	- 2025 г.
	_ Шакен Бүрлен
Руководитель ТО	OO «Kaz prommet»
«Утверждаю»	

ПРОГРАММА ПРОИЗВОДСТВЕННОГО ЭКОЛОГИ-ЧЕСКОГО КОНТРОЛЯ

для завода по приему и переработке вторичного свинца по адресу: г.Шымкент, Енбекшинский район, ул.Капал батыр, ИЗ Онтустик, здание 33

Разработчик:

ТОО «Каз Гранд Эко Проект»

ВЕДЕНИЕ

Программа производственного экологического контроля разрабатывается в соответствии с п. 3 ст. 185 Экологического кодекса РК и «Правилами разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и представления периодических отчетов по результатам производственного экологического контроля».

Основные понятия и определения, используемые в программе:

- оператор объекта физическое или юридическое лицо, в собственности или ином законном пользовании которого находится объект, оказывающий негативное воздействие на окружающую среду;
- программа производственного экологического контроля руководящий документ для проведения производственного экологического контроля и производственного мониторинга окружающей среды, который представляет собой комплекс организационно-технических мероприятий по определению фактического состояния окружающей среды в результате деятельности предприятия.

Операторы объектов I и II категорий осуществляют производственный экологический контроль в соответствии со ст. 182 Экологического кодекса РК.

Программа производственного экологического контроля утверждается руководителем предприятия.

Программа производственного экологического контроля содержит следующую информацию:

- 1) обязательный перечень количественных и качественных показателей эмиссий загрязняющих веществ и иных параметров (отходы производства и потребления), отслеживаемых в процессе производственного мониторинга;
- 2) периодичность и продолжительность производственного мониторинга, частоту осуществления измерений;
- 3) сведения об используемых инструментальных и расчетных методах проведения производственного мониторинга;
- 4) необходимое количество точек отбора проб для параметров, отслеживаемых в процессе производственного мониторинга (по компонентам мониторинга окружающей среды) и места проведения измерений;
 - 5) методы и частоту ведения учета, анализа и сообщения данных;
- 6) план-график внутренних проверок и процедуру устранения нарушений экологического законодательства Республики Казахстан, включая внутренние инструменты реагирования на их несоблюдение;
 - 7) механизмы обеспечения качества инструментальных измерений;
 - 8) протокол действий в нештатных ситуациях;
- 9) организационную и функциональную структуру внутренней ответственности работников за проведение производственного экологического контроля;

10) иные сведения, отражающие вопросы организации и проведения производственного экологического контроля (информация о планах природоохранных мероприятий и/или программе повышения экологической эффективности).

Производственный мониторинг является элементом производственного экологического контроля, а также программы повышения экологической эффективности. В рамках осуществления производственного мониторинга выполняются операционный мониторинг, мониторинг эмиссий в окружающую среду и мониторинг воздействия.

Сброс сточных вод в окружающую среду оператором не осуществляется в связи с чем мониторинг воздействия на водные ресурсы не предусмотрен.

Также не предусмотрен мониторинг уровня загрязнения почвы так как в процессе производства не используются химические вещества, являющиеся источником загрязнения почв.

1. ОБЩИЕ СВЕДЕНИЯ О ПРЕДПРИЯТИИ

Наименование и реквизиты:

TOO «Kaz prommet» БИН: 250940034017

Адрес: г.Шымкент, Енбекшинский район, ул.Капал батыр, ИЗ Онту-

стик, здание 33

Вид намечаемой деятельности:

Предприятие специализируется на производстве сплавов вторичного свинца от вторичного сырья в виде лома и отходов - в чушках. Сплавы свинца (вторичные) в чушках — разновидность поставки цветного металла потребителям в простейшей форме.

Классификация намечаемой деятельности в соответствии сЭкологическим кодексом РК [1]:

Согласно Приложению 2 к Экологическому кодексу РК [1] «Виды намечаемой деятельности и иные критерии, на основании которых осуществляется отнесение объектов, оказывающих негативное воздействие на окружающую среду, к объектам I, II или III категорий», предприятие, занимающееся плавкой и разливкой цветных металлов (с проектной производительностью плавки менее 4 тонн в сутки для свинца и кадмия или менее 20 тонн в сутки для других металлов) относится ко II категории.

Санитарная классификация:

Согласно пп.4) п.9 Раздел 2 Приложения 1 к Санитарным правилам «Санитарно-эпидемиологические требования к СЗЗ объектов, являющихся объектами воздействия на среду обитания и здоровье человека», утвержденным приказом Министра здравоохранения Республики Казахстан от 11 января 2022 года №КР ДСМ-2, производства по вторичной переработке цветных металлов (в том числе меди, свинца, цинка) в количестве до 1000 тонн в год относится к IV классу опасности с размером СЗЗ 100 м.

В соответствии с планом мероприятий по охране окружающей среды на период 2025-2034 годы, предприятием планируется озеленение территории, посадка зеленых насаждений на территории предприятия и СЗЗ, а также в целях увеличения зеленых площадей ежегодно предоставить в акиматЕнбекшинского района города Шымкент саженцев деревьев карагача, тополя и ели в количестве 100 штук.

Описание места осуществления деятельности:

Завод по приему и переработке вторичного свинца расположена по адресу: г.Шымкент, Енбекшинский район, ул.Капал батыра, ИЗ «Онтустик», здание №33. Данная территория относится к промышленной зоне.

Кадастровый номер земельного участка 19-309-049-367 с площадью 0,1006 га. Целевое назначение земельного участка: под существующее здание.

Территория завода находится в аренде у ИП «Әдина Р» на основании договора аренды №2084 от 02.10.2025 года и действующий по сей день. Площадь существующего производственного здания составляет 1020,9 м2, если включать всю территорию, то общая площадь земельного участка составляет 0,1006 га. На территории участка расположены: бетоннированная площадка для временного хранения лома и отходов свинца, здания производственного цеха со складом готовых продуктов.

Территория завода со всех сторон граничит с производственными объектами, т.к. ТОО «Tectum Engineering», ТОО «Beskuduk Tas». Ближайшая жилая застройка расположена на расстоянии более 1600 м от территории участка с восточной стороны. Ближайший поверхностный водный объект, река Сайрамсу протекает с северной стороны на расстоянии более 600 м. Территория объекта не входит в водоохранную зону.

Мощность предприятия: 3,5 т/сут, 910 т/год плавки свинца с извлечением 3,3 т в сутки свинцовых чушек.

Режим работы предприятия – 12 час/сут, 260 дней в году.

Описание технологического процесса

Лом и отходы свинца доставляются автотранспортом и выгружаются на специально оборудованную бетонную площадку. В производстве используется свинец из списанных аккумуляторов. Для его извлечения применяется специальная установка, работа которой включает несколько этапов.

1. Резка аккумулятора (А).

Аккумулятор разрезается для открытия корпуса и извлечения внутренних элементов. Это позволяет отделить свинцовые пластины и электролит (серную кислоту) от других частей аккумулятора.

2. Сбор кислоты (В).

После вскрытия аккумулятора электролит сливается и направляется в специальный резервуар для сбора кислоты. Это предотвращает загрязнение окружающей среды и позволяет в дальнейшем переработать или нейтрализовать кислоту.

3. Вибрационное удаление свинца (С).

Вскрытые аккумуляторы проходят через установку, где при помощи вибрации отделяются свинцовые пластины от корпуса и других элементов. Таким образом, свинец выделяется из общей массы материалов.

4. Упаковка свинцовых пластин (D).

Отделённые свинцовые пластины собираются и упаковываются для дальнейшей транспортировки на переплавку или переработку.

На следующем этапе свинцовые пластины направляются в свинцовую плавильную печь.

В цехе планируется использовать свинцовый печь, который будет выпускать 3,5 тонн свинца в день.

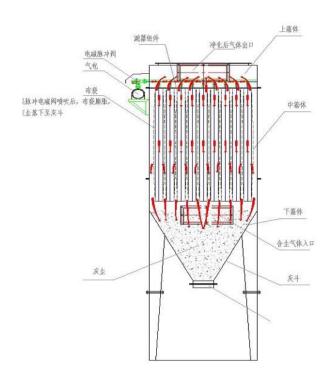
Корпус печи состоит из недеформированной стальной конструкции, изготовленной из стали и профиля (материал Q235). Специальная конструкция придает корпусу отличную жесткость. Стальной лист корпуса печи сварен усиленной пластиной. Специальная конструкционная форма учитывает тепловое расширение огнеупорной футеровки и требуемую герметичность.

Боковые стены и нижние панели под линией уровня жидкости представляют собой усиленную непрерывную сварку всей конструкции, которая предотвращает утечку металла.

Для плавильных печей основной функцией системы сгорания является удовлетворение требований плавления расплава.

Система сгорания включает в себя: 2 горелки, системы подачи воздуха, системы подачи газа, системы зажигания, системы управления и так далее.

Газ для горелки поступает из цехового трубопровода снабжения, который находится недалеко от печи и имеет шаровой клапан на конце. Все газопроводы горелки имеют номинальное давление на входе газа в соответствии с техническими требованиями. Давление газа уменьшается в рабочем диапазоне с помощью декомпрессионного устройства. Газ подается через соединительный трубопровод через декомпрессионное устройство в печь, а затем в горелку.


В процессе плавления удаляются примеси, и получают чистый свинец, пригодный для повторного использования в производстве новых аккумуляторов или других изделий.

Для алюминиевой печи, используется система пылеулавливания с использованием мешкового пылеуловителя.

Процесс обработки выхлопных газов (свинцовая печь): загрузочный колпак \rightarrow мешковый пылеуловитель \rightarrow вентилятор \rightarrow опорожнение.

Принцип работы мешкового пылеуловителя

Оборудование использует высоковольтные или низковольтные импульсные клапаны большого расхода и импульсную пылеулавливающую технологию фильтрационных мешков, эффективность пылеулавливания до 99%, его технические характеристики имеют ведущий уровень в Китае, эта продукция широко используется в цементных заводах для управления пылью и глубокой переработки неметаллических руд, а также в электроэнергетической, химической, металлургической, сталелитейной и других отраслях промышленности.

Воздух, содержащий пыль, поступает из воздухозаборника в корпус пылеуловителя, из - за внезапного расширения объема воздушного потока скорость потока резко снижается, большая частица пыли под действием собственного веса оседает из пылесодержащего потока в золу нижнего корпуса, а остальная пыль задерживается на внешней стенке фильтрующего мешка из - за фильтра фильтра, столкновения, зацепления, диффузии, статического электричества и других эффектов. Очищенный газ исключается из выпускного отверстия верхнего корпуса через фильтрующий мешок через трубку Вентури. Сопротивление пылеуловителя увеличивается, когда частицы пыли, задерживающиеся на внешней стенке фильтра, продолжают увеличиваться. Чтобы обеспечить контроль сопротивления пылеуловителя в ограниченном диапазоне, импульсный регулятор посылает сигнал последовательно открывать электромагнитный импульсный клапан, так что сжатый воздух в газовой оболочке впрыскивается из отверстий впрыска в соответствующую трубку

Вентури (называемую первичным ветром), и при прохождении высокоскоростного воздушного потока через Вентури окружающий воздух, который в несколько раз превышает первичный ветер (называемый вторичным ветром), попадает в фильтрационный мешок, вызывая мгновенное резкое сужение и расширение фильтра, которое быстро исчезает из - за удара обратного импульсного потока, и мешок резко сжимается, что приводит к сжатию избыточных частиц, осажденных на внешней стенке фильтра, очищается от пыли, Серая система исключается, так что фильтрующий мешок очищается.

Поскольку очистка пыли осуществляется в последовательном направлении к мешку фильтра, она не отрезает пылесодержащий воздух, который необходимо обрабатывать, поэтому в процессе очистки пыли производительность пылеуловителя остается неизменной. Интервал, ширина и цикл очистки золы (импульс) должны быть скорректированы в соответствии с характером частиц пыли, концентрацией пыли и конкретными обстоятельствами скорости ветра фильтрации.

Таблица 1 - Общие сведения о предприятии

Наименование производственного объекта	Месторасполо- жение по коду КАТО	Месторасполо- жение, коорди- наты	Бизнес идентификационный номер (далее - БИН)	Вид деятельно- сти по общему классификатору видов экономи- ческой деятель- ности (далее- ОКЭД)	Краткая характеристика производственного процесса	Реквизиты	Категория и про- ектная мощность предприятия
1	2	3	4	5	6	7	8
Цех по приему и переработке вторичного свинца		г.Шымкент, Енбекшинский район, ул.Капал батыр, ИЗ Онтустик, здание 33 42°16'23.8"N 69°43'13.6"E	БИН: 250940034017		Технологический процесс производства сплавов вторичного свинца включает технологические операции: • подготовка шихты на основе лома и отходов свинца • подготовка отражательной печи к выплавке цветных металлов • загрузка шихты в отражательную печь • плавка шихты и доводка расплава • контроль расплава на соответствие требованиям к сплаву вто-	TOO «Kaz prommet» БИН: 250940034017	П категория Объем готовой продукции будет составлять 3,5 т в сутки, 910 т в год.

		ричного свинца	
		• розлив расплава	
		в слитки сплава	
		вторичного	
		свинца	
		• упаковка слит-	
		ков сплава вто-	
		ричного свинца	

2. ИНФОРМАЦИЯ ПО ОТХОДАМ ПРОИЗВОДСТВА И ПОТРЕБЛЕ-НИЯ

В таблице 2 приведена информация по отходам производства и потребления. Контроль за обращением с отходами заключается в регулярных проверках:

- своевременном вывозе отходов;
- соблюдения установленных проектом процедур накопления, временного хранения и периодичности вывоза отходов.

Периодичность проверок устанавливается планом-графиком внутренних проверок и процедур устранения нарушений экологического законодательства.

Таблица 2 - Информация по отходам производства и потребления

No	Вид отхода	Отходообразующий про-	Управление отходами
Π/Π		цесс	1
1	2	3	4
1	Списанное электрическое и электронное оборудование (Светодиодные лампы), 20 01 36	Освещение помещений и территории	•Накопление производится в спец.контейнеры. •Транспортировка - с территории автотранспортом. •Удаление - специализированные сторонние организации.
2	Смешанные коммунальные отходы (Твердые бытовые отходы ходы), 20 03 01	Жизнедеятельность персонала	 ◆Накопление производится в контейнеры для мусора. ◆Транспортировка - в контейнеры вручную, с территории автотранспортом. ◆Удаление - планируется вывоз на полигон отходов
3	Шлаки от первичного и вторичного производства свинца (10 04 01*)	Плавка свинецсодержащей шихты	•Собирается и накапливается в емкостях. •Транспортировка - с территории автотранспортом. •Удаление - специализированные сторонние организации.
4	Шламы и осадки на фильтрах от газо- очистки (10 06 07*)	газоочистка	•Собирается и накапливается в емкостях. •Транспортировка - с территории автотранспортом. •Удаление - специализированные сторонние организации.

3. ОБЩИЕ СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ВЫБРОСОВ. МОНИТО-РИНГАТМОСФЕРНОГО ВОЗДУХА

3.1. Общие сведения об источниках выбросов

Основным видом воздействия объекта на состояние воздушнойсреды является загрязнение атмосферного воздуха выбросами загрязняющих веществ.

Источниками воздействия на атмосферный воздух в период эксплуатации являются:

№0001 –Плавильная печь. Отвод дымовых газов осуществляется через дымовую трубу высотой 15 м, диаметром 0,5 м. Работает 12 час/сут, 3120 час/год.Максимальный расход топлива (природный газ) – 30 м³/час.

№6001 – Автотранспорт. Работает 1 час/сут, 260 час/год.

№6002 – Автопогрузчик, используется при разгрузке и загрузкесырья. Осуществляется 1 час/сут, 260 час/год.

№6003 – Резка сырья. Осуществляется 1 час/сут, 260 час/год.

№6004 — Вибрационное удаление свинца. Осуществляется 1 час/сут, 260 час/год.

№ 6005 — Сбор кислоты. При разборке отработанных аккумуляторов в атмосферу выбрасываются пары серной кислоты. Осуществляется 1 час/сут, 260 час/гол.

№6006 –Заливка расплавленного свинца в изложницы 1 час/сут, 260 час/гол.

№6007 –Пересыпка шлака в спец.емкость 1час/сут, 260 ч/год.

Всего проведенной инвентаризацией на территории выявлено 8 источников выбросов, в т. ч. 1 – организованный, 7 – неорганизованные.

С целью снижения выбросов пыли проектируется установить рукавный фильтр. Рукавные фильтры используются для очистки воздуха от твердых частиц с размером от 0,1 мкм. Принцип действия устройства основан на очистке воздуха при прохождении потока через ткань. Рукава из материала располагаются на металлическом каркасе и подвешиваются в верхней части корпуса. Подающийся в фильтр загрязненный воздушный поток попадает в камеру, проходит через поверхность рукава, очищается и выходит в приемную камеру, из которой выводится наружу. Пыль, накапливающаяся на поверхности рукава, падает в нижнюю часть. Степень очистки воздуха в рукавных фильтрах достигает показателя 99-99,99%.

Перечень выделяемых загрязняющих веществ в целом в период эксплуатации представлены в таблице 3.1.

Общая масса выбросов на период эксплуатации в целом по площадке ВСЕГО 1,36157 г/с, 7,94779 т/год. Из них на период эксплуатации будут выделяться такие загрязняющие вещества с классами опасностей как: Свинец и его неорганические соединения — 1 класс опасности, Азота (IV) диоксид — 2 класс опасности, Азот (II) оксид — 3 класс опасности, Гидрохлорид — 2 класс опасности, Серная кислота — 2 класс опасности, Сера диоксид — 3 класс опасности, Углерод оксид — 4 класс опасности, Взвешенные частицы — 3 класс

опасности, Пыль неорганическая, содержащая двуокись кремния в %: более 70-3 класс опасности, Пыль неорганическая, содержащая двуокись кремния в %: 70-20-3 класс опасности.

Показатели параметров источников выбросов загрязняющих веществ приведены в таблице 3.3.

Величины эмиссий в атмосферу определены расчетным путем. Перечень источников выбросов и их характеристики определены на основе проектной информации. Определение количественных и качественных характеристик выбросов вредных веществ проведено с применением расчетных (расчетно-аналитических) методов.

Расчетные (расчетно-аналитические) методы базируются на удельных технологических показателях, балансовых схемах, закономерностях протекания физико-химических процессов производства, а также на сочетании инструментальных измерений и расчетных формул, учитывающих параметры конкретных источников.

В таблице 3.1.2 приведены общие сведения об источниках выбросов предприятия.

Таблица 3.1.2 – Общие сведения об источниках выбросов.

N₂	Наименование показателей	Всего
1	Количество стационарных источников выбросов, всего ед.	6
	из них:	
2	Организованных, из них:	1
	Организованных, оборудованных очистными сооружениями, из них:	1
1)	Количество источников с автоматизированной системой мониторинга	0
2)	Количество источников, на которых мониторинг осуществляется инструментальными замерами	1
3)	Количество источников, на которых мониторинг осуществляется расчетным методом	0
	Организованных, не оборудованных очистными сооружениями, из них:	0
4)	Количество источников с автоматизированной системой мониторинга	0
5)	Количество источников, на которых мониторинг осуществляется инструментальными замерами	0
6)	Количество источников, на которых мониторинг осуществляется расчетным методом	0
3	Количество неорганизованных источников, на которых мониторинг осуществляется расчетным методом	5

На предприятии установлен следующий режим мониторинга:

•периодический - 1 раз в квартал: для проверки фактического уровня выбросов на источниках и на границе СЗЗ при обычных условиях.

Контроль осуществляется по загрязняющим веществам, выбрасываемых вышеуказанными источниками.

Методики проведения контроля:

- 0001 Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.
- 0002 Инструментальным методом, согласно Перечню методик, действующему на момент проведения мероприятий по контролю.

Для отбора проб от организованного источника выбросов (ист.0001) планируется организовать площадку и подготовить отверстия на входе и на выходе газоочистительной установки (ГОУ) в соответствии с требованиями нормативных документов.

Замеры производятся через специальные пробоотборные отверстия в трубе (газоходе) до и после очистных сооружений (рукавный фильтр).

Для проведения мониторинга привлекаются подрядные лаборатории, аккредитованные Национальным Центром Аккредитации Комитета технического регулирования и метрологии Министерства торговли и интеграции Республики Казахстан. Используются аттестованные и допущенные к применению в РК МВИ (методы выполнения измерений) и средства измерений, используемые для проведения наблюдений.

Инструментальный контроль соответствия промвыбросов установленным нормативам будет проводиться с помощью переносного газоанализатора «TESTO» и напорных трубок Пито или ВНИИГАЗ, или другого сертифицированного оборудования с соответствующими техническими характеристиками (газоанализаторы Ганг, Optima и т.д.).

При проведении контрольных замеров на источниках выбросов также контролируются параметры газовоздушной смеси (температура, скорость).

Отбор проб, транспортировка и подготовка к анализу будет осуществляться в соответствии с утвержденными стандартами:

Для атмосферного воздуха:

- ГОСТ 17.2.4.02 81 «Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ в воздухе населённых мест»;
- «Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах» Л.: Гидрометеоиздат, 1987;
 - \bullet ΓOCT 17.2.3.01-77 «Отбор и подготовка проб воздуха».
- ГОСТ 17.2.3.01-86 Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов;
 - РД 52.04.186-89. Руководство по контролю загрязнения атмосферы;
- ГОСТ 17.2.3.01.96 Охрана природы. Атмосфера. Правила контроля качества воздуха;
 - РНД 211.3.01.06-97;
 - CT PK 17.0.0.03-2002;
 - *РД 52.04.186-89*.

Выбор места отбора проб

Доступ к месту отбора должен быть свободным, не загроможденным.

Место отбора следует выбирать на прямом участке газохода на достаточном расстоянии от мест, где изменяется направление потока газовоздушной смеси (колена, отводы и т.д.) или площадь поперечного сечения газохода (задвижки, дросселирующие устройства и т.д.).

Отрезок прямого участка газохода до места отбора проб должен быть длиннее отрезка за местом отбора проб (рисунок 1).

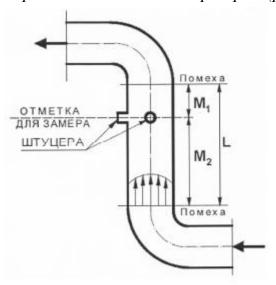


Рис. 1. Выбор участка газохода для замера

Минимальная длина прямого участка газохода (M-M1+M2) должна составлять не менее 4-5 эквивалентных диаметров газохода (De).

В случае, если условие соблюдения минимальной длины не может быть обеспечено по техническим условиям, количество точек отбора проб следует увеличить в два раза.

Расположение мест отбора проб должно обеспечивать безопасную работу персонала в количестве не менее двух человек.

Структура и периодичность отчета проводится в соответствии с Правилами разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и предоставления периодических отчетов по результатам производственного экологического контроля, утвержденных приказом Министра экологии, геологии иприродных ресурсов Республики Казахстан от 14 июля 2021 года № 250.

Специалисты отдела охраны окружающей среды:

- ведут ежедневный внутренний учет, формируют и представляют отчеты по результатам мониторинга в уполномоченный орган в области охраны окружающей среды ежеквартально до 1 числа второго месяца следующего за отчетным кварталом;
- оперативно сообщают в уполномоченный орган в области охраны окружающей среды о фактах несоблюдения экологических нормативов;

- представляют необходимую информацию по мониторингу по запросу уполномоченного органа в области охраны окружающей среды;
- систематически оценивает результаты мониторинга и принимает необходимые меры по устранению выявленных нарушений законодательства в области охраны окружающей среды;
- проводят расчета платежей за нормативное и сверхнормативное загрязнение.

Производственный мониторинг окружающей среды будет проводиться аккредитованной лабораторией.

Определение концентраций загрязняющих веществ будет осуществляться по утвержденным методикам на оборудовании, внесенном в Госреестр РК.

Механизмы обеспечения качества инструментальных измерений будут достигаться следующим образом:

- Методики выполнения измерений будут аттестованы;
- Средства измерений будут иметь сертификаты, свидетельствующие о внесении их в реестр РК;
 - Оборудование будет иметь свидетельство о поверке;
 - Персонал лаборатории будет иметь соответствующие квалификации;
- В лаборатории будет проводиться внутренний контроль точности измерений.

Периодичность контроля выбросов вредных веществ на источниках загрязнения должна соответствовать Плану-графику контроля. План-график контроля представлен ниже.

Нормативы допустимых выбросов загрязняющих веществ в атмосферу в целом по предприятию, по каждому веществу, приведены в проекте нормативов допустимых выбросов (НДВ) загрязняющих веществ в атмосферу для данного предприятия.

Наблюдения за состоянием атмосферного воздуха на территории предприятия будут проведены по контрольным точкам, расположенных в пределах производственных участков и санитарно-защитной зоны.

Значения полученных результатов замеров на границе СЗЗ будут сравниваться с максимально разовыми предельно допустимыми концентрациями (ПДКм.р.) или ориентировочными безопасными уровнями воздействия загрязняющих веществ (ОБУВ) для населенных мест, с ПДКм.р. рабочей зоны.

4. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, НА КОТОРЫХ МОНИТОРИНГ ОСУЩЕСТВЛЯЕТСЯ ИНСТРУМЕНТАЛЬНЫМИ ИЗМЕРЕНИЯМИ

Производственный мониторинг эмиссий в окружающую среду и мониторинг воздействия, в соответствии со ст. 186 ЭК РК, будут проводиться лабораториями, аккредитованными в порядке, установленном законодательством Республики Казахстан об аккредитации в области оценки соответствия.

Все технические средства, применяемые для измерения физических параметров, должны быть аттестованы, внесены в Государственный реестр средств измерений и иметь методическое обеспечение.

В соответствии с СТ РК 1517-2006 «Метод определения и расчета количества выброса загрязняющих веществ» (п.5.23) при стабильном выбросе количество замеров на источнике по каждому загрязняющему веществу должно быть не менее трех. Количество выброса определяют по среднему арифметическому значению результатов измерений.

Независимо от применяемых методов контроля выбросов при проведении замеров должны выполняться общие требования к размещению точек контроля, требования охраны труда, а также требования к проведению работ в соответствии с Методическими указаниями «Организация и порядок проведения государственного аналитического контроля источников загрязнения атмосферы» № 183-п, 2011г.

Точки отбора проб, контролируемые вещества и периодичность измерений приведены в плане-графике контроля на предприятии за соблюдением НДВ на контрольных точках (прилагается).

На всех точках одновременно с отбором проб воздуха измеряются метеорологические характеристики (атмосферное давление, температура, скорость и направление ветра). В таблице 4 представлены сведения об источниках выбросов загрязняющих веществ, на которых мониторинг осуществляется инструментальными измерениями.

Таблица 4. Сведения об источниках выбросов загрязняющих веществ, на которых мониторинг осуществляется инструментальными измерениями

Наименова- ние площад- ки	Проектная мощность производ-ства	Источники н са наименова- ние	выбро- но- мер	местоположение (географические координаты)	Наименование загрязняющих веществ согласно проекта	Периодичность инструментальных замеров
1	2	3	4	5	6	7
Цех по при- ему и пере- работке вто- ричного свинца	Объем готовой продукции будет составлять 3,5 т в сутки, 910 т в год.	Плавильная печь (дымовая труба)	0001	42°16'23.8"N 69°43'13.6"E	Свинец и его неорганическ ие соединения, Азота (IV) диоксид, Азот (II) оксид, Гидрохлорид, Сера диоксид, Углерод оксид, Взвешенные частицы, Пыль неорганическая, содержащая двуокись кремния в %: более 70.	раз/кв.

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

Шымкент, Завод по приему и переработке вторичного свинца

N		ерераоотке вторичного свинца	П	Норматив до		TC and	Методика
источ-	Производство,	Контролируемое	Периодичность	выбро	СОВ	Кем осуществляет	проведе-
ника	цех, участок.	вещество	контроля			1 * '	ния
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
	Производственная площадка	Свинец и его неорганические соединения /в пересчете на свинец/ (513)	1 раз/ кварт	0.009	6.7663429	Сторонняя организация на договорной основе	0002
		Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.0875	65.7838893	Сторонняя организация на договорной основе	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.01422	10.6908218	Сторонняя организация на договорной основе	0002
		Гидрохлорид (Соляная кислота, Водород хлорид) (163)	1 раз/ кварт	0.006	4.51089527	Сторонняя организация на договорной основе	0002
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.028	21.0508446	Сторонняя организация на договорной основе	0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.518	389.440625	Сторонняя организация на	0002

ЭРА v3.0 ТОО "Каз Гранд Эко Проект" Таблица 3.10

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

Шымкент, Завод по приему и переработке вторичного свинца

N N	Завод по присму и п	ереработке вторичного свинца		Норматив до	ПУСТИМЫХ		Методика
источ-	Производство,	Контролируемое	Периодичность	выбро		Кем	проведе-
ника	цех, участок.	вещество	контроля			осуществляет	ния
1171110	gon, y laston.	Бощо 0 1 2 0	1101111			ся контроль	
				г/с	мг/м3	CA KONIPOSIB	Kompona
				1,0	M1 / M3		
1	2	3	5	6	7	8	9
		Взвешенные частицы (116)	1 раз/ кварт	0.00117		договорной основе Сторонняя	0002
						организация на договорной основе	
		Пыль неорганическая, содержащая двуокись кремния в %: более 70 (Динас) (493)	1 раз/ кварт	0.00014		Сторонняя организация на договорной основе	0002
6003	Производственная площадка	Взвешенные частицы (116)	1 раз/ кварт	0.0062		Сторонняя организация на договорной основе	0001
6004	Производственная площадка	Взвешенные частицы (116)	1 раз/ кварт	0.612		Сторонняя организация на договорной основе	0001
6005	Производственная площадка	Серная кислота (517)	1 раз/ кварт	0.0000000445		Сторонняя организация на договорной основе	0001
6006	Производственная	Взвешенные частицы (116)	1 раз/ кварт	0.07		Сторонняя	0001

ЭРА v3.0 ТОО "Каз Гранд Эко Проект"

Таблица 3.10

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

Шымкент, Завод по приему и переработке вторичного свинца

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив до выбро		Кем осуществляет	Методика проведе- ния
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
6007	площадка Производственная площадка	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1 раз/ кварт	0.00934		организация на договорной основе Сторонняя организация на договорной основе	0001

примечание:

Методики проведения контроля:

0001 - Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.

0002 - Инструментальным методом, согласно Перечню методик, действующему на момент проведения мероприятий по контролю.

5. СВЕДЕНИЯ ОБ ИСТОЧНИКАХ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, НА КОТОРЫХ МОНИТОРИНГ ОСУЩЕСТВЛЯЕТСЯ РАСЧЕТНЫМ МЕТОДОМ

Расчетный метод основан на определении объемов выбросов загрязняющих веществ по фактическому расходу материалов (исходного сырья и топлива) и времени работы технологического оборудования. Метод применяют при невозможности или экономической нецелесообразности прямых измерений. Расчет производится по действующим в РК методикам расчета выбросов, аналогично использованным в проекте нормативов эмиссий.

В таблице 5 приведены сведения об источниках выбросов загрязняющих веществ, на которых мониторинг осуществляется расчетным методом.

Таблица 5 - Сведения об источниках выбросов загрязняющих веществ, на которых мониторинг осуществляется расчетным методом

Наименование площадки	Источник выброснаименование	а номер	Местоположение (географические координаты)	Наименование загрязняющих веществ	Вид потребляе- мого сырья/ ма- териала (назва- ние)
1	2	3	4	5	6
				Период эксплуатации	
Цех по приему и переработке вторичного	Неорг. ист., Резка сырья	6003	42°16'23.8"N 69°43'13.6"E	Взвешенные частицы (116)	лом
свинца	Неорг. ист., Заливка расплавленного свинца в изложницы	6006	42°16'23.8"N 69°43'13.6"E	Взвешенные частицы (116)	свинец
	Неорг. ист., Пересыпка шлака в спец.емкость	6007	42°16'23.8"N 69°43'13.6"E	Пыль неорганическая, содержащая двуокись кремния в %: 70-20	шлак

6. ГАЗОВЫЙ МОНИТОРИНГ

Предприятии в собственности полигона твердых бытовых отходов проводится газовый мониторинг для каждой секции полигона с целью получения объективных данных с установленной периодичностью за количеством и качеством газовых эмиссий и их изменением на полигоне твердых бытовых отходов.

В собственности предприятия нет полигона твердо-бытовых отходов нет. В связи с этим данная таблица не заполняется.

Таблица 6. Сведения о газовом мониторинге

Наименова- ние полигона	Координа- ты полиго- на	Номера кон-	Место размещения точек (географические координаты)	ность наблю-	Наблюдае- мые пара- метры
1	2	3	4	5	6
-	-	-	-	-	-

7. СВЕДЕНИЯ ПО СБРОСУ СТОЧНЫХ ВОД

В период эксплуатации источником водоснабжения является централизированный городской водопровод.

Хоз-бытовые сточные воды будут отводится в централизированную городскую канализацию.

Производственные сточные воды отсутствует.

Таблица 7. Сведения по сбросу сточных вод

Наименование источников воздействия (контрольные точки)	Координаты места сброса сточных вод		Периодичность замеров	Методика выполнения измерения
1	2	3	4	5
-	-	-	-	-

8. ПЛАН-ГРАФИК НАБЛЮДЕНИЙ ЗА СОСТОЯНИЕМ ATMO-СФЕРНОГО ВОЗДУХА

Расчеты рассеивания загрязняющих веществ на 2022 год выполнены программным комплексом «Эра» версии 3.0 фирмы НПП «Логос-Плюс», г. Новосибирск.

Результаты расчета приземных концентраций загрязняющих веществ в форме изолиний и карт рассеивания, уровней шума и риска здоровью населения представлены в расчетной части проекта.

Концентрация в 1 ПДК ни по одному из загрязняющих веществ и групп суммации не обнаружена.

В границах санитарно-защитной зоны предприятия не размещены:

- 1) вновь строящиеся жилые застройки, включая отдельные жилые дома;
- 2) ландшафтно-рекреационные зоны, зоны отдыха, территории курортов, санаториев и домов отдыха;
- 3) вновь создаваемые и организующиеся территории садоводческих товариществ, коллективных или индивидуальных дачных и садово-огородных участков;
- 4) спортивные сооружения, детские площадки, образовательные и детские организации, лечебно-профилактические и оздоровительные организации общего пользования. Всвязи с этим, данные по режиму использования территории СЗЗ предприятия не представлены.

В связи с тем, максимальные концентрации вредных веществ на границе СЗЗ и, соответственно, на границе жилой застройки не превышают 1 ПДК, дополнительные мероприятия по защите населения от воздействия выбросов вредных химических примесей в атмосферный воздух не требуются.

На основании изложенного, в проекте определены нормативы допустимых выбросов без дополнительных технических мероприятий, которые разрабатываются с целью достижения нормативов ПДВ и снижения выбросов загрязняющих веществ.

Соответственно размер санитарно-защитной зоны для цеха 300 м, что соответствует 3 классу опасности.

Наблюдения за состоянием атмосферного воздуха будут проведены по контрольным точкам, расположенных на жилой зоне и в пределах санитарнозащитной зоны.

Значения полученных результатов замеров на границе СЗЗ будут сравниваться с максимально разовыми предельно допустимыми концентрациями (ПДКм.р.) или ориентировочными безопасными уровнями воздействия загрязняющих веществ (ОБУВ) для населенных мест, с ПДКм.р. рабочей зоны.

Таблица 8. План-график наблюдений за состоянием атмосферного воздуха

ЭРА v3.0 ТОО "Каз Гранд Эко Проект"

План - график

контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

Шымкент, Завод по приему и переработке вторичного свинца

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив допустимых выбросов		Кем осуществляет	Методика проведе- ния
				г/с	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
0001	Производственная площадка	Свинец и его неорганические соединения /в пересчете на свинец/ (513)	1 раз/ кварт	0.009	6.7663429	Сторонняя организация на договорной основе	0002
		Азота (IV) диоксид (Азота диоксид) (4)	1 раз/ кварт	0.0875	65.7838893	Сторонняя организация на договорной основе	0002
		Азот (II) оксид (Азота оксид) (6)	1 раз/ кварт	0.01422	10.6908218	Сторонняя организация на договорной основе	0002
		Гидрохлорид (Соляная кислота, Водород хлорид) (163)	1 раз/ кварт	0.006	4.51089527	Сторонняя организация на договорной основе	0002
		Сера диоксид (Ангидрид сернистый, Сернистый газ, Сера (IV) оксид) (516)	1 раз/ кварт	0.028	21.0508446		0002
		Углерод оксид (Окись углерода, Угарный газ) (584)	1 раз/ кварт	0.518	389.440625		0002

Таблица 3.10

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

Шымкент, Завод по приему и переработке вторичного свинца

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив до выбро		Кем осуществляет	Методика проведе- ния
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
		Взвешенные частицы (116)	1 раз/ кварт	0.00117	0.87962458	договорной основе Сторонняя организация на договорной	0002
		Пыль неорганическая, содержащая двуокись кремния в %: более 70 (Динас) (493)	1 раз/ кварт	0.00014	0.10525422	основе	0002
6003	Производственная площадка	Взвешенные частицы (116)	1 раз/ кварт	0.0062		основе Сторонняя организация на	0001
6004	Производственная площадка	Взвешенные частицы (116)	1 раз/ кварт	0.612		договорной основе Сторонняя организация на	0001
6005	Производственная площадка	Серная кислота (517)	1 раз/ кварт	0.0000000445		договорной основе Сторонняя организация на	0001
6006	Производственная	Взвешенные частицы (116)	1 раз/ кварт	0.07		договорной основе Сторонняя	0001

ЭРА v3.0 ТОО "Каз Гранд Эко Проект"

Таблица 3.10

План - график контроля на объекте за соблюдением нормативов допустимых выбросов на источниках выбросов на существующее положение

Шымкент, Завод по приему и переработке вторичного свинца

N источ- ника	Производство, цех, участок.	Контролируемое вещество	Периодичность контроля	Норматив до выбро	-	Кем осуществляет	
				r/c	мг/м3	ся контроль	контроля
1	2	3	5	6	7	8	9
6007	площадка Производственная площадка	Пыль неорганическая, содержащая двуокись кремния в %: 70-20 (шамот, цемент, пыль цементного производства - глина, глинистый сланец, доменный шлак, песок, клинкер, зола, кремнезем, зола углей казахстанских месторождений) (494)	1 раз/ кварт	0.00934		организация на договорной основе Сторонняя организация на договорной основе	0001

примечание:

Методики проведения контроля:

0001 - Расчетным методом по той методике, согласно которой эти выбросы были определены, с контролем основных параметров, входящих в расчетные формулы.

0002 - Инструментальным методом, согласно Перечню методик, действующему на момент проведения мероприятий по контролю.

9. ГРАФИК МОНИТОРИНГА ВОЗДЕЙСТВИЯ НА ВОДНЫЕ ОБЪЕК-ТЫ

Предприятием не осуществляется эксплуатация подземных вод на территории или эксплуатация поверхностных водных ресурсов. В этом направлении мониторинг не предусматривается.

Таблица 9. График мониторинга воздействия на водном объекте

№	Контрольный створ	Наименование контролируемых показателей	Предельно-допустимая концентрация, миллиграмм на кубический дециметр (мг/дм3)	LANIAGUITACTI	Метод анализа
1	2	3	4	5	6

10. МОНИТОРИНГ УРОВНЯ ЗАГРЯЗНЕНИЯ ПОЧВ

Основным видом негативного техногенного воздействия являются механические нарушения целостности почвенно-растительного покрова, вызванного ведением планировочных работ и прокладкой подъездных путей.

При невыполнении экологических требований, нарушении регламента движения автотранспорта и строительной техники возможно развитие дорожной дигрессии. Потенциальным источником загрязнения почв являются газопылевые эмиссии от автотранспорта и строительной техники, утечки и разливы ГСМ в местах их хранения.

Мониторинг почв осуществляются путем отбора проб на пробных площадках. Пробная площадка представляет собой условно выбранную площадку (ключевой участок) прямоугольной или квадратной формы, расположенную в типичном месте характеризуемого участка территории. Наблюдательная площадка привязывается в системе координат по центру.

Процедура отбора проб почв на пробной площадке регламентируется целевым назначением и видом химического анализа.

С целью получения репрезентативной пробы по углам и диагонали (методом конверта), площадки осуществляется отбор точечных проб почв с необходимой глубины. Путем объединения и тщательного смешивания точечных проб одного горизонта (слоя) составляется средняя объединенная проба массой около 1 кг. Минимальное количество точечных проб для составления объединенной пробы - пять. Объем точечных проб должен быть одинаковым.

Отбор проб для определения поверхностного загрязнения нефтепродуктами, тяжелыми металлами и для бактериологического анализа производится с глубин 0-10 и 10-20 см.

При скрытом внутрипочвенном загрязнении отбор проб осуществляется из почвенного разреза по горизонтам на всю глубину загрязнения. Пробы

отбираются с зачищенной лицевой стенки разреза, начиная с нижних горизонтов.

Важным условием получения достоверного аналитического материала о степени загрязненности почв является строгое соблюдение условий, исключающих возможность загрязнения почвенных проб в процессе их отбора и транспортировки.

Анализы проб почв проводят в лабораториях, аккредитованных в порядке, установленном законодательством РК, по утвержденным методикам.

Наблюдаемые параметры

Для характеристики возможного химического загрязнения почв предлагается следующий набор контролируемых ингредиентов:

- нефтепродукты;
- тяжелые металлы (Zn, Cd, Pb, Cu);
- общий химический анализ;
- водная вытяжка;
- механический состав.

Для лабораторного определения предлагаемых параметров на станциях необходимо произвести отбор проб почв. Методика отбора проб для контроля химического загрязнения почв соответствует ГОСТ 26423-85 и ПНДФ 16.1.21-98. Отбор точечных проб производится на пробных площадках. Пробные площадки должны быть заложены на участках с однородным почвенным и растительным покровом, а также с учетом хозяйственного использования почв. Отбор проб для определения загрязнения производиться методом конверта с глубин 0-5 и 5-20 см. Из пяти точечных проб, взятых из одного слоя или горизонта почвы, составляется объединенная проба.

На основе мониторинговых наблюдений проводится анализ происходящих изменений экологического состояния почв и дается оценка эффективности проводимых природоохранных мероприятий и рекомендации по их совершенствованию.

План производственного мониторинга

Место отбора	Определяемые параметры	Периодичность наблюде-				
		ний				
	Мониторинг почв					
Станции экологического	Состояние почв, водная вы-	1 раз в год				
мониторинга на границе	тяжка, мех.состав,					
C33	хим.анализ;					
	нефтепродукты, Си, Zn, Pb,	1 раз в год				
	Cd;					
	замазученный грунт на	1 раз в год				
	нефтепродукты					

При выборе схемы размещения пунктов мониторинга загрязнения почв химическими веществами учитывается местоположение источников загрязнения, преобладающее направление ветра, направление поверхностного стока и существующие геохимические особенности территории.

Таблица 10. Мониторинг уровня загрязнения почвы

Точка от-	Наименование	Предельно-допустимая концен-	Периодичность	Метод
бора проб	контролируемого	трация, миллиграмм на килограмм		анализа
	вещества	(мг/кг)		
1	2	3	4	5
граница	рН		Раз/кв.	ГОСТ
C33				26423-85
ПО	нефтепродукты		Раз/кв.	
4 точкам	Тяжелые метал-		Раз/кв.	
	лы			
	Плотный остаток		Раз/кв.	ПНДФ
				16.1.21-98

11. ПЛАН-ГРАФИК ВНУТРЕННИХ ПРОВЕРОК И ПРОЦЕДУР УСТРАНЕНИЯ НАРУШЕНИЙ ЭКОЛОГИЧЕСКОГО ЗАКОНОДА-ТЕЛЬСТВА

Оператор объекта принимает меры по регулярной внутренней проверке соблюдения требований экологического законодательства РК и сопоставлению результатов производственного экологического контроля с условиями экологического и иных разрешений.

Внутренние проверки проводятся специалистами, в функции которого входят вопросы охраны окружающей среды и осуществление производственного экологического контроля, а также службами охраны окружающей среды, на которых возложена ответственность за организацию и проведение производственного экологического контроля. Контроль осуществляется в соответствии с планом-графиком внутренних проверок и процедур устранения нарушений экологического законодательства РК.

В ходе внутренних проверок контролируются:

- выполнение мероприятий, предусмотренных программой производственного экологического контроля;
- следование производственным инструкциям и правилам, относящимся к охране окружающей среды;
 - выполнение условий экологического и иных разрешений;
- правильность ведения учета и отчетности по результатам производственного экологического контроля;
- иные сведения, отражающие вопросы организации и проведения производственного экологического контроля.

Специалист, осуществляющий внутреннюю проверку, обязан:

- рассмотреть отчет о предыдущей внутренней проверке;
- обследовать каждый объект, на котором осуществляются эмиссии в окружающую среду;
- составить письменный отчет руководителю, включающий, при необходимости, требования о проведении мер по устранению несоответствий, выявленных в ходе проверки, сроки и порядок их устранения.

Таблица 11 - План-график внутренних проверок и процедур устранения нарушений экологического законодательства

No	Подразделение предприятия или предмет провер-	Периодичность проведения
	ки	
1	2	3
1	Контроль проведения инструментальных	Ежеквартально в соответ-
	замеров	ствии с программой ПЭК
2	Контроль за режимом эксплуатации паро-	Ежедневно
	вого котла и технологического оборудова-	
	ния	
3	Контроль за состоянием мест хранения от-	Ежемесячно
	ходов производства и потребления	
4	Контроль за содержанием загрязняющих	Один раз в год
	веществ в подземных водах	
5	Контроль за состоянием территории	Еженедельно
6	Контроль за загрязнением почвенного по-	Ежемесячно
	крова	
7	Контроль за сбором и своевременным вы-	Еженедельно при проведе-
	возом строительных отходов при проведе-	нии текущего ремонта
	нии текущих ремонтов	

Постоянно действующая комиссия ежеквартально осуществляет внутренние проверки, при которых выявляются нарушения технологии и требования природоохранного законодательства. По результатам проверки разрабатываются мероприятия по устранению нарушений, назначаются ответственные лица и сроки устранения. Данные мероприятия утверждаются приказом Руководителем компании. Ответственные лица представляют письменный отчет после устранения нарушений в сроки, указанные в приказе.

12. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Экологический кодекс Республики Казахстан.
- 2. Правила разработки программы производственного экологического контроля объектов I и II категорий, ведения внутреннего учета, формирования и предоставления периодических отчетов по результатам производственного экологического контроля.
- 3. Проект нормативов допустимых выбросов (НДВ) загрязняющих веществ в атмосферу.