ТОО «Технократ-Семей» Государственная лицензия 08 ГСЛ №02-1273 от 24 февраля 2009г.

Заказчик: РГП на ПХВ «Казаэронавигация»

УТВЕРЖДАЮ:
Руководитель
РГП на ПХВ «КазАэроНавигация»
Комитета гражданской Авиации
Министерства транспорта
Республики Казахстан

«____» _____2025 г.

ПРОЕКТ НОРМАТИВОВ ПРЕДЕЛЬНО-ДОПУСТИМЫХ СБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ (ПДС)

Аэропорт со взлетно-посадочной полосой Катон-Карагайский район ВКО

Директор ТОО «Технократ-Семей»

Грищенко И.А.

СОДЕРЖАНИЕ

BBE,	ДЕНИЕ2
1.	ОБЩИЕ СВЕДЕНИЯ ОБ ОБЪЕКТЕ
1.1.	Описание месторасположения объекта
1.2.	Краткая климатическая характеристика района расположения объекта5
1.3.	Гидрогеологическая характеристика
2. ВОД	ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ НЫХ ОБЪЕКТОВ9
2.1. испо	Краткая характеристика технологии производства, технологического оборудования, льзуемого сырья и материалов
2.2.	Краткая характеристика существующих очистных сооружений9
2.3. очис	Оценка степени соответствия применяемой технологии производства и методов гки сточных вод, передовому научно-техническому уровню в стране и за рубежом12
2.4.	Перечень загрязняющих веществ
2.5.	Качественные показатели сточных вод
2.6.	Сведения о количестве сточных вод
	Для обоснования полноты и достоверности данных о расходе сточных вод, льзуемых для расчета допустимых сбросов, представляются данные в табличном виде анс водопотребления и отведения"
3.	ПРИЛОЖЕНИЯ17
	Приложение 1. Согласование №КZ77VRC00022928 от 23.04.2025 г. с РГУ "Ертисская бассейновая инспекция по регулированию, охране и использованию водных ресурсов Комитета по регулированию, охране и использованию водных ресурсов Министерства водных ресурсов и ирригации Республики Казахстан"
	Приложение 2. Паспорт на Комбинированный песко-нефтеуловитель с дополнительным сорбционным блоком ЛОС-КПН-С
	Приложение 3. Протокол забора воды с ручья Мысык-Калган
	Приложение 4. Лицензия

ВВЕДЕНИЕ

Настоящий Проект нормативов предельно-допустимых сбросов загрязняющих веществ, поступающих с очистных сооружений сточных вод Аэропорта со взлетно-посадочной полосой Катон-Каргайского района Восточно-Казахстанской области в ручей Мысык-Калган.

Согласно Экологическому кодексу РК от 2021 г. по приложению 2 раздел 2, п.5, пп.5.3 (объекты, предназначенные для приема, отправки воздушных судов и обслуживания воздушных перевозок (при наличии взлетно-посадочной полосы длиной 2 100 м и более) данный объект классифицируется, как объект II категории.

Настоящий проект нормативов эмиссий в окружающую среду, включает нормативы предельно допустимых сбросов (ПДС) загрязняющих веществ, поступающих с очистных сооружений сточных вод в ручей Мысык-Калган, содержащий оценку уровня загрязнения водного объекта ливневыми и хозбытовыми стоками с предложением по нормативам предельно допустимых сбросов по ингредиентам, рекомендации по организации системы контроля за соблюдением нормативов предельно-допустимых сбросов.

Проект нормативов предельно - допустимых сбросов (ПДС) загрязняющих веществ, поступающих поступающих с очистных сооружений сточных вод Аэропорта со взлетно-посадочной полосой Катон-Каргайского района Восточно-Казахстанской области в ручей Мысык-Калган разработан на основании Экологического Кодекса Республики Казахстан от 2 января 2021 года.

При разработке проекта нормативов ПДС использованы основные директивные и нормативные документы, инструкции и методические рекомендации по нормированию качества атмосферного воздуха, указанные в списке использованной литературы.

Разработчик Проекта: ТОО «Технократ-Семей»

050000, Республика Казахстан, г.Алматы, Ауэзовский район,

ул.Саина, д.16Б БИН 041240010826

- лицензия МООС РК №02548Р от 31.10.2022 г.

Контакты: +7 701 210-98-00

Заказчик: РГП на ПХВ «КазАэроНавигация» Комитета гражданской

Авиации Министерства транспорта Республики Казахстан

010000, Республика Казахстан, г. Астана, район «Есиль»,

ул. E522, здание 15 БИН 130940015918

Контакты: 8 (7172) 77-34-04

1. ОБЩИЕ СВЕДЕНИЯ ОБ ОБЪЕКТЕ

1.1. Описание месторасположения объекта

Строительство аэропорта предусмотрено в рамках концепции развития туристической инфраструктуры курортной зоны Катон-Карагай.

Аэропорт предназначен для обслуживания внутренних рейсов, обслуживать маршруты: Усть-Каменогорск, Алматы, Астана. Аэропорт запроектирован с искусственной взлетно-посадочной полосой с искусственным покрытием (асфальтобетон), ориентированную на МК пос. 080/260 и длиной 2200,0 м, шириной 35 м.

Аэропорт в административном отношении расположен в Восточно-Казахстанской области в Катон-Карагайском районе. Площадка, отведенная под строительство аэропорта составляет 266,4 га.

Ближайшие жилые зоны к объекту:

- аул Белкарагай расположен на северо-востоке в 1,267 км от границы аэропорта;
- село Орнек расположен на юго-западе в 2,352 км от границы аэропорта.

Ближайшие водные объекты:

- ручей Мысык-Калган расположен в 785 м от границы аэропорта;
- ручей Актуйе находится на расстоянии 832 м границы аэропорта.

Проектируемый объект не попадает в водоохранную зону водных объектов.

Ручей Мысык-Калган находился под пятном строительства, для реализации строительства аэропорта Катон-Карагайского района ВКО и для охраны малого водного объекта ручья Мысык был разработан рабочий проект в котором были предусмотрены работы по выносу ручья Мысык Калган, из-под пятна застройки аэропорта, такие как строительство руслоотводного канала, выемка и крепление откосов канала габионами в русло ручья Актуйе. Данный Рабочий проект и разработанный к нему Раздел охраны окружающей среды были согласованы с РГУ "Ертисская бассейновая инспекция по регулированию, охране и использованию водных ресурсов Комитета по регулированию, охране и использованию водных ресурсов Министерства водных ресурсов и ирригации Республики Казахстан" №КZ77VRC00022928 от 23.04.2025 г. (приложение 1).

В данный ручей предусмотрен сброс ливневых и хозбытовых стоков после очистных сооружений.

Для водоснабжения аэропорта проектом предусматривается строительство площадки водозаборных сооружений и водоводов от площадки водозаборных сооружений до границ участка проектируемого аэропорта. Площадка проектируемых водозаборных сооружений расположена на западной окраине с. Белкарагай.

На площадке водозаборных сооружений предусматривается размещение:

- двух насосных станций на водозаборных скважинах (1 рабочая, 1 резервная);
- КТПН 10/0,4 кВт;
- дизельной электростанции контейнерного типа.

Водоводы от площадки водозаборных сооружений до границы территории аэропорта приняты в 2 нитки из полиэтиленовых напорных труб Ø63x5,8мм по ГОСТ 18599-2001, длинна участка 3 143 метров.

На период эксплуатации аэропорта использование воды составит порядка $40~000~{\rm m}^3/{\rm rog}$.

Ситуационная карта-схема с координатами расположения объекта представлена на рисунке 1.1.

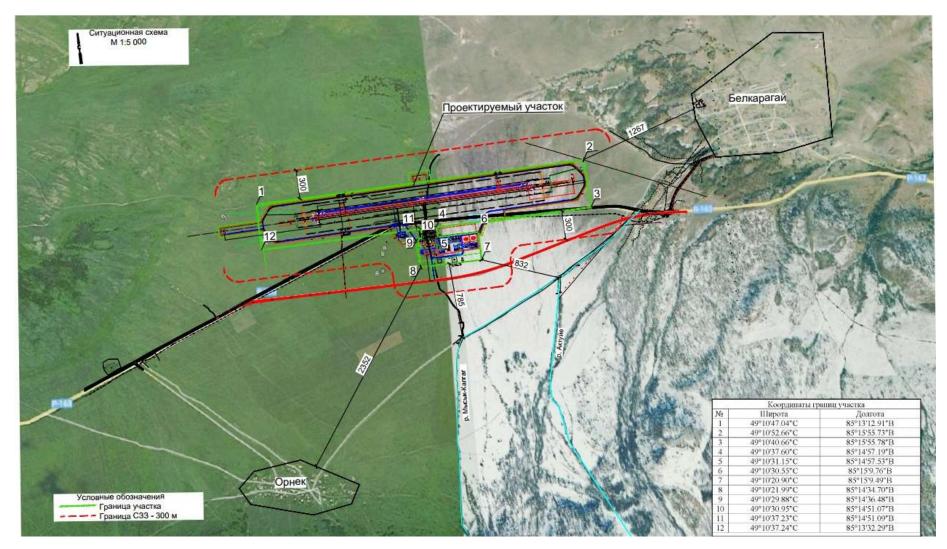


Рисунок 1.1. Ситуационная карта-схема расположения объекта с координатами

1.2. Краткая климатическая характеристика района расположения объекта

Аэропорт расположен в Восточно-Казахстанской области в Катон-Карагайском районе.

Климатическая характеристика района приводится по данным согласно метеостанции Катон-Карагай, как самая ближайшая метеостанцияч согласно СП РК 2.04.01-2017* приложение А.1 и Таблица 3.14, стр. 33, площадка расположена в I климатическом районе, подрайон IB.

Для холодного периода:

Абсолютная минимальная температура воздуха — 44,4°C;

Температура воздуха наиболее холодных суток обеспеченностью 0,98 — 36,1°C;

Температура воздуха наиболее холодных суток обеспеченностью 0,92 — 34,9°C;

Температура воздуха наиболее холодной пятидневки обеспеченностью 0.98 - 32.9°C;

Температура воздуха наиболее холодной пятидневки обеспеченностью 0,92 — 29,9°C;

Температура воздуха наиболее холодного месяца обеспеченностью 0,94 — 17,4°C;

Средняя продолжительность (сут.) и температура воздуха (${}^{\circ}$ C) периодов со среднесуточной температурой воздуха, не выше $0{}^{\circ}$ C – 165 сут. - -8,6 ${}^{\circ}$ C;

Средняя продолжительность (сут.) и температура воздуха ($^{\circ}$ C) периодов со среднесуточной температурой воздуха, не выше 8° C - 226 сут. $- 3,3^{\circ}$ C;

Средняя продолжительность (сут.) и температура воздуха (${}^{\circ}$ C) периодов со среднесуточной температурой воздуха, не выше $10{}^{\circ}$ C - 244 сут. - $3.9{}^{\circ}$ C;

Дата начала и окончания отопит. периода (с темп. воздуха не выше 8° C) — 23.09 - 07.05;

Среднее число дней с оттепелью за декабрь-февраль - 2 дн.;

Средняя месячная относит. влажность воздуха в 15 ч наиболее холод. месяца (января) - 63%;

Средняя месячная относит. влажность воздуха за отопительный период – 66%;

Среднее количество (сумма) осадков за ноябрь – март – 89 мм;

Среднее месячное атмосф. давление на высоте установки барометра за январь — 899,1 гПа

Преобладающее направление ветра за декабрь-февраль — В;

Средняя скорость ветра за отопительный период — 3,7 м/с;

Максимальная из средних скоростей ветра по румбам в январе -8.7 м/c;

Среднее число дней со скоростью ветра > 10 м/с при отриц. температуре воздуха - 7 дн;

Для теплого периода:

Атм. давление на высоте установки барометра среднее месячное за июль - 888,4 гПа:

Атмосферное давление на высоте установки барометра среднее за год — 895,8 гПа; Высота барометра над уровнем моря — 1080,9;

Температура воздуха теплого периода года обеспеченностью 0,95 + 21,7°C;

Температура воздуха теплого периода года обеспеченностью 0,96 + 22,6°C;

Температура воздуха теплого периода года обеспеченностью 0,98 + 24,8°C;

Температура воздуха теплого периода года обеспеченностью 0,99 + 26,6°C;

Средняя максимальная темпреатура воздуха наиболее теплого месяца (июля) + 23,9°C;

Абсолютная максимальная температура воздуха + 36,0°C;

Средняя месячная относит. влажность воздуха в 15ч наиболее теплого месяца(июля) 50%;

Средняя количество (сумма) осадков за апрель-октября - 346 мм;

Суточный максимум осадков за год средний из максимальных — 25 мм;

Суточный максимум осадков за год наибольший из максимальных — 53 мм;

Преобладающее направление ветра (румбы) за июнь-август - В;

Максимальная из средних скоростей ветра по румбам в июле — 2,0 м/с;

Повторяемость штилей за год — 16 %.

Среднемесячные и годовая температуры воздуха по городу приведены в таблице 1.2.1.

Таблица 1.2.1

Среднемесячная и годовая температура воздуха

Показатели		месяцы											
Показатели	I	II	III	IV	\mathbf{V}	VI	VII	VIII	IX	X	XI	XII	год
Температура, ⁰ С	-13,2	-11,8	-6,1	3,5	10,3	15,0	16,8	15,2	10,0	2,7	-5,9	-11,2	2,1

Таблица 1.2.2

Средняя за месяц и год относительная влажность, %

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
70	68	68	55	49	46	52	50	50	59	69	68	59

Таблица 1.2.3

Снежный покров

	Выс	сота снежного покј	оова, см	Продолжитель-		
Область, год	средняя из наибольших декадных за	максимальная из наибольших декадных	максимальная суточная за зиму на последний	ность залегания устойчивого снеж. покрова,		
	зиму		день декады	дни		
Катон-Карагай	26,9	89,0	48,0	160,0		

Согласно схематической карты по базовой скорости ветра (прил.А рис.А.3.), с. Белкарагай расположено:

- район по ветровой нагрузке IV,
- базовая скорость ветра 35 м/с;
- давление ветра 0,77 кПа.

Согласно схематической карты по снеговым нагрузкам на покрытие НП к СП РК EN 1998-3:2005/2012 часть 1 -3, Карта № 3, с. Белкарагай расположено ближе к границе на границе VI района исходя из этого берем по максимальному району:

- район по снеговой нагрузке IV;
- снеговая нагрузка 3,2 кПа.

Таблица 1.2.4

Среднее число дней с атмосферными явлениями за год

Область, пункт	Пыльная буря	Туман	Метель	Гроза
Катон-Карагай	2,0	5	9	35

Таблица 1.2.5

Средняя за месяц и за год продолжительность солнечного сияния, часы

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
126	157	230	241	285	303	301	285	234	176	129	103	2570

Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере для района размещения намечаемой деятельности, приведены в таблице 1.2.6.

Таблица 1.2.6 Основные метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы, А	200
Коэффициент рельефа местности в городе	1,0
Средняя максимальная температура наружного воздуха наиболее жаркого месяца, T, °C	+23,9
Средняя температура наружного воздуха наиболее холодного месяца, T, °C	-17,4
Скорость ветра (U*), повторяемость превышения которой составляет 5%, м/с	6,2
Среднегодовая роза ветров:	
- северное (C)	1
- северо-восточное (CB)	7
- восточное (B)	40
- юго-восточное (ЮВ0	19
- южное (Ю)	4
- юго-западное (ЮЗ)	8
- западное (3)	18
- северо-западное (C3)	3

Ветер

Роза ветров представлена на рисунке 1.2.

МС Катон-Карагай

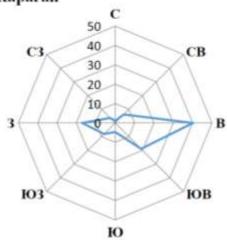


Рисунок 1.2. Роза ветров по данным метеостанции Катон-Каргай

1.3. Гидрогеологическая характеристика

Район богат водными ресурсами. Крупнейшие реки — Иртыш с притоками Бухтарма и Нарым. На Иртыше — Бухтарминское водохранилище. На горных реках имеются водопады, крупнейший — Кокколь высотой около 80 м в низовьях реки Большой Кокколь (левый приток Белой Берели). В районе насчитывается около 400 озёр, большинство из них — с площадью водного зеркала до 1 км², наиболее крупное из озёр — Бухтарминское. На склонах и у подножья гор встречаются много солёных и минеральных источников (например, термальные источники Рахмановские Ключи).

На территории Катон-Карагайского района находятся оз. Язевое, оз. Черновое и оз. Мараль.

Озеро Караколь (Язевое) находится на высоте 1685 м над уровнем моря. Длина его 3 км, ширина 800 м, глубина до 10 м. Цвет воды желтовато-зеленый, прозрачность 4,2 м. Берега сложены песком, галькой и валунами. В озеро впадает два небольших безымянных притока и ключи, вытекает река Язевая.

Озеро Черновое или Каумыш находится в небольшой котловине, выработанной водными потоками. Озеро расположено на высоте 1915 м над уровнем моря. Длина его 2 км, ширина 900 м, глубина 8,5 м. Цвет воды темно-бурый, прозрачность 3,5 м. Температура воды у поверхности +18оС, у дна температура 9оС. Берега юго-западной половины озера песчано-галечные с отдельными валунами, у северо-восточного его конца берег имеет илистое строение. В озеро впадает много мелких речек и ключей, река Карасу, имеющая длину до 12 км. Из озера вытекает река Черновая.

Озеро Марлье или Чабан-Бай расположено на высоте 1718 м над уровнем моря. Оно лежит в размытой складке (долине) тектонического происхождения. Площадь озера составляет 2,1 кв.км, глубина около 4 м. Береговые отложения представлены глинистыми и песчаными болотными почвами, заиленными песками, галькой, а у истоков — валунами. Такое строение берегов, вероятно, свидетельствует о старости озера. На дне отложен белесоватый и бурый ил, изредка песок. Цвет воды светло-бурый, прозрачность 2 м. Температура поверхностных слоев +13-18°C (июль), донных — +14°C. В озеро впадает р. Маралиха — тихая, болотистая речка до 15 км длиной и р. Хайрюзовка — длиной до 10 км. Вытекает из озера река Белая.

На участке объекта расположены ручей Мысык — Калган и ручей Актуйе, они расположены между селами Орнек и Белкарагай. Ручей Мысык калган начинается с родников, расположенных на ближайшем склоне горы и протекает в направлении на север. В районе с Белкарагай рассматриваемый ручей впадает в другие ручьи, которые далее впадает в р.Бухтарма.

Грунтовые воды на момент проведения изысканий — март 2025 г, выработками не вскрыты. Возможно появление временной верховодки в течении года по кровле суглинков иловатых, супеси, суглинков и скальных грунтов, основной причиной возможного появления верховодки являются — весенние паводки и обильные атмосферные осадки.

По данным лабораторных определений (по химическому составу) грунтовые воды преимущественно гидрокарбонатно - кальциевые, пресные (сухой остаток 146,0 мг/л). Вода слабокислая (рН - 6,19). По степени жесткости грунтовые воды очень жесткие (общая жесткость 16,0 мг-экв/л). К бетонам нормальной плотности на портландцементе по ГОСТу - 10178 грунтовые воды по содержанию (сульфатов - 22,23 мг/л) - агрессивными свойствами не обладают, по содержанию хлоридов (3,55 мг/л) - агрессивными свойствами не обладают, по водородному показателю (рН - 6,19) - агрессивными свойствами не обладают согласно (СП РК 2.01-101-2013 табл.Б.3 стр.44-45). К металлическим конструкциям грунтовые воды по суммарному содержанию сульфатов и хлоридов (22,23+3,55=25,78 мг/л) - обладают слабоагрессивными свойствами (СП РК 2.01-101-2013 табл.В.2 стр.51, И.5 стр.70).

2. ХАРАКТЕРИСТИКА ПРЕДПРИЯТИЯ КАК ИСТОЧНИКА ЗАГРЯЗНЕНИЯ ВОДНЫХ ОБЪЕКТОВ

2.1. Краткая характеристика технологии производства, технологического оборудования, используемого сырья и материалов

Строительство аэропорта предусмотрено в рамках концепции развития туристической инфраструктуры курортной зоны Катон-Карагай.

Аэропорт предназначен для обслуживания внутренних рейсов, обслуживать маршруты: Усть-Каменогорск, Алматы, Астана. Аэропорт запроектирован с искусственной взлетно-посадочной полосой с искусственным покрытием (асфальтобетон), ориентированную на МК пос. 080/260 и длиной 2200,0 м, шириной 35 м.

На территории аэропорта проектируются: здание аэровокзала (предназначено для обслуживания пассажиров внутренних авиалиний, количество обслуживаемых пассажиров 150 пасс/час); здание аварийно-спасательной станции (модульное пожарное депо на 2 автомобиля из быстровозводимых конструкций); здание административного корпуса с гаражом на 8 автомашин; склада ГСМ, с лабораторией; установка блочно-модульной водогрейной котельной (мощность котельной 3,5 МВт, котельная работает на газе, резервное — дизельное топливо), насосная станция, резервуары запаса воды, очистные сооружения хозяйственно бытовых и ливневых стоков.

2.2. Краткая характеристика существующих очистных сооружений

На данном объекте нет существующих очистных сооружений.

В соответствии с требованиями СП РК 3.03-119-2013 «Аэродромы» предусматривается устройство очистных сооружений поверхностного стока.

Очистке подлежит поверхностный сток, поступающий с ИВПП, рулежной дорожки, территории перрона мест стоянок самолетов, привокзальной площади и покрытий проездов Аэродрома.

Расчетная производительность поверхностных сточных вод составляет 2 560 м³/сут, предусматривается регулирующий резервуар объемом 2 560 м³/сут, с которого сточная вода подается в усредненном режиме на очистные сооружения производительностью 36 м³/ч или 10 л/с. Перед регулирующим резервуаром предусматривается тангенциальные песколовки общей производительностью 686,2 л/с.

Очистная установка представляет собой комбинированный песко-нефтеуловитель типа КПН-10 производительностью 10 л/с. В составе данной установки предусмотрены зоны: пескоуловитель, нефтеуловитель, песчаный и угольный фильтр.

Комбинированный песко-нефтеуловитель с дополнительным сорбционным блоком предназначен для улавливания песка, грубодисперсных взвешенных веществ, растворенных нефтепродуктов из поверхностных сточных вод.

Используется в качестве сооружения очистки поверхностных и промышленных сточных вод перед сбросом их в водоемы.

Описание технологического процесса

Сточная вода по подводящему трубопроводу поступает в зону отстаивания, где происходит снижение скорости движения потока и выпадение тяжелых минеральных примесей на дно установки. Данная зона оборудована коалесцентным модулем, принцип действия, которого заключается в укрупнении капель нефтепродуктов за счет действия сил межмолекулярного притяжения и ускорения их всплытия на поверхность отстойника.

Форма и конструкция коалесцентного модуля позволяет значительно увеличить эффективность очистки. Модули выполнены из полипропилена и имеют высокую

механическую прочность. Образовавшийся на дне отстойника осадок периодически удаляется ассенизационной машиной через горловину обслуживания. Далее сточные воды попадают на двухслойный фильтр. Верхний слой – песок, в котором происходит очистка от тонкодисперстных веществ, которые задерживаются на поверхности и в порах фильтрующего материала. Нижний – гранулированный активированный уголь, служащий для удаления растворенных нефтепродуктов.

Использование очистных сооружений

От правильной эксплуатации зависит долгая и бесперебойная работа установки.

Техническое обслуживание комбинированного песко-нефтеуловителя с дополнительным сорбционным блоком заключается в своевременном удалении скопившегося осадка из зоны отстаивания, прочистки коалесцентного модуля, замены по необходимости песчаной и угольной загрузки.

Не реже чем 2 раза в год или по мере накопления, производить откачку осадка с помощью специальной техники. Так же по мере накопления, но не реже 2 раза в год осуществлять откачку всплывающих веществ.

Осуществлять промывку коалесцентного модуля не реже 1 раза в 2-3 месяца. Для улучшения отделения нефтепродуктов от фильтровальной загрузки рекомендуется использовать воду под давлением. Производить замену песчаной и угольной загрузки по мере ее загрязнения не реже 1 раза в 2 года.

Согласно Паспорту комбинированного песко-нефтеуловителя с дополнительным сорбционным блоком типа ЛОС-КПН-С (приложение 2) очищенная вода соответствует показателям воды в ручье Мысык-Калган (протокол испытаний вод ручья представлен в приложении 3).

Очищенный сток направляется в русло ручья Мысык-Калган. Согласно Паспорту комбинированного песко-нефтеуловителя с дополнительным сорбционным блоком типа ЛОС-КПН-С исходные концентрации загрязняющих веществ и эффективность очистки представлены в таблице 2.2.1.

Таблица 2.2.1 Исходные концентрации загрязняющих веществ и эффективность очистки

Показатель	Исходная	Механическая очистка		Механическая очистка		' '	са (песчаный и	Общая	Нормы сброса
	концен-	(танг	енцальная	(песко-нефтеуловитель		угольн	іый фильтр	эффективность,	Приказ
	трация,	песколовка)		ЛОС-КПН)		установы	ки ЛОС-КПН)	%	Министра
	мг/л (для	Эффекти-	Концентрация	Эффекти-	Концентрация	Эффекти-	Концентрация		здравоохранения
	талого	вность,	после	вность,	после	вность,	после		РК от 24.11.2022
	стока)*	%	очистки, мг/л	%	очистки, мг/л	%	очистки, мг/л		г. № КР ДСМ-
									138
Взвешенные	2 000	30	1 400	92,9	10	70	3	99,85	+0,75 мг/л к фону
вещества									водоёма
БПК20	70	15	59,5	83,2	10	40	6	92,9	6,0
Нефтепродукты	20	-	20	97,5	0,5	80	0,1	99,5	0,1

^{*-} Концентрации приняты в соответствии с таблицей 5.1 СН РК 4.01-03-2011 «Водоотведение. Наружные сети и сооружения» для участков селитебной территории с высоким уровнем благоустройства и регулярной механизированной уборкой дорожных покрытий.

Рабочим проектом предусматривается устройство очистных сооружений для хозбытовых стоков.

Для очистных сооружений принято оборудование в составе:

- очистное сооружение Poly-Rain-ПМФ-30;
- колодец отбора проб 1шт;
- резервуар накопитель емк. 200 м³ 1шт.

Очистное сооружение Poly-Rain-ПМФ-30 горизонтальная цилиндрическая емкость, включающая три технологических модуля очистки: пескоотделитель, маслобензоотделитель и сорбционный фильтр.Каждый модуль оборудован шахтой обслуживания (горловиной), имеет подводящий патрубок с отводом или полупогружной перегородкой и отводящий патрубок.

Процесс очистки сточных вод проходит в три этапа. За счет гравитационных сил в пескоотделителе осуществляется механическая очистка от песка, крупных взвешенных частиц и пленочных нефтепродуктов. В коалесцентном блоке маслобензоотделителя производится очистка от эмульгированных нефтепродуктов и взвешенных частиц средних фракций.

В сорбционном фильтре осуществляется глубокая очистка от оставшихся нефтепродуктов и мелкодисперсных взвешенных веществ.

В качестве фильтрующей сорбционного фильтра используется уголь активный, уложенный на поддерживающий слой из щебня шунгитового. Возможно применение других фильтрующих материалов.

В случае аварийного спуска предусмотрена обводная линия. Для переключения обводного трубопровода предусмотрены задвижки в разделительном колодце.

Очищенный сток хозбытовой канализации направляется в русло ручья Мысык-Калган.

Сбросы предусматриваются в водный объект ручей Мысык-Калган с показателями очищенной воды, соответствующие показателям воды в существующем ручье (приложение 3).

После очистных сооружений сточные воды поступают в колодец отбора проб. А далее проходя через колодец, поступает в дождевую канализационную насосную станцию (ДНС 2). В колодце предусмотрена электрическая задвижка Ø250.

Далее насосами подается напорным трубопроводом в ручей Мысык -Калган.

Сети запроектированы из гофрированных полипропиленовых труб Д=250 мм по ГОСТу Р54475-2011.

От резервуара накопителя объемом 200 м^3 напорная канализация запроектирована из полиэтиленовых труб $\emptyset 250 \times 14,8 \text{ мм}$ по ГОСТ 18599-2001.

Фактический объем сброса сточных вод в ручей Мысык-Калган составит — 141 м³/час, 540 м³/сутки, 76 тыс.м³/год.

2.3. Оценка степени соответствия применяемой технологии производства и методов очистки сточных вод, передовому научно-техническому уровню в стране и за рубежом

Применяемая технология производства и методы очистки сточных вод соответствует передовому научно-техническому уровню в стране. Данный вид очистки стоков широко применяются зарубежом и применяется в Республике Казахстан.

2.4. Перечень загрязняющих веществ

В соответствии с «Методикой определения нормативов эмиссий в окружающую среду» утвержденной ПМООС РК №63 от 16.03.2021 года при разработке нормативов НДС установление новых нормативов базируется на результатах инвентаризации, проведенной на основании инструментальных замеров и расчетных методов. Согласно пункту 61 указанной Методики в случае отведения части стоков накопителя в реки или на орошение в качестве СПДК принимаются соответственно предельно-допустимые концентрации рыбохозяйственного водопользования (ПДКр.х.) и нормы качества оросительной воды (ПДК орошения). С учетом выше изложенного при разработке проекта НДС использованы результаты инвентаризации качественного и количественного состава сбросов, ПДК орошения и результаты расчетов, предложены нормативы сбросов на орошение после очистки на очистных сооружениях.

В настоящем проекте нормируются следующие загрязняющие вещества сточных водах: взвешенные вещества, БПК, ХПК5, хлориды, сульфаты, нитраты, нитриты, азот аммонийный, фосфаты, нефтепродукты, СПАВ и жиры. Сухой остаток не нормировался, так как в него входят хлориды, сульфаты, которые, согласно Налогового Кодекса (гл. 71, ст. 495) - необходимо нормировать и для них установлена ставка платежа.

2.5. Качественные показатели сточных вод

Расчетные качественные показатели сточных вод отображены в таблице 2.5.1

Таблица 2.5.1

Расчетные	показатели	сточных	вод

	Расход ст	очных вод	Фактическая	C
Наименование показателей	м³/час	м ³ /год	концентрация мг/дм ³	С _{пдк} , мг/дм ³
Взвешенные вещества	141	76 000	3	Сф+0,75
БПК20	141	76 000	6	6,0
Нефтепродукты	141	76 000	0,1	0,1
Нитриты	141	76 000	3,3	3,3
Нитраты	141	76 000	45,0	45,0
Азот аммонийный	141	76 000	2,0	2,0
Фосфаты	141	76 000	3,5	3,5
Сульфаты	141	76 000	500,0	500,0
Хлориды	141	76 000	350,0	350,0
СПАВ	141	76 000	0,5	0,5
Жиры	141	76 000	50,0	50,0

2.6. Сведения о количестве сточных вод

Водоснабжение. Для водоснабжения аэропорта проектом предусматривается строительство площадки водозаборных сооружений и водоводов от площадки водозаборных сооружений до границ участка проектируемого аэропорта. Площадка проектируемых водозаборных сооружений расположена на западной окраине с. Белкарагай.

На площадке водозаборных сооружений предусматривается размещение:

- двух насосных станций на водозаборных скважинах (1 рабочая, 1 резервная);
- КТПН 10/0,4 кВт;

- дизельной электростанции контейнерного типа.

Водоводы от площадки водозаборных сооружений до границы территории аэропорта приняты в 2 нитки из полиэтиленовых напорных труб Ø63x5,8мм по ГОСТ 18599-2001, длинна участка 3 143 метров.

На период эксплуатации аэропорта использование воды составит порядка 76 000 ${\rm m}^3/{\rm год}$.

Водоотведение. Система канализации предполагает сбор всех канализационных стоков по системе канализации к КНС, откуда она по сетям канализации перекачивается в хлорную дезинфекцию и механическую очистку и далее в ручей Мысык-Калган.

Расчетное удельное среднесуточное водоснабжение и водоотведение бытовых сточных вод от зданий принято равным водопотреблению без учета расхода воды на полив в соответствии CH PK 4.01-03-2011.

Средне-суточный расход — $540 \text{ м}^3/\text{сут}$.

Средне-часовой расход $-141 \text{ м}^3/\text{час}$.

Годовое водопотребление –тыс.м³/год.

2.7. Для обоснования полноты и достоверности данных о расходе сточных вод, используемых для расчета допустимых сбросов, представляются данные в табличном виде "Баланс водопотребления и отведения"

Для оценки функционирования водохозяйственной системы применяется метод водного баланса, составляющие которого представлены объемами водопотребления и водоотведения и безвозвратных потерь.

Расчетной основой указанного метода служит уравнение водного баланса, физически отражающее закон сохранения материи.

Уравнение водного баланса имеет следующий вид:

W1 + W2 = W3 + W4 + W5

Где: W1 – водопотребление (потребление свежей воды);

W2 –атмосферные стокообразующие осадки;

W3 –безвозвратное потребление;

W4 –безвозвратные потери;

W5 -водоотведение.

Анализ составляющих данного уравнения применительно к региональным климатическим и производственным особенностям представлен следующим образом: Водопотребление (W1) установлено водопользователем: фактическое по водомерным счетчикам, оценочное - расчетным путем с учетом действующих отраслевых нормативов.

Атмосферными осадками (W2) можно пренебречь, так как в этом регионе в период с марта по ноябрь испарение с поверхности превышает выпавшие осадки в 3 раза, в связи с чем стокообразующих осадков практически не бывает.

Безвозвратное водопотребление в производстве на единицу продукции (W3) в нефтедобыче можно принять равным 0, в связи с тем, что вода не используется в качестве составляющей готовой продукции. Потери воды (W4) устанавливаются расчетным путем и определяют норма тивно обоснованные потери (испарение, унос, естественное испарение др.). Водоотведение (W5) определяется на объекте по производительности насосов (во время реконструкции очистных установлен водомерный счетчик), а оценочная величина водоотведения устанавливается расчетным путем по водохозяйственному балансу.

Таким образом, в окончательном виде уравнение водного баланса имеет вид:

W1 = W4 + W5

Анализ эффективности использования воды на объекте исследования показывает следующее:

Эффективность использования водных ресурсов на любом производственном объекте определяет наличие и состояние систем водоснабжения и канализации, применяемые методы очистки сточных вод, технический уровень основного производства. Оценивается эффективность использования водных ресурсов обычно выполнением сопоставительного анализа составляющих водного баланса фактического и оценочного (расчетного).

При оценочном расчете обоснованных безвозвратных потерь в подразделениях и анализе перечня нормообразующих элементов водопотребления, выделяются статьи, затраты воды на которые можно отнести к обоснованным потерям. Это:

- вода, используемая для полива зеленых насаждений на территории промплощадки;
- вода, используемая для подпитки водогрейных котлов в котельной и выработки пара;
- вода, используемая как поглотитель и транспортирующая среда механических примесей (потери воды из очистных сооружений), в большинстве случаев этими объемами пренебрегают.

Баланс водопотребления и водоотведения приведены в таблице. 2.7.1.

Таблица 2.7.1

Баланс водопотребления и водоотведения

	Всего,			Водопотре	бление, тыс.м ³ /п	ериод	Водоотведение, тыс.м ³ /период					
		На производственные нужды						Объем				
Производство	тыс.	Све	жая вода			На	Безвоз-	Всего,	сточной	Производ-	Хозяйственно -бытовые сточные воды	_
	м ³ /период	всего	в т.ч. питьевого качества	Оборотная вода	Повторно- используемая вода	хозяйственно -бытовые нужды	вратное потреб- ление	тыс. м ³ /период	воды повторно исполь- зуемой	ственные сточные воды		Приме- чание
1	2	3	4	5	6	7	8	9	10	11	12	13
Аэропорт	40	40	40	-	-	40	40	76	-	-	76	

3. ПРИЛОЖЕНИЯ

- Приложение 1. Согласование №КZ77VRC00022928 от 23.04.2025 г. с РГУ "Ертисская бассейновая инспекция по регулированию, охране и использованию водных ресурсов Комитета по регулированию, охране и использованию водных ресурсов Министерства водных ресурсов и ирригации Республики Казахстан"
- **Приложение 2.** Паспорт на Комбинированный песко-нефтеуловитель с дополнительным сорбционным блоком ЛОС-КПН-С
- Приложение 3. Протокол забора воды с ручья Мысык-Калган
- Приложение 4. Лицензия

Согласование №КZ77VRC00022928 от 23.04.2025 г. с РГУ "Ертисская бассейновая инспекция по регулированию, охране и использованию водных ресурсов Комитета по регулированию, охране и использованию водных ресурсов Министерства водных ресурсов и ирригации Республики Казахстан"

Паспорт на Комбинированный песко-нефтеуловитель с дополнительным сорбционным блоком ЛОС-КПН-С

Протокол забора воды с ручья Мысык-Калган

Лицензия