ТОО «КокшеСтрой Проект» Государственная лицензия №15001258

РАБОЧИЙ ПРОЕКТ

Общая пояснительная записка

Строительство площадки для временного хранения куриного помета ТОО «Аккөл Құс»

Заказчик: ТОО «Акқөл Құс»

Таженов Е.Б.

Директор ТОО «КокшеСтрой Проект»

Касымова Д.К.

ОБЩАЯ ЧАСТЬ.

Основание для проектирования

Основанием для разработки проекта «Строительство площадки для временного хранения куриного помета ТОО «Аккөл Құс» является задание на проектирование, утвержденное заказчиком, топосъемка и геологические изыскания.

Исходными данными для проектирования являются:

- Задание на проектирование.
- Топосъемка
- Геология

Краткая характеристика участка.

Район строительства – Акмолинская область, Аккольский р-н, Кенесский с.о., село Домбыралы

- нормативная нагрузка от снега 180кг/м² (III район);
- нормативная нагрузка от ветра 56кг/м² (IV район);
- Абсолютный минимум достигает -44,8°C;
- степень огнестойкости здания II;
- класс ответственности здания ІІ (нормальный, технически несложный);
- климатический район строительства IB

Генеральный план и благоустройство

Чертежи выполнены на основании задания на проектирование, инженерно-геологических, топогеодезических изысканий.

Участок, отведенный под строительство овощехранилища находится в Акмолинская область, Аккольский р-н, Кенесский с.о., село Домбыралы.

Общая площадь участка для проектирования и строительства составляет 10 га.

Генплан разработан на топографической съемке, выполненной в М1:500, в августе 2025 году.

Система высот балтийская.

Система координат – местная.

Технико-экономические показатели

№ п/п	Наименование показателя	Единица измерения	Количество
1	Площадь участка в границах землеотвода	га	10,087
2	Площадь застройки	M^2	9108
3	Площадь покрытия	M^2	5152

Конструктивные решения:

Инженерно-геологические изыскания на объекте: «Строительство площадки для временного хранения куриного помета ТОО «Аккөл Құс», выполнены ТОО «ГЕО-Строй» государственная лицензия 05-ГСЛ-Ф N00132

Нормативная глубина промерзания грунтов по СНиП РК 5.01-01-2002, СНиП РК 2.04.01-2001:

- суглинки и глины 181см;
- супесь, пески мелкие и пылеватые 220 см;
- пески средние, крупные и гравелистые 236 см;
- крупнообломочные грунты 268 см;

Грунты (глины) по данным исследований, ненабухающие и среднепросадочные.

По степени морозоопасности грунты относятся к пучинистым.

Согласно СНиП 2.03-04-2001, приложение 1 списка населенных пунктов Республики Казахстан и карты сейсмического районирования (приложение 3) территория изыскательных работ расположена вне зоны развития сейсмических процессов.

Нормативная глубина промерзания грунта 1,8 м.

В Акмолинской области, согласно схематической карте (приложение А, СП РК 2.04-01-2017) максимальная глубина проникновения нулевой изотермы в грунт составляет более 2,0 м при обеспеченности 0,9 и более 2,5 м при обеспеченности 0,98. Промерзание грунта обычно не превышает нормативное, но в отдельные особо мерзлые годы на отдельных участках наблюдается проникновение нулевой температуры в грунт 2,50-3,00м.

В геологическом строении территории изысканий принимают участие делювиально-пролювиальные отложения, средне-верхнечетвертичного возраста, представленные пылеватой глиной. С поверхности земли площадка территория изысканий перекрыта насыпными грунтами, представленные в основном щебнем с примесью песка, почвы, суглинка, строительного мусора. Вскрытая мощность слоя насыпного грунта колеблется от 0,3м до 1,1м.

Первый инженерно-геологический элемент представлен щебенисто-дресвянистый грунт с примесью глины мошностью 0,6-2,0 м.

Тип подтопления площадки проектируемой площадки природно-техногенный. Максимальный подъем уровня подземных вод на площадке проектируемого комплекса возможен в период весенних паводков на 2,0м выше приведенного на разрезах.

По степени засоления грунты - от незасоленных до среднезасоленных (ГОСТ 25100-2020, табл. Б22), с плотным остатком солей 0,47-1,04%. Содержание солей в грунте составляет: сульфат-ионов от 329,2-4444,2 мг/кг; хлор-ионов 744,0-1395,0 мг/кг.

Степень агрессивного воздействия сульфатов в грунтах на бетоны на портландцементе (бетоны марки W4, W8, W10-14, W16-20) - от неагрессивной до сильноагрессивной, на бетоны на шлакопортландцементе (бетоны марки W4, W8, W10-14, W16-20) - от неагрессивной до среднеагрессивной, на сульфатостойком цементе (бетоны марки W4, W8, W10-14, W16-20) - неагрессивная.

Степень агрессивного воздействия хлоридов в грунтах на арматуру в ЖБК при толщине защитного слоя конструкций от 20 до 50 мм (бетоны марки W4 - W14) - от неагрессивной до сильноагрессивной.

К металлическим конструкциям подземные воды проявляют сильноагрессивные свойства. Грунт 1-ИГЭ проявляет высокую коррозионную активность к заглубленным стальным конструкциям.

Характеристика проектных решений.

Конструкции запроектированы в соответствии с требованиями:

- СП РК EN 1990:2002+A1:2005/2011 "Еврокод 0 Основы проектирования несущих конструкций";
- СП РК EN 1991-1-1:2002/2011 "Еврокод 1. Воздействия на несущие конструкции.";
- СП РК EN 1992-1-1:2004/2011 "Еврокод 2. ПРОЕКТИРОВАНИЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ Часть 1-1. Общие правила и правила для зданий".
- СН РК 2.01-01-2013 "Защита строительных конструкций от коррозии."

Фундаменты: монолитные, железобетонные, типа "плита", общей высотой 300мм;

Расчет конструкций выполнен на программном комплексе ЛираСАПР с учетом постоянных, временных, климатических воздействий.

По всему периметру выполнена гидроизоляция. Под плитой рулонная битумная самоклеящаяся гидроизоляция. На боковых поверхностях обмазочная битумная гидроизоляция.

Антикоррозионные мероприятия.

Железобетонные конструкции, соприкасающиеся с грунтом, покрываются тремя слоями битумно-латексной мастики по битумному праймеру на сухое основание. Все железобетонные и бетонные конструкции выполнять из бетона на сульфатостойком цементе по ГОСТ 22266 по водонепроницаемости марки W6. В качестве мелкого заполнителя предусмотреть кварцевый песок (отмученных частиц не более 1% по массе по

ГОСТ 10268-80). В качестве крупного заполнителя использовать фракционный щебень изверженных пород, гравий и щебень из гравия, отвечающего требованиям ГОСТ 10268-80. Щебень - изверженных пород марки не ниже 800, гравий и щебень из гравия не ниже Др12.

Устройство монолитных бетонных и железобетонных конструкций производить в соответствии с рабочими чертежами, проектом производства и СП РК 5.03-107-2013 "Несущие и ограждающие конструкции".

Работы по антикоррозийной защите конструкций выполнять в соответствии с требованиями СН РК 2.01-01-2013 "Защита строительный конструкций и сооружений от коррозии".

Общие мероприятия по устройству фундаментов и уплотнению грунтов под плиту по грунту.

Работы по возведению фундаментов выполнить в соответствии с указаниями СН РК 5.01-01-2013 "Земляные сооружения, основания и фундаменты", СНиП 2.04-05-2013 "Изоляционные и отделочные покрытия", СН РК 2.01-01-2013 "Защита строительных конструкций от коррозии".

До начала работ по устройству фундаментов подготовленное основание должно быть принято по акту комиссией с участием заказчика, подрядчика, представителей проектной организации:

Под всеми фундаментами выполнить подготовку из бетона кл.С8/10 на сульфатостойком цементе толщиной 100мм, с габаритами, на 100мм превышающими размеры фундаментов. Под бетонной подготовкой устраивается грунтовая подушка из щебня (возможна замена на скальный грунт фракцией не более 40 мм) толщиной 300мм по уплотненному грунту основания.

Поверхности бетонных и ж.б. конструкций, соприкасающиеся с грунтом, окрасить горячим битумом за два раза по огрунтованой поверхности. Бетонные и ж/б конструкции выполняются из бетона на сульфатостойком цементе по ГОСТ 22266 по водонепроницаемости марки W6.

Обратную засыпку котлована (под плиту по грунту) и пазух котлована производить местным не просадочным глинистым грунтом с послойным уплотнением. Уплотнение проводится послойно, с толщиной слоя 300мм виброкатками до степени уплотнения под плиту по грунту - не менее 0.92. Грунтовая смесь в уплотненном состоянии должна иметь следующие параметры: плотность $\rho d=1,85 \text{ т/м3}$, угол внутреннего трения $\phi=30^{\circ}$, удельное сцепление c=75кПа, модуль деформации E=19мПа (190кг/см2). Результаты работ по

уплотнению грунтов должны фиксироваться в журнале производства работ. Контроль степени уплотнения (плотности) проводить с привлечением специализированной организации (лаборатории). Качество работ по уплотнению грунта надлежит проверять путем определения плотности грунта в середине каждого слоя.

Количество точек отбора проб не менее шести с обязательной статобработкой результатов испытаний.

Прием работ должен осуществляться систематически техническим персоналом строительной организации и контролироваться представителем авторского надзора и заказчика с привлечением представителя строящей организации, а также геолога и специализированной организации-лаборатории для проверки и приемки искусственного основания. Нижний слой грунтовой смеси необходимо пропитать горячим битумом на 100мм в целях защиты основания от размыва в период колебания уровня грунтовых вод.

До начала работ по устройству плиты по грунту подготовленное основание должно быть принято по акту комиссией с участием заказчика, подрядчика, представителей проектной организации.

При производстве мероприятий по обратной засыпке необходимо производить систематический контроль за:

- качеством выполненных работ по подготовке котлована для возведения грунтовой подушки;
- толщиной отсыпаемого слоя;

- соответствием отсыпаемого грунта, его однородностью;
- плотностью грунта;
- влажностью грунта.

Снятие несущей опалубки производить после достижения бетоном 70% прочности.

Водоотведение атмосферных вод. По генплану предусмотреть мероприятия по отведению атмосферных и талых вод согласно п. 18.6 СНиП РК 5.01-01-2002 "Основание зданий и сооружений"

Охрана окружающей среды

Принятые в проекте инженерные решения, а также предлагаемые природоохранные мероприятия соответствуют экологическим нормам, и их реализация будет способствовать минимальному воздействию на окружающую среду.

Вредное воздействие на атмосферный воздух может оказывать производственный процесс на период строительства, и это выражено возможностью повышения пыления при ведении земляных работ и разгрузке сыпучих материалов. Наиболее простым средством борьбы с пылью является предварительное увлажнение, например для подавления пылеобразования при транспортировке.

Проектируемая деятельность не предполагает сбросов производственных сточных вод непосредственно в подземные и поверхностные водные объекты прилегающей территории, поэтому прямого отрицательного воздействия на поверхностные природные водоемы и подземные воды не ожидается.

После выполнения всех работ земельные участки, временно используемые при строительстве, должны быть приведены в состояние, пригодное для проведения сельскохозяйственных и других работ (в первоначальное состояние при строительстве в черте населенного пункта).

В период строительства объекта произойдет образование твердых отходов.

Отходы и строительный мусор складируются на специально отведенной площадке и по мере накопления будут вывезены на ближайший полигон ТБО.

На период строительства природопользователь обязан оформить разрешение на эмиссии в окружающую среду, которое выдается согласно его заявке в порядке, установленным Экологическим кодексом РК.

Технико-экономические показатели объектов

№ п/п	Наименование показателя	Единица измерения	Количество
1	Площадь участка	Га	10
2	Площадь застройки	M^2	9108
3	Продолжительность строительства	мес.	3

Директор ТОО «КокшеСтрой Проект»

Касымова Д.К.