TOO «ELEMENTA»

ПЛАН ГОРНЫХ РАБОТ

на месторождении технического халцедона Приозерное открытым способом в Жамбылской области

Предприятие (заказчик):	Частная компания «MQ EMIRATES GROUP Ltd»
Объект:	месторождение Приозерное

Часть: Пояснительная записка

Договор: №____ от _____ г.

Директор ТОО «ELEMENTA»

А.А. Алагузова

Астана, 2025

Настоящий «План горных работ на месторождении технического халцедона Приозерное открытым способом», выполнен Товариществом с ограниченной ответственностью «ELEMENTA» в полном соответствии с требованиями Задания на проектирование, полученного от Частной компании «MQ EMIRATES GROUP Ltd».

При исполнении проектной документации руководствовались требованиями Кодекса Республики Казахстан «О недрах и недропользовании» и другими государственными нормами, правилами, стандартами, действующими на территории Республики Казахстан.

Директор ТОО " ELEMENTA "

А. А. Алагузова

СОСТАВ ПЛАНА ГОРНЫХ РАБОТ

Договор №	om		г.
-----------	----	--	----

Номер	Наименование	Исполнитель
тома		
Том 1	«План горных работ на месторождении технического халцедона Приозерное открытым способом». Пояснительная записка.	ТОО «ELEMENTA» г. Астана 2025 г.

COCTAB TOMA

Номер и наименование тома	Состав тома
«План горных работ на месторождении технического халцедона Приозерное открытым способом»	Пояснительная записка. Приложения (текстовые).
Том 1 Пояснительная записка	

СПИСОК ИСПОЛНИТЕЛЕЙ

Директор ТОО «ELEMENTA»

Горный инженер

Дель Алагузова А. А. Эт Ишир Нугуманов А.К

Оглавление

СОСТАВ ПЛАНА ГОРНЫХ РАБОТ	3
COCTAB TOMA	3
СПИСОК ИСПОЛНИТЕЛЕЙ	4
ГЛАВА 1. ОБЩИЕ СВЕДЕНИЯ О РАЙОНЕ	8
1.1. Географо-экономическая характеристика	8
1.2 Информация об атмосферных условиях района	9
1.3 Характеристика почвы района месторождения	9
ГЛАВА 2 Геологическое описание района работ	11
2.1 Геологическая характеристика месторождения	11
2.2 Запасы месторождения приозерное	12
ГЛАВА 3 Горные работы	13
3.1 Современное состояние	13
3.2 Границы и параметры карьера	13
3.3 Система разработки	15
3.4 Обоснование выемочной единицы	16
3.5 Режим работы предприятия	17
3.6 Очередность отработки запасов. Календарный график открытых г	
3.7 Подготовительные работы	
3.7.1 Геологоразведочные работы	
3.7.2 Горно-капитальные и горно-подготовительные работы. Нор	
вскрытых, подготовленных и готовых к выемке запасов	
3.8 Выемочно-погрузочные работы	18
3.8.1 Расчет производительности бульдозера	19
3.8.2 Расчет эксплуатационной производительности и количества вы	
погрузочного оборудования	
3.9 Карьерный транспорт	
3.9.1 Основные решения технологической схемы карьера, касающиеся транспорта	
3.9.2 Транспортировка	
3.9.2.1 Определение коэффициентов использования грузоподъемности кузова автосамосвала	и и емкости
3.9.2.2 Время рейса и производительность автосамосвала	
3.9.2.3 Расчет рабочего и инвентарного парка автосамосвалов	
3.10 Вспомогательные работы	
Глава 4. Отвалообразование	

4.1 Выбор способа и технологии отвалообразования	32
4.2 Расчет бульдозерного отвалообразования при автомобильном транспорте	32
4.2.1 Расчет потребности бульдозера	33
4.3 Технология и организация работ при автомобильно-бульдозерном отвалообразовании	33
4.5 Складирование готовой продукции	36
4.5.1 Выбор способа и технологии складирования готовой продукции	36
4.5.2 Технология и организация работ при складировании готовой продукции	36
4.5.3 Расчет склада готовой продукции при автомобильном транспорте	37
4.6 Календарный план отвалообразования	37
ГЛАВА 5. Горномеханическая часть	39
5.1 Основное и вспомогательное горное оборудование. Штаты	
ГЛАВА 6 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ	40
6.1 Предотвращение техногенного опустынивания земель.	40
6.2 Мероприятия по предотвращению проявлений опасных техногенных процесорациональному использованию и охране недр	
6.3 Санитарно-эпидемиологические требования	42
6.3.1 Борьба с пылью и вредными газами	42
6.3.2 Помещения санитарно-бытового обслуживания работающих	43
6.3.3 Водоснабжение	44
6.3.4 Оказание первой медицинской помощи	45
6.4 Защита грунтовых вод	47
ГЛАВА 7. РЕКУЛЬТИВАЦИЯ ЗЕМЕЛЬ, НАРУШЕННЫХ ГОРНЫМИ РАБОТАМИ	48
7.1 Рекультивация нарушенных земель	48
7.1.1 Краткая характеристика земель на площади работ	
7.1.2 Мероприятия по рациональному использованию ПРС	
7.2 Технический этап рекультивации	50
7.2.1 Консервация карьера	50
7.2.2 Ликвидация отвалов вскрышных пород	50
7.3 Восстановление плодородного слоя почвы	50
ГЛАВА 8. ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ, ОХРАНА ТРУДА ИПРОМЫШЛЕННАЯ САНИТАРИЯ	52
8.1 Промышленная безопасность	52
8.1.1 Система производственного контроля за соблюдением требований промышленной безопасности	53
8.1.2 Оснащение системой позиционирования и автоматизированной системой диспетчеризации, мониторинга техники	53

8.1.3 Мероприятия по предупреждению и ликвидации аварий, несчастных случаев и профилактике профессиональных заболеваний	
8.2 Планирование и проведение мероприятий по предупреждению и ликвидации аварий.	54
8.3 Использование машин, оборудования и материалов, содержание зданий и сооружений в состоянии, соответствующем требованиям и правилам норм безопасности и санитарных норм	56
8.4 Осуществление специальных мероприятий по прогнозированию и предупреждению внезапных прорывов воды, предотвращению обрушений и деформаций бортов и уступов отвалов, обеспечения их устойчивости	57
8.6 Обеспечение промышленной безопасности	50
8.6.1 Мероприятия по безопасности при ведении горных работ	50
8.6.2 Мероприятия по безопасности при введении экскаваторных работ	52
8.6.3 Мероприятия по безопасной эксплуатации бульдозеров	54
8.6.4 Мероприятия по безопасной эксплуатации карьерных автосамосвалов	54
8.6.5 Мероприятия по безопасной работе при планировке отвалов	56
8.6.6 Мероприятия по безопасной эксплуатации системы энергоснабжения и электроустановок	57
8.7 Системы связи и сигнализации, автоматизация производственных процессов . 6	58
8.8 Контроль выдачи нарядов и выполнения сменных заданий	59
8.9 Пожарная безопасность	71
8.10 Охрана труда и промышленная санитария	72
8.11 Административно-бытовые и санитарные помещения	74
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	75

глава 1. Общие сведения о районе.

1.1. Географо-экономическая характеристика.

Месторождение Приозерное расположено в предгорной равнине, примыкающей с северо-востока к хребту Малый Каратау, административно относится к Таласскому району Жамбылской области Республики Казахстан. Районный центр город Каратау.

На месторождении пахотных земель, лесных угодий нет. Площадь месторождения представляют собой всхолмленную местность с убогой пустынной растительностью и высыпками щебня на поверхности. Поверхностных водотоков и водоемов на площади месторождений нет. Месторождение связано грунтовой дорогой с городом и железнодорожной станцией Каратау, расположенным в 23 км к югу. В 22 км юго-восточнее проходит асфальтированная автодорога сообщением Акколь – Каратау.

Рельеф района равнинный, местами холмисто-грядовый. Превышения гряд над низменными, засоленными участками 10–40 м, непосредственно в пределах месторождения до 5 м.

Гряды и куэсты ориентированы в северо-западном направлении, абсолютные отметки в районе колеблются от 430 до 470 м.

Рельеф территории характеризуется богатым разнообразием форм, что обуславливается постепенным переходом от предгорной местности к равнине и сменой эрозионного типа рельефа аккумулятивным.

Гидрографическая сеть в районе работ развита слабо и отмечается временной незначительной водоносностью. Водными артериями района являются реки: Аса, Коктал, которые служат источниками наполнения водохранилищ. На месторождении гидросеть отсутствует, характерны мелководные небольшие озера, образующиеся в пониженных участках в осенний и весенний периоды при выпадении дождей и таяния снегов. Летом они полностью пересыхают. Родники отсутствуют.

По климатическим условиям район относится к полупустынным зонам с холодной ветреной зимой и жарким сухим летом. Климат резко континентальный. Характеризуется резкими перепадами температуры в течение суток и года в целом. Среднегодовая температура воздуха - 7-10°С. Среднемесячная температура воздуха самого холодного месяца января — 11-14°С. Абсолютный минимум в зимний период составляет 40 - 45°С мороза. Зимой периоды с низкими температурами сравнительно невелики. Теплый период отличается высокими температурами и значительной сухостью воздуха. Средняя температура самого жаркого месяца - июля - 25 - 27°С. В этом же месяце отмечается абсолютный максимум - очень сильная жара 40 - 45°С.

В целом, осадков в районе выпадает мало (менее 250 мм в год). По сезонам года осадки распределяются крайне неравномерно - большая часть их приходится на зимне-весенний период.

1.2 Информация об атмосферных условиях района

характеристики Метеоролого-климатические формируются ПОД образующихся воздействием воздушных потоков, ПОД воздействием континентального климата европейской и азиатской частей суши. Основными факторами, влияющими на климатические условия, являются: географическое условия атмосферной циркуляции и др. Преобладающее направление ветров восточные. Скорость ветра колеблется от 10 до 35 м/сек, редко 40 м/сек. Среднегодовое количество осадков 250-300 мм, снежный покров до 20 см держится с декабря по февраль. Среднегодовая повторяемость направлений ветра в районе расположения месторождения, в %:

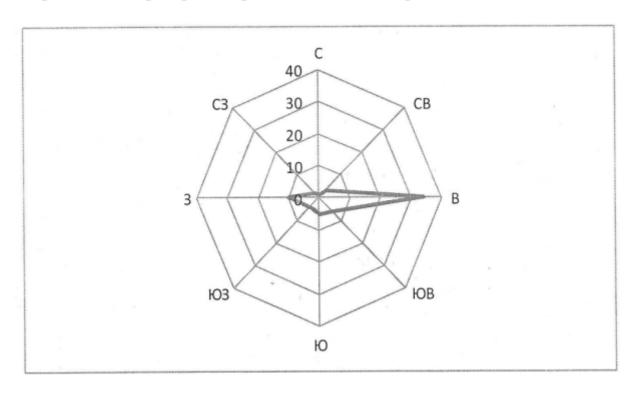


Рис. 1. Роза ветров района месторождения Приозерное

1.3 Характеристика почвы района месторождения

Район месторождения представлен пустынно-степной зоной, сложенной толщами каменисто-галечниковых отложений, перекрытых плащом щебенчато-хрящеватых лессовидных суглинков, и приурочен к низкогорью Талас-Ассинского междуречного района. Основными типом для данной зоны является светло-каштановые почвы. Ареалом распространения светло-каштановых почв считаются полупустынные и пустынно-степные области. В их профиле выделяются следующие горизонты: гумусовый (толщиной до 10 см); переходный (толщиной от 10 до 15 см); карбонатный (толщиной от 45 до 85 см); материнский породный. В верхних слоях светло-каштановых грунтов содержится до 2,5 % гумуса. Почвы в верхних горизонтах слабощелочные.

Щелочные в нижних. Возделывать культуры на такой земле можно при условии регулярного проведения специальных оросительных мероприятий. Растительный покров района месторождения представлен полынно-эфемеровой ассоциацией, характеризующейся преобладанием серой полыни (джусан, боз-джусан). Растут также баялыч, тамариск, саксаул. Здесь всегда присутствует значительное количество однолетних злаков и многолетних мятликов. Весной растительный покров степи кажется зеленым и ярким от цветущих и быстро отцветающих растении, многие из

Рис. 2 - Ландшафт района месторождения Приозерное

которых успевают обсемениться до наступления засушливых знойных дней. К середине лета растительность высыхает, и степь выглядит безжизненной, сохраняются зелеными только некоторые ксерофитные растения. Вследствие неблагоприятных климатических условий на сухих местообитаниях наблюдается даже прекращение роста растений.

ГЛАВА 2 Геологическое описание района работ 2.1 Геологическая характеристика месторождения

Площадь месторождения сложена нерасчлененными верхневизейсконижнеюрскими отложениями, представленными песчано-глинистыми и карбонатными породами с частой и постепенной сменой литологических разностей.

Песчаники на месторождении имеют небольшое распространение, слагая отдельные слои длиной до 100 м при мощности от 0,1 до 0,5 м.

Алевролиты имеют постепенные переходы к алевритовым аргиллитам, представляющим собой породу с однородной глинистой массой, в которой равномерно распределены алевритовые частицы.

Аргиллиты широко распространены в разрезе. Наблюдаются постепенные переходы от аргиллитов к алевритовым аргиллитам, а также известковистым аргиллитам, глинистым известнякам. Аргиллиты слагают слои длиной по простиранию от 300 м до 1 км при мощности от 0,3 до 5 м. Известковистые аргиллиты являются основной рудовмещающей породой. По отношению к рудным телам известковистые аргиллиты являются и подстилающими, и перекрывающими.

Известковистые аргиллиты имеют постепенные переходы к глинистым мергелям, представляющим собой однородную плотную тонкоструктурную смесь из глинистого вещества и микрозернистого кальцита. Глинистые мергели имеют постепенные переходы к мергелям.

Мергели имеют переходы к глинистым известнякам, слагающими слои длиной по простиранию от 200 до 600 м при мощности от 0.3 до I м. Порода сложена агрегатом тонкозернистого (0,05–0,15 мм) кальцита (80%), в котором неравномерно распределен глинистый материал.

Незначительным распространением в разрезе пользуются известняки, представляющие собой серую, красновато-серую породу, сложенную на 99% кальцита со следами органических остатков. Небольшое развитие в разрезе получили песчанистые известняки, представленные породой зернистого сложения.

Верхняя часть разреза сложена органогенным известняком. Мощность слоя 2–5 м, длина по простиранию более 5 км.

Современные отложения на месторождении развиты на глубину 2 м. Они представлены элювиально-делювиальными осадками - буровато-серыми супесями, местам интенсивно загипсованными с линзами суглинков, глин и обломков кремней и коренных пород.

На площади месторождения наблюдается довольно однообразная моноклиналь с падением слоев к северо-востоку под средним углом, 3-4°. На фоне общей моноклинали наблюдается плойчатость слоев с изменением угла падения от I до 9°.

Рудные тела Кайназарского месторождения представлены развалами и коренными образованиями.

Развалы кремней протягиваются в западном направлении вдоль всего месторождения по длину более 5 км. Наибольшая концентрация их на Западном (месторождение Западный Кайназар) и Восточном (месторождение Восточный Кайназар) участках. На Западном - преобладают кремни с цветным халцедоном, на Восточном - преимущественно с техническим. Центральная часть месторождений безрудная. Аналогичная картина и с коренными телами.

Развалы западного участка представлены двумя самостоятельными зонами, находящимися друг от друга на расстоянии от 100 до 350 м. Северная зона безрудная, южная - с цветным халцедоном.

Южная зона протягивается в северо-западном направлении, вдоль всего участка более 2 км. Ширина её колеблется от 60-80 м в периферийных частях участка до 200 м в центре. Мощность зоны (глубина развития обломков кремней) от 1,4 до 2,5 м., в среднем 2 м, представлена она скоплениями обломков кремней размером от первых сантиметров до 25-30 см. Обломки угловатые, неправильной формы, с поверхности слегка окатанные. На то, что указанные обломки кремней представляют собой результат разрушения коренной линзы в приповерхностном слое с незначительным переносом, встречающиеся в рыхлых отложениях полуразрушенных линз с сохранением общих углов падения и мощности коренных линз. Концентрация обломков кремней В пределах неравномерна и колеблется от 0,5 до 8%, в среднем 5%.

Цветной халцедон в кремнях распределен неравномерно и без закономерностей.

2.2 Запасы месторождения приозерное.

Балансовые запасы месторождения Приозерное на 01.01.2025г составляют:

Votationally sollows	Кол-во руды			
Категории запасов	тонн	M^3		
Технического и цветного Халцедона				
балансовые С1	50,4			
балансовые С2	9,2			
Итого балансовые С ₁ +С ₂	59,6			
Абразивного сырья				
балансовые С1	5140	2150		

ГЛАВА 3 Горные работы

3.1 Современное состояние

Площадь участка недр нарушена горными работами, проведенными в период геологоразведочных и добычных работ.

Характер нарушения:

- разведочные канавы, по все йплощади участка недр.
- Добычные изолированные котлованы, не формирующие единого добычного фронта. размерами в среднем 20 на 40 метров.

Исключение составляет площадь добычи, находящаяся в прибережной зоне. Площадью 2 гектара глубиной 6 метров. В настоящий момент затоплен водами озера.

В ходе проведения добычных работ получены следующие технико-экономические показатели:

Среднее содержание технического халцедона в кремнии составило: по категории $C_1-10.84~{\rm kr/m^3},$ по категрии $C_2-5.7~{\rm kr/m^3};$ при коэффициенте вскрыши $4.4~{\rm m^3/m^3}.$

3.2 Границы и параметры карьера

Учитывая границы экономической и технологической целесообразности отработки запасов и морфологию рудных тел, месторождение будет разрабатываться карьером. Границы карьера отстраивались с учетом полного включения в контуры утвержденных запасов при минимально возможном объеме вскрышных пород и обеспечении безопасных условий по устойчивости бортов. Угловые точки участка недр указаны в таблице 3.1.

Таблица 3.1 – Угловые точки участка ндр.

№	Северная широта			Восточная долгота		
п/п	градусы	минуты	секунды	градусы	минуты	секунды
1	43	22	46,70	70	32	10,41
2	43	22	38,35	70	26	24,30
3	43	22	53,97	70	26	23,53
4	43	23	34,09	70	28	14,98
5	43	23	26,69	70	28	29,57
6	43	23	27,21	70	28	40,78
7	43	23	30,84	70	28	53,87
8	43	23	33,2	70	29	12,13
9	43	23	38,72	70	29	25,66
10	43	23	49,17	70	29	44,3
11	43	23	46,88	70	29	54,09
12	43	23	34,95	70	30	6,87
13	43	23	31,48	70	30	21,13
14	43	23	35,42	70	30	43,49
15	43	23	41,89	70	30	56,61
16	43	23	21,17	70	32	4,25

Таблица 3.2 - Угловые точки карьера

№ Северная широта		Восточная долгота		та		
п/п	градусы	минуты	секунды	градусы	минуты	секунды
1	43	23	34.52	70	30	12.63
2	43	23	35.24	70	30	43.69
3	43	23	36.78	70	30	46.93
4	43	23	25.46	70	30	47.63
	43	23	23.71	70	30	14.47
	Площадь 24,5					

При определении границ открытых горных работ за основу приняты следующие положения:

- 1. Наряду с глубиной, основным фактором, формирующим границы карьера, является пространственное положение балансовых запасов полезного ископаемого.
- 2. Внешние контуры объединенного карьера не должны выходить за пределы установленных границ горного отвода.
- 3. На основании инженерно-геологической характеристики пород и руд, для конструирования бортов карьеров приняты следующие параметры уступов и бортов:
- В качестве базы для оконтуривания карьера использованы погоризонтные геологические планы, отстроенные на основе имеющихся геологических материалов в виде поперечных разрезов по месторождению.
- В графических приложениях, представлен план карьера на конец отработки, оконтуривание которого произведено с учетом указанных выше положений, требований Норм технологического проектирования, а также данных топографической карты поверхности.

Параметры карьера представлены в таблице 3.2.

Параметры карьера

№ПП	Параметры	Ед. изм.	Значение
1	Размеры карьеров:		
	- длина	M	1800
	- ширина	M	173
	-глубина (максимальная)	M	6
2	Площадь карьера	\mathbf{M}^2	24500
3	Генеральный угол уклона бортов карьера	градус	45°
4	Высота рабочего уступа	M	Cp 1.38
5	Геологические запасы	T	59,6
6	Объём вскрыши	\mathbf{M}^3	27559,32
7	Среднеэксплуатационный коэффициент вскрыши	M^3/M^3	4.4
8	Годовая производительность:		
	- по ПИ	Т	20
	-по вскрыше	тыс. м ³	8.1
9	Срок обеспеченности запасами	лет	3

3.3 Система разработки

Основные факторы, учтенные при выборе системы разработки:

- А) горно-геологические условия полезного ископаемого;
- Б) физико-механические свойства полезного ископаемого и вскрышных пород;
 - В) заданная годовая производительность карьера
- С учетом вышеперечисленных факторов принимаем следующую систему разработки: механизированная разработка месторождения Приозерное. Со следующими параметрами

По способу перемещения горной массы

- 1. вскрыша транспортная
- 2. Полезное ископаемое транспортная;

(бульдозер-погрузчик/экскаватор-автосамосвал).

Предусматривается следующий порядок ведения горных работ на карьере.

1. Снятие почвенно-растительного слоя (ПРС).

учитывая что месторождение уже подвергнуто промышленному освоению и поверхность нарушена ПРС снят настоящим планом горных работ снятие ПРС не планируется.

2. Разработка вскрыши

Вскрытие будет производиться бульдозерами, места складирования вскрышных пород будут находиться на бортах выработок. Транспортировка

вскрыши – транспортная. Выезды бульдозеров будут сплошные, и прокладываться по бортам разреза.

При вскрытии россыпи сплошным выездом по мере углубления разреза его откосы попутно с выемкой породы выполаживаются до уклона, позволяющего бульдозерам выезжать из разреза в любом месте. Для бульдозеров подъем принимается в пределах 10–35°.

3. Разработка руды (кремния)

Полезное ископаемое будут отрабатываться на подготовленных полигонах послойно, слоями 0,4–0,5 м.

Полезное ископаемое будут рыхлиться с помощью навесного оборудования.

Разрыхленное ПИ будет загружаться в автосамосвалы, и транспортироваться на склад.

Для выполнения объемов по приведенному порядку горных работ предусматриваются следующие типы и модели горного и транспортного оборудования:

- Экскаватор Komatsu PC270-7 1шт;
- Автосамосвал SHACMAN -22т 1 шт;
- Фронтальный погрузчик Wacker Neuson WL 70 1шт;
- Бульдозер Б–10М 4шт;

3.4 Обоснование выемочной единицы

Выемочная единица — наименьший экономически и технологически оптимальный участок месторождения с достоверным подсчетом исходных запасов (блок, панель, лава, уступ), отработка которого осуществляется единой системой разработки и технологической схемы выемки, по которому может быть осуществлен наиболее точный отдельный учет добычи по количеству и качеству полезного ископаемого.

Морфология залегания рудных тел, система разработки и технология ведения горных работ на каждом из уступов являются едиными для всего месторождения и практически не меняется по мере развития карьеров.

В связи с этим, в условиях открытой разработки месторождения, уступ (горизонт) как выемочная единица соответствует определению и функциям минимального участка и отвечает всем требованиям, предъявляемым к выемочной единице, т.к.:

- это экономически и технологически обоснованная проектом оптимальная горно-геометрическая единица;
- в границах уступа (горизонта) проведен достоверный подсчет исходных запасов руды;
- отработка уступов осуществляется единой системой разработки и технологической схемы выемки;
- по уступам может быть осуществлен точный отдельный учет добычи рудной массы по количеству и содержанию в нем полезного

компонента.

Учитывая условия разработки месторождения в качестве выемочной единицы на открытых горных работах, принимается уступ высотой 1-6 (ср1.38) м.

3.5 Режим работы предприятия

В соответствии с заданием на проектирование принят вахтовый метод привлечения рабочих. Режим работы сезонный, рабочая неделя непрерывная. Расчетные нормативы рабочего времени приведены в таблице 3.7

Таблица 3.7 Режим работы месторождения

№ПП	Наименование показателей	Единица измерения	количество
1	Рабочих дней в году	суток	181
2	Вахт в течение месяца	вахт	2
3	Рабочих дней в неделе	суток	7
4	Рабочих смен в сутки	смен	1
5	Продолжительность смены	часов	12

3.6 Очередность отработки запасов. Календарный график открытых горных работ

Производительность карьера по добыче руды достигает 20 т в год. Для обеспечения заданной производительности составлен календарный график горных работ.

При его разработке учтены следующие условия: погоризонтное распределение запасов руды по количеству и качеству, горнотехнические условия, возможная скорость углубки.

Общий срок эксплуатации составит 4 года. В первые год планируется вести подготовительные работы по инфраструктурному строительству, доразведки месторождения. Также в первый год будут производиться интенсивные работы по геологическому доизучения месторождения.

Таблица 3.10– Календарный график разработки месторождения

	Епизм Всего			Годы с	отработк	И
Наименование	ЕД.ИЗМ	Ед.изм Всего		2027	2028	2029
геологическое доизучение						
Горные работы	м3	1000	1000			
Геологоразведочные скважины (заверочные и						
оценочные)	п.м	300	300			

доб	ыча				
Горная масса	м3	33822,8	9963,1	9963,1	13896,6
Вскрыша		27559,32	8118,08	8118,08	11323,16
Добыча					
Кремний		6263,48	1845,02	1845,02	2573,44
в.т.ч Халцедон		59,6	20	20	19,6

3.7 Подготовительные работы

3.7.1 Геологоразведочные работы

В рамках настоящего плана разведки предусмотривается геологическое доизучение месторождения. Для этих нужд согласно каллендрному плану освоения месторождения выделен 1 год - 2026 год. Планом предусмотрено:

горные работы (разведочные канавы) — 1000 м. куб. — 2026 год. геологоразведочные скважины (заверночные и оценочные): 2026 год — 300 п.м;

3.7.2 Горно-капитальные и горно-подготовительные работы. Нормативы вскрытых, подготовленных и готовых к выемке запасов

Так как породы россыпи не обводнены, для эффективного ведения горных работ и сокращения затрат на разработку предварительно проводят работы по предотвращению возможности попадания в разрез сточных (поверхностных, атмосферных) вод.

При разработке запасов будет пройдена нагорная канава. Трасса ее выбирают с учётом обеспечения наименьшего объёма земляных работ и минимальных затрат на проходку.

Нагорная канава проходится за пределами площади подсчета запасов. Нагорная канава служит для сбора поверхностных вод. Головная часть канавы заглубляется в на 0,5м и более, а хвостовая её часть заканчивается на отметке, обеспечивающей самотёчный сток воды на поверхность.

В состав горно-подготовительных работ входят:

- сооружение дорог;
- планировка промплощадки под рудный склад.

3.8 Выемочно-погрузочные работы

Породы и полезное ископаемое месторождения Приозерное по трудности экскавации относятся к IV категориям (в соответствие с Едиными нормами выработки открытых горных работ, 1989 г.). Разработка рыхлых пород осуществляется без буровзрывных работ. Поелезное ископаемое перед разработкой будут рыхлиться с помощью навесного оборудования.

Для сваливания породы в бурты используется бульдозер Б–10М;

Настоящим проектом предусматривается использование на выемочно-погрузочных работах Фронтальный погрузчик Wacker Neuson WL 70 с вместимостью ковша для руды 1,9 м 3 и Komatsu PC270-7 с вместимостью ковша для вскрыши – 1,2 м 3 .

Принятое в проекте выемочно-погрузочное оборудование по своим техническим характеристикам в полной мере удовлетворяет условиям экскавации пород и руд месторождения Приозерное.

3.8.1 Расчет производительности бульдозера

Часовая производительность бульдозера по грунтовой массе определяется по формуле:

$$Q_q=q \times (3600:t_{II}) \times K_{mot} \times (1:K_p) \times K_B \times K_y$$

Где:

 $K_{\text{пот}}$ -коэффициент потерь грунта при транспортировке – 0,9;

К_р – коэффициент разрыхления грунта – 1,3;

 $K_{\text{в}}$ – коэффициент использования рабочего времени, учитывающий организационные перерывы, принимаем— 0,83;

 K_y –коэффициент, учитывающий влияние уклона или подъёма местности на производительность бульдозера. Принят 1,08, при уклоне –5%;

q – объём грунтовой призмы;

 $t_{\scriptscriptstyle \rm II}$ - длительность технологического цикла.

$$Q_{\text{\tiny H}}$$
=2,9× (3600:119,6) ×0,9× (1:1,3) ×0,83×1,08=54,5 m^3

Объём грунтовой призмы:

$$q = (L \times H^2:2tg\alpha) \times (K_{\text{non}}:K_{\text{nn}})$$

где:

L - длина отвала (м);

Н – высота отвала (м);

 K_{np} – коэффициент наполнения грунтовой призмы принят – 1,22;

Кпоп – коэффициент потерь грунта при наполнении призмы-0,85;

 $K_{\text{пот}}$ – коэффициент потерь грунта при транспортировке – 0,9;

 α – угол естественного откоса грунта – 40° .

$$q = (3.31 \times 1.46^2:2 \times 0.839) \times (0.85:1.22) = 2.92 \text{ m}^3$$

Длительность технологического цикла:

$$t_{\text{ц}} = t_{\text{коп}} + t_{\text{p}} + t_{\text{хп}} + t_{\text{доп}} = 6,78 + 47,6 + 1,96 + 43,3 + 20,0 = 119,6$$
 сек, где:

t_{коп} – длительность копания (набор грунтовой призмы);

 t_{Tp} – длительность транспортировки грунта;

t_р-длительность раскладки грунтовой призмы;

t _{хп} – длительность холостого пробега;

 $t_{\mbox{\scriptsize доп}}$ — дополнительное время на переключение передач, установку отвала, повороты -20 сек.

При этом:

$$t_{\text{KOII}} = L_{\text{KOII}} : V_{\text{KOII}} = 3.39 : 0.5 = 6.78 \text{ cek}$$

 $V_{\text{коп}}$ – скорость копания 0,5 м/с.

Длина участка копания:

$$L_{\text{KOII}} = q \times (L \times C \times K_p) = 3,39 \text{ M}$$

где:

q – объём грунтовой призмы (M^3);

L – длина отвала бульдозера – 4,5м;

C – толщина стружки грунта – 0,2 м;

K_p − коэффициент разрыхления грунта − 1,3;

Время транспортировки:

$$t_{TP} = L_{TP}: V_{TP} = 50:1,05 = 47,6cek$$

 $L_{\text{тр}}$ –длина участка транспортирования – 50 м; $V_{\text{тр}}$ –скорость при транспортировке грунта–1,05 м/с.

Время раскладки:

$$t_p = L_p$$
: $V_p = 2,06$: $1,05 = 1,96$ cek

Длина участка раскладки:

$$L_p$$
= $(q \times K_\pi)$: $(L \times C_p) = (2.92 \times 0.7)$: $(3.31 \times 0.3) = 2.06$ м, где:

q – объём грунтовой призмы) =2,92 m^3 ;

L – длина отвала бульдозера 4,5м;

Ср – толщина слоя раскладки 0,3 м;

 $V_{\mbox{\scriptsize тp}}-$ скорость при раскладке $-1,05\mbox{ m/c}$

 K_{π} – коэффициент изменения наполнения отвала бульдозера:

$$K_n=1-0.005 \text{ x } L_{TP}=0.7$$

Время холостого пробега:

$$t_{\scriptscriptstyle X\Pi}$$
 =($L_{\scriptscriptstyle KO\Pi}$ + $L_{\scriptscriptstyle Tp}$ + $L_{\scriptscriptstyle p}$): $V_{\scriptscriptstyle X\Pi}$ = (3.39+50,0+2,06):1,28 = 43,3сек, где:

 $L_{\text{коп}}$ – длина участка копания – 3,39 м;

 $L_{\text{тр}}$ – длина участка транспортировки – 50 м;

 L_p – длина участка раскладки – 2,06 м;

 V_{xn} –скорость при холостом пробеге– 1,28 м/с.

Сменная производительность по горной массе:

$$Q_{cM} = Q_{M} \times T_{cM} \times N_{cM} = 54.5 \times 10 \times 1 = 545 \text{ m}^{3}/\text{cm}.$$

Т_{см} – часовая продолжительность смены в часах

Годовая производительность бульдозера:

$$Q_{\scriptscriptstyle \Gamma} = T_{\scriptscriptstyle \Gamma} \times 1 \times Q_{\scriptscriptstyle \text{CM}} = 181 \times 2 \times 545 = 98,\!65$$
 тыс. м^3

 $T_{\scriptscriptstyle \Gamma}$ – количество рабочих дней в году – 181; количество смен –1.

Таблица 3.9

Сводная таблица технико-экономических показателей работы бульдозера

			годы отработки				
Наименование	ед.изм	Всего	1	2	3	4	
			2026	2027	2028	2029	
	Вскры	ша					
Объем работ	тыс.м	27559,3		8118,1	8118,1	11323,2	
Продолжительность работы	СМ	50,57		14,90	14,90	20,78	
Расход масел и смазочных материалов	Т	0,91		0,268	0,268	0,374	
Дизельное топливо	Т	30,34		8,94	8,94	12,47	
Итого							
расчетный парк	ШТ	1		1	1	1	
инвентарный парк	ШТ	1		1	1	1	

3.8.2 Расчет эксплуатационной производительности и количества выемочно-погрузочного оборудования

Паспортная производительность определяется по формуле:

$$Q_n = \frac{3600E}{T_{n,n}}, \, M^3 / \, q \tag{3.37}$$

где Е - вместимость ковша экскаватора,

 $T_{\text{и.п.}}$ - паспортная длительность рабочего цикла экскаватора,

Техническая производительность устанавливается по формуле

$$Q_{m} = \frac{3600E}{T_{u.m.}} * \frac{K_{H.K.}}{K_{P.K}} K_{T.B.}, M^{3}/4$$
(3.38)

где $T_{\text{ц.м.}}$ - минимальная длительность циклов, с;

К_{н.к.} - коэффициент наполнения ковша;

К_{р.к.} - коэффициент разрыхления породы в ковше;

К_{т.в.} - коэффициент влияния технологии выемки.

Эффективная производительность экскаватора при выемке пород определяется по формуле:

$$Q_{9\phi} = Q_m \eta_n K_{nom} K_v K_{mp}, M^3 / 4$$
 (3.39)

где η_{π} - коэффициент, учитывающий несоответствие между расчетными и фактическими показателями;

 $K_{\text{пот}}$ - коэффициент, учитывающий потери экскавируемой породы;

К_у - коэффициент управления;

 $K_{\text{тр}}$ - коэффициент, учитывающий минимально необходимые простои по транспортным условиям.

Сменная эксплуатационная производительность определяется по формуле:

$$Q_{3c} = Q_{3d}T_{c}K_{\mu,p}K_{\kappa,q}, M^{3}/cmehy$$
 (3.40)

где T_c - продолжительность смены;

 $K_{\text{и.р}}$ - коэффициент использования экскаватора на основной работе; $K_{\text{к.л.}}$ - коэффициент влияния климатических условий.

Годовая эксплуатационная производительность экскаватора рассчитывается по формуле:

$$Q_{_{\mathcal{I}\!\!\!/}} = Q_{_{\mathcal{I}\!\!\!/}} N_P , M^3 / \text{ГОД}$$
 (3.41)

где N_p - количество рабочих смен в году принято с учётом среднегодового времени на ремонт экскаваторов (56 дн), простоев по метеоусловиям (10 дн), времени на технические перерывы (8 дн).

Расчет эксплуатационной производительности экскаваторов приведен в таблице 3.10.

Таблица 3.10 Расчет эксплуатационной производительности выемочно-погрузочного оборудования

NG	1 1	Условные		Экскаватор Komatsu PC270-7	Фронтальный погрузчик Wacker Neuson WL 70
№	Наименование показателей Исходные данны	обозначения	Ед. изм.		
1		Е	M ³	1.2	1.0
1	вместимость ковша экскаватора	E	M	1,2	1,9
2	паспортная длительность рабочего цикла экскаватора	Тц.п.	c	25	25
	фактическая длительность	1 14,111			
3	рабочего цикла экскаватора	Тц.м.	С	30	30
4	коэффициент наполнения ковша	Кн.к		0,9	0,95
	коэффициент разрыхления			,	,
5	породы в ковше	Кр.к.		1,3	1,3
	коэффициент влияния технологии				
6	выемки	Кт.в.		0,9	0,9
	коэффициент, учитывающий				
	несоответствие между				
7	расчетными и фактическими			0.0	0.0
7	показателями	ηπ		0,8	0,8
8	коэффициент, учитывающий потери экскавируемой породы	Кпот		0,95	0,95
9	коэффициент управления	Ку		0,9	0,9
10					
10	продолжительность смены	Тс		10	10
11	коэффициент использования экскаватора на основной работе	Ки.р		0,85	0,85
11	коэффициент влияния	Ки.р		0,63	0,03
12	климатических условий	Кк.л		0,9	0,9
	коэффициент, учитывающий	111111			0,5
	минимально необходимые				
	простои по транспортным				
13	условиям	Ктр		0,9	0,9
14	количество рабочих смен в году	Np	смен	362	362
	Резул	ьтаты расчета			
	Паспортная производительность				
1	экскаватора	Qπ	м ³ /ч	172,8	273,6
2	Техническая производительность	Qт	м ³ /ч	107,7	179,9
	Эффективная производительность		2		
3	экскаватора	Qэф	м ³ /ч	66,3	110,8
	Сменная эксплуатационная	O	3/	507.0	0474
4	производительность экскаватора	Qэc	м ³ /смену	507,0	847,4

	Годовая эксплуатационная				
5	производительность	Qэг	\mathbf{M}^3 /год	183549,8	306766,2

Проектом принимается:

- производительность экскаватора Komatsu PC750-7 183,5 тыс. M^3/Γ од.
- производительность Фронтальный погрузчик Wacker Neuson WL 70 306,8 тыс. м³/год.

Рабочий парк определяется по формуле:

$$N_{_{9.p.6c\kappa}} = \frac{Q}{Q_{_{92}}}, um \tag{3.42}$$

где Q - объем породы в год.

Сводная таблица технико-экономических показателей, расчетов производительности и численности инвентарного парка машин, задействованных на экскавации, приведена в таблице 3.11 и 3.11.1.

Таблица 3.11 Сводная таблица технико-экономических показателей работы Фронтального погрузчика Wacker Neuson WL 70

				годы о	тработки	
Наименование	ед.из	всего	1	2	3	4
Паніменование	M	весто	202 6	2027	2028	2029
погрузка	вскрыш	и в автоса	мосвал	I		
Объем работ	M	27559, 3		8118,08	8118,0 8	11323, 2
Продолжительность работы	СМ	32,52		9,58	9,58	13,36
Расход масел и смазочных материалов	Т	0,59		0,172	0,172	0,241
Дизельное топливо	Т	19,51		5,75	5,75	8,02
Итого						
расчетный парк	Ι	ШΤ		1	1	1
инвентарный парк	I	ПТ		1	1	1

Таблица 3.11.1 Сводная таблица технико-экономических показателей работы Экскаватора Komatsu PC270-7

			годы отработки				
Наименование	ед.из	всего	1	2	3	4	
Паименование	M	всего	202 6	2027	2028	2029	
	ПИ (кре	емний)					
Объем работ	THOM	6263,4		1845,0	1845,0	2573,4	
Объем работ	тыс.м	8		2	2	4	

Продолжительность работы	СМ	12,35		3,64	3,64	5,08
Расход масел и смазочных материалов	Т	0,22		0,066	0,066	0,091
Дизельное топливо	Т	7,41		2,18	2,18	3,05
	Ито	ГО				
расчетный парк	П	ШΤ	1	1	1	1
инвентарный парк	шт 1		1	1	1	

3.9 Карьерный транспорт

3.9.1 Основные решения технологической схемы карьера, касающиеся карьерного транспорта

Горнотехнические условия разработки месторождения Приозерное, параметры системы разработки, масштабы производства, а также ряд технологических факторов, предопределили выбор вида транспорта.

настоящим планом горных работ в качестве транспорта для перевозки вскрыши и полезного ископаемого принимается автомобильный транспорт, основными преимуществами которого являются: независимость от внешних источников питания энергии, упрощение процесса отвалообразования, сокращение длины транспортных коммуникаций, благодаря возможности преодоления относительно крутых подъемов автодорог, мобильность.

При выборе типа транспорта учитывались параметры выемочнопогрузочного оборудования и проектная производительность карьера по горной массе. В качестве основного технологического транспорта в проекте приняты автосамосвалы SHACMAN грузоподъемностью 22 т.

Парковка, обслуживание технологического транспорта осуществляется на территории промплощадки.

3.9.2 Транспортировка

Транспортировка руды и на рудный склад и вскрыши в отвал будет осуществляться автосамосвалами типа SHACMAN грузоподъемностью 22 т.

Выбор данного типа автотранспорта обусловлен рациональным соотношением объема кузова самосвала и вместимостью ковша экскаваторов Котаtsu и погрузчика с вместимостью ковша 1,2 м³ и 1,9 м³ соответственно, работающих в составе единого погрузочно-транспортного комплекса.

Режим работы автотранспорта, задействованного на транспортировке горной породы сезонный односменный. Продолжительность смены 12 ч.

3.9.2.1 Определение коэффициентов использования грузоподъемности и емкости кузова автосамосвала

1. Выбор типа автосамосвала осуществляется в соответствии с требованием:

$$V_{ak} = (5 \div 10)E, \, M^3 \tag{3.4}$$

где V_{ak} – геометрический объем кузова автосамосвала, м³

E – заданная вместимость ковша выемочно-погрузочного оборудования, \mathbf{m}^3 .

При выбранном типе автосамосвала SHACMAN с геометрическим объемом кузова $11 \, \mathrm{m}^3$ данное требование выполняется.

2. Масса руды и вскрыши в ковше экскаватора:

$$q_p = E \frac{k_H}{k_p} \gamma, moнн \tag{3.44}$$

где $k_{\rm H}$ - коэффициент наполнения ковша выемочно-погрузочной машины;

k_p – коэффициент разрыхления породы в ковше;

 γ – плотность горной массы в целике (после рыхления - 1,85 т/м³).

3. Число ковшей, необходимых для загрузки кузова автосамосвала по его грузоподъемности рассчитывается с округлением до ближайшего целого.

$$n_k = \frac{Q}{q_p}, IIIT \tag{3.45}$$

где Q - грузоподъемность автосамосвала по технической характеристике, (22 т).

4. Масса руды и вскрыши, загружаемой экскаватором в кузов автосамосвала.

Так как установленная масса руды т вскрыши различны, то соответственно и масса руды, загружаемая экскаватором в кузов автосамосвала будет отличаться.

$$Q_p = n_k * q_p, \text{ T}$$
 (3.46)

5. Коэффициент использования грузоподъемности автосамосвала SHACMAN находится по формуле:

$$K_{p} = \frac{Q_p}{O} \tag{3.47}$$

6. Объем горной массы в ковше выемочно-погрузочной машины равен:

$$V_{\delta} = \frac{Q_p}{\rho},$$

где ρ – плотность горной массы.

7. Объем горной массы, загружаемой экскаватором в кузов автосамосвала.

$$V_a = V_p * n_k, \, M^3 \tag{3.48}$$

8. Коэффициент использования емкости кузова автосамосвала.

$$k_e = \frac{V_a}{V_k},\tag{3.49}$$

где V_k - емкость кузова автосамосвала по технической характеристике, $28 \ \text{m}^3.$

Расчетные коэффициенты использования грузоподъемности и емкости кузова автосамосвала приведены в табл.3.12.

Таблица 3.12 Коэффициенты использования грузоподъемности и емкости кузова автосамосвала

№ ПП	Наименование	Условное обозначение и формула расчета	Ед.изм	Вскрыша	ПИ
1	Тип применяемого оборудования для погрузки			погрузчик	экскаватор
2	Заданная вместимость ковша	Е	\mathbf{M}^3	1,9	1,2
3	Марка а/с			SHAC	CMAN
4	Грузоподъемность автосамосвала	Q	Т	22	22
5	Объем кузова автосамосвала	Vk	M ³	11	11
6	Коэффициент наполнения ковша выемочно- погрузочной машины	kH		0,9	0,9
7	Коэффициент разрыхления породы в ковше	kp -		1,3	1,3
8	Плотность породы в целике	γ		1,85	1,85 (после рыхления)
9	Коэффициент уплотнения, учитывающий уплотнение разрыхленной руды при погрузки ее в автосамосвал	ky		0,8	0,8
10	Масса породы в ковше	qp	T	2,4	1,5

11	Число ковшей, необходимых для загрузки кузова автосамосвала	пк	ШТ	9	14
12	Масса породы, загружаемой экскаватором в кузов автосамосвала	Qp	Т	21,9	21,5
13	Коэффициент использования грузоподъемности автосамосвала	Кгр		1,00	0,98
14	Объем в ковше выемочно-погрузочной машины	Vp	м ³	1,32	0,83
15	Объем горной массы, загружаемой экскаватором в кузов автосамосвала	Va	M ³	11,84	11,63
16	Коэффициент использования емкости кузова автосамосвала	Кв		1,08	1,06

3.9.2.2 Время рейса и производительность автосамосвала

По окончательно принятым значениям скоростей и известным расстояниям рассчитываются время движения груженных и порожних машин по определенным участкам t_1, t_2, t_3 :

$$t = \frac{60 * I_{y}}{V}, \quad \text{MUH} \tag{3.50}$$

где l_y - длина участка, км.

Определяется время погрузки автосамосвала:

$$t_{nor} = \frac{n_k * t_u}{60}, \quad \text{MUH}$$
 (3.51)

где n_k - целое число ковшей, погружаемых в автосамосвал;

 $t_{\scriptscriptstyle \rm II}$ - время цикла экскаватора.

Находится полное время рейса

$$T_p = t_{\text{дв}} + t_{\text{пог}} + t_{\text{рз}} + t_{\text{доп}}$$
, мин (3.52)

где $t_{\text{дв}}$ - суммарное время движения в грузовом и порожнем направлениях, мин;

 $t_{\mbox{\scriptsize p}\mbox{\scriptsize 3}}$ - время погрузки автосамосвала, мин;

 $t_{\text{доп}}$ - дополнительное время на маневры, мин (2 мин).

Таблица 3.13 Средняя скорость передвижения транспорта

№ПП	Характеристика дорог	Ед.изм	Средняя скорость
1	Забойные дороги	Км/ч	14
2	Внутрикарьерные пути	Км/ч	16

3	Дороги на поверхности	Км/ч	38
4	Въезд на отвал	Км/ч	14
5	Отвальные пути	Км/ч	16

Результаты расчетов времени рейсов автосамосвалов приведены в таблице 3.14.

Таблица 3.14 Расчетов времени рейсов автосамосвалов

№ПП				
	Наименование	Ед.изм	ПИ	Вскрыша
1	Забойные дороги	КМ	0,1	0
2	Внутрикарьерные пути	KM	0,1	0,1
3	Дороги на поверхности	КМ	0,7	0,7
4	итого	КМ	0,9	0,8
5	врямя передвижения на Забойные			
	дороги	МИН	0,86	0,00
6	врямя передвижения на			
	внутрикарьерные пути	МИН	0,75	0,75
7	врямя передвижения на дороги на			
	поверхности	МИН	2,21	2,21
8	итого	МИН	3,82	2,96
9	время погрузки	МИН	4,5	7
10	время разгрузки	МИН	1	1
11	доп.время на маневры	МИН	3	3
12	итого время рейса	МИН	12,32	13,96

3.9.2.3 Расчет рабочего и инвентарного парка автосамосвалов

Устанавливается сменная эксплуатационная производительность автосамосвала:

$$Q_{cM} = \frac{60 * Q_p * T_{cM}}{T_p} * K_e, \quad M / cM$$
 (3.53)

где Q_p - фактическая объем перевозки, M^3 ;

 $T_{\text{см}}$ - длительность смены, ч;

К_в - коэффициент использования сменного времени.

Сводные технико-экономические показатели работы технологического транспорта по предприятию представлены в таблице 3.19.

Определяется рабочий парк автомашин для обеспечения заданного грузооборота:

$$N_p = \frac{f * Wk}{Q_{cM} * m}, \quad \text{IIIT}$$
(3.54)

где f - коэффициент неравномерности работы карьера 1,1; W_k - суточный грузооборот карьера, т; m - число смен в сутки.

$$N_{_{\text{IIH}}} = \frac{N_{_{p}}}{G_{_{T}}}, \quad \text{IIIT}$$
 (3.55)

где G_T - коэффициент готовности автопарка, величина которого зависит от организации ремонта машин и обеспеченности запасными частями.

Таблица 3.15 Расчет производительности парка автосамосвалов, задействованных на транспортировке горной массы на месторождении Приозерное

			годы отработки			
Наименование	Ед.изм	Всего	1	2	3	4
			2026	2027	2028	2029
	Полез	ное ископа	емое			
05	M^3	6093,0		2029,0	2031,0	2033,0
Объем перевозки	тыс.т	16146,45		5376,9	5382,2	5387,5
Годовое количество рейсов	ШТ	751,00		250,09	250,33	250,58
Годовой пробег	КМ	1351,80		450,15	450,60	451,04
Сменная экспл. производ. автосамосвала	м ³ /смен			461	461	461
Расчетный рабочий парк	ШТ	1		1	1	1
Расчетный инвентарный парк	ШТ	1		1	1	1
Расход масел и смазочных материалов	Т	0,01		0,005	0,005	0,005
Дизельное топливо	Т	0,47		0,16	0,16	0,16
		Вскрыша				
Наименование	Ед.изм	Ед.изм Всего	1	2	3	4
			2026	2027	2028	2029
Объем перевозки	\mathbf{M}^3	27559,32		8118,08	8118,0 8	11323,1 6
Годовое количество рейсов	ШТ	65616,7		685,77	685,77	956,52
Годовой пробег	КМ	3724,91		1097,24	1097,2	1530,44
Сменная экспл. производ. автосамосвала	м ³ /смен		400	400	400	400
Расчетный рабочий парк	ШТ	1		1	1	1
Расчетный инвентарный парк	ШТ	1		1	1	1
Расход масел и смазочных материалов	Т	0,04		0,01	0,01	0,02

Дизельное топливо	т	1,30	0.38	0.38	0.54

Настоящим планом горных работ для транспортировки горных пород (песков и эфеля) принимается инвентарный парк автосамосвалов в количестве – 1 піт.

3.10 Вспомогательные работы

Для механизированной очистки рабочих площадок уступов, предохранительных и транспортных берм предусматриваются бульдозеры Б-10М. Породу, получаемую при зачистке, складируют у нижней бровки бурта с целью ее погрузки при отработке следующей заходкой. Техническая характеристика бульдозера Б-10М.

Планировка трассы экскаватора и выравнивание подошвы уступов также осуществляется бульдозерами.

Проектом предусмотрено использование 1-го бульдозера.

Доставка запасных частей и материалов, текущий и профилактический ремонт выполняется непосредственно на уступе при помощи передвижной ремонтной мастерской.

Глава 4. Отвалообразование

4.1 Выбор способа и технологии отвалообразования

При разработке карьера месторождения Приозерное проектом предусмотрено использовать в качестве технологического автотранспорта автосамосвал марки SHACMAN с грузоподъемностью 22.0 тонн. Транспортировка полезного ископаемого осуществляться на склад готовой продукции. На планировочных работах применяется бульдозер Б-10М.

Вскрышные породы вывозятся во внешний отвал.

Общий объем транспортировки вскрышных пород за время ведения открытых горных работ составит:

-27559,3м 3 – вскрышной породы;

При данных объемах складирования породы в отвал, а также вследствие применения автомобильного транспорта целесообразно принять бульдозерную технологию отвалообразования.

4.2 Расчет бульдозерного отвалообразования при автомобильном транспорте

Общая площадь отвалов определяется в зависимости от объема вскрышных пород, который должен быть размещен в отвалах за срок существования карьера, а также в зависимости от высоты отвалов:

$$S_0 = \frac{W \times K_p}{n \times h}$$
, M^2 - для одноярусного отвала 4.1

где W - объем пород, подлежащих размещению в отвале за срок его существования;

К_р – коэффициент разрыхления пород в отвале, 1,25;

h – высота отвала;

n - коэффициент заполнения площади отвала, 0,8.

Параметры отвалов приведены в таблице 4.1.

Таблица 4.1 - Параметры отвала

№ПП	Наименование	Значение
1	Объем отвала, м ³	27559,3
2	Коэффициент разрыхления	1,25
3	Потребная емкость, м ³	34449,1
4	Количество ярусов	1
5	Высота ярусов, м	10
6	Площадь основания отвала, га	0,431
7	Угол наклона яруса, град	34
8	Высота отвала, м	10

4.2.1 Расчет потребности бульдозера

Расчет требуемого количества бульдозеров по годам при отвалообразовании приведен в таблице 4.2.

№ПП	Параметры	Ед. изм.	Показатели
1	2	3	4
1	Объем планировочных работ	м³/год	8118,1
2	Средняя годовая эксплуатационная производительность одного бульдозера	м³/год	98650
3	Рабочий парк	ШТ	1
4	Общая продолжительность работы бульдозера	ч/год	178,75
5	Расход масел и смазочных материалов	Т	0,27
6	Лизельное топливо	Т	8.94

Таблица 4.2 - Расчет требуемого количества бульдозеров

4.3 Технология и организация работ при автомобильно-бульдозерном отвалообразовании

Формирование отвалов при бульдозерном отвалобразовании (рис. 4.2) осуществляют двумя способами - периферийным и площадным.

При периферийном отвалообразовании автосамосвалы разгружаются по периферии отвального фронта в непосредственной близости от верхней бровки отвального откоса или под откос. Часть породы в этом случае сталкивается бульдозером под откос.

При площадном отвалообразовании разгрузка породы из самосвалов производится по всей площади отвала или на значительной части его, а затем бульдозером планируют отсыпной слой породы, укатываемый катками, после чего цикл повторяется.

Более экономичным способом формирования является периферийный, при котором меньше объем планировочных работ. В связи с вышеизложенным в проекте принят периферийный способ отвалообразования.

Технологический процесс периферийного бульдозерного отвалообразования при автомобильном транспорте состоит из трех операций: разгрузки автосамосвалов SHACMAN, планировки отвальной бровки и устройстве автодорог.

Отвальные дороги профилируются бульдозером.

В настоящем проекте схема развития отвальных дорог принята кольцевая.

Автосамосвалы должны разгружать породу, не доезжая задним ходом 3-4 м до бровки отвального уступа. Необходимо обязательно обустроить ограничитель для автосамосвалов при движении задним ходом к бровке

отвала. В качестве ограничителя используют валик породы, оставляемый на бровке отвала. Размер его по высоте 1.3 м и по ширине 3-5 м (рис. 4.1).

Разгрузка машин может быть произведена на любом участке отвальной бровки. Для этого лишь требуется, чтобы место разворота машин было расчищено бульдозером от крупных кусков породы.

Общая длина фронта отвального тупика, включая длину фронта разгрузочной, планируемой и резервной площадок должна быть не менее 180 м.

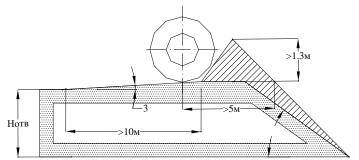


Рис. 4.1 – Схема разгрузочной площадки отвала

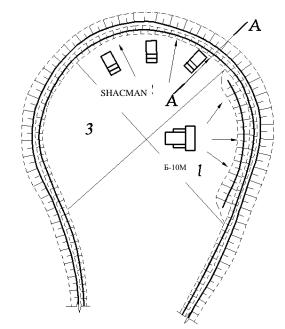


Рис. 4.2 – Схема бульдозерного отвалообразования

Рис. 4.3 Основные технологические параметры процесса отвалообразования.

Возведение отвала, сдвигание под откос выгруженной породы и планировка отвальной бровки осуществляется с помощью бульдозера Б-10 М (рис. 4.4).

Для планировки отвальной бровки бульдозер должен быть снабжен поворотным лемехом, установленным под углом 45° или 67° к продольной оси бульдозера. При планировании породы на высоких отвалах лемех обычно устанавливается перпендикулярно оси трактора, так как, в этом случае, нет надобности делать набор высоты отвала.

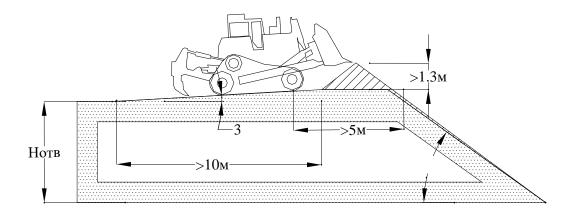


Рис. 4.4 – Формирование разгрузочной площадки отвала бульдозером

4.5 Складирование готовой продукции

4.5.1 Выбор способа и технологии складирования готовой продукции

При отработке карьера месторождения Приозерное проектом предусмотрена транспортировка полезного ископаемого автосамосвалами SHACMAN грузоподъемностью 22.0 тонн до склада готовой продукции, который расположен северо-западнее от карьера.

Максимально годовой объем добычи руды составляет порядка 1845 м³.

При этих объемах складирования балансовой руды на складе, при применении автомобильного транспорта целесообразно принять схему перегрузки с использованием фронтального погрузчика Wacker Neuson WL 70, который будет формировать склад балансового ПИ, а также для перегрузки руды.

4.5.2 Технология и организация работ при складировании готовой продукции

Проектом в рассматриваемых условиях принимается насыпной тип склада высотой 3 м.

Возведение въезда на склад и планировка бровки склада осуществляется с помощью бульдозера.

Складские дороги профилируются бульдозером без дополнительного покрытия ввиду того, что объемы складируемого полезного ископаемого невелики.

Технологический процесс складирования при автомобильном транспорте состоит из операций: разгрузки автосамосвалов SHACMAN, планировки разгрузочной бровки и погрузки руды погрузчиком Wacker Neuson WL 70.

Схема развития дорог на складе принята тупиковая, радиус закругления для SHACMAN принят 18 м.

Автосамосвалы должны разгружать полезное ископаемое, доезжая задним ходом до ограничителя на бровке уступа. В качестве ограничителя используют вал породы, оставляемый на бровке отвала.

Разгрузка машин может быть произведена на любом участке бровки. Для этого лишь требуется, чтобы место разворота машин было расчищено от крупных кусков породы.

4.5.3 Расчет склада готовой продукции при автомобильном транспорте

Полезное ископаемое автосамосвалами SHACMAN вывозятся на накопительный склад готовой продукции, который расположен северозападнее от карьера.

Общий объем склада определяется в зависимости от количества полезного ископаемого, которое должно быть размещено на складе на срок, обеспечивающий месячный запас руды на случай внезапной остановки карьера.

Запас ПИ на складе должен составлять 130 или 50 м 3 .

Склад проектируется высотой 3 м.

Площадь складов определяется в зависимости от объема и высоты склада:

$$S_0 = \frac{W * K_p}{h}, M^2$$

где W - объем руды, подлежащих размещению на складе, м³;

К_р – коэффициент разрыхления ПИ на складе, 1,6;

h – высота склада, 3 м;

$$S_0 = \frac{50 \times 1.6}{3} = 27 \text{ M. KB}$$

4.6 Календарный план отвалообразования.

Развитие отвала будет происходить с первоначально сооруженных пионерных насыпей на высоту отвала.

При данной схеме автосамосвалы, перевозящие вскрышные породы ведут разгрузку вблизи кромки отвала. После выгрузки породы самосвалами, бульдозер сталкивает образовавшуюся кучу под откос, при этом, формируя и планируя отвал.

Исходя из сменной производительности бульдозера и количества автосамосвалов, разгружающихся в смену на отвале, принимаем для работы на отвале 1 бульдозер.

Таблица 4.4 - Календарный план отвалообразования.

Наименование	ед.изм	Год отработки					
		2026	2027	2028	2029		
Отвал пустой породы							
Высота	M	10	10	10	10		
Объем	\mathbf{M}^3		8118,08	16236,2	27559,3		
площадь	га		0,127	0,254	0,431		

ГЛАВА 5. Горномеханическая часть

5.1 Основное и вспомогательное горное оборудование. Штаты

Основными критериями для выбора оборудования являются:

- -горно-геологические и горнотехнические условия разработки месторождения;
 - -энергообеспеченность предприятия;
 - -наличие горнотранспортного оборудования у заказчика;
 - -минимум затрат на приобретение и эксплуатацию оборудования.

Основное оборудование технологическое откнисп ПО всем вариантам, исходя из оценки местных рассматриваемым условий и возможностей по перечисленным критериям, а также на основании «Норм технологического проектирования горнодобывающих предприятий открытым способом разработки».

Перечень основного и вспомогательного оборудования определенного, исходя из объема горных работ, приведен в таблице 5.1

Таблица 5.1 - Перечень основного и вспомогательного горного оборудования

N_0N_0	Поличено оборужения	Тип,	Потребное		
Π/Π	Наименование оборудования	модель	колич. (шт.)		
Основное горнотранспортное оборудование					
1	Экскаватор	Komatsu PC270-7	1		
2	Бульдозер	Б-10М	1		
3	Автосамосвал	SHACMAN	1		
4	Погрузчик	Wacker Neuson WL 70	1		
Автомашины и механизмы вспомогательных служб					
5	Поливомоечная на шасси КамАЗ-43253	КО-806	1		
6	Автобус, число мест 41 (25 посадочных)	ПАЗ 3206	1		

Таблица 6.2 - Явочный состав трудящихся

<u>№№</u> п/п	Наименование оборудования	Кол-во	
1	Машинист экскаватора	1	
3	Машинист бульдозера	1	
4	Машинист автосамосвала	1	
5	Водитель поливочной машины (сезонный работник)	1	
6	Слесарь по ремонту горного оборудования	1	
	Руководители и специалисты		
1	Начальник карьера	1	
2	Механик	1	
3	Горный мастер	1	
4	Участковый маркшейдер	1	
5	Охрана	2	
	Всего	11	

ГЛАВА 6 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ.

6.1 Предотвращение техногенного опустынивания земель.

Во избежание опустынивания земель, ветровой и водной эрозии почвенно плодородного слоя.

Технологические схемы производства горных работ должны предусматривать:

проведение рекультивационных работ. Для этого настоящим проектом предусматривается закупка ПРС для биологического восстановления, нарушенного горными работами площади карьера.

Рекультивация нарушенных земель должна осуществляться в два последовательных этапа: технического и биологического.

Рекультивируемые площади и прилегающие к ним территории после завершения всего комплекса работ должны представлять собой оптимально организационный и устойчивый ландшафт.

6.2 Мероприятия по предотвращению проявлений опасных техногенных процессов рациональному использованию и охране недр.

С целью снижения потерь и сохранения качественных и количественных характеристик полезного ископаемого, т.е. рационального использования недр и охраны окружающей среды необходимо руководствоваться Кодексом Республики Казахстан от 27 декабря 2017 года № 291-IV«О недрах и недропользовании», статья 5: «Рациональное управление государственным фондом недр», Инструкцией по составлению горных работ от 4 июня 2018 года № 16978.

Требованиями в области рационального и комплексного использования недр и охраны недр являются:

- обеспечение полноты опережающего геологического изучения недр для достоверной оценки величины и структуры запасов полезных ископаемых, месторождений и участков недр, предоставляемых для проведения операций по недропользованию, в том числе для целей, не связанных с добычей;
- обеспечение рационального и комплексного использования ресурсов недр на всех этапах проведения операций по недропользованию;
- обеспечение полноты извлечения из недр полезных ископаемых, не допуская выборочную отработку богатых участков;
- достоверный учет извлекаемых и погашенных в недрах запасов основных и совместно с ними залегающих полезных ископаемых и попутных компонентов, в том числе продуктов переработки минерального сырья и отходов производства при разработке месторождений;
- исключение корректировки запасов полезных ископаемых, числящихся на государственном балансе, по данным первичной переработки;

- предотвращение накопления промышленных и бытовых отходов на площадях водосбора и в местах залегания подземных вод, используемых для питьевого или промышленного водоснабжения;
- охрана недр от обводнения, пожаров и других стихийных факторов, осложняющих эксплуатацию и разработку месторождений;
- соблюдение установленного порядка приостановления, прекращения операций по недропользованию, консервации и ликвидации объектов разработки месторождений;
- обеспечение экологических и санитарно-эпидемиологических требований при складировании и размещении отходов;

И другие требования согласно Законодательству о недропользовании и охране окружающей среды.

При проведении добычных работ в приоритетном порядке будут соблюдаться требования в области охраны недр:

-обеспечение полноты опережающего геологического, гидрогеологического, экологического, санитарно-эпидемиологического, технологического и инженерно-геологического изучения недр для достоверной оценки величины и структуры запасов полезного ископаемого;

-обеспечение рационального и комплексного использования ресурсов недр на всех этапах горных работ;

-обеспечение полноты извлечения полезного ископаемого;

-использование Недр в соответствии с требованиями Законодательства Государства по охране окружающей среды, предохраняющими недра от проявлений опасных техногенных процессов при горных работах, а также строительстве и эксплуатации сооружений, не связанных с добычей;

-охрана недр от обводнения, пожаров, взрывов, а также других стихийных факторов, снижающих их качество или осложняющих эксплуатацию и разработку месторождения;

-предотвращение загрязнения недр при проведении горных работ.

Для выполнения данных требований проектом предусматривается следующие мероприятия:

- -выбор наиболее рациональных методов разработки месторождения;
- -строгий маркшейдерский контроль за проведением горных работ;
- -проведение горных работ с учетом наиболее полного извлечения полезного ископаемого из недр и уменьшения потерь при;
 - -ликвидация и рекультивация горных выработок.

Мероприятия по снижению воздействия отходов производства на окружающую среду во многом дублируют мероприятия по охране почв, поверхностных и подземных вод и включают в себя решения по организации работ, обеспечивающих минимальное воздействие на окружающую среду.

Проектом предусматривается проведение комплекса мероприятий при временном складировании и хранении производственных и бытовых отходов с целью уменьшения и сокращения вредного влияния на окружающую среду. Основными мероприятиями являются:

-тщательная регламентация проведения работ, связанных с загрязнением и нарушением рельефа

- -организация систем сбора, транспортировки и утилизации отходов
- -ведение постоянных мониторинговых наблюдений

Отходы, хранящиеся в производственных помещениях, должны быть защищены от влияния атмосферных осадков и не воздействовать на почву, атмосферу, подземные и поверхностные воды. Их воздействие на окружающую среду может проявиться только при несоблюдении правил их сбора и хранения.

При необходимости, в процессе эксплуатации предприятия, с целью предупреждения или смягчения возможных экологических последствий образования и размещения отходов, будут предусмотрены и осуществлены дополнительные, соответствующие современному уровню и стадии производства инженерные и природоохранные мероприятия.

Негативное воздействие проектируемого объекта на растительный покров прилегающих угодий весьма незначительное, и будет ограничиваться выделением пыли во время автотранспортных работ. Растительный покров близлежащих угодий не будет поврежден.

Район проведения горных работ не затрагивает памятников природы, истории, архитектуры, культуры, курганов, заповедников, заказников.

Влияния не изменят коренным образом структуру и направление развития экосистемы и ее способность к самовосстановлению после прекращения или уменьшения степени техногенного воздействия.

Район проведения горных работ не затрагивает памятников природы, истории, архитектуры, культуры, курганов, заповедников, заказников.

Фактор беспокойства или антропогенное вытеснение (присутствие людей, техники, шут, свет в ночное время) окажут наиболее существенное воздействие во время работы в теплый период года. В это время возможно исчезновение из мест постоянного обитания представителей наземных позвоночных. В дальнейшем прогнозируется увеличения их численности.

Эти влияния не изменят коренным образом структуру и направление развития экосистемы и ее способность к самовосстановлению после прекращения или уменьшения степени техногенного воздействия.

6.3 Санитарно-эпидемиологические требования

6.3.1 Борьба с пылью и вредными газами

Состав атмосферы карьера по добыче ПИ должен отвечать установленным нормативам по содержанию основных составных частей воздуха и вредных примесей с учетом требований санитарных правил и норм по гигиене труда в промышленности, часть 1, «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» № 1.02.011-94».

В местах производства работ воздух должен содержать по объему 20% кислорода и не более 0,5% углекислого газа.

Не реже одного раза в квартал должен производиться отбор проб для анализа воздуха на содержание вредных газов в нем.

Пылеобразование на дорогах происходит в результате высыпания из самосвалов породной мелочи, поднятия пыли колесами машин и заноса пыли ветром с прилегающих территорий.

Для снижения запыленности карьерных автодорог необходимо их орошение водой. Пылеподавление при погрузочно-разгрузочных работах также основано на увлажнении горной массы до оптимальной величины. С целью снижения пылеобразования при погрузочно-разгрузочных работах (в т.ч. и для дорог) будет производиться гидроорошение, осуществляемое поливомоечной машиной КО-806.

Величины параметров орошения будут зависеть от механизма улавливания пыли и ее эффективности. Для дорог и увлажнения массива горных пород преимущественно будет использоваться технологический режим - обычное орошение (механическое распыление жидкости под давлением 1,2-2,0 МПа) при необходимости для улавливания витающей пыли возможно применение водовоздушного орошения диспергированной водой (2-2,5МПа).

Эффективность борьбы с загрязнением атмосферы карьера предусматривается достичь внедрением в технологические процессы комплекса инженерно-технических и организационных мероприятий, таких как:

- орошение водой карьерных и отвальных автодорог и разгрузочных площадок на отвалах;
- естественное проветривание после взрыва с орошением взорванной горной массы;
- кондиционирование воздуха в кабинах горнотранспортного оборудования.

Внедрение на рабочих местах вышеперечисленных мероприятий обеспечивает санитарные нормы запыленности и загазованности атмосферы карьера.

6.3.2 Помещения санитарно-бытового обслуживания работающих.

Согласно «Требованиям промышленной безопасности при разработке месторождений полезных ископаемых открытым способом» и СП№ 174 от 28.02.2015г а так же «Правил обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы» от 30.12.2014г. №352. проектом предусмотрены санитарно-бытовые помещения упрощенного типа - передвижные отапливаемые инвентарные вагоны для отдыха пункты обогрева и укрытия от непогоды с температурой воздуха 22–24 градусов Цельсия. Проектом предусмотрены три вагончика - для бытовых нужд, за границей опасной зоны при взрывных работах.

В вагончике будет храниться медицинская аптечка, средства для индивидуальной защиты от вредных воздействий (респираторы, при необходимости средства от поражения людей электрическим током и пр.)

Также предусмотрено помещение для рабочей и верхней одежды, для выдачи работникам чистой одежды предусматривается раздаточная специальной одежды. Прием (сбор) и временное хранение загрязненной спецодежды необходимо осуществлять в изолированном помещении, расположенном рядом с гардеробной спецодежды.

Помещение для приема пищи, отдыха и проведения профилактических процедур от воздействия на работающих шума, вибрации, ультра- и инфразвука, для хранения питьевой воды (в целях соблюдения питьевого режима работающих обеспечивают питьевой водой из расчета не менее 1,0 – 2,0 литров на человека в смену). Питьевая вода хранится в емкости для воды (30л) не реже одного раза в неделю промываются горячей водой или дезинфицируются. Помещение оборудовано бытовым холодильником. Для мытья рук и умывания предусмотрены умывальники размещенная в смежном помещении с гардеробным, так же раковина для мытья посуды. Вентиляция в вагончике естественная.

Так же выделено специальное место на открытых площадке (так как режим работы сезонный, в период положительных температур, удаленное от ближайших рабочих мест на расстоянии не менее 5 м. Площадь, выделенного помещения для курения предусматриваться из расчета не менее 4 м 2 на одного курящего, в часы их наибольшего скопления.

На промплощадке карьера предусматривается установка контейнера для сбора мусора, противопожарный щит, площадки для стоянки и заправки техники, которые будут подсыпана 15 см слоем щебенки.

6.3.3 Водоснабжение

Источником водоснабжения карьера является привозная вода, соответствующая требованиям ГОСТа 2874—82 «Вода питьевая», расходуемая на хозяйственно-бытовые нужды.

Водоснабжение проектируется осуществлять путем завоза воды из близлежащих населенных пунктов. По мере отработки карьера возможен отбор и использование ливневых осадков и талых вод для удовлетворения потребности предприятия в технической воде.

Вода хранится в емкости объемом 900л. Емкость снабжена краном фонтанного типа. Изнутри бочка должна быть покрыта специальным лаком или краской, предназначенной для покрытия баков (цистерн) питьевой воды (полиизобутиленовый лак, лак XC-74), железный сурик на олифе, эпоксидные покрытия на основе смол ЭД-5 и ЭД-6 и т.д.

Расход воды так же потребуется на:

- на нужды пылеподавления пылящих поверхностей;
- на нужды наружного пожаротушения 10 л/с в течении 3 часов (п.5.27

СниП РК 4.01-02-2009).

Наружное пожаротушение осуществляется из противопожарного резервуара переносными мотопомпами.

Заполнение противопожарных резервуаров производится привозной водой. Противопожарные резервуары устанавливаются на промплощадке перед началом отработки участка, после отработки участка их перемещают на следующий участок.

Расход воды приведен в таблицах 6.1.

Таблица 6.1 - Расчет водопотребления

Наименование	Ед. изм.	Кол-во чел.дней	норма л/сутки на 1 чел	м ³ /сутки, на 1 чел	Кол-во дней (факт)	м ³ / год	
Питьевые и хозяйственно-бытовые нужды							
1. Хозяйственно-питьвые нужды	литр	11	25	0,025	181	49,8	
Технические нужды							
Наименование		Площадь, м.кв	норма л/кв.м	m ³ /KBM	Кол-во дней (факт)	м ³ / год	
2.На орошение пылящих поверхностей при ведении горных и ДСУ		10800	1,5	0,0015	181	2932	
3.На нужды пожаротушения	M ³					50	
Итого:						3032	

6.3.4 Оказание первой медицинской помощи

При несчастном случае пострадавшему необходимо оказать первую медицинскую помощь, вызвать врача или направить пострадавшего в ближайшее медицинское учреждение.

Для оказания первой медицинской помощи на всех сложных машинах должны быть аптечки.

Для своевременного оказания первой медицинской помощи каждый рабочий должен изучить следующие правила.

Первая медицинская помощь включает в себя:

- 1) временную остановку кровотечения;
- 2) перевязку раны, места ожога;
- 3) оживляющие мероприятия, в особенности искусственное дыхание;
- 4) переноску и перевозку пострадавшего.

При ранении во избежание загрязнения раны нельзя прикладывать к ней загрязненные бинты или ветошь и обмывать ее водой.

При сильном кровотечении следует наложить давящую повязку (жгут), закрыть рану чистой марлей, бинтом и ватой, плотно перебинтовать.

Для уменьшения боли при незначительных ушибах надо прикладывать холодные примочки. Когда при ушибе есть ссадина, то сначала поврежденное место смазывают настойкой йода, а затем перевязывают так же, как рану. При сильных ушибах могут быть головокружения, тошнота, головная боль, рвота, боль в животе и т. д.

В этом случае необходима срочная медицинская помощь.

При переломах кости нужно наложить шины и немедленно доставить пострадавшего в медпункт. Шины сначала обертывают ватой, марлей, чистой тряпкой или травой, накладывают их с обеих сторон на ногу или руку, так чтобы они захватывали суставы кости выше и ниже перелома, а затем перевязывают.

Если шин не окажется, поврежденную ногу привязывают к здоровой, а поврежденную руку берут на косынку. Открытые раны перевязывают до наложения шин.

При растяжении или разрыве связок кладут холодную примочку и поверх нее давящую повязку (мокрый бинт или полотенце) и доставляют пострадавшего в лечебный пункт.

При поражении электрическим током первая помощь должна быть организована немедленно. Если пострадавший находится под действием тока, сразу же освобождают его от соприкосновения с проводником тока. Оказывающий помощь должен надеть резиновые перчатки или набросить на руку сухую шерстяную или прорезиненную одежду. Для изоляции от земли следует надеть галоши или положить под ноги сухую доску, одежду или другой материал, не проводящий электрического тока и оторвать пострадавшего от источника тока.

Пострадавшего немедленно укладывают на что-нибудь сухое и теплое и согревают - тепло укрывают, дают горячий чай.

Если пострадавший не подает признаков жизни, с него снимают стесняющую одежду, обеспечивают доступ чистого воздуха и делают искусственное дыхание.

Во всех случаях немедленно вызывают врача.

Такая же помощь оказывается при поражении молнией.

При первых признаках теплового или солнечного удара, пострадавшего перевозят в тень, укладывают и поят водой, расстегивают ворот, смачивают голову и грудь холодной водой, осторожно дают понюхать нашатырный спирт. При остановке дыхания производят искусственное дыхание.

При попадании в глаз инородного тела - соринки, песчинки - нельзя тереть глаз. Засоренный глаз промывают чистой водой. Промывание производят от нарушенного угла глаза к носу. Если инородное тело извлечь из глаза не удается, следует обратиться к врачу.

6.4 Защита грунтовых вод

Исходя из гидрогеологических условий участка Приозерное, разработки ПИ не требует использование реагентов или других химикатов, что не повлияет на грунтовые воды.

Учитывая вышеизложенное, мероприятия по защите грунтовых вод не запланирована.

ГЛАВА 7. РЕКУЛЬТИВАЦИЯ ЗЕМЕЛЬ, НАРУШЕННЫХ ГОРНЫМИ РАБОТАМИ

7.1 Рекультивация нарушенных земель

Добыча полезных ископаемых и ряд других видов хозяйственной деятельности организаций и предприятий сопровождаются изъятием земель, преимущественно из сельскохозяйственного пользования, их нарушением, загрязнением и снижением продуктивности прилегающих территорий.

Для уменьшения негативных последствий этих процессов должен осуществляться комплекс мер по охране окружающей среды, оздоровлению местности и рациональному использованию земельных ресурсов, среди которых одной из наиболее важных является рекультивация нарушенных земель.

Рекультивация земель преследует цель рационального использования природных ресурсов (земли и недр), сохранения земельных богатств, валового сельскохозяйственного потенциала, обеспечения нормальных санитарногигиенических условий жизни населения в горнодобывающих районах.

Под термином «рекультивация земель» понимается комплекс работ, направленных на восстановление продуктивности и народнохозяйственной ценности нарушенных земель, а также на улучшение условий окружающей среды.

В процессе рекультивации нарушенных земель выполняется определенный объем работ, связанных с восстановлением земной поверхности - рельефа местности, почвенного и растительного покрова.

7.1.1 Краткая характеристика земель на площади работ

Месторождение Приозерное расположено в предгорной равнине, примыкающей с северо-востока к хребту Малый Каратау, административно относится к Таласскому району Жамбылской области Республики Казахстан. Районный центр город Каратау.

На месторождении пахотных земель, лесных угодий нет. Площадь месторождения представляют собой всхолмленную местность с убогой пустынной растительностью и высыпками щебня на поверхности. Поверхностных водотоков и водоемов на площади месторождений нет. Месторождение связано грунтовой дорогой с городом и железнодорожной станцией Каратау, расположенным в 23 км к югу. В 22 км юго-восточнее проходит асфальтированная автодорога сообщением Акколь – Каратау.

Рельеф района равнинный, местами холмисто-грядовый. Превышения гряд над низменными, засоленными участками 10–40 м, непосредственно в пределах месторождения до 5 м.

Основными типом для данной зоны является светло-каштановые почвы. Ареалом распространения светло-каштановых почв считаются полупустынные и пустынно-степные области. В их профиле выделяются

следующие горизонты: гумусовый (толщиной до 10 см); переходный (толщиной от 10 до 15 см); карбонатный (толщиной от 45 до 85 см); материнский породный. В верхних слоях светло-каштановых грунтов содержится до 2,5 % гумуса. Почвы в верхних горизонтах слабощелочные. Щелочные в нижних. Возделывать культуры на такой земле можно при условии регулярного проведения специальных оросительных мероприятий. Растительный покров района месторождения представлен полынно-эфемеровой ассоциацией, характеризующейся преобладанием серой полыни (джусан, боз-джусан).

По климатическим условиям район относится к полупустынным зонам с холодной ветреной зимой и жарким сухим летом. Климат резко континентальный. Характеризуется резкими перепадами температуры в течение суток и года в целом. Среднегодовая температура воздуха - 7-10°С. Среднемесячная температура воздуха самого холодного месяца января — 11-14°С. Абсолютный минимум в зимний период составляет 40 - 45°С мороза. Зимой периоды с низкими температурами сравнительно невелики. Теплый период отличается высокими температурами и значительной сухостью воздуха. Средняя температура самого жаркого месяца - июля - 25 - 27°С. В этом же месяце отмечается абсолютный максимум - очень сильная жара 40 - 45°С.

В целом, осадков в районе выпадает мало (менее 250 мм в год). По сезонам года осадки распределяются крайне неравномерно - большая часть их приходится на зимне-весенний период.

7.1.2 Мероприятия по рациональному использованию ПРС

Проектом предусматривается восстановление поверхности, нарушенной горными работами, в состояние пригодное для их дальнейшего использования в максимально короткие сроки.

Неотъемлемой частью рекультивационных работ является снятие и хранение почвенно-растительного слоя (ПРС) со всей территории объектов недропользования, для дальнейшего его использования при благоустройстве и озеленении автодорог, рекультивации отвала и для покрытия неплодородных площадей.

Учитывая что на участке карьера почвенно-растительный слой нарушен во время геологоразведочных работ, поэтому для рекультивации планируется закупка ПРС. Мощность нанесения ПРС в районе работ составляет 0,2 м.

Работы по нанесению почвенно-растительного слоя лучше производить весной, когда в почве достаточно влаги, что предотвращает ветровую эрозию.

В целях снижения потерь предусмотрены следующие мероприятия:

Систематически осуществлять геолого-маркшейдерский контроль, за правильностью и полнотой нанесения ПРС.

Не допускать перегрузи при транспортировке.

Размещение отвалов и других объектов предприятия, прокладку подъездных путей необходимо производить на землях

несельскохозяйственного назначения по оптимальному кротчайшему расстоянию с максимальным использованием существующих полевых дорог.

За время добычи будет удалено значительное количество вскрышной породы. Это существенно нарушит почвы в непосредственной близости от карьеров.

7.2 Технический этап рекультивации

Мероприятия по ликвидации месторождения более подробно описаны в Плане ликвилации.

7.2.1 Консервация карьера

Для предотвращения проникновения животных и посторонних людей на территорию карьеров будет выполнено их ограждение. Ограждение будет выполнено экскаваторами путем перемещения грунта на высоту 2,5 м. Обваловка будет располагаться по всему периметру карьеров на расстоянии не менее 5 м за призмой возможного обрушения. На ограждениях по периметру устанавливаются таблички с указанием названия объекта и даты консервации.

После выполнения обваловки карьеры подвергнутся естественному затоплению.

7.2.2 Ликвидация отвалов вскрышных пород

Планом ликвидации предусматривается выполаживание откосов отвалов до 20°. Необходимость выполаживания откосов отвалов подтверждена практикой, которая показала, что выполаживание предотвращает разрушение отвалов и в будущем устраняет локальную деформацию откосов и уменьшает процессы ветровой и водной эрозии, облегчает работы по биологической рекультивации. Отвалам придаются обтекаемые аэродинамические платообразные формы. Платообразные вершины отвалов выравниваются. Переформированная поверхность отвалов покрывается плодородным слоем почвы.

7.3 Восстановление плодородного слоя почвы

Основная цель биологической рекультивации, в основе которой лежит использование преобразовательных функций растительности, сводится к созданию растительного покрова, играющего значительную роль в оздоровлении окружающей среды.

Биологическая рекультивация земель включает в себя комплекс агрофизических, целью мероприятий, которых является улучшение агрохимических, биохимических свойств почв. И других To биологическая рекультивация земель является завершающей стадией комплекса рекультивационных работ.

Биологический этап начинается после окончания технического этапа и проводится с целью создания на подготовленной в ходе проведения технического этапа поверхности растительного слоя.

Выполнение биологического этапа рекультивации позволяет снизить выбросы пыли в атмосферу и улучшить микроклимат района.

Закрепление пылящих поверхностей является одной из важных составных частей природоохранных мероприятий.

ГЛАВА 8. ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ, ОХРАНА ТРУДА ИПРОМЫШЛЕННАЯ САНИТАРИЯ

Промышленная безопасность направлена на соблюдение требований промышленной безопасности, установленных в технических регламентах, правилах обеспечения промышленной безопасности, инструкциях и иных нормативных правовых актах Республики Казахстан.

Все решения приняты на основании следующих нормативных актов и нормативно-технических документов:

Правила обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы, утвержденные Приказом Министра по инвестициям и развитию РК от 30 декабря 2014 года №352.

Правила обеспечения промышленной безопасности для опасных производственных объектов, утвержденные Приказом Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года №343.

Правила пожарной безопасности, утвержденные Приказом Министра по ЧС РК, от 21 февраля 2022 года №55.

Методические рекомендации по технологическому проектированию горнодобывающих предприятий открытым способом разработки, согласованы Приказом Комитета по Госконтролю за ЧС и ПБ РК от 19.09.2013 г. №42.

Закон РК «О гражданской защите» от 11 апреля 2014 года №188-V. Трудовой Кодекс Республики Казахстан от 23 ноября 2015 г. №414-V.

Правила техники безопасности при эксплуатации

электроустановок потребителей, приказ Министра энергетики РК от 19.03.15. №222.

Правила устройства электроустановок, приказ Министра энергетики РК от

20.03.15 года №230.

СП РК 3.03-122-2013 «Промышленный транспорт».

8.1 Промышленная безопасность

Промышленная безопасность при ведении горных работ на месторождении обеспечивается путем:

- выполнения обязательных требований промышленной безопасности;
- допуска к применению на опасных производственных объектах технологий, технических устройств, материалов, прошедших процедуру подтверждения соответствия нормам промышленной безопасности;
- декларирования промышленной безопасности опасного производственного объекта;
- производственного контроля в области промышленной безопасности;
- аттестации юридических лиц на право проведения работ в области

промышленной безопасности;

- мониторинга промышленной безопасности;
- обслуживания опасных производственных объектов профессиональными аварийно-спасательными службами или формированиями. Контроль за выполнением всех мероприятий, связанных с промышленной безопасностью, охраной труда и промсанитарией на месторождении, возлагается на инженера по технике безопасности предприятия.

8.1.1 Система производственного контроля за соблюдением требований промышленной безопасности

Система производственного контроля за соблюдением требований промышленной безопасности на месторождении организовывается в соответствии требованиями Закона Республики Казахстан от 11 апреля 2014 г. «О гражданской защите» №188-V.

Производственный контроль в области промышленной безопасности осуществляется на основе нормативного акта о производственном контроле в области промышленной безопасности, утверждаемого приказом руководителя организации.

Нормативный акт должен содержать права и обязанности должностных лиц организации, осуществляющих производственный контроль в области промышленной безопасности.

Для обеспечения контроля за соблюдением требований безопасности и охраны труда на объектах «MQ EMIRATES GROUP Ltd» создан отдел охраны труда и безопасности, охраны окружающей среды и промсанитарии.

Специалисты по безопасности и охране труда должны обеспечивать:

- контроль за соблюдением требований Правил безопасности, законодательства РК о труде (Трудовой Кодекс) и о безопасности и охране труда, стандартов, правил и норм безопасности труда;
- организацию обучения ИТР и других работников правилам безопасности и охраны труда, промышленной безопасности и пожарной безопасности;
- контроль за соблюдением установленных сроков испытания оборудования (промышленную экспертизу), электроустановок и средств индивидуальной и коллективной защиты;
- другие вопросы, связанные с функциями специалиста по безопасности и охране труда, определенные нормативными документами РК.

8.1.2 Оснащение системой позиционирования и автоматизированной системой диспетчеризации, мониторинга техники

Согласно «Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные

работы», утвержденным Приказом Министра по инвестициям и развитию Республики Казахстан 30 декабря 2014 года №352, пункт 1711-1, объекты открытых горных работ по разработке твердых полезных ископаемых оснащаются системой позиционирования и автоматизированной системой диспетчеризации, мониторинга и учета фронта работ экскаваторов, управления буровыми станками с использованием спутниковой навигации, радиоэлектронными средствами и высокочастотными устройствами. Для эффективного использования техники на участке работ предусмотрено использование автоматизированных систем и систем навигации, а именно:

- бортовой системы контроля техники, которая позволит информировать диспетчера и оператора о техническом состоянии машины, предупреждать о возможных технических неисправностях, предупреждать о необходимости проведения технического осмотра, проводить дистанционный мониторинг технического состояния оборудования;
- автоматизированного учета работы техники, для улучшения организации выемочно-погрузочных работ, повышения использования оборудования, совершенствования режимов управления техникой;
- высокоточного управления техникой для возможности операторам устанавливать стрелу, буровой снаряд, ковш или лемех точно в требуемое положение, бурения скважин на заданную глубину с точностью до мм, добывать материал точно в нужном объеме, снижать зависимость от затратных по времени маркшейдерских съемок, выполнять земляные работы и оконтуривание на базе обоснованных расчетов.

8.1.3 Мероприятия по предупреждению и ликвидации аварий, несчастных случаев и профилактике профессиональных заболеваний

Согласно Приказа Министра по инвестициям и развитию Республики Казахстан от 18 мая 2018 года №351 «Об утверждении Инструкции по составлению плана горных работ» все горнорудные предприятия должны придерживаться мероприятий по предупреждению и ликвидации аварий, несчастных случаев и профилактике профессиональных заболеваний, включающих в себя:

8.2 Планирование и проведение мероприятий по предупреждению и ликвидации аварий.

Для предупреждения чрезвычайных ситуаций осуществляется система контроля и надзора в области чрезвычайных ситуаций, которая заключается в проверке выполнения планов и мероприятий, соблюдения требований, установленных нормативов, стандартов и правил, готовности должностных лиц, сил и средств их действий по предупреждению ликвидации чрезвычайных ситуации.

В целях обеспечения готовности к действиям по локализации и ликвидации последствий аварий организации, имеющие опасные производственные объекты, обязаны:

планировать и осуществлять мероприятия по локализации и ликвидации последствий аварий на опасных производственных объектах;

привлекать к профилактическим работам по предупреждению аварий на опасных производственных объектах, локализации и ликвидации их последствий военизированные аварийно-спасательные службы и формирования;

иметь резервы материальных и финансовых ресурсов для локализации и ликвидации последствий аварий;

обучать работников методам защиты и действиям в случае аварии на опасных производственных объектах;

создавать системы наблюдения, оповещения, связи и поддержки действий в случае аварии на опасных производственных объектах и обеспечивать их устойчивое функционирование.

Ликвидацию аварий и пожаров обеспечивают в соответствии с аварийными планами, разработанными и утвержденными на каждом объекте.

В плане ликвидации аварий предусматриваются мероприятия по спасению людей, действия персонала и аварийных спасательных служб.

Приостановление работ в случае возникновения непосредственной угрозы жизни работников, выведение людей в безопасное место и осуществление мероприятий, необходимых для выявления опасности.

В случае возникновения чрезвычайных ситуаций и при ликвидации последствий чрезвычайных ситуаций персонал объекта действует согласно Плана ликвидации аварий, планов действий при аварийных и чрезвычайных ситуациях, инструкций по предупреждению и ликвидации аварийных ситуаций, должностных инструкций.

В случае возникновения непосредственной угрозы жизни работников производится вывод людей на безопасное место и осуществляются мероприятия по устранению опасности.

Вывод людей из карьеров осуществляется по капитальному съезду либо по специально установленным с уступа на уступ/поверхность лестницам, являющимися запасными выходами.

Оповещение людей об аварии производится по телефонной и диспетчерской связи, включается сирена.

Диспетчер, получив сообщение об аварии, вызывает аварийноспасательную службу, включает аварийную сигнализацию, извещает о происшедшем всех должностных лиц предприятия.

Схемы и список оповещения в рабочее и нерабочее время должностных лиц и организаций об аварии, находятся у диспетчера предприятия.

На основании многолетнего опыта эксплуатации производственных объектов и анализа опасностей, риска и произошедших аварий на аналогичных производственных объектах, представляется возможным сделать вывод, что при соблюдении норм и правил безопасности, инструкций и правил

технической эксплуатации объектов предприятия, возникновение аварийных ситуаций можно исключить.

8.3 Использование машин, оборудования и материалов, содержание зданий и сооружений в состоянии, соответствующем требованиям и правилам норм безопасности и санитарных норм.

Комплектация горного оборудования соответствует параметрам и производительности карьеров. Комплекс основного и вспомогательного горнотранспортного оборудования обеспечивает планомерную, в соответствии с мощностью грузопотока, подготовку руды к выемке, выемку и погрузку, перемещение, складирование в пределах каждой технологической зоны карьера, в которой формируется грузопоток.

Для механизации основных производственных процессов добычных и вскрышных работ принято буровое, выемочно-погрузочное, транспортное, отвальное и дорожно-эксплуатационное оборудование, соответствующие характеру и объему выполняемых в карьере работ.

Удовлетворительное состояние технического парка поддерживается планово-предупредительными ремонтами. Ремонт техники производится в специально оборудованном ремонтном боксе на промышленной площадке предприятия.

Горное и транспортное оборудование, транспортные коммуникации, линии электроснабжения и связи располагаются на рабочих площадках уступов за пределами призмы обрушения.

Применение в карьерах автомобилей, бульдозеров, тракторов и других машин с двигателями внутреннего сгорания допускается только при наличии приспособлений, обезвреживающих ядовитые примеси выхлопных газов. Запрещается работа на неисправных машинах и механизмах.

К управлению горными и транспортными машинами допускаются лица прошедшие специальное обучение, сдавшие экзамены и получившие удостоверение на право управления соответствующей техникой.

Горные, транспортные и строительно-дорожные машины, находящиеся в эксплуатации, оснащаются сигнальными устройствами, тормозами, ограждениями доступных движущихся частей механизмов (муфт, передач, шкивов и тому подобное) и рабочих площадок, противопожарными средствами, имеют освещение, комплект исправного инструмента, приспособлений, защитных средств от поражения электрическим током и контрольно-измерительную аппаратуру, исправно действующую защиту от перегрузок и переподъема кузова.

Прием в эксплуатацию горных, транспортных, строительно-дорожных машин и технологического оборудования после монтажа и капитального ремонта производится комиссией с составлением акта.

Кабины экскаваторов, буровых станков и других эксплуатируемых механизмов утеплены и оборудованы безопасными отопительными приборами.

На каждой единице горнотранспортного оборудования ведется журнал приема-сдачи смен. Ведение журнала проверяется лицами контроля.

В случае внезапного нападения противника или других чрезвычайных ситуациях рабочие и служащие предприятия будут рассредоточены и эвакуированы за пределы зон возможных разрушений с помощью имеющегося транспорта.

Эксплуатация, обслуживание технологического оборудования, технических устройств, их монтаж и демонтаж производится в соответствии с нормативными документами заводов-изготовителей.

8.4 Осуществление специальных мероприятий по прогнозированию и предупреждению внезапных прорывов воды, предотвращению обрушений и деформаций бортов и уступов отвалов, обеспечения их устойчивости.

Согласно «Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы», утвержденным Приказом Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352, пункт 1726, на действующих карьерах следует осуществлять контроль над состоянием их бортов, траншей, уступов, откосов и отвалов. В случае обнаружения признаков сдвижения пород работы должны быть немедленно прекращены.

При разработке месторождения осуществляется контроль путем непрерывного автоматизированного наблюдения с применением современных радиоэлектронных средств и высокочастотных устройств, выполняющих функции оперативного мониторинга и раннего оповещения опасных сдвижений, и (или) путем инструментальных наблюдений с применением высокоточных геодезических приборов.

Периодичность осмотров и инструментальных наблюдений по наблюдениям за деформациями бортов, откосов, уступов и отвалов объектов открытых горных работ устанавливается технологическим регламентом.

В случае обнаружения признаков сдвижения пород (деформации массива) все работы в опасной зоне возможного обрушения прекращаются. Маркшейдерской и геомеханической службами определяется опасная зона, которая ограждается предупредительными знаками. Работы допускается возобновлять после ликвидации происшествия и определения причин возникновения происшествия, с разрешения технического руководителя организации.

Для осуществления контроля за состоянием бортов, траншей, уступов, откосов и отвалов на карьерах проводятся систематические инструментальные наблюдения за деформациями откосов, изучение физико-механических

свойств горных пород, а также геологических и гидрогеологических условий района работ.

Предотвращение оползней и обрушений откосов на карьере, а также разработка мероприятий, снижающих вредное воздействие деформаций уступов, бортов, отвалов и территорий, прилегающих к карьеру, является необходимым условием бесперебойной работы горного предприятия.

Наблюдения, контроль обстановки, прогнозирование аварий, бедствий и катастроф, могущих привести к возникновению чрезвычайных ситуаций, ведется круглосуточно технологическим персоналом, работающим посменно. Прогнозирование ситуаций ведется службами главного геолога и главного маркшейдера.

Прогнозирование ситуаций ведется службами главного геолога и главного маркшейдера.

В целях предотвращения обрушений и деформаций бортов и уступов карьера, обеспечения их устойчивости, предусмотрены мероприятия по постоянному маркшейдерскому и визуальныму наблюдению за состоянием бортов и уступов карьера.

Для исключения возникновения чрезвычайных ситуации в результате проявления оползней проектом предусматривается проведение осушительных мероприятий. Основными мероприятиями, обеспечивающими снижение отрицательного влияния на устойчивость бортов карьера от поверхностных дождевых и ливневых вод, является водоотводная канава.

Осыпи могут образоваться в результате выветривания горной породы. Как правило, объем осыпей незначительный и большой угрозы для техники и рабочих при технологическом процессе они не представляют.

Для устранения осыпей и материала вывалов и обрушений в бортах карьера, проектом предусматривается периодическую механизированную очистку берм, которая производится только в дневное время суток.

Для разработки противооползневых мероприятий, предотвращающих опасное проявление деформаций откосов на карьерах, выполняются следующие виды работ:

- проведение систематических глазомерных наблюдений за состоянием откосов в карьерах и на отвалах; изучение геологических и гидрогеологических условий, изучение условий залегания породных слоев, структуры массива полезного ископаемого, налегающих и вмещающих пород основания отвала;
- выявление зон и участков возможного проявления, разрушающих деформаций откосов на карьерах и организация на этих участках стационарных инструментальных наблюдений;
- проведение инструментальных наблюдений за деформациями бортов уступов и откосов отвалов;
- изучение возникающих нарушений устойчивости, установление их характера, степени опасности и причин возникновения, их документация;

составление проектов искусственного укрепления ослабленных зон и участков, контрфорсов, пригрузок откосов, специальной технологии горных

работ и других мероприятий по борьбе с разрушениями откосов горных выработок.

Если склонность к оползням устанавливается в процессе ведения горных работ, вносятся коррективы в проект и осуществляются предусмотренные в нем меры безопасности.

На участке работ проводится автоматизированный мониторинг бортов и откосов карьера, который позволяет избежать несчастных случаев человеческих жертв и снизить потери техники.

Автоматизированные наблюдения необходимы для контроля наиболее опасных и ответственных участков (там, где работают люди и техника). Как правило, используется высокотехнологичное оборудование для выполнения функций оперативного мониторинга раннего оповещения.

Для периодических наблюдений используются инструменты от рулетки до сейсмостанций и лазерных сканеров для детального отслеживания изменения геометрии бортов.

автоматизированных Для постоянных систем используются разнообразные деформаций, стационарные GPS-станции, датчики роботизированные (призменный тахеометры мониторинг), радары устойчивости откосов, лазерные сканеры для a также оперативного мониторинга.

Анализироваться может размер смещений, их скорость, ускорение, направление, вероятная граница и длительность процесса деформации.

Системы мониторинга карьеров позволяют моделировать камнепады, анализируя геометрию бортов и свойства пород. Полученная модель после калибровки с натурными условиями позволяет локализовать участки, где наиболее вероятны камнепады.

Для обеспечения безопасности и технико-экономической эффективности отвальных работ необходимо проводить мониторинг состояния отвального (гидроотвального) сооружения. Выбор методов мониторинга, состава мероприятий, технических средств и аппаратуры обычно осуществляется с учетом следующих требований:

- мониторинг должен быть оперативным, обеспечивать своевременное принятие решений по изменению технологии производства и назначению специальных мер;
- мероприятия и средства мониторинга не должны создавать помех процессам отвалообразования;
- способы выполнения мониторинга и интерпретации результатов должны быть простыми и доступными для технических служб предприятий.
- Основными задачами мониторинга за состоянием отвалов являются:
- оценка соответствия действительных условий отвалообразования проектным;
- сравнение фактических расчетных показателей, определенных на различных этапах формирования отвалов;
- оценка напряженно-деформированного состояния отвалов и их оснований;

- наблюдение за устойчивостью откосов отвалов;
- оценка качества мероприятий по обеспечению устойчивости отвалов и назначение при необходимости дополнительных мероприятий.

Перечисленные задачи следует решать в рамках гидрогеомеханического, маркшейдерского и технологического мониторинга.

Также при отвалообразовании необходимо проводить гидрогеомеханический мониторинг, который включает в себя:

- периодические определения состояния и свойств пород отвалов, гидроотвалов и их оснований;
- документирование имеющихся случаев нарушения устойчивости, выявление причин деформаций, назначение мероприятий (при необходимости) по ликвидации последствий оползня и контроль за их выполнением;
- наблюдения за уровнями и напорами подземных вод в отвалах, гидроотвалах и их основаниях; наблюдения за работой дренажных устройств;
- расчеты устойчивости отвальных сооружений по выявленным инженерногеологическим свойствам с учетом изменения напряженнодеформированного состояния.

Маркшейдерский контроль над ведением отвальных работ включает в себя:

- установление границ распространения деформаций и их вида;
- определение абсолютных величин и скорости смещения оползающих масс;
- определение критических величин смещения и скорости, предшествующих разрушению откоса отвала.

Маркшейдерские наблюдения в зависимости от степени ответственности отвальных сооружений, параметров и скорости оползневых деформаций могут быть визуальными, упрощенными и инструментальными.

Технологический мониторинг включает в себя наблюдения:

- за составом пород, поступающих в отвалы с различных вскрышных участков и горизонтов;
- за параметрами и порядком развития отвальных работ на сооружении;
- за качеством выполнения мероприятий по обеспечению устойчивости.

Он также предусматривает оценку влияния изменения схемы отвалообразования на параметры откосов.

8.6 Обеспечение промышленной безопасности

8.6.1 Мероприятия по безопасности при ведении горных работ

Горные работы по разработке месторождения должны осуществляться строго в соответствии с «Правилами обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы».

Создание на карьерах безопасных условий ведения горных работ на месторождении Приозерное предусматривается за счет следующих технических решений:

- формирование в рабочей зоне карьеров рабочих площадок и уступов с расчетными параметрами на горизонтах размещения горнотранспортного оборудования и соответствующих коммуникаций;
- обеспечение предельно допустимых размеров рабочих площадок по их назначению;
- осушение пород и соблюдение мероприятий по предохранению бортов от замачивания.

Высота уступа определяется с учетом физико-механических свойств горных пород и полезного ископаемого, горнотехнических условий залегания.

Протяженность временно нерабочих площадок устанавливается в зависимости от требуемой интенсивности разработки, высоты рабочих уступов и применяемого оборудования, но не превышает 20% активного фронта работ. Временно нерабочие площадки обеспечивают условия для разноса вышележащего уступа и принимаются не менее чем ширина транспортной бермы.

Минимальная ширина разрезных и съездных траншей определяется с учетом параметров применяемого оборудования и принятых транспортных схем, а также свободного дополнительного прохода шириной не менее 1,5 м.

Ширина рабочей площадки определяется расчетом — в соответствии с нормами технологического проектирования, с учетом нормативных положений по размещению заходки экскаватора, размещения дополнительного оборудования, развала горной массы, обустройства предохранительного вала и полос безопасности.

При погашении уступов будут оставляться предохранительные бермы. Поперечный профиль предохранительных берм должен быть горизонтальным или иметь уклон в сторону борта карьера. Бермы, по которым происходит систематическое передвижение рабочих, имеют ограждения и регулярно очищаются от осыпей и кусков породы.

Принятая ширина рабочих площадок обеспечивает размещение на горизонтах горного оборудования, транспортных коммуникаций и создание готовых к выемке запасов не менее норматива. Углы наклона бортов устанавливаются на основании анализа геологических, гидрогеологических, сейсмических, горнотехнических условий месторождения, влияющих на устойчивость горных пород в откосах.

С целью предотвращения опасных ситуаций, возникающих вследствие разрушающих деформаций на карьере, организуется специальная маркшейдерская сеть для ведения инструментальных наблюдений за деформациями дневной поверхности, примыкающей к бортам карьера, которая позволяет надежно контролировать деформации прибортового массива.

Передвижение людей в карьере допускается по пешеходным дорожкам, указанным в маршрутах передвижения по территории карьера, или по

обочинам автодорог со стороны порожнякового направления движения автотранспорта.

Для сообщения между уступами карьера необходимо устраивать прочные лестницы с двусторонними поручнями и наклоном не более 60° или съезды с уклоном не более 20°. Маршевые лестницы при высоте более 10 м должны быть шириной не менее 0,8 м с горизонтальными площадками на расстоянии друг от друга по высоте не более 15 м. Расстояние и места установки лестниц по длине уступа устанавливаются планом развития горных работ. Расстояние между лестницами по длине уступа не должно превышать 500 м.

Ступеньки и площадки лестниц необходимо систематически очищать от снега, льда, грязи и посыпать песком.

Горные выработки карьера, зумпф, в местах, представляющих опасность падения в них людей, следует ограждать предупредительными знаками, освещаемыми в темное время суток или защитными перилами.

К управлению горными и транспортными машинами, обслуживанию электрооборудования и электроустановок допускаются рабочие, прошедшие специальное обучение и имеющие удостоверение на право управления соответствующей машиной.

Эксплуатация оборудования, механизмов, инструмента в неисправном состоянии или с неисправными устройствами безопасности (блокировочные, фиксирующие и сигнальные приспособления и приборы), также при нагрузках и давлениях выше паспортных запрещается.

Текущий и профилактический ремонт выполняется непосредственно на уступе при помощи передвижной ремонтной мастерской, капитальный ремонт выполняется ремонтными службами.

8.6.2 Мероприятия по безопасности при введении экскаваторных работ

В качестве выемочно-погрузочного оборудования предусматриваются гидравлические экскаваторы типа Komatsu PC270-7 в исполнении «обратная лопата» на вскрышных и добычных работах.

Эксплуатируемые экскаваторы находятся в исправном состоянии и имеют действующие сигнальные устройства, тормоза, освещение, противопожарные средства, исправную защиту от переподъема. Все доступные движущиеся части оборудования ограждены. Изменение конструкций ограждения, площадок и входных трапов не реконструируются в период ремонтов без согласования с заводом-изготовителем.

Исправность машин проверяется ежесменно машинистом, еженедельно – механиком участка и ежемесячно – главным механиком или его заместителем. Результаты проверки записываются в специальном журнале.

Работа на неисправных машинах запрещается.

На экскаваторе должны находиться паспорт забоя, инструкции по технике безопасности, аптечка.

Каждый экскаватор должен вести работы в соответствии с паспортом забоя, утвержденным главным горняком. В паспорте забоя должны быть указаны допустимые размеры рабочих площадок, берм, углов откоса, высота уступа, расстояние от горного и транспортного оборудования до бровок уступа и порядок подъезда транспорта к экскаватору.

При передвижении экскаватора по горизонтальному пути и на подъем ведущая ось его должна находиться сзади, при спуске – впереди.

Передвижение экскаватора должно производиться по сигналам помощника машиниста, при этом должна быть обеспечена постоянная видимость между машинистом экскаватора и его помощником.

Во время работы экскаватора запрещается пребывание людей в зоне действия ковша.

Экскаваторы должны располагаться на уступе карьера на твердом выровненном основании с уклоном, не превышающим допустимого техническим паспортом экскаватора. Во всех случаях расстояние между бортом уступа или транспортными сосудами и контргрузом экскаватора должно быть не менее 1м.

При работе экскаватора его кабина должна находиться в стороне противоположной забою.

При погрузке в средства автомобильного транспорта машинистом экскаватора должны подаваться сигналы начала и окончания погрузки. Таблица сигналов должна быть вывешена на видном месте, на кузове экскаватора и с ней должны быть ознакомлены машинисты экскаваторов и водители транспортных средств.

Не допускается работа экскаватора под «козырьками» и навесами уступов.

квалифицированного обслуживания необходимо Для персонал обеспечить соответствующими принадлежностями, В частности, диэлектрическими перчатками, калошами, ботами, резиновыми ковриками, изолирующими подстанциями, подвергающимися обязательному периодическому испытанию в сроки, предусмотренные нормами.

Заземлять все металлические части электроустановок и оборудования, которые могут оказаться под напряжением вследствие нарушения изоляции.

При погрузочно-разгрузочных работах для предупреждения пылеобразования рекомендуется применять гидроорошение забоя, загрузочных площадок, транспортных берм и автодорог. На рабочих местах применять индивидуальные средства защиты от пыли (респираторы).

Обтирочные материалы должны храниться в закрытых металлических ящиках.

8.6.3 Мероприятия по безопасной эксплуатации бульдозеров

Главным условием безопасной работы бульдозера является изучение и соблюдение бульдозеристом правильных и безопасных приемов управления и обслуживания машины.

Все бульдозеры снабжены техническими паспортами. Каждая единица техники укомплектована средствами пожаротушения, знаками аварийной остановки, медицинскими аптечками. На линию транспортные средства выпускаются в технически исправном состоянии.

Максимальные углы откоса забоя при работе бульдозера не должны превышать: на подъем 25° и под уклон (спуск с грузом) 30° .

Не допускается движение бульдозеров и погрузчиков по призме возможного обрушения уступа.

Расстояние от края гусеницы бульдозера до бровки откоса определяется с учетом горно-геологических условий и должно быть занесено в паспорт ведения работ в забое (отвала).

Не разрешается оставлять без присмотра бульдозер с работающим двигателем и поднятым ножом, а при работе направлять трос, становиться на подвесную раму и нож.

Запрещается работа бульдозера без блокировки.

Для ремонта, смазки и регулировки бульдозер должен быть установлен на горизонтальной площадке, двигатель выключен, а нож опущен на землю. Запрещается находиться под поднятым ножом.

При планировке отвала бульдозером подъезд к бровке откоса разрешается только ножом вперед. Подавать бульдозеры задним ходом к бровке отвала воспрещается.

Запрещается находиться посторонним лицам во время работы в кабине бульдозера и около него.

8.6.4 Мероприятия по безопасной эксплуатации карьерных автосамосвалов

В качестве основного технологического транспорта приняты самосвалы типа HOWO грузоподъемностью 25 т.

При выборе типа транспорта учитывались параметры выемочно-погрузочного оборудования и проектная производительность карьеров по горной массе.

Автомобиль должен быть технически исправен и иметь зеркало заднего вида, действующую световую и звуковую сигнализацию.

Вся самоходная техника должна иметь технические паспорта, содержащие их основные технические и эксплуатационные характеристики, укомплектована средствами движении задним ходом, проблесковыми маячками желтого цвета, установленными на кабине, двумя зеркалами,

пожаротушения, знаками аварийной остановки, медицинскими аптечками, упорами (башмаками) для подкладывания под колеса (для колесной техники).

При загрузке автомобиля экскаватором должны выполняться следующие правила:

ожидаемый погрузки автомобиль должен находиться за пределами радиуса действия ковша экскаватора и становиться под погрузку только после разрешающего сигнала машиниста экскаватора;

погрузка в автомобиль должна производиться только сбоку или сзади, перенос ковша экскаватора над кабиной запрещен;

загруженный автомобиль начинает движение только после разрешающего сигнала машиниста экскаватора. Не допускается односторонняя или сверхгабаритная загрузка, а также превышающая установленную грузоподъемность автомобиля.

Кабина карьерного автосамосвала должна быть перекрыта специальным защитным козырьком, обеспечивающим безопасность водителя при погрузке. При отсутствии козырька водитель автомобиля обязан выйти при погрузке из кабины и находиться за пределами радиуса действия ковша экскаватора.

При работе автомобиля в карьере запрещается:

движение с поднятым кузовом;

движение задним ходом к месту погрузки на расстояние более 30 м;

переезжать через кабели, проложенные по почве без специальных предохранительных укрытий;

оставлять автомобиль на уклонах и подъемах;

производить запуск двигателя, используя движение автомобиля под уклон.

Автомобили должны разгружаться на отвале в местах, предусмотренных паспортом за возможной призмой обрушения (сползания) породы. Размеры этой призмы устанавливаются работниками маркшейдерской службы и регулярно доводятся до сведения работающих на отвале.

Инженерные службы предприятий должны уделять особое внимание вопросам организации безопасности эксплуатации автомобильного транспорта.

На автодорогах предусмотрено устройство ориентирующего вала из грунта. Все места погрузки, разгрузки, капитальные траншеи, а также внутрикарьерные дороги в темное время суток должны быть освещены.

Для пылеподавления дороги (в теплое время года) систематически поливаются водой. Для этих целей будет использоваться поливооросительная машина.

На карьерных дорогах должны соблюдаться «Правила дорожного движения». Движение на дорогах должно регулироваться стандартными дорожными знаками.

8.6.5 Мероприятия по безопасной работе при планировке отвалов

Размещение вскрышных пород месторождения предусматривается на внешних отвалах. Формирование отвалов осуществляется бульдозером типа ЧТЗ Б-10М периферийным способом.

Отвалы вскрышных пород формируются в три яруса, высотой от 10 до 25 метров.

Безопасность работ на отвале обеспечивается, в первую очередь соблюдением параметров, гарантирующих его устойчивость.

Местоположение, порядок формирования внешнего отвала и его параметры определяются Планом горных работ.

В темное время суток рабочий фронт отвала должен быть освещен. В летнее время для уменьшения пыления предусматривается полив водой рабочего фронта с помощью поливомоечной машиной.

Работы по планировке отвала должны производиться под техническим руководством и контролем геотехнической службы:

маркшейдерское обеспечение горных работ включающие вынос, в соответствии с Планом горных работ, на местности конечного контура отвала;

контроль за соблюдением технологии и режима работы на отвале.

Деформация отвала носит пластичный закономерный характер, который создает возможность ведения отвальных работ.

Согласно «Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы», пункт 1748, не допускается складирование снега в породные отвалы. В районах со значительным количеством осадков в виде снега складирование пород в отвал осуществляется по проекту, в котором предусмотрены мероприятия, обеспечивающие безопасность работы в любое время года.

Отвалы защищены от ливневых и талых вод водоотводными нагорными канавами.

При развитии работ на отвале на его рабочей площадке маркшейдерской службой оборудуются наблюдательные станции из опорных и рабочих реперов. Данные всех инструментальных наблюдений по отвалу заносятся в специальный журнал (паспорт деформаций отвала).

Горные мастера ежесменно производят визуальный осмотр рабочей площадки и откосов отвала. Результаты осмотров оформляются в журнале осмотра отвала после окончания смены.

Геолого-маркшейдерской службой организации осуществляется контроль за устойчивостью пород в отвале. Участковый маркшейдер ежесуточно отражает в журнале осмотра отвала результаты выполненных наблюдений. На основании выполненных наблюдений в журнале осмотра отвала оформляется письменное разрешение на производство работ на отвале. Мастер бульдозерного участка на основании наряда начальника смены о производстве работ на отвале определяет число бульдозеров для работы на отвале.

Автосамосвалы должны разгружать породу, не доезжая задним ходом до бровки отвального уступа. Необходимо обязательно обустроить ограничитель движения автосамосвалов при заднем ходе к бровке отвала. В качестве ограничителя используют предохранительный вал породы, оставляемый на бровке отвала, согласно Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы».

Разгрузка машин может быть произведена на любом участке отвальной бровки. Для этого лишь требуется, чтобы место разворота машин было расчищено бульдозером от крупных кусков породы.

Формирование отвалов должно вестись в соответствии с утвержденными технической службой локальными проектами (паспортами). В паспорте указываются допустимые размеры рабочих площадок, берм, углов откоса, высоты ярусов, призмы обрушения, расстояния от установок горнотранспортного оборудования до бровок уступа.

При появлении признаков оползневых явлений работы по отвалообразованию должны быть прекращены до разработки и утверждения специальных мер безопасности.

Высота породного отвала, углы откоса и призмы обрушения, скорость продвижения фронта отвальных работ устанавливаются Планом горных работ в зависимости от физико-механических свойств пород отвала и его основания, способов отвалообразования и рельефа местности.

При появлении признаков оползневых явлений работы по отвалообразованию должны быть прекращены до разработки и утверждения специальных мер безопасности.

Работы прекращаются и в случае превышения регламентированных технологическим регламентом по отвалообразованию скоростей деформации отвалов. Работы на отвале возобновляются после положительных контрольных замеров скоростей деформаций отвалов с письменного разрешения технического руководителя карьера.

8.6.6 Мероприятия по безопасной эксплуатации системы энергоснабжения и электроустановок

Для защиты людей от поражения током учтены требования «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей Республики Казахстан».

На подстанциях и линиях электропередачи предусматривается использовать апробированные в промышленных условиях рассматриваемого региона типовые опорные конструкции и технические решения.

Предусматривается использование сертифицированного электрооборудования и конструкций.

Для обеспечения безопасных условий обслуживающего персонала предусмотрены следующие мероприятия:

все работающие на электроприводе механизмы имеют заземление, а кабины экскаваторов и буровых станков обеспечены фильтровентиляционными установками;

все вращающиеся части машин и механизмов имеют ограждения;

напряжения сетей распределения электроэнергии не превышают значений, нормируемых правилами безопасности Республики Казахстан;

- для потребителей карьеров и отвалов предусмотрены электросети с изолированной глухо-заземленной нейтралью;
- конструктивное исполнение электроустановок отвечает требованиям безопасности при производстве открытых горных работ;
- молниезащита;
- наружное освещение территорий производства работ, движения транспорта и пешеходов в карьерах, на отвалах, а также технологических автодорог на поверхности;
- предусмотрены средства обеспечения электробезопасности персонала (штанги, боты, перчатки, коврики, указатели напряжения и др.);
- для безопасной работы и эвакуации людей, предусмотрено аварийное электроосвещение.

8.7 Системы связи и сигнализации, автоматизация производственных процессов

Карьер оборудуется следующими видами связи и сигнализации, обеспечивающими контроль и управление технологическим процессами, безопасностью работ:

- диспетчерской связью;
- диспетчерской распорядительно-поисковой громкоговорящей связью и системой оповещения;
- необходимыми видами связи на внутрикарьерном транспорте;
- надежной внешней телефонной связью.
- Диспетчерская связь имеет в своем составе следующие виды:
- диспетчерскую связь с применением проводных средств связи для стационарных объектов;
- диспетчерскую связь с применением средств радиосвязи для подвижных (горное и транспортное оборудование) полустационарных объектов.

Для оповещения при чрезвычайной ситуации и перед взрывными работами предусмотрен звуковой сигнал типа «Ревун», слышимая на всех участках карьеров. Связь участка работ с центральным офисом, субподрядчиками, контролирующими, уполномоченным органами будет осуществлена по сотовым телефонам.

Для передачи распоряжений, сообщений, поиска необходимых лиц, находящихся на территории карьеров, и другой информации применяются рации и сотовые телефоны.

Для обеспечения безопасности технического персонала, обслуживающего комплекс устройств связи и безопасности, предусматривается:

- применение аппаратуры в исполнении, соответствующем рабочей окружающей среде в месте ее размещения;
- размещение оборудования в технологических помещениях диспетчерского пункта горнотранспортного диспетчера с обеспечением требуемых нормируемых эксплуатационных зазоров и проходов;
- устройство наружных контуров для заземления станционных сооружений о связи;
- заземление аппаратуры связи с соблюдением требуемых норм на величину сопротивления заземления.

Все виды связи находятся в рабочем состоянии. Исправность аварийной сигнализации и других систем оповещения рабочих об аварии систематически проверяется в установленные сроки.

Автоматизация водоотливных установок в карьерах обеспечивает автоматическое включение резервных насосов, взамен вышедших из строя, возможность дистанционного управления насосами и контроль работы установки с передачей сигналов на пульт управления.

Автоматическое включение резервных насосов, взамен вышедших из строя предусматривается по средству управления цифровым контролером, установленным в шкафу управления насосными агрегатами поставляемым комплектно. В шкафу управления установлен GSM модуль, позволяющий дистанционно управлять насосами, передавать сигналы на пульт управления диспетчера и обеспечивает контроль работы насосной установки.

8.8 Контроль выдачи нарядов и выполнения сменных заданий

Согласно «Правилам обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы», пункт 1716-1, открытые горные работы ведутся в соответствии с письменным (или в электронной форме) нарядом.

При разработке месторождений твердых полезных ископаемых контроль выдачи нарядов и выполнения сменных заданий осуществляется в режиме реального времени с применением автоматизированной системы.

Во всех структурных подразделениях предприятия перед началом работы в каждой смене всем рабочим, занятым выполнением любых работ должны выдаваться письменные наряды на выполнение этих работ.

На выполнение строительных, ремонтно-строительных, ремонтно-монтажных, ремонтно-наладочных, ремонтно-эксплуатационных работ, письменный наряд работающим может не выдаваться при выдаче им нарядадопуска, наряд разрешений, путевых листов и др. документов, предусмотренных правилами и инструкциями на производство работ повышенной опасности.

Для записи выдаваемых нарядов должна вестись книга нарядов по установленной форме. Допускается ведение книги нарядов по производственным подразделениям участка, службы и цеха.

Книга нарядов хранится в месте выдачи нарядов. Руководитель участка, службы, цеха несет ответственность за ее правильное ведение и хранение. Срок хранения законченных книг нарядов - 6 месяцев.

Книга ежесменных нарядов является юридическим документом по учету выполняемых работ и должна быть пронумерована, прошнурована, скреплена печатью.

Записи в книгах нарядов должны вестись чернилами или шариковой ручкой, исправления записей в книге нарядов не допускаются.

В случае необходимости, изменение наряда производится с записью в книге изменения наряд-задания.

Выдавать наряд на производство работ имеют право:

начальник участка, цеха, службы, его заместители, механик, прораб участка; лицо, замещающее начальника участка, службы, цеха или его заместителя;

старший мастер в подразделениях, где организацией труда предусмотрено освобождение его от прямого руководства сменой, т.е. предусматриваются права заместителя начальника участка, службы, цеха.

Назначение мастера, имеющего право выдачи письменного наряда, определяется приказом по предприятию.

Перед началом работы каждой смены лицо, выдающее наряд, должно в книге нарядов записать место, наименование и объем работ, а также меры безопасности, на которые рабочие должны обратить особое внимание и выполнять в течение смены на рабочих местах, в случае необходимости начертить поясняющие схемы.

При совместной работе двух и более рабочих, один из них назначается старшим (звеньевым), о чем делается отметка в книге нарядов.

Наряд подписывается лицом его Выдающим.

В отсутствие начальника участка службы цеха (лица, имеющего право выдачи наряда) наряд может быть уточнен и изменен мастером смены. Указанные уточнения и изменения мастер смены записывает в книгу нарядов за своей подписью.

Сменный мастер (начальник участка, механик), получивший наряд на смену, перед началом работ знакомит всех рабочих смены с характером работ, объясняет им обстановку на рабочих местах, указывает о принятии необходимых мер безопасного выполнения работ, назначает в каждом звене, бригаде ответственного за безопасность работ из числа наиболее опытных

рабочих. Каждый рабочий расписывается в книге нарядов за получение сменного задания.

Запрещается допуск к работе рабочих, не расписавшихся за наряд.

Рабочие специализированных участков, бригад, звеньев, направляемые на работы на другие участки, цеха, объекты, должны получить наряд на своих участках и на участках, где будут выполнять работы с указанием специальных мер безопасности.

Если сменный мастер, сменный механик, прибыв на рабочее место, убедился в невозможности выполнения наряда, он может изменить наряд, обеспечив необходимые меры безопасности.

Указанные изменения докладываются руководителю участка цеха, диспетчеру с последующей записью в книге изменения нарядов.

К концу рабочей смены руководитель (мастер, механик) смены докладывает начальнику участка, цеха, службы, а в его отсутствие — руководителю последующей смены о выполнении наряда и состояния рабочих мест, записывает отчет в книгу нарядов за своей подписью.

Если руководитель смены не успел по какой-либо причине осмотреть все рабочие места в течение смены, то информацию об их состоянии он должен получить от звеньевых, старших рабочих.

Текущий инструктаж при выдаче наряда на производство работ проводится лицом, выдающим наряд-задание перед началом каждой смены, с отметкой в книге выдачи нарядов. В содержание инструктажа входит:

информация о безопасном состоянии рабочих мест на начало смены; объяснение задания на приведение рабочего места в безопасно состояние;

объяснение средств и безопасных способов выполнения работ повышенной сложности и опасности.

8.9 Пожарная безопасность

Пожарную безопасность на промышленной площадке, участках работ и рабочих местах обеспечивают мероприятия в соответствии с требованиями

«Правил пожарной безопасности» от 21 февраля 2022 года № 55.

Согласно Закону Республики Казахстан —О гражданской защите от 11 апреля 2014 г №188-V обеспечение пожарной безопасности и пожаротушения возлагается на руководителя предприятия.

Заправка различными горюче-смазочными материалами автосамосвалов, бульдозеров и другого оборудования, будет осуществляться на рабочих местах с помощью передвижных механизированных, специализированных заправочных агрегатов.

В состав противоаварийных сил входит персонал карьера «MQ EMIRATES GROUP Ltd». Действия персонала при возможных аварийных ситуациях во всех подразделениях определяются планами ликвидации аварий.

Для обеспечения пожаробезопасности на месторождении предусматривается следующее:

на карьерном оборудовании (экскаваторах, бульдозерах, автосамосвалах, буровых станках и т.д.) имеются первичные средства пожаротушения – огнетушители в соответствии с нормативами;

временные сооружения, а также подсобные сооружения обеспечиваются первичными средствами пожаротушения;

оповещение о пожаре осуществляется с помощью мобильных радиостанций;

обеспечение свободного доступа к оборудованию и возможность маневрирования передвижной пожарной и противоаварийной техники в случае возникновения ЧС;

размещение технологических аппаратов и оборудования в соответствии с требованиями пожарной безопасности, удобного и безопасного обслуживания;

смазочные и обтирочные материалы хранятся в специально предназначенных для этих целей закрывающихся огнестойких емкостях;

для выполнения мер по ликвидации пожаров предусматривается одна поливочная машина, комплектуемая специальными насадками и шлангами. Также предусматривается приобретение и эксплуатация одной пожарной машины.

На каждом объекте назначаются ответственные лица за пожарную безопасность и за содержание в исправном состоянии первичных и стационарных средств пожаротушения.

Разрабатываются специальные профилактические и противопожарные мероприятий, которые утверждаются главным инженером карьера.

При возникновении пожара подаются соответствующие сигналы для оповещения работающих, которые выводятся за территорию объекта.

Действия персонала при возможных аварийных ситуациях определяются планами ликвидации аварий.

На территории временных зданий (передвижные вагончики) размещен щит с минимальным набором пожарного инвентаря.

Обеспеченность объектов первичными средствами пожаротушения определена «Правилами пожарной безопасности в Республике Казахстан».

Ежегодно разрабатываются мероприятия по противопожарной защите оборудования.

Другие работы, связанные с выполнением требований безопасности, осуществляются в соответствии с действующими инструкциями, правилами и другими государственными и ведомственными нормативными документами.

8.10 Охрана труда и промышленная санитария

При разработке месторождения будут осуществляться организационнотехнические мероприятия, направленные на защиту здоровья и жизни персонала, предупреждение аварийности с тяжелыми последствиями, предупреждение профессиональных заболеваний, снижение производственных вредных факторов до уровня санитарных норм.

Для рабочих всех профессий руководством предприятия разрабатываются

«Инструкции по охране труда и технике безопасности», а также рабочие обеспечены, под личную роспись, инструкциями по безопасным методам ведения работ по профессиям.

Прием на работу лиц, не достигших 18 лет, запрещается.

Работники проходят предварительные (при поступлении на работу) и периодические медицинские осмотры с учетом профиля и условий их работы.

Все рабочие места комплектуются аптечками первой медицинской помощи, а также они имеются на каждом транспортном агрегате.

Все работники обеспечены водой хорошего качества.

На борту карьеров размещены временные биотуалеты, в соответствии с общими санитарными правилами.

На предприятии организована стирка спецодежды не реже двух раз в месяц, а также починка обуви и спецодежды.

Все трудящиеся проходят инструктаж по промышленной санитарии, личной гигиене и по оказанию неотложной помощи пострадавшим на месте несчастных случаев.

Персонал предприятия ежегодно проходит медкомиссию с учетом профиля и условий их работы.

К работе на добыче допускаются только лица, прошедшие инструктаж по промышленной санитарии, личной гигиене и по оказанию неотложной помощи пострадавшим на месте несчастных случаев.

Все трудящиеся карьеров обеспечиваются средствами индивидуальной защиты (СИЗ), спецодеждой и обувью в соответствии с «Типовыми отраслевыми нормами бесплатной выдачи спецодежды, спецобуви и предохранительных средств», ГОСТа 12.4.011-89 (СТ СЭВ 1086-88) «Система стандартов безопасности труда. Средства защиты работающих. Общие требования и классификация.

найме подрядных организаций обязательная проверка соответствующих лицензий и прохождения персоналом обязательных обучающих курсов безопасному ведению работ.Вновь ПО горных принимаемые работники допускаются к самостоятельной работе после прохождения вводного инструктажа, инструктажа на рабочем месте, сдачи квалификационных экзаменов и проверки знаний в объеме производственных инструкций и ПЛА.

Допуск к работе производится на основании протоколов проверки знаний и приказов по руднику.

Для обеспечения контроля за соблюдением требований безопасности и охраны труда на объектах «MQ EMIRATES GROUP Ltd» создан отдел охраны труда и безопасности, охраны окружающей среды и промсанитарии (ООТ и $_{\rm F}$), ООС и $_{\rm HC}$).

8.11 Административно-бытовые и санитарные помещения

При открытых горных работах на месторождении должны быть оборудованы административно-бытовые помещения, которые соответствуют санитарным правилам «Санитарно-эпидемиологические требования к зданиям и сооружениям производственного назначения», утв. Приказом Министра здравоохранения РК от 3 августа 2021 г. №ҚР ДСМ-72.

На карьере для укрытия от дождя предусматривается специальный вагончик, расположенный не далее 300 м от места работы. Данный вагончик имеет стол, скамьи для сиденья, умывальник с мылом, бачок с кипяченой питьевой водой, вешалку для верхней одежды.

Для размещения пищеблока, места приема пищи персоналом, медпункта, раскомандировки рабочих, местонахождения охранника, предусмотрены мобильные передвижные вагончики. Вагончики оснащены электричеством, имеют утепление стен и пола.

В целях соблюдения санитарно-гигиенических норм, на участке горных работ, предусмотрены мобильные душевые комплексы, оснащенные емкостями для количества воды, достаточной для помывки задействованного персонала, и оборудованные водонагревателями.

На территории участка работ предусмотрены закрытые туалеты в удобных для пользования местах, устраиваемые в соответствии с общими санитарными правилами.

На предприятии организована стирка спецодежды не реже двух раз в месяц, а также починка обуви и спецодежды.

Кабины погрузчиков, бульдозеров и других механизмов утепляются и оборудуются безопасными отопительными приборами при низких внешних температурах и кондиционерами при высоких температурах.

Сбор отходов производится в металлические контейнеры с крышкой, размещенные в специально отведенных местах. Не допускается переполнение контейнеров, своевременный вывоз их должен быть обеспечен согласно заключенному договору, со специализированной организацией по вывозу отходов или собственными силами.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Правила обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы, Приказ Министра по инвестициям и развитию РК от 30 декабря 2014 года №352.
- 2. Правила обеспечения промышленной безопасности для опасных производственных объектов, Приказ Министра по инвестициям и развитию РК от 30 декабря 2014 года №343.
- 3. Методические рекомендации по технологическому проектированию горнодобывающих предприятий открытым способом разработки, согласованные Приказом Комитета по Госконтролю за ЧС и ПБ РК от 19.09.2013 г. №42
- 4. Справочник. Открытые горные работы. К.Н. Трубецкой, М.Г. Потапов, К.Е. Виницкий, Н.Н. Мельников и др. -М: Горное бюро, 1994 г.
- 5. Кодекс РК «О недрах и недропользовании» от 27 декабря 2017 г. №125-IV.
- 6. Закон РК «О гражданской защите» от 11 апреля 2014 г. №188-V.
- 7. Трудовой Кодекс Республики Казахстан от 23.11.2015 г. №414-V.
- 8. Земельный Кодекс РК от 20 июня 2003 г. №442-II.
- 9. Технология и комплексная механизация открытых горных работ. Ржевский В.В., М., 1980 г.
- 10. Краткийсправочник по открытым горным работам под редакцией Мельникова Н.В., г. Москва, —Недра , 1982 г.
- 11.В.В. Ржевский, М.Г. Новожилов, Б.П. Юматов. Научные основы проектирования карьеров, М.: Недра, 1971 г.
- 12.В.В. Ржевский. Открытые горные работы. Часть 1. М.: Недра, 1985 г.
- 13.Скабалланович И.А. «Гидрогеологические расчеты», М.1960 г.
- 14. Абрамов С.К. и др. «Защита карьеров от воды» , М.1976 г.
- 15. Шевелев Ф.А., Шевелев А.Ф. Таблицы для гидравлического расчета водопроводных труб, издание 9-е, 2009 г.
- 16.Правила техники безопасности при эксплуатации электроустановок потребителей, приказ Министра энергетики РК от 19.03.15 г. №222.
- 17. Правила устройства электроустановок, приказ Министра энергетики РК от 20.03.15 г. №230.
- 18.Правила пожарной безопасности, утвержденные приказом Министра по чрезвычайным ситуациям Республики Казахстан от 21 февраля 2022 года № 55.29.

ТЕКСТОВЫЕ ПРИЛОЖЕНИЯ