*NN1/3.6=0.07*1/3.6=0.01944 Валовый выброс, т/год (8.2) , _M_=(Q*N1*_T_)/1000=(0.07*1*8760)/1000=0.613

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация 3В в парах, % масс(Прил. 14) , CI=99.72 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.613/100=0.611 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.01944/100 =0.0194

Примесь:0333 Сероводород (Дигидросульфид) /528/

Концентрация 3В в парах, % масс(Прил. 14) , CI=0.28 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.613/100=0.0017164 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.01944/100=0.0000544

Наливная насосная

<u>Источник загрязнения N 0012,Труба вытяжного устройства (ВЦ14-46 №6)</u> Источник выделения NN015,12 НДсН №1,2

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q=0.07

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год , _Т_=8760

Максимальный из разовых выброс, г/с (8.1) , $_G_=Q*NN1/3.6=0.07*1/3.6=0.01944$

Валовый выброс, $\tau/год$ (8.2), M = (Q*N1*T)/1000 = (0.07*1*8760)/1000 = 0.613

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14) , CI=99.72 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.613/100=0.611 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.01944/100 =0.0194

Примесь:0333 Сероводород (Дигидросульфид) /528/

Концентрация 3В в парах, % масс(Прил. 14) , CI=0.28 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.613/100=0.0017164 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.01944/100= 0.0000544

Железнодорожная эстакада

Источник загрязнения N 0013,Устье газоотводной линии Источник выделения N 017,УНЖ 6-100 AC-02 (1 линия)

Нефтепродукт , NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), С=3.14

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т , ВОZ=500000

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY=2.6 Количество закачиваемой в резервуар жидкости в весенне-летний период, т, BVL=500000

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч , VC=900

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=60

Количество резервуаров данного типа, NR=12

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный горизонтальный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=0.22

GHR=GHR+GHRI*KNP*NR=0+0.22*0.0029*12=0.00766

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3, V=720

Сумма Ghri*Knp*Nr, GHR=0.00766

Максимальный из разовых выброс, г/с (6.2.1) , G=C*KPMAX*VC/3600=3.14*0.1* 900/3600=0.0785

Среднегодовые выбросы, τ /год (6.2.2) , $M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR=(1.9*500000+2.6*500000)*0.1*10^(-6)+0.00766=0.23266$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация 3В в парах, % масс(Прил. 14) , CI=99.72 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.23266/100=0.232 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.0785/100 =0.0783

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14) , CI=0.28

Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.23266/100=0.00065 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.0785/100=0.00022

Источник загрязнения N 0013,Устье газоотводной линии Источник выделения N 102,УНЖ 6-100 AC-02 (2 линия)

Нефтепродукт, NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), С=3.14

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т , BOZ=500000

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY=2.6 Количество закачиваемой в резервуар жидкости в весенне-летний период, т , BVL=500000

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч , VC=900

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=60

Количество резервуаров данного типа, NR=12

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный горизонтальный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=0.22

GHR=GHR+GHRI*KNP*NR=0+0.22*0.0029*12=0.00766

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3, V=720

Сумма Ghri*Knp*Nr, GHR=0.00766

Максимальный из разовых выброс, г/с (6.2.1), G=C*KPMAX*VC/3600=3.14*0.1* 900/3600=0.0785

Среднегодовые выбросы, τ /год (6.2.2) , $M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR=(1.9*500000+2.6*500000)*0.1*10^(-6)+0.00766=0.23266$

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14) , СІ=99.72

Валовый выброс, т/год (5.2.5), М =СІ*М/100=99.72*0.23266/100=0.232

Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.0785/100 =0.0783

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация 3B в парах, % масс(Прил. 14), CI=0.28

Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.23266/100=0.00065 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.0785/100=0.00022

Система емкостей сбора утечек

<u>Источник загрязнения N 0015-0016,0021,0022,Дыхательный клапан</u> <u>Источник выделения N 020,022-024,РГС №2,9,6,8 - 5 м3</u>

Нефтепродукт , NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), С=3.14

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т , BOZ=2.175

Средний удельный выброс в весенне-летний период, г/т(Прил. 12) , YYY=2.6 Количество закачиваемой в резервуар жидкости в весенне-летний период, т , BVL=2.175

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч , VC=1

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=5

Количество резервуаров данного типа, NR=1

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=0.066

GHR=GHR+GHRI*KNP*NR=0+0.066*0.0029*1=0.0001914

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3, V=5

Сумма Ghri*Knp*Nr, GHR=0.0001914

Максимальный из разовых выброс, г/с (6.2.1) , G=C*KPMAX*VC/3600=3.14*0.1*1/ 3600=0.0000872

Среднегодовые выбросы, τ /год (6.2.2) , $M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR=(1.9*2.175+2.6*2.175)*0.1*10^(-6)+0.0001914=0.0001924$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=99.72

Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.0001924/100=0.000192 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.0000872/100=0.000087

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14), CI=0.28

Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.0001924/100=0.000000539 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.0000872/100=0.000000244

Источник загрязнения N 0014,Дыхательный клапан Источник выделения N 018,РГС №1 - 8 м3

Нефтепродукт, NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), С=3.14

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т , BOZ=2.175

Средний удельный выброс в весенне-летний период, г/т(Прил. 12) , YYY=2.6 Количество закачиваемой в резервуар жидкости в весенне-летний период, т , BVL=2.175

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч . VC=1

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=8

Количество резервуаров данного типа, NR=1

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=0.066

GHR=GHR+GHRI*KNP*NR=0+0.066*0.0029*1=0.0001914

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3, V=8

Сумма Ghri*Knp*Nr, GHR=0.0001914

Максимальный из разовых выброс, г/с (6.2.1) , G=C*KPMAX*VC/3600=3.14*0.1*1/ 3600=0.0000872

Среднегодовые выбросы, т/год (6.2.2) , M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR = $(1.9*2.175+2.6*2.175)*0.1*10^(-6)+0.0001914=0.0001924$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14), CI=99.72 Валовый выброс, т/год (5.2.5), _M_=CI*M/100=99.72*0.0001924/100=0.000192 Максимальный из разовых выброс, г/с (5.2.4), _G_=CI*G/100=99.72*0.0000872/ 100=0.000087

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация 3В в парах, % масс(Прил. 14) , CI=0.28 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.0001924/100=0.00000539 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.0000872/ 100=0.000000244

Источник загрязнения NN0017,0018,Дыхательный клапан Источник выделения NN029,095,РГС №10,11-25 м3

Нефтепродукт , NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), C=3.14 Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9 Количество закачиваемой в резервуар жидкости в осенне-зимний период, т, BOZ=10.875

Средний удельный выброс в весенне-летний период, г/т(Прил. 12) , YYY=2.6 Количество закачиваемой в резервуар жидкости в весенне-летний период, т , BVL=10.875

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч , VC=1

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=25

Количество резервуаров данного типа, NR=1

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=0.066

GHR=GHR+GHRI*KNP*NR=0+0.066*0.0029*1=0.0001914

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3 , V=25

Сумма Ghri*Knp*Nr, GHR=0.0001914

Максимальный из разовых выброс, г/с (6.2.1) , G=C*KPMAX*VC/3600=3.14*0.1*1/3600=0.0000872

Среднегодовые выбросы, τ /год (6.2.2) , $M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR = (1.9*10.875+2.6*10.875)*0.1*10^(-6)+0.0001914=0.0001963$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=99.72

Валовый выброс, т/год (5.2.5), _M_=CI*M/100=99.72*0.0001963/100=0.0001958 Максимальный из разовых выброс, г/с (5.2.4), _G_=CI*G/100=99.72*0.0000872/100=0.000087

Примесь:0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14), CI=0.28

Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.0001963/100=0.00000055 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.0000872/100=0.000000244

<u>Источник загрязнения NN6004-6005,Уплотнения оборудования</u> <u>Источник выделения NN032-033,Мобильное насосное оборудование №1,2 (либо бензовоз АКН-10)</u>

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q=0.07

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год, Т = 200

Максимальный из разовых выброс, г/с (8.1), _G_=Q*NN1/3.6=0.07*1/3.6=0.01944

Валовый выброс, т/год (8.2), _M_=(Q*N1*_T_)/1000=(0.07*1*200)/1000=0.014

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14) , CI=99.72 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.014/100=0.13961 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.01944/100

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=0.28

Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.014/100=0.0000392

Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.01944/100= 0.0000544

=0.019386

Местный диспетчерский пункт (МДП)

<u>Источник загрязнения N 6006,Уплотнения оборудования</u> Источник выделения N 034,Насос НД1250-65

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q=0.07

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год , _T_=8760 Максимальный из разовых выброс, г/с (8.1) , G =Q*NN1/3.6=0.07*1/3.6=0.01944

Валовый выброс, $\tau/год$ (8.2), $M = (Q*N1*_T)/1000 = (0.07*1*8760)/1000 = 0.613$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация 3В в парах, % масс(Прил. 14) , CI=99.72 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.613/100=0.611 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=99.72*0.01944/100 =0.0194

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация 3В в парах, % масс(Прил. 14) , CI=0.28 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.613/100=0.0017164 Максимальный из разовых выброс, г/с (5.2.4) , _G_=CI*G/100=0.28*0.01944/100= 0.0000544

Аккумуляторный участок

Источник загрязнения N 0027, Труба вытяжного устройства Источник выделения N 050, Зарядное устройство

Операция тех.процесса: Зарядка аккумуляторных батарей

Тип электролита: Серная кислота

Номинальная емкость аккумуляторных батарей данного типа, А.ч. , QN=190

Количество проведенных зарядов батарей соответствующей емкости за год, AN=100

Максимальное количество вышеуказанных батарей, присоединяемых

одновременно ко всем зарядным устройствам, N1=2

Цикл проведения зарядки в день, ч, М=10

Примесь:0322 Серная кислота /527/

Удельное выделение 3B, мг/а.ч., G=1

Валовый выброс, т/год (ф-ла 3.7.1) , _M_=0.9*G*QN*AN/10^9=0.9*1*190*100/10^ 9=0.0000171

Максимальный разовый выброс, г/с (ф-ла 3.7.3), _G_= $0.9*G*QN*N1*10^-3/3600/M=0.9*1*190*2*10^-3/3600/10=0.0000095$

Расчет выбросов от сварочных и газорезочных работ

<u>Источник загрязнения N 6010,Дверной проем</u> Источник выделения N 044,Сварочный пост

РАСЧЕТ выбросов 3B от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, кг/год, В=1500

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час, ВМАХ=1

Удельное выделение сварочного аэрозоля, (табл. 1, 3), GIS=16.31 в том числе:

Примесь:0123 Железо (II, III) оксиды /в пересчете на железо/ /277/

Удельное выделение загрязняющих веществ, (табл. 1, 3) , GIS=10.69 Валовый выброс, т/год (5.1) , _M_=GIS*B/10^6=10.69*1500/10^6=0.01604 Максимальный из разовых выброс, г/с (5.2) , _G_=GIS*BMAX/3600=10.69*1/3600=0.00297

Примесь:0143 Марганец и его соединения /в пересчете на марганца (IV) оксид

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=0.92 Валовый выброс, т/год (5.1), _M_=GIS*B/10^6=0.92*1500/10^6=0.00138 Максимальный из разовых выброс, г/с (5.2), _G_=GIS*BMAX/3600=0.92*1/3600=0.0002556

Примесь:2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, дом-ый шлак, песок, клинкер /503/

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=1.4 Валовый выброс, т/год (5.1), _M_=GIS*B/10^6=1.4*1500/10^6=0.0021 Максимальный из разовых выброс, г/с (5.2), _G_=GIS*BMAX/3600=1.4*1/3600=0.000389

Примесь:0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) /625/

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=3.3 Валовый выброс, т/год (5.1), _M_=GIS*B/10^6=3.3*1500/10^6=0.00495 Максимальный из разовых выброс, г/с (5.2), _G_=GIS*BMAX/3600=3.3*1/3600=0.000917 Газы:

Примесь:0342 Фтористые газообразные соединения (в пересчете на фтор) /627/

Удельное выделение загрязняющих веществ, (табл. 1, 3) , GIS=0.75 Валовый выброс, т/год (5.1) , $_M_=GIS*B/10^6=0.75*1500/10^6=0.001125$ Максимальный из разовых выброс, г/с (5.2) , G=GIS*BMAX/3600=0.75*1/3600=0.0002083

Примесь:0301 Азот (IV) оксид /4/

Удельное выделение загрязняющих веществ, (табл. 1, 3) , GIS=1.5 Валовый выброс, т/год (5.1) , _M_=GIS*B/10^6=1.5*1500/10^6=0.00225 Максимальный из разовых выброс, г/с (5.2) , _G_=GIS*BMAX/3600=1.5*1/3600=0.000417

Примесь:0337 Углерод оксид /594/

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=13.3 Валовый выброс, т/год (5.1), _M_=GIS*B/10^6=13.3*1500/10^6=0.01995

Максимальный из разовых выброс, г/с (5.2), _G_=GIS*BMAX/3600=13.3*1/3600=0.003694

Источник загрязнения N 6010,Дверной проем

<u>Источник выделения NN045-046,Передвижной сварочный пост</u>

РАСЧЕТ выбросов 3В от сварки металлов

Вид сварки: Ручная дуговая сварка сталей штучными электродами

Электрод (сварочный материал): УОНИ-13/45

Расход сварочных материалов, кг/год, В=750

Фактический максимальный расход сварочных материалов,

с учетом дискретности работы оборудования, кг/час , ВМАХ=1

Удельное выделение сварочного аэрозоля, (табл. 1, 3) , GIS=16.31

в том числе:

Примесь:0123 Железо (II, III) оксиды /в пересчете на железо/ /277/

Удельное выделение загрязняющих веществ,

(табл. 1, 3), GIS=10.69

Валовый выброс, т/год (5.1), _M_=GIS*B/10^6=10.69*750/10^6=0.00802

Максимальный из разовых выброс, г/с (5.2),

G=GIS*BMAX/3600=10.69*1/3600=0.00297

Примесь:0143 Марганец и его соединения /в пересчете на марганца (IV) оксид

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=0.92 Валовый выброс, τ /год (5.1), M =GIS*B/ 10^6 = 0.92^* 750/ 10^6 =0.00069

Максимальный из разовых выброс, г/с (5.2),

G =GIS*BMAX/3600=0.92*1/3600=0.0002556

Примесь: 2908 Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, дом-ый шлак, песок, клинкер /503/

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=1.4

Валовый выброс, т/год (5.1), _M_=GIS*B/10^6=1.4*750/10^6=0.00105

Максимальный из разовых выброс, г/с (5.2), _G_=GIS*BMAX/3600=1.4*1/3600=0.000389

Примесь: 0344 Фториды неорганические плохо растворимые - (алюминия фторид, кальция фторид, натрия гексафторалюминат) /625/

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=3.3

Валовый выброс, т/год (5.1), М =GIS*B/10^6=3.3*750/10^6=0.002475

Максимальный из разовых выброс, г/с (5.2) , _G_=GIS*BMAX/3600=3.3*1/3600=0.000917 Газы:

Примесь:0342 Фтористые газообразные соединения (в пересчете на фтор) /627/

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=0.75

Валовый выброс, т/год (5.1), М =GIS*B/10^6=0.75*750/10^6=0.000563

Максимальный из разовых выброс, г/с (5.2),

G =GIS*BMAX/3600=0.75*1/3600=0.0002083

Примесь:0301 Азот (IV) оксид /4/

Удельное выделение загрязняющих веществ, (табл. 1, 3), GIS=1.5

Валовый выброс, т/год (5.1), М =GIS*B/10^6=1.5*750/10^6=0.001125

Максимальный из разовых выброс, г/с (5.2), G =GIS*BMAX/3600=1.5*1/3600=0.000417

Примесь:0337 Углерод оксид /594/

Удельное выделение загрязняющих веществ, (табл. 1, 3) , GIS=13.3 Валовый выброс, т/год (5.1) , $_{\rm M}_{\rm =GIS^*B/10^6=13.3^*750/10^6=0.00998}$ Максимальный из разовых выброс, г/с (5.2) , G =GIS*BMAX/3600=13.3*1/3600=0.003694

<u>Источник загрязнения N 6010,Дверной проем</u> <u>Источник выделения N 047,Пост резки металлов</u>

РАСЧЕТ выбросов 3В от резки металлов

Вид резки: Газовая

Разрезаемый материал: Сталь углеродистая Толщина материала, мм (табл. 4), L=10 Способ расчета выбросов: по длине реза

Максимальная фактическая производительность резки, м/час , ВМАХ=6

Длина реза в год, м , В=6000

Удельное выделение сварочного аэрозоля, г/м реза (табл. 4), GM=4.5 в том числе:

Примесь:0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/

Удельное выделение, г/м реза (табл. 4) , GM=0.06

Валовый выброс 3B, т/год (5.1) , _M_=GM*B/10^6=0.06*6000/10^6=0.00036 Максимальный разовый выброс 3B, г/с (5.2) , G =GM*BMAX/3600=0.06*6/3600=0.0001

Примесь:0123 Железо (II, III) оксиды /в пересчете на железо/ /277/

Удельное выделение, г/м реза (табл. 4), GM=4.44

Валовый выброс 3B, т/год (5.1), _M_=GM*B/10^6=4.44*6000/10^6=0.02664 Максимальный разовый выброс 3B, г/с (5.2) , _G_=GM*BMAX/3600=4.44*6/3600=0.0074 Газы:

Примесь:0337 Углерод оксид /594/

Удельное выделение, г/м реза (табл. 4) , GM=2.18 Валовый выброс ЗВ, т/год (5.1) , _M_=GM*B/10^6=2.18*6000/10^6=0.01308 Максимальный разовый выброс ЗВ, г/с (5.2) , G =GM*BMAX/3600=2.18*6/3600=0.00363

Примесь:0301 Азот (IV) оксид /4/

Удельное выделение, г/м реза (табл. 4) , GM=2.2 Валовый выброс 3В, т/год (5.1) , _M_=GM*B/10^6=2.2*6000/10^6=0.0132 Максимальный разовый выброс 3В, г/с (5.2) , G =GM*BMAX/3600=2.2*6/3600=0.00367

Источник загрязнения N 6010, Дверной проем

<u>Источник выделения NN048,049,Передвижной пост резки металлов</u>

РАСЧЕТ выбросов 3В от резки металлов

Вид резки: Газовая

Разрезаемый материал: Сталь углеродистая Толщина материала, мм (табл. 4), L=10 Способ расчета выбросов: по длине реза

Максимальная фактическая производительность резки, м/час, ВМАХ=6

Длина реза в год, м , В=3000

Удельное выделение сварочного аэрозоля, г/м реза (табл. 4), GM=4.5 в том числе:

Примесь:0143 Марганец и его соединения /в пересчете на марганца (IV) оксид/

Удельное выделение, г/м реза (табл. 4), GM=0.06

Валовый выброс 3В, т/год (5.1), _M_=GM*B/10^6=0.06*3000/10^6=0.00018

Максимальный разовый выброс 3B, г/с (5.2), _G_=GM*BMAX/3600=0.06*6/3600=0.0001

Примесь:0123 Железо (II, III) оксиды /в пересчете на железо/ /277/

Удельное выделение, г/м реза (табл. 4), GM=4.44

Валовый выброс 3В, т/год (5.1), _M_=GM*B/10^6=4.44*3000/10^6=0.01332

Максимальный разовый выброс 3B, г/с (5.2) , _G_=GM*BMAX/3600=4.44*6/3600=0.0074 Газы:

Примесь:0337 Углерод оксид /594/

Удельное выделение, г/м реза (табл. 4) , GM=2.18 Валовый выброс 3В, т/год (5.1) , _M_=GM*B/10^6=2.18*3000/10^6=0.00654 Максимальный разовый выброс 3В, г/с (5.2) , G =GM*BMAX/3600=2.18*6/3600=0.00363

Примесь:0301 Азот (IV) оксид /4/

Удельное выделение, г/м реза (табл. 4), GM=2.2 Валовый выброс 3В, т/год (5.1), _M_=GM*B/10^6=2.2*3000/10^6=0.0066 Максимальный разовый выброс 3В, г/с (5.2), G =GM*BMAX/3600=2.2*6/3600=0.00367

Механическая мастерская

<u>Источник загрязнения N 0026, Труба вытяжного устройства</u> Источник выделения N 037, Обдирочно-шлифовальный станок

Технология обработки: Механическая обработка металлов

Местный отсос пыли проводится Тип расчета: без охлаждения

Вид оборудования: Заточные станки, с диаметром шлифовального круга - 350 мм Фактический годовой фонд времени работы одной единицы оборудования, ч/год , T =100

Число станков данного типа, шт., _KOLIV_=1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь:2930 Пыль абразивная /1046/

Удельный выброс, г/с (табл. 1), GV=0.016

Коэффициент эффективности местных отсосов, KN=0.9

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.9*0.016* 100*1/10^6=0.00518

Максимальный из разовых выброс, г/с (2), G =KN*GV*NS1=0.9*0.016*1=0.0144

Примесь: 2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 1), GV=0.024

Коэффициент эффективности местных отсосов, KN=0.9

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.9*0.024* 100*1/10^6=0.00778

Максимальный из разовых выброс, г/с (2), _G_=KN*GV*NS1=0.9*0.024*1=0.0216

<u>Источник загрязнения N 6009, Дверной проем</u>

<u>Источник выделения N 038, Токарно-винторезный станок</u>

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей

Вид станков: Токарно-винторезные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , T =100

Число станков данного типа, шт., KOLIV =1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь:2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 4), GV=0.0056

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.0056 *100*1/10^6=0.0004

Максимальный из разовых выброс, г/с (2), _G_=KN*GV*NS1=0.2*0.0056*1=0.00112

Источник загрязнения N 6009, Дверной проем

Источник выделения N 039,Радиально-сверлильный станок

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей

Вид станков: Сверлильные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , T =100

Число станков данного типа, шт. , _KOLIV_=1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь: 2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 4), GV=0.0011

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.0011 *100*1/10^6=0.0000792

Максимальный из разовых выброс, г/с (2), _G_=KN*GV*NS1=0.2*0.0011*1=0.00022

<u>Источник загрязнения N 6009, Дверной проем</u>

<u>Источник выделения N 040,Универсально-токарный станок</u>

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей Вид станков: Токарные станки и автоматы малых и средних размеров

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , T =200

Число станков данного типа, шт. , _KOLIV_=1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь:2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 4), GV=0.0063

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.0063 *200*1/10^6=0.000907

Максимальный из разовых выброс, г/с (2), _G_=KN*GV*NS1=0.2*0.0063*1=0.00126

Источник загрязнения N 6009, Дверной проем

<u>Источник выделения N 041,Отрезной станок</u>

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Обработка деталей из стали: Отрезные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , T =100

Число станков данного типа, шт. , _KOLIV_=1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь:2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 1), GV=0.203

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.203* 100*1/10^6=0.01462

Максимальный из разовых выброс, г/с (2) , _G_=KN*GV*NS1=0.2*0.203*1=0.0406

Источник загрязнения N 6009, Дверной проем

<u>Источник выделения N 042, Токарно-винторезный станок</u>

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей Вид станков: Токарные станки и автоматы малых и средних размеров

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , _T_=100

Число станков данного типа, шт., KOLIV =1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь:2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 4), GV=0.0063

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.0063 *100*1/10^6=0.000454

Максимальный из разовых выброс, г/с (2), G =KN*GV*NS1=0.2*0.0063*1=0.00126

Источник загрязнения N 6009, Дверной проем

<u>Источник выделения N 043, Горизонтально-фрезерный станок</u>

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей

Вид станков: Горизонтально-фрезерные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , _T_=100

Число станков данного типа, шт., KOLIV =1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь: 2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 4), GV=0.0167

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.0167 *100*1/10^6=0.001202

Максимальный из разовых выброс, г/с (2) , _G_=KN*GV*NS1=0.2*0.0167*1=0.00334

Источник загрязнения N 6033, Неорганизованный

Источник выделения N 095,УШМ

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Круглошлифовальные станки, с диаметром шлифовального

круга - 150 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , __T_=600

Число станков данного типа, шт., KOLIV =2

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь: 2930 Пыль абразивная /1046/

Удельный выброс, г/с (табл. 1), GV=0.013

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.013* 600*2/10^6=0.01123

Максимальный из разовых выброс, г/с (2), _G_=KN*GV*NS1=0.2*0.013*1=0.0026

Примесь: 2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 1), GV=0.02

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.02* 600*2/10^6=0.01728

Максимальный из разовых выброс, г/с (2), G =KN*GV*NS1=0.2*0.02*1=0.004

Источник загрязнения N 6035, Дверной проём Источник выделения N 102,УШМ

Технология обработки: Механическая обработка металлов

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Вид оборудования: Круглошлифовальные станки, с диаметром шлифовального

круга - 150 мм

Фактический годовой фонд времени работы одной единицы оборудования, ч/год , T =100

Число станков данного типа, шт., KOLIV =1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь: 2930 Пыль абразивная (Корунд белый; Монокорунд)

Удельный выброс, г/с (табл. 1), GV=0.013

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.013* 100*1/10^6=0.000936

Максимальный из разовых выброс, г/с (2), G =KN*GV*NS1=0.2*0.013*1=0.0026

Примесь: 2902 Взвешенные частицы РМ10

Удельный выброс, г/с (табл. 1), GV=0.02

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1) , _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.02* 100*1/10^6=0.00144

Максимальный из разовых выброс, г/с (2), _G_=KN*GV*NS1=0.2*0.02*1=0.004

Аналитическая лаборатория

Расчёт проведён согласно данных Приказа №100 от 18.04.2008 г Приложение №9 «Методика расчёта выбросов 3В в атмосферу от объектов 4 категории».

<u>Источник загрязнения NN0036-0038, Труба вытяжного устройства</u> <u>Источник выделения NN059-061,Вытяжной шкаф, вытяжной зонт</u>

Оборудование: Химическая лаборатория.

Шкаф вытяжной химический типа ШВ-4.2 (ШВ-3,3)

Чистое время работы одного шкафа, час/год , $_{-}$ T_{-} = 8760

Общее количество таких шкафов, шт., **KOLIV** = 1

Количество одновременно работающих шкафов, шт. ,К1 = 1

Примесь: 0150 Натрий гидроксид+Калий гидроксид

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.000262$

Максимальный разовый выброс, г/с , G = Q * K1 = 0.000262 * 1 = 0.000262

Максимальный разовый выброс, г/с ,_ $G_{-} = 0.000262$

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^A 6=$

 $0.000262*8760*3600*1/10^{\pi} 6 = 0.00826$

Примесь: 0302 Азотная кислота

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.0005$

Максимальный разовый выброс, г/с , G = Q * K1 = 0.0005 * 1 = 0.0005

Максимальный разовый выброс, г/с ,_ $G_{-} = 0.0005$

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^A 6=0.0005*8760*3600*1/10^B 6=0.015768$

Примесь: 0303 Аммиак

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.0000492$

Максимальный разовый выброс, г/с, G = Q * K1 = 0.0000492 * 1 = 0.0000492

Максимальный разовый выброс, г/с ,_**G**_ = 0.0000492

Валовый выброс, т/год , $_M_ = Q *_T_ * 3600 *_KOLIV_/10 ^A 6 = 0.0000492 * 8760 * 3600 * 1 / 10 ^B 6 = 0.00155$

Примесь: 0316 Соляная кислота

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.000132$

Максимальный разовый выброс, г/с , $\mathbf{G} = \mathbf{Q} * \mathbf{K1} = 0.000132 * 1 = 0.000132$

Максимальный разовый выброс, г/с ,_**G**_ = 0.000132

Валовый выброс, т/год , _*M*_ = Q *_ *T*_ * *3600* *_*KOLIV_/10* ^A *6* = 0.000132 * 8760 * 3600 * 1 / 10 ^{$^{\rm T}$} 6 = 0.00416

Примесь: 0322 Серная кислота

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.0000267$

Максимальный разовый выброс, г/с , G = Q * K1 = 0.0000267 * 1 = 0.0000267

Максимальный разовый выброс, г/с ,_ \mathbf{G} _ = 0.0000267

Валовый выброс, т/год , $_M_=Q*_T_*3600*_KOLIV_/10^A 6=0.0000267*8760*3600*1 / 10^B 6=0.00084$

Примесь: 0602 Бензол (64)

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.000246$

Максимальный разовый выброс, г/с , G = Q * K1 = 0.000246 * 1 = 0.000246

Максимальный разовый выброс, г/с ,_ G_- = 0.000246

Валовый выброс, т/год , _*M*_ = Q *_ *T*_ * *3600* *_*KOLIV_/10* ^A *6* = 0.000246 * 8760 * 3600 * 1 / 10 ^{$^{\rm n}$} 6 = 0.00775

Примесь: 0621 Толуол

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.0000811$ Максимальный разовый выброс, г/с , $\mathbf{G} = \mathbf{Q} * \mathbf{K1} = 0.0000811 * 1 = 0.0000811$ Максимальный разовый выброс, г/с , $\mathbf{G}_{-} = 0.0000811$ Валовый выброс, т/год , $_{-}\mathbf{M}_{-} = \mathbf{Q} *_{-}T_{-} * 3600 *_{-}KOLIV_{-}/10^{-} * 6 = 0.0000811 * 8760 * 3600 * 1 / 10^{-} * 6 = 0.00255$

Примесь: 0906 Тетрахлорметан

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.000493$ Максимальный разовый выброс, г/с , $\mathbf{G} = \mathbf{Q} * \mathbf{K1} = 0.000493 * 1 = 0.000493$ Максимальный разовый выброс, г/с ,_ $\mathbf{G}_{-} = 0.000493$ Валовый выброс, т/год , _ $\mathbf{M}_{-} = \mathbf{Q} *_{-} T_{-} * 3600 *_{-} \mathbf{KOLIV}_{-}/10^{-A} 6 = 0.000493 * 8760 * 3600 * 1 / 10 <math>^{-}$ 6 = 0.01554

Примесь: 1061 Этанол

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.00167$ Максимальный разовый выброс, г/с , $\mathbf{G} = \mathbf{Q} * \mathbf{K1} = 0.00167 * 1 = 0.00167$ Максимальный разовый выброс, г/с ,_ $\mathbf{G}_{-} = 0.00167$ Валовый выброс, т/год , _ $\mathbf{M}_{-} = \mathbf{Q} *_{-} T_{-} * 3600 *_{-} \mathbf{KOLIV}_{-}/10^{-} 6 = 0.00167 * 8760 * 3600 * 1 / 10 <math>^{-}$ 6 = 0.05266

Примесь: 1401 Ацетон

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.000637$ Максимальный разовый выброс, г/с , $\mathbf{G} = \mathbf{Q} * \mathbf{K1} = 0.000637 * 1 = 0.000637$ Максимальный разовый выброс, г/с ,_ $\mathbf{G}_{-} = 0.000637$ Валовый выброс, т/год , _ $\mathbf{M}_{-} = \mathbf{Q} *_{-} T_{-} * 3600 *_{-} \mathbf{KOLIV}_{-}/10 * 6 = 0.000637 * 8760 * 3600 * 1 / 10 <math>^{\mathrm{n}}$ 6 = 0.02008

Примесь: 1555 Уксусная кислота

Удельный выброс, г/с (табл. 13), $\mathbf{Q} = 0.000192$ Максимальный разовый выброс, г/с , $\mathbf{G} = \mathbf{Q} * \mathbf{K1} = 0.000192 * 1 = 0.000192$ Максимальный разовый выброс, г/с ,_ $\mathbf{G}_{-} = 0.000192$ Валовый выброс, т/год , _ $\mathbf{M}_{-} = \mathbf{Q} *_{-} T_{-} * 3600 *_{-} \mathbf{KOLIV}_{-}/10 * 6 = 0.000192 * 8760 * 3600 * 1 / 10 <math>^{\mathrm{n}}$ 6 = 0.00605

Камера приема и пуска скребков

Источник загрязнения NN6011-6013,Устье приемной камеры Источник выделения NN062-064,Камера приёма и пуска скребков

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. и.5.3. Методика по расчету норм естественной убыли углеводородов в атмосферу на предприятиях нефтепродуктов

Площадь испарения, м2 , $F = X2_ * Y2_ = 0*0 = 1$

Доля закрытой поверхности, %, **XI** = 0

Коэффициент снижения выбросов(табл. 5.5), К1 = 1

Скорость ветра на высоте 20 см над поверхностью, м/с , V=0.7

Дневная температура наружного воздуха наиболее жаркого месяца, град.С, **TL** = 26.7

Ночная температура наружного воздуха наиболее жаркого месяца, град.С , *TN*= 12.5

Среднегодовая температура воздуха, град. С , TSR = 1.4

Количество дневных часов в сутках наиб, жаркого месяца, **CL** = 16

Количество ночных часов в сутках наиб, жаркого месяца, CN = 24-CL = 24-16 = 8

Номер таблицы, содержащий состав нефтепродукта по фракциям, *NT0* = 16

Фракция: н-Декан

Средняя молекулярная масса, *МI* = 142

Содержание фракции по массе, %, СІ = 6.56

По таблице 5.19 и формуле (5.49) определяем:

Давление насыщенных паров фракции при среднегодовой температуре, Па, **PSR** = 25.95 Давление насыщенных паров фракции при летней (дневной) температуре, Па, **PL** = 171.8 Давление насыщенных паров фракции при летней (ночной) температуре, Па, **PN** = 66.8

Фракция: Нафталин

Средняя молекулярная масса, *МІ* = 128

Содержание фракции по массе, **%** ,**С1=** 12.52

По таблице 5.19 и формуле (5.49) определяем:

Давление насыщенных паров фракции при среднегодовой температуре, Па , **PSR** = 0.58 Давление насыщенных паров фракции при летней (дневной) температуре, Па , **PL** = 12.72 Давление насыщенных паров фракции при летней (ночной) температуре, Па, **PN** = 2.87

Фракция: Антрацен

Средняя молекулярная масса, МІ = 178

Содержание фракции по массе, **%**, **С1** = 35.59

По таблице 5.19 и формуле (5.49) определяем:

Давление насыщенных паров фракции при среднегодовой температуре, Па , PSR = 0.00003 Давление насыщенных паров фракции при летней (дневной) температуре, Па , PL = 0.001 Давление насыщенных паров фракции при летней (ночной) температуре, Па , PN = 0.00017

Фракция: Остаток

Средняя молекулярная масса, *MI* - 200 Содержание фракции по массе, % , CI = 45.33 Повторяющаяся часть формулы (5.48), K2 = 0.001 * (40.35 + 30.75 * V) = 0.001 * (40.35 + 30.75 * 0.7) = 0.0619

Среднее кол-во испаряющихся углеводородов, г/м2*ч (ф-ла 5.48), **QSR - QSR *K1 *K2-** 26.1 * 1 * 0.0619 = 1.616

Ср. знач. кол-ва углеводородов, испар. с м2 поверх, в летний период (ф-ла 5.51), **QMAX** = K1 * K2 * (QL * CL + QN * CN) / 24 = 1 * 0.0619 * (190.3 * 16 + 70 * 8)/24 = 9.3

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на С/(592)

Максимальный разовый выброс, г/с (ф-ла 5.52) ,_6_ = **QMAX** * **F/3600** = 9.3 * 1 / 3600 = 0.002583

Валовый выброс, т/год (ф-ла 5.50), $\mathbf{M} = 0.00876 * \mathbf{QSR} * \mathbf{F} = 0.00876 * 1.616 * 1 = 0.01416$

Нефтеловушка

Источник загрязнения N 6001, Неорганизованный Источник выделения N 028, Нефтеловушка

Список литературы:

"Сборник методик по расчету выбросов вредных в атмосферу различными производствами". Алматы, КазЭКОЭКСП, 1996 г. и.5.3. Методика по расчету норм естественной убыли углеводородов в атмосферу на предприятиях нефтепродуктов

Расчет по пункту 5.3.5. От открытых поверхностей объектов очистных сооружений

Код ЗВ, выделяемого с поверхности очистного сооружения, У = 2754

Площадь испарения, м2 , $\mathbf{F} = \mathbf{X2} + \mathbf{Y2} = 0 \cdot 0 = 12$

Доля закрытой поверхности, %, XI = 100

Коэффициент снижения выбросов(табл. 5.5), К1 - 0.1

Скорость ветра на высоте 20 см над поверхностью, м/с, У= 0.7

Дневная температура наружного воздуха наиболее жаркого месяца, град.С, **TL=**26.7

Ночная температура наружного воздуха наиболее жаркого месяца, град. С , **TN=** 12.5

Среднегодовая температура воздуха, град. С , **TSR =** 1.4

Количество дневных часов в сутках наиб, жаркого месяца, **CL** = 16

Количество ночных часов в сутках наиб, жаркого месяца, **CN** = **24-CL** = 24-16 = 8

Номер таблицы, содержащий состав нефтепродукта по фракциям, **NT0** = 16

Фракция: н-Декан

Средняя молекулярная масса, **MI** =142

Содержание фракции по массе. % . СІ = 6.56

По таблице 5.19 и формуле (5.49) определяем:

Давление насыщенных паров фракции при среднегодовой температуре, Па, **PSR =** 25.95

Давление насыщенных паров фракции при летней (дневной) температуре, Па, **PL** = 171.8

Давление насыщенных паров фракции при летней (ночной) температуре, Па, **PN** = 66.8

Фракция: Нафталин

Средняя молекулярная масса, **MI** = 128 C

одержание фракции по массе, %, СІ = 12.52

По таблице 5.19 и формуле (5.49) определяем:

Давление насыщенных паров фракции при среднегодовой температуре, Па, **PSR** = 0.58 Давление насыщенных паров фракции при летней (дневной) температуре, Па, **PL** = 12.72

Давление насыщенных паров фракции при летней (ночной) температуре, Па, **PN** = 2.87

Фракция: Антрацен

Средняя молекулярная масса, **MI** =178

Содержание фракции по массе, %, С/ = 35.59

По таблице 5.19 и формуле (5.49) определяем:

Давление насыщенных паров фракции при среднегодовой температуре, Па, **PSR** =0.00003

Давление насыщенных паров фракции при летней (дневной) температуре, Πa , PL = 0.001

Давление насыщенных паров фракции при летней (ночной) температуре, Па, **PN** =0.00017

Фракция: Остаток

Средняя молекулярная масса, МІ = 200

Содержание фракции по массе, %, CI = 45.33

Повторяющаяся часть формулы (5.48), K2 = 0.001 * (40.35 + 30.75 * V) = 0.001 * (40.35 + 30.75 * V)30.75 * 0.7) = 0.0619

Среднее кол-во испаряющихся углеводородов, r/m2*4 (ф-ла 5.48), **QSR** = **QSR** * **K1** * **K2** = 26.1 * 0.1 * 0.0619 = 0.1616

Ср. знач. кол-ва углеводородов, испар. с м2 поверх, в летний период (ф-ла 5.51), QMAX = **K1 *K2 * (QL * CL + QN * CN)/24** = 0.1 * 0.0619 * (190.3 * 16 + 70 * 8) / 24 = 0.93

Примесь: 2754 Углеводороды предельные С12-19/в пересчете на С/(592)

Максимальный разовый выброс, г/с (ф-ла 5.52), **_G = QMAX** * **F/3600** = 0.93 * 12 / 3600 = 0.0031

Валовый выброс, т/год (ф-ла 5.50) ,_M_ = 0.00876 * QSR *F = 0.00876 * 0.1616 * 12 = 0.017

<u>Источник загрязнения N 0023, Дыхательный клапан</u> <u>Источник выделения N 025, Ёмкость сбора нефтепродуктов 9 м3</u>

Нефтепродукт, NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), С=3.14

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т , ВОZ=0

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY=2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т , BVL=100

Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки, м3/ч . VC=19.5

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=9

Количество резервуаров данного типа, NR=1

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Наземный вертикальный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=0.22

GHR=GHR+GHRI*KNP*NR=0+0.22*0.0029*1=0.000638

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3, V=9

Сумма Ghri*Knp*Nr, GHR=0.000638

Максимальный из разовых выброс, г/с (6.2.1) , G=C*KPMAX*VC/3600=3.14*0.1* 19.5/3600=0.0017

Среднегодовые выбросы, т/год (6.2.2) , M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR = $(1.9*0+2.6*100)*0.1*10^{(-6)}+0.000638=0.000664$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=99.72

Валовый выброс, т/год (5.2.5), М =СІ*М/100=99.72*0.000664/100=0.000662

Максимальный из разовых выброс, г/с (5.2.4)

G=CI*G/100=99.72*0.0017/100=0.001695

Примесь:0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=0.28

Валовый выброс, т/год (5.2.5), _M_=CI*M/100=0.28*0.000664/100=0.00000186

Максимальный из разовых выброс, г/с (5.2.4)

G =CI*G/100=0.28*0.0017/100=0.00000476

<u>Источник загрязнения N 0024,Дыхательный клапан</u> Источник выделения N 026,Ёмкость сбора нефтепродуктов 64 м3

Нефтепродукт, NP=Дизельное топливо

Климатическая зона: вторая - северные области РК (прил. 17)

Концентрация паров нефтепродуктов в резервуаре, г/м3(Прил. 12), С=3.14

Средний удельный выброс в осенне-зимний период, г/т(Прил. 12), YY=1.9

Количество закачиваемой в резервуар жидкости в осенне-зимний период, т , ВОZ=0

Средний удельный выброс в весенне-летний период, г/т(Прил. 12), YYY=2.6

Количество закачиваемой в резервуар жидкости в весенне-летний период, т , BVL=100 Объем паровоздушной смеси, вытесняемый из резервуара во время его закачки,

м3/ч, VC=19.5

Коэффициент(Прил. 12), KNP=0.0029

Режим эксплуатации: "буферная емкость" (все типы резервуаров)

Объем одного резервуара данного типа, м3, VI=64

Количество резервуаров данного типа, NR=1

Количество групп одноцелевых резервуаров на предприятии, KNR=1

Категория веществ: А - Нефть из магистрального трубопровода и др.

нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха

Конструкция резервуаров: Заглубленный

Значение Кртах для этого типа резервуаров(Прил. 8), КРМ=0.1

Значение Kpsr для этого типа резервуаров(Прил. 8), KPSR=0.1

Количество выделяющихся паров бензинов автомобильных

при хранении в одном резервуаре данного типа, т/год(Прил. 13), GHRI=0.066

GHR=GHR+GHRI*KNP*NR=0+0.066*0.0029*1=0.0001914

Коэффициент , KPSR=0.1

Коэффициент, КРМАХ=КРМАХ=0.1

Общий объем резервуаров, м3, V=64

Сумма Ghri*Knp*Nr, GHR=0.0001914

Максимальный из разовых выброс, г/с (6.2.1), G=C*KPMAX*VC/3600=3.14*0.1* 19.5/3600=0.0017

Среднегодовые выбросы, т/год (6.2.2), M=(YY*BOZ+YYY*BVL)*KPMAX*10^(-6)+GHR = $(1.9^*0+2.6^*100)^*0.1^*10^*(-6)+0.0001914=0.0002174$

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=99.72

Валовый выброс, т/год (5.2.5), _M_=CI*M/100=99.72*0.0002174/100=0.000217

Максимальный из разовых выброс, г/с (5.2.4)

G =CI*G/100=99.72*0.0017/100=0.001695

Примесь: 0333 Сероводород (Дигидросульфид) /528/

Концентрация ЗВ в парах, % масс(Прил. 14), СІ=0.28

Валовый выброс, т/год (5.2.5), _M_=CI*M/100=0.28*0.0002174/100=0.000000609

Максимальный из разовых выброс, г/с (5.2.4)

G=CI*G/100=0.28*0.0017/100=0.00000476

<u>Источник загрязнения N 0025,Уплотнения оборудования</u> Источник выделения N 027,Насос НШ-40

Расчет выбросов от теплообменных аппаратов и средств перекачки

Вид нефтепродукта или средняя температура жидкости: Керосин, дизтопливо и жидкости с температурой кипения 120-300 гр.С

Наименование аппаратуры или средства перекачки: Насос центробежный с двумя торцевыми уплотнениями вала

Удельный выброс, кг/час(табл. 8.1), Q=0.07

Общее количество аппаратуры или средств перекачки, шт., N1=1

Одновременно работающее количество аппаратуры или средств перекачки, шт. , NN1=1

Время работы одной единицы оборудования, час/год , _T_=6 Максимальный из разовых выброс, г/с (8.1) , _G_=Q*NN1/3.6=0.07*1/3.6=0.01944 Валовый выброс, т/год (8.2) , M = (Q*N1*T)/1000=(0.07*1*6)/1000=0.00042

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Концентрация ЗВ в парах, % масс(Прил. 14) , CI=99.72 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=99.72*0.00042/100=0.0004188 Максимальный из разовых выброс, г/с (5.2.4) G =CI*G/100=99.72*0.01944/100=0.019386

Примесь:0333 Сероводород (Дигидросульфид) /528/

Концентрация 3В в парах, % масс(Прил. 14) , CI=0.28 Валовый выброс, т/год (5.2.5) , _M_=CI*M/100=0.28*0.00042/100=0.000001176 Максимальный из разовых выброс, г/с (5.2.4) _G_=CI*G/100=0.28*0.01944/100=0.0000544

Дизельная электростанция

<u>Источник загрязнения N 0033,Выхлопная труба</u> <u>Источник выделения N 056,Дизельгенератор WOLA</u>

Мощность ДЭС, кВт	Время работы, час/год	Расход топлива, тонн/год	Расход топлива, кг/ч	Плотность топлива, г/см3	Расход топлива, м3/год
200	21	1,00000	47,6190433	0,769	1,300
Наимено	вание ЗВ	Код ЗВ	еі, г/кг топлива	М, г/с	М, т/год
Диоксид азота (0301)		0301	30	0,3969	0,030067
Оксид азота (0304)		0304	39	0,5159	0,039087
Углерод (Сажа) (0328)		0328	5	0,0661	0,005011
Сера диоксид (0330)		0330	10	0,1323	0,010022
Углерод оксид (0337)		0337	25	0,3307	0,025056
Акролеин (1301)		1301	1,2	0,0159	0,001203
Формальдегид (1325)		1325	1,2	0,0159	0,001203
Углеводороды предельные С12-19 (2754)		2754	12	0,1587	0,012027
ИТОГО			1,6324	0,123674	
Расчет объема ГВС					
Расх. топл., г/час	Расход газов, кг/с	t д.г., °С	t отр. газов, К	Уд. вес отр. газ, кг/м3	Объём ГВС, м3/с
47619,04333	0,41524	450	723	0,36	1,156

<u>Источник загрязнения N 0034,Выхлопная труба</u>

Источник выделения N 057,Дизельгенератор АД100Т-400

	Время работы,	Расход	Расход	Плотность	Расход
Мощность ДЭС, кВт	час/год	топлива,	топлива,	топлива,	топлива,
	часлод	тонн/год	кг/ч	г/см3	м3/год
100	162	5,00004	30,8644321	0,769	6,502
Наименование ЗВ		Код ЗВ	еі, г/кг топлива	М, г/с	М, т/год
Диоксид азота (0301)		0301	30	0,2572	0,150335
Оксид азота (0304)		0304	39	0,3344	0,195435
Углерод (Сажа) (0328)		0328	5	0,0429	0,025056
Сера диоксид (0330)		0330	10	0,0857	0,050112
Углерод оксид (0337)		0337	25	0,2144	0,125279
Акролеин (1301)		1301	1,2	0,0103	0,006013
Формальдегид (1325)		1325	1,2	0,0103	0,006013
Углеводороды предельные С12-19 (2754)		2754	12	0,1029	0,060134
ИТОГО			1,0580	0,618377	
	Расчет	объема ГВС	;		
Расх. топл., г/час	Расход газов, кг/с	t д.г., °С	t отр. газов, К	Уд. вес отр. газ, кг/м3	Объём ГВС, м3/с
30864,4321	0,26914	450	723	0,36	0,750

<u>Источник загрязнения N 0035,Выхлопная труба</u> <u>Источник выделения N 058,Дизельгенератор Champion</u>

0,02180

Мощность ДЭС, кВт	Время работы, час/год	Расход топлива, тонн/год	Расход топлива, кг/ч	Плотность топлива, г/см3	Расход топлива, м3/год
3,1	200			0,769	мз/год 0,650
Наимено	вание ЗВ	Код ЗВ	еі, г/кг топлива	М, г/с	М, т/год
Диоксид азота (0301)		0301	30	0,0208	0,015033
Оксид азота (0304)		0304	39	0,0271	0,019544
Углерод (Сажа) (0328)		0328	5	0,0035	0,002506
Сера диоксид (0330)		0330	10	0,0069	0,005011
Углерод оксид (0337)		0337	25	0,0174	0,012528
Акролеин (1301)		1301	1,2	0,0008	0,000601
Формальдегид (1325)		1325	1,2	0,0008	0,000601
Углеводороды предельные С12-19 (2754)		2754	12	0,0083	0,006013
ИТОГО			0,0857	0,061838	
Расчет объема ГВС					
Расх. топл., г/час	Расход газов, кг/с	t д.г., °С	t отр. газов, К	Уд. вес отр. газ, кг/м3	Объём ГВС, м3/с

450

723

0,36

0,061

2500,019

Земляные работы Территория предприятия

Источник загрязнения N 6014, Неорганизованный Источник выделения N 065. Выемка грунта

Р₁-доля пылевой фракции в породе	0,05
P ₂ - доля переходящей в аэрозоль летучей пыли	0,02
Р ₃ - коэффициент, учитывающий метеоусловия	1,2
Р ₄ - коэффициент, учитывающий влажность материала	0,01
P ₅ - коэффициент, учитывающий крупность материала, мм	1
P ₆ - коэффициент учитывающий местные метеоусловия	1
В- коэффициент учитывающий высоту пересыпки	0,7
G- производительность узла пересыпки, т/час	10
Т- суммарное время работы, час	1000
Мсек	0,023333
Мгод	0,084

<u>Источник загрязнения N 6015, Неорганизованный</u>

Источник выделения N 066, Планировочные работы (перемещение грунта)

Расчет времени работы бульдозера	
П, Количесвто перегружаемого материала за год, м3	3703,703704
V, объем материала перемещаемого за цикл, м3	3,463
Кь, коэфициент призмы волочения	1,18
t, время цикла бульдозера, с	180
L, длина лемеха, м	3,42
Н, высота лемеха, м	1,31
V, объем материала перемещаемого за час, м3	69,260
Т, суммарное чистое время работы бульдозера за год, час	53,48
Расчет пыления при работе бульдозера	
К₁-доля пылевой фракции в породе	0,05
К₂- доля переходящей в аэрозоль летучей пыли	0,02
К ₃ - коэффициент, учитывающий метеоусловия	1,2
К ₄ - коэффициент, учитывающий степень защищенности узла	1
К₅- коэффициент, учитывающий влажность материала	0,1
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
К ₈ - коэффициент, учитывающий тип перегрузочного устройства	1
К ₉ - поправочный коэффициент при залповом сбросе материала	0,2
В-высота пересыпки	0,4
G- пр-ть узла пересыпки, или кол-во перераб. материала, т/час	187,002
G- суммарное количество перерабатываемого материала, т/год	10000
Мсек, г/сек	0,399
Мгод, т/год	0,07680

<u>Источник загрязнения N 6016, Неорганизованный</u>

Источник выделения N 067, Склад временного хранения грунта

Расчет выбросов при разгрузке	
K₁-доля пылевой фракции в породе	0,05
K₂- доля переходящей в аэрозоль летучей пыли	0,02
К ₃ - коэффициент, учитывающий метеоусловия	1,2
К ₄ - коэффициент, учитывающий степень защищенности узла	1
K₅- коэффициент, учитывающий влажность материала	0,1
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
К ₈ - коэффициент, учитывающий тип перегрузочного устройства	1
К ₉ - поправочный коэффициент при залповом сбросе материала	0,2
В- коэффициент учитывающий высоту пересыпки	0,7
G- производительность узла пересыпки, т/час	10
G- суммарное количество перерабатываемого материала, т/год	10000
Мсек	0,037333

Мгод	0,134400
Расчет выбросов при хранении (сдувание)	
К ₃ - коэффициент, учитывающий метеоусловия	1,2
К ₄ - коэффициент, учитывающий степень защищенности узла	1
K₅- коэффициент, учитывающий влажность материала	0,1
К ₆ - коэффициент, учитывающий профиль поверхности	1,5
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
q-унос пыли с одного квадратного метра, г/м ² ×с	0,004
S _{факт} - фактическая поверхность материала, м ²	100
S- поверхность пыления в плане, м ²	66,7
Тсп	150
Тд	50
Мсек	0,038400
Мгод	0,547430
Расчет выбросов при погрузке	
К₁-доля пылевой фракции в породе	0,05
K₂- доля переходящей в аэрозоль летучей пыли	0,02
К ₃ - коэффициент, учитывающий метеоусловия	1,2
К ₄ - коэффициент, учитывающий степень защищенности узла	1
K₅- коэффициент, учитывающий влажность материала	0,1
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
К ₈ - коэффициент, учитывающий тип перегрузочного устройства	1
К ₉ - поправочный коэффициент при залповом сбросе материала	0,2
В-высота пересыпки	0,7
G- производительность узла пересыпки, т/час	10
G- суммарное количество перерабатываемого материала, т/год	10000
Мсек	0,037333
Мгод	0,134400
ИТОГО:	
М1сек	0,075733
М2сек	0,075733
Мсек	0,075733
Мгод	0,816230

Линейная часть Источник загрязнения N 6030, Неорганизованный Источник выделения N 092, Выемка грунта

Р ₁ -доля пылевой фракции в породе	0,05
P ₂ - доля переходящей в аэрозоль летучей пыли	0,02
Р ₃ - коэффициент, учитывающий метеоусловия	1,2
Р ₄ - коэффициент, учитывающий влажность материала	0,01
Р ₅ - коэффициент, учитывающий крупность материала, мм	1
Р ₆ - коэффициент учитывающий местные метеоусловия	1
В- коэффициент учитывающий высоту пересыпки	0,7
G- производительность узла пересыпки, т/час	10
Т- суммарное время работы, час	2000
Мсек	0,023333
Мгод	0,168000

<u>Источник загрязнения N 6031, Неорганизованный</u> <u>Источник выделения N 093, Планировочные работы (перемещение грунта)</u>

Расчет времени работы бульдозера	
П, Количесвто перегружаемого материала за год, м3	7407,407408
V, объем материала перемещаемого за цикл, м3	3,463
Кь, коэфициент призмы волочения	1,18
t, время цикла бульдозера, с	180
L, длина лемеха, м	3,42

Н, высота лемеха, м	1,31
V, объем материала перемещаемого за час, м3	69,260
Т, суммарное чистое время работы бульдозера за год, час	106,95
Расчет пыления при работе бульдозера	
K₁-доля пылевой фракции в породе	0,05
K₂- доля переходящей в аэрозоль летучей пыли	0,02
K₃- коэффициент, учитывающий метеоусловия	1,2
К₄- коэффициент, учитывающий степень защищенности узла	1
K₅- коэффициент, учитывающий влажность материала	0,1
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
K ₈ - коэффициент, учитывающий тип перегрузочного устройства	1
К ₉ - поправочный коэффициент при залповом сбросе материала	0,2
В-высота пересыпки	0,4
G- пр-ть узла пересыпки, или кол-во перераб. материала, т/час	187,002
G- суммарное количество перерабатываемого материала, т/год	20000
Мсек, г/сек	0,399
Мгод, т/год	0,15360

<u>Источник загрязнения N 6032, Неорганизованный</u>

Источник выделения N 094, Склад временного хранения грунта

Расчет выбросов при разгрузке	
К₁-доля пылевой фракции в породе	0,05
К₂- доля переходящей в аэрозоль летучей пыли	0,02
К ₃ - коэффициент, учитывающий метеоусловия	1,2
К₄- коэффициент, учитывающий степень защищенности узла	1
К ₅ - коэффициент, учитывающий влажность материала	0,1
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
К ₈ - коэффициент, учитывающий тип перегрузочного устройства	1
К ₉ - поправочный коэффициент при залповом сбросе материала	0,2
В- коэффициент учитывающий высоту пересыпки	0,7
G- производительность узла пересыпки, т/час	10
G- суммарное количество перерабатываемого материала, т/год	20000
Мсек	0,037333
Мгод	0,268800
Расчет выбросов при хранении (сдувание)	_
К ₃ - коэффициент, учитывающий метеоусловия	1,2
К ₄ - коэффициент, учитывающий степень защищенности узла	1
К₅- коэффициент, учитывающий влажность материала	0,1
К ₆ - коэффициент, учитывающий профиль поверхности	1,5
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
q-унос пыли с одного квадратного метра, г/м²×с	0,004
S _{факт} - фактическая поверхность материала, м ²	200
S- поверхность пыления в плане, м ²	133,3
Тсп	150
Тд	50
Мсек	0,076800
Мгод	1,094861
Расчет выбросов при погрузке	
К₁-доля пылевой фракции в породе	0,05
K₂- доля переходящей в аэрозоль летучей пыли	0,02
К ₃ - коэффициент, учитывающий метеоусловия	1,2
К ₄ - коэффициент, учитывающий степень защищенности узла	1
К₅- коэффициент, учитывающий влажность материала	0,1
К ₇ - коэффициент, учитывающий крупность материала, мм	0,8
К ₈ - коэффициент, учитывающий тип перегрузочного устройства	1
К ₉ - поправочный коэффициент при залповом сбросе материала	0,2
В-высота пересыпки	0,7

G- производительность узла пересыпки, т/час	20
G- суммарное количество перерабатываемого материала, т/год	20000
Мсек	0,074667
Мгод	0,268800
ИТОГО:	
М1сек	0,151467
М2сек	0,114133
Мсек	0,151467
Мгод	1,632461

Расчет выбросов от автотранспорта

Автобокс

<u>Источник загрязнения N 0039, Труба вентиляции</u> Источник выделения N 069, КАв 3-4235 (Автобус)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Автобус малый карбюраторный (КАв3, ПА3)

Вид топлива, TOPN=Бензин АИ-93

Содержание свинца в топливе, г/л, DC=0.37

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км, L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3 Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=0.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.6

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г, M1=MP*TP*KI+ML*L1+MX*TX*KI=0.1*0.5*1+0.6* 0.1+0.1*1*1=0.21

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.6*0.1+0.1*1*1=0.16 Валовый выброс 3B, т/год , М =AV*(M1+M2)*NK*DR/10^6=0*(0.21+0.16)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*0.21*1/20/60=0.000175

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин, МР=0.016

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.016

Пробеговый выброс машин при движении, г/км, ML=0.11

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г, M1=MP*TP*KI+ML*L1+MX*TX*KI=0.016*0.5*1+0.11 *0.1+0.016*1*1=0.035

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.11*0.1+0.016*1*1=0.027 Валовый выброс ЗВ, т/год,

 $M = AV^*(M1+M2)^*NK^*DR/10^6=0^*(0.035+0.027)^*1^*253/10^6=0$

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.035*1/20/60=0.00002917

Примесь: 0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин, МР=8.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=8.1

Пробеговый выброс машин при движении, г/км, ML=27.6

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.1*0.5*1+27.6*0.1+8.1*1*1=14.9

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=27.6*0.1+8.1*1*1=10.86

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(14.9+10.86)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*14.9*1/20/60=0.01242

Примесь:2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ /60/

Удельный выброс машин при прогреве, г/мин , МР=1.6

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=1.6

Пробеговый выброс машин при движении, г/км, ML=4.9

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1.6*0.5*1+4.9*0.1+1.6*1*1=2.89

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=4.9*0.1+1.6*1*1=2.09

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(2.89+2.09)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*2.89*1/20/60=0.00241

Источник загрязнения N 0039,Труба вентиляции

<u>Источник выделения N 068,МТЗ-82</u>

Расчет выбросов 3В от подвижных источников

Тип автомашины, КМ=Трактор (К), N ДВС = 36 - 60 кВт

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=2

Время работы машин на хол. ходу, мин, ТХ=1

Время работы пускового двигателя, мин , TPU=0

Вид топлива для пускового двигателя, TOPU=

Пробег по территории 1 машины (выезд), км, L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=10

Время движения машин по территории при выезде,мин, TV1=L1/SK*60=0.1/10*60=0.6

Время движения машин по территории при возврате,мин , TV2=L2/SK*60=0.1/10*60=0.6

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/10*60+1+2)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/10*60+1)*1*0/1=0

Время работы стоянки в сутки, час, S =(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=0.29

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=0.29

Пробеговый выброс машин при движении, г/мин, ML=1.49

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.29*2*1+1.49*0.6+0.29*1*1=1.764

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=1.49*0.6+0.29*1*1=1.184 Валовый выброс 3В, т/год ,

 $M = AV^*(M1+M2)^*NK^*DR/10^6=0^*(1.764+1.184)^*1^*253/10^6=0$

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*1.764*1/20/60=0.00147

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.04

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=0.04

Пробеговый выброс машин при движении, г/мин , ML=0.17

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.04*2*1+0.17*0.6+0.04*1*1=0.222

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.17*0.6+0.04*1*1=0.142 Валовый выброс ЗВ, т/год ,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.222+0.142)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.222*1/20/60=0.000185

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.058

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.058

Пробеговый выброс машин при движении, г/мин , ML=0.12

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.058*2*1+0.12*0.6+0.058*1*1=0.246

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.12*0.6+0.058*1*1=0.13 Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6= $0*(0.246+0.13)*1*253/10^6=0$ Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.246*1/20/60=0.000205

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=1.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=1.44

Пробеговый выброс машин при движении, г/мин , ML=0.77

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=1.4*2*1+0.77*0.6+1.44*1*1=4.7

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.77*0.6+1.44*1*1=1.902 Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.7+1.902)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.7*1/20/60=0.00392

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=0.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.18

Пробеговый выброс машин при движении, г/мин , ML=0.26

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.18*2*1+0.26* 0.6+0.18*1*1=0.696

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.26*0.6+0.18*1*1=0.336 Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(0.696+0.336)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.696*1/20/60=0.00058

Источник загрязнения N 0039, Труба вентиляции Источник выделения N 070, ГАЗ-331063 (Валдай)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью 3 <= q <= 6 т дизельный

Вид топлива , TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , $_{T}=(TS0+TR)/60*DR=(0+20)/60*253=84.3$

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=0.62

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.62

Пробеговый выброс машин при движении, г/км, ML=3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.62*0.5*1+3*0.1+0.62*1*1=1.23

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=3*0.1+0.62*1*1=0.92

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(1.23+0.92)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*1.23*1/20/60=0.001025

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.03

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.03

Пробеговый выброс машин при движении, г/км, ML=0.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.03*0.5*1+0.2*0.1+0.03*1*1=0.065

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.2*0.1+0.03*1*1=0.05

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(0.065+0.05)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.065*1/20/60=0.0000542

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.06

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.06

Пробеговый выброс машин при движении, г/км, ML=0.45

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.06*0.5*1+0.45*0.1+0.06*1*1=0.135

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.45*0.1+0.06*1*1=0.105 Валовый выброс 3В, т/год .

M=AV*(M1+M2)*NK*DR/10^6=0*(0.135+0.105)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.135*1/20/60=0.0001125

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=2.8

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.8

Пробеговый выброс машин при движении, г/км, ML=4.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2.8*0.5*1+4.1*0.1+2.8*1*1=4.61

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=4.1*0.1+2.8*1*1=3.21

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+3.21)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:2754 Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин, МР=0.3

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=0.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=0.3*0.5*1+0.7*0.1+0.3*1*1=0.52

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.7*0.1+0.3*1*1=0.37 Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(0.52+0.37)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.52*1/20/60=0.000433

Источник загрязнения N 0039, Труба вентиляции Источник выделения N 082, ГАЗ-33081 (Чайка)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью 1 <= q <= 3 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=36

Время работы машин на хол. ходу, мин, ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км, L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3 Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=0.65

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.45

Пробеговый выброс машин при движении, г/км, ML=2.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.65*36*1+2.3*0.1+0.45*1*1=24.1

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=2.3*0.1+0.45*1*1=0.68

Валовый выброс 3B, т/год , M_=AV*(M1+M2)*NK*DR/10^6=0*(24.1+0.68)*1*253/10^6=0 Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*24.1*1/20/60=0.0201

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.08

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.01

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.08*36*1+0.3*0.1+0.01*1*1=2.92

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.3*0.1+0.01*1*1=0.04

Валовый выброс 3B, т/год , M_=AV*(M1+M2)*NK*DR/10^6=0*(2.92+0.04)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*2.92*1/20/60=0.002433

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.043

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.035

Пробеговый выброс машин при движении, г/км, ML=0.35

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.043*36*1+0.35*0.1+0.035*1*1=1.618

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.35*0.1+0.035*1*1=0.07

Валовый выброс 3B, т/год , M_=AV*(M1+M2)*NK*DR/10^6=0*(1.618+0.07)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*1.618*1/20/60=0.001348

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=2.36

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=1.54

Пробеговый выброс машин при движении, г/км, ML=3.9

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2.36*36*1+3.9*0.1+1.54*1*1=86.9

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=3.9*0.1+1.54*1*1=1.93

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(86.9+1.93)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*86.9*1/20/60=0.0724

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин, МР=0.5

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.2

Пробеговый выброс машин при движении, г/км, ML=0.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г, M1=MP*TP*KI+ML*L1+MX*TX*KI=0.5*36*1+0.7*0.1 +0.2*1*1=18.27

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.7*0.1+0.2*1*1=0.27 Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(18.27+0.27)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*18.27*1/20/60=0.01523

Источник загрязнения N 0039, Труба вытяжного устройства

<u>Источник выделения N 096,Сверлильный станок</u>

Технология обработки: Механическая обработка чугуна

Местный отсос пыли не проводится

Тип расчета: без охлаждения

Технологическая операция: Обработка резанием чугунных деталей

Вид станков: Сверлильные станки

Фактический годовой фонд времени работы одной единицы оборудования, ч/год, T = 100

Число станков данного типа, шт., KOLIV =1

Число станков данного типа, работающих одновременно, шт., NS1=1

Примесь:2902 Взвешенные частицы р.м. 10 /116/

Удельный выброс, г/с (табл. 4), GV=0.0011

Коэффициент гравитационного оседания (п. 5.3.2), KN=KNAB=0.2

Валовый выброс, т/год (1), _M_=3600*KN*GV*_T_*_KOLIV_/10^6=3600*0.2*0.0011 *100*1/10^6=0.0000792

Максимальный из разовых выброс, г/с (2) , _G_=KN*GV*NS1=0.2*0.0011*1=0.00022

Источник выделения N 076, Урал-5557 (ПМ)

Расчет выбросов 3В от подвижных источников

Тип автомашины, КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт. , NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км, L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин , TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+0.5) *1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=1

Пробеговый выброс машин при движении, г/км, ML=3.5

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1*0.5*1+3.5*0.1+1*1*1=1.85

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=3.5*0.1+1*1*1=1.35

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(1.85+1.35)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*1.85*1/20/60=0.001542

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.04

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=0.04*0.5*1+0.2* 0.1+0.04*1*1=0.08

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.2*0.1+0.04*1*1=0.06

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(0.08+0.06)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.08*1/20/60=0.0000667

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин, МР=0.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км , ML=0.68

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.1*0.5*1+0.68*0.1+0.1*1*1=0.218

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.68*0.1+0.1*1*1=0.168 Валовый выброс 3В, т/год ,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.218+0.168)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.218*1/20/60=0.0001817

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=2.9

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=2.9

Пробеговый выброс машин при движении, г/км, ML=5.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2.9*0.5*1+5.1*0.1+2.9*1*1=4.86

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=5.1*0.1+2.9*1*1=3.41

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.86+3.41)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.86*1/20/60=0.00405

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=0.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=0.9

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=0.4*0.5*1+0.9* 0.1+0.3*1*1=0.59

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.9*0.1+0.3*1*1=0.39 Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(0.59+0.39)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.59*1/20/60=0.000492

Гараж легковых а/м

<u>Источник загрязнения N 6021,Дверной проем</u> <u>Источник выделения N 071,УАЗ Hunter</u>

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=***Легковые автомобили****

Вид топлива, TOPN=Бензин АИ-93

Содержание свинца в топливе, г/л, DC=0.37

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Длина пандуса, км , LP=0.002

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин , TR0=(LP/SK*60+L1/SK*60+TX+TP)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(LP/SK*60+L2/SK*60+TX)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.05

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.) , MX=0.05

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.05

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.05*0.002+0.05*0.5*1+0.4*0.1+0.05*1*1=0.115

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=3*0.002+0.4*0.1+0.05*1*1=0.096

Валовый выброс ЗВ, т/год,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.115+0.096)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.115*1/20/60=0.0000958

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.012

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.07

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.012

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.012

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=0

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.012*0.002+0.012*0.5*1+0.07*0.1+0.012*1*1= 0.025

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=0*0.002+0.07*0.1+0.012*1*1=0.019

Валовый выброс ЗВ, т/год,

 $M = AV^*(M1+M2)^*NK^*DR/10^6=0^*(0.025+0.019)^*1^*253/10^6=0$

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.025*1/20/60=0.00002083

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=5

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=17

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=4.5

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=4.5

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=20

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=4.5*0.002+5*0.5*1+17*0.1+4.5*1*1=8.71

Выброс 1 машины при возвращении, г , M2=MP2*LP+ML*L2+MX*TX*KI=20*0.002+17* 0.1+4.5*1*1=6.24

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(8.71+6.24)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*8.71*1/20/60=0.00726

Примесь:2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ /60/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.7

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=1.7

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.4

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.4

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=1.5

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.4*0.002+0.7*0.5*1+1.7*0.1+0.4*1*1=0.92

Выброс 1 машины при возвращении, г , M2=MP2*LP+ML*L2+MX*TX*KI=1.5*0.002+1.7 *0.1+0.4*1*1=0.573

Валовый выброс 3B, т/год, M=AV*(M1+M2)*NK*DR/10^6=0*(0.92+0.573)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.92*1/20/60=0.000767

Источник загрязнения N 6022, Дверной проем <u>Источник выделения N 072,УАЗ Pickup</u>

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=***Легковые автомобили****

Вид топлива, TOPN=Бензин АИ-93

Содержание свинца в топливе, г/л , DC=0.37

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Длина пандуса, км , LP=0.002

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин , TR0=(LP/SK*60+L1/SK*60+TX+TP)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(LP/SK*60+L2/SK*60+TX)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3 Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.05

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.) , MX=0.05

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.05

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.05*0.002+0.05*0.5*1+0.4*0.1+0.05*1*1=0.115

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=3*0.002+0.4*0.1+0.05*1*1=0.096

Валовый выброс ЗВ, т/год,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.115+0.096)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*0.115*1/20/60=0.0000958

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.012

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.07

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.012

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.012

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=0

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.012*0.002+0.012*0.5*1+0.07*0.1+0.012*1*1= 0.025

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=0*0.002+0.07*0.1+0.012*1*1=0.019

Валовый выброс ЗВ, т/год,

 $M = AV^*(M1+M2)^*NK^*DR/10^6=0^*(0.025+0.019)^*1^*253/10^6=0$

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.025*1/20/60=0.00002083

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=5

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=17

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=4.5

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=4.5

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=20

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=4.5*0.002+5*0.5*1+17*0.1+4.5*1*1=8.71

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=20*0.002+17*0.1+4.5*1*1=6.24

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(8.71+6.24)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*8.71*1/20/60=0.00726

Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ /60/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.7

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=1.7

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.4

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.4

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=1.5

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.4*0.002+0.7*0.5*1+1.7*0.1+0.4*1*1=0.92

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=1.5*0.002+1.7*0.1+0.4*1*1=0.573

Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(0.92+0.573)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.92*1/20/60=0.000767

<u>Источник загрязнения N 6023,Дверной проем</u> <u>Источник выделения N 073,УАЗ Patriot</u>

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=***Легковые автомобили****

Вид топлива, TOPN=Бензин АИ-93

Содержание свинца в топливе, г/л, DC=0.37

Вид стоянки: (0 - закрытая, 1 - открытая) , PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=0.5

Время работы машин на хол. ходу, мин, ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Длина пандуса, км , LP=0.002

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин , TR0=(LP/SK*60+L1/SK*60+TX+TP)*NK*AV/N2=(0.002/15*60+0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(LP/SK*60+L2/SK*60+TX)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.05

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), MX=0.05

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.05

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.05*0.002+0.05*0.5*1+0.4*0.1+0.05*1*1=0.115

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=3*0.002+0.4*0.1+0.05*1*1=0.096

Валовый выброс ЗВ, т/год,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.115+0.096)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.115*1/20/60=0.0000958

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.012

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.07

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.012

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.012

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=0

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.012*0.002+0.012*0.5*1+0.07*0.1+0.012*1*1= 0.025

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=0*0.002+0.07*0.1+0.012*1*1=0.019

Валовый выброс ЗВ, т/год,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.025+0.019)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.025*1/20/60=0.00002083

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин(табл.2.1.) , МР=5

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=17

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=4.5

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=4.5

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=20

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=4.5*0.002+5*0.5*1+17*0.1+4.5*1*1=8.71

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=20*0.002+17*0.1+4.5*1*1=6.24

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(8.71+6.24)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*8.71*1/20/60=0.00726

Примесь:2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ /60/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.7

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=1.7

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.4

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.4

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=1.5

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.4*0.002+0.7*0.5*1+1.7*0.1+0.4*1*1=0.92

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=1.5*0.002+1.7*0.1+0.4*1*1=0.573

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(0.92+0.573)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.92*1/20/60=0.000767

<u>Источник загрязнения N 6024,Дверной проем</u>

Источник выделения N 074, Mitsubishi L200

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=***Легковые автомобили****

Вид топлива , TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Длина пандуса, км , LP=0.002

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин , TR0=(LP/SK*60+L1/SK*60+TX+TP)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(LP/SK*60+L2/SK*60+TX)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.05

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.05

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.05

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.05*0.002+0.05*0.5*1+0.4*0.1+0.05*1*1=0.115

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=3*0.002+0.4*0.1+0.05*1*1=0.096

Валовый выброс ЗВ, т/год,

 $M = AV^*(M1+M2)^*NK^*DR/10^6=0^*(0.115+0.096)^*1^*253/10^6=0$

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.115*1/20/60=0.0000958

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=0

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0*0.002+0*0.5*1+0*0.1+0*1*1=0

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=0*0.002+0*0.1+0*1*1=0

Валовый выброс 3B, $\tau/\Gamma O J$, $M = AV^*(M1+M2)^*NK^*DR/10^6=0^*(0+0)^*1^*253/10^6=0$

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0*1/20/60=0

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.012

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.07

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.012

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.012

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=0

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.012*0.002+0.012*0.5*1+0.07*0.1+0.012*1*1= 0.025

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=0*0.002+0.07*0.1+0.012*1*1=0.019

Валовый выброс ЗВ, т/год,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.025+0.019)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.025*1/20/60=0.00002083

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=5

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=17

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=4.5

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=4.5

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=20

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=4.5*0.002+5*0.5*1+17*0.1+4.5*1*1=8.71

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=20*0.002+17*0.1+4.5*1*1=6.24

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(8.71+6.24)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*8.71*1/20/60=0.00726

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=0

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0*0.002+0*0.5*1+0*0.1+0*1*1=0

Выброс 1 машины при возвращении, г , M2=MP2*LP+ML*L2+MX*TX*KI=0*0.002+0*0.1 +0*1*1=0

Валовый выброс 3B, т/год, M=AV*(M1+M2)*NK*DR/10^6=0*(0+0)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0*1/20/60=0

<u>Источник загрязнения N 6025,Дверной проем</u> Источник выделения N 075,Toyota Avensis

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=***Легковые автомобили****

Вид топлива, TOPN=Бензин АИ-93

Содержание свинца в топливе, г/л, DC=0.37

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Длина пандуса, км , LP=0.002

Скорость движения машин по территории, км/час , SK=15

Время разъезда машин, мин , TR0=(LP/SK*60+L1/SK*60+TX+TP)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(LP/SK*60+L2/SK*60+TX)*NK*AV/N2=(0.002/ 15*60+0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , $T_{=}(TS0+TR)/60*DR=(0+20)/60*253=84.3$

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.05

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.05

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.05

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.05*0.002+0.05*0.5*1+0.4*0.1+0.05*1*1=0.115

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=3*0.002+0.4*0.1+0.05*1*1=0.096

Валовый выброс ЗВ, т/год,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.115+0.096)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.115*1/20/60=0.0000958

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.012

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=0.07

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.012

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.012

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=0

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.012*0.002+0.012*0.5*1+0.07*0.1+0.012*1*1= 0.025

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=0*0.002+0.07*0.1+0.012*1*1=0.019

Валовый выброс ЗВ, т/год,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.025+0.019)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.025*1/20/60=0.00002083

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=5

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=17

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=4.5

Выброс при спуске по пандусу, г/км(табл.2.1.) , МР1=4.5

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=20

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=4.5*0.002+5*0.5*1+17*0.1+4.5*1*1=8.71

Выброс 1 машины при возвращении, г,

M2=MP2*LP+ML*L2+MX*TX*KI=20*0.002+17*0.1+4.5*1*1=6.24

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(8.71+6.24)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*8.71*1/20/60=0.00726

Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ /60/

Удельный выброс машин при прогреве, г/мин(табл.2.1.), МР=0.7

Пробеговый выброс машин при движении, г/км(табл.2.1.), ML=1.7

Удельный выброс машин на хол. ходу, г/мин(табл.2.1.), МХ=0.4

Выброс при спуске по пандусу, г/км(табл.2.1.), МР1=0.4

Выброс при под"еме по пандусу, г/км(табл.2.1.), МР2=1.5

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г

M1=MP1*LP+MP*TP*KI+ML*L1+MX*TX*KI=0.4*0.002+0.7*0.5*1+1.7*0.1+0.4*1*1=0.92

Выброс 1 машины при возвращении, г , M2=MP2*LP+ML*L2+MX*TX*KI=1.5*0.002+1.7 *0.1+0.4*1*1=0.573

Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(0.92+0.573)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.92*1/20/60=0.000767

Пожарное депо

Источник загрязнения N 6026, Дверной проем Источник выделения N 077, МАЗ-6317 (ПМ)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т карбюраторный

Вид топлива, TOPN=Бензин АИ-80

Содержание свинца в топливе, г/л, DC=0.15

Вид стоянки: (0 - закрытая, 1 - открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=0.5

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час, $S_{=}(TS0+TR)/60=(0+20)/60=0.3$

Время работы стоянки в год, час , $T_{=}(TS0+TR)/60*DR=(0+20)/60*253=84.3$

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=0.2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.2

Пробеговый выброс машин при движении, г/км, ML=1.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.2*0.5*1+1.2*0.1+0.2*1*1=0.42

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=1.2*0.1+0.2*1*1=0.32

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(0.42+0.32)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.42*1/20/60=0.00035

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.035

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.035

Пробеговый выброс машин при движении, г/км , ML=0.24

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.035*0.5*1+0.24*0.1+0.035*1*1=0.0765

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.24*0.1+0.035*1*1=0.059 Валовый выброс 3В, т/год ,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.0765+0.059)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.0765*1/20/60=0.0000638

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=23.4

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=23.4

Пробеговый выброс машин при движении, г/км, ML=55.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=23.4*0.5*1+55.3*0.1+23.4*1*1=40.6

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=55.3*0.1+23.4*1*1=28.93 Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(40.6+28.93)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40.6*1/20/60=0.0338

Примесь: 2704 Бензин (нефтяной, малосернистый) /в пересчете на углерод/ /60/

Удельный выброс машин при прогреве, г/мин, МР=3.3

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=3.3

Пробеговый выброс машин при движении, г/км, ML=9.9

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=3.3*0.5*1+9.9* 0.1+3.3*1*1=5.94

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=9.9*0.1+3.3*1*1=4.29 Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(5.94+4.29)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*5.94*1/20/60=0.00495

Источник загрязнения N 6027,Дверной проем Источник выделения N 078,КамАЗ-5662KD (ПМ)

Расчет выбросов 3В от подвижных источников

Тип автомашины, КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 – закрытая, 1 – открытая), PS=0

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. Выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=0.5

Время работы машин на олл. Ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+0.5)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час, $S_{=}(TS0+TR)/60=(0+20)/60=0.3$

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=1

Удельный выброс машин на олл. Ходу, г/мин(табл.2.7), МХ=1

Пробеговый выброс машин при движении, г/км, ML=3.5

Коэфф. Снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1*0.5*1+3.5*0.1+1*1*1=1.85

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=3.5*0.1+1*1*1=1.35

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(1.85+1.35)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*1.85*1/20/60=0.001542

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.04

Удельный выброс машин на олл. Ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.2

Коэфф. Снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=0.04*0.5*1+0.2* 0.1+0.04*1*1=0.08

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.2*0.1+0.04*1*1=0.06 Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(0.08+0.06)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.08*1/20/60=0.0000667

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.1

Удельный выброс машин на олл. Ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.68

Коэфф. Снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=0.1*0.5*1+0.68* 0.1+0.1*1*1=0.218

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.68*0.1+0.1*1*1=0.168 Валовый выброс 3В, т/год ,

M=AV*(M1+M2)*NK*DR/10^6=0*(0.218+0.168)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.218*1/20/60=0.0001817

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=2.9

Удельный выброс машин на олл. Ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=5.1

Коэфф. Снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=2.9*0.5*1+5.1* 0.1+2.9*1*1=4.86

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=5.1*0.1+2.9*1*1=3.41

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.86+3.41)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.86*1/20/60=0.00405

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=0.4

Удельный выброс машин на олл. Ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=0.9

Коэфф. Снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=0.4*0.5*1+0.9* 0.1+0.3*1*1=0.59

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.9*0.1+0.3*1*1=0.39 Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(0.59+0.39)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*0.59*1/20/60=0.000492

Открытая площадка

<u>Источник загрязнения N 6028, Неорганизованный</u> <u>Источник выделения N 079, Iveco-AMT 633910 (TC)</u>

Расчет выбросов ЗВ от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=36

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час , SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин, МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км , ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1+0.3*1*1=40

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41

Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Источник загрязнения N 6028, Неорганизованный Источник выделения N 080, Б 10М (Бульдозер)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Трактор (Г), N ДВС = 101 - 160 кВт

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни , DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=36

Время работы машин на хол. ходу, мин, ТХ=1

Время работы пускового двигателя, мин , TPU=0

Вид топлива для пускового двигателя, TOPU=

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=5

Время движения машин по территории при выезде,мин , TV1=L1/SK*60=0.1/5*60=1.2

Время движения машин по территории при возврате,мин , TV2=L2/SK*60=0.1/5*60=1.2 Время разъезда машин, мин ,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/5*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/5*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=1.17

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=0.78

Пробеговый выброс машин при движении, г/мин , ML=4.01

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=1.17*36*1+4.01*1.2+0.78*1*1=47.7

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=4.01*1.2+0.78*1*1=5.59 Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(47.7+5.59)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*47.7*1/20/60=0.03975

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин, МР=0.6

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/мин , ML=0.67

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.6*36*1+0.67*1.2+0.1*1*1=22.5

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.67*1.2+0.1*1*1=0.904 Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(22.5+0.904)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*22.5*1/20/60=0.01875

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.16

Пробеговый выброс машин при движении, г/мин , ML=0.38

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.2*36*1+0.38*1.2+0.16*1*1=7.82

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.38*1.2+0.16*1*1=0.616 Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(7.82+0.616)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*7.82*1/20/60=0.00652

Примесь: 0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=7.8

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=3.91

Пробеговый выброс машин при движении, г/мин , ML=2.55

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=7.8*36*1+2.55*1.2+3.91*1*1=287.8

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=2.55*1.2+3.91*11*1=6.97 Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6= $0*(287.8+6.97)*1*253/10^6=0$ Максимально разовый выброс 3B, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*287.8*1/20/60=0.24

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.27

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.49

Пробеговый выброс машин при движении, г/мин , ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=1.27*36*1+0.85*1.2+0.49*1*1=47.2

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.85*1.2+0.49*1*1=1.51

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(47.2+1.51)*1*253/10^6=0

Максимально разовый выброс 3B, г/с G=AV1*MAX(M1,M2)*NK/TR/60=1*47.2*1/20/60=0.0393

<u>Источник загрязнения N 6028, Неорганизованный</u> <u>Источник выделения N 081, Hitachi ZX160 (Экскаватор)</u>

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Трактор (Г), N ДВС = 61 - 100 кВт

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=36

Время работы машин на хол. ходу, мин , ТХ=1

Время работы пускового двигателя, мин , TPU=0

Вид топлива для пускового двигателя, TOPU=

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км, L2=0.1

Скорость движения машин по территории, км/час, SK=5

Время движения машин по территории при выезде,мин, TV1=L1/SK*60=0.1/5*60=1.2

Время движения машин по территории при возврате,мин , TV2=L2/SK*60=0.1/5*60=1.2

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/5*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/5*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=0.72

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.48

Пробеговый выброс машин при движении, г/мин , ML=2.47

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.72*36*1+2.47*1.2+0.48*1*1=29.36

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=2.47*1.2+0.48*1*1=3.444 Валовый выброс 3В, т/год ,

M=AV*(M1+M2)*NK*DR/10^6=0*(29.36+3.444)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*29.36*1/20/60=0.02447

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.36

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.06

Пробеговый выброс машин при движении, г/мин , ML=0.41

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.36*36*1+0.41*1.2+0.06*1*1=13.5

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.41*1.2+0.06*1*1=0.552 Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(13.5+0.552)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*13.5*1/20/60=0.01125

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.12

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.097

Пробеговый выброс машин при движении, г/мин , ML=0.33

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.12*36*1+0.33*1.2+0.097*1*1=4.81

Выброс 1 машины при возвращении, г,

M2=ML*TV2+MX*TX*KI=0.33*1.2+0.097*1*1=0.493

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.81+0.493)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.81*1/20/60=0.00401

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=4.8

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.4

Пробеговый выброс машин при движении, г/мин , ML=1.57

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=4.8*36*1+1.57*1.2+2.4*1*1=177.1

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=1.57*1.2+2.4*1*1=4.28

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(177.1+4.28)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*177.1*1/20/60=0.1476

Примесь:2754 Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=0.78

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/мин , ML=0.51

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*TV1+MX*TX*KI=0.78*36*1+0.51*1.2+0.3*1*1=29

Выброс 1 машины при возвращении, г , M2=ML*TV2+MX*TX*KI=0.51*1.2+0.3*1*1=0.912

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(29+0.912)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*29*1/20/60=0.02417

<u>Источник загрязнения N 6028, Неорганизованный</u> Источник выделения N 083, КамАЗ-43118 (АК)

Расчет выбросов 3В от подвижных источников

Тип автомашины, КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С , ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=36

Время работы машин на хол. ходу, мин, ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин, TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г.

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0

Максимально разовый выброс 3B, г/с _G_=AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км , ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1+0.3*1*1=40

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Источник загрязнения N 6028, Неорганизованный Источник выделения N 084, КамАЗ-5350 (АВ)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива , TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=36

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км, L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час , SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3 Время работы стоянки в год, час, T = (TS0+TR)/60*DR = (0+20)/60*253 = 84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год, М =AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3B, т/год, М =AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0 Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3B, т/год, М =AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин, МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г, M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1 +0.3*1*1=40

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41 Валовый выброс 3B, т/год, M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0 Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Источник загрязнения N 6028, Неорганизованный Источник выделения N 085, КамАЗ-43118 (ПРМ)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=36

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1 +0.3*1*1=40

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41

Валовый выброс 3В, τ /год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

<u>Источник загрязнения N 6028,Неорганизованный</u>

<u>Источник выделения N 086, КамАЗ-43118 (АЦН)</u> Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива , TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=36

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час , SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , $_{\rm T}=(TS0+TR)/60*DR=(0+20)/60*253=84.3$

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь:2754 Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км , ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1+0.3*1*1=40

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Источник загрязнения N 6028, Неорганизованный Источник выделения N 087, КамАЗ-65222 (Самосвал)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=36

Время работы машин на хол. ходу, мин, ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0 Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3 Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7) , МХ=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3B, т/год, М =AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3B, т/год , M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г, M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2* 0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3В, τ/τ год , $M_=AV^*(M1+M2)^*NK^*DR/10^6=0^*(298+3.52)^*1^*253/10^6=0$

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на суммарный

органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин, МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1+0.3*1*1=40

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Источник загрязнения N 6028, Неорганизованный Источник выделения N 088, КамАЗ-43118 (ПНУ-2)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива , TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая) , PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин, ТР=36

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км, L2=0.1

Скорость движения машин по территории, км/час, SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час, S =(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=1

Пробеговый выброс машин при движении, г/км , ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г.

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин, МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1= 0.185

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь: 2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км, ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г , M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1 +0.3*1*1=40

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41 Валовый выброс 3В, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0 Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Источник загрязнения N 6028, Неорганизованный Источник выделения N 089, КамАЗ-43118 (КМУ)

Расчет выбросов 3В от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию, AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=36

Время работы машин на хол. ходу, мин, ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час , SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0 Максимально разовый выброс 3B, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км , ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1+0.3*1*1=40

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Источник загрязнения N 6028, Неорганизованный Источник выделения N 090, УРАЛ-5668 (ВА)

Расчет выбросов ЗВ от подвижных источников

Тип автомашины , КМ=Грузоподъемностью q >= 6 т дизельный

Вид топлива, TOPN=Дизельное топливо

Вид стоянки: (0 - закрытая, 1 - открытая), PS=1

Средняя температура воздуха за расчетный период, гр. С, ТО=-22.8

Тип периода - Холодный

Количество рабочих дней, дни, DR=253

Количество машин данной группы, шт., NK=1

Количество одновременно выпускаемых машин, штук, N2=1

N=Контроль токсичности выхлопных газов автомобилей не проводится

Коэфф. выхода машин на линию , AV=0

Если кол-во машин в группе = 1, то для расчета макс.разового выброса

принимается коэффициент выпуска равный 1, AV1=1

Время прогрева машин, мин , ТР=36

Время работы машин на хол. ходу, мин , ТХ=1

Пробег по территории 1 машины (выезд), км , L1=0.1

Пробег по территории 1 машины (в'езд), км , L2=0.1

Скорость движения машин по территории, км/час , SK=15

Время разъезда машин, мин,

TR0=(L1/SK*60+TX+TP)*NK*AV/N2=(0.1/15*60+1+36)*1*0/1=0

Время разъезда машин, мин , TR=20

Время возвращения машин, мин , TS0=(L2/SK*60+TX)*NK*AV/N2=(0.1/15*60+1)*1*0/1=0

Время работы стоянки в сутки, час , _S_=(TS0+TR)/60=(0+20)/60=0.3

Время работы стоянки в год, час , _T_=(TS0+TR)/60*DR=(0+20)/60*253=84.3

Примесь:0301 Азот (IV) оксид /4/

Удельный выброс машин при прогреве, г/мин , МР=2

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), MX=1

Пробеговый выброс машин при движении, г/км, ML=2.7

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=2*36*1+2.7*0.1+1*1*1=73.3

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=2.7*0.1+1*1*1=1.27

Валовый выброс 3B, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(73.3+1.27)*1*253/10^6=0

Максимально разовый выброс ЗВ, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*73.3*1/20/60=0.0611

Примесь:0328 Углерод /593/

Удельный выброс машин при прогреве, г/мин , МР=0.35

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.04

Пробеговый выброс машин при движении, г/км, ML=0.3

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.35*36*1+0.3*0.1+0.04*1*1=12.67

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.3*0.1+0.04*1*1=0.07

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(12.67+0.07)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*12.67*1/20/60=0.01056

Примесь:0330 Сера диоксид /526/

Удельный выброс машин при прогреве, г/мин , МР=0.123

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.1

Пробеговый выброс машин при движении, г/км, ML=0.85

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=0.123*36*1+0.85*0.1+0.1*1*1=4.61

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=0.85*0.1+0.1*1*1=0.185

Валовый выброс 3В, т/год , _M_=AV*(M1+M2)*NK*DR/10^6=0*(4.61+0.185)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G =AV1*MAX(M1,M2)*NK/TR/60=1*4.61*1/20/60=0.00384

Примесь:0337 Углерод оксид /594/

Удельный выброс машин при прогреве, г/мин , МР=8.18

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=2.9

Пробеговый выброс машин при движении, г/км, ML=6.2

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=8.18*36*1+6.2*0.1+2.9*1*1=298

Выброс 1 машины при возвращении, г, M2=ML*L2+MX*TX*KI=6.2*0.1+2.9*1*1=3.52

Валовый выброс 3B, т/год , M_=AV*(M1+M2)*NK*DR/10^6=0*(298+3.52)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*298*1/20/60=0.2483

Примесь:2754 Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/

Удельный выброс машин при прогреве, г/мин , МР=1.1

Удельный выброс машин на хол. ходу, г/мин(табл.2.7), МХ=0.3

Пробеговый выброс машин при движении, г/км , ML=1.1

Коэфф. снижения выбросов при отсутствии контроля, KI=1

Выброс 1 машины при выезде, г,

M1=MP*TP*KI+ML*L1+MX*TX*KI=1.1*36*1+1.1*0.1+0.3*1*1=40

Выброс 1 машины при возвращении, г , M2=ML*L2+MX*TX*KI=1.1*0.1+0.3*1*1=0.41

Валовый выброс 3B, т/год , M=AV*(M1+M2)*NK*DR/10^6=0*(40+0.41)*1*253/10^6=0

Максимально разовый выброс 3В, г/с

G=AV1*MAX(M1,M2)*NK/TR/60=1*40*1/20/60=0.0333

Лакокрасочные работы

Источник загрязнения N 6034, Неорганизованный

<u>Источник выделения N 096, Краскопульт</u>

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS=0.075

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1=1

Марка ЛКМ: Грунтовка XC-010 Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2=67

Примесь:1401 Пропан-2-он /478/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.075*67*26*100*10^-6=0.01306

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) = $1*67*26*100/(3.6*10^6)=0.0484$

Примесь:1210 Бутилацетат /110/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.075*67*12*100*10^-6=0.00603

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) = $1*67*12*100/(3.6*10^6)=0.02233$

Примесь:0621 Толуол /567/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.075*67*62*100*10^-6=0.03115

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*67*62*100/(3.6*10^6)=0.1154

Примесь: 2902 Взвешенные частицы р.м. 10 /116/

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), % , DK=30 Валовый выброс 3В (1), т/год , _M_=KOC*MS*(100-F2)*DK*10^-4=1*0.075*(100-67)*30*10^-4=0.00743

Максимальный из разовых выброс 3B (2), г/с , _G_=KOC*MS1*(100-F2)*DK/(3.6* 10^4)=1*1*(100-67)*30/(3.6*10^4)=0.0275

Источник загрязнения N 6034, Неорганизованный

<u>Источник выделения N 097, Краскопульт</u>

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS=0.04

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1=1

Марка ЛКМ: Растворитель Сольвент Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2=100

Примесь:2750 Сольвент нафта /1169/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=70

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), % , DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.04*100*70*100*10^-6=0.028

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*100*70*100/(3.6*10^6)=0.1944

Примесь:1411 Циклогексанон

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=30

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.04*100*30*100*10^-6=0.012

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*100*30*100/(3.6*10^6)=0.0833

Источник загрязнения N 6034, Неорганизованный

Источник выделения N 098, Краскопульт

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS=0.135

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1=1

Марка ЛКМ: Эмаль ЭП-773

Способ окраски: Пневматический

Доля летучей части (растворителя) в ЛКМ (табл. 2), % , F2=38

Примесь:1401 Пропан-2-он /478/

Доля вещества в летучей части ЛКМ (табл. 2), % , FPI=30

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.135*38*30*100*10^-6=0.0154

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6)

=1*38*30*100/(3.6*10^6)=0.03167

Примесь:0616 Ксилол (смесь изомеров о-, м-, п-) /327/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=40

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.135*38*40*100*10^-6=0.0205

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*38*40*100/(3.6*10^6)=0.0422

Примесь:1119 2-Этоксиэтанол /1526/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=30

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), % , DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.135*38*30*100*10^-6=0.0154

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*38*30*100/(3.6*10^6)=0.03167

Примесь: 2902 Взвешенные частицы р.м. 10 /116/

Доля аэрозоля при окраске, для данного способа окраски (табл. 3), % , DK=30 Валовый выброс 3В (1), т/год , _M_=KOC*MS*(100-F2)*DK*10^-4=1*0.135*(100-38)*30*10^-4=0.0251

Максимальный из разовых выброс 3B (2), г/с , _G_=KOC*MS1*(100-F2)*DK/(3.6* 10^4)= $1*1*(100-38)*30/(3.6*10^4)=0.0517$

<u>Источник загрязнения N 6034, Неорганизованный</u>

<u>Источник выделения N 099,Кисть, валик</u>

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS=0.075

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг . MS1=1

Марка ЛКМ: Грунтовка ХС-010

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), % , F2=67

Примесь:1401 Пропан-2-он /478/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=26

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), % , DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.075*67*26*100*10^-6=0.01306

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*67*26*100/(3.6*10^6)=0.0484

Примесь:1210 Бутилацетат /110/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=12

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.075*67*12*100*10^-6=0.00603

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6)

=1*67*12*100/(3.6*10^6)=0.02233

Примесь:0621 Толуол /567/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=62

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), % , DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.075*67*62*100*10^-6=0.03115

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*67*62*100/(3.6*10^6)=0.1154

Источник загрязнения N 6034, Неорганизованный Источник выделения N 100, Кисть, валик

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS=0.04

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1=1

Марка ЛКМ: Растворитель Р-2106 Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2=100

Примесь:2750 Сольвент нафта /1169/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=70

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), % , DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.04*100*70*100*10^-6=0.028

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*100*70*100/(3.6*10^6)=0.1944

Примесь:1411 Циклогексанон

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=30

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.04*100*30*100*10^-6=0.012

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*100*30*100/(3.6*10^6)=0.0833

Источник загрязнения N 6034, Неорганизованный Источник выделения N 101, Кисть, валик

Технологический процесс: окраска и сушка

Фактический годовой расход ЛКМ, тонн , MS=0.135

Максимальный часовой расход ЛКМ, с учетом дискретности работы оборудования, кг , MS1=1

Марка ЛКМ: Эмаль ЭП-773

Способ окраски: Кистью, валиком

Доля летучей части (растворителя) в ЛКМ (табл. 2), %, F2=38

Примесь:1401 Пропан-2-он /478/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=30

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.135*38*30*100*10^-6=0.0154

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*38*30*100/(3.6*10^6)=0.03167

Примесь:0616 Ксилол (смесь изомеров о-, м-, п-) /327/

Доля вещества в летучей части ЛКМ (табл. 2), %, FPI=40

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.135*38*40*100*10^-6=0.0205

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*38*40*100/(3.6*10^6)=0.0422

Примесь:1119 2-Этоксиэтанол /1526/

Доля вещества в летучей части ЛКМ (табл. 2), % , FPI=30

Доля растворителя, при окраске и сушке

для данного способа окраски (табл. 3), %, DP=100

Валовый выброс 3B (3-4), т/год , _M_=MS*F2*FPI*DP*10^-6=0.135*38*30*100*10^-6=0.0154

Максимальный из разовых выброс 3B (5-6), г/с , _G_=MS1*F2*FPI*DP/(3.6*10^6) =1*38*30*100/(3.6*10^6)=0.03167

4 ПРОВЕДЕНИЕ РАСЧЕТОВ И ОПРЕДЕЛЕНИЕ ПРЕДЛОЖЕНИЙ НОРМАТИВОВ НДВ

4.1 Характеристика мероприятий по регулированию выбросов в периоды особо неблагоприятных метеорологических условий (НМУ)

Населенные пункты Северо-Казахстанской области, кроме г. Петропавловск, не прогнозируются неблагоприятными метеорологическими условиями (Приложение 5).

НМУ - это метеорологические условия, способствующие накоплению (увеличению концентрации) загрязняющих веществ в приземном слое атмосферы. К ним можно отнести инверсии, туманы, сочетание неблагоприятных факторов, например, когда инверсия сочетается с неблагоприятным направлением ветра. В соответствии с «Методическими рекомендациями по НМУ» (РД 52.04.52-85, 1986 г.) все предприятия должны разрабатывать мероприятия по временному уменьшению выбросов ЗВ при НМУ. Согласно РД, в периоды НМУ при прочих равных условиях необходимо в первую очередь сокращать низкие выбросы, а также при наступлении НМУ следует в первую очередь снижать выбросы, поступающие в атмосферу из большого числа мелких источников.

На основании вышеизложенного, в проекте разработаны следующие мероприятия по снижению выбросов при наступлении НМУ на I режиме работы предприятия. Мероприятия по первому режиму должны обеспечивать сокращение концентрации загрязняющих веществ в приземном слое атмосферы примерно на 15%. Эти мероприятия носят организационный характер, их можно быстро осуществить, они не требуют существенных затрат и не приводят к снижению производительности предприятия. І режим работы: усилить контроль за работой всех технологических процессов и оборудования; - запретить оборудования форсированном режиме; рассредоточить работу технологического оборудования, задействованного едином не В технологическом процессе, при работе которого выбросы вредных веществ в атмосферу достигают максимальных значений: - по возможности уменьшить движение транспорта на территории предприятия.

Эти мероприятия позволяют сократить объем выбросов и соответственно концентрации загрязняющих веществ в атмосфере на 15-20%, что, учитывая незначительное воздействие источников предприятия на загрязнение воздушного бассейна, позволит избежать увеличения концентрации ЗВ при наступлении НМУ.

4.2 Расчеты и анализ уровня загрязнения атмосферы

Расчет и анализ уровня загрязнения атмосферы выполнен в соответствии с Приложением №18 к приказу Министра охраны окружающей среды РК от 18.04.2008 года №100-п. с использованием программного комплекса «ЭРА», версия 1.7.

- при максимальной нагрузке технологического оборудования; при автоматическом поиске опасного направления и скорости ветра для нахождения максимальной концентрации; с учетом фоновых концентраций;
- дифференцировано: для производства в летний период, при наиболее неблагоприятных условиях.

Анализ результатов рассеивания полей приземных концентраций загрязняющих веществ показал, что превышений ПДК на границах санитарно-защитной зоны не существует (таблица 4.2.1).

В качестве критерия для оценки уровня загрязнения атмосферного воздуха применялись значения максимально разовых предельно допустимых концентраций веществ в атмосферном воздухе для населенных мест и ориентировочно безопасные уровни воздействия (ОБУВ).

Расчеты рассеивания выполнены на максимальную производительность оборудования, с учетом максимально возможной одновременности их работы.

Расчет максимально возможных концентраций в приземном слое атмосферы выполнен для всех загрязняющих веществ.

Таблица 4.2.1

Перечень источников, дающих наибольшие вклады в уровень загрязнения атмосферы

Код	перечень источ		альная приземная		инаты точек				Принадлежность	
веще- ства / группы	Наименование вещества	концентрация (обща		с макси призем	имальной ной конц.	наибо	льший вк концентра	пад в ацию	источника (производство, цех, участок)	
сумма-		в жилой	на границе		й на грани	N	% вкл	тада		
ции		зоне	санитарно -	зоне	це С33	ист.	2160	000	_	
			защитной зоны	X/Y	X/Y		ЖЗ	C33	40	
1	2	3	4	5	6	7	8	9	10	
			I Существующее положен	l INE		ļ			I	
					Ì					
	'	3 a ı	рязняющие веще	ества:	i i	I	 I I		· 1	
	Азот (IV) оксид (Азота диоксид)		0.69658(0.64596)/ 0.13932(0.129196) вклад предпр.=92.7%		2123 /1270	6028		28.9	Автотранспорт (Открытая площадка)	
						0033		15.7	Дизельная электростанция	
	Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/		0.7869/ 0.7869		1613 /1679	0011		32.3	Магистральная насосная	
	,sp.24.					0012 0010		31.7 17.2	Наливная насосная Магистральная насосная	
2902	Взвешенные частицы PM10		0.52304(0.51261)/ 0.15691(0.153781) вклад предпр.= 98%		1659 /1543	6009		74.1	Мехмастерская	
	Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола	0.8074/ 0.24222	0.9371/ 0.28113	1800 /1253	1703 /1442	0026 6015		23.2 54.7	Земляные работы	
2930	кремнезем и др.) Пыль абразивная (Корунд белый; Монокорунд)	0.52199/ 0.02088	0.94972/ 0.03799	1800 /1253	2123 /1270	6016 0026	50.0	11.6	Земляные работы Мехмастерская	
						6033	8.0		Мехмастерская	
Группы суммации:										
	Азот (IV) оксид (Азота диоксид)	0.5062(0.39365) вклад предпр.=77.8%	0.75692(0.70225) вклад предпр.=92.8%	1800 /1253	2123 /1270	6028	37.3	27.6	Автотранспорт (Открытая	

	0330	Сера диоксид (Ангидрид					0033		16.4	площадка) Дизельная электростанция
П	Примечание:В таблице представлены вещества (группы веществ), максимальная расчетная концентрация которых >= 0.5 ПДК									

4.3 Предложения по нормативам НДВ

Предложения по нормативам НДВ в атмосферу на существующее положение, перспективу и на год достижения НДВ представлен в таблице 4.3. По всем загрязняющим веществам предлагается установить нормативы предельно допустимых выбросов на основе расчетных величин.

Таблица 4.3.1

Нормативы выбросов загрязняющих веществ в атмосферу на существующее положение и на год достижения НДВ

		lio.	HOWCHING N	па год до	стижения і	<u>ід</u> Р		
Производство Но- Нормативы выбросов загрязняющих веществ								
цех, участок	ис-	существующ	ее положение					год
Y.0.	T04-		25 год	на 2026-	2034 год	н	ДВ	дос-
Код и наименование	ника					·		тиже
загрязняющего вещества	выб-	г/с	т/год	г/с	т/год	г/с	т/год	ния
1	poca 2	3	4	5	6	7	8	НДВ 9
· · · · · · · · · · · · · · · · · · ·		3	Организов			,	0	3
**Натрий гидроксид (Натрия	гилроокись: На						
Аналитическая лаборатория	0036	0,000786	0,02478	0,000786	0,02478	0,000786	0,02478	2025
лаооратория	0037	0,000524	0.01652	0,000524	0,01652	0,000524	0,01652	2025
	0038	0,000262	0,00826	0,000262	0,00826	0,000262	0,00826	
Итого:		0,001572	0,04956	0,001572	0,04956	0,001572	0,04956	
**Азот (IV) оксид (Азс	та дио	ксид) (0301)	•			•		
Дизельная	0033	0,3969	0,030067	0,3969	0,030067	0,3969	0,030067	2025
электростанция								
	0034	0,2572	0,150335	0,2572	0,150335	0,2572	0,150335	2025
	0035	0,0208	0,015033	0,0208	0,015033	0,0208	0,015033	2025
Автотранспорт	0039	0,0194496		0,0194496		0,0194496		2025
(Бокс на 11 м/м) Итого:		0,6943496	0,195435	0,6943496	0,195435	0,6943496	0,195435	
итого. **Азотная кислота /по	MODE			0,0943490	0,195455	0,0943490	0,195455	
- Азотная кислота /пс Аналитическая паборатория	0036	0,0015	0,047304	0,0015	0,047304	0,0015	0,047304	2025
паооратория	0037	0,001	0,031536	0,001	0,031536	0,001	0,031536	2025
	0038	0,0005	0,015768	0,0005	0,015768	0,0005	0,015768	
Итого:		0,003	0,094608	0,003	0,094608	0,003	0,094608	
**Аммиак (0303)							·	
Аналитическая ́ паборатория	0036	0,0001476	0,00465	0,0001476	0,00465	0,0001476	0,00465	2025
	0037	0,0000984	0,0031	0,0000984	0,0031	0,0000984	0,0031	2025
	0038	0,0000492	0,00155	0,0000492	0,00155	0,0000492	0,00155	2025
Итого:		0,0002952	0,0093	0,0002952	0,0093	0,0002952	0,0093	
**Азот (II) оксид (Азот	га окси,		ı					
Дизельная	0033	0,5159	0,039087	0,5159	0,039087	0,5159	0,039087	2025
электростанция								
	0034	0,3344	0,195435	0,3344	0,195435	0,3344	0,195435	2025
	0035	0,0271	0,019544	0,0271	0,019544	0,0271	0,019544	2025
Автотранспорт	0039	0,00316056		0,00316056		0,00316056		2025
(Бокс на 11 м/м)		0.00056056	0.254066	0.00056056	0.054066	0.00056056	0.054066	
Итого: **Солдиод имелете (0	216)	0,88056056	0,254066	0,88056056	0,254066	0,88056056	0,254066	
**Соляная кислота (0 Аналитическая	0036	0,000396	0,01248	0,000396	0,01248	0,000396	0,01248	2025
лаборатория	0037	0,000264	0,00832	0,000264	0,00832	0,000264	0,00832	2025
	0038	0,000132	0,00416	0,000132	0,00416	0,000132	0,00416	
Итого:	0000	0,000792	0,02496	0,000792	0,02496	0,000792	0,02496	
**Кислота серная (03	22)	5,000.00	-,	5,000.0=	5,52.55	-,,,,,,,,		1
Аккумуляторный участок	0027	0,0000095	0,0000171	0,0000095	0,0000171	0,0000095	0,0000171	2025
•	0027	·						
	0027	0,0000801	0,00252	0,0000801	0,00252	0,0000801	0,00252	2025
			·	0,0000801 0,0000534	0,00252 0,00168	0,0000801 0,0000534	·	
	0036	0,0000801	0,00252 0,00168 0,00084	,	·	·	0,00252 0,00168 0,00084	202
паборатория	0036 0037	0,0000801	0,00168	0,0000534	0,00168	0,0000534	0,00168	202
паборатория Итого:	0036 0037 0038	0,0000801 0,0000534 0,0000267	0,00168 0,00084	0,0000534 0,0000267	0,00168 0,00084	0,0000534 0,0000267	0,00168 0,00084	202
паборатория Итого: **Углерод (Сажа) (03: Цизельная	0036 0037 0038	0,0000801 0,0000534 0,0000267	0,00168 0,00084	0,0000534 0,0000267	0,00168 0,00084	0,0000534 0,0000267	0,00168 0,00084	202
паборатория Итого: **Углерод (Сажа) (03: Цизельная	0036 0037 0038 28)	0,0000801 0,0000534 0,0000267 0,0001697	0,00168 0,00084 0,0050571	0,0000534 0,0000267 0,0001697	0,00168 0,00084 0,0050571	0,0000534 0,0000267 0,0001697	0,00168 0,00084 0,0050571	2025
Аналитическая лаборатория Итого: **Углерод (Сажа) (03: Дизельная электростанция	0036 0037 0038 28) 0033 0034 0035	0,0000801 0,0000534 0,0000267 0,0001697	0,00168 0,00084 0,0050571	0,0000534 0,0000267 0,0001697	0,00168 0,00084 0,0050571 0,005011	0,0000534 0,0000267 0,0001697 0,0661 0,0429 0,0035	0,00168 0,00084 0,0050571 0,005011	2025 2025 2025 2025
лаборатория Итого: **Углерод (Сажа) (03: Дизельная	0036 0037 0038 28) 0033	0,0000801 0,0000534 0,0000267 0,0001697 0,0661 0,0429	0,00168 0,00084 0,0050571 0,005011 0,025056	0,0000534 0,0000267 0,0001697 0,0661 0,0429	0,00168 0,00084 0,0050571 0,005011 0,025056	0,0000534 0,0000267 0,0001697 0,0661 0,0429	0,00168 0,00084 0,0050571 0,005011	2025 2025

дивельеная 0.033 0,1323 0,010022 0,1323 0,010022 2025 2	**Сера диоксид (Анги	дрид с	ернистый) (0330)					
0.000 0.00012 0.00012 0.0000000 0.000012 0.0000000 0.000011 0.00000 0.000011 0.00000 0.000011 0.000000 0.000011 0.000000 0.000011 0.0000000000	Дизельная				0,1323	0,010022	0,1323	0,010022	2025
антогранспорт Боко: в 11 мм)	электростанция	0034	0.0857	0.050112	0.0857	0.050112	0.0857	0.050112	2025
Боис Isa 11 M/M) (потестот (Сероварогара) (3033) (потестот (Сероварогара) (3034) (потестот (Сер			0,0069						
титого	Автотранспорт	0039	0,0018764		0,0018764		0,0018764		2025
"Thinking post Continue Co			0 2267764	0.065145	0 2267764	0.065145	0 2267764	0.065145	
Ревервуарный 0001 0.00012 0.0002864 0.000122 0.0002864 0.00002864 0.00002864 0.00002864 0.00002864 0.00002864 0.00002864 0.00002864 0.00002864 0.00002864 0.00002864 0.00002864 0.000002864 0.000002864 0.000002864 0.000002864 0.000002864 0.000002864 0.000002864 0.000002864 0.000002864 0.000000286 0.00000284 0.0000000284 0.0000000284 0.0000000284 0.00000000000000000000000000000000000		еровол		0,003143	0,2207704	0,003143	0,2207704	0,003143	
0002	Резервуарный			0,0002864	0,000122	0,0002864	0,000122	0,0002864	2025
0003 0,000122 0,00002864 0,000122 0,00002864 0,000122 0,00002864 2025 0,00064 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066 0,000122 0,00002864 2025 0,00066	парк	0000	0.000400	0.0000004	0.000400	0.0000004	0.000400	0.000004	0005
0004 0.000122 0.0002864 0.000122 0.0002864 0.000122 0.0002864 2025 0.0006 0.000122 0.0002864 0.000123 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000352 0.00044 0.000052 0.0000052 0.000000052 0.00000052 0.0000000052 0.000000052 0.000000052 0.000000052 0.000000052 0.000000052 0.000000052 0.0000000000000000000000000000000000									
0005 0.000122 0.0002864 0.000122 0.0002864 0.000122 0.0002864 2025 0.000122 0.0002864 2025 0.000122 0.0002864 2025 0.000122 0.0002864 2025 0.000122 0.0002864 2025 0.000122 0.0002864 2025 0.000122 0.0002864 2025 0.000122 0.0002864 2025 0.000144 0.000122 0.0002864 2025 0.000144 0.000122 0.0002864 2025 0.000144 0.000122 0.0002864 2025 0.000144 0.000132 0.000044 0.000132 0.000044 0.000132 0.000044 0.000132 0.000044 0.000132 0.000044 0.000132 0.000044 0.000132 0.000044 0.000132 0.000044 0.000132 0.000044 0.000000000000000000000000							- /		
Магистральная 007 0,000122 0,00002864 0,000122 0,00002864 2025 0,000464 0,000122 0,00002864 2025 0,000464 0,000122 0,00002864 2025 0,000464 0,000122 0,00002864 2025 0,000464 0,000122 0,00002864 2025 0,00046 0,000122 0,00002864 2025 0,00046 0,000123 0,000044 0,000132 0,000044 0,000132 0,000044 0,000132 0,000044 0,000132 0,00044 0,000132 0,000044 0,000132 0,000044 0,00013 0,000044 0,00013 0,000044 0,00013 0,000044 0,00013 0,000005 0,000000244 0,000005 0,000000244 0,000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000244 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,000000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000000044 0,0000005 0,00000044 0,0000005 0,00000044 0,00000005 0,00000044 0,0000005 0,00000044 0,0000005 0,000000044 0,0000005 0,000000044 0,0000005 0,000000044 0,00000005 0,00000044 0,0000005 0,00000044 0,0000005 0,000000044 0,0000005 0,00000044 0,0000005 0,00000044 0,000000044 0,0000005 0,00000044 0,0000005 0,000000044 0,00000005 0,00000044 0,0000005 0,00000044 0,0000005 0,00000		0005	0,000122		0,000122		0,000122		2025
магистральная ролов 0,000122 0,0002864 0,000122 0,0002864 2025 магистральная олго 0,000044 0,004352 0,00044 0,004352 0,00044 0,004352 2025 магистральная 0011 0,00044 0,004352 0,00044 0,004352 0,00044 0,004352 2025 магистральная 0013 0,000044 0,004352 0,00044 0,004352 0,00044 0,004352 2025 магистральная 0013 0,000044 0,000005 0,000004 0,00035 0,0000024 0,000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000024 0,0000005 0,00000004 0,0000005 0,00000004 0,000005 0,0000004 0,000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,0000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,0000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,0000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,000005 0,000004 0,									
магисгральная доло долоон дол									
насосная опота оп	Магистральная								
налияная наскосная Келевнодрожиная стагажда Амкости сбора 0013 0,00044 0,004352 0,00044 0,0013 0,00044 0,0013 0,00044 0,0013 0,00044 0,0013 0,000044 0,0013 0,0000024 0,0000005 0,00000054 0,00000054 0,0000005539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,000000244 0,000000539 0,00000054 0,000000539 0,00000054 0,00000054 0,00000054 0,00000054 0,000000539 0,00000054 0,000000539 0,00000054 0,00000054 0,000000539 0,0000055 0,0000054 0,000000539 0,0000054 0,00000539 0,0000054 0,00000539 0,0000054 0,0000053 0,0000054 0,0000054 0,0000054 0,0000054 0,0000054<	насосная	0010	0,00011	0,001002	0,00011	0,001002	0,00011	0,001002	2020
насосная (желеянадорожная опровод (желеянадорожная стакада встакада (желеянадорожная стакада (желеянадорожная стакада (желеянадорожная стакада (желеянадорожная стакада (желеянадорожная стакада (желеянадорожная								,	
Келевнодорожная ролза 0,0004 0,0000024 0,0000053 0,0000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000053 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,00000055 0,00000024 0,0000005 0,00000055 0,00000024 0,0000055 0,00000024 0,0000055 0,00000024 0,0000055 0,00000024 0,0000055 0,00000024 0,0000055 0,00000024 0,0000055 0,00000024 0,000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000000 0,000004 0,0000000 0,000004 0,0000004 0,0000005 0,0000004 0,0000005 0,0000004 0,0000000 0,0000004 0,0000000 0,000004 0,0000000 0,000004 0,0000000 0,000004 0,0000000 0,000004 0,0000000 0,000004 0,0000000 0,000004 0,0000000 0,0000004 0,0000000 0,000004 0,0000000 0,000004 0,0000000 0,0000004 0,0000000 0,000000 0,000000 0,000000 0,000000	Наливная	0012	0,00044	0,004352	0,00044	0,004352	0,00044	0,004352	2025
ретажда в можости сбора		0013	0 00044	0.0013	0 00044	0.0013	0 00044	0 0013	2025
Вмюсти сбора 0.014 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000055 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.00000244 0.00000053 0.00000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.000000244 0.00000053 0.0000000000000000000000000000000000	эстакада	0013	0,00044	0,0013	0,00044	0,0013	0,00044	0,0013	2023
течек	Ёмкости сбора	0014	0,00000024	0,0000005	0,00000024	0,0000005	0,00000024	0,0000005	2025
0016 0,000000244 0,000000539 0,000000244 0,00000055 0,0000055 0,000005	утечек	00:-	0.0000000000000000000000000000000000000	0.0000000	0.00000000		0.00000000	0.000000	000
0017 0,000000244 0,00000055 0,000000244 0,00000055 0,00000055 2025						.,			
0018 0,000000244 0,000000244 0,000000244 0,00000053 0,000000244 0,00000053 0,000000053 0,000000053 0,000000053 0,000000053 0,000000053 0,00000053 0,000000053 0,00000054 0,00000053 0,0000054 0,00000053 0,0000054 0,000000176 0,0000054 0,00000054 0,00000053 0,0000054 0,00000054 0,0000054 0,0000054 0,0000054 0,0000054 0,0000054 0,0000054 0,0000054 0,0000054 0,0000054 0,0000054 0,000054 0,000054 0,000054 0,000054 0,000054 0,000054 0,00055 0,00054 0,00055 0,00054 0,00055 0,00054 0,00054 0,00054 0,00055 0,00054									
0021									
Нефтеповушка 0023 0,0000048 0,0000019 0,0000048 0,0000018 0,000				0,000000539					
0024 0,0000048 0,0000006 0,0000068 0,0000068 0,0000068 0,00000176 0,000001704 0,016654632 0,002801704 0,016654632 0,002801704 0,016654632 0,002801704 0,016654632 0,002801704 0,016654632 0,002801704 0,016554632 0,002801704 0,025056 0,3307 0,025056 0,3307 0,025056 0,3307 0,025056 0,3307 0,025056 0,3307 0,025056 0,3307 0,025056 0,3307 0,025056 0,3307 0,025056 0,000765 0,00766 0,0									
того:	Нефтеловушка								
Атгого: 0,002801704 0,016654632 0,002801704 0,016654632 0,016654632 0,016654632 0,016654632 0,016654632 0,016654632 0,016654632 0,016654632 0,01704 0,016654632 0,01704 0,025056 0,3307 0,025056 0,03307 0,025056 0,03707 0,025056 0,03307 0,025056 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,025056 0,0963 0,0963 0,025056 0,00465 0,0174 0,012528 0,025056 0,0367 0,01658 0,0563 0,0651 0,0651 0,0651 0,0651 0,00776 0,000738 0,02325 0,000738 0,002325 0,000756 0,000775 0,000465 0,000775 0,000465 0,000775 0,000465 0,000775 0,000465									
Дизельная влектростанция 0033 0,3307 0,025056 0,3307 0,025056 0,3307 0,025056 0,205 влектростанция 0034 0,2144 0,125279 0,2144 0,125279 0,2144 0,125279 0,2144 0,125279 0,2144 0,12528 0,0174 0,012528 0,0174 0,012528 0,0174 0,012528 0,09663 0,000640 0,000765 0,000640 0,000738 0,000640 0,000738 0,02325 0,000738 0,02325 0,000738 0,02325 0,000738 0,02325 0,000738 0,02325 0,000738 0,00325 0,000738 0,00324 0,000646 0,000775 0,000246 0,000465 0,000465 0,000465 0,000465 0,000466 0,000465 0,000466 0,00046 0,000466 0,00046 0,000466 0,00046 0,00	Итого:	0020							2020
ялектростанция 0034 0,2144 0,125279 0,2144 0,125279 0,2144 0,125279 2025 0,00738 0,0174 0,012528 2025 0,09663 0,00073 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000446 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,00462 0,000411 0,00255 0,00081 0,00081				1	1				
О034 О,2144 О,125279 О,2144 О,125279 О,2144 О,12528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0174 О,012528 О,0025 О,00063 О,00664 О,00663 О,00664 О,00663 О,00664 О	• •	0033	0,3307	0,025056	0,3307	0,025056	0,3307	0,025056	2025
Автотранспорт Боке на 11 м/м)	электростанция	0034	0.2144	0 125270	0.2144	0 125279	0.2144	ი 125270	2025
Автотранспорт Бокж на 11 м/м)									
Атгото: 0,65913 0,162863 0,65913 0,162863 0,65913 0,162863 "Бензол (0602) "Бензол (0602) 0,000738 0,000738 0,002325 0,000738 0,002325 0,000738 0,002325 0,000738 0,002325 0,000738 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001478 0,0002433 0,00765 0,0002433 0,00064 0,0002433 0,000765 0,0002433 0,00064 0,000244 0,000244 0,000244 0,000244 0,000244 0,000244 0,000244	Автотранспорт	0039	0,09663	·	0,09663		0,09663	·	
"Бензол (0602) Аналитическая 0036 0,000738 0,002325 0,000738 0,02325 0,000738 0,002325 2025 10360ратория 0037 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000246 0,00775 0,000246 0,0075 0,000243 0,00465 0,000250 0,000433 0,00065 0,0002433 0,00065 0,0002433 0,00065 0,0002433 0,00065 0,0002433 0,00065 0,0002433 0,00065 0,0002433 0,00065 0,0002433 0,000662 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,000486 0,00153 0,0004866 0,01554 0,000493 0,00501 0,0050	'		0.05040	0.400000	0.05040	0.400000	0.05040	0.400000	
Аналитическая аборатория 0036 0,000738 0,00325 0,000738 0,02325 0,000738 0,000325 2025 037 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 0,000492 0,01476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,001476 0,0465 0,001476 0,001476 0,001476 0,001476 0,0465 0,001476 0,001477 0,0			0,65913	0,162863	0,65913	0,162863	0,65913	0,162863	
паборатория 0037 0,000492 0,0155 0,000492 0,0155 0,000492 0,0155 2025 0,000492 0,0155 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,00775 0,000246 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,0465 0,001476 0,002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,000611 0,00255 0,000811 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,01554 0,000483 0,00501 0,15798 0,0038 0,000601 0,05266 0,00167 0,05266 0	Аналитическая	0036	0.000738	0.02325	0.000738	0.02325	0.000738	0.02325	2025
Атого: 0038 (0,000246) (0,001476) 0,000755 (0,0001476) 0,000246 (0,00775) 0,000246 (0,00775) 0,000246 (0,00775) 0,000246 (0,00775) 0,000247 (0,001476) 0,0465 0,001476 0,0001476 0,0465 0,001476 0,00045 0 <td>лаборатория</td> <td></td> <td>2,000100</td> <td>-,</td> <td>5,000</td> <td>5,52525</td> <td>,</td> <td>•</td> <td></td>	лаборатория		2,000100	-,	5,000	5,52525	,	•	
Artoro:				0,0155		0,0155			2025
**Метилбензол (Толуол) (0621) Аналитическая 0036 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 2025 наборатория 0037 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0002433 0,000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0154 0,000489 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,001554 0,0002958 0,00324 0,0002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,0002958 0,00324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324 0,0002958 0,000324	Mara	0038							2025
Аналитическая поозб 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 0,0002433 0,00765 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,000255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,000255 0,0000811 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,004662 0,001479 0,004662 0,001479 0,004662 0,001479 0,004662 0,001479 0,004662 0,001479 0,004662 0,001479 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,0002958 0,09324 0,0002958 0,00334 0,00501 0,05798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,		оп) (Л6		0,0465	0,001476	0,0465	0,001476	0,0465	
паборатория 0037 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0051 0,0001622 0,0001622 0,0051 0,0001622 0,0001622 0,0001622 0,0001622 0,0001622 0,0001622 0,000163 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0167 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,001479 0,04662 0,001479 0,001479 0,001479 0,04662 0,001479	Аналитическая			0,00765	0,0002433	0,00765	0,0002433	0,00765	2025
Итого: 0038 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0000811 0,00255 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,00493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,0002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,0034 0,00506 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,0026 0	лаборатория		,			•			
Итого: 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,0153 0,0004866 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 0,001479 0,004662 0,001479 0,000486 0,03108 0,000986 0,03108 0,000986 0,03108 0,000986 0,03108 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,0002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,002958 0,00324 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,05266 0,00167 0,005266 0,00167									2025
**Углерод тетрахлорид (0906) Аналитическая 0036 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 2025 лаборатория 0037 0,000986 0,03108 0,000986 0,03108 0,000986 0,03108 2025 0038 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 2025 Итого: 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 **Этиловый спирт (1061) Аналитическая 0036 0,00501 0,15798 0,00501 0,005266 0,00167 0,00167 0,0016	Итого:	0038					,		2025
Аналитическая паборатория 0036 0,001479 0,04662 0,001479 0,04662 0,001479 0,04662 2025 0,001479 0,000986 0,03108 0,000986 0,03108 0,000986 0,03108 0,000986 0,03108 0,000986 0,03108 0,001554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,0002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,00324 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,05266 0,00167 0,00167 0,0		L 1Д (090		0,0133	0,0004000	0,0133	0,0004000	0,0100	
паборатория 0037 0,000986 0,03108 0,000493 0,01554 0,000501 0,15798 0,000501 0,15798 0,000501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,01592 0,0034 0,10532 0,00334 0,10532 0,00334 0,10532 0,0034 0,00532 0,0054 0,00167 0,05266 0,00167 0,	Аналитическая			0,04662	0,001479	0,04662	0,001479	0,04662	2025
Итого: 0038 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,01554 0,000493 0,001554 0,0002958 0,09324 0,0002958 0,09324 0,0002958 0,09324 0,0002958 0,09324 0,0002958 0,09324 0,0002958 0,09324 0,0002958 0,09324 0,0002958 0,009324 0,0002958 0,009324 0,0002958 0,000324 0,0002958 0,000501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,01532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,005266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,00526 0,00167 0,005	лаборатория								
Итого: 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,002958 0,09324 0,00324 0,00324 0,00324 0,00324 0,00324 0,00324 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 0,00501 0,01532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,005266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00102 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,00102 0,31596 0,00102 0,31596 0,00102 0,31596 0,00102 0,001203 0,001203 0,001203 0,001203 0,001203 0,001203 0,001203 0,001203 0,001203 0,001203 0,006013 0,00601 0,0008 0,000601 0,000						- /			
**Этиловый спирт (1061) Аналитическая 0036 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 2025 паборатория 0037 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 2025 ООЗВ 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,001203 0	Итого:	0038							2025
Аналитическая 0036 0,00501 0,15798 0,00501 0,15798 0,00501 0,15798 2025 паборатория 0037 0,00334 0,10532 0,00334 0,10532 2025 0038 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,001203 0,00120		061)	0,002000	5,55524	3,002000	5,55524	3,002000	0,00024	<u> </u>
0037 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 0,00334 0,10532 2025 Итого: 0,01002 0,31596 0,01002 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,001203 0,001203 0,001203 0,001203 0,0103 0,006013 0,0103 0,006013 0,00601 0,0008 0,000601 0,0008	Аналитическая		0,00501	0,15798	0,00501	0,15798	0,00501	0,15798	2025
Итого: 0038 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,00167 0,05266 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,0012	лаборатория	000							00-
Итого: 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,31596 0,01002 0,01596 0,001203 0,0159 0,001203 0,001203 0,0159 0,001203 0,									
**Проп-2-ен-1-аль (Акролеин) (1301) Дизельная 0033 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,006013 0,006013 0,006013 0,006013 0,006013 0,00601 0,0008 0,0008 0,0008 0,0008 0,0008 0,0008 0,0008 0,0	Итого:	0036							2020
Дизельная 0033 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 2025 0,001203 0,0159 0,001203 0,0159 0,001203 0		ролеи		2,2.000	-,	2,2.000	-,	2,3.000	l:
Итого: 0034 0,0103 0,006013 0,006013 0,006013 0,006013 0,006013 0,006013 0,006013 0,00601 0,0008 0,000601 0,0008 0,000601 0,0008 0,000601 0,0008 0,000601 0,0008 0,000601 0,0008 0,000601 0,0008 0,000601 0,0008 0,000601 0,0007 0,007817 0,007817 0,007817 0,007817 0,007817 0,007817 0,007817 *Метаналь (1325) Дизельная 0033 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 0,001203 0,001203	Дизельная			0,001203	0,0159	0,001203	0,0159	0,001203	2025
Итого: 0035 0,0008 0,000601 0,0008 0,000601 0,000601 0,000601 0,0008 0,000601 0,000601 0,000601 0,000601 0,000601 0,0007 0,0007 0,007817 0,007 0,007817 0,007817 0,007817 0,007817 0,007817 0,007817 0,007817 0,007817 0,0	электростанция	0004	0.0400	0.000040	0.0400	0.000040	0.0400	0.000040	2005
Итого: 0,027 0,007817 0,027 0,007817 0,027 0,007817 0,027 0,00781									
*Метаналь (1325) Дизельная 0033 0,0159 0,001203 0,0159 0,001203 0,0159 0,001203 2025	Итого:	0000	-	·			-	•	2020
	**Метаналь (1325)								
электростанция	Дизельная `	0033	0,0159	0,001203	0,0159	0,001203	0,0159	0,001203	2025
	электростанция		i I						

	0034	0,0103	0,006013	0.0103	0,006013	0,0103	0,006013	2025
	0034	0,0103	0,0006013	0,0103	0,0006013	0,0008	0,0006013	2025
Итого:	5555	0,000	0,007817	0,000	0,007817	0,000	0,007817	2020
**Пропан-2-он (Ацето	н) (140		0,001.011	0,02.	0,00.0	0,02.	0,00.0	
Аналитическая	0036	0,001911	0,06024	0,001911	0,06024	0,001911	0.06024	2025
лаборатория		-,-,-,-	-,	-,-,-,-	-,	-,	-,,,,,,,	
	0037	0,001274	0,04016	0,001274	0,04016	0,001274	0,04016	2025
	0038	0,000637	0,02008	0,000637	0,02008	0,000637	0,02008	2025
Итого:		0,003822	0,12048	0,003822	0,12048	0,003822	0,12048	
**Уксусная кислота (1						i		
Аналитическая	0036	0,000576	0,01815	0,000576	0,01815	0,000576	0,01815	2025
лаборатория								
	0037	0,000384	0,0121	0,000384	0,0121	0,000384	0,0121	2025
14	0038	0,000192	0,00605	0,000192	0,00605	0,000192	0,00605	2025
Итого:		0,001152	0,0363	0,001152	0,0363	0,001152	0,0363	
**Бензин (нефтяной,	малосе 0039		есчете на углеро	од/ (2704) 0,00241	1	0,00241	ı	2025
Автотранспорт (Бокс на 11 м/м)	0039	0,00241		0,00241		0,00241		2025
(вокс на тт м/м <i>)</i> Итого:		0,00241		0,00241		0,00241		
**Масло минерально	o Hoch T		OO MOUIMIUOO III		s \ (2735\	0,00241		
Магистральная	0010	0,00833	ое, машинное, ци 0,263	0,00833	0,263	0,00833	0,263	2025
насосная	0010	0,00033	0,203	0,00033	0,203	0,00033	0,203	2023
Итого:		0,00833	0,263	0,00833	0,263	0,00833	0,263	
**Углеводороды пред	епьны	,	,		,		0,200	
Резервуарный	0001	0,0435	0,102	0,0435	0,102	0.0435	0,102	2025
парк		5,0 100	0,102	5,5 150	5,152	5,5 100	5,152	
•	0002	0,0435	0,102	0,0435	0,102	0,0435	0,102	2025
	0003	0,0435	0,102	0,0435	0,102	0,0435	0,102	2025
	0004	0,0435	0,102	0,0435	0,102	0,0435	0,102	2025
	0005	0,0435	0,102	0,0435	0,102	0,0435	0,102	2025
	0006	0,0435	0,102	0,0435	0,102	0,0435	0,102	2025
	0007	0,0435	0,102	0,0435	0,102	0,0435	0,102	2025
	0008	0,0435	0,102	0,0435	0,102	0,0435	0,102	2025
Магистральная	0010	0,1566	1,55	0,1566	1,55	0,1566	1,55	2025
насосная								
	0011	0,1566	1,55	0,1566	1,55	0,1566	1,55	2025
Наливная	0012	0,1566	1,55	0,1566	1,55	0,1566	1,55	2025
насосная	0040	0.4500	0.404	0.4500	0.404	0.4500	0.404	2025
Железнодорожная	0013	0,1566	0,464	0,1566	0,464	0,1566	0,464	2025
эстакада	0014	0.000007	0.000403	0.000007	0.000102	0.000007	0.000400	2025
Ёмкости сбора	0014	0,000087	0,000192	0,000087	0,000192	0,000087	0,000192	2025
утечек	0015	0,000087	0,000192	0,000087	0,000192	0,000087	0,000192	2025
	0016	0,000087	0,000192	0,000087	0,000192	0,000087	0,000192	2025
	0017	0,000087	0,0001958	0,000087	0,0001958	0,000087	0,0001958	2025
	0018	0,000087	0,0001958	0,000087	0,0001958	0,000087	0,0001958	2025
	0021	0,000087	0.000192	0,000087	0.000192	0,000087	0,000192	2025
	0022	0,000087	0,000192	0,000087	0,000192	0,000087	0,000192	
Нефтеловушка	0023	0,001695	0,000662	0,001695	0,000662	0,001695	0,000662	2025
'	0024	0,001695	0,000217	0,001695	0,000217	0,001695	0,000217	2025
	0025	0,019386	0,0004188	0,019386	0,0004188	0,019386	0,0004188	2025
Дизельная	0033	0,1587	0,012027	0,1587	0,012027	0,1587	0,012027	2025
электростанция								
	0034	0,1029	0,060134	0,1029	0,060134	0,1029	0,060134	2025
	0035	0,0083	0,006013	0,0083	0,006013	0,0083	0,006013	2025
Автотранспорт	0039	0,016735		0,016735		0,016735		2025
(Бокс на 11 м/м)		4.05.4.5	0.040000	4.00.440-	0.040000	4 00 1105	0.040000	
Итого:		1,284420	6,0108234	1,284420	6,0108234	1,284420	6,0108234	
**Взвешенные части			0.00005445	0.0001515	0.00005445	0.0004546	0.00005445	0005
Мехмастерская	0026	0,0001512	0,00005446	0,0001512	0,00005446	0,0001512	0,00005446	2025
Автотранспорт	0039	0,00022	0,0000792	0,00022	0,0000792	0,00022	0,0000792	2025
(Бокс на 11 м/м)		0.0000740	0.00040000	0.0000740	0.0004.0000	0.0000740	0.00040000	
Итого: **Пили образивное (I	for:	0,0003712	0,00013366	0,0003712	0,00013366	0,0003712	0,00013366	
**Пыль абразивная (Н	корунд 0026	оелыи; Моноко 0,0001008	рунд) (2930) 0,00003626	0,0001008	0,00003626	0,0001008	0,00003626	2025
Мехмастерская Итого:	0020	0,0001008	0,00003626	0,0001008	0,00003626	0,0001008	0,00003626	2023
итого. Итого по организован		3,954232664	7,827629052	3,954232664	7,827629052	3,954232664	7,827629052	
итого по организован	IITDIIVI		7,027029032 Неорганизо			3,334232004	1,021023032	
**диЖелезо триоксид	ı (Жora		•		INAMERI			
дижелезо гриоксид Участок сварки и	6010	за оксид) /в пер 0,03111	осчете на желез 0,09338	0,03111	0,09338	0,03111	0,09338	2025
резки	0010	0,03111	0,03330	0,03111	0,03330	0,03111	0,09000	2023
итого:		0,03111	0,09338	0,03111	0,09338	0,03111	0,09338	
**Марганец и его сое,	линени Линени				0,00000	0,00111	0,00000	
Участок сварки и	6010	0,0010668	ла марганца (тv) 0,00417	0,0010668	0,00417	0,0010668	0,00417	2025
резки	30.0	3,0070000	3,00417	3,0070000	0,00-17	3,5510000	0,00-17	
Итого:		0,0010668	0,00417	0,0010668	0,00417	0,0010668	0,00417	
**Азот (IV) оксид (Азо	та дио		-,	,	-,	,	-,	-
Участок сварки и	6010		0,02562	0,0098088	0,02562	0,0098088	0,02562	2025
•	1	,	,	,	, = - -	,	, : : : -	1

1			•			•	ı	i i
резки Автотранспорт	6021	0,00007664		0,00007664		0,00007664		2025
(Гараж легковых автомобилей)								
	6022	0,00007664		0,00007664		0,00007664		2025
	6023 6024			0,00007664		0,00007664		2025
	6025			0,00007664 0,00007664		0,00007664 0,00007664		2025 2025
Автотранспорт	6026			0,00028		0,00028		2025
(Пожарное депо)		,		,		•		
	6027	0,0012336		0,0012336		0,0012336		2025
Автотранспорт	6028	0,491296		0,491296		0,491296		2025
(Открытая площадка)								
Итого:		0,5030016	0,02562	0,5030016	0,02562	0,5030016	0,02562	
**Азот (II) оксид (Азот	а окси		,	•	,	,	,	
Участок сварки и	6010	0,00159393	0,00416325	0,00159393	0,00416325	0,00159393	0,00416325	2025
резки	0004	0.000040454		0.000040454		0.000040454		2025
Автотранспорт (Гараж легковых автомобилей)	6021	0,000012454		0,000012454		0,000012454		2025
	6022	0,000012454		0,000012454		0,000012454		2025
	6023			0,000012454		0,000012454		2025
	6024			0,000012454		0,000012454		2025
Автотранспорт	6025 6026	0,000012454 0,0000455		0,000012454 0,0000455		0,000012454 0,0000455		2025 2025
(Пожарное депо)	0020	0,0000433		0,0000433		0,0000433		2023
(помарное дене)	6027	0,00020046		0,00020046		0,00020046		2025
Автотранспорт	6028			0,0798356		0,0798356		2025
(Открытая								
площадка) Итого:		0,08173776	0,00416325	0,08173776	0,00416325	0,08173776	0,00416325	
**Углерод (Сажа) (03	28)	0,00173770	0,00410323	0,00173770	0,00410323	0,00173770	0,00410323	
Автотранспорт	6027	0,0000667	1	0,0000667		0,0000667		2025
(Пожарное депо)		,		•		,		
Автотранспорт	6028	0,12504		0,12504		0,12504		2025
(Открытая								
площадка) Итого:		0,1251067		0,1251067		0,1251067		
**Сера диоксид (Анги	дрид с))	0,120.001		0,120.001		
Автотранспорт (Гараж легковых	6021		,	0,0000208		0,0000208		2025
автомобилей)	6022	0,0000208		0,0000208		0,0000208		2025
	6023			0,0000208		0,0000208		2025
	6024			0,0000208		0,0000208		2025
	6025			0,0000208		0,0000208		2025
Автотранспорт (Пожарное депо)	6026			0,0000638		0,0000638		2025
Автотранспорт	6027 6028			0,0001817 0,04509		0,0001817 0,04509		2025 2025
(Открытая	0020	0,04309		0,04309		0,04309		2023
площадка)								
Итого:		0,0454395		0,0454395		0,0454395		
**Дигидросульфид (С			0.000476	0.00000	0.000476	0.000001	0.002476	2025
Магистральная насосная	6007	0,00022	0,002176	0,00022	0,002176	0,00022	0,002176	2025
пассопал	6008	0,00022	0,002176	0,00022	0,002176	0,00022	0,002176	2025
Ёмкости сбора	6004		0,0000392	0,0000544	0,0000392	0,0000544	0,0000392	2025
утечек	0005	0.0000544	0.000000	0.0000544	0.000000	0.0000544	0.000000	0005
Моотини	6005 6006		0,0000392 0,0000392	0,0000544 0,0000544	0,0000392 0,0000392	0,0000544 0,0000544	0,0000392 0,0000392	2025 2025
Местный диспетчерский	0000	0,0000344	0,0000392	0,0000544	0,0000392	0,0000544	0,0000392	2025
пункт (МДП)								
Итого:		0,0006032	0,0044696	0,0006032	0,0044696	0,0006032	0,0044696	
**Углерод оксид (033			0.07005	0.004070	0.07005	0.004070	0.07005	
Участок сварки и резки	6010	0,021972	0,07605	0,021972	0,07605	0,021972	0,07605	2025
Автотранспорт (Гараж легковых	6021	0,00726		0,00726		0,00726		2025
автомобилей)	6000	0.00700		0.00700		0.00700		2025
	6022 6023			0,00726 0,00726		0,00726 0,00726		2025 2025
	6023			0,00726		0,00726		2025
	6025	0,00726		0,00726		0,00726		2025
Автотранспорт	6026	0,0338		0,0338		0,0338		2025
(Пожарное депо)	6007	0.00405		0.00405		0.00405		2025
Автотранспорт	6027 6028			0,00405 2,6223		0,00405 2,6223		2025 2025

(Открытая								
площадка) Итого:		2,718422	0.07605	2,718422	0.07605	2,718422	0,07605	
**Фтористые газообра	ashpie						0,07605	
Участок сварки и резки	6010		0,002814		0,002814		0,002814	2025
Итого:		0,0006249	0,002814	0,0006249	0,002814	0,0006249	0,002814	
**Фториды неорганич	еские	плохо раствори	мые - (алюминия	і фторид, кальц	ия фторид, (0344			
Участок сварки и	6010	0,002751	0,012375	0,002751	0,012375	0,002751	0,012375	2025
резки		0.000754	0.040075	0.000754	0.040075	0.000754	0.040075	
Итого: **Диметилбензол (Кс	MEOE) (0,002751	0,012375	0,002751	0,012375	0,002751	0,012375	
Диметилоензол (кс Лакокрасочные работы	6034	0,0844	0,041	0,0844	0,041	0,0844	0,041	2025
Итого:		0,0844	0,041	0,0844	0,041	0,0844	0,041	
**Метилбензол (Толу Лакокрасочные	6034	0,2308	0,0623	0,2308	0,0623	0,2308	0,0623	2025
работы Итого:		0,2308	0,0623	0,2308	0,0623	0,2308	0,0623	
**Этиловый эфир эти						ارمممما		.
Лакокрасочные	6034	0,06334	0,0308	0,06334	0,0308	0,06334	0,0308	2025
работы Итого:		0,06334	0,0308	0,06334	0,0308	0,06334	0,0308	
Всего:		0,06334	0,0308	0,06334	0,0308	0,06334	0,0308	2025
**Уксусной кислоты б	утилог			3,00004	0,0000	3,00004	0,0000	
Лакокрасочные работы	6034	0,04466	0,01206	0,04466	0,01206	0,04466	0,01206	2025
Итого:		0,04466	0,01206	0,04466	0,01206	0,04466	0,01206	
**Метаналь (1325)								
Автотранспорт (Гараж легковых	6023	0,0000169		0,0000169		0,0000169		2025
автомобилей) Итого:		0,0000169		0,0000169		0,0000169		
**Пропан-2-он (Ацето				ابيمميما		ابيمميا		.
Лакокрасочные работы	6034	0,16014	0,05692	0,16014	0,05692		0,05692	2025
Итого:	1	0,16014	0,05692	0,16014	0,05692	0,16014	0,05692	
**Циклогексанон (141 Лакокрасочные	1) 6034	0,1666	0,024	0,1666	0,024	0,1666	0,024	2025
работы Итого:		0,1666	0,024	0,1666	0,024	0,1666	0,024	
**Бензин (нефтяной,	Мапос	эрцистый) /в пег	DACUETA HA VEREN	оп/ (2704)				
Автотранспорт	6021	0,000767	ресчете на углер	од/ (2704) 0,000767		0,000767		2025
(Гараж легковых автомобилей)								
,	6022	0,000767		0,000767		0,000767		2025
	6023	0,00075		0,00075		0,00075		2025
A	6025	0,000767		0,000767		0,000767		2025
Автотранспорт (Пожарное депо)	6026	0,00495		0,00495		0,00495		2025
Итого:		0,008001		0,008001		0,008001		
**Сольвент нафта (27	750)	.,		-,		-,		1
Лакокрасочные	6034	0,3888	0,056	0,3888	0,056	0,3888	0,056	2025
работы Итого:		0,3888	0.056	0,3888	0,056	0,3888	0,056	
**Углеводороды пред	І Іепьны						0,030	
Магистральная насосная	6007	0,0783	0,775	0,0783	0,775	0,0783	0,775	2025
::-w:	6008	0,0783	0,775	0,0783	0,775	0,0783	0,775	2025
Ёмкости сбора утечек	6004	0,019386	0,13961	0,019386	0,13961	0,019386	0,13961	2025
-	6005	0,019386	0,13961	0,019386	0,13961	0,019386	0,13961	2025
Нефтеловушка	6001	0,0031	0,017	0,0031	0,017	0,0031	0,017	2025
Местный диспетчерский	6006	0,019386	0,13961	0,019386	0,13961	0,019386	0,13961	2025
пункт (МДП) Камера приема	6011	0,002583	0,01416	0,002583	0,01416	0,002583	0,01416	2025
скребков	6012	0,002583	0,01416	0,002583	0,01416	0,002583	0,01416	2025
	6012	0,002583	0,01416 0,01416	0,002583	0,01416 0,01416	0,002583	0,01416	
Автотранспорт (Пожарное депо)	6027	0,002363	5,01710	0,002363	5,01710	0,000492	5,01710	2025
(пожарное депо) Автотранспорт (Открытая	6028	0,36317		0,36317		0,36317		2025
площадка)		0 500060	2 02024	0,589269	2 02024	0 500060	2 02024	
Итого:	I	0,589269	2,02831	0,569269	2,02831	0,589269	2,02831	I

**Взвешенные части	цы РМ1	0 (2902)						_		
Мехмастерская	6009	0,0478	0,0176622	0,0478	0,0176622	0,0478	0,0176622	2025		
	6033	0,004	0,02592	0,004	0,02592	0,004	0,02592	2025		
Лакокрасочные	6034	0,0792	0,03253	0,0792	0,03253	0,0792	0,03253	2025		
работы								İ		
Мехмастерская	6035	0,004	0,00144	0,004	0,00144	,	0,00144			
Итого:		0,135	0,0775522	0,135	0,0775522	0,135	0,0775522			
**Пыль неорганическая: 70-20% двуокиси кремния (шамот, цемент, пыль цементного (2908)										
Участок сварки и	6010	0,001167	0,00525	0,001167	0,00525	0,001167	0,00525	2025		
резки										
Земляные работы	6014	0,023333	0,084	0,023333	0,084	,	0,084			
	6015	0,399	0,0768	0,399	0,0768	,	0,0768			
	6016	0,075733	0,81623	0,075733	0,81623	,	0,81623			
Линейная часть	6030		0,168	0,023333	0,168	,	0,168			
	6031	0,399	0,1536	0,399	0,1536	,	0,1536			
	6032	0,151467	1,632461	0,151467	1,632461	,	1,632461	2025		
Итого:		1,073033	2,936341	1,073033	2,936341	1,073033	2,936341			
**Пыль абразивная (ł										
Мехмастерская	6033		0,01685			,	,			
	6035	0,0026	0,000936	0,0026	0,000936	,	0,000936			
Итого:		0,0052	0,017786	0,0052	0,017786	0,0052	0,017786			
Итого по		6,45912336	5,56611105	6,45912336	5,56611105	6,45912336	5,56611105			
неорганизованным										
ВСЕГО ПО		10,413356024	13,393740102	10,413356024	13,393740102	10,413356024	13,393740102			
ПРЕДПРИЯТИЮ:										

5. КОНТРОЛЬ ЗА СОБЛЮДЕНИЕМ НОРМАТИВОВ НДВ

Контроль за соблюдением нормативов НДВ (таблица 5.1) должен осуществляться в соответствии с инструкцией по нормативам выбросов загрязняющих веществ в атмосферу, с периодичностью — согласно категорий источников, подлежащих контролю. Ответственность за организацию контроля и своевременную отчетность по результатам возлагается на руководителя. Результаты контроля включаются в технические отчеты предприятия. Контроль выбросов на предприятии должен осуществляться самим предприятием или специализированной организацией (по договору).

Таблица 5.1

План-график контроля на предприятии за соблюдением нормативов НДВ на источниках выбросов и на контрольных точках

N исто				Периодич	Но	рматив		
чника,	Производство,	Контролируемое	Периоди	ность		в НДВ(ВСВ)	Кем	Методика
N конт	цех, участок.	вещество	чность	контроля	1	, , , , ,	осуществляет	проведения
роль-	/Координаты		контро-	в перио-			ся контроль	контроля
ной	контрольной		ля	ды НМУ	г/с	мг/м3	1	1
точки	точки			раз/сутк				
1	2	3	4	5	6	7	8	9
0001	Резервуарный парк	Сероводород (Дигидросульфид) /528/			0.000122	0.7309876		
		Углеводороды предельные С12-19 /в			0.0435	260.63901		
		пересчете на суммарный						
0002	D •	органический углерод/ /592/			0.000122	0.7200076		
0002	Резервуарный парк	Сероводород (Дигидросульфид) /528/			0.000122	0.7309876		
		Углеводороды предельные С12-19 /в			0.0435	260.63901		
		пересчете на суммарный						
0003	Резервуарный парк	органический углерод/ /592/			0.000122	0.7309876		
0003	Резервуарный парк	Сероводород (Дигидросульфид) /528/ Углеводороды предельные С12-19 /в			0.000122	260.63901		
		пересчете на суммарный			0.0433	200.03901		
		органический углерод/ /592/						
0004	Резервуарный парк	Сероводород (Дигидросульфид) /528/			0.000122	0.7309876		
0004	1 сэсрвуарный парк	Углеводороды предельные С12-19 /в	1 раз в		0.000122	260.63901		
		пересчете на суммарный	год/		0.0433	200.03701	Аккредитованная	
		органический углерод/ /592/	4 раза в				лаборатория/	Инструментальный
0005	Резервуарный парк	Сероводород (Дигидросульфид) /528/	год		0.000122	0.7309876	Собственными	/
0000	1 coopsympnism maps	Углеводороды предельные С12-19 /в	(ежекварт		0.0435	260.63901	силами	Расчётный
		пересчете на суммарный	ально)					
		органический углерод/ /592/	,					
0006	Резервуарный парк	Сероводород (Дигидросульфид) /528/			0.000122	0.7309876		
		Углеводороды предельные С12-19 /в			0.0435	260.63901		
		пересчете на суммарный						
		органический углерод/ /592/						
0007	Резервуарный парк	Сероводород (Дигидросульфид) /528/			0.000122	0.7309876		
		Углеводороды предельные С12-19 /в			0.0435	260.63901		
		пересчете на суммарный						
		органический углерод/ /592/						
0008	Резервуарный парк	Сероводород (Дигидросульфид) /528/			0.000122	0.7309876		
		Углеводороды предельные С12-19 /в			0.0435	260.63901		
		пересчете на суммарный						
		органический углерод/ /592/						
0010	Магистральная	Сероводород (Дигидросульфид) /528/			0.00044	0.1173429		
	насосная							
		Масло минеральное нефтяное			0.00833	2.2215144		

		(веретенное, машинное, цилиндровое и др.) /723/					
		Углеводороды предельные C12-19 /в пересчете на суммарный	1 раз в год/	0.1566	41.763403	Аккредитованная лаборатория/	Инструментальный /
		органический углерод/ /592/	4 раза в			Собственными	Расчётный
0011	Магистральная	Сероводород (Дигидросульфид) /528/	год	0.00044	0.3049203	силами	
	насосная		(ежекварт				
		Углеводороды предельные С12-19 /в	ально)	0.1566	108.52391		
		пересчете на суммарный	,				
		органический углерод/ /592/					
0012	Наливная насосная	Сероводород (Дигидросульфид) /528/		0.00044	0.2762313		
		Углеводороды предельные С12-19 /в		0.1566	98.313219		
		пересчете на суммарный					
		органический углерод/ /592/					
0013	Железнодорожная эстакада	Сероводород (Дигидросульфид) /528/		0.0004400	1.7591605286		
		Углеводороды предельные С12-19 /в		0.1566000	626.101224496		
		пересчете на суммарный					
		органический углерод/ /592/					
0014	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.00000024	0.043911		
	1 3	Углеводороды предельные С12-19 /в		0.000087	15.656775		
		пересчете на суммарный					
		органический углерод/ /592/					
0015	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/	4	0.00000024	0.043911		
		Углеводороды предельные С12-19 /в	4 раза в	0.000087	15.656775		
		пересчете на суммарный	год				
		органический углерод/ /592/	(ежекварт				
0016	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/	ально)	0.00000024	0.043911		
		Углеводороды предельные С12-19 /в		0.000087	15.656775		
		пересчете на суммарный					
		органический углерод/ /592/					
0017	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.00000024			
		Углеводороды предельные С12-19 /в		0.000087	313.28772		
		пересчете на суммарный					
		органический углерод/ /592/					
0018	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.00000024			
		Углеводороды предельные С12-19 /в		0.000087	313.28772		
		пересчете на суммарный					
		органический углерод/ /592/					
0019	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.00000024			
		Углеводороды предельные С12-19 /в		0.000087	15.656775		
		пересчете на суммарный					
		органический углерод/ /592/					
0020	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.00000024			
		Углеводороды предельные С12-19 /в		0.000087	15.656775		
		пересчете на суммарный					

1	1	органический углерод/ /592/	1 1	1		1	1
0021	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.00000024	0.043011		
0021	Емкости соора утечек	Углеводороды предельные С12-19 /в		0.0000024	15.656775		
		пересчете на суммарный		0.000007	13.030773		
		органический углерод/ /592/					
0022	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.00000024	0.042011		
0022	Емкости соора утечек						
		Углеводороды предельные С12-19 /в		0.000087	15.656775		
		пересчете на суммарный					
0000	** 1	органический углерод/ /592/		0.0000040	0.0061640		
0023	Нефтеловушка	Сероводород (Дигидросульфид) /528/		0.0000048	0.8861648		
		Углеводороды предельные С12-19 /в		0.001695	312.92693		
		пересчете на суммарный					
0004		органический углерод/ /592/			0.004440		
0024	Нефтеловушка	Сероводород (Дигидросульфид) /528/		0.0000048	0.8861648		
		Углеводороды предельные С12-19 /в		0.001695	312.92693		
		пересчете на суммарный					
		органический углерод/ /592/					
0025	Нефтеловушка	Сероводород (Дигидросульфид) /528/		0.0000544	0.2094151		
		Углеводороды предельные С12-19 /в		0.019386	74.627239		
		пересчете на суммарный					
		органический углерод/ /592/	4 раза в			Собственными	Расчётный
0026	Мехмастерская	Взвешенные частицы р.м. 10 /116/	год	0.0216	108	силами	
		Пыль абразивная /1046/	(ежекварт	0.0144	72		
0027	Аккумуляторный	Серная кислота /527/	ально)	0.0000095	0.0469136		
	участок						
0028	Пожарные насосные	Азот (IV) оксид /4/		0.032	1629.7428		
		Азот (II) оксид /6/		0.0417	2123.7586		
		Углерод /593/		0.0053	269.92615		
		Сера диоксид /526/		0.0107	544.94525		
		Углерод оксид /594/		0.0267	1359.8167		
		Проп-2-ен-1-аль /482/		0.0013	66.208302		
		Формальдегид /619/		0.0013	66.208302		
		Углеводороды предельные С12-19 /в		0.0128	651.89712		
		пересчете на суммарный					
		органический углерод/ /592/					
0029	Пожарные насосные	Азот (IV) оксид /4/		0.0004	20.371785		
		Азот (II) оксид /6/		0.000065	3.3104151		
		Сера диоксид /526/		0.085	4329.0043		
		Углерод оксид /594/		0.0002	10.185893		
		Углеводороды предельные С12-19 /в		0.0067	341.2274		
		пересчете на суммарный					
		органический углерод/ /592/					
0030	Пожарные насосные	Сероводород (Дигидросульфид) /528/		0.0000007	0.1577465		
		Углеводороды предельные С12-19 /в		0.0002576	58.050704		
		пересчете на суммарный					
		органический углерод/ /592/					

0031	Пожарные насосные	Смесь углеводородов предельных		0.00545	1228.169		
		С1-С5 /1531/ Смесь углеводородов предельных		0.002016	454.30986		
		C6-C10 /1532/		0.002010	1.5 1.5 0 9 0 0		
		Пентилены (амилены - смесь		0.0002015	45.408451		
		изомеров) /468/					
		Бензол /64/		0.0001854	41.780282		
		Ксилол (смесь изомеров о-, м-, п-) /327/		0.0000234	5.2732394		
		Толуол /567/		0.000175	39.43662		
		Этилбензол /687/		0.0000048	1.0816901		
0032	Дизельная	Азот (IV) оксид /4/		0.0004	20.371785		
	электростанция						
		Азот (II) оксид /6/		0.000065	3.3104151		
		Сера диоксид /526/		0.085	4329.0043		
		Углерод оксид /594/		0.0002	10.185893		
		Углеводороды предельные С12-19 /в		0.0067	341.2274		
		пересчете на суммарный					
0033	Пирантина	органический углерод/ /592/ Азот (IV) оксид /4/		0.3969	5053.4759		
0033	Дизельная электростанция	Азот (1 v) оксид /4/	4 раза в	0.3909	3033.4739	Собственными	Расчётный
	электростанция	Азот (II) оксид /6/	год	0.5159	6568.6275	силами	Тасчетный
		Углерод /593/	(ежекварт	0.0661	841.60937	CHITANIH	
		Сера диоксид /526/	ально)	0.1323	1684.492		
		Углерод оксид /594/		0.3307	4210.5933		
		Проп-2-ен-1-аль /482/		0.0159	202.44461		
		Формальдегид /619/		0.0159	202.44461		
		Углеводороды предельные С12-19 /в		0.1587	2020.6264		
		пересчете на суммарный					
		органический углерод/ /592/					
0034	Дизельная	Азот (IV) оксид /4/		0.2572	3274.7728		
	электростанция	(T) (C)		0.2244	4257 7120		
		Азот (II) оксид /6/		0.3344 0.0429	4257.7139		
		Углерод /593/ Сера диоксид /526/		0.0429	546.21988 1091.1665		
		Углерод оксид /594/		0.0837	2729.8262		
		Проп-2-ен-1-аль /482/		0.0103	131.1437		
		Формальдегид /619/		0.0103	131.1437		
		Углеводороды предельные С12-19 /в		0.1029	1310.1638		
		пересчете на суммарный					
		органический углерод/ /592/					
0035	Дизельная	Азот (IV) оксид /4/		0.0208	1059.3328		
	электростанция						
		Азот (II) оксид /6/		0.0271	1380.1884		
		Углерод /593/		0.0035	178.25312		
		Сера диоксид /526/		0.0069	351.41329		

1		Углерод оксид /594/		0.0174	886.17265		
		Проп-2-ен-1-аль /482/		0.0008	40.74357		
		Формальдегид /619/		0.0008	40.74357		
				0.0083	422.71454		
		Углеводороды предельные С12-19 /в		0.0083	422.71454		
		пересчете на суммарный					
		органический углерод/ /592/					
0036	Аналитическая	Натрий гидроксид (Натрия		0.000786	2.872702		
	лаборатория	гидроокись; Натр едкий; Сода					
	, accepanopini	каустическая)					
		Азотная кислота /по молекуле HNO3/		0.0015	5.4822558		
		Аммиак		0.0001476	0.539454		
		Соляная кислота		0.000396	1.4473155		
		Кислота серная		0.0000801	0.2927525		
		Бензол		0.000738	2.6972698		
		Метилбензол (Толуол)		0.0002433	0.8892219		
		Углерод тетрахлорид		0.001479	5.4055042		
		Этиловый спирт	1 2000 0	0.00501	18.310734	Собственными	Расчётный
			4 раза в				Расчетный
		Пропан-2-он (Ацетон)	год	0.001911	6.9843938	силами	
		Уксусная кислота	(ежекварт	0.000576	2.1051862		
0037	Аналитическая	Натрий гидроксид (Натрия	ально)	0.000524	2.3006068		
	лаборатория	гидроокись; Натр едкий; Сода					
		каустическая)					
		Азотная кислота /по молекуле HNO3/		0.001	4.3904709		
		Аммиак		0.0000984	0.4320223		
		Соляная кислота		0.000264	1.1590843		
		Кислота серная		0.0000534	0.2344511		
		Бензол		0.000492	2.1601117		
		Метилбензол (Толуол)		0.0001622	0.7121344		
		Углерод тетрахлорид		0.000986	4.3290043		
		Этиловый спирт		0.00334	14.664173		
		Пропан-2-он (Ацетон)		0.001274	5.59346		
		` ' '		0.001274	1.6859408		
0000		Уксусная кислота					
0038	Аналитическая	Натрий гидроксид (Натрия		0.000262	1.201686		
	лаборатория	гидроокись; Натр едкий; Сода					
		каустическая)					
		Азотная кислота /по молекуле HNO3/		0.0005	2.2932939		
		Аммиак		0.0000492	0.2256601		
		Соляная кислота		0.000132	0.6054296		
				0.000132	0.1224619		
		Кислота серная					
		Бензол		0.000246	1.1283006		
		Метилбензол (Толуол)		0.0000811	0.3719723		
		Углерод тетрахлорид		0.000493	2.2611878		
		Этиловый спирт		0.00167	7.6596018		
		Пропан-2-он (Ацетон)		0.000637	2.9216565		
		Уксусная кислота		0.000192	0.8806249		
6002	Нефтеловушка	Углеводороды предельные С12-19 /в		1.29	5.0000210		
1 0002	птефтеловушка	лиоводороды предельные C12-17/в	1 1	1.27	I	1 1	1

		пересчете на суммарный органический углерод/ /592/					
6003	Нефтеловушка	Углеводороды предельные С12-19 /в		1.29			
		пересчете на суммарный					
6004	Ü.	органический углерод/ /592/		0.0000744			
6004	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.0000544 0.019386			
		Углеводороды предельные C12-19 /в пересчете на суммарный		0.019386			
		органический углерод/ /592/					
6005	Ёмкости сбора утечек	Сероводород (Дигидросульфид) /528/		0.0000544			
0005	Emikoetii eeopa yie iek	Углеводороды предельные С12-19 /в		0.019386			
		пересчете на суммарный					
		органический углерод/ /592/					
6006	Местный	Сероводород (Дигидросульфид) /528/		0.0000544			
	диспетчерский пункт						
	(МДП)	V C12.10./		0.010206			
		Углеводороды предельные С12-19 /в		0.019386			
		пересчете на суммарный органический углерод/ /592/					
6007	Магистральная	Сероводород (Дигидросульфид) /528/		0.00022			
0007	насосная	Сероводород (Дигидросульфид) /320/	4 раза в	0.00022		Собственными	Расчётный
		Углеводороды предельные С12-19 /в	год	0.0783		силами	
		пересчете на суммарный	(ежекварт				
		органический углерод/ /592/	ально)				
6008	Магистральная	Сероводород (Дигидросульфид) /528/		0.00022			
	насосная	212.10.7					
		Углеводороды предельные С12-19 /в		0.0783			
		пересчете на суммарный органический углерод/ /592/					
6009	Мехмастерская	Взвешенные частицы р.м. 10 /116/		0.0478	199.16667		
6010	Участок сварки и	Железо (II, III) оксиды /в		0.03111	103.7		
0010	резки	пересчете на железо/ /277/		0.00111	100.7		
		Марганец и его соединения /в		0.0010668	3.556		
		пересчете на марганца (IV) оксид/					
		/332/					
		Азот (IV) оксид /4/		0.0098088	32.696		
		Азот (II) оксид /6/		0.00159393			
		Углерод оксид /594/ Фтористые газообразные соединения		0.021972 0.0006249	73.24 2.083		
		(в пересчете на фтор) /627/		0.0006249	2.063		
		Фториды неорганические плохо		0.002751	9.17		
		растворимые - (алюминия фторид,		0.002/31	,		
		кальция фторид, натрия					
		гексафторалюминат) /625/					
		Пыль неорганическая: 70-20%		0.001167	3.89		
		двуокиси кремния (шамот, цемент,					

ı	İ	1	1	ı	ı	1 1	i
		пыль цементного производства -					
		глина, глинистый сланец, дом-ый					
	**	шлак, песок, клинкер /503/		0.002702			
6011	Камера приема	Углеводороды предельные С12-19 /в		0.002583			
	скребков	пересчете на суммарный					
		органический углерод/ /592/					
6012	Камера приема	Углеводороды предельные С12-19 /в		0.002583			
	скребков	пересчете на суммарный					
		органический углерод/ /592/					
6013	Камера приема	Углеводороды предельные С12-19 /в		0.002583			
	скребков	пересчете на суммарный					
		органический углерод/ /592/					
6014	Земляные работы	Пыль неорганическая: 70-20%		0.023333			
		двуокиси кремния (шамот, цемент,					
		пыль цементного производства -					
		глина, глинистый сланец, дом-ый					
		шлак, песок, клинкер /503/					
6015	Земляные работы	Пыль неорганическая: 70-20%		0.399			
		двуокиси кремния (шамот, цемент,					
		пыль цементного производства -					
		глина, глинистый сланец, дом-ый					
		шлак, песок, клинкер /503/	4 раза в			Собственными	Расчётный
6016	Земляные работы	Пыль неорганическая: 70-20%	год	0.075733		силами	
		двуокиси кремния (шамот, цемент,	(ежекварт				
		пыль цементного производства -	ально)				
		глина, глинистый сланец, дом-ый					
		шлак, песок, клинкер /503/					
6018	Автотранспорт (Бокс	Азот (IV) оксид /4/		0.00014	0.0888889		
	на 11 м/м)						
		Азот (II) оксид /6/		0.00002275			
		Сера диоксид /526/		0.0000292	0.0185397		
		Углерод оксид /594/		0.01242	7.8857143		
		Бензин (нефтяной, малосернистый)		0.00241	1.5301587		
		/в пересчете на углерод/ /60/					
6019	Автотранспорт (Бокс	Азот (IV) оксид /4/		0.001176	0.7466667		
	на 11 м/м)						
		Азот (II) оксид /6/		0.0001911	0.1213333		
		Углерод /593/		0.000185	0.1174603		
		Сера диоксид /526/		0.000205	0.1301587		
		Углерод оксид /594/		0.00392	2.4888889		
		Углеводороды предельные С12-19 /в		0.00058	0.368254		
		пересчете на суммарный					
,		органический углерод/ /592/		0.00			
6020	Автотранспорт (Бокс	Азот (IV) оксид /4/		0.00082	0.5206349		
	на 11 м/м)	(T) (C)		0.0001222	0.0045022		
1		Азот (II) оксид /6/	1 1	0.00013325	0.0846032		

		Углерод /593/		0.0000542	0.0344127			
		Сера диоксид /526/			0.0714286			
		Углерод оксид /594/			2.4380952			
		•						
		Углеводороды предельные С12-19 /в		0.000433	0.2749206			
		пересчете на суммарный						
		органический углерод/ /592/						
6021	Автотранспорт (Гараж	Азот (IV) оксид /4/		0.00007664	0.0497861			
	легковых	, ,						
	автомобилей)							
		Азот (II) оксид /6/		0.00001245	0.0080902			
		Сера диоксид /526/			0.0135119			
					4.7161722			
		Углерод оксид /594/						
		Бензин (нефтяной, малосернистый)		0.000767	0.4982512			
		/в пересчете на углерод/ /60/						
6022	Автотранспорт (Гараж	Азот (IV) оксид /4/		0.00007664	0.0497861			
	легковых							
	автомобилей)							
	ŕ	Азот (II) оксид /6/		0.00001245	0.0080902			
		Сера диоксид /526/			0.0135119			
		Углерод оксид /594/			4.7161722			
		Бензин (нефтяной, малосернистый)	4 раза в		0.4982512	Собственными	Расчётный	
		/в пересчете на углерод/ /60/	*	0.000707	0.4702312		т асчетный	
6022	, (T		год	0.00007664	0.0406602	силами		
6023	Автотранспорт (Гараж	Азот (IV) оксид /4/	(ежекварт	0.00007664	0.0486603			
	легковых		ально)					
	автомобилей)							
		Азот (II) оксид /6/		0.00001245				
		Сера диоксид /526/		0.0000208	0.0132063			
		Углерод оксид /594/		0.00726	4.6095238			
		Формальдегид /619/		0.0000169	0.0107302			
		Бензин (нефтяной, малосернистый)		0.00075	0.4761905			
		/в пересчете на углерод/ /60/						
6024	Автотранспорт (Гараж	Азот (IV) оксид /4/		0.00007664	0.0486603			
0024	легковых	11301 (11) оксид / 1/		0.00007004	0.0400003			
	автомобилей)							
	автомобилеи)	A (II) (C)		0.00001245	0.0070072			
		Азот (II) оксид /6/		0.00001245				
		Сера диоксид /526/			0.0132063			
		Углерод оксид /594/			4.6095238			
6025	Автотранспорт (Гараж	Азот (IV) оксид /4/		0.00007664	0.0486603			
	легковых							
	автомобилей)							
	ĺ	Азот (II) оксид /6/		0.00001245	0.0079073			
		Сера диоксид /526/			0.0132063			
1		Углерод оксид /594/			4.6095238			
		Бензин (нефтяной, малосернистый)			0.4869841			
1		/в пересчете на углерод/ /60/		0.000707	J. 1007071			
6026	А втотромоност			0.0015126	0.972905			
6026	Автотранспорт	Азот (IV) оксид /4/	1 1	0.0015136	0.872895	1		1

	(Пожарное депо)						
		Азот (II) оксид /6/		0.00024596	0.1418454		
		Углерод /593/		0.0000667	0.038466		
		Сера диоксид /526/		0.0002455	0.1415802		
		Углерод оксид /594/		0.03785	21.828143		
		Бензин (нефтяной, малосернистый)		0.00495	2.8546713		
		/в пересчете на углерод/ /60/		0.00473	2.0340713		
		Углеводороды предельные С12-19 /в		0.000492	0.283737		
				0.000492	0.263737		
		пересчете на суммарный					
		органический углерод/ /592/		0.0012226	0.5114105		
	Автотранспорт	Азот (IV) оксид /4/		0.0012336	0.7114187		
	(Пожарное депо)						
		Азот (II) оксид /6/		0.00020046			
		Углерод /593/		0.0000667	0.038466		
		Сера диоксид /526/		0.0001817	0.1047866		
		Углерод оксид /594/		0.00405	2.3356401		
		Углеводороды предельные С12-19 /в		0.000492	0.283737		
		пересчете на суммарный	4 раза в			Собственными	Расчётный
		органический углерод/ /592/	год			силами	
5028	Автотранспорт	Азот (IV) оксид /4/	(ежекварт	0.507376			
	(Открытая площадка)		ально)				
	1	Азот (II) оксид /6/	<i>'</i>	0.0824486			
		Углерод /593/		0.127473			
		Сера диоксид /526/		0.046438			
		Углерод оксид /594/		2.6947			
		Углеводороды предельные С12-19 /в		0.3784			
		пересчете на суммарный		0.5764			
		органический углерод/ /592/					
5029	Местный	Сероводород (Дигидросульфид) /528/		0.0000544			
		Сероводород (Дигидросульфид) /328/		0.0000344			
	диспетчерский пункт						
	(МДП)	V		0.010206			
		Углеводороды предельные С12-19 /в		0.019386			
		пересчете на суммарный					
		органический углерод/ /592/					
5030	Линейная часть	Пыль неорганическая: 70-20%		0.023333			
		двуокиси кремния (шамот, цемент,					
		пыль цементного производства -					
		глина, глинистый сланец, дом-ый					
		шлак, песок, клинкер /503/					
5031	Линейная часть	Пыль неорганическая: 70-20%		0.399			
		двуокиси кремния (шамот, цемент,					
		пыль цементного производства -					
		глина, глинистый сланец, дом-ый					
		шлак, песок, клинкер /503/					
5032	Линейная часть	шлак, песок, клинкер /503/ Пыль неорганическая: 70-20%		0.151467			

		пыль цементного производства - глина, глинистый сланец, дом-ый шлак, песок, клинкер /503/					
6033	Мехмастерская	Взвешенные частицы РМ10		0.004			
	1	Пыль абразивная (Корунд белый;		0.0026			
		Монокорунд)					
6034	Лакокрасочные работы	Диметилбензол (Ксилол) (смесь о-,		0.0844			
		м-, п- изомеров)					
		Метилбензол (Толуол)		0.2308			
		Этиловый эфир этиленгликоля		0.06334			
		Уксусной кислоты бутиловый эфир		0.04466			
		Пропан-2-он (Ацетон)		0.16014			
		Циклогексанон		0.1666			
		Сольвент нафта		0.3888			
		Взвешенные частицы РМ10		0.0792			
6035	Мехмастерская	Взвешенные частицы РМ10		0.004	13.40249		
		Пыль абразивная (Корунд белый;		0.0026	8.7116186		
		Монокорунд)					
	Граница СЗЗ (8 точек отбора проб: С, СВ, В, ЮВ, Ю, ЮЗ, З, СЗ)		1 раз в год			Аккредитованная лаборатория	Инструментальный

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан от 2 января 2021 года
- 2. ГОСТ 17.2.3.02-87 Охрана природы. Атмосферы. Правила установления допустимых выбросов вредных веществ промышленными предприятиями.
- 3. Приказ Министра экологии, геологии и природных ресурсов Республики Казахстан от 10 марта 2021 года № 63 «Об утверждении Методики определения нормативов эмиссий в окружающую среду».
- 4. ОНД-86.Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Госкомиздат, 1987 г.
- 5. Санитарные правила «Санитарно-эпидемиологические требования к атмосферному воздуху в городских и сельских населенных пунктах, почвам и их безопасности, содержанию территорий городских и сельских населенных пунктов, условиям работы с источниками физических факторов, оказывающих воздействие на человека» №168 от 25.01.2012 г.;
- 6. Сборник методик по расчету выбросов вредных веществ в атмосферу различными производствами. Алматы, 1996 г.
- 7. Инструкция по инвентаризации выбросов вредных веществ в атмосферу. 2000 г.
- 8. 9.РНД 211.2.02.01-97 Инструкция по нормированию выбросов загрязняющих веществ в атмосферу. Алматы, 1997 г.
- 9. Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах. Л., Гидрометеоиздат, 1987.
- 10. РД 52.04.186–89. Руководство по контролю за загрязнением атмосферного воздуха. М., 1991.
- 11. Приложение № 18 к приказу Министра охраны окружающей среды Республики Казахстан от «18» 04 2008г. №100 –п «Методика расчета концентраций вредных веществ в атмосферном воздухе от выбросов предприятий».;
- 12. «Санитарно-эпидемиологические требования к санитарно-защитным зонам объектов, являющихся объектами воздействия на среду обитания и здоровье человека» от 11 января 2022 года № ҚР ДСМ-2;
- 13. Санитарно-эпидемиологические требования к содержанию и эксплуатации жилых и других помещений, общественных зданий Постановление Правительства Республики Казахстан от 1 декабря 2011 года № 1431;
- 14. «Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом)», М., НИИАТ, 1991г. с учетом Дополнения к Методике, 1992 г.
- 15. Методика расчета выбросов загрязняющих веществ в атмосферный воздух при сварочных работах (по величинам удельных выбросов). РНД 211.2.02.03-2004.
- 16. Методика расчетов выбросов загрязняющих веществ в атмосферу при механической обработке металлов (по величинам удельных выбросов). РНД 211. 2.02.06-2004.
- 17. РНД 211.2.02.-2004. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров. Астана 2004, г.
- 18. РНД 211.2.02.09-2004. Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров. Астана 2005, г.

ПРИЛОЖЕНИЕ 1

УTЕ	ВЕРЖДА!	Ю:
Нач	≀альник ∫	ППДС «Петропавловск»
фил	пиал АО	«Транснефть-Урал»
		Ваньковский С.И.
«	»	2025 г.

Раздел І. Источники выделения загрязняющих веществ

	Номер	Номер	Наименование		Вре	емя работы		Код	Количество
Наименование	источ-	источ-	источника	Наименование	исто	очника	Наименование	загряз-	загрязняющего
производства	ника	ника	выделения	выпускаемой	выделен	ия,час	загрязняющего	няющего	вещества,
номер цеха,	загряз	выде-	загрязняющих	продукции			вещества	веще-	отходящего
участка и т.д.	нения	ления	веществ		В	за		ства	от источника
	атм-ры				сутки	год			выделен,т/год
A	1	2	3	4	5	6	7	8	9
(001)	0001	001	PBC-5000 №10	Прием и	24.00	8760.00	Сероводород (Дигидросульфид)	0333	0.0002864
Резервуарный				хранение			/528/		
парк				светлых					
				нефтепродукт					
				OB					
							Углеводороды предельные	2754	0.102
							С12-19 /в пересчете на		
							суммарный органический		
							углерод/ /592/		
	0002	002	PBC-5000 №11	Прием и	24.00	8760.00	Сероводород (Дигидросульфид)	0333	0.0002864
				хранение			/528/		
				светлых					
				нефтепродукт					
				OB					
							Углеводороды предельные	2754	0.102
							С12-19 /в пересчете на		
							суммарный органический		
							углерод/ /592/		
	0003	003	PBC-5000 №12	Прием и	24.00	8760.00	Сероводород (Дигидросульфид)	0333	0.0002864
				хранение			/528/		
				светлых					
				нефтепродукт					
				OB					
							Углеводороды предельные	2754	0.102
							С12-19 /в пересчете на		
							суммарный органический		

0004	004	PBC-5000 №13	Прием и хранение светлых нефтепродукт	24.00		углерод/ /592/ Сероводород (Дигидросульфид) /528/	0333	0.0002864
			ОВ			Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.102
0005	005	PBC-5000 №14	Прием и хранение светлых нефтепродукт ов	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.0002864
						Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.102
0006	006	PBC-5000 №15	Прием и хранение светлых нефтепродукт	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.0002864
			ОВ			Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.102
0007	007	PBC-5000 №16	Прием и хранение светлых нефтепродукт ов	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.0002864
			UB			Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.102
0008	008	PBC-5000 №17	Прием и хранение светлых нефтепродукт	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.0002864
			ОВ			Углеводороды предельные C12-19 /в пересчете на суммарный органический	2754	0.102

(002) Магистральная	0010	010	HM 500-800 №1	Перекачка светлых	24.00		углерод/ /592/ Сероводород (Дигидросульфид) /528/	0333	0.002176
насосная				нефтепродукт ов			Углеводороды предельные С12-19 /в пересчете на	2754	0.775
							суммарный органический углерод/ /592/		
	0010	011	HM 500-800 №2	Перекачка светлых нефтепродукт ов	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.002176
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.775
	0010	012	НМШ 8/25	Перекачка масла (охлаждение)	24.00	8760.00	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.) /723/	2735	0.263
	0011	013	8 НДв-Нм-Т-Е №1	Перекачка светлых нефтепродукт ов	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.002176
				OB			Углеводороды предельные C12-19 /в пересчете на суммарный органический	2754	0.775
	0011	014	8 НДв-Нм-Т-Е №2	Перекачка светлых нефтепродукт	24.00	8760.00	углерод/ /592/ Сероводород (Дигидросульфид) /528/	0333	0.002176
				ОВ			Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.775
(003) Наливная насосная	0012	015	НД 1200/65	Перекачка светлых нефтепродукт ов	24.00	8760.00	углерод //392/ Сероводород (Дигидросульфид) /528/	0333	0.002176
				UB			Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.775
	0012	016	НД 1200/65	Перекачка	24.00	8760.00	Углерод 7392/ Сероводород (Дигидросульфид)	0333	0.002176

				светлых нефтепродукт ов			/528/		
							Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.775
(004) Железнодорожная эстакада	0013	017	УНЖ 6-100 АС-02	Налив светлых нефтепродукт ов	24.00	4941.50	Дигидросульфид (Сероводород)	0333	0.00065
							Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/	2754	0.232
	0013	102	УНЖ 6-100 АС-02	Налив светлых нефтепродукт ов	24.00	4941.50	Дигидросульфид (Сероводород)	0333	0.00065
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/	2754	0.232
(005) Ёмкости сбора утечек	0014	018	РГС №1-8 м3	Сбор утечек	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.0000005
							Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.000192
	0015	019	РГС №2-5 м3	Сбор утечек	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.000000539
							Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.000192
	0016	020	РГС №9-5 м3	Сбор утечек	24.00		Сероводород (Дигидросульфид) /528/	0333	0.000000539
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.000192
	0017	029	РГС №10-25 м3	Сбор утечек	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.00000055
							Углеводороды предельные C12-19 /в пересчете на	2754	0.0001958

							суммарный органический углерод/ /592/		
	0018	095	РГС №11-25 м3	Сбор утечек	24.00		углерод / 7392/ Сероводород (Дигидросульфид) /528/	0333	0.00000055
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.0001958
	0021	023	РГС №6-5 м3	Сбор утечек	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.000000539
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.000192
	0022	024	РГС №8-5 м3	Сбор утечек	24.00	8760.00	Сероводород (Дигидросульфид)	0333	0.000000539
							Углеводороды предельные C12-19 /в пересчете на суммарный органический	2754	0.000192
(006) Нефтеловушка	0023	025	Ёмкость сбора нефтепродуктов 9 м3	Сбор нефтепродукт ов	24.00	8760.00	углерод/ /592/ Сероводород (Дигидросульфид) /528/	0333	0.0000019
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.000662
	0024	026	Ёмкость сбора нефтепродуктов 64 м3	Сбор нефтепродукт ов	24.00	8760.00	Сероводород (Дигидросульфид) /528/	0333	0.0000006
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.000217
	0025	027	Hacoc HIII-40	Перекачка светлых нефтепродукт ов	1.00	6.70	Сероводород (Дигидросульфид) /528/	0333	0.000001176
							Углеводороды предельные C12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.0004188
(008) Мехмастерская	0026	037	Обдирочно-шлифова льный станок	Механическая обработка металлов	8.00	100.00	углерод/ 7592/ Взвешенные частицы р.м. 10 /116/	2902	0.00778

1]			1 1		Пыль абразивная /1046/	2930	0.00518
(010)	0027	050	Зарядное	Зарядка АКБ	10.00		Серная кислота /527/	0322	0.0000171
Аккумуляторный			устройство	_			-		
участок									
(012) Дизельная	0033	056	Дизельгенератор	Производство	8.00	21.00	Азот (IV) оксид /4/	0301	0.030067
электростанция			Wola	электроэнерг					
				ии					
							Азот (II) оксид /6/	0304	0.039087
							Углерод /593/	0328	0.005011
							Сера диоксид /526/	0330	0.010022
							Углерод оксид /594/	0337	0.025056
							Проп-2-ен-1-аль /482/	1301	0.001203
							Формальдегид /619/	1325	0.001203
							Углеводороды предельные	2754	0.012027
							С12-19 /в пересчете на		
							суммарный органический		
							углерод//592/		
	0034	057	Дизельгенератор	Производство	8.00	162.00	Азот (IV) оксид /4/	0301	0.150335
			АД100-Т400	электроэнерг					
				ии					
							Азот (II) оксид /6/	0304	0.195435
							Углерод /593/	0328	0.025056
							Сера диоксид /526/	0330	0.050112
							Углерод оксид /594/	0337	0.125279
							Проп-2-ен-1-аль /482/	1301	0.006013
							Формальдегид /619/	1325	0.006013
							Углеводороды предельные	2754	0.060134
							С12-19 /в пересчете на		
							суммарный органический		
	0025	0.50	77		0.00		углерод/ /592/	0201	0.015022
	0035	058	Дизельгенератор	Производство	8.00	200.00	Азот (IV) оксид /4/	0301	0.015033
			Champion	электроэнерг					
				ии			A (II) (C)	0204	0.010544
							Азот (II) оксид /6/	0304	0.019544
							Углерод /593/	0328 0330	0.002506 0.005011
							Сера диоксид /526/ Углерод оксид /594/	0337	0.003011
									0.012328
							Проп-2-ен-1-аль /482/	1301 1325	0.000601
							Формальдегид /619/ Углеводороды предельные	2754	0.006013
							С12-19 /в пересчете на	2734	0.000013
							с12-19/в пересчете на суммарный органический		
							углерод/ /592/		
(013)	0036	059	Вытяжной шкаф №1	Проведение	8.00		углерод/ /392/ Натрий гидроксид /886/	0150	0.00826
(013) Аналитическая	0030	039	регижном шкаф ил	анализов	0.00	2024.00	татрии гидроксид / 000/	0130	0.00820
глалитическая	I	I	1	анализов	1 1				

лаборатория	1	1	1		1 1	ı		1 1	
лиооритория							Азотная кислота /5/	0302	0.015768
							Аммиак /32/	0303	0.00155
							Гидрохлорид /162/	0316	0.00416
							Серная кислота /527/	0322	0.00084
							Бензол /64/	0602	0.00775
							Толуол /567/	0621	0.00255
							Тетрахлорметан /555/	0906	0.01554
							Этанол /678/	1061	0.05266
							Пропан-2-он /478/	1401	0.02008
							Уксусная кислота /596/	1555	0.00605
	0036	060	Вытяжной шкаф №2	Проведение анализов	8.00	2024.00	Натрий гидроксид /886/	0150	0.00826
							Азотная кислота /5/	0302	0.015768
							Аммиак /32/	0303	0.00155
							Гидрохлорид /162/	0316	0.00416
							Серная кислота /527/	0322	0.00084
							Бензол /64/	0602	0.00775
							Толуол /567/	0621	0.00255
							Тетрахлорметан /555/	0906	0.01554
							Этанол /678/	1061	0.05266
							Пропан-2-он /478/	1401	0.02008
							Уксусная кислота /596/	1555	0.00605
	0036	061	Вытяжной зонт №1	Проведение анализов	8.00	2024.00	Натрий гидроксид /886/	0150	0.00826
							Азотная кислота /5/	0302	0.015768
							Аммиак /32/	0303	0.00155
							Гидрохлорид /162/	0316	0.00416
							Серная кислота /527/	0322	0.00084
							Бензол /64/	0602	0.00775
							Толуол /567/	0621	0.00255
							Тетрахлорметан /555/	0906	0.01554
							Этанол /678/	1061	0.05266
							Пропан-2-он /478/	1401	0.02008
							Уксусная кислота /596/	1555	0.00605
	0037	097	Вытяжной зонт №2	Проведение анализов	8.00	2024.00	Натрий гидроксид /886/	0150	0.00826
							Азотная кислота /5/	0302	0.015768
							Аммиак /32/	0303	0.00155
							Гидрохлорид /162/	0316	0.00416
							Серная кислота /527/	0322	0.00084
							Бензол /64/	0602	0.00775
							Толуол /567/	0621	0.00255
							Тетрахлорметан /555/	0906	0.01554
							Этанол /678/	1061	0.05266

							Пропан-2-он /478/	1401	0.02008
		000			0.00		Уксусная кислота /596/	1555	0.00605
	0037	098	Вытяжной зонт №3	Проведение анализов	8.00	2024.00	Натрий гидроксид /886/	0150	0.00826
							Азотная кислота /5/	0302	0.015768
							Аммиак /32/	0303	0.00155
							Гидрохлорид /162/	0316	0.00416
							Серная кислота /527/	0322	0.00084
							Бензол /64/	0602	0.00775
							Толуол /567/	0621	0.00255
							Тетрахлорметан /555/	0906	0.01554
							Этанол /678/	1061	0.05266
							Пропан-2-он /478/	1401	0.02008
							Уксусная кислота /596/	1555	0.00605
	0038	062	Вытяжной шкаф №3	Проведение анализов	8.00	2024.00	Натрий гидроксид /886/	0150	0.00826
							Азотная кислота /5/	0302	0.015768
							Аммиак /32/	0303	0.00155
							Гидрохлорид /162/	0316	0.00416
							Серная кислота /527/	0322	0.00084
							Бензол /64/	0602	0.00775
							Толуол /567/	0621	0.00255
							Тетрахлорметан /555/	0906	0.01554
							Этанол /678/	1061	0.05266
							Пропан-2-он /478/	1401	0.02008
							Уксусная кислота /596/	1555	0.00605
(016)	0039	068	MT3-82	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301	
Автотранспорт				пределах					
(Бокс на 11 м/м)				предприятия					
							Азот (II) оксид /6/	0304	
							Углерод /593/	0328	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337	
							Углеводороды предельные	2754	
							С12-19 /в пересчете на		
							суммарный органический		
							углерод/ /592/		
	0039	069	КАвЗ-4235	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301	
			(Автобус)	пределах					
				предприятия					
							Азот (II) оксид /6/	0304	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337	
							Бензин (нефтяной,	2704	
	1	I					малосернистый) /в пересчете		

	0039	070	ГАЗ-331063 (Валдай)	Пробег в пределах предприятия	0.30	84.30	на углерод/ /60/ Азот (IV) оксид /4/	0301	
							Азот (II) оксид /6/ Углерод /593/	0304 0328	
							Сера диоксид /526/	0328	
							Углерод оксид /594/	0337	
							Углеводороды предельные	2754	
							С12-19 /в пересчете на	2754	
							суммарный органический		
							углерод/ /592/		
	0039	082	ГАЗ-33081 (Чайка)	Пробег в	0.30		Азот (IV) оксид /4/	0301	
				пределах					
				предприятия					
				1 1			Азот (II) оксид /6/	0304	
							Углерод /593/	0328	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337	
							Углеводороды предельные	2754	
							С12-19 /в пересчете на		
							суммарный органический		
		0=4					углерод//592/		
		076	Урал-5557 (ПМ)	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301	
				пределах					
				предприятия			Азот (II) оксид /6/	0304	
							Углерод /593/	0304	
							Сера диоксид /526/	0328	
							Углерод оксид /594/	0337	
							Углеводороды предельные	2754	
							С12-19 /в пересчете на	2734	
							суммарный органический		
							углерод/ /592/		
	0039	096	Сверлильный	Обработка	2.00		Взвешенные частицы р.м. 10	2902	0.0000792
			станок	металла			/116/		
(006)	6001	028	Нефтеловушка	Очистка	24.00	4380.00	Углеводороды предельные	2754	0.017
Нефтеловушка				стоков			С12-19 /в пересчете на		
							суммарный органический		
							углерод/ /592/		
(005) Ёмкости	6004	032	Мобильное	Перекачка	8.00	200.00	Сероводород (Дигидросульфид)	0333	0.0000392
сбора утечек			насосное	светлых			/528/		
			оборудование №1	нефтепродукт					
				ОВ					0.405
			1	I			Углеводороды предельные	2754	0.13961

							С12-19 /в пересчете на суммарный органический углерод/ /592/		
	6005	033	Мобильное насосное оборудование №2	Перекачка светлых нефтепродукт ов	8.00	200.00	Сероводород (Дигидросульфид) /528/	0333	0.0000392
							Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.13961
(007) Местный диспетчерский пункт (МДП)	6006	034	Насос НД1250/65	Перекачка светлых нефтепродукт ов	24.00		Сероводород (Дигидросульфид) /528/	0333	0.0000392
				ob			Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.13961
(002) Магистральная насосная	6007	035	Насос НВН	Перекачка светлых нефтепродукт ов	24.00		углерод (592/ Сероводород (Дигидросульфид) /528/	0333	0.002176
				OB			Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.775
	6008	036	Насос НВН	Перекачка светлых нефтепродукт ов	24.00		Углерод (ЭЭ2/ Сероводород (Дигидросульфид) /528/	0333	0.002176
				ob			Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	2754	0.775
(008) Мехмастерская	6009	038	Токарно-винторезн ый станок	Механическая обработка металлов	8.00		Взвешенные частицы р.м. 10 /116/	2902	0.0004
	6009	039	Радиально-сверлил ьный станок	металлов Механическая обработка металлов	8.00	100.00	Взвешенные частицы р.м. 10 /116/	2902	0.0000792
	6009	040	Универсально-тока рный станок	Механическая обработка металлов	8.00	200.00	Взвешенные частицы р.м. 10 /116/	2902	0.000907
	6009	041	Отрезной станок	Механическая	8.00	100.00	Взвешенные частицы р.м. 10	2902	0.01462

				обработка			/116/		
	6009	042	Токарно-винторезн	металлов Механическая	8.00	100.00	Взвешенные частицы р.м. 10	2902	0.000454
			ый станок	обработка металлов			/116/		
	6009	043	Горизонтально-фре зерный станок	Механическая обработка металлов	8.00	100.00	Взвешенные частицы р.м. 10 /116/	2902	0.001202
(009) Участок сварки и резки	6010	044	Сварочный пост	Сварка металлов	8.00	1500.00	Железо (II, III) оксиды /в пересчете на железо/ /277/	0123	0.02406
esapan n pesan				MCT COMMON			Марганец и его соединения /в пересчете на марганца (IV) оксид/ /332/	0143	0.00207
							Азот (IV) оксид /4/ Азот (II) оксид /6/	0301 0304	0.0027 0.00043875
							Углерод оксид /594/	0337	0.02993
							Фтористые газообразные соединения (в пересчете на	0342	0.001688
							фтор) /627/ Фториды неорганические плохо	0344	0.007425
							растворимые - (алюминия		
							фторид, кальция фторид, натрия гексафторалюминат) /625/		
							Пыль неорганическая: 70-20% двуокиси кремния (шамот,	2908	0.00315
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, дом-ый		
	-010					==0.00	шлак, песок, клинкер /503/		
	6010	045	Передвижной	Сварка	8.00		Железо (II, III) оксиды /в	0123	0.00802
			сварочный пост	металлов			пересчете на железо/ /277/ Марганец и его соединения /в	0143	0.00069
							пересчете на марганца (IV)	0143	0.00069
							оксид/ /332/	0201	0.0000
							Азот (IV) оксид /4/ Азот (II) оксид /6/	0301 0304	0.0009 0.00014625
							Углерод оксид /594/	0304	0.00998
							Фтористые газообразные	0342	0.000563
							соединения (в пересчете на фтор) /627/		
							Фтору 70277	0344	0.002475
		1					растворимые - (алюминия		
		1					фторид, кальция фторид,		
		[натрия гексафторалюминат)		

I	1	İ	i	Ī	1 1		/625/	1 1	i
							Пыль неорганическая: 70-20%	2908	0.00105
								2908	0.00105
							двуокиси кремния (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, дом-ый		
							шлак, песок, клинкер /503/		
	6010	046	Передвижной	Сварка	8.00	750.00	Железо (II, III) оксиды /в	0123	0.00802
			сварочный пост	металлов			пересчете на железо/ /277/		
							Марганец и его соединения /в	0143	0.00069
							пересчете на марганца (IV)		
							оксид/ /332/		
							Азот (IV) оксид /4/	0301	0.0009
							Азот (II) оксид /6/	0304	0.00014625
							Углерод оксид /594/	0337	0.00998
							Фтористые газообразные	0342	0.000563
							соединения (в пересчете на		
							фтор) /627/		
							Фториды неорганические плохо	0344	0.002475
							растворимые - (алюминия		31332113
							фторид, кальция фторид,		
							натрия гексафторалюминат)		
							/625/		
							Пыль неорганическая: 70-20%	2908	0.00105
							двуокиси кремния (шамот,		
							цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, дом-ый		
							шлак, песок, клинкер /503/		
	6010	047	Пост резки	Резка	8.00	1000.00	Железо (II, III) оксиды /в	0123	0.02664
			металлов	металлов			пересчете на железо/ /277/		
							Марганец и его соединения /в	0143	0.00036
							пересчете на марганца (IV)	01.0	0.00000
							оксид//332/		
							Азот (IV) оксид /4/	0301	0.01056
							Азот (II) оксид /6/	0304	0.001716
							Углерод оксид /594/	0337	0.01308
	6010	048	Передвижной пост	Резка	8.00	500.00	Железо (II, III) оксиды /в	0123	0.01332
	0010	046	резки металлов	металлов	8.00	300.00	пересчете на железо/ /277/	0123	0.01332
			резки металлов	металлов				0143	0.00018
							Марганец и его соединения /в	0143	0.00018
							пересчете на марганца (IV)		
							оксид//332/	0201	0.00520
		l					Азот (IV) оксид /4/	0301	0.00528
							Азот (II) оксид /6/ Углерод оксид /594/	0304 0337	0.000858 0.00654

	6010	049	Передвижной пост резки металлов	Резка металлов	8.00		Железо (II, III) оксиды /в пересчете на железо/ /277/	0123	0.01332
			pesar merabrob	Meranion of the second			Марганец и его соединения /в пересчете на марганца (IV) оксид/ /332/	0143	0.00018
							Азот (IV) оксид /4/	0301	0.00528
							Азот (II) оксид /6/	0304	0.000858
							Углерод оксид /594/	0337	0.00654
(014) Камера приема скребков	6011	062	Камера приема скребков №1	Техническое обслуживание	24.00		Углеводороды предельные C12-19 /в пересчете на суммарный органический	2754	0.01416
							углерод/ /592/		
	6012	063	Камера приема скребков №2	Техническое обслуживание	24.00	240.00	Углеводороды предельные С12-19 /в пересчете на	2754	0.01416
							суммарный органический углерод/ /592/		
	6013	064	Камера пуска скребков №3	Техническое обслуживание	24.00		Углеводороды предельные C12-19 /в пересчете на	2754	0.01416
							суммарный органический углерод/ /592/		
(015) Земляные работы	6014	065	Выемка грунта	Выемочные работы	8.00	1000.00	Пыль неорганическая: 70-20% двуокиси кремния (шамот,	2908	0.084
1				1			цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, дом-ый		
							шлак, песок, клинкер /503/		
	6015	066	Планировка	Планировочны	8.00	53.48	Пыль неорганическая: 70-20%	2908	0.0768
			территории	е работы			двуокиси кремния (шамот,		
			(перемещение				цемент, пыль цементного		
			грунта)				производства - глина, глинистый сланец, дом-ый		
							шлак, песок, клинкер /503/		
	6016	067	Склад временного	Временное	24.00		Пыль неорганическая: 70-20%	2908	0.81623
			хранения грунта	хранение			двуокиси кремния (шамот,		0.000
			1, 1,	грунта			цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, дом-ый		
							шлак, песок, клинкер /503/		
(017) Автотранспорт (Гараж легковых	6021	071	УАЗ Hunter	Пробег в пределах предприятия	0.30	84.30	Азот (IV) оксид /4/	0301	
автомобилей)				предприятия					
and of mileting							Азот (II) оксид /6/	0304	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337	

							Бензин (нефтяной, малосернистый) /в пересчете на углерод/ /60/	2704
	6022	072	YA3 Pickup	Пробег в пределах предприятия	0.30	84.30	Азот (IV) оксид /4/	0301
							Азот (II) оксид /6/	0304
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Бензин (нефтяной,	2704
							малосернистый) /в пересчете на углерод/ /60/	
	6023	073	УАЗ Patriot	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301
				пределах				
				предприятия				
				1			Азот (II) оксид /6/	0304
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Формальдегид /619/	1325
							Бензин (нефтяной,	2704
							малосернистый) /в пересчете	
							на углерод/ /60/	
	6024	074	Mitsubishi L200	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301
				пределах				
				предприятия				
							Азот (II) оксид /6/	0304
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
	6025	075	Toyota Avensis	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301
				пределах предприятия				
							Азот (II) оксид /6/	0304
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Бензин (нефтяной,	2704
							малосернистый) /в пересчете	
							на углерод/ /60/	
(018)	6026	077	MA3-6317	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301
Автотранспорт]			пределах				
(Пожарное депо)]			предприятия				
							Азот (II) оксид /6/	0304
]						Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Бензин (нефтяной,	2704
]				1 1		малосернистый) /в пересчете	

	1			Ĭ	1 1		на углерод/ /60/	1 1
	6027	078	КамАЗ-5662 KD	Пробег в пределах предприятия	0.30		Азот (IV) оксид /4/	0301
				предприятия			Азот (II) оксид /6/	0304
							Углерод /593/	0328
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Углеводороды предельные	2754
							С12-19 /в пересчете на	
							суммарный органический	
(010)	6020	070	I AMT (22010	П	0.20		углерод/ /592/	0201
(019) Автотранспорт	6028	079	Iveco-AMT 633910 (TC)	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301
(Открытая			(10)	пределах предприятия				
площадка)				предприятия				
пощидки)							Азот (II) оксид /6/	0304
							Углерод /593/	0328
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Углеводороды предельные	2754
							С12-19 /в пересчете на	
							суммарный органический	
	6020	000	E 10M (E	П	0.20		углерод/ /592/	0201
	6028	080	Б 10М (Бульдозер)	Пробег в пределах	0.30	84.30	Азот (IV) оксид /4/	0301
				пределах				
				предприятия			Азот (II) оксид /6/	0304
							Углерод /593/	0328
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Углеводороды предельные	2754
							С12-19 /в пересчете на	
							суммарный органический	
	6020	001	H: 1:737160	П б	0.20	0.4.20	углерод/ /592/	0201
	6028	081	Hitachi ZX160	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301
			(Экскаватор)	пределах				
				предприятия			Азот (II) оксид /6/	0304
							Углерод /593/	0328
							Сера диоксид /526/	0330
							Углерод оксид /594/	0337
							Углеводороды предельные	2754
							С12-19 /в пересчете на	
	1						суммарный органический	

6028	083	КамАЗ-43118 (АК)	Пробег в пределах предприятия	0.30	углерод/ /592/ 84.30 Азот (IV) оксид /4/ Азот (II) оксид /6/	0301
					Углерод /593/ Сера диоксид /526/ Углерод оксид /594/ Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	0328 0330 0337 2754
6028	084	КамАЗ-5350 (АВ)	Пробег в пределах предприятия	0.30	84.30 Азот (IV) оксид /4/	0301
			предприятия		Азот (II) оксид /6/ Углерод /593/ Сера диоксид /526/ Углерод оксид /594/ Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	0304 0328 0330 0337 2754
6028	085	КамАЗ-43118 (ПРМ)	Пробег в пределах	0.30	84.30 Азот (IV) оксид /4/	0301
			предприятия		Азот (II) оксид /6/ Углерод /593/ Сера диоксид /526/ Углерод оксид /594/ Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	0304 0328 0330 0337 2754
6028	086	КамАЗ-43118 (АЦН)	Пробег в пределах предприятия	0.30	84.30 Азот (IV) оксид /4/	0301
					Азот (II) оксид /6/ Углерод /593/ Сера диоксид /526/ Углерод оксид /594/ Углеводороды предельные С12-19 /в пересчете на суммарный органический углерод/ /592/	0304 0328 0330 0337 2754

	6028	087	КамАЗ-65222 (Самосвал)	Пробег в пределах предприятия	0.30	84.30	Азот (IV) оксид /4/	0301	
							Азот (II) оксид /6/	0304	
							Углерод /593/	0328	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337	
							Углеводороды предельные	2754	
							С12-19 /в пересчете на		
							суммарный органический		
							углерод/ /592/		
	6028	088	КамАЗ-43118 (ПНУ-2)	Пробег в пределах предприятия	0.30	84.30	Азот (IV) оксид /4/	0301	
				11			Азот (II) оксид /6/	0304	
							Углерод /593/	0328	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337	
							Углеводороды предельные	2754	
							С12-19 /в пересчете на		
							суммарный органический		
							углерод/ /592/		
	6028	089	КамАЗ-43118 (КМУ)	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301	
				пределах					
				предприятия					
							Азот (II) оксид /6/	0304	
							Углерод /593/	0328	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337	
							Углеводороды предельные	2754	
							С12-19 /в пересчете на		
							суммарный органический		
							углерод/ /592/		
	6028	090	УРАЛ-5668 (ВА)	Пробег в	0.30	84.30	Азот (IV) оксид /4/	0301	
				пределах					
				предприятия				0004	
							Азот (II) оксид /6/	0304	
							Углерод /593/	0328	
							Сера диоксид /526/	0330	
							Углерод оксид /594/	0337 2754	
							Углеводороды предельные	2/34	
							С12-19 /в пересчете на		
							суммарный органический углерод/ /592/		
(020) Линейная	6030	092	Выемка грунта	Выемочные	8.00		Пыль неорганическая: 70-20%	2908	0.168
[(020) Липсипал	0030	072	рысмка групта	DIGMOTHER	0.00	2000.00	портаническая. 70-2070	2700	0.100

часть		I		работы	1 1		двуокиси кремния (шамот,	1 1	1
10015				Puccin			цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, дом-ый		
							шлак, песок, клинкер /503/		
	6031	093	Планировочные	Планировочны	8.00	107.00	Пыль неорганическая: 70-20%	2908	0.1536
	0031	073	работы	е работы	0.00	107.00	двуокиси кремния (шамот,	2,000	0.1330
			(перемещение	Сриооты			цемент, пыль цементного		
			грунта)				производства - глина,		
			трунта)				глинистый сланец, дом-ый		
							шлак, песок, клинкер /503/		
	6032	094	Синан вромонново	Риомонно	24.00	9760.00	Пыль неорганическая: 70-20%	2908	1.632461
	0032	094	Склад временного	Временное	24.00	8700.00	двуокиси кремния (шамот,	2908	1.032401
			хранения грунта	хранение					
				грунта			цемент, пыль цементного		
							производства - глина,		
							глинистый сланец, дом-ый		
(000)	6022	005	77777 f	3.6	6.00	500.00	шлак, песок, клинкер /503/	2002	0.02502
(008)	6033	095	УШМ	Механическая	6.00	600.00	Взвешенные частицы р.м. 10	2902	0.02592
Мехмастерская				обработка			/116/		
				металла					
							Пыль абразивная /1046/	2930	0.01685
(021)	6034	096	Краскопульт	Грунтовка	3.00	75.00	Толуол /567/	0621	0.03115
Лакокрасочные									
работы									
							Бутилацетат /110/	1210	0.00603
							Пропан-2-он /478/	1401	0.01306
							Взвешенные частицы р.м. 10	2902	0.00743
							/116/		
	6034	097	Краскопульт	Растворитель	2.00	40.00	Циклогексанон	1411	0.012
							Сольвент нафта /1169/	2750	0.028
	6034	098	Краскопульт	Эмаль	3.00	135.00	Ксилол (смесь изомеров о-,	0616	0.0205
							м-, п-) /327/		
							2-Этоксиэтанол /1526/	1119	0.0154
							Пропан-2-он /478/	1401	0.0154
							Взвешенные частицы р.м. 10	2902	0.0251
							/116/		
	6034	099	Кисть, валик	Грунтовка	3.00	75.00	Толуол /567/	0621	0.03115
							Бутилацетат /110/	1210	0.00603
							Пропан-2-он /478/	1401	0.01306
	6034	100	Кисть, валик	Растворитель	2.00	40.00	Циклогексанон	1411	0.012
			,	F	/		Сольвент нафта /1169/	2750	0.028
	6034	101	Кисть, валик	Эмаль	3.00	135.00	Ксилол (смесь изомеров о-,	0616	0.0205
		101	,		2.50	122.00	м-, п-) /327/	0010	0.0203
							2-Этоксиэтанол /1526/	1119	0.0154
							Пропан-2-он /478/	1401	0.0154
		l .					11Poliuli 2-011/4/0/	1701	0.0134

(008)	6035	102	УШМ	Металлообраб	1.00	100.00	Взвешенные частицы РМ10	2902	0.00144
Мехмастерская				отка					
							Пыль абразивная (Корунд	2930	0.000936
							белый; Монокорунд)		

Раздел II. Характеристика источников загрязнения атмосферы

Номер источ- ника	Па источн.за	раметры грязнен.		етры газовоздушной он а выходе источника з		Код загр ве-	веществ, вн	загрязняющих ыбрасываемых мосферу	Координаты точечного ис		рязнения, м	
загря-	Высота	Диаметр,	Скорость	Объемный	Темпе-	щес-	Duri	лосфору	/1 конца лин		линейного	
внения	M	разм.сечен	M/c		ратура,	тва	Максимальное,	Суммарное,	1			
		устья, м		м3/с	C		г/с	т/год	X1	У1	X2	У2
1	2	3	4	5	6	7	8	9	10	11	12	13
0001	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1651		
0002	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1652		
0003	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1653		
0004	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1653		
0005	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1700		
0006	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1702		
0007	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1704		
8000	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1707		
0009	12.9	0.25	3.4	0.1668975	26.7	0333 2754	0.000122 0.0435	0.0002864 0.102		1848		
0010	1.5	0.62	12.42	3.7496944	26.7	0333 2735 2754	0.00044 0.00833 0.1566	0.004352 0.263 1.55		1669		
0011	1.5	0.53	6.54	1.443	26.7	0333 2754	0.00044 0.1566	0.004352 1.55		1669		
0012	4.5	0.16	34.26	0.6888888	26.7	0333 2754	0.00044 0.1566	0.004352 1.55		1669		

0013	12.0	0.219	6.64	0.2501193	26.7	0333 2754	0.00044 0.1566		2112	1753	
0014	1.5	0.05	2.83	0.0055567	26.7	0333 2754	0.00000024 0.000087	0.0000005 0.000192	2068	1602	
0015	1.5	0.05	2.83	0.0055567	26.7	0333 2754	0.00000244 0.000087	0.000000539 0.000192	2067	1452	
0016	1.5	0.05	2.83	0.0055567	26.7	0333 2754	0.00000244 0.000087	0.000000539 0.000192	2092	1759	
0017	2.5	0.15	0.02	0.0002777	26.7	0333 2754	0.00000244 0.000087	0.00000055 0.0001958	1796	1643	
0018	2.5	0.15	0.02	0.0002777	26.7	0333 2754	0.00000244 0.000087	0.00000055 0.0001958	1796	1637	
0021	1.5	0.05	2.83	0.0055567	26.7	0333 2754	0.00000244 0.000087	0.000000539 0.000192	1830	1951	
0022	1.5	0.05	2.83	0.0055567	26.7	0333 2754	0.00000244 0.000087	0.000000539 0.000192	1811	1952	
0023	4.5	0.1	0.69	0.0054166	26.7	0333 2754	0.0000048 0.001695	0.0000019 0.000662	1860	1411	
0024	2.0	0.1	0.69	0.0054166	26.7	0333 2754	0.0000048 0.001695	0.0000006 0.000217	1845	1396	
0025	2.5	0.15	14.7	0.2597711	26.7	0333 2754	0.0000544 0.019386	0.000001176 0.0004188	1849	1411	
0026	2.0	0.8	0.4	0.2010624	26.7	2902 2930	0.0216 0.0144	0.00778 0.00518	1839	1570	
0027	3.5	0.3	2.86	0.2025	26.7	0322	0.0000095	0.0000171	1840	1538	
0033	3.0	0.2	2.5	0.07854	26.7	0301 0304 0328 0330 0337 1301 1325 2754	0.3969 0.5159 0.0661 0.1323 0.3307 0.0159 0.0159	0.039087 0.005011 0.010022 0.025056 0.001203 0.001203	1820	1524	

0034	2.0	0.2	2.5	0.0785398	26.7	0301 0304 0328 0330 0337 1301 1325 2754	0.2572 0.3344 0.0429 0.0857 0.2144 0.0103 0.0103 0.1029	0.150335 0.195435 0.025056 0.050112 0.125279 0.006013 0.006013	1819	1573	
0035	1.0	0.1	2.5	0.019635	26.7	0301 0304 0328 0330 0337 1301 1325 2754	0.0208 0.0271 0.0035 0.0069 0.0174 0.0008 0.0008	0.015033 0.019544 0.002506 0.005011 0.012528 0.000601 0.000601	1819	1566	
0036	2.0	0.2	8.71	0.27361	26.7	0150 0302 0303 0316 0322 0602 0621 0906 1061 1401 1555	0.000786 0.0015 0.0001476 0.000396 0.0000801 0.000738 0.0002433 0.001479 0.00501 0.001911 0.000576	0.02478 0.047304 0.00465 0.01248 0.00252 0.02325 0.00765 0.04662 0.15798 0.06024 0.01815	1967	1359	
0037	2.0	0.2	7.25	0.227766	26.7	0150 0302 0303 0316 0322 0602 0621 0906 1061 1401 1555	0.000786 0.0015 0.0001476 0.000396 0.0000801 0.000738 0.0002433 0.001479 0.00501 0.001911 0.000576	0.02478 0.047304 0.00465 0.01248 0.00252 0.02325 0.00765 0.04662 0.15798 0.06024 0.01815	1968	1375	
0038	2.0	0.2	6.94	0.218	26.7	0150 0302 0303	0.000786 0.0015 0.0001476	0.02478 0.047304 0.00465	1978	1375	

						0316 0322 0602 0621 0906 1061 1401 1555	0.000396 0.0000801 0.000738 0.0002433 0.001479 0.00501 0.001911 0.000576	0.01248 0.00252 0.02325 0.00765 0.04662 0.15798 0.06024 0.01815				
0039	2.0	0.49	18.12	3.4167	26.7	0301 0304 0328 0330 0337 2704 2754 2902	0.0194496 0.00316056 0.0027389 0.0018764 0.09663 0.00241 0.016735 0.00022	0.0000792	1957	1346		
6001	2.0				26.7	2754	0.0031	0.017	1849	1400	3	4
6004	2.0				26.7	0333 2754	0.0000544 0.019386	0.0000392 0.13961	1851	1579	1	1
6005	2.0				26.7	0333 2754	0.0000544 0.019386	0.0000392 0.13961	1851	1577	1	1
6006	2.0				26.7	0333 2754	0.0000544 0.019386	0.0000392 0.13961	2060	1601	1	1
6007	2.0				26.7	0333 2754	0.00022 0.0783	0.002176 0.775	1798	1641	1	1
6008	2.0				26.7	0333 2754	0.00022 0.0783	0.002176 0.775	1799	1636	1	1
6009	2.0	0.8	0.48	0.24	26.7	2902	0.0478	0.0176622	1837	1575		
6010	2.0	1	0.38	0.298452	26.7	0123 0143 0301 0304 0337 0342 0344 2908	0.03111 0.0010668 0.0098088 0.00159393 0.021972 0.0006249 0.002751 0.001167	0.09338 0.00417 0.02562 0.00416325 0.07605 0.002814 0.012375 0.00525	1811	1548		

601	1 2.0				26.7	2754	0.002583	0.01416	1804	1959	1	1
6012	2 2.0				26.7	2754	0.002583	0.01416	1806	1959	1	1
6013	3 2.0				26.7	2754	0.002583	0.01416	1808	1959	1	1
6014	4 2.0				26.7	2908	0.023333	0.084	1886	1413	1	1
601:	5 2.0				26.7	2908	0.399	0.0768	1885	1420	5	5
6010	6 2.0	1			26.7	2908	0.075733	0.81623	1881	1472	10	10
602	1 3.0	3.5	0.16	1.539384	26.7	0301 0304 0330 0337 2704	0.00007664 0.000012454 0.0000208 0.00726 0.000767		1975	1247		
6022	2 3.0	3.5	0.16	1.539384	26.7	0301 0304 0330 0337 2704	0.00007664 0.000012454 0.0000208 0.00726 0.000767		1975	1243		
6023	3.0	3.5	0.16	1.575	26.7	0301 0304 0330 0337 1325 2704	0.00007664 0.000012454 0.0000208 0.00726 0.0000169 0.00075		1975	1239		
6024	3.0	3.5	0.16	1.575	26.7	0301 0304 0330 0337	0.00007664 0.000012454 0.0000208 0.00726		1975	1235		
602:	5 3.0	3.5	0.16	1.575	26.7	0301 0304 0330 0337 2704	0.00007664 0.000012454 0.0000208 0.00726 0.000767		1975	1231		
6020	6 3.4	3.4	0.19	1.734	26.7	0301 0304 0330 0337			1975	1300		

						2704	0.00495					
6027	3.4	3.4	0.19	1.734	26.7	0301 0304 0328 0330 0337 2754	0.0012336 0.00020046 0.0000667 0.0001817 0.00405 0.000492		1984	1301		
6028	2.0				26.7	0301 0304 0328 0330 0337 2754	0.491296 0.0798356 0.12504 0.04509 2.6223 0.36317		2021	1373	11	23
6030	2.0				26.7	2908	0.023333	0.168			1	1
6031	2.0				26.7	2908	0.399	0.1536			5	5
6032	2.0				26.7	2908	0.151467	1.632461			10	20
6033	2.0				26.7	2902 2930	0.004 0.0026	0.02592 0.01685	1814	1545	1	1
6034	2.0				26.7	0616 0621 1119 1210 1401 1411 2750 2902	0.0844 0.2308 0.06334 0.04466 0.16014 0.1666 0.3888 0.0792	0.041 0.0623 0.0308 0.01206 0.05692 0.024 0.056 0.03253	1960	1640	1	1
6035	2.0	1	0.38	0.298452	26.7	2902 2930	0.004 0.0026	0.00144	1827	1533		

Раздел III. Показатели работы газоочистных и пылеулавливающих установок

Номер	Наименование и тип	КПД апп	аратов, %	Код	Коэффиц	иент обеспе-	Капитальные	Затраты
источника	пылегазоулавливающего			загрязняющего	ченнос	ги К(1),%	вложения,	на
выделения	оборудования	проектный	фактичес-	вещества по			млн.	газочистку,
			кий	котор.проис-	норматив-	фактичес-	тенге	млн.
				ходит очистка	ный	кий		тенге/год
1	2	3	4	5	6	7	8	9
0026 037	ЗИЛ-900м	99.30	99.30	2902	100	100		
		99.30	99.30	2930	100	100		

Раздел IV. Суммарные выбросы загрязняющих веществ в атмосферу, их очистка и утилизация

Код заг-	Наименование	Количество загрязняющих	В том	числе	Из по	оступивших на оч	истку	Всего выброшено
ряз-	загрязняющего	веществ	выбрасыва-	поступает	выброшено	уловлено и обез	врежено	В
няющ веще ства	вещества	отходящих от источников выделения	ется без очистки	на очистку	в атмосферу	фактически	из них ути- лизовано	атмосферу
1	2	3	4	5	6	7	8	9
BCE		13.406609382	13.39364938	0.01296	0.00009072		0	13.3937401
D C L	в том числе:	13.40000/302	13.37304730	0.01270	0.0000007072	0.01200720		13.3737401
твер		3.1872164	3.1742564	0.01296	0.00009072	0.01286928		3.17434712
твер	из них:	3.1072101	3.17 12301	0.01290	0.00007072	0.01200720		3.17 13 17 12
	диЖелезо триоксид (Железа оксид) /в	0.09338	0.09338					0.09338
	пересчете на железо/ Марганец и его соединения /в	0.00417	0.00417					0.00417
	пересчете на марганца (IV) оксид/							
0328	Углерод (Сажа)	0.032573	0.032573					0.032573
0344	Фториды неорганические плохо	0.012375	0.012375					0.012375
	растворимые - (алюминия фторид,							
	кальция фторид, натрия							
	гексафторалюминат) (Фтористые							
	соединения: плохо растворимые							
	неорганические фториды (фторид							
	алюминия, фторид кальция, гексафторалюминат натрия)) /в							
	пересчете на фтор/							
	Взвешенные частицы РМ10	0.0854114	0.0776314	0.00778	0.00005446	0.00772554		0.07768586
	Пыль неорганическая: 70-20%	2.936341	2.936341	0.00778	0.00003440	0.00772334		2.936341
2908	двуокиси кремния (шамот, цемент,	2.930341	2.930341					2.930341
	пыль цементного производства -							
	глина, глинистый сланец, доменный							
	шлак, песок, клинкер, зола							
	кремнезем и др.)							
	Пыль абразивная (Корунд белый;	0.022966	0.017786	0.00518	0.00003626	0.00514374		0.01782226
	Монокорунд)				**********			
	образные и жидкие	10.219392982	10.21939298					10.21939298
	из них:							
0150	Натрий гидроксид (Натрия	0.04956	0.04956					0.04956
	гидроокись; Натр едкий; Сода							
	каустическая)							
	Азот (IV) оксид (Азота диоксид)	0.221055	0.221055					0.221055
	Азотная кислота /по молекуле HNO3/	0.094608	0.094608					0.094608
	Аммиак	0.0093	0.0093					0.0093
0304	Азот (II) оксид (Азота оксид)	0.25822925	0.25822925					0.25822925

0322 0330 0333 0337	Соляная кислота Кислота серная Сера диоксид (Ангидрид сернистый) Дигидросульфид (Сероводород) Углерод оксид Фтористые газообразные соединения	0.02496 0.0050571 0.065145 0.021124232 0.238913 0.002814	0.02496 0.0050571 0.065145 0.021124232 0.238913 0.002814		0.02496 0.0050571 0.065145 0.021124232 0.238913 0.002814
	(гидрофторид, кремний тетрафторид) (Фтористые соединения газообразные (фтористый водород, четырехфтористый кремний)) /в пересчете на фтор/				
	Бензол	0.0465	0.0465		0.0465
0616	Диметилбензол (Ксилол) (смесь о-,	0.041	0.041		0.041
	м-, п- изомеров)				
	Метилбензол (Толуол)	0.0776	0.0776		0.0776
	Углерод тетрахлорид	0.09324	0.09324		0.09324
	Этиловый спирт	0.31596	0.31596		0.31596
	Этиловый эфир этиленгликоля	0.0308	0.0308		0.0308
	Уксусной кислоты бутиловый эфир	0.01206	0.01206		0.01206
	Проп-2-ен-1-аль (Акролеин)	0.007817	0.007817		0.007817
	Метаналь	0.007817	0.007817		0.007817
	Пропан-2-он (Ацетон)	0.1774	0.1774		0.1774
	Циклогексанон	0.024	0.024		0.024
	Уксусная кислота	0.0363	0.0363		0.0363
2704	Бензин (нефтяной, малосернистый) /в пересчете на углерод/				
2735	Масло минеральное нефтяное (веретенное, машинное, цилиндровое и др.)	0.263	0.263		0.263
2750	Сольвент нафта	0.056	0.056		0.056
	Углеводороды предельные С12-19 /в	8.0391334	8.0391334		8.0391334
	пересчете на суммарный органический	0.0071001	0.0071001		0.0071331
	углерод/				
L	DL			l l	

ПРИЛОЖЕНИЕ 2

Директору ТОО «ПЕТРОЭКОЦЕНТР-Логистики» Кедич Д.В.

Предоставляю Вам исходные данные, необходимые для разработки проекта нормативов допустимых выбросов ЛПДС «Петропавловск» филиал АО «Транснефть».

Площадка предприятия представлена: <u>Резервуарный парк</u>

Основной резервуарный парк для хранения светлых нефтепродуктов представлен парками для хранения дизельного топлива. Резервуары вертикального типа PBC-5000 №№10-17, объём каждой - 5000 м³ (8 ед.).

Общая емкость единовременного хранения составляет 40 000 м³. В качестве буферных ёмкостей при внутрибазовых перекачках дизельного топлива, при необходимости, возможно использование любого свободного резервуара.

Все резервуары в обязательном порядке оснащены следующим технологическим оборудованием:

- приемно-раздаточными патрубками, предназначенными для проведения операций по заполнению и опорожнению резервуаров;
- дыхательными и предохранительными (марка КДС-3000) клапанами, а также аварийными клапанами (марка АКс-500). Дыхательный клапан гарантирует «малые дыхания» резервуара, вызываемые изменением температуры окружающего воздуха или барометрического давления. Предохранительный клапан предназначен для дублирования работы дыхательного клапана в случае выхода последнего из строя (ИЗА №0001-0008), аварийные клапана предназначены для аварийного сброса внутреннего избыточного давления и вакуума;
 - дренажными устройствами.

Измерение уровня в резервуарах производится автоматически, также возможно осуществлять контрольные замеры через люк замерный с помощью приборов, выполненных в искробезопасном исполнении.

Все резервуары объединены в единый резервуарный парк. Подъем на крыши для обслуживания оборудования, установленного на крыше, предусмотрен по кольцевым и шахтным лестницам. На случай возникновения розлива нефтепродуктов, по периметру парка предусмотрено защитное герметичное ограждение из земляного обвалования высотой 1,8 метра, которое рассчитано на вместимость 100% объема резервуарного парка в случае розлива, включая 50 сантиметров выше уровня аварийного розлива.

Заполнение резервуаров происходит из нефтепродуктопровода, под давлением. Предварительно, перед заполнением резервуарного парка происходит отбор проб в помещении пробоотборной на ряд качественных показателей принимаемых нефтепродуктов, в дальнейшем, в случае положительных результатов анализов и после согласования получаемых объемов с отправляющей стороной, производится прием нефтепродуктов в резервуарный парк.

После положенных сроков отстаивания, и, при необходимости, хранения, в том числе и длительного хранения, нефтепродукты откачиваются с помощью насосного оборудования магистральной насосной дальше по месту конечного прибытия. Часть нефтепродуктов подается на железнодорожную эстакаду с помощью насосного оборудования наливной насосной непосредственно в железнодорожные цистерны.

Магистральная насосная

Для осуществления операций по подаче дизельного топлива для дальнейшей транспортировки в нефтепродуктопровод на площадке предусмотрена магистральная насосная, где установлены магистральные насосы с манифольдом типа НМ 500-800 №1-2

и подпорные насосы типа 8 НДв №1-2, размещенные в приёмке магистральной насосной, номинальной производительностью 470 м /час каждый, при этом 1 насос каждого типа является резервным. Для предотвращения утечек топлива каждый насос оснащен двумя торцевыми уплотнителями. Манифольд — представляет собой несколько трубопроводов, закреплённых на одном основании, рассчитанных на высокое давление и соединенных по определенной схеме. Для начала работ, производится запуск подпорного насоса на 10 минут для прокачки воздуха и создания необходимого давления в трубопроводе для обеспечения работы основного магистрального насоса, после создания требуемого давления включается магистральный насос. Пуск насоса производится при открытой задвижке на всасывающем трубопроводе. Насосы используются для перекачки дизельного топлива.

Также в помещении магистральной насосной установлены насосы типа НМШ 8/25 (2 ед., 1 рабочий, 1 резервный), задействованные в маслосистеме (для подачи турбинного масла на смазку подшипников магистрального насоса при его работе).

Возле помещения магистральной насосной также установлены вспомогательные насосы типа НВН (2 ед.) производительностью 25 м³/час для откачки нефтепродукта из емкости сбора утечек №10,11 (ИЗА №6007-6008).

Вентилирование помещения магистральной насосной предусмотрено посредством работы вентиляторов марки ВЦ 14-46 производительностью по воздуху 13590 м³/час и 15640 м³/час. Устье вентиляционной установки расположено на высоте 8,7 метра и ее диаметр составляет 0,62 метра (ИЗА №0010). Во избежание скопления паров нефтепродуктов в приямке при работе подпорных насосов, здесь также установлена вытяжная вентиляционная установка с вентилятором типа ВЦ9-57 №6 производительностью 7340 м3/час. Устье вентиляционной установки расположено на высоте 8,7 метра и ее диаметр составляет 0,53 метра (ИЗА №0011).

Наливная насосная

Для внутрибазового перемещения нефтепродуктов и для сдачи нефтепродуктов в ТОО «Петропавловская нефтебаза» в наливной насосной установлены насосы типа 12НДсН (2 ед., 1 рабочий, 1 резервный), производительностью 900 м³/час. Также установлен вспомогательный насос типа НВД-50/50 (1 ед.) производительностью 50 м³/час для откачки нефтепродукта из емкости сбора утечек №2. Вентилирование помещения наливной насосной предусмотрено посредством работы вентиляторов марки ВЦ14-46 №4 производительностью по воздуху 2480 м³/час. Устье вентиляционной установки расположено на высоте 4,5 метров и ее диаметр составляет 0,16 метра (ИЗА №0012).

Открытая площадка наливных насосов

Для управления операций по подаче дизельного топлива на железнодорожную эстакаду рядом с местным диспетчерским пунктом (МДП) установлены насосы типа НД1250-65 (2 ед., 1 рабочий, 1 резервный) производительностью 809 м³ /час (ИЗА №6006). Также установлен вспомогательный насос типа НВД-50/50 (1 ед.) производительностью 50 м³/час для откачки нефтепродукта из емкости сбора утечек №1 (ИЗА №6029).

Железнодорожная эстакада

Железнодорожная эстакада - инженерное сооружение, из металлических конструкций из прокатных профилей. Подача вагонов осуществляется на один тупик. Железнодорожная эстакада на 24 вагоноцистерны - двусторонняя, оборудована УНЖ 6-100 АС-02 с шагом, равным шагу устанавливаемых вагонов-цистерн (12 метров).

Прием нефтепродуктов из железнодорожных цистерн на сливоналивной железнодорожной эстакаде технически невозможен, весь объем нефтепродуктов поступает на площадку с нефтепродуктопровода. Для выполнения операций по наливу нефтепродуктов эстакада оборудуется:

• установками герметизированного верхнего налива с отводом паров из зоны налива типа УНЖ 6-100 АС – 02 (24 ед. возможна одновременная работа);

• коллекторами диаметром Ду 150 мм.

Устройство УНЖ 6-100 АС-02, предназначено для герметизированного верхнего налива нефтепродуктов в железнодорожные цистерны с отводом паров из зоны налива. Герметизирующая крышка установки — универсальная, адаптирована ко всем типам железнодорожных цистерн для перевозки нефти и нефтепродуктов. Механизм прижатия расположен на устройстве и обеспечивает прижатие герметизирующей крышки к горловине цистерны как в начале налива так и в процессе просадки цистерны под действием налитого в неё продукта.

Отвод паров производится через отдельный герметичный шарнирный трубопровод (газоотводная линия), не требующий замены в течение срока службы устройства. Часть паров нефтепродуктов, проходя через коллектор, конденсируется и собирается в емкость сбора утечек нефтепродуктов №9. Паровоздушная составляющая отводится через «свечу», устье которой расположено на высоте 12 метров и диаметр ее 0.219 метров (ИЗА №0013).

Нефтеловушка

Для сбора несанкционированных утечек нефтепродуктов, а также для отвода дождевых и талых вод и их очистки имеется нефтеловушка закрытого типа объемом 60 м³. Стоки самотеком поступают в ливневую сеть площадки. Очистка производится физическими методами (отстаивание) (ИЗА 6001).

Всплывшие на поверхность нефтепродукты откачиваются в резервуар объемом 9 м³ (ИЗА №0023) с дальнейшей закачкой их в продуктовые резервуары. Очищенные стоки поступают В емкость дополнительной очистки объемом представляющую собой заглубленную цистерну (ИЗА *№0024*), дополнительно отстаиваются, затем очищенные дождевые воды при помощи насосного оборудования канализационной насосной станции, находящейся за пределами площадки, поступают в городской канализационный коллектор.

С целью перекачки нефтепродуктов в здании нефтеловушки предусмотрен насос НШ-40 производительностью 19.5 м3/час. Выброс загрязняющих веществ в окружающую среду осуществляется посредством вытяжного устройства производительностью 920 м³/час. Устье вентиляционной установки расположено на высоте 2,5 метра и ее диаметр составляет 0,2 метра (ИЗА №0025).

Сброс коммунальных вод и производственно-дождевых стоков в природные водоемы и водотоки, а также на рельеф местности отсутствует.

Система емкостей сбора утечек

Для исключения розливов нефтепродуктов на площадке филиала существует система емкостей сбора утечек. Емкость сбора утечек представляет собой заглубленную емкость, в которую собирается нефтепродукт (при розливах, при опорожнении магистральных, подпорных, наливных и вспомогательных насосов при подготовке их к ремонту и т.д.). Сбор нефтепродуктов в ёмкости осуществляется самотёком.

На площадке размещено 8 емкостей сбора утечек: РГС№1 (8 м3) - рядом с МДП, РГС№2 (5 м3) - возле наливной насосной, РГС№10,11 (по 25 м3) - возле магистральной насосной, РГС№5 (выведена из эксплуатации), РГС№6, РГС№8 (по 5 м3) - рядом с пробоотборной; РГС№9 (5 м3) - коллектор газоотводной линии железнодорожной эстакады.

Каждая емкость сбора утечек оснащена дыхательным клапаном типа СМДК-50А, устье дыхательного клапана расположено на высоте 2 метра от поверхности земли, диаметр устья дыхательного клапана составляет 0.05 метра *(ИЗА №0014-0018,0021-0022*).

Периодическое опорожнение емкостей сбора утечек (в среднем 1 раз в 2 месяца или по мере заполнения) производится насосами типа НВД 50/50 (РГС №1,№2), а удаленных от насосного оборудования емкостей (РГС №5,№6, №8, №9, №10, №11) - бензовозом модели АКН-10 или мобильным насосным оборудованием №1, 2 (С-569 - 2

ед.) с дальнейшей закачкой в продуктовые резервуары. В среднем за год суммарно с емкостей сбора утечек откачивается не более 50 тонн дизельного топлива.

Вспомогательное производство <u>Мехмастерская</u>

Для осуществления текущего ремонта оборудования на площадке расположено здание мехмастерской, где производится механическая обработка металлических изделий, зарядка аккумуляторов, газовая резка и сварка металлов.

Время работы каждого станка указано в таблице, оборудование работает неодновременно.

Nº	Наименование оборудования	Количество станков, ед.	Время работы, ч/год
1	Токарно-винторезный станок	1	100
2	Радиально-сверлильный	1	100
3	Обдирочно-шлифовальный, d=350мм	1	100
4	Универсально-токарный	1	200
5	Трубогибочный станок	1	20
6	Отрезной ножовочный станок	1	100
7	Горизонтально-фрезерный	1	100
8	Токарно-винторезный станок	1	100

Вентиляция в помещении мехмастерской - естественная, через дверные проемы высотой 2 метра, шириной 0.8 метра *(ИЗА №6009).* Также от обдирочно-шлифовального станка предусмотрено вытяжное устройство (ВУ-18, ВС-18) производительностью по воздуху 720 м³/час (очистная установка ЗИЛ-900м, с КПД — 99,3%), высота и диаметр устья вытяжного устройства 1,5 м и 0,5 м соответственно (ИЗА №0026).

Возле здания мехмастерской также проводятся работы углошлифовальными станками (2 ед.). Время работы – до 600 час/год. Работы проводятся на открытой площадке (ИЗА №6033).

Участок сварки и газовой резки металлов

Для ремонтных работ на площадке филиала и на линейной части организованы посты сварки (1 стационарный, 2 передвижных), где производится ручная дуговая сварка сталей штучными электродами (УОНИ-13/55, LB-52 U). Расход сварочных материалов составляет 3000 кг/год. Годовой фонд рабочего времени каждого аппарата составляет 6 час/сут, 1296 час/год (суммарно 5184 ч/год) (ИЗА №6010).

Также организованы посты резки металлов (1 стационарный, 2 передвижных). Разрезаемый материал: сталь углеродистая, (толщина материала от 5 - 9, мм.) Максимальная фактическая производительность резки, м/час, ВМАХ=6. Длина резки в год -12000 погонных метров (*ИЗА №6010*).

Аккумуляторный участок

В здании мехмастерской расположен аккумуляторный участок, где производится зарядка аккумуляторных батарей. Номинальная емкость аккумуляторных батарей, 190А.Ч., QN=25. Количество проведенных зарядов за год - 100. Максимальное количество вышеуказанных батарей, присоединяемых одновременно ко всем зарядным устройствам - 2.

Вентилирование помещения производится через вентиляционную шахту, где установлен вентилятор Ц-470, производительностью по воздуху 729 м3/час, высота устья вентиляционной установки на высоте 4 метров, диаметр 0,2 метра (ИЗА №0027).

Помещение УОЭО

Осуществляется сушка от влаги электродвигателей в электропечи. В помещении имеется угловая шлифовальная машинка с диаметром круга 150 мм, время работы которой 100 час/год. Выброс 3В из помещения осуществляется через дверной проём 2х1 м (ИЗА №6035)

Дизельная электростанция

Для исключения перебоев в электроснабжении рядом с помещением мехмастерской установлена дизельгенераторная установка типа ДГА «WOLA» - 1 ед., мощностью 200 кВт, годовой расход дизельного топлива не более 1 тонны. Удельный расход топлива на экспл./номин. режиме работы двигателя 238 г/кВт*ч. Высота дымовой трубы - 3 метра, диаметр устья дымовой трубы - 0.1 метра (ИЗА №0033).

Дизельная электростанция АД 100-Т400 мощностью 100 кВт используется на территории предприятия и на ремонтных работах линейной части продуктопровода. Расход топлива - 30,8 кг/час. В год на дизельную электростанцию расходуется не более 5 т дизельного топлива (ИЗА №0034).

Для исключения перебоев в электроснабжении предусмотрена дизельная электростанция «Champion» - 1 ед., мощностью 3,1 кВт, годовой расход дизельного топлива не более 0,5 тонн. Высота дымовой трубы - 1 метр, диаметр устья дымовой трубы - 0.1 метра (ИЗА №0035).

Автотранспорт

На территории предприятия осуществляется хранение транспортных средств в специально предусмотренных помещениях и на специально отведенной площадке.

Автобокс.

Nº	Наименование	Количество, ед.
1	КАвЗ-4235 (Автобус)	1
2	MT3-82	1
3	ГАЗ-331063 (Валдай)	1
4	ГАЗ-33081 (Чайка)	1
5	Урал-5557 (Пожарная машина)	1

Данные автомобили находятся в боксах круглогодично. В остальные помещения транспорт загоняется на время морозов по необходимости. В боксах имеется приточновытяжная вентиляция. В одном из помещений установлен вертикально-сверлильный станок, время работы которого 100 час/год. Отвод воздуха осуществляется вентустановкой, производительностью 12300 м3/час, диаметром устья 0,45х0,45 м, высотой 1,7 м (ИЗА №0039).

Гараж легковых автомобилей.

Nº	Наименование	Количество, ед.
1	УАЗ Hunter	1
2	УАЗ Pickup	1
3	УАЗ Patriot	1
4	Mitsubishi L200	1
5	Toyota Avensis	1

Параметры дверных проемов: H=3 м, D=3,5 м (ИЗА №6021-6025).

Пожарное депо.

Nº	Наименование	Количество, ед.
1	МАЗ (6317) (Пожарная машина) (МАЗ АЦ-5,0-100 (6317)	1
2	КамАЗ 5662KD АЦ 5,0-100 (Пожарная машина)	1

Параметры дверных проемов: H=3,4 м, D=3,4 м (*ИЗА №6026, 6027*). Выброс также может осуществляться посредством принудительной вентиляционной установки (ВУ 21.1), производительностью 1170 м3, высотой 7 м диаметром 0,16 м, однако большую часть времени происходит через дверной проём.

Открытая площадка.

Nº	Наименование оборудования	Количество, ед.
1	Iveco-AMT 633910 (Тягач седельный)	1
2	Б-10М (Бульдозер)	1
3	Hitachi ZX160 (Экскаватор)	1
4	КамАЗ-43118 (Автокран)	1

5	КамАЗ-5350 (Автобус вахтовый)	1
6	КамАЗ-43118 (Передвижная мастерская)	1
7	КамАЗ-43118 (Автоцистерна нефтепромысловая)	1
8	КамАЗ-65222 (Самосвал)	1
9	КамАЗ-43118 (Передвижная насосная установка)	1
10	КамАЗ-43118 (Кран манипулятор)	1
11	Урал-5668 (Вакуумный агрегат)	1

Параметры площадки: L=23 м, B=11 м (ИЗА №6028).

Камеры приёма-пуска скребков

Для обеспечения нужд по техническому содержанию и обследованию продуктопроводов на производственной территории расположены 2 камеры приёма скребков и 1 камера пуска скребков (ИЗА №6011-6013).

<u>Испытательная лаборатория</u>

В целях контроля качества поступающих на предприятие нефтепродуктов в помещении испытательной лаборатории установлены 3 вытяжных шкафа и 3 вытяжных зонта, оборудованных вентиляционными установками с производительностью насосов 985 м³/час, 820 м³/час и 785 м³/час соответственно *(ИЗА №0036-0038).* Высота источников 1-1,5 м, диаметр 0,2 м.

Земляные работы

Территория станции

Для обеспечения надлежащего технического состояния технологического оборудования на территории станции осуществляются земляные работы. Работы по выемке грунта осуществляются экскаватором с максимальной производительностью 10 тонн/час. Годовой фонд времени работы составляет - 1000 час (ИЗА 6014). Работы по перемещению грунта осуществляются бульдозером, время работы составляет 53,48 час/год (ИЗА 6015). Склад временного хранения грунта, функционирование склада осуществляется в период проведения ремонтных работ, параметры склада 10×10 метров (ИЗА 6016).

Линейная часть

Для обеспечения надлежащего технического состояния продуктопровода на участках линии отвода осуществляются земляные работы. Работы по выемке грунта осуществляются экскаватором с максимальной производительностью 10 тонн/час. Годовой фонд времени работы составляет - 2000 час (ИЗА 6030). Работы по перемещению грунта осуществляются бульдозером, время работы составляет 107 час/год (ИЗА 6031). Склад временного хранения грунта, функционирование склада осуществляется в период проведения ремонтных работ, параметры склада 10×20 метров (ИЗА 6032).

Лакокрасочные работы

Для проведения окрасочных работ используются краскопульт, а также валик и кисть. Используемые ЛКМ: грунтовка — 150 кг, эмаль - 270 кг, растворитель (типа сольвент) — 80 кг. Распределение материала между видами окраски — пополам. Работы проводятся на открытых площадках (ИЗА 6034).

Начальник ЛПДС «Петропавловск» филиал АО «Транснефть Урал»

Ваньковский С.И.

ПРИЛОЖЕНИЕ 3

ПРИЛОЖЕНИЕ 4.

ПРИЛОЖЕНИЕ 5.

ПРИЛОЖЕНИЕ 6.

ПРИЛОЖЕНИЕ 7.

ПРИЛОЖЕНИЕ 8.

ПРИЛОЖЕНИЕ 9.

ПРИЛОЖЕНИЕ 10.